prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
"""Pre-process data for the visualisation website.""" import pandas as pd import logging import sys UK_CASES_PATH = 'data/uk_cases.csv' OUTPUT_PATH = 'docs/assets/data/site_data.csv' # RtCproj_PATH = '../data/RtCproj.csv' uk_cases = pd.read_csv(UK_CASES_PATH) # RtCproj = pd.read_csv(RtCproj_PATH) df = uk_cases.set_index(['Country', 'Area name']).stack().to_frame().reset_index().rename(columns={ 'Area name': 'area', 'level_2': 'Date', 0: 'cases_new' }) df['cases_new_smoothed'] = df['cases_new'].rolling(7, center=True).mean() df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
import csv import pandas as pd import networkx as nx import matplotlib.pyplot as plt import time import goslate import numpy as np import cld3 from googletrans import Translator ###############DataFrames:######################### dfn = pd.read_csv("/root/.encrypted/.pythonSai/ira_tweets_csv_hashed.csv", sep=",", header=None, usecols=[0,1,2,3,6,12,14,15,16,19,20,27,28], chunksize=2000, names=["tweetid", "userid", "user_display_name", "user_screen_name", "user_profile_url", "tweet_text", "tweet_client_name", "in_reply_to_tweetid", "in_reply_to_userid", "retweet_userid", "retweet_tweetid", "hashtags", "urls"]) dfi = pd.read_csv("/root/.encrypted/.pythonSai/kCoreBots/kCoreBotsList.csv", sep=",", header=None, chunksize=2000) df_lst =
pd.DataFrame(columns=["tweetid", "userid", "user_display_name", "user_screen_name", "user_profile_url", "tweet_text", "tweet_client_name", "in_reply_to_tweetid", "in_reply_to_userid", "retweet_userid", "retweet_tweetid", "hashtags", "urls"])
pandas.DataFrame
from io import StringIO from pathlib import Path import pytest import pandas as pd from pandas import DataFrame, read_json import pandas._testing as tm from pandas.io.json._json import JsonReader @pytest.fixture def lines_json_df(): df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) return df.to_json(lines=True, orient="records") def test_read_jsonl(): # GH9180 result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_jsonl_unicode_chars(): # GH15132: non-ascii unicode characters # \u201d == RIGHT DOUBLE QUOTATION MARK # simulate file handle json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' json = StringIO(json) result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) # simulate string json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_to_jsonl(): # GH9180 df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a":1,"b":2}\n{"a":1,"b":2}' assert result == expected df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}' assert result == expected tm.assert_frame_equal(read_json(result, lines=True), df) # GH15096: escaped characters in columns and data df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}' assert result == expected tm.assert_frame_equal(read_json(result, lines=True), df) @pytest.mark.parametrize("chunksize", [1, 1.0]) def test_readjson_chunks(lines_json_df, chunksize): # Basic test that read_json(chunks=True) gives the same result as # read_json(chunks=False) # GH17048: memory usage when lines=True unchunked = read_json(StringIO(lines_json_df), lines=True) reader = read_json(StringIO(lines_json_df), lines=True, chunksize=chunksize) chunked =
pd.concat(reader)
pandas.concat
"""based on https://github.com/quintel/etdataset- public/tree/master/curves/demand/households/space_heating by Quintel""" from pathlib import Path import pandas as pd from .smoothing import ProfileSmoother class HouseholdProfileModel: """Class to describe a heating model of a house""" @property def u_value(self): return 1 / self.r_value @property def concrete_mass(self): return self.surface_area * self.wall_thickness * self.p_concrete @property def heat_capacity(self): return self.concrete_mass * self.c_concrete / 3.6e6 @property def exchange_delta(self): return self.u_value * self.surface_area / 1000 @classmethod def from_defaults(cls, house_type, insulation_type, **kwargs): """Quintel default values""" # load properties file = Path(__file__).parent / 'data/house_properties.csv' properties = pd.read_csv(file, index_col=[0, 1]) # subset correct house and insulation profile properties = properties.loc[(house_type, insulation_type)] # load thermostat values file = Path(__file__).parent / 'data/thermostat_values.csv' thermostat = pd.read_csv(file, usecols=[insulation_type], squeeze=True) # convert to dictonairy config = properties.to_dict() # append other config props config['thermostat'] = thermostat.to_dict() config['house_type'] = house_type config['insulation_type'] = insulation_type # append kwargs config.update(kwargs) return cls(**config) def __init__(self, behaviour, surface_area, thermostat, r_value, wall_thickness, window_area, house_type, insulation_type, **kwargs): """kwargs are passed to smoother""" # set constants self.p_concrete = 2400 self.c_concrete = 880 self.behaviour = behaviour self.surface_area = surface_area self.window_area = window_area self.thermostat = thermostat self.inside_temperature = self.thermostat[0] self.r_value = r_value self.wall_thickness = wall_thickness self.house_type = house_type self.insulation_type = insulation_type self.__smoother = ProfileSmoother(**kwargs) def check_profile(self, profile): # check profile length if len(profile) != 8760: raise ValueError(f'"{profile.name}" must contain 8760 values') return profile def make_heat_demand_profile(self, temperature, irradiation): """heat demand profile""" if len(temperature) != 8760: raise ValueError('temperature must contain 8760 values') if len(irradiation) != 8760: raise ValueError('irradiation must contain 8760 values') # merge datapoints profile = pd.concat([temperature, irradiation], axis=1) profile.columns = ['temperature', 'irradiance'] # make periodindex start = f'01-01-01 00:00' profile.index = pd.period_range(start=start, periods=8760, freq='H') # set hour columns profile['hour'] = profile.index.hour # calculate heat demand func = self._calculate_heat_demand profile = profile.apply(lambda cols: func(*cols), axis=1) # smooth profile func = self.__smoother.calculate_smoothed_demand profile = func(profile.values, self.insulation_type) # name profile name = f'weather/insulation_{self.house_type}_{self.insulation_type}' profile = pd.Series(profile, name=name, dtype='float64') # factor profile profile = profile / profile.sum() / 3600 return profile def _calculate_heat_demand(self, outside_temperature, solar_irradiation, hour_of_the_day): thermostat_temperature = self.thermostat[hour_of_the_day] # How much energy is needed from heating to bridge the temperature gap? if self.inside_temperature < thermostat_temperature: needed_heating_demand = ( (thermostat_temperature - self.inside_temperature) * self.heat_capacity ) else: needed_heating_demand = 0.0 # Updating the inside temperature if self.inside_temperature < thermostat_temperature: self.inside_temperature = thermostat_temperature # How big is the difference between the temperature inside and outside? temperature_difference = self.inside_temperature - outside_temperature # How much heat is leaking away in this hour? energy_leaking = ( self.exchange_delta * temperature_difference ) # How much energy is added by irradiation? energy_added_by_irradiation = solar_irradiation * self.window_area # What is the inside temperature after the leaking? self.inside_temperature = ( self.inside_temperature - (energy_leaking - energy_added_by_irradiation) / self.heat_capacity ) return needed_heating_demand class HouseholdsModel: """Class to create household profiles""" @classmethod def from_defaults(cls): """Quintel default values""" # load properties cols = ['house_type', 'insulation_level'] file = Path(__file__).parent / 'data/house_properties.csv' properties = pd.read_csv(file, usecols=cols) house_types = properties.house_type.unique() insulation_types = properties.insulation_level.unique() return cls(house_types, insulation_types) def __init__(self, house_types, insulation_types): # set arguments self.house_types = house_types self.insulation_types = insulation_types def make_heat_demand_profile(self, house_type, insulation_type, temperature, irradiance, **kwargs): """kwargs are passed to smoother""" model = HouseholdProfileModel.from_defaults(house_type, insulation_type, **kwargs) profile = model.make_heat_demand_profile(temperature, irradiance) return profile def make_heat_demand_profiles(self, temperature, irradiance, **kwargs): """kwargs are passed to smoother""" # reference props houses = self.house_types levels = self.insulation_types # set up parameters func = self.make_heat_demand_profile config = {'temperature' : temperature, 'irradiance': irradiance} # append kwargs config.update(kwargs) # make profiles profiles = [func(h, l, **config) for h in houses for l in levels] return
pd.concat(profiles, axis=1)
pandas.concat
from MovieRecommender import train_test_model import pandas as pd import numpy as np import sys from scipy.sparse import csr_matrix, load_npz import pickle from tabulate import tabulate def get_movies_rated(data, user_id, train_data, movies): data_matrix = data.loc[data.rating != 0] users = list(np.sort(data_matrix.user_id.unique())) # Get unique users items = list(np.sort(data_matrix.item_id.unique())) # Get unique movies users_arr = np.array(users) # Array of user IDs from the ratings matrix items_arr = np.array(items) # Array of movie IDs from the ratings matrix # Returns index row of user id user_ind = np.where(users_arr == user_id)[0][0] # Get column indices of rated items rating_ind = train_data[user_ind, :].nonzero()[1] movie_codes = items_arr[rating_ind] # Get the movie ids for rated items return movies.loc[movies['item_id'].isin(movie_codes), 'name'].reset_index(drop=True) def predict_ratings(predictions, item_vecs, user_id): item_vecs = predictions[1] user_vec = predictions[0][user_id, :] pred = user_vec.dot(item_vecs).toarray()[0].reshape(-1) return pred def similar_items(movies, model, movie_list, n_similar=20): # Use implicit to get similar items. movies.name = movies.name.str.strip() item_id = movies.item_id.loc[movies.name.str.lower(). isin([s.lower() for s in movie_list])].iloc[0] movie_names = [] similar = model.similar_items(item_id, n_similar) # Print the names of similar movies for item in similar: idx, rating = item movie_names.append(movies.name.loc[movies.item_id == idx+1].iloc[0]) similar = pd.DataFrame({"Similar Movies": movie_names[1:]}) return similar def recommendations(data, train_data, movies, model, sparse_user_item, user_id): # Use the implicit recommender. recommended = model.recommend(user_id, sparse_user_item) movies_recom = [] # ratings_recom = [] # Get movie names from ids for item in recommended: idx, rating = item movies_recom.append((movies.name.loc[movies.item_id == idx+1].iloc[0])) # ratings_recom.append(rating) # Create a dataframe of movie names and scores # recommendations = pd.DataFrame({'Movies': movies_recom, # 'Rating': ratings_recom}) movies_rated_by_users = get_movies_rated(data, user_id, train_data, movies) minlen = min(len(movies_recom), len(movies_rated_by_users)) recommendations = pd.DataFrame({'Recommended Movies': movies_recom[:minlen], 'Movies Rated': movies_rated_by_users[:minlen]}) return recommendations def main(): train_test_model.main() movies = pd.read_pickle("./output/movies.pkl") sparse_user_item = load_npz("./output/sparse_user_item.npz") item_vecs = np.load('./output/item_vecs.npy') user_vecs = np.load('./output/user_vecs.npy') data =
pd.read_pickle("./output/ratings.pkl")
pandas.read_pickle
import datetime as date import pandas as pd import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import dash from dash import Dash, dcc, html, Input, Output, State from flask import Flask from flask_session import Session from flask import Flask, current_app, flash, jsonify, make_response, redirect, request, render_template, send_file, Blueprint, url_for, redirect from functools import wraps from distutils.log import error from azure.cosmos import CosmosClient, PartitionKey from googleapiclient.discovery import build import logging from ms_identity_web import IdentityWebPython from ms_identity_web.adapters import FlaskContextAdapter from ms_identity_web.configuration import AADConfig from api_miners import key_vault, youtube, pubmed from api_miners.pubmed import * from views import pubs, education from dash.dash_table.Format import Format, Group #App Configurations app = Flask(__name__) Session(app) # init the serverside session for the app: this is requireddue to large cookie size aad_configuration = AADConfig.parse_json('aadconfig.json') SESSION_TYPE = "filesystem" SESSION_STATE = None key_dict = key_vault.get_key_dict() endpoint = key_dict['AZURE_ENDPOINT'] azure_key = key_dict['AZURE_KEY'] secret_api_key = key_dict['SERPAPI_KEY'] #CosmosDB Connection client = CosmosClient(endpoint, azure_key) database_name = 'ohdsi-impact-engine' container = pubmed.init_cosmos(key_dict, 'pubmed') container_ignore = pubmed.init_cosmos(key_dict, 'pubmed_ignore') #Azure Authentication Configurations secure_client_credential=None app.logger.level=logging.INFO # can set to DEBUG for verbose logs if app.config.get('ENV') == 'production': # The following is required to run on Azure App Service or any other host with reverse proxy: from werkzeug.middleware.proxy_fix import ProxyFix app.wsgi_app = ProxyFix(app.wsgi_app, x_proto=1, x_host=1) # Use client credential from outside the config file, if available. if secure_client_credential: aad_configuration.client.client_credential = secure_client_credential AADConfig.sanity_check_configs(aad_configuration) adapter = FlaskContextAdapter(app) ms_identity_web = IdentityWebPython(aad_configuration, adapter) #youtube.main() #pubmed.main() # app=dash.Dash() #app.layout= pubs.build_pubs_dash() # app.layout= education.build_education_dash() #Dash Apps import dash_bootstrap_components as dbc external_stylesheets = [dbc.themes.BOOTSTRAP] pubmedDashApp = dash.Dash(__name__, server=app, url_base_pathname='/pub_dashboard/', external_stylesheets=external_stylesheets) pubmedDashApp.layout= pubs.build_pubs_dash youtubeDashApp = dash.Dash(__name__, server=app, url_base_pathname='/educ_dashboard/', external_stylesheets=external_stylesheets) youtubeDashApp.layout= education.build_education_dash @app.route('/') @app.route('/sign_in_status') def index(): return render_template('home.html') # return render_template('auth/status.html') @app.route('/publication_dashboard/', methods = ['POST', 'GET']) def dashboard(): # dashHtml = BeautifulSoup(pubmedDashApp.index(), 'html.parser') return render_template("publication_dashboard.html") # return jsonify({'htmlresponse': render_template('publication_dashboard.html', dashHtml = pubmedDashApp)}) @app.route('/pub_dashboard', methods = ['POST', 'GET']) def dash_app_pub(): return pubmedDashApp.index() @pubmedDashApp.callback( Output(component_id='bar-container', component_property='children'), [Input(component_id='datatable-interactivity', component_property="derived_virtual_data"), Input(component_id='datatable-interactivity', component_property='derived_virtual_selected_rows'), Input(component_id='datatable-interactivity', component_property='derived_virtual_selected_row_ids'), Input(component_id='datatable-interactivity', component_property='selected_rows'), Input(component_id='datatable-interactivity', component_property='derived_virtual_indices'), Input(component_id='datatable-interactivity', component_property='derived_virtual_row_ids'), Input(component_id='datatable-interactivity', component_property='active_cell'), Input(component_id='datatable-interactivity', component_property='selected_cells')], prevent_initial_call=True ) def update_bar(all_rows_data, slctd_row_indices, slct_rows_names, slctd_rows, order_of_rows_indices, order_of_rows_names, actv_cell, slctd_cell): dff = pd.DataFrame(all_rows_data) df2=((dff.groupby('Publication Year')['PubMed ID']).count()).reset_index() df2.columns=['Year','Count'] df3=((dff.groupby('Publication Year')['Citation Count']).sum()).reset_index() df3['cumulative']= round(df3['Citation Count'].cumsum(), 0) df3.columns=['Year','citations','Count'] fig = make_subplots(specs=[[{"secondary_y": True}]]) # Add traces fig.add_trace( go.Bar( x=df2['Year'], y=df2['Count'], marker=dict(color = '#20425A'), hovertemplate = '<i>Publications in %{x}</i>: %{y:.0f}<extra></extra>', showlegend = False ), secondary_y=False, ) fig.add_trace( go.Line( x=df3['Year'], y=df3['Count'], marker=dict(color = '#f6ac15'), hovertemplate = '<i>Citations in %{x}</i>: %{y} <extra></extra>', ), secondary_y='Secondary' ) # Add figure title fig.update_layout(title_text="<b> OHDSI Publications & Cumulative Citations</b>", title_x=0.5, showlegend=False) # Set x-axis title fig.update_xaxes(title_text="Year") # Set y-axes titles fig.update_yaxes( title_text="Number of Publications", secondary_y=False) fig.update_yaxes( title_text="Number of Citations", secondary_y=True) return [ dcc.Graph(id = 'bar-chart', figure = fig.update_layout(yaxis={'tickformat': '{:,}'}), style={'width': '100%', 'padding-left': '50px'}, ) ] @pubmedDashApp.callback( Output(component_id='line-container', component_property='children'), [Input(component_id='datatable-interactivity', component_property="derived_virtual_data"), Input(component_id='datatable-interactivity', component_property='derived_virtual_selected_rows'), Input(component_id='datatable-interactivity', component_property='derived_virtual_selected_row_ids'), Input(component_id='datatable-interactivity', component_property='selected_rows'), Input(component_id='datatable-interactivity', component_property='derived_virtual_indices'), Input(component_id='datatable-interactivity', component_property='derived_virtual_row_ids'), Input(component_id='datatable-interactivity', component_property='active_cell'), Input(component_id='datatable-interactivity', component_property='selected_cells')], prevent_initial_call=True ) def update_line(all_rows_data, slctd_row_indices, slct_rows_names, slctd_rows, order_of_rows_indices, order_of_rows_names, actv_cell, slctd_cell): dff =
pd.DataFrame(all_rows_data)
pandas.DataFrame
# CPTAC Images Join import pandas as pd import numpy as np imglist = pd.read_csv('../CPTAC-LUAD-HEslide-filename-mapping_Jan2019.csv', header=0) samplelist = pd.read_csv('../CPTAC_LUAD.csv', header=0) imglist = imglist[['Slide_ID', 'FileName']] samplelist = samplelist.join(imglist.set_index('Slide_ID'), how='inner', on='Slide_ID') samplelist = samplelist.dropna(subset=['FileName']) samplelist = samplelist[['Case_ID', 'Slide_ID', 'FileName']] Labelfile = pd.read_csv('../luad-v2.0-sample-annotation.csv', header=0) Labelfile = Labelfile.loc[Labelfile['Type'] == 'Tumor'] Labelfile = Labelfile[['Participant', 'STK11.mutation.status']] Labelfile = Labelfile.rename(columns={'Participant': 'Case_ID', 'STK11.mutation.status': 'STK11'}) Labelfile = Labelfile.join(samplelist.set_index('Case_ID'), how='inner', on='Case_ID') print(len(list(Labelfile.Case_ID.unique()))) Labelfile = Labelfile.drop('Case_ID', axis=1) Labelfile = Labelfile.drop_duplicates() Labelfile.to_csv('../CPTAC_Joint.csv', index=False, header=True) # TCGA import pandas as pd import os # Get all images in the root directory def image_ids_in(root_dir, ignore=['.DS_Store', 'dict.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: dirname = id.split('-01Z')[0] ids.append([id, dirname]) return ids TCGAls = image_ids_in('../images/TCGA') TCGAls = pd.DataFrame(TCGAls) TCGAls = TCGAls.rename(columns={'0': 'FileName', '1': 'Slide_ID'}) TCGAls.to_csv('../TCGAls.csv', index=False, header=True) import pandas as pd import os TCGAall = pd.read_csv('../TCGA_all.tsv', sep='\t', header=0) TCGAstk = pd.read_csv('../TCGA_STK11_MUT.tsv', sep='\t', header=0) TCGAim = pd.read_csv('../TCGAls.csv', header=0) TCGAall = TCGAall[['case_id', 'submitter_id']] TCGAstk = TCGAstk[['submitter_id', 'STK11']] TCGAall = TCGAall.join(TCGAstk.set_index('submitter_id'), how='left', on='submitter_id') TCGAall = TCGAall.fillna(0) TCGAall = TCGAall.drop('case_id', axis=1) TCGAall = TCGAall.rename(columns={'submitter_id': 'Slide_ID'}) TCGAall = TCGAall.join(TCGAim.set_index('Slide_ID'), how='inner', on='Slide_ID') TCGAall = TCGAall.drop_duplicates() print(len(list(TCGAall.Slide_ID.unique()))) lll = [] for idx, row in TCGAall.iterrows(): lll.append(row['Slide_ID']+'-'+row['FileName'].split('-')[-2]) TCGAall['Slide_ID'] = lll TCGAall.to_csv('TCGA_Joint.csv', index=False, header=True) LUADlabel =
pd.concat([Labelfile, TCGAall])
pandas.concat
""" <NAME> python 3.7 :> to plot the variables that are selected check/run following before running this file: - filepaths_to_use.sh (returns the paths of variables that are avaiable) - data_scope.py (creates a dataframe with hierarchy of data structure) - data_processing/df_data_selected.csv (.csv output of data_scope.py) The ploting of SSP585 and Historical will be done based on the raw files stored in the repository """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import netCDF4 as nc4 import re import seaborn as sns import cftime import os from functions import Unit_Conversions, time_dim_dates,index_and_dates_slicing import datetime as dt #1- Hack to fix missing PROJ4 env var import os #import conda """ conda_file_dir = conda.__file__ conda_dir = conda_file_dir.split('lib')[0] proj_lib = os.path.join(os.path.join(conda_dir, 'share'), 'proj') os.environ["PROJ_LIB"] = proj_lib #-1 Hack end from mpl_toolkits.basemap import Basemap """ # Reading the dataframe of the selected files # ------------------------------------------- #web_path = '/project/projectdirs/m2467/www/bharat/' web_path = '/global/homes/b/bharat/results/web/' in_path = '/global/homes/b/bharat/results/data_processing/' cmip6_filepath_head = '/global/cfs/cdirs/m3522/cmip6/CMIP6/' #cmip6_filepath_head = '/global/homes/b/bharat/cmip6_data/CMIP6/' df_files = pd.read_csv(in_path + 'df_data_selected.csv') cori_scratch = '/global/cscratch1/sd/bharat/' # where the anomalies per slave rank are saved hierarcy_str= [ 'activity_id','institution_id','source_id','experiment_id', 'member_id','table_id','variable_id','grid_label','version','filenames'] # Source_id or Model Names: # ------------------------- source_ids = np.unique(df_files['source_id']) # Experiments # ----------- experiments_ids = np.unique(df_files['experiment_id']) # Variable names: # -------------- variable_ids = np.unique(df_files['variable_id']) #Create a DataFrame to store the essential informtation of the model and variables col_names = [ 'source_id','experiment_id','member_id','variable_id', 'grid_label','version','time_units','time_calendar', 'lat','lon','var_units','area_units'] df_model_info = pd.DataFrame(columns = col_names) #def create_df_info (s = source_run,e = exp, m=member, v=variable_run, g=grid_run, ver = ver_run, tu=time.units, tc=time.calendar,lt = lat.size, ln = lon.size, vu=var.units, au =area.units, ignore_index = True): def create_df_info (i=np.nan, s = np.nan,e = np.nan, m=np.nan, v=np.nan, g=np.nan, ver_h = np.nan, ver_s = np.nan, tu=np.nan, tc=np.nan,lt = np.nan ,ln = np.nan, vu=np.nan, au =np.nan): d = {'source_id' : pd.Series([s],index=[i]), 'experiment_id': pd.Series([e],index=[i]), 'member_id' : pd.Series([m],index=[i]), 'variable_id' : pd.Series([v],index = [i]), 'grid_label' : pd.Series([g],index = [i]), 'version_historial': pd.Series([ver_h],index = [i]), 'version_ssp587': pd.Series([ver_s],index = [i]), 'time_units' : pd.Series([tu],index = [i]), 'time_calendar': pd.Series ([tc],index = [i]), 'lat' : pd.Series([lt], index = [i]), 'lon' : pd.Series([ln],index= [i]), 'var_units' : pd.Series([vu],index = [i]), 'area_units' : pd.Series([au],index = [i])} df = pd.DataFrame(d) return df # ----------------------- #creating a copy of the df_files temp = df_files.copy(deep = True) #creating the filters based on mpodel and variable # model for this run source_run = 'CanESM5' variable_run = 'ra' # The Models that have gpp for historical and ssp585 experiments: source_selected = ['CanESM5','IPSL-CM6A-LR','CNRM-ESM2-1','BCC-CSM2-MR','CNRM-CM6-1'] source_selected = ['CESM2','CanESM5','IPSL-CM6A-LR','CNRM-ESM2-1','BCC-CSM2-MR','CNRM-CM6-1','EC-Earth3-Veg','UKESM1-0-LL'] source_selected = ['CESM2','CanESM5','IPSL-CM6A-LR','CNRM-ESM2-1','BCC-CSM2-MR','CNRM-CM6-1'] # for GPP // No areacella in : 'EC-Earth3-Veg','UKESM1-0-LL' #source_selected = ['CESM2','CanESM5','IPSL-CM6A-LR','CNRM-ESM2-1'] # for NBP // no NBP in BCC //No areacella in : 'EC-Earth3-Veg','UKESM1-0-LL' # Select which model you want to run: # =================================== #source_selected = ['CNRM-CM6-1' ] #source_selected = ['BCC-CSM2-MR' ] #source_selected = ['CNRM-ESM2-1' ] #source_selected = ['IPSL-CM6A-LR' ] #source_selected = ['CanESM5' ] source_selected = ['CESM2' ] # The abriviation of the models that will be analyzed: source_code = { 'cesm' : 'CESM2', 'can' : 'CanESM5', 'ipsl' : 'IPSL-CM6A-LR', 'bcc' : 'BCC-CSM2-MR', 'cnrn-e': 'CNRM-ESM2-1', 'cnrn-c': 'CNRM-CM6-1' } import argparse parser = argparse.ArgumentParser() parser.add_argument('--sources' ,'-src' , help = "Which model(s) to analyse?" , type= str, default= 'all' ) parser.add_argument('--variable' ,'-var' , help = "variable? gpp/npp/nep/nbp,,,," , type= str, default= 'gpp' ) args = parser.parse_args() # The inputs: src = str (args.sources) variable_run= str (args.variable) # Model(s) to analyze: # -------------------- source_selected = [] if len(src.split('-')) >1: source_selected = src.split('-') elif src in ['all', 'a']: source_selected = list(source_code.values() ) elif len(src.split('-')) == 1: if src in source_code.keys(): source_selected = [source_code[src]] else: print (" Enter a valid source id") #running : run plot_ts_variables_cont_f.py -src cesm -var ra # Creating a lis to Unique colors for multiple models: # --------------------------------------------------- NUM_COLORS = len(source_selected) LINE_STYLES = ['solid', 'dashed', 'dashdot', 'dotted'] NUM_STYLES = len(LINE_STYLES) sns.reset_orig() # get default matplotlib styles back clrs = sns.color_palette('husl', n_colors=NUM_COLORS) # To Save the ts of every source in a dict for ploting # ----------------------------------------------------- ts_yr_source_var_member = {} ts_rm5yr_source_var_member = {} ts_av_rm5yr_source_var_member = {} # Savings a dictionary of common members per source id # ---------------------------------------------------- var_ar_gC = {} # to store the variable array for s_idx, source_run in enumerate(source_selected): var_ar_gC [source_run] = {} member_ids_common_source = {} for s_idx, source_run in enumerate(source_selected): filters = (temp['source_id'] == source_run) & (temp['variable_id'] == variable_run) filters_area = (temp['source_id'] == source_run) & (temp['variable_id'] == 'areacella') filters_lf = (temp['source_id'] == source_run) & (temp['variable_id'] == 'sftlf') ts_yr_source_var_member[source_run] = {} ts_rm5yr_source_var_member[source_run] = {} ts_av_rm5yr_source_var_member[source_run] = {} #passing the filters to the dataframe df_tmp = temp[filters] df_tmp_area = temp[filters_area] df_tmp_lf = temp[filters_lf] # grid of the filtered dataframe grid_run = np.unique(df_tmp['grid_label'])[0] #list of member ids filters_exp = {} #dic to store filters of experiments member_ids_exp = {} #dic to store member ids of experiments filters_mem = {} #dic to store member ids of experiments #checking and using the latest version vers = {} df_ver_tmp = {} filters_ver = {} ix = 1 #initiating the idx for the dataframe for info for exp in experiments_ids: vers [exp] = {} # initiating a version dic per member df_ver_tmp [exp] = {} filters_ver[exp] = {} filters_mem[exp] = (df_tmp['experiment_id'] == exp ) member_ids_exp[exp] = np.unique(df_tmp[filters_mem[exp]]['member_id']) member_ids_common = np.intersect1d(member_ids_exp['historical'] , member_ids_exp['ssp585']) # Checking for the latest version of the members for member in member_ids_common: for exp in experiments_ids: df_ver_tmp [exp][member] = df_tmp[filters_mem[exp]] filters_ver [exp][member] = (df_tmp['experiment_id'] == exp ) & (df_tmp['member_id'] == member ) vers_tmp = np.unique(df_tmp[filters_ver[exp][member]]['version']) # all versions in str vers_tmp_int = np.array([int(v[1:]) for v in vers_tmp]) # all versions in int tmp_idx = np.where(vers_tmp_int == np.max(vers_tmp_int))# index of max number version vers[exp][member] = vers_tmp[tmp_idx[0][0]] # newest for this run # Saving the common members to a dict for plotting purposes if (source_run == 'CESM2') and (variable_run == 'tasmax'): member_ids_common = ['r1i1p1f1'] member_ids_common_source[source_run] = member_ids_common for member in member_ids_common_source[source_run]: var_ar_gC [source_run][member] = {} #Check if the files are in chunks of time num_chunk_time = {} for exp in experiments_ids: if (source_run == 'CESM2') and (variable_run == 'tasmax'): num_chunk_time[exp] = 1 else: num_chunk_time[exp] = len(df_tmp[filters_ver[exp][member]][df_tmp['version'] == vers[exp][member]]) print ("Number of chunks of time in of model %s under experiment '%s' are: %d"%(source_run ,exp, num_chunk_time[exp])) # Creating a dictionary for storing the nc data nc_data = {} for exp in experiments_ids: nc_data [exp] = {} filepath_areacella = {} filepath_sftlf = {} for member in member_ids_common: # Pointing to the selective files that i need for this plot print ("Source ID :%s, Member ID :%s"%(source_run,member)) filepaths_cont = {} for exp in experiments_ids: filepaths_cont[exp] = [] member_id_tmp = member nc_data [exp][member_id_tmp] = {} # reading members separately per experiment print ("==============================================================") # This is when the versions are saved over multiple time chunks if num_chunk_time[exp] >= 1: if (source_run == 'CESM2') and (variable_run == 'tasmax'): pass else: filepath_ar = np.array(df_ver_tmp[exp][member][filters_ver[exp][member]][df_ver_tmp[exp][member]['version'] == vers[exp][member]]) for chunk_idx in range(num_chunk_time[exp]): if (source_run == 'CESM2') and (variable_run == 'tasmax') and (exp == 'historical'): filepaths_cont[exp] = ["/global/cscratch1/sd/bharat/add_cmip6_data/CESM2/extra_cmip6_data/tasmax_Amon_CESM2_historical_r1i1p1f1_gn_185001-201412.nc"] elif (source_run == 'CESM2') and (variable_run == 'tasmax') and (exp == 'ssp585'): filepaths_cont[exp] = ["/global/cscratch1/sd/bharat/add_cmip6_data/CESM2/extra_cmip6_data/tasmax_Amon_CESM2_ssp585_r1i1p1f1_gn_201501-210012.nc"] else: filepaths_cont[exp].append (cmip6_filepath_head + "/".join(filepath_ar[chunk_idx])) if source_run == 'BCC-CSM2-MR': filepath_area = "/global/homes/b/bharat/extra_cmip6_data/areacella_fx_BCC-CSM2-MR_hist-resIPO_r1i1p1f1_gn.nc" filepath_lf = "/global/homes/b/bharat/extra_cmip6_data/sftlf_fx_BCC-CSM2-MR_hist-resIPO_r1i1p1f1_gn.nc" else: filters_area = (temp['variable_id'] == 'areacella') & (temp['source_id'] == source_run) filters_lf = (temp['variable_id'] == 'sftlf') & (temp['source_id'] == source_run) filepath_area = cmip6_filepath_head + "/".join(np.array(temp[filters_area].iloc[-1])) filepath_lf = cmip6_filepath_head + "/".join(np.array(temp[filters_lf].iloc[-1])) # Check chunk_idx nc_data[exp][member_id_tmp][chunk_idx] for exp in experiments_ids: for chunk_idx in range(num_chunk_time[exp]): nc_data[exp][member_id_tmp][chunk_idx] = nc4.Dataset(filepaths_cont[exp][chunk_idx]) #nc_data[member_id_tmp] = nc4.MFDataset([filepaths_cont['historical'], filepaths_cont['ssp585']]) var = nc_data['historical'][member_id_tmp][0].variables[variable_run] lat = nc_data['historical'][member_id_tmp][0].variables['lat'] lon = nc_data['historical'][member_id_tmp][0].variables['lon'] time = nc_data['historical'][member_id_tmp][0].variables['time'] lat_bounds = nc_data['historical'][member_id_tmp][0].variables[lat.bounds] lon_bounds = nc_data['historical'][member_id_tmp][0].variables[lon.bounds] print ("Time Size: ", time.size, "no. of lats: ", lat.size, "no. of lons: ", lon.size) # Concatenating the variables under consideration # Since the time can start on 1850 or 2015, so it is important to use cftime and read the units along with it # The same calculation is applied to time_bounds var_data = nc_data['historical'][member_id_tmp][0].variables[variable_run][...] time_datetime = cftime.num2date (times = nc_data['historical'][member_id_tmp][0].variables['time'][...], units = nc_data['historical'][member_id_tmp][0].variables['time'].units, calendar = nc_data['historical'][member_id_tmp][0].variables['time'].calendar ) time_bounds_datetime = cftime.num2date ( times = nc_data['historical'][member_id_tmp][0].variables[time.bounds][...], units = nc_data['historical'][member_id_tmp][0].variables['time'].units, calendar= nc_data['historical'][member_id_tmp][0].variables['time'].calendar ) # concatenating the variables under consideration # the aim is to make one variable for the whole time duration from 1850 -- 2100 for exp in experiments_ids: for chunk_idx in range(num_chunk_time[exp]): if (exp == 'historical') and (chunk_idx == 0): continue print (exp) if (source_run == 'CESM2') and (variable_run == 'tasmax') and (exp=='ssp585'): cesm2_tasmax_bias = 6.433 var_data = np.concatenate( (var_data, nc_data[exp][member_id_tmp][chunk_idx].variables[variable_run][...] - cesm2_tasmax_bias ), axis =0) # units: kg m-2 s-1 else: var_data = np.concatenate( (var_data, nc_data[exp][member_id_tmp][chunk_idx].variables[variable_run][...]), axis =0) # units: kg m-2 s-1 time_datetime = np.concatenate( (time_datetime, cftime.num2date(times = nc_data[exp][member_id_tmp][chunk_idx].variables['time'][...], units = nc_data[exp][member_id_tmp][chunk_idx].variables['time'].units, calendar = nc_data[exp][member_id_tmp][chunk_idx].variables['time'].calendar)), axis = 0) try: time_bounds_datetime = np.concatenate( (time_bounds_datetime, cftime.num2date(times = nc_data[exp][member_id_tmp][chunk_idx].variables[time.bounds][...], units = nc_data[exp][member_id_tmp][chunk_idx].variables['time'].units, calendar = nc_data[exp][member_id_tmp][chunk_idx].variables['time'].calendar)) ,axis = 0) except: time_bounds_datetime = np.concatenate( (time_bounds_datetime, cftime.num2date(times = nc_data[exp][member_id_tmp][chunk_idx].variables['time_bnds'][...], units = nc_data[exp][member_id_tmp][chunk_idx].variables['time'].units, calendar = nc_data[exp][member_id_tmp][chunk_idx].variables['time'].calendar)) ,axis = 0) print (exp) # Masking the values again to avoid errors arising due to masking var_data = np.ma.masked_equal(var_data, var.missing_value) # saving datetime time dates # now the units are the same for the time bounds as "TIME_units" time_bounds = nc_data['historical'][member_id_tmp][0].variables[time.bounds] TIME_units = 'days since 1850-01-01 00:00:00' time_floats = cftime.date2num (dates = time_datetime, units = TIME_units, calendar = nc_data['historical'][member_id_tmp][0].variables['time'].calendar) time_bounds_floats = cftime.date2num (dates = time_bounds_datetime, units = TIME_units, calendar = nc_data['historical'][member_id_tmp][0].variables['time'].calendar) try: area = nc4.Dataset(filepath_areacella['historical']).variables['areacella'] lf = nc4.Dataset(filepath_sftlf['historical']).variables['sftlf'] except: if source_run == 'BCC-CSM2-MR': area = nc4.Dataset("/global/homes/b/bharat/extra_cmip6_data/areacella_fx_BCC-CSM2-MR_hist-resIPO_r1i1p1f1_gn.nc").variables['areacella'] lf = nc4.Dataset("/global/homes/b/bharat/extra_cmip6_data/sftlf_fx_BCC-CSM2-MR_hist-resIPO_r1i1p1f1_gn.nc").variables['sftlf'] else: area = nc4.Dataset(filepath_area).variables["areacella"] lf = nc4.Dataset(filepath_lf).variables["sftlf"] #convert "kg m-2 s-1" to "gC" if lf.units == '%': lf = lf[...]/100 # converting the land fraction percentage to the fraction. area_act = area[...] * lf #area_act (m2) is the effective or actual area of that pixels if variable_run in ['gpp','npp','nep','nbp','fFireAll','ra','rh', 'fHarvest', 'fDeforestToAtmos', 'fLulccAtmLut','cTotFireLut']: time_days = [int(time_bounds_floats[i][1]-time_bounds_floats[i][0]) for i in range(time_bounds_floats.shape[0])] time_sec = np.array(time_days)*24*3600 vol_m2s = time_sec[:,np.newaxis,np.newaxis] * area_act # units vol: m^2*s if variable_run in ['fLulccAtmLut', 'cTotFireLut']: var_gC = vol_m2s * np.sum(var_data,axis=1) * 1000 # gC/mon for due to Primary and Secondary else: var_gC = vol_m2s * var_data * 1000 # gC/mon var_ar_gC [source_run] [member] ['var_gC'] = var_gC var_ar_gC [source_run] [member] ['lat'] = lat[...] var_ar_gC [source_run] [member] ['lon'] = lon[...] var_ar_gC [source_run] [member] ['lat_bounds'] = lat_bounds[...] var_ar_gC [source_run] [member] ['lon_bounds'] = lon_bounds[...] var_gC_global_mon_tot = np.ma.array([np.ma.sum(var_gC[i,:,:]) for i in range(var_data.shape[0])]) #g/mon var_gC_global_yr_tot = np.ma.array([np.ma.sum(var_gC_global_mon_tot[i*12:(i*12)+12]) for i in range(len(var_gC_global_mon_tot)//12)]) #g/y pd_var_gC_global_yr_tot = pd.Series(var_gC_global_yr_tot) #g/y var_gC_global_rm5yr_tot = pd_var_gC_global_yr_tot.rolling(window=5,center = False).mean()# 5 year rolling mean ts_yr_source_var_member[source_run][member] = var_gC_global_yr_tot #g/y ts_rm5yr_source_var_member[source_run][member] = var_gC_global_rm5yr_tot #g/y df_tmp = create_df_info( s = source_run,e = exp, m=member, v=variable_run, g=grid_run, ver_h = vers['historical'],ver_s = vers['ssp585'], tu=time.units, tc=time.calendar,lt = lat.size, ln = lon.size, vu=var.units, au =area.units,i=ix) df_model_info = df_model_info.append(df_tmp, sort = True) ix = ix +1 # Calculations in case of climate drivers : # ----------------------------------------- if variable_run in ['pr','mrso','mrsos']: # Conversted Variable in the desired units of [mm day-1] if variable_run == 'pr' : des_units = 'mm day-1'# Desired units of precipitation if variable_run == 'mrso' : des_units = 'mm' # Desired units of soil moisture if variable_run == 'mrsos' : des_units = 'mm' # Desired units of soil moisture con_factor = Unit_Conversions (From=var.units, To= des_units)[0] # Conversion Factor con_var = var_data * con_factor con_var_units = Unit_Conversions (From=var.units, To= des_units)[1] # Converted Units # Area weighted averages con_var_global_mon_awm = np.ma.array([np.ma.average(con_var[i,:,:], weights = area_act ) for i in range(con_var.shape[0])]) con_var_global_yr_tot_awm = np.ma.array([np.ma.average(np.ma.sum(con_var[i*12:(i*12+12),:,:],axis =0), weights = area_act) for i in range ( con_var.shape[0]//12)]) con_var_global_yr_av_awm = np.ma.array([np.ma.average(np.ma.mean(con_var[i*12:(i*12+12),:,:],axis =0), weights = area_act) for i in range ( con_var.shape[0]//12)]) # Calculation the moving averages pd_con_var_global_yr_tot_awm = pd.Series (con_var_global_yr_tot_awm) con_var_global_rm5yr_tot_awm = pd_con_var_global_yr_tot_awm.rolling(window=5,center = False).mean()# 5 year rolling mean pd_con_var_global_yr_av_awm = pd.Series (con_var_global_yr_av_awm) con_var_global_rm5yr_av_awm = pd_con_var_global_yr_av_awm.rolling(window=5,center = False).mean()# 5 year rolling mean ts_yr_source_var_member[source_run][member] = con_var_global_yr_tot_awm # con units ts_rm5yr_source_var_member[source_run][member] = con_var_global_rm5yr_tot_awm # con units ts_av_rm5yr_source_var_member[source_run][member] = con_var_global_rm5yr_av_awm # con units if variable_run in ['tas','tasmax','tasmin']: # Conversted Variable in the desired units of [mm day-1] if variable_run in ['tas','tasmax','tasmin'] : des_units = 'C'# Desired units of precipitation con_factor = Unit_Conversions (From=var.units, To= des_units)[0] # Conversion Factor con_var = var_data + con_factor con_var_units = Unit_Conversions (From=var.units, To= des_units)[1] # Converted Units # Area weighted averages con_var_global_mon_awm = np.ma.array([np.ma.average(con_var[i,:,:], weights = area_act ) for i in range(con_var.shape[0])]) con_var_global_yr_tot_awm = np.ma.array([np.ma.average(np.ma.sum(con_var[i*12:(i*12+12),:,:],axis =0), weights = area_act) for i in range ( con_var.shape[0]//12)]) con_var_global_yr_av_awm = np.ma.array([np.ma.average(np.ma.mean(con_var[i*12:(i*12+12),:,:],axis =0), weights = area_act) for i in range ( con_var.shape[0]//12)]) # Calculation the moving averages pd_con_var_global_yr_tot_awm = pd.Series (con_var_global_yr_tot_awm) con_var_global_rm5yr_tot_awm = pd_con_var_global_yr_tot_awm.rolling(window=5,center = False).mean()# 5 year rolling mean pd_con_var_global_yr_av_awm = pd.Series (con_var_global_yr_av_awm) con_var_global_rm5yr_av_awm = pd_con_var_global_yr_av_awm.rolling(window=5,center = False).mean()# 5 year rolling mean ts_yr_source_var_member[source_run][member] = con_var_global_yr_tot_awm # con units ts_rm5yr_source_var_member[source_run][member] = con_var_global_rm5yr_tot_awm # con units ts_av_rm5yr_source_var_member[source_run][member] = con_var_global_rm5yr_av_awm # con units if variable_run in ['gpp','npp','nep','nbp','fFireAll','ra','rh', 'fHarvest', 'fDeforestToAtmos', 'fLulccAtmLut','cTotFireLut']: # Plotting Total Global Yearly GPP/NPP/NEP/NBP # -------------------------------------------- time_x = np.arange(1850,2101) fig_1 = plt.figure(tight_layout = True, dpi = 400) for member in member_ids_common: if (variable_run == 'nep') and (source_run == 'CESM2'): plt.plot (time_x , -ts_yr_source_var_member[source_run][member]/(10**15) , label = member, linewidth = .3) else: plt.plot (time_x , ts_yr_source_var_member[source_run][member]/(10**15) , label = member, linewidth = .3) plt.title ("%s - %s: Total Global Yearly"%(source_run, variable_run)) plt.ylabel ("PgC/year") plt.xlabel ("Time") plt.grid (True, linestyle='--',linewidth = .5) plt.legend (loc='upper center', bbox_to_anchor=(0.5, -0.06), fancybox=True, shadow=True, ncol=7,fontsize=6) try: os.remove (web_path + "TS_%s_%s_%s_gC_tot_global_yr.pdf"%(source_run, member, variable_run)) except: print("The fig1 does not already exist") fig_1 .savefig (web_path + "TS_%s_%s_%s_gC_tot_global_yr.pdf"%(source_run, member, variable_run)) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/TimeSeries/"%(source_run,member, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig_1 .savefig (path_save + "TS_%s_%s_%s_gC_tot_global_yr.pdf"%(source_run, member, variable_run)) plt.close (fig_1) # Plotting 5yr Running mean Total Global Yearly GPP/NPP/NEP/NBP # ------------------------------------------------------------- fig_2 = plt.figure(tight_layout = True, dpi = 400) for member in member_ids_common: if (variable_run == 'nep') and (source_run == 'CESM2'): plt.plot (time_x , -ts_rm5yr_source_var_member[source_run][member]/(10**15), label = member, linewidth = .3) else: plt.plot (time_x , ts_rm5yr_source_var_member[source_run][member]/(10**15), label = member, linewidth = .3) plt.title ("%s - %s: 5 year Moving Average Total Global Yearly"%(source_run, variable_run)) plt.ylabel ("PgC/year") plt.xlabel ("Time") plt.grid (True, linestyle='--',linewidth = .5) plt.legend (loc='upper center', bbox_to_anchor=(0.5, -0.06), fancybox=True, shadow=True, ncol=7,fontsize=6) try: os.remove (web_path + "%s_%s_gC_tot_global_rm5yr.pdf"%(source_run,variable_run)) except: print("The fig2 does not already exist") fig_2 .savefig (web_path + "%s_%s_%s_gC_tot_global_rm5yr.pdf"%(source_run,member, variable_run)) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/TimeSeries/"%(source_run,member, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig_2 .savefig (path_save + "%s_%s_%s_gC_tot_global_rm5yr.pdf"%(source_run,member, variable_run)) plt.close (fig_2) if variable_run in ['pr','mrso','mrsos','tas','tasmax']: # Climate Drivers time_x = np.arange(1850,2101) # Plotting yr Running mean Total Global AWM Yearly # ------------------------------------------------------------- fig_11 = plt.figure(tight_layout = True, dpi = 400) for member in member_ids_common: plt.plot (time_x , ts_yr_source_var_member[source_run][member] , label = member, linewidth = .3) plt.title ("%s - %s: Total Global AWM Yearly"%(source_run, variable_run)) plt.ylabel (con_var_units) plt.xlabel ("Time") plt.grid (True, linestyle='--',linewidth = .5) plt.legend (loc='upper center', bbox_to_anchor=(0.5, -0.06), fancybox=True, shadow=True, ncol=7,fontsize=6) try: os.remove (web_path + "%s_%s_tot_awm_global_yr.pdf"%(source_run,variable_run)) except: print("The fig1 does not already exist") fig_11 .savefig (web_path + "%s_%s_%s_tot_awm_global_yr.pdf"%(source_run,member, variable_run)) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/TimeSeries/"%(source_run,member, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig_11 .savefig (path_save + "%s_%s_%s_tot_awm_global_yr.pdf"%(source_run,member, variable_run)) plt.close (fig_11) # Plotting 5yr Running mean Total Global AWM Yearly # ------------------------------------------------------------- fig_12 = plt.figure(tight_layout = True, dpi = 400) for member in member_ids_common: plt.plot (time_x , ts_rm5yr_source_var_member[source_run][member], label = member, linewidth = .3) plt.title ("%s - %s: 5 year Moving Average Total Global AWM"%(source_run, variable_run)) plt.ylabel (con_var_units) plt.xlabel ("Time") plt.grid (True, linestyle='--',linewidth = .5) plt.legend (loc='upper center', bbox_to_anchor=(0.5, -0.06), fancybox=True, shadow=True, ncol=7,fontsize=6) try: os.remove (web_path + "%s_%s_tot_global_awm_rm5yr.pdf"%(source_run,variable_run)) except: print("The fig2 does not already exist") fig_12 .savefig (web_path + "%s_%s_%s_tot_global_awm_rm5yr.pdf"%(source_run, member, variable_run)) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/TimeSeries/"%(source_run,member, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig_12 .savefig (path_save + "%s_%s_%s_tot_global_awm_rm5yr.pdf"%(source_run, member, variable_run)) plt.close (fig_12) # Plotting yr Running mean Average Global AWM Yearly # ------------------------------------------------------------- fig_13 = plt.figure(tight_layout = True, dpi = 400) for member in member_ids_common: plt.plot (time_x , ts_av_rm5yr_source_var_member[source_run][member] , label = member, linewidth = .3) plt.title ("%s - %s: Average Global AWM Yearly"%(source_run, variable_run)) plt.ylabel (con_var_units) plt.xlabel ("Time") plt.grid (True, linestyle='--',linewidth = .5) plt.legend (loc='upper center', bbox_to_anchor=(0.5, -0.06), fancybox=True, shadow=True, ncol=7,fontsize=6) try: os.remove (web_path + "%s_%s_av_awm_global_yr.pdf"%(source_run,variable_run)) except: print("The fig13 does not already exist") fig_13 .savefig (web_path + "%s_%s_%s_av_awm_global_yr.pdf"%(source_run, member, variable_run)) # Saving the plots path_save = cori_scratch + "add_cmip6_data/%s/ssp585/%s/%s/TimeSeries/"%(source_run,member, variable_run) if os.path.isdir(path_save) == False: os.makedirs(path_save) fig_13 .savefig (path_save + "%s_%s_%s_av_awm_global_yr.pdf"%(source_run, member, variable_run)) plt.close (fig_13) if variable_run in ['gpp','npp','nep','nbp','fFireAll','ra','rh', 'fHarvest', 'fDeforestToAtmos', 'fLulccAtmLut','cTotFireLut']: fig_3,ax = plt.subplots(nrows=1,ncols=1,tight_layout = True, dpi = 400) plt.title ("Multi-Model %s: Total Global Yearly"%(variable_run.upper())) plt.ylabel ("PgC/year") plt.xlabel ("Time") plt.grid (True, linestyle='--',linewidth = .5) for s_idx, source_run in enumerate(source_selected): if (variable_run == 'nep') and (source_run == 'CESM2'): mm_mean = ax.plot (time_x , -np.array(pd.DataFrame(ts_yr_source_var_member[source_run]).mean(axis = 1))/(10**15) , label = source_run, linewidth = 1) else: mm_mean = ax.plot (time_x , np.array(pd.DataFrame(ts_yr_source_var_member[source_run]).mean(axis = 1))/(10**15) , label = source_run, linewidth = 1) mm_mean[0] .set_color(clrs[s_idx]) for m_idx,member in enumerate(member_ids_common_source[source_run]): if (variable_run == 'nep') and (source_run == 'CESM2'): lines = ax.plot (time_x , -ts_yr_source_var_member[source_run][member]/(10**15) , label = member, linewidth = .3) else: lines = ax.plot (time_x , ts_yr_source_var_member[source_run][member]/(10**15) , label = member, linewidth = .3) lines[0].set_color(clrs[s_idx]) lines[0].set_linestyle(LINE_STYLES[m_idx%NUM_STYLES]) plt.legend (loc='upper center', bbox_to_anchor=(0.5, -0.06), fancybox=True, shadow=True, ncol=7,fontsize=6) try: os.remove (web_path + "MultiModel_%s_gC_tot_global_yr.pdf"%(variable_run)) except: print("The fig3 does not already exist") fig_3.savefig (web_path + "MultiModel_%s_gC_tot_global_yr.pdf"%(variable_run)) fig_4,ax = plt.subplots(nrows=1,ncols=1,tight_layout = True, dpi = 400, figsize=(9,5)) plt.title ("Multi-Model %s: 5 Year Moving Average Total Global "%(variable_run.upper())) #plt.ylabel ("PgC/year") plt.ylabel ("Total NBP (PgC/year)", fontsize = 14) plt.xlabel ("Time", fontsize = 14) plt.xticks(fontsize = 12) # plt.grid (True, linestyle='--',linewidth = .5) for s_idx, source_run in enumerate(source_selected): if (variable_run == 'nep') and (source_run == 'CESM2'): mm_mean = ax.plot (time_x , -np.array(pd.DataFrame(ts_rm5yr_source_var_member[source_run]).mean(axis = 1))/(10**15) , label = source_run, linewidth = 1) else: mm_mean = ax.plot (time_x , np.array(pd.DataFrame(ts_rm5yr_source_var_member[source_run]).mean(axis = 1))/(10**15) , label = source_run, linewidth = 1) mm_mean[0] .set_color(clrs[s_idx]) for m_idx,member in enumerate(member_ids_common_source[source_run]): if (variable_run == 'nep') and (source_run == 'CESM2'): lines = ax.plot (time_x , -ts_rm5yr_source_var_member[source_run][member]/(10**15) , linewidth = .3) else: lines = ax.plot (time_x , ts_rm5yr_source_var_member[source_run][member]/(10**15) , linewidth = .3) lines[0].set_color(clrs[s_idx]) lines[0].set_linestyle(LINE_STYLES[m_idx%NUM_STYLES]) plt.legend (loc='upper center', bbox_to_anchor=(0.5, -0.06), fancybox=True, shadow=True, ncol=3,fontsize=10) try: os.remove(web_path + "MultiModel_%s_gC_tot_global_rm5yr.pdf"%(variable_run)) except: print("The fig4 does not already exist") fig_4.savefig (web_path + "MultiModel_%s_gC_tot_global_rm5yr.pdf"%(variable_run)) # Figure for the paper for NBP and CESM2 fig_411,ax = plt.subplots(nrows=1,ncols=1,tight_layout = True, dpi = 400, figsize=(9,5)) plt.title (f"Multi-Model {variable_run.upper()}: 5 Year Moving Average Total Global \n") #plt.ylabel ("PgC/year") plt.ylabel ("Total NBP (PgC/year)", fontsize = 14) plt.xlabel ("Time", fontsize = 14) plt.xticks(fontsize = 12) # plt.yticks(fontsize = 12) # plt.grid (True, linestyle='--',linewidth = .5) for s_idx, source_run in enumerate(source_selected): if (variable_run == 'nbp') and (source_run == 'CESM2'): mm_mean = ax.plot (time_x , np.array(
pd.DataFrame(ts_rm5yr_source_var_member[source_run])
pandas.DataFrame
from tkinter import * import tkinter as tk import os import datetime as dt from dateutil.relativedelta import relativedelta import pytz from openpyxl import load_workbook import win32com.client import win32api import xlrd from simple_salesforce import Salesforce import pandas as pd from openpyxl.styles import Font, Color, PatternFill import win32timezone xl = win32com.client.Dispatch("Excel.Application") datenow = dt.datetime.today() lastmonth = datenow - relativedelta(months=1) root = tk.Tk() root.title("Outlook-SFDC Sync") # Add a grid mainframe = Frame(root) mainframe.grid(column=0, row=0, sticky=(N, W, E, S)) mainframe.columnconfigure(0, weight=1) mainframe.rowconfigure(0, weight=1) mainframe.pack(pady=25, padx=25) # Create a Tkinter variable tkvar = StringVar(root) tkvar2 = StringVar(root) # Dictionary with options choices = {'Outlook Download', 'Outlook SFDC Upload',} tkvar.set('Outlook Download') # set the default option popupMenu = OptionMenu(mainframe, tkvar, *choices) Label(mainframe, text="Please choose which script you want to run:").grid(row=1, column=1) popupMenu.grid(row=2, column=1) def ok(): script = tkvar.get() if script == 'Outlook Download': create_window() elif script == 'Outlook SFDC Upload': root.withdraw() wb = xlrd.open_workbook('C:\\SFDC Outlook Synchronization\\SFDC_Admin\\SFDC_Admin.xlsx') first_sheet = wb.sheet_by_name("Sheet1") a1 = first_sheet.cell(0, 1).value a2 = first_sheet.cell(1, 1).value a3 = first_sheet.cell(2, 1).value try: sf = Salesforce(username=a1, password=a2, security_token=a3) except Exception: win32api.MessageBox(0, "The script cannot run. You need to either 1) Update your Salesforce password (in cell B2) in the following file: C:\SFDC Outlook Synchronization\SFDC_Admin\SFDC_Admin.xlsx and save the file or 2) Check your Internet connectivity.", "Error!", 0x00001000) root.destroy() quit() for wbb in xl.Workbooks: if wbb.Name == 'Outlook Sync.xlsx': wbb.Close(True) wb = load_workbook(filename="C:\\SFDC Outlook Synchronization\\Outlook Sync.xlsx", read_only=False,keep_vba=False) ws = wb.get_sheet_by_name('Outlook Sync') file = pd.ExcelFile('C:\\SFDC Outlook Synchronization\\Outlook Sync.xlsx') df = file.parse('Outlook Sync') #df.sort_values(['Upload Event to SFDC?'], ascending=[False], inplace=True) g = 1 for index, row in df.iterrows(): try: if df.iloc[index]['Upload Event to SFDC?'] == "No" or pd.isnull(df.iloc[index]['Upload Event to SFDC?']): g = g + 1 continue if "Yes" in ws.cell(row=g + 1, column=17).value: g = g + 1 continue except(Exception): pass try: g = g + 1 if "'" not in df.iloc[index]['SFDC Contact']: contact = "'" + df.iloc[index]['SFDC Contact'] + "'" else: contact = df.iloc[index]['SFDC Contact'] query_result2 = sf.query_all("SELECT Id FROM Contact Where Email = %s" % contact) records2 = query_result2['records'] df2 = pd.DataFrame(records2) df2.drop('attributes', inplace=True, axis=1) if "'" not in df.iloc[index]['Assigned To']: owner = "'" + df.iloc[index]['Assigned To'] + "'" else: owner = df.iloc[index]['Assigned To'] query_result4 = sf.query_all("SELECT Id FROM User Where Email = %s" % owner) records4 = query_result4['records'] df4 = pd.DataFrame(records4) df4.drop('attributes', inplace=True, axis=1) if pd.isnull(df.iloc[index]['Location']): location = '' else: location = df.iloc[index]['Location'] if pd.isnull(df.iloc[index]['Appointment Body']): description = '' else: description = df.iloc[index]['Appointment Body'] if pd.isnull(df.iloc[index]['SFDC Opportunity']): oppty = '' else: oppty = "'" + df.iloc[index]['SFDC Opportunity'] + "'" query_result3 = sf.query_all("SELECT Id FROM Opportunity Where Name = %s" % oppty) records3 = query_result3['records'] df3 = pd.DataFrame(records3) df3.drop('attributes', inplace=True, axis=1) oppty = df3.iloc[0]['Id'] if pd.isnull(df.iloc[index]['Additional Participant #1']): additionalp1 = "" additionalp1id = "" else: additionalp1 = df.iloc[index]['Additional Participant #1'] additionalp1sfdc = "'" + additionalp1 + "'" try: query_result5 = sf.query_all("SELECT Id FROM User Where Name = %s" % additionalp1sfdc) records5 = query_result5['records'] df5 = pd.DataFrame(records5) df5.drop('attributes', inplace=True, axis=1) additionalp1id = df5.iloc[0]['Id'] except(Exception): additionalp1id = "" if pd.isnull(df.iloc[index]['Additional Participant #2']): additionalp2 = "" additionalp2id = "" else: additionalp2 = df.iloc[index]['Additional Participant #2'] additionalp2sfdc = "'" + additionalp2 + "'" try: query_result6 = sf.query_all("SELECT Id FROM User Where Name = %s" % additionalp2sfdc) records6 = query_result6['records'] df6 = pd.DataFrame(records6) df6.drop('attributes', inplace=True, axis=1) additionalp2id = df6.iloc[0]['Id'] except(Exception): additionalp2id = "" if
pd.isnull(df.iloc[index]['Additional Participant #3'])
pandas.isnull
import mock import pytest from collections import OrderedDict from io import StringIO import pandas as pd from pandas.util.testing import assert_frame_equal from spackl.file.base import BaseFile from spackl.file import CSV from spackl.util import Path test_csv_path = Path.cwd().as_posix() + '/tests/file/data/test.csv' test_csv_tab_path = Path.cwd().as_posix() + '/tests/file/data/test_tab.csv' test_csv_zip_path = Path.cwd().as_posix() + '/tests/file/data/test.csv.zip' test_nonexistent_csv_path = 'tests/file/data/test_nothere_config.csv' expected_results = [OrderedDict([('first', 'a'), ('second', 'b'), ('third', 'c')]), OrderedDict([('first', 'd'), ('second', 'e'), ('third', 'f')]), OrderedDict([('first', 'g'), ('second', 'h'), ('third', 'i')])] def test_csv(): with pytest.raises(TypeError): CSV() with pytest.raises(AttributeError): CSV(test_nonexistent_csv_path) with pytest.raises(AttributeError): CSV(dict()) csv = CSV(test_csv_path) assert isinstance(csv, BaseFile) assert csv._name is None assert csv._use_pandas is False assert csv._csv_kwargs == dict() def test_with_kwargs(): name = '<NAME>, dear.' csv = CSV(test_csv_path, name=name) assert str(csv) == test_csv_path assert csv.name == name dialect = 'excel' csv = CSV(test_csv_path, dialect=dialect) assert csv._csv_kwargs == {'dialect': 'excel'} def test_filelike_obj(): obj = StringIO() csv = CSV(obj) assert str(csv) == str(obj) assert csv._data is None assert csv.opened is False csv.open() assert csv._data assert csv.opened is True csv.close() assert not csv._data assert csv.opened is False def test_file(): csv = CSV(test_csv_path) csv.open() assert csv._data assert csv.opened is True results = csv.query() assert results.result == expected_results csv.close() assert not csv._data assert csv.opened is False def test_tab_file(): csv = CSV(test_csv_tab_path) results = csv.query(dialect='excel-tab') assert results.result == expected_results assert not csv._data assert csv.opened is False def test_zipfile(): csv = CSV(test_csv_zip_path) csv.open() assert csv._data assert csv.opened is True results = csv.query() assert results.result == expected_results csv.close() assert not csv._data assert csv.opened is False def test_pandas(): csv = CSV(test_csv_path, use_pandas=True) results = csv.query() expected_df = pd.DataFrame(expected_results)
assert_frame_equal(results, expected_df)
pandas.util.testing.assert_frame_equal
""" Created on Aug 24th 2016 Plotting functions for SEM-EDX (or TEM-EDX ) spectra @author: tkc """ import matplotlib.pyplot as plt import numpy as np import pandas as pd import re, math, sys from matplotlib.backends.backend_pdf import PdfPages import scipy import scipy.stats # load in this sequence to get linregress working from statsmodels.formula.api import ols # ordinary least squares if 'C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX' not in sys.path: sys.path.append('C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX') from EDX_import_functions import getelemmaps # called by reportmaps import ternary import tkinter as tk # from sympy import Interval, Union # for overlapping plot range removal #%% font = {'size' : 22} plt.rc('font', **font) MPL_STYLE = { "text.color":"k", "axes.labelcolor":"black", "axes.edgecolor":"0.4", "axes.facecolor":"white", "xtick.color": "k", "ytick.color": "k", "figure.facecolor":"white", "figure.edgecolor":"white", "text.usetex":False, "axes.labelsize":"large" } plt.rcParams.update(MPL_STYLE) def elemcompareplot(Integlog, elem1, elem2, thresh=0.1, errbars='xy'): ''' Pass two elements and make scatter plot of corrected counts useful for setting relative k-factors uses inner merge to select only subset with values from each df use either sample or filenumber''' #TODO have calccomp copy error in basis to allow errbars if basis=True el1=Integlog[Integlog['Element']==elem1] el2=Integlog[Integlog['Element']==elem2] fig, axes = plt.subplots(nrows=1, ncols=1) # axes is array # Merge dfs with comp1 and comp2 using inner join compdata=pd.merge(el1, el2, how='inner', on=['Basename','Filenumber','Point' ,'Filename','Filepath','Sample','Comments'], suffixes=('','b')) compdata.plot.scatter(x='Correctedcounts', y='Correctedcountsb', ax=axes) # single plot axes has no [#,#] # linear regression: fitting, plot and add labels xdata=compdata['Correctedcounts'].as_matrix() # this data column as np array ydata=compdata['Correctedcountsb'].as_matrix() # slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(xdata, ydata) # imported from scipy.stats # set x range for linear plot text1=str(round(slope,3))+' *x +' + str(round(intercept,3)) text2='R = ' + str(round(r_value,3)) + ' p = '+str(round(p_value,4)) xmax=max(xdata) x=np.linspace(0,xmax,100) # setting range for axes.text(0.025,0.9, text1, fontsize=12, transform=axes.transAxes) axes.text(0.025,0.8, text2, fontsize=12, transform=axes.transAxes) plt.plot(x, x*slope+intercept, color='r') # plot appropriate line # Now test, plot and return outliers theseoutliers=returnoutliers(xdata.tolist(), ydata.tolist()) # index # compdata= pd.concat([compdata, theseoutliers], axis=1, join='inner') # same length so just join by index # Add residual and pval to each compositional comparison line theseoutliers=compdata[compdata['Pval']<thresh] # now filter by threshold for outliers (with all cols) if not theseoutliers.empty: # error bars from errcorrcnts if errbars=='xy': theseoutliers.plot.scatter(x='Correctedcounts', y='Correctedcountsb', xerr='Errcorrcnts', yerr='Errcorrcntsb', ax=axes, color='r') elif errbars=='x': # plottable x error column exists theseoutliers.plot.scatter(x='Correctedcounts', y='Correctedcountsb', xerr='Errcorrcnts', ax=axes, color='r') elif errbars=='y': # plottable y error column exists theseoutliers.plot.scatter(x='Correctedcounts', y='Correctedcountsb', yerr='Errcorrcntsb', ax=axes, color='r') else: # no plottable errors for outliers theseoutliers.plot.scatter(x='Correctedcounts', y='Correctedcountsb', ax=axes, color='r') return compdata, theseoutliers def reportmaps(NSScsvparams, Elements, PDFreport='NSSmaps_report.pdf'): '''Batch plot/PDF report of all selected elements for all NSS extracted csv image from NSS param log ''' plt.ioff() # turn off interactive mode (for plot to pdf) with PdfPages(PDFreport) as pdf: for index, row in NSScsvparams.iterrows(): thisrow=NSScsvparams.loc[[index]] elementmaps=getelemmaps(thisrow, Elements) fig=plotmaps(elementmaps, thisrow, savename='', imode=False) # no separate save and return figure pdf.savefig(fig) plt.ion() # turn interactive plotting back on return def plotmaps(elementmaps, thismaprow, savename='', imode=True): ''' For plot arbitrary number of element maps (passed as list of numpy arrays) into single figure; designed for x-ray image maps extracted from spectral images; name passed in thismap imode to false if called by PDF report loop''' if imode: plt.ion() # ensure interactive mode is on (on for single plots, off for PDF reports) # determine which of the elementmaps will be plotted nummaps=len(elementmaps) # all passed element maps plotted (selection/filtering occurs with getelemmaps) # Determine shape of figure if nummaps<=3: numrows=1 else: numrows=2 numcols=math.ceil(nummaps/numrows) # fig, axes = plt.subplots(nrows=numrows, ncols=numcols, figsize=(16,9), squeeze=False) fig, axes = plt.subplots(nrows=numrows, ncols=numcols, squeeze=False) plottitle=thismaprow.iloc[0]['Basename']+': '+thismaprow.iloc[0]['SIname']+'.si' fig.suptitle(plottitle) for i, [elem, thismap] in enumerate(elementmaps): # thismap is element string followed by 512 x 512 array thisrow=i//numcols thiscol=i%numcols axindex=thisrow, thiscol # tuple to index axes axes[axindex].set_aspect('equal') if elem=='Grey': axes[axindex].imshow(thismap, cmap='gray') # make SE image grayscale axes[axindex].set_title('SE') else: axes[axindex].imshow(thismap, cmap='hot') # plots element map to correct subplot axes[axindex].set_title(elem) fig.tight_layout() # Hide empty subplots for i in range(0,numrows*numcols): if i>len(elementmaps)-1: thisrow=i//numcols thiscol=i%numcols axindex=thisrow, thiscol # tuple to index axes axes[axindex].set_visible(False) if savename!='': fig.savefig(savename) # optional saving of figure if imode==False: return fig else: return # just plot for interactive mode def organizecomp(df): '''Get rid of common duplicated columns ''' removelist=['Projectb','Filenameb','FilePathb','Sampleb','Commentsb'] singleelemlist=['Ca','Mg','Si','S'] for i, val in enumerate(removelist): if val in df: df=df.drop(val,axis=1) for i, val in enumerate(singleelemlist): # don't drop basis as these will differ if comparing smdif and integ compositions if val+'amplb' in df: df=df.drop(val+'amplb',axis=1) return df def returnoutliers(xdata, ydata): '''pass xcol and ycol as lists, makes plot and return outliers with pvals below specified threshold''' # convert pandas series to lists regression= ols("data ~ x", data=dict(data=ydata, x=xdata)).fit() outliers=regression.outlier_test() # df with cols as student_resid, unadj_p and bonf (bonferroni) colnames=['Resid','Pval','Bonf'] outliers.columns=colnames # rename columns return outliers def scattercompplot(comp1, comp2, elemlist, joinlist=['Filename'], thresh=0.1, basis=False, errbars='xy'): '''Pass two versions of composition calculation (using different lines or whatever) and compare major elements using scatter graphs .. single point for each sample uses inner merge to select only subset with values from each df use either sample or filenumber''' #TODO have calccomp copy error in basis to allow errbars if basis=True elemlist=[re.match('\D+',i).group(0) for i in elemlist] # strip number from peaks like Fe2 if present; columns will be element names (Fe) not peak names (Fe2) if basis==False: # use atomic % (which is the default), not basis for each element elemlist=['%'+s for s in elemlist] numregions=len(elemlist) # set nrows and ncols for figure of proper size cols=divmod(numregions,2)[0]+ divmod(numregions,2)[1] if numregions>1: rows=2 else: rows=1 fig, axes = plt.subplots(nrows=rows, ncols=cols) # axes is array # merge dfs with comp1 and comp2 using inner join compdata=pd.merge(comp1, comp2, how='inner', on=joinlist, suffixes=('','b')) mycols=compdata.dtypes.index # list of same columns mycols=mycols.tolist() #mycols=mycols.append('Element') outliers=pd.DataFrame(columns=mycols) # empty dataframe for outlying points fulldata=pd.DataFrame(columns=mycols) newcols=['Resid','Pval','Bonf', 'Element'] # single column for residuals but separate value needed for each row per element mycols.extend(newcols) for i, cname in enumerate(newcols): outliers[cname]='' fulldata[cname]='' for i, elem in enumerate(elemlist): # new version of base compositional data for each loop (otherwise reindexing problems) compdata=
pd.merge(comp1, comp2, how='inner', on=joinlist, suffixes=('','b'))
pandas.merge
import pandas as pd from matplotlib import pyplot as plt import hmac import hashlib import base64 import json import time import requests from datetime import datetime from tabulate import tabulate import csv investment = 00.00 coindcx = json.load(open('./api.json')) key = coindcx['apikey'] secret = coindcx['secretkey'] common_url = "https://api.coindcx.com/exchange" secret_bytes = bytes(secret, encoding='utf-8') timeStamp = int(round(time.time() * 1000)) body = { "timestamp": timeStamp } json_body = json.dumps(body, separators = (',', ':')) signature = hmac.new(secret_bytes, json_body.encode(), hashlib.sha256).hexdigest() url = common_url + "/v1/users/balances" ret = {} headers = { 'Content-Type': 'application/json', 'X-AUTH-APIKEY': key, 'X-AUTH-SIGNATURE': signature } def getbalance(): global df global myINR global myUSDT df =
pd.DataFrame()
pandas.DataFrame
import calendar import glob import numpy as np import openapi_client as dbitApi import os import pandas as pd from datetime import datetime api = dbitApi.MarketDataApi() def format_datetime_to_expiry(date): if os.name == 'nt': return datetime.strftime(date, '%#d%b%y').upper() else: return datetime.strftime(date, '%-d%b%y').upper() def get_near_next_terms(now): c = calendar.Calendar(firstweekday=calendar.MONDAY) this_month_cal = c.monthdatescalendar(now.year, now.month) this_fridays = [datetime(day.year, day.month, day.day, 8, 0, 0) for week in this_month_cal for day in week if day.weekday() == calendar.FRIDAY and day.month == now.month and datetime(day.year, day.month, day.day, 8, 0, 0) >= now] next_year = now.year if now.month < 12 else now.year + 1 next_month = now.month + 1 if now.month < 12 else 1 next_month_cal = c.monthdatescalendar(next_year, next_month) next_fridays = [datetime(day.year, day.month, day.day, 8, 0, 0) for week in next_month_cal for day in week if day.weekday() == calendar.FRIDAY and day.month == next_month and datetime(day.year, day.month, day.day, 8, 0, 0) >= now] fridays = this_fridays + next_fridays near_term, next_term = fridays[0], fridays[1] return (format_datetime_to_expiry(near_term), format_datetime_to_expiry(next_term), near_term, next_term) def get_index(currency='BTC'): try: index_result = api.public_get_index_get(currency)['result'][currency] return index_result except dbitApi.exceptions.ApiException as e: print(e) #logger.exception('Exception when calling MarketDataApi->public_get_instruments_get!') exit() def get_instruments_with_expiry(expiry, currency='BTC', kind='option', expired='false'): try: instrument_result = api.public_get_instruments_get(currency, kind=kind, expired=expired)['result'] return [instrument['instrument_name'] for instrument in instrument_result if expiry in instrument['instrument_name']] except dbitApi.exceptions.ApiException as e: print(e) #logger.exception('Exception when calling MarketDataApi->public_get_instruments_get!') exit() def get_ticker(instrument): try: instrument_result = api.public_ticker_get(instrument)['result'] return instrument_result except dbitApi.exceptions.ApiException as e: print(e) #logger.exception('Exception when calling MarketDataApi->public_get_instruments_get!') exit() def get_bids_asks(near_list, next_list): near_calls = dict() near_puts = dict() next_calls = dict() next_puts = dict() for instrument in near_list: data = get_ticker(instrument) best_bid, best_ask = data['best_bid_price'], data['best_ask_price'] strike, cp = int(instrument.split('-')[2]), instrument.split('-')[3] if cp == 'C': near_calls[strike] = {'best_bid': best_bid, 'best_ask': best_ask} elif cp == 'P': near_puts[strike] = {'best_bid': best_bid, 'best_ask': best_ask} else: print(f'Error {instrument}') for instrument in next_list: data = get_ticker(instrument) best_bid, best_ask = data['best_bid_price'], data['best_ask_price'] strike, cp = int(instrument.split('-')[2]), instrument.split('-')[3] if cp == 'C': next_calls[strike] = {'best_bid': best_bid, 'best_ask': best_ask} elif cp == 'P': next_puts[strike] = {'best_bid': best_bid, 'best_ask': best_ask} else: print(f'Error {instrument}') near_calls_df = pd.DataFrame.from_dict(near_calls, orient='index').sort_index().replace(0, np.nan) near_puts_df = pd.DataFrame.from_dict(near_puts, orient='index').sort_index().replace(0, np.nan) next_calls_df = pd.DataFrame.from_dict(next_calls, orient='index').sort_index().replace(0, np.nan) next_puts_df = pd.DataFrame.from_dict(next_puts, orient='index').sort_index().replace(0, np.nan) return near_calls_df, near_puts_df, next_calls_df, next_puts_df def calculate_indices(time, near_datetime, next_datetime, const_mature_days, R, near_calls_df, near_puts_df, next_calls_df, next_puts_df): # Compute strikes with min call/put price difference near_prices = pd.DataFrame(index=near_calls_df.index) near_prices['call_price'] = (near_calls_df['best_bid'] + near_calls_df['best_ask']) / 2 near_prices['put_price'] = (near_puts_df['best_bid'] + near_puts_df['best_ask']) / 2 near_prices['abs_diff'] = abs(near_prices['call_price'] - near_prices['put_price']) min_near_strike = near_prices['abs_diff'].idxmin() min_near_diff = near_prices.loc[min_near_strike].abs_diff next_prices =
pd.DataFrame(index=next_calls_df.index)
pandas.DataFrame
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def generate_data_ajive_fig2(seed=None, all_components=False): """ Samples the data from AJIVE figure 2. Note here we use rows as observations i.e. data matrices are n x d where n = # observations. Parameters ---------- seed: None, int Random seed to generate data. all_components: bool Whether or not to return all components or just the data if all_components is True then X_obs, X_joint, X_indiv, X_noise, Y_obs, Y_joint, Y_indiv, Y_noise = generate_data_ajive_fig2(all_components=True) otherwise X_obs, Y_obs = generate_data_ajive_fig2(all_components=False) """ # TODO: return ndarray instead of matrix if seed: np.random.seed(seed) # Sample X data X_joint = np.bmat([[np.ones((50, 50))], [-1*np.ones((50, 50))]]) X_joint = 5000 * np.bmat([X_joint, np.zeros((100, 50))]) X_indiv = 5000 * np.bmat([[-1 * np.ones((25, 100))], [np.ones((25, 100))], [-1 * np.ones((25, 100))], [np.ones((25, 100))]]) X_noise = 5000 * np.random.normal(loc=0, scale=1, size=(100, 100)) X_obs = X_joint + X_indiv + X_noise # Sample Y data Y_joint = np.bmat([[-1 * np.ones((50, 2000))], [np.ones((50, 2000))]]) Y_joint = np.bmat([np.zeros((100, 8000)), Y_joint]) Y_indiv_t = np.bmat([[np.ones((20, 5000))], [-1 * np.ones((20, 5000))], [np.zeros((20, 5000))], [np.ones((20, 5000))], [-1 * np.ones((20, 5000))]]) Y_indiv_b = np.bmat([[np.ones((25, 5000))], [-1 * np.ones((50, 5000))], [np.ones((25, 5000))]]) Y_indiv = np.bmat([Y_indiv_t, Y_indiv_b]) Y_noise = np.random.normal(loc=0, scale=1, size=(100, 10000)) Y_obs = Y_joint + Y_indiv + Y_noise if all_components: return X_obs, X_joint, X_indiv, X_noise, Y_obs, Y_joint, Y_indiv, Y_noise else: return np.array(X_obs), np.array(Y_obs) def np_matrix_to_pd_dataframe(mat): df =
pd.DataFrame(mat)
pandas.DataFrame
#Copyright 2020 <NAME> #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. #First part of the code: # reading in EPIC data (locations with time stamps from a range of source csv files. # collating the locations into a timeline for each patient and then creating the transfers file # transfers file contains all the transfers for each patient in the data set with demographics attached. #import the necessary libraries import pandas as pd from datetime import datetime import numpy as np from collections import deque, namedtuple #separate out time and date from EPIC time stamp def get_separate_date_time(datetimeentry): print(datetimeentry) if type(datetimeentry) == float: return datetime.max else: #this returns the date in a format where the hours and days can be accessed eg d.year or d.minute separate_date_time = datetime.strptime(datetimeentry,"%Y-%m-%d %H:%M:%S") return separate_date_time #function to remove "ADD" in our cae representing Addenbrookes hospital. This can be adjusted to remove whichever pieces of location name are not needed def simplify_theatre_entries(df: pd.DataFrame): df_nonan = df[df['adt_department_name'].notna()] theatre_rows = df_nonan[df_nonan['adt_department_name'].str.contains('THEATRE')] df_nonan.loc[theatre_rows.index, 'adt_department_name'] = 'THEATRE' return df_nonan #reading in data: Here the files are called ADM_POINT_aug.csv, SURGERIES_aug.csv, ENC_POINT_aug.csv, adm_info (demographics) #each one contains information from a different part of the EPIC database #admpoint contains the transfers of all the patients between wards admpoint = pd.read_csv("ADM_POINT_aug.csv") # only keep the columns actually needed admpoint = admpoint[['STUDY_SUBJECT_DIGEST', 'in_dttm', 'out_dttm', 'adt_department_name']] #add on a column indicating the origin of an entry in this case adm point for later when joining on information from other files s_length = len(admpoint['in_dttm']) admpoint['data_origin'] = np.repeat('adm', s_length, axis=0) # Rename the 'STUDY_SUBJECT_DIGEST' column to 'ptid' to signify patient ID. This is needed for later joining the files admpoint.rename(index=str, columns={'STUDY_SUBJECT_DIGEST': 'ptid'}, inplace=True) #convert the date and time to a datetime object admpoint['in_dttm'] = pd.to_datetime(admpoint['in_dttm']) admpoint['out_dttm'] = pd.to_datetime(admpoint['out_dttm']) #remove excessive information and nonsense entries amdpoint = simplify_theatre_entries(admpoint) #surgeriesinfo contains details about the surgery surgeriesinfo =
pd.read_csv("SURGERIES_aug.csv")
pandas.read_csv
import geopandas as gpd import matplotlib.pyplot as plt import numpy as np from pathlib import Path import pandas as pd import os import h5py from shapely.geometry import point,polygon import icepyx as ipd from datetime import date from dateutil.relativedelta import relativedelta from mpl_toolkits.axes_grid1 import make_axes_locatable from playsound import playsound def get_data(bbox,date_range,path) : try: os.mkdir(path+'/'+date_range[0]+'--'+date_range[1]) except: None path = path+'/'+date_range[0]+'--'+date_range[1] #creating the icepyx object region = ipd.Query('ATL06',bbox,date_range) print(region.avail_granules()) region.granules.avail #logging into earthdata earthdata_uid = input("Enter your Earthdata username:") email = input("Enter your Eathdata email:") region.earthdata_login(earthdata_uid,email) #creating a default variable list region.order_vars.append(defaults=True) #print(region.order_vars.wanted,sep='/n') region.order_vars.remove(all=True) #modifying the default variable list #print(region.order_vars.wanted) region.order_vars.append(var_list=['latitude']) region.order_vars.append(var_list=['longitude']) region.order_vars.append(var_list=['h_li']) region.order_vars.append(var_list=['x_atc']) region.order_vars.append(var_list=['atl06_quality_summary']) print("The requested data is:") print(region.order_vars.wanted) region.subsetparams(Coverage=region.order_vars.wanted) region.reqparams['page_size']=int(input("Enter desired number of granules per order:")) #ordering data email=input("Do you want an email containing information of your order requests(y/n)") email=True if email=='y' else False region.order_granules(email=email) #downloading data region.download_granules(path) def data_to_csv(path_in): group = ['gt1l','gt1r','gt2l','gt2r','gt3l','gt3r'] try: os.mkdir(path_in+'/CSV') except: None path_out = path_in+'/CSV' a=os.listdir(path_in) try: a.remove('.ipynb_checkpoints') except: None for g in group: beam = pd.DataFrame() beam['lat']=[] beam['lon']=[] beam['h_li']=[] beam['x_atc']=[] beam['q_flag']=[] for fname in a: df = pd.DataFrame() fname = path_in+'/'+fname try: with h5py.File(fname,'r') as f: try: df['lat'] = f['/'+g+'/land_ice_segments/latitude'][:] df['lon'] = f['/'+g+'/land_ice_segments/longitude'][:] df['h_li'] = f['/'+g+'/land_ice_segments/h_li'][:] df['x_atc'] = f['/'+g+'/land_ice_segments/ground_track/x_atc'][:] df['q_flag'] = f['/'+g+'/land_ice_segments/atl06_quality_summary'][:] beam=beam.append(df,ignore_index=True) except: print(fname+" has no relevant data") continue except: print(fname+" is not a hdf5 file.") continue beam=beam[beam['h_li']< 8611] beam.to_csv(path_out+'/'+g+'.csv') def h_li_plot(region,end_time): year, month, day = map(int, end_time.split('-')) start_time = date(year, month, day)+relativedelta(months=-3) start_time = str(start_time) print(start_time) date_range=[start_time,end_time] if region in ['Karakoram','West Himalaya','East Himalaya','Central Himalaya']: #Data download try: os.mkdir(os.getcwd().rsplit('/package')+'/'+region) except: None try: os.mkdir(os.getcwd().rsplit('/package')+'/'+region+'/data') except: None basemap=gpd.read_file(os.getcwd().rsplit('/package')+'/'+region+'/shapefile/'+region+'.shp') if (os.path.isdir(os.getcwd().rsplit('/package')+'/'+region+'/data/'+date_range[0]+'--'+date_range[1])==False or len(os.listdir(os.getcwd().rsplit('/package')+'/'+region+'/data/'+date_range[0]+'--'+date_range[1]))<=1): print("Downloding data") path=os.getcwd().rsplit('/package')+'/'+region+'/data' get_data(fname,date_range,path) data_to_csv(path) else: print("Data aldready exists") path=os.getcwd().rsplit('/package')+'/'+region+'/data/'+date_range[0]+'--'+date_range[1] fname=os.getcwd().rsplit('/package')+'/'+region+'/shpfile/'+region+'.shp' df1=pd.read_csv(path+'/CSV/gt1l.csv') df2=pd.read_csv(path+'/CSV/gt2l.csv') df3=
pd.read_csv(path+'/CSV/gt3l.csv')
pandas.read_csv
