prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import flywheel import warnings import argparse import ast import os from flywheel_bids_tools.query_bids import process_acquisition #from flywheel_bids_tools.bids_generator import BidsGenerator from flywheel_bids_tools.utils import read_flywheel_csv from tqdm import tqdm FAILS = [] def build_intention_path(row): path = "ses-{0}/{1}/{2}".format( row['session.label'], row['info_BIDS_Folder'], row['info_BIDS_Filename']) return path def update_intentions(df, client): global FAILS df = df.dropna(subset=["info_BIDS_IntendedFor"]).reset_index() counter = [] for index, row in tqdm(df.iterrows(), total=df.shape[0]): try: acq = client.get(row['acquisition.id']) session = client.get(acq['parents']['session']) acqs_df = [] for acquisition in session.acquisitions(): temp = process_acquisition(acquisition.id, client, target_cols=['info_SeriesDescription','info_ShimSetting', 'info_BIDS_Folder', 'info_BIDS_Filename', 'type']) temp['session.label'] = row['session.label'] temp['subject.label'] = row['subject.label'] acqs_df.append(temp) acqs_df = pd.concat(acqs_df, ignore_index=True, sort=False) acqs_df = acqs_df.loc[acqs_df.type.str.contains("nifti"),] current_shim = tuple(acqs_df.loc[(acqs_df['info_SeriesDescription'] == row['info_SeriesDescription']) & (acqs_df['acquisition.id'] == row['acquisition.id'])].info_ShimSetting.values[0]) assert len(current_shim) > 0, "No shim settings for this file" acqs_df = acqs_df.loc[~(acqs_df['acquisition.id'] == row['acquisition.id'])] #acqs_df = acqs_df.dropna(subset=['info_ShimSetting']) #acqs_df['info_ShimSetting'] = acqs_df['info_ShimSetting'].map(tuple) #final_files = acqs_df.loc[(acqs_df['info_ShimSetting'] == current_shim)] #final_files = final_files.dropna() intent = [x['Folder'] for x in ast.literal_eval(row['info_BIDS_IntendedFor'])] final_files = acqs_df.loc[acqs_df['info_BIDS_Folder'].isin(intent), ] assert len(final_files) > 0, "No matching files for this shim setting" result = final_files.apply(build_intention_path, axis=1) #print("{}: This file has {} matching files".format(row['info_BIDS_Filename'], len(result))) acq.update_file_info(row['name'], {'IntendedFor': list(result.values)}) counter.append(pd.DataFrame({'files': result, 'origin': row['info_BIDS_Filename']})) except Exception as e: print("Unable to update intentions for this file:") print(row['name'], row['session.label'], row['info_BIDS_Filename']) print(e) FAILS.append(row) cwd = os.getcwd() counter = pd.concat(counter, ignore_index=True, sort=False) counter.to_csv("{}/successful_intention_updates.csv".format(cwd), index=False) if len(FAILS) > 0: fails_dict = [x.to_dict() for x in FAILS] fails_df =
pd.DataFrame(fails_dict)
pandas.DataFrame
import requests import pandas as pd import json email = '' key = '' url_todos = 'https://www.mountainproject.com/data/get-ticks?email='+email+'&key='+key url_route_info = 'https://www.mountainproject.com/data/get-routes?key='+key+'&routeIds=' def get_dataframe(passed_url, dataframe_element): get_active_url = requests.request("GET", passed_url) json_details = json.loads(get_active_url.text)[dataframe_element] print(json_details) df =
pd.DataFrame(json_details)
pandas.DataFrame
import numpy as np import pandas as pd import itertools from .statistics import r def __get_X_Y_L__(X, Y=None): if type(X) is not pd.DataFrame: X = pd.DataFrame(X) if Y is None: Y = X.iloc[:,0] X = X.iloc[:,1:] else: if type(Y) is not pd.DataFrame: Y =
pd.DataFrame(Y)
pandas.DataFrame
import pandas as pd import numpy as np import tests.mocks.operations as mockops from trumania.core import operations from trumania.core.util_functions import build_ids def test_apply_should_delegate_to_single_col_dataframe_function_correctly(): # some function that expect a dataframe as input => must return # dataframe with "result" column def f(df): return pd.DataFrame({"result": df["A"] + df["D"] - df["C"]}) tested = operations.Apply(source_fields=["A", "C", "D"], named_as="r", f=f, f_args="dataframe") story_data = pd.DataFrame( np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) result = tested.build_output(story_data) assert result["r"].equals(story_data["A"] + story_data["D"] - story_data[ "C"]) def test_apply_should_delegate_to_multi_col_dataframe_function_correctly(): # now f returns several columns def f(df): return pd.DataFrame({ "r1": df["A"] + df["D"] - df["C"], "r2": df["A"] + df["C"], "r3": df["A"] * df["C"], }) tested = operations.Apply(source_fields=["A", "C", "D"], named_as=["op1", "op2", "op3"], f=f, f_args="dataframe") story_data = pd.DataFrame( np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) result = tested.transform(story_data) assert result.columns.tolist() == ["A", "B", "C", "D", "E", "op1", "op2", "op3"] assert result["op1"].equals( story_data["A"] + story_data["D"] - story_data["C"]) assert