import matplotlib.pyplot as plt import matplotlib.colors as colors import numpy as np import pandas as pd from os.path import join import os import matplotlib as mpl from scseirx import analysis_functions as af import matplotlib.gridspec as gridspec from matplotlib.lines import Line2D from matplotlib.patches import Rectangle from mpl_toolkits.axes_grid1 import make_axes_locatable school_types = ['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'] def q25(x): return x.quantile(0.25) def q75(x): return x.quantile(0.75) def hex_to_rgb(value): ''' Converts hex to rgb colours value: string of 6 characters representing a hex colour. Returns: list length 3 of RGB values''' value = value.strip("#") # removes hash symbol if present lv = len(value) return tuple(int(value[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)) def rgb_to_dec(value): ''' Converts rgb to decimal colours (i.e. divides each value by 256) value: list (length 3) of RGB values Returns: list (length 3) of decimal values''' return [v/256 for v in value] def get_continuous_cmap(hex_list, float_list=None): ''' Creates and returns a color map that can be used in heat map figures. If float_list is not provided, colour map graduates linearly between each color in hex_list. If float_list is provided, each color in hex_list is mapped to the respective location in float_list. Parameters ---------- hex_list: list List of hex code strings float_list: list List of floats between 0 and 1, same length as hex_list. Must start with 0 and end with 1. Returns ---------- colour map ''' rgb_list = [rgb_to_dec(hex_to_rgb(i)) for i in hex_list] if float_list: pass else: float_list = list(np.linspace(0,1,len(rgb_list))) cdict = dict() for num, col in enumerate(['red', 'green', 'blue']): col_list = [[float_list[i], rgb_list[i][num], rgb_list[i][num]] for i in range(len(float_list))] cdict[col] = col_list cmp = mpl.colors.LinearSegmentedColormap('my_cmp', segmentdata=cdict, N=256) return cmp # set the colormap and centre the colorbar class MidpointNormalize(colors.Normalize): """ Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value) e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100)). """ def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y), np.isnan(value)) def get_data(stype, src_path, vaccinations=False): ''' Convenience function to read all ensembles from different measures of a given school type and return one single data frame ''' data = pd.DataFrame() stype_path = join(src_path, stype) files = os.listdir(stype_path) for f in files: params, agents, half = get_measures(f.strip('.csv'), vaccinations=vaccinations) if vaccinations: params['student_test_rate'] = 1 params['teacher_test_rate'] = 1 params['mask_efficiency_exhale'] = 0.7 params['mask_efficiency_inhale'] = 0.5 params['base_transmission_risk_multiplier'] = 1.0 ensmbl = pd.read_csv(join(stype_path, f)) try: ensmbl = ensmbl.drop(columns=['Unnamed: 0']) except KeyError: pass ensmbl['preventive_test_type'] = params['preventive_test_type'] ensmbl['index_case'] = params['index_case'] ensmbl['transmission_risk_ventilation_modifier'] = \ params['transmission_risk_ventilation_modifier'] if ('class_size_reduction' in params.keys()) and not\ ('half_classes' in params.keys()): if params['class_size_reduction'] > 0: params['half_classes'] = True ensmbl['half_classes'] = True else: params['half_classes'] = False ensmbl['half_classes'] = False if ('half_classes' in params.keys()) and not\ ('class_size_reduction' in params.keys()): if params['half_classes']: params['class_size_reduction'] = 0.5 ensmbl['class_size_reduction'] = 0.5 else: params['class_size_reduction'] = 0.0 ensmbl['class_size_reduction'] = 0.0 ensmbl['half_classes'] = params['half_classes'] ensmbl['class_size_reduction'] = params['class_size_reduction'] ensmbl['student_testing_rate'] = params['student_test_rate'] ensmbl['teacher_testing_rate'] = params['teacher_test_rate'] ensmbl['mask_efficiency_inhale'] = params['mask_efficiency_inhale'] ensmbl['mask_efficiency_exhale'] = params['mask_efficiency_exhale'] ensmbl['base_transmission_risk_multiplier'] = \ params['base_transmission_risk_multiplier'] ensmbl['student_mask'] = agents['student']['mask'] ensmbl['teacher_mask'] = agents['teacher']['mask'] ensmbl['student_screening_interval'] = agents['student']\ ['screening_interval'] ensmbl['teacher_screening_interval'] = agents['teacher']\ ['screening_interval'] ensmbl['teacher_vaccination_ratio'] = agents['teacher']\ ['vaccination_ratio'] ensmbl['student_vaccination_ratio'] = agents['student']\ ['vaccination_ratio'] ensmbl['family_member_vaccination_ratio'] = agents['family_member']\ ['vaccination_ratio'] data = pd.concat([data, ensmbl]) data = data.reset_index(drop=True) data['teacher_screening_interval'] = data['teacher_screening_interval']\ .replace({None:'never'}) data['student_screening_interval'] = data['student_screening_interval']\ .replace({None:'never'}) return data def get_measures(measure_string, vaccinations=False): ''' Convenience function to get the individual measures given a string (filename) of measures. ''' agents = { 'student':{ 'screening_interval': None, 'index_probability': 0, 'mask':False}, 'teacher':{ 'screening_interval': None, 'index_probability': 0, 'mask':False}, 'family_member':{ 'screening_interval': None, 'index_probability': 0, 'mask':False} } turnovers = {0:'same', 1:'one', 2:'two', 3:'three'} bmap = {'T':True, 'F':False} interval_map = {'0':0, '3':3, '7':7, '14':14, 'None':None} index_map = {'s':'student', 't':'teacher'} stype, _ = measure_string.split('_test') rest = measure_string.split(stype + '_')[1] if vaccinations: ttpype, turnover, index, tf, sf, tmask, smask, half, vent, tvacc,\ svacc = rest.split('_') fvacc = 'fvacc-0.6' tmp = [ttpype, turnover, index, tf, sf, tmask, smask, half, vent,\ tvacc, svacc, fvacc] else: ttpype, turnover, index, tf, sf, tmask, smask, vent, stestrate, \ ttestrate, trisk, meffexh, meffinh, csizered, fratio, svacc, tvacc, \ fvacc = rest.split('_') tmp = [ttpype, turnover, index, tf, sf, tmask, smask, vent, stestrate,\ ttestrate, trisk, meffexh, meffinh, csizered, fratio, svacc, tvacc,\ fvacc] tmp = [m.split('-') for m in tmp] params = {} half = False for m in tmp: if len(m) == 1: pass elif m[0] == 'test': params['preventive_test_type'] = m[1] elif m[0] == 'turnover': params['turnover'] = int(m[1]) elif m[0] == 'index': params['index_case'] = index_map[m[1]] elif m[0] == 'tf': agents['teacher']['screening_interval'] = interval_map[m[1]] elif m[0] == 'sf': agents['student']['screening_interval'] = interval_map[m[1]] elif m[0] == 'tmask': agents['teacher']['mask'] = bmap[m[1]] elif m[0] == 'smask': agents['student']['mask'] = bmap[m[1]] elif m[0] == 'half': params['half_classes'] = bmap[m[1]] elif m[0] == 'vent': params['transmission_risk_ventilation_modifier'] = float(m[1]) elif m[0] == 'csizered': params['class_size_reduction'] = float(m[1]) elif m[0] == 'stestrate': params['student_test_rate'] = float(m[1]) elif m[0] == 'ttestrate': params['teacher_test_rate'] = float(m[1]) elif m[0] == 'fratio': params['added_friendship_contacts'] = float(m[1]) elif m[0] == 'meffexh': params['mask_efficiency_exhale'] = float(m[1]) elif m[0] == 'meffinh': params['mask_efficiency_inhale'] = float(m[1]) elif m[0] == 'trisk': params['base_transmission_risk_multiplier'] = float(m[1]) elif m[0] == 'tvacc': agents['teacher']['vaccination_ratio'] = float(m[1]) elif m[0] == 'svacc': agents['student']['vaccination_ratio'] = float(m[1]) elif m[0] == 'fvacc': agents['family_member']['vaccination_ratio'] = float(m[1]) elif m[0] == 'atd': params['age_transmission_discount'] = float(m[1]) elif m[0] == 'cw': params['contact_weight'] = float(m[1]) else: print('unknown measure type ', m[0]) params['preventive_test_type'] = '{}_day_{}'\ .format(turnovers[params['turnover']], params['preventive_test_type']) return params, agents, half def get_baseline_data(src_path, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary']): baseline_data = pd.DataFrame() for stype in school_types: tmp = pd.read_csv(join(src_path, '{}_observables.csv'.format(stype))) tmp['school_type'] = stype baseline_data = pd.concat([baseline_data, tmp]) baseline_data['test_sensitivity'] = 1.0 baseline_data['student_testing_rate'] = 1.0 baseline_data['teacher_testing_rate'] = 1.0 baseline_data['mask_efficiency_inhale'] = 0.7 baseline_data['mask_efficiency_exhale'] = 0.5 baseline_data['base_transmission_risk_multiplier'] = 1.0 baseline_data['friendship_ratio'] = 0.0 baseline_data['student_vaccination_ratio'] = 0.0 baseline_data['teacher_vaccination_ratio'] = 0.0 baseline_data['family_member_vaccination_ratio'] = 0.0 baseline_data['class_size_reduction'] = 0 baseline_data.loc[baseline_data[baseline_data['half_classes'] == True].index, 'class_size_reduction'] = 0.5 baseline_data = baseline_data.drop(columns=['Unnamed: 0']) baseline_data = baseline_data.reset_index(drop=True) baseline_data['student_screen_interval'] = \ baseline_data['student_screen_interval'].replace({np.nan:'never'}) baseline_data['teacher_screen_interval'] = \ baseline_data['teacher_screen_interval'].replace({np.nan:'never'}) return baseline_data def get_test_sensitivity_data(src_path, params, baseline_data, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'], observables_of_interest=['infected_agents', 'R0']): test_sensitivity_data = pd.DataFrame() for stype in school_types: print('\t{}'.format(stype)) stype_data = get_data(stype, src_path) for i, screening_params in params.iterrows(): index_case, s_screen_interval, t_screen_interval, student_mask, \ teacher_mask, class_size_reduction, vent_mod, ttype = \ screening_params turnover, _, test = ttype.split('_') sensitivity = float(test.split('antigen')[1]) # calculate the ensemble statistics for each measure combination measure_data = stype_data[\ (stype_data['preventive_test_type'] == ttype) &\ (stype_data['index_case'] == index_case) &\ (stype_data['student_screening_interval'] == s_screen_interval) &\ (stype_data['teacher_screening_interval'] == t_screen_interval) &\ (stype_data['student_mask'] == student_mask) &\ (stype_data['teacher_mask'] == teacher_mask) &\ (stype_data['class_size_reduction'] == class_size_reduction) &\ (stype_data['transmission_risk_ventilation_modifier'] == vent_mod)] if len(measure_data) == 0: print('WARNING: empty measure data for {}'\ .format(screening_params)) row = {'school_type':stype, 'test_type':test, 'turnover':turnover, 'index_case':index_case, 'student_screen_interval':s_screen_interval, 'teacher_screen_interval':t_screen_interval, 'student_mask':student_mask, 'teacher_mask':teacher_mask, 'ventilation_modification':vent_mod, 'test_sensitivity':sensitivity, 'class_size_reduction':class_size_reduction, 'student_testing_rate':1.0, 'teacher_testing_rate':1.0, 'mask_efficiency_inhale':0.7, 'mask_efficiency_exhale':0.5, 'base_transmission_risk_multiplier':1.0, 'friendship_ratio':0, 'student_vaccination_ratio':0, 'teacher_vaccination_ratio':0, 'family_member_vaccination_ratio':0} for col in observables_of_interest: row.update(af.get_statistics(measure_data, col)) test_sensitivity_data = test_sensitivity_data.append(row, ignore_index=True) test_sensitivity_data.to_csv(join(src_path, 'test_sensitivity_observables.csv'), index=False) # combine the sensitivity analysis data with the baseline data # (only relevant columns) baseline_chunk = baseline_data[\ (baseline_data['test_type'] == 'antigen') &\ (baseline_data['turnover'] == 0) &\ (baseline_data['student_screen_interval'] == s_screen_interval) &\ (baseline_data['teacher_screen_interval'] == t_screen_interval) &\ (baseline_data['student_mask'] == student_mask) &\ (baseline_data['teacher_mask'] == teacher_mask) &\ (baseline_data['class_size_reduction'] == class_size_reduction) &\ (baseline_data['ventilation_modification'] == vent_mod)] test_sensitivity_data = pd.concat([test_sensitivity_data, \ baseline_chunk[test_sensitivity_data.columns].copy()]) return test_sensitivity_data def get_testing_rate_data(src_path, params, baseline_data, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'], observables_of_interest=['infected_agents', 'R0']): testing_rate_data = pd.DataFrame() for stype in school_types: print('\t{}'.format(stype)) stype_data = get_data(stype, src_path) for i, screening_params in params.iterrows(): index_case, s_screen_interval, t_screen_interval, student_mask, \ teacher_mask, class_size_reduction, vent_mod, s_testing_rate, \ t_testing_rate = screening_params measure_data = stype_data[\ (stype_data['preventive_test_type'] == 'same_day_antigen') &\ (stype_data['index_case'] == index_case) &\ (stype_data['student_screening_interval'] == s_screen_interval) &\ (stype_data['teacher_screening_interval'] == t_screen_interval) &\ (stype_data['student_mask'] == student_mask) &\ (stype_data['teacher_mask'] == teacher_mask) &\ (stype_data['class_size_reduction'] == class_size_reduction) &\ (stype_data['transmission_risk_ventilation_modifier'] == vent_mod) &\ (stype_data['student_testing_rate'] == s_testing_rate) &\ (stype_data['teacher_testing_rate'] == t_testing_rate) ] if len(measure_data) == 0: print('WARNING: empty measure data for {}'.format(screening_params)) row = {'school_type':stype, 'test_type':'antigen', 'turnover':0, 'index_case':index_case, 'student_screen_interval':s_screen_interval, 'teacher_screen_interval':t_screen_interval, 'student_mask':student_mask, 'teacher_mask':teacher_mask, 'ventilation_modification':vent_mod, 'test_sensitivity':1.0, 'class_size_reduction':class_size_reduction, 'student_testing_rate':s_testing_rate, 'teacher_testing_rate':t_testing_rate, 'mask_efficiency_inhale':0.7, 'mask_efficiency_exhale':0.5, 'base_transmission_risk_multiplier':1.0, 'friendship_ratio':0, 'student_vaccination_ratio':0, 'teacher_vaccination_ratio':0, 'family_member_vaccination_ratio':0} for col in observables_of_interest: row.update(af.get_statistics(measure_data, col)) testing_rate_data = testing_rate_data.append(row, ignore_index=True) testing_rate_data.to_csv(join(src_path, 'testing_rate_data_observables.csv'), index=False) # combine the sensitivity analysis data with the baseline data # (only relevant columns) baseline_chunk = baseline_data[\ (baseline_data['test_type'] == 'antigen') &\ (baseline_data['turnover'] == 0) &\ (baseline_data['student_screen_interval'] == s_screen_interval) &\ (baseline_data['teacher_screen_interval'] == t_screen_interval) &\ (baseline_data['student_mask'] == student_mask) &\ (baseline_data['teacher_mask'] == teacher_mask) &\ (baseline_data['class_size_reduction'] == class_size_reduction) &\ (baseline_data['ventilation_modification'] == vent_mod)] testing_rate_data = pd.concat([testing_rate_data, \ baseline_chunk[testing_rate_data.columns].copy()]) return testing_rate_data def get_class_size_reduction_data(src_path, params, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'], observables_of_interest=['infected_agents', 'R0']): class_size_reduction_data = pd.DataFrame() for stype in school_types: print('\t{}'.format(stype)) stype_data = get_data(stype, src_path) for i, screening_params in params.iterrows(): index_case, s_screen_interval, t_screen_interval, student_mask, \ teacher_mask, vent_mod, class_size_reduction = screening_params # calculate the ensemble statistics for each measure combination measure_data = stype_data[\ (stype_data['preventive_test_type'] == 'same_day_antigen') &\ (stype_data['index_case'] == index_case) &\ (stype_data['student_screening_interval'] == s_screen_interval) &\ (stype_data['teacher_screening_interval'] == t_screen_interval) &\ (stype_data['student_mask'] == student_mask) &\ (stype_data['teacher_mask'] == teacher_mask) &\ (stype_data['class_size_reduction'] == class_size_reduction) &\ (stype_data['transmission_risk_ventilation_modifier'] == vent_mod) ] if len(measure_data) == 0: print('WARNING: empty measure data for {}'.format(screening_params)) row = {'school_type':stype, 'test_type':'antigen', 'turnover':0, 'index_case':index_case, 'student_screen_interval':s_screen_interval, 'teacher_screen_interval':t_screen_interval, 'student_mask':student_mask, 'teacher_mask':teacher_mask, 'ventilation_modification':vent_mod, 'test_sensitivity':1.0, 'class_size_reduction':class_size_reduction, 'student_testing_rate':1.0, 'teacher_testing_rate':1.0, 'mask_efficiency_inhale':0.7, 'mask_efficiency_exhale':0.5, 'base_transmission_risk_multiplier':1.0, 'friendship_ratio':0, 'student_vaccination_ratio':0, 'teacher_vaccination_ratio':0, 'family_member_vaccination_ratio':0} for col in observables_of_interest: row.update(af.get_statistics(measure_data, col)) class_size_reduction_data = \ class_size_reduction_data.append(row, ignore_index=True) class_size_reduction_data.to_csv(join(src_path.split('/ensembles')[0], 'class_size_reduction_observables.csv'), index=False) return class_size_reduction_data def get_ventilation_efficiency_data(src_path, params, baseline_data, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'], observables_of_interest=['infected_agents', 'R0']): ventilation_efficiency_data = pd.DataFrame() for stype in school_types: print('\t{}'.format(stype)) stype_data = get_data(stype, src_path) for i, screening_params in params.iterrows(): index_case, s_screen_interval, t_screen_interval, student_mask, \ teacher_mask, class_size_reduction, vent_mod = screening_params # calculate the ensemble statistics for each measure combination measure_data = stype_data[\ (stype_data['preventive_test_type'] == 'same_day_antigen') &\ (stype_data['index_case'] == index_case) &\ (stype_data['student_screening_interval'] == s_screen_interval) &\ (stype_data['teacher_screening_interval'] == t_screen_interval) &\ (stype_data['student_mask'] == student_mask) &\ (stype_data['teacher_mask'] == teacher_mask) &\ (stype_data['class_size_reduction'] == class_size_reduction) &\ (stype_data['transmission_risk_ventilation_modifier'] == vent_mod) ] if len(measure_data) == 0: print('WARNING: empty measure data for {}'.format(screening_params)) row = {'school_type':stype, 'test_type':'antigen', 'turnover':0, 'index_case':index_case, 'student_screen_interval':s_screen_interval, 'teacher_screen_interval':t_screen_interval, 'student_mask':student_mask, 'teacher_mask':teacher_mask, 'ventilation_modification':vent_mod, 'test_sensitivity':1.0, 'class_size_reduction':class_size_reduction, 'student_testing_rate':1.0, 'teacher_testing_rate':1.0, 'mask_efficiency_inhale':0.7, 'mask_efficiency_exhale':0.5, 'base_transmission_risk_multiplier':1.0, 'friendship_ratio':0, 'student_vaccination_ratio':0, 'teacher_vaccination_ratio':0, 'family_member_vaccination_ratio':0} for col in observables_of_interest: row.update(af.get_statistics(measure_data, col)) ventilation_efficiency_data = \ ventilation_efficiency_data.append(row, ignore_index=True) ventilation_efficiency_data.to_csv(join(src_path.split('/ensembles')[0], 'ventilation_efficiency_observables.csv'), index=False) # combine the sensitivity analysis data with the baseline data # (only relevant columns) baseline_chunk = baseline_data[\ (baseline_data['test_type'] == 'antigen') &\ (baseline_data['turnover'] == 0) &\ (baseline_data['student_screen_interval'] == s_screen_interval) &\ (baseline_data['teacher_screen_interval'] == t_screen_interval) &\ (baseline_data['student_mask'] == student_mask) &\ (baseline_data['teacher_mask'] == teacher_mask) &\ (baseline_data['class_size_reduction'] == class_size_reduction) &\ (baseline_data['ventilation_modification'] == 0.36)] ventilation_efficiency_data = pd.concat([ventilation_efficiency_data, \ baseline_chunk[ventilation_efficiency_data.columns].copy()]) return ventilation_efficiency_data def get_mask_efficiency_data(src_path, params, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'], observables_of_interest=['infected_agents', 'R0']): mask_efficiency_data = pd.DataFrame() for stype in school_types: print('\t{}'.format(stype)) stype_data = get_data(stype, src_path) for i, screening_params in params.iterrows(): index_case, s_screen_interval, t_screen_interval, student_mask, \ teacher_mask, class_size_reduction, vent_mod, m_efficiency_exhale, \ m_efficiency_inhale = screening_params # calculate the ensemble statistics for each measure combination measure_data = stype_data[\ (stype_data['preventive_test_type'] == 'same_day_antigen') &\ (stype_data['index_case'] == index_case) &\ (stype_data['student_screening_interval'] == s_screen_interval) &\ (stype_data['teacher_screening_interval'] == t_screen_interval) &\ (stype_data['student_mask'] == student_mask) &\ (stype_data['teacher_mask'] == teacher_mask) &\ (stype_data['class_size_reduction'] == class_size_reduction) &\ (stype_data['transmission_risk_ventilation_modifier'] == vent_mod) &\ (stype_data['mask_efficiency_inhale'] == m_efficiency_inhale) &\ (stype_data['mask_efficiency_exhale'] == m_efficiency_exhale) ] if len(measure_data) == 0: print('WARNING: empty measure data for {}'.format(screening_params)) row = {'school_type':stype, 'test_type':'antigen', 'turnover':0, 'index_case':index_case, 'student_screen_interval':s_screen_interval, 'teacher_screen_interval':t_screen_interval, 'student_mask':student_mask, 'teacher_mask':teacher_mask, 'ventilation_modification':vent_mod, 'test_sensitivity':1.0, 'class_size_reduction':0.0, 'student_testing_rate':1.0, 'teacher_testing_rate':1.0, 'mask_efficiency_inhale':m_efficiency_exhale, 'mask_efficiency_exhale':m_efficiency_inhale, 'base_transmission_risk_multiplier':1.0, 'friendship_ratio':0, 'student_vaccination_ratio':0, 'teacher_vaccination_ratio':0, 'family_member_vaccination_ratio':0} for col in observables_of_interest: row.update(af.get_statistics(measure_data, col)) mask_efficiency_data = \ mask_efficiency_data.append(row, ignore_index=True) mask_efficiency_data.to_csv(join(src_path.split('/ensembles')[0], 'mask_efficiency_observables.csv'), index=False) return mask_efficiency_data def get_added_friendship_contacts_data(src_path, params, baseline_data, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'], observables_of_interest=['infected_agents', 'R0']): added_friendship_contacts_data = pd.DataFrame() for stype in school_types: print('\t{}'.format(stype)) stype_data = get_data(stype, src_path) for i, screening_params in params.iterrows(): index_case, s_screen_interval, t_screen_interval, student_mask, \ teacher_mask, class_size_reduction, vent_mod, friendship_ratio = screening_params # calculate the ensemble statistics for each measure combination measure_data = stype_data[\ (stype_data['preventive_test_type'] == 'same_day_antigen') &\ (stype_data['index_case'] == index_case) &\ (stype_data['student_screening_interval'] == s_screen_interval) &\ (stype_data['teacher_screening_interval'] == t_screen_interval) &\ (stype_data['student_mask'] == student_mask) &\ (stype_data['teacher_mask'] == teacher_mask) &\ (stype_data['class_size_reduction'] == class_size_reduction) &\ (stype_data['transmission_risk_ventilation_modifier'] == vent_mod) &\ (stype_data['friendship_ratio'] == friendship_ratio) ] if len(measure_data) == 0: print('WARNING: empty measure data for {}'.format(screening_params)) row = {'school_type':stype, 'test_type':'antigen', 'turnover':0, 'index_case':index_case, 'student_screen_interval':s_screen_interval, 'teacher_screen_interval':t_screen_interval, 'student_mask':student_mask, 'teacher_mask':teacher_mask, 'ventilation_modification':vent_mod, 'test_sensitivity':1.0, 'class_size_reduction':class_size_reduction, 'student_testing_rate':1.0, 'teacher_testing_rate':1.0, 'mask_efficiency_inhale':0.7, 'mask_efficiency_exhale':0.5, 'base_transmission_risk_multiplier':1.0, 'friendship_ratio':friendship_ratio, 'student_vaccination_ratio':0, 'teacher_vaccination_ratio':0, 'family_member_vaccination_ratio':0} for col in observables_of_interest: row.update(af.get_statistics(measure_data, col)) added_friendship_contacts_data = \ added_friendship_contacts_data.append(row, ignore_index=True) added_friendship_contacts_data.to_csv(join(src_path.split('/ensembles')[0], 'added_friendship_contacts_observables.csv'), index=False) baseline_chunk = baseline_data[\ (baseline_data['test_type'] == 'antigen') &\ (baseline_data['turnover'] == 0) &\ (baseline_data['student_screen_interval'] == s_screen_interval) &\ (baseline_data['teacher_screen_interval'] == t_screen_interval) &\ (baseline_data['student_mask'] == student_mask) &\ (baseline_data['teacher_mask'] == teacher_mask) &\ (baseline_data['class_size_reduction'] == class_size_reduction) &\ (baseline_data['ventilation_modification'] == 1.0) &\ (baseline_data['friendship_ratio'] == 0.0)] added_friendship_contacts_data = pd.concat([added_friendship_contacts_data, \ baseline_chunk[added_friendship_contacts_data.columns].copy()]) return added_friendship_contacts_data def get_worst_case_data(src_path, params, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'], observables_of_interest=['infected_agents', 'R0']): worst_case_data = pd.DataFrame() for stype in school_types: stype_data = get_data(stype, src_path) for i, screening_params in params.iterrows(): index_case, s_screen_interval, t_screen_interval, student_mask, \ teacher_mask, class_size_reduction, vent_mod, m_efficiency_exhale, \ m_efficiency_inhale, s_test_rate, t_test_rate, ttype, friendship_ratio \ = screening_params turnover, _, test = ttype.split('_') sensitivity = float(test.split('antigen')[1]) # calculate the ensemble statistics for each measure combination measure_data = stype_data[\ (stype_data['preventive_test_type'] == ttype) &\ (stype_data['index_case'] == index_case) &\ (stype_data['student_screening_interval'] == s_screen_interval) &\ (stype_data['teacher_screening_interval'] == t_screen_interval) &\ (stype_data['student_mask'] == student_mask) &\ (stype_data['teacher_mask'] == teacher_mask) &\ (stype_data['class_size_reduction'] == class_size_reduction) &\ (stype_data['transmission_risk_ventilation_modifier'] == vent_mod)] if len(measure_data) == 0: print('WARNING: empty measure data for {}'.format(screening_params)) half = False if class_size_reduction > 0: half = True row = {'school_type':stype, 'test_type':test, 'turnover':turnover, 'index_case':index_case, 'student_screen_interval':s_screen_interval, 'teacher_screen_interval':t_screen_interval, 'student_mask':student_mask, 'teacher_mask':teacher_mask, 'ventilation_modification':vent_mod, 'test_sensitivity':sensitivity, 'class_size_reduction':class_size_reduction, 'half_classes':half, 'student_testing_rate':s_test_rate, 'teacher_testing_rate':t_test_rate, 'mask_efficiency_inhale':m_efficiency_inhale, 'mask_efficiency_exhale':m_efficiency_exhale, 'base_transmission_risk_multiplier':1.0, 'friendship_ratio':friendship_ratio, 'student_vaccination_ratio':0, 'teacher_vaccination_ratio':0, 'family_member_vaccination_ratio':0} for col in observables_of_interest: row.update(af.get_statistics(measure_data, col)) worst_case_data = \ worst_case_data.append(row, ignore_index=True) worst_case_data['scenario'] = 'conservative' return worst_case_data def get_worst_case_and_vaccinations_data(src_path, params, school_types=['primary', 'primary_dc', 'lower_secondary', 'lower_secondary_dc', 'upper_secondary', 'secondary'], observables_of_interest=['infected_agents', 'R0']): worst_case_and_vaccinations_data =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on: 15:54:55 05-Jan-2020 Author: <NAME> This code is licensed under the MIT license """ # %%--------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- from bokeh.models.widgets import (Div, FileInput, Panel) from bokeh.plotting import Figure from bokeh.layouts import column, row from bokeh.models import ColumnDataSource, LinearAxis, Range1d import pandas as pd from io import BytesIO import base64 # %%--------------------------------------------------------------------------- # ReadDisplay # ----------------------------------------------------------------------------- class ReadDisplay(): """Reads data saved to file into the system and displays it.""" # %% def __init__(self, controller): """Method sets up object. First part of two-part initialization.""" self.controller = controller # Header for section to get file self.file_header =\ Div(text="""<span style='font-weight:bold'>""" """Choose the file to display</span>""", sizing_mode='stretch_width') # Selects the data file to read into the system self.select_file = FileInput(accept=".csv", sizing_mode='stretch_width') # Shows summary and status for data read in. self.status = Div(text="""No file connected""", sizing_mode='stretch_width') # Chart to show temperature and/or humidity. self.temphumidity = Figure(x_axis_type='datetime', title="Humidity & temperature by datetime", x_axis_label='Datetime', y_axis_label='Temperature (C)') df = pd.DataFrame( {'Timestamp': [
pd.to_datetime('4/12/2016 8:15:33 AM')
pandas.to_datetime
import getpass import pandas as pd from PySide2 import QtGui from PySide2.QtWidgets import QMainWindow, QMessageBox from components.mensagens import Mensagens from dao.relatorio_dao import RelatorioDao from view.ui_tela_relatorio_chamados import Ui_RelatorioChamado class TelaRelatorioChamado(QMainWindow, Ui_RelatorioChamado): """Classe da tela de relatório de chamados. Esta classe tem por finalidade gerar vários relatórios conforme necessidade do usuário. """ def __init__(self): super(TelaRelatorioChamado, self).__init__() self.setupUi(self) self.setWindowTitle("Relatório de Chamados") self.setFixedSize(400, 466) self.popula_combo_solucao() self.mensagem = Mensagens() self.btn_cancelar.clicked.connect(self.close) self.btn_gerar_solucao.clicked.connect(self.gerar_relatorio_solucao) """Função que chamado o método de gerar relatório de soluções.""" self.btn_gerar_data.clicked.connect(self.gerar_relatorio_chamado_data) """Função que chamado o método de gerar relatório por Data.""" self.btn_gerar_tipo.clicked.connect(self.gerar_relatorio_tipo_chamado) """Função que chamado o método de gerar relatório por tipo.""" self.btn_gerar_status.clicked.connect(self.gerar_relatorio_status_chamado) """Função que chamado o método de gerar relatório por Status.""" self.btn_gerar_relatorio_padrao.clicked.connect(self.gerar_relatorio_padrao) """Função que chamado o método de gerar relatório padrão.""" def popula_combo_solucao(self): """Popular combo solução Popula a combo de solução com o nome das soluções cadastradas. :return: Lista de Soluções. """ relatorio_dao = RelatorioDao() resultado = relatorio_dao.consulta_nome_solucao() for i in resultado: self.combo_solucao.addItem(str(i[0])) def gerar_relatorio_chamado_data(self): """Gerar relatório por data. Gera um relatório tendo como parametro a data e salva em .xlsx. :return: Arquivo .xlsx """ user_windows = getpass.getuser() if self.txt_data.text() == "": self.mensagem.mensagem_campo_vazio('DATA') else: data = self.txt_data.text() if self.radio_numero_chamado.isChecked(): try: relatorio_dao = RelatorioDao() resultado = relatorio_dao.relatorio_chamado_data_ordenado_por_numero(data) if len(resultado) == 0: msg = QMessageBox() msg.setWindowIcon(QtGui.QIcon("_img/logo_janela.ico")) msg.setIcon(QMessageBox.Information) msg.setWindowTitle("Relatório de Chamados") msg.setText('Não há dados para gerar este relatório.') msg.exec_() else: dados =
pd.DataFrame(resultado)
pandas.DataFrame
#!/home/bryanfeeney/anaconda3/bin/python3.6 # # Simple script that uses the Microsoft Light Gradient-Boosted Machine-Learnign # toolkit to make predictions *separately* for each value. # from datetime import date, timedelta, datetime import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import sys import json import psycopg2 FutureDaysToCalculate = 16 WeeksOfHistoryForMinTrainigData = 20 WeeksOfHistoryForFeature = 7 WeeksOfHistoryForFeatureOnValidate = 3 TrainingTimePeriodCount = 6 def load_data_csv (cumul_sales_path, cumul_sales_query_path, items_path, stores_path, query_start_date=None): """ Loads four datasets from the file-system in CSV format: cumul_sale_path is the cumulative sales data, should be the last 12 months cumul_sale_query_path enumerates the things to predict items is item data stores is store data query_start_date if this is None, it's inferred from the first row of the cumul_sales_query_path documents. If this is not None, then cumul_sales_query rows before this date are removed. """ cumul_sales = pd.read_csv( cumul_sales_path, usecols=[1, 2, 3, 4, 5], dtype={'onpromotion': bool}, converters={'unit_sales': lambda u: np.log1p(float(u)) if float(u) > 0 else 0}, parse_dates=["date"] ) if cumul_sales_query_path is not None: cumul_sales_query = pd.read_csv( cumul_sales_query_path, usecols=[0, 1, 2, 3, 4], dtype={'onpromotion': bool}, parse_dates=["date"], ) if query_start_date is None: query_start_date = str(cumul_sales_query.iloc[0,1]).split(" ")[0] else: cumul_sales_query = cumul_sales_query[cumul_sales_query.date >= query_start_date] cumul_sales_query = cumul_sales_query.set_index( ['store_nbr', 'item_nbr', 'date'] ) items = pd.read_csv( items_tbl, ).set_index("item_nbr") stores = pd.read_csv( stores_tbl ).set_index("store_nbr") return cumul_sales, cumul_sales_query, query_start_date, items, stores def load_data_sql (cumul_sales_path, cumul_sales_query_path, items_path, stores_path, query_start_date=None): """ Loads three datasets from the file-system in CSV format: cumul_sale_path is the cumulative sales data, should be the last 12 months cumul_sale_query_path enumerates the things to predict items is item data stores is store data """ with open('db.json') as f: conf = json.load(f) print (str(conf)) conn_str = "host={} dbname={} user={} password={}".format(conf['host'], conf['database'], conf['user'], conf['passw']) conn = psycopg2.connect(conn_str) cumul_sales_query = pd.DataFrame() c = 1 for chunk in pd.read_sql("select * from " + cumul_sales_query_path + " where date > CURRENT_DATE and date < CURRENT_DATE + INTERVAL '16 days' order by date asc", con=conn, chunksize=100000): print ("Appending chunk " + str(c) + " to future promotions") c += 1 cumul_sales_query = cumul_sales_query.append(chunk) cumul_sales_query.date = pd.to_datetime(cumul_sales_query.date) if query_start_date is None: query_start_date = str(cumul_sales_query.iloc[0,1]).split(" ")[0] else: cumul_sales_query = cumul_sales_query[cumul_sales_query.date >= query_start_date] cumul_sales_query = cumul_sales_query.set_index( ['store_nbr', 'item_nbr', 'date'] ) print("Future promotions loaded") cumul_sales =
pd.DataFrame()
pandas.DataFrame
import os import sys import re import json import yaml import pandas as pd import numpy as np sys.path.append('../') from load_paths import load_box_paths try: print(Location) except NameError: if os.name == "posix": Location = "NUCLUSTER" else: Location = "Local" datapath, projectpath, wdir, exe_dir, git_dir = load_box_paths(Location=Location) class covidModel: def __init__(self,subgroups, expandModel, observeLevel='primary', add_interventions='baseline', change_testDelay=False, intervention_config='intervention_emodl_config.yaml', add_migration=False, fit_params=None,emodl_name=None, git_dir=git_dir): self.model = 'locale' self.grpList = subgroups self.expandModel = expandModel self.add_migration = add_migration self.observeLevel = observeLevel self.add_interventions = add_interventions self.change_testDelay = change_testDelay self.intervention_config = intervention_config self.emodl_name = emodl_name self.startdate = pd.Timestamp('2020-02-13') self.emodl_dir = os.path.join(git_dir, 'emodl') self.fit_param = fit_params # Currenly support single parameter only def get_configs(key, config_file='intervention_emodl_config.yaml'): yaml_file = open(os.path.join('./experiment_configs', config_file)) config_dic = yaml.safe_load(yaml_file) config_dic = config_dic[key] return config_dic ## For postprocessing that splits by '_', it is easier if EMS are names EMS-1 not EMS_1 ## This might change depending on the postprocessing def sub(x): xout = re.sub('_', '-', str(x), count=1) return xout def DateToTimestep(date, startdate): datediff = date - startdate timestep = datediff.days return timestep def get_trigger(grp, channel): grp_nr = grp.replace('EMS_','') file_path = os.path.join(datapath, 'covid_IDPH', 'Corona virus reports', 'hospital_capacity_thresholds') files = os.listdir(file_path) files = [name for name in files if not 'extra_thresholds' in name] filedates = [item.replace('capacity_weekday_average_', '') for item in files] filedates = [item.replace('.csv', '') for item in filedates] latest_filedate = max([int(x) for x in filedates]) fname = 'capacity_weekday_average_' + str(latest_filedate) + '.csv' ems_fname = os.path.join(datapath, 'covid_IDPH/Corona virus reports/hospital_capacity_thresholds/', fname) df = pd.read_csv(ems_fname) df = df.drop_duplicates() df = df[df['geography_modeled'] == f'covidregion_{grp_nr}'] df = df[df['overflow_threshold_percent'] == 1] df['ems'] = df['geography_modeled'] df['ems'] = df['geography_modeled'].replace("covidregion_", "", regex=True) df = df[['ems', 'resource_type', 'avg_resource_available']] df = df.drop_duplicates() ## if conflicting numbers, take the lower ones! dups = df.groupby(["ems", "resource_type"])["avg_resource_available"].nunique() if int(dups.nunique()) > 1: print(f'{ems_fname} contains multiple capacity values, selecting the lower ones.') df = df.loc[df.groupby(["ems", "resource_type"])["avg_resource_available"].idxmax()] df = df.pivot(index='ems', columns='resource_type', values='avg_resource_available') df.index.name = 'ems' df.reset_index(inplace=True) df = df.rename(columns={ 'hb_availforcovid':'hosp_det', 'hb_availforcovid':'total_hosp_census', 'icu_availforcovid': 'crit_det', 'vent_availforcovid':'ventilators'}) return int(df[channel]) def get_species(self): state_SE = ['S', 'E'] state_nosymptoms = ['As', 'As_det1', 'P', 'P_det'] state_symptoms = ['Sym', 'Sym_det2', 'Sys', 'Sys_det3'] # state_hospitalized = ['H1', 'H2', 'H3', 'H1_det3', 'H2_det3', 'H3_det3'] state_hospitalized = ['H1', 'H2pre', 'H2post', 'H3', 'H1_det3', 'H2pre_det3', 'H2post_det3', 'H3_det3'] state_critical = ['C2', 'C3', 'C2_det3', 'C3_det3'] state_deaths = ['D3', 'D3_det3'] state_recoveries = ['RAs', 'RSym', 'RH1', 'RC2', 'RAs_det1', 'RSym_det2', 'RH1_det3', 'RC2_det3'] state_testDelay_SymSys = ['Sym_preD', 'Sys_preD'] state_testDelay_AsSymSys = ['As_preD', 'Sym_preD', 'Sym_det2a', 'Sym_det2b', 'Sys_preD', 'Sys_det3a', 'Sys_det3b'] state_variables = state_SE + state_nosymptoms + state_symptoms + state_hospitalized + state_critical + state_deaths + state_recoveries if self.expandModel == "SymSys" or self.expandModel == "uniform": state_variables = state_variables + state_testDelay_SymSys if self.expandModel == "AsSymSys": state_variables = state_variables + state_testDelay_AsSymSys if 'vaccine' in self.add_interventions: state_variables_vaccine = [f'{state}_V' for state in state_variables ] state_variables = state_variables + state_variables_vaccine return state_variables def write_species(self, grp): state_variables = covidModel.get_species(self) def write_species_emodl(): grp_suffix = "::{grp}" grp_suffix2 = "_{grp}" species_emodl = "" for state in state_variables: if state == "S": species_emodl = species_emodl + f'(species {state}{grp_suffix} @speciesS{grp_suffix2}@)\n' else: species_emodl = species_emodl + f'(species {state}{grp_suffix} 0)\n' return species_emodl def write_species_str(species_emodl, grp): grp = str(grp) species_str = species_emodl.format(grp=grp) return species_str species_emodl = write_species_emodl() species_str = write_species_str(species_emodl, grp) return species_str def get_channels(self): """Channels to exclude from final list""" channels_not_observe = ['presymp_det','presymp_cumul','presymp_det_cumul'] """Define channels to observe """ primary_channels_notdet = ['susceptible','infected','recovered','symp_mild','symp_severe','hosp','crit','deaths'] secondary_channels_notdet = ['exposed','asymp','presymp','detected'] tertiary_channels = ['infectious_undet', 'infectious_det', 'infectious_det_symp', 'infectious_det_AsP'] channels_notdet = primary_channels_notdet if self.observeLevel != 'primary': channels_notdet = channels_notdet + secondary_channels_notdet channels_det = [channel + '_det' for channel in channels_notdet if channel not in ['susceptible', 'exposed','detected']] channels_cumul = [channel + '_cumul' for channel in channels_notdet + channels_det if channel not in ['susceptible','exposed', 'recovered', 'deaths', 'recovered_det']] channels = channels_notdet + channels_det + channels_cumul if self.observeLevel == 'tertiary': channels = channels + tertiary_channels channels = [channel for channel in channels if channel not in channels_not_observe] channels = list(set(channels)) if 'vaccine' in self.add_interventions: channels_vaccine = [f'{channel}_V' for channel in channels] channels = channels + channels_vaccine return channels def write_observe(self, grp): grp = str(grp) grpout = covidModel.sub(grp) def write_observe_emodl(): #grp_suffix = "::{grp}" #grp_suffix2 = "_{grp}" if 'vaccine' in self.add_interventions: channels = covidModel.get_channels(self) channels = channels[int(len(channels) / 2):] observe_emodl = f"(observe vaccinated_cumul_{grpout} vaccinated_cumul_{grp})\n" for channel in channels: if channel == 'crit_V': channel = 'critical_V' if channel == 'hosp_V': channel = 'hospitalized_V' if channel == "susceptible_V": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} S_V::{grp})\n' elif channel == "exposed_V": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} E_V::{grp})\n' elif channel == "deaths_det_V": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} D3_det3_V::{grp})\n' else: observe_emodl = observe_emodl + f'(observe {channel}_{grpout} {channel}_{grp})\n' channels = covidModel.get_channels(self) channels = channels[:int(len(channels) / 2)] for channel in channels: if channel == 'crit': channel = 'critical' if channel == 'hosp': channel = 'hospitalized' if channel == "susceptible": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} (+ S::{grp} S_V::{grp}))\n' elif channel == "exposed": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} (+ E::{grp} E_V::{grp}))\n' elif channel == "deaths_det": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} (+ D3_det3::{grp} D3_det3_V::{grp}))\n' else: observe_emodl= observe_emodl + f'(observe {channel}_{grpout} (+ {channel}_{grp} {channel}_V_{grp}))\n' else: channels = covidModel.get_channels(self) observe_emodl = "" for channel in channels: if channel == 'crit': channel = 'critical' if channel == 'hosp': channel = 'hospitalized' if channel == "susceptible": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} S::{grp})\n' elif channel == "exposed": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} E::{grp})\n' elif channel == "deaths_det": observe_emodl = observe_emodl + f'(observe {channel}_{grpout} D3_det3::{grp})\n' else: observe_emodl = observe_emodl + f'(observe {channel}_{grpout} {channel}_{grp})\n' """Observe all state variables over time""" if self.observeLevel=='all': state_variables = covidModel.get_species(self) for state in state_variables: observe_emodl = observe_emodl + f'(observe {state}_{grp} {state}::{grp})\n' return observe_emodl def write_observe_str(observe_emodl, grp): grp = str(grp) observe_str = observe_emodl.format(grp=grp) return observe_str observe_emodl = write_observe_emodl() observe_str = write_observe_str(observe_emodl, grp) return observe_str def write_functions(self, grp): grp = str(grp) func_dic = {'presymp_{grp}': ['P::{grp}', 'P_det::{grp}'], 'hospitalized_{grp}': ['H1::{grp}', 'H2pre::{grp}', 'H2post::{grp}', 'H3::{grp}', 'H1_det3::{grp}', 'H2pre_det3::{grp}', 'H2post_det3::{grp}', 'H3_det3::{grp}'], 'hosp_det_{grp}': ['H1_det3::{grp}', 'H2pre_det3::{grp}', 'H2post_det3::{grp}', 'H3_det3::{grp}'], 'critical_{grp}': ['C2::{grp}', 'C3::{grp}', 'C2_det3::{grp}', 'C3_det3::{grp}'], 'crit_det_{grp}': ['C2_det3::{grp}', 'C3_det3::{grp}'], 'deaths_{grp}': ['D3::{grp}', 'D3_det3::{grp}'], 'recovered_{grp}': ['RAs::{grp}', 'RSym::{grp}', 'RH1::{grp}', 'RC2::{grp}', 'RAs_det1::{grp}', 'RSym_det2::{grp}', 'RH1_det3::{grp}', 'RC2_det3::{grp}'], 'recovered_det_{grp}': ['RAs_det1::{grp}', 'RSym_det2::{grp}', 'RH1_det3::{grp}', 'RC2_det3::{grp}'], 'asymp_cumul_{grp}': ['asymp_{grp}', 'RAs::{grp}', 'RAs_det1::{grp}'], 'asymp_det_cumul_{grp}': ['As_det1::{grp}', 'RAs_det1::{grp}'], 'symp_mild_cumul_{grp}': ['symp_mild_{grp}', 'RSym::{grp}', 'RSym_det2::{grp}'], 'symp_mild_det_cumul_{grp}': ['symp_mild_det_{grp}', 'RSym_det2::{grp}'], 'symp_severe_cumul_{grp}': ['symp_severe_{grp}', 'hospitalized_{grp}', 'critical_{grp}', 'deaths_{grp}', 'RH1::{grp}', 'RC2::{grp}', 'RH1_det3::{grp}', 'RC2_det3::{grp}'], 'symp_severe_det_cumul_{grp}': ['symp_severe_det_{grp}', 'hosp_det_{grp}', 'crit_det_{grp}', 'D3_det3::{grp}', ' RH1_det3::{grp}', 'RC2_det3::{grp}'], 'hosp_cumul_{grp}': ['hospitalized_{grp}', 'critical_{grp}', 'deaths_{grp}', 'RH1::{grp}', 'RC2::{grp}', 'RH1_det3::{grp}', 'RC2_det3::{grp}'], 'hosp_det_cumul_{grp}': ['H1_det3::{grp}', 'H2pre_det3::{grp}', 'H2post_det3::{grp}', ' H3_det3::{grp}', 'C2_det3::{grp}', 'C3_det3::{grp}', 'D3_det3::{grp}', ' RH1_det3::{grp}', ' RC2_det3::{grp}'], 'crit_cumul_{grp}': ['deaths_{grp}', 'critical_{grp}', 'RC2::{grp}', 'RC2_det3::{grp}'], 'crit_det_cumul_{grp}': ['C2_det3::{grp}', 'C3_det3::{grp}', 'D3_det3::{grp}', 'RC2_det3::{grp}'], 'detected_cumul_{grp}': ['As_det1::{grp}', 'Sym_det2::{grp}', 'Sys_det3::{grp}', 'H1_det3::{grp}', 'H2pre_det3::{grp}', ' H2post_det3::{grp}', ' C2_det3::{grp}', 'C3_det3::{grp}', 'RAs_det1::{grp}', 'RSym_det2::{grp}', 'RH1_det3::{grp}', 'RC2_det3::{grp}', 'D3_det3::{grp}'], 'infected_{grp}': ['infectious_det_{grp}', 'infectious_undet_{grp}', 'H1_det3::{grp}', 'H2pre_det3::{grp}', 'H2post_det3::{grp}', 'H3_det3::{grp}', 'C2_det3::{grp}', 'C3_det3::{grp}'], 'infected_det_{grp}': ['infectious_det_{grp}', 'H1_det3::{grp}', 'H2pre_det3::{grp}', 'H2post_det3::{grp}', 'H3_det3::{grp}', 'C2_det3::{grp}', 'C3_det3::{grp}'], 'infected_cumul_{grp}': ['infected_{grp}', 'recovered_{grp}', 'deaths_{grp}'], 'infected_det_cumul_{grp}': ['infected_det_{grp}', 'recovered_det_{grp}', 'D3_det3::{grp}'] } func_dic_base = {'asymp_{grp}': ['As::{grp}', 'As_det1::{grp}'], 'symp_mild_{grp}': ['Sym::{grp}', 'Sym_det2::{grp}'], 'symp_severe_{grp}': ['Sys::{grp}', 'Sys_det3::{grp}'], 'detected_{grp}': ['As_det1::{grp}', 'Sym_det2::{grp}', 'Sys_det3::{grp}', 'H1_det3::{grp}', 'H2pre_det3::{grp}', 'H2post_det3::{grp}', ' H3_det3::{grp}', 'C2_det3::{grp}', 'C3_det3::{grp}'], 'infectious_undet_{grp}': ['As::{grp}', 'P::{grp}', 'Sym::{grp}', 'Sys::{grp}', 'H1::{grp}', 'H2pre::{grp}', 'H2post::{grp}', ' H3::{grp}', 'C2::{grp}', 'C3::{grp}'], 'infectious_det_{grp}': ['As_det1::{grp}', 'P_det::{grp}', 'Sym_det2::{grp}', 'Sys_det3::{grp}'], 'infectious_det_symp_{grp}': ['Sym_det2::{grp}', 'Sys_det3::{grp}'], 'infectious_det_AsP_{grp}': ['As_det1::{grp}', 'P_det::{grp}'] } func_dic_SymSys = {'asymp_{grp}': ['As::{grp}', 'As_det1::{grp}'], 'symp_mild_{grp}': ['Sym::{grp}', 'Sym_preD::{grp}', 'Sym_det2::{grp}'], 'symp_mild_det_{grp}': ['Sym_preD::{grp}', 'Sym_det2::{grp}'], 'symp_severe_{grp}': ['Sys::{grp}', 'Sys_preD::{grp}', 'Sys_det3::{grp}'], 'symp_severe_det_{grp}': ['Sys_preD::{grp}', 'Sys_det3::{grp}'], 'detected_{grp}': ['As_det1::{grp}', 'Sym_det2::{grp}', 'Sys_det3::{grp}', 'H1_det3::{grp}', 'H2pre_det3::{grp}', 'H2post_det3::{grp}', ' H3_det3::{grp}', 'C2_det3::{grp}', 'C3_det3::{grp}'], 'infectious_undet_{grp}': ['As::{grp}', 'P::{grp}', 'Sym_preD::{grp}', 'Sym::{grp}', 'Sys_preD::{grp}', 'Sys::{grp}', 'H1::{grp}', 'H2pre::{grp}', ' H2post::{grp}', ' H3::{grp}', 'C2::{grp}', 'C3::{grp}'], 'infectious_det_{grp}': ['As_det1::{grp}', 'P_det::{grp}', 'Sym_det2::{grp}', 'Sys_det3::{grp}'], 'infectious_det_symp_{grp}': ['Sym_det2::{grp}', 'Sys_det3::{grp}'], 'infectious_det_AsP_{grp}': ['As_det1::{grp}', 'P_det::{grp}'] } func_dic_AsSymSys = {'asymp_{grp}': ['As_preD::{grp}', 'As::{grp}', 'As_det1::{grp}'], 'symp_mild_{grp}': ['Sym::{grp}', 'Sym_preD::{grp}', 'Sym_det2a::{grp}', 'Sym_det2b::{grp}'], 'symp_mild_det_{grp}': ['Sym_preD::{grp}', 'Sym_det2a::{grp}', 'Sym_det2b::{grp}'], 'symp_severe_{grp}': ['Sys::{grp}', 'Sys_preD::{grp}', 'Sys_det3a::{grp}', 'Sys_det3b::{grp}'], 'symp_severe_det_{grp}': ['Sys_preD::{grp}', 'Sys_det3a::{grp}', 'Sys_det3b::{grp}'], 'detected_{grp}': ['As_det1::{grp}', 'Sym_det2a::{grp}', 'Sym_det2b::{grp}', 'Sys_det3a::{grp}', 'Sys_det3b::{grp}', 'H1_det3::{grp}', 'H2pre_det3::{grp}', 'H2post_det3::{grp}', 'H3_det3::{grp}', 'C2_det3::{grp}', 'C3_det3::{grp}'], 'infectious_undet_{grp}': ['As_preD::{grp}', 'As::{grp}', 'P::{grp}', 'Sym::{grp}', 'Sym_preD::{grp}', 'Sys::{grp}', 'Sys_preD::{grp}', 'H1::{grp}', 'H2pre::{grp}', 'H2post::{grp}', 'H3::{grp}', 'C2::{grp}', 'C3::{grp}'], 'infectious_det_{grp}': ['As_det1::{grp}', 'P_det::{grp}', 'Sym_det2a::{grp}', 'Sym_det2b::{grp}', 'Sys_det3a::{grp}', 'Sys_det3b::{grp}'], 'infectious_undet_symp_{grp}': ['P::{grp}', 'Sym::{grp}', 'Sym_preD::{grp}', 'Sys::{grp}', 'Sys_preD::{grp}', 'H1::{grp}', 'H2pre::{grp}', 'H2post::{grp}', 'H3::{grp}', 'C2::{grp}', 'C3::{grp}'], 'infectious_undet_As_{grp}': ['As_preD::{grp}', 'As::{grp}'], 'infectious_det_symp_{grp}': ['Sym_det2a::{grp}', 'Sym_det2b::{grp}', 'Sys_det3a::{grp}', 'Sys_det3b::{grp}'], 'infectious_det_AsP_{grp}': ['As_det1::{grp}', 'P_det::{grp}'] } func_str = f'(func deaths_det_cumul_{grp} D3_det3::{grp})\n(func asymp_det_{grp} As_det1::{grp})\n' if self.expandModel == "SymSys" or self.expandModel == "uniform": func_dic_SymSys.update(func_dic) func_dic_all = func_dic_SymSys elif self.expandModel == "AsSymSys": func_dic_AsSymSys.update(func_dic) func_dic_all = func_dic_AsSymSys else: func_str = func_str + f'(func symp_mild_det_{grp} Sym_det2::{grp})\n' \ f'(func symp_severe_det_{grp} Sys_det3::{grp})\n' func_dic_base.update(func_dic) func_dic_all = func_dic_base if 'vaccine' in self.add_interventions: vacc_cumul = f'(func vaccinated_cumul_{grp} (+ S_V::{grp} infected_V_{grp} recovered_V_{grp} deaths_V_{grp} ))\n' func_str_V = func_str.replace(f'_{grp}',f'_V_{grp}') func_str_V = func_str_V.replace(f'::{grp}',f'_V::{grp}') func_str = func_str + func_str_V func_dic_all_V = {} for key, value in func_dic_all.items(): key_V = key.replace('_{grp}','_V_{grp}') func_dic_all_V[key_V] = [item.replace('_{grp}','_V_{grp}') if '_{grp}' in item else item.replace('::{grp}','_V::{grp}') for item in func_dic_all[key]] func_dic_all.update(func_dic_all_V) for key in func_dic_all.keys(): func_str = func_str + f"(func {key} (+ {' '.join(func_dic_all[key])}))\n".format(grp=grp) if 'vaccine' in self.add_interventions: func_str = func_str + vacc_cumul return func_str def write_params(self): yaml_sampled_param = list(covidModel.get_configs(key ='sampled_parameters', config_file='extendedcobey_200428.yaml').keys()) yaml_sampled_param_str = ''.join([f'(param {param} @{param}@)\n' for param in yaml_sampled_param]) """calculated parameters""" param_dic = {'fraction_hospitalized' : '(- 1 (+ fraction_critical fraction_dead))', 'Kr_a' : '(/ 1 recovery_time_asymp)', 'Kr_m' : '(/ 1 recovery_time_mild)', 'Kl' : '(/ (- 1 fraction_symptomatic ) time_to_infectious)', 'Ks' :'(/ fraction_symptomatic time_to_infectious)', 'Ksys' :'(* fraction_severe (/ 1 time_to_symptoms))', 'Ksym' :'(* (- 1 fraction_severe) (/ 1 time_to_symptoms))', 'Km' :'(/ 1 time_to_death)', 'Kc' :'(/ 1 time_to_critical)', 'Kr_hc' :'(/ 1 recovery_time_postcrit)', 'Kr_h' :'(/ 1 recovery_time_hosp)', 'Kr_c' :'(/ 1 recovery_time_crit)' } param_dic_base = {'Kh1':'(/ fraction_hospitalized time_to_hospitalization)', 'Kh2':'(/ fraction_critical time_to_hospitalization )', 'Kh3':'(/ fraction_dead time_to_hospitalization)' } param_dic_uniform = {'time_D':'@time_to_detection@', 'Ksym_D':'(/ 1 time_D)', 'Ksys_D':'(/ 1 time_D)', 'Kh1':'(/ fraction_hospitalized time_to_hospitalization)', 'Kh2':'(/ fraction_critical time_to_hospitalization )', 'Kh3':'(/ fraction_dead time_to_hospitalization)', 'Kh1_D':'(/ fraction_hospitalized (- time_to_hospitalization time_D))', 'Kh2_D':'(/ fraction_critical (- time_to_hospitalization time_D) )', 'Kh3_D':'(/ fraction_dead (- time_to_hospitalization time_D))', 'Kr_m_D':'(/ 1 (- recovery_time_mild time_D ))' } param_dic_SymSys = {'time_D_Sym':'@time_to_detection_Sym@', 'time_D_Sys':'@time_to_detection_Sys@', 'Ksym_D':'(/ 1 time_D_Sym)', 'Ksys_D':'(/ 1 time_D_Sys)', 'Kh1':'(/ fraction_hospitalized time_to_hospitalization)', 'Kh2':'(/ fraction_critical time_to_hospitalization )', 'Kh3':'(/ fraction_dead time_to_hospitalization)', 'Kh1_D':'(/ fraction_hospitalized (- time_to_hospitalization time_D_Sys))', 'Kh2_D':'(/ fraction_critical (- time_to_hospitalization time_D_Sys) )', 'Kh3_D':'(/ fraction_dead (- time_to_hospitalization time_D_Sys))', 'Kr_m_D':'(/ 1 (- recovery_time_mild time_D_Sym ))' } param_dic_AsSymSys = {'Kh1':'(/ fraction_hospitalized time_to_hospitalization)', 'Kh2':'(/ fraction_critical time_to_hospitalization )', 'Kh3':'(/ fraction_dead time_to_hospitalization)', 'time_D_Sys':'@time_to_detection_Sys@', 'Ksys_D':'(/ 1 time_D_Sys)', 'Kh1_D':'(/ fraction_hospitalized (- time_to_hospitalization time_D_Sys))', 'Kh2_D':'(/ fraction_critical (- time_to_hospitalization time_D_Sys) )', 'Kh3_D':'(/ fraction_dead (- time_to_hospitalization time_D_Sys))', 'time_D_Sym':'@time_to_detection_Sym@', 'Ksym_D':'(/ 1 time_D_Sym)', 'Kr_m_D':'(/ 1 (- recovery_time_mild time_D_Sym ))', 'time_D_As':'@time_to_detection_As@', 'Kl_D':'(/ 1 time_D_As)', 'Kr_a_D':'(/ 1 (- recovery_time_asymp time_D_As ))' } if self.expandModel == "SymSys": param_dic_expand = param_dic_SymSys elif self.expandModel == "uniform": param_dic_expand = param_dic_uniform elif self.expandModel == "AsSymSys": param_dic_expand = param_dic_AsSymSys else: param_dic_expand = param_dic_base calculated_params_str = ''.join([f'(param {key} {param_dic[key]})\n' for key in list(param_dic.keys())]) calculated_params_expand_str = ''.join([f'(param {key} {param_dic_expand[key]})\n' for key in list(param_dic_expand.keys())]) params_str = yaml_sampled_param_str + calculated_params_str + calculated_params_expand_str if 'vaccine' in self.add_interventions: #custom_param_vacc = ['fraction_symptomatic_V', 'fraction_severe_V'] custom_param_vacc_str = '(param fraction_symptomatic_V (* fraction_symptomatic @reduced_fraction_Sym@))\n' \ '(param fraction_severe_V (* fraction_severe @reduced_fraction_Sys@))\n' param_symptoms_dic_V = {'KlV ': '(/ (- 1 fraction_symptomatic_V ) time_to_infectious)', 'KsV ': '(/ fraction_symptomatic_V time_to_infectious)', 'KsysV ': '(* fraction_severe_V (/ 1 time_to_symptoms))', 'KsymV ': '(* (- 1 fraction_severe_V ) (/ 1 time_to_symptoms))' } param_symptoms_str_V = ''.join([f'(param {key} {param_symptoms_dic_V[key]})\n' for key in list(param_symptoms_dic_V.keys())]) params_str = params_str + custom_param_vacc_str + param_symptoms_str_V return params_str def write_migration_param(self): x1 = range(1, len(self.grpList) + 1) x2 = range(1, len(self.grpList) + 1) param_str = "" for x1_i in x1: param_str = param_str + "\n" for x2_i in x2: # x1_i=1 param_str = param_str + f'(param toEMS_{x1_i}_from_EMS_{x2_i} @toEMS_{x1_i}_from_EMS_{x2_i}@)\n' return param_str def write_travel_reaction(grp, travelspeciesList=None): x1_i = int(grp.split("_")[1]) x2 = list(range(1, 12)) x2 = [i for i in x2 if i != x1_i] reaction_str = "" if travelspeciesList == None: travelspeciesList = ["S", "E", "As", "P"] for travelspecies in travelspeciesList: reaction_str = reaction_str + "\n" for x2_i in x2: # x1_i=1 reaction_str = reaction_str + f'\n(reaction {travelspecies}_travel_EMS_{x2_i}to{x1_i} ' \ f'({travelspecies}::EMS_{x2_i}) ({travelspecies}::EMS_{x1_i}) ' \ f'(* {travelspecies}::EMS_{x2_i} toEMS_{x1_i}_from_EMS_{x2_i} ' \ f'(/ N_EMS_{x2_i} ' \ f'(+ S::EMS_{x2_i} E::EMS_{x2_i} As::EMS_{x2_i} P::EMS_{x2_i} recovered_EMS_{x2_i})' \ f')))\n' return reaction_str def write_Ki_timevents(grp): grp = str(grp) grpout = covidModel.sub(grp) params_str = f'(param Ki_{grp} @Ki_{grp}@)\n' \ f'(observe Ki_t_{grpout} Ki_{grp})\n' \ f'(time-event time_infection_import @time_infection_import_{grp}@ ' \ f'(' \ f'(As::{grp} @initialAs_{grp}@) ' \ f'(S::{grp} (- S::{grp} @initialAs_{grp}@))' \ f')' \ f')\n' return params_str def write_N_population(self): stringAll = "" for grp in self.grpList: string1 = f'(param N_{grp} (+ @speciesS_{grp}@ @initialAs_{grp}@))\n' stringAll = stringAll + string1 string2 = f'(param N_All (+ {covidModel.repeat_string_by_grp("N_", self.grpList)}))\n' string3 = '(observe N_All N_All)\n' stringAll = stringAll + string2 + string3 return stringAll def repeat_string_by_grp(fixedstring, grpList): stringAll = "" for grp in grpList: temp_string = " " + fixedstring + grp stringAll = stringAll + temp_string return stringAll def write_observe_All(self): grpList = self.grpList if "vaccine" in self.add_interventions: observe_channels_All_str = f"(observe vaccinated_cumul_All (+ " + covidModel.repeat_string_by_grp('vaccinated_cumul_',grpList) + "))\n" channels = covidModel.get_channels(self) channels = channels[:int(len(channels) / 2)] for channel in channels: if channel == 'crit': channel = 'critical' if channel == 'hosp': channel = 'hospitalized' if channel == "susceptible": temp_str = f"(observe {channel}_All " \ f"(+ " +\ covidModel.repeat_string_by_grp('S::', grpList) + \ covidModel.repeat_string_by_grp('S_V::', grpList) + \ "))\n" elif channel == "deaths_det": temp_str = f"(observe {channel}_All (+ " + \ covidModel.repeat_string_by_grp('D3_det3::', grpList) + \ covidModel.repeat_string_by_grp('D3_det3_V::', grpList) + \ "))\n" elif channel == "exposed": temp_str = f"(observe {channel}_All (+ " + \ covidModel.repeat_string_by_grp('E::', grpList) + \ covidModel.repeat_string_by_grp('E_V::', grpList) + \ "))\n" elif channel == "asymp_det": temp_str = f"(observe {channel}_All (+ " +\ covidModel.repeat_string_by_grp('As_det1::', grpList) + \ covidModel.repeat_string_by_grp('As_det1_V::', grpList) + \ "))\n" elif channel == "presymp": temp_str = f"(observe {channel}_All (+ " + \ covidModel.repeat_string_by_grp('P::', grpList) + \ covidModel.repeat_string_by_grp('P_V::', grpList) + \ "))\n" elif channel == "presymp_det": temp_str = f"(observe {channel}_All (+ " + \ covidModel.repeat_string_by_grp('P_det::',grpList) + \ covidModel.repeat_string_by_grp('P_det_V::', grpList) + \ "))\n" else: temp_str = f"(observe {channel}_All (+ " + \ covidModel.repeat_string_by_grp(f'{channel}_', grpList) + \ covidModel.repeat_string_by_grp(f'{channel}_V_', grpList) + \ "))\n" observe_channels_All_str = observe_channels_All_str + temp_str del temp_str channels = covidModel.get_channels(self) channels = channels[int(len(channels) / 2):] for channel in channels: if channel == 'crit_V': channel = 'critical_V' if channel == 'hosp_V': channel = 'hospitalized_V' if channel == "susceptible_V": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('S_V::',grpList) + "))\n" elif channel == "deaths_det_V": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('D3_det3_V::', grpList) + "))\n" elif channel == "exposed_V": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('E_V::',grpList) + "))\n" elif channel == "asymp_det_V": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('As_det1_V::', grpList) + "))\n" elif channel == "presymp_V": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('P_V::', grpList) + "))\n" elif channel == "presymp_det_V": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('P_det_V::', grpList) + "))\n" else: temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp(f'{channel}_', grpList) + "))\n" observe_channels_All_str = observe_channels_All_str + temp_str del temp_str else: observe_channels_All_str = "" channels = covidModel.get_channels(self) for channel in channels : if channel == 'crit': channel = 'critical' if channel == 'hosp': channel = 'hospitalized' if channel == "susceptible": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('S::', grpList) + "))\n" elif channel == "deaths_det": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('D3_det3::', grpList) + "))\n" elif channel == "exposed": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('E::', grpList) + "))\n" elif channel == "asymp_det": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('As_det1::', grpList) + "))\n" elif channel == "presymp": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('P::',grpList) + "))\n" elif channel == "presymp_det": temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp('P_det::', grpList) + "))\n" else: temp_str = f"(observe {channel}_All (+ " + covidModel.repeat_string_by_grp(f'{channel}_', grpList) + "))\n" observe_channels_All_str = observe_channels_All_str + temp_str del temp_str return observe_channels_All_str def write_reactions(self, grp): grp = str(grp) reaction_str_I = f'\n(reaction exposure_{grp} ' \ f'(S::{grp}) (E::{grp}) ' \ f'(* Ki_{grp} S::{grp} ' \ f'(/ ' \ f'(+ infectious_undet_symp_{grp} ' \ f'(* infectious_undet_As_{grp} reduced_infectious_As ) ' \ f'(* infectious_det_symp_{grp} reduced_inf_of_det_cases) ' \ f'(* infectious_det_AsP_{grp} reduced_inf_of_det_cases)' \ f') N_{grp} )' \ f'))\n' reaction_str_Ia = f'\n(reaction exposure_{grp} ' \ f'(S::{grp}) (E::{grp}) ' \ f'(* Ki_{grp} S::{grp} ' \ f'(/ ' \ f'(+ infectious_undet_symp_{grp}' \ f'(* (+ infectious_undet_symp_V_{grp} infectious_undet_As_V_{grp} ) reduced_infectious_V ) ' \ f'(* infectious_undet_As_{grp} reduced_infectious_As ) ' \ f'(* infectious_det_symp_{grp} reduced_inf_of_det_cases) ' \ f'(* infectious_det_AsP_{grp} reduced_inf_of_det_cases)' \ f'(* infectious_det_symp_V_{grp} reduced_infectious_V reduced_inf_of_det_cases) ' \ f'(* infectious_det_AsP_V_{grp} reduced_infectious_V reduced_inf_of_det_cases)' \ f') N_{grp} )' \ f'))\n' reaction_str_Ib = f'\n(reaction exposure_{grp} ' \ f'(S_V::{grp}) (E_V::{grp}) ' \ f'(* Ki_{grp} S_V::{grp} ' \ f'(/ ' \ f'(+ infectious_undet_symp_{grp}' \ f'(* (+ infectious_undet_symp_V_{grp} infectious_undet_As_V_{grp} ) reduced_infectious_V ) ' \ f'(* infectious_undet_As_{grp} reduced_infectious_As ) ' \ f'(* infectious_det_symp_{grp} reduced_inf_of_det_cases) ' \ f'(* infectious_det_AsP_{grp} reduced_inf_of_det_cases)' \ f'(* infectious_det_symp_V_{grp} reduced_infectious_V reduced_inf_of_det_cases) ' \ f'(* infectious_det_AsP_V_{grp} reduced_infectious_V reduced_inf_of_det_cases)' \ f') N_{grp} )' \ f'))\n' if 'vaccine' in self.add_interventions: reaction_str_I = f'(reaction vaccination_{grp} (S::{grp}) (S_V::{grp}) (* Kv_{grp} S::{grp}))\n' reaction_str_I = reaction_str_I + reaction_str_Ia + reaction_str_Ib reaction_str_III = f'(reaction recovery_H1_{grp} (H1::{grp}) (RH1::{grp}) (* Kr_h{grp} H1::{grp}))\n' \ f'(reaction recovery_C2_{grp} (C2::{grp}) (H2post::{grp}) (* Kr_c{grp} C2::{grp}))\n' \ f'(reaction recovery_H2post_{grp} (H2post::{grp}) (RC2::{grp}) (* Kr_hc H2post::{grp}))\n' \ f'(reaction recovery_H1_det3_{grp} (H1_det3::{grp}) (RH1_det3::{grp}) (* Kr_h{grp} H1_det3::{grp}))\n' \ f'(reaction recovery_C2_det3_{grp} (C2_det3::{grp}) (H2post_det3::{grp}) (* Kr_c{grp} C2_det3::{grp}))\n' \ f'(reaction recovery_H2post_det3_{grp} (H2post_det3::{grp}) (RC2_det3::{grp}) (* Kr_hc H2post_det3::{grp}))\n' expand_base_str = f'(reaction infection_asymp_undet_{grp} (E::{grp}) (As::{grp}) (* Kl E::{grp} (- 1 d_As)))\n' \ f'(reaction infection_asymp_det_{grp} (E::{grp}) (As_det1::{grp}) (* Kl E::{grp} d_As))\n' \ f'(reaction presymptomatic_{grp} (E::{grp}) (P::{grp}) (* Ks E::{grp} (- 1 d_P)))\n' \ f'(reaction presymptomatic_{grp} (E::{grp}) (P_det::{grp}) (* Ks E::{grp} d_P))\n' \ f'(reaction mild_symptomatic_undet_{grp} (P::{grp}) (Sym::{grp}) (* Ksym P::{grp} (- 1 d_Sym)))\n' \ f'(reaction mild_symptomatic_det_{grp} (P::{grp}) (Sym_det2::{grp}) (* Ksym P::{grp} d_Sym))\n' \ f'(reaction severe_symptomatic_undet_{grp} (P::{grp}) (Sys::{grp}) (* Ksys P::{grp} (- 1 d_Sys)))\n' \ f'(reaction severe_symptomatic_det_{grp} (P::{grp}) (Sys_det3::{grp}) (* Ksys P::{grp} d_Sys))\n' \ f'(reaction mild_symptomatic_det_{grp} (P_det::{grp}) (Sym_det2::{grp}) (* Ksym P_det::{grp}))\n' \ f'(reaction severe_symptomatic_det_{grp} (P_det::{grp}) (Sys_det3::{grp}) (* Ksys P_det::{grp} ))\n' \ f'(reaction hospitalization_1_{grp} (Sys::{grp}) (H1::{grp}) (* Kh1 Sys::{grp}))\n' \ f'(reaction hospitalization_2_{grp} (Sys::{grp}) (H2pre::{grp}) (* Kh2 Sys::{grp}))\n' \ f'(reaction hospitalization_3_{grp} (Sys::{grp}) (H3::{grp}) (* Kh3 Sys::{grp}))\n' \ f'(reaction critical_2_{grp} (H2pre::{grp}) (C2::{grp}) (* Kc H2pre::{grp}))\n' \ f'(reaction critical_3_{grp} (H3::{grp}) (C3::{grp}) (* Kc H3::{grp}))\n' \ f'(reaction deaths_{grp} (C3::{grp}) (D3::{grp}) (* Km C3::{grp}))\n' \ f'(reaction hospitalization_1_det_{grp} (Sys_det3::{grp}) (H1_det3::{grp}) (* Kh1 Sys_det3::{grp}))\n' \ f'(reaction hospitalization_2_det_{grp} (Sys_det3::{grp}) (H2pre_det3::{grp}) (* Kh2 Sys_det3::{grp}))\n' \ f'(reaction hospitalization_3_det_{grp} (Sys_det3::{grp}) (H3_det3::{grp}) (* Kh3 Sys_det3::{grp}))\n' \ f'(reaction critical_2_det2_{grp} (H2pre_det3::{grp}) (C2_det3::{grp}) (* Kc H2pre_det3::{grp}))\n' \ f'(reaction critical_3_det2_{grp} (H3_det3::{grp}) (C3_det3::{grp}) (* Kc H3_det3::{grp}))\n' \ f'(reaction deaths_det3_{grp} (C3_det3::{grp}) (D3_det3::{grp}) (* Km C3_det3::{grp}))\n' \ f'(reaction recovery_As_{grp} (As::{grp}) (RAs::{grp}) (* Kr_a As::{grp}))\n' \ f'(reaction recovery_As_det_{grp} (As_det1::{grp}) (RAs_det1::{grp}) (* Kr_a As_det1::{grp}))\n' \ f'(reaction recovery_Sym_{grp} (Sym::{grp}) (RSym::{grp}) (* Kr_m Sym::{grp}))\n' \ f'(reaction recovery_Sym_det2_{grp} (Sym_det2::{grp}) (RSym_det2::{grp}) (* Kr_m Sym_det2::{grp}))\n' expand_testDelay_SymSys_str = f'(reaction infection_asymp_undet_{grp} (E::{grp}) (As::{grp}) (* Kl E::{grp} (- 1 d_As)))\n' \ f'(reaction infection_asymp_det_{grp} (E::{grp}) (As_det1::{grp}) (* Kl E::{grp} d_As))\n' \ f'(reaction presymptomatic_{grp} (E::{grp}) (P::{grp}) (* Ks E::{grp}))\n' \ f'; developing symptoms - same time to symptoms as in master emodl\n' \ f'(reaction mild_symptomatic_{grp} (P::{grp}) (Sym_preD::{grp}) (* Ksym P::{grp}))\n' \ f'(reaction severe_symptomatic_{grp} (P::{grp}) (Sys_preD::{grp}) (* Ksys P::{grp}))\n' \ f'; never detected \n' \ f'(reaction mild_symptomatic_undet_{grp} (Sym_preD::{grp}) (Sym::{grp}) (* Ksym_D Sym_preD::{grp} (- 1 d_Sym)))\n' \ f'(reaction severe_symptomatic_undet_{grp} (Sys_preD::{grp}) (Sys::{grp}) (* Ksys_D Sys_preD::{grp} (- 1 d_Sys)))\n' \ f'; new detections - time to detection is substracted from hospital time\n' \ f'(reaction mild_symptomatic_det_{grp} (Sym_preD::{grp}) (Sym_det2::{grp}) (* Ksym_D Sym_preD::{grp} d_Sym))\n' \ f'(reaction severe_symptomatic_det_{grp} (Sys_preD::{grp}) (Sys_det3::{grp}) (* Ksys_D Sys_preD::{grp} d_Sys))\n' \ f'(reaction hospitalization_1_{grp} (Sys::{grp}) (H1::{grp}) (* Kh1_D Sys::{grp}))\n' \ f'(reaction hospitalization_2_{grp} (Sys::{grp}) (H2pre::{grp}) (* Kh2_D Sys::{grp}))\n' \ f'(reaction hospitalization_3_{grp} (Sys::{grp}) (H3::{grp}) (* Kh3_D Sys::{grp}))\n' \ f'(reaction critical_2_{grp} (H2pre::{grp}) (C2::{grp}) (* Kc H2pre::{grp}))\n' \ f'(reaction critical_3_{grp} (H3::{grp}) (C3::{grp}) (* Kc H3::{grp}))\n' \ f'(reaction deaths_{grp} (C3::{grp}) (D3::{grp}) (* Km C3::{grp}))\n' \ f'(reaction hospitalization_1_det_{grp} (Sys_det3::{grp}) (H1_det3::{grp}) (* Kh1_D Sys_det3::{grp}))\n' \ f'(reaction hospitalization_2_det_{grp} (Sys_det3::{grp}) (H2pre_det3::{grp}) (* Kh2_D Sys_det3::{grp}))\n' \ f'(reaction hospitalization_3_det_{grp} (Sys_det3::{grp}) (H3_det3::{grp}) (* Kh3_D Sys_det3::{grp}))\n' \ f'(reaction critical_2_det2_{grp} (H2pre_det3::{grp}) (C2_det3::{grp}) (* Kc H2pre_det3::{grp}))\n' \ f'(reaction critical_3_det2_{grp} (H3_det3::{grp}) (C3_det3::{grp}) (* Kc H3_det3::{grp}))\n' \ f'(reaction deaths_det3_{grp} (C3_det3::{grp}) (D3_det3::{grp}) (* Km C3_det3::{grp}))\n' \ f'(reaction recovery_As_{grp} (As::{grp}) (RAs::{grp}) (* Kr_a As::{grp}))\n' \ f'(reaction recovery_As_det_{grp} (As_det1::{grp}) (RAs_det1::{grp}) (* Kr_a As_det1::{grp}))\n' \ f'(reaction recovery_Sym_{grp} (Sym::{grp}) (RSym::{grp}) (* Kr_m_D Sym::{grp}))\n' \ f'(reaction recovery_Sym_det2_{grp} (Sym_det2::{grp}) (RSym_det2::{grp}) (* Kr_m_D Sym_det2::{grp}))\n' expand_testDelay_AsSymSys_str = f'(reaction infection_asymp_det_{grp} (E::{grp}) (As_preD::{grp}) (* Kl E::{grp}))\n' \ f'(reaction infection_asymp_undet_{grp} (As_preD::{grp}) (As::{grp}) (* Kl_D As_preD::{grp} (- 1 d_As)))\n' \ f'(reaction infection_asymp_det_{grp} (As_preD::{grp}) (As_det1::{grp}) (* Kl_D As_preD::{grp} d_As))\n' \ f'(reaction presymptomatic_{grp} (E::{grp}) (P::{grp}) (* Ks E::{grp} (- 1 d_P)))\n' \ f'(reaction presymptomatic_{grp} (E::{grp}) (P_det::{grp}) (* Ks E::{grp} d_P))\n' \ f'; developing symptoms - same time to symptoms as in master emodl\n' \ f'(reaction mild_symptomatic_{grp} (P::{grp}) (Sym_preD::{grp}) (* Ksym P::{grp}))\n' \ f'(reaction severe_symptomatic_{grp} (P::{grp}) (Sys_preD::{grp}) (* Ksys P::{grp}))\n' \ f'; never detected\n' \ f'(reaction mild_symptomatic_undet_{grp} (Sym_preD::{grp}) (Sym::{grp}) (* Ksym_D Sym_preD::{grp} (- 1 d_Sym)))\n' \ f'(reaction severe_symptomatic_undet_{grp} (Sys_preD::{grp}) (Sys::{grp}) (* Ksys_D Sys_preD::{grp} (- 1 d_Sys)))\n' \ f'; new detections - time to detection is subtracted from hospital time\n' \ f'(reaction mild_symptomatic_det_{grp} (Sym_preD::{grp}) (Sym_det2a::{grp}) (* Ksym_D Sym_preD::{grp} d_Sym))\n' \ f'(reaction severe_symptomatic_det_{grp} (Sys_preD::{grp}) (Sys_det3a::{grp}) (* Ksys_D Sys_preD::{grp} d_Sys))\n' \ f'; developing symptoms - already detected, same time to symptoms as in master emodl\n' \ f'(reaction mild_symptomatic_det_{grp} (P_det::{grp}) (Sym_det2b::{grp}) (* Ksym P_det::{grp}))\n' \ f'(reaction severe_symptomatic_det_{grp} (P_det::{grp}) (Sys_det3b::{grp}) (* Ksys P_det::{grp} ))\n' \ f'(reaction hospitalization_1_{grp} (Sys::{grp}) (H1::{grp}) (* Kh1_D Sys::{grp}))\n' \ f'(reaction hospitalization_2_{grp} (Sys::{grp}) (H2pre::{grp}) (* Kh2_D Sys::{grp}))\n' \ f'(reaction hospitalization_3_{grp} (Sys::{grp}) (H3::{grp}) (* Kh3_D Sys::{grp}))\n' \ f'(reaction critical_2_{grp} (H2pre::{grp}) (C2::{grp}) (* Kc H2pre::{grp}))\n' \ f'(reaction critical_3_{grp} (H3::{grp}) (C3::{grp}) (* Kc H3::{grp}))\n' \ f'(reaction deaths_{grp} (C3::{grp}) (D3::{grp}) (* Km C3::{grp}))\n' \ f'(reaction hospitalization_1_det_{grp} (Sys_det3a::{grp}) (H1_det3::{grp}) (* Kh1_D Sys_det3a::{grp}))\n' \ f'(reaction hospitalization_2_det_{grp} (Sys_det3a::{grp}) (H2pre_det3::{grp}) (* Kh2_D Sys_det3a::{grp}))\n' \ f'(reaction hospitalization_3_det_{grp} (Sys_det3a::{grp}) (H3_det3::{grp}) (* Kh3_D Sys_det3a::{grp}))\n' \ f'(reaction hospitalization_1_det_{grp} (Sys_det3b::{grp}) (H1_det3::{grp}) (* Kh1 Sys_det3b::{grp}))\n' \ f'(reaction hospitalization_2pre_det_{grp} (Sys_det3b::{grp}) (H2pre_det3::{grp}) (* Kh2 Sys_det3b::{grp}))\n' \ f'(reaction hospitalization_3_det_{grp} (Sys_det3b::{grp}) (H3_det3::{grp}) (* Kh3 Sys_det3b::{grp}))\n' \ f'(reaction critical_2_det2_{grp} (H2pre_det3::{grp}) (C2_det3::{grp}) (* Kc H2pre_det3::{grp}))\n' \ f'(reaction critical_3_det2_{grp} (H3_det3::{grp}) (C3_det3::{grp}) (* Kc H3_det3::{grp}))\n' \ f'(reaction deaths_det3_{grp} (C3_det3::{grp}) (D3_det3::{grp}) (* Km C3_det3::{grp}))\n' \ f'(reaction recovery_As_{grp} (As::{grp}) (RAs::{grp}) (* Kr_a_D As::{grp}))\n' \ f'(reaction recovery_As_det_{grp} (As_det1::{grp}) (RAs_det1::{grp}) (* Kr_a_D As_det1::{grp}))\n' \ f'(reaction recovery_Sym_{grp} (Sym::{grp}) (RSym::{grp}) (* Kr_m_D Sym::{grp}))\n' \ f'(reaction recovery_Sym_det2a_{grp} (Sym_det2a::{grp}) (RSym_det2::{grp}) (* Kr_m_D Sym_det2a::{grp}))\n' \ f'(reaction recovery_Sym_det2b_{grp} (Sym_det2b::{grp}) (RSym_det2::{grp}) (* Kr_m Sym_det2b::{grp}))\n' if self.expandModel == None: reaction_str = expand_base_str + reaction_str_III if self.expandModel == "SymSys" or self.expandModel == "uniform": reaction_str = expand_testDelay_SymSys_str + reaction_str_III if self.expandModel == 'AsSymSys': reaction_str = expand_testDelay_AsSymSys_str + reaction_str_III if 'vaccine' in self.add_interventions: reaction_str_V = reaction_str.replace(f'_{grp}',f'_V_{grp}') reaction_str_V = reaction_str_V.replace(f'::{grp}', f'_V::{grp}') reaction_str = reaction_str + reaction_str_V """Custom adjustments - not automated/integrated yet""" reaction_str = reaction_str.replace('_V_V', '_V') reaction_str = reaction_str.replace('Ki_V', 'Ki') reaction_str = reaction_str.replace('N_V', 'N') """Vaccinated-population specific parameters""" reaction_str = reaction_str.replace('Kl E_V::', 'KlV E_V::') reaction_str = reaction_str.replace('Ks E_V::', 'KsV E_V::') reaction_str = reaction_str.replace('Ksym P_V::', 'KsymV P_V::') reaction_str = reaction_str.replace('Ksys P_V::', 'KsysV P_V::') reaction_str = reaction_str.replace('Ksym P_det_V::', 'KsymV P_det_V::') reaction_str = reaction_str.replace('Ksys P_det_V::', 'KsysV P_det_V::') reaction_str = reaction_str_I + reaction_str return reaction_str def write_time_varying_parameter(self, total_string): """Time varying parameter that have been fitted to data, or informed by local data. Parameters and corresponding sub-functions: - fraction_critical: `write_frac_crit_change` - fraction_dead: `write_fraction_dead_change` - dSys: `write_dSys_change` - d_Sym: `write_d_Sym_P_As_change` - dP_As: `write_d_Sym_P_As_change` - Ki (monthly multipliers): `write_ki_multiplier_change` - recovery_time_crit: `write_recovery_time_crit_change` - recovery_time_hosp: `write_recovery_time_hosp_change` All functions take required argument: nchanges, that defines number of updates. The default has been set within the function and currently would need to be edited manually. """ def write_frac_crit_change(nchanges): n_frac_crit_change = range(1, nchanges+1) frac_crit_change_observe = '(observe fraction_severe_t fraction_severe)\n(observe frac_crit_t fraction_critical)\n' frac_crit_change_timeevent = ''.join([f'(time-event frac_crit_adjust{i} @crit_time_{i}@ ' f'(' f'(fraction_critical @fraction_critical_change{i}@) ' f'(fraction_hospitalized (- 1 (+ fraction_critical fraction_dead))) ' f'(Kh1 (/ fraction_hospitalized time_to_hospitalization)) ' f'(Kh2 (/ fraction_critical time_to_hospitalization )) ' f'(Kh1_D (/ fraction_hospitalized (- time_to_hospitalization time_D_Sys))) ' f'(Kh2_D (/ fraction_critical (- time_to_hospitalization time_D_Sys)))' f')' f')' f'\n' for i in n_frac_crit_change]) return frac_crit_change_observe + frac_crit_change_timeevent def write_fraction_dead_change(nchanges): n_fraction_dead_change = range(1, nchanges+1) fraction_dead_change_observe = '(observe fraction_dead_t fraction_dead)\n' \ '(observe fraction_hospitalized_t fraction_hospitalized)\n' fraction_dead_change_timeevent = ''.join([f'(time-event fraction_dead_adjust2 @fraction_dead_time_{i}@ ' f'(' f'(fraction_dead @fraction_dead_change{i}@) ' f'(fraction_hospitalized (- 1 (+ fraction_critical fraction_dead))) ' f'(Kh1 (/ fraction_hospitalized time_to_hospitalization)) ' f'(Kh2 (/ fraction_critical time_to_hospitalization )) ' f'(Kh1_D (/ fraction_hospitalized (- time_to_hospitalization time_D_Sys))) ' f'(Kh2_D (/ fraction_critical (- time_to_hospitalization time_D_Sys)))' f')' f')' f' \n' for i in n_fraction_dead_change]) return fraction_dead_change_observe + fraction_dead_change_timeevent def write_dSys_change(nchanges): n_dSys_change = range(1, nchanges+1) dSys_change_observe = '(observe d_Sys_t d_Sys)\n' dSys_change_timeevent = ''.join([f'(time-event dSys_change{i} @d_Sys_change_time_{i}@ ' f'((d_Sys @d_Sys_incr{i}@))' f')' f'\n' for i in n_dSys_change]) return dSys_change_observe + dSys_change_timeevent def write_ki_multiplier_change(nchanges,fit_param): n_ki_multiplier = ['3a','3b','3c'] + list(range(4, nchanges+1)) ki_multiplier_change_str = '' for grp in self.grpList: temp_str_param = ''.join([f'(param Ki_red{i}_{grp} ' f'(* Ki_{grp} @ki_multiplier_{i}_{grp}@)' f')' f'\n' for i in n_ki_multiplier]) temp_str_timeevent = ''.join([f'(time-event ki_multiplier_change_{i} @ki_multiplier_time_{i}@ ' f'((Ki_{grp} Ki_red{i}_{grp}))' f')' f'\n' for i in n_ki_multiplier]) if 'ki_multiplier' in fit_param: i = fit_param.split('_')[-1] temp_str_param = temp_str_param.replace(f'@ki_multiplier_{i}_{grp}@', f'(* @ki_multiplier_{i}_{grp}@ @scalingfactor@)') ki_multiplier_change_str = ki_multiplier_change_str + temp_str_param + temp_str_timeevent return ki_multiplier_change_str def write_d_Sym_P_As_change(nchanges): d_Sym_P_As_change_observe = '(observe d_Sym_t d_Sym)\n' \ '(observe d_P_t d_P)\n' \ '(observe d_As_t d_As)\n' n_d_PAs_changes = range(1,nchanges+1) d_Sym_P_As_change_param = ''.join([f'(param d_PAs_change{i} ' f'(/ @d_Sym_change{i}@ dSym_dAsP_ratio)' f')' f'\n' for i in n_d_PAs_changes]) d_Sym_P_As_change_timeevent = ''.join([f'(time-event d_Sym_change{i} @d_Sym_change_time_{i}@ ' f'(' f'(d_Sym @d_Sym_change{i}@) ' \ f'(d_P d_PAs_change1) ' \ f'(d_As d_PAs_change{i}))' f')' f'\n' for i in n_d_PAs_changes]) return d_Sym_P_As_change_observe + d_Sym_P_As_change_param + d_Sym_P_As_change_timeevent def write_recovery_time_crit_change(nchanges): n_recovery_time_crit_change = range(1,nchanges+1) recovery_time_crit_change = '' for grp in self.grpList: grpout = covidModel.sub(grp) recovery_time_crit_change_param = f'(param recovery_time_crit_{grp} recovery_time_crit)\n' \ f'(param Kr_c{grp} (/ 1 recovery_time_crit_{grp}))\n' \ f'(observe recovery_time_crit_t_{grpout} recovery_time_crit_{grp})' \ f'\n' recovery_time_crit_change_timeevent = ''.join([f'(time-event LOS_ICU_change_{i} @recovery_time_crit_change_time_{i}_{grp}@ ' f'(' f'(recovery_time_crit_{grp} @recovery_time_crit_change{i}_{grp}@) ' f'(Kr_c{grp} ' f'(/ 1 @recovery_time_crit_change{i}_{grp}@))' f')' f')' f'\n' for i in n_recovery_time_crit_change]) recovery_time_crit_change = recovery_time_crit_change + \ recovery_time_crit_change_param + \ recovery_time_crit_change_timeevent return recovery_time_crit_change def write_recovery_time_hosp_change(nchanges): n_recovery_time_hosp_change = range(1, nchanges + 1) recovery_time_hosp_change = '' for grp in self.grpList: grpout = covidModel.sub(grp) recovery_time_hosp_change_param = f'(param recovery_time_hosp_{grp} recovery_time_hosp)\n' \ f'(param Kr_h{grp} (/ 1 recovery_time_hosp_{grp}))\n' \ f'(observe recovery_time_hosp_t_{grpout} recovery_time_hosp_{grp})' \ f'\n' recovery_time_hosp_change_timeevent = ''.join( [f'(time-event LOS_nonICU_change_{i} @recovery_time_hosp_change_time_{i}_{grp}@ ' f'(' f'(recovery_time_hosp_{grp} @recovery_time_hosp_change{i}_{grp}@) ' f'(Kr_h{grp} (/ 1 @recovery_time_hosp_change{i}_{grp}@))' f')' f')' f'\n' for i in n_recovery_time_hosp_change]) recovery_time_hosp_change = recovery_time_hosp_change + recovery_time_hosp_change_param + recovery_time_hosp_change_timeevent return recovery_time_hosp_change config_dic = covidModel.get_configs(key ='time_varying_parameter', config_file='intervention_emodl_config.yaml') param_update_string = write_ki_multiplier_change(nchanges=config_dic['n_ki_multiplier'], fit_param = self.fit_param) + \ write_dSys_change(nchanges=config_dic['n_dSys_change']) + \ write_d_Sym_P_As_change(nchanges=config_dic['n_d_Sym_P_As_change']) + \ write_frac_crit_change(nchanges=config_dic['n_frac_crit_change']) + \ write_fraction_dead_change(nchanges=config_dic['n_fraction_dead_change']) + \ write_recovery_time_crit_change(nchanges=config_dic['n_recovery_time_crit_change']) + \ write_recovery_time_hosp_change(nchanges=config_dic['n_recovery_time_hosp_change']) total_string = total_string.replace(';[TIMEVARYING_PARAMETERS]', param_update_string) return total_string def get_intervention_dates(intervention_param,scen): """intervention dates""" n_gradual_steps = intervention_param['n_gradual_steps'] config_dic_dates = covidModel.get_configs(key ='time_parameters', config_file='extendedcobey_200428.yaml') #FIXME args.masterconfig #FIXME more flexible read in and return of dates for any number of scenarios #for i in range(1,nscenarios) intervention_start = pd.to_datetime(config_dic_dates[f'{scen}_start']['function_kwargs']['dates']) intervention_scaleupend = pd.to_datetime(config_dic_dates[f'{scen}_scaleupend']['function_kwargs']['dates']) #intervention_end = pd.to_datetime(config_dic_dates[f'{scen}_end']['function_kwargs']['dates']) if n_gradual_steps > 1 and intervention_scaleupend < pd.Timestamp('2090-01-01') : date_freq = (intervention_scaleupend - intervention_start) /(n_gradual_steps-1) intervention_dates = pd.date_range(start=intervention_start,end=intervention_scaleupend, freq=date_freq).tolist() else: n_gradual_steps = 1 intervention_dates = [intervention_start] return n_gradual_steps, intervention_dates def write_interventions(self, total_string): """ Write interventions Interventions defined in sub-functions: - bvariant: `write_bvariant` - intervention_stop: `write_intervention_stop` - transmission_increase: `write_transmission_increase` - rollback: `write_rollback` - gradual_reopening: `write_gradual_reopening` """ """ Get intervention configurations """ intervention_param = covidModel.get_configs(key ='interventions', config_file=self.intervention_config) def write_vaccine_generic(): emodl_str = ';COVID-19 vaccine scenario\n' emodl_param_initial = '(param Kv 0)\n(observe daily_vaccinated Kv)\n' csvfile = intervention_param['vaccination_csv'] if csvfile != "": df = pd.read_csv(os.path.join("./experiment_configs", 'input_csv', csvfile)) intervention_dates = list(df['Date'].values) intervention_effectsizes = list(df['daily_cov'].values) emodl_timeevents = '' for i, date in enumerate(intervention_dates, 1): temp_str = f'(time-event vaccination_change{i} {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} ((Kv {intervention_effectsizes[i-1]})))\n' emodl_timeevents = emodl_timeevents + temp_str else: n_gradual_steps, intervention_dates = covidModel.get_intervention_dates(intervention_param,scen='vaccine') emodl_timeevents = '' for i, date in enumerate(intervention_dates, 1): temp_str = f'(time-event vaccination_change{i} {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} ((Kv (* @vacc_daily_cov@ {(1 / (len(intervention_dates)) * i)}) )))\n' emodl_timeevents = emodl_timeevents + temp_str emodl_str = emodl_str + emodl_param_initial + emodl_timeevents return emodl_str def write_vaccine(): emodl_str = ';COVID-19 vaccine scenario\n' csvfile = intervention_param['vaccination_csv'] df = pd.read_csv(os.path.join("./experiment_configs", 'input_csv', csvfile)) df['Date'] = pd.to_datetime(df['date']) emodl_str_grp = "" for grp in self.grpList: grp_num = grp.replace('EMS_','') df_grp = df[df['covid_region']==int(grp_num)] emodl_param_initial = f'(param Kv_{grp} 0)\n' \ f'(observe n_daily_vaccinated_{grp} (* Kv_{grp} S::{grp} ))\n' intervention_dates = list(df_grp['Date'].values) + [max(df_grp['Date']) + pd.Timedelta(1,'days')] intervention_effectsizes = list(df_grp['daily_first_vacc_perc'].values) + [0] #intervention_effectsizes = list(df_grp['daily_first_vacc'].values) + [0] emodl_timeevents = '' for i, date in enumerate(intervention_dates, 1): temp_str = f'(time-event daily_vaccinations_{i} {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} ((Kv_{grp} {intervention_effectsizes[i-1]})))\n' emodl_timeevents = emodl_timeevents + temp_str emodl_str_grp = emodl_str_grp + emodl_param_initial + emodl_timeevents del df_grp """Adjust fraction severe""" df = pd.read_csv(os.path.join(git_dir,"experiment_configs", 'input_csv', 'vaccination_fractionSevere_adjustment_IL.csv')) df['Date'] = pd.to_datetime(df['date']) intervention_dates = df['Date'].unique() fraction_severe_notV = '' for i, date in enumerate(intervention_dates, 1): temp_str = f"(time-event fraction_severe_changeV_{i} {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} (" \ f"(fraction_severe (- @fraction_severe@ (* (- @fraction_severe@ (* @fraction_severe@ reduced_fraction_Sys_notV)) {df['persons_above65_first_vaccinated_perc'][i-1]}))) " \ "(Ksys (* fraction_severe (/ 1 time_to_symptoms))) " \ "(Ksym (* (- 1 fraction_severe) (/ 1 time_to_symptoms)))))\n" fraction_severe_notV = fraction_severe_notV + temp_str emodl_str = fraction_severe_notV + emodl_str + emodl_str_grp return emodl_str def write_bvariant(): emodl_str = ';COVID-19 bvariant scenario\n' csvfile = intervention_param['bvariant_csv'] if csvfile != "": df = pd.read_csv(os.path.join("./experiment_configs", 'input_csv', csvfile)) intervention_dates = list(df['Date'].values) fracinfect = list(df['variant_freq'].values) fracinfect_timevent = ''.join([f'(time-event bvariant_fracinfect {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} ' f'((bvariant_fracinfect {fracinfect[i - 1]})))\n' for i, date in enumerate(intervention_dates, 1)]) emodl_timeevents = '' for i, date in enumerate(intervention_dates, 1): temp_str = f'(time-event ki_bvariant_change{i} {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} (' temp_str = temp_str + ''.join([f' (Ki_{grp} ( + Ki_{grp} (* (* Ki_{grp} 0.5) (* @bvariant_fracinfect@ {fracinfect[i - 1]} ))))' for grp in self.grpList]) temp_str = temp_str + f'))\n' emodl_timeevents = emodl_timeevents + temp_str else: n_gradual_steps, intervention_dates = covidModel.get_intervention_dates(intervention_param,scen='bvariant') fracinfect_timevent = ''.join([f'(time-event bvariant_fracinfect {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)}' f' ((bvariant_fracinfect (* @bvariant_fracinfect@ ' f'{(1 / (len(intervention_dates)) * i)})))' f')\n' for i, date in enumerate(intervention_dates, 1)]) emodl_param = ''.join([ f'(param Ki_bvariant_initial_{grp} 0)\n' f'(time-event ki_bvariant_initial {covidModel.DateToTimestep(pd.Timestamp(intervention_dates[0])-pd.Timedelta(2,"days"), self.startdate)} (' f'(Ki_bvariant_initial_{grp} Ki_{grp})' f'))\n ' for grp in self.grpList]) emodl_timeevents = '' for i, date in enumerate(intervention_dates, 1): temp_str = f'(time-event ki_bvariant_change{i} {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} (' temp_str = temp_str + ''.join([f' (Ki_{grp} ( + Ki_bvariant_initial_{grp} (* (* Ki_bvariant_initial_{grp} @bvariant_infectivity@) (* @bvariant_fracinfect@ {(1 / (len(intervention_dates)) * i)} ))))' for grp in self.grpList]) temp_str = temp_str + f'))\n' emodl_timeevents = emodl_timeevents + temp_str bvariant_infectivity = emodl_param + emodl_timeevents """keep track of fracinfect, and use for update symptom development reactions""" fracinfect_str = '(param bvariant_fracinfect 0)\n' \ '(observe bvariant_fracinfect_t bvariant_fracinfect)\n' + fracinfect_timevent """fraction severe adjustment over time""" frac_severe_timevent = ''.join([f'(time-event fraction_severe_change{i} {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} ' f'(' f'(fraction_severe (+ ' f'(* @fraction_severe@ (- 1 bvariant_fracinfect)) ' f'(* fraction_severeB bvariant_fracinfect ) ' f')) ' f'(Ksys ( * fraction_severe (/ 1 time_to_symptoms))) ' f'(Ksym ( * (- 1 fraction_severe)(/ 1 time_to_symptoms)))' f')' f')\n' for i, date in enumerate(intervention_dates, 1)]) frac_severe_str = '(param fraction_severeB (* @fraction_severe@ @bvariant_severity@))\n' + frac_severe_timevent if 'vaccine' in self.add_interventions: """fraction severe adjustment over time""" frac_severeV_timevent = ''.join([f'(time-event fraction_severe_V_change{i} {covidModel.DateToTimestep(pd.Timestamp(date), self.startdate)} ' f'(' f'(fraction_severe_V (+ ' f'(* @fraction_severe@ @reduced_fraction_Sys@ (- 1 bvariant_fracinfect)) ' f'(* fraction_severeB @reduced_fraction_Sys@ bvariant_fracinfect ) ' f')) ' f'(KsysV ( * fraction_severe_V (/ 1 time_to_symptoms))) ' f'(KsymV ( * (- 1 fraction_severe_V)(/ 1 time_to_symptoms)))' f')' f')\n' for i, date in enumerate(intervention_dates, 1)]) frac_severeV_str = '(observe fraction_severe_V_t fraction_severe_V)\n' + frac_severeV_timevent frac_severe_str = frac_severe_str + frac_severeV_str emodl_str = emodl_str + bvariant_infectivity + fracinfect_str + frac_severe_str return emodl_str def write_rollback(): emodl_str = ';COVID-19 rollback scenario\n' rollback_regionspecific = intervention_param['rollback_regionspecific'] csvfile = intervention_param['rollback_csv'] if csvfile != "": df = pd.read_csv(os.path.join("./experiment_configs", 'input_csv', csvfile)) intervention_dates = list(df['Date'].values) perc_rollback = list(df['perc_reopen'].values) else: n_gradual_steps, intervention_dates = covidModel.get_intervention_dates(intervention_param,scen='rollback') perc_rollback = ['@rollback_multiplier@' for _ in range(len(intervention_dates))] emodl_param = ''.join([ f'(param Ki_rollback_initial_{grp} 0)\n' f'(time-event ki_rollback_initial_ {covidModel.DateToTimestep(pd.Timestamp(intervention_dates[0])-
pd.Timedelta(2,"days")
pandas.Timedelta
""" Logistic Regression based upon sklearn. """ import datatable as dt import numpy as np import random import pandas as pd import os import copy import codecs from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.compose import ColumnTransformer, make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.impute import SimpleImputer from sklearn.metrics import roc_auc_score, make_scorer from h2oaicore.models import CustomModel from h2oaicore.systemutils import config, physical_cores_count, save_obj_atomically, load_obj, DefaultOrderedDict from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning from h2oaicore.transformers import CatOriginalTransformer, FrequentTransformer, CVTargetEncodeTransformer from h2oaicore.transformer_utils import Transformer from h2oaicore.transformers_more import CatTransformer, LexiLabelEncoderTransformer from sklearn.model_selection import StratifiedKFold, cross_val_score from sklearn.ensemble import VotingClassifier class LogisticRegressionModel(CustomModel): """ Logistic Regression Useful when weak or no interactions between features, or large inherent number of levels in categorical features Other useful DAI options if want to only use feature made internally by this model: config.prob_prune_genes = False config.prob_prune_by_features = False # Useful if want training to ultimately see all data with validated max_iter config.fixed_ensemble_level=0 Recipe to do: 1) Add separate LogisticRegressionEarlyStopping class to use warm start to take iterations a portion at a time, and score with known/given metric, and early stop to avoid overfitting on validation. 2) Improve bisection stepping for search 3) Consider from deployml.sklearn import LogisticRegressionBase 4) Implement LinearRegression/ElasticNet (https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model) 5) Implement other categorical missing encodings (same strategies as numerics) 6) Implement other scorers (i.e. checking score_f_name -> sklearn metric or using DAI metrics) """ _kaggle = False # some kaggle specific optimizations for https://www.kaggle.com/c/cat-in-the-dat # with _kaggle_features=False and no catboost features: # gives 0.8043 DAI validation for some seeds/runs, # which leads to 0.80802 public score after only 2 minutes of running on accuracy=2, interpretability=1 # with _kaggle_features=False and catboost features: # gives 0.8054 DAI validation for some seeds/runs, # which leads to 0.80814 public score after only 10 minutes of running on accuracy=7, interpretability=1 # whether to generate features for kaggle # these features do not help the score, but do make sense as plausible features to build _kaggle_features = False # whether to use validation and train together (assumes test with sample_weight=0 already part of train+valid) for features _kaggle_mode = False # numerical imputation for all columns (could be done per column chosen by mutations) _impute_num_type = 'sklearn' # best for linear models # _impute_num_type = 'oob' # risky for linear models, but can be used for testing _impute_int_type = 'oob' _impute_bool_type = 'oob' _oob_bool = False # categorical imputation for all columns (could be done per column chosen by mutations) _impute_cat_type = 'oob' _oob_cat = "__OOB_CAT__" # unique identifier for OHE feature names _ohe_postfix = "_*#!^()^{}" # not required to be this strict, but good starting point to only use this recipe's features _included_transformers = ['CatOriginalTransformer', 'OriginalTransformer', 'CatTransformer'] if _kaggle and 'CatTransformer' in _included_transformers: # Just handle all cats directly _included_transformers.remove('CatTransformer') _can_handle_non_numeric = True # tell DAI we can handle non-numeric (i.e. strings) _can_handle_categorical = True # tell DAI we can handle numerically encoded categoricals for use as categoricals _num_as_cat = False or _kaggle # treating numeric as categorical best handled per column, but can force all numerics as cats _num_as_num = False _mutate_all = True # tell DAI we fully control mutation _mutate_by_one = False # tell our recipe only changes one key at a time, can limit exploration if set as True _mutate_by_one_sometimes = True _always_defaults = False _randomized_random_state = False _overfit_limit_iteration_step = 10 # tell DAI want to keep track of self.params changes during fit, and to average numeric values across folds (if any) _used_return_params = True _average_return_params = True # other DAI vars _regression = False _binary = True _multiclass = True _parallel_task = True # set to False may lead to faster performance if not doing grid search or cv search (should also set expert batch_cpu_tuning_max_workers to number of cores) _fit_by_iteration = True _fit_iteration_name = 'max_iter' _display_name = "LR" _description = "Logistic Regression" _allow_basis_of_default_individuals = False _fs_permute_must_use_self = True _check_stall = False # avoid stall check, joblib loky stuff detatches sometimes _testing_can_skip_failure = False # ensure tested as if shouldn't fail # recipe vars for encoding choices _use_numerics = True _use_ohe_encoding = True _use_target_encoding = False _use_target_encoding_other = False _use_ordinal_encoding = False _use_catboost_encoding = False or _kaggle # Note: Requires data be randomly shuffled so target is not in special order _use_woe_encoding = False # tell DAI what pip modules we will use _modules_needed_by_name = ['category_encoders'] if _use_target_encoding_other: _modules_needed_by_name.extend(['target_encoding']) # _modules_needed_by_name.extend(['git+https://github.com/h2oai/target_encoding#egg=target_encoding']) # whether to show debug prints and write munged view to disk _debug = True # wehther to cache feature results, only by transformer instance and X shape, so risky to use without care. _cache = False _ensemble = False def set_default_params(self, accuracy=10, time_tolerance=10, interpretability=1, **kwargs): # Fill up parameters we care about self.params = {} self.mutate_params(get_default=True, accuracy=accuracy, time_tolerance=time_tolerance, interpretability=interpretability, **kwargs) def mutate_params(self, accuracy=10, time_tolerance=10, interpretability=1, **kwargs): get_default = 'get_default' in kwargs and kwargs['get_default'] or self._always_defaults params_orig = copy.deepcopy(self.params) # control some behavior by how often the model was mutated. # Good models that improve get repeatedly mutated, bad models tend to be one-off mutations of good models if get_default: self.params['mutation_count'] = 0 else: if 'mutation_count' in self.params: self.params['mutation_count'] += 1 else: self.params['mutation_count'] = 0 # keep track of fit count, for other control over hyper parameter search in this recipe if 'fit_count' not in self.params: self.params['fit_count'] = 0 self.params['random_state'] = kwargs.get("random_state", 1234) if self._randomized_random_state: self.params['random_state'] = random.randint(0, 32000) self.params['n_jobs'] = self.params_base.get('n_jobs', max(1, physical_cores_count)) # Modify certain parameters for tuning if self._kaggle: C_list = [0.095, 0.1, 0.115, 0.11, 0.105, 0.12, 0.125, 0.13, 0.14] else: C_list = [0.05, 0.075, 0.1, 0.15, 0.2, 1.0, 5.0] self.params["C"] = float(np.random.choice(C_list)) if not get_default else 0.12 tol_list = [1e-4, 1e-3, 1e-5] if accuracy < 5: default_tol = 1e-4 elif accuracy < 6: default_tol = 1e-5 elif accuracy <= 7: default_tol = 1e-6 else: default_tol = 1e-7 if self._kaggle: default_tol = 1e-8 if default_tol not in tol_list: tol_list.append(default_tol) self.params["tol"] = float(np.random.choice(tol_list)) if not (self._kaggle or get_default) else default_tol # solver_list = ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'] # newton-cg too slow # sag too slow # solver_list = ['lbfgs', 'liblinear', 'saga'] solver_list = ['lbfgs'] self.params["solver"] = str(np.random.choice(solver_list)) if not get_default else 'lbfgs' if self._kaggle: max_iter_list = [300, 350, 400, 450, 500, 700, 800, 900, 1000, 1500] else: max_iter_list = [150, 175, 200, 225, 250, 300] self.params["max_iter"] = int(np.random.choice(max_iter_list)) if not get_default else 700 # self.params["max_iter"] = 37 if self.params["solver"] in ['lbfgs', 'newton-cg', 'sag']: penalty_list = ['l2', 'none'] elif self.params["solver"] in ['saga']: penalty_list = ['l1', 'l2', 'none'] elif self.params["solver"] in ['liblinear']: penalty_list = ['l1'] else: raise RuntimeError("No such solver: %s" % self.params['solver']) self.params["penalty"] = str(np.random.choice(penalty_list)) if not (self._kaggle or get_default) else 'l2' if self.params["penalty"] == 'elasticnet': l1_ratio_list = [0, 0.25, 0.5, 0.75, 1.0] self.params["l1_ratio"] = float(np.random.choice(l1_ratio_list)) else: self.params.pop('l1_ratio', None) if self.params["penalty"] == 'none': self.params.pop('C', None) else: self.params['C'] = float(np.random.choice(C_list)) if not get_default else 0.12 if self.num_classes > 2: self.params['multi_class'] = 'auto' strategy_list = ['mean', 'median', 'most_frequent', 'constant'] self.params['strategy'] = str(np.random.choice(strategy_list)) if not get_default else 'mean' if self._use_target_encoding: min_samples_leaf_list = [1, 10, 50, 100] self.params['min_samples_leaf'] = float(np.random.choice(min_samples_leaf_list)) smoothing_list = [1.0, 0.5, 10.0, 50.0] self.params['smoothing'] = float(np.random.choice(smoothing_list)) if self._use_catboost_encoding: if self._kaggle: sigma_list = [None, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9] else: sigma_list = [None, 0.01, 0.05, 0.1, 0.5] self.params['sigma'] = random.choice(sigma_list) if self._use_woe_encoding: randomized_list = [True, False] self.params['randomized'] = random.choice(randomized_list) sigma_woe_list = [0.05, 0.001, 0.01, 0.1, 0.005] self.params['sigma_woe'] = random.choice(sigma_woe_list) regularization_list = [1.0, 0.1, 2.0] self.params['regularization'] = random.choice(regularization_list) # control search in recipe self.params['grid_search_iterations'] = accuracy >= 8 # cv search for hyper parameters, can be used in conjunction with _grid_search_by_iterations = True or False self.params['cv_search'] = accuracy >= 9 if self._mutate_by_one_sometimes: if np.random.random() > 0.5: do_mutate_by_one = True else: do_mutate_by_one = False else: do_mutate_by_one = self._mutate_by_one if do_mutate_by_one and not get_default and params_orig: pick_key = str(np.random.choice(list(self.params.keys()), size=1)[0]) value = self.params[pick_key] self.params = copy.deepcopy(params_orig) self.params[pick_key] = value # validate parameters to avoid single key leading to invalid overall parameters if pick_key == 'penalty': # has restrictions need to switch other keys if mismatched if self.params["solver"] in ['lbfgs', 'newton-cg', 'sag']: penalty_list = ['l2', 'none'] elif self.params["solver"] in ['saga']: penalty_list = ['l1', 'l2', 'none'] elif self.params["solver"] in ['liblinear']: penalty_list = ['l1'] if not self.params['penalty'] in penalty_list: self.params['penalty'] = penalty_list[0] # just choose first def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs): if self._kaggle_mode and eval_set is not None: new_X = dt.rbind([X, eval_set[0][0]]) new_sample_weight = np.concatenate([sample_weight, sample_weight_eval_set[0]]) new_sample_weight[X.shape[0]:X.shape[0] + eval_set[0][0].shape[0]] = 0 new_y = np.concatenate([y, eval_set[0][1]]) X = new_X y = new_y sample_weight = new_sample_weight orig_dir = os.getcwd() os.chdir(self.context.experiment_tmp_dir) # for joblib os.makedirs(self.context.experiment_tmp_dir, exist_ok=True) # another copy for DAI transformers orig_cols = list(X.names) if self.num_classes >= 2: lb = LabelEncoder() lb.fit(self.labels) y = lb.transform(y) min_count = np.min(np.unique(y, return_counts=True)[1]) if min_count < 9: self.params['cv_search'] = False if min_count < 3: self.params['grid_search_iterations'] = False self.params['cv_search'] = False if self._ensemble: self.params['grid_search_iterations'] = False self.params['cv_search'] = False # save pre-datatable-imputed X X_dt = X # Apply OOB imputation self.oob_imputer = OOBImpute(self._impute_num_type, self._impute_int_type, self._impute_bool_type, self._impute_cat_type, self._oob_bool, self._oob_cat) X = self.oob_imputer.fit_transform(X) # convert to pandas for sklearn X = X.to_pandas() X_orig_cols_names = list(X.columns) if self._kaggle_features: self.features = make_features(cache=self._cache) X = self.features.fit_transform(X, y, **kwargs) else: self.features = None # print("LR: pandas dtypes: %s" % (str(list(X.dtypes)))) # FEATURE GROUPS # Choose which features are numeric or categorical cat_features = [x for x in X_orig_cols_names if CatOriginalTransformer.is_me_transformed(x)] catlabel_features = [x for x in X_orig_cols_names if CatTransformer.is_me_transformed(x)] # can add explicit column name list to below force_cats force_cats = cat_features + catlabel_features actual_numerical_features = (X.dtypes == 'float') | (X.dtypes == 'float32') | ( X.dtypes == 'float64') # | (X.dtypes == 'int') | (X.dtypes == 'int32') | (X.dtypes == 'int64') | (X.dtypes == 'bool') # choose if numeric is treated as categorical if not self._num_as_cat or self._num_as_num: # treat (e.g.) binary as both numeric and categorical numerical_features = copy.deepcopy(actual_numerical_features) else: # no numerics numerical_features = X.dtypes == 'invalid' if self._num_as_cat: # then can't have None sent to cats, impute already up front # force oob imputation for numerics self.oob_imputer = OOBImpute('oob', 'oob', 'oob', self._impute_cat_type, self._oob_bool, self._oob_cat) X = self.oob_imputer.fit_transform(X_dt) X = X.to_pandas() if self._kaggle_features: X = self.features.fit_transform(X, y, **kwargs) if self._kaggle_features: numerical_features = self.features.update_numerical_features(numerical_features) if not self._num_as_cat: # then cats are only things that are not numeric categorical_features = ~actual_numerical_features else: # then everything is a cat categorical_features = ~numerical_features # (X.dtypes == 'invalid') # below can lead to overlap between what is numeric and what is categorical more_cats = (pd.Series([True if x in force_cats else False for x in list(categorical_features.index)], index=categorical_features.index)) categorical_features = (categorical_features) | (more_cats) if self._kaggle_features: categorical_features = self.features.update_categorical_features(categorical_features) cat_X = X.loc[:, categorical_features] num_X = X.loc[:, numerical_features] if self._debug: print("LR: Cat names: %s" % str(list(cat_X.columns))) print("LR: Num names: %s" % str(list(num_X.columns))) # TRANSFORMERS lr_params = copy.deepcopy(self.params) lr_params.pop('grid_search_by_iterations', None) lr_params.pop('cv_search', None) grid_search = False # WIP full_features_list = [] transformers = [] if self._use_numerics and any(numerical_features.values): impute_params = {} impute_params['strategy'] = lr_params.pop('strategy', 'mean') full_features_list.extend(list(num_X.columns)) transformers.append( (make_pipeline(SimpleImputer(**impute_params), StandardScaler()), numerical_features) ) # http://contrib.scikit-learn.org/categorical-encoding/ if self._use_ordinal_encoding and any(categorical_features.values): ord_params = dict(handle_missing='value', handle_unknown='value') full_features_list.extend(list(cat_X.columns)) # Note: OrdinalEncoder doesn't handle unseen features, while CategoricalEncoder used too import category_encoders as ce transformers.append( (ce.OrdinalEncoder(**ord_params), categorical_features) ) if self._use_catboost_encoding and any(categorical_features.values): cb_params = dict(handle_missing='value', handle_unknown='value') cb_params['sigma'] = lr_params.pop('sigma') full_features_list.extend(list(cat_X.columns)) import category_encoders as ce transformers.append( (ce.CatBoostEncoder(**cb_params), categorical_features) ) if self._use_woe_encoding and any(categorical_features.values): woe_params = dict(handle_missing='value', handle_unknown='value') woe_params['randomized'] = lr_params.pop('randomized') woe_params['sigma'] = lr_params.pop('sigma_woe') woe_params['regularization'] = lr_params.pop('regularization') full_features_list.extend(list(cat_X.columns)) import category_encoders as ce transformers.append( (ce.WOEEncoder(**woe_params), categorical_features) ) if self._use_target_encoding and any(categorical_features.values): te_params = dict(handle_missing='value', handle_unknown='value') te_params['min_samples_leaf'] = lr_params.pop('min_samples_leaf') te_params['smoothing'] = lr_params.pop('smoothing') full_features_list.extend(list(cat_X.columns)) import category_encoders as ce transformers.append( (ce.TargetEncoder(**te_params), categorical_features) ) if self._use_target_encoding_other and any(categorical_features.values): full_features_list.extend(list(cat_X.columns)) cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=self.params['random_state']) split_cv = [cv] # split_cv = [3, 3] ALPHA, MAX_UNIQUE, FEATURES_COUNT = get_TE_params(cat_X, debug=self._debug) from target_encoding import TargetEncoder transformers.append( (TargetEncoder(alpha=ALPHA, max_unique=MAX_UNIQUE, split_in=split_cv), categorical_features) ) if self._use_ohe_encoding and any(categorical_features.values): transformers.append( (OneHotEncoder(handle_unknown='ignore', sparse=True), categorical_features) ) assert len(transformers) > 0, "should have some features" preprocess = make_column_transformer(*transformers) # ESTIMATOR lr_defaults = dict(penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='warn', max_iter=100, multi_class='warn', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) allowed_lr_kwargs_keys = lr_defaults.keys() lr_params_copy = copy.deepcopy(lr_params) for k, v in lr_params_copy.items(): if k not in allowed_lr_kwargs_keys: lr_params.pop(k, None) del lr_params_copy can_score = self.num_classes == 2 and 'AUC' in self.params_base['score_f_name'].upper() # print("LR: can_score: %s" % str(can_score)) if can_score: scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_proba=True) else: scorer = None if not ('C' in lr_params or 'l1_ratios' in lr_params): # override self.params['cv_search'] = False if not self.params['cv_search']: estimator = LogisticRegression(**lr_params) estimator_name = 'logisticregression' else: lr_params_cv = copy.deepcopy(lr_params) if 'C' in lr_params: lr_params_cv['Cs'] = self.get_param_range(self.params['C'], self.params['fit_count'], func_type='log') # print("LR: CV: Cs: %s" % str(lr_params_cv['Cs'])) if 'l1_ratios' in lr_params: lr_params_cv['l1_ratios'] = self.get_param_range(self.params['l1_ratio'], self.params['fit_count'], func_type='linear') # print("LR: CV: l1_ratios: %s" % str(lr_params_cv['l1_ratios'])) lr_params_cv.pop('n_jobs', None) lr_params_cv.pop('C', None) lr_params_cv.pop('l1_ratio', None) if lr_params_cv['penalty'] == 'none': lr_params_cv['penalty'] = 'l2' estimator = LogisticRegressionCV(n_jobs=self.params['n_jobs'], cv=3, refit=True, scoring=scorer, **lr_params_cv) estimator_name = 'logisticregressioncv' # PIPELINE if not self._ensemble: model = make_pipeline( preprocess, estimator, memory="./") else: ALPHA, MAX_UNIQUE, FEATURES_COUNT = get_TE_params(cat_X, debug=self._debug) from target_encoding import TargetEncoderClassifier te_estimator = TargetEncoderClassifier(alpha=ALPHA, max_unique=MAX_UNIQUE, used_features=FEATURES_COUNT) estimators = [(estimator_name, estimator), ('teclassifier', te_estimator)] model = make_pipeline( preprocess, VotingClassifier(estimators)) # FIT if self.params['grid_search_iterations'] and can_score: # WIP FIXME for multiclass and other scorers from sklearn.model_selection import GridSearchCV max_iter_range = self.get_param_range(self.params['max_iter'], self.params['fit_count'], range_limit=self._overfit_limit_iteration_step, func_type='log') # print("LR: max_iter_range: %s" % str(max_iter_range)) param_grid = { '%s__max_iter' % estimator_name: max_iter_range, } grid_clf = GridSearchCV(model, param_grid, n_jobs=self.params['n_jobs'], cv=3, iid=True, refit=True, scoring=scorer) fitkwargs = dict() fitkwargs["%s__sample_weight" % estimator_name] = sample_weight grid_clf.fit(X, y, **fitkwargs) model = grid_clf.best_estimator_ # print("LR: best_index=%d best_score: %g best_params: %s" % ( # grid_clf.best_index_, grid_clf.best_score_, str(grid_clf.best_params_))) elif grid_search: # WIP from sklearn.model_selection import GridSearchCV param_grid = { 'columntransformer__pipeline__simpleimputer__strategy': ['mean', 'median'], '%s__C' % estimator_name: [0.1, 0.5, 1.0], } grid_clf = GridSearchCV(model, param_grid, cv=10, iid=False) fitkwargs = dict() fitkwargs["%s__sample_weight" % estimator_name] = sample_weight grid_clf.fit(X, y, **fitkwargs) model = grid_clf.best_estimator_ # self.best_params = grid_clf.best_params_ else: fitkwargs = dict() fitkwargs["%s__sample_weight" % estimator_name] = sample_weight X = X.replace([np.inf, -np.inf], np.nan) X = X.fillna(value=0) model.fit(X, y, **fitkwargs) # get actual LR model lr_model = model.named_steps[estimator_name] # average importances over classes importances = np.average(np.fabs(np.array(lr_model.coef_)), axis=0) # average iterations over classes (can't take max_iter per class) iterations = int(np.average(lr_model.n_iter_)) # print("LR: iterations: %d" % iterations) if self._debug: full_features_list_copy = copy.deepcopy(full_features_list) # reduce OHE features to original names ohe_features_short = [] if self._use_ohe_encoding and any(categorical_features.values): input_features = [x + self._ohe_postfix for x in cat_X.columns] ohe_features = pd.Series( model.named_steps['columntransformer'].named_transformers_['onehotencoder'].get_feature_names( input_features=input_features)) def f(x): return '_'.join(x.split(self._ohe_postfix + '_')[:-1]) # identify OHE features ohe_features_short = ohe_features.apply(lambda x: f(x)) full_features_list.extend(list(ohe_features_short)) if self._debug: full_features_list_copy.extend(list(ohe_features)) imp = pd.Series(importances, index=full_features_list_copy).sort_values(ascending=False) import uuid struuid = str(uuid.uuid4()) imp.to_csv("prepreimp_%s.csv" % struuid) if self._debug: imp = pd.Series(importances, index=full_features_list).sort_values(ascending=False) import uuid struuid = str(uuid.uuid4()) imp.to_csv("preimp_%s.csv" % struuid) # aggregate our own features if self._kaggle_features: full_features_list = self.features.aggregate(full_features_list, importances) msg = "LR: num=%d cat=%d : ohe=%d : imp=%d full=%d" % ( len(num_X.columns), len(cat_X.columns), len(ohe_features_short), len(importances), len(full_features_list)) if self._debug: print(msg) assert len(importances) == len(full_features_list), msg if self._debug: imp = pd.Series(importances, index=full_features_list).sort_values(ascending=False) import uuid struuid = str(uuid.uuid4()) imp.to_csv("imp_%s.csv" % struuid) # aggregate importances by dai feature name importances = pd.Series(np.abs(importances), index=full_features_list).groupby(level=0).mean() assert len(importances) == len( X_orig_cols_names), "lenimp=%d lenorigX=%d msg=%s : X.columns=%s dtypes=%s : full_features_list=%s" % ( len(importances), len(X_orig_cols_names), msg, str(list(X.columns)), str(list(X.dtypes)), str(full_features_list)) # save hyper parameter searched results for next search self.params['max_iter'] = iterations if self.params['cv_search']: self.params['C'] = np.average(lr_model.C_, axis=0) if 'l1_ratios' in lr_params and self.params['cv_search']: self.params['l1_ratio'] = np.average(lr_model.l1_ratio_, axis=0) if 'fit_count' in self.params: self.params['fit_count'] += 1 else: self.params['fit_count'] = 0 importances_list = importances.tolist() importances_list = list(np.array(importances_list) / np.max(importances_list)) self.set_model_properties(model=(model, self.features), features=orig_cols, importances=importances_list, iterations=iterations) self.features = None os.chdir(orig_dir) def get_param_range(self, param, fit_count, range_limit=None, func_type='linear'): if func_type == 'log': f = np.log inv_f = np.exp bottom = 1.0 top = 1.0 else: f = np.abs inv_f = np.abs top = bottom = 1.0 # bisect toward optimal param step_count = 3 params_step = 2 + fit_count start_range = param * (1.0 - bottom / params_step) end_range = param * (1.0 + top / params_step) if range_limit is not None: if end_range - start_range < range_limit: # if below some threshold, don't keep refining to avoid overfit return [param] start = f(start_range) end = f(end_range) step = 1.0 * (end - start) / step_count param_range = np.arange(start, end, step) if type(param) == int: param_range = [int(inv_f(x)) for x in param_range if int(inv_f(x)) > 0] else: param_range = [inv_f(x) for x in param_range if inv_f(x) > 0] if param not in param_range: param_range.append(param) param_range = sorted(param_range) return param_range def predict(self, X, **kwargs): orig_dir = os.getcwd() os.chdir(self.context.experiment_tmp_dir) # for joblib X = dt.Frame(X) X = self.oob_imputer.transform(X) model_tuple, _, _, _ = self.get_model_properties() model, features = model_tuple X = X.to_pandas() if self._kaggle_features and features is not None: X = features.transform(X) X = X.replace([np.inf, -np.inf], np.nan) X = X.fillna(value=0) if self.num_classes == 1: preds = model.predict(X) else: preds = model.predict_proba(X) os.chdir(orig_dir) return preds class OOBImpute(object): def __init__(self, impute_num_type, impute_int_type, impute_bool_type, impute_cat_type, oob_bool, oob_cat): self._impute_num_type = impute_num_type self._impute_int_type = impute_int_type self._impute_bool_type = impute_bool_type self._impute_cat_type = impute_cat_type self._oob_bool = oob_bool self._oob_cat = oob_cat def fit(self, X: dt.Frame): # just ignore output self.fit_transform(X) def fit_transform(self, X: dt.Frame): # IMPUTE # print("LR: types number of columns: %d : %d %d %d %d" % (len(X.names), len(X[:, [float]].names), len(X[:, [int]].names), len(X[:, [bool]].names), len(X[:, [str]].names))) for col in X[:, [float]].names: XX = X[:, col] XX.replace(None, np.nan) X[:, col] = XX if self._impute_num_type == 'oob': # Replace missing values with a value smaller than all observed values self.min = dict() for col in X[:, [float]].names: XX = X[:, col] self.min[col] = XX.min1() if self.min[col] is None or np.isnan(self.min[col]): self.min[col] = -1e10 else: self.min[col] -= 1 XX.replace(None, self.min[col]) X[:, col] = XX assert X[dt.isna(dt.f[col]), col].nrows == 0 if self._impute_int_type == 'oob': # Replace missing values with a value smaller than all observed values self.min_int = dict() for col in X[:, [int]].names: XX = X[:, col] self.min_int[col] = XX.min1() if self.min_int[col] is None or np.isnan(self.min_int[col]): self.min_int[col] = 0 XX.replace(None, self.min_int[col]) X[:, col] = XX assert X[dt.isna(dt.f[col]), col].nrows == 0 if self._impute_bool_type == 'oob': for col in X[:, [bool]].names: XX = X[:, col] XX.replace(None, self._oob_bool) X[:, col] = XX assert X[dt.isna(dt.f[col]), col].nrows == 0 if self._impute_cat_type == 'oob': for col in X[:, [str]].names: XX = X[:, col] XX.replace(None, self._oob_cat) X[:, col] = XX assert X[dt.isna(dt.f[col]), col].nrows == 0 return X def transform(self, X: dt.Frame): if self._impute_num_type == 'oob': for col in X[:, [float]].names: XX = X[:, col] XX.replace(None, self.min[col]) X[:, col] = XX if self._impute_int_type == 'oob': for col in X[:, [int]].names: XX = X[:, col] XX.replace(None, self.min_int[col]) X[:, col] = XX if self._impute_bool_type == 'oob': for col in X[:, [bool]].names: XX = X[:, col] XX.replace(None, self._oob_bool) X[:, col] = XX if self._impute_cat_type == 'oob': for col in X[:, [str]].names: XX = X[:, col] XX.replace(None, self._oob_cat) X[:, col] = XX return X class make_features(object): _postfix = "@%@(&#%@))){}#" def __init__(self, cache=False): self.cache = cache self.dai_te = False self.other_te = True self.new_names_dict = {} self.raw_names_dict = {} self.raw_names_dict_reversed = {} self.spring = None self.summer = None self.fall = None self.winter = None self.monthcycle1 = None self.monthcycle2 = None self.weekend = None self.daycycle1 = None self.daycycle2 = None self.lexi = None self.ord5sorted = None self.ord5more1 = None self.ord5more2 = None def apply_clone(self, src): for k, v in src.