result["op2"].equals( story_data["A"] + story_data["C"]) assert result["op3"].equals( story_data["A"] * story_data["C"]) def test_apply_should_delegate_to_columns_function_correctly(): """ same as the above, but this time f input and output arguments are pandas Series """ def f(ca, cc, cd): return ca + cd - cc tested = operations.Apply(source_fields=["A", "C", "D"], named_as="r", f=f, f_args="series") story_data = pd.DataFrame( np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) result = tested.build_output(story_data) assert result["r"].equals( story_data["A"] + story_data["D"] - story_data["C"]) def test_one_execution_should_merge_empty_data_correctly(): # empty previous prev_df = pd.DataFrame(columns=[]) prev_log = {} nop = operations.Operation() output, logs = operations.Chain._execute_operation((prev_df, prev_log), nop) assert logs == {} assert output.equals(prev_df) def test_one_execution_should_merge_one_op_with_nothing_into_one_result(): # empty previous prev =
pd.DataFrame(columns=[])
pandas.DataFrame
#Use scikit-learn to grid search the batch size and epochs import csv import os import numpy as np import pandas as pd from standard_plots import * from sklearn.grid_search import GridSearchCV from keras.wrappers.scikit_learn import KerasClassifier from math import sqrt from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from keras.layers import Input from keras.models import model_from_json, load_model from keras.layers.normalization import BatchNormalization from keras.models import Sequential, Model from keras.layers import Dense, LSTM, Dropout, Embedding, Input, Activation, Bidirectional, TimeDistributed, RepeatVector, Flatten from keras.optimizers import Adam from keras.utils import plot_model import matplotlib.pyplot as plt import tensorflow os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' resultpath = "result" #Parameters #time steps look_back = 20 #Optimizer Adam adam = Adam(lr=learning_rate) ''' filename = 'waypoint_trace_new.csv' Loc_x = pd.read_csv(filepath_or_buffer = filename, sep = ',')["Loc_x"].values.astype('int') Loc_y = pd.read_csv(filepath_or_buffer = filename, sep = ',')["Loc_y"].values.astype('int') Mag_x = pd.read_csv(filepath_or_buffer = filename, sep = ',')["Mag_x"].values.astype('float') Mag_y = pd.read_csv(filepath_or_buffer = filename, sep = ',')["Mag_y"].values.astype('float') Mag_z = pd.read_csv(filepath_or_buffer = filename, sep = ',')["Mag_z"].values.astype('float') ''' # convert an array of values into a dataset matrix for both input and output def create_dataset_input(dataset, look_back=look_back): dataX = [] for i in range(len(dataset)-look_back): dataX.append(dataset[i:(i+look_back)]) return np.array(dataX) #Process training data def load_data(file_name, batch_size, split=0.75, look_back = look_back): raw_Loc_x = pd.read_csv(file_name, sep=',', usecols=[0]) raw_Loc_x = np.array(raw_Loc_x).astype(float) scaler_loc_x = MinMaxScaler() Loc_x = scaler_loc_x.fit_transform(raw_Loc_x) raw_Loc_y =
pd.read_csv(file_name, sep=',', usecols=[1])
pandas.read_csv
import numpy as np import pandas as pd import os import glob import astropy_stark.cream_lcplot as cream_plot import astropy_stark.cream_plotlibrary as cpl import matplotlib.pylab as plt import multiprocessing as mp import time import itertools import corner from scipy.stats import pearsonr import seaborn as sns; sns.set(style="ticks", color_codes=True) class pycecream: ''' One stop shop for fitting time lags and response functions to AGN accretion discs. Fitting continuum light curves, pycecream can infer the inclination and temperature profile of the AGN disc by fitting the wavelegnth dependent response functions described in Starkey et al 2016 ( https://ui.adsabs.harvard.edu/#abs/arXiv:1511.06162 ) For a full list of creams features, please see the (sadly out of date) mamnual that describes these features as applied to the previous fortran version of the code CREAM. A more up-to-date manual will follow shortly. Global class instance arguments... redshift: The target redshift (default 0). high_frequency: Large numbers will explore higher frequency variations at the expense of computation time. ''' def __init__(self): ''' The default parameters are given below. First up are the global non-fitted input parameters. Second are the global fitted parameters whos starting values can be modified below. Note that... 1) Entering zero step sizes indicates the parameter will not be stepped) 2) Light curve-specific parameters (the error bar scaling, starting lag centroids and widths for line light curves etc) are specified in the add_lc function. ''' #config, path, compiler parameters self.module_path = os.path.dirname(os.path.realpath(__file__)) self.fortran_caller = 'gfortran' self.fortran_compile_command = self.fortran_caller+' cream_f90.f90 -o creamrun.