__dict__.items(): setattr(self, k, v) def fit_transform(self, X: pd.DataFrame, y=None, transform=False, **kwargs): if not transform: self.orig_cols = list(X.columns) if 'IS_LEAKAGE' in kwargs or 'IS_SHIFT' in kwargs: self.raw_names_dict = {v: v for v in list(X.columns)} self.raw_names_dict_reversed = {v: k for k, v in self.raw_names_dict.items()} else: self.raw_names_dict = {Transformer.raw_feat_name(v): v for v in list(X.columns)} self.raw_names_dict_reversed = {v: k for k, v in self.raw_names_dict.items()} file = "munged_%s_%s_%d_%d.csv" % (__name__, transform, X.shape[0], X.shape[1]) file = file.replace("csv", "pkl") file2 = file.replace("munged", "clone") if self.cache and os.path.isfile(file) and os.path.isfile(file2): # X = pd.read_csv(file, sep=',', header=0) X = load_obj(file) X = X.drop("target", axis=1, errors='ignore') if not transform: self.apply_clone(load_obj(file2)) return X if 'bin_0' in self.raw_names_dict: X.drop(self.raw_names_dict['bin_0'], errors='ignore') if 'bin_3' in self.raw_names_dict: X.drop(self.raw_names_dict['bin_3'], errors='ignore') # use circular color wheel position for nom_0 def nom12num(x): # use number of sides d = {'Circle': 0, 'Polygon': -1, 'Star': 10, 'Triangle': 3, 'Square': 4, 'Trapezoid': 5} return d[x] X, self.sides = self.make_feat(X, 'nom_1', 'sides', nom12num) def nom22num(x): # use family level features expanded encoding or relative size for nom_2 # ordered by height d = {'Snake': 0, 'Axolotl': 1, 'Hamster': 2, 'Cat': 3, 'Dog': 4, 'Lion': 5} return d[x] X, self.animal = self.make_feat(X, 'nom_2', 'animal', nom22num) # def has_char(x, char): # x_str = str(x) # return 1 if char.upper() in x_str.upper() else 0 # self.haschars = [None] * len(self.orig_cols) # for ni, c in enumerate(self.orig_cols): # X, self.lenfeats[ni] = self.make_feat(X, c, 'len', get_len) def get_len(x): x_str = str(x) return len(x_str) self.lenfeats = [None] * len(self.orig_cols) for ni, c in enumerate(self.orig_cols): X, self.lenfeats[ni] = self.make_feat(X, c, 'len', get_len) # def get_first(x): x_str = str(x) return x_str[0] if len(x_str) > 0 else "" self.firstchar = [None] * len(self.orig_cols) for ni, c in enumerate(self.orig_cols): X, self.firstchar[ni] = self.make_feat(X, c, 'firstc', get_first, is_float=False) # def get_last(x): x_str = str(x) return x_str[-1] if len(x_str) > 0 else "" self.lastchar = [None] * len(self.orig_cols) for ni, c in enumerate(self.orig_cols): X, self.lastchar[ni] = self.make_feat(X, c, 'lastc', get_last, is_float=False) # hex_strings = ['nom_5', 'nom_6', 'nom_7', 'nom_8', 'nom_9'] # if True: # convert hex to binary and use as 8-feature (per hex feature) encoding def get_charnum(x, i=None): return str(x)[i] width = 9 self.hexchar = [None] * len(hex_strings) * width for ni, c in enumerate(hex_strings): for nii in range(0, width): X, self.hexchar[ni * width + nii] = self.make_feat(X, c, 'hexchar%d' % nii, get_charnum, is_float=False, i=nii) # def hex_to_int(x): x_int = int(eval('0x' + str(x))) return x_int self.hexints = [None] * len(hex_strings) for ni, c in enumerate(hex_strings): X, self.hexints[ni] = self.make_feat(X, c, 'hex2int', hex_to_int) # if False: # ValueError: could not convert string to float: b'\x05\x0f\x11k\xcf' def hex_to_string(x): try: x_str = codecs.decode('0' + x, 'hex') except: x_str = codecs.decode(x, 'hex') return x_str self.hexstr = [None] * len(hex_strings) for ni, c in enumerate(hex_strings): X, self.hexstr[ni] = self.make_feat(X, c, 'hex2str', hex_to_string, is_float=False) def bin012a(x): return bool(x[0]) & bool(x[1]) & bool(x[2]) X, self.bin012a = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012a', bin012a) def bin012b(x): return (bool(x[0]) ^ bool(x[1])) ^ bool(x[2]) X, self.bin012b = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012b', bin012b) def bin012c(x): return bool(x[0]) ^ (bool(x[1]) ^ bool(x[2])) X, self.bin012c = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012c', bin012c) # TODO: manual OHE fixed width for out of 16 digits always (not sure all rows lead to all values) # one-hot encode text by each character # use geo-location for nom_3 # use static mapping encoding for ord_2 and ord_1 def ord12num1(x): # ordered label d = {'Novice': 0, 'Contributor': 1, 'Expert': 2, 'Master': 3, 'Grandmaster': 4} return d[x] X, self.kaggle1 = self.make_feat(X, 'ord_1', 'kaggle1', ord12num1) def ord12num2(x): # medals total d = {'Novice': 0, 'Contributor': 0, 'Expert': 2, 'Master': 3, 'Grandmaster': 6} return d[x] X, self.kaggle2 = self.make_feat(X, 'ord_1', 'kaggle2', ord12num2) def ord1master(x): return 1 if 'master' in x or 'Master' in x else 0 X, self.kaggle3 = self.make_feat(X, 'ord_1', 'kaggle3', ord1master) def ord22num(x): # ordered label d = {'Freezing': 0, 'Cold': 1, 'Warm': 2, 'Hot': 3, 'Boiling Hot': 4, 'Lava Hot': 5} return d[x] X, self.temp1 = self.make_feat(X, 'ord_2', 'temp1', ord22num) def ord22num2(x): # temp in F d = {'Freezing': 32, 'Cold': 50, 'Warm': 80, 'Hot': 100, 'Boiling Hot': 212, 'Lava Hot': 1700} return d[x] X, self.temp2 = self.make_feat(X, 'ord_2', 'temp2', ord22num2) def ord2hot(x): return 1 if 'hot' in x or 'Hot' in x else 0 X, self.temp4 = self.make_feat(X, 'ord_2', 'temp4', ord2hot) # lower ord_5 def ord5more0(x): return x.lower() X, self.ord5more0 = self.make_feat(X, 'ord_5', 'more0', ord5more0, is_float=False) # 1st char, keep for OHE def ord5more1(x): return x[0] X, self.ord5more1 = self.make_feat(X, 'ord_5', 'more1', ord5more1, is_float=False) # 2nd char, keep for OHE def ord5more2(x): return x[1] X, self.ord5more2 = self.make_feat(X, 'ord_5', 'more2', ord5more2, is_float=False) # 1st char, keep for OHE def ord5more3(x): return x[0].lower() X, self.ord5more3 = self.make_feat(X, 'ord_5', 'more3', ord5more3, is_float=False) # 2nd char, keep for OHE def ord5more4(x): return x[1].lower() X, self.ord5more4 = self.make_feat(X, 'ord_5', 'more4', ord5more4, is_float=False) # 1st word, keep for OHE def ord2more1(x): return x.split(" ")[0] X, self.ord2more1 = self.make_feat(X, 'ord_2', 'more1', ord2more1, is_float=False) # 2nd word, keep for OHE def ord2more2(x): a = x.split(" ") if len(a) > 1: return a[1] else: return a[0] X, self.ord2more2 = self.make_feat(X, 'ord_2', 'more2', ord2more2, is_float=False) # use lexi LE directly as integers for alphabetical (ord_5, ord_4, ord_3) orig_feat_names = ['ord_5', 'ord_4', 'ord_3', 'nom_0', 'nom_1', 'nom_2', 'nom_3', 'nom_4', 'nom_5', 'nom_6', 'nom_7', 'nom_8', 'nom_9', 'ord_1', 'ord_2'] orig_feat_names = [self.raw_names_dict_reversed[x] for x in list(self.orig_cols)] # try just encoding all columns new_names = ['lexi%d' % x for x in range(len(orig_feat_names))] if not transform: self.lexi = [None] * len(orig_feat_names) self.lexi_names = [None] * len(orig_feat_names) for ni, (new_name, orig_feat_name) in enumerate(zip(new_names, orig_feat_names)): if orig_feat_name in self.raw_names_dict and self.raw_names_dict[orig_feat_name] in X.columns: dai_feat_name = self.raw_names_dict[orig_feat_name] if transform: Xnew = self.lexi[ni].transform(X[[dai_feat_name]]) else: self.lexi[ni] = LexiLabelEncoderTransformer([dai_feat_name]) Xnew = self.lexi[ni].fit_transform(X[[dai_feat_name]]) extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name Xnew.columns = [new_feat_name] assert not any(pd.isnull(Xnew).values.ravel()) X = pd.concat([X, Xnew], axis=1) self.new_names_dict[new_feat_name] = [dai_feat_name] self.lexi_names[ni] = new_feat_name if False: # already done by lexi encoding # sorted label encoding of ord_5, use for numeric orig_feat_name = 'ord_5' new_name = 'ord5sorted' if orig_feat_name in self.raw_names_dict and self.raw_names_dict[orig_feat_name] in X.columns: dai_feat_name = self.raw_names_dict[orig_feat_name] extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name if not transform: self.ord_5_sorted = sorted(list(set(X[dai_feat_name].values))) self.ord_5_sorted = dict(zip(self.ord_5_sorted, range(len(self.ord_5_sorted)))) X.loc[:, new_feat_name] = X[dai_feat_name].apply( lambda x: self.ord_5_sorted[x] if x in self.ord_5_sorted else -1).astype(np.float32) self.new_names_dict[new_feat_name] = [dai_feat_name] self.ord5sorted = new_feat_name # frequency encode everything # keep as cat for OHE if not transform: self.freq = [None] * len(self.orig_cols) self.freq_names = [None] * len(self.orig_cols) for ni, c in enumerate(list(self.orig_cols)): new_name = "freq%d" % ni dai_feat_name = c if transform: Xnew = self.freq[ni].transform(X[[dai_feat_name]].astype(str)).to_pandas() else: self.freq[ni] = FrequentTransformer([dai_feat_name]) Xnew = self.freq[ni].fit_transform(X[[dai_feat_name]].astype(str)).to_pandas() extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name Xnew.columns = [new_feat_name] assert not any(pd.isnull(Xnew).values.ravel()) X = pd.concat([X, Xnew], axis=1) self.new_names_dict[new_feat_name] = [dai_feat_name] self.freq_names[ni] = new_feat_name if self.dai_te: # target encode everything # use as numeric and categorical if not transform: self.te = [None] * len(self.orig_cols) self.te_names = [None] * len(self.orig_cols) for ni, c in enumerate(list(self.orig_cols)): new_name = "te%d" % ni dai_feat_name = c if transform: Xnew = self.te[ni].transform(X[[dai_feat_name]].astype(str), y).to_pandas() else: self.te[ni] = CVTargetEncodeTransformer([dai_feat_name]) Xnew = self.te[ni].fit_transform(X[[dai_feat_name]].astype(str), y).to_pandas() extra_name = self._postfix + new_name new_feat_name = dai_feat_name + extra_name Xnew.columns = [new_feat_name] assert not any(
pd.isnull(Xnew)
pandas.isnull
"""Class definition for LazyDatarameLoader.""" import re from hashlib import md5 from pathlib import Path from string import ascii_letters, digits from typing import List, Optional, Pattern, Union import pandas as pd class LazyDataFrameLoader: """ Loads a dataframe lazily when called. This avoids the bottleneck of loading dataframes during model training and feature engineering, by parallelizing the loading when RawDataSetFeaturizerViaLambda.__slow_featurize is called with multiprocessing. Attributes: df {Optional[pd.DataFrame]} -- A raw dataframe. (default: {None}) csv_path {Optional[Union[str, Path]]} -- Path to a dataframe (default: {None}) Methods: __call__ -- Loads a dataframe """ def __init__( self, *, df: Optional[pd.DataFrame] = None, csv_path: Optional[Union[str, Path]] = None, remove_id_substring: Optional[bool] = False, ): """Init function. Only `df` or `csv_path` can be specified. Keyword Arguments: df {Optional[pd.DataFrame]} -- A raw dataframe. (default: {None}) csv_path {Optional[Union[str, Path]]} -- Path to a dataframe (default: {None}) remove_id_substring {Optional[bool]} -- If True, replaces 'id'-like substrings in column names of dataframes (default: False) pattern {Pattern} -- Compiled regex pattern Raises: ValueError: When both `df` and `csv_path` are specified TypeError: When `df` is not a pd.DataFrame TypeError: When `csv_path` is not a str or a Path ValueError: When `csv_path` is not a csv file """ # Ensure only one of two optional keyword arguments is provided if (df is not None) == (csv_path is not None): raise ValueError("Only one of `df` or `csv_path` can be provided.") if (df is not None) and not isinstance(df, pd.DataFrame): raise TypeError( "Expecting `df` of type pd.DataFrame. " f"Got type {type(df)}." ) if csv_path is not None: if not (isinstance(csv_path, str) or isinstance(csv_path, Path)): raise TypeError( "Expecting `csv_path` of type str or Path. " f"Got type {type(csv_path)}." ) if str(csv_path)[-3:].lower() != "csv": raise ValueError("A CSV file is expected for `csv_path`.") # Either one of this will have a non-None value self.df = df self.csv_path = csv_path self.remove_id_substring = remove_id_substring self.pattern = re.compile("_?[iI][dD]") def __call__(self) -> pd.DataFrame: """Loads the provided (path to a) dataframe.""" if self.df is not None: result = self.df else: result = pd.read_csv( self.csv_path, encoding="latin", low_memory=False ) # Optionally clean 'id'-like substrings from column names if self.remove_id_substring: result.columns = self._replace_id_in_col_name(result) return result def _replace_id_in_col_name(self, columns: List[str]) -> List[str]: sub = HashSubstituter() replacement = [ re.sub(self.pattern, sub.substitute(col), col) for col in columns ] # Hard fails if there is a collision post-ID-substitution if
pd.Series(replacement)
pandas.Series
''' * @author Waileinsamkeit * @email <EMAIL> * @create date 2020-08-07 15:51:58 * @modify date 2020-08-07 15:51:58 ''' from sklearn.metrics import confusion_matrix import numpy as np import pandas as pd from utils import flatten_lists class Eval_unit(object): def __init__(self,tp,fp,fn,tn,label): super(Eval_unit,self).__init__() self.id=label self.d={'tp':tp,'fp':fp,'fn':fn,'tn':tn} self.accuracy=self.cal_accuracy(tp,fp,fn,tn) self.precision=self.cal_precision(tp,fp,fn,tn) self.recall=self.cal_recall(tp,fp,fn,tn) self.f1_score=self.cal_f1_score(tp,fp,fn,tn) def __getattr__(self,name): return self[name] if name in self.__dict__ else self.d[name] def todict(self): return {"acc":self.accuracy,"prec":self.precision,"recall":self.recall,"f1_score":self.f1_score} @classmethod def cal_accuracy(cls,tp:int,fp:int,fn:int,tn:int)->float: return float(tp+tn)/(tp+tn+fp+fn) @classmethod def cal_precision(cls,tp:int,fp:int,fn:int,tn:int)->float: return float(tp)/(tp+fp) if tp+fp!=0 else 0. @classmethod def cal_recall(cls,tp:int,fp:int,fn:int,tn:int)->float: return float(tp)/(tp+fn) if tp+fn!=0 else 0. @classmethod def cal_f1_score(cls,tp:int,fp:int,fn:int,tn:int)->float: p=cls.cal_precision(tp,fp,fn,tn) r=cls.cal_recall(tp,fp,fn,tn) return 2*p*r/(r+p) if r+p !=0 else 0. def evaluate_single_label(pred,label,classes): pred=flatten_lists(pred) label=flatten_lists(label) matrix=confusion_matrix(pred,label,classes) TP=np.diag(matrix) FP=matrix.sum(axis=1)-TP FN=matrix.sum(axis=0)-TP TN=matrix.sum()-TP-FN-FP unit_list=[] for i in range(len(classes)): cla=classes[i] unit=Eval_unit(TP[i],FP[i],FN[i],TN[i],cla) unit_list.append(unit) return unit_list """ B-LOC I-LOC B-ORG I-ORG B-PER I-PER O """ def evaluate_entity_label(pred,label,classes): pred=flatten_lists(pred) label=flatten_lists(label) assert len(pred)==len(label) cla=[i.split('-')[-1] for i in classes if i!='O'] cla=list(set(cla)) cla2ind={} cla2ind=dict((c,ind) for ind,c in enumerate(cla)) index=0; pred_entities=np.zeros(len(cla),dtype=int) #TP+FP label_entities=np.zeros(len(cla),dtype=int) #TP+FN acc=np.zeros(len(cla),dtype=int) #TP while index<len(label): label_tag=label[index] if label_tag=='O': index+=1 else: c=label_tag.split('-')[-1] c=cla2ind[c] next_tag='I'+label_tag[1:] j=index+1 while label[j]==next_tag and j<len(label): j+=1 label_entities[c]+=1 label_entity= ''.join(label[index:j]) pred_entity=''.join(pred[index:j]) if label_entity==pred_entity: acc[c]+=1 index=j #统计Pred_tag 上的Entity index=0 while index<len(pred): pred_tag=pred[index] if pred_tag=='O': index+=1 elif pred_tag.split('-')[0]=='B': c=pred_tag.split('-')[-1] c=cla2ind[c] next_tag='I'+pred_tag[1:] j=index+1 while pred[j]==next_tag and j<len(pred): j+=1 pred_entities[c]+=1 index=j else: index+=1 # if index%100==0: # print(index,end=' ') units=[] TP=acc FP=pred_entities-acc FN=label_entities-acc TN=acc.sum()-acc for c,ind in cla2ind.items(): units.append(Eval_unit(TP[ind],FP[ind],FN[ind],TN[ind],c)) return units def evaluate_multiclass(units:list,type:str): assert type in ['macro','micro'] if type=='macro': P=float(sum([unit.precision for unit in units]))/len(units) R=float(sum([unit.recall for unit in units]))/len(units) else: tp=float(sum([unit.tp for unit in units]))/len(units) fp=float(sum([unit.fp for unit in units]))/len(units) fn=float(sum([unit.fn for unit in units]))/len(units) P=tp/(tp+fp) R=tp/(tp+fn) f1=2*P*R/(P+R) return {"prec":P,"recall":R,"f1_score":f1} ''' 将Eval_unit 的list 转化成 pandas 中的 DataFrame ''' def unitstopd(units): d={} macro=evaluate_multiclass(units,"macro") micro=evaluate_multiclass(units,"micro") d=dict((unit.id,unit.todict()) for unit in units) d["macro"]=macro d["micro"]=micro df=
pd.DataFrame(d)
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index[:2].droplevel(['three', 'one']) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) with pytest.raises(ValueError): index[:2].droplevel(['one', 'two', 'three']) with pytest.raises(KeyError): index[:2].droplevel(['one', 'four']) def test_drop_not_lexsorted(self): # GH 12078 # define the lexsorted version of the multi-index tuples = [('a', ''), ('b1', 'c1'), ('b2', 'c2')] lexsorted_mi = MultiIndex.from_tuples(tuples, names=['b', 'c']) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) df = df.pivot_table(index='a', columns=['b', 'c'], values='d') df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop('a'), not_lexsorted_mi.drop('a')) def test_insert(self): # key contained in all levels new_index = self.index.insert(0, ('bar', 'two')) assert new_index.equal_levels(self.index) assert new_index[0] == ('bar', 'two') # key not contained in all levels new_index = self.index.insert(0, ('abc', 'three')) exp0 = Index(list(self.index.levels[0]) + ['abc'], name='first') tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(self.index.levels[1]) + ['three'], name='second') tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ('abc', 'three') # key wrong length msg = "Item must have length equal to number of levels" with tm.assert_raises_regex(ValueError, msg): self.index.insert(0, ('foo2',)) left = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1]], columns=['1st', '2nd', '3rd']) left.set_index(['1st', '2nd'], inplace=True) ts = left['3rd'].copy(deep=True) left.loc[('b', 'x'), '3rd'] = 2 left.loc[('b', 'a'), '3rd'] = -1 left.loc[('b', 'b'), '3rd'] = 3 left.loc[('a', 'x'), '3rd'] = 4 left.loc[('a', 'w'), '3rd'] = 5 left.loc[('a', 'a'), '3rd'] = 6 ts.loc[('b', 'x')] = 2 ts.loc['b', 'a'] = -1 ts.loc[('b', 'b')] = 3 ts.loc['a', 'x'] = 4 ts.loc[('a', 'w')] = 5 ts.loc['a', 'a'] = 6 right = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1], ['b', 'x', 2], ['b', 'a', -1], ['b', 'b', 3], ['a', 'x', 4], ['a', 'w', 5], ['a', 'a', 6]], columns=['1st', '2nd', '3rd']) right.set_index(['1st', '2nd'], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right['3rd']) # GH9250 idx = [('test1', i) for i in range(5)] + \ [('test2', i) for i in range(6)] + \ [('test', 17), ('test', 18)] left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[('test', 17)] = 11 left.loc[('test', 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_take_preserve_name(self): taken = self.index.take([3, 0, 1]) assert taken.names == self.index.names def test_take_fill_value(self): # GH 12631 vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) result = idx.take(np.array([1, 0, -1])) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), (np.nan, pd.NaT)] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) def take_invalid_kwargs(self): vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') @pytest.mark.parametrize('other', [Index(['three', 'one', 'two']), Index(['one']), Index(['one', 'three'])]) def test_join_level(self, other, join_type): join_index, lidx, ridx = other.join(self.index, how=join_type, level='second', return_indexers=True) exp_level = other.join(self.index.levels[1], how=join_type) assert join_index.levels[0].equals(self.index.levels[0]) assert join_index.levels[1].equals(exp_level) # pare down levels mask = np.array( [x[1] in exp_level for x in self.index], dtype=bool) exp_values = self.index.values[mask] tm.assert_numpy_array_equal(join_index.values, exp_values) if join_type in ('outer', 'inner'): join_index2, ridx2, lidx2 = \ self.index.join(other, how=join_type, level='second', return_indexers=True) assert join_index.equals(join_index2) tm.assert_numpy_array_equal(lidx, lidx2) tm.assert_numpy_array_equal(ridx, ridx2) tm.assert_numpy_array_equal(join_index2.values, exp_values) def test_join_level_corner_case(self): # some corner cases idx = Index(['three', 'one', 'two']) result = idx.join(self.index, level='second') assert isinstance(result, MultiIndex) tm.assert_raises_regex(TypeError, "Join.*MultiIndex.*ambiguous", self.index.join, self.index, level=1) def test_join_self(self, join_type): res = self.index joined = res.join(res, how=join_type) assert res is joined def test_join_multi(self): # GH 10665 midx = pd.MultiIndex.from_product( [np.arange(4), np.arange(4)], names=['a', 'b']) idx = pd.Index([1, 2, 5], name='b') # inner jidx, lidx, ridx = midx.join(idx, how='inner', return_indexers=True) exp_idx = pd.MultiIndex.from_product( [np.arange(4), [1, 2]], names=['a', 'b']) exp_lidx = np.array([1, 2, 5, 6, 9, 10, 13, 14], dtype=np.intp) exp_ridx = np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=np.intp) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='inner', return_indexers=True) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # keep MultiIndex jidx, lidx, ridx = midx.join(idx, how='left', return_indexers=True) exp_ridx = np.array([-1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1], dtype=np.intp) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='right', return_indexers=True) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) def test_reindex(self): result, indexer = self.index.reindex(list(self.index[:4])) assert isinstance(result, MultiIndex) self.check_level_names(result, self.index[:4].names) result, indexer = self.index.reindex(list(self.index)) assert isinstance(result, MultiIndex) assert indexer is None self.check_level_names(result, self.index.names) def test_reindex_level(self): idx = Index(['one']) target, indexer = self.index.reindex(idx, level='second') target2, indexer2 = idx.reindex(self.index, level='second') exp_index = self.index.join(idx, level='second', how='right') exp_index2 = self.index.join(idx, level='second', how='left') assert target.equals(exp_index) exp_indexer = np.array([0, 2, 4]) tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False) assert target2.equals(exp_index2) exp_indexer2 = np.array([0, -1, 0, -1, 0, -1]) tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False) tm.assert_raises_regex(TypeError, "Fill method not supported", self.index.reindex, self.index, method='pad', level='second') tm.assert_raises_regex(TypeError, "Fill method not supported", idx.reindex, idx, method='bfill', level='first') def test_duplicates(self): assert not self.index.has_duplicates assert self.index.append(self.index).has_duplicates index = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[ [0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) assert index.has_duplicates # GH 9075 t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169), (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119), (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135), (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145), (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158), (u('x'), u('out'), u('z'), 16, u('y'), u('in'), u('z'), 122), (u('x'), u('out'), u('z'), 17, u('y'), u('in'), u('z'), 160), (u('x'), u('out'), u('z'), 18, u('y'), u('in'), u('z'), 180), (u('x'), u('out'), u('z'), 20, u('y'), u('in'), u('z'), 143), (u('x'), u('out'), u('z'), 21, u('y'), u('in'), u('z'), 128), (u('x'), u('out'), u('z'), 22, u('y'), u('in'), u('z'), 129), (u('x'), u('out'), u('z'), 25, u('y'), u('in'), u('z'), 111), (u('x'), u('out'), u('z'), 28, u('y'), u('in'), u('z'), 114), (u('x'), u('out'), u('z'), 29, u('y'), u('in'), u('z'), 121), (u('x'), u('out'), u('z'), 31, u('y'), u('in'), u('z'), 126), (u('x'), u('out'), u('z'), 32, u('y'), u('in'), u('z'), 155), (u('x'), u('out'), u('z'), 33, u('y'), u('in'), u('z'), 123), (u('x'), u('out'), u('z'), 12, u('y'), u('in'), u('z'), 144)] index = pd.MultiIndex.from_tuples(t) assert not index.has_duplicates # handle int64 overflow if possible def check(nlevels, with_nulls): labels = np.tile(np.arange(500), 2) level = np.arange(500) if with_nulls: # inject some null values labels[500] = -1 # common nan value labels = [labels.copy() for i in range(nlevels)] for i in range(nlevels): labels[i][500 + i - nlevels // 2] = -1 labels += [np.array([-1, 1]).repeat(500)] else: labels = [labels] * nlevels + [np.arange(2).repeat(500)] levels = [level] * nlevels + [[0, 1]] # no dups index = MultiIndex(levels=levels, labels=labels) assert not index.has_duplicates # with a dup if with_nulls: def f(a): return np.insert(a, 1000, a[0]) labels = list(map(f, labels)) index = MultiIndex(levels=levels, labels=labels) else: values = index.values.tolist() index = MultiIndex.from_tuples(values + [values[0]]) assert index.has_duplicates # no overflow check(4, False) check(4, True) # overflow possible check(8, False) check(8, True) # GH 9125 n, k = 200, 5000 levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)] labels = [np.random.choice(n, k * n) for lev in levels] mi = MultiIndex(levels=levels, labels=labels) for keep in ['first', 'last', False]: left = mi.duplicated(keep=keep) right = pd._libs.hashtable.duplicated_object(mi.values, keep=keep) tm.assert_numpy_array_equal(left, right) # GH5873 for a in [101, 102]: mi = MultiIndex.from_arrays([[101, a], [3.5, np.nan]]) assert not mi.has_duplicates with warnings.catch_warnings(record=True): # Deprecated - see GH20239 assert mi.get_duplicates().equals(MultiIndex.from_arrays( [[], []])) tm.assert_numpy_array_equal(mi.duplicated(), np.zeros( 2, dtype='bool')) for n in range(1, 6): # 1st level shape for m in range(1, 5): # 2nd level shape # all possible unique combinations, including nan lab = product(range(-1, n), range(-1, m)) mi = MultiIndex(levels=[list('abcde')[:n], list('WXYZ')[:m]], labels=np.random.permutation(list(lab)).T) assert len(mi) == (n + 1) * (m + 1) assert not mi.has_duplicates with warnings.catch_warnings(record=True): # Deprecated - see GH20239 assert mi.get_duplicates().equals(MultiIndex.from_arrays( [[], []])) tm.assert_numpy_array_equal(mi.duplicated(), np.zeros( len(mi), dtype='bool')) def test_duplicate_meta_data(self): # GH 10115 index = MultiIndex( levels=[[0, 1], [0, 1, 2]], labels=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) for idx in [index, index.set_names([None, None]), index.set_names([None, 'Num']), index.set_names(['Upper', 'Num']), ]: assert idx.has_duplicates assert idx.drop_duplicates().names == idx.names def test_get_unique_index(self): idx = self.index[[0, 1, 0, 1, 1, 0, 0]] expected = self.index._shallow_copy(idx[[0, 1]]) for dropna in [False, True]: result = idx._get_unique_index(dropna=dropna) assert result.unique tm.assert_index_equal(result, expected) @pytest.mark.parametrize('names', [None, ['first', 'second']]) def test_unique(self, names): mi = pd.MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names) tm.assert_index_equal(res, exp) mi = pd.MultiIndex.from_arrays([list('aaaa'), list('abab')], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([list('aa'), list('ab')], names=mi.names) tm.assert_index_equal(res, exp) mi = pd.MultiIndex.from_arrays([list('aaaa'), list('aaaa')], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([['a'], ['a']], names=mi.names) tm.assert_index_equal(res, exp) # GH #20568 - empty MI mi = pd.MultiIndex.from_arrays([[], []], names=names) res = mi.unique() tm.assert_index_equal(mi, res) @pytest.mark.parametrize('level', [0, 'first', 1, 'second']) def test_unique_level(self, level): # GH #17896 - with level= argument result = self.index.unique(level=level) expected = self.index.get_level_values(level).unique() tm.assert_index_equal(result, expected) # With already unique level mi = pd.MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) tm.assert_index_equal(result, expected) # With empty MI mi = pd.MultiIndex.from_arrays([[], []], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) def test_unique_datetimelike(self): idx1 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-01', '2015-01-01', 'NaT', 'NaT']) idx2 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-02', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]).unique() eidx1 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', 'NaT', 'NaT']) eidx2 = pd.DatetimeIndex(['2015-01-01', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') exp = pd.MultiIndex.from_arrays([eidx1, eidx2]) tm.assert_index_equal(result, exp) def test_tolist(self): result = self.index.tolist() exp = list(self.index.values) assert result == exp def test_repr_with_unicode_data(self): with pd.core.config.option_context("display.encoding", 'UTF-8'): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} index = pd.DataFrame(d).set_index(["a", "b"]).index assert "\\u" not in repr(index) # we don't want unicode-escaped def test_repr_roundtrip(self): mi = MultiIndex.from_product([list('ab'), range(3)], names=['first', 'second']) str(mi) if PY3: tm.assert_index_equal(eval(repr(mi)), mi, exact=True) else: result = eval(repr(mi)) # string coerces to unicode tm.assert_index_equal(result, mi, exact=False) assert mi.get_level_values('first').inferred_type == 'string' assert result.get_level_values('first').inferred_type == 'unicode' mi_u = MultiIndex.from_product( [list(u'ab'), range(3)], names=['first', 'second']) result = eval(repr(mi_u)) tm.assert_index_equal(result, mi_u, exact=True) # formatting if PY3: str(mi) else: compat.text_type(mi) # long format mi = MultiIndex.from_product([list('abcdefg'), range(10)], names=['first', 'second']) if PY3: tm.assert_index_equal(eval(repr(mi)), mi, exact=True) else: result = eval(repr(mi)) # string coerces to unicode tm.assert_index_equal(result, mi, exact=False) assert mi.get_level_values('first').inferred_type == 'string' assert result.get_level_values('first').inferred_type == 'unicode' result = eval(repr(mi_u)) tm.assert_index_equal(result, mi_u, exact=True) def test_str(self): # tested elsewhere pass def test_unicode_string_with_unicode(self): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} idx = pd.DataFrame(d).set_index(["a", "b"]).index if PY3: str(idx) else: compat.text_type(idx) def test_bytestring_with_unicode(self): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} idx = pd.DataFrame(d).set_index(["a", "b"]).index if PY3: bytes(idx) else: str(idx) def test_slice_keep_name(self): x = MultiIndex.from_tuples([('a', 'b'), (1, 2), ('c', 'd')], names=['x', 'y']) assert x[1:].names == x.names def test_isna_behavior(self): # should not segfault GH5123 # NOTE: if MI representation changes, may make sense to allow # isna(MI) with pytest.raises(NotImplementedError): pd.isna(self.index) def test_level_setting_resets_attributes(self): ind = pd.MultiIndex.from_arrays([ ['A', 'A', 'B', 'B', 'B'], [1, 2, 1, 2, 3] ]) assert ind.is_monotonic ind.set_levels([['A', 'B'], [1, 3, 2]], inplace=True) # if this fails, probably didn't reset the cache correctly. assert not ind.is_monotonic def test_is_monotonic_increasing(self): i = MultiIndex.from_product([np.arange(10), np.arange(10)], names=['one', 'two']) assert i.is_monotonic assert i._is_strictly_monotonic_increasing assert Index(i.values).is_monotonic assert i._is_strictly_monotonic_increasing i = MultiIndex.from_product([np.arange(10, 0, -1), np.arange(10)], names=['one', 'two']) assert not i.is_monotonic assert not i._is_strictly_monotonic_increasing assert not Index(i.values).is_monotonic assert not Index(i.values)._is_strictly_monotonic_increasing i = MultiIndex.from_product([np.arange(10), np.arange(10, 0, -1)], names=['one', 'two']) assert not i.is_monotonic assert not i._is_strictly_monotonic_increasing assert not Index(i.values).is_monotonic assert not Index(i.values)._is_strictly_monotonic_increasing i = MultiIndex.from_product([[1.0, np.nan, 2.0], ['a', 'b', 'c']]) assert not i.is_monotonic assert not i._is_strictly_monotonic_increasing assert not Index(i.values).is_monotonic assert not Index(i.values)._is_strictly_monotonic_increasing # string ordering i = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) assert not i.is_monotonic assert not Index(i.values).is_monotonic assert not i._is_strictly_monotonic_increasing assert not Index(i.values)._is_strictly_monotonic_increasing i = MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['mom', 'next', 'zenith']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) assert i.is_monotonic assert Index(i.values).is_monotonic assert i._is_strictly_monotonic_increasing assert Index(i.values)._is_strictly_monotonic_increasing # mixed levels, hits the TypeError i = MultiIndex( levels=[[1, 2, 3, 4], ['gb00b03mlx29', 'lu0197800237', 'nl0000289783', 'nl0000289965', 'nl0000301109']], labels=[[0, 1, 1, 2, 2, 2, 3], [4, 2, 0, 0, 1, 3, -1]], names=['household_id', 'asset_id']) assert not i.is_monotonic assert not i._is_strictly_monotonic_increasing # empty i = MultiIndex.from_arrays([[], []]) assert i.is_monotonic assert Index(i.values).is_monotonic assert i._is_strictly_monotonic_increasing assert Index(i.values)._is_strictly_monotonic_increasing def test_is_monotonic_decreasing(self): i = MultiIndex.from_product([np.arange(9, -1, -1), np.arange(9, -1, -1)], names=['one', 'two']) assert i.is_monotonic_decreasing assert i._is_strictly_monotonic_decreasing assert Index(i.values).is_monotonic_decreasing assert i._is_strictly_monotonic_decreasing i = MultiIndex.from_product([np.arange(10), np.arange(10, 0, -1)], names=['one', 'two']) assert not i.is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing assert not Index(i.values).is_monotonic_decreasing assert not Index(i.values)._is_strictly_monotonic_decreasing i = MultiIndex.from_product([np.arange(10, 0, -1), np.arange(10)], names=['one', 'two']) assert not i.is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing assert not Index(i.values).is_monotonic_decreasing assert not Index(i.values)._is_strictly_monotonic_decreasing i = MultiIndex.from_product([[2.0, np.nan, 1.0], ['c', 'b', 'a']]) assert not i.is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing assert not Index(i.values).is_monotonic_decreasing assert not Index(i.values)._is_strictly_monotonic_decreasing # string ordering i = MultiIndex(levels=[['qux', 'foo', 'baz', 'bar'], ['three', 'two', 'one']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) assert not i.is_monotonic_decreasing assert not Index(i.values).is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing assert not Index(i.values)._is_strictly_monotonic_decreasing i = MultiIndex(levels=[['qux', 'foo', 'baz', 'bar'], ['zenith', 'next', 'mom']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) assert i.is_monotonic_decreasing assert Index(i.values).is_monotonic_decreasing assert i._is_strictly_monotonic_decreasing assert Index(i.values)._is_strictly_monotonic_decreasing # mixed levels, hits the TypeError i = MultiIndex( levels=[[4, 3, 2, 1], ['nl0000301109', 'nl0000289965', 'nl0000289783', 'lu0197800237', 'gb00b03mlx29']], labels=[[0, 1, 1, 2, 2, 2, 3], [4, 2, 0, 0, 1, 3, -1]], names=['household_id', 'asset_id']) assert not i.is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing # empty i = MultiIndex.from_arrays([[], []]) assert i.is_monotonic_decreasing assert Index(i.values).is_monotonic_decreasing assert i._is_strictly_monotonic_decreasing assert Index(i.values)._is_strictly_monotonic_decreasing def test_is_strictly_monotonic_increasing(self): idx = pd.MultiIndex(levels=[['bar', 'baz'], ['mom', 'next']], labels=[[0, 0, 1, 1], [0, 0, 0, 1]]) assert idx.is_monotonic_increasing assert not idx._is_strictly_monotonic_increasing def test_is_strictly_monotonic_decreasing(self): idx = pd.MultiIndex(levels=[['baz', 'bar'], ['next', 'mom']], labels=[[0, 0, 1, 1], [0, 0, 0, 1]]) assert idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing def test_reconstruct_sort(self): # starts off lexsorted & monotonic mi = MultiIndex.from_arrays([ ['A', 'A', 'B', 'B', 'B'], [1, 2, 1, 2, 3] ]) assert mi.is_lexsorted() assert mi.is_monotonic recons = mi._sort_levels_monotonic() assert recons.is_lexsorted() assert recons.is_monotonic assert mi is recons assert mi.equals(recons) assert Index(mi.values).equals(Index(recons.values)) # cannot convert to lexsorted mi = pd.MultiIndex.from_tuples([('z', 'a'), ('x', 'a'), ('y', 'b'), ('x', 'b'), ('y', 'a'), ('z', 'b')], names=['one', 'two']) assert not mi.is_lexsorted() assert not mi.is_monotonic recons = mi._sort_levels_monotonic() assert not recons.is_lexsorted() assert not recons.is_monotonic assert mi.equals(recons) assert Index(mi.values).equals(Index(recons.values)) # cannot convert to lexsorted mi = MultiIndex(levels=[['b', 'd', 'a'], [1, 2, 3]], labels=[[0, 1, 0, 2], [2, 0, 0, 1]], names=['col1', 'col2']) assert not mi.is_lexsorted() assert not mi.is_monotonic recons = mi._sort_levels_monotonic() assert not recons.is_lexsorted() assert not recons.is_monotonic assert mi.equals(recons) assert Index(mi.values).equals(Index(recons.values)) def test_reconstruct_remove_unused(self): # xref to GH 2770 df = DataFrame([['deleteMe', 1, 9], ['keepMe', 2, 9], ['keepMeToo', 3, 9]], columns=['first', 'second', 'third']) df2 = df.set_index(['first', 'second'], drop=False) df2 = df2[df2['first'] != 'deleteMe'] # removed levels are there expected = MultiIndex(levels=[['deleteMe', 'keepMe', 'keepMeToo'], [1, 2, 3]], labels=[[1, 2], [1, 2]], names=['first', 'second']) result = df2.index tm.assert_index_equal(result, expected) expected = MultiIndex(levels=[['keepMe', 'keepMeToo'], [2, 3]], labels=[[0, 1], [0, 1]], names=['first', 'second']) result = df2.index.remove_unused_levels() tm.assert_index_equal(result, expected) # idempotent result2 = result.remove_unused_levels() tm.assert_index_equal(result2, expected) assert result2.is_(result) @pytest.mark.parametrize('level0', [['a', 'd', 'b'], ['a', 'd', 'b', 'unused']]) @pytest.mark.parametrize('level1', [['w', 'x', 'y', 'z'], ['w', 'x', 'y', 'z', 'unused']]) def test_remove_unused_nan(self, level0, level1): # GH 18417 mi = pd.MultiIndex(levels=[level0, level1], labels=[[0, 2, -1, 1, -1], [0, 1, 2, 3, 2]]) result = mi.remove_unused_levels() tm.assert_index_equal(result, mi) for level in 0, 1: assert('unused' not in result.levels[level]) @pytest.mark.parametrize('first_type,second_type', [ ('int64', 'int64'), ('datetime64[D]', 'str')]) def test_remove_unused_levels_large(self, first_type, second_type): # GH16556 # because tests should be deterministic (and this test in particular # checks that levels are removed, which is not the case for every # random input): rng = np.random.RandomState(4) # seed is arbitrary value that works size = 1 << 16 df = DataFrame(dict( first=rng.randint(0, 1 << 13, size).astype(first_type), second=rng.randint(0, 1 << 10, size).astype(second_type), third=rng.rand(size))) df = df.groupby(['first', 'second']).sum() df = df[df.third < 0.1] result = df.index.remove_unused_levels() assert len(result.levels[0]) < len(df.index.levels[0]) assert len(result.levels[1]) < len(df.index.levels[1]) assert result.equals(df.index) expected = df.reset_index().set_index(['first', 'second']).index tm.assert_index_equal(result, expected) def test_isin(self): values = [('foo', 2), ('bar', 3), ('quux', 4)] idx = MultiIndex.from_arrays([['qux', 'baz', 'foo', 'bar'], np.arange( 4)]) result = idx.isin(values) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = MultiIndex.from_arrays([[], []]) result = idx.isin(values) assert len(result) == 0 assert result.dtype == np.bool_ @pytest.mark.skipif(PYPY, reason="tuples cmp recursively on PyPy") def test_isin_nan_not_pypy(self): idx = MultiIndex.from_arrays([['foo', 'bar'], [1.0, np.nan]]) tm.assert_numpy_array_equal(idx.isin([('bar', np.nan)]), np.array([False, False])) tm.assert_numpy_array_equal(idx.isin([('bar', float('nan'))]), np.array([False, False])) @pytest.mark.skipif(not PYPY, reason="tuples cmp recursively on PyPy") def test_isin_nan_pypy(self): idx = MultiIndex.from_arrays([['foo', 'bar'], [1.0, np.nan]]) tm.assert_numpy_array_equal(idx.isin([('bar', np.nan)]), np.array([False, True])) tm.assert_numpy_array_equal(idx.isin([('bar', float('nan'))]), np.array([False, True])) def test_isin_level_kwarg(self): idx = MultiIndex.from_arrays([['qux', 'baz', 'foo', 'bar'], np.arange( 4)]) vals_0 = ['foo', 'bar', 'quux'] vals_1 = [2, 3, 10] expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(expected, idx.isin(vals_0, level=0)) tm.assert_numpy_array_equal(expected, idx.isin(vals_0, level=-2)) tm.assert_numpy_array_equal(expected, idx.isin(vals_1, level=1)) tm.assert_numpy_array_equal(expected, idx.isin(vals_1, level=-1)) pytest.raises(IndexError, idx.isin, vals_0, level=5) pytest.raises(IndexError, idx.isin, vals_0, level=-5) pytest.raises(KeyError, idx.isin, vals_0, level=1.0) pytest.raises(KeyError, idx.isin, vals_1, level=-1.0) pytest.raises(KeyError, idx.isin, vals_1, level='A') idx.names = ['A', 'B'] tm.assert_numpy_array_equal(expected, idx.isin(vals_0, level='A')) tm.assert_numpy_array_equal(expected, idx.isin(vals_1, level='B')) pytest.raises(KeyError, idx.isin, vals_1, level='C') def test_reindex_preserves_names_when_target_is_list_or_ndarray(self): # GH6552 idx = self.index.copy() target = idx.copy() idx.names = target.names = [None, None] other_dtype = pd.MultiIndex.from_product([[1, 2], [3, 4]]) # list & ndarray cases assert idx.reindex([])[0].names == [None, None] assert idx.reindex(np.array([]))[0].names == [None, None] assert idx.reindex(target.tolist())[0].names == [None, None] assert idx.reindex(target.values)[0].names == [None, None] assert idx.reindex(other_dtype.tolist())[0].names == [None, None] assert idx.reindex(other_dtype.values)[0].names == [None, None] idx.names = ['foo', 'bar'] assert idx.reindex([])[0].names == ['foo', 'bar'] assert idx.reindex(np.array([]))[0].names == ['foo', 'bar'] assert idx.reindex(target.tolist())[0].names == ['foo', 'bar'] assert idx.reindex(target.values)[0].names == ['foo', 'bar'] assert idx.reindex(other_dtype.tolist())[0].names == ['foo', 'bar'] assert idx.reindex(other_dtype.values)[0].names == ['foo', 'bar'] def test_reindex_lvl_preserves_names_when_target_is_list_or_array(self): # GH7774 idx = pd.MultiIndex.from_product([[0, 1], ['a', 'b']], names=['foo', 'bar']) assert idx.reindex([], level=0)[0].names == ['foo', 'bar'] assert idx.reindex([], level=1)[0].names == ['foo', 'bar'] def test_reindex_lvl_preserves_type_if_target_is_empty_list_or_array(self): # GH7774 idx = pd.MultiIndex.from_product([[0, 1], ['a', 'b']]) assert idx.reindex([], level=0)[0].levels[0].dtype.type == np.int64 assert idx.reindex([], level=1)[0].levels[1].dtype.type == np.object_ def test_groupby(self): groups = self.index.groupby(np.array([1, 1, 1, 2, 2, 2])) labels = self.index.get_values().tolist() exp = {1: labels[:3], 2: labels[3:]} tm.assert_dict_equal(groups, exp) # GH5620 groups = self.index.groupby(self.index) exp = {key: [key] for key in self.index} tm.assert_dict_equal(groups, exp) def test_index_name_retained(self): # GH9857 result = pd.DataFrame({'x': [1, 2, 6], 'y': [2, 2, 8], 'z': [-5, 0, 5]}) result = result.set_index('z') result.loc[10] = [9, 10] df_expected = pd.DataFrame({'x': [1, 2, 6, 9], 'y': [2, 2, 8, 10], 'z': [-5, 0, 5, 10]}) df_expected = df_expected.set_index('z') tm.assert_frame_equal(result, df_expected) def test_equals_operator(self): # GH9785 assert (self.index == self.index).all() def test_large_multiindex_error(self): # GH12527 df_below_1000000 = pd.DataFrame( 1, index=pd.MultiIndex.from_product([[1, 2], range(499999)]), columns=['dest']) with pytest.raises(KeyError): df_below_1000000.loc[(-1, 0), 'dest'] with pytest.raises(KeyError): df_below_1000000.loc[(3, 0), 'dest'] df_above_1000000 = pd.DataFrame( 1, index=pd.MultiIndex.from_product([[1, 2], range(500001)]), columns=['dest']) with pytest.raises(KeyError): df_above_1000000.loc[(-1, 0), 'dest'] with pytest.raises(KeyError): df_above_1000000.loc[(3, 0), 'dest'] def test_partial_string_timestamp_multiindex(self): # GH10331 dr = pd.date_range('2016-01-01', '2016-01-03', freq='12H') abc = ['a', 'b', 'c'] ix = pd.MultiIndex.from_product([dr, abc]) df = pd.DataFrame({'c1': range(0, 15)}, index=ix) idx = pd.IndexSlice # c1 # 2016-01-01 00:00:00 a 0 # b 1 # c 2 # 2016-01-01 12:00:00 a 3 # b 4 # c 5 # 2016-01-02 00:00:00 a 6 # b 7 # c 8 # 2016-01-02 12:00:00 a 9 # b 10 # c 11 # 2016-01-03 00:00:00 a 12 # b 13 # c 14 # partial string matching on a single index for df_swap in (df.swaplevel(), df.swaplevel(0), df.swaplevel(0, 1)): df_swap = df_swap.sort_index() just_a = df_swap.loc['a'] result = just_a.loc['2016-01-01'] expected = df.loc[idx[:, 'a'], :].iloc[0:2] expected.index = expected.index.droplevel(1) tm.assert_frame_equal(result, expected) # indexing with IndexSlice result = df.loc[idx['2016-01-01':'2016-02-01', :], :] expected = df tm.assert_frame_equal(result, expected) # match on secondary index result = df_swap.loc[idx[:, '2016-01-01':'2016-01-01'], :] expected = df_swap.iloc[[0, 1, 5, 6, 10, 11]] tm.assert_frame_equal(result, expected) # Even though this syntax works on a single index, this is somewhat # ambiguous and we don't want to extend this behavior forward to work # in multi-indexes. This would amount to selecting a scalar from a # column. with pytest.raises(KeyError): df['2016-01-01'] # partial string match on year only result = df.loc['2016'] expected = df tm.assert_frame_equal(result, expected) # partial string match on date result = df.loc['2016-01-01'] expected = df.iloc[0:6] tm.assert_frame_equal(result, expected) # partial string match on date and hour, from middle result = df.loc['2016-01-02 12'] expected = df.iloc[9:12] tm.assert_frame_equal(result, expected) # partial string match on secondary index result = df_swap.loc[idx[:, '2016-01-02'], :] expected = df_swap.iloc[[2, 3, 7, 8, 12, 13]] tm.assert_frame_equal(result, expected) # tuple selector with partial string match on date result = df.loc[('2016-01-01', 'a'), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) # Slicing date on first level should break (of course) with pytest.raises(KeyError): df_swap.loc['2016-01-01'] # GH12685 (partial string with daily resolution or below) dr = date_range('2013-01-01', periods=100, freq='D') ix = MultiIndex.from_product([dr, ['a', 'b']]) df = DataFrame(np.random.randn(200, 1), columns=['A'], index=ix) result = df.loc[idx['2013-03':'2013-03', :], :] expected = df.iloc[118:180] tm.assert_frame_equal(result, expected) def test_rangeindex_fallback_coercion_bug(self): # GH 12893 foo = pd.DataFrame(np.arange(100).reshape((10, 10))) bar = pd.DataFrame(np.arange(100).reshape((10, 10))) df = pd.concat({'foo': foo.stack(), 'bar': bar.stack()}, axis=1) df.index.names = ['fizz', 'buzz'] str(df) expected = pd.DataFrame({'bar': np.arange(100), 'foo': np.arange(100)}, index=pd.MultiIndex.from_product( [range(10), range(10)], names=['fizz', 'buzz'])) tm.assert_frame_equal(df, expected, check_like=True) result = df.index.get_level_values('fizz') expected = pd.Int64Index(np.arange(10), name='fizz').repeat(10)
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
# -*- coding: utf-8 -*- """Util functions to make data processing and feature engineering""" import pandas as pd import pickle import sys from satlomasproc import __version__ from sklearn.preprocessing import MinMaxScaler __author__ = "<NAME>" __copyright__ = "Dymaxion Labs" __license__ = "apache-2.0" def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): """ Convert series of data to supervised squence learning """ n_vars = 1 if type(data) is list else data.shape[1] df = data cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += ["{}_t-{}".format(var_name, i) for var_name in df.columns] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += ["{}_t".format(var_name) for var_name in df.columns] else: names += ["{}_t+{}".format(var_name, i) for var_name in df.columns] # put it all together agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg def get_interest_variable( in_dataset, sensor_var, date_col, hr_col, numeric_var, target_sensor="A620" ): """ Extract var to predict on from dataset """ dataset_pproc = in_dataset.loc[ in_dataset[sensor_var] == target_sensor, [date_col, hr_col] + [numeric_var] ] hrs_str = dataset_pproc[hr_col].to_string() dates_str = dataset_pproc[date_col] dataset_pproc[date_col] =
pd.to_datetime(dataset_pproc[date_col])
pandas.to_datetime
""" opencadd.databases.klifs.remote Defines a remote KLIFS session. """ import logging from copy import deepcopy from pathlib import Path import pandas as pd from bravado.client import SwaggerClient from .core import ( KinasesProvider, LigandsProvider, StructuresProvider, BioactivitiesProvider, InteractionsProvider, PocketsProvider, CoordinatesProvider, ) from .schema import REMOTE_COLUMNS_MAPPING, DATAFRAME_COLUMNS from .utils import metadata_to_filepath, silence_logging from opencadd.io import DataFrame, Rdkit _logger = logging.getLogger(__name__) class SerializableSwaggerClient(SwaggerClient): # Since they are using __attributes to mangle the namespace # we need to hardcode the parent class name in saved attributes # (only also_return_response in this case) # Sorry about the hackiness :) def __setstate__(self, state): self._SwaggerClient__also_return_response = state["also_return_response"] self.swagger_spec = state["swagger_spec"] def __getstate__(self, *args): return { "also_return_response": deepcopy(self._SwaggerClient__also_return_response), "swagger_spec": deepcopy(self.swagger_spec), } class RemoteInitializer: """ Base class used to define __init__ for all remote classes. Attributes ---------- _client : bravado.client.SwaggerClient KLIFS client. """ def __init__(self, client, *args, **kwargs): self._client = client class Kinases(RemoteInitializer, KinasesProvider): """ Extends KinasesProvider to provide remote kinases requests. Refer to KinasesProvider documentation for more information: opencadd.databases.klifs.core.KinasesProvider """ def all_kinase_groups(self): # Use KLIFS API result = self._client.Information.get_kinase_groups().response().result # Convert list to DataFrame (1 column) column = DATAFRAME_COLUMNS["kinase_groups"][0] kinase_groups = pd.DataFrame({column[0]: pd.Series(result, dtype=column[1])}) return kinase_groups def all_kinase_families(self, group=None): # Use KLIFS API result = self._client.Information.get_kinase_families(kinase_group=group).response().result # Convert list to DataFrame (1 column) column = DATAFRAME_COLUMNS["kinase_families"][0] kinase_families = pd.DataFrame({column[0]: pd.Series(result, dtype=column[1])}) return kinase_families def all_kinases(self, group=None, family=None, species=None): # Use KLIFS API result = ( self._client.Information.get_kinase_names( kinase_group=group, kinase_family=family, species=species ) .response() .result ) # Convert list of ABC objects to DataFrame kinases = self._abc_to_dataframe(result) # Standardize DataFrame kinases = self._standardize_dataframe( kinases, DATAFRAME_COLUMNS["kinases_all"], REMOTE_COLUMNS_MAPPING["kinases_all"] ) return kinases def by_kinase_klifs_id(self, kinase_klifs_ids): kinase_klifs_ids = self._ensure_list(kinase_klifs_ids) # Use KLIFS API result = ( self._client.Information.get_kinase_information(kinase_ID=kinase_klifs_ids) .response() .result ) # Convert list of ABC objects to DataFrame kinases = self._abc_to_dataframe(result) # Standardize DataFrame kinases = self._standardize_dataframe( kinases, DATAFRAME_COLUMNS["kinases"], REMOTE_COLUMNS_MAPPING["kinases"] ) return kinases def by_kinase_name(self, kinase_names, species=None): kinase_names = self._ensure_list(kinase_names) # Use KLIFS API (send requests iteratively) kinases = self._multiple_remote_requests(self._by_kinase_name, kinase_names, species) # Standardize DataFrame kinases = self._standardize_dataframe( kinases, DATAFRAME_COLUMNS["kinases"], REMOTE_COLUMNS_MAPPING["kinases"] ) return kinases def _by_kinase_name(self, kinase_name, species=None): """ Get kinases by kinase name. Parameters ---------- kinase_name : str Kinase name. Returns ------- pandas.DataFrame or None Kinases (rows) with columns as described in the class docstring. """ # Use KLIFS API result = ( self._client.Information.get_kinase_ID(kinase_name=kinase_name, species=species) .response() .result ) # Convert list of ABC objects to DataFrame kinases = self._abc_to_dataframe(result) # Standardize DataFrame kinases = self._standardize_dataframe( kinases, DATAFRAME_COLUMNS["kinases"], REMOTE_COLUMNS_MAPPING["kinases"] ) return kinases class Ligands(RemoteInitializer, LigandsProvider): """ Extends LigandsProvider to provide remote ligands requests. Refer to LigandsProvider documentation for more information: opencadd.databases.klifs.core.LigandsProvider """ def all_ligands(self): # Use KLIFS API: Get all kinase KLIFS IDs kinases_remote = Kinases(self._client) kinases = kinases_remote.all_kinases() # Use KLIFS API: Get ligands kinase_klifs_ids = kinases["kinase.klifs_id"].to_list() result = ( self._client.Ligands.get_ligands_list(kinase_ID=kinase_klifs_ids).response().result ) # Convert list of ABC objects to DataFrame ligands = self._abc_to_dataframe(result) # Standardize DataFrame ligands = self._standardize_dataframe( ligands, DATAFRAME_COLUMNS["ligands"], REMOTE_COLUMNS_MAPPING["ligands"] ) return ligands def by_kinase_klifs_id(self, kinase_klifs_ids): # Use KLIFS API (send requests iteratively) ligands = self._multiple_remote_requests(self._by_kinase_klifs_id, kinase_klifs_ids) # Standardize DataFrame ligands = self._standardize_dataframe( ligands, DATAFRAME_COLUMNS["ligands"] + [("kinase.klifs_id (query)", "int32")], REMOTE_COLUMNS_MAPPING["ligands"], ) return ligands def _by_kinase_klifs_id(self, kinase_klifs_id): """ Get ligands by kinase KLIFS ID. Parameters ---------- kinase_klifs_id : int Kinase KLIFS ID. Returns ------- pandas.DataFrame Ligands (rows) with columns as described in the class docstring. """ # Use KLIFS API result = ( self._client.Ligands.get_ligands_list(kinase_ID=[kinase_klifs_id]).response().result ) # Convert list of ABC objects to DataFrame ligands = self._abc_to_dataframe(result) # Standardize DataFrame ligands = self._standardize_dataframe( ligands, DATAFRAME_COLUMNS["ligands"], REMOTE_COLUMNS_MAPPING["ligands"] ) # Rename column to indicate query key ligands["kinase.klifs_id (query)"] = kinase_klifs_id return ligands def by_kinase_name(self, kinase_names): kinase_names = self._ensure_list(kinase_names) # Use KLIFS API: Get kinase KLIFS IDs for input kinase names (remotely) # Note: One kinase name can be linked to multiple kinase KLIFS IDs (due to multiple species) _logger.info(f"Fetch kinase KLIFS IDs for input kinase names...") kinases_remote = Kinases(self._client) kinases = kinases_remote.by_kinase_name(kinase_names) # Select and rename columns to indicate columns involved in query kinases = kinases[ ["kinase.klifs_id", "kinase.klifs_name", "kinase.hgnc_name", "species.klifs"] ] kinases.rename( columns={ "kinase.klifs_id": "kinase.klifs_id (query)", "kinase.klifs_name": "kinase.klifs_name (query)", "kinase.hgnc_name": "kinase.hgnc_name (query)", "species.klifs": "species.klifs (query)", }, inplace=True, ) # Use KLIFS API: Get ligands by kinase KLIFS IDs _logger.info(f"Fetch ligands based on these KLIFS IDs...") kinase_klifs_ids = kinases["kinase.klifs_id (query)"].to_list() ligands = self.by_kinase_klifs_id(kinase_klifs_ids) # Add kinase name and species details to rationalize kinase KLIFS IDs ligands = ligands.merge(kinases, on="kinase.klifs_id (query)", how="left") return ligands def by_ligand_klifs_id(self, ligand_klifs_ids): ligand_klifs_ids = self._ensure_list(ligand_klifs_ids) # Use KLIFS API: Get all ligands ligands = self.all_ligands() # Select ligands by ligand KLIFS IDs ligands = ligands[ligands["ligand.klifs_id"].isin(ligand_klifs_ids)] # Standardize DataFrame ligands = self._standardize_dataframe( ligands, DATAFRAME_COLUMNS["ligands"], REMOTE_COLUMNS_MAPPING["ligands"] ) return ligands def by_ligand_expo_id(self, ligand_expo_ids): ligand_expo_ids = self._ensure_list(ligand_expo_ids) # Use KLIFS API: Get all ligands ligands = self.all_ligands() # Select ligands by Ligand Expo IDs ligands = ligands[ligands["ligand.expo_id"].isin(ligand_expo_ids)] # Standardize DataFrame ligands = self._standardize_dataframe( ligands, DATAFRAME_COLUMNS["ligands"], REMOTE_COLUMNS_MAPPING["ligands"] ) return ligands class Structures(RemoteInitializer, StructuresProvider): """ Extends StructuresProvider to provide remote structures requests. Refer to StructuresProvider documentation for more information: opencadd.databases.klifs.core.StructuresProvider """ def all_structures(self): # Use KLIFS API: Get all kinase KLIFS IDs kinases_remote = Kinases(self._client) kinases = kinases_remote.all_kinases() # Use KLIFS API: Get all structures from these kinase KLIFS IDs kinase_klifs_ids = kinases["kinase.klifs_id"].to_list() structures = self.by_kinase_klifs_id(kinase_klifs_ids) # Standardize DataFrame structures = self._standardize_dataframe( structures, DATAFRAME_COLUMNS["structures"], REMOTE_COLUMNS_MAPPING["structures"] ) return structures def by_structure_klifs_id(self, structure_klifs_ids): structure_klifs_ids = self._ensure_list(structure_klifs_ids) # Use KLIFS API result = ( self._client.Structures.get_structure_list(structure_ID=structure_klifs_ids) .response() .result ) # Convert list of ABC objects to DataFrame structures = self._abc_to_dataframe(result) # Standardize DataFrame structures = self._standardize_dataframe( structures, DATAFRAME_COLUMNS["structures"], REMOTE_COLUMNS_MAPPING["structures"] ) return structures def by_ligand_klifs_id(self, ligand_klifs_ids): # TODO in the future: Approach incorrect: One PDB can have multiple KLIFS IDs _logger.warning( f"This method uses this lookup: ligand KLIFS ID > Ligand Expo ID > structures." f"The KLIFS Swagger API offers no direct structure search by ligand KLIFS ID." f"However, one Ligand Expo ID can be represented by multiple ligand KLIFS IDs. " f"Thus, in rare cases, this method will return also structure that are not connected " f"to the input ligand KLIFS ID but to a mutual Ligand Expo ID." ) ligand_klifs_ids = self._ensure_list(ligand_klifs_ids) # Use KLIFS API: Get Ligand Expo IDs for ligand KLIFS IDs remote_ligands = Ligands(self._client) ligands = remote_ligands.by_ligand_klifs_id(ligand_klifs_ids) # Use KLIFS API: Get structures from Ligand Expo IDs ligand_expo_ids = ligands["ligand.expo_id"].to_list() structures = self.by_ligand_expo_id(ligand_expo_ids) # Standardize DataFrame structures = self._standardize_dataframe( structures, DATAFRAME_COLUMNS["structures"], REMOTE_COLUMNS_MAPPING["structures"] ) return structures def by_kinase_klifs_id(self, kinase_klifs_ids): kinase_klifs_ids = self._ensure_list(kinase_klifs_ids) # Use KLIFS API result = ( self._client.Structures.get_structures_list(kinase_ID=kinase_klifs_ids) .response() .result ) # Convert list of ABC objects to DataFrame structures = self._abc_to_dataframe(result) # Standardize DataFrame structures = self._standardize_dataframe( structures, DATAFRAME_COLUMNS["structures"], REMOTE_COLUMNS_MAPPING["structures"] ) return structures def by_structure_pdb_id( self, structure_pdb_ids, structure_alternate_model=None, structure_chain=None ): structure_pdb_ids = self._ensure_list(structure_pdb_ids) # Use KLIFS API result = ( self._client.Structures.get_structures_pdb_list(pdb_codes=structure_pdb_ids) .response() .result ) # Convert list of ABC objects to DataFrame structures = self._abc_to_dataframe(result) # Standardize DataFrame structures = self._standardize_dataframe( structures, DATAFRAME_COLUMNS["structures"], REMOTE_COLUMNS_MAPPING["structures"] ) # If only one structure PDB ID is given, check alternate model and chain filters if len(structure_pdb_ids) == 1: structures = self._filter_pdb_by_alt_chain( structures, structure_alternate_model, structure_chain ).reset_index(drop=True) return structures def by_ligand_expo_id(self, ligand_expo_ids): ligand_expo_ids = self._ensure_list(ligand_expo_ids) # Use KLIFS API: Get all structures structures = self.all_structures() # Select structures by Ligand Expo IDs structures = structures[structures["ligand.expo_id"].isin(ligand_expo_ids)] # Standardize DataFrame structures = self._standardize_dataframe( structures, DATAFRAME_COLUMNS["structures"], REMOTE_COLUMNS_MAPPING["structures"] ) return structures def by_kinase_name(self, kinase_names): kinase_names = self._ensure_list(kinase_names) # Use KLIFS API: Get all structures structures = self.all_structures() # Select structures by kinase names structures = structures[structures["kinase.klifs_name"].isin(kinase_names)] # Standardize DataFrame structures = self._standardize_dataframe( structures, DATAFRAME_COLUMNS["structures"], REMOTE_COLUMNS_MAPPING["structures"] ) return structures class Bioactivities(RemoteInitializer, BioactivitiesProvider): """ Extends BioactivitiesProvider to provide remote bioactivities requests. Refer to BioactivitiesProvider documentation for more information: opencadd.databases.klifs.core.BioactivitiesProvider """ def all_bioactivities(self, _top_n=None): # Use KLIFS API: Get all kinase KLIFS IDs ligands_remote = Ligands(self._client) ligands = ligands_remote.all_ligands() # Optional: Select top n ligands for bioactivity query! if _top_n: ligands = ligands[:_top_n] # Use KLIFS API: Get all bioactivities from these ligand KLIFS IDs ligand_klifs_ids = ligands["ligand.klifs_id"].to_list() # Many ligands do not have bioactivities in ChEMBL, # Thus, disable logging messages for this query with silence_logging(): bioactivities = self.by_ligand_klifs_id(ligand_klifs_ids) # Standardize DataFrame bioactivities = self._standardize_dataframe( bioactivities, DATAFRAME_COLUMNS["bioactivities"], REMOTE_COLUMNS_MAPPING["bioactivities"], ) return bioactivities def by_kinase_klifs_id(self, kinase_klifs_ids): kinase_klifs_ids = self._ensure_list(kinase_klifs_ids) # Use KLIFS API: Get all kinase KLIFS IDs ligands_remote = Ligands(self._client) ligands = ligands_remote.by_kinase_klifs_id(kinase_klifs_ids) # Use KLIFS API: Get all bioactivities from these ligand KLIFS IDs ligand_klifs_ids = ligands["ligand.klifs_id"].to_list() bioactivities = self.by_ligand_klifs_id(ligand_klifs_ids) # Standardize DataFrame bioactivities = self._standardize_dataframe( bioactivities, DATAFRAME_COLUMNS["bioactivities"], REMOTE_COLUMNS_MAPPING["bioactivities"], ) return bioactivities def by_ligand_klifs_id(self, ligand_klifs_ids): # Use KLIFS API (send requests iteratively) bioactivities = self._multiple_remote_requests(self._by_ligand_klifs_id, ligand_klifs_ids) # Standardize DataFrame bioactivities = self._standardize_dataframe( bioactivities, DATAFRAME_COLUMNS["bioactivities"] + [("ligand.klifs_id (query)", "int32")], REMOTE_COLUMNS_MAPPING["bioactivities"], ) return bioactivities def by_ligand_expo_id(self, ligand_expo_id): # Use KLIFS API (send requests iteratively) bioactivities = self._multiple_remote_requests(self._by_ligand_expo_id, ligand_expo_id) # Standardize DataFrame bioactivities = self._standardize_dataframe( bioactivities, DATAFRAME_COLUMNS["bioactivities"] + [("ligand.expo_id (query)", "string")], REMOTE_COLUMNS_MAPPING["bioactivities"], ) return bioactivities def _by_ligand_klifs_id(self, ligand_klifs_id): """ Get bioactivities by ligand KLIFS ID. Parameters ---------- ligand_klifs_id : int Ligand KLIFS ID. Returns ------- pandas.DataFrame Bioactivities (rows) with columns as described in the class docstring. """ # Use KLIFS API result = ( self._client.Ligands.get_bioactivity_list_id(ligand_ID=ligand_klifs_id) .response() .result ) # Convert list of ABC objects to DataFrame bioactivities = self._abc_to_dataframe(result) # Standardize DataFrame bioactivities = self._standardize_dataframe( bioactivities, DATAFRAME_COLUMNS["bioactivities"], REMOTE_COLUMNS_MAPPING["bioactivities"], ) # Rename column to indicate query key bioactivities["ligand.klifs_id (query)"] = ligand_klifs_id return bioactivities def _by_ligand_expo_id(self, ligand_expo_id): """ Get bioactivities by ligand Expo ID. Parameters ---------- ligand_expo_id : int Ligand Expo ID. Returns ------- pandas.DataFrame Bioactivities (rows) with columns as described in the class docstring. """ # Use KLIFS API result = ( self._client.Ligands.get_bioactivity_list_pdb(ligand_PDB=ligand_expo_id) .response() .result ) # Convert list of ABC objects to DataFrame bioactivities = self._abc_to_dataframe(result) # Standardize DataFrame bioactivities = self._standardize_dataframe( bioactivities, DATAFRAME_COLUMNS["bioactivities"], REMOTE_COLUMNS_MAPPING["bioactivities"], ) # Rename column to indicate query key bioactivities["ligand.expo_id (query)"] = ligand_expo_id return bioactivities class Interactions(RemoteInitializer, InteractionsProvider): """ Extends InteractionsProvider to provide remote kinases requests. Refer to InteractionsProvider documentation for more information: opencadd.databases.klifs.core.InteractionsProvider """ @property def interaction_types(self): # Use KLIFS API result = self._client.Interactions.get_interactions_get_types().response().result # Convert list of ABC objects to DataFrame interaction_types = self._abc_to_dataframe(result) # Standardize DataFrame interaction_types = self._standardize_dataframe( interaction_types, DATAFRAME_COLUMNS["interaction_types"], REMOTE_COLUMNS_MAPPING["interaction_types"], ) return interaction_types def all_interactions(self): # Use KLIFS API: Get all structure KLIFS IDs structures_remote = Structures(self._client) structures = structures_remote.all_structures() # Use KLIFS API: Get all interactions from these structures KLIFS IDs structure_klifs_ids = structures["structure.klifs_id"].to_list() interactions = self.by_structure_klifs_id(structure_klifs_ids) # Standardize DataFrame interactions = self._standardize_dataframe( interactions, DATAFRAME_COLUMNS["interactions"], REMOTE_COLUMNS_MAPPING["interaction_types"], ) return interactions def by_structure_klifs_id(self, structure_klifs_ids): structure_klifs_ids = self._ensure_list(structure_klifs_ids) # Use KLIFS API result = ( self._client.Interactions.get_interactions_get_IFP(structure_ID=structure_klifs_ids) .response() .result ) # Convert list of ABC objects to DataFrame interactions = self._abc_to_dataframe(result) # Standardize DataFrame interactions = self._standardize_dataframe( interactions, DATAFRAME_COLUMNS["interactions"], REMOTE_COLUMNS_MAPPING["interactions"] ) return interactions def by_ligand_klifs_id(self, ligand_klifs_ids): ligand_klifs_ids = self._ensure_list(ligand_klifs_ids) # Use KLIFS API: Get structure KLIFS IDs from ligand KLIFS IDs structures_remote = Structures(self._client) structures = structures_remote.by_ligand_klifs_id(ligand_klifs_ids) # Use KLIFS API: Get interactions from these structure KLIFS IDs structure_klifs_ids = structures["structure.klifs_id"].to_list() interactions = self.by_structure_klifs_id(structure_klifs_ids) # Standardize DataFrame interactions = self._standardize_dataframe( interactions, DATAFRAME_COLUMNS["interactions"], REMOTE_COLUMNS_MAPPING["interactions"] ) return interactions def by_kinase_klifs_id(self, kinase_klifs_ids): kinase_klifs_ids = self._ensure_list(kinase_klifs_ids) # Use KLIFS API: Get structure KLIFS IDs from ligand KLIFS IDs structures_remote = Structures(self._client) structures = structures_remote.by_kinase_klifs_id(kinase_klifs_ids) # Use KLIFS API: Get interactions from these structure KLIFS IDs structure_klifs_ids = structures["structure.klifs_id"].to_list() interactions = self.by_structure_klifs_id(structure_klifs_ids) # Standardize DataFrame interactions = self._standardize_dataframe( interactions, DATAFRAME_COLUMNS["interactions"], REMOTE_COLUMNS_MAPPING["interactions"] ) return interactions class Pockets(RemoteInitializer, PocketsProvider): """ Extends PocketsProvider to provide remote pocket requests. Refer to PocketsProvider documentation for more information: opencadd.databases.klifs.core.PocketsProvider """ def by_structure_klifs_id(self, structure_klifs_id): # Use KLIFS API result = ( self._client.Interactions.get_interactions_match_residues( structure_ID=structure_klifs_id ) .response() .result ) # Convert to DataFrame and formatting pocket =
pd.DataFrame(result)
pandas.DataFrame
"""Collection of functions for dealing with timeseries. Functions: calc_seasonal_cycle -- Calculate the seasonal cycle calc_trend -- Calculate the linear trend convert_to_annual -- Convert the data to annual mean equalise_time_axes -- Make all the time axes in an iris cube list the same flux_to_total -- Convert a flux (i.e. per second quantity) to total get_control_time_constraint -- Define the time constraint for the control data outlier_removal -- Remove outliers from a timeseries runmean -- Calculae the running mean """ import pdb import math import numpy as np import pandas as pd import iris import iris.coord_categorisation import cf_units import general_io as gio import convenient_universal as uconv def adjust_control_time(cube, ref_cube, branch_index=None, branch_time=None): """Adjust the control time axis so it matches the reference cube.""" if branch_index == None: if not branch_time: branch_time = ref_cube.attributes['branch_time'] print('branch time =', branch_time) branch_index, index_error = uconv.find_nearest(cube.coord('time').points, float(branch_time), index=True) print('branch index =', branch_index) else: print('branch time =', cube.coord('time').points[branch_index]) iris.util.unify_time_units([ref_cube, cube]) adjustment_factor = cube.coord('time').points[branch_index] - ref_cube.coord('time').points[0] cube.coord('time').points = cube.coord('time').points - adjustment_factor return cube def calc_seasonal_cycle(cube): """Calculate the seasonal cycle. cycle = (max - min) for each 12 month window Args: cube (iris.cube.Cube) """ max_cube = cube.rolling_window('time', iris.analysis.MAX, 12) min_cube = cube.rolling_window('time', iris.analysis.MIN, 12) seasonal_cycle_cube = max_cube - min_cube return seasonal_cycle_cube def calc_trend(cube, running_mean=False, per_yr=False, remove_scaling=False, outlier_threshold=None): """Calculate linear trend. Args: cube (iris.cube.Cube) running_mean(bool, optional): A 12-month running mean can first be applied to the data per_yr (bool, optional): Change units from per second to per year """ coord_names = [coord.name() for coord in cube.dim_coords] assert coord_names[0] == 'time' if remove_scaling: cube = undo_unit_scaling(cube) if running_mean: cube = cube.rolling_window('time', iris.analysis.MEAN, 12) time_axis = cube.coord('time') time_axis = convert_to_seconds(time_axis) trend = np.ma.apply_along_axis(linear_trend, 0, cube.data, time_axis.points, outlier_threshold) if type(cube.data) == np.ma.core.MaskedArray: trend = np.ma.masked_values(trend, cube.data.fill_value) if per_yr: trend = trend * 60 * 60 * 24 * 365.25 return trend def _check_attributes(data_attrs, control_attrs): """Make sure the correct control run has been used.""" assert data_attrs['parent_experiment_id'] in [control_attrs['experiment_id'], 'N/A'] control_rip = 'r%si%sp%s' %(control_attrs['realization'], control_attrs['initialization_method'], control_attrs['physics_version']) assert data_attrs['parent_experiment_rip'] in [control_rip, 'N/A'] def _chunked_year_aggregation(cube, agg_method, step=12, days_in_month=False): """Chunked conversion to annual timescale. Args: cube (iris.cube.Cube) agg_method (iris.analysis.WeightedAggregator): aggregation method step (int): Integer number of time steps used in chunking (For monthly data this would be a multiple of 12) """ assert agg_method in [iris.analysis.SUM, iris.analysis.MEAN] chunk_list = iris.cube.CubeList([]) coord_names = [coord.name() for coord in cube.dim_coords] start_indexes, step = uconv.get_chunks(cube.shape, coord_names, chunk=True, step=step) start_year = end_year = -5 for index in start_indexes: start_year = cube[index:index+step, ...].coord('year').points[0] assert start_year != end_year print(start_year) end_year = cube[index:index+step, ...].coord('year').points[-1] if days_in_month: chunk = _days_in_month_annual_mean(cube[index:index+step, ...]) else: chunk = cube[index:index+step, ...].aggregated_by(['year'], agg_method) chunk_list.append(chunk) annual_cube = chunk_list.concatenate()[0] return annual_cube def get_days_in_year(cube, return_df=False): """Generate an array of days in each year. Returns a pandas data series. """ aux_coord_names = [coord.name() for coord in cube.aux_coords] if not 'year' in aux_coord_names: iris.coord_categorisation.add_year(cube, 'time') assert 'days' in str(cube.coord('time').units) time_span_days = cube.coord('time').bounds[:, 1] - cube.coord('time').bounds[:, 0] assert time_span_days.max() < 32 assert time_span_days.min() > 26 df = pd.DataFrame(data={'days_in_month': time_span_days, 'year': cube.coord('year').points}) days_in_year = df.groupby('year').sum() if return_df: return df, days_in_year['days_in_month'] else: return days_in_year['days_in_month'] def _days_in_month_annual_mean(cube): """Calculate the annual mean timeseries accounting for days in month.""" df, days_in_year = get_days_in_year(cube, return_df=True) df['weight'] = df.apply(lambda row: row['days_in_month'] / days_in_year.loc[row['year']], axis=1) np.testing.assert_allclose(df.groupby('year').sum()['weight'].min(), 1.0) np.testing.assert_allclose(df.groupby('year').sum()['weight'].max(), 1.0) weights_array = uconv.broadcast_array(df['weight'].values, 0, cube.shape) cube.data = cube.data * weights_array cube = cube.aggregated_by(['year'], iris.analysis.SUM) return cube def convert_to_annual(cube, aggregation='mean', chunk=False, days_in_month=False): """Convert data to annual timescale. Args: cube (iris.cube.Cube) full_months(bool): Only include years with data for all 12 months chunk (bool): Chunk along the time axis (Set by default to a chunk step of 12 assuming monthly data.) days_in_month (bool): Account for the fact that each month has a different number of days. """ aux_coord_names = [coord.name() for coord in cube.aux_coords] if not 'year' in aux_coord_names: iris.coord_categorisation.add_year(cube, 'time') iris.coord_categorisation.add_month(cube, 'time') if not is_annual(cube): if aggregation == 'mean': aggregator = iris.analysis.MEAN elif aggregation == 'sum': aggregator = iris.analysis.SUM if days_in_month: assert aggregation == 'mean' if chunk: cube = _chunked_year_aggregation(cube, aggregator, step=36, days_in_month=True) else: cube = _days_in_month_annual_mean(cube) else: if chunk: cube = _chunked_year_aggregation(cube, aggregator, step=12) else: cube = cube.aggregated_by(['year'], aggregator) cube.remove_coord('year') cube.remove_coord('month') return cube def convert_to_seconds(time_axis): """Convert time axis units to seconds. Args: time_axis(iris.DimCoord) """ old_units = str(time_axis.units) old_timestep = old_units.split(' ')[0] new_units = old_units.replace(old_timestep, 'seconds') new_unit = cf_units.Unit(new_units, calendar=time_axis.units.calendar) time_axis.convert_units(new_unit) return time_axis def equalise_time_axes(cube_list): """Make all the time axes in an iris cube list the same.""" iris.util.unify_time_units(cube_list) reference_cube = cube_list[0] new_cube_list = iris.cube.CubeList([]) for cube in cube_list: assert len(cube.coord('time').points) == len(reference_cube.coord('time').points) cube.coord('time').points = reference_cube.coord('time').points cube.coord('time').bounds = reference_cube.coord('time').bounds cube.coord('time').units = reference_cube.coord('time').units cube.coord('time').attributes = reference_cube.coord('time').attributes new_cube_list.append(cube) return new_cube_list def flux_to_total(cube): """Convert a flux (i.e. per second quantity) to total""" assert 'days' in str(cube.coord('time').units) time_span_days = cube.coord('time').bounds[:, 1] - cube.coord('time').bounds[:, 0] time_span_seconds = time_span_days * 60 * 60 * 24 cube.data = cube.data * time_span_seconds units = str(cube.units) assert ('s-1' in units) or ('W' in units), 'input units must be a flux per second' if 's-1' in units: cube.units = units.replace('s-1', '') elif 'W' in units: cube.units = units.replace('W', 'J') return cube def get_control_time_constraint(control_cube, ref_cube, time_bounds, branch_time=None): """Define the time constraint for control data. Args: control_cube (iris.cube.Cube): cube for piControl experiment ref_cube (iris.cube.Cube): reference cube (e.g. from historical experiment) time_bounds (list): selected time periods from reference cube (e.g. ['1861-01-01', '2005-12-31']) branch_time (float): Override the branch time in the ref_cube attributes """ _check_attributes(ref_cube.attributes, control_cube.attributes) iris.coord_categorisation.add_year(control_cube, 'time') iris.coord_categorisation.add_year(ref_cube, 'time') if not branch_time: branch_time = ref_cube.attributes['branch_time'] index = 0 for bounds in control_cube.coord('time').bounds: lower, upper = bounds if lower <= float(branch_time) < upper: break else: index = index + 1 branch_year = control_cube.coord('year').points[index] ref_start_year = ref_cube.coord('year').points[0] start_gap = int(time_bounds[0].split('-')[0]) - ref_start_year end_gap = int(time_bounds[1].split('-')[0]) - ref_start_year control_start_year = branch_year + start_gap control_end_year = branch_year + end_gap control_start_date = str(control_start_year).zfill(4)+'-01-01' control_end_date = str(control_end_year).zfill(4)+'-12-31' time_constraint = gio.get_time_constraint([control_start_date, control_end_date]) control_cube.remove_coord('year') ref_cube.remove_coord('year') return time_constraint def is_annual(cube): """Check whether the data is annual timescale.""" year_diffs = np.diff(cube.coord('year').points) if year_diffs.min() < 1: annual = False else: annual = True return annual def fit_polynomial(data, time_axis, order, outlier_threshold): """Fit a polynomial to data. e.g. order 1 polynomial, polyfit returns [b, a] corresponding to y = a + bx """ if outlier_threshold: data, outlier_idx = outlier_removal(data, outlier_threshold) coefficients = np.ma.polyfit(time_axis, data, order) return coefficients def linear_trend(data, time_axis, outlier_threshold): """Calculate the linear trend. polyfit returns [b, a] corresponding to y = a + bx """ masked_flag = False if type(data) == np.ma.core.MaskedArray: if type(data.mask) == np.bool_: if data.mask: masked_flag = True elif data.mask[0]: masked_flag = True if masked_flag: return data.fill_value else: coefficients = fit_polynomial(data, time_axis, 1, outlier_threshold) return coefficients[0] def runmean(data, window_width, overlap=True): """Calculate the running mean. If overlap is false, the windows won't overlap. """ if overlap: runmean_data = np.convolve(data, np.ones((window_width,))/window_width, mode='valid') else: nchunks = math.ceil(len(data) / window_width) split_data = [x for x in np.array_split(data, nchunks) if x.size == window_width] runmean_data = np.array(list(map(np.mean, split_data))) return runmean_data def outlier_removal(data, outlier_threshold, replacement_method='missing'): """Remove outliers from a timeseries. Args: data (numpy.array) outlier_threshold (float): remove points that deviate from the rolling median by greater than this threshold replacement_method (str): method for replacing outliers """ assert replacement_method in ['missing', 'mean'] data_series =
pd.Series(data)
pandas.Series
# ActivitySim # See full license in LICENSE.txt. from builtins import range import logging import numpy as np import pandas as pd from activitysim.core import tracing from activitysim.core import config from activitysim.core import pipeline from activitysim.core import simulate from activitysim.core import inject from activitysim.core.tracing import print_elapsed_time from activitysim.core.util import reindex from activitysim.core.util import assign_in_place from .util import expressions from activitysim.core import assign from activitysim.abm.tables.size_terms import tour_destination_size_terms from activitysim.core.skim import DataFrameMatrix from activitysim.core.interaction_sample_simulate import interaction_sample_simulate from activitysim.core.interaction_sample import interaction_sample from activitysim.abm.models.util.trip import cleanup_failed_trips from activitysim.abm.models.util.trip import flag_failed_trip_leg_mates logger = logging.getLogger(__name__) NO_DESTINATION = -1 def get_spec_for_purpose(model_settings, spec_name, purpose): omnibus_spec = simulate.read_model_spec(file_name=model_settings[spec_name]) spec = omnibus_spec[[purpose]] # might as well ignore any spec rows with 0 utility spec = spec[spec.iloc[:, 0] != 0] assert spec.shape[0] > 0 return spec def trip_destination_sample( primary_purpose, trips, alternatives, model_settings, size_term_matrix, skims, chunk_size, trace_hh_id, trace_label): """ Returns ------- destination_sample: pandas.dataframe choices_df from interaction_sample with (up to) sample_size alts for each chooser row index (non unique) is trip_id from trips (duplicated for each alt) and columns dest_taz, prob, and pick_count dest_taz: int alt identifier (dest_taz) from alternatives[<alt_col_name>] prob: float the probability of the chosen alternative pick_count : int number of duplicate picks for chooser, alt """ trace_label = tracing.extend_trace_label(trace_label, 'trip_destination_sample') spec = get_spec_for_purpose(model_settings, 'DESTINATION_SAMPLE_SPEC', primary_purpose) sample_size = model_settings['SAMPLE_SIZE'] alt_dest_col_name = model_settings['ALT_DEST_COL_NAME'] logger.info("Running %s with %d trips", trace_label, trips.shape[0]) locals_dict = config.get_model_constants(model_settings).copy() locals_dict.update({ 'size_terms': size_term_matrix }) locals_dict.update(skims) destination_sample = interaction_sample( choosers=trips, alternatives=alternatives, sample_size=sample_size, alt_col_name=alt_dest_col_name, allow_zero_probs=True, spec=spec, skims=skims, locals_d=locals_dict, chunk_size=chunk_size, trace_label=trace_label) return destination_sample def compute_ood_logsums( choosers, logsum_settings, od_skims, locals_dict, chunk_size, trace_label): """ Compute one (of two) out-of-direction logsums for destination alternatives Will either be trip_origin -> alt_dest or alt_dest -> primary_dest """ locals_dict.update(od_skims) expressions.annotate_preprocessors( choosers, locals_dict, od_skims, logsum_settings, trace_label) nest_spec = config.get_logit_model_settings(logsum_settings) logsum_spec = simulate.read_model_spec(file_name=logsum_settings['SPEC']) logsums = simulate.simple_simulate_logsums( choosers, logsum_spec, nest_spec, skims=od_skims, locals_d=locals_dict, chunk_size=chunk_size, trace_label=trace_label) assert logsums.index.equals(choosers.index) # FIXME not strictly necessary, but would make trace files more legible? # logsums = logsums.replace(-np.inf, -999) return logsums def compute_logsums( primary_purpose, trips, destination_sample, tours_merged, model_settings, skims, chunk_size, trace_label): """ Calculate mode choice logsums using the same recipe as for trip_mode_choice, but do it twice for each alternative since we need out-of-direction logsum (i.e . origin to alt_dest, and alt_dest to half-tour destination) Returns ------- adds od_logsum and dp_logsum columns to trips (in place) """ trace_label = tracing.extend_trace_label(trace_label, 'compute_logsums') logger.info("Running %s with %d samples", trace_label, destination_sample.shape[0]) # - trips_merged - merge trips and tours_merged trips_merged = pd.merge( trips, tours_merged, left_on='tour_id', right_index=True, how="left") assert trips_merged.index.equals(trips.index) # - choosers - merge destination_sample and trips_merged # re/set index because pandas merge does not preserve left index if it has duplicate values! choosers = pd.merge(destination_sample, trips_merged.reset_index(), left_index=True, right_on='trip_id', how="left", suffixes=('', '_r')).set_index('trip_id') assert choosers.index.equals(destination_sample.index) logsum_settings = config.read_model_settings(model_settings['LOGSUM_SETTINGS']) omnibus_coefficient_spec = \ assign.read_constant_spec(config.config_file_path(logsum_settings['COEFFICIENTS'])) coefficient_spec = omnibus_coefficient_spec[primary_purpose] constants = config.get_model_constants(logsum_settings) locals_dict = assign.evaluate_constants(coefficient_spec, constants=constants) locals_dict.update(constants) # - od_logsums od_skims = { 'ORIGIN': model_settings['TRIP_ORIGIN'], 'DESTINATION': model_settings['ALT_DEST_COL_NAME'], "odt_skims": skims['odt_skims'], "dot_skims": skims['dot_skims'], "od_skims": skims['od_skims'], } destination_sample['od_logsum'] = compute_ood_logsums( choosers, logsum_settings, od_skims, locals_dict, chunk_size, trace_label=tracing.extend_trace_label(trace_label, 'od')) # - dp_logsums dp_skims = { 'ORIGIN': model_settings['ALT_DEST_COL_NAME'], 'DESTINATION': model_settings['PRIMARY_DEST'], "odt_skims": skims['dpt_skims'], "dot_skims": skims['pdt_skims'], "od_skims": skims['dp_skims'], } destination_sample['dp_logsum'] = compute_ood_logsums( choosers, logsum_settings, dp_skims, locals_dict, chunk_size, trace_label=tracing.extend_trace_label(trace_label, 'dp')) return destination_sample def trip_destination_simulate( primary_purpose, trips, destination_sample, model_settings, want_logsums, size_term_matrix, skims, chunk_size, trace_hh_id, trace_label): """ Chose destination from destination_sample (with od_logsum and dp_logsum columns added) Returns ------- choices - pandas.Series destination alt chosen """ trace_label = tracing.extend_trace_label(trace_label, 'trip_destination_simulate') spec = get_spec_for_purpose(model_settings, 'DESTINATION_SPEC', primary_purpose) alt_dest_col_name = model_settings['ALT_DEST_COL_NAME'] logger.info("Running trip_destination_simulate with %d trips", len(trips)) locals_dict = config.get_model_constants(model_settings).copy() locals_dict.update({ 'size_terms': size_term_matrix }) locals_dict.update(skims) destinations = interaction_sample_simulate( choosers=trips, alternatives=destination_sample, spec=spec, choice_column=alt_dest_col_name, want_logsums=want_logsums, allow_zero_probs=True, zero_prob_choice_val=NO_DESTINATION, skims=skims, locals_d=locals_dict, chunk_size=chunk_size, trace_label=trace_label, trace_choice_name='trip_dest') if not want_logsums: # for consistency, always return a dataframe with canonical column name assert isinstance(destinations, pd.Series) destinations = destinations.to_frame('choice') # drop any failed zero_prob destinations if (destinations.choice == NO_DESTINATION).any(): # logger.debug("dropping %s failed destinations", (destinations == NO_DESTINATION).sum()) destinations = destinations[destinations.choice != NO_DESTINATION] return destinations def choose_trip_destination( primary_purpose, trips, alternatives, tours_merged, model_settings, want_logsums, want_sample_table, size_term_matrix, skims, chunk_size, trace_hh_id, trace_label): logger.info("choose_trip_destination %s with %d trips", trace_label, trips.shape[0]) t0 = print_elapsed_time() # - trip_destination_sample destination_sample = trip_destination_sample( primary_purpose=primary_purpose, trips=trips, alternatives=alternatives, model_settings=model_settings, size_term_matrix=size_term_matrix, skims=skims, chunk_size=chunk_size, trace_hh_id=trace_hh_id, trace_label=trace_label) dropped_trips = ~trips.index.isin(destination_sample.index.unique()) if dropped_trips.any(): logger.warning("%s trip_destination_sample %s trips " "without viable destination alternatives" % (trace_label, dropped_trips.sum())) trips = trips[~dropped_trips] t0 = print_elapsed_time("%s.trip_destination_sample" % trace_label, t0) if trips.empty: return pd.Series(index=trips.index).to_frame('choice'), None # - compute logsums destination_sample = compute_logsums( primary_purpose=primary_purpose, trips=trips, destination_sample=destination_sample, tours_merged=tours_merged, model_settings=model_settings, skims=skims, chunk_size=chunk_size, trace_label=trace_label) t0 = print_elapsed_time("%s.compute_logsums" % trace_label, t0) # - trip_destination_simulate destinations = trip_destination_simulate( primary_purpose=primary_purpose, trips=trips, destination_sample=destination_sample, model_settings=model_settings, want_logsums=want_logsums, size_term_matrix=size_term_matrix, skims=skims, chunk_size=chunk_size, trace_hh_id=trace_hh_id, trace_label=trace_label) dropped_trips = ~trips.index.isin(destinations.index) if dropped_trips.any(): logger.warning("%s trip_destination_simulate %s trips " "without viable destination alternatives" % (trace_label, dropped_trips.sum())) if want_sample_table: # FIXME - sample_table destination_sample.set_index(model_settings['ALT_DEST_COL_NAME'], append=True, inplace=True) else: destination_sample = None t0 = print_elapsed_time("%s.trip_destination_simulate" % trace_label, t0) return destinations, destination_sample def wrap_skims(model_settings): """ wrap skims of trip destination using origin, dest column names from model settings. Various of these are used by destination_sample, compute_logsums, and destination_simulate so we create them all here with canonical names. Note that compute_logsums aliases their names so it can use the same equations to compute logsums from origin to alt_dest, and from alt_dest to primarly destination odt_skims - SkimStackWrapper: trip origin, trip alt_dest, time_of_day dot_skims - SkimStackWrapper: trip alt_dest, trip origin, time_of_day dpt_skims - SkimStackWrapper: trip alt_dest, trip primary_dest, time_of_day pdt_skims - SkimStackWrapper: trip primary_dest,trip alt_dest, time_of_day od_skims - SkimDictWrapper: trip origin, trip alt_dest dp_skims - SkimDictWrapper: trip alt_dest, trip primary_dest Parameters ---------- model_settings Returns ------- dict containing skims, keyed by canonical names relative to tour orientation """ skim_dict = inject.get_injectable('skim_dict') skim_stack = inject.get_injectable('skim_stack') o = model_settings['TRIP_ORIGIN'] d = model_settings['ALT_DEST_COL_NAME'] p = model_settings['PRIMARY_DEST'] skims = { "odt_skims": skim_stack.wrap(left_key=o, right_key=d, skim_key='trip_period'), "dot_skims": skim_stack.wrap(left_key=d, right_key=o, skim_key='trip_period'), "dpt_skims": skim_stack.wrap(left_key=d, right_key=p, skim_key='trip_period'), "pdt_skims": skim_stack.wrap(left_key=p, right_key=d, skim_key='trip_period'), "od_skims": skim_dict.wrap(o, d), "dp_skims": skim_dict.wrap(d, p), } return skims def run_trip_destination( trips, tours_merged, chunk_size, trace_hh_id, trace_label, fail_some_trips_for_testing=False): """ trip destination - main functionality separated from model step so it can be called iteratively Run the trip_destination model, assigning destinations for each (intermediate) trip (last trips already have a destination - either the tour primary destination or Home) Set trip destination and origin columns, and a boolean failed flag for any failed trips (destination for flagged failed trips will be set to -1) Parameters ---------- trips tours_merged want_sample_table chunk_size trace_hh_id trace_label Returns ------- """ model_settings = config.read_model_settings('trip_destination.yaml') preprocessor_settings = model_settings.get('preprocessor', None) logsum_settings = config.read_model_settings(model_settings['LOGSUM_SETTINGS']) logsum_column_name = model_settings.get('DEST_CHOICE_LOGSUM_COLUMN_NAME') want_logsums = logsum_column_name is not None sample_table_name = model_settings.get('DEST_CHOICE_SAMPLE_TABLE_NAME') want_sample_table = config.setting('want_dest_choice_sample_tables') and sample_table_name is not None land_use = inject.get_table('land_use') size_terms = inject.get_injectable('size_terms') # - initialize trip origin and destination to those of half-tour # (we will sequentially adjust intermediate trips origin and destination as we choose them) tour_destination = reindex(tours_merged.destination, trips.tour_id).astype(np.int64) tour_origin = reindex(tours_merged.origin, trips.tour_id).astype(np.int64) trips['destination'] = np.where(trips.outbound, tour_destination, tour_origin) trips['origin'] = np.where(trips.outbound, tour_origin, tour_destination) trips['failed'] = False trips = trips.sort_index() trips['next_trip_id'] = np.roll(trips.index, -1) trips.next_trip_id = trips.next_trip_id.where(trips.trip_num < trips.trip_count, 0) # - filter tours_merged (AFTER copying destination and origin columns to trips) # tours_merged is used for logsums, we filter it here upfront to save space and time tours_merged_cols = logsum_settings['TOURS_MERGED_CHOOSER_COLUMNS'] if 'REDUNDANT_TOURS_MERGED_CHOOSER_COLUMNS' in model_settings: redundant_cols = model_settings['REDUNDANT_TOURS_MERGED_CHOOSER_COLUMNS'] tours_merged_cols = [c for c in tours_merged_cols if c not in redundant_cols] tours_merged = tours_merged[tours_merged_cols] # - skims skims = wrap_skims(model_settings) # - size_terms and alternatives alternatives = tour_destination_size_terms(land_use, size_terms, 'trip') # DataFrameMatrix alows us to treat dataframe as virtual a 2-D array, indexed by TAZ, purpose # e.g. size_terms.get(df.dest_taz, df.purpose) # returns a series of size_terms for each chooser's dest_taz and purpose with chooser index size_term_matrix = DataFrameMatrix(alternatives) # don't need size terms in alternatives, just TAZ index alternatives = alternatives.drop(alternatives.columns, axis=1) alternatives.index.name = model_settings['ALT_DEST_COL_NAME'] sample_list = [] # - process intermediate trips in ascending trip_num order intermediate = trips.trip_num < trips.trip_count if intermediate.any(): first_trip_num = trips[intermediate].trip_num.min() last_trip_num = trips[intermediate].trip_num.max() # iterate over trips in ascending trip_num order for trip_num in range(first_trip_num, last_trip_num + 1): nth_trips = trips[intermediate & (trips.trip_num == trip_num)] nth_trace_label = tracing.extend_trace_label(trace_label, 'trip_num_%s' % trip_num) # - annotate nth_trips if preprocessor_settings: expressions.assign_columns( df=nth_trips, model_settings=preprocessor_settings, locals_dict=config.get_model_constants(model_settings), trace_label=nth_trace_label) logger.info("Running %s with %d trips", nth_trace_label, nth_trips.shape[0]) # - choose destination for nth_trips, segmented by primary_purpose choices_list = [] for primary_purpose, trips_segment in nth_trips.groupby('primary_purpose'): choices, destination_sample = choose_trip_destination( primary_purpose, trips_segment, alternatives, tours_merged, model_settings, want_logsums, want_sample_table, size_term_matrix, skims, chunk_size, trace_hh_id, trace_label=tracing.extend_trace_label(nth_trace_label, primary_purpose)) choices_list.append(choices) if want_sample_table: assert destination_sample is not None sample_list.append(destination_sample) destinations_df =
pd.concat(choices_list)
pandas.concat
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import xgboost as xgb import pickle import base64 import pandas as pd import numpy as np import json from singa_auto.model import BaseModel, IntegerKnob, FloatKnob, logger from singa_auto.model.dev import test_model_class from singa_auto.constants import ModelDependency class XgbClf(BaseModel): ''' Implements a XGBoost Classifier for tabular data classification task ''' @staticmethod def get_knob_config(): return { 'n_estimators': IntegerKnob(50, 200), 'min_child_weight': IntegerKnob(1, 6), 'max_depth': IntegerKnob(2, 8), 'gamma': FloatKnob(0.0, 1.0, is_exp=False), 'subsample': FloatKnob(0.5, 1.0, is_exp=False), 'colsample_bytree': FloatKnob(0.1, 0.7, is_exp=False) } def __init__(self, **knobs): self.__dict__.update(knobs) def train(self, dataset_path, features=None, target=None, **kwargs): # Record features & target self._features = features self._target = target # Load CSV file as pandas dataframe csv_path = dataset_path data = pd.read_csv(csv_path) # Extract X & y from dataframe (X, y) = self._extract_xy(data) # Encode categorical features X = self._encoding_categorical_type(X) num_class = y.unique().size self._clf = self._build_classifier(self.n_estimators, self.min_child_weight, \ self.max_depth, self.gamma, self.subsample, self.colsample_bytree, num_class) self._clf.fit(X, y) # Compute train accuracy score = self._clf.score(X, y) logger.log('Train accuracy: {}'.format(score)) def evaluate(self, dataset_path): # Load CSV file as pandas dataframe csv_path = dataset_path data = pd.read_csv(csv_path) # Extract X & y from dataframe (X, y) = self._extract_xy(data) # Encode categorical features X = self._encoding_categorical_type(X) accuracy = self._clf.score(X, y) return accuracy def predict(self, queries): queries = [
pd.DataFrame(query, index=[0])
pandas.DataFrame
import logging from typing import NamedTuple, Union import numpy import pandas from statsmodels.tsa.holtwinters import ExponentialSmoothing from statsmodels.tsa.statespace.sarimax import SARIMAX from hts._t import ModelT, NAryTreeT, TimeSeriesModelT, TransformT from hts.core.exceptions import InvalidArgumentException from hts.hierarchy import HierarchyTree from hts.transforms import BoxCoxTransformer, FunctionTransformer logger = logging.getLogger(__name__) class TimeSeriesModel(TimeSeriesModelT): """Base class for the implementation of the underlying models. Inherits from scikit-learn base classes """ def __init__( self, kind: str, node: HierarchyTree, transform: TransformT = False, **kwargs ): """ Parameters ---------- kind : str One of `prophet`, `sarimax`, `auto-arima`, `holt-winters` node : HierarchyTree Node transform : Bool or NamedTuple kwargs Keyword arguments to be passed to the model instantiation. See the documentation of each of the actual model implementations for a more comprehensive treatment """ if kind not in ModelT.names(): raise InvalidArgumentException( f'Model {kind} not valid. Pick one of: {" ".join(ModelT.names())}' ) self.kind = kind self.node = node self.transform_function = self._set_transform(transform=transform) self.model = self.create_model(**kwargs) self.forecast = None self.residual = None self.mse = None def _set_transform(self, transform: TransformT): if transform is False or transform is None: return FunctionTransformer(func=self._no_func, inv_func=self._no_func) elif transform is True: return BoxCoxTransformer() elif isinstance(transform, tuple): if not hasattr(transform, "func") or not hasattr(transform, "inv_func"): raise ValueError( "If passing a NamedTuple, it must have a `func` and `inv_func` parameters" ) return FunctionTransformer( func=getattr(transform, "func"), inv_func=getattr(transform, "inv_func") ) else: raise ValueError( "Invalid transform passed. Use either `True` for default boxcox transform or " "a `NamedTuple(func: Callable, inv_func: Callable)` for custom transforms" ) def _set_results_return_self(self, in_sample, y_hat): in_sample = self.transform_function.inverse_transform(in_sample) y_hat = self.transform_function.inverse_transform(y_hat) self.forecast = pandas.DataFrame( {"yhat": numpy.concatenate([in_sample, y_hat])} ) self.residual = (in_sample - self._get_transformed_data(as_series=True)).values self.mse = numpy.mean(numpy.array(self.residual) ** 2) return self def _get_transformed_data( self, as_series: bool = False ) -> Union[pandas.DataFrame, pandas.Series]: key = self.node.key value = self.node.item transformed = self.transform_function.transform(value[key]) if as_series: return pandas.Series(transformed) else: return
pandas.DataFrame({key: transformed})
pandas.DataFrame
#%% [markdown] # Lambda School Data Science, Unit 2: Predictive Modeling # # # Kaggle Challenge, Module 1 # # ## Assignment # - [ ] Do train/validate/test split with the Tanzania Waterpumps data. # - [ ] Define a function to wrangle train, validate, and test sets in the same way. Clean outliers and engineer features. (For example, [what other columns have zeros and shouldn't?](https://github.com/Quartz/bad-data-guide#zeros-replace-missing-values) What other columns are duplicates, or nearly duplicates? Can you extract the year from date_recorded? Can you engineer new features, such as the number of years from waterpump construction to waterpump inspection?) # - [ ] Select features. Use a scikit-learn pipeline to encode categoricals, impute missing values, and fit a decision tree classifier. # - [ ] Get your validation accuracy score. # - [ ] Get and plot your feature importances. # - [ ] Submit your predictions to our Kaggle competition. (Go to our Kaggle InClass competition webpage. Use the blue **Submit Predictions** button to upload your CSV file. Or you can use the Kaggle API to submit your predictions.) # - [ ] Commit your notebook to your fork of the GitHub repo. # # # ## Stretch Goals # # ### Reading # # - A Visual Introduction to Machine Learning # - [Part 1: A Decision Tree](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/) # - [Part 2: Bias and Variance](http://www.r2d3.us/visual-intro-to-machine-learning-part-2/) # - [Decision Trees: Advantages & Disadvantages](https://christophm.github.io/interpretable-ml-book/tree.html#advantages-2) # - [How a Russian mathematician constructed a decision tree — by hand — to solve a medical problem](http://fastml.com/how-a-russian-mathematician-constructed-a-decision-tree-by-hand-to-solve-a-medical-problem/) # - [How decision trees work](https://brohrer.github.io/how_decision_trees_work.html) # - [Let’s Write a Decision Tree Classifier from Scratch](https://www.youtube.com/watch?v=LDRbO9a6XPU) — _Don’t worry about understanding the code, just get introduced to the concepts. This 10 minute video has excellent diagrams and explanations._ # - [Random Forests for Complete Beginners: The definitive guide to Random Forests and Decision Trees](https://victorzhou.com/blog/intro-to-random-forests/) # # # ### Doing # - [ ] Add your own stretch goal(s) ! # - [ ] Try other [scikit-learn imputers](https://scikit-learn.org/stable/modules/impute.html). # - [ ] Make exploratory visualizations and share on Slack. # # # #### Exploratory visualizations # # Visualize the relationships between feature(s) and target. I recommend you do this with your training set, after splitting your data. # # For this problem, you may want to create a new column to represent the target as a number, 0 or 1. For example: # # ```python # train['functional'] = (train['status_group']=='functional').astype(int) # ``` # # # # You can try [Seaborn "Categorical estimate" plots](https://seaborn.pydata.org/tutorial/categorical.html) for features with reasonably few unique values. (With too many unique values, the plot is unreadable.) # # - Categorical features. (If there are too many unique values, you can replace less frequent values with "OTHER.") # - Numeric features. (If there are too many unique values, you can [bin with pandas cut / qcut functions](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html?highlight=qcut#discretization-and-quantiling).) # # You can try [Seaborn linear model plots](https://seaborn.pydata.org/tutorial/regression.html) with numeric features. For this classification problem, you may want to use the parameter `logistic=True`, but it can be slow. # # You do _not_ need to use Seaborn, but it's nice because it includes confidence intervals to visualize uncertainty. # # #### High-cardinality categoricals # # This code from a previous assignment demonstrates how to replace less frequent values with 'OTHER' # # ```python # # Reduce cardinality for NEIGHBORHOOD feature ... # # # Get a list of the top 10 neighborhoods # top10 = train['NEIGHBORHOOD'].value_counts()[:10].index # # # At locations where the neighborhood is NOT in the top 10, # # replace the neighborhood with 'OTHER' # train.loc[~train['NEIGHBORHOOD'].isin(top10), 'NEIGHBORHOOD'] = 'OTHER' # test.loc[~test['NEIGHBORHOOD'].isin(top10), 'NEIGHBORHOOD'] = 'OTHER' # ``` # #%% import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Kaggle-Challenge/master/data/' get_ipython().system('pip install category_encoders==2.*') # If you're working locally: else: DATA_PATH = './data/' #%% import pandas from sklearn.model_selection import train_test_split train = pandas.merge(pandas.read_csv(DATA_PATH+'waterpumps/train_features.csv'), pandas.read_csv(DATA_PATH+'waterpumps/train_labels.csv')) test_features = pandas.read_csv(DATA_PATH+'waterpumps/test_features.csv') sample_submission = pandas.read_csv(DATA_PATH+'waterpumps/sample_submission.csv') train.shape, test_features.shape #%% from typing import Optional def keepTopN( column:pandas.Series, n:int, default:Optional[object] = None) -> pandas.Series: """ Keeps the top n most popular values of a Series, while replacing the rest with `default` Args: column (pandas.Series): Series to operate on n (int): How many values to keep default (object, optional): Defaults to NaN. Value with which to replace remaining values Returns: pandas.Series: Series with the most popular n values """ import numpy if default is None: default = numpy.nan val_counts = column.value_counts() if n > len(val_counts): n = len(val_counts) top_n = list(val_counts[:n].index) return(column.where(column.isin(top_n), other=default)) def oneHot( frame:pandas.DataFrame, cols:Optional[list] = None, exclude_cols:Optional[list] = None, max_cardinality:Optional[int] = None) -> pandas.DataFrame: """ One-hot encodes the dataframe. Args: frame (pandas.DataFrame): Dataframe to clean cols (list, optional): Columns to one-hot encode. Defaults to all string columns. exclude_cols (list, optional): Columns to skip one-hot encoding. Defaults to None. max_cardinality (int, optional): Maximum cardinality of columns to encode. Defaults to no maximum cardinality. Returns: pandas.DataFrame: The one_hot_encoded dataframe. """ import category_encoders one_hot_encoded = frame.copy() if cols is None: cols = list(one_hot_encoded.columns[one_hot_encoded.dtypes=='object']) if exclude_cols is not None: for col in exclude_cols: cols.remove(col) if max_cardinality is not None: described = one_hot_encoded[cols].describe(exclude=[numpy.number]) cols = list(described.columns[described.loc['unique'] <= max_cardinality]) encoder = category_encoders.OneHotEncoder(return_df=True, use_cat_names=True, cols=cols) one_hot_encoded = encoder.fit_transform(one_hot_encoded) return(one_hot_encoded) #%% def clean_X(df, max_ordinality=100, int_ts=False, n_clusters=100): cleaned = df.copy().drop(columns=['recorded_by']) from sklearn.cluster import KMeans kmeans=KMeans(n_clusters=n_clusters) kmeans.fit(cleaned[['latitude', 'longitude']]) cleaned['cluster'] = kmeans.labels_ categorical_description = cleaned.describe(exclude=[numpy.number]) if int_ts: cat_cols = categorical_description.drop(columns=['date_recorded']).columns else: cat_cols = categorical_description.columns # high_ordinality_cols = categorical_description[categorical_description.loc['unique'] > max_ordinality].columns for col in cat_cols: cleaned[col] = keepTopN(cleaned[col], max_ordinality, default='other') if int_ts: cleaned['date_recorded_dt'] = pandas.to_datetime(df['date_recorded']) cleaned['date_recorded_ts'] = cleaned['date_recorded_dt'].view('int64') return(cleaned.drop(columns=['date_recorded_dt', 'date_recorded'])) else: return(cleaned) #%% train_targets = train.sort_values(by=['id'])['status_group'].replace({'functional': 1, 'functional needs repair': 2, 'non functional': 3}) train_features = train.sort_values(by=['id']).drop(columns=['status_group']) #%% import numpy combined = pandas.concat([train_features, test_features]) cleaned_combined = oneHot(clean_X(combined, max_ordinality=100, int_ts=True)) cleaned_train = cleaned_combined[cleaned_combined['id'].isin(train_features['id'])].sort_values(by=['id']) cleaned_test = cleaned_combined[cleaned_combined['id'].isin(test_features['id'])].sort_values(by=['id']) #%% #%% X_train, X_val, y_train, y_val = train_test_split(cleaned_train, train_targets, random_state=33) #%% from sklearn.pipeline import Pipeline import sklearn.preprocessing as preprocessing from sklearn.tree import DecisionTreeClassifier import sklearn.model_selection as model_selection #%% train_scores = [] test_scores = [] min_samples_range = list(range(2500,250,-50)) + list(range(250,50,-10)) + list(range(50,1,-1)) for i in min_samples_range: print(i) dtc = DecisionTreeClassifier( min_samples_leaf=i, criterion='entropy', random_state=i) pipeline = Pipeline([('DecisionTreeClassifier', dtc)]) pipeline.fit(X_train, y_train) train_scores.append(pipeline.score(X_train, y_train)) test_scores.append(pipeline.score(X_val, y_val)) #%% import matplotlib.pyplot as pyplot pyplot.rcParams['figure.facecolor'] = '#002B36' pyplot.rcParams['axes.facecolor'] = 'black' pyplot.rcParams['figure.figsize'] = (10,8) pyplot.plot(min_samples_range, train_scores, label='Train') pyplot.plot(min_samples_range, test_scores, label='Test') pyplot.xscale('log') pyplot.xlim(left=1000, right=1) # pyplot.gcf().axes[0].set_xticks(range(1000,-50, -5)) pyplot.title('Accuracy vs Minimum leaf size') pyplot.xlabel('min_samples_leaf') pyplot.ylabel('Accuracy score') pyplot.legend() pyplot.show() #%% max(test_scores) #%% dtc = DecisionTreeClassifier( min_samples_leaf=10, criterion='entropy', random_state=33) pipeline = Pipeline([('DecisionTreeClassifier', dtc)]) pipeline.fit(X_train, y_train) pipeline.score(X_val, y_val) #%% y_pred = pipeline.predict(cleaned_test) out_df =
pandas.DataFrame(y_pred, index=cleaned_test['id'], columns=['status_group'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Dec 10 14:24:56 2021 @author: <NAME> Script created for determination of optimal power generation mix with power production from DK1 and DK2. - Includes heating sector - Possible to add CO2 constraint Reads data for the period 2017 dowloaded from data.open-power-system-data.org Capacity factor is determined using installed capacity per production type data from www.transparency.entsoe.eu """ #%% Import and define import pypsa import pandas as pd import matplotlib.pyplot as plt import numpy as np import matplotlib.dates as mdates from pandas.tseries.offsets import DateOffset def annuity(n,r): """Calculate the annuity factor for an asset with lifetime n years and discount rate of r, e.g. annuity(20,0.05)*20 = 1.6""" if r > 0: return r/(1. - 1./(1.+r)**n) else: return 1/n # Create network and snapshot network = pypsa.Network() hours_in_2017 = pd.date_range('2017-01-01T00:00Z','2017-12-31T23:00Z', freq='H') network.set_snapshots(hours_in_2017) # Load data: Demand and generators for 6 regions df_elec = pd.read_csv('data/2017_entsoe.csv', sep=',', index_col=0) # in MWh df_elec.index = pd.to_datetime(df_elec.index) #change index to datatime df_heat = pd.read_csv('data/heat_demand.csv', sep=';', index_col=0) df_heat.index = pd.to_datetime(df_heat.index) df_heat.index = df_heat.index +
DateOffset(years=2)
pandas.tseries.offsets.DateOffset
import os import unittest import pandas as pd import pandas.testing as pd_testing from non_duplicate_lesion_id import non_duplicate_lesion_id class TestCreateNonDuplicateLesionId(unittest.TestCase): def assertDataframeEqual(self, a, b, msg): try:
pd_testing.assert_frame_equal(a, b)
pandas.testing.assert_frame_equal
import pandas as pd outpath = '../output/JH_US/' cases = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv') # there are some counties without fips, but I am adding the one that should be cases['FIPS'] = cases['FIPS'].fillna(cases['UID']-84000000) # there are counties that are called Unassigned and Out of [state] for each state, # that blows up in my face when I try to take it as a county because # there are inconsistencies in the count of cases and deceased. let's eliminate! cases = cases[cases['Admin2']!='Unassigned'] cases = cases[~cases['Admin2'].astype(str).str.startswith('Out of ')] # There are weird fips, 60, 88888, 99999, 66, 69 and 78 (cruises and states) without Admin 2 column, fill with Province_State cases['Admin2'] = cases['Admin2'].fillna(cases['Province_State']) # Irrelevant columns drop_col = ['UID', 'iso2', 'iso3', 'code3', 'Country_Region', 'Lat', 'Long_', 'Combined_Key', 'Admin2', 'Province_State'] rename_col = {'FIPS': 'fips'} cases.rename(columns=rename_col, inplace=True) new_cases = cases.drop(columns=drop_col).set_index('fips').T new_cases.index = pd.to_datetime(new_cases.index) new_cases.sort_index(inplace=True) new_cases = new_cases.diff() new_cases_raw = new_cases.copy() deaths = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_US.csv') # there are some counties without fips, but I am adding the one that should be deaths['FIPS'] = deaths['FIPS'].fillna(deaths['UID']-84000000) deaths[deaths['FIPS'].isna()]['FIPS'] # there are counties that are called Unassigned and Out of [state] for each state, # that blows up in my face when I try to take it as a county because # there are inconsistencies in the count of cases and deceased. let's eliminate! deaths = deaths[deaths['Admin2']!='Unassigned'] deaths = deaths[~deaths['Admin2'].astype(str).str.startswith('Out of ')] # There are weird fips, 60, 88888, 99999, 66, 69 and 78 (cruises and states) without Admin 2 column, fill with Province State deaths['Admin2'] = deaths['Admin2'].fillna(deaths['Province_State']) # Irrelevant columns deaths.rename(columns=rename_col, inplace=True) deaths_drop = deaths.drop(columns=drop_col + ['Population']).set_index('fips').T deaths_drop.index = pd.to_datetime(deaths_drop.index) deaths_drop.sort_index(inplace=True) new_deaths = deaths_drop.diff() new_deaths_raw = new_deaths.copy() # Routine to fix negative values print('Routine to fix negative values') i = 1 for fips in new_deaths: ndeaths = new_deaths[fips] if any(ndeaths < 0): while any(ndeaths < 0): rest_bmatrix = ndeaths<0 rest_matrix = ndeaths[rest_bmatrix] # These are the negative values to be fixed sumneg_matrix = ndeaths[rest_bmatrix] * -1 rest_matrix.index = rest_matrix.index - pd.DateOffset(1) # it is necessary to eliminate them from the previous day ndeaths = ndeaths.add(sumneg_matrix, fill_value=0) # We add what we are going to subtract on the day of the problem ndeaths = ndeaths.add(rest_matrix, fill_value=0) # We subtract the cases from the previous day new_deaths[fips] = ndeaths print(f'new_deaths: {i}/{len(new_deaths.columns)}', end='\r') i += 1 print() print('Done new_deaths') i = 1 for fips in new_cases: ncase = new_cases[fips] if any(ncase < 0): while any(ncase < 0): rest_bmatrix = ncase<0 rest_matrix = ncase[rest_bmatrix] # These are the negative values to be fixed sumneg_matrix = ncase[rest_bmatrix] * -1 rest_matrix.index = rest_matrix.index - pd.DateOffset(1) # it is necessary to eliminate them from the previous day ncase = ncase.add(sumneg_matrix, fill_value=0) # We add what we are going to subtract on the day of the problem ncase = ncase.add(rest_matrix, fill_value=0) # We subtract the cases from the previous day new_cases[fips] = ncase print(f'new_cases: {i}/{len(new_cases.columns)}', end='\r') i += 1 print() print('Done new_cases') mergednewcases = pd.merge(new_cases.T, cases[['fips', 'Admin2', 'Province_State']], left_index=True, right_on='fips') mergednewcases.rename(columns={'Admin2': 'county'}, inplace=True) mergednewcases.fillna(0, inplace=True) mergednewcases_raw = pd.merge(new_cases_raw.T, cases[['fips', 'Admin2', 'Province_State']], left_index=True, right_on='fips') mergednewcases_raw.rename(columns={'Admin2': 'county'}, inplace=True) mergednewcases_raw.fillna(0, inplace=True) std_new_cases = pd.melt(mergednewcases, id_vars=['fips', 'county', 'Province_State'], var_name='date', value_name='new_cases') std_new_cases_raw = pd.melt(mergednewcases_raw, id_vars=['fips', 'county', 'Province_State'], var_name='date', value_name='new_cases') mergednew_deaths =
pd.merge(new_deaths.T, cases[['fips', 'Admin2', 'Province_State']], left_index=True, right_on='fips')
pandas.merge
################################################################################ # This module aggregates the all psycho-linguistic measures into one matrix by # each 'AC_Doc_ID (item stem or option). # Parameters df_ac_pos: input pandas.DataFrame, it should have, at least, POS # count columns with the 'AC_Doc_ID's as the index of # the DataFrame # pos_start_q: integer column number (starting from zero) # specifying the starting point of POS count # columns in the question DataFrame, from the point # to the end, all the columns should be the POS count # columns # df_ac_loc_overlapping_lemma: pandas.DataFrame of the overlapping # lemma location information, even no # location information, still # df_ac_overlapping_lemma is # acceptable # df_ac_loc_overlapping_syn_lemma: pandas.DataFrame of # the overlapping lemma with synonym # location information, even no # location information, still # df_ac_overlapping_syn_lemma is # acceptable # df_ac_overlapping_nchunk: pandas.DataFrame as a result of # overlapping NChunk counts # df_ac_oanc_lemma_freq_q: pandas.DataFrame reporting each # 'AC_Doc_ID's lemma frequency stats # stem_option_name_clm: column name of stem/option identifier # in the aggregated DataFrame # stem_identifier: name of the stem identifier in the aggregated # DataFrame # keep_specific_columns_POS = None: a list of column names to be # included into the aggrageted # matrix as a part of the original # columns of the df_ac_pos input # DataFrame # stop_words_POS = None: list of POS to specify stop words, they # should all include in the POS question # and passage DataFrames # df_ac_lemma_q = None: pandas.DataFrame of questions, it should # have, at least, lemma count columns with the 'AC_Doc_ID's # as the index of the DataFrame # include_specific_lemma_count = None: a list of lemmas to be # included into the aggrageted # matrix as the lemma counts # df_ac_pos_p = None: pandas.DataFrame of passages, it should have, # at least, POS count columns, passage name and the section # columns # passage_name_clm_q = None: column name of the passage names # in the lemma question DataFrame # passage_sec_clm_q = None: column name of the passage sections # in the lemma question DataFrame # passage_name_clm_p = None: column name of the passage names # in the passage DataFrame # passage_sec_clm_p = None: column name of the passage sections # in the passage DataFrame # pos_start_p: integer column number (starting from zero) # specifying the starting point of POS count # columns in the passage DataFrame, from the point # to the end, all the columns should be the POS # count columns # decimal_places = None: specify the decimal places to round at # df_ac_overlapping_hypernyms = None: pandas.DataFrame as a result # of overlapping hypernym counts # df_ac_overlapping_hyponyms = None: pandas.DataFrame as a result # of overlapping hyponym counts # nchunk_suffix = '_nc': specify the suffix of NChunk variables # which was used for the column names of # the overlapping NChunk # hypernym_suffix = '_hype': specify the suffix of hypernym variables # which was used for the column names of # the overlapping hypernyms # hyponym_suffix = '_hypo': specify the suffix of hyponym variables # which was used for the column names of # the overlapping hyponyms # df_ac_bigram_pmi_distribution = None: pandas.DataFrame as bigram # PMI stats # df_ac_trigram_pmi_distribution = None: pandas.DataFrame as trigram # PMI stats # Returns Result: pandas.DataFrame including the original columns of # the df_ac_pos DataFrame plus aggregated result columns ################################################################################ def ac_aggregate_plim(df_ac_pos, pos_start_q, df_ac_loc_overlapping_lemma, df_ac_loc_overlapping_syn_lemma, df_ac_overlapping_nchunk, df_ac_oanc_lemma_freq_q, stem_option_name_clm, stem_identifier, keep_specific_columns_POS = None, stop_words_POS = None, df_ac_lemma_q = None, include_specific_lemma_count = None, df_ac_pos_p = None, passage_name_clm_q = None, passage_sec_clm_q =None, passage_name_clm_p = None, passage_sec_clm_p = None, pos_start_p = None, decimal_places = None, df_ac_overlapping_hypernyms = None, df_ac_overlapping_hyponyms = None, nchunk_suffix = '_nc', hypernym_suffix = '_hype', hyponym_suffix = '_hypo', df_ac_bigram_pmi_distribution = None, df_ac_trigram_pmi_distribution = None): import pandas as pd df_ac_buf_POS = df_ac_pos.iloc[:, pos_start_q:] all_option_count_name_clms = [] df_ac_options = df_ac_pos.drop_duplicates([stem_option_name_clm]) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count_' + x all_option_count_name_clms.append(s) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count_s_' + x all_option_count_name_clms.append(s) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count' + nchunk_suffix + '_' + x all_option_count_name_clms.append(s) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count' + hypernym_suffix + '_' + x all_option_count_name_clms.append(s) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count' + hyponym_suffix + '_' + x all_option_count_name_clms.append(s) option_len = len(all_option_count_name_clms) // 5 if stop_words_POS != None: df_ac_buf_POS = df_ac_buf_POS.drop(stop_words_POS, axis=1) df_ac_buf_sum = pd.DataFrame({ 'POS_sum' : df_ac_buf_POS.sum(axis=1) }) if keep_specific_columns_POS != None: df_ac_buf_POS_head = df_ac_pos.loc[:, keep_specific_columns_POS] else: df_ac_buf_POS_head = df_ac_pos.copy() df_ac_buf_POS_head['POS_sum'] = df_ac_buf_sum['POS_sum'] if df_ac_loc_overlapping_lemma is not None: df_concat = pd.concat([df_ac_buf_POS_head, df_ac_loc_overlapping_lemma], axis=1) else: df_concat = df_ac_buf_POS_head.copy() df_concat_tmp = df_concat.copy() if df_ac_loc_overlapping_syn_lemma is not None: df_concat = pd.concat([df_concat_tmp, df_ac_loc_overlapping_syn_lemma], axis=1) df_concat_tmp = df_concat.copy() if df_ac_overlapping_nchunk is not None: df_concat = pd.concat([df_concat_tmp, df_ac_overlapping_nchunk, df_ac_oanc_lemma_freq_q], axis=1) else: df_concat = pd.concat([df_concat_tmp, df_ac_oanc_lemma_freq_q], axis=1) df_concat_tmp = df_concat.copy() if df_ac_overlapping_hypernyms is not None: df_concat = pd.concat([df_concat_tmp, df_ac_overlapping_hypernyms], axis=1) df_concat_tmp = df_concat.copy() if df_ac_overlapping_hyponyms is not None: df_concat =
pd.concat([df_concat_tmp, df_ac_overlapping_hyponyms], axis=1)
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt from rdkit import Chem from rdkit.Chem import Descriptors from rdkit.Chem import AllChem sub_df =
pd.read_csv('https://covid.postera.ai/covid/submissions.csv')
pandas.read_csv
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import division from __future__ import print_function import os import abc import six import time import queue import bisect import logging import importlib import traceback import numpy as np import pandas as pd from multiprocessing import Pool from qlib.data.cache import H from qlib.config import C from qlib.data.ops import * from qlib.log import get_module_logger from qlib.utils import parse_field, read_bin, hash_args, normalize_cache_fields from qlib.data.base import Feature from qlib.data.cache import DiskDatasetCache, DiskExpressionCache @six.add_metaclass(abc.ABCMeta) class CalendarProvider(object): """Calendar provider base class Provide calendar data. """ @abc.abstractmethod def calendar(self, start_time=None, end_time=None, freq="day", future=False): """Get calendar of certain market in given time range. Parameters ---------- start_time : str start of the time range end_time : str end of the time range freq : str time frequency, available: year/quarter/month/week/day future : bool whether including future trading day Returns ---------- list calendar list """ raise NotImplementedError("Subclass of CalendarProvider must implement `calendar` method") def locate_index(self, start_time, end_time, freq, future): """Locate the start time index and end time index in a calendar under certain frequency. Parameters ---------- start_time : str start of the time range end_time : str end of the time range freq : str time frequency, available: year/quarter/month/week/day future : bool whether including future trading day Returns ------- pd.Timestamp the real start time pd.Timestamp the real end time int the index of start time int the index of end time """ start_time = pd.Timestamp(start_time) end_time = pd.Timestamp(end_time) calendar, calendar_index = self._get_calendar(freq=freq, future=future) if start_time not in calendar_index: try: start_time = calendar[bisect.bisect_left(calendar, start_time)] except IndexError: raise IndexError( "`start_time` uses a future date, if you want to get future trading days, you can use: `future=True`" ) start_index = calendar_index[start_time] if end_time not in calendar_index: end_time = calendar[bisect.bisect_right(calendar, end_time) - 1] end_index = calendar_index[end_time] return start_time, end_time, start_index, end_index def _get_calendar(self, freq, future): """Load calendar using memcache. Parameters ---------- freq : str frequency of read calendar file future : bool whether including future trading day Returns ------- list list of timestamps dict dict composed by timestamp as key and index as value for fast search """ flag = f"{freq}_future_{future}" if flag in H["c"]: _calendar, _calendar_index = H["c"][flag] else: _calendar = np.array(self._load_calendar(freq, future)) _calendar_index = {x: i for i, x in enumerate(_calendar)} # for fast search H["c"][flag] = _calendar, _calendar_index return _calendar, _calendar_index def _uri(self, start_time, end_time, freq, future=False): """Get the uri of calendar generation task.""" return hash_args(start_time, end_time, freq, future) @six.add_metaclass(abc.ABCMeta) class InstrumentProvider(object): """Instrument provider base class Provide instrument data. """ @staticmethod def instruments(market="all", filter_pipe=None): """Get the general config dictionary for a base market adding several dynamic filters. Parameters ---------- market : str market/industry/index shortname, e.g. all/sse/szse/sse50/csi300/csi500 filter_pipe : list the list of dynamic filters Returns ---------- dict dict of stockpool config {`market`=>base market name, `filter_pipe`=>list of filters} example : {'market': 'csi500', 'filter_pipe': [{'filter_type': 'ExpressionDFilter', 'rule_expression': '$open<40', 'filter_start_time': None, 'filter_end_time': None, 'keep': False}, {'filter_type': 'NameDFilter', 'name_rule_re': 'SH[0-9]{4}55', 'filter_start_time': None, 'filter_end_time': None}]} """ if filter_pipe is None: filter_pipe = [] config = {"market": market, "filter_pipe": []} # the order of the filters will affect the result, so we need to keep # the order for filter_t in filter_pipe: config["filter_pipe"].append(filter_t.to_config()) return config @abc.abstractmethod def list_instruments(self, instruments, start_time=None, end_time=None, freq="day", as_list=False): """List the instruments based on a certain stockpool config. Parameters ---------- instruments : dict stockpool config start_time : str start of the time range end_time : str end of the time range as_list : bool return instruments as list or dict Returns ------- dict or list instruments list or dictionary with time spans """ raise NotImplementedError("Subclass of InstrumentProvider must implement `list_instruments` method") def _uri(self, instruments, start_time=None, end_time=None, freq="day", as_list=False): return hash_args(instruments, start_time, end_time, freq, as_list) # instruments type LIST = "LIST" DICT = "DICT" CONF = "CONF" @classmethod def get_inst_type(cls, inst): if "market" in inst: return cls.CONF if isinstance(inst, dict): return cls.DICT if isinstance(inst, (list, tuple, pd.Index, np.ndarray)): return cls.LIST raise ValueError(f"Unknown instrument type {inst}") @six.add_metaclass(abc.ABCMeta) class FeatureProvider(object): """Feature provider class Provide feature data. """ @abc.abstractmethod def feature(self, instrument, field, start_time, end_time, freq): """Get feature data. Parameters ---------- instrument : str a certain instrument field : str a certain field of feature start_time : str start of the time range end_time : str end of the time range freq : str time frequency, available: year/quarter/month/week/day Returns ------- pd.Series data of a certain feature """ raise NotImplementedError("Subclass of FeatureProvider must implement `feature` method") @six.add_metaclass(abc.ABCMeta) class ExpressionProvider(object): """Expression provider class Provide Expression data. """ def __init__(self): self.expression_instance_cache = {} def get_expression_instance(self, field): try: if field in self.expression_instance_cache: expression = self.expression_instance_cache[field] else: expression = eval(parse_field(field)) self.expression_instance_cache[field] = expression except NameError as e: get_module_logger("data").exception( "ERROR: field [%s] contains invalid operator/variable [%s]" % (str(field), str(e).split()[1]) ) raise except SyntaxError: get_module_logger("data").exception("ERROR: field [%s] contains invalid syntax" % str(field)) raise return expression @abc.abstractmethod def expression(self, instrument, field, start_time=None, end_time=None, freq="day"): """Get Expression data. Parameters ---------- instrument : str a certain instrument field : str a certain field of feature start_time : str start of the time range end_time : str end of the time range freq : str time frequency, available: year/quarter/month/week/day Returns ------- pd.Series data of a certain expression """ raise NotImplementedError("Subclass of ExpressionProvider must implement `Expression` method") @six.add_metaclass(abc.ABCMeta) class DatasetProvider(object): """Dataset provider class Provide Dataset data. """ @abc.abstractmethod def dataset(self, instruments, fields, start_time=None, end_time=None, freq="day"): """Get dataset data. Parameters ---------- instruments : list or dict list/dict of instruments or dict of stockpool config fields : list list of feature instances start_time : str start of the time range end_time : str end of the time range freq : str time frequency Returns ---------- pd.DataFrame a pandas dataframe with <instrument, datetime> index """ raise NotImplementedError("Subclass of DatasetProvider must implement `Dataset` method") def _uri( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1, **kwargs, ): """Get task uri, used when generating rabbitmq task in qlib_server Parameters ---------- instruments : list or dict list/dict of instruments or dict of stockpool config fields : list list of feature instances start_time : str start of the time range end_time : str end of the time range freq : str time frequency disk_cache : int whether to skip(0)/use(1)/replace(2) disk_cache """ return DiskDatasetCache._uri(instruments, fields, start_time, end_time, freq, disk_cache) @staticmethod def get_instruments_d(instruments, freq): """ Parse different types of input instruments to output instruments_d Wrong format of input instruments will lead to exception. """ if isinstance(instruments, dict): if "market" in instruments: # dict of stockpool config instruments_d = Inst.list_instruments(instruments=instruments, freq=freq, as_list=False) else: # dict of instruments and timestamp instruments_d = instruments elif isinstance(instruments, (list, tuple, pd.Index, np.ndarray)): # list or tuple of a group of instruments instruments_d = list(instruments) else: raise ValueError("Unsupported input type for param `instrument`") return instruments_d @staticmethod def get_column_names(fields): """ Get column names from input fields """ if len(fields) == 0: raise ValueError("fields cannot be empty") fields = fields.copy() column_names = [str(f) for f in fields] return column_names @staticmethod def parse_fields(fields): # parse and check the input fields return [ExpressionD.get_expression_instance(f) for f in fields] @staticmethod def dataset_processor(instruments_d, column_names, start_time, end_time, freq): """ Load and process the data, return the data set. - default using multi-kernel method. """ normalize_column_names = normalize_cache_fields(column_names) data = dict() # One process for one task, so that the memory will be freed quicker. workers = min(C.kernels, len(instruments_d)) if C.maxtasksperchild is None: p = Pool(processes=workers) else: p = Pool(processes=workers, maxtasksperchild=C.maxtasksperchild) if isinstance(instruments_d, dict): for inst, spans in instruments_d.items(): data[inst] = p.apply_async( DatasetProvider.expression_calculator, args=( inst, start_time, end_time, freq, normalize_column_names, spans, C, ), ) else: for inst in instruments_d: data[inst] = p.apply_async( DatasetProvider.expression_calculator, args=( inst, start_time, end_time, freq, normalize_column_names, None, C, ), ) p.close() p.join() new_data = dict() for inst in sorted(data.keys()): if len(data[inst].get()) > 0: # NOTE: Python version >= 3.6; in versions after python3.6, dict will always guarantee the insertion order new_data[inst] = data[inst].get() if len(new_data) > 0: data = pd.concat(new_data, names=["instrument"], sort=False) data = DiskDatasetCache.cache_to_origin_data(data, column_names) else: data = pd.DataFrame(columns=column_names) return data @staticmethod def expression_calculator(inst, start_time, end_time, freq, column_names, spans=None, g_config=None): """ Calculate the expressions for one instrument, return a df result. If the expression has been calculated before, load from cache. return value: A data frame with index 'datetime' and other data columns. """ # FIXME: Windows OS or MacOS using spawn: https://docs.python.org/3.8/library/multiprocessing.html?highlight=spawn#contexts-and-start-methods global C C = g_config # NOTE: This place is compatible with windows, windows multi-process is spawn if getattr(ExpressionD, "_provider", None) is None: register_all_wrappers() obj = dict() for field in column_names: # The client does not have expression provider, the data will be loaded from cache using static method. obj[field] = ExpressionD.expression(inst, field, start_time, end_time, freq) data = pd.DataFrame(obj) _calendar = Cal.calendar(freq=freq) data.index = _calendar[data.index.values.astype(np.int)] data.index.names = ["datetime"] if spans is None: return data else: mask = np.zeros(len(data), dtype=np.bool) for begin, end in spans: mask |= (data.index >= begin) & (data.index <= end) return data[mask] class LocalCalendarProvider(CalendarProvider): """Local calendar data provider class Provide calendar data from local data source. """ def __init__(self, **kwargs): self.remote = kwargs.get("remote", False) @property def _uri_cal(self): """Calendar file uri.""" return os.path.join(C.get_data_path(), "calendars", "{}.txt") def _load_calendar(self, freq, future): """Load original calendar timestamp from file. Parameters ---------- freq : str frequency of read calendar file Returns ---------- list list of timestamps """ if future: fname = self._uri_cal.format(freq + "_future") # if future calendar not exists, return current calendar if not os.path.exists(fname): get_module_logger("data").warning(f"{freq}_future.txt not exists, return current calendar!") fname = self._uri_cal.format(freq) else: fname = self._uri_cal.format(freq) if not os.path.exists(fname): raise ValueError("calendar not exists for freq " + freq) with open(fname) as f: return [pd.Timestamp(x.strip()) for x in f] def calendar(self, start_time=None, end_time=None, freq="day", future=False): _calendar, _calendar_index = self._get_calendar(freq, future) if start_time == "None": start_time = None if end_time == "None": end_time = None # strip if start_time: start_time =
pd.Timestamp(start_time)
pandas.Timestamp
import sys import numpy as np import pandas as pd import sklearn import pickle import constants def load_df(fasta_filename): filename = fasta_filename with open(filename, "r") as f: test = f.readlines() x = [] y = [] lens = [] for i in range(len(test)): #for i in range(start, end): if i % 2 == 0: x.append(test[i]) else: tmp = test[i].split("\n")[0] lens.append(len(tmp)) y.append(tmp) len_max = max(lens) for i in range(len(y)): diff = len_max - len(y[i]) for j in range(diff): y[i] += "N" xs = constants.xs print(f'seq_len: {len(y[0])}') l = [] c0, c1, c2, c3 = [], [], [], [] df_lists = [] for i in range(len(x)): df_list = [] if x[i].startswith(xs[0]): df_list.append(0) tmp = x[i].split("_")[1].split("\n")[0] df_list.append(tmp) df_list.append(y[i]) elif x[i].startswith(xs[1]): df_list.append(1) tmp = x[i].split("_")[1].split("\n")[0] df_list.append(tmp) df_list.append(y[i]) elif x[i].startswith(xs[2]): df_list.append(2) tmp = x[i].split("_")[1].split("\n")[0] df_list.append(tmp) df_list.append(y[i]) elif x[i].startswith(xs[3]): df_list.append(3) tmp = x[i].split("_")[1].split("\n")[0] df_list.append(tmp) df_list.append(y[i]) else: raise df_lists.append(df_list) return df_lists if __name__ == "__main__": df_list = load_df(constants.fasta_filename) columns = ["class", "id", "seq"] df = pd.DataFrame(data=df_list, columns=columns) df= df.sample(frac=1) # each column in a dataframe is called a series classes = df.loc[:, 'class'].tolist() sequences = df.loc[:, 'seq'].tolist() dataset = {} skip = 50 # Loop throught the sequences and split into individual nucleotides for i, seq in enumerate(sequences): # split into nucleotides, remove tab characters n_tmp = list(seq) nucleotides = [] for j in range(0, len(n_tmp), skip): if n_tmp[j] != '\t': nucleotides.append(n_tmp[j]) #nucleotides = [x for x in nucleotides if x != '\t'] # Append class assignment nucleotides.append(classes[i]) # add to dataset dataset[i] = nucleotides df = pd.DataFrame(dataset).T print(len(df.columns)) df.rename(columns={599: 'Class'}, inplace=True) #with open('pp_data/original_train.pkl', 'wb') as f: # pickle.dump(df, f) print("deal with dummies and categories for train and test....") cats = [] for i in range(len(df.columns)-1): tmp = set(df[df.columns[i]].unique().tolist()) tmp = list(tmp) tmp.sort() cats.append(tmp) cat = tmp df[df.columns[i]] =
pd.Categorical(df[df.columns[i]], categories=cat)
pandas.Categorical
import pandas as pd import os path = "./csv_files" list_of_samples = os.listdir(path) df_array = [] for file in list_of_samples: df_array.append(pd.read_csv(path+"/"+file)) strain_dictionary = { "genome_file": [], "scientific name": [] } for df in df_array: for index, row in df.iterrows(): specie_array = row['#Organism Name'].split(" ") strain_dictionary["genome_file"].append(row["Assembly"].split(".")[0]) strain_dictionary["scientific name"].append(specie_array[0] + " " + specie_array[1] + ("" if
pd.isna(row['Strain'])
pandas.isna
#Cleaning data import pandas as pd import numpy as np def clean(): #Reading in features/echonest frames and tracks df's to merge on track_id features =
pd.read_csv('features.csv',skiprows=[2,3])
pandas.read_csv
import h5py import numpy as np import pandas as pd import random from tqdm import tqdm from sklearn.preprocessing import Imputer, Normalizer def load_data(data_path, split=None, label=None, protein_name_list=None, sample_size=None, features_list=None, mode=None): input_fo = h5py.File(data_path, 'r') if split is not None: if split not in ["train", "test"]: print ("invalid split option") return None else: pass data_frame = pd.DataFrame() if protein_name_list is None: protein_name_list = list(input_fo[split].keys()) print("loading", len(protein_name_list), "proteins.") if split is not None: for i, protein_name in enumerate(tqdm(protein_name_list)): protein_df = load_split_protein(data_path, label=label, protein_name=protein_name, split=split, sample_size=sample_size, features_list=features_list, mode=mode) data_frame = pd.concat([data_frame, protein_df]) else: for i, protein_name in enumerate(tqdm(protein_name_list)): protein_df = load_protein(data_path, label=label, protein_name=protein_name, sample_size=sample_size, features_list=features_list, mode=mode) data_frame = pd.concat([data_frame, protein_df]) return data_frame def load_protein(data_path, label=None, protein_name=None, sample_size=None, features_list=None, mode=None): input_fo = h5py.File(data_path, 'r') if label is None: label = "label" # if features_list is none then use all of the features if features_list is None: features_list = list(input_fo[str(protein_name)].keys()) else: if "receptor" not in features_list: features_list.append("receptor") if "drugID" not in features_list: features_list.append("drugID") if "label" not in features_list: features_list.append("label") data_frame =
pd.DataFrame()
pandas.DataFrame
# coding: utf-8 # In[ ]: import pandas as pd import numpy as np import sklearn from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler # In[ ]: def filtering(level): # filter class data based on level which students response db=
pd.read_csv('/Users/surin/Documents/201720723/3-1/도메인분석및SW설계/Final/rcmd/finalAcademy.csv', engine='python')
pandas.read_csv
from pathlib import Path import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import argparse ''' How to run python assemble_timer_output.py -b folder_before -a folder_after -d folder_output -o file_name_prefix ''' plt.rcParams['figure.figsize'] = [10, 6] plt.rcParams.update({'font.size': 18, 'figure.dpi': 150}) sns.set(rc={"lines.linewidth": 0.7}) # https://github.com/mwaskom/seaborn/issues/915 def fixed_boxplot(x, y, *args, label=None, **kwargs): sns.boxplot(x=x, y=y, *args, **kwargs, labels=[label]) def plot_micro_timing_min_cag_distributions(df_mcmc_and_kde, measurement='Wall Clock Time (ns)', hue='Sample Type', line=True, separate=True, summary=False, file_name_prefix=''): min_cag = df_mcmc_and_kde['Edges'] == (df_mcmc_and_kde['Nodes'] - 1) df_min_cag = df_mcmc_and_kde[min_cag] df_min_cag.to_csv('min_cag.csv', index=False) if line: sns.lineplot(data=df_min_cag, x='Nodes', y=measurement, hue=hue, marker='o', linewidth=2) if summary: plt.title('Percentage Speedup for a Single MCMC Iteration (# Edges = # Nodes - 1)', size=16) else: plt.title('Timing for a Single MCMC Iteration (# Edges = # Nodes - 1)', size=16) plt.tight_layout() else: if separate: g = sns.FacetGrid(df_min_cag, col=hue, row='Nodes', hue=hue, sharex='col', margin_titles=True) else: g = sns.FacetGrid(df_min_cag, row='Nodes', hue=hue, sharex='col', margin_titles=True) # g = sns.FacetGrid(df_min_cag, row='Nodes', hue='Sample Type', sharex=False, sharey=False, margin_titles=True) g.map(sns.histplot, measurement) # g.map(fixed_boxplot, 'Sample Type', measurement) g.fig.set_figwidth(24) g.fig.set_figheight(11) g.set_titles(col_template='{col_name}', row_template='{row_name} Nodes') g.fig.suptitle('Micro Timing for Minimum Size CAGs', size=16) g.fig.subplots_adjust(top=.9) # Iterate thorugh each axis for ax in g.axes.flat: ax.set_ylabel('Number of Samples') g.add_legend() if file_name_prefix: plt.savefig(file_name_prefix) else: plt.show() plt.close() def plot_micro_timing_distributions(df_mcmc_and_kde, measurement='Wall Clock Time (ns)', separate=True): df_nodes = df_mcmc_and_kde.groupby(by=['Nodes'], as_index=False) plot_no = 1 for nodes, df_node in df_nodes: if separate: g = sns.FacetGrid(df_node, col='Sample Type', row='Edges', hue='Sample Type', sharex='col', sharey='row', margin_titles=True) file_name_modifier = 'sep' else: g = sns.FacetGrid(df_node, row='Edges', hue='Sample Type', sharex='col', sharey='row', margin_titles=True) file_name_modifier = 'comb' g.map(sns.histplot, measurement) g.fig.set_figwidth(24) g.fig.set_figheight(11) g.set_titles(col_template='{col_name}', row_template='{row_name} Edges') g.fig.suptitle(f'Micro Timing for CAGs with {nodes} Nodes', size=16) g.fig.subplots_adjust(top=.9) # Iterate thorugh each axis for ax in g.axes.flat: ax.set_ylabel('Number of Samples') g.add_legend() # plt.tight_layout() # plt.savefig(f'{out_dir}{plot_no}_{file_name_modifier}_{nodes}.png') plot_no += 1 plt.show() plt.close() def plot_micro_timing_summery_per_cag_size(df_mcmc_and_kde, measurement='Wall Clock Time (ns)', separate=True, title_specifier='', y_label='', file_name_prefix='', timing_type=''): def edges_to_label(row): if row['Edges'] == row['Nodes'] - 1: return '$Nodes - 1$' elif row['Edges'] == int((row['Nodes'] - 1) * 5 / 4): return '$\\frac{5(Nodes - 1)}{4}$' elif row['Edges'] == int((row['Nodes'] - 1) * 6 / 4): return '$\\frac{6(Nodes - 1)}{4}$' elif row['Edges'] == int((row['Nodes'] - 1) * 7 / 4): return '$\\frac{7(Nodes - 1)}{4}$' elif row['Edges'] == (row['Nodes'] - 1) * 2: return '$2(Nodes - 1)$' order = ['$Nodes - 1$', '$\\frac{5(Nodes - 1)}{4}$', '$\\frac{6(Nodes - 1)}{4}$', '$\\frac{7(Nodes - 1)}{4}$', '$2(Nodes - 1)$'] if separate: df_nodes = df_mcmc_and_kde.groupby(by=['Nodes'], as_index=False) for nodes, df_node in df_nodes: sns.lineplot(data=df_node, x='Edges', y=measurement, hue='Sample Type', marker='o', linewidth=2) plt.title(f'Variation of the {title_specifier} for a Single MCMC Iteration\nwith the Number of Edges for {nodes} Nodes', size=16) if file_name_prefix: plt.savefig(f'{file_name_prefix}with_num_edges_for_{nodes}_nodes.png') else: plt.show() plt.close() else: df_mcmc_and_kde = df_mcmc_and_kde.copy() df_mcmc_and_kde['x label'] = df_mcmc_and_kde.apply(edges_to_label, axis=1) # set categorical order df_mcmc_and_kde['x label'] = pd.Categorical(df_mcmc_and_kde['x label'], categories=order, ordered=True) df_mcmc_and_kde['Nodes'] = df_mcmc_and_kde['Nodes'].apply(lambda nodes: str(nodes)) sns.lineplot(data=df_mcmc_and_kde[((df_mcmc_and_kde['Sample Type'] == timing_type) & (df_mcmc_and_kde[measurement] >= 0))], x='x label', y=measurement, hue='Nodes', linewidth=2) plt.xlabel('Edges (as a function of Nodes)') plt.ylabel(y_label) plt.title(f'Variation of the {title_specifier} for a Single MCMC Iteration\nwith the Number of Edges', size=16) if file_name_prefix: plt.savefig(f'{file_name_prefix}with_num_edges.png') else: plt.show() plt.close() def plot_prediction_timing_min_cag(df_prediction, measurement='Wall Clock Time (ns)', line=False, separate=True): min_cag = df_prediction['Edges'] == (df_prediction['Nodes'] - 1) df_min_cag = df_prediction[min_cag] if line: sns.lineplot(data=df_min_cag, x='Nodes', y=measurement, marker='o', linewidth=2) plt.title('Prediction Timing for Minimum Size CAGs', size=16) plt.tight_layout() else: if separate: g = sns.FacetGrid(df_min_cag, row='Nodes', margin_titles=True) else: g = sns.FacetGrid(df_min_cag, row='Nodes', hue='Sample Type', sharex='col', margin_titles=True) g.map(sns.histplot, measurement) g.fig.set_figwidth(24) g.fig.set_figheight(11) g.set_titles(col_template='{col_name}', row_template='{row_name} Nodes') g.fig.suptitle('Micro Timing for Minimum Size CAGs', size=16) g.fig.subplots_adjust(top=.9) # Iterate thorugh each axis for ax in g.axes.flat: ax.set_ylabel('Number of Samples') g.add_legend() plt.show() plt.close() def plot_prediction_timing_distributions(df_prediction, measurement='Wall Clock Time (ns)', separate=True): df_prediction = df_prediction.groupby(by=['Nodes'], as_index=False) for nodes, df_node in df_prediction: if separate: g = sns.FacetGrid(df_node, col='Nodes', row='Edges', hue='Nodes', sharex='col', margin_titles=True) else: g = sns.FacetGrid(df_node, row='Edges', hue='Nodes', sharex='col', margin_titles=True) g.map(sns.histplot, measurement) g.fig.set_figwidth(24) g.fig.set_figheight(11) g.set_titles(row_template='{row_name} Edges') g.fig.suptitle(f'Prediction Timing Distributions for CAGs with {nodes} Nodes', size=16) g.fig.subplots_adjust(top=.9) # Iterate thorugh each axis for ax in g.axes.flat: ax.set_ylabel('Number of Samples') g.add_legend() # plt.tight_layout() plt.show() plt.close() def analyze_micro_timing_data(df, mcmc_timing=False): # df_summerry = df.groupby(by=['Nodes', 'Edges', 'Sample Type'], as_index=False).agg(['mean', 'median', 'std']) # print(df_summerry) # return df_node_edge = df.groupby(by=['Nodes'], as_index=False) for ne, df_ne in df_node_edge: # print(ne) # print(df_ne.columns) # fig, ax = plt.subplots(dpi=250, figsize=(24, 6.75)) g = sns.FacetGrid(df_ne, col='Sample Type', row='Edges', sharex='col', margin_titles=True) g.map(sns.histplot, 'Time Wall') plt.show() plt.close() continue if mcmc_timing: df_sample_type = df_ne.groupby(by=['Sample Type'], as_index=False) for st, df_st in df_sample_type: min_cag = df_st['Edges'] == (df_st['Nodes'] - 1) df_min_cag = df_st[min_cag] # print(st) # print(df_st.columns) # continue # sns.lineplot(data=df_min_cag, x='Nodes', y='MCMC Wall', marker='o', linewidth=2) sns.histplot(df_min_cag, x='MCMC Wall', element='step', color=(0.9375, 0.5, 0.5), stat='probability') title = 'Sampling $\\theta$ ' if st == 1 else 'Sampling derivative ' plt.title(title + f'{ne}') plt.tight_layout() # plt.savefig(f'{out_dir}{plot_no}_{title} - line.png') plt.show() plt.close() def assemble_micro_timing_output_files_into_df(folder, file_name_filter, ns_to_ms=True): csv_files = Path(folder).glob(f'*{file_name_filter}*.csv') df = pd.concat(map(pd.read_csv, csv_files), ignore_index=True) df.drop(['Run', 'KDE Kernels'], axis=1, inplace=True, errors='ignore') if ns_to_ms: df['CPU Time (ns)'] = df['CPU Time (ns)'].apply(lambda ns: ns / 1000000.0) df['Wall Clock Time (ns)'] = df['Wall Clock Time (ns)'].apply(lambda ns: ns / 1000000.0) df.rename(columns={'Wall Clock Time (ns)': 'Wall Clock Time (ms)', 'CPU Time (ns)': 'CPU Time (ms)'}, inplace=True) return df def combine_before_and_after_dfs(df_bf, df_af): def add_percentage_speedup_columns(df, timing_type, col_before, col_after): df[f'{timing_type} Diff (ms)'] = df.apply(lambda row: row[col_before] - row[col_after], axis=1) df[f'% Speedup ({timing_type})'] = df\ .apply(lambda row: row[f'{timing_type} Diff (ms)'] * 100 / row[col_before], axis=1) df[f'Fold Speedup ({timing_type}) - $f$'] = df.apply(lambda row: row[col_before] / row[col_after], axis=1) df_summary_bf = df_bf.groupby(by=['Nodes', 'Edges', 'Sample Type'], as_index=False)\ .agg(wall_before_mean=('Wall Clock Time (ms)', 'mean'), wall_before_median=('Wall Clock Time (ms)', 'median'), wall_before_std=('Wall Clock Time (ms)', 'std'), wall_before_count=('Wall Clock Time (ms)', 'count'), cpu_before_mean=('CPU Time (ms)', 'mean'), cpu_before_median=('CPU Time (ms)', 'median'), cpu_before_std=('CPU Time (ms)', 'std'), cpu_before_count=('CPU Time (ms)', 'count') ).round(2) df_summary_af = df_af.groupby(by=['Nodes', 'Edges', 'Sample Type'], as_index=False)\ .agg(wall_after_mean=('Wall Clock Time (ms)', 'mean'), wall_after_median=('Wall Clock Time (ms)', 'median'), wall_after_std=('Wall Clock Time (ms)', 'std'), wall_after_count=('Wall Clock Time (ms)', 'count'), cpu_after_mean=('CPU Time (ms)', 'mean'), cpu_after_median=('CPU Time (ms)', 'median'), cpu_after_std=('CPU Time (ms)', 'std'), cpu_after_count=('CPU Time (ms)', 'count') ).round(2) df_both =
pd.merge(left=df_summary_bf, right=df_summary_af, on=['Nodes', 'Edges', 'Sample Type'])
pandas.merge
"""Tests for gate.py""" import numpy as np import pandas as pd import xarray as xr from timeflux.helpers.testing import DummyData, DummyXArray from timeflux.nodes.gate import Gate xarray_data = DummyXArray() pandas_data = DummyData() node = Gate(event_opens='foo_begins', event_closes='foo_ends', truncate=True) def test_gate_silent(): pandas_data.reset() # Send data but no event node.i.data = pandas_data.next(20) node.update() assert node._status == 'closed' assert node.o.data == None def test_send_opening_closing_event_in_separate_chunks(): pandas_data.reset() # Send an opening event node.clear() node.i.data = pandas_data.next(5) time_open = pd.Timestamp('2018-01-01 00:00:00.104507143') # Sync event to second sample event = pd.DataFrame([['foo_begins']], [time_open], columns=['label']) # Generate a trigger event node.i_events.data = event node.update() expected_data = pd.DataFrame( [ [0.658783, 0.692277, 0.849196, 0.249668, 0.489425], [0.221209, 0.987668, 0.944059, 0.039427, 0.705575], [0.925248, 0.180575, 0.567945, 0.915488, 0.033946], [0.69742, 0.297349, 0.924396, 0.971058, 0.944266], ], [ pd.Timestamp('2018-01-01 00:00:00.104507143'), pd.Timestamp('2018-01-01 00:00:00.202319939'), pd.Timestamp('2018-01-01 00:00:00.300986584'), pd.Timestamp('2018-01-01 00:00:00.396560186') ] ) expected_meta = {'gate_status': 'open'} assert node._status == 'open' assert node._trigger == 'foo_ends' assert node.o.meta == expected_meta pd.testing.assert_frame_equal(node.o.data, expected_data) # Send a closing event node.clear() node.i.data = pandas_data.next(5) time_close = pd.Timestamp('2018-01-01 00:00:00.595580836') # Sync event to second sample event = pd.DataFrame([['foo_ends']], [time_close], columns=['label']) # Generate a trigger event node.i_events.data = event node.update() expected_data = pd.DataFrame( [ [0.474214, 0.862043, 0.844549, 0.3191, 0.828915], [0.037008, 0.59627, 0.230009, 0.120567, 0.076953] ], [ pd.Timestamp('2018-01-01 00:00:00.496559945'), pd.Timestamp('2018-01-01 00:00:00.595580836') ] ) expected_meta = {'gate_status': 'closed', 'gate_times': [time_open, time_close]} assert node._status == 'closed' assert node._trigger == 'foo_begins' assert node.o.meta == expected_meta pd.testing.assert_frame_equal(node.o.data, expected_data) def test_send_opening_closing_event_in_same_chunk(): # Send an opening event and a closing event in the same chunk pandas_data.reset() node.clear() node.i.data = pandas_data.next(5) time_open = pd.Timestamp('2018-01-01 00:00:00.1') time_close = pd.Timestamp('2018-01-01 00:00:00.3') event = pd.DataFrame([['foo_begins'], ['foo_ends']], [time_open, time_close], columns=['label']) # Generate a trigger event node.i_events.data = event node.update() expected_data = pd.DataFrame( [ [0.658783, 0.692277, 0.849196, 0.249668, 0.489425], [0.221209, 0.987668, 0.944059, 0.039427, 0.705575] ], [
pd.Timestamp('2018-01-01 00:00:00.104507143')
pandas.Timestamp
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # Different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_index_with_mixed_timezones_with_NaT(self): # see gh-11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # Same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT,
Timestamp('2011-01-01 10:00')
pandas.Timestamp
import os import pandas as pd import csv from sklearn.model_selection import train_test_split import numpy as np import random import tensorflow as tf import torch #directory of tasks dataset os.chdir("original_data") #destination path to create tsv files, dipends on data cutting path_0 = "mttransformer/data/0" path_100_no_gan = "mttransformer/data/100/no_gan" path_200_no_gan = "mttransformer/data/200/no_gan" path_500_no_gan = "mttransformer/data/500/no_gan" path_100_gan = "mttransformer/data/100/gan" path_200_gan = "mttransformer/data/200/gan" path_500_gan = "mttransformer/data/500/gan" #if you use a model with gan the flag "apply_gan" is True, else False apply_gan=False #data cutting number_labeled_examples=0 #0-100-200-500 #if you want activate balancing, that is used only in the model Multi-task, MT-DNN and MT-GANBERT balancing=False #path train and test dataset of the task tsv_haspeede_train = 'haspeede_TW-train.tsv' tsv_haspeede_test = 'haspeede_TW-reference.tsv' tsv_AMI2018_train = 'AMI2018_it_training.tsv' tsv_AMI2018_test = 'AMI2018_it_testing.tsv' tsv_AMI2018_train = 'AMI2018_it_training.tsv' tsv_AMI2018_test = 'AMI2018_it_testing.tsv' tsv_DANKMEMES2020_train = 'dankmemes_task2_train.csv' tsv_DANKMEMES2020_test = 'hate_test.csv' tsv_SENTIPOLC2016_train = 'training_set_sentipolc16.csv' tsv_SENTIPOLC2016_test = 'test_set_sentipolc16_gold2000.csv' tsv_SENTIPOLC2016_train = 'training_set_sentipolc16.csv' tsv_SENTIPOLC2016_test = 'test_set_sentipolc16_gold2000.csv' #Upload the dataset of all task as dataframes #haspeede_TW df_train = pd.read_csv(tsv_haspeede_train, delimiter='\t', names=('id','sentence','label')) df_train = df_train[['id']+['label']+['sentence']] df_test =
pd.read_csv(tsv_haspeede_test, delimiter='\t', names=('id','sentence','label'))
pandas.read_csv
from sampling_utils import * from collections import OrderedDict import theano import re import pandas as pd import datetime import numpy as np import scipy as sp import pymc3 as pm import patsy as pt import theano.tensor as tt # BUG: may throw an error for flat RVs theano.config.compute_test_value = 'off' class SpatioTemporalFeature(object): def __init__(self): self._call_ = np.frompyfunc(self.call, 2, 1) def __call__(self, times, locations): _times = [pd.Timestamp(d) for d in times] return self._call_(np.asarray(_times).reshape( (-1, 1)), np.asarray(locations).reshape((1, -1))).astype(np.float32) class SpatioTemporalYearlyDemographicsFeature(SpatioTemporalFeature): """ TODO: * county data must be updated to include 2019/2020 demographic data |> fix call """ def __init__(self, county_dict, group, scale=1.0): self.dict = { (year, county): val * scale for county, values in county_dict.items() for (g, year), val in values["demographics"].items() if g == group } super().__init__() def call(self, yearweekday, county): # TODO: do this properly when data is available! return self.dict.get((2018, county)) # return self.dict.get((yearweekday.year,county)) class SpatialEastWestFeature(SpatioTemporalFeature): def __init__(self, county_dict): self.dict = { county: 1.0 if "east" in values["region"] else ( 0.5 if "berlin" in values["region"] else 0.0) for county, values in county_dict.items()} super().__init__() def call(self, yearweekday, county): return self.dict.get(county) class TemporalFourierFeature(SpatioTemporalFeature): def __init__(self, i, t0, scale): self.t0 = t0 self.scale = scale self.τ = (i // 2 + 1) * 2 * np.pi self.fun = np.sin if (i % 2) == 0 else np.cos super().__init__() def call(self, t, x): return self.fun((t - self.t0) / self.scale * self.τ) class TemporalPeriodicPolynomialFeature(SpatioTemporalFeature): def __init__(self, t0, period, order): self.t0 = t0 self.period = period self.order = order super().__init__() def call(self, t, x): tdelta = (t - self.t0).days % self.period return (tdelta / self.period) ** self.order class TemporalSigmoidFeature(SpatioTemporalFeature): def __init__(self, t0, scale): self.t0 = t0 self.scale = scale super().__init__() def call(self, t, x): t_delta = (t - self.t0) / self.scale return sp.special.expit(t_delta.days + (t_delta.seconds / (3600 * 24))) class TemporalPolynomialFeature(SpatioTemporalFeature): def __init__(self, t0, tmax, order): self.t0 = t0 self.order = order self.scale = (tmax - t0).days super().__init__() def call(self, t, x): t_delta = (t - self.t0).days / self.scale return t_delta ** self.order class IAEffectLoader(object): generates_stats = False def __init__(self, var, filenames, days, counties): self.vars = [var] self.samples = [] for filename in filenames: try: with open(filename, "rb") as f: tmp = pkl.load(f) except FileNotFoundError: print("Warning: File {} not found!".format(filename)) pass except Exception as e: print(e) else: m = tmp["ia_effects"] ds = list(tmp["predicted day"]) cs = list(tmp["predicted county"]) d_idx = np.array([ds.index(d) for d in days]).reshape((-1, 1)) c_idx = np.array([cs.index(c) for c in counties]) self.samples.append(np.moveaxis( m[d_idx, c_idx, :], -1, 0).reshape((m.shape[-1], -1)).T) def step(self, point): new = point.copy() # res = new[self.vars[0].name] new_res = self.samples[np.random.choice(len(self.samples))] new[self.vars[0].name] = new_res return new def stop_tuning(self, *args): pass @property def vars_shape_dtype(self): shape_dtypes = {} for var in self.vars: dtype = np.dtype(var.dtype) shape = var.dshape shape_dtypes[var.name] = (shape, dtype) return shape_dtypes class BaseModel(object): """ Model for disease prediction. The model has 4 types of features (predictor variables): * temporal (functions of time) * spatial (functions of space, i.e. longitude, latitude) * county_specific (functions of time and space, i.e. longitude, latitude) * interaction effects (functions of distance in time and space relative to each datapoint) """ def __init__( self, trange, counties, ia_effect_filenames, num_ia=16, model=None, include_ia=True, include_demographics=True, include_temporal=True, include_periodic=True, orthogonalize=False): self.county_info = counties self.ia_effect_filenames = ia_effect_filenames self.num_ia = num_ia if include_ia else 0 self.include_ia = include_ia self.include_demographics = include_demographics self.include_temporal = include_temporal self.include_periodic = include_periodic self.trange = trange """Model for Covid-19 daily reports (RKI) * Trend: (polynomial days/max_days) // degree: 4 * Periodic: (periodic polynomial days/7) // degree: 3 * Interactions: (sampled IA Kernel (from cases and geographical data)) * Spatiotemporal: * Exposure: ("fixed log population to adjust growth rate slightly") """ self.features = { "temporal_trend": { "temporal_polynomial_{}".format(i): TemporalPolynomialFeature( pd.Timestamp('2020-01-28'),
pd.Timestamp('2020-03-30')
pandas.Timestamp
import anndata as ad from typing import Optional, Literal import numpy as np import pandas as pd class AnnotatedData(ad.AnnData): """Creates annotated cellsdata (see anndata library for more information on AnnotatedData) object based around the Ca2+ matrix of the imaging trial.""" def __init__(self, X, obs, var=None, data_label=None, **kwargs): adata_dict = {'X': X, 'obs': obs, 'var': var} for key in [*kwargs]: adata_dict[key] = kwargs[key] ad.AnnData.__init__(self, **adata_dict) self.data_label = data_label if data_label else None print(f"Created AnnData object: \n\t{self.__repr__()}") def __str__(self): "extensive information about the AnnotatedData cellsdata structure" if self.filename: backed_at = f" backed at {str(self.filename)!r}" else: backed_at = "" descr = f"Annotated Data of n_obs × n_vars = {self.n_obs} × {self.n_vars} {backed_at}" descr += f"\navailable attributes: " descr += f"\n\t.X (primary datamatrix) of .data_label: \n\t\t|- {str(self.data_label)}" if self.data_label else f"\n\t.X (primary datamatrix)" descr += f"\n\t.obs (obs metadata): \n\t\t|- {str(list(self.obs.keys()))[1:-1]}" descr += f"\n\t.var (vars metadata): \n\t\t|- {str(list(self.var.keys()))[1:-1]}" for attr in [ ".uns", ".obsm", ".varm", ".layers", ".obsp", ".varp", ]: keys = getattr(self, attr[1:]).keys() if len(keys) > 0: descr += f"\n\t{attr}: \n\t\t|- {str(list(keys))[1:-1]}" return descr def _gen_repr(self, n_obs, n_vars) -> str: # overriding base method from AnnData """overrides the default anndata _gen_repr_() method for imaging cellsdata usage.""" return f"Annotated Data of n_obs (# ROIs) × n_vars (# Frames) = {n_obs} × {n_vars}" def add_obs(self, obs_name: str, values: list): """adds values to the observations of an anndata object, under the key obs_name""" assert len(values) == self.obs.shape[0], f"# of values to add doesn't match # of observations in anndata array" self.obs[obs_name] = values def del_obs(self, obs_name: str): # TODO """removes a key from observations from an anndata object, of the key obs_name""" _ = self.obs.pop(obs_name) def add_var(self, var_name: str, values: list): """adds values to the variables of an anndata object, under the key var_name""" assert len(values) == self.var.shape[0], f"# of values to add doesn't match # of observations in anndata array" self.var[var_name] = values def del_var(self, obs_name: str): # TODO """removes a key from variables from an anndata object, of the key var_name""" _ = self.var.pop(obs_name) def extend_anndata(self, additional_adata: ad.AnnData, axis: Literal[0,1] = 0): """ :param additional_adata: an anndata object of dimensions n obs x # var or, # obs x m var (depending on which axis to extend) :param axis: """ adata = ad.concat([self, additional_adata], axis=axis) return adata def convert_to_df(self) -> pd.DataFrame: """ Convert anndata object into a long-form pandas dataframe. primary purpose is to allow access to pandas and seaborn functionality more directly. - overall seems to be working well. just need to test with a dataset with >1 obs and var keys(), and to test with the whole larger dataset. :return: long-form pandas dataframe """ print(f"\n\- converting anndata cellsdata matrix to long-form pandas dataframe ... [in progress]") cols = [self.obs_keys()[0], self.var_keys()[0]] cols.extend(self.obs_keys()[1:]) cols.extend(self.var_keys()[1:]) cols.extend([self.data_label]) if self.data_label is not None or not '' else cols.extend('data_values') df =
pd.DataFrame(columns=cols)
pandas.DataFrame
#!/usr/bin/env python from pangeamt_toolkit import Pangeanmt, Pipeline import os import json import shutil import argparse import subprocess import pandas as pd class Engine: def __init__(self): with open("config.json", "r") as file: self._config = json.loads(file.read()) self._src_pipeline = Pipeline( self._config["pipeline_config"], self._config["src_lang"], self._config["tgt_lang"], ) self._tgt_pipeline = Pipeline( self._config["pipeline_config_tgt"], self._config["tgt_lang"] ) # Returns a trained model def train_from_table(self, p, table): res = {"src_prep": [], "tgt_prep": []} # Shape returns the dimensions of the DataFrame, so shape[0] is the # number of rows. for i in range(table.shape[0]): if (i + 1) % 10 == 0: print(f"Trained with {i+1} segments.") # The attribute iat gets the value at [x, y] src = table.iat[i, 0] tgt = table.iat[i, 1] src_prep = self._src_pipeline.preprocess_str(src) tgt_prep = self._tgt_pipeline.preprocess_str(tgt) res["src_prep"].append(src_prep) res["tgt_prep"].append(tgt_prep) p.train(src_prep, tgt_prep) return p, res def no_train_translate_from_table(self, p, table): res = {"original": []} # Shape returns the dimensions of the DataFrame, so shape[0] is the # number of rows. for i in range(table.shape[0]): if (i + 1) % 10 == 0: print(f"Translated {i+1} segments.") # The attribute iat gets the value at [x, y] seg = table.iat[i, 0] seg_prep = self._src_pipeline.preprocess_str(seg) translation = p.translate([seg_prep]) tgt = (" ").join(translation[0].tgt) tgt = self._src_pipeline.postprocess_str(tgt) res["original"].append(tgt) return res def translate_from_table(self, p, table, j): res = {f"tgts_{j}": []} # Shape returns the dimensions of the DataFrame, so shape[0] is the # number of rows. for i in range(table.shape[0]): if (i + 1) % 10 == 0: print(f"Translated {i+1} segments.") # The attribute iat gets the value at [x, y] seg = table.iat[i, 0] seg_prep = self._src_pipeline.preprocess_str(seg) translation = p.translate([seg_prep]) tgt = (" ").join(translation[0].tgt) tgt = self._src_pipeline.postprocess_str(tgt) res[f"tgts_{j}"].append(tgt) return res def _get_parser(): parser = argparse.ArgumentParser(description="Vocab learning") parser.add_argument("dir", help="Path to extended model.") parser.add_argument("xlsx_file", help="Xlsx file to work with.") parser.add_argument("i", help="Number of times the model learns.") return parser def main(args): # Loads the file xl_file = pd.ExcelFile(args.xlsx_file) for sheet in xl_file.sheet_names: # Parses the content of the sheet to a pandas DataFrame. table = xl_file.parse(sheet) xl_writer =
pd.ExcelWriter(args.xlsx_file, engine="xlsxwriter")
pandas.ExcelWriter
import argparse import os from dataclasses import dataclass from functools import lru_cache import socket from urllib.parse import parse_qsl, urlencode, urlparse import flask from cached_property import cached_property from pathlib import Path from typing import Dict, List, Optional, Union import cv2 import pandas as pd import numpy as np import dash from dash import Dash import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px from dash.exceptions import PreventUpdate from flask import make_response parser = argparse.ArgumentParser( description="Run web-based ESV visualisation tool", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("esvs_pkl", type=Path, help="Path to extracted ESVs") parser.add_argument("dataset_root", type=Path, help="Path dataset folder of videos") parser.add_argument( "classes_csv", type=Path, help="Path to CSV containing name,id entries" ) parser.add_argument( "--debug", action="store_true", help="Enable Dash debug capabilities" ) parser.add_argument( "--port", default=8080, type=int, help="Port for webserver to listen on" ) parser.add_argument("--host", default="localhost", help="Host to bind to") def load_video(video_path: Union[str, Path]) -> np.ndarray: capture = cv2.VideoCapture(str(video_path)) frames = [] while capture.isOpened(): success, frame = capture.read() if success: frames.append(frame[..., ::-1]) # BGR -> RGB else: break if len(frames) == 0: raise ValueError(f"Could not load video from {video_path}") return np.stack(frames) @dataclass class Result: esvs: List[np.ndarray] # [n_frames_idx][frame_idx, class_idx] scores: np.ndarray # [n_frames_idx, class_idx] uid: str label: int sequence_idxs: List[np.ndarray] # [n_frames_idx][frame_idx] results_idx: int @property def max_n_frames(self): return max([len(s) for s in self.sequence_idxs]) class ShapleyValueResults: def __init__(self, results): self._results = results @property def uids(self) -> List[str]: return list(self._results["uids"]) @property def shapley_values(self) -> List[np.ndarray]: # shapley_values[n_frames_idx][example_idx, frame_idx, class_idx] return self._results["shapley_values"] @property def sequence_idxs(self) -> np.ndarray: # sequence_idxs[n_frames_idx][example_idx] return self._results["sequence_idxs"] @property def labels(self) -> np.ndarray: return self._results["labels"] @property def scores(self) -> np.ndarray: # sequence_idxs[n_frames_idx, example_idx, class_idx] return self._results["scores"] @property def max_n_frames(self) -> int: return len(self._results["scores"]) @cached_property def available_classes(self) -> List[int]: return sorted(np.unique(self.labels)) @cached_property def class_counts(self) -> Dict[int, int]: return pd.Series(self.labels).value_counts().to_dict() @cached_property def class_example_idxs_lookup(self) -> Dict[int, np.ndarray]: return { cls: np.nonzero(self.labels == cls)[0] for cls in self.available_classes } def __getitem__(self, idx: Union[int, str]): if isinstance(idx, (int, np.int32, np.int64)): example_idx = idx elif isinstance(idx, str): example_idx = self.uids.index(idx) else: raise ValueError(f"Cannot handle idx type: {idx.__class__.__name__}") return Result( esvs=[esvs[example_idx] for esvs in self.shapley_values], scores=self.scores[:, example_idx], uid=self.uids[example_idx], label=self.labels[example_idx], sequence_idxs=[ sequence_idxs[example_idx] for sequence_idxs in self.sequence_idxs ], results_idx=example_idx, ) def get_triggered_props(): ctx = dash.callback_context return {trigger["prop_id"] for trigger in ctx.triggered} class Visualisation: def __init__( self, results: ShapleyValueResults, class2str: Dict[int, str], dataset_dir: Path, title: str = "ESV Dashboard", ): self.results = results self.class2str = class2str self.str2class = {v: k for k, v in class2str.items()} self.dataset_dir = dataset_dir self.title = title def decode_other_classes(classes_str): return list(map(int, classes_str.split(":"))) self.default_state = { "n-frames": self.results.max_n_frames, "uid": self.results.uids[0], "selected-classes": [], } self.state_types = { "uid": str, "n-frames": int, "selected-classes": decode_other_classes, } def extract_state_from_url(self, url): components = urlparse(url) query_string = parse_qsl(components.query) state = self.default_state.copy() for k, v in query_string: state[k] = self.state_types[k](v) return state def load_result(self, cls, example_idx): return self.results[self.results.class_example_idxs_lookup[cls][example_idx]] def attach_to_app(self, app: Dash): def app_layout(): return html.Div( [dcc.Location(id="url", refresh=False), self.render_layout()] ) app.layout = app_layout self.attach_callbacks(app) self.attach_routes(app) def attach_routes(self, app: Dash): @app.server.route("/videos/<uid>") def load_video(uid: str): path = self.dataset_dir / f"{uid}.webm" return flask.send_from_directory(self.dataset_dir.absolute(), f"{uid}.webm") @app.server.route("/frames/<uid>/<int:frame_idx>") def load_frame(uid: str, frame_idx: int): vid = self.load_video(uid) frame = vid[frame_idx] success, frame_jpeg = cv2.imencode(".jpg", frame[..., ::-1]) response = make_response(frame_jpeg.tobytes()) response.headers.set("Content-Type", "image/jpeg") response.headers.set( "Content-Disposition", "attachment", filename=f"{uid}-{frame_idx}.jpg" ) return response def get_cls_and_example_idx_for_uid(self, uid): cls = self.results.labels[self.results.uids.index(uid)] uids = np.array(self.results.uids) class_uids = self.results.class_example_idxs_lookup[cls] example_idx = list(uids[class_uids]).index(uid) return cls, example_idx def get_uid_from_cls_and_example_idx(self, cls, example_idx): return np.array(self.results.uids)[self.results.class_example_idxs_lookup[cls]][ example_idx ] def get_preds_df(self, result: Result, n_frames: int): scores = result.scores[n_frames - 1] classes = list(scores.argsort()[::-1][:10]) if result.label not in classes: classes = classes[:-1] + [result.label] entries = [] for i, cls in enumerate(classes): class_name = ( self.class2str[cls] .replace("something", "[...]") .replace("Something", "[...]") ) # We have to truncate labels on the x-axis so that they fit without all # getting horribly cut off max_len = 33 truncated_class_name = class_name if len(class_name) >= max_len: truncated_class_name = class_name[: max_len - len("...")] + "..." entries.append( { "Idx": i, "Class": class_name, "TruncatedClass": truncated_class_name, "ClassId": cls, "Score": scores[cls], } ) return pd.DataFrame(entries) def attach_callbacks(self, app: Dash): @app.callback( Output("class-dropdown", "value"), Input("url", "href"), ) def update_class_dropdown_value(href): state = self.parse_state_from_url(href) if "uid" not in state: raise PreventUpdate cls, _ = self.get_cls_and_example_idx_for_uid(state["uid"]) return cls @app.callback( Output("n-frames-slider", "value"), Input("url", "href"), ) def update_n_frames(href): state = self.parse_state_from_url(href) if "n-frames" not in state: raise PreventUpdate return state["n-frames"] @app.callback( Output("example-idx-slider", "value"), Input("class-dropdown", "value"), Input("url", "href"), ) def update_example_slider_value(cls, href): ctx = dash.callback_context url_trigger = "url.href" in get_triggered_props() state = self.parse_state_from_url(href) if url_trigger and "uid" in state: _, example_idx = self.get_cls_and_example_idx_for_uid(state["uid"]) return example_idx return 0 @app.callback( Output("example-idx-slider", "max"), Output("example-idx-slider", "disabled"), Output("example-idx-slider", "marks"), Input("class-dropdown", "value"), ) def update_example_slider(cls): max_index = self.results.class_counts[cls] - 1 marks = {i: str(i) for i in range(max_index + 1)} return max_index, max_index == 0, marks @app.callback( Output("model-preds-bar", "clickData"), Output("model-preds-bar", "figure"), Input("class-dropdown", "value"), Input("example-idx-slider", "value"), Input("n-frames-slider", "value"), ) def update_scores(cls, example_idx, n_frames): result = self.get_result(cls, example_idx) return None, self.plot_preds(self.get_preds_df(result, n_frames)) @app.callback( Output("state-uid", "children"), Input("class-dropdown", "value"), Input("example-idx-slider", "value"), ) def update_uid(cls, example_idx): idx = self.results.class_example_idxs_lookup[cls][example_idx] return self.results.uids[idx] @app.callback( Output("esv-scatter", "figure"), Input("state-uid", "children"), Input("n-frames-slider", "value"), Input("state-alt-class", "children"), ) def update_esvs(uid, n_frames, alt_class_str): try: alt_class = int(alt_class_str) except ValueError: alt_class = None result = self.results[uid] return self.plot_esvs(result, n_frames, alt_class=alt_class) @app.callback( Output("esv-scatter", "hoverData"), Input("n-frames-slider", "value") ) def update_esv_scatter_hover_data(_): return None @app.callback( Output("state-alt-class", "children"), Input("model-preds-bar", "clickData"), Input("state-uid", "children"), ) def update_selected_classes(clickData, uid): if "state-uid" in get_triggered_props(): return "" if clickData is not None: cls = clickData["points"][0]["customdata"][0] return str(cls) return dash.no_update @app.callback( Output("current-frame-container", "children"), Input("state-uid", "children"), Input("esv-scatter", "hoverData"), ) def update_selected_frame(uid, hoverData): result = self.results[uid] if hoverData is None or "state-uid.children" in get_triggered_props(): frame_index = 0 else: frame_index = hoverData["points"][0]["x"] return html.Img(src=f"/frames/{result.uid}/{frame_index}") @app.callback( Output("video-container", "children"), Input("state-uid", "children"), ) def update_video(uid): return html.Video(src=f"/videos/{uid}", loop=True, autoPlay=True) @app.callback( Output("url", "search"), [ Input("example-idx-slider", "value"), Input("class-dropdown", "value"), Input("n-frames-slider", "value"), ], ) def update_url_params(example_idx, cls, n_frames): state = { "uid": self.get_uid_from_cls_and_example_idx(cls, example_idx), "n-frames": n_frames, } params = urlencode(state) return f"?{params}" def render_layout(self): idx = self.results.uids.index(self.default_state["uid"]) cls = self.results.labels[idx] available_example_idxs = list(self.results.class_example_idxs_lookup[cls]) example_idx = available_example_idxs.index(idx) return html.Div( [ html.Div(html.H1(self.title)), html.Div( [ html.Div( [ html.Label("Class: "), dcc.Dropdown( id="class-dropdown", options=[ { "label": self.class2str[cls], "value": cls, } for cls in self.results.available_classes ], value=cls, ), ], className="control-element", ), html.Div( [ html.Label("Example: "), dcc.Slider( id="example-idx-slider", min=0, max=len(available_example_idxs), disabled=False, value=example_idx, ), ], className="control-element", ), html.Div( [ html.Label("Frames fed to model: "), dcc.Slider( id="n-frames-slider", min=1, max=self.results.max_n_frames, marks={ i: str(i) for i in range(1, self.results.max_n_frames + 1) }, value=self.results.max_n_frames, ), ], className="control-element", ), ], className="controls", ), html.Hr(), html.Div( [ html.Div( [ html.H2("Model Predictions"), dcc.Graph( id="model-preds-bar", config={"displayModeBar": False}, responsive=True, ), ], id="model-preds-bar-container", ), html.Div( [ html.H2("ESV Values"), dcc.Graph( id="esv-scatter", config={"displayModeBar": False}, responsive=True, # if we don't set the initial height of the graph it # gets a height of 0 before it is updated when # the user clicks on an alternate class which # refreshes the height attribute of the Graph div. style={"height": "450px"}, ), ], id="esv-scatter-container", ), ], id="graph-pane", ), html.Div( [ html.Div( [ html.Span("Hovered Frame:"), html.Div( id="current-frame-container", ), ] ), html.Div( [ html.Span("Orignal Video:"), html.Div( id="video-container", ), ] ), ], id="video-pane", ), html.A( target="_blank", href="https://www.youtube.com/watch?v=zoUJi6L6z0M&feature=youtu.be", children=html.Div(id="help-btn", children=html.Div("?")), ), html.Div( id="state-uid", children=self.default_state["uid"], style={"display": "none"}, ), html.Div(id="state-alt-class", children="", style={"display": "none"}), ], id="visualisation", ) def plot_esvs(self, result: Result, n_frames: int, alt_class: Optional[int] = None): classes = [result.label] if alt_class is not None and alt_class != result.label: classes.append(alt_class) entries = [] for cls in classes: for i in range(n_frames): entries.append( { "Segment": i + 1, "Frame": result.sequence_idxs[n_frames - 1][i], "ESV": result.esvs[n_frames - 1][i, cls], "Class": self.class2str[cls] + ("" if cls != result.label else " (GT)"), } ) df = pd.DataFrame(entries) figure = px.line( df, x="Frame", y="ESV", color="Class", line_shape="spline", ) figure.update_traces(mode="markers+lines") figure.update_layout( margin_r=0, margin_b=20, hovermode="x unified", legend={"yanchor": "bottom", "y": 1.02, "xanchor": "left", "x": 0}, transition={"duration": 400, "easing": "cubic-in-out"}, ) figure.add_hline(y=0) return figure def plot_preds(self, df): figure = px.bar( df, x="Idx", y="Score", hover_data={"Idx": False, "Class": True, "Score": True}, custom_data=["ClassId"], labels={"Idx": ""}, ) figure.update_traces(marker_color="red") figure.update_layout(margin_b=200, margin_r=0) figure.update_xaxes( tickmode="array", tickvals=df.Idx, ticktext=df.TruncatedClass, tickangle=90, automargin=True, ) return figure @lru_cache(maxsize=10) def load_video(self, uid: str) -> np.ndarray: return load_video(self.dataset_dir / f"{uid}.webm") def get_result(self, cls: int, example_idx: int) -> Result: idx = self.results.class_example_idxs_lookup[cls][example_idx] return self.results[idx] def parse_state_from_url(self, url): components = urlparse(url) query_string = parse_qsl(components.query) state = dict() for k, v in query_string: state[k] = self.state_types[k](v) return state args = parser.parse_args() dataset_dir: Path = args.dataset_root classes = pd.read_csv(args.classes_csv, index_col="name")["id"] class2str = {class_id: name for name, class_id in classes.items()} results_dict =
pd.read_pickle(args.esvs_pkl)
pandas.read_pickle
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- """ Simulate elections. Elements of an election 1. Create voter preferences - Create voter preference distributions - Create voter preference tolerance distribution 2. Create candidate preferences 3. Simulate voter behavior, strategy 4. Transform voter preferences into candidate scores or rankings 5. Input scores/ranks into election system. 6. Run the election. 7. Measure the results. Object Data Transfer Model -------------------------- Voters --> VoterGroup Voters/VoterGroup --> Candidates Voters, VoterGroup, Candidates --> Election To construct models or benchmarks, start by creating object `Voters`. `Voters` may have various properties such as preference, voter strategy parameters, tolerance circles, etc. Define these properties in Voters. Voters can be segregated by groups, and each group may have different properties. `VoterGroup` is used to define groups of several `Voters`. After defining voters, candidates may be defined using class `Candidate`. `Candidate` definition may be dependent on the voters population, therefore `Candidate` accepts voters as an argument. With the voters and candidates define, an election can be generated with `Election`. `Election` has many subclasses which run the election. - `BallotGenerator` takes voter and candidate information to generate honest and tactical ballots. - `eRunner` handles the running of specific types of elections. - `ElectionResult` handles the storage of output data. """ import collections import pickle import copy from typing import List, NamedTuple, Tuple, Dict import numpy as np import pandas as pd import scipy from scipy.stats import truncnorm from votesim import metrics from votesim import ballot from votesim import votemethods from votesim import utilities from votesim.models import vcalcs from votesim.models.dataclasses import (VoterData, VoterGroupData, CandidateData, ElectionData, ElectionResult, strategy_data, StrategyData, ) from votesim.strategy import TacticalBallots # from votesim.strategy import TacticalBallots, FrontRunners __all__ = [ 'Voters', 'VoterGroup', 'Candidates', 'Election' ] # Base random seeds VOTERS_BASE_SEED = 2 CLIMIT_BASE_SEED = 3 CANDIDATES_BASE_SEED = 4 ELECTION_BASE_SEED = 5 #import seaborn as sns import logging logger = logging.getLogger(__name__) def ltruncnorm(loc, scale, size, random_state=None): """ Truncated normal random numbers, cut off at locations less than 0. Parameters ----------- loc : float Center coordinate of gaussian distribution scale : float Std deviation scale size : int Number of random numbers to generate random_state : None or numpy.random.RandomState Random number seeding object, or None. Returns --------- out : array shaped (size) Output samples """ if scale == 0: return np.ones(size) * loc xmin = -loc / scale t = truncnorm(xmin, 1e6) s = t.rvs(size=size, random_state=random_state) s = s * scale + loc return s def _RandomState(seed, level=1): """ Create random state. Generate multiple random statse from a single seed, by specifying different levels for different parts of Election. Parameters ---------- seed : int Integer seed level : int Anoter integer seed. """ if seed is None: return np.random.RandomState() else: return np.random.RandomState((seed, level)) class Voters(object): """Create simple normal distribution of voters. Parameters ---------- seed : int or None Integer seed for pseudo-random generation. None for random numbers. tol : float or None Voter preference max tolerance. base : str Voter rating mapping to distance, either: - 'linear' - Linear mapping of distance to rating - 'quadratic' - Quadratic mapping of distance to rating - 'sqrt' - Square root mappiong of distance to rating order : int Order or norm calculation for voter-candidate regret distance. Attributes ---------- data : `votesim.models.dataclasses.VoterData` Voter data """ data: VoterData def __init__(self, seed: int=None, tol: float=None, base: str='linear', order: int=1): self.init(seed, order=order) self.set_behavior(tol=tol, base=base) return @utilities.recorder.record_actions(replace=True) def init(self, seed: int, order: int): """Set pseudorandom seed & distance calculation order.""" self.seed = seed self._randomstate = _RandomState(seed, VOTERS_BASE_SEED) self._order = order self._weights = None return self @utilities.recorder.record_actions(replace=True) def set_behavior(self, tol: float=None, base: str='linear',): """Set voter strategy type.""" self._tol = tol self._base = base return self @utilities.recorder.record_actions() def add_random(self, numvoters, ndim=1, loc=None): """Add random normal distribution of voters. Parameters ---------- numvoters : int Number of voters to generate ndim : int Number of preference dimensions of population loc : array shaped (ndim,) Coordinate of voter centroid """ rs = self._randomstate center = np.zeros(ndim) voters = rs.normal(center, size=(numvoters, ndim)) if loc is not None: voters = voters + loc return self._add_voters(voters) @utilities.recorder.record_actions() def add_points(self, avgnum, pnum, ndim=1): """Add a random point with several clone voters at that point. Parameters ---------- avgnum : int Avg. Number of voters per unique point pnum : int Number of unique points ndim : int Number of dimensions """ rs = self._randomstate center = np.zeros(ndim) for i in range(pnum): # coordinate of point point = rs.normal(center, size=(1, ndim)) # number of voters at the point voternum = ltruncnorm(1, 1, 1) * avgnum voternum = int(voternum) voters = np.ones((voternum, ndim)) * point self._add_voters(voters) return self @utilities.recorder.record_actions() def add(self, pref): """Add arbitrary voters. Parameters ---------- pref : array shape (a, b) Voter preferences, `a` is number of voters, `b` pref. dimensions. """ return self._add_voters(pref) def _add_voters(self, pref): """Base function for adding 2d array of candidates to election.""" try: pref = np.row_stack((self._pref, pref)) except (AttributeError, ValueError): pref = np.atleast_2d(pref) self._pref = pref return self def build(self): """Finalize Voter, construct immutable VoterData.""" self.data = VoterData(pref=self._pref, weights=self._weights, order=self._order, stats=None, tol=self._tol, base=self._base, ) return self def calculate_distances(self, candidates: CandidateData): """Preference distances of candidates from voters for building ballots. Parameters ---------- candidates : votesim.models.dataclasses.CandidateData Candidate preference data """ pref = self.data.pref order = self.data.order weights = self.data.weights distances = vcalcs.voter_distances(voters=pref, candidates=candidates.pref, weights=weights, order=order) return distances def honest_ballots(self, candidates: CandidateData): """Honest ballots calculated from Candidates.""" distances = self.calculate_distances(candidates) b = ballot.gen_honest_ballots(distances=distances, tol=self.data.strategy['tol'], base=self.data.strategy['base']) return b class VoterGroup(object): """Group together multiple voter objects & interact with candidates. Parameters ---------- voters_list : list[Voters] List of Voters Attributes ---------- group : list[Voters] Same as voters_list """ def __init__(self, voters_list: List[Voters]): try: iter(voters_list) except Exception: voters_list = [voters_list] self.group = voters_list self._build() return def _build(self): """Finalize VoterGroup, build immutable VoterGroupData.""" group_datas = tuple(v.build() for v in self.group) orders = np.array([v.data.order for v in self.group]) if len(orders) > 0: order = orders[0] if not np.all(orders == orders[0]): raise ValueError('Order of voters in group must all be same.') else: order = None # data = self.group[0] # data = data.replace(pref=self._get_pref()) # self.data = data pref = self._get_pref() stats = metrics.VoterStats(pref=pref, weights=None, order=order) group_index = dict(enumerate(self.group_indices)) data = VoterGroupData(groups=group_datas, pref=pref, weights=None, order=order, stats=stats, group_index=group_index, ) self.data = data return self def build(self): """This is a dummy build and does nothing. VoterGroup is auto-built.""" return self def _get_pref(self): vlist = [v.data.pref for v in self.group] return np.vstack(vlist) def __getitem__(self, key): return self.group[key] @utilities.lazy_property def group_indices(self): """Row indices to obtain child's voters for all children in the voter preference and ballot arrays. Returns ------- slices : list of slice Slice which returns the Voter group, indexed by group number. """ groups = self.group lengths = [len(v.data.pref) for v in groups] iarr = np.cumsum(lengths) iarr = np.append(0, iarr) slices = [slice(iarr[i], iarr[i+1]) for i in iarr[:-1]] return slices def voter_group(vlist) -> VoterGroup: """Group together multiple Voters.""" if hasattr(vlist, 'group'): return vlist else: return VoterGroup(vlist) class Candidates(object): """Create candidates for spatial model. Parameters ----------- voters : `Voters` or `VoterGroup` Voters to draw population data. seed : int or None Seed for random number generation. Attributes ---------- pref : array shape (a, b) Voter preferences, `a` number of candidates, `b` number of preference dimensions """ data: CandidateData def __init__(self, voters: Voters, seed: int=None): self._method_records = utilities.recorder.RecordActionCache() if not hasattr(voters, '__len__'): voters = [voters] self.voters = voter_group(voters) self.set_seed(seed) return @utilities.recorder.record_actions() def set_seed(self, seed: int): """ Set pseudorandom seed """ self._seed = (seed, CANDIDATES_BASE_SEED) self._randomstate = _RandomState(*self._seed) return self def _add_candidates(self, candidates: np.ndarray): """Base function for adding 2d array of candidates to election""" candidates = np.array(candidates) assert candidates.ndim == 2, 'candidates array must have ndim=2' vdata = self.voters.data try: candidates = np.row_stack((self._pref, candidates)) except (AttributeError, ValueError): candidates = np.atleast_2d(candidates) cdim = candidates.shape[1] vdim = vdata.pref.shape[1] condition = cdim == vdim s = ('dim[1] of candidates (%s) ' 'must be same as dim[1] (%s) of self.voters' % (cdim, vdim)) assert condition, s self._pref = candidates return self def reset(self): """Reset candidates for a given Voters. Delete candidate preferences and records""" try: self._method_records.reset() except AttributeError: pass try: del self.data except AttributeError: pass return @utilities.recorder.record_actions() def add_random(self, cnum: int, sdev=2): """ Add random candidates, uniformly distributed. Parameters ---------- cnum : int Number of candidates for election sdev : float +- Width of standard deviations to set uniform candidate generation across voter population """ rs = self._randomstate std = self.voters.data.stats.pref_std mean = self.voters.data.stats.pref_mean ndim = std.shape[0] candidates = rs.uniform(low = -sdev*std, high = sdev*std, size = (cnum, ndim)) + mean return self._add_candidates(candidates) @utilities.recorder.record_actions() def add(self, candidates: np.ndarray): """Add 2d array of candidates to election, record actions Parameters ---------- candidates : array shape (a, n) Candidate preference coordinates. - a = number of candidates - n = number of preference dimensions Returns ------- out: Candidates `self` """ self._add_candidates(candidates) return self def build(self): """Construct immutable CandidateData needed for simulation.""" voters = self.voters pref = self._pref distances = vcalcs.voter_distances(voters=voters.data.pref, candidates=pref, weights=voters.data.weights, order=voters.data.order, ) stats = metrics.CandidateStats(pref=pref, distances=distances) self.data = CandidateData(pref=self._pref, distances=distances, stats=stats) return self class StrategiesEmpty(object): """Create empty strategy; honest election.""" _strategies = [] data = () def __init__(self): return def build(self): return self def __len__(self): return 0 class Strategies(object): """Strategy constructor for `VoterGroup`.""" def __init__(self, vgroup: VoterGroup): self._method_records = utilities.recorder.RecordActionCache() self.voters = voter_group(vgroup) self.vlen = len(self.voters.group) self._strategies = [] return @utilities.recorder.record_actions() def add(self, tactics: tuple, subset: str, ratio: float, underdog: int, groupnum: int=0, frontrunnertype: str='eliminate',): """Set a strategy for a specified voter group. Parameters ---------- tactics : tuple[str] Tuple of tactic names. subset : str - '' -- No subset - 'topdog' -- Topdog voter coalition - 'underdog' -- Underdog voter coalition ratio : float Ratio of strategic voters in the group from [0 to 1]. underdog : int or None Specify the underdog candidate. Set to None to estimate best underdog. groupnum : int, optional Voter group number to set strategy. The default is 0. frontrunnertype : str, optional Strategy used to determine underdog frontrunner. The default is 'eliminate'. Returns ------- Strategies Returns `self`. """ return self._set( tactics=tactics, subset=subset, ratio=ratio, underdog=underdog, groupnum=groupnum, frontrunnertype=frontrunnertype, ) @utilities.recorder.record_actions() def fill(self, tactics: tuple, subset: str, ratio: float, underdog: int, groupnum: int, frontrunnertype='eliminate'): """Set strategy for unset groups.""" locations = self.get_no_strategy for ii in locations: self._set( tactics=tactics, subset=subset, ratio=ratio, underdog=underdog, groupnum=ii, frontrunnertype=frontrunnertype, ) return self def _set(self, tactics: tuple, subset: str, ratio: float, underdog: int, groupnum: int, frontrunnertype='eliminate', ): group_index = self.voters.group_indices[groupnum] strat_data = StrategyData(tactics=tactics, subset=subset, ratio=ratio, underdog=underdog, groupnum=groupnum, index=group_index, frontrunnertype=frontrunnertype) self._strategies.append(strat_data) return self def build(self): """Construct static data needed to run simulation""" if len(self.get_no_strategy()) > 0: raise ValueError('Insufficient strategies have been defined!') if self.has_duplicates(): raise ValueError('Duplicate strategy entries found.') self.data = tuple(self._strategies) return self def get_no_strategy(self): """ndarray : Groups' index locations that have no strategies set.""" no_strat_locs = [] for ii, index in enumerate(self.voters.group_indices): found = False for strategy in self._strategies: if np.all(index == strategy.index): found = True if not found: no_strat_locs.append(ii) return np.array(no_strat_locs) def has_duplicates(self): """Make sure no duplicate group index + subset locations have been defined. Return True if duplicates found. False otherwise.""" data = [] for strategy in self._strategies: index = strategy.index subset = strategy.subset data.append((repr(index), subset)) count = collections.Counter(data) count_values = list(count.values()) iimax = np.argmax(count_values) if count_values[iimax] > 1: logger.warn('Duplicate strategy found at strategy #%s', iimax) return True return False def __len__(self): return len(self._strategies) class BallotGenerator(object): """ Generate ballots from voter and candidate data. Parameters ---------- voters_list : list of Voter or VoterGroup Voters of election candidates : Candidates Candidates of election scoremax : int Maximum score for scored ballots. """ tacticalballots : TacticalBallots honest_ballot_dict : dict def __init__(self, voters_list: VoterGroup, candidates: Candidates, scoremax: int): self.candidates = candidates self.votergroup = voter_group(voters_list) self.scoremax = scoremax self._init_honest_builder() return def _init_honest_builder(self): """Honest ballot constructor for ratings, ranks, scores, and votes.""" cdata = self.candidates.data blist = [] for voter in self.votergroup.group: distances = voter.calculate_distances(cdata) b = ballot.gen_honest_ballots(distances=distances, tol=voter.data.tol, base=voter.data.base, maxscore=self.scoremax,) blist.append(b) self.honest_ballot_gen = ballot.CombineBallots(blist) bdict = {} bdict['rank'] = self.honest_ballot_gen.ranks bdict['score'] = self.honest_ballot_gen.scores bdict['rate'] = self.honest_ballot_gen.ratings bdict['vote'] = self.honest_ballot_gen.votes self.honest_ballot_dict = bdict return def get_honest_ballots(self, etype: str) -> np.ndarray: """Get honest ballot data. Parameters ---------- etype : str Election method name. Returns ------- out : np.ndarray Output ballot data array """ btype = votemethods.get_ballot_type(etype) return self.honest_ballot_dict[btype] def get_ballots(self, etype, strategies=(), result=None, ballots=None): """Retrieve tactical ballots. Parameters ---------- etype : str Election method strategies : list of `StrategyData` Voter strategies to apply onto ballots result : `ElectionResult` Previous results which can be used to calculate front runner. Returns ------- ballots : ndarray (v, c) New ballots group_index : dict Index locations of voter groups. """ if len(strategies) == 0: ballots = self.get_honest_ballots(etype) group_index = self.votergroup.data.group_index else: if ballots is None: ballots = self.get_honest_ballots(etype) if result is None: raise ValueError('A previous honest result must be provided for tactical ballots.') tballot_gen = TacticalBallots(etype=etype, strategies=strategies, result=result, ballots=ballots) ballots = tballot_gen.ballots group_index = tballot_gen.group_index # Just save this thing might be useful for debugging. self.tacticalballots = tballot_gen return ballots, group_index class Election(object): """ Run an Election with Voters and Candidates Parameters ------------ voters : None, Voters, VoterGroup, or list of Voters Voters object specifying the voter preferences and behavior. candidate : None or Candidates Candidates object specifying candidate preferences seed : None THIS PARAMETER IS NOT REALLY USED FOR NOW. IGNORE! numwinners : int >= 1 Number of winners for the election scoremax : int Maximum score for ballot generation name : str Name of election model, used to identify different benchmark models. save_args : bool (default True) - If True, save all parameters input into method calls. These parameters can be used to regenerate specific elections. - If False, only save parameters input into `self.user_data`. Attributes ---------- result : ElectionResult Results storage for Election. ballotgen : BallotGenerator VoterBallot data """ candidates: Candidates voters: VoterGroup data: ElectionData result: ElectionResult strategies: Strategies ballotgen : BallotGenerator def __init__(self, voters: VoterGroup=None, candidates: Candidates=None, strategies: Strategies=None, seed=0, numwinners=1, scoremax=5, name = '', save_args=True, save_records=True): self._method_records = utilities.recorder.RecordActionCache() self.voters: VoterGroup = None self.candidates: Candidates = None self.ballotgen: BallotGenerator = None self.strategies: Strategies = StrategiesEmpty() self.save_args = save_args self.save_records = save_records self.init(seed, numwinners, scoremax, name) self.set_models(voters, candidates, strategies) self._result_calc = ElectionResultCalc(self) return @utilities.recorder.record_actions(replace=True) def init(self, seed, numwinners, scoremax, name): """Initialize some election properties""" self._set_seed(seed) self.numwinners = numwinners self.scoremax = scoremax self.name = name return def set_models( self, voters: Voters=None, candidates: Candidates=None, strategies: Strategies=None, ): """Set new voter or candidate model. Parameters ---------- voters : Voters or None New voters object. If None, use previously inputed Voters. candidates : Candidates or None New candidates object. If None, use previously inputed Candidates. strategies : `votesim.models.spatial.Strategies` New strategies object. If None, use the previously inputed Strategies """ if voters is not None: self.voters = voter_group(voters) if candidates is not None: self.candidates = candidates.build() if self.voters is not None: self.ballotgen = BallotGenerator( self.voters, self.candidates, scoremax=self.scoremax ) if strategies is not None: if len(strategies) > 0: self.strategies = strategies.build() else: self.strategies = strategies return def _set_seed(self, seed): """ Set pseudorandom seed """ if seed is None: self._seed = None self._randomstate = _RandomState(None) else: self._seed = (seed, ELECTION_BASE_SEED) self._randomstate = _RandomState(*self._seed) return def user_data(self, d=None, **kwargs): """Record any additional data the user wishes to record. Parameters ---------- **d : dict Write any keys and associated data here """ udict = {} udict.update(kwargs) if d is not None: # d is supposed to be a dictionary. Try to update our dict with it try: udict.update(d) # Maybe the user is trying to create a parameter `d` except TypeError: udict['d'] = d self._user_data = udict return def reset(self): """Delete election data for the current run -- voter preferences, candidate preferences, and ballots, Clear the kind of data that can be regenerated if desired. Do not clear statistics. """ self.voters.reset() self.candidates.reset() def delete(a): try: delattr(self, a) except AttributeError: pass delete('winners') delete('ties') delete('output') delete('vballots') raise NotImplementedError('This function probably doesnt work.') return @utilities.recorder.record_actions( replace=True, exclude=['ballots', 'result']) def run(self, etype=None, ballots=None, result=None, force_honest=False) -> ElectionResult: """Run the election using `votemethods.eRunner`. Parameters ---------- etype : str Election method. Either `etype` or `method` must be input. ballots : ndarray Initial ballots to be used in election. result : ElectionResult Election, you can input honest election using this object to reduce repetitive computation cost. force_honest : bool Force run of an honest election without strategy Returns ------- out : ElectionResult """ return self._run( etype=etype, ballots=ballots, result=result, force_honest=force_honest ) def _run(self, etype=None, ballots=None, result=None, force_honest=False) -> ElectionResult: logger.debug('Running %s, %s, %s', etype) strategies = self.strategies.data if force_honest: strategies = () # Auto run an honest election if result is not available. elif len(strategies) > 0 and result is None and ballots is None: result = self._run( etype=etype, ballots=None, result=None, force_honest=True) # Retrieve some tactical ballots from honest data. ballots, group_index = self.ballotgen.get_ballots( etype=etype, strategies=strategies, result=result, ballots=ballots ) # Generate a deterministic seed based on candidates and voters runner = votemethods.eRunner( etype=etype, numwinners=self.numwinners, ballots=ballots, seed=self._tie_seed(), # rstate=self._randomstate, ) self.data = ElectionData( ballots=runner.ballots, winners=runner.winners, ties=runner.ties, group_index=group_index ) self.result = self._result_calc.update( runner=runner, voters=self.voters.data, candidates=self.candidates.data, election=self.data ) return self.result def _tie_seed(self): """Generate pseudorandom seed for tie breaking.""" v = self.voters.data.pref[0,0] * 1000 c = self.candidates.data.pref[0,0] * 10000 return int(abs(v) + abs(c)) def rerun(self, d): """Re-run an election found in dataframe. Find the election data from the dataframe index. Parameters ---------- d : dict Dictionary or Series of election data, generated from self.dataseries() or self.dataframe(). Returns ------- out : Election Newly constructed election object with re-run parameters. """ series = d def filterdict(d, kfilter): new = {} num = len(kfilter) for k, v in d.items(): if k.startswith(kfilter): newkey = k[num :] new[newkey] = v return new filter_key = 'args.candidate.' c_dict = filterdict(series, filter_key) filter_key = 'args.election.' e_dict = filterdict(series, filter_key) filter_key = 'args.strategy.' s_dict = filterdict(series, filter_key) # Construct voters vnum = len(self.voters.group) new_voters = [] for ii in range(vnum): filter_key = 'args.voter-%s.' % ii v_dict = filterdict(series, filter_key) v = type(self.voters.group[ii])() #v = type(self.voters)() v._method_records.reset() v._method_records.run_dict(v_dict, v) new_voters.append(v) # Construct candidates c = type(self.candidates)(voters=new_voters) c._method_records.reset() c._method_records.run_dict(c_dict, c) # Construct strategies s_dict2 = {} for k, v in s_dict.items(): try: if not np.isnan(v): s_dict2[k] = v except TypeError: s_dict2[k] = v slen = len(s_dict2) if slen > 0: s = type(self.strategies)(c.voters) s._method_records.reset() s._method_records.run_dict(s_dict2, s) else: s = None enew = Election(voters=c.voters, candidates=c, strategies=s) enew._method_records.run_dict(e_dict, enew) return enew def copy(self) -> 'Election': """Copy election.""" return copy.copy(self) def save(self, name, reset=True): """Pickle election data. Parameters ---------- name : str Name of new pickle file to dump Election into. reset : bool If True (default), delete election data that can be regenerated. """ if reset: self.reset() with open(name, 'wb') as file1: pickle.dump(self, file1) return def dataseries(self, index=None) -> pd.Series: """Retrieve pandas data series of output data.""" return self._result_calc.dataseries(index=index) def dataframe(self) -> pd.DataFrame: """Construct data frame from results history.""" return self._result_calc.dataframe() def append_stat(self, d: metrics.BaseStats, name='', update_docs=False): return self._result_calc.append_stat(d=d, name=name, update_docs=update_docs) def calculate_distance(voters: VoterData, candidates: CandidateData): """Re-calculate distance as the distance from Election may have error.""" distances = vcalcs.voter_distances( voters=voters.pref, candidates=candidates.pref, weights=voters.weights, order=voters.order, ) return distances class ElectionResultCalc(object): """ Store Election result output. Generated as attribute of Election. This is a sort of messy back-end that does all the calculations. The result front end is `ElectionResult`. Parameters ---------- e : Election Election to extract results from. Attributes ---------- runner : :class:`~votesim.votemethods.voterunner.eRunner` Output from election running class for the last run election. results : dict Results of last run election key prefixes: - 'output.*' -- Prefix for election output results - 'args.etype' -- Election method - 'args.voter.*' -- Voter input arguments - 'args.election.*' -- Election input arguments - 'args.user.*' -- User defined input arguments Output Specification -------------------- For each election output keys are generated as dataframes or dataseries. - Voter parameters are specified as `args.voter-vnum.a.func.argname` - `vnum` = Voter group number - `a` = Method call number (a method could be called multiple times.) - `func` = Name of the called method - `argname` = Name of the set parameter for the method. - Candidate parameters are specified as `args.candidate.a.func.arg` - User parameters are specified as `args.user.name` - `name` is the user's inputted parameter name """ def __init__(self, e: Election): self.election = e self.save_args = e.save_args # Store results as list of dict self._output_history = [] return def update(self, runner: votemethods.eRunner, voters: VoterData, candidates: CandidateData, election: ElectionData) -> ElectionResult: """Get election results.""" self.runner = runner self.winners = runner.winners self.ties = runner.ties self.ballots = runner.ballots self.electionStats = metrics.ElectionStats(voters=voters, candidates=candidates, election=election) ### Build dictionary of all arguments and output output = {} output.update(self._get_parameters()) output['output'] = self.electionStats.get_dict() output = utilities.misc.flatten_dict(output, sep='.') self.output = output if self.election.save_records: self._output_history.append(output) result = ElectionResult(winners=self.winners, ties=self.ties, ballots=self.ballots, runner=self.runner, output=self.output, output_docs=self.output_docs, stats=self.electionStats, scoremax=self.election.scoremax ) return result def _get_parameter_keys(self) -> list: """Retrieve election input parameter keys.""" return list(self._get_parameters().keys()) def _get_method_records(self) -> dict: """Retrieve records that can be used to regenerate result.""" candidates = self.election.candidates voters = self.election.voters strategies = self.election.strategies election = self.election # get voter parameters vrecords = [] for v in voters.group: vrecords.append(v._method_records.dict) # get candidate parameters crecord = candidates._method_records.dict # get strategy parameters if hasattr(strategies, '_method_records'): srecord = strategies._method_records.dict else: srecord = {} # get election parameters erecord = election._method_records.dict # Save etype and name in special parameters params = {} for key in erecord: if 'run.etype' in key: params['args.etype'] = erecord[key] elif '.init.name' in key: params['args.name'] = erecord[key] # Save all method call arguments if self.save_args: params['args.candidate'] = crecord if len(srecord) > 0: params['args.strategy'] = srecord for ii, vrecord in enumerate(vrecords): params['args.voter-%s' % ii] = vrecord params['args.election'] = erecord return params def _get_user_data(self) -> dict: # Retrieve user data # Determine if user data exists. If not, save default save_args try: userdata = self.election._user_data if len(userdata) == 0: userdata = {} except AttributeError: userdata = {} params = {} # Add user data to params for key, value in userdata.items(): newkey = 'args.user.' + key params[newkey] = value return params def _get_parameters(self) -> dict: d1 = self._get_user_data() d2 = self._get_method_records() d1.update(d2) return d1 # def ___get_parameters(self) -> dict: # """Retrieve election input parameters.""" # params = {} # candidates = self.election.candidates # voters = self.election.voters # election = self.election # # get candidate parameters # crecord = candidates._method_records.dict # # get voter parameters # vrecords = [] # for v in voters.group: # vrecords.append(v._method_records.dict) # # get election parameters # erecord = election._method_records.dict # # Retrieve user data # # Determine if user data exists. If not, save default save_args # save_args = self.save_args # try: # userdata = self.election._user_data # if len(userdata) == 0: # save_args = True # except AttributeError: # save_args = True # userdata = {} # # Add user data to params # for key, value in userdata.items(): # newkey = 'args.user.' + key # params[newkey] = value # # Save etype and name in special parameters # for key in erecord: # if 'run.etype' in key: # params['args.etype'] = erecord[key] # elif '.init.name' in key: # params['args.name'] = erecord[key] # # Save all method call arguments # if self.save_args or save_args: # params['args.candidate'] = crecord # for ii, vrecord in enumerate(vrecords): # params['args.voter-%s' % ii] = vrecord # params['args.election'] = erecord # params = utilities.misc.flatten_dict(params, sep='.') # return params @utilities.lazy_property def output_docs(self) -> dict: """Retrieve output documentation.""" docs = self.electionStats.get_docs() docs = utilities.misc.flatten_dict(docs, sep='.') return docs def dataseries(self, index=None): """Retrieve pandas data series of output data.""" if index is None: return pd.Series(self.output) else: return
pd.Series(self._output_history[index])
pandas.Series
import numpy as np import pandas as pd #データ分割用 from sklearn.model_selection import train_test_split #LightGBM import lightgbm as lgb #pickle import pickle #データ読み込み df_train =
pd.read_csv("train.csv")
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 9 17:02:59 2018 @author: bruce compared with version 1.6.4 the update is from correlation coefficient """ import pandas as pd import numpy as np from scipy import fftpack from scipy import signal import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap def correlation_matrix(corr_mx, cm_title): from matplotlib import pyplot as plt from matplotlib import cm as cm fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(corr_mx, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) #plt.title('cross correlation of test and retest') ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels #fig.colorbar(cax, ticks=[.75,.8,.85,.90,.95,1]) # show digit in matrix corr_mx_array = np.asarray(corr_mx) for i in range(22): for j in range(22): c = corr_mx_array[j,i] ax1.text(i, j, round(c,2), va='center', ha='center') plt.show() def correlation_matrix_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cs = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cs) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_rank(corr_mx, cm_title): temp = corr_mx #output = (temp == temp.max(axis=1)[:,None]) # along row output = temp.rank(axis=1, ascending=False) fig, ax1 = plt.subplots() im1 = ax1.matshow(output, cmap=plt.cm.Wistia) #cs = ax1.matshow(output) fig.colorbar(im1) ax1.grid(False) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.title(cm_title) # show digit in matrix output = np.asarray(output) for i in range(22): for j in range(22): c = output[j,i] ax1.text(i, j, int(c), va='center', ha='center') plt.show() def correlation_matrix_comb(corr_mx, cm_title): fig, (ax2, ax3) = plt.subplots(1, 2) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ''' # graph 1 grayscale im1 = ax1.matshow(corr_mx, cmap='gray') # colorbar need numpy version 1.13.1 #fig.colorbar(im1, ax=ax1) ax1.grid(False) ax1.set_title(cm_title) ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # show digit in matrix corr_mx_array = np.asarray(corr_mx) for i in range(22): for j in range(22): c = corr_mx_array[j,i] ax1.text(i, j, round(c,2), va='center', ha='center') ''' # graph 2 yellowscale corr_mx_rank = corr_mx.rank(axis=1, ascending=False) cmap_grey = LinearSegmentedColormap.from_list('mycmap', ['white', 'black']) im2 = ax2.matshow(corr_mx, cmap='viridis') # colorbar need numpy version 1.13.1 fig.colorbar(im2, ax=ax2) ax2.grid(False) ax2.set_title(cm_title) ax2.set_xticks(np.arange(len(xlabels))) ax2.set_yticks(np.arange(len(ylabels))) ax2.set_xticklabels(xlabels,fontsize=6) ax2.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels # show digit in matrix corr_mx_rank = np.asarray(corr_mx_rank) for i in range(22): for j in range(22): c = corr_mx_rank[j,i] ax2.text(i, j, int(c), va='center', ha='center') # graph 3 # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows im3 = ax3.matshow(output, cmap='gray') # colorbar need numpy version 1.13.1 #fig.colorbar(im3, ax=ax3) ax3.grid(False) ax3.set_title(cm_title) ax3.set_xticks(np.arange(len(xlabels))) ax3.set_yticks(np.arange(len(ylabels))) ax3.set_xticklabels(xlabels,fontsize=6) ax3.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_tt_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_rr_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() # shrink value for correlation matrix # in order to use colormap -> 10 scale def shrink_value_03_1(corr_in1): corr_out1 = corr_in1.copy() # here dataframe.copy() must be used, otherwise input can also be changed when changing output for i in range (22): for j in range(22): if corr_in1.iloc[i, j] < 0.3: corr_out1.iloc[i, j] = 0.3 return corr_out1 def shrink_value_05_1(corr_in2): corr_out2 = corr_in2.copy() # here dataframe.copy() must be used, otherwise input can also be changed when changing output for i2 in range (22): for j2 in range(22): if corr_in2.iloc[i2, j2] < 0.5: corr_out2.iloc[i2, j2] = 0.5 return corr_out2 # not used!!!!!!!!!!!! # normalize the complex signal series def normalize_complex_arr(a): a_oo = a - a.real.min() - 1j*a.imag.min() # origin offsetted return a_oo/np.abs(a_oo).max() def improved_PCC(signal_in): output_corr = pd.DataFrame() for i in range(44): row_pcc_notremovemean = [] for j in range(44): sig_1 = signal_in.iloc[i, :] sig_2 = signal_in.iloc[j, :] pcc_notremovemean = np.abs(np.sum(sig_1 * sig_2) / np.sqrt(np.sum(sig_1*sig_1) * np.sum(sig_2 * sig_2))) row_pcc_notremovemean = np.append(row_pcc_notremovemean, pcc_notremovemean) output_corr = output_corr.append(pd.DataFrame(row_pcc_notremovemean.reshape(1,44)), ignore_index=True) output_corr = output_corr.iloc[22:44, 0:22] return output_corr ############################################################################### # import the pkl file #pkl_file=pd.read_pickle('/Users/bruce/Documents/uOttawa/Project/audio_brainstem_response/Data_BruceSunMaster_Studies/study2/study2DataFrame.pkl') df_EFR=pd.read_pickle('/home/bruce/Dropbox/4.Project/4.Code for Linux/df_EFR.pkl') # Mac # df_EFR=pd.read_pickle('/Users/bruce/Documents/uOttawa/Master‘s Thesis/4.Project/4.Code for Linux/df_EFR.pkl') # remove DC offset df_EFR_detrend = pd.DataFrame() for i in range(1408): # combine next two rows later df_EFR_detrend_data = pd.DataFrame(signal.detrend(df_EFR.iloc[i: i+1, 0:1024], type='constant').reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[i, 1024:1031].values.reshape(1,7)) df_EFR_detrend = df_EFR_detrend.append(pd.concat([df_EFR_detrend_data, df_EFR_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_detrend.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_detrend = df_EFR_detrend.reset_index(drop=True) df_EFR = df_EFR_detrend # Define window function win_kaiser = signal.kaiser(1024, beta=14) win_hamming = signal.hamming(1024) # average the df_EFR df_EFR_avg = pd.DataFrame() df_EFR_avg_win = pd.DataFrame() # average test1 and test2 for i in range(704): # combine next two rows later df_EFR_avg_t = pd.DataFrame(df_EFR.iloc[2*i: 2*i+2, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows # without window function df_EFR_avg_t = pd.DataFrame(df_EFR_avg_t.iloc[0,:].values.reshape(1,1024)) # without window function # implement the window function df_EFR_avg_t_window = pd.DataFrame((df_EFR_avg_t.iloc[0,:] * win_hamming).values.reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[2*i, 1024:1031].values.reshape(1,7)) df_EFR_avg = df_EFR_avg.append(pd.concat([df_EFR_avg_t, df_EFR_label], axis=1, ignore_index=True)) df_EFR_avg_win = df_EFR_avg_win.append(pd.concat([df_EFR_avg_t_window, df_EFR_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_avg.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_avg = df_EFR_avg.sort_values(by=["Condition", "Subject"]) df_EFR_avg = df_EFR_avg.reset_index(drop=True) df_EFR_avg_win.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_avg_win = df_EFR_avg_win.sort_values(by=["Condition", "Subject"]) df_EFR_avg_win = df_EFR_avg_win.reset_index(drop=True) # average all the subjects , test and retest and keep one sound levels # filter by 'a vowel and 85Db' df_EFR_avg_sorted = df_EFR_avg.sort_values(by=["Sound Level", "Vowel","Condition", "Subject"]) df_EFR_avg_sorted = df_EFR_avg_sorted.reset_index(drop=True) df_EFR_avg_win_sorted = df_EFR_avg_win.sort_values(by=["Sound Level", "Vowel","Condition", "Subject"]) df_EFR_avg_win_sorted = df_EFR_avg_win_sorted.reset_index(drop=True) # filter55 65 75 sound levels and keep 85dB # keep vowel condition and subject df_EFR_avg_85 = pd.DataFrame(df_EFR_avg_sorted.iloc[528:, :]) df_EFR_avg_85 = df_EFR_avg_85.reset_index(drop=True) df_EFR_avg_win_85 = pd.DataFrame(df_EFR_avg_win_sorted.iloc[528:, :]) df_EFR_avg_win_85 = df_EFR_avg_win_85.reset_index(drop=True) # this part was replaced by upper part based on what I need to do ''' # average all the subjects , test and retest, different sound levels # filter by 'a vowel and 85Db' df_EFR_avg_sorted = df_EFR_avg.sort_values(by=["Vowel","Condition", "Subject", "Sound Level"]) df_EFR_avg_sorted = df_EFR_avg_sorted.reset_index(drop=True) # average sound levels and # keep vowel condition and subject df_EFR_avg_vcs = pd.DataFrame() for i in range(176): # combine next two rows later df_EFR_avg_vcs_t = pd.DataFrame(df_EFR_avg_sorted.iloc[4*i: 4*i+4, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows df_EFR_avg_vcs_label = pd.DataFrame(df_EFR_avg_sorted.iloc[4*i, 1024:1031].values.reshape(1,7)) df_EFR_avg_vcs = df_EFR_avg_vcs.append(pd.concat([df_EFR_avg_vcs_t, df_EFR_avg_vcs_label], axis=1, ignore_index=True), ignore_index=True) # set the title of columns df_EFR_avg_vcs.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) #df_EFR_avg_vcs = df_EFR_avg_vcs.sort_values(by=["Condition", "Subject"]) ''' ''' # filter by 'a vowel and 85Db' df_EFR_a_85_test1 = df_EFR[(df_EFR['Vowel'] == 'a vowel') & (df_EFR['Sound Level'] == '85')] df_EFR_a_85_test1 = df_EFR_a_85_test1.reset_index(drop=True) df_EFR_a_85_avg = pd.DataFrame() # average test1 and test2 for i in range(44): df_EFR_a_85_avg_t = pd.DataFrame(df_EFR_a_85_test1.iloc[2*i: 2*i+2, 0:1024].mean(axis=0).values.reshape(1,1024)) df_EFR_a_85_label = pd.DataFrame(df_EFR_a_85_test1.iloc[2*i, 1024:1031].values.reshape(1,7)) df_EFR_a_85_avg = df_EFR_a_85_avg.append(pd.concat([df_EFR_a_85_avg_t, df_EFR_a_85_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_a_85_avg.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_a_85_avg = df_EFR_a_85_avg.sort_values(by=["Condition", "Subject"]) df_EFR_a_85_avg = df_EFR_a_85_avg.reset_index(drop=True) ''' ################################################## # Frequency Domain # parameters sampling_rate = 9606 # fs # sampling_rate = 9596.623 n = 1024 k = np.arange(n) T = n/sampling_rate # time of signal frq = k/T freq = frq[range(int(n/2))] n2 = 9606 k2 = np.arange(n2) T2 = n2/sampling_rate frq2 = k2/T2 freq2 = frq2[range(int(n2/2))] # zero padding # for df_EFR df_EFR_data = df_EFR.iloc[:, :1024] df_EFR_label = df_EFR.iloc[:, 1024:] df_EFR_mid = pd.DataFrame(np.zeros((1408, 95036))) df_EFR_withzero = pd.concat([df_EFR_data, df_EFR_mid, df_EFR_label], axis=1) # rename columns df_EFR_withzero.columns = np.append(np.arange(96060), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) # for df_EFR_avg_85 df_EFR_avg_85_data = df_EFR_avg_85.iloc[:, :1024] df_EFR_avg_85_label = df_EFR_avg_85.iloc[:, 1024:] df_EFR_avg_85_mid = pd.DataFrame(np.zeros((176, 8582))) df_EFR_avg_85_withzero = pd.concat([df_EFR_avg_85_data, df_EFR_avg_85_mid, df_EFR_avg_85_label], axis=1) # rename columns df_EFR_avg_85_withzero.columns = np.append(np.arange(9606), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) # df_EFR_avg_win_85 df_EFR_avg_win_85_data = df_EFR_avg_win_85.iloc[:, :1024] df_EFR_avg_win_85_label = df_EFR_avg_win_85.iloc[:, 1024:] df_EFR_avg_win_85_mid = pd.DataFrame(np.zeros((176, 8582))) df_EFR_avg_win_85_withzero = pd.concat([df_EFR_avg_win_85_data, df_EFR_avg_win_85_mid, df_EFR_avg_win_85_label], axis=1) df_EFR_avg_win_85_withzero.columns = np.append(np.arange(9606), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) # concatenate AENU temp1 = pd.concat([df_EFR_avg_85.iloc[0:44, 0:1024].reset_index(drop=True),df_EFR_avg_85.iloc[44:88, 0:1024].reset_index(drop=True)], axis=1) temp2 = pd.concat([df_EFR_avg_85.iloc[88:132, 0:1024].reset_index(drop=True), df_EFR_avg_85.iloc[132:176, 0:1024].reset_index(drop=True)], axis=1) df_EFR_avg_85_aenu = pd.concat([temp1, temp2], axis=1, ignore_index=True) df_EFR_avg_85_aenu_withzero = pd.concat([df_EFR_avg_85_aenu, pd.DataFrame(np.zeros((44, 36864)))] , axis=1) ''' # test############## # test(detrend) temp_test = np.asarray(df_EFR_avg_85_data.iloc[0, 0:1024]) temp_test_detrend = signal.detrend(temp_test) plt.figure() plt.subplot(2, 1, 1) plt.plot(temp_test) plt.subplot(2, 1, 2) plt.plot(temp_test_detrend) plt.show() # the raw data is already DC removed # test(zero padding) temp_EFR_1 = df_EFR_withzero.iloc[0, 0:1024] temp_EFR_2= df_EFR_withzero.iloc[0, 0:9606] temp_amplitude_spectrum_1 = np.abs((fftpack.fft(temp_EFR_1)/n)[range(int(n/2))]) temp_amplitude_spectrum_2 = np.abs((fftpack.fft(temp_EFR_2)/n2)[range(int(n2/2))]) plt.figure() plt.subplot(2, 1, 1) markers1 = [11, 21, 32, 43, 53, 64, 75] # which corresponds to 100 200....700Hz in frequency domain plt.plot(temp_amplitude_spectrum_1, '-D', markevery=markers1) plt.xlim(0, 100) plt.title('without zero padding') plt.subplot(2, 1, 2) #markers2 = [100, 200, 300, 400, 500, 600, 700] markers2 = [99, 199, 299, 399, 499, 599, 599] # which corresponds to 100 200....700Hz in frequency domain plt.plot(temp_amplitude_spectrum_2, '-D', markevery=markers2) plt.xlim(0, 1000) # plt.xscale('linear') plt.title('with zero padding') plt.show() # ################# ''' # Calculate the Amplitude Spectrum # create a new dataframe with zero-padding amplitude spectrum ''' # for df_EFR df_as_7= pd.DataFrame() for i in range(1408): temp_EFR = df_EFR_avg_85_withzero.iloc[i, 0:96060] temp_as = np.abs((fftpack.fft(temp_EFR)/n2)[range(int(n2/2))]) #df_as_7 = pd.concat([df_as_7, temp_as_7_t], axis=0) df_as_7 = df_as_7.append(pd.DataFrame(np.array([temp_as[1000], temp_as[2000], temp_as[3000], temp_as[4000], \ temp_as[5000], temp_as[6000], temp_as[7000]]).reshape(1,7)), ignore_index = True) df_as_7 = pd.concat([df_as_7, df_EFR_label], axis=1) # add labels on it # filter by 'a vowel and 85Db' df_as_7_test1 = df_as_7[(df_as_7['Vowel'] == 'a vowel') & (df_as_7['Sound Level'] == '85')] df_as_7_test1 = df_as_7_test1.reset_index(drop=True) ''' # for df_EFR_avg_vcs_withzero df_as_85_no0= pd.DataFrame() df_as_85= pd.DataFrame() df_as7_85= pd.DataFrame() df_as_win_85= pd.DataFrame() df_as7_win_85= pd.DataFrame() for i in range(176): #temp_aenu_EFR = df_EFR_avg_aenu_withzero.iloc[i, 0:9606] temp_as_no0 = np.abs((np.fft.fft(df_EFR_avg_85_data.iloc[i, :]))[range(int(n/2))]) df_as_85_no0 = df_as_85_no0.append(pd.DataFrame(temp_as_no0.reshape(1,512)), ignore_index = True) temp_as = np.abs((np.fft.fft(df_EFR_avg_85_withzero.iloc[i, 0:9606]))[range(int(n2/2))]) df_as_85 = df_as_85.append(pd.DataFrame(temp_as.reshape(1,4803)), ignore_index = True) df_as7_85 = df_as7_85.append(pd.DataFrame(np.array([temp_as[100], temp_as[200], temp_as[300], temp_as[400], \ temp_as[500], temp_as[600], temp_as[700]]).reshape(1,7)), ignore_index = True) temp_as_win = np.abs((np.fft.fft(df_EFR_avg_win_85_withzero.iloc[i, 0:9606]))[range(int(n2/2))]) df_as_win_85 = df_as_win_85.append(pd.DataFrame(temp_as_win.reshape(1,4803)), ignore_index = True) df_as7_win_85 = df_as7_win_85.append(pd.DataFrame(np.array([temp_as_win[100], temp_as_win[200], temp_as_win[300], temp_as_win[400], \ temp_as_win[500], temp_as_win[600], temp_as_win[700]]).reshape(1,7)), ignore_index = True) df_as_85_no0 = pd.concat([df_as_85_no0, df_EFR_avg_85_label], axis=1) # add labels on it df_as_85 = pd.concat([df_as_85, df_EFR_avg_85_label], axis=1) # add labels on it df_as7_85 = pd.concat([df_as7_85, df_EFR_avg_85_label], axis=1) # add labels on it df_as_win_85 = pd.concat([df_as_win_85, df_EFR_avg_win_85_label], axis=1) # add labels on it df_as7_win_85 = pd.concat([df_as7_win_85, df_EFR_avg_win_85_label], axis=1) # add labels on it # wothout zero padding df_as_85_aenu = pd.concat([df_as_85.iloc[0:44, :4803], df_as_85.iloc[44:88, :4803].reset_index(drop=True), df_as_85.iloc[88:132, :4803].reset_index(drop=True), df_as_85.iloc[132:176, :4803].reset_index(drop=True)], axis=1) df_as_85_1300_aenu = pd.concat([df_as_85.iloc[0:44, :1300], df_as_85.iloc[44:88, :1300].reset_index(drop=True), df_as_85.iloc[88:132, :1300].reset_index(drop=True), df_as_85.iloc[132:176, :1300].reset_index(drop=True)], axis=1) df_as_85_no0_1300 = df_as_85_no0.iloc[:, :139] df_as_85_no0_aenu = pd.concat([df_as_85_no0_1300.iloc[0:44, :], df_as_85_no0_1300.iloc[44:88, :].reset_index(drop=True), df_as_85_no0_1300.iloc[88:132, :].reset_index(drop=True), df_as_85_no0_1300.iloc[132:176, :].reset_index(drop=True)], axis=1) df_as7_85_aenu = pd.concat([df_as7_85.iloc[0:44, :7], df_as7_85.iloc[44:88, :7].reset_index(drop=True), df_as7_85.iloc[88:132, :7].reset_index(drop=True), df_as7_85.iloc[132:176, :7].reset_index(drop=True)], axis=1) # for efr_aenu df_aenu_as_85 = pd.DataFrame() df_aenu_as7_85 = pd.DataFrame() for i in range(44): #temp_aenu_EFR = df_EFR_avg_aenu_withzero.iloc[i, 0:9606] temp_as2 = np.abs((fftpack.fft(df_EFR_avg_85_aenu.iloc[i, 0:4096])/4096)[range(int(4096/2))]) df_aenu_as_85 = df_aenu_as_85.append(pd.DataFrame(temp_as2.reshape(1,2048)), ignore_index = True) df_aenu_as7_85 = df_aenu_as7_85.append(pd.DataFrame(np.array([temp_as2[43], temp_as2[85], temp_as2[128], temp_as2[170], \ temp_as2[213], temp_as2[256], temp_as2[298]]).reshape(1,7)), ignore_index = True) #df_aenu_as_85 = pd.concat([df_aenu_as_85, df_EFR_avg_85_label], axis=1) # add labels on it ''' # average test1 and test2 df_as_7_avg = pd.DataFrame() for i in range(44): df_as_7_avg1 = pd.DataFrame(df_as_7_test1.iloc[2*i: 2*i+1, 0:7].mean(axis=0).values.reshape(1,7)) df_as_7_label = pd.DataFrame(df_as_7_test1.iloc[2*i, 7:14].values.reshape(1,7)) df_as_7_avg_t = pd.concat([df_as_7_avg1, df_as_7_label], axis=1, ignore_index=True) df_as_7_avg = df_as_7_avg.append(df_as_7_avg_t) # set the title of columns df_as_7_avg.columns = np.append(np.arange(7), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_as_7_avg = df_as_7_avg.sort_values(by=["Condition", "Subject"]) df_as_7_avg = df_as_7_avg.reset_index(drop=True) ''' ''' # set a normalized AS df_as_7_avg_data= pd.DataFrame(df_as_7_avg.iloc[:, 0:7].astype(float)) df_as_7_avg_sum= pd.DataFrame(df_as_7_avg.iloc[:, 0:7]).sum(axis=1) df_as_7_avg_label= pd.DataFrame(df_as_7_avg.iloc[:, 7:14]) # normalize df_as_7_avg_norm = df_as_7_avg_data.div(df_as_7_avg_sum, axis=0) # add label df_as_7_avg_norm = pd.concat([df_as_7_avg_norm, df_as_7_avg_label], axis=1, ignore_index=True) ''' # normalization df_EFR_avg_85_aenu_norm = df_EFR_avg_85_aenu.div((df_EFR_avg_85_aenu.iloc[0:4096].abs()**2).sum()) df_aenu_as_85_1300_norm = df_aenu_as_85.iloc[:, :535].div((df_aenu_as_85.iloc[:, :535].abs()**2).sum()/1300) df_as_85_1300_aenu_norm = df_as_85_1300_aenu.div((df_as_85_1300_aenu.abs()**2).sum()/1300) # Calculate correlation # EFR corr_EFR_avg_85_a = df_EFR_avg_85.iloc[0:44, 0:1024].T.corr(method='pearson').iloc[22:44, 0:22] corr_EFR_avg_85_e = df_EFR_avg_85.iloc[44:88, 0:1024].T.corr(method='pearson').iloc[22:44, 0:22] corr_EFR_avg_85_n = df_EFR_avg_85.iloc[88:132, 0:1024].T.corr(method='pearson').iloc[22:44, 0:22] corr_EFR_avg_85_u = df_EFR_avg_85.iloc[132:176, 0:1024].T.corr(method='pearson').iloc[22:44, 0:22] corr_EFR_avg_85_aenu = df_EFR_avg_85_aenu.iloc[:, 0:4096].T.corr(method='pearson').iloc[22:44, 0:22] ''' corr_EFR_avg_85_a_t = df_EFR_avg_85.iloc[0:44, 0:1024].T.corr(method='pearson').iloc[0:22, 0:22] corr_EFR_avg_85_e_t = df_EFR_avg_85.iloc[44:88, 0:1024].T.corr(method='pearson').iloc[0:22, 0:22] corr_EFR_avg_85_n_t = df_EFR_avg_85.iloc[88:132, 0:1024].T.corr(method='pearson').iloc[0:22, 0:22] corr_EFR_avg_85_u_t = df_EFR_avg_85.iloc[132:176, 0:1024].T.corr(method='pearson').iloc[0:22, 0:22] corr_EFR_avg_85_a_re = df_EFR_avg_85.iloc[0:44, 0:1024].T.corr(method='pearson').iloc[22:44, 22:44] corr_EFR_avg_85_e_re = df_EFR_avg_85.iloc[44:88, 0:1024].T.corr(method='pearson').iloc[22:44, 22:44] corr_EFR_avg_85_n_re = df_EFR_avg_85.iloc[88:132, 0:1024].T.corr(method='pearson').iloc[22:44, 22:44] corr_EFR_avg_85_u_re = df_EFR_avg_85.iloc[132:176, 0:1024].T.corr(method='pearson').iloc[22:44, 22:44] ''' # AS corr_as_85_a = df_as_85.iloc[0:44, 0:1300].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_e = df_as_85.iloc[44:88, 0:1300].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_n = df_as_85.iloc[88:132, 0:1300].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_u = df_as_85.iloc[132:176, 0:1300].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_win_85_a = df_as_win_85.iloc[0:44, 0:1300].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_win_85_e = df_as_win_85.iloc[44:88, 0:1300].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_win_85_n = df_as_win_85.iloc[88:132, 0:1300].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_win_85_u = df_as_win_85.iloc[132:176, 0:1300].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_aenu = df_aenu_as_85.iloc[0:44, 0:2048].T.corr(method='pearson').iloc[22:44, 0:22] # here we use df_aenu_as_85.iloc[:, 0:535] to limit freq into 0 to 1300Hz corr_as_85_aenu_1300 = df_aenu_as_85.iloc[0:44, 0:535].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_no0_aenu = df_as_85_no0_aenu.iloc[0:44, :].T.corr(method='pearson').iloc[22:44, 0:22] corr_as_85_no0_aenu = df_as_85_no0_aenu.iloc[0:44, :].T.corr(method='pearson').iloc[22:44, 0:22] corr_as7_85_aenu = df_as7_85_aenu.iloc[0:44, :].T.corr(method='pearson').iloc[22:44, 0:22] corr_aenu_as7_85 = df_aenu_as7_85.iloc[0:44, :].T.corr(method='pearson').iloc[22:44, 0:22] # calculate the improved PCC matrix corr_as_85_a_v2 = improved_PCC(df_as_85.iloc[0:44, 0:1300]) corr_as_85_e_v2 = improved_PCC(df_as_85.iloc[44:88, 0:1300]) corr_as_85_n_v2 = improved_PCC(df_as_85.iloc[88:132, 0:1300]) corr_as_85_u_v2 = improved_PCC(df_as_85.iloc[132:176, 0:1300]) corr_as_85_1300_aenu = improved_PCC(df_as_85_1300_aenu) # df_EFR + df_aenu_AS_1300 df_aenu_sum_85 =
pd.concat([df_EFR_avg_85_aenu, df_aenu_as_85.iloc[:, :535]], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import os import pandas as pd import xgboost import utils import scoring from sklearn.model_selection import train_test_split # The datasets are available in CoCalc in ~/share/data/I-coopetition-muon-id/ # Test # wget --content-disposition https://codalab.coresearch.club/my/datasets/download/dd6255a1-a14b-4276-9a2b-db7f360e01c7 # Train # get --content-disposition https://codalab.coresearch.club/my/datasets/download/3a5e940c-2382-4716-9ff7-8fbc269b98ac # Data preparation columns = utils.SIMPLE_FEATURE_COLUMNS + ["id", "label", "weight", "sWeight", "kinWeight"] DATA_PATH = "." train = pd.read_csv(os.path.join(DATA_PATH, "train.csv.gz"), index_col="id", usecols=columns) test = pd.read_csv(os.path.join(DATA_PATH, "test-features.csv.gz"), index_col="id", usecols=utils.SIMPLE_FEATURE_COLUMNS + ["id"]) train.head() test.head() train_part, validation = train_test_split(train, test_size=0.25, shuffle=True, random_state=2342234) model = xgboost.XGBClassifier(n_jobs=-1) model.fit(train_part.loc[:, utils.SIMPLE_FEATURE_COLUMNS].values, train_part.label.values, sample_weight=train_part.kinWeight.values) validation_predictions = model.predict_proba(validation.loc[:, utils.SIMPLE_FEATURE_COLUMNS].values)[:, 1] scoring.rejection90(validation.label.values, validation_predictions, sample_weight=validation.weight.values) model.fit(train.loc[:, utils.SIMPLE_FEATURE_COLUMNS].values, train.label, sample_weight=train.kinWeight.values) predictions = model.predict_proba(test.loc[:, utils.SIMPLE_FEATURE_COLUMNS].values)[:, 1] compression_opts = dict(method='zip', archive_name='submission.csv')
pd.DataFrame(data={"prediction": predictions}, index=test.index)
pandas.DataFrame
# pylint: disable=E1101 from datetime import datetime, timedelta from pandas.compat import range, lrange, zip, product import numpy as np from pandas import Series, TimeSeries, DataFrame, Panel, isnull, notnull, Timestamp from pandas.tseries.index import date_range from pandas.tseries.offsets import Minute, BDay from pandas.tseries.period import period_range, PeriodIndex, Period from pandas.tseries.resample import DatetimeIndex, TimeGrouper import pandas.tseries.offsets as offsets import pandas as pd import unittest import nose from pandas.util.testing import (assert_series_equal, assert_almost_equal, assert_frame_equal) import pandas.util.testing as tm bday = BDay() def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest class TestResample(unittest.TestCase): _multiprocess_can_split_ = True def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(np.random.rand(len(dti)), dti) def test_custom_grouper(self): dti = DatetimeIndex(freq='Min', start=datetime(2005, 1, 1), end=datetime(2005, 1, 10)) s = Series(np.array([1] * len(dti)), index=dti, dtype='int64') b = TimeGrouper(Minute(5)) g = s.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'ohlc', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) b = TimeGrouper(Minute(5), closed='right', label='right') g = s.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'ohlc', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) self.assertEquals(g.ngroups, 2593) self.assert_(notnull(g.mean()).all()) # construct expected val arr = [1] + [5] * 2592 idx = dti[0:-1:5] idx = idx.append(dti[-1:]) expect = Series(arr, index=idx) # GH2763 - return in put dtype if we can result = g.agg(np.sum) assert_series_equal(result, expect) df = DataFrame(np.random.rand(len(dti), 10), index=dti, dtype='float64') r = df.groupby(b).agg(np.sum) self.assertEquals(len(r.columns), 10) self.assertEquals(len(r.index), 2593) def test_resample_basic(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 00:13:00', freq='min', name='index') s = Series(np.random.randn(14), index=rng) result = s.resample('5min', how='mean', closed='right', label='right') expected = Series([s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=date_range('1/1/2000', periods=4, freq='5min')) assert_series_equal(result, expected) self.assert_(result.index.name == 'index') result = s.resample('5min', how='mean', closed='left', label='right') expected = Series([s[:5].mean(), s[5:10].mean(), s[10:].mean()], index=date_range('1/1/2000 00:05', periods=3, freq='5min')) assert_series_equal(result, expected) s = self.series result = s.resample('5Min', how='last') grouper = TimeGrouper(Minute(5), closed='left', label='left') expect = s.groupby(grouper).agg(lambda x: x[-1]) assert_series_equal(result, expect) def test_resample_basic_from_daily(self): # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D', name='index') s = Series(np.random.rand(len(dti)), dti) # to weekly result = s.resample('w-sun', how='last') self.assertEquals(len(result), 3) self.assert_((result.index.dayofweek == [6, 6, 6]).all()) self.assertEquals(result.irow(0), s['1/2/2005']) self.assertEquals(result.irow(1), s['1/9/2005']) self.assertEquals(result.irow(2), s.irow(-1)) result = s.resample('W-MON', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [0, 0]).all()) self.assertEquals(result.irow(0), s['1/3/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-TUE', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [1, 1]).all()) self.assertEquals(result.irow(0), s['1/4/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-WED', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [2, 2]).all()) self.assertEquals(result.irow(0), s['1/5/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-THU', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [3, 3]).all()) self.assertEquals(result.irow(0), s['1/6/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-FRI', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [4, 4]).all()) self.assertEquals(result.irow(0), s['1/7/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) # to biz day result = s.resample('B', how='last') self.assertEquals(len(result), 7) self.assert_((result.index.dayofweek == [4, 0, 1, 2, 3, 4, 0]).all()) self.assertEquals(result.irow(0), s['1/2/2005']) self.assertEquals(result.irow(1), s['1/3/2005']) self.assertEquals(result.irow(5), s['1/9/2005']) self.assert_(result.index.name == 'index') def test_resample_frame_basic(self): df = tm.makeTimeDataFrame() b = TimeGrouper('M') g = df.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) result = df.resample('A') assert_series_equal(result['A'], df['A'].resample('A')) result = df.resample('M') assert_series_equal(result['A'], df['A'].resample('M')) df.resample('M', kind='period') df.resample('W-WED', kind='period') def test_resample_loffset(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 00:13:00', freq='min') s = Series(np.random.randn(14), index=rng) result = s.resample('5min', how='mean', closed='right', label='right', loffset=timedelta(minutes=1)) idx = date_range('1/1/2000', periods=4, freq='5min') expected = Series([s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=idx + timedelta(minutes=1)) assert_series_equal(result, expected) expected = s.resample( '5min', how='mean', closed='right', label='right', loffset='1min') assert_series_equal(result, expected) expected = s.resample( '5min', how='mean', closed='right', label='right', loffset=Minute(1)) assert_series_equal(result, expected) self.assert_(result.index.freq == Minute(5)) # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D') ser = Series(np.random.rand(len(dti)), dti) # to weekly result = ser.resample('w-sun', how='last') expected = ser.resample('w-sun', how='last', loffset=-bday) self.assertEqual(result.index[0] - bday, expected.index[0]) def test_resample_upsample(self): # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D', name='index') s = Series(np.random.rand(len(dti)), dti) # to minutely, by padding result = s.resample('Min', fill_method='pad') self.assertEquals(len(result), 12961) self.assertEquals(result[0], s[0]) self.assertEquals(result[-1], s[-1]) self.assert_(result.index.name == 'index') def test_upsample_with_limit(self): rng = date_range('1/1/2000', periods=3, freq='5t') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('t', fill_method='ffill', limit=2) expected = ts.reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_resample_ohlc(self): s = self.series grouper = TimeGrouper(Minute(5)) expect = s.groupby(grouper).agg(lambda x: x[-1]) result = s.resample('5Min', how='ohlc') self.assertEquals(len(result), len(expect)) self.assertEquals(len(result.columns), 4) xs = result.irow(-2) self.assertEquals(xs['open'], s[-6]) self.assertEquals(xs['high'], s[-6:-1].max()) self.assertEquals(xs['low'], s[-6:-1].min()) self.assertEquals(xs['close'], s[-2]) xs = result.irow(0) self.assertEquals(xs['open'], s[0]) self.assertEquals(xs['high'], s[:5].max()) self.assertEquals(xs['low'], s[:5].min()) self.assertEquals(xs['close'], s[4]) def test_resample_ohlc_dataframe(self): df = (pd.DataFrame({'PRICE': {Timestamp('2011-01-06 10:59:05', tz=None): 24990, Timestamp('2011-01-06 12:43:33', tz=None): 25499, Timestamp('2011-01-06 12:54:09', tz=None): 25499}, 'VOLUME': {Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, Timestamp('2011-01-06 12:54:09', tz=None): 100000000}}) ).reindex_axis(['VOLUME', 'PRICE'], axis=1) res = df.resample('H', how='ohlc') exp = pd.concat([df['VOLUME'].resample('H', how='ohlc'), df['PRICE'].resample('H', how='ohlc')], axis=1, keys=['VOLUME', 'PRICE']) assert_frame_equal(exp, res) df.columns = [['a', 'b'], ['c', 'd']] res = df.resample('H', how='ohlc') exp.columns = pd.MultiIndex.from_tuples([('a', 'c', 'open'), ('a', 'c', 'high'), ('a', 'c', 'low'), ('a', 'c', 'close'), ('b', 'd', 'open'), ('b', 'd', 'high'), ('b', 'd', 'low'), ('b', 'd', 'close')]) assert_frame_equal(exp, res) # dupe columns fail atm # df.columns = ['PRICE', 'PRICE'] def test_resample_dup_index(self): # GH 4812 # dup columns with resample raising df = DataFrame(np.random.randn(4,12),index=[2000,2000,2000,2000],columns=[ Period(year=2000,month=i+1,freq='M') for i in range(12) ]) df.iloc[3,:] = np.nan result = df.resample('Q',axis=1) expected = df.groupby(lambda x: int((x.month-1)/3),axis=1).mean() expected.columns = [ Period(year=2000,quarter=i+1,freq='Q') for i in range(4) ] assert_frame_equal(result, expected) def test_resample_reresample(self): dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D') s = Series(np.random.rand(len(dti)), dti) bs = s.resample('B', closed='right', label='right') result = bs.resample('8H') self.assertEquals(len(result), 22) tm.assert_isinstance(result.index.freq, offsets.DateOffset) self.assert_(result.index.freq == offsets.Hour(8)) def test_resample_timestamp_to_period(self): ts = _simple_ts('1/1/1990', '1/1/2000') result = ts.resample('A-DEC', kind='period') expected = ts.resample('A-DEC') expected.index = period_range('1990', '2000', freq='a-dec') assert_series_equal(result, expected) result = ts.resample('A-JUN', kind='period') expected = ts.resample('A-JUN') expected.index = period_range('1990', '2000', freq='a-jun') assert_series_equal(result, expected) result = ts.resample('M', kind='period') expected = ts.resample('M') expected.index = period_range('1990-01', '2000-01', freq='M') assert_series_equal(result, expected) result = ts.resample('M', kind='period') expected = ts.resample('M') expected.index = period_range('1990-01', '2000-01', freq='M') assert_series_equal(result, expected) def test_ohlc_5min(self): def _ohlc(group): if isnull(group).all(): return np.repeat(np.nan, 4) return [group[0], group.max(), group.min(), group[-1]] rng = date_range('1/1/2000 00:00:00', '1/1/2000 5:59:50', freq='10s') ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('5min', how='ohlc', closed='right', label='right') self.assert_((resampled.ix['1/1/2000 00:00'] == ts[0]).all()) exp = _ohlc(ts[1:31]) self.assert_((resampled.ix['1/1/2000 00:05'] == exp).all()) exp = _ohlc(ts['1/1/2000 5:55:01':]) self.assert_((resampled.ix['1/1/2000 6:00:00'] == exp).all()) def test_downsample_non_unique(self): rng = date_range('1/1/2000', '2/29/2000') rng2 = rng.repeat(5).values ts = Series(np.random.randn(len(rng2)), index=rng2) result = ts.resample('M', how='mean') expected = ts.groupby(lambda x: x.month).mean() self.assertEquals(len(result), 2) assert_almost_equal(result[0], expected[1]) assert_almost_equal(result[1], expected[2]) def test_asfreq_non_unique(self): # GH #1077 rng = date_range('1/1/2000', '2/29/2000') rng2 = rng.repeat(2).values ts = Series(np.random.randn(len(rng2)), index=rng2) self.assertRaises(Exception, ts.asfreq, 'B') def test_resample_axis1(self): rng = date_range('1/1/2000', '2/29/2000') df = DataFrame(np.random.randn(3, len(rng)), columns=rng, index=['a', 'b', 'c']) result = df.resample('M', axis=1) expected = df.T.resample('M').T tm.assert_frame_equal(result, expected) def test_resample_panel(self): rng = date_range('1/1/2000', '6/30/2000') n = len(rng) panel = Panel(np.random.randn(3, n, 5), items=['one', 'two', 'three'], major_axis=rng, minor_axis=['a', 'b', 'c', 'd', 'e']) result = panel.resample('M', axis=1) def p_apply(panel, f): result = {} for item in panel.items: result[item] = f(panel[item]) return Panel(result, items=panel.items) expected = p_apply(panel, lambda x: x.resample('M')) tm.assert_panel_equal(result, expected) panel2 = panel.swapaxes(1, 2) result = panel2.resample('M', axis=2) expected = p_apply(panel2, lambda x: x.resample('M', axis=1)) tm.assert_panel_equal(result, expected) def test_resample_panel_numpy(self): rng = date_range('1/1/2000', '6/30/2000') n = len(rng) panel = Panel(np.random.randn(3, n, 5), items=['one', 'two', 'three'], major_axis=rng, minor_axis=['a', 'b', 'c', 'd', 'e']) result = panel.resample('M', how=lambda x: x.mean(1), axis=1) expected = panel.resample('M', how='mean', axis=1) tm.assert_panel_equal(result, expected) panel = panel.swapaxes(1, 2) result = panel.resample('M', how=lambda x: x.mean(2), axis=2) expected = panel.resample('M', how='mean', axis=2) tm.assert_panel_equal(result, expected) def test_resample_anchored_ticks(self): # If a fixed delta (5 minute, 4 hour) evenly divides a day, we should # "anchor" the origin at midnight so we get regular intervals rather # than starting from the first timestamp which might start in the middle # of a desired interval rng = date_range('1/1/2000 04:00:00', periods=86400, freq='s') ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same freqs = ['t', '5t', '15t', '30t', '4h', '12h'] for freq in freqs: result = ts[2:].resample(freq, closed='left', label='left') expected = ts.resample(freq, closed='left', label='left') assert_series_equal(result, expected) def test_resample_base(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 02:00', freq='s') ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('5min', base=2) exp_rng = date_range('12/31/1999 23:57:00', '1/1/2000 01:57', freq='5min') self.assert_(resampled.index.equals(exp_rng)) def test_resample_daily_anchored(self): rng = date_range('1/1/2000 0:00:00', periods=10000, freq='T') ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same result = ts[2:].resample('D', closed='left', label='left') expected = ts.resample('D', closed='left', label='left') assert_series_equal(result, expected) def test_resample_to_period_monthly_buglet(self): # GH #1259 rng = date_range('1/1/2000', '12/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('M', kind='period') exp_index = period_range('Jan-2000', 'Dec-2000', freq='M') self.assert_(result.index.equals(exp_index)) def test_resample_empty(self): ts = _simple_ts('1/1/2000', '2/1/2000')[:0] result = ts.resample('A') self.assert_(len(result) == 0) self.assert_(result.index.freqstr == 'A-DEC') result = ts.resample('A', kind='period') self.assert_(len(result) == 0) self.assert_(result.index.freqstr == 'A-DEC') xp = DataFrame() rs = xp.resample('A') assert_frame_equal(xp, rs) def test_weekly_resample_buglet(self): # #1327 rng = date_range('1/1/2000', freq='B', periods=20) ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('W') expected = ts.resample('W-SUN')
assert_series_equal(resampled, expected)
pandas.util.testing.assert_series_equal
import os import json import datetime # from cs50 import SQL import sqlite3 # from contextlib import closing from flask import Flask, redirect, render_template, request, session, json, jsonify, Markup from flask_session import Session from tempfile import mkdtemp from werkzeug.exceptions import default_exceptions, HTTPException, InternalServerError from werkzeug.security import check_password_hash, generate_password_hash import shutil from PIL import Image, ImageFilter import pandas as pd # from sklearn.linear_model import LinearRegression, ElasticNet # from sklearn.model_selection import train_test_split from helpers import login_required, usd, get_weather_info, db_dictionary, category_dictionary, sleeve_list, color_dictionary, save_image, model_learning, apology # Configure application app = Flask(__name__) # Ensure templates are auto-reloaded app.config["TEMPLATES_AUTO_RELOAD"] # make json not garbled # app.config['JSON_AS_ASCII'] = False # Ensure responses aren't cached @app.after_request def after_request(response): response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response # Custom filter app.jinja_env.filters["usd"] = usd # Configure session to use filesystem (instead of signed cookies) app.config["SESSION_FILE_DIR"] = mkdtemp() app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) # Configure CS50 Library to use SQLite database dbpath = 'wwwardrobe.sqlite' # DB's path # DB table column_users = db_dictionary()["column_users"] column_wardrobes = db_dictionary()["column_wardrobes"] column_history_wear = db_dictionary()["column_history_wear"] column_history_own = db_dictionary()["column_history_own"] column_weather_today = db_dictionary()["column_weather_today"] # Folder for wardrobe-images image_path = os.path.join("static", "wardrobe_image") # Directory of alternative image alt_path = os.path.join(image_path, "Alternative.jpg") # Directory of the image which portrays no wardrobe is selected nowardrobe_path = os.path.join(image_path, "NoWardrobe.jpg") # Folder for material material_path = os.path.join("static", "material") # Directory for temporary wardrobe-image temp_directory = "temp" @app.route("/") @login_required def index(): """Show home page""" # DB connection and cursor generation connection = sqlite3.connect(dbpath) # connection.isolation_level = None # 自動コミットにする場合は下記を指定(コメントアウトを解除のこと) cursor = connection.cursor() # Get user cursor.execute("SELECT * FROM users WHERE id = :userid", {'userid': session["user_id"]}) rows_users = cursor.fetchall() # users row # Get weather and user information to display username = rows_users[0][column_users["username"]] # Get user's name location = rows_users[0][column_users["location"]] # Get user's location my_api_key = '<KEY>' # Get API Key dict_weather = get_weather_info(location, my_api_key) # Get weather in the location weather = dict_weather['main'] # Today's weather t_max = dict_weather['tmax'] # Maximum temperature t_min = dict_weather['tmin'] # Minimum temperature img_url_w = os.path.join("..", material_path, "weather_{}.png".format(weather)) # Image of Today's weather # Get wardrobe-image url to display cursor.execute("SELECT * FROM history_wear WHERE userid = :userid AND wear_date = :today;", {"userid": session["user_id"], "today" : str(datetime.datetime.now().date()) }) rows_hw = cursor.fetchone() # history_wear row # Dicionary which will put image-url on wardrobeid dict_image_url = {"wardrobeid_c": "", "wardrobeid_o": "", "wardrobeid_t": "", "wardrobeid_i": "", "wardrobeid_b": "", "wardrobeid_s": "" } # Message to display today_message = "" notice_message = "" print(rows_hw) # Variable to assess whether wardrobe is selected today have_selected = False # Display the wardrobes selected today # if wardrobe haven't been selected yet, if rows_hw == None: for key in dict_image_url.keys(): dict_image_url[key] = nowardrobe_path today_message ="Not selected outfit today yet" # if wardrobe have been selected, else: if rows_hw[column_history_wear["comfort_score"]] != None: notice_message = "You have input comfort today." for key in dict_image_url.keys(): # if a wardrobe isn't selected, if rows_hw[column_history_wear[key]] == None: dict_image_url[key] = nowardrobe_path else: # if a wardrobe selected, # Select DB for wardrobes to get wardrobename from wardrobeid cursor.execute("SELECT wardrobename FROM wardrobes WHERE id = :wardrobeid;", {"wardrobeid": rows_hw[column_history_wear[key]] }) # Get wardrobename rows_wn = cursor.fetchone() # Set image-url from wardrobename dict_image_url[key] = os.path.join("..", image_path, str(session["user_id"]), "{}.jpg".format(rows_wn[0])) today_message = "Your outfit today" have_selected = True # Forget which page user is in now (for ajax) session["nowpage"] = "" return render_template("index.html", username=username, location=location, weather=weather, img_url_w=img_url_w, t_max=t_max, t_min=t_min, img_urls=dict_image_url, today_message=today_message, message=notice_message, have_selected=have_selected) @app.route("/recordcomfort", methods=["POST"]) def recordcomfort(): """Record comfort-score today""" # User reached route via GET (as by clicking a link or via redirect) if not request.method == "POST": pass # User reached route via POST (as by submitting a form via POST) else: pass # DB connection and cursor generation connection = sqlite3.connect(dbpath) # connection.isolation_level = None # 自動コミットにする場合は下記を指定(コメントアウトを解除のこと) cursor = connection.cursor() # Update DB for history_wear cursor.execute("UPDATE history_wear SET comfort_score = :t_comfort_score WHERE userid = :t_userid;", {"t_comfort_score": int(request.form.get("comfort")), "t_userid" : int(session["user_id"]) }) connection.commit() # DB commit return redirect("/") # Display home page @app.route("/login", methods=["GET", "POST"]) def login(): """Log user in""" # Forget any user_id session.clear() # User reached route via GET (as by clicking a link or via redirect) if not request.method == "POST": return render_template("login.html") # Display login form # User reached route via POST (as by submitting a form via POST) else: # Exception handling # Ensure username was submitted if not request.form.get("username"): return apology("must provide username") # テスト # Ensure password was submitted elif not request.form.get("password"): return apology("must provide password") # テスト # DB connection and cursor generation connection = sqlite3.connect(dbpath) # connection.isolation_level = None # 自動コミットにする場合は下記を指定(コメントアウトを解除のこと) cursor = connection.cursor() # Query DB for username cursor.execute("SELECT * FROM users WHERE username = :username", {'username': request.form.get("username")}) # Ensure username exists and password is correct rows = cursor.fetchall() if len(rows) != 1 or not check_password_hash(rows[0][column_users["hash"]], request.form.get("password")): return apology("invalid username and/or password", 403) # テスト? # Remember which user has logged in session["user_id"] = rows[0][column_users["id"]] session["user_location"] = rows[0][column_users["location"]] # The value where user is from beforehand session["pagefrom"] = "" # Store weather-information today ------------------------------------ cursor.execute("SELECT * FROM users WHERE username = :username", {'username': request.form.get("username")}) rows_users = cursor.fetchall() location = rows_users[0][column_users["location"]] # Get user's location cursor.execute("SELECT * FROM weather_today WHERE location = :t_location;", {'t_location': location}) rows_weather = cursor.fetchall() # Get weather-information today = str(datetime.datetime.now().date()) # Get today as string value my_api_key = '<KEY>' # Get API Key dict_weather = get_weather_info(location, my_api_key) # Get weather in the location weather = dict_weather['main'] # Today's weather t_max = dict_weather['tmax'] # Maximum temperature t_min = dict_weather['tmin'] # Minimum temperature humidity = 0 # 作らねば # Average of humidity print(rows_weather) if len(rows_weather) == 0: # If there is no information on that "location", cursor.execute("INSERT INTO weather_today({0}, {1}, {2}, {3}, {4}, {5}) VALUES (:t_l, :t_d, :t_w, :t_tmax, :t_tmin, :t_h);".format( "location", "date", "weather", "temperature_max", "temperature_min", "humidity"), {"t_l": location, "t_d": today, "t_w": weather, "t_tmax": t_max, "t_tmin": t_min, "t_h": humidity}) else: if today != rows_weather[0][column_weather_today['date']]: # If no information is about today, cursor.execute("UPDATE weather_today SET {0} = :t_d, {1} = :t_w, {2} = :t_tmax, {3} = :t_tmin, {4} = :t_h WHERE {5} = :t_l;".format( "date", "weather", "temperature_max", "temperature_min", "humidity", "location"), {"t_l": location, "t_d": today, "t_w": weather, "t_tmax": t_max, "t_tmin": t_min, "t_h": humidity}) else: pass connection.commit() # DB commit # Redirect user to home page return redirect("/") @app.route("/logout") def logout(): """Log user out""" session.clear() # Forget any user_id return redirect("/") # Redirect user to login form @app.route("/register", methods=["GET"]) def register(): """Entry information to register""" locations = [] # Get the JSON content locations = ["Tokyo", "Shanghai", "Bangkok"] # テスト return render_template("register.html", locations=locations) # complete registering @app.route("/registered", methods=["GET", "POST"]) def registered(): """Try to register""" # User reached route via GET (as by clicking a link or via redirect) if not request.method == "POST": return redirect("/") # Redirect user to login form # User reached route via POST (as by submitting a form via POST) else: # DB connection and cursor generation connection = sqlite3.connect(dbpath) # connection.isolation_level = None # 自動コミットにする場合は下記を指定(コメントアウトを解除のこと) cursor = connection.cursor() username = request.form.get("username") location = request.form.get("location") gender = request.form.get("gender") password = request.form.get("password") # Get today as string value dt = str(datetime.datetime.now()) regist_date = dt[:dt.find(".")] # Select DB for users cursor.execute("SELECT * FROM users WHERE username = :username", {'username': username }) checkname = cursor.fetchall() # Exception handling if len(checkname) > 0: return redirect("/") # Username is taken if location == "--Select location--": return redirect("/") # location is invalid if password != request.form.get("confirm"): return redirect("/") # passwords in disagreement # Insert DB for wardrobes cursor.execute("INSERT INTO users(username, location, gender, hash, regist_date) VALUES(:t_username, :t_location, :t_gender, :t_hash, :t_regist_date)", {'t_username': username, 't_location': location, 't_gender': gender, 't_hash': generate_password_hash(password), 't_regist_date': regist_date }) # 入力値をDBに格納する。 connection.commit() # DB commit cursor.execute("SELECT * FROM users WHERE username = :username", {'username': username }) row = cursor.fetchall() # Make a folder to hold user's wardrobe-image image_id_path = os.path.join(image_path, str(row[0][column_users["id"]])) if not os.path.exists(image_id_path): os.mkdir(image_id_path) os.mkdir(os.path.join(image_id_path, temp_directory)) return render_template("registered.html") @app.route("/recommend", methods=["GET", "POST"]) @login_required def recommend(): """Recommend user's best cloth today""" # User reached route via GET (as by clicking a link or via redirect) if not request.method == "POST": pass # User reached route via POST (as by submitting a form via POST) else: pass # DB connection and cursor generation connection = sqlite3.connect(dbpath) # connection.isolation_level = None # 自動コミットにする場合は下記を指定(コメントアウトを解除のこと) cursor = connection.cursor() # Prepare csv file to Machine Learning -------------------------------------- # Get wardrobe-image url to display cursor.execute("SELECT * FROM history_wear WHERE userid = :userid AND NOT comfort_score = '';", {"userid": session["user_id"] }) rows_hw = cursor.fetchall() # history_wear row # Generate list of "history_wear" (wardrobeid is converted to warmscore AND wear_date is removed) list_hw = [] # List about a record of history_wear list_hws = [] # List about records of history_wear for num in range(len(rows_hw)): for i in ['wardrobeid_c', 'wardrobeid_o', 'wardrobeid_t', 'wardrobeid_i', 'wardrobeid_b', 'wardrobeid_s']: # Select DB same as wardrobe-id. cursor.execute("SELECT * FROM wardrobes WHERE id = :wardrobeid;", {"wardrobeid": rows_hw[num][column_history_wear[i]] }) rows_wr = cursor.fetchall() # wardorbes row if rows_wr == []: # If rows_wr is empty, warmscore = 0 else: list_wr = [] # wardorbes list あとで使うかも list_wr.append(rows_wr) # あとで使うかも warmscore = rows_wr[0][column_wardrobes['warmscore']] # Get warmscore list_hw.append(warmscore) # Store in a list for i in ['temperature_max', 'temperature_min', 'comfort_score']: list_hw.append(round(rows_hw[num][column_history_wear[i]], 0)) list_hws.append(list_hw) # Store in a list list_hw = [] # Set default value # Part of Machine Learning ----------------------------------------- # Convert list of "history_wear" to pd.DataFrame of "history_wear" feature_names = ["warmscore_c", "warmscore_o", "warmscore_t", "warmscore_i", "warmscore_b", "warmscore_s", "temperature_max", "temperature_min", "comfort_score"] data = pd.DataFrame(list_hws, columns=feature_names) model = model_learning(data) # Part of Machine Predicting ------------------------------------------- # Select DB for wardrobes cursor.execute("SELECT * FROM wardrobes WHERE userid = :t_userid AND inuse = 1;", {"t_userid": session["user_id"] }) rows_wr = cursor.fetchall() dict_category = category_dictionary() # Dictionary about wardrobe's category dict_wr_category = {"-Outer Category-": [], "-Tops Category-": [], "-Inner Category-": [], "-Bottoms Category-": []} combi_content = {} # wardrobe-combination on category combi_score = {} # score on wardrobe-combination on category num = 0 # for index of "combi_content" iter_num_o = 0 # for iterate like MECE for '-Outer Category-' iter_num_b = 0 # for iterate like MECE for '-Bottoms Category-' __len_combi__ = 20000 for i in range(__len_combi__): combi_content[i] = {} # Generate dictionary on category for i in rows_wr: for key, value in dict_category.items(): if i[column_wardrobes['category']] in value: # If category is same, dict_wr_category[key].append(i[column_wardrobes['id']]) break else: pass # Append NULL to dictionary on category for key in dict_wr_category.keys(): dict_wr_category[key].append(None) # Generate wardrobe-combination on category len_o = len(dict_wr_category['-Outer Category-']) # Length of dictionary len_b = len(dict_wr_category['-Bottoms Category-']) # Length of dictionary for c in range(0, len_o): for o in range(iter_num_o, len_o): bool_co = c == len_o - 1 and o == len_o - 1 if bool_co or c != o : # Same wardrobes cannot be combi except both are None for t in dict_wr_category['-Tops Category-']: for i in dict_wr_category['-Inner Category-']: iter_num_b = 0 # Reset start of counting for b in range(0, len_b): for s in range(iter_num_b, len_b): bool_bs = b == len_b - 1 and s == len_b - 1 if b != s or bool_bs: # Same wardrobes cannot be combi except both are None combi_content[num]['wardrobeid_c'] = dict_wr_category['-Outer Category-'][c] combi_content[num]['wardrobeid_o'] = dict_wr_category['-Outer Category-'][o] combi_content[num]['wardrobeid_t'] = t combi_content[num]['wardrobeid_i'] = i combi_content[num]['wardrobeid_b'] = dict_wr_category['-Bottoms Category-'][b] combi_content[num]['wardrobeid_s'] = dict_wr_category['-Bottoms Category-'][s] num += 1 # Count dictionary-length if num >= __len_combi__: combi_content[num] = {} else: pass iter_num_b += 1 # Shift start of counting iter_num_o += 1 # Shift start of counting # Generate predicted values on wardrobe-combination __best_score__ = 5 # Best comfort score for i in range(num): combi_score[i] = [0,0,0,0,0,0] # Set default value for key, value in combi_content.items(): # Search in the dictionaries about wardrobe-combination for k, v in value.items(): # Search in the dictionary about wardrobe-combination for i in rows_wr: # Search in the list about wardrobes-DB if v == i[column_wardrobes['id']]: # If two wardrobe-id are same combi_score[key][column_history_wear[k] - column_history_wear['wardrobeid_c']] = i[column_wardrobes['warmscore']] # Store warmscore break # Append temperature location = session["user_location"] # Get user's location cursor.execute("SELECT * FROM weather_today WHERE location = :t_location;", {'t_location': location}) rows_weather = cursor.fetchall() for key, value in combi_score.items(): combi_score[key].extend([rows_weather[0][column_weather_today["temperature_max"]], rows_weather[0][column_weather_today["temperature_min"]] ]) # # If you wanna execute other environment(ex. jupyternotebook) # path_w = "combi_score.py" # generate_function_to_text("generate_dict_score", path_w, combi_score) # Generate pandas-dataframe from dictionary data_warmscore =
pd.DataFrame.from_dict(combi_score, orient='index', columns=feature_names[0:7+1])
pandas.DataFrame.from_dict
""" Benchmark for ANTs see: * http://stnava.github.io/ANTs * https://sourceforge.net/projects/advants/ * https://github.com/stnava/ANTsDoc/issues/1 INSTALLATION: See: https://brianavants.wordpress.com/2012/04/13/updated-ants-compile-instructions-april-12-2012/ * Do NOT download the binary code, there is an issue: - https://sourceforge.net/projects/advants/files/ANTS/ANTS_Latest - https://github.com/ANTsX/ANTs/issues/733 * Compile from source:: git clone git://github.com/stnava/ANTs.git mkdir antsbin cd antsbin ccmake ../ANTs make -j$(nproc) Discussion ---------- I. believes he found the "problem" and indeed it has to do with the file format we use (JPEG). I. converts the kidney images to 8-bit and then .NII.GZ and the whole pipeline works fine. .. note:: For showing parameter/options setting run `antsRegistration --help` 1) Convert images to 8-bit using Fiji (this is only because I didn't see any ITK format to store RGB images). 2) Convert the 8-bit images to .nii.gz (using ANTs script `ConvertImagePixelType`):: ConvertImagePixelType \ Rat_Kidney_PanCytokeratin-8bit.png \ Rat_Kidney_PanCytokeratin.nii.gz \ 1 3) Register images using `antsRegistrationSyN.sh`:: antsRegistrationSyN.sh \ -d 2 \ -m Rat_Kidney_PanCytokeratin.nii.gz \ -f Rat_Kidney_HE.nii.gz \ -j 1 \ -t s \ -o output \ > stdout-reg.txt 2> stderr-reg.txt 4) Apply transform to points:: antsApplyTransformsToPoints \ -d 2 \ -i Rat_Kidney_PanCytokeratin.csv \ -o testPointsHE.csv \ -t [ output0GenericAffine.mat, 1 ] \ -t output1InverseWarp.nii.gz Usage ----- Run the basic ANT registration with original parameters:: python bm_experiments/bm_ANTs.py \ -t ./data-images/pairs-imgs-lnds_anhir.csv \ -d ./data-images \ -o ./results \ --path_ANTs $HOME/Applications/antsbin/bin \ --path_config ./configs/ANTs_SyN.txt .. note:: it was needed to use own compiled version Copyright (C) 2017-2019 <NAME> <<EMAIL>> """ import glob import logging import os import shutil import sys import pandas as pd sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root from birl.benchmark import ImRegBenchmark from birl.utilities.data_io import ( convert_image_from_nifti, convert_image_to_nifti_gray, load_config_args, load_landmarks, save_landmarks, ) from birl.utilities.experiments import exec_commands from bm_experiments import bm_comp_perform class BmANTs(ImRegBenchmark): """ Benchmark for ANTs no run test while this method requires manual compilation of ANTs EXAMPLE ------- >>> from birl.utilities.data_io import create_folder, update_path >>> path_out = create_folder('temp_results') >>> fn_path_conf = lambda n: os.path.join(update_path('configs'), n) >>> path_csv = os.path.join(update_path('data-images'), 'pairs-imgs-lnds_mix.csv') >>> params = {'path_table': path_csv, ... 'path_out': path_out, ... 'nb_workers': 2, ... 'unique': False, ... 'path_ANTs': '.', ... 'path_config': '.'} >>> benchmark = BmANTs(params) >>> benchmark.EXECUTE_TIMEOUT 10800 >>> benchmark.run() # doctest: +SKIP >>> shutil.rmtree(path_out, ignore_errors=True) """ #: timeout for executing single image registration EXECUTE_TIMEOUT = 3 * 60 * 60 # default = 3 hour #: required experiment parameters REQUIRED_PARAMS = ImRegBenchmark.REQUIRED_PARAMS + ['path_config'] #: executable for performing image registration EXEC_REGISTRATION = 'antsRegistration' #: executable for performing image transformation EXEC_TRANSFORM_IMAGE = 'antsApplyTransforms' #: executable for performing landmarks transformation EXEC_TRANSFORM_POINTS = 'antsApplyTransformsToPoints' #: command for executing the image registration COMMAND_REGISTER = '%(antsRegistration)s \ --dimensionality 2 \ %(config)s \ --output [%(output)s/trans]' #: command for executing the warping image COMMAND_WARP_IMAGE = '%(antsApplyTransforms)s \ --dimensionality 2 \ --input %(img_source)s \ --output %(output)s/%(img_name)s.nii \ --reference-image %(img_target)s \ --transform %(transfs)s \ --interpolation Linear' #: command for executing the warping landmarks COMMAND_WARP_POINTS = '%(antsApplyTransformsToPoints)s \ --dimensionality 2 \ --input %(path_points)s \ --output %(output)s/%(pts_name)s.csv \ --transform %(transfs)s' #: column name of temporary Nifty reference image COL_IMAGE_REF_NII = ImRegBenchmark.COL_IMAGE_REF + ' Nifty' #: column name of temporary Nifty noving image COL_IMAGE_MOVE_NII = ImRegBenchmark.COL_IMAGE_MOVE + ' Nifty' def _prepare(self): """ prepare BM - copy configurations """ logging.info('-> copy configuration...') self._copy_config_to_expt('path_config') # this is not possible since the executables can be in std path # REQUIRED_EXECUTABLES = (self.EXEC_REGISTRATION, # self.EXEC_TRANSFORM_IMAGE, # self.EXEC_TRANSFORM_POINTS) # path_execs = [os.path.join(self.params['path_ANTs'], execute) # for execute in REQUIRED_EXECUTABLES] # assert all(os.path.isfile(p) for p in path_execs), \ # 'Some executables are missing: %r' \ # % [p for p in path_execs if not os.path.isfile(p)] p_ants = self.params.get('path_ANTs', '') if p_ants and os.path.isdir(p_ants): logging.info('using local executions from: %s', p_ants) def _exec_update(executable): is_path = p_ants and os.path.isdir(p_ants) return os.path.join(p_ants, executable) if is_path else executable self.exec_register = _exec_update(self.EXEC_REGISTRATION) self.exec_transf_img = _exec_update(self.EXEC_TRANSFORM_IMAGE) self.exec_transf_pts = _exec_update(self.EXEC_TRANSFORM_POINTS) def _prepare_img_registration(self, item): """ prepare the experiment folder if it is required, eq. copy some extra files :param dict item: dictionary with regist. params :return dict: the same or updated registration info """ logging.debug('.. generate command before registration experiment') # set the paths for this experiment path_dir = self._get_path_reg_dir(item) path_im_ref, path_im_move, _, _ = self._get_paths(item) # Convert images to Nifty try: # catching issue with too large images item[self.COL_IMAGE_REF_NII] = convert_image_to_nifti_gray(path_im_ref, path_dir) except Exception: logging.exception('Converting: %s', path_im_ref) return try: # catching issue with too large images item[self.COL_IMAGE_MOVE_NII] = convert_image_to_nifti_gray(path_im_move, path_dir) except Exception: logging.exception('Converting: %s', path_im_move) return return item def _generate_regist_command(self, item): """ generate the registration command(s) :param dict item: dictionary {str: str|float} with registration params :return str|list(str): the execution commands """ path_dir = self._get_path_reg_dir(item) config = load_config_args(self.params['path_config']) config = config % {'target-image': item[self.COL_IMAGE_REF_NII], 'source-image': item[self.COL_IMAGE_MOVE_NII]} cmd = self.COMMAND_REGISTER % {'config': config, 'antsRegistration': self.exec_register, 'output': path_dir} return cmd def _extract_warped_image_landmarks(self, item): """ get registration results - warped registered images and landmarks :param dict item: dictionary {str: value} with registration params :return dict: paths to results """ path_dir = self._get_path_reg_dir(item) _, _, _, path_lnds_move = self._get_paths(item) name_im_move, _ = os.path.splitext(os.path.basename(path_lnds_move)) name_lnds_move, _ = os.path.splitext(os.path.basename(path_lnds_move)) # simplified version of landmarks lnds = load_landmarks(path_lnds_move) path_lnds_warp = os.path.join(path_dir, name_lnds_move + '.csv') # https://github.com/ANTsX/ANTs/issues/733#issuecomment-472049427
pd.DataFrame(lnds * -1, columns=['x', 'y'])
pandas.DataFrame
from unittest import mock import pytest import requests try: import pandas as pd has_pandas = True except ImportError: has_pandas = False from civis.response import ( CivisClientError, PaginatedResponse, _response_to_json, convert_response_data_type, Response ) def _create_mock_response(data, headers): mock_response = mock.MagicMock(spec=requests.Response) mock_response.json.return_value = data mock_response.headers = headers mock_response.status_code = 200 return mock_response def _create_empty_response(code, headers): mock_response = mock.MagicMock(spec=requests.Response) mock_response.status_code = code mock_response.content = b'' mock_response.headers = headers return mock_response def _make_paginated_response(path, params): results = [ [ {'id': 1, 'name': 'job_1'}, {'id': 2, 'name': 'job_2'}, {'id': 3, 'name': 'job_3'}, ], [ {'id': 4, 'name': 'job_4'}, {'id': 5, 'name': 'job_5'}, ], [] ] mock_endpoint = mock.MagicMock() mock_endpoint._make_request.side_effect = [ _create_mock_response(result, {}) for result in results ] mock_endpoint._return_type = 'snake' paginator = PaginatedResponse(path, params, mock_endpoint) return paginator, mock_endpoint def test_pagination(): path = '/objects' params = {'param': 'value'} paginator, mock_endpoint = _make_paginated_response(path, params) # No API calls made yet. mock_endpoint._make_request.assert_not_called() all_data = [] for indx, obj in enumerate(paginator): assert obj['id'] == indx + 1 all_data.append(obj) # Test lazy evaluation. Should make only make one call up until the # first item of the second page is needed. if indx < 3: mock_endpoint._make_request.assert_called_once_with( 'GET', path, dict(params, **{'page_num': 1})) else: mock_endpoint._make_request.assert_called_with( 'GET', path, dict(params, **{'page_num': 2})) # One extra call is made. Pagination is stopped since the response is # empty. assert mock_endpoint._make_request.call_count == 3 assert len(all_data) == 5 def test_iterator_interface(): # Make sure that the PaginatedResponse implements `next` as expected paginator, _ = _make_paginated_response('/objects', {'param': 'value'}) assert next(paginator)['id'] == 1 assert next(paginator)['id'] == 2 assert next(paginator)['id'] == 3 assert next(paginator)['id'] == 4 assert next(paginator)['id'] == 5 with pytest.raises(StopIteration): next(paginator) def test_response_to_json_no_error(): raw_response = _create_mock_response({'key': 'value'}, None) assert _response_to_json(raw_response) == {'key': 'value'} def test_response_to_no_content_snake(): # Test empty response handling for codes where we're likely to see them. for code in [202, 204, 205]: raw_response = _create_empty_response(code, {'header1': 'val1'}) data = convert_response_data_type(raw_response, return_type='snake') assert isinstance(data, Response) assert data.json_data is None assert data.headers == {'header1': 'val1'} def test_response_to_json_parsing_error(): raw_response = mock.MagicMock() raw_response.json.side_effect = ValueError('Invalid json') with pytest.raises(CivisClientError) as excinfo: _response_to_json(raw_response) assert 'Unable to parse JSON from response' in str(excinfo.value) def test_convert_data_type_raw_unparsed(): response = _create_mock_response({}, {'header1': 'val1'}) data = convert_response_data_type(response, return_type='raw') assert isinstance(data, requests.Response) assert data.headers == {'header1': 'val1'} def test_convert_data_type_raw_parsed(): response = {'foo': 'bar'} data = convert_response_data_type(response, return_type='raw') assert isinstance(data, dict) assert data == {'foo': 'bar'} @pytest.mark.skipif(not has_pandas, reason='pandas not installed') def test_convert_data_type_pandas_series(): response = _create_mock_response({'foo': 'bar'}, None) data = convert_response_data_type(response, return_type='pandas') assert isinstance(data, pd.Series) assert data.equals(pd.Series({'foo': 'bar'})) @pytest.mark.skipif(not has_pandas, reason='pandas not installed') def test_convert_data_type_pandas_df(): response = _create_mock_response([{'foo': 'bar'}], None) data = convert_response_data_type(response, return_type='pandas') assert isinstance(data, pd.DataFrame) assert data.equals(
pd.DataFrame.from_records([{'foo': 'bar'}])
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- """ Created on Tue Sep 18 17:44:58 2018 @author: Yang """ from bs4 import BeautifulSoup import pandas as pd # prepare the table import sqlite3 from sqlite3 import Error conn = sqlite3.connect("hurricanes.db") cur = conn.cursor() cur.execute("DROP TABLE IF EXISTS Hurricanes;") cur = conn.cursor() cur.execute(""" create table Hurricanes (Year text, tropical_storms text, hurricanes text, major_hurricanes text, deaths text, damage text, notes text) """ ) conn.commit() cur.close() conn.close() soup = BeautifulSoup( open("Atlantic hurricane season - Wikipedia.html",'r',encoding='utf-8'), "html.parser") tables = soup(['table']) for t,table in enumerate(tables): headers = [header.text.replace("\n","") for header in table.find_all('th')] print (headers) rows = [] df_ = pd.DataFrame(columns=headers) conn = sqlite3.connect("hurricanes.db") for i,row in enumerate(table.find_all('tr')): rows.append( [ str(val.text.encode('utf8')) for val in row.find_all('td')]) #rows.append( [val.text.encode('utf8') for val in row.find_all('td')]) rows[i] = [x.replace("b'","") for x in rows[i]] rows[i] = [x.replace('b"',"") for x in rows[i]] rows[i] = [x.replace('\\n"',"") for x in rows[i]] rows[i] = [x.replace("\\n'","") for x in rows[i]] rows[i] = [x.replace("'","") for x in rows[i]] rows[i] = [x.replace("\\xe2\\x80\\x93","-") for x in rows[i]] rows[i] = [x.replace("\\xe2\\x80\\xa2","-") for x in rows[i]] rows[i] = [x.replace("\\xe2\\x89\\xa5",">=") for x in rows[i]] rows[i] = [x.replace("\\xc2\\xa0"," ") for x in rows[i]] if i>=1: df_.loc[i] = rows[i] year= stroms = hurricanes = mhurricanes = deaths = damage = notes = "" if "Year" in df_: year = str(df_.loc[:,'Year'][i]) if "Number oftropical storms" in df_: stroms = str(df_.loc[:,'Number oftropical storms'][i]) if "Number ofhurricanes" in df_: hurricanes = str(df_.loc[:,'Number ofhurricanes'][i]) if "Number ofmajor hurricanes" in df_: mhurricanes = str(df_.loc[:,'Number ofmajor hurricanes'][i]) if "Deaths" in df_: deaths = str(df_.loc[:,'Deaths'][i]) if "DamageUSD" in df_: damage = str(df_.loc[:,'DamageUSD'][i]) if "Notes" in df_: notes = str(df_.loc[:,'Notes'][i]) new_row = [year,stroms , hurricanes ,mhurricanes , deaths , damage , notes] sql = "insert into Hurricanes values ({0})".format(str(new_row)).replace('[','').replace("]","") cur = conn.cursor() cur.execute(sql) print( sql ) conn.commit() conn.close() conn = sqlite3.connect("hurricanes.db") df =
pd.read_sql_query("select * from Hurricanes;", conn)
pandas.read_sql_query
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd from keras_preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from tensorflow.keras.applications import Xception from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.models import Sequential # Constants DATA_DATE = '2020-05-17' BATCH_SIZE = 32 IMG_HEIGHT = 224 IMG_WIDTH = 224 train_dir = '/Users/brianelinsky/Dropbox/ActiveProjects/modeling_projects/catdog/data/2020-05-17/train' test_dir = '/Users/brianelinsky/Dropbox/ActiveProjects/modeling_projects/catdog/data/2020-05-17/test1' # Get train filenames train_filenames = os.listdir(train_dir) # Get test filenames test_filenames = os.listdir(test_dir) test_filenames = sorted(test_filenames, key=lambda x: float(x[:-4])) # Label each training image as dog or cat categories = [] for filename in train_filenames: category = filename.split('.')[0] if category == 'dog': categories.append('dog') else: categories.append('cat') # Create training dataframe of filenames and labels train_df = pd.DataFrame({ 'filename': train_filenames, 'category': categories }) # Create test dataframe for test filenames test_df = pd.DataFrame({ 'filename': test_filenames }) # Split training data into train and validate datasets train_df, validate_df = train_test_split(train_df, test_size=0.15, random_state=22) # Calculate dataset sizes train_data_count = len(train_df) validate_data_count = len(validate_df) test_data_count = len(test_df) # Load a pre-trained CNN conv_base = Xception(weights='imagenet', include_top=False, input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)) print(conv_base.summary()) # Create generator to rescale images by 1/255 datagen = ImageDataGenerator(rescale=1. / 255) def extract_features(df, sample_count): features = np.zeros(shape=(sample_count, 7, 7, 2048)) labels = np.zeros(shape=sample_count) generator = datagen.flow_from_dataframe( df, train_dir, x_col='filename', y_col='category', target_size=(IMG_HEIGHT, IMG_WIDTH), # Resize images to target color_mode='rgb', class_mode='binary', batch_size=BATCH_SIZE ) i = 0 for inputs_batch, labels_batch in generator: features_batch = conv_base.predict(inputs_batch) features[i * BATCH_SIZE: (i + 1) * BATCH_SIZE] = features_batch labels[i * BATCH_SIZE: (i + 1) * BATCH_SIZE] = labels_batch i += 1 if i * BATCH_SIZE >= sample_count: break return features, labels def extract_test_features(df, sample_count): features = np.zeros(shape=(sample_count, 7, 7, 2048)) generator = datagen.flow_from_dataframe( df, test_dir, x_col='filename', target_size=(IMG_HEIGHT, IMG_WIDTH), # Resize images to target color_mode='rgb', class_mode=None, shuffle=False, batch_size=BATCH_SIZE ) i = 0 for inputs_batch in generator: features_batch = conv_base.predict(inputs_batch) features[i * BATCH_SIZE: (i + 1) * BATCH_SIZE] = features_batch i += 1 if i * BATCH_SIZE >= sample_count: break return features # Use pre-trained CNN to extract features for train and validation datasets train_features, train_labels = extract_features(train_df, train_data_count) validation_features, validation_labels = extract_features(validate_df, validate_data_count) # Extract features from test dataset test_features = extract_test_features(test_df, test_data_count) # Flatten train, test, and validate features so they can be fed into a neural network train_features = np.reshape(train_features, (train_data_count, 7 * 7 * 2048)) validation_features = np.reshape(validation_features, (validate_data_count, 7 * 7 * 2048)) test_features = np.reshape(test_features, (test_data_count, 7 * 7 * 2048)) # CREATE 2x2 FACTORIAL DESIGN def create_model(hasDropout): model = Sequential() model.add(Dense(256, activation='relu', input_dim=7 * 7 * 2048)) if hasDropout: model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) return model model_dropout_30_epochs = create_model(True) model_dropout_10_epochs = create_model(True) model_no_dropout_30_epochs = create_model(False) model_no_dropout_10_epochs = create_model(False) models = [model_dropout_30_epochs, model_dropout_10_epochs, model_no_dropout_30_epochs, model_no_dropout_10_epochs] for model in models: model.compile(optimizer='RMSprop', loss='binary_crossentropy', metrics=['acc']) def fit_model(model, num_epochs): return model.fit(train_features, train_labels, epochs=num_epochs, validation_data=(validation_features, validation_labels)) # Fit Models history_dropout_30 = fit_model(model_dropout_30_epochs, 30) history_dropout_10 = fit_model(model_dropout_10_epochs, 10) history_no_dropout_30 = fit_model(model_no_dropout_30_epochs, 30) history_no_dropout_10 = fit_model(model_no_dropout_10_epochs, 10) def plot_learning_curve(history, name):
pd.DataFrame(history.history)
pandas.DataFrame
import numpy as np import pandas as pd from datetime import datetime import warnings warnings.filterwarnings('ignore') results_df =
pd.read_csv('./csvs/results_from_mongo.csv')
pandas.read_csv
import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_html_components as html from dash.dependencies import Input, Output import pandas as pds from datetime import datetime as dt import datetime import plotly.graph_objs as go import plotly.express as px from app import app, template update_date = dt(2020, 3, 31) d_trust = pds.read_csv('assets/d_trust.csv') d_trust['hospitaladmissiondate'] = pds.to_datetime(d_trust['hospitaladmissiondate'], errors='coerce') icu_forecast = pds.read_csv('assets/icu_risk_forecast.csv') icu_forecast['hospitaladmissiondate'] = pds.to_datetime(icu_forecast['hospitaladmissiondate'], errors='coerce') death_forecast = pds.read_csv('assets/death_risk_forecast.csv') death_forecast['hospitaladmissiondate'] = pds.to_datetime(death_forecast['hospitaladmissiondate'], errors='coerce') d_patient_age = pds.read_csv('assets/d_patient_age.csv') d_patient_age['hospitaladmissiondate'] =
pds.to_datetime(d_patient_age['hospitaladmissiondate'], errors='coerce')
pandas.to_datetime
from .sourcehooks import SourceHook import pandas as pd from .lrseg import Lrseg class Agency(SourceHook): def __init__(self, sourcedata=None, metadata=None): """ Methods for querying CAST data related to Agencies """ SourceHook.__init__(self, sourcedata=sourcedata, metadata=metadata) self.lrseg = Lrseg(sourcedata=sourcedata, metadata=metadata) def all_names(self, astype=pd.Series): return self.grab_sourcetbl_column(tbl='TblAgency', col='agencycode', astype=astype) def all_ids(self, astype=pd.Series): return self.grab_sourcetbl_column(tbl='TblAgency', col='agencyid', astype=astype) def ids_from_names(self, agencycodes=None): """ Args: agencycodes (list, pd.Series, or pd.DataFrame): Returns: same type as input """ return self._map_using_sourcetbl(agencycodes, tbl='TblAgency', fromcol='agencycode', tocol='agencyid') def agencycodes_from_fullnames(self, fullnames=None): """ Args: agencyfullnames (list, pd.Series, or pd.DataFrame): Returns: same type as input """ return self._map_using_sourcetbl(fullnames, tbl='TblAgency', fromcol='agencyfullname', tocol='agencycode') def ids_from_fullnames(self, fullnames=None): """ Args: fullnames (list, pd.Series, or pd.DataFrame): Returns: same type as input """ return self._map_using_sourcetbl(fullnames, tbl='TblAgency', fromcol='agencyfullname', tocol='agencyid') def fullnames_from_ids(self, ids=None): """ Args: ids (list, pd.Series, or pd.DataFrame): Returns: same type as input """ return self._map_using_sourcetbl(ids, tbl='TblAgency', fromcol='agencyid', tocol='agencyfullname') def append_agencyid_to_lrsegids(self, lrsegids=None): return self.append_column_to_table(lrsegids, sourcetbl='TblLandRiverSegmentAgency', commoncol='lrsegid', appendcol='agencyid') def agencycodes_from_lrsegnames(self, lrsegnames=None): if not isinstance(lrsegnames, list): lrsegnames = lrsegnames.tolist() # self.__ids_from_names(idtype='lrseg', names=lrsegnames) lrsegids = self.lrseg.ids_from_names(names=lrsegnames) return self.agencycodes_from_lrsegids(lrsegids=lrsegids) def agencycodes_from_lrsegids(self, lrsegids=None): backtolist = False if isinstance(lrsegids, list): backtolist = True lrsegids =
pd.DataFrame(lrsegids, columns=['lrsegid'])
pandas.DataFrame
__version__ = '0.1.3' __maintainer__ = '<NAME> 31.12.2019' __contributors__ = '<NAME>, <NAME>' __email__ = '<EMAIL>' __birthdate__ = '31.12.2019' __status__ = 'dev' # options are: dev, test, prod #----- imports & packages ------ if __package__ is None or __package__ == '': import sys from os import path sys.path.append(path.dirname(path.dirname(path.dirname(__file__)))) import pprint import pandas as pd import numpy as np import warnings from pathlib import Path from zipfile import ZipFile class DataParser: def __init__(self, configDict: dict, datasetID: str, loadEncrypted=False): """ Basic class for parsing a mobility survey trip data set. Currently the both German travel surveys MiD 2008 and MiD 2017 are pre-configured and one of the two can be given (default: MiD 2017). The data set can be provided from an encrypted file on a server in which case the link to the ZIP-file as well as a link to the file within the ZIP-file have to be supplied in the globalConfig and a password has to be supplied in the parseConfig. Columns relevant for the EV simulation are selected from the entirety of the data and renamed to VencoPy internal variable names given in the dictionary parseConfig['dataVariables'] for the respective survey data set. Manually configured exclude, include, greaterThan and smallerThan filters are applied as they are specified in parseConfig. For some columns, raw data is transferred to human readable strings and respective columns are added. Pandas timestamp columns are synthesized from the given trip start and trip end time information. :param configDict: A dictionary containing multiple yaml config files :param datasetID: Currently, MiD08 and MiD17 are implemented as travel survey data sets :param loadEncrypted: If True, load an encrypted ZIP file as specified in parseConfig """ self.parseConfig = configDict['parseConfig'] self.globalConfig = configDict['globalConfig'] self.localPathConfig = configDict['localPathConfig'] self.datasetID = self.checkDatasetID(datasetID, self.parseConfig) self.rawDataPath = Path(self.localPathConfig['pathAbsolute'][self.datasetID]) / self.globalConfig['files'][self.datasetID]['tripsDataRaw'] self.subDict = {} self.rawData = None self.data = None self.__filterDict = {} self.columns = self.compileVariableList() self.filterDictNameList = ['include', 'exclude', 'greaterThan', 'smallerThan'] self.updateFilterDict() print('Parsing properties set up') if loadEncrypted: print(f"Starting to retrieve encrypted data file from " f"{self.globalConfig['pathAbsolute']['encryptedZipfile']}") self.loadEncryptedData(pathToZip=Path(self.globalConfig['pathAbsolute']['encryptedZipfile']) / self.globalConfig['files'][self.datasetID]['encryptedZipFileB2'], pathInZip=self.globalConfig['files'][self.datasetID]['tripDataZipFileRaw']) else: print(f"Starting to retrieve local data file from {self.rawDataPath}") self.loadData() def updateFilterDict(self) -> None: """ Internal function to parse the filter dictionary of a specified data set from parseConfig.yaml :return: None """ self.__filterDict[self.datasetID] = self.parseConfig['filterDicts'][self.datasetID] self.__filterDict[self.datasetID] = {iKey: iVal for iKey, iVal in self.__filterDict[self.datasetID].items() if self.__filterDict[self.datasetID][iKey] is not None} def checkDatasetID(self, datasetID: str, parseConfig: dict) -> str: """ General check if data set ID is defined in parseConfig.yaml :param datasetID: list of strings declaring the datasetIDs to be read in :param parseConfig: A yaml config file holding a dictionary with the keys 'pathRelative' and 'pathAbsolute' :return: Returns a string value of a mobility data """ availableDatasetIDs = parseConfig['dataVariables']['datasetID'] assert datasetID in availableDatasetIDs, \ f'Defined datasetID {datasetID} not specified under dataVariables in parseConfig. Specified datasetIDs ' \ f'are {availableDatasetIDs}' return datasetID def compileVariableList(self) -> list: """ Clean up the replacement dictionary of raw data file variable (column) names. This has to be done because some variables that may be relevant for the analysis later on are only contained in one raw data set while not contained in another one. E.g. if a trip is an intermodal trip was only assessed in the MiD 2017 while it wasn't in the MiD 2008. This has to be mirrored by the filter dict for the respective data set. :return: List of variables """ listIndex = self.parseConfig['dataVariables']['datasetID'].index(self.datasetID) variables = [val[listIndex] if not val[listIndex] == 'NA' else 'NA' for key, val in self.parseConfig['dataVariables'].items()] variables.remove(self.datasetID) self.removeNA(variables) return variables def removeNA(self, variables: list): """ Removes all strings that can be capitalized to 'NA' from the list of variables :param variables: List of variables of the mobility dataset :return: Returns a list with non NA values """ vars = [iVar.upper() for iVar in variables] counter = 0 for idx, iVar in enumerate(vars): if iVar == 'NA': del variables[idx - counter] counter += 1 def loadData(self): """ Loads data specified in self.rawDataPath and stores it in self.rawData. Raises an exception if a invalid suffix is specified in self.rawDataPath. READ IN OF CSV HAS NOT BEEN EXTENSIVELY TESTED BEFORE BETA RELEASE. :return: None """ # Future releases: Are potential error messages (.dta not being a stata file even as the ending matches) # readable for the user? Should we have a manual error treatment here? if self.rawDataPath.suffix == '.dta': self.rawData = pd.read_stata(self.rawDataPath, convert_categoricals=False, convert_dates=False, preserve_dtypes=False) # This has not been tested before the beta release elif self.rawDataPath.suffix == '.csv': self.rawData = pd.read_csv(self.rawDataPath) else: Exception(f"Data type {self.rawDataPath.suffix} not yet specified. Available types so far are .dta and " f".csv") print(f'Finished loading {len(self.rawData)} rows of raw data of type {self.rawDataPath.suffix}') def loadEncryptedData(self, pathToZip, pathInZip): """ Since the MiD data sets are only accessible by an extensive data security contract, VencoPy provides the possibility to access encrypted zip files. An encryption password has to be given in parseConfig.yaml in order to access the encrypted file. Loaded data is stored in self.rawData :param pathToZip: path from current working directory to the zip file or absolute path to zipfile :param pathInZip: Path to trip data file within the encrypted zipfile :return: None """ with ZipFile(pathToZip) as myzip: if '.dta' in pathInZip: self.rawData = pd.read_stata(myzip.open(pathInZip, pwd=bytes(self.parseConfig['encryptionPW'], encoding='utf-8')), convert_categoricals=False, convert_dates=False, preserve_dtypes=False) else: # if '.csv' in pathInZip: self.rawData = pd.read_csv(myzip.open(pathInZip, pwd=bytes(self.parseConfig['encryptionPW'], encoding='utf-8')), sep=';', decimal=',') print(f'Finished loading {len(self.rawData)} rows of raw data of type {self.rawDataPath.suffix}') def selectColumns(self): """ Function to filter the rawData for only relevant columns as specified by parseConfig and cleaned in self.compileVariablesList(). Stores the subset of data in self.data :return: None """ self.data = self.rawData.loc[:, self.columns] def harmonizeVariables(self): """ Harmonizes the input data variables to match internal VencoPy names given as specified in the mapping in parseConfig['dataVariables']. So far mappings for MiD08 and MiD17 are given. Since the MiD08 doesn't provide a combined household and person unique identifier, it is synthesized of the both IDs. :return: None """ replacementDict = self.createReplacementDict(self.datasetID, self.parseConfig['dataVariables']) dataRenamed = self.data.rename(columns=replacementDict) if self.datasetID == 'MiD08': dataRenamed['hhPersonID'] = (dataRenamed['hhID'].astype('string') + dataRenamed['personID'].astype('string')).astype('int') self.data = dataRenamed print('Finished harmonization of variables') def createReplacementDict(self, datasetID: str, dictRaw: dict) -> dict: """ Creates the mapping dictionary from raw data variable names to VencoPy internal variable names as specified in parseConfig.yaml for the specified data set. :param datasetID: list of strings declaring the datasetIDs to be read in :param dictRaw: Contains dictionary of the raw data :return: Dictionary with internal names as keys and raw data column names as values. """ if datasetID in dictRaw['datasetID']: listIndex = dictRaw['datasetID'].index(datasetID) return {val[listIndex]: key for (key, val) in dictRaw.items()} else: raise ValueError(f'Data set {datasetID} not specified in parseConfig variable dictionary.') def convertTypes(self): """ Convert raw column types to predefined python types as specified in parseConfig['inputDTypes'][datasetID]. This is mainly done for performance reasons. But also in order to avoid index values that are of type int to be cast to float. The function operates only on self.data and writes back changes to self.data :return: None """ # Filter for dataset specific columns conversionDict = self.parseConfig['inputDTypes'][self.datasetID] keys = {iCol for iCol in conversionDict.keys() if iCol in self.data.columns} self.subDict = {key: conversionDict[key] for key in conversionDict.keys() & keys} self.data = self.data.astype(self.subDict) def returnDictBottomValues(self, baseDict: dict, lst: list = []) -> list: """ Returns a list of all dictionary values of the last dictionary level (the bottom) of baseDict. The parameter lst is used as an interface between recursion levels. :param baseDict: Dictionary of variables :param lst: empty list, is used as interface to next recursion :return: Returns a list with all the bottom dictionary values """ for iKey, iVal in baseDict.items(): if isinstance(iVal, dict): lst = self.returnDictBottomValues(iVal, lst) else: if iVal is not None: lst.append(iVal) return lst def checkFilterDict(self): """ Checking if all values of filter dictionaries are of type list. Currently only checking if list of list str not typechecked all(map(self.__checkStr, val). Conditionally triggers an assert. :return: None """ assert all(isinstance(val, list) for val in self.returnDictBottomValues(self.__filterDict[self.datasetID])), \ f'All values in filter dictionaries have to be lists, but are not' def returnDictBottomKeys(self, baseDict: dict, lst: list = None) -> list: """ Returns the lowest level keys of baseDict and returns all of them as a list. The parameter lst is used as interface between recursion levels. :param baseDict: Dictionary of variables :param lst: empty list, used as interface between recursion levels :return: Returns a list with all the bottom level dictionary keys """ if lst is None: lst = [] for iKey, iVal in baseDict.items(): if isinstance(iVal, dict): lst = self.returnDictBottomKeys(iVal, lst) else: if iVal is not None: lst.append(iKey) return lst def filter(self): """ Wrapper function to carry out filtering for the four filter logics of including, excluding, greaterThan and smallerThan. If a filterDict is defined with a different key, a warning is thrown. The function operates on self.data class-internally. :return: None """ print(f'Starting filtering, applying {len(self.returnDictBottomKeys(self.__filterDict[self.datasetID]))} filters.') ret = pd.DataFrame(index=self.data.index) # Future releases: as discussed before we could indeed work here with a plug and pray approach. # we would need to introduce a filter manager and a folder structure where to look for filters. # this is very similar code than the one from ioproc. If we want to go down this route we should # take inspiration from the code there. It was not easy to get it right in the first place. This # might be easy to code but hard to implement correctly. for iKey, iVal in self.__filterDict[self.datasetID].items(): if iKey == 'include': ret = ret.join(self.setIncludeFilter(iVal, self.data.index)) elif iKey == 'exclude': ret = ret.join(self.setExcludeFilter(iVal, self.data.index)) elif iKey == 'greaterThan': ret = ret.join(self.setGreaterThanFilter(iVal, self.data.index)) elif iKey == 'smallerThan': ret = ret.join(self.setSmallerThanFilter(iVal, self.data.index)) else: warnings.warn(f'A filter dictionary was defined in the parseConfig with an unknown filtering key. ' f'Current filtering keys comprise include, exclude, smallerThan and greaterThan.' f'Continuing with ignoring the dictionary {iKey}') self.data = self.data[ret.all(axis='columns')] self.filterAnalysis(ret) def setIncludeFilter(self, includeFilterDict: dict, dataIndex) -> pd.DataFrame: """ Read-in function for include filter dict from parseConfig.yaml :param includeFilterDict: Dictionary of include filters defined in parseConfig.yaml :param dataIndex: Index for the data frame :return: Returns a data frame with individuals using car as a mode of transport """ incFilterCols = pd.DataFrame(index=dataIndex, columns=includeFilterDict.keys()) for incCol, incElements in includeFilterDict.items(): incFilterCols[incCol] = self.data[incCol].isin(incElements) return incFilterCols def setExcludeFilter(self, excludeFilterDict: dict, dataIndex) -> pd.DataFrame: """ Read-in function for exclude filter dict from parseConfig.yaml :param excludeFilterDict: Dictionary of exclude filters defined in parseConfig.yaml :param dataIndex: Index for the data frame :return: Returns a filtered data frame with exclude filters """ exclFilterCols = pd.DataFrame(index=dataIndex, columns=excludeFilterDict.keys()) for excCol, excElements in excludeFilterDict.items(): exclFilterCols[excCol] = ~self.data[excCol].isin(excElements) return exclFilterCols def setGreaterThanFilter(self, greaterThanFilterDict: dict, dataIndex): """ Read-in function for greaterThan filter dict from parseConfig.yaml :param greaterThanFilterDict: Dictionary of greater than filters defined in parseConfig.yaml :param dataIndex: Index for the data frame :return: """ greaterThanFilterCols = pd.DataFrame(index=dataIndex, columns=greaterThanFilterDict.keys()) for greaterCol, greaterElements in greaterThanFilterDict.items(): greaterThanFilterCols[greaterCol] = self.data[greaterCol] >= greaterElements.pop() if len(greaterElements) > 0: warnings.warn(f'You specified more than one value as lower limit for filtering column {greaterCol}.' f'Only considering the last element given in the parseConfig.') return greaterThanFilterCols def setSmallerThanFilter(self, smallerThanFilterDict: dict, dataIndex) -> pd.DataFrame: """ Read-in function for smallerThan filter dict from parseConfig.yaml :param smallerThanFilterDict: Dictionary of smaller than filters defined in parseConfig.yaml :param dataIndex: Index for the data frame :return: Returns a data frame of trips covering a distance of less than 1000 km """ smallerThanFilterCols = pd.DataFrame(index=dataIndex, columns=smallerThanFilterDict.keys()) for smallerCol, smallerElements in smallerThanFilterDict.items(): smallerThanFilterCols[smallerCol] = self.data[smallerCol] <= smallerElements.pop() if len(smallerElements) > 0: warnings.warn(f'You specified more than one value as upper limit for filtering column {smallerCol}.' f'Only considering the last element given in the parseConfig.') return smallerThanFilterCols def filterAnalysis(self, filterData: pd.DataFrame): """ Function supplies some aggregate info of the data after filtering to the user Function does not change any class attributes :param filterData: :return: None """ lenData = sum(filterData.all(axis='columns')) boolDict = {iCol: sum(filterData[iCol]) for iCol in filterData} print(f'The following values were taken into account after filtering:') pprint.pprint(boolDict) print(f"All filters combined yielded a total of {lenData} was taken into account") print(f'This corresponds to {lenData / len(filterData)* 100} percent of the original data') def filterConsistentHours(self): """ Filtering out records where starting hour is after end hour but trip takes place on the same day. These observations are data errors. :return: No returns, operates only on the class instance """ if self.datasetID == 'MiD17' or self.datasetID == 'MiD08': dat = self.data self.data = dat.loc[(dat['tripStartClock'] <= dat['tripEndClock']) | (dat['tripEndNextDay'] == 1), :] # If we want to get rid of tripStartClock and tripEndClock (they are redundant variables) # self.data = dat.loc[pd.to_datetime(dat.loc[:, 'tripStartHour']) <= pd.to_datetime(dat.loc[:, 'tripEndHour']) | # (dat['tripEndNextDay'] == 1), :] def addStrColumnFromVariable(self, colName: str, varName: str): """ Replaces each occurence of a MiD/KiD variable e.g. 1,2,...,7 for weekdays with an explicitly mapped string e.g. 'MON', 'TUE',...,'SUN'. :param colName: Name of the column in self.data where the explicit string info is stored :param varName: Name of the VencoPy internal variable given in config/parseConfig['dataVariables'] :return: None """ self.data.loc[:, colName] \ = self.data.loc[:, varName].replace(self.parseConfig['Replacements'][self.datasetID][varName]) def addStrColumns(self, weekday=True, purpose=True): """ Adds string columns for either weekday or purpose. :param weekday: Boolean identifier if weekday string info should be added in a separate column :param purpose: Boolean identifier if purpose string info should be added in a separate column :return: None """ if weekday: self.addStrColumnFromVariable(colName='weekdayStr', varName='tripStartWeekday') if purpose: self.addStrColumnFromVariable(colName='purposeStr', varName='tripPurpose') def composeTimestamp(self, data: pd.DataFrame = None, colYear: str = 'tripStartYear', colWeek: str = 'tripStartWeek', colDay: str = 'tripStartWeekday', colHour: str = 'tripStartHour', colMin: str = 'tripStartMinute', colName: str = 'timestampStart') -> np.datetime64: """ :param data: a data frame :param colYear: year of start of a particular trip :param colWeek: week of start of a particular trip :param colDay: weekday of start of a particular trip :param colHour: hour of start of a particular trip :param colMin: minute of start of a particular trip :param colName: :return: Returns a detailed time stamp """ data[colName] = pd.to_datetime(data.loc[:, colYear], format='%Y') + \ pd.to_timedelta(data.loc[:, colWeek] * 7, unit='days') + \ pd.to_timedelta(data.loc[:, colDay], unit='days') + \ pd.to_timedelta(data.loc[:, colHour], unit='hour') + \ pd.to_timedelta(data.loc[:, colMin], unit='minute') # return data def composeStartAndEndTimestamps(self): """ :return: Returns start and end time of a trip """ self.composeTimestamp(data=self.data) # Starting timestamp self.composeTimestamp(data=self.data, # Ending timestamps colHour='tripEndHour', colMin='tripEndMinute', colName='timestampEnd') def updateEndTimestamp(self): """ :return: """ endsFollowingDay = self.data['tripEndNextDay'] == 1 self.data.loc[endsFollowingDay, 'timestampEnd'] = self.data.loc[endsFollowingDay, 'timestampEnd'] + pd.offsets.Day(1) def updateEndTimestamps(self) -> np.datetime64: """ :return: Returns start and end time of a trip """ self.updateEndTimestamp() def harmonizeVariablesGenericIdNames(self): """ """ self.data['genericID'] = self.data[str(self.parseConfig['IDVariablesNames'][self.datasetID])] print('Finished harmonization of ID variables') def process(self): """ Wrapper function for harmonising and filtering the dataset. """ self.selectColumns() self.harmonizeVariables() self.convertTypes() self.checkFilterDict() self.filter() self.filterConsistentHours() self.addStrColumns() self.composeStartAndEndTimestamps() self.updateEndTimestamps() self.harmonizeVariablesGenericIdNames() print('Parsing completed') class ParseMiD(DataParser): # Inherited data class to differentiate between abstract interfaces such as vencopy internal # variable namings and data set specific functions such as filters etc. Currently not used (06/14/2021) pass class ParseKiD(DataParser): # Inherited data class to differentiate between abstract interfaces such as vencopy internal # variable namings and data set specific functions such as filters etc. def __init__(self, configDict: dict, datasetID: str): super().__init__(configDict, datasetID) def loadData(self): rawDataPathTrips = Path(configDict['localPathConfig']['pathAbsolute'][self.datasetID]) / configDict['globalConfig']['files'][self.datasetID]['tripsDataRaw'] rawDataPathVehicles = Path(configDict['localPathConfig']['pathAbsolute'][self.datasetID]) / configDict['globalConfig']['files'][self.datasetID]['vehiclesDataRaw'] rawDataTrips = pd.read_stata(rawDataPathTrips, convert_categoricals=False, convert_dates=False, preserve_dtypes=False) rawDataVehicles = pd.read_stata(rawDataPathVehicles, convert_categoricals=False, convert_dates=False, preserve_dtypes=False) rawDataVehicles.set_index('k00', inplace=True) rawData = rawDataTrips.join(rawDataVehicles, on='k00') self.rawData = rawData print(f'Finished loading {len(self.rawData)} rows of raw data of type .dta') def addStrColumns(self, weekday=True, purpose=True): """ Adds string columns for either weekday or purpose. :param weekday: Boolean identifier if weekday string info should be added in a separate column :param purpose: Boolean identifier if purpose string info should be added in a separate column :return: None """ # from tripStartDate retrieve tripStartWeekday, tripStartWeek, tripStartYear, tripStartMonth, tripStartDay # from tripStartClock retrieve tripStartHour, tripStartMinute # from tripEndClock retrieve tripEndHour, tripEndMinute self.data['tripStartDate'] =
pd.to_datetime(self.data['tripStartDate'], format='%d.%m.%Y')
pandas.to_datetime
import unittest import platform import random import string import platform import pandas as pd import numpy as np import numba import hpat from hpat.tests.test_utils import (count_array_REPs, count_parfor_REPs, count_parfor_OneDs, count_array_OneDs, dist_IR_contains, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba.config import IS_32BITS @hpat.jit def inner_get_column(df): # df2 = df[['A', 'C']] # df2['D'] = np.ones(3) return df.A COL_IND = 0 class TestDataFrame(unittest.TestCase): def test_create1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) return df.A hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_create_cond1(self): def test_impl(A, B, c): if c: df = pd.DataFrame({'A': A}) else: df = pd.DataFrame({'A': B}) return df.A hpat_func = hpat.jit(test_impl) n = 11 A = np.ones(n) B = np.arange(n) + 1.0 c = 0 pd.testing.assert_series_equal(hpat_func(A, B, c), test_impl(A, B, c)) c = 2 pd.testing.assert_series_equal(hpat_func(A, B, c), test_impl(A, B, c)) @unittest.skip('Implement feature to create DataFrame without column names') def test_create_without_column_names(self): def test_impl(): df = pd.DataFrame([100, 200, 300, 400, 200, 100]) return df hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(), test_impl()) def test_unbox1(self): def test_impl(df): return df.A hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.random.ranf(n)}) pd.testing.assert_series_equal(hpat_func(df), test_impl(df)) @unittest.skip("needs properly refcounted dataframes") def test_unbox2(self): def test_impl(df, cond): n = len(df) if cond: df['A'] = np.arange(n) + 2.0 return df.A hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) pd.testing.assert_series_equal(hpat_func(df.copy(), True), test_impl(df.copy(), True)) pd.testing.assert_series_equal(hpat_func(df.copy(), False), test_impl(df.copy(), False)) @unittest.skip('Implement feature to create DataFrame without column names') def test_unbox_without_column_names(self): def test_impl(df): return df df = pd.DataFrame([100, 200, 300, 400, 200, 100]) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_box1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_box2(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'bb', 'ccc']}) return df hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(), test_impl()) @unittest.skip("pending df filter support") def test_box3(self): def test_impl(df): df = df[df.A != 'dd'] return df hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_box_categorical(self): def test_impl(df): df['A'] = df['A'] + 1 return df hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1, 2, 3], 'B': pd.Series(['N', 'Y', 'Y'], dtype=pd.api.types.CategoricalDtype(['N', 'Y']))}) pd.testing.assert_frame_equal(hpat_func(df.copy(deep=True)), test_impl(df)) def test_box_dist_return(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df hpat_func = hpat.jit(distributed={'df'})(test_impl) n = 11 hres, res = hpat_func(n), test_impl(n) self.assertEqual(count_array_OneDs(), 3) self.assertEqual(count_parfor_OneDs(), 2) dist_sum = hpat.jit( lambda a: hpat.distributed_api.dist_reduce( a, np.int32(hpat.distributed_api.Reduce_Type.Sum.value))) dist_sum(1) # run to compile np.testing.assert_allclose(dist_sum(hres.A.sum()), res.A.sum()) np.testing.assert_allclose(dist_sum(hres.B.sum()), res.B.sum()) def test_len1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.random.ranf(n)}) return len(df) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_shape1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.random.ranf(n)}) return df.shape hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_column_getitem1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) Ac = df['A'].values return Ac.sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertEqual(count_parfor_OneDs(), 1) def test_column_list_getitem1(self): def test_impl(df): return df[['A', 'C']] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame( {'A': np.arange(n), 'B': np.ones(n), 'C': np.random.ranf(n)}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_filter1(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df[df.A > .5] return df1.B.sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_filter2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df.loc[df.A > .5] return np.sum(df1.B) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_filter3(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df.iloc[(df.A > .5).values] return np.sum(df1.B) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_iloc1(self): def test_impl(df, n): return df.iloc[1:n].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc2(self): def test_impl(df, n): return df.iloc[np.array([1, 4, 9])].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc3(self): def test_impl(df): return df.iloc[:, 1].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) @unittest.skip("TODO: support A[[1,2,3]] in Numba") def test_iloc4(self): def test_impl(df, n): return df.iloc[[1, 4, 9]].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc5(self): # test iloc with global value def test_impl(df): return df.iloc[:, COL_IND].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_loc1(self): def test_impl(df): return df.loc[:, 'B'].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_iat1(self): def test_impl(n): df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) return df.iat[3, 1] hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_iat2(self): def test_impl(df): return df.iat[3, 1] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) self.assertEqual(hpat_func(df), test_impl(df)) def test_iat3(self): def test_impl(df, n): return df.iat[n - 1, 1] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) self.assertEqual(hpat_func(df, n), test_impl(df, n)) def test_iat_set1(self): def test_impl(df, n): df.iat[n - 1, 1] = n**2 return df.A # return the column to check column aliasing hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) df2 = df.copy() pd.testing.assert_series_equal(hpat_func(df, n), test_impl(df2, n)) def test_iat_set2(self): def test_impl(df, n): df.iat[n - 1, 1] = n**2 return df # check df aliasing/boxing hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) df2 = df.copy() pd.testing.assert_frame_equal(hpat_func(df, n), test_impl(df2, n)) def test_set_column1(self): # set existing column def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df['A'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column_reflect4(self): # set existing column def test_impl(df, n): df['A'] = np.arange(n) hpat_func = hpat.jit(test_impl) n = 11 df1 = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df2 = df1.copy() hpat_func(df1, n) test_impl(df2, n) do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(df1, df2, check_dtype=do_check) def test_set_column_new_type1(self): # set existing column with a new type def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n) + 3.0}) df['A'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column2(self): # create new column def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n) + 1.0}) df['C'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column_reflect3(self): # create new column def test_impl(df, n): df['C'] = np.arange(n) hpat_func = hpat.jit(test_impl) n = 11 df1 = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df2 = df1.copy() hpat_func(df1, n) test_impl(df2, n) do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(df1, df2, check_dtype=do_check) def test_set_column_bool1(self): def test_impl(df): df['C'] = df['A'][df['B']] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1, 2, 3], 'B': [True, False, True]}) df2 = df.copy() test_impl(df2) hpat_func(df) pd.testing.assert_series_equal(df.C, df2.C) def test_set_column_reflect1(self): def test_impl(df, arr): df['C'] = arr return df.C.sum() hpat_func = hpat.jit(test_impl) n = 11 arr = np.random.ranf(n) df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) hpat_func(df, arr) self.assertIn('C', df) np.testing.assert_almost_equal(df.C.values, arr) def test_set_column_reflect2(self): def test_impl(df, arr): df['C'] = arr return df.C.sum() hpat_func = hpat.jit(test_impl) n = 11 arr = np.random.ranf(n) df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) df2 = df.copy() np.testing.assert_almost_equal(hpat_func(df, arr), test_impl(df2, arr)) def test_df_values1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.values hpat_func = hpat.jit(test_impl) n = 11 np.testing.assert_array_equal(hpat_func(n), test_impl(n)) def test_df_values2(self): def test_impl(df): return df.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_df_values_parallel1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.values.sum() hpat_func = hpat.jit(test_impl) n = 11 np.testing.assert_array_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_df_apply(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)}) B = df.apply(lambda r: r.A + r.B, axis=1) return df.B.sum() n = 121 hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) def test_df_apply_branch(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)}) B = df.apply(lambda r: r.A < 10 and r.B > 20, axis=1) return df.B.sum() n = 121 hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) def test_df_describe(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float32), 'B': np.arange(n)}) #df.A[0:1] = np.nan return df.describe() hpat_func = hpat.jit(test_impl) n = 1001 hpat_func(n) # XXX: test actual output self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_sort_values(self): def test_impl(df): df.sort_values('A', inplace=True) return df.B.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n), 'B': np.arange(n), 'C': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_copy(self): def test_impl(df): df2 = df.sort_values('A') return df2.B.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n), 'B': np.arange(n), 'C': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_single_col(self): def test_impl(df): df.sort_values('A', inplace=True) return df.A.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_single_col_str(self): def test_impl(df): df.sort_values('A', inplace=True) return df.A.values n = 1211 random.seed(2) str_vals = [] for _ in range(n): k = random.randint(1, 30) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals.append(val) df = pd.DataFrame({'A': str_vals}) hpat_func = hpat.jit(test_impl) self.assertTrue((hpat_func(df.copy()) == test_impl(df)).all()) def test_sort_values_str(self): def test_impl(df): df.sort_values('A', inplace=True) return df.B.values n = 1211 random.seed(2) str_vals = [] str_vals2 = [] for i in range(n): k = random.randint(1, 30) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals.append(val) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals2.append(val) df = pd.DataFrame({'A': str_vals, 'B': str_vals2}) # use mergesort for stability, in str generation equal keys are more probable sorted_df = df.sort_values('A', inplace=False, kind='mergesort') hpat_func = hpat.jit(test_impl) self.assertTrue((hpat_func(df) == sorted_df.B.values).all()) def test_sort_parallel_single_col(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() # TODO: better parallel sort test def test_impl(): df = pd.read_parquet('kde.parquet') df.sort_values('points', inplace=True) res = df.points.values return res hpat_func = hpat.jit(locals={'res:return': 'distributed'})(test_impl) save_min_samples = hpat.hiframes.sort.MIN_SAMPLES try: hpat.hiframes.sort.MIN_SAMPLES = 10 res = hpat_func() self.assertTrue((np.diff(res) >= 0).all()) finally: # restore global val hpat.hiframes.sort.MIN_SAMPLES = save_min_samples def test_df_isna1(self): '''Verify DataFrame.isna implementation for various types of data''' def test_impl(df): return df.isna() hpat_func = hpat.jit(test_impl) # TODO: add column with datetime values when test_series_datetime_isna1 is fixed df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [np.inf, 5, np.nan, 6], 'C': ['aa', 'b', None, 'ccc'], 'D': [None, 'dd', '', None]}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_str1(self): '''Verifies DataFrame.astype implementation converting various types to string''' def test_impl(df): return df.astype(str) hpat_func = hpat.jit(test_impl) # TODO: add column with float values when test_series_astype_float_to_str1 is fixed df = pd.DataFrame({'A': [-1, 2, 11, 5, 0, -7], 'B': ['aa', 'bb', 'cc', 'dd', '', 'fff'] }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_float1(self): '''Verifies DataFrame.astype implementation converting various types to float''' def test_impl(df): return df.astype(np.float64) hpat_func = hpat.jit(test_impl) # TODO: uncomment column with string values when test_series_astype_str_to_float64 is fixed df = pd.DataFrame({'A': [-1, 2, 11, 5, 0, -7], # 'B': ['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf'], 'C': [3.24, 1E+05, -1, -1.3E-01, np.nan, np.inf] }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_int1(self): '''Verifies DataFrame.astype implementation converting various types to int''' def test_impl(df): return df.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 6 # TODO: uncomment column with string values when test_series_astype_str_to_int32 is fixed df = pd.DataFrame({'A': np.ones(n, dtype=np.int64), 'B': np.arange(n, dtype=np.int32), # 'C': ['-1', '2', '3', '0', '-7', '99'], 'D': np.arange(float(n), dtype=np.float32) }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_sort_parallel(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() # TODO: better parallel sort test def test_impl(): df = pd.read_parquet('kde.parquet') df['A'] = df.points.astype(np.float64) df.sort_values('points', inplace=True) res = df.A.values return res hpat_func = hpat.jit(locals={'res:return': 'distributed'})(test_impl) save_min_samples = hpat.hiframes.sort.MIN_SAMPLES try: hpat.hiframes.sort.MIN_SAMPLES = 10 res = hpat_func() self.assertTrue((np.diff(res) >= 0).all()) finally: # restore global val hpat.hiframes.sort.MIN_SAMPLES = save_min_samples def test_itertuples(self): def test_impl(df): res = 0.0 for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.ones(n, np.int64)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_itertuples_str(self): def test_impl(df): res = "" for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 3 df = pd.DataFrame({'A': ['aa', 'bb', 'cc'], 'B': np.ones(n, np.int64)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_itertuples_order(self): def test_impl(n): res = 0.0 df = pd.DataFrame({'B': np.arange(n), 'A': np.ones(n, np.int64)}) for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_itertuples_analysis(self): """tests array analysis handling of generated tuples, shapes going through blocks and getting used in an array dimension """ def test_impl(n): res = 0 df = pd.DataFrame({'B': np.arange(n), 'A': np.ones(n, np.int64)}) for r in df.itertuples(): if r[1] == 2: A = np.ones(r[1]) res += len(A) return res hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) @unittest.skipIf(platform.system() == 'Windows', "Attribute 'dtype' are different int64 and int32") def test_df_head1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.head(3) hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_frame_equal(hpat_func(n), test_impl(n)) def test_pct_change1(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.pct_change(3) hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_frame_equal(hpat_func(n), test_impl(n)) def test_mean1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.mean() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_median1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': 2 ** np.arange(n), 'B': np.arange(n) + 1.0}) return df.median() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_std1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.std() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_var1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.var() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_max1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.max() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_min1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.min() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_sum1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.sum() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_prod1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.prod() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_count1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.count() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_df_fillna1(self): def test_impl(df): return df.fillna(5.0) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_fillna_str1(self): def test_impl(df): return df.fillna("dd") df = pd.DataFrame({'A': ['aa', 'b', None, 'ccc']}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_fillna_inplace1(self): def test_impl(A): A.fillna(11.0, inplace=True) return A df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) df2 = df.copy() hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df2)) def test_df_reset_index1(self): def test_impl(df): return df.reset_index(drop=True) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_reset_index_inplace1(self): def test_impl(): df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) df.reset_index(drop=True, inplace=True) return df hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(), test_impl()) def test_df_dropna1(self): def test_impl(df): return df.dropna() df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [4, 5, 6, 7]}) hpat_func = hpat.jit(test_impl) out = test_impl(df).reset_index(drop=True) h_out = hpat_func(df) pd.testing.assert_frame_equal(out, h_out) def test_df_dropna2(self): def test_impl(df): return df.dropna() df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) hpat_func = hpat.jit(test_impl) out = test_impl(df).reset_index(drop=True) h_out = hpat_func(df) pd.testing.assert_frame_equal(out, h_out) def test_df_dropna_inplace1(self): # TODO: fix error when no df is returned def test_impl(df): df.dropna(inplace=True) return df df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [4, 5, 6, 7]}) df2 = df.copy() hpat_func = hpat.jit(test_impl) out = test_impl(df).reset_index(drop=True) h_out = hpat_func(df2) pd.testing.assert_frame_equal(out, h_out) def test_df_dropna_str1(self): def test_impl(df): return df.dropna() df = pd.DataFrame({'A': [1.0, 2.0, 4.0, 1.0], 'B': ['aa', 'b', None, 'ccc']}) hpat_func = hpat.jit(test_impl) out = test_impl(df).reset_index(drop=True) h_out = hpat_func(df) pd.testing.assert_frame_equal(out, h_out) def test_df_drop1(self): def test_impl(df): return df.drop(columns=['A']) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [4, 5, 6, 7]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_drop_inplace2(self): # test droping after setting the column def test_impl(df): df2 = df[['A', 'B']] df2['D'] = np.ones(3) df2.drop(columns=['D'], inplace=True) return df2 df = pd.DataFrame({'A': [1, 2, 3], 'B': [2, 3, 4]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_drop_inplace1(self): def test_impl(df): df.drop('A', axis=1, inplace=True) return df df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [4, 5, 6, 7]}) df2 = df.copy() hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df2)) def test_isin_df1(self): def test_impl(df, df2): return df.isin(df2) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) df2 = pd.DataFrame({'A': np.arange(n), 'C': np.arange(n)**2}) df2.A[n // 2:] = n pd.testing.assert_frame_equal(hpat_func(df, df2), test_impl(df, df2)) @unittest.skip("needs dict typing in Numba") def test_isin_dict1(self): def test_impl(df): vals = {'A': [2, 3, 4], 'C': [4, 5, 6]} return df.isin(vals) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_isin_list1(self): def test_impl(df): vals = [2, 3, 4] return df.isin(vals) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_append1(self): def test_impl(df, df2): return df.append(df2, ignore_index=True) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) df2 = pd.DataFrame({'A': np.arange(n), 'C': np.arange(n)**2}) df2.A[n // 2:] = n pd.testing.assert_frame_equal(hpat_func(df, df2), test_impl(df, df2)) def test_append2(self): def test_impl(df, df2, df3): return df.append([df2, df3], ignore_index=True) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) df2 = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) df2.A[n // 2:] = n df3 = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) pd.testing.assert_frame_equal( hpat_func(df, df2, df3), test_impl(df, df2, df3)) def test_concat_columns1(self): def test_impl(S1, S2): return pd.concat([S1, S2], axis=1) hpat_func = hpat.jit(test_impl) S1 = pd.Series([4, 5]) S2 = pd.Series([6., 7.]) # TODO: support int as column name pd.testing.assert_frame_equal( hpat_func(S1, S2), test_impl(S1, S2).rename(columns={0: '0', 1: '1'})) def test_var_rename(self): # tests df variable replacement in hiframes_untyped where inlining # can cause extra assignments and definition handling errors # TODO: inline freevar def test_impl(): df =
pd.DataFrame({'A': [1, 2, 3], 'B': [2, 3, 4]})
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/7/17 0017 16:42 # @Author : Hadrianl # @File : mysql_to_mongodb.py # @License : (C) Copyright 2013-2017, 凯瑞投资 import pymongo import pymysql import pandas as pd import datetime as dt import json MongoDB_client = pymongo.MongoClient('mongodb://localhost:27017/') MysqlDB = pymysql.connect(input('Host:>'), input('User:>'), input('Password:>'), charset='utf8') sp = MongoDB_client.SP sp_future_min = sp.get_collection('sp_future_min') last_date_stamp = sp_future_min.find_one(projection=['date_stamp'], sort=[('date_stamp', pymongo.DESCENDING)])['date_stamp'] last_date = dt.datetime.fromtimestamp(last_date_stamp).strftime('%Y-%m-%d 00:00:00') cursor = MysqlDB.cursor(pymysql.cursors.DictCursor) cursor.execute(f'SELECT * FROM carry_investment.wh_same_month_min where datetime >= "{last_date}"') data = cursor.fetchall() d =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import os ''' Break up a CSV for all states into individual CSV for each states. Return a dict of state_name:file_name ''' def get_state(bigcsv: str) -> iter: all_states =
pd.read_csv(bigcsv,usecols=['State'],squeeze=True)
pandas.read_csv
import gc from pathlib import Path from tqdm import tqdm import skvideo import skvideo.io import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from moviepy.editor import * import torch import torch.optim as optim from torch.optim.lr_scheduler import ReduceLROnPlateau from torchvision import transforms __all__ = ['CreateOptim', 'save_checkpoint', 'preprocess_df', 'preprocess_df_audio'] def plot_losses(train=[], test=[], path=''): """ Plotting function for training/val losses Parameters ---------- train : list Training losses over training test : list Test losses over training path : str Path for output plot """ epochs = [x for x in range(len(train))] fig = plt.figure(figsize=(5, 5)) sns.lineplot(x=epochs, y=train, label='Train') sns.lineplot(x=epochs, y=test, label='Test') plt.legend(loc='upper right') plt.xlabel('Epoch') plt.ylabel('Loss') plt.savefig('{}/Loss.jpeg'.format(path)) def CreateOptim(parameters, lr=0.001, betas=(0.5, 0.999), weight_decay=0, factor=0.2, patience=5, threshold=1e-03, eps=1e-08): """ Creates optimizer and associated learning rate scheduler for a model Paramaters ---------- parameters : torch parameters Pytorch network parameters for associated optimzer and scheduler lr : float Learning rate for optimizer betas : 2-tuple(floats) Betas for optimizer weight_decay : float Weight decay for optimizer regularization factor : float Factor by which to reduce learning rate on Plateau patience : int Patience for learning rate scheduler Returns ------- optimizer : torch.optim optimizer for model scheduler : ReduceLROnPlateau scheduler for optimizer """ optimizer = optim.Adam(parameters, lr=lr, betas=( 0.5, 0.999), weight_decay=weight_decay) scheduler = ReduceLROnPlateau( optimizer, mode='min', factor=0.2, patience=patience, threshold=threshold, eps=eps, verbose=True) return optimizer, scheduler def save_checkpoint(model, description, filename='checkpoint.pth.tar'): """ Saves input state dict to file Parameters ---------- state : dict State dict to save. Can include parameters from model, optimizer, etc. as well as any other elements. is_best : bool If true will save current state dict to a second location filename : str File name for save Returns ------- """ state = { 'architecture': str(model), 'description': description, 'model': model.state_dict() } torch.save(state, filename) def preprocess_df(df=None, mtcnn=None, path=None, outpath=None, target_n_frames=60, frame_rate=10, mini_batch=15, n_seconds=5, start_at_end=True, debug=False): """ Preprocessing script for deep fake challenge. Subsamples, videos, isolates faces and saves frames. Parameters ---------- df : pd.DataFrame Dataframe with video metadata mtcnn : torch.Module Facial detection module from facenet-python (https://github.com/timesler/facenet-pytorch) path : str Path to directory with DFDC data outpath : str Destination for preprocessed frames target_n_frames : int Target number of frames to extract frame_rate : int Number of frames per second to process mini_batch : str Mini batch size for preprocessing steps (protects against memory overflow) n_seconds : int Numbr of seconds to load video (speed up optimization) debug : bool Debug switch to test memory leak Returns ------- faces_dataframe : pd.DataFrame Dataframe of preprocessed data """ def split(my_list, n): """ Splits list into lists of length n Paramaters ---------- my_list : list List to subdivide n : int Max length of desired sub-lists Returns final : list List of sub-lists of length n """ final = [my_list[i * n:(i + 1) * n] for i in range((len(my_list) + n - 1) // n)] return final def process_min_batch_reverse(batch=None, start_index=0): """ Pre-process and save a mini_batch of frames Parameters ---------- batch : list(torch.tensor) List with frames to preprocess start_index : int Number fo previously saved frames in the video Returns ------- end_index : int Number of saved frames at end of this mini-batch """ with torch.no_grad(): faces, probs = mtcnn(batch, return_prob=True) saved_frames = 0 faces_probs = [] for ii, face in enumerate(faces): if face is None or probs[ii] < 0.95: continue if start_index-saved_frames < 0: break faces_probs.append(probs[ii]) imface = to_pil(face/2 + 0.5) imface.save('{}/frame_{}.png'.format(dest, start_index-saved_frames)) del imface saved_frames += 1 del faces return saved_frames, faces_probs def process_min_batch(batch=None, start_index=0): """ Pre-process and save a mini_batch of frames Parameters ---------- batch : list(torch.tensor) List with frames to preprocess start_index : int Number fo previously saved frames in the video Returns ------- end_index : int Number of saved frames at end of this mini-batch """ with torch.no_grad(): faces, probs = mtcnn(batch, return_prob=True) saved_frames = 0 faces_probs = [] for ii, face in enumerate(faces): if face is None or probs[ii] < 0.95: continue faces_probs.append(probs[ii]) imface = to_pil(face/2 + 0.5) imface.save('{}/frame_{}.png'.format(dest, saved_frames+start_index)) del imface saved_frames += 1 del faces return saved_frames, faces_probs frame_skip = 30//frame_rate to_pil = transforms.ToPILImage() pbar = tqdm(total=len(df)) faces_dataframe = [] for idx in range(len(df)): pbar.update(1) entry = df.iloc[idx] this_entry = {'split': entry['split'], 'File': entry['File'], 'label': entry['label'], 'frames': 0, 'probabilites': []} try: filename = '{}/{}/{}'.format(path, entry['split'], entry['File']) dest = '{}/{}/{}/'.format(outpath, entry['split'], entry['File']) Path(dest).mkdir(parents=True, exist_ok=True) try: videodata = skvideo.io.vread(filename, (n_seconds)*30) except RuntimeError: videodata = skvideo.io.vread(filename) except: continue if start_at_end: frames = [to_pil(x) for x in videodata[::-frame_skip]] frames_batches = split(frames, mini_batch) else: frames = [to_pil(x) for x in videodata[0::frame_skip]] frames_batches = split(frames, mini_batch) probabilities = [] if start_at_end: n_frames = target_n_frames for batch in frames_batches: if n_frames < 0: break t_frames, t_probs = process_min_batch_reverse( batch, n_frames) n_frames -= t_frames probabilities += t_probs n_frames = target_n_frames else: n_frames = 0 for batch in frames_batches: if n_frames >= target_n_frames: break t_frames, t_probs = process_min_batch(batch, n_frames) n_frames += t_frames probabilities += t_probs this_entry['frames'] = n_frames this_entry['probabilities'] = probabilities del frames, videodata except: pass faces_dataframe.append(this_entry) del entry, this_entry # if debug: for obj in gc.get_objects(): try: if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): print(type(obj), obj.size()) except: pass pbar.close() return
pd.DataFrame(faces_dataframe)
pandas.DataFrame
from io import StringIO import numpy as np import pytest from pandas import DataFrame, concat, read_csv import pandas._testing as tm class TestInvalidConcat: def test_concat_invalid(self): # trying to concat a ndframe with a non-ndframe df1 = tm.makeCustomDataframe(10, 2) for obj in [1, {}, [1, 2], (1, 2)]: msg = ( f"cannot concatenate object of type '{type(obj)}'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg):
concat([df1, obj])
pandas.concat
from spines.built_in_exceptions.built_in_exceptions import FileLoadingError from spines.pandas_wrapper.data_frame import DataFrameWrapper as dfw import pandas as pd import numpy as np def load_data(path, file_type='csv', sheet_name=0, **kwargs) -> pd.DataFrame: """ To load standard input data to machine memory. file_type: csv, excel """ df = pd.DataFrame() if file_type == 'csv': try: df =
pd.read_csv(path, **kwargs)
pandas.read_csv
import numpy as np import pandas as pd from graphysio.dialogs import DlgListChoice from graphysio.readdata.baseclass import BaseReader from graphysio.structures import PlotData try: import pyedflib except ImportError: is_available = False else: is_available = True class EdfReader(BaseReader): is_available = is_available def askUserInput(self): filepath = str(self.userdata['filepath']) edf = pyedflib.EdfReader(filepath) signals = {} for i in range(edf.signals_in_file): h = edf.getSignalHeader(i) signals[h['label']] = i edf.close() def cb(colnames): self.userdata['columns'] = [signals[lbl] for lbl in colnames] colnames = list(signals.keys()) dlgchoice = DlgListChoice(colnames, 'Open EDF', 'Choose curves to load') dlgchoice.dlgdata.connect(cb) dlgchoice.exec_() def __call__(self) -> PlotData: filepath = str(self.userdata['filepath']) edf = pyedflib.EdfReader(filepath) beginns = edf.getStartdatetime().timestamp() * 1e9 nsamplesPerChannel = edf.getNSamples() signals = [] for i in self.userdata['columns']: h = edf.getSignalHeader(i) fs = h['sample_rate'] n = nsamplesPerChannel[i] endns = beginns + n * 1e9 / fs idx = np.linspace(beginns, endns, num=n, dtype=np.int64) s = pd.Series(edf.readSignal(i), index=idx, name=h['label']) signals.append(s) edf.close() if not signals: return None df =
pd.concat(signals, axis=1)
pandas.concat
def get_patent_fields_list(): """Scrape patent fields that are retrievable from PatentsView API""" import requests from bs4 import Tag, NavigableString, BeautifulSoup import pandas as pd url = "http://www.patentsview.org/api/patent.html" page = requests.get(url) l = [] l_fieldnames = [] soup = BeautifulSoup(page.text, 'lxml') table = soup.find(class_='table table-striped documentation-fieldlist') table_rows = table.find_all('tr') counter=0 for tr in table_rows: if counter ==0: th = tr.find_all('th') row = [tr.text for tr in th] l.append(row) counter+=1 elif counter>0: td = tr.find_all('td') row = [tr.text for tr in td] l.append(row) for row in l[1:]: l_fieldnames.append(row[0]) return l_fieldnames def get_patent_fields_df(): """Scrape and return possible fields for patents endpoint of PatentsView API""" import requests from bs4 import Tag, NavigableString, BeautifulSoup import pandas as pd url = "http://www.patentsview.org/api/patent.html" page = requests.get(url) table = [] soup = BeautifulSoup(page.text, 'lxml') table = soup.find(class_='table table-striped documentation-fieldlist') table_rows = table.find_all('tr') counter = 0 for tr in table_rows: if counter == 0: th = tr.find_all('th') row = [tr.text for tr in th] table.append(row) counter += 1 elif counter > 0: td = tr.find_all('td') row = [tr.text for tr in td] table.append(row) df =
pd.DataFrame(table)
pandas.DataFrame
from copy import deepcopy import datetime import inspect import pydoc import numpy as np import pytest from pandas.compat import PY37 from pandas.util._test_decorators import async_mark, skip_if_no import pandas as pd from pandas import Categorical, DataFrame, Series, compat, date_range, timedelta_range import pandas._testing as tm class TestDataFrameMisc: @pytest.mark.parametrize("attr", ["index", "columns"]) def test_copy_index_name_checking(self, float_frame, attr): # don't want to be able to modify the index stored elsewhere after # making a copy ind = getattr(float_frame, attr) ind.name = None cp = float_frame.copy() getattr(cp, attr).name = "foo" assert getattr(float_frame, attr).name is None def test_getitem_pop_assign_name(self, float_frame): s = float_frame["A"] assert s.name == "A" s = float_frame.pop("A") assert s.name == "A" s = float_frame.loc[:, "B"] assert s.name == "B" s2 = s.loc[:] assert s2.name == "B" def test_get_value(self, float_frame): for idx in float_frame.index: for col in float_frame.columns: result = float_frame._get_value(idx, col) expected = float_frame[col][idx] tm.assert_almost_equal(result, expected) def test_add_prefix_suffix(self, float_frame): with_prefix = float_frame.add_prefix("foo#") expected = pd.Index([f"foo#{c}" for c in float_frame.columns]) tm.assert_index_equal(with_prefix.columns, expected) with_suffix = float_frame.add_suffix("#foo") expected = pd.Index([f"{c}#foo" for c in float_frame.columns]) tm.assert_index_equal(with_suffix.columns, expected) with_pct_prefix = float_frame.add_prefix("%") expected = pd.Index([f"%{c}" for c in float_frame.columns]) tm.assert_index_equal(with_pct_prefix.columns, expected) with_pct_suffix = float_frame.add_suffix("%") expected = pd.Index([f"{c}%" for c in float_frame.columns]) tm.assert_index_equal(with_pct_suffix.columns, expected) def test_get_axis(self, float_frame): f = float_frame assert f._get_axis_number(0) == 0 assert f._get_axis_number(1) == 1 assert f._get_axis_number("index") == 0 assert f._get_axis_number("rows") == 0 assert f._get_axis_number("columns") == 1 assert f._get_axis_name(0) == "index" assert f._get_axis_name(1) == "columns" assert f._get_axis_name("index") == "index" assert f._get_axis_name("rows") == "index" assert f._get_axis_name("columns") == "columns" assert f._get_axis(0) is f.index assert f._get_axis(1) is f.columns with pytest.raises(ValueError, match="No axis named"): f._get_axis_number(2) with pytest.raises(ValueError, match="No axis.*foo"): f._get_axis_name("foo") with pytest.raises(ValueError, match="No axis.*None"): f._get_axis_name(None) with pytest.raises(ValueError, match="No axis named"): f._get_axis_number(None) def test_keys(self, float_frame): getkeys = float_frame.keys assert getkeys() is float_frame.columns def test_column_contains_raises(self, float_frame): with pytest.raises(TypeError, match="unhashable type: 'Index'"): float_frame.columns in float_frame def test_tab_completion(self): # DataFrame whose columns are identifiers shall have them in __dir__. df = pd.DataFrame([list("abcd"), list("efgh")], columns=list("ABCD")) for key in list("ABCD"): assert key in dir(df) assert isinstance(df.__getitem__("A"), pd.Series) # DataFrame whose first-level columns are identifiers shall have # them in __dir__. df = pd.DataFrame( [list("abcd"), list("efgh")], columns=pd.MultiIndex.from_tuples(list(zip("ABCD", "EFGH"))), ) for key in list("ABCD"): assert key in dir(df) for key in list("EFGH"): assert key not in dir(df) assert isinstance(df.__getitem__("A"), pd.DataFrame) def test_not_hashable(self): empty_frame = DataFrame() df = DataFrame([1]) msg = "'DataFrame' objects are mutable, thus they cannot be hashed" with pytest.raises(TypeError, match=msg): hash(df) with pytest.raises(TypeError, match=msg): hash(empty_frame) def test_column_name_contains_unicode_surrogate(self): # GH 25509 colname = "\ud83d" df = DataFrame({colname: []}) # this should not crash assert colname not in dir(df) assert df.columns[0] == colname def test_new_empty_index(self): df1 = DataFrame(np.random.randn(0, 3)) df2 = DataFrame(np.random.randn(0, 3)) df1.index.name = "foo" assert df2.index.name is None def test_array_interface(self, float_frame): with np.errstate(all="ignore"): result = np.sqrt(float_frame) assert isinstance(result, type(float_frame)) assert result.index is float_frame.index assert result.columns is float_frame.columns tm.assert_frame_equal(result, float_frame.apply(np.sqrt)) def test_get_agg_axis(self, float_frame): cols = float_frame._get_agg_axis(0) assert cols is float_frame.columns idx = float_frame._get_agg_axis(1) assert idx is float_frame.index msg = r"Axis must be 0 or 1 \(got 2\)" with pytest.raises(ValueError, match=msg): float_frame._get_agg_axis(2) def test_nonzero(self, float_frame, float_string_frame): empty_frame = DataFrame() assert empty_frame.empty assert not float_frame.empty assert not float_string_frame.empty # corner case df = DataFrame({"A": [1.0, 2.0, 3.0], "B": ["a", "b", "c"]}, index=np.arange(3)) del df["A"] assert not df.empty def test_iteritems(self): df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"]) for k, v in df.items(): assert isinstance(v, DataFrame._constructor_sliced) def test_items(self): # GH 17213, GH 13918 cols = ["a", "b", "c"] df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols) for c, (k, v) in zip(cols, df.items()): assert c == k assert isinstance(v, Series) assert (df[k] == v).all() def test_iter(self, float_frame): assert tm.equalContents(list(float_frame), float_frame.columns) def test_iterrows(self, float_frame, float_string_frame): for k, v in float_frame.iterrows(): exp = float_frame.loc[k] tm.assert_series_equal(v, exp) for k, v in float_string_frame.iterrows(): exp = float_string_frame.loc[k] tm.assert_series_equal(v, exp) def test_iterrows_iso8601(self): # GH 19671 s = DataFrame( { "non_iso8601": ["M1701", "M1802", "M1903", "M2004"], "iso8601": date_range("2000-01-01", periods=4, freq="M"), } ) for k, v in s.iterrows(): exp = s.loc[k] tm.assert_series_equal(v, exp) def test_iterrows_corner(self): # gh-12222 df = DataFrame( { "a": [datetime.datetime(2015, 1, 1)], "b": [None], "c": [None], "d": [""], "e": [[]], "f": [set()], "g": [{}], } ) expected = Series( [datetime.datetime(2015, 1, 1), None, None, "", [], set(), {}], index=list("abcdefg"), name=0, dtype="object", ) _, result = next(df.iterrows()) tm.assert_series_equal(result, expected) def test_itertuples(self, float_frame): for i, tup in enumerate(float_frame.itertuples()): s = DataFrame._constructor_sliced(tup[1:]) s.name = tup[0] expected = float_frame.iloc[i, :].reset_index(drop=True) tm.assert_series_equal(s, expected) df = DataFrame( {"floats": np.random.randn(5), "ints": range(5)}, columns=["floats", "ints"] ) for tup in df.itertuples(index=False): assert isinstance(tup[1], int) df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]}) dfaa = df[["a", "a"]] assert list(dfaa.itertuples()) == [(0, 1, 1), (1, 2, 2), (2, 3, 3)] # repr with int on 32-bit/windows if not (compat.is_platform_windows() or compat.is_platform_32bit()): assert ( repr(list(df.itertuples(name=None))) == "[(0, 1, 4), (1, 2, 5), (2, 3, 6)]" ) tup = next(df.itertuples(name="TestName")) assert tup._fields == ("Index", "a", "b") assert (tup.Index, tup.a, tup.b) == tup assert type(tup).__name__ == "TestName" df.columns = ["def", "return"] tup2 = next(df.itertuples(name="TestName")) assert tup2 == (0, 1, 4) assert tup2._fields == ("Index", "_1", "_2") df3 = DataFrame({"f" + str(i): [i] for i in range(1024)}) # will raise SyntaxError if trying to create namedtuple tup3 = next(df3.itertuples()) assert isinstance(tup3, tuple) if PY37: assert hasattr(tup3, "_fields") else: assert not hasattr(tup3, "_fields") # GH 28282 df_254_columns = DataFrame([{f"foo_{i}": f"bar_{i}" for i in range(254)}]) result_254_columns = next(df_254_columns.itertuples(index=False)) assert isinstance(result_254_columns, tuple) assert hasattr(result_254_columns, "_fields") df_255_columns = DataFrame([{f"foo_{i}": f"bar_{i}" for i in range(255)}]) result_255_columns = next(df_255_columns.itertuples(index=False)) assert isinstance(result_255_columns, tuple) # Dataframes with >=255 columns will fallback to regular tuples on python < 3.7 if PY37: assert hasattr(result_255_columns, "_fields") else: assert not hasattr(result_255_columns, "_fields") def test_sequence_like_with_categorical(self): # GH 7839 # make sure can iterate df = DataFrame( {"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]} ) df["grade"] = Categorical(df["raw_grade"]) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.items(): str(s) def test_len(self, float_frame): assert len(float_frame) == len(float_frame.index) def test_values_mixed_dtypes(self, float_frame, float_string_frame): frame = float_frame arr = frame.values frame_cols = frame.columns for i, row in enumerate(arr): for j, value in enumerate(row): col = frame_cols[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type arr = float_string_frame[["foo", "A"]].values assert arr[0, 0] == "bar" df = DataFrame({"complex": [1j, 2j, 3j], "real": [1, 2, 3]}) arr = df.values assert arr[0, 0] == 1j # single block corner case arr = float_frame[["A", "B"]].values expected = float_frame.reindex(columns=["A", "B"]).values
tm.assert_almost_equal(arr, expected)
pandas._testing.assert_almost_equal
# -*- encoding: utf-8 -*- import functools import warnings from typing import List, Optional, Tuple, Union import numpy as np import pandas as pd from pandas.api.types import is_numeric_dtype import scipy.sparse import sklearn.utils from sklearn import preprocessing from sklearn.compose import make_column_transformer class InputValidator: """ Makes sure the input data complies with Auto-sklearn requirements. Categorical inputs are encoded via a Label Encoder, if the input is a dataframe. This class also perform checks for data integrity and flags the user via informative errors. """ def __init__(self) -> None: self.valid_pd_enc_dtypes = ['category', 'bool'] # If a dataframe was provided, we populate # this attribute with the column types from the dataframe # That is, this attribute contains whether autosklearn # should treat a column as categorical or numerical # During fit, if the user provided feature_types, the user # constrain is honored. If not, this attribute is used. self.feature_types = None # type: Optional[List[str]] # Whereas autosklearn performed encoding on the dataframe # We need the target encoder as a decoder mechanism self.feature_encoder = None self.target_encoder = None self.enc_columns = [] # type: List[int] # During consecutive calls to the validator, # track the number of outputs of the targets # We need to make sure y_train/y_test have the # same dimensionality self._n_outputs = None # Add support to make sure that the input to # autosklearn has consistent dtype through calls. # That is, once fitted, changes in the input dtype # are not allowed self.features_type = None # type: Optional[type] self.target_type = None # type: Optional[type] def register_user_feat_type(self, feat_type: Optional[List[str]], X: Union[pd.DataFrame, np.ndarray]) -> None: """ Incorporate information of the feature types when processing a Numpy array. In case feature types is provided, if using a pd.DataFrame, this utility errors out, explaining to the user this is contradictory. """ if hasattr(X, "iloc") and feat_type is not None: raise ValueError("When providing a DataFrame to Auto-Sklearn, we extract " "the feature types from the DataFrame.dtypes. That is, " "providing the option feat_type to the fit method is not " "supported when using a Dataframe. Please make sure that the " "type of each column in your DataFrame is properly set. " "More details about having the correct data type in your " "DataFrame can be seen in " "https://pandas.pydata.org/pandas-docs/stable/reference" "/api/pandas.DataFrame.astype.html") elif feat_type is None: # Nothing to register. No feat type is provided # or the features are not numpy/list where this is required return # Some checks if feat_type is provided if len(feat_type) != X.shape[1]: raise ValueError('Array feat_type does not have same number of ' 'variables as X has features. %d vs %d.' % (len(feat_type), X.shape[1])) if not all([isinstance(f, str) for f in feat_type]): raise ValueError('Array feat_type must only contain strings.') for ft in feat_type: if ft.lower() not in ['categorical', 'numerical']: raise ValueError('Only `Categorical` and `Numerical` are ' 'valid feature types, you passed `%s`' % ft) # Here we register proactively the feature types for # Processing Numpy arrays self.feature_types = feat_type def validate( self, X: Union[pd.DataFrame, np.ndarray], y: Union[pd.DataFrame, np.ndarray], is_classification: bool = False, ) -> Tuple[np.ndarray, np.ndarray]: """ Wrapper for feature/targets validation Makes sure consistent number of samples within target and features. """ X = self.validate_features(X) y = self.validate_target(y, is_classification) if X.shape[0] != y.shape[0]: raise ValueError( "The number of samples from the features X={} should match " "the number of samples from the target y={}".format( X.shape[0], y.shape[0] ) ) return X, y def validate_features( self, X: Union[pd.DataFrame, np.ndarray], ) -> np.ndarray: """ Wrapper around sklearn check_array. Translates a pandas Dataframe to a valid input for sklearn. """ # Make sure that once fitted, we don't allow new dtypes if self.features_type is None: self.features_type = type(X) if self.features_type != type(X): raise ValueError("Auto-sklearn previously received features of type {} " "yet the current features have type {}. Changing the dtype " "of inputs to an estimator is not supported.".format( self.features_type, type(X) ) ) # Do not support category/string numpy data. Only numbers if hasattr(X, "dtype") and not np.issubdtype(X.dtype.type, np.number): raise ValueError( "When providing a numpy array to Auto-sklearn, the only valid " "dtypes are numerical ones. The provided data type {} is not supported." "".format( X.dtype.type, ) ) # Pre-process dataframe to make them numerical # Also, encode numpy categorical objects if hasattr(X, "iloc") and not scipy.sparse.issparse(X): # Pandas validation provide extra user information X = self._check_and_encode_features(X) if scipy.sparse.issparse(X): X.sort_indices() # sklearn check array will make sure we have the # correct numerical features for the array # Also, a numpy array will be created X = sklearn.utils.check_array( X, force_all_finite=False, accept_sparse='csr' ) return X def validate_target( self, y: Union[pd.DataFrame, np.ndarray], is_classification: bool = False, ) -> np.ndarray: """ Wrapper around sklearn check_array. Translates a pandas Dataframe to a valid input for sklearn. """ # Make sure that once fitted, we don't allow new dtypes if self.target_type is None: self.target_type = type(y) if self.target_type != type(y): raise ValueError("Auto-sklearn previously received targets of type {} " "yet the current target has type {}. Changing the dtype " "of inputs to an estimator is not supported.".format( self.target_type, type(y) ) ) # Target data as sparse is not supported if scipy.sparse.issparse(y): raise ValueError("Unsupported target data provided" "Input targets to auto-sklearn must not be of " "type sparse. Please convert the target input (y) " "to a dense array via scipy.sparse.csr_matrix.todense(). " ) # No Nan is supported if np.any(
pd.isnull(y)
pandas.isnull
from datetime import date, datetime, timedelta from dateutil import tz import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas._testing as tm class TestDatetimeIndex: def test_setitem_with_datetime_tz(self): # 16889 # support .loc with alignment and tz-aware DatetimeIndex mask = np.array([True, False, True, False]) idx = date_range("20010101", periods=4, tz="UTC") df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) idx = date_range("20010101", periods=4) df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) def test_indexing_with_datetime_tz(self): # GH#8260 # support datetime64 with tz idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") dr = date_range("20130110", periods=3) df = DataFrame({"A": idx, "B": dr}) df["C"] = idx df.iloc[1, 1] = pd.NaT df.iloc[1, 2] = pd.NaT # indexing result = df.iloc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) result = df.loc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) # indexing - fast_xs df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")}) result = df.iloc[5] expected = Series( [Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5 ) tm.assert_series_equal(result, expected) result = df.loc[5] tm.assert_series_equal(result, expected) # indexing - boolean result = df[df.a > df.a[3]] expected = df.iloc[4:] tm.assert_frame_equal(result, expected) # indexing - setting an element df = DataFrame( data=pd.to_datetime(["2015-03-30 20:12:32", "2015-03-12 00:11:11"]), columns=["time"], ) df["new_col"] = ["new", "old"] df.time = df.set_index("time").index.tz_localize("UTC") v = df[df.new_col == "new"].set_index("time").index.tz_convert("US/Pacific") # trying to set a single element on a part of a different timezone # this converts to object df2 = df.copy() df2.loc[df2.new_col == "new", "time"] = v expected = Series([v[0], df.loc[1, "time"]], name="time") tm.assert_series_equal(df2.time, expected) v = df.loc[df.new_col == "new", "time"] + pd.Timedelta("1s") df.loc[df.new_col == "new", "time"] = v tm.assert_series_equal(df.loc[df.new_col == "new", "time"], v) def test_consistency_with_tz_aware_scalar(self): # xef gh-12938 # various ways of indexing the same tz-aware scalar df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame() df = pd.concat([df, df]).reset_index(drop=True) expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels") result = df[0][0] assert result == expected result = df.iloc[0, 0] assert result == expected result = df.loc[0, 0] assert result == expected result = df.iat[0, 0] assert result == expected result = df.at[0, 0] assert result == expected result = df[0].loc[0] assert result == expected result = df[0].at[0] assert result == expected def test_indexing_with_datetimeindex_tz(self): # GH 12050 # indexing on a series with a datetimeindex with tz index = date_range("2015-01-01", periods=2, tz="utc") ser = Series(range(2), index=index, dtype="int64") # list-like indexing for sel in (index, list(index)): # getitem tm.assert_series_equal(ser[sel], ser) # setitem result = ser.copy() result[sel] = 1 expected = Series(1, index=index) tm.assert_series_equal(result, expected) # .loc getitem tm.assert_series_equal(ser.loc[sel], ser) # .loc setitem result = ser.copy() result.loc[sel] = 1 expected = Series(1, index=index) tm.assert_series_equal(result, expected) # single element indexing # getitem assert ser[index[1]] == 1 # setitem result = ser.copy() result[index[1]] = 5 expected = Series([0, 5], index=index) tm.assert_series_equal(result, expected) # .loc getitem assert ser.loc[index[1]] == 1 # .loc setitem result = ser.copy() result.loc[index[1]] = 5 expected = Series([0, 5], index=index) tm.assert_series_equal(result, expected) def test_partial_setting_with_datetimelike_dtype(self): # GH9478 # a datetimeindex alignment issue with partial setting df = DataFrame( np.arange(6.0).reshape(3, 2), columns=list("AB"), index=date_range("1/1/2000", periods=3, freq="1H"), ) expected = df.copy() expected["C"] = [expected.index[0]] + [pd.NaT, pd.NaT] mask = df.A < 1 df.loc[mask, "C"] = df.loc[mask].index tm.assert_frame_equal(df, expected) def test_loc_setitem_datetime(self): # GH 9516 dt1 = Timestamp("20130101 09:00:00") dt2 =
Timestamp("20130101 10:00:00")
pandas.Timestamp
# # * Chapter 05, Series #%% # * import libs import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt np.random.seed(12345) # %% # * Create Pandas Series obj = Series([4, 7, -5, 3]) obj # %% # * check Series value and index # ? Series is one dimensional array-like object, containing (1) a sequence of # ? values, (2) an associated array of data labels, called *index* obj.values # %% obj.index # %% # * create a Series with a designated index obj2 = Series([4,7,-5,3], index=['d','b','a','c']) obj2 # %% obj2.index # %% obj2['d'] #%% obj2[['a', 'b', 'c']] # %% # * Using numpy functions/operations will preserve the index-value links obj3 = obj2[obj2 > 0] obj3 # %% obj3 = obj2*2 obj3 # %% # * we can think about Series is as ordered dictionary 'b' in obj2 # %% 'f' in obj2 # %% # * Actually, we can create Series from a python dict # * the key in dict is index in Series, the value in dict is value in Series obj3 = Series({'a':123, 'b': 456, 'c': 789}) obj3 # %% # * When creating Series using dict, index can be override letters = ['x','y','z', 'a', 'b', 'c'] obj4 =
Series({'a':123, 'b': 456, 'c': 789}, index=letters)
pandas.Series
# generate features import networkx as nx import pandas as pd import numpy as np from networkx.algorithms import node_classification import time from collections import Counter from utils import normalize_features def dayday_feature(data, n_class=2, label_most_common_1=19, flag_unlabel=0): t1 = time.time() data = data.copy() x = data['fea_table'].copy() num_nodes = x.shape[0] nodes_all = list(x.index) df = data['edge_file'].copy() max_weight = max(df['edge_weight']) df.rename(columns={'edge_weight': 'weight'}, inplace=True) degree_in_1st = np.zeros(num_nodes) degree_out_1st = np.zeros(num_nodes) weight_in_1st = np.zeros(num_nodes) weight_out_1st = np.zeros(num_nodes) for source, target, weight in df.values: source = int(source) target = int(target) degree_in_1st[target] += 1 degree_out_1st[source] += 1 weight_in_1st[target] += weight weight_out_1st[source] += weight degree_1st_diff = degree_in_1st - degree_out_1st weight_1st_diff = weight_in_1st - weight_out_1st features_1 = np.concatenate([ degree_in_1st.reshape(-1, 1), degree_out_1st.reshape(-1, 1), weight_in_1st.reshape(-1, 1), weight_out_1st.reshape(-1, 1), degree_1st_diff.reshape(-1, 1), weight_1st_diff.reshape(-1, 1) ], axis=1) features_in_1st = pd.DataFrame({"node_index": np.arange(num_nodes), "degree_in_1st": degree_in_1st, "weight_in_1st": weight_in_1st}) df_degree_in_1st =
pd.merge(left=df, right=features_in_1st, left_on="src_idx", right_on="node_index", how="left")
pandas.merge
from __future__ import division import glob import os from datetime import timedelta from multiprocessing import Process import matplotlib.pyplot as plt import numpy as np import pandas as pd import sunpy.visualization.colormaps as cm class AstroMap: """ This class is able to download and use fits files for ligthcurves. """ def __init__( self, global_save_path, timestamp, wavelength, fits_folder, n_row_col, n_processes, relevantCoords, exposure, sigma, showPreview=False, ): """ To initialize an AstroMap object, we require a main path, :param global_save_path: path for reference for rest of functions. Saving here and below. :param fits_folder: Folder to fits files (if existing) :param timestamp: Start and endtime to take into account :param wavelength: Relevant wavelength :param n_row_col: Number of rows and columns to splice array into :param n_processes: Number of processes to use """ self.global_save_path = global_save_path self.fits_folder = fits_folder self.wvlnth = wavelength self.nrowcol = n_row_col self.n_cpus = n_processes self.timestamp = timestamp self.relevantCoords = relevantCoords self.exposure = exposure self.complete_lcurves = [] self.sigma = sigma self.showPreview = showPreview if not self.fits_folder: print("No fits folder given") @staticmethod def translate_number(input_region, n_by_n): """ Take an input region and a given n_by_n to return two dimensional response to where we are on array :param input_region: Which number we require :param n_by_n: Dimensions of array :return: Returns height, length at which box is located """ array = np.arange(0, n_by_n**2, 1) array = np.split(array, n_by_n) array = np.vstack(array) return [ np.where(array == input_region)[0][0], np.where(array == input_region)[1][0], ] def download_all(self, down_dir): """ Simple script that downloads fits into download folder :param down_dir: Download directory for the fits :return: """ from Scripts.Imports.Data_Fetch.Fido_Download import run_fido run_fido( start=self.timestamp[0], end=self.timestamp[1], down_dir=down_dir, wavelengths=self.wvlnth, ) self.fits_folder = down_dir def create_column_plots(self, figsize=(10, 10)): """ This function saves the generated light curves into a given path_gen/lightcurve :param diff: Whether to plot diff or not :return: Saves complete images to a given folder """ from matplotlib import gridspec as gs def proc_multi(split_indices): """ Function created for multiprocessing of getting images and lcurves together :param split_indices: Which indexes to use :return: Saves figures into given path """ for i in split_indices: curr_time = timearr[i] for numpycol in range(lcurve_data.shape[0]): fig = plt.figure(figsize=figsize) for numpyrow in range(lcurve_data.shape[1]): # Save each of the images in their own folder - folder_image = ( f"{self.global_save_path}{numpycol:02d}_{numpyrow:02d}" ) curr_aia = plt.imread(f"{folder_image}/{i:03d}.png") curr_lcurve = lcurve_data[numpyrow, numpycol, :] plt.subplot(grs[numpyrow, 0]) plt.imshow(curr_aia) plt.axis("off") # Plot lightcurve and corresponding column plt.subplot(grs[numpyrow, 1]) ax = plt.gca() plt.plot(timearr, curr_lcurve, linewidth=2, color="black") ax.axvline( x=curr_time, color="black", linestyle="--", alpha=0.2, linewidth=2, ) plt.tight_layout() combo_path = f"{self.global_save_path}Total_combined/" os.makedirs(combo_path, exist_ok=True) plt.savefig(f"{combo_path}{numpycol:02d}_{i:03d}.png") plt.close(fig) print(f"Done index : {i}") # Get total images, data and time arrays combo_images = sorted(glob.glob(f"{self.global_save_path}Combo/*.png")) if combo_images == []: raise ValueError( f"No images were found in {self.global_save_path}Combo/. " f"/n Please use the astro_plot function first") lcurve_data = np.load(f"{self.global_save_path}lcurves.npy") time_npy = np.load(f"{self.global_save_path}times.npy") tdf =
pd.DataFrame({"Time": time_npy})
pandas.DataFrame
from collections import defaultdict from datetime import datetime from itertools import product import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, Series, array, concat, merge, ) import pandas._testing as tm from pandas.core.algorithms import safe_sort import pandas.core.common as com from pandas.core.sorting import ( decons_group_index, get_group_index, is_int64_overflow_possible, lexsort_indexer, nargsort, ) class TestSorting: @pytest.mark.slow def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500))) A = np.arange(2500) df = DataFrame( { "A": A, "B": B, "C": A, "D": B, "E": A, "F": B, "G": A, "H": B, "values": np.random.randn(2500), } ) lg = df.groupby(["A", "B", "C", "D", "E", "F", "G", "H"]) rg = df.groupby(["H", "G", "F", "E", "D", "C", "B", "A"]) left = lg.sum()["values"] right = rg.sum()["values"] exp_index, _ = left.index.sortlevel() tm.assert_index_equal(left.index, exp_index) exp_index, _ = right.index.sortlevel(0) tm.assert_index_equal(right.index, exp_index) tups = list(map(tuple, df[["A", "B", "C", "D", "E", "F", "G", "H"]].values)) tups = com.asarray_tuplesafe(tups) expected = df.groupby(tups).sum()["values"] for k, v in expected.items(): assert left[k] == right[k[::-1]] assert left[k] == v assert len(left) == len(right) def test_int64_overflow_moar(self): # GH9096 values = range(55109) data = DataFrame.from_dict({"a": values, "b": values, "c": values, "d": values}) grouped = data.groupby(["a", "b", "c", "d"]) assert len(grouped) == len(values) arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5)) i = np.random.choice(len(arr), len(arr) * 4) arr = np.vstack((arr, arr[i])) # add sume duplicate rows i = np.random.permutation(len(arr)) arr = arr[i] # shuffle rows df = DataFrame(arr, columns=list("abcde")) df["jim"], df["joe"] = np.random.randn(2, len(df)) * 10 gr = df.groupby(list("abcde")) # verify this is testing what it is supposed to test! assert is_int64_overflow_possible(gr.grouper.shape) # manually compute groupings jim, joe = defaultdict(list), defaultdict(list) for key, a, b in zip(map(tuple, arr), df["jim"], df["joe"]): jim[key].append(a) joe[key].append(b) assert len(gr) == len(jim) mi = MultiIndex.from_tuples(jim.keys(), names=list("abcde")) def aggr(func): f = lambda a: np.fromiter(map(func, a), dtype="f8") arr = np.vstack((f(jim.values()), f(joe.values()))).T res = DataFrame(arr, columns=["jim", "joe"], index=mi) return res.sort_index() tm.assert_frame_equal(gr.mean(), aggr(np.mean)) tm.assert_frame_equal(gr.median(), aggr(np.median)) def test_lexsort_indexer(self): keys = [[np.nan] * 5 + list(range(100)) + [np.nan] * 5] # orders=True, na_position='last' result = lexsort_indexer(keys, orders=True, na_position="last") exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=True, na_position='first' result = lexsort_indexer(keys, orders=True, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='last' result = lexsort_indexer(keys, orders=False, na_position="last") exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='first' result = lexsort_indexer(keys, orders=False, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) def test_nargsort(self): # np.argsort(items) places NaNs last items = [np.nan] * 5 + list(range(100)) + [np.nan] * 5 # np.argsort(items2) may not place NaNs first items2 = np.array(items, dtype="O") # mergesort is the most difficult to get right because we want it to be # stable. # According to numpy/core/tests/test_multiarray, """The number of # sorted items must be greater than ~50 to check the actual algorithm # because quick and merge sort fall over to insertion sort for small # arrays.""" # mergesort, ascending=True, na_position='last' result = nargsort(items, kind="mergesort", ascending=True, na_position="last") exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items, kind="mergesort", ascending=True, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items, kind="mergesort", ascending=False, na_position="last") exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort(items, kind="mergesort", ascending=False, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='last' result = nargsort(items2, kind="mergesort", ascending=True, na_position="last") exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items2, kind="mergesort", ascending=True, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items2, kind="mergesort", ascending=False, na_position="last") exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort( items2, kind="mergesort", ascending=False, na_position="first" ) exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) class TestMerge: @pytest.mark.slow def test_int64_overflow_issues(self): # #2690, combinatorial explosion df1 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G1"]) df2 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G2"]) # it works! result = merge(df1, df2, how="outer") assert len(result) == 2000 low, high, n = -1 << 10, 1 << 10, 1 << 20 left = DataFrame(np.random.randint(low, high, (n, 7)), columns=list("ABCDEFG")) left["left"] = left.sum(axis=1) # one-2-one match i = np.random.permutation(len(left)) right = left.iloc[i].copy() right.columns = right.columns[:-1].tolist() + ["right"] right.index = np.arange(len(right)) right["right"] *= -1 out = merge(left, right, how="outer") assert len(out) == len(left) tm.assert_series_equal(out["left"], -out["right"], check_names=False) result = out.iloc[:, :-2].sum(axis=1) tm.assert_series_equal(out["left"], result, check_names=False) assert result.name is None out.sort_values(out.columns.tolist(), inplace=True) out.index = np.arange(len(out)) for how in ["left", "right", "outer", "inner"]: tm.assert_frame_equal(out, merge(left, right, how=how, sort=True)) # check that left merge w/ sort=False maintains left frame order out = merge(left, right, how="left", sort=False) tm.assert_frame_equal(left, out[left.columns.tolist()]) out = merge(right, left, how="left", sort=False) tm.assert_frame_equal(right, out[right.columns.tolist()]) # one-2-many/none match n = 1 << 11 left = DataFrame( np.random.randint(low, high, (n, 7)).astype("int64"), columns=list("ABCDEFG"), ) # confirm that this is checking what it is supposed to check shape = left.apply(Series.nunique).values assert is_int64_overflow_possible(shape) # add duplicates to left frame left = concat([left, left], ignore_index=True) right = DataFrame( np.random.randint(low, high, (n // 2, 7)).astype("int64"), columns=list("ABCDEFG"), ) # add duplicates & overlap with left to the right frame i = np.random.choice(len(left), n) right = concat([right, right, left.iloc[i]], ignore_index=True) left["left"] = np.random.randn(len(left)) right["right"] = np.random.randn(len(right)) # shuffle left & right frames i = np.random.permutation(len(left)) left = left.iloc[i].copy() left.index = np.arange(len(left)) i = np.random.permutation(len(right)) right = right.iloc[i].copy() right.index = np.arange(len(right)) # manually compute outer merge ldict, rdict = defaultdict(list), defaultdict(list) for idx, row in left.set_index(list("ABCDEFG")).iterrows(): ldict[idx].append(row["left"]) for idx, row in right.set_index(list("ABCDEFG")).iterrows(): rdict[idx].append(row["right"]) vals = [] for k, lval in ldict.items(): rval = rdict.get(k, [np.nan]) for lv, rv in product(lval, rval): vals.append( k + ( lv, rv, ) ) for k, rval in rdict.items(): if k not in ldict: for rv in rval: vals.append( k + ( np.nan, rv, ) ) def align(df): df = df.sort_values(df.columns.tolist()) df.index = np.arange(len(df)) return df def verify_order(df): kcols = list("ABCDEFG") tm.assert_frame_equal( df[kcols].copy(), df[kcols].sort_values(kcols, kind="mergesort") ) out = DataFrame(vals, columns=list("ABCDEFG") + ["left", "right"]) out = align(out) jmask = { "left": out["left"].notna(), "right": out["right"].notna(), "inner": out["left"].notna() & out["right"].notna(), "outer": np.ones(len(out), dtype="bool"), } for how in ["left", "right", "outer", "inner"]: mask = jmask[how] frame = align(out[mask].copy()) assert mask.all() ^ mask.any() or how == "outer" for sort in [False, True]: res = merge(left, right, how=how, sort=sort) if sort: verify_order(res) # as in GH9092 dtypes break with outer/right join tm.assert_frame_equal( frame, align(res), check_dtype=how not in ("right", "outer") ) def test_decons(): def testit(codes_list, shape): group_index = get_group_index(codes_list, shape, sort=True, xnull=True) codes_list2 = decons_group_index(group_index, shape) for a, b in zip(codes_list, codes_list2): tm.assert_numpy_array_equal(a, b) shape = (4, 5, 6) codes_list = [ np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64), np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64), np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64), ] testit(codes_list, shape) shape = (10000, 10000) codes_list = [ np.tile(np.arange(10000, dtype=np.int64), 5), np.tile(np.arange(10000, dtype=np.int64), 5), ] testit(codes_list, shape) class TestSafeSort: def test_basic_sort(self): values = [3, 1, 2, 0, 4] result = safe_sort(values) expected = np.array([0, 1, 2, 3, 4]) tm.assert_numpy_array_equal(result, expected) values = list("baaacb") result = safe_sort(values) expected = np.array(list("aaabbc"), dtype="object") tm.assert_numpy_array_equal(result, expected) values = [] result = safe_sort(values) expected = np.array([]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("verify", [True, False]) def test_codes(self, verify): values = [3, 1, 2, 0, 4] expected = np.array([0, 1, 2, 3, 4]) codes = [0, 1, 1, 2, 3, 0, -1, 4] result, result_codes = safe_sort(values, codes, verify=verify) expected_codes = np.array([3, 1, 1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_codes, expected_codes) # na_sentinel codes = [0, 1, 1, 2, 3, 0, 99, 4] result, result_codes = safe_sort(values, codes, na_sentinel=99, verify=verify) expected_codes = np.array([3, 1, 1, 2, 0, 3, 99, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_codes, expected_codes) codes = [] result, result_codes = safe_sort(values, codes, verify=verify) expected_codes = np.array([], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_codes, expected_codes) @pytest.mark.parametrize("na_sentinel", [-1, 99]) def test_codes_out_of_bound(self, na_sentinel): values = [3, 1, 2, 0, 4] expected = np.array([0, 1, 2, 3, 4]) # out of bound indices codes = [0, 101, 102, 2, 3, 0, 99, 4] result, result_codes = safe_sort(values, codes, na_sentinel=na_sentinel) expected_codes = np.array( [3, na_sentinel, na_sentinel, 2, 0, 3, na_sentinel, 4], dtype=np.intp )
tm.assert_numpy_array_equal(result, expected)
pandas._testing.assert_numpy_array_equal
from pandas import DataFrame import numpy as np from pandas.core.reshape import melt, convert_dummies import pandas.util.testing as tm def test_melt(): df = tm.makeTimeDataFrame()[:10] df['id1'] = (df['A'] > 0).astype(int) df['id2'] = (df['B'] > 0).astype(int) molten1 =
melt(df)
pandas.core.reshape.melt
# -*- cding: utf-8 -*- import os import numpy as np import pandas as pd import pymysql import datetime import glob ''' 程序说明: 1.实现能从Mysql数据库读取AIS数据到本地,保存到pandas的dataframe中; 2.实现从本地读取CSV文件,以便于数据处理; 3.利用datetime函数将数据库保存的时间戳转换成具体的时间函数,以便于读取; 4.将轨迹数据进行清洗,并对轨迹数据进行重构,输出符合要求的轨迹数据; 5.形成最终的MMSI唯一性代表的轨迹运动特性的数据,以便于后期深度学习的时候使用。 ''' # 链接数据库的句子 # dbconn = pymysql.connect(host = '127.0.0.1',user = 'root', passwd='<PASSWORD>',db= 'ais_dynamic',charset = 'utf8') # sql查询语句 # sqlcmd = "select * from ais_dynamic.ais_dynamic limit 100" # 从CSV文件中读取数据进行处理 # ais_file= pd.read_csv(r'C:\Users\cege-user\Desktop\dataset-ais\1-1000000-ais.csv',header = 0,sep = ' ',names = list('Record_Datetime','MMSI','Longitude','Latitude','Direction', # 'Heading','Speed','Status','ROT','Position_Accuracy','UTC_Hour', # 'UTC_Minute','UTC_Second','Message_ID','Rec_Datetime','Source_ID')) ais_file1 = pd.read_csv(r'D:\Data store file\dataset-ais\1-1000000-ais.csv') ais_file2 = pd.read_csv(r'D:\Data store file\dataset-ais\1000001-2000000-ais.csv') ais_file3 = pd.read_csv(r'D:\Data store file\dataset-ais\2000001-3000000.csv') ais_file4 = pd.read_csv(r'D:\Data store file\dataset-ais\3000001-4000000.csv') ais_file5 = pd.read_csv(r'D:\Data store file\dataset-ais\4000001-5000000.csv') ais_file6 = pd.read_csv(r'D:\Data store file\dataset-ais\5000001-6000000.csv') ais_file7 =
pd.read_csv(r'D:\Data store file\dataset-ais\6000001-669370.csv')
pandas.read_csv
import pickle from pprint import pprint import pandas as pd import numpy as np import matplotlib.pyplot as plt from functools import reduce import sys import time from sklearn.decomposition import PCA from sklearn import cluster as sklearn_clustering from sklearn.neural_network import MLPClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split import data_extract as dext from heimat import reco import settings import cache_manager as cmng import portals_urls import data_cleaning pca_u, G = None, None pca_a, A_star = None, None A, U, MAP, txtclf = None, None, None, None M = None CLF_MLP = None CLF_DBSCAN = None D, PAPERS_LIST = None, None UVT = None papers_total, objects_articles_dict, objects_df = cmng.load_work() pca_G_ncomponents = settings.pca_G_ncomponents pca_A_ncomponents = settings.pca_A_ncomponents mlp_iter = settings.mlp_iter funksvd_iter = settings.funksvd_iter funksvd_latent_features = settings.funksvd_latent_features pd.set_option("max_rows", 50) np.random.seed() def dist_em(xs1, xs2): euklid = np.linalg.norm(xs1 - xs2) manhattan = sum(abs(e - s) for s, e in zip(xs1, xs2)) return euklid, manhattan def show_articles_by_group(group=0): """ Shows paper_id corresponding to objects in some particular group :param group: :return: """ global U r = U[U.group == group] articles = [] for paper_id in r['OBJID'].values: articles.extend(MAP[paper_id]) for paper_id in list(set(articles)): print("--------------------------------------------------") dext.get_paper(paper_id) def show_first3_components(matrix, title="", start_at_index=0): """ :param matrix: G or A_star matrices :param title: :param start_at_index: Depending on whether matrix is G or A_star, start_at_index differs (1, respectively 0) :return: """ plt.figure(figsize=(10, 8)) ax = plt.axes(projection='3d') i, j, k = [start_at_index + t for t in range(0, 3)] ax.scatter3D(matrix[:, i], matrix[:, j], matrix[:, k], s=8, cmap='Greens', edgecolors='k') if title: plt.title(title) plt.show() plt.close() time.sleep(1) def gen_matrix_G(ncomp=25): """ matrix G of principal components for the object representation - generates the PCA form of matrix U - adds the OBJID value on the first column :param ncomp: :return: """ global pca_u, G, U print("\n[x] PCA for matrix G:") pca_u = PCA(n_components=ncomp) U_matrix = U[list(filter(lambda x: x not in ["OBJID", "group"], U.columns))] G = pca_u.fit_transform(U_matrix.fillna(U_matrix.mean()).values) G = np.append(U['OBJID'].values.reshape(U.shape[0], 1), G, axis=1) print("[x] Explained variance ratio:") print(pca_u.explained_variance_ratio_) print("[x] Singular values:") print(pca_u.singular_values_) print("[x] Sum of variance:") print(np.sum(pca_u.explained_variance_ratio_)) show_first3_components(G, title="First 3 principal components for G", start_at_index=1) def gen_matrix_A_star(ncomp=25): """ matrix A* of principal components for the article representation - generates the PCA form of matrix U - adds the OBJID value on the first column :param ncomp: :return: """ global pca_a, A_star print("\n[x] PCA for matrix A:") pca_a = PCA(n_components=ncomp) A_star = pca_a.fit_transform(A.fillna(A.mean()).values[:, 1:]) A_star = np.append(A['paper_id'].values.reshape(A_star.shape[0], 1), A_star, axis=1) print("[x] Explained variance ratio:") print(pca_a.explained_variance_ratio_) print("[x] Singular values:") print(pca_a.singular_values_) print("[x] Sum of variance:") print(np.sum(pca_a.explained_variance_ratio_)) show_first3_components(A_star, title="First 3 principal components for A_star", start_at_index=1) def get_indexes_articles_in_df(objid): """ MAP contains the mapping between astronomical object ids and the paper ids returns the indexes in matrix A of object with objid :param objid: :return: """ global A, MAP res = [] for paper_id in MAP[objid]: record = A[A.paper_id == paper_id].index.values.tolist() if len(record) != 0: res.append(record[0]) else: # ignoring for the moment if a paper id couldn't be found # (probably there was an exception at download phase) pass return res def gen_matrix_M(balance_factor=3): """ - construct matrix M by combining values from G and A_star - since a brute force would require too much time and would lead to overly unbalanced training set decided to build up by factor of 3 (balance_factor): - a portion of data is "as is", thus object data in G corresponds to data in A_star (by MAP) - a portion of data (3 times bigger) is "simulated" and contains objects to articles that are not associated - target value is set to 1 if association is given, otherwise 0 :param balance_factor: :return: """ global G, U, A_star, A M = [] y = [] print("Building matrix M, this will take a while .. ") for i in range(0, G.shape[0]): if i != 0 and i % int(0.1 * G.shape[0]) == 0: print("%.2f" % (100 * i / G.shape[0]) + "% of objects") r1 = G[i, 1:].tolist() object_id = U.values[i, 0] indexes_associations = get_indexes_articles_in_df(object_id) indexes_non_associations = list(filter(lambda k: k not in indexes_associations, range(A.shape[0]))) indexes_non_associations = pd.Series(indexes_non_associations).sample( len(indexes_associations) * balance_factor).tolist() for j in indexes_associations + indexes_non_associations: r2 = A_star[j, 1:].tolist() M.append(r1 + r2) y.append(1 if j in indexes_associations else 0) M = np.array(M) return M, y def gen_matrix_Mi(i): """ Generates matrix Mi, that is the portion of Matrix M given an astronomical object id OBJID found at index i in G This is done by taking the record from G of object and combine it with all records from A_star, so that the calculation of probability P(Association | Gi, A_star) gets calculated for all A_star papers :param i: :return: """ global U, G, A, A_star Mi = [] yi = [] r1 = G[i, 1:].tolist() for j in range(0, A_star.shape[0]): object_id = U.values[i, 0].encode("utf-8") articles_found_related = dext.objects_articles_dict[object_id] r2 = A_star[j, 1:].tolist() article_id = A.values[j, 0] target_value = int(article_id in articles_found_related) Mi.append( r1 + r2 ) yi.append(target_value) Mi = np.array(Mi) return Mi, yi def get_confusion_matrix_stats(cm, i): """ Given a Confusion Matrix cm, calculates precision, recall and F1 scores :param cm: confusion matrix :param i: position of the variable, for with the caculation be done :return: three statistics: precision, recall and the F1-Score """ tp = cm[i, i] fp = np.sum(cm[i, :]) - tp fn = np.sum(cm[:, i]) - tp precision = tp / (tp + fp) recall = tp / (tp + fn) f1_score = 2 * (precision * recall) / (precision + recall) return precision, recall, f1_score def check_mlp(x, y): global CLF_MLP print("+++++++++++++++++++++++++++++++++++++") labels_zuordnung_mlp = CLF_MLP.classes_ beispiel_mlp_x = x beispiel_mlp_y = y y_true = np.array(beispiel_mlp_y) y_pred = np.array([labels_zuordnung_mlp[np.argmax(t)] for t in CLF_MLP.predict_proba(beispiel_mlp_x)]) accuracy = (y_pred == y_true).mean() cm = confusion_matrix(y_true, y_pred, labels=labels_zuordnung_mlp) if True: print("Labels:", labels_zuordnung_mlp) print("Confusion Matrix:") print(cm) for i in range(0, len(cm)): precision, recall, f1_score = get_confusion_matrix_stats(cm, i) print("Label {} - precision {}, recall {}, f1_score {}: ".format( i, np.round(precision, 2), np.round(recall, 2), np.round(f1_score, 2) )) print("precision:", accuracy) print("+++++++++++++++++++++++++++++++++++++") def show_object_details(object_id, article_indexes, pred_df=None, topk=10): """ Shows associated papers for an object id according to predicted article_indexes # U expands categorical variables, so it has a dimension larger than dext.objects_df :param object_id: :param article_indexes: :param pred_df: :param topk: :return: """ global A print(""" \nObject with ID: {} """.format(object_id)) if pred_df is not None: print("[x] Predicted articles in pred_df:") print(pred_df) objid = object_id.encode("utf-8") url = "http://skyserver.sdss.org/dr16/en/tools/explore/Summary.aspx?id={}".format( object_id ) print("[x] You can check the SkyServer Explore page at: ") print(url, "\n") print("[x] Compact form from original object pandas dataframe (objects_df as in data_extract.py):") print(dext.objects_df[dext.objects_df.OBJID == objid].transpose()) print("\n[x] Showing maximum Top-{}:".format(topk)) for k in range(0, min(len(article_indexes), topk)): print("*************************************************************************************") if pred_df is not None: print(pred_df.iloc[k]) j = article_indexes[k] dext.get_paper(paper_id=A.paper_id.iloc[j]) input(".....") def apply_mlp(object_id=None): """ uses trained MLP classifier to calculate probability P(Bij | ui, aj) for one object_id ui and all aj - uses construction of matrix Mi to achieve that, that is the portion of general matrix M for the object :param object_id: :return: """ global U, G, CLF_MLP if object_id is None: i = pd.Series(range(0, G.shape[0])).sample(10).iloc[5] # index of object id in matrices G, U object_id = U.OBJID.iloc[i] else: i = U[U.OBJID == object_id].index.values.tolist()[-1] print("\n[x] Object ID:", object_id) Mi, yi = gen_matrix_Mi(i) Mi = pd.DataFrame(Mi) print("[x] The portion of M matrix, corresponding to | ui | aj |, with j in [0, A_star.shape[0]]: ") print(Mi) preds = [np.round(t[1], 2) for t in CLF_MLP.predict_proba(Mi.values)] # print("\n[x] Predictions:") # print(preds) pred_df = pd.DataFrame( { "article_index": Mi.index.values.tolist(), "mlp_proba": preds, "associated": yi } ) pred_df = pred_df.sort_values(by="mlp_proba", ascending=False) pred_df = pred_df[pred_df.mlp_proba > 0.5] pred_df = pred_df.reset_index(drop=True) print("\n[x] Summarised with a threshold for probabilty of 50%, that is P(Bij | ui, aj) > 0.5:") print(pred_df) articles_indexes = pred_df.article_index.values.tolist() print("") return object_id, articles_indexes, pred_df def data_extraction(): """ with module dext original data is accessible: papers_total, objects_articles_dict, objects_df :return: """ print("[x] Extracting data and creating matrices A, U and dictionary map MAP .. ") dext.run() A, U, MAP, txtclf = dext.load_matrices() return A, U, MAP, txtclf ####################### Constructing Matrix M and MLP model ####################### def construct_G_Astar_M_matrices(): """ uses above methods to construct training data M by combining G and A_star matrices :return: """ global G, A_star, M, pca_A_ncomponents, pca_G_ncomponents print("[x] Generating PCA projections of:" "\n- matrices U (matrix G of astronomical objects)" "\n- and A (matrix A_star of related papers)") gen_matrix_G(ncomp=pca_G_ncomponents) # TODO: increase automatically pca_A_ncomponents if the explained variance drops to less than, for instance, 0.85 gen_matrix_A_star(ncomp=pca_A_ncomponents) print("\n[x] Generating matrix M out of two parts " "| ui | aj | target {1 if related, 0 otherwise} ") M, y = gen_matrix_M() M = pd.DataFrame(M) target_col = M.shape[1] M[target_col] = y p = 100 * M[target_col].sum() / M.shape[0] print("The percentage of articles that are related directly (found at NED) at about: {}%".format( np.round(p, 2) )) print("[x] Done. Head(10):") print(M.head(10)) print("") time.sleep(5) def do_model_mlp(): """ perform modeling using MLP on constructed matrix M :return: """ global M, CLF_MLP, labels_mlp print("\n[x] Performing MLP modeling with balancing by choosing combinations objects (matrix G) " "to articles (matrix A_star)" "\n(target == 1) and three times those not related") X = M.copy() indx = X.index.values.tolist() np.random.shuffle(indx) X = X.loc[indx] X, Y = X.values[:, :-1], X.values[:, -1] X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3) mlp = MLPClassifier(max_iter=mlp_iter, verbose=True, early_stopping=False) CLF_MLP = mlp.fit(X_train, y_train) labels_mlp = CLF_MLP.classes_ print("[x] Validation of MLP classifier results on test data:") check_mlp(x=X_test, y=y_test) input("enter to continue ...") print("") def apply_clf_mlp(object_id="M 79", show_details=False): """ applies trained CLF_MLP model on one object :param object_id: :return: """ # example prediction using the MLP classifier to calculate probabability of association to any paper print("\n[x] Applying model MLP to object: {}".format(object_id)) object_id, articles_indexes, pred_df = apply_mlp(object_id=object_id) # * sig Ori if show_details: print("\n[x] Example prediction:") show_object_details(object_id, articles_indexes, pred_df) ####################### Constructing Matrix D, Clustering and FunkSVD models ####################### def perform_object_optimal_clustering(): """ performs a search for clustering with DBSCAN to be able to construct a reduced form of a "user-item" matrix :return: """ global CLF_DBSCAN, U, G print("\n[x] Choosing an optimal parameter for DBSCAN object cluster classifier .. ") list_dist = [] for i in range(0, G.shape[1] - 1): for j in range(i + 1, G.shape[1]): euclidean, _ = dist_em(G[i, 1:], G[j, 1:]) list_dist.append(euclidean) number_of_clusters = [] data_noise_list = [] distribution_data_list = [] param = np.linspace(0.01,
pd.Series(list_dist)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Wed Oct 28 08:23:04 2020 @author: nigo0024 """ # %% Export Readable hs_settings/df_grid import os import pandas as pd from scripts.analysis import sip_functs_analysis as sip_f base_dir_results = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_meta' df_grid = pd.read_csv(os.path.join(base_dir_results, 'msi_2_hs_settings.csv')) df_grid_readable = sip_f.rename_scenarios(df_grid) df_grid_readable.to_csv(os.path.join(base_dir_results, 'msi_2_hs_settings_short.csv'), index=False) # %% Violin plots1 import os import pandas as pd from scripts.analysis import sip_functs_analysis as sip_f base_dir_results = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_meta' base_dir_out = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_metafigures' fnames = ['msi_2_biomass_kgha_R2.csv', 'msi_2_nup_kgha_R2.csv', 'msi_2_tissue_n_pct_R2.csv'] df_grid = pd.read_csv(os.path.join(base_dir_results, 'msi_2_hs_settings.csv')) df_grid = sip_f.rename_scenarios(df_grid) f_full = [os.path.join(base_dir_results, f) for f in fnames] for f in f_full: df = pd.read_csv(f) df = df_grid.merge(df, left_index=True, right_on='grid_idx') df_filter = sip_f.sip_results_filter(df, model='Lasso') for n_feats in range(1, 20, 3): base_name = os.path.splitext(os.path.split(f)[-1])[0] fig = sip_f.plot_violin_by_scenario(df_filter, base_name, y=str(n_feats)) fig.savefig(os.path.join(base_dir_out, '{0}_{1}.png'.format(os.path.splitext(os.path.split(f)[-1])[0], n_feats)), dpi=300) # %% Find optimum accuracy import os import pandas as pd from scripts.analysis import sip_functs_analysis as sip_f base_dir_results = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_meta' base_dir_out = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_metafigures' fnames = ['msi_2_biomass_kgha_R2.csv', 'msi_2_nup_kgha_R2.csv', 'msi_2_tissue_n_pct_R2.csv'] df_grid = pd.read_csv(os.path.join(base_dir_results, 'msi_2_hs_settings.csv')) df_grid = sip_f.rename_scenarios(df_grid) f_full = [os.path.join(base_dir_results, f) for f in fnames] subset = ['msi_run_id', 'grid_idx', 'response_label', 'feature_set', 'model_name', 'objective_f', 'n_feats_opt', 'value'] sort_order = ['response_label', 'feature_set', 'model_name', 'objective_f', 'grid_idx'] df_out = None for response in ['biomass_kgha', 'nup_kgha', 'tissue_n_pct']: for objective_f in ['R2', 'MAE', 'RMSE']: f = os.path.join(base_dir_results, 'msi_2_{0}_{1}.csv'.format(response, objective_f)) df = pd.read_csv(f) df.rename(columns={'extra_feats': 'feature_set'}, inplace=True) df['objective_f'] = objective_f if objective_f in ['MAE', 'RMSE']: df['n_feats_opt'] = df[map(str, range(1, 51))].idxmin(axis=1) df['value'] = df[map(str, range(1, 51))].min(axis=1) else: df['n_feats_opt'] = df[map(str, range(1, 51))].idxmax(axis=1) df['value'] = df[map(str, range(1, 51))].max(axis=1) df = df.astype({'n_feats_opt': 'int'}) df_out_temp = df_grid.merge(df[subset], left_index=True, on='grid_idx') if df_out is None: df_out = df_out_temp.copy() else: df_out = df_out.append(df_out_temp) df_out.sort_values(by=sort_order, inplace=True) df_out.to_csv(os.path.join(base_dir_results, 'msi_2_n_feats_opt.csv'), index=False) # %% Build Spotpy "results" table import numpy as np import os import pandas as pd from scripts.analysis import sip_functs_analysis as sip_f base_dir_results = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_meta' df_opt = pd.read_csv(os.path.join(base_dir_results, 'msi_2_n_feats_opt.csv')) cols = ['like1', 'like2', 'like3', 'pardir_panels', 'parcrop', 'parclip', 'parsmooth', 'parbin', 'parsegment', 'simulation_rmse', 'simulation_mae', 'simulation_r2', 'chain'] options = [[response, feature] for response in ['biomass_kgha', 'nup_kgha', 'tissue_n_pct'] for feature in ['reflectance', 'derivative_1', 'derivative_2']] for response, feature in options: df_spotpy = pd.DataFrame(data=[], columns=cols) df_opt_filter1 = df_opt[(df_opt['response_label'] == response) & (df_opt['feature_set'] == feature)] df_opt_filter1 = df_opt_filter1.sort_values(['objective_f', 'dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment']) df_spotpy['like1'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'RMSE']['value']) df_spotpy['like2'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'MAE']['value']) df_spotpy['like3'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'R2']['value']) df_spotpy['simulation_rmse'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'RMSE']['value']) df_spotpy['simulation_mae'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'MAE']['value']) df_spotpy['simulation_r2'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'R2']['value']) # df_spotpy['simulation_0'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'RMSE'].index) # df_spotpy['simulation_1'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'MAE'].index) # df_spotpy['simulation_2'] = list(df_opt_filter1[df_opt_filter1['objective_f'] == 'R2'].index) df_opt_filter2 = df_opt_filter1[(df_opt['objective_f'] == 'RMSE')] df_spotpy['pardir_panels'] = list(df_opt_filter2['dir_panels']) df_spotpy['parcrop'] = list(df_opt_filter2['crop']) df_spotpy['parclip'] = list(df_opt_filter2['clip']) df_spotpy['parsmooth'] = list(df_opt_filter2['smooth']) df_spotpy['parbin'] = list(df_opt_filter2['bin']) df_spotpy['parsegment'] = list(df_opt_filter2['segment']) df_opt_filter2.loc[df_opt_filter2['model_name'] == 'Lasso', 'model_idx'] = 0 df_opt_filter2.loc[df_opt_filter2['model_name'] == 'PLSRegression', 'model_idx'] = 1 df_spotpy['chain'] = list(df_opt_filter2['model_idx']) df_spotpy_int = df_spotpy.copy() levels_dict = {} for param in ['pardir_panels', 'parcrop', 'parclip', 'parsmooth', 'parbin', 'parsegment']: labels, levels = pd.factorize(df_spotpy[param]) df_spotpy_int.loc[:, param] = labels levels_dict[param] = list(levels) levels_dict[param + '_idx'] = list(np.unique(labels)) df_spotpy_int.to_csv( os.path.join(base_dir_results, 'spotpy', 'results_{0}_{1}.csv'.format(response, feature)), index=False) with open(os.path.join(base_dir_results, 'spotpy', 'README_params.txt'), 'w') as f: for k in levels_dict: f.write('{0}: {1}\n'.format(str(k), str(levels_dict[k]))) # %% Histogram - get data import numpy as np import os import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib.ticker import FormatStrFormatter import matplotlib.ticker as mtick base_dir_results = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_meta' base_dir_spotpy = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_meta\spotpy' df_opt = pd.read_csv(os.path.join(base_dir_results, 'msi_2_n_feats_opt.csv')) options = [[response, feature, obj] for response in ['biomass_kgha', 'nup_kgha', 'tissue_n_pct'] for feature in ['reflectance', 'derivative_1', 'derivative_2'] for obj in ['MAE', 'RMSE', 'R2']] units_print = { 'biomass_kgha': r'kg {ha\boldmath$^-1}$', 'nup_kgha': r'kg ha$^{-1}$', 'tissue_n_pct': '%'} for response, feature, obj in options: df_opt_filter = df_opt[ (df_opt['response_label'] == response) & (df_opt['feature_set'] == feature) & (df_opt['objective_f'] == obj)] break # Choose response, feature set, and cost function manually response = 'nup_kgha' feature = 'reflectance' obj = 'RMSE' df_opt_filter = df_opt[ (df_opt['response_label'] == response) & (df_opt['feature_set'] == feature) & (df_opt['objective_f'] == obj)] sns.set_style("whitegrid") grids_all = [(r, c) for r in range(2) for c in range(3)] grids = [(r, c) for r in range(1) for c in range(3)] # grids_bottom = [(r, c) for r in range(1,2) for c in range(3)] scenario_options = { # These indicate the legend labels 'dir_panels': { 'name': 'Reflectance panels', 'closest': 'Closest panel', 'all': 'All panels (mean)'}, 'crop': { 'name': 'Crop', 'plot_bounds': 'By plot boundary', 'crop_buf': 'Edges cropped'}, 'clip': { 'name': 'Clip', 'none': 'No spectral clipping', 'ends': 'Ends clipped', 'all': 'Ends + H2O and O2 absorption'}, 'smooth': { 'name': 'Smooth', 'none': 'No spectral smoothing', 'sg-11': 'Savitzky-Golay smoothing'}, 'bin': { 'name': 'Bin', 'none': 'No spectral binning', 'sentinel-2a_mimic': 'Spectral "mimic" - Sentinel-2A', 'bin_20nm': 'Spectral "bin" - 20 nm'}, 'segment': { 'name': 'Segment', 'none': 'No segmenting', 'ndi_upper_50': 'NDVI > 50th', 'ndi_lower_50': 'NDVI < 50th', 'mcari2_upper_50': 'MCARI2 > 50th', 'mcari2_lower_50': 'MCARI2 < 50th', 'mcari2_upper_90': 'MCARI2 > 90th', 'mcari2_in_50-75': '50th > MCARI2 < 75th', 'mcari2_in_75-95': '75th > MCARI2 < 95th', 'mcari2_upper_90_green_upper_75': 'MCARI2 > 90th; green > 75th'}, } scenario_options_top = {k: scenario_options[k] for k in ['dir_panels', 'crop', 'clip']} scenario_options_bottom = {k: scenario_options[k] for k in ['smooth', 'bin', 'segment']} # %% Curate stats for cumulative density plots classes_rmse = [14, 15, 16, 17, 18, 19] classes_n_feats = [0, 5, 10, 15, 20, 25] array_props = {'models': np.empty([2, len(classes_rmse)])} cols = ['model_name', 'metric', 'class_min_val', 'proportion'] df_props_model = None for i_model, model in enumerate(['Lasso', 'PLSRegression']): df_model = df_opt_filter[df_opt_filter['model_name'] == model] for i_classes, i_min_val in enumerate(range(len(classes_rmse))): min_val = classes_rmse[i_min_val] prop = (len(df_model[df_model['value'].between(min_val, min_val+1)]) / len(df_model)) * 100 array_props['models'][i_model, i_classes] = prop data = [model, 'rmse', min_val, prop] if df_props_model is None: df_props_model = pd.DataFrame([data], columns=cols) else: df_props_model = df_props_model.append(pd.DataFrame([data], columns=cols)) min_val2 = classes_n_feats[i_min_val] prop2 = (len(df_model[df_model['n_feats_opt'].between(min_val2, min_val2+5)]) / len(df_model)) * 100 array_props['models'][i_model, i_classes] = prop2 data2 = [model, 'n_feats_opt', min_val2, prop2] if df_props_model is None: df_props_model = pd.DataFrame([data2], columns=cols) else: df_props_model = df_props_model.append(pd.DataFrame([data2], columns=cols)) # %% Calculate mean and median of all RMSE values df_opt_filter['value'].describe() # %% A1. Plot MSE train and validation score vs number of features import matplotlib.patches as mpatches from matplotlib import pyplot as plt import seaborn as sns import pandas as pd from ast import literal_eval def plot_and_fill_std(df, ax, palette, legend, objective='mae'): df_wide = df[['feat_n', 'score_train_' + objective, 'score_test_' + objective]].apply(pd.to_numeric).set_index('feat_n') if df_wide['score_train_' + objective].iloc[1] < 0: df_wide[['score_train_' + objective, 'score_test_' + objective]] = df_wide[['score_train_' + objective, 'score_test_' + objective]] * -1 x_feats = df_wide.index ax = sns.lineplot(data=df_wide[['score_train_' + objective, 'score_test_' + objective]], ax=ax, palette=palette, legend=legend) ax.lines[0].set_linewidth(1) ax.lines[0].set_linestyle('-') ax.lines[1].set_linestyle('-') return ax def plot_secondary(df, ax, palette, legend, objective='r2'): df_wide = df[['feat_n', 'score_train_' + objective, 'score_test_' + objective]].apply(pd.to_numeric).set_index('feat_n') if df_wide['score_train_' + objective].iloc[1] < 0: df_wide[['score_train_' + objective, 'score_test_' + objective]] = df_wide[['score_train_' + objective, 'score_test_' + objective]] * -1 ax2 = ax.twinx() ax2 = sns.lineplot(data=df_wide[['score_train_' + objective, 'score_test_' + objective]], ax=ax2, palette=palette, legend=legend) ax2.lines[0].set_linewidth(1) ax2.lines[0].set_linestyle('--') ax2.lines[1].set_linestyle('--') ax2.grid(False) return ax, ax2 plt.style.use('seaborn-whitegrid') plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" fontsize = 12 fontcolor = '#464646' colors = ['#f0bf5d', '#68de78'] palette = sns.color_palette("mako_r", 2) fig, ax = plt.subplots(1, 1, figsize=(4, 3), dpi=300) fig.subplots_adjust( top=0.89, bottom=0.158, left=0.16, right=0.836) df_las = pd.read_csv(r'G:\BBE\AGROBOT\Shared Work\_migrate\hs_process_results\results\msi_2_results\msi_2_521\nup_kgha\reflectance\testing\msi_2_521_nup_kgha_test-scores-lasso.csv') d = {} with open(r'G:\BBE\AGROBOT\Shared Work\_migrate\hs_process_results\results\msi_2_results\msi_2_521\nup_kgha\reflectance\reflectance_README.txt') as f: for i, l in enumerate(f): if i >= 6: band, wl = l.split(': ') d[int(band)] = float(wl) feat_n_opt = df_las[df_las['score_test_rmse'] == df_las['score_test_rmse'].min()]['feat_n'].values[0] feats_opt = literal_eval(df_las[df_las['score_test_rmse'] == df_las['score_test_rmse'].min()]['feats'].values[0]) wls_opt = [d[b] for b in feats_opt] len(wls_opt) == feat_n_opt print([round(wl) for wl in wls_opt]) # [399, 405, 417, 516, 571, 682, 705, 721, 723, 735, 764, 781, 811, 815, 824, 826, 848, 850, 856, 863] objective = 'rmse' ax1 = plot_and_fill_std(df_las, ax, palette, legend=False, objective=objective) ax1, ax1b = plot_secondary(df_las, ax1, palette, legend='full', objective='r2') if objective == 'rmse': ylabel = r'RMSE (kg ha$^{-1}$)' ax1.set_ylim([0, 32]) elif objective == 'mae': ylabel = r'Error (kg ha$^{-1}$)' ax1.set_ylim([0, 25]) ax1b.set_ylim([0, 1]) ax1.tick_params(labelsize=int(fontsize), colors=fontcolor, labelleft=True) # t1 = ax1b.set_title('Lasso', fontsize=fontsize*1.1, fontweight='bold', color='white', bbox=dict(facecolor=(0.35,0.35,0.35), edgecolor=(0.35,0.35,0.35))) ax1.set_ylabel(ylabel, fontsize=fontsize, color=fontcolor) ax1b.set_ylabel(r'R$^{2}$', fontsize=fontsize, color=fontcolor, rotation=0, labelpad=15) ax1b.tick_params(labelsize=int(fontsize), colors=fontcolor, labelright=True) ax1.set_xlabel('Number of features', fontsize=fontsize, color=fontcolor) ax1.set_xlim([-0.1, df_las['feat_n'].max() + 1]) h1, l1 = ax1b.get_legend_handles_labels() h1.insert(0, mpatches.Patch(color=palette[1], label='Test set')) h1.insert(0, mpatches.Patch(color=palette[0], label='Train set')) l1 = [r'Train set', r'Test set', 'RMSE', r'R$^{2}$'] h1[2].set_linestyle('-') h1[3].set_linestyle('--') h1[2].set_linewidth(2) h1[3].set_linewidth(2) h1[2].set_color((0.35,0.35,0.35)) h1[3].set_color((0.35,0.35,0.35)) leg = ax1b.legend(h1, l1, loc='upper center', handletextpad=0.4, ncol=4, columnspacing=1, fontsize=int(fontsize*0.8), bbox_to_anchor=(0.5, 1.17), frameon=True, framealpha=1, edgecolor=fontcolor) for handle, text in zip(leg.legendHandles, leg.get_texts()): text.set_color(fontcolor) ax1b.add_artist(leg) # %% A2a: Lasso vs PLS PDF/boxplot top fig, axes = plt.subplots(nrows=2, ncols=2, sharex=False, sharey=False, figsize=(8, 3.8), gridspec_kw={'height_ratios': [2, 6]}) fig.subplots_adjust( top=1.0, bottom=0.268, left=0.076, right=0.942, hspace=0.04, wspace=0.399) for i, val in enumerate(['value', 'n_feats_opt']): # break palette = sns.color_palette('muted', n_colors=len(df_opt_filter['model_name'].unique())) ax2 = sns.histplot(ax=axes[1][i], data=df_opt_filter, x=val, alpha=0.3, color='#999999') ax2.set_ylabel('Count', weight='bold', fontsize='large') ax2.yaxis.set_major_locator(mtick.FixedLocator(ax2.get_yticks())) ax2.set_yticklabels(['{:.0f}'.format(t) for t in ax2.get_yticks()], weight='bold', fontsize='large') ax3 = ax2.twinx() ax3 = sns.kdeplot(ax=ax3, data=df_opt_filter, x=val, hue='model_name', cut=0, bw_adjust=0.7, common_norm=True, common_grid=False, label='temp', palette=palette) if val == 'value': ax2.yaxis.set_ticks(np.arange(0, 160, 50)) ax2.set_ylim(bottom=0, top=160) ax2.set_xlim(left=14, right=20) ax2.set_xlabel('{0} ({1})'.format(obj, units_print[response]), fontweight='bold', fontsize='large') else: ax2.yaxis.set_ticks(np.arange(0, 330, 100)) ax2.set_ylim(bottom=0, top=330) ax2.set_xlim(left=0, right=31) ax2.set_xlabel('Feature $\it{n}$ at optimum ' + '{0}'.format(obj), fontweight='bold', fontsize='large') # else: # ax1.set_xlim(left=0, right=20) # set ticks visible, if using sharex = True. Not needed otherwise ax2.tick_params(labelbottom=True) ax2.xaxis.set_major_locator(mtick.FixedLocator(ax3.get_xticks())) ax2.set_xticklabels(['{:.0f}'.format(t) for t in ax2.get_xticks()], fontweight='bold', fontsize='large') step_size = ax2.yaxis.get_ticklocs()[-1] - ax2.yaxis.get_ticklocs()[-2] extra = (ax2.get_ylim()[-1] - ax2.yaxis.get_ticklocs()[-1]) / step_size space = ax3.get_ylim()[-1] / (3.0 + extra) ax3.set_yticks(np.arange(ax3.get_ylim()[0], ax3.get_ylim()[-1]+(space*extra), space)) ax3.grid(False) ax3.set_yticklabels(ax3.get_yticks(), weight='bold', rotation=90, horizontalalignment='left', verticalalignment='center', fontsize='large') ax3.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax3.set_ylabel('Density (%)', weight='bold', fontsize='large') h, _ = ax3.get_legend_handles_labels() h = list(reversed(h)) l2 = ['Lasso', 'Partial Least Squares'] ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' label_color='#464646' color_grid = ax3.get_ygridlines()[0].get_color() leg = ax3.legend(h, l2, bbox_to_anchor=(0, -0.24, 1, 0), loc='upper left', mode='expand', ncol=ncol, # fontsize=fontsize, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) # Finally, add boxplot now knowing the width box_width = 0.7 if len(h) > 4 else 0.65 if len(h) > 2 else 0.45 ax1 = sns.boxplot(ax=axes[0][i], data=df_opt_filter, x=val, y='model_name', width=box_width, fliersize=2, linewidth=1, palette=palette) ax1.set(yticklabels=[], ylabel=None) ax1.set(xticklabels=[], xlabel=None) if val == 'value': ax1.set_xlim(left=14, right=20) else: ax1.set_xlim(left=0, right=31) # %% A2b: Lasso vs PLS ECDF/heatmap bottom fig, axes = plt.subplots(nrows=3, ncols=2, sharex=False, sharey=False, figsize=(8, 3.8), gridspec_kw={'height_ratios': [1, 1, 6]}) fig.subplots_adjust( top=0.994, bottom=0.274, left=0.078, right=0.942, hspace=0.000, wspace=0.399) for i, val in enumerate(['value', 'n_feats_opt']): # break ax1 = sns.histplot(ax=axes[2][i], data=df_opt_filter, x=val, common_norm=False, cumulative=True, stat='density', alpha=0.3, color='#999999') palette=sns.color_palette('muted', n_colors=len(df_opt_filter['model_name'].unique())) ax2 = sns.ecdfplot(ax=ax1, data=df_opt_filter, x=val, hue='model_name', label='temp', palette=palette) ax1.set_ylim(bottom=0, top=1.05) ax1.yaxis.set_ticks(np.arange(0, 1.05, 0.25)) if val == 'value': ax1.set_ylabel('Density', weight='bold', fontsize='large') ax1.set_yticklabels(ax1.get_yticks(), weight='bold', fontsize='large') ax1.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax1.set_xlim(left=14, right=20) ax1.set_xlabel('{0} ({1})'.format(obj, units_print[response]), fontweight='bold', fontsize='large') df_props_model_pivot = df_props_model[df_props_model['metric'] == 'rmse'].pivot('model_name', 'class_min_val', 'proportion') else: ax1.set(yticklabels=[], ylabel=None) ax1.set_ylabel('') ax1.set_xlim(left=0, right=31) ax1.set_xlabel('Feature $\it{n}$ at optimum ' + '{0}'.format(obj), fontweight='bold', fontsize='large') df_props_model_pivot = df_props_model[df_props_model['metric'] == 'n_feats_opt'].pivot('model_name', 'class_min_val', 'proportion') ax1.tick_params(labelbottom=True) ax1.xaxis.set_major_locator(mtick.FixedLocator(ax1.get_xticks())) ax1.set_xticklabels(['{:.0f}'.format(t) for t in ax1.get_xticks()], fontweight='bold', fontsize='large') # legend h, _ = ax2.get_legend_handles_labels() h = list(reversed(h)) l2 = ['Lasso', 'Partial Least Squares'] ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' label_color='#464646' color_grid = ax2.get_ygridlines()[0].get_color() leg = ax2.legend(h, l2, bbox_to_anchor=(0, -0.24, 1, 0), loc='upper left', mode='expand', ncol=ncol, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) for i_model, model in enumerate(['Lasso', 'PLSRegression']): ax = sns.heatmap( ax=axes[i_model][i], data=df_props_model_pivot.loc[[model]], annot=True, fmt='.1f', annot_kws={'weight': 'bold', 'fontsize': 9.5}, linewidths=4, yticklabels=False, cbar=False, cmap=sns.light_palette(palette[i_model], as_cmap=True)) for t in ax.texts: t.set_text('') if float(t.get_text()) == 0.0 else t.set_text(t.get_text() + '%') ax.set_xlabel('') ax.set_ylabel('') if val == 'n_feats_opt': ax.set_xlim(left=0, right=6.2) # %% A2c: Lasso vs PLS boxplot RMSE fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, sharey=False, figsize=(4, 3.5), gridspec_kw={'height_ratios': [6, 2.5]}) fig.subplots_adjust( top=0.987, bottom=0.15, left=0.148, right=0.884, hspace=0.49, wspace=0.185) # fig.suptitle('Model accuracy from subjective image processing ({0} features)'.format(feature), fontsize=16) # for scenario, (row, col) in zip(scenario_options, grids): ax1 = sns.histplot(ax=axes[0], data=df_opt_filter, x='value', alpha=0.3, color='#999999') ax1.yaxis.set_ticks(np.arange(0, 160, 50)) ax1.set_ylabel('Count', weight='bold', fontsize='large') ax1.set_yticklabels(ax1.get_yticks(), weight='bold', fontsize='large') palette=sns.color_palette('muted', n_colors=len(df_opt_filter['model_name'].unique())) ax2 = ax1.twinx() ax2 = sns.kdeplot(ax=ax2, data=df_opt_filter, x='value', hue='model_name', cut=0, bw_adjust=0.7, common_norm=True, common_grid=False, label='temp', palette=palette) step_size = ax1.yaxis.get_ticklocs()[-1] - ax1.yaxis.get_ticklocs()[-2] extra = (ax1.get_ylim()[-1] - ax1.yaxis.get_ticklocs()[-1]) / step_size space = ax2.get_ylim()[-1] / (3.0 + extra) ax2.set_yticks(np.arange(ax2.get_ylim()[0], ax2.get_ylim()[-1]+(space*extra), space)) ax2.grid(False) ax2.set_yticklabels(ax2.get_yticks(), weight='bold', rotation=90, horizontalalignment='left', verticalalignment='center', fontsize='large') ax2.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax2.set_ylabel('Density (%)', weight='bold', fontsize='large') h, _ = ax2.get_legend_handles_labels() h = list(reversed(h)) # l1 = list(df_opt_filter['model_name'].unique()) # l2 = [scenario_options['model_name'][uid] for uid in df_opt_filter['model_name'].unique()] l2 = ['Lasso', 'Partial Least Squares'] width = 0.7 if len(h) > 4 else 0.6 if len(h) > 2 else 0.4 ax3 = sns.boxplot(ax=axes[1], data=df_opt_filter, x='value', y='model_name', width=width, fliersize=2, linewidth=1, palette=palette) ax3.set_xlabel('{0} ({1})'.format(obj, units_print[response]), fontweight='bold', fontsize='large') # set ticks visible, if using sharex = True. Not needed otherwise ax3.tick_params(labelbottom=True) ax3.xaxis.set_major_locator(mtick.FixedLocator(ax3.get_xticks())) ax3.set_xticklabels(['{:.0f}'.format(t) for t in ax3.get_xticks()], fontweight='bold', fontsize='large') ax3.set(yticklabels=[], ylabel=None) ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' # fontsize = 'small' label_color='#464646' color_grid = ax1.get_ygridlines()[0].get_color() leg = ax3.legend(h, l2, bbox_to_anchor=(0, 1, 1, 0), loc='lower left', mode='expand', ncol=ncol, # fontsize=fontsize, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) ax2.get_legend().remove() # %% A2d: Lasso vs PLS boxplot number of features to optimum fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, sharey=False, figsize=(4, 3.5), gridspec_kw={'height_ratios': [6, 2.5]}) fig.subplots_adjust( top=0.987, bottom=0.15, left=0.148, right=0.884, hspace=0.49, wspace=0.185) # fig.suptitle('Model accuracy from subjective image processing ({0} features)'.format(feature), fontsize=16) # for scenario, (row, col) in zip(scenario_options, grids): ax1 = sns.histplot(ax=axes[0], data=df_opt_filter, x='n_feats_opt', alpha=0.3, color='#999999') ax1.set_ylim(bottom=0, top=330) ax1.yaxis.set_ticks(np.arange(0, 330, 100)) ax1.set_ylabel('Count', weight='bold', fontsize='large') ax1.set_yticklabels(ax1.get_yticks(), weight='bold', fontsize='large') palette=sns.color_palette('muted', n_colors=len(df_opt_filter['model_name'].unique())) ax2 = ax1.twinx() ax2 = sns.kdeplot(ax=ax2, data=df_opt_filter, x='n_feats_opt', hue='model_name', cut=0, bw_adjust=0.7, common_norm=True, common_grid=False, label='temp', palette=palette) ax2.set_ylim(bottom=0) # break step_size = ax1.yaxis.get_ticklocs()[-1] - ax1.yaxis.get_ticklocs()[-2] extra = (ax1.get_ylim()[-1] - ax1.yaxis.get_ticklocs()[-1]) / step_size space = ax2.get_ylim()[-1] / (3.0 + extra) ax2.set_yticks(np.arange(ax2.get_ylim()[0], ax2.get_ylim()[-1]+(space*extra), space)) ax2.grid(False) ax2.set_yticklabels(ax2.get_yticks(), weight='bold', rotation=90, horizontalalignment='left', verticalalignment='center', fontsize='large') ax2.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax2.set_ylabel('Density (%)', weight='bold', fontsize='large') h, _ = ax2.get_legend_handles_labels() h = list(reversed(h)) # l1 = list(df_opt_filter['model_name'].unique()) # l2 = [scenario_options['model_name'][uid] for uid in df_opt_filter['model_name'].unique()] l2 = ['Lasso', 'Partial Least Squares'] width = 0.7 if len(h) > 4 else 0.6 if len(h) > 2 else 0.4 ax3 = sns.boxplot(ax=axes[1], data=df_opt_filter, x='n_feats_opt', y='model_name', width=width, fliersize=2, linewidth=1, palette=palette) ax3.set_xlabel('Feature $\it{n}$ at optimum ' + '{0}'.format(obj), fontweight='bold', fontsize='large') # set ticks visible, if using sharex = True. Not needed otherwise ax3.tick_params(labelbottom=True) ax3.xaxis.set_major_locator(mtick.FixedLocator(ax3.get_xticks())) ax3.set_xticklabels(['{:.0f}'.format(t) for t in ax3.get_xticks()], fontweight='bold', fontsize='large') ax3.set(yticklabels=[], ylabel=None) ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' # fontsize = 'small' label_color='#464646' color_grid = ax1.get_ygridlines()[0].get_color() leg = ax3.legend(h, l2, bbox_to_anchor=(0, 1, 1, 0), loc='lower left', mode='expand', ncol=ncol, # fontsize=fontsize, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) ax2.get_legend().remove() # %% A3 top: Plot histogram + boxplots n_feats_opt fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=False, figsize=(12.5, 4), gridspec_kw={'height_ratios': [2, 6]}) fig.subplots_adjust( top=0.99, bottom=0.31, left=0.05, right=0.96, hspace=0.04, wspace=0.185) for scenario, (row, col) in zip(scenario_options_top, grids): palette = sns.color_palette('muted', n_colors=len(df_opt_filter[scenario].unique())) ax1 = sns.histplot(ax=axes[row+1][col], data=df_opt_filter, x='n_feats_opt', alpha=0.3, color='#999999') ax1.set_ylim(bottom=0, top=330) ax1.yaxis.set_ticks(np.arange(0, 330, 100)) if col >= 1: ax1.set(yticklabels=[], ylabel=None) else: ax1.set_ylabel('Count', weight='bold', fontsize='large') ax1.set_yticklabels(ax1.get_yticks(), weight='bold', fontsize='large') ax2 = ax1.twinx() ax2 = sns.kdeplot(ax=ax2, data=df_opt_filter, x='n_feats_opt', hue=scenario, cut=0, bw_adjust=0.7, common_norm=True, common_grid=False, label='temp', palette=palette) ax2.set_ylim(bottom=0) ax1.set_xlabel('Feature $\it{n}$ at optimum ' + '{0}'.format(obj), fontweight='bold', fontsize='large') # set ticks visible, if using sharex = True. Not needed otherwise ax1.tick_params(labelbottom=True) ax1.xaxis.set_major_locator(mtick.FixedLocator(ax3.get_xticks())) ax1.set_xticklabels(['{:.0f}'.format(t) for t in ax2.get_xticks()], fontweight='bold', fontsize='large') step_size = ax1.yaxis.get_ticklocs()[-1] - ax1.yaxis.get_ticklocs()[-2] extra = (ax1.get_ylim()[-1] - ax1.yaxis.get_ticklocs()[-1]) / step_size space = ax2.get_ylim()[-1] / (3.0 + extra) ax2.set_yticks(np.arange(ax3.get_ylim()[0], ax2.get_ylim()[-1]+(space*extra), space)) ax2.grid(False) ax2.set_yticklabels(ax2.get_yticks(), weight='bold', rotation=90, horizontalalignment='left', verticalalignment='center', fontsize='large') ax2.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax2.set_ylabel('Density (%)', weight='bold', fontsize='large') l1 = list(df_opt_filter[scenario].unique()) l2 = [scenario_options[scenario][uid] for uid in df_opt_filter[scenario].unique()] h, l1 = ax2.get_legend_handles_labels() h = list(reversed(h)) ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' label_color='#464646' color_grid = ax1.get_ygridlines()[0].get_color() leg = ax2.legend(h, l2, bbox_to_anchor=(0, -0.24, 1, 0), loc='upper left', mode='expand', ncol=ncol, # fontsize=fontsize, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) # Finally, add boxplot now knowing the width box_width = 0.7 if len(h) > 4 else 0.65 if len(h) > 2 else 0.45 ax3 = sns.boxplot(ax=axes[row][col], data=df_opt_filter, x='n_feats_opt', y=scenario, width=box_width, fliersize=2, linewidth=1, palette=palette) ax3.set(yticklabels=[], ylabel=None) # %% A3 bottom: Plot histogram + boxplots n_feats_opt fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=False, figsize=(12.5, 5), gridspec_kw={'height_ratios': [5, 6]}) fig.subplots_adjust( top=0.99, bottom=0.31, left=0.05, right=0.96, hspace=0.04, wspace=0.185) for scenario, (row, col) in zip(scenario_options_bottom, grids): palette = sns.color_palette('muted', n_colors=len(df_opt_filter[scenario].unique())) ax1 = sns.histplot(ax=axes[row+1][col], data=df_opt_filter, x='n_feats_opt', alpha=0.3, color='#999999') ax1.set_ylim(bottom=0, top=330) ax1.yaxis.set_ticks(np.arange(0, 330, 100)) if col >= 1: ax1.set(yticklabels=[], ylabel=None) else: ax1.set_ylabel('Count', weight='bold', fontsize='large') ax1.set_yticklabels(ax1.get_yticks(), weight='bold', fontsize='large') ax2 = ax1.twinx() ax2 = sns.kdeplot(ax=ax2, data=df_opt_filter, x='n_feats_opt', hue=scenario, cut=0, bw_adjust=0.7, common_norm=True, common_grid=False, label='temp', palette=palette) ax2.set_ylim(bottom=0) ax1.set_xlabel('Feature $\it{n}$ at optimum ' + '{0}'.format(obj), fontweight='bold', fontsize='large') # set ticks visible, if using sharex = True. Not needed otherwise ax1.tick_params(labelbottom=True) ax1.xaxis.set_major_locator(mtick.FixedLocator(ax3.get_xticks())) ax1.set_xticklabels(['{:.0f}'.format(t) for t in ax2.get_xticks()], fontweight='bold', fontsize='large') step_size = ax1.yaxis.get_ticklocs()[-1] - ax1.yaxis.get_ticklocs()[-2] extra = (ax1.get_ylim()[-1] - ax1.yaxis.get_ticklocs()[-1]) / step_size space = ax2.get_ylim()[-1] / (3.0 + extra) ax2.set_yticks(np.arange(ax3.get_ylim()[0], ax2.get_ylim()[-1]+(space*extra), space)) ax2.grid(False) ax2.set_yticklabels(ax2.get_yticks(), weight='bold', rotation=90, horizontalalignment='left', verticalalignment='center', fontsize='large') ax2.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax2.set_ylabel('Density (%)', weight='bold', fontsize='large') l1 = list(df_opt_filter[scenario].unique()) l2 = [scenario_options[scenario][uid] for uid in df_opt_filter[scenario].unique()] h, l1 = ax2.get_legend_handles_labels() h = list(reversed(h)) ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' label_color='#464646' color_grid = ax1.get_ygridlines()[0].get_color() leg = ax2.legend(h, l2, bbox_to_anchor=(0, -0.24, 1, 0), loc='upper left', mode='expand', ncol=ncol, # fontsize=fontsize, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) # Finally, add boxplot now knowing the width box_width = 0.7 if len(h) > 4 else 0.65 if len(h) > 2 else 0.45 ax3 = sns.boxplot(ax=axes[row][col], data=df_opt_filter, x='n_feats_opt', y=scenario, width=box_width, fliersize=2, linewidth=1, palette=palette) ax3.set(yticklabels=[], ylabel=None) # %% A0[not used]: ECDF for n_feats_opt fig, axes = plt.subplots(nrows=2, ncols=3, sharex=False, sharey=False, figsize=(12.5, 6), gridspec_kw={'height_ratios': [6, 6]}) fig.subplots_adjust( top=0.998, bottom=0.251, left=0.051, right=0.99, hspace=0.825, wspace=0.075) for scenario, (row, col) in zip(scenario_options, grids_all): ax1 = sns.histplot(ax=axes[row][col], data=df_opt_filter, x='n_feats_opt', common_norm=False, cumulative=True, stat='density', alpha=0.3, color='#999999') palette=sns.color_palette('muted', n_colors=len(df_opt_filter[scenario].unique())) ax2 = sns.ecdfplot(ax=ax1, data=df_opt_filter, x='n_feats_opt', hue=scenario, label='temp', palette=palette) ax1.set_ylim(bottom=0, top=1.05) # ax1.set_xlim(left=14, right=20) ax1.yaxis.set_ticks(np.arange(0, 1.05, 0.25)) if col >= 1: ax1.set(yticklabels=[], ylabel=None) ax1.set_ylabel('') else: ax1.set_ylabel('Density', weight='bold', fontsize='large') ax1.set_yticklabels(ax1.get_yticks(), weight='bold', fontsize='large') ax1.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) # legend h, _ = ax2.get_legend_handles_labels() h = list(reversed(h)) l2 = [scenario_options[scenario][uid] for uid in df_opt_filter[scenario].unique()] ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' label_color='#464646' color_grid = ax2.get_ygridlines()[0].get_color() leg = ax2.legend(h, l2, bbox_to_anchor=(0, -0.3, 1, 0), loc='upper left', mode='expand', ncol=ncol, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) width = 0.7 if len(h) > 4 else 0.6 if len(h) > 2 else 0.4 # ax3 = sns.boxplot(ax=axes[row*2][col], data=df_opt_filter, x='value', y=scenario, # width=width, fliersize=2, linewidth=1, palette=palette) ax1.set_xlabel('Feature $\it{n}$ at optimum ' + '{0}'.format(obj), fontweight='bold', fontsize='large') # set ticks visible, if using sharex = True. Not needed otherwise ax1.tick_params(labelbottom=True) ax1.xaxis.set_major_locator(mtick.FixedLocator(ax1.get_xticks())) ax1.set_xticklabels(['{:.0f}'.format(t) for t in ax1.get_xticks()], fontweight='bold', fontsize='large') # %% Fig 1: Get/organize NUP ground truth data # base_dir_nup_data = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results\msi_2_000\nup_kgha' # df_nup = pd.read_csv(os.path.join(base_dir_nup_data, 'msi_2_000_nup_kgha_data.csv')) base_dir_nup_data = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results\msi_2_325\nup_kgha' df_nup = pd.read_csv(os.path.join(base_dir_nup_data, 'msi_2_325_nup_kgha_data.csv')) subset = ['dataset_id', 'study', 'date', 'plot_id', 'trt', 'rate_n_pp_kgha', 'rate_n_sd_plan_kgha', 'rate_n_total_kgha', 'growth_stage', 'nup_kgha'] df_nup = df_nup[subset] df_nup_stats = df_nup[['study', 'date', 'nup_kgha']].groupby(['study', 'date']).describe() df_nup_stats.to_csv(os.path.join(r'F:\nigo0024\Dropbox\UMN\UMN_Publications\2020_sip\data', 'nup_stats.csv'), index=True) df_nup_stat_total = df_nup['nup_kgha'].describe() df_nup_stat_total.to_csv(os.path.join(r'F:\nigo0024\Dropbox\UMN\UMN_Publications\2020_sip\data', 'nup_stats_total.csv'), index=True) # %% Fig 1: NUP histogram dataset_dict = { 0: 'Waseca whole field - 2019-06-29', 1: 'Waseca whole field - 2019-07-08', 2: 'Waseca whole field - 2019-07-23', 3: 'Waseca small plot - 2019-06-29', 4: 'Waseca small plot - 2019-07-09', 5: 'Waseca small plot - 2019-07-23', 6: 'Wells small plot - 2018-06-28', 7: 'Wells small plot - 2019-07-08'} fig, (ax_boxes, ax_box, ax1) = plt.subplots(3, sharex=True, figsize=(7, 5.5), gridspec_kw={"height_ratios": (5, 0.75, 5.25)}) fig.subplots_adjust( top=0.808, bottom=0.111, left=0.120, right=0.992, hspace=0.05, wspace=0.2) palette = sns.color_palette('viridis', n_colors=len(df_nup['dataset_id'].unique())+5) if len(df_nup['dataset_id'].unique()) == 7: hue_order = [6, 7, 3, 4, 0, 1, 2] ds_list = [0, 1, 2, 3, 4, 6, 7] else: hue_order = [6, 7, 3, 4, 5, 0, 1, 2] n_order = [143, 144, 24, 24, 24, 16, 16, 16] ds_list = [0, 1, 2, 3, 4, 5, 6, 7] growthstage_ticks = [str(df_nup[df_nup['dataset_id'] == i]['growth_stage'].unique()[0]) + ' ({0})'.format(j) for i, j in zip(hue_order, n_order)] growthstage_ticks[1] = 'V8 (144)' # growthstage_ticks = [str(df_nup[df_nup['dataset_id'] == i]['growth_stage'].unique()[0]) + ' ($\it{n}$=' + '{0})'.format(j) for i, j in zip(hue_order, n_order)] # growthstage_ticks[1] = 'V8 ($\it{n}$=144)' ax_boxes = sns.boxplot(ax=ax_boxes, data=df_nup.replace({'dataset_id': dataset_dict}), x='nup_kgha', y='dataset_id', order=[dataset_dict[i] for i in hue_order], # order=hue_order, width=0.7, fliersize=2, linewidth=1, palette=palette[2:-3]) ax_boxes.set_ylabel('') ax_boxes.set_yticklabels(growthstage_ticks, fontweight='bold', fontsize='medium') ax_boxes.set(xticklabels=[], xlabel=None) for i, p in enumerate(ax_boxes.artists): p.set_alpha(0.8) p.set_edgecolor('#555555') for j in range(i*6, i*6+6): line = ax_boxes.lines[j] line.set_color('#555555') line.set_mfc('#555555') line.set_mec('#555555') ax_box = sns.boxplot(x=df_nup['nup_kgha'], ax=ax_box, color='#C0C0C0', width=0.7, linewidth=1, fliersize=3) for i, p in enumerate(ax_box.artists): p.set_alpha(0.8) p.set_edgecolor('#555555') for j in range(i*6, i*6+6): line = ax_box.lines[j] line.set_color('#555555') line.set_mfc('#555555') line.set_mec('#555555') ax_box.set(xlabel='') ax_box.set_yticklabels(['Total (407)'], fontweight='bold', fontsize=10.5) ax1 = sns.histplot(ax=ax1, data=df_nup, x='nup_kgha', binwidth=3, multiple='stack', hue='dataset_id', hue_order=hue_order, palette=palette[2:-3], label='temp') ax1.set_xlim(left=0) ax1.set_xlabel('Nitrogen uptake ({0})'.format(units_print[response]), weight='bold', fontsize='x-large') ax1.xaxis.set_major_locator(mtick.FixedLocator(ax1.get_xticks())) ax1.set_xticklabels(['{:.0f}'.format(t) for t in ax1.get_xticks()], fontweight='bold', fontsize='x-large') ax1.set_ylabel('Count', weight='bold', fontsize='x-large') ax1.yaxis.set_major_locator(mtick.FixedLocator(ax1.get_yticks())) ax1.set_yticklabels(['{:.0f}'.format(t) for t in ax1.get_yticks()], fontweight='bold', fontsize='x-large') h, l1 = ax1.get_legend_handles_labels() l2 = [dataset_dict[ds_id] for ds_id in hue_order] h = list(reversed(h)) ncol = 2 fontsize = 12 label_color='#464646' color_grid = ax1.get_ygridlines()[0].get_color() leg = ax1.legend(h, l2, bbox_to_anchor=(0, 2.15, 1, 0), loc='lower left', mode='expand', ncol=ncol, # fontsize=fontsize, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) # %% Fig 2b: Spectral mimic demo using a single pixel from a Wells 2018 image import os from hs_process import hsio from hs_process import spec_mod from ast import literal_eval from matplotlib.patches import Polygon data_dir = r'F:\\nigo0024\Documents\hs_process_demo' fname_hdr = os.path.join(data_dir, 'Wells_rep2_20180628_16h56m_pika_gige_7-Radiance Conversion-Georectify Airborne Datacube-Convert Radiance Cube to Reflectance from Measured Reference Spectrum.bip.hdr') io = hsio() io.read_cube(fname_hdr) my_spec_mod = spec_mod(io.spyfile) # Use spec_mod.spectral_mimic to mimic the Sentinel-2A spectral response function. array_s2a, metadata_s2a = my_spec_mod.spectral_mimic(sensor='sentinel-2a', center_wl='weighted') array_bin, metadata_bin = my_spec_mod.spectral_resample(bandwidth=20) # Plot the mean spectral response of the hyperspectral image to that of the # mimicked Sentinel-2A image bands (mean calculated across the entire image). fwhm_s2a = [float(i) for i in metadata_s2a['fwhm'][1:-1].split(', ')] spy_hs = my_spec_mod.spyfile.open_memmap() # datacube before smoothing meta_bands = list(io.tools.meta_bands.values()) meta_bands_s2a = sorted([float(i) for i in literal_eval(metadata_s2a['wavelength'])]) meta_bands_bin20 = sorted([float(i) for i in literal_eval(metadata_bin['wavelength'])]) # %% Fig 2b: Plot the spectral mimic demo fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(9, 3)) fig.subplots_adjust( top=0.97, bottom=0.14, left=0.056, right=0.99, hspace=0.2, wspace=0.178) bands = [meta_bands_s2a, meta_bands_bin20] arrays = [array_s2a, array_bin] fwhms = [fwhm_s2a, [20]*(len(meta_bands_bin20)-1) + [(meta_bands_bin20[-1] - meta_bands_bin20[-2]) / 2]] labels = ['Spectral "mimic" – Sentinel-2A', 'Spectral "bin" - 20 nm'] for i, ax in enumerate(axes): if i == 0: zorders = [1, 1, 1, 1, 1, 1, 2, 1, 2] alpha=0.7 ms=7 else: zorders = [2]*len(bands[i]) alpha=0.5 ms=6 ax1 = sns.lineplot(ax=ax, x=meta_bands, y=spy_hs[200][800]*100, label='Hyperspectral', linewidth=2, color=palette[2], zorder=0) ax2 = sns.lineplot(ax=ax1, x=bands[i], y=arrays[i][200][800]*100, label=labels[i], linestyle='None', marker='o', ms=ms, color=palette[0+i], zorder=2) ax1.set_ylim([0, 40]) wedge_height = 1.5 for wl, ref_pct, fwhm, zorder in zip(bands[i], arrays[i][200][800]*100, fwhms[i], zorders): wl_min = wl - (fwhm/2) wl_max = wl + (fwhm/2) verts = [(wl_min, 0), *zip([wl_min, wl, wl_max], [ref_pct-wedge_height, ref_pct, ref_pct-wedge_height]), (wl_max, 0)] poly = Polygon(verts, facecolor='0.9', edgecolor='0.5', alpha=alpha, zorder=zorder) ax2.add_patch(poly) ax1.set_xlabel('Wavelength (nm)', weight='bold', fontsize='large') ax1.set_ylabel('Reflectance (%)', weight='bold', fontsize='large') ax1.xaxis.set_major_locator(mtick.FixedLocator(ax1.get_xticks())) ax1.set_xticklabels(['{:.0f}'.format(t) for t in ax1.get_xticks()], fontweight='bold', fontsize='large') ax1.yaxis.set_major_locator(mtick.FixedLocator(ax1.get_yticks())) ax1.set_yticklabels(['{:.0f}'.format(t) for t in ax1.get_yticks()], fontweight='bold', fontsize='large') h, l1 = ax1.get_legend_handles_labels() leg = ax1.legend(h, l1, framealpha=0.85, handletextpad=0.5, # spacing between handle and label frameon=True, edgecolor=ax1.get_ygridlines()[0].get_color(), prop={'weight':'bold', 'size': 'medium'}) # %% Fig 3: Plot histogram + boxplots RMSE top fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=False, figsize=(12.5, 4), gridspec_kw={'height_ratios': [2, 6]}) fig.subplots_adjust( top=0.99, bottom=0.31, left=0.05, right=0.96, hspace=0.04, wspace=0.185) for scenario, (row, col) in zip(scenario_options_top, grids): palette = sns.color_palette('muted', n_colors=len(df_opt_filter[scenario].unique())) ax2 = sns.histplot(ax=axes[row+1][col], data=df_opt_filter, x='value', alpha=0.3, color='#999999') ax2.yaxis.set_ticks(np.arange(0, 160, 50)) if col >= 1: ax2.set(yticklabels=[], ylabel=None) else: ax2.set_ylabel('Count', weight='bold', fontsize='large') ax2.set_yticklabels(ax2.get_yticks(), weight='bold', fontsize='large') ax3 = ax2.twinx() ax3 = sns.kdeplot(ax=ax3, data=df_opt_filter, x='value', hue=scenario, cut=0, bw_adjust=0.7, common_norm=True, common_grid=False, label='temp', palette=palette) ax2.set_xlabel('{0} ({1})'.format(obj, units_print[response]), fontweight='bold', fontsize='large') # set ticks visible, if using sharex = True. Not needed otherwise ax2.tick_params(labelbottom=True) ax2.xaxis.set_major_locator(mtick.FixedLocator(ax3.get_xticks())) ax2.set_xticklabels(['{:.0f}'.format(t) for t in ax2.get_xticks()], fontweight='bold', fontsize='large') step_size = ax2.yaxis.get_ticklocs()[-1] - ax2.yaxis.get_ticklocs()[-2] extra = (ax2.get_ylim()[-1] - ax2.yaxis.get_ticklocs()[-1]) / step_size space = ax3.get_ylim()[-1] / (3.0 + extra) ax3.set_yticks(np.arange(ax3.get_ylim()[0], ax3.get_ylim()[-1]+(space*extra), space)) ax3.grid(False) ax3.set_yticklabels(ax3.get_yticks(), weight='bold', rotation=90, horizontalalignment='left', verticalalignment='center', fontsize='large') ax3.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax3.set_ylabel('Density (%)', weight='bold', fontsize='large') l1 = list(df_opt_filter[scenario].unique()) l2 = [scenario_options[scenario][uid] for uid in df_opt_filter[scenario].unique()] h, l1 = ax3.get_legend_handles_labels() h = list(reversed(h)) ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' label_color='#464646' color_grid = ax3.get_ygridlines()[0].get_color() leg = ax3.legend(h, l2, bbox_to_anchor=(0, -0.24, 1, 0), loc='upper left', mode='expand', ncol=ncol, # fontsize=fontsize, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) # Finally, add boxplot now knowing the width box_width = 0.7 if len(h) > 4 else 0.65 if len(h) > 2 else 0.45 ax1 = sns.boxplot(ax=axes[row][col], data=df_opt_filter, x='value', y=scenario, width=box_width, fliersize=2, linewidth=1, palette=palette) ax1.set(yticklabels=[], ylabel=None) ax1.set_xlim(left=14, right=20) # %% Fig 3: Plot histogram + boxplots RMSE bottom fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=False, figsize=(12.5, 5), gridspec_kw={'height_ratios': [5, 6]}) fig.subplots_adjust( top=0.99, bottom=0.31, left=0.05, right=0.96, hspace=0.04, wspace=0.185) for scenario, (row, col) in zip(scenario_options_bottom, grids): palette = sns.color_palette('muted', n_colors=len(df_opt_filter[scenario].unique())) ax2 = sns.histplot(ax=axes[row+1][col], data=df_opt_filter, x='value', alpha=0.3, color='#999999') ax2.yaxis.set_ticks(np.arange(0, 160, 50)) if col >= 1: ax2.set(yticklabels=[], ylabel=None) else: ax2.set_ylabel('Count', weight='bold', fontsize='large') ax2.set_yticklabels(ax2.get_yticks(), weight='bold', fontsize='large') ax3 = ax2.twinx() ax3 = sns.kdeplot(ax=ax3, data=df_opt_filter, x='value', hue=scenario, cut=0, bw_adjust=0.7, common_norm=True, common_grid=False, label='temp', palette=palette) ax2.set_xlabel('{0} ({1})'.format(obj, units_print[response]), fontweight='bold', fontsize='large') # set ticks visible, if using sharex = True. Not needed otherwise ax2.tick_params(labelbottom=True) ax2.xaxis.set_major_locator(mtick.FixedLocator(ax3.get_xticks())) ax2.set_xticklabels(['{:.0f}'.format(t) for t in ax2.get_xticks()], fontweight='bold', fontsize='large') step_size = ax2.yaxis.get_ticklocs()[-1] - ax2.yaxis.get_ticklocs()[-2] extra = (ax2.get_ylim()[-1] - ax2.yaxis.get_ticklocs()[-1]) / step_size space = ax3.get_ylim()[-1] / (3.0 + extra) ax3.set_yticks(np.arange(ax3.get_ylim()[0], ax3.get_ylim()[-1]+(space*extra), space)) ax3.grid(False) ax3.set_yticklabels(ax3.get_yticks(), weight='bold', rotation=90, horizontalalignment='left', verticalalignment='center', fontsize='large') ax3.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax3.set_ylabel('Density (%)', weight='bold', fontsize='large') l1 = list(df_opt_filter[scenario].unique()) l2 = [scenario_options[scenario][uid] for uid in df_opt_filter[scenario].unique()] h, l1 = ax3.get_legend_handles_labels() h = list(reversed(h)) ncol = 2 if len(h) > 4 else 1 fontsize = 8.75 if len(h) > 3 else 'medium' label_color='#464646' color_grid = ax3.get_ygridlines()[0].get_color() leg = ax3.legend(h, l2, bbox_to_anchor=(0, -0.28, 1, 0), loc='upper left', mode='expand', ncol=ncol, # fontsize=fontsize, framealpha=0.85, handletextpad=0.1, # spacing between handle and label columnspacing=0.5, frameon=True, edgecolor=color_grid, prop={'weight':'bold', 'size': fontsize}) # Finally, add boxplot now knowing the width box_width = 0.7 if len(h) > 4 else 0.65 if len(h) > 2 else 0.45 ax1 = sns.boxplot(ax=axes[row][col], data=df_opt_filter, x='value', y=scenario, width=box_width, fliersize=2, linewidth=1, palette=palette) ax1.set(yticklabels=[], ylabel=None) ax1.set_xlim(left=14, right=20) # %% Fig 4: SALib functions import numpy as np import os import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import rcParams # seed = np.random.randint(0, 9999) seed = 7818 def SALib_load_results(): base_dir_salib = r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\msi_2_results_meta\salib' df = pd.read_csv(os.path.join(os.path.dirname(base_dir_salib), 'spotpy', 'results_nup_kgha_reflectance.csv')) Y = df['simulation_rmse'].to_numpy() df.rename(columns={'pardir_panels': 0, 'parcrop': 1, 'parclip': 2, 'parsmooth': 3, 'parbin': 4, 'parsegment': 5}, inplace=True) return df, Y def SALib_set_Y(param_values, df): Y = np.zeros(len(param_values)) df['used'] = False for i, row in enumerate(param_values): df_filter = df[(df[0] == round(row[0])) & (df[1] == round(row[1])) & (df[2] == round(row[2])) & (df[3] == round(row[3])) & (df[4] == round(row[4])) & (df[5] == round(row[5]))] if df.loc[df_filter.index[0], 'used'] == True: if df.loc[df_filter.index[1], 'used'] == True: # get first one Y[i] = df.loc[df_filter.index[0], 'simulation_rmse'] else: # get second one Y[i] = df.loc[df_filter.index[0], 'simulation_rmse'] df.loc[df_filter.index[1], 'used'] = True else: Y[i] = df.loc[df_filter.index[0], 'simulation_rmse'] df.loc[df_filter.index[0], 'used'] = True print('Number of observations used: {0}'.format(len(df[df['used'] == True]))) print('Number of observations NOT used: {0}'.format(len(df[df['used'] == False]))) return df, Y def SALib_get_problem(as_int=False): if as_int == True: problem = { 'num_vars': 6, 'names': ['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment'], 'bounds': [[0, 2], [0, 2], [0, 3], [0, 2], [0, 3], [0, 9]]} else: problem = { 'num_vars': 6, 'names': ['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment'], 'bounds': [[0, 1], [0, 1], [0, 2], [0, 1], [0, 2], [0, 8]]} return problem scenario_options = { # These indicate the legend labels 'dir_panels': { 'name': 'Reflectance panels', 'closest': 'Closest panel', 'all': 'All panels (mean)'}, 'crop': { 'name': 'Crop', 'plot_bounds': 'By plot boundary', 'crop_buf': 'Edges cropped'}, 'clip': { 'name': 'clip', 'none': 'No spectral clipping', 'ends': 'Ends clipped', 'all': 'Ends + H2O and O2 absorption'}, 'smooth': { 'name': 'Smooth', 'none': 'No spectral smoothing', 'sg-11': 'Savitzky-Golay smoothing'}, 'bin': { 'name': 'Bin', 'none': 'No spectral binning', 'sentinel-2a_mimic': 'Spectral "mimic" - Sentinel-2A', 'bin_20nm': 'Spectral "bin" - 20 nm'}, 'segment': { 'name': 'Segment', 'none': 'No segmenting', 'ndi_upper_50': 'NDVI > 50th', 'ndi_lower_50': 'NDVI < 50th', 'mcari2_upper_50': 'MCARI2 > 50th', 'mcari2_lower_50': 'MCARI2 < 50th', 'mcari2_upper_90': 'MCARI2 > 90th', 'mcari2_in_50-75': '50th > MCARI2 < 75th', 'mcari2_in_75-95': '75th > MCARI2 < 95th', 'mcari2_upper_90_green_upper_75': 'MCARI2 > 90th; green > 75th'}, } def get_df_results(Si, scenario_options, obj='rmse'): df_results = None for k, v in Si.items(): sa_dict = {} sa_dict['step'] = list(scenario_options.keys()) sa_dict['obj'] = [obj] * len(v) sa_dict['order'] = [k] * len(v) sa_dict['sensitivity_idx'] = v df_temp = pd.DataFrame.from_dict(sa_dict) if df_results is None: df_results = df_temp.copy() else: df_results = df_results.append(df_temp).reset_index(drop=True) return df_results def plot_SA_bar(df_sa, ax1_str='S1', ax2_str='ST', ax1_title='First order', ax2_title='Total order', ylabel_str='Sensitivity Index', ax1_ylim=[0, 0.4], ax2_ylim=[0, 0.8]): # rcParams.update({'errorbar.capsize': 4}) fig, axes = plt.subplots(nrows=1, ncols=2, sharex=False, sharey=False, figsize=(8, 4)) fig.subplots_adjust( top=0.904, bottom=0.286, left=0.128, right=0.981, hspace=0.2, wspace=0.278) groups1 = df_sa[df_sa['order'] == ax1_str].groupby('step').sum() groups2 = df_sa[df_sa['order'] == ax2_str].groupby('step').sum() pal = sns.color_palette('Blues', len(groups1)+4) rank1 = groups1['sensitivity_idx'].sort_values().argsort().reindex(['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment']) rank2 = groups2['sensitivity_idx'].sort_values().argsort().reindex(['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment']) ax1 = sns.barplot(x='step', y='sensitivity_idx', data=df_sa[df_sa['order'] == ax1_str], # yerr=Si['S1_conf'], ecolor='#333333', ax=axes[0], palette=np.array(pal[4:])[rank1]) ax2 = sns.barplot(x='step', y='sensitivity_idx', data=df_sa[df_sa['order'] == ax2_str], # yerr=Si['ST_conf'], ecolor='#333333', ax=axes[1], palette=np.array(pal[4:])[rank2]) ax1.set_ylim(ax1_ylim[0], ax1_ylim[1]) ax2.set_ylim(ax2_ylim[0], ax2_ylim[1]) ax1.yaxis.set_major_locator(plt.MaxNLocator(4)) ax2.yaxis.set_major_locator(plt.MaxNLocator(5)) labels_tick = ['Reference panels', 'Crop', 'Clip', 'Smooth', 'Bin', 'Segment'] for ax in [ax1, ax2]: ax.set_xlabel('', weight='bold', fontsize='large') ax.set_ylabel(ylabel_str, weight='bold', fontsize='large') ax.set_xticklabels(labels_tick, weight='bold', fontsize='medium') ax.set_yticklabels(['{0:.2f}'.format(x) for x in ax.get_yticks().tolist()], weight='bold', fontsize='medium') plt.setp(ax.get_xticklabels(), rotation=35, ha='right', rotation_mode='anchor') ax1.set_title(ax1_title, weight='bold', fontsize='x-large') ax2.set_title(ax2_title, weight='bold', fontsize='x-large') return fig, axes # %% Fig 4: SALib SA FAST from SALib.sample import fast_sampler from SALib.analyze import fast df, Y_file = SALib_load_results() problem = SALib_get_problem() param_values = fast_sampler.sample(problem, 1500, M=8, seed=seed) df_FAST, Y = SALib_set_Y(param_values, df) Si_FAST = fast.analyze(problem, Y, M=8, print_to_console=False, seed=seed) df_sa_fast = get_df_results(Si_FAST, scenario_options, obj='rmse') # %% Fig 4: SALib SA Sobel from SALib.sample import saltelli from SALib.analyze import sobol df, Y = SALib_load_results() param_values = saltelli.sample(problem, 400, calc_second_order=False, seed=seed) param_values_round = param_values.round() # param_values = saltelli.sample(problem, 162, calc_second_order=False, seed=seed).astype(int) _, Y = SALib_set_Y(param_values_round, df) problem = SALib_get_problem(as_int=False) Si_sobol = sobol.analyze(problem, Y, calc_second_order=False, print_to_console=False, seed=seed) # param_values_file = df[[0, 1, 2, 3, 4, 5]].to_numpy() df_sa_sobol = get_df_results(Si_sobol, scenario_options, obj='rmse') # df_sa_rmse = df_sa[df_sa['obj'] == 'rmse'] # %% Fig 4: Plot FAST, Sobol, and ranking for RMSE def plot_FAST_Sobol_SA(df_sa_fast, df_sa_sobol, ylabel_str='Sensitivity Index', ax1_ylim=[0, 0.32], ax2_ylim=[0, 0.6]): # rcParams.update({'errorbar.capsize': 4}) colors = sns.color_palette(['#a8a8a8', '#dcc457', '#57d4dc']) # grey, gold, and cyan df_sa_fast['sa_type'] = 'fast' df_sa_sobol['sa_type'] = 'sobol' grp_fast_s1 = df_sa_fast[df_sa_fast['order'] == 'S1'].groupby('step').sum() grp_fast_st = df_sa_fast[df_sa_fast['order'] == 'ST'].groupby('step').sum() grp_sobol_s1 = df_sa_sobol[df_sa_sobol['order'] == 'S1'].groupby('step').sum() grp_sobol_st = df_sa_sobol[df_sa_sobol['order'] == 'ST'].groupby('step').sum() df_sa_fast_filter = df_sa_fast[df_sa_fast.order.isin(['S1','ST'])] df_sa = df_sa_fast_filter.append(df_sa_sobol[df_sa_sobol.order.isin(['S1','ST'])]).reset_index(drop=True) fig, axes = plt.subplots(nrows=1, ncols=2, sharex=False, sharey=False, figsize=(7.97, 4)) fig.subplots_adjust( top=0.904, bottom=0.286, left=0.128, right=0.981, hspace=0.2, wspace=0.278) ax1 = sns.barplot(x='step', y='sensitivity_idx', data=df_sa[df_sa['order'] == 'S1'], hue='sa_type', ax=axes[0]) ax2 = sns.barplot(x='step', y='sensitivity_idx', data=df_sa[df_sa['order'] == 'ST'], hue='sa_type', ax=axes[1]) # pal_fast = sns.color_palette('Blues', len(grp_fast_s1)+8) # pal_sobol = sns.color_palette('YlOrBr', len(grp_sobol_s1)+16) pal_fast = sns.light_palette('#a8a8a8', len(grp_fast_s1)+3) pal_sobol = sns.light_palette('#597DBF', len(grp_sobol_s1)+3) # blue # pal_fast = sns.light_palette('#dcc457', as_cmap=True) # pal_sobol = sns.light_palette('#57d4dc', as_cmap=True) rank_fast_s1 = grp_fast_s1['sensitivity_idx'].sort_values().argsort().reindex(['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment']) rank_fast_st = grp_fast_st['sensitivity_idx'].sort_values().argsort().reindex(['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment']) rank_sobol_s1 = grp_sobol_s1['sensitivity_idx'].sort_values().argsort().reindex(['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment']) rank_sobol_st = grp_sobol_st['sensitivity_idx'].sort_values().argsort().reindex(['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment']) # pal_fast_s1 = np.array(pal_fast[6:])[rank_fast_s1] # pal_fast_st = np.array(pal_fast[6:])[rank_fast_st] # pal_sobol_s1 = np.array(pal_sobol[7:])[rank_sobol_s1] # pal_sobol_st = np.array(pal_sobol[7:])[rank_sobol_st] pal_fast_s1 = np.array(pal_fast[3:])[rank_fast_s1] pal_fast_st = np.array(pal_fast[3:])[rank_fast_st] pal_sobol_s1 = np.array(pal_sobol[3:])[rank_sobol_s1] pal_sobol_st = np.array(pal_sobol[3:])[rank_sobol_st] for i, (p1, p2) in enumerate(zip(ax1.patches, ax2.patches)): if i <= 5: # fast p1.set_color(pal_fast_s1[i]) p2.set_color(pal_fast_st[i]) else: # sobol p1.set_color(pal_sobol_s1[i-6]) p2.set_color(pal_sobol_st[i-6]) ax1.set_ylim(ax1_ylim[0], ax1_ylim[1]) ax2.set_ylim(ax2_ylim[0], ax2_ylim[1]) ax1.yaxis.set_major_locator(plt.MaxNLocator(4)) ax2.yaxis.set_major_locator(plt.MaxNLocator(5)) labels_tick = ['Reference panels', 'Crop', 'Clip', 'Smooth', 'Bin', 'Segment'] h, l = ax1.get_legend_handles_labels() for ax in [ax1, ax2]: ax.legend(handles=h, labels=['FAST', 'Sobol'], prop={'weight': 'bold'}) # ax.legend(handles=label_list[0], labels=label_list[1]) # labels_leg = ax.get_legend().get_texts() # labels_leg[0].set_text('FAST') # labels_leg[1].set_text('Sobol') ax.set_xlabel('', weight='bold', fontsize='large') ax.set_ylabel(ylabel_str, weight='bold', fontsize='large') ax.set_xticklabels(labels_tick, weight='bold', fontsize='medium') ax.set_yticklabels(['{0:.2f}'.format(x) for x in ax.get_yticks().tolist()], weight='bold', fontsize='medium') plt.setp(ax.get_xticklabels(), rotation=35, ha='right', rotation_mode='anchor') ax2.get_legend().remove() ax1.set_title('First order', weight='bold', fontsize='x-large') ax2.set_title('Total order', weight='bold', fontsize='x-large') return fig, axes # %% Fig 4: Plot FAST, Sobol, and ranking for RMSE and modify fig, axes = plot_FAST_Sobol_SA(df_sa_fast, df_sa_sobol, ylabel_str='Sensitivity Index', ax1_ylim=[0, 0.32], ax2_ylim=[0, 0.6]) # %% Fig 4b: Step importance via stepwise regression df_stepwise = pd.read_csv(r'G:\BBE\AGROBOT\Shared Work\hs_process_results\results\var_importance_stepwise_all.csv') df_stepwise['Variable Importance'] = df_stepwise['Variable Importance'] * 100 grp_res_var = df_stepwise[df_stepwise['method'] == 'residual_var'].groupby('step').sum() fig, ax = plt.subplots(nrows=1, ncols=1, sharex=False, sharey=False, figsize=(3.5, 3.5)) fig.subplots_adjust( top=0.992, bottom=0.283, left=0.259, right=0.99, hspace=0.2, wspace=0.2) ax1 = sns.barplot(x='step', y='Variable Importance', data=df_stepwise[df_stepwise['method'] == 'residual_var'], order=['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment'], ax=ax) pal_res_var = sns.light_palette('#597DBF', len(grp_res_var)+3) # blue rank_res_var = grp_res_var['Variable Importance'].sort_values().argsort().reindex(['dir_panels', 'crop', 'clip', 'smooth', 'bin', 'segment']) pal_res_var = np.array(pal_res_var[3:])[rank_res_var] for i, p1 in enumerate(ax.patches): p1.set_color(pal_res_var[i]) # ax.set_ylim(ax_ylim[0], ax_ylim[1]) ax.yaxis.set_major_locator(plt.MaxNLocator(4)) labels_tick = ['Reference panels', 'Crop', 'Clip', 'Smooth', 'Bin', 'Segment'] h, l = ax.get_legend_handles_labels() ax.set_xlabel('', weight='bold', fontsize='large') ax.set_ylabel('Variable Importance (%)', weight='bold', fontsize='large') ax.set_xticklabels(labels_tick, weight='bold', fontsize='medium') ax.set_yticklabels(['{0:.0f}'.format(x) for x in ax.get_yticks().tolist()], weight='bold', fontsize='medium') # ax.set_yticklabels(['{0:.2f}'.format(x) for x in mtick.FixedLocator(ax.get_yticks()).tolist()], weight='bold', fontsize='medium') # ax.yaxis.set_major_locator(mtick.FixedLocator(ax.get_yticks())) plt.setp(ax.get_xticklabels(), rotation=35, ha='right', rotation_mode='anchor') # ax.get_legend().remove() # %% Fig 5: Curate stats for cumulative density plots classes = [14, 15, 16, 17, 18, 19] array_props = {step: np.empty([len(scenario_options[step]), len(classes)]) for step in scenario_options} array_props['segment'] = np.delete(array_props['segment'], (-1), axis=0) cols = ['step', 'scenario', 'class_min_val', 'proportion'] df_props = None for i_steps, step in enumerate(scenario_options): for i_scenarios, scenario in enumerate(scenario_options[step]): if scenario == 'name': continue df_scenario = df_opt_filter[df_opt_filter[step] == scenario] for i_classes, min_val in enumerate(classes): prop = (len(df_scenario[df_scenario['value'].between(min_val, min_val+1)]) / len(df_scenario)) * 100 array_props[step][i_scenarios-1, i_classes] = prop data = [step, scenario, min_val, prop] if df_props is None: df_props = pd.DataFrame([data], columns=cols) else: df_props = df_props.append(
pd.DataFrame([data], columns=cols)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 20 11:13:50 2020 @author: github.com/sahandv """ import gc import pandas as pd import numpy as np # from gensim.test.utils import common_texts from gensim.models.doc2vec import Doc2Vec, TaggedDocument from nltk.tokenize import word_tokenize from tqdm import tqdm from itertools import chain from scipy import spatial,sparse,sign step = 6 from_data = step*30000 to_data = from_data+30000 dir_root = '/home/sahand/GoogleDrive/Data/' # dir_root = '/mnt/16A4A9BCA4A99EAD/GoogleDrive/Data/' texts = pd.read_csv(dir_root+'Corpus/Scopus new/clean/abstract_title method_b_3')['abstract'].values.tolist()[from_data:to_data] # texts_b = pd.read_csv(dir_root+'Corpus/Dimensions All/clean/abstract_title method_b_3')['abstract'].values.tolist()[from_data:to_data] # texts_b = texts+texts_b # # shared_tags = pd.read_csv(dir_root+'Corpus/cora-classify/cora/embeddings/single_component_small_18k/n2v 300-70-20 p1q05 DEC 500, 1000, 1000, 500, 10 k10 labels - 0')['label'].values.tolist() # # ============================================================================= # # Train Model # # ============================================================================= # documents = [TaggedDocument(word_tokenize(doc.lower()), [i]) for i, doc in enumerate(texts_b)] # model = Doc2Vec(documents, vector_size=300, window=10, min_count=1, dm=1, workers=15, epochs=40) # fname = dir_root+'Corpus/Dimensions All/models/dim-scop doc2vec 300D dm=1 window=10 b3' # model.save(fname) # # shared_tags = pd.read_csv(dir_root+'Corpus/cora-classify/cora/embeddings/single_component_small_18k/n2v 300-70-20 p1q05 DEC 500, 1000, 1000, 500, 10 k10 labels - 0')['label'].values.tolist() # # ============================================================================= # # Train Model # # ============================================================================= # documents = [TaggedDocument(word_tokenize(doc.lower()), [i]) for i, doc in enumerate(texts)] # model = Doc2Vec(documents, vector_size=300, window=10, min_count=1, dm=1, workers=15, epochs=40) # fname = dir_root+'Corpus/Dimensions All/models/scop doc2vec 300D dm=1 window=10 b3' # model.save(fname) # ============================================================================= # Train Model with Tags # ============================================================================= # tagged_documents = [TaggedDocument(words=word_tokenize(_d.lower()), tags=['cluster_'+str(shared_tags[i]),str(i)]) for i, _d in enumerate(texts)] # model = Doc2Vec(tagged_documents, size=300, window=10, min_count=1, dm=1, workers=16, epochs=40) # fname = dir_root+'Corpus/Dimensions All/models/doc2vec 300D dm=1 window=10 tagged' # model.save(fname) # ============================================================================= # Test Model # ============================================================================= fname = dir_root+'Corpus/Dimensions All/models/scop doc2vec 300D dm=1 window=10 b3' model = Doc2Vec.load(fname) documents = [word_tokenize(doc.lower()) for doc in tqdm(texts)] # test_docs2 = [doc.lower().split() for doc in texts] # This is way faster than word_tokenize # test_docs = test_docs[480000:] start_alpha=0.01 infer_epoch=1000 X=[] for d in tqdm(documents): X.append( model.infer_vector(d, alpha=start_alpha, epochs=infer_epoch)) X_df = pd.DataFrame(X) X_df.to_csv(dir_root+'Corpus/Dimensions All/embeddings/doc2vec 300D dm=1 window=10 b3 '+str(from_data),index=False) #%%### ============================================================================= # concat vecs # ============================================================================= sections = ['30000','60000','90000','120000','150000','180000'] data = pd.read_csv(dir_root+'Corpus/Dimensions All/embeddings/doc2vec 300D dm=1 window=10 b3 0') for section in tqdm(sections): data = data.append(pd.read_csv(dir_root+'Corpus/Dimensions All/embeddings/doc2vec 300D dm=1 window=10 b3 '+section),ignore_index=True) data = data.reset_index(drop=True) data.to_csv(dir_root+'Corpus/Scopus new/embeddings/doc2vec 300D dm=1 window=10 b3',index=False) # ============================================================================= # Get keyword embedding # ============================================================================= directory = dir_root+'Corpus/Taxonomy/' file_name = 'CSO.3.3-with-labels-US-lem.csv' corpus =
pd.read_csv(directory+file_name)
pandas.read_csv
import argparse import logging import multiprocessing as mp import os import pickle import re import sys import warnings from datetime import datetime from itertools import product import pandas as pd import tabulate from sklearn.model_selection import train_test_split from tqdm import tqdm from greenguard import get_pipelines from greenguard.demo import load_demo from greenguard.loaders import CSVLoader from greenguard.metrics import (METRICS, accuracy_score, f1_score, fpr_score, tpr_score, threshold_score) from greenguard.pipeline import GreenGuardPipeline, generate_init_params, generate_preprocessing from greenguard.results import load_results, write_results LOGGER = logging.getLogger(__name__) DEFAULT_TUNING_METRIC_KWARGS = {'threshold': 0.5} LEADERBOARD_COLUMNS = [ 'problem_name', 'window_size', 'resample_rule', 'template', 'default_test', 'default_cv', 'tuned_cv', 'tuned_test', 'tuning_metric', 'tuning_metric_kwargs', 'fit_predict_time', 'default_cv_time', 'average_cv_time', 'total_time', 'status', ] def _scorer(metric, metric_args): if isinstance(metric, str): metric, cost = METRICS[metric] def f(expected, observed): try: return metric(expected, observed, **metric_args) except TypeError: if 'threshold' not in metric_args: raise kwargs = metric_args.copy() threshold = kwargs.pop('threshold') observed = observed >= threshold return metric(expected, observed, **kwargs) return f def _build_init_params(template, window_size, rule, template_params): if 'dfs' in template: window_size_rule_params = { 'pandas.DataFrame.resample#1': { 'rule': rule, }, 'featuretools.dfs.json#1': { 'training_window': window_size, } } elif 'lstm' in template: window_size_rule_params = { 'pandas.DataFrame.resample#1': { 'rule': rule, }, 'mlprimitives.custom.timeseries_preprocessing.cutoff_window_sequences#1': { 'window_size': window_size, } } for primitive, params in window_size_rule_params.items(): primitive_params = template_params.setdefault(primitive, {}) primitive_params.update(params) return template_params def evaluate_template( template, target_times, readings, tuning_iterations=50, init_params=None, preprocessing=0, metrics=None, threshold=None, tpr=None, tuning_metric='roc_auc_score', tuning_metric_kwargs=DEFAULT_TUNING_METRIC_KWARGS, cost=False, cv_splits=3, test_size=0.25, random_state=0, cache_path=None, scores={} ): """Returns the scores for a given template. Args: template (str): Given template to evaluate. target_times (DataFrame): Contains the specefication problem that we are solving, which has three columns: * turbine_id: Unique identifier of the turbine which this label corresponds to. * cutoff_time: Time associated with this target. * target: The value that we want to predict. This can either be a numerical value or a categorical label. This column can also be skipped when preparing data that will be used only to make predictions and not to fit any pipeline. readings (DataFrame): Contains the signal data from different sensors, with the following columns: * turbine_id: Unique identifier of the turbine which this reading comes from. * signal_id: Unique identifier of the signal which this reading comes from. * timestamp (datetime): Time where the reading took place, as a datetime. * value (float): Numeric value of this reading. metric (function or str): Metric to use. If an ``str`` is give it must be one of the metrics defined in the ``greenguard.metrics.METRICS`` dictionary. tuning_iterations (int): Number of iterations to be used. preprocessing (int, list or dict): Number of preprocessing steps to be used. init_params (list): Initialization parameters for the pipeline. cost (bool): Wheter the metric is a cost function (the lower the better) or not. test_size (float): Percentage of the data set to be used for the test. cv_splits (int): Amount of splits to create. random_state (int): Random number of train_test split. cache_path (str): If given, cache the generated cross validation splits in this folder. Defatuls to ``None``. Returns: scores (dict): Stores the four types of scores that are being evaluate. """ start_time = datetime.utcnow() scores['tuning_metric'] = str(tuning_metric) scores['tuning_metric_kwargs'] = tuning_metric_kwargs tuning_metric = _scorer(tuning_metric, tuning_metric_kwargs) train, test = train_test_split(target_times, test_size=test_size, random_state=random_state) pipeline = GreenGuardPipeline( template, metric=tuning_metric, cost=cost, cv_splits=cv_splits, init_params=init_params, preprocessing=preprocessing, cache_path=cache_path ) # Computing the default test score fit_predict_time = datetime.utcnow() pipeline.fit(train, readings) predictions = pipeline.predict(test, readings) fit_predict_time = datetime.utcnow() - fit_predict_time scores['default_test'] = tuning_metric(test['target'], predictions) # Computing the default cross validation score default_cv_time = datetime.utcnow() session = pipeline.tune(train, readings) session.run(1) default_cv_time = datetime.utcnow() - default_cv_time scores['default_cv'] = pipeline.cv_score # Computing the cross validation score with tuned hyperparameters average_cv_time = datetime.utcnow() session.run(tuning_iterations) average_cv_time = (datetime.utcnow() - average_cv_time) / tuning_iterations scores['tuned_cv'] = pipeline.cv_score # Computing the test score with tuned hyperparameters pipeline.fit(train, readings) predictions = pipeline.predict(test, readings) ground_truth = test['target'] # compute different metrics if tpr: tpr = tpr if isinstance(tpr, list) else [tpr] for value in tpr: threshold = threshold_score(ground_truth, predictions, tpr) scores[f'fpr_tpr/{value}'] = fpr_score(ground_truth, predictions, tpr=tpr) predictions_classes = predictions >= threshold scores[f'accuracy_tpr/{value}'] = accuracy_score(ground_truth, predictions_classes) scores[f'f1_tpr/{value}'] = f1_score(ground_truth, predictions_classes) scores[f'threshold_tpr/{value}'] = threshold_score(ground_truth, predictions, value) if f'accuracy_tpr/{value}' not in LEADERBOARD_COLUMNS: LEADERBOARD_COLUMNS.extend([ f'accuracy_tpr/{value}', f'f1_tpr/{value}', f'fpr_tpr/{value}', f'threshold_tpr/{value}', ]) else: threshold = 0.5 if threshold is None else threshold threshold = threshold if isinstance(threshold, list) else [threshold] for value in threshold: scores[f'fpr_threshold/{value}'] = fpr_score( ground_truth, predictions, threshold=value) predictions_classes = predictions >= threshold scores[f'accuracy_threshold/{value}'] = accuracy_score( ground_truth, predictions_classes) scores[f'f1_threshold/{value}'] = f1_score(ground_truth, predictions_classes) scores[f'tpr_threshold/{value}'] = tpr_score(ground_truth, predictions, value) if f'accuracy_threshold/{value}' not in LEADERBOARD_COLUMNS: LEADERBOARD_COLUMNS.extend([ f'accuracy_threshold/{value}', f'f1_threshold/{value}', f'fpr_threshold/{value}', f'tpr_threshold/{value}', ]) scores['tuned_test'] = tuning_metric(test['target'], predictions) scores['fit_predict_time'] = fit_predict_time scores['default_cv_time'] = default_cv_time scores['average_cv_time'] = average_cv_time scores['total_time'] = datetime.utcnow() - start_time return scores def evaluate_templates( templates, window_size_rule, tuning_iterations=50, init_params=None, preprocessing=0, metrics=None, threshold=None, tpr=None, tuning_metric='roc_auc_score', tuning_metric_kwargs=DEFAULT_TUNING_METRIC_KWARGS, target_times=None, readings=None, cost=False, test_size=0.25, cv_splits=3, random_state=0, cache_path=None, cache_results=None, problem_name=None, output_path=None, progress_bar=None, multiprocess=False ): """Execute the benchmark process and optionally store the result as a ``CSV``. Args: templates (list): List of templates to try. window_size_rule (list): List of tuples (int, str or Timedelta object). metric (function or str): Metric to use. If an ``str`` is give it must be one of the metrics defined in the ``greenguard.metrics.METRICS`` dictionary. tuning_iterations (int): Number of iterations to be used. init_params (dict): Initialization parameters for the pipelines. target_times (DataFrame): Contains the specefication problem that we are solving, which has three columns: * turbine_id: Unique identifier of the turbine which this label corresponds to. * cutoff_time: Time associated with this target. * target: The value that we want to predict. This can either be a numerical value or a categorical label. This column can also be skipped when preparing data that will be used only to make predictions and not to fit any pipeline. readings (DataFrame): Contains the signal data from different sensors, with the following columns: * turbine_id: Unique identifier of the turbine which this reading comes from. * signal_id: Unique identifier of the signal which this reading comes from. * timestamp (datetime): Time where the reading took place, as a datetime. * value (float): Numeric value of this reading. preprocessing (int, list or dict): Number of preprocessing steps to be used. cost (bool): Wheter the metric is a cost function (the lower the better) or not. test_size (float): Percentage of the data set to be used for the test. cv_splits (int): Amount of splits to create. random_state (int): Random number of train_test split. output_path (str): Path where to save the benchmark report. cache_path (str): If given, cache the generated cross validation splits in this folder. Defatuls to ``None``. Returns: pandas.DataFrame or None: If ``output_path`` is ``None`` it will return a ``pandas.DataFrame`` object, else it will dump the results in the specified ``output_path``. Example: >>> from sklearn.metrics import f1_score >>> templates = [ ... 'normalize_dfs_xgb_classifier', ... 'unstack_lstm_timeseries_classifier' ... ] >>> window_size_rule = [ ... ('30d','12h'), ... ('7d','4h') ... ] >>> preprocessing = [0, 1] >>> scores_df = evaluate_templates( ... templates=templates, ... window_size_rule=window_size_rule, ... metric=f1_score, ... tuning_iterations=5, ... preprocessing=preprocessing, ... cost=False, ... test_size=0.25, ... cv_splits=3, ... random_state=0 ... ) >>> scores_df template window_size resample_rule default_test default_cv tuned_cv tuned_test status 0 unstack_lstm_timeseries_classifier 30d 12h 0.720000 0.593634 0.627883 0.775510 OK 1 unstack_lstm_timeseries_classifier 7d 4h 0.723404 0.597440 0.610766 0.745098 OK 2 normalize_dfs_xgb_classifier 30d 12h 0.581818 0.619698 0.637123 0.596491 OK 3 normalize_dfs_xgb_classifier 7d 4h 0.581818 0.619698 0.650367 0.603774 OK """ # noqa if readings is None and target_times is None: target_times, readings = load_demo() init_params = generate_init_params(templates, init_params) preprocessing = generate_preprocessing(templates, preprocessing) scores_list = [] for template, window_rule in product(templates, window_size_rule): window_size, rule = window_rule try: LOGGER.info('Evaluating template %s on problem %s (%s, %s)', template, problem_name, window_size, rule) template_params = init_params[template] template_params = _build_init_params(template, window_size, rule, template_params) template_preprocessing = preprocessing[template] if multiprocess: manager = mp.Manager() scores = manager.dict() process = mp.Process( target=evaluate_template, args=( template, target_times, readings, tuning_iterations, init_params, preprocessing, metrics, threshold, tpr, tuning_metric, tuning_metric_kwargs, cost, cv_splits, test_size, random_state, cache_path, scores ) ) process.start() process.join() if 'tuned_test' not in scores: scores['status'] = 'ERRORED' scores = dict(scores) # parse the managed dict to dict for pandas. else: scores = dict() scores['problem_name'] = problem_name scores['template'] = template scores['window_size'] = window_size scores['resample_rule'] = rule result = evaluate_template( template=template, target_times=target_times, readings=readings, metrics=metrics, tuning_metric=tuning_metric, tuning_metric_kwargs=tuning_metric_kwargs, threshold=threshold, tpr=tpr, tuning_iterations=tuning_iterations, preprocessing=template_preprocessing, init_params=template_params, cost=cost, test_size=test_size, cv_splits=cv_splits, random_state=random_state, cache_path=cache_path ) scores.update(result) scores['status'] = 'OK' except Exception: scores['status'] = 'ERRORED' LOGGER.exception('Could not score template %s ', template) if cache_results: os.makedirs(cache_results, exist_ok=True) template_name = template if os.path.isfile(template_name): template_name = os.path.basename(template_name).replace('.json', '') file_name = '{}_{}_{}_{}.csv'.format(problem_name, template_name, window_size, rule) df = pd.DataFrame([scores]).reindex(LEADERBOARD_COLUMNS, axis=1) df.to_csv(os.path.join(cache_results, file_name), index=False) scores_list.append(scores) if progress_bar: progress_bar.update(1) results = pd.DataFrame.from_records(scores_list) results = results.reindex(LEADERBOARD_COLUMNS, axis=1) if output_path: LOGGER.info('Saving benchmark report to %s', output_path) results.to_csv(output_path) else: return results def _generate_target_times_readings(target_times, readings_path, window_size, rule, signals): """ Returns: pandas.DataFrame: Table of readings for the target times, including the columns ``turbine_id``, ``signal_id``, ``timestamp`` and ``value``. """ csv_loader = CSVLoader( readings_path, rule=rule, ) return csv_loader.load(target_times, window_size=window_size, signals=signals) def make_problems(target_times_paths, readings_path, window_size_resample_rule, output_path=None, signals=None): """Make problems with the target times and readings for each window size and resample rule. Create problems in the accepted format by ``run_benchmark`` as pickle files containing: * ``target_times``: ``pandas.DataFrame`` containing the target times. * ``readings``: ``pandas.DataFrame`` containing the readings for the target times. * ``window_size``: window size value used. * ``resample_rule``: resample rule value used. Or return a ``dict`` containing as keys the names of the problems generated and tuples with the previously specified fields of target times, readings, window size and resample rule. Args: target_times_paths (list): List of paths to CSVs that contain target times. readings_path (str): Path to the folder where readings in raw CSV format can be found. window_size_resample_rule (list): List of tuples (int, str or Timedelta object). output_path (str): Path to save the generated problems. signals (str): List of signal names or csv file that has a `signal_id` column to use as the signal names list. """ if isinstance(target_times_paths, str): target_times_paths = [target_times_paths] if isinstance(target_times_paths, list): target_times_paths = { os.path.basename(path).replace('.csv', ''): path for path in target_times_paths } if output_path: generated_problems = list() else: generated_problems = {} if isinstance(signals, str) and os.path.exists(signals): signals = pd.read_csv(signals).signal_id for problem_name, target_time_path in tqdm(target_times_paths.items()): for window_size, rule in window_size_resample_rule: target_times = pd.read_csv(target_time_path, parse_dates=['cutoff_time']) new_target_times, readings = _generate_target_times_readings( target_times, readings_path, window_size, rule, signals=signals, ) pickle_name = '{}_{}_{}'.format(problem_name, window_size, rule) if output_path: os.makedirs(output_path, exist_ok=True) output_pickle_path = os.path.join(output_path, pickle_name + '.pkl') with open(output_pickle_path, 'wb') as pickle_file: pickle.dump((new_target_times, readings, window_size, rule), pickle_file) generated_problems.append(output_pickle_path) else: generated_problems[pickle_name] = (new_target_times, readings, window_size, rule) return generated_problems def run_benchmark(templates, problems, window_size_resample_rule=None, tuning_iterations=50, signals=None, preprocessing=0, init_params=None, metrics=None, threshold=None, tpr=None, tuning_metric='roc_auc_score', tuning_metric_kwargs=DEFAULT_TUNING_METRIC_KWARGS, cost=False, cv_splits=5, test_size=0.33, random_state=0, cache_path=None, cache_results=None, output_path=None, multiprocess=False): """Execute the benchmark function and optionally store the result as a ``CSV``. This function provides a user-friendly interface to interact with the ``evaluate_templates`` function. It allows the user to specify an ``output_path`` where the results can be stored. If this path is not provided, a ``pandas.DataFrame`` will be returned. This function evaluates each template against each problem for each window size and resample rule possible, and will tune each teamplate for the given amount of tuning iterations. The problems can be a pickle file that contains the following values: * ``target_times``: ``pandas.DataFrame`` containing the target times. * ``readings``: ``pandas.DataFrame`` containing the readings for the target times. * ``window_size``: window size value used. * ``resample_rule``: resample rule value used. Or it can be dictionary containing the problem's name and as values either a path to a pickle file or a tuple containing the previously specified fields. Args: templates (str or list): Name of the json pipelines that will be evaluated against the problems. problems (str, list or dict): There are three possible values for problems: * ``str``: Path to a given problem stored as a pickle file (pkl). * ``list``: List of paths to given problems stored as a pickle files (pkl). * ``dict``: A dict containing as keys the name of the problem and as value the path to a pickle file or a tuple with target times and readings data frames and the window size and resample rule used to generate this problem. The pickle files has to contain a tuple with target times and readings data frames and the window size and resample rule used to generate that problem. We recommend using the function ``make_problems`` to generate those files. window_size_resample_rule (list): List of tuples (int, str or Timedelta object). tuning_iterations (int): Amount of tuning iterations to perfrom over each template. signals (str or list): Path to a csv file containing ``signal_id`` column that we would like to use or a ``list`` of signals that we would like to use. If ``None`` use all the signals from the readings. preprocessing (int, dict or list): There are three possible values for preprocessing: * ``int``: the value will be used for all templates. * ``dict`` with the template name as a key and a number as a value, will be used for that template. * ``list``: each value will be assigned to the corresponding position of self.templates. Defaults to ``0``. init_params (dict or list): There are three possible values for init_params: * Init params ``dict``: It will be used for all templates. * ``dict`` with the name of the template as a key and dictionary with its init params. * ``list``: each value will be assigned to the corresponding position of self.templates. Defaults to ``None``. metric (function or str): Metric to use. If an ``str`` is give it must be one of the metrics defined in the ``greenguard.metrics.METRICS`` dictionary. cost (bool): Whether the metric is a cost function (the lower the better) or not. Defaults to ``False``. cv_splits (int): Number of cross validation folds to use. Defaults to ``5``. test_size (float): Amount of data that will be saved for test, represented in percentage between 0 and 1. random_state (int or RandomState): random state to use for the cross validation partitioning. Defaults to ``0``. cache_path (str): If given, cache the generated cross validation splits in this folder. Defatuls to ``None``. cache_results (str): If provided, store the progress of each pipeline and each problem while runing. output_path (str): If provided, store the results to the given filename. Defaults to ``None``. """ templates = templates if isinstance(templates, (list, tuple)) else [templates] results = list() if isinstance(problems, str): problems = [problems] if isinstance(problems, list): problems = { os.path.basename(problem).replace('.pkl', ''): problem for problem in problems } if signals is not None: if isinstance(signals, str) and os.path.exists(signals): signals = pd.read_csv(signals).signal_id total_runs = len(templates) * len(problems) * len(window_size_resample_rule or [1]) pbar = tqdm(total=total_runs) for problem_name, problem in problems.items(): # remove window_size resample_rule nomenclature from the problem's name problem_name = re.sub(r'\_\d+[DdHhMmSs]', r'', problem_name) if isinstance(problem, str): with open(problem, 'rb') as pickle_file: target_times, readings, orig_window_size, orig_rule = pickle.load(pickle_file) else: target_times, readings, orig_window_size, orig_rule = problem if signals is not None: readings = readings[readings.signal_id.isin(signals)] wsrr = window_size_resample_rule or [(orig_window_size, orig_rule)] orig_window_size = pd.to_timedelta(orig_window_size) orig_rule = pd.to_timedelta(orig_rule) for window_size, resample_rule in wsrr: # window_size can be only smaller than pickle window size # resample rule can be only bigger than picke rule if (orig_window_size >=
pd.to_timedelta(window_size)
pandas.to_timedelta
""" Copyright (C) 2020-2021 <NAME> <...> """ from typing import List, Optional import pandas as pd from tqdm import tqdm # see: https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes #: define conversion for frequency grouping from repostats.data_io import is_in_time_period DATETIME_FREQ = { "D": "%Y-%m-%d", "W": "%Y-w%W", "M": "%Y-%m", "Y": "%Y", } def compute_users_summary(items: List[dict], datetime_from: str = None, datetime_to: str = None) -> pd.DataFrame: """Aggregate issue/PR affiliations and summary counts. >>> items = [dict(type='PR', state='closed', author='me', commenters=['me', 'you']), ... dict(type='PR', state='open', author='me', commenters=['me', 'you']), ... dict(type='issue', state='closed', author='me', commenters=['me', 'you']), ... dict(type='PR', state='merged', author='you', commenters=['me', 'you']), ... dict(type='issue', state='open', author='you', commenters=['me', 'you'])] >>> df = compute_users_summary(items) >>> df.columns = [c.replace('opened', 'o/').replace('merged', 'm/').replace('commented', 'c/') for c in df.columns] >>> df # doctest: +NORMALIZE_WHITESPACE o/ PRs m/ PRs c/ PRs o/ issues m/ issues c/ issues all o/ user me 2 0 1 1 0 1 3 you 1 1 2 1 0 1 2 """ assert items, "nothing to do..." df_items = pd.DataFrame(items) users_stat = [] for user in tqdm(df_items["author"].unique(), desc="Processing users"): user_stat = {"user": user} # parse particular user stats for tp, df in df_items.groupby("type"): df_self_author = df[df["author"] == user] # add selection if it is in range for c_out, c_in in [("created", "created_at"), ("closed", "closed_at")]: if c_in not in df_self_author.columns: df_self_author[c_in] = None df_self_author[c_out] = [ is_in_time_period(dt, datetime_from=datetime_from, datetime_to=datetime_to) for dt in df_self_author[c_in] ] df_merged = df_self_author[df_self_author["state"] == "merged"] df_not_author = df[df["author"] != user] user_stat.update( { # count only opened cases in such time f"opened {tp}s": sum(df_self_author["created"]), # count only closed/merged cases in such time f"merged {tp}s": sum(df_merged["closed"]), # in this time all comments shall be already filtered and we need all issues # as they can be created before time window and commented in given period... f"commented {tp}s": sum(df_not_author["commenters"].apply(lambda l: user in l)), } ) users_stat.append(user_stat) # transform to pandas table df_users = pd.DataFrame(users_stat).set_index(["user"]) df_users["all opened"] = df_users["opened PRs"] + df_users["opened issues"] df_users.sort_values(["all opened"], ascending=False, inplace=True) return df_users def compute_user_comment_timeline( items: List[dict], freq: str = "W", parent_type: Optional[str] = None, ) -> pd.DataFrame: """Aggregate comments from all issues/PRs. >>> items = [dict(created_at='2020-10-05', parent_idx=1, parent_type='issue', author='me'), ... dict(created_at='2020-10-17', parent_idx=2, parent_type='PR', author='me'), ... dict(created_at='2020-10-17', parent_idx=1, parent_type='issue', author='me'), ... dict(created_at='2020-10-29', parent_idx=3, parent_type='issue', author='me'), ... dict(created_at='2020-11-15', parent_idx=3, parent_type='issue', author='you')] >>> compute_user_comment_timeline(items, freq='M', parent_type='issue') # doctest: +NORMALIZE_WHITESPACE author me you created_at 2020-10 2 0 2020-11 0 1 """ assert freq in DATETIME_FREQ, "unsupported freq format, allowed: %r" % DATETIME_FREQ.keys() def _reformat(dt): return
pd.to_datetime(dt)
pandas.to_datetime
### This is type of content-based recommender system ### Steps: # - represent the documents in form of vectors # - find the cosine similarity between the documents and form a similarity matrix # - prepare the document-term matrix (indexing) for fast access # - get the most similar documents import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import numpy as np import pickle ## Load the data dataframe = pd.read_csv('./models/output/results_dataframe.csv') # Cast as a list of values for calculating weights text_data = dataframe['processed_text'].values.tolist() # Calculate TF-IDF matrix def tf_idf(search_keys, data): ## Load from the saved vectorizer later ## TFIDF vectorize the data tf_idf_vectorizer = pickle.load(open('./models/output/tf_idf_vectorizer.pkl', 'rb')) tfidf_weights_matrix = tf_idf_vectorizer.transform(data).toarray() search_query_weights = tf_idf_vectorizer.transform([search_keys]).toarray() ## Dimension reduction of data pca_reduction_model = pickle.load(open('./models/output/pca_method.pkl', 'rb')) dimension_reduced_query = pca_reduction_model.transform(search_query_weights) dimension_reduced_data = pca_reduction_model.transform(tfidf_weights_matrix) return dimension_reduced_query, dimension_reduced_data # Calculate the cosine similarity between search query and TF-IDF vectors def cos_similarity(search_query_weights, tfidf_weights_matrix): cosine_sim = cosine_similarity(search_query_weights, tfidf_weights_matrix) similarity_list = cosine_sim[0] return similarity_list # Calculate number of relevant vectors def calculate_num_vectors(cosine_similarity): num = 0 for i in cosine_similarity: if i != 0.0: num += 1 return num # Calculate the most relevant vectors def most_similar(similarity_list, N): most_similar = [] while N > 0: tmp_index = np.argmax(similarity_list) most_similar.append(tmp_index) similarity_list[tmp_index] = 0 N -= 1 return most_similar # Create weights at specific index for quick retrieval def create_matrix_dict(cosine_similarity): matrix_dict = {} iter_counter = 0 for i in cosine_similarity: matrix_dict[iter_counter] = i iter_counter += 1 return matrix_dict # ----------- # Return the articles with relevant search term def return_relevant_articles(search_term, cluster_dataframe = None): # Create local variables # convert_documents to vector representations if (cluster_dataframe.shape[0] != 0 ): cluster_text_data = cluster_dataframe['processed_text'].values.tolist() search, matrix = tf_idf(search_term, cluster_text_data) dataframe_copy = cluster_dataframe else: search, matrix = tf_idf(search_term, text_data) dataframe_copy = dataframe # Find the cosine similarity cosine_sim_list = cos_similarity(search, matrix) # Get the number of relevant documents num_relevant_vectors = calculate_num_vectors(cosine_sim_list) # Prepare the " indexing " (one of stages in web information retrieval) for faster retrieval # (Similar concept is also used by the Google, namely stored as document-term matrix) dictionary = create_matrix_dict(cosine_sim_list) # Get the most similar items list_of_most_similar = most_similar(cosine_sim_list, num_relevant_vectors) df = pd.DataFrame() for index in list_of_most_similar: article = dataframe_copy.iloc[index] if df.empty: to_dataframe = article.to_frame() df = to_dataframe.T else: to_dataframe = article.to_frame() df =
pd.concat([df, to_dataframe.T], join='outer')
pandas.concat
"""Inference benchmark tool for TensorFlow Serving and Triton.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import csv from requests.sessions import default_headers import distribution import functools import io import numbers import os import pandas as pd import queue as Queue import requests as r import threading import multiprocessing import time import numpy as np # Disable GPU, so tensorflow initializes faster os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import tensorflow.compat.v1 as tf from google.protobuf.json_format import Parse as ProtoParseJson from tensorflow.core.framework import types_pb2 from tensorflow.python.platform import gfile from itertools import cycle, islice from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc from clients import base_client tf.app.flags.DEFINE_integer("num_requests", 20, "Total # of requests sent.") tf.app.flags.DEFINE_integer( "num_warmup_requests", 0, "Number requests to send before starting benchmark.") tf.app.flags.DEFINE_string( "qps_range", "", "Desired client side request QPS in" "one of the following formats:" " - qps - benchmark at one QPS" " - start, stop - benchmark at QPS range [start, stop)" " - start, stop, step - benchmark at QPS range [start, stop) with step" " - [qps1, qps2] - benchmark at give QPS range values", ) tf.app.flags.DEFINE_float("request_timeout", 300.0, "Timeout for inference request.") tf.app.flags.DEFINE_string("model_name", "", "Name of the model being served on the ModelServer") tf.app.flags.DEFINE_string("model_version", "", "Version the model being served on the ModelServer") tf.app.flags.DEFINE_string( "signature_name", "serving_default", "Name of the model signature on the ModelServer", ) tf.app.flags.DEFINE_string( "host", "localhost", "Host name to connect to, localhost by default. Alternatively you can specify" "full URL to send requests to.") tf.app.flags.DEFINE_integer("port", None, "Port to connect to.") tf.app.flags.DEFINE_enum( "mode", "grpc", ["grpc", "sync_grpc", "rest", "triton_grpc", "triton_rest", "vertex_gapic", "vertex_rest"], "Benchmark mode: gRPC, synchronous gRPC, or REST, or Triton format.", ) tf.app.flags.DEFINE_enum("distribution", "uniform", ["uniform", "poisson", "pareto"], "Distribution") tf.app.flags.DEFINE_string( "tfrecord_dataset_path", "", "The path to data in tfrecord or tfrecord.gz format.") tf.app.flags.DEFINE_string( "requests_file_path", "", "The path the predict_pb2.PredictRequest requests file serialized in json format.", ) tf.app.flags.DEFINE_string("jsonl_file_path", "", "The path the dataset file in jsonl format.") tf.app.flags.DEFINE_string("input_name", "input", "The name of the model input tensor.") tf.app.flags.DEFINE_integer("batch_size", None, "Per request batch size.") tf.app.flags.DEFINE_integer("workers", 1, "Number of workers.") tf.app.flags.DEFINE_string( "api_key", "", "API Key for ESP service if authenticating external requests.") tf.app.flags.DEFINE_string("csv_report_filename", "", "Optional filename to generate report") tf.app.flags.DEFINE_string("title", "", "Optional title for the report") tf.app.flags.DEFINE_enum("grpc_compression", "none", ["none", "deflate", "gzip"], "grpc compression") tf.app.flags.DEFINE_string("authorization_header", "", "Authorization header for REST requests.") tf.app.flags.DEFINE_string("grpc_destination", "", "gRPC destination metadata header.") tf.app.flags.DEFINE_string("default_int_type", "", "Default type to use for integer values.") tf.app.flags.DEFINE_string("default_float_type", "", "Default type to use for fractional values.") FLAGS = tf.app.flags.FLAGS def get_client_class(): if FLAGS.mode == "grpc": from clients import tensorflow_serving_grpc return tensorflow_serving_grpc.TensorflowServingGrpc elif FLAGS.mode == "sync_grpc": from clients import tensorflow_serving_sync_grpc return tensorflow_serving_sync_grpc.TensorflowServingSyncGrpc elif FLAGS.mode == "rest": from clients import tensorflow_serving_rest return tensorflow_serving_rest.TensorflowServingRest elif FLAGS.mode == "triton_rest": from clients import triton_rest return triton_rest.TritonRest elif FLAGS.mode == "triton_grpc": from clients import triton_grpc return triton_grpc.TritonGrpc elif FLAGS.mode == "vertex_gapic": from clients import vertex_gapic return vertex_gapic.VertexGapic elif FLAGS.mode == "vertex_rest": from clients import vertex_rest return vertex_rest.VertexRest else: raise ValueError("Invalid mode") def get_grpc_compression(): if FLAGS.grpc_compression == "gzip": return grpc.Compression.Gzip elif FLAGS.grpc_compression == "deflate": return grpc.Compression.Deflate else: return None def get_qps_range(qps_range_string): qps_range_string = qps_range_string.strip() if qps_range_string.startswith("[") and qps_range_string.endswith("]"): qps_range_string = qps_range_string.lstrip("[").rstrip("]") qps_range_list = list(map(lambda v: float(v), qps_range_string.split(","))) return qps_range_list qps_range_list = list(map(lambda v: float(v), qps_range_string.split(","))) qps_range_start = 0 qps_range_step = 1 if len(qps_range_list) == 1: return [qps_range_list[0]] elif len(qps_range_list) == 2: return range(qps_range_list[0], qps_range_list[1]) elif len(qps_range_list) == 3: return range(qps_range_list[0], qps_range_list[1], qps_range_list[2]) else: raise ValueError("Invalid argument qps_range:" + qps_range_start) def merge_results(results, result): for key, value in result.items(): if not key.startswith("_"): if key not in results: results[key] = [value] else: results[key].append(value) def merge_worker_results(worker_results): success = 0 error = 0 reqested_qps = 0 start_time = [] end_time = [] latency = [] avg_miss_rate_percent = [] for worker_result in worker_results: success += worker_result["success"] error += worker_result["error"] reqested_qps += worker_result["reqested_qps"] avg_miss_rate_percent.append(worker_result["avg_miss_rate_percent"]) latency.extend(worker_result["_latency"]) start_time.append(worker_result["_start_time"]) end_time.append(worker_result["_end_time"]) time = np.max(end_time) - np.min(start_time) return { "reqested_qps": reqested_qps, "actual_qps": (success + error) / time, "success": success, "error": error, "time": time, "avg_latency": np.average(latency) * 1000, "p50": np.percentile(latency, 50) * 1000, "p90": np.percentile(latency, 90) * 1000, "p99": np.percentile(latency, 99) * 1000, "avg_miss_rate_percent": np.average(avg_miss_rate_percent), } def print_result(result): v = [] for key, value in result.items(): if not key.startswith("_"): if "float" in str(type(value)): v.append("{}: {:.2f}".format(key, value)) else: v.append("{}: {}".format(key, value)) tf.logging.info("\t".join(v)) def main(argv): del argv tf.disable_v2_behavior() if FLAGS.qps_range is None or FLAGS.qps_range == "": tf.logging.error("Please specify qps_range") exit(1) request_path = None request_format = None if FLAGS.tfrecord_dataset_path != "": request_format = base_client.RequestFormat.TFRECORD request_path = FLAGS.tfrecord_dataset_path elif FLAGS.requests_file_path != "": request_format = base_client.RequestFormat.FILE request_path = FLAGS.requests_file_path elif FLAGS.jsonl_file_path != "": request_format = base_client.RequestFormat.DICTIONARY request_path = FLAGS.jsonl_file_path else: raise ValueError( "Either tfrecord_dataset_path or requests_file_path flag has to be specified" ) http_headers = {} if FLAGS.authorization_header: http_headers["authorization"] = FLAGS.authorization_header grpc_metadata = [] if FLAGS.api_key: grpc_metadata.append(("x-api-key", FLAGS.api_key)) if FLAGS.grpc_destination: grpc_metadata.append(("grpc-destination", FLAGS.grpc_destination)) client_class = get_client_class() client = client_class(FLAGS.host, FLAGS.port, FLAGS.model_name, FLAGS.model_version, FLAGS.signature_name, FLAGS.distribution, FLAGS.input_name, FLAGS.default_int_type, FLAGS.default_float_type, http_headers, grpc_metadata, get_grpc_compression(), FLAGS.request_timeout) tf.logging.info("Loading data") requests_list = client.get_requests(request_format, request_path, FLAGS.num_warmup_requests, FLAGS.batch_size) if len(requests_list) < FLAGS.workers * FLAGS.num_requests: tf.logging.warn("Dataset you specified contains data for {} requests, " "while you need {} requests for each of {} workers. " "Some requests are going to be reused.".format( len(requests_list), FLAGS.num_requests, FLAGS.workers)) results = {} if FLAGS.num_warmup_requests > 0: tf.logging.info("Sending {} warmup requests".format( FLAGS.num_warmup_requests)) warmup_requests = islice(cycle(requests_list), FLAGS.num_warmup_requests) _ = client.run(warmup_requests, FLAGS.num_warmup_requests, get_qps_range(FLAGS.qps_range)[0]) tf.logging.info("Warmup complete") if FLAGS.workers == 1: for qps in get_qps_range(FLAGS.qps_range): worker_requests = islice(cycle(requests_list), FLAGS.num_requests) result = client.run(worker_requests, FLAGS.num_requests, qps) print_result(result) merge_results(results, result) else: def _worker_load_test_func(qps, worker_results, worker_index): worker_requests = islice( cycle(requests_list), worker_index * FLAGS.num_requests, (worker_index + 1) * FLAGS.num_requests, ) worker_results[worker_index] = client.run(worker_requests, FLAGS.num_requests, qps) for qps in get_qps_range(FLAGS.qps_range): worker_processes = [] with multiprocessing.Manager() as manager: worker_results = manager.list() for worker_index in range(FLAGS.workers): worker_process = multiprocessing.Process( target=_worker_load_test_func, args=(qps, worker_results, worker_index)) worker_processes.append(worker_process) worker_results.append({}) worker_process.start() for worker_process in worker_processes: worker_process.join() result = merge_worker_results(worker_results) print_result(result) merge_results(results, result) if FLAGS.title and "reqested_qps" in results and len( results["reqested_qps"]) > 0: results["title"] = [""] * len(results["reqested_qps"]) results["title"][0] = FLAGS.title df =
pd.DataFrame.from_dict(results)
pandas.DataFrame.from_dict
""" this file is for loose exploration, the datasets are not included in the files stream. Author: <NAME> Created: 6/01/2021 10:13 AM """ import netCDF4 as nc import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.cm import get_cmap import glob import os lat, lon = -43.372, 172.333 def get_sim(sim_path, lat=lat, lon=lon, rain_mm=True): variables = [ 'pstar', 'sw_flux', 'wind_speed', 'precipitation', 'mslp', 'rh_max', 'tmax', 'dewpoint', 'rh_min', 'spec_h', 'wind_u', 'tmin', 'wind_v', 'soil_moisture', ] data = nc.Dataset(sim_path) dates = np.array(nc.num2date(data.variables['time0'], data.variables['time0'].units)) dates = pd.to_datetime([e._to_real_datetime() for e in dates]) outdata =
pd.DataFrame(index=dates, columns=variables)
pandas.DataFrame
# env: py3 # Author: <NAME> import pandas as pd import datetime import urllib from urllib.request import urlopen def AirNow(): baseURL = "http://www.airnowapi.org/aq/forecast/" api_key = '###YOUR_API_KEY###' #date = '2018-08-04' # get the current date as input now = datetime.datetime.now() date = str(now) miles = 25 dfs = list() text_file = open("INPUT.txt", "r") latlong = text_file.read().split(' ') text_file.close() lat = latlong[0::2] lon = latlong[1::2] for lats, lons in zip(lat, lon): latlonURL = baseURL + "latLong/?" + urllib.parse.urlencode({ 'format': 'application/json', 'latitude': lats, 'longitude': lons, 'date': date[:10], 'distance': miles, 'API_KEY': api_key }) response = urlopen(latlonURL).read().decode('utf-8') df =
pd.read_json(response)
pandas.read_json
#!/usr/bin/env python """ Executable that reads in a list of patient IDs, finds specified imagery, converts them to NiFTI format, skullstrips and coregisters them (if desired). Also does FAST segmentation Takes the following arguments in the shell -i : a comma-delimited csv containing columns of pt IDs -f : the folder that contains subfolder of pt data. can be nested -t : the folder to write each pts data to -o : an integer bool (0 or 1) indicating whether to overwrite a pts data if they already have a subfolder in the target folder The script will output a txt file to the target folder indicating what pts, if any, could not be located, and if any FLAIR or T1 data could not be found. Example use: /Users/manusdonahue/Documents/Sky/repositories/neurosegment/bin/move_and_prepare -i /Users/manusdonahue/Documents/Sky/stroke_segmentations_playground/pts_of_interest.csv -t /Users/manusdonahue/Documents/Sky/stroke_segmentations_playground/pt_data -f /Volumes/DonahueDataDrive/Data_sort/SCD_Grouped -o 0 """ import os import sys import getopt import glob import shutil from datetime import datetime from contextlib import contextmanager from time import time, sleep import pandas as pd import numpy as np np.random.seed(0) # I am a liar this script is now accessed directly rather than as a bash command overwrite = 0 infile = '/Users/manusdonahue/Documents/Sky/nigeria_mra/orig_report_labels.csv' targetfolder = '/Users/manusdonahue/Documents/Sky/nigeria_mra/data/' filefolder = '/Volumes/DonahueDataDrive/Data_sort/SCD_Grouped/' skullstrip_f_val = 0.15 n_healthy = 100 ##### the following variables generally just need to be set once # column names in the csv that contain pt IDs of interest #pt_id_cols = ['MRI 1 - MR ID', 'MRI 2 - MR ID', 'MRI 3 - MR ID'] pt_id_cols = ['MRI 1 - MR ID'] pt_id_cols_alt = ['Alternate MR ID 1'] rect_name = ['MR 1 ID Rectified'] # dcm2nii is an executable packaged with MRIcron that ca be ued to turn par-recs into NiFTIs path_to_dcm2nii = '/Users/manusdonahue/Documents/Sky/mricron/dcm2nii64' mni_standard = '/usr/local/fsl/data/standard/MNI152_T1_1mm_brain.nii.gz' # relates a unique sequence in a filename that can be used to identify a file # as a certain type of image to the basename for the ouput, whether and what to # register them to, and whether to skullstrip them # signatures work such that if the key is found in the filename and the excl # strings are NOT found in the filename, then that file is IDd as that signature # note that duplicate patients who were given an alternate study ID need to be manually removed signature_relationships = {('MRA_COW','TOF_HEAD'): {'basename': 'headMRA', 'register': 'master', 'skullstrip': 'no', 'excl':['MIP'], 'optional':False}, ('MIP*MRA_COW','MIP*TOF_HEAD'): {'basename': 'headMRA_mip', 'register': 'no', 'skullstrip': 'no', 'excl':[], 'optional':True} } """ signature_relationships = {('MRA_COW','TOF_HEAD'): {'basename': 'headMRA', 'register': 'master', 'skullstrip': 'no', 'excl':['WIP_MIP', 'MIP_WIP'], 'optional':True}, ('TOF_NECK',): {'basename': 'neckMRA', 'register': 'no', 'skullstrip': 'no', 'excl':['WIP_MIP', 'MIP_WIP', 'VWIP'], 'optional':True} } signature_relationships = {('MRA_COW',): {'basename': 'headMRA', 'register': 'master', 'skullstrip': 'no', 'excl':['WIP_MIP', 'MIP_WIP']}, ('lica',): {'basename': 'pc_lica', 'register': 'no', 'skullstrip': 'no', 'excl':[]}, ('rica',): {'basename': 'pc_rica', 'register': 'no', 'skullstrip': 'no', 'excl':[]}, ('lvert',): {'basename': 'pc_lvert', 'register': 'no', 'skullstrip': 'no', 'excl':[]}, ('rvert',): {'basename': 'pc_rvert', 'register': 'no', 'skullstrip': 'no', 'excl':[]}, } """ def any_in_str(s, l): """ Returns whether any of a list of substrings is in a string Parameters ---------- s : str string to look for substrings in. l : list of str substrings to check for in s. Returns ------- bool """ return any([substr in s for substr in l]) start = time() @contextmanager def suppress_stdout(): with open(os.devnull, "w") as devnull: old_stdout = sys.stdout sys.stdout = devnull try: yield finally: sys.stdout = old_stdout def get_terminal(path): """ Takes a filepath or directory tree and returns the last file or directory Parameters ---------- path : path path in question. Returns ------- str of only the final file or directory. """ return os.path.basename(os.path.normpath(path)) successful = 0 # datetime object containing current date and time now = datetime.now() dt_string = now.strftime("%d-%m-%y-%H+%M") message_file_name = os.path.join(targetfolder, f'move_and_prepare_messages_{dt_string}.txt') df_file_name = os.path.join(targetfolder, f'move_and_prepare_tabular_{dt_string}.csv') trimmed_file_name = os.path.join(targetfolder, f'pt_data.csv') message_file = open(message_file_name, 'w') message_file.write('Status messages for move_and_prepare\n\nSignatures') for key, val in signature_relationships.items(): message_file.write(f'\n{key}\n\t{str(val)}') message_file.write('\n\n\n') #extract pt IDs raw_data = pd.read_csv(infile) for i,val in enumerate(pt_id_cols): mrs = raw_data[pt_id_cols[i]] mrs_alt = raw_data[pt_id_cols_alt[i]] raw_data[rect_name[i]] = mrs_alt.combine_first(mrs) #not_excluded = raw_data['Exclude from Analysis (choice=exclude)'] == 'Unchecked' not_inadequate = raw_data['Result of MRA Head 1'] != 'Technically inadequate' is_done = raw_data['Result of MRA Head 1'] != 'Not done' not_post_transf = raw_data['Is this patient post-transplant at initial visit?'] != 'Yes' normal_or_scd = [any([i,j]) for i,j in zip(raw_data['Hemoglobin genotype'] == 'Normal (AA)', raw_data['Hemoglobin genotype'] == 'SS')] #keep = [all(i) for i in zip(not_excluded, not_inadequate, is_done, not_post_transf, normal_or_scd)] keep = [all(i) for i in zip(not_inadequate, is_done, not_post_transf, normal_or_scd)] pt_data = raw_data[keep] has_stenosis = pt_data[pt_data['Is there intracranial stenosis (>50%)?'] == 'Yes'] is_healthy = pt_data[pt_data['Result of MRA Head 1'] == 'Normal'] n_stenosis = len(has_stenosis) add_healthy = is_healthy.sample(n_healthy) pt_data = has_stenosis.append(add_healthy) # FOR TESTING # pt_data = pt_data.iloc[18:20] n_unique_pts = len(pt_data) print(f'We have {n_unique_pts} patients. {len(has_stenosis)} stenosis, {len(add_healthy)} healthy') sleep(2) pt_ids = [] for col in rect_name: of_interest = list(pt_data[col]) pt_ids.extend(of_interest) pt_ids = [x for x in pt_ids if str(x) != 'nan'] # create a nested dict giving the the status of each pt id (found their file, found specific scans) inner_dict = {'found_pt':0} for key in signature_relationships: inner_dict[key] = (0,0) inner_dict['successful'] = 0 pt_status = {pt:inner_dict.copy() for pt in pt_ids} # start processing all_subdirectories = [x[0] for x in os.walk(filefolder)] # list of all possible subdirectories for i, pt in enumerate(pt_ids): print(f'\nOn patient {pt} ({i+1} of {len(pt_ids)})\n') candidate_folders = [sub for sub in all_subdirectories if get_terminal(sub) == pt] # check if last subfolder is pt name n_cands = len(candidate_folders) pt_status[pt]['found_pt'] = n_cands if n_cands == 1: data_folder = candidate_folders[0] else: print(f'------ pt {pt} has {n_cands} candidate folders. skipping ------') continue master_output_folder = os.path.join(targetfolder, pt) if os.path.exists(master_output_folder): if overwrite: shutil.rmtree(master_output_folder) else: print(f'--- pt {pt} exists in target folder and overwrite is disabled. skipping ---') continue has_required_files = True bin_folder = os.path.join(master_output_folder, 'bin') # bin for working with data processed_folder = os.path.join(master_output_folder, 'processed') # where we'll write the final data to acquired_folder = os.path.join(data_folder, 'Acquired') # where we're looking to pull data from sig_tracker = {} # to store filepaths to files optional_and_missing = [] for signature, subdict in signature_relationships.items(): candidate_pars = [] candidate_recs = [] # note that the signature matching includes the full path. probably not a great idea for subsig in signature: potential_pars = glob.glob(os.path.join(acquired_folder, f'*{subsig}*.PAR')) potential_recs = glob.glob(os.path.join(acquired_folder, f'*{subsig}*.REC')) potential_pars = [f for f in potential_pars if not any_in_str(f, subdict['excl'])] potential_recs = [f for f in potential_recs if not any_in_str(f, subdict['excl'])] candidate_pars.extend(potential_pars) candidate_recs.extend(potential_recs) n_cand_files = (len(candidate_pars), len(candidate_recs)) pt_status[pt][signature] = n_cand_files if all([i >= 1 for i in n_cand_files]): sig_tracker[signature] = {'original_par': candidate_pars[-1]} sig_tracker[signature]['original_rec'] = candidate_recs[-1] moved_par = os.path.join(bin_folder, get_terminal(candidate_pars[-1])) moved_rec = os.path.join(bin_folder, get_terminal(candidate_recs[-1])) sig_tracker[signature]['moved_par'] = moved_par sig_tracker[signature]['moved_rec'] = moved_rec if any(i != 1 for i in n_cand_files): print(f'warning: pt {pt} returned {n_cand_files} for {signature}. using last option') else: if subdict['optional']: print(f'pt {pt} has {n_cand_files} candidate par/recs for {signature}, but this an optional signature') optional_and_missing.append(signature) else: print(f'pt {pt} has {n_cand_files} candidate par/recs for {signature}. will be skipped') has_required_files = False if not has_required_files: # if we don't have all the files specified, just move on continue os.mkdir(master_output_folder) os.mkdir(bin_folder) os.mkdir(processed_folder) try: for signature, subdict in signature_relationships.items(): if signature in optional_and_missing: continue # move the file, convert to NiFTI and rename shutil.copyfile(sig_tracker[signature]['original_par'], sig_tracker[signature]['moved_par']) shutil.copyfile(sig_tracker[signature]['original_rec'], sig_tracker[signature]['moved_rec']) moved_par_without_ext = sig_tracker[signature]['moved_par'][:-4] conversion_command = f'{path_to_dcm2nii} -o {bin_folder} -a n -i n -d n -p n -e n -f y -v n {sig_tracker[signature]["moved_par"]}' with suppress_stdout(): os.system(conversion_command) sig_tracker[signature]['raw_nifti'] = os.path.join(bin_folder, f'{subdict["basename"]}_raw.nii.gz') os.rename(f'{moved_par_without_ext}.nii.gz', sig_tracker[signature]['raw_nifti']) except: print(f'\n!!!!!!!!!! warning: encountered unexpected error while copying and converting images for pt {pt}. folder will be deleted !!!!!!!!!!\n') shutil.rmtree(master_output_folder) continue # skullstripping for signature, subdict in signature_relationships.items(): if signature in optional_and_missing: continue if subdict['skullstrip'] == 'yes': sig_tracker[signature]['skullstripped_nifti'] = os.path.join(bin_folder, f'{subdict["basename"]}_stripped.nii.gz') stripping_command = f"bet {sig_tracker[signature]['raw_nifti']} {sig_tracker[signature]['skullstripped_nifti']} -f {skullstrip_f_val}" os.system(stripping_command) else: sig_tracker[signature]['skullstripped_nifti'] = sig_tracker[signature]['raw_nifti'] # registration for signature, subdict in signature_relationships.items(): if signature in optional_and_missing: continue if subdict['register'] == 'master': master_ref = sig_tracker[signature]['skullstripped_nifti'] omat_path = os.path.join(processed_folder, 'master2mni.mat') mni_path = os.path.join(bin_folder, f'{subdict["basename"]}_mni.nii.gz') omat_cmd = f'flirt -in {master_ref} -ref {mni_standard} -out {mni_path} -omat omat_path' os.system(omat_cmd) for signature, subdict in signature_relationships.items(): if signature in optional_and_missing: continue if subdict['register'] not in ('master', 'no'): sig_tracker[signature]['registered_nifti'] = os.path.join(bin_folder, f'{subdict["basename"]}_registered.nii.gz') register_command = f"flirt -in {sig_tracker[signature]['skullstripped_nifti']} -ref {master_ref} -out {sig_tracker[signature]['registered_nifti']}" os.system(register_command) else: sig_tracker[signature]['registered_nifti'] = sig_tracker[signature]['skullstripped_nifti'] # move files to their final home :) for signature, subdict in signature_relationships.items(): if signature in optional_and_missing: continue sig_tracker[signature]['final_nifti'] = os.path.join(master_output_folder, f'{subdict["basename"]}.nii.gz') shutil.copyfile(sig_tracker[signature]['registered_nifti'], sig_tracker[signature]['final_nifti']) # delete the subfolders folder_glob = np.array(glob.glob(os.path.join(master_output_folder, '*/'))) # list of all possible subdirectories for f in folder_glob: shutil.rmtree(f) # if the master folder is empty, that means that all files were optionally, but none were found. I'd call that a failure and delete the folder # but otherwise it's fine file_glob = np.array(glob.glob(os.path.join(master_output_folder, '*'))) # list of all files if len(file_glob) == 0: print(f'No files transferred to {master_output_folder}: deleting folder and marking as failure') pt_status[pt]['successful'] = 0 successful += 0 shutil.rmtree(master_output_folder) else: pt_status[pt]['successful'] = 1 successful += 1 # write status log end = time() runtime = end-start runtime_minutes_pretty = round(runtime/60, 2) message_file.write(f'Successfully preprocessed {successful} of {len(pt_ids)} scans from {n_unique_pts} unique patients. Running time: {runtime_minutes_pretty} minutes\n\n\n') df = pd.DataFrame() for key, val in pt_status.items(): message_file.write(f'Patient {key}\n\t{str(val)}\n\n') appender =
pd.Series(val, name=key)
pandas.Series
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Series, Timestamp, date_range, isna, ) import pandas._testing as tm def test_where_unsafe_int(any_signed_int_numpy_dtype): s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype) mask = s < 5 s[mask] = range(2, 7) expected = Series( list(range(2, 7)) + list(range(5, 10)), dtype=any_signed_int_numpy_dtype, ) tm.assert_series_equal(s, expected) def test_where_unsafe_float(float_numpy_dtype): s = Series(np.arange(10), dtype=float_numpy_dtype) mask = s < 5 s[mask] = range(2, 7) data = list(range(2, 7)) + list(range(5, 10)) expected = Series(data, dtype=float_numpy_dtype) tm.assert_series_equal(s, expected) @pytest.mark.parametrize( "dtype,expected_dtype", [ (np.int8, np.float64), (np.int16, np.float64), (np.int32, np.float64), (np.int64, np.float64), (np.float32, np.float32), (np.float64, np.float64), ], ) def test_where_unsafe_upcast(dtype, expected_dtype): # see gh-9743 s = Series(np.arange(10), dtype=dtype) values = [2.5, 3.5, 4.5, 5.5, 6.5] mask = s < 5 expected = Series(values + list(range(5, 10)), dtype=expected_dtype) s[mask] = values tm.assert_series_equal(s, expected) def test_where_unsafe(): # see gh-9731 s = Series(np.arange(10), dtype="int64") values = [2.5, 3.5, 4.5, 5.5] mask = s > 5 expected = Series(list(range(6)) + values, dtype="float64") s[mask] = values tm.assert_series_equal(s, expected) # see gh-3235 s = Series(np.arange(10), dtype="int64") mask = s < 5 s[mask] = range(2, 7) expected = Series(list(range(2, 7)) + list(range(5, 10)), dtype="int64") tm.assert_series_equal(s, expected) assert s.dtype == expected.dtype s = Series(np.arange(10), dtype="int64") mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype="int64") tm.assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 msg = "cannot assign mismatch length to masked array" with pytest.raises(ValueError, match=msg): s[mask] = [5, 4, 3, 2, 1] with pytest.raises(ValueError, match=msg): s[mask] = [0] * 5 # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) tm.assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] assert isna(result) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isna(s)] expected = Series(np.nan, index=[9]) tm.assert_series_equal(result, expected) def test_where(): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] tm.assert_series_equal(rs, rs2) rs = s.where(cond, -s) tm.assert_series_equal(rs, s.abs()) rs = s.where(cond) assert s.shape == rs.shape assert rs is not s # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) tm.assert_series_equal(rs, expected) expected = s2.abs() expected.iloc[0] = s2[0] rs = s2.where(cond[:3], -s2) tm.assert_series_equal(rs, expected) def test_where_non_keyword_deprecation(): # GH 41485 s = Series(range(5)) msg = ( "In a future version of pandas all arguments of " "Series.where except for the arguments 'cond' " "and 'other' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = s.where(s > 1, 10, False) expected = Series([10, 10, 2, 3, 4]) tm.assert_series_equal(expected, result) def test_where_error(): s = Series(np.random.randn(5)) cond = s > 0 msg = "Array conditional must be same shape as self" with pytest.raises(ValueError, match=msg): s.where(1) with pytest.raises(ValueError, match=msg): s.where(cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2])
tm.assert_series_equal(s, expected)
pandas._testing.assert_series_equal
import pandas as pd import numpy as np from sklearn.metrics.pairwise import cosine_similarity import re import sklearn.metrics.pairwise as pw from scipy import sparse from sklearn.metrics.pairwise import pairwise_distances from scipy.sparse.linalg import svds def recommend_books_userbased(userID): books_details_df = pd.read_csv('C:/Users/Nikhita/Desktop/Dataset/Final/final_book_details.csv') df_ratings = pd.read_csv('C:/Users/Nikhita/Desktop/Dataset/Final/ratings.csv') df_books_ratings = df_ratings.pivot( index='user_id', columns='book_id', values='rating' ).fillna(0) R = df_books_ratings.values user_ratings_mean = np.mean(R, axis=1) R_demeaned = R - user_ratings_mean.reshape(-1, 1) U, sigma, Vt = svds(R_demeaned, k=50) sigma = np.diag(sigma) all_user_predicted_ratings = np.dot(np.dot(U, sigma), Vt) + user_ratings_mean.reshape(-1, 1) preds_df =
pd.DataFrame(all_user_predicted_ratings, columns=df_books_ratings.columns)
pandas.DataFrame
import pandas as pd import numpy as np from backtester.constants import * class InstrumentData(object): ''' ''' def __init__(self, instrumentId, tradeSymbol, fileName=None, chunkSize=None): self.__instrumentId = instrumentId self.__tradeSymbol = tradeSymbol self.__fileName = fileName self.__bookDataSize = None if chunkSize is None: if fileName: self.__bookData = pd.read_csv(fileName, index_col=0, parse_dates=True, dtype=float) self.__bookData.dropna(inplace=True) self.__bookDataSize = len(self.__bookData) self.getBookDataChunk = self.__getBookDataInChunksFromDataFrame else: self.__bookData = pd.read_csv(fileName, index_col=0, parse_dates=True, dtype=float, chunksize=chunkSize) self.getBookDataChunk = self.__getBookDataInChunksFromFile def getInstrumentId(self): return self.__instrumentId def getTradeSymbol(self): return self.__tradeSymbol def getBookDataSize(self): if self.__bookDataSize is None: self.__bookDataSize = len(pd.read_csv(self.__fileName, index_col=0, usecols=[0])) return self.__bookDataSize def setBookData(self, data): self.__bookData = data self.__bookDataSize = len(self.__bookData) def getBookData(self): return self.__bookData def getBookDataByFeature(self, feature): return self.__bookData[feature] # returns a chunk from already completely loaded data def __getBookDataInChunksFromDataFrame(self, chunkSize): if chunkSize <=0 : logError("chunkSize must be a positive integer") for chunkNumber, bookDataChunk in self.__bookData.groupby(np.arange(self.__bookDataSize) // chunkSize): yield (chunkNumber, bookDataChunk) # returns a chunk from __bookData generator after processing data # TODO: implement proper padding such that all instruments have same index set (timeUpdates) def __getBookDataInChunksFromFile(self, dateRange): chunkNumber = -1 for bookDataChunk in self.__bookData: chunkNumber += 1 bookDataChunk = self.filterDataByDates(bookDataChunk, dateRange) yield (chunkNumber, bookDataChunk) # returns all timestamps in pandas series format def getAllTimestamps(self): if isinstance(self.__bookData, pd.DataFrame): return self.__bookData.index else: return pd.read_csv(self.__fileName, index_col=0, usecols=[0]).index # returns list of bookDataFeatures (columns) def getBookDataFeatures(self): if isinstance(self.__bookData, pd.DataFrame): return list(self.__bookData.columns) else: return list(pd.read_csv(self.__fileName, index_col=0, nrows=1).columns) def getTypeOfInstrument(self): return INSTRUMENT_TYPE_STOCK def filterDataByDates(self, dateRange): if (dateRange is []) or (dateRange is ()): return elif type(dateRange) is list: frames = [] for dr in dateRange: frames.append(self.__bookData[dr[0]:dr[1]]) self.__bookData = pd.concat(frames) else: self.__bookData = self.__bookData[dateRange[0]:dateRange[1]] self.__bookDataSize = len(self.__bookData) def padInstrumentData(self, timeUpdates, method='ffill'): timeUpdateSeries = pd.Series(timeUpdates) if not timeUpdateSeries.isin(self.__bookData.index).all(): df = pd.DataFrame(index=timeUpdates, columns=self.__bookData.columns) df.at[self.__bookData.index] = self.__bookData.copy() df.fillna(method=method, inplace=True) df.fillna(0.0, inplace=True) del self.__bookData self.__bookData = df self.__bookDataSize = len(self.__bookData) # For internal use only def __padInstrumentData(self, timeUpdates, data, method='ffill'): timeUpdateSeries = pd.Series(timeUpdates) if not timeUpdateSeries.isin(data.index).all(): newDataDf = pd.DataFrame(index=timeUpdates, columns=data.columns) newDataDf.at[data.index] = data newDataDf.fillna(method=method, inplace=True) newDataDf.fillna(0.0, inplace=True) return newDataDf return data def __filterDataByDates(self, data, dateRange): if (dateRange is []) or (dateRange is ()) or data is None: return data elif type(dateRange) is list: frames = [] for dr in dateRange: frames.append(data[dr[0]:dr[1]]) return
pd.concat(frames)
pandas.concat
import numpy as np import math import pandas as pd import pandasql as ps import matplotlib.pyplot as plt import pickle import multiprocessing ## Function to divide the GRID Area into Pixels ## Parameter Needed - 1. pixlatmax - float - Maximum Value of Lattitude( GRID Boundary) 2. pixlatmin - float - Minimum value of the lattitudes( GRID Boundary) ## 3. pixlonmax - float - Maximum value of Longitude( GRID Boundary) 4. pixlonmin - float - Minimum value of longitude( GRID Boundary) ## 5. pixelsize - Number - Size of Earch Pixel in GRID(Number of Pixel in Grid) 6. Grid No - Number - The Id of Grid def GetPixelDF(pixlatmin,pixlatmax,pixlonmin,pixlonmax,pixelsize,grid_no): fact=100000000 latmin = np.int(pixlatmin*fact) latmax = np.int(pixlatmax*fact) longmin = np.int(pixlonmin*fact) longmax = np.int(pixlonmax*fact) pixelLatRangeStep = np.int((latmax-latmin)/(pixelsize)) pixelLonRangeStep = np.int((longmax-longmin)/(pixelsize)) pixlatvals = list(np.round(np.arange(latmin,latmax,pixelLatRangeStep)/fact,5)) if len(pixlatvals) == pixelsize: pixlatvals.append(pixlatmax) pixlonvals = list(np.round(np.arange(longmin,longmax,pixelLonRangeStep)/fact,5)) if len(pixlonvals) == pixelsize: pixlonvals.append(pixlonmax) ret_df = [] pixno = 1 for i in range(len(pixlatvals)-1): minlat = pixlatvals[i] maxlat = pixlatvals[i+1] for j in range(len(pixlonvals)-1): minlong = pixlonvals[j] maxlong = pixlonvals[j+1] ret_df.append([grid_no,pixno,minlat,maxlat,minlong,maxlong]) pixno +=1 ret_df = pd.DataFrame(ret_df,columns =['grid','pixno','minlat','maxlat','minlong','maxlong']) return ret_df ## Function to divide the whole country into GRIDS and Pixels ## Parameter Needed - 1. latlongrange - Tuple - Coordinate boundary of the country(south, north, west, east) 2. latstep - number -Number of division under lattitude range ## 3. longstep - Number - Number of division under longitude range 4. margin - Number - Overlapping adjustment for pixel boundaries ## 5. pixelsize - Number - Pixelsize of each subpixel 6. counties - Dataframe - The county Dataframe containing the lattitude longitude and population data def get_The_Area_Grid(latlongrange,latstep,longstep,margin,pixelsize, counties): fact=100000000 (min_lat,max_lat,min_long,max_long) = latlongrange#(23, 49,-124.5, -66.31) min_lat = np.int(min_lat*fact) max_lat = np.int(max_lat*fact) min_long = np.int(min_long*fact) max_long = np.int(max_long*fact) range_of_longitude = max_long - min_long range_of_latitude = max_lat - min_lat block_longitude = np.int(range_of_longitude/(longstep)) block_latitude = np.int(range_of_latitude/(latstep)) lattitudes = list(np.round(np.arange(min_lat,max_lat,block_latitude)/fact,5)) if len(lattitudes) == latstep: lattitudes.append(max_lat/fact) longitudes = list(np.round(np.arange(min_long,max_long,block_longitude)/fact,5)) if len(longitudes) == longstep: longitudes.append(max_long/fact) print(len(lattitudes),len(longitudes)) #print(longitudes) Area_Grid = {} Area_pixel_Grid =
pd.DataFrame()
pandas.DataFrame
from glob import glob import os import pandas as pd from tqdm import tqdm import yaml def read_lf_list(path: str, twinting: bool = True) -> list: """ input: --------- path [str]: path to alternative writing dictionary with the following structure: ``` муу|muu|mu|... ... ``` return: --------- list of list of words """ data = [] with open(path, "r") as reader: for l in reader.readlines(): l = l.rstrip("\n") words = [w.strip() for w in l.split("|")] data.append(words) if twinting and len(data[0]) > 0: from .twint_helper import getAndSaveTweetsByKeyword for words in data: for word in words: getAndSaveTweetsByKeyword(word) return data def read_config(path: str) -> dict: config: str with open(path, 'r') as stream: try: config = yaml.safe_load(stream) print(f"""---------- CONFIG ----------\n{config}\n""") except yaml.YAMLError as exc: print(exc) return config def read_tweet_dump(directory: str) -> pd.DataFrame: from .config import config ll = sorted(glob(os.path.join(directory, "*.csv"))) if len(ll) == 0: raise Exception(f"No csv data found inside {directory}") df = pd.DataFrame(columns=config['data']['columns']) for l in tqdm(ll): df = df.append(
pd.read_csv(l, usecols=config['data']['columns'])
pandas.read_csv
""" Tests for the pandas.io.common functionalities """ import mmap import os import re import pytest from pandas.compat import FileNotFoundError, StringIO, is_platform_windows import pandas.util._test_decorators as td import pandas as pd import pandas.util.testing as tm import pandas.io.common as icom class CustomFSPath(object): """For testing fspath on unknown objects""" def __init__(self, path): self.path = path def __fspath__(self): return self.path # Functions that consume a string path and return a string or path-like object path_types = [str, CustomFSPath] try: from pathlib import Path path_types.append(Path) except ImportError: pass try: from py.path import local as LocalPath path_types.append(LocalPath) except ImportError: pass HERE = os.path.abspath(os.path.dirname(__file__)) # https://github.com/cython/cython/issues/1720 @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning") class TestCommonIOCapabilities(object): data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_expand_user(self): filename = '~/sometest' expanded_name = icom._expand_user(filename) assert expanded_name != filename assert os.path.isabs(expanded_name) assert os.path.expanduser(filename) == expanded_name def test_expand_user_normal_path(self): filename = '/somefolder/sometest' expanded_name = icom._expand_user(filename) assert expanded_name == filename assert os.path.expanduser(filename) == expanded_name @td.skip_if_no('pathlib') def test_stringify_path_pathlib(self): rel_path = icom._stringify_path(Path('.')) assert rel_path == '.' redundant_path = icom._stringify_path(Path('foo//bar')) assert redundant_path == os.path.join('foo', 'bar') @td.skip_if_no('py.path') def test_stringify_path_localpath(self): path = os.path.join('foo', 'bar') abs_path = os.path.abspath(path) lpath = LocalPath(path) assert icom._stringify_path(lpath) == abs_path def test_stringify_path_fspath(self): p = CustomFSPath('foo/bar.csv') result = icom._stringify_path(p) assert result == 'foo/bar.csv' @pytest.mark.parametrize('extension,expected', [ ('', None), ('.gz', 'gzip'), ('.bz2', 'bz2'), ('.zip', 'zip'), ('.xz', 'xz'), ]) @pytest.mark.parametrize('path_type', path_types) def test_infer_compression_from_path(self, extension, expected, path_type): path = path_type('foo/bar.csv' + extension) compression = icom._infer_compression(path, compression='infer') assert compression == expected def test_get_filepath_or_buffer_with_path(self): filename = '~/sometest' filepath_or_buffer, _, _, should_close = icom.get_filepath_or_buffer( filename) assert filepath_or_buffer != filename assert os.path.isabs(filepath_or_buffer) assert os.path.expanduser(filename) == filepath_or_buffer assert not should_close def test_get_filepath_or_buffer_with_buffer(self): input_buffer = StringIO() filepath_or_buffer, _, _, should_close = icom.get_filepath_or_buffer( input_buffer) assert filepath_or_buffer == input_buffer assert not should_close def test_iterator(self): reader = pd.read_csv(StringIO(self.data1), chunksize=1) result = pd.concat(reader, ignore_index=True) expected = pd.read_csv(StringIO(self.data1)) tm.assert_frame_equal(result, expected) # GH12153 it = pd.read_csv(StringIO(self.data1), chunksize=1) first = next(it) tm.assert_frame_equal(first, expected.iloc[[0]]) tm.assert_frame_equal(pd.concat(it), expected.iloc[1:]) @pytest.mark.parametrize('reader, module, error_class, fn_ext', [ (pd.read_csv, 'os', FileNotFoundError, 'csv'), (pd.read_fwf, 'os', FileNotFoundError, 'txt'), (pd.read_excel, 'xlrd', FileNotFoundError, 'xlsx'), (pd.read_feather, 'feather', Exception, 'feather'), (pd.read_hdf, 'tables', FileNotFoundError, 'h5'), (pd.read_stata, 'os', FileNotFoundError, 'dta'), (pd.read_sas, 'os', FileNotFoundError, 'sas7bdat'), (pd.read_json, 'os', ValueError, 'json'), (pd.read_msgpack, 'os', ValueError, 'mp'), (pd.read_pickle, 'os', FileNotFoundError, 'pickle'), ]) def test_read_non_existant(self, reader, module, error_class, fn_ext): pytest.importorskip(module) path = os.path.join(HERE, 'data', 'does_not_exist.' + fn_ext) with pytest.raises(error_class): reader(path) @pytest.mark.parametrize('reader, module, error_class, fn_ext', [ (pd.read_csv, 'os', FileNotFoundError, 'csv'), (pd.read_fwf, 'os', FileNotFoundError, 'txt'), (pd.read_excel, 'xlrd', FileNotFoundError, 'xlsx'), (pd.read_feather, 'feather', Exception, 'feather'), (pd.read_hdf, 'tables', FileNotFoundError, 'h5'), (pd.read_stata, 'os', FileNotFoundError, 'dta'), (pd.read_sas, 'os', FileNotFoundError, 'sas7bdat'), (pd.read_json, 'os', ValueError, 'json'), (pd.read_msgpack, 'os', ValueError, 'mp'), (pd.read_pickle, 'os', FileNotFoundError, 'pickle'), ]) def test_read_expands_user_home_dir(self, reader, module, error_class, fn_ext, monkeypatch): pytest.importorskip(module) path = os.path.join('~', 'does_not_exist.' + fn_ext) monkeypatch.setattr(icom, '_expand_user', lambda x: os.path.join('foo', x)) message = "".join(["foo", os.path.sep, "does_not_exist.", fn_ext]) with pytest.raises(error_class, message=re.escape(message)): reader(path) def test_read_non_existant_read_table(self): path = os.path.join(HERE, 'data', 'does_not_exist.' + 'csv') with pytest.raises(FileNotFoundError): with tm.assert_produces_warning(FutureWarning): pd.read_table(path) @pytest.mark.parametrize('reader, module, path', [ (pd.read_csv, 'os', ('io', 'data', 'iris.csv')), (pd.read_fwf, 'os', ('io', 'data', 'fixed_width_format.txt')), (pd.read_excel, 'xlrd', ('io', 'data', 'test1.xlsx')), (pd.read_feather, 'feather', ('io', 'data', 'feather-0_3_1.feather')), (pd.read_hdf, 'tables', ('io', 'data', 'legacy_hdf', 'datetimetz_object.h5')), (pd.read_stata, 'os', ('io', 'data', 'stata10_115.dta')), (pd.read_sas, 'os', ('io', 'sas', 'data', 'test1.sas7bdat')), (pd.read_json, 'os', ('io', 'json', 'data', 'tsframe_v012.json')), (pd.read_msgpack, 'os', ('io', 'msgpack', 'data', 'frame.mp')), (pd.read_pickle, 'os', ('io', 'data', 'categorical_0_14_1.pickle')), ]) def test_read_fspath_all(self, reader, module, path, datapath): pytest.importorskip(module) path = datapath(*path) mypath = CustomFSPath(path) result = reader(mypath) expected = reader(path) if path.endswith('.pickle'): # categorical tm.assert_categorical_equal(result, expected) else: tm.assert_frame_equal(result, expected) def test_read_fspath_all_read_table(self, datapath): path = datapath('io', 'data', 'iris.csv') mypath = CustomFSPath(path) with tm.assert_produces_warning(FutureWarning): result = pd.read_table(mypath) with tm.assert_produces_warning(FutureWarning): expected = pd.read_table(path) if path.endswith('.pickle'): # categorical tm.assert_categorical_equal(result, expected) else: tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('writer_name, writer_kwargs, module', [ ('to_csv', {}, 'os'), ('to_excel', {'engine': 'xlwt'}, 'xlwt'), ('to_feather', {}, 'feather'), ('to_html', {}, 'os'), ('to_json', {}, 'os'), ('to_latex', {}, 'os'), ('to_msgpack', {}, 'os'), ('to_pickle', {}, 'os'), ('to_stata', {}, 'os'), ]) def test_write_fspath_all(self, writer_name, writer_kwargs, module): p1 = tm.ensure_clean('string') p2 = tm.ensure_clean('fspath') df = pd.DataFrame({"A": [1, 2]}) with p1 as string, p2 as fspath: pytest.importorskip(module) mypath = CustomFSPath(fspath) writer = getattr(df, writer_name) writer(string, **writer_kwargs) with open(string, 'rb') as f: expected = f.read() writer(mypath, **writer_kwargs) with open(fspath, 'rb') as f: result = f.read() assert result == expected def test_write_fspath_hdf5(self): # Same test as write_fspath_all, except HDF5 files aren't # necessarily byte-for-byte identical for a given dataframe, so we'll # have to read and compare equality pytest.importorskip('tables') df = pd.DataFrame({"A": [1, 2]}) p1 = tm.ensure_clean('string') p2 = tm.ensure_clean('fspath') with p1 as string, p2 as fspath: mypath = CustomFSPath(fspath) df.to_hdf(mypath, key='bar') df.to_hdf(string, key='bar') result = pd.read_hdf(fspath, key='bar') expected = pd.read_hdf(string, key='bar') tm.assert_frame_equal(result, expected) @pytest.fixture def mmap_file(datapath): return datapath('io', 'data', 'test_mmap.csv') class TestMMapWrapper(object): def test_constructor_bad_file(self, mmap_file): non_file = StringIO('I am not a file') non_file.fileno = lambda: -1 # the error raised is different on Windows if
is_platform_windows()
pandas.compat.is_platform_windows
from evalutils.exceptions import ValidationError from evalutils.io import CSVLoader, FileLoader, ImageLoader import json import nibabel as nib import numpy as np import os.path from pathlib import Path from pandas import DataFrame, MultiIndex import scipy.ndimage from scipy.ndimage.interpolation import map_coordinates, zoom from surface_distance import * ##### paths ##### DEFAULT_INPUT_PATH = Path("/input/") DEFAULT_GROUND_TRUTH_PATH = Path("/opt/evaluation/ground-truth/") DEFAULT_EVALUATION_OUTPUT_FILE_PATH = Path("/output/metrics.json") ##### metrics ##### def jacobian_determinant(disp): _, _, H, W, D = disp.shape gradx = np.array([-0.5, 0, 0.5]).reshape(1, 3, 1, 1) grady = np.array([-0.5, 0, 0.5]).reshape(1, 1, 3, 1) gradz = np.array([-0.5, 0, 0.5]).reshape(1, 1, 1, 3) gradx_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], gradx, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], gradx, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], gradx, mode='constant', cval=0.0)], axis=1) grady_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], grady, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], grady, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], grady, mode='constant', cval=0.0)], axis=1) gradz_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], gradz, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], gradz, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], gradz, mode='constant', cval=0.0)], axis=1) grad_disp = np.concatenate([gradx_disp, grady_disp, gradz_disp], 0) jacobian = grad_disp + np.eye(3, 3).reshape(3, 3, 1, 1, 1) jacobian = jacobian[:, :, 2:-2, 2:-2, 2:-2] jacdet = jacobian[0, 0, :, :, :] * (jacobian[1, 1, :, :, :] * jacobian[2, 2, :, :, :] - jacobian[1, 2, :, :, :] * jacobian[2, 1, :, :, :]) -\ jacobian[1, 0, :, :, :] * (jacobian[0, 1, :, :, :] * jacobian[2, 2, :, :, :] - jacobian[0, 2, :, :, :] * jacobian[2, 1, :, :, :]) +\ jacobian[2, 0, :, :, :] * (jacobian[0, 1, :, :, :] * jacobian[1, 2, :, :, :] - jacobian[0, 2, :, :, :] * jacobian[1, 1, :, :, :]) return jacdet def compute_tre(x, y, spacing): return np.linalg.norm((x - y) * spacing, axis=1) ##### file loader ##### class NiftiLoader(ImageLoader): @staticmethod def load_image(fname): return nib.load(str(fname)) @staticmethod def hash_image(image): return hash(image.get_fdata().tostring()) class NumpyLoader(ImageLoader): @staticmethod def load_image(fname): return np.load(str(fname))['arr_0'] @staticmethod def hash_image(image): return hash(image.tostring()) class CURIOUSLmsLoader(FileLoader): def load(self, fname): lms_fixed = [] lms_moving = [] f = open(fname, 'r') for line in f.readlines()[5:]: lms = [float(lm) for lm in line.split(' ')[1:-1]] lms_fixed.append(lms[:3]) lms_moving.append(lms[3:]) return {'lms_fixed': lms_fixed, 'lms_moving': lms_moving} class L2RLmsLoader(FileLoader): def load(self, fname): lms_fixed = [] lms_moving = [] f = open(fname, 'r') for line in f.readlines(): lms = [float(lm) for lm in line.split(',')] lms_fixed.append(lms[:3]) lms_moving.append(lms[3:]) return {'lms_fixed': lms_fixed, 'lms_moving': lms_moving} ##### validation errors ##### def raise_missing_file_error(fname): message = ( f"The displacement field {fname} is missing. " f"Please provide all required displacement fields." ) raise ValidationError(message) def raise_dtype_error(fname, dtype): message = ( f"The displacement field {fname} has a wrong dtype ('{dtype}'). " f"All displacement fields should have dtype 'float16'." ) raise ValidationError(message) def raise_shape_error(fname, shape, expected_shape): message = ( f"The displacement field {fname} has a wrong shape ('{shape[0]}x{shape[1]}x{shape[2]}x{shape[3]}'). " f"The expected shape of displacement fields for this task is {expected_shape[0]}x{expected_shape[1]}x{expected_shape[2]}x{expected_shape[3]}." ) raise ValidationError(message) ##### eval val ##### class EvalVal(): def __init__(self): self.ground_truth_path = DEFAULT_GROUND_TRUTH_PATH self.predictions_path = DEFAULT_INPUT_PATH self.output_file = DEFAULT_EVALUATION_OUTPUT_FILE_PATH self.csv_loader = CSVLoader() self.nifti_loader = NiftiLoader() self.numpy_loader = NumpyLoader() self.curious_lms_loader = CURIOUSLmsLoader() self.l2r_lms_loader = L2RLmsLoader() self.pairs_task_01 = DataFrame() self.imgs_task_01 = DataFrame() self.lms_task_01 = DataFrame() self.disp_fields_task_01 = DataFrame() self.cases_task_01 = DataFrame() self.pairs_task_02 = DataFrame() self.imgs_task_02 = DataFrame() self.lms_task_02 = DataFrame() self.disp_fields_task_02 = DataFrame() self.cases_task_02 = DataFrame() self.pairs_task_03 = DataFrame() self.segs_task_03 = DataFrame() self.disp_fields_task_03 = DataFrame() self.cases_task_03 = DataFrame() self.pairs_task_04 = DataFrame() self.segs_task_04 = DataFrame() self.disp_fields_task_04 = DataFrame() self.cases_task_04 = DataFrame() def evaluate(self): self.load_task_01() self.merge_ground_truth_and_predictions_task_01() self.score_task_01() self.load_task_02() self.merge_ground_truth_and_predictions_task_02() self.score_task_02() self.load_task_03() self.merge_ground_truth_and_predictions_task_03() self.score_task_03() self.load_task_04() self.merge_ground_truth_and_predictions_task_04() self.score_task_04() self.save() def load_task_01(self): self.pairs_task_01 = self.load_pairs(DEFAULT_GROUND_TRUTH_PATH / 'task_01' / 'pairs_val.csv') self.imgs_task_01 = self.load_imgs_task_01() self.lms_task_01 = self.load_lms_task_01() self.disp_fields_task_01 = self.load_disp_fields(self.pairs_task_01, DEFAULT_INPUT_PATH / 'task_01', np.array([3, 128, 128, 144])) def load_task_02(self): self.pairs_task_02 = self.load_pairs(DEFAULT_GROUND_TRUTH_PATH / 'task_02' / 'pairs_val.csv') self.imgs_task_02 = self.load_imgs_task_02() self.lms_task_02 = self.load_lms_task_02() self.disp_fields_task_02 = self.load_disp_fields(self.pairs_task_02, DEFAULT_INPUT_PATH / 'task_02', np.array([3, 96, 96, 104])) def load_task_03(self): self.pairs_task_03 = self.load_pairs(DEFAULT_GROUND_TRUTH_PATH / 'task_03' / 'pairs_val.csv') self.segs_task_03 = self.load_segs_task_03() self.disp_fields_task_03 = self.load_disp_fields(self.pairs_task_03, DEFAULT_INPUT_PATH / 'task_03', np.array([3, 96, 80, 128])) def load_task_04(self): self.pairs_task_04 = self.load_pairs(DEFAULT_GROUND_TRUTH_PATH / 'task_04' / 'pairs_val.csv') self.segs_task_04 = self.load_segs_task_04() self.disp_fields_task_04 = self.load_disp_fields(self.pairs_task_04, DEFAULT_INPUT_PATH / 'task_04', np.array([3, 64, 64, 64])) def load_imgs_task_01(self): cases = None for _, row in self.pairs_task_01.iterrows(): case = self.nifti_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_01' / 'EASY-RESECT' / 'NIFTI' / 'Case{}'.format(row['fixed']) / 'Case{}-FLAIR-resize.nii'.format(row['fixed'])) if cases is None: cases = case index = [row['fixed']] else: cases += case index += [row['fixed']] return DataFrame(cases, index=index) def load_imgs_task_02(self): cases = None for _, row in self.pairs_task_02.iterrows(): case = self.nifti_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_02' / 'training' / 'lungMasks' / 'case_{:03d}_exp.nii.gz'.format(row['fixed'])) if cases is None: cases = case index = [row['fixed']] else: cases += case index += [row['fixed']] return DataFrame(cases, index=index) def load_segs_task_03(self): cases = None indices = [] for _, row in self.pairs_task_03.iterrows(): indices.append(row['fixed']) indices.append(row['moving']) indices = np.array(indices) for i in np.unique(indices): case = self.nifti_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_03' / 'Training' / 'label' / 'label{:04d}.nii.gz'.format(i)) if cases is None: cases = case index = [i] else: cases += case index += [i] return DataFrame(cases, index=index) def load_segs_task_04(self): cases = None indices = [] for _, row in self.pairs_task_04.iterrows(): indices.append(row['fixed']) indices.append(row['moving']) indices = np.array(indices) for i in np.unique(indices): case = self.nifti_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_04' / 'Training' / 'label' / 'hippocampus_{}.nii.gz'.format(i)) if cases is None: cases = case index = [i] else: cases += case index += [i] return DataFrame(cases, index=index) def load_lms_task_01(self): cases = None for _, row in self.pairs_task_01.iterrows(): case = self.curious_lms_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_01' / 'EASY-RESECT' / 'landmarks' / 'Coordinates' / 'Case{}-MRI-beforeUS.tag'.format(row['fixed'])) if cases is None: cases = [case] index = [row['fixed']] else: cases += [case] index += [row['fixed']] return DataFrame(cases, index=index) def load_lms_task_02(self): cases = None for _, row in self.pairs_task_02.iterrows(): case = self.l2r_lms_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_02' / 'training' / 'lms' / 'case_{:03d}.txt'.format(row['fixed'])) if cases is None: cases = [case] index = [row['fixed']] else: cases += [case] index += [row['fixed']] return DataFrame(cases, index=index) def merge_ground_truth_and_predictions_task_01(self): cases = [] for _, row in self.pairs_task_01.iterrows(): case = {'img' : self.imgs_task_01.loc[row['fixed']], 'lms_fixed' : self.lms_task_01.loc[row['fixed']]['lms_fixed'], 'lms_moving' : self.lms_task_01.loc[row['moving']]['lms_moving'], 'disp_field' : self.disp_fields_task_01.loc[(row['fixed'], row['moving'])]} cases += [case] self.cases_task_01 =
DataFrame(cases)
pandas.DataFrame
import streamlit as st import base64 from io import BytesIO import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # For creating plots import matplotlib.ticker as mtick # For specifying the axes tick format import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.linear_model import RidgeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from itertools import cycle, islice import xlsxwriter def download_link(object_to_download, download_filename, download_link_text): """ Generates a link to download the given object_to_download. object_to_download (str, pd.DataFrame): The object to be downloaded. download_filename (str): filename and extension of file. e.g. mydata.csv, some_txt_output.txt download_link_text (str): Text to display for download link. Examples: download_link(YOUR_DF, 'YOUR_DF.csv', 'Click here to download data!') download_link(YOUR_STRING, 'YOUR_STRING.txt', 'Click here to download your text!') """ if isinstance(object_to_download,pd.DataFrame): object_to_download = object_to_download.to_csv(index=False) # some strings <-> bytes conversions necessary here b64 = base64.b64encode(object_to_download.encode()).decode() return f'<a href="data:file/txt;base64,{b64}" download="{download_filename}">{download_link_text}</a>' def main(): def MLmodels(df): columns = ["Churn"] try: for i in columns: df[i].replace(to_replace='Yes', value=1, inplace=True) df[i].replace(to_replace='No', value=0, inplace=True) except: None df_train = df[df['Churn']>-1] df_train = df_train.iloc[:,1:] #removing customer ID column_means_train = df_train.mean() df_train = df_train.fillna(column_means_train) #df_train.dropna(inplace = True) df_train = pd.get_dummies(df_train) df_predict = df[df['Churn'].isna()] y = df_train['Churn'].values X = df_train.drop(columns = ['Churn']) features = X.columns.values scaler = MinMaxScaler(feature_range = (0,1)) scaler.fit(X) X = pd.DataFrame(scaler.transform(X)) X.columns = features X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=101) def gridsearchfunction(grid,model): cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy',error_score=0) grid_result = grid_search.fit(X_train, y_train) print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) means = grid_result.cv_results_['mean_test_score'] stds = grid_result.cv_results_['std_test_score'] params = grid_result.cv_results_['params'] for mean, stdev, param in zip(means, stds, params): print("%f (%f) with: %r" % (mean, stdev, param)) return grid_result def logisticmodel(X_train,y_train,X_test,y_test): model = LogisticRegression() #solvers = ['newton-cg', 'lbfgs', 'liblinear'] #penalty = ['l2'] #c_values = [100, 10, 1.0, 0.1, 0.01] solvers = ['newton-cg'] penalty = ['l2'] c_values = [10] grid = dict(solver=solvers,penalty=penalty,C=c_values) grid_result = gridsearchfunction(grid,model) model = LogisticRegression(**grid_result.best_params_) model.fit(X_train,y_train) y_predicted = model.predict(X_test) y_proba = model.predict_proba(X_test) logaccuracy = round((metrics.accuracy_score(y_test, y_predicted)),3) print (f"Test accuracy is {logaccuracy}") return y_predicted,logaccuracy,grid_result.best_params_ def ridgemodel(X_train,y_train,X_test,y_test): model = RidgeClassifier() #alpha = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] alpha = [0.1] grid = dict(alpha=alpha) cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy',error_score=0) grid_result = gridsearchfunction(grid,model) model = RidgeClassifier(**grid_result.best_params_) model.fit(X_train,y_train) y_predicted = model.predict(X_test) ridgeaccuracy = round((metrics.accuracy_score(y_test, y_predicted)),3) print (f"Test accuracy is {ridgeaccuracy}") return y_predicted,ridgeaccuracy,grid_result.best_params_ def KNNmodel(X_train,y_train,X_test,y_test): model = KNeighborsClassifier() #n_neighbors = range(1, 21, 2) #weights = ['uniform', 'distance'] #metric = ['euclidean', 'manhattan', 'minkowski'] n_neighbors = [10] weights = ['uniform'] metric = ['euclidean'] grid = dict(n_neighbors=n_neighbors,weights=weights,metric=metric) grid_result = gridsearchfunction(grid,model) model = KNeighborsClassifier(**grid_result.best_params_) model.fit(X_train,y_train) y_predicted = model.predict(X_test) KNNaccuracy = round((metrics.accuracy_score(y_test, y_predicted)),3) print (f"Test accuracy is {KNNaccuracy}") return y_predicted,KNNaccuracy,grid_result.best_params_ def SVMmodel(X_train,y_train,X_test,y_test): model = SVC() model.fit(X_train,y_train) y_predicted = model.predict(X_test) SVMaccuracy = round((metrics.accuracy_score(y_test, y_predicted)),3) print (f"Test accuracy is {SVMaccuracy}") return y_predicted,SVMaccuracy#,grid_result.best_params_ def bagging(X_train,y_train,X_test,y_test): # define models and parameters model = BaggingClassifier() #n_estimators = [10, 100, 1000] n_estimators = [10] grid = dict(n_estimators=n_estimators) cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy',error_score=0) grid_result = gridsearchfunction(grid,model) model = BaggingClassifier(**grid_result.best_params_) model.fit(X_train,y_train) y_predicted = model.predict(X_test) bagaccuracy = round((metrics.accuracy_score(y_test, y_predicted)),3) print (f"Test accuracy is {bagaccuracy}") return y_predicted,bagaccuracy,grid_result.best_params_ def RF(X_train,y_train,X_test,y_test): # define models and parameters model = RandomForestClassifier() #n_estimators = [10, 100, 1000] #max_features = ['sqrt', 'log2'] n_estimators = [10] max_features = ['sqrt'] grid = dict(n_estimators=n_estimators,max_features=max_features) cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy',error_score=0) grid_result = gridsearchfunction(grid,model) model = RandomForestClassifier(**grid_result.best_params_) model.fit(X_train,y_train) y_predicted = model.predict(X_test) RFaccuracy = round((metrics.accuracy_score(y_test, y_predicted)),3) print (f"Test accuracy is {RFaccuracy}") return y_predicted,RFaccuracy,grid_result.best_params_ def SGD(X_train,y_train,X_test,y_test): model = GradientBoostingClassifier() #n_estimators = [10, 100] #learning_rate = [0.001, 0.01, 0.1] #subsample = [0.5, 0.7, 1.0] #max_depth = [3, 7, 9] n_estimators = [10] learning_rate = [0.1] subsample = [0.5] max_depth = [3] grid = dict(learning_rate=learning_rate, n_estimators=n_estimators, subsample=subsample, max_depth=max_depth) cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy',error_score=0) grid_result = gridsearchfunction(grid,model) model = GradientBoostingClassifier(**grid_result.best_params_) model.fit(X_train,y_train) y_predicted = model.predict(X_test) SGDaccuracy = round((metrics.accuracy_score(y_test, y_predicted)),3) print (f"Test accuracy is {SGDaccuracy}") return y_predicted,SGDaccuracy, grid_result.best_params_ ylogpredicted,logaccuracy,logbestparam = logisticmodel(X_train,y_train,X_test,y_test) yridgepredicted,ridgeaccuracy,ridgebestparam = ridgemodel(X_train,y_train,X_test,y_test) yKNNpredicted,KNNaccuracy,KNNbestparam = KNNmodel(X_train,y_train,X_test,y_test) ySVMpredicted,SVMaccuracy = SVMmodel(X_train,y_train,X_test,y_test) ybagpredicted,bagaccuracy,bagbestparam = bagging(X_train,y_train,X_test,y_test) yRFpredicted,RFaccuracy,RFbestparam = RF(X_train,y_train,X_test,y_test) ySGDpredicted,SGDaccuracy,SGDbestparam = SGD(X_train,y_train,X_test,y_test) data = [['Logistic', round(logaccuracy,3)], ['Ridge', round(ridgeaccuracy,3)], ['KNN', round(KNNaccuracy,3)], ['SVM', round(SVMaccuracy,3)], ['Bagging',round(bagaccuracy,3)], ['RF',round(RFaccuracy,3)], ['SGD',round(SGDaccuracy,3)]] df = pd.DataFrame(data, columns = ['Model', 'Accuracy']) df.sort_values(by='Accuracy', ascending=False) df.reset_index(drop=True) Xestimate = df_predict.iloc[:,1:] #removing customer ID Xestimate = Xestimate.drop(columns = ['Churn']) column_means_estimate = Xestimate.mean() Xestimate = Xestimate.fillna(column_means_estimate) #Xestimate = Xestimate.dropna() df_predict["Churn"] = 2 column_means_predict = df_predict.mean() df_predict = df_predict.fillna(column_means_predict) #df_predict = df_predict.dropna() Xestimate =
pd.get_dummies(Xestimate)
pandas.get_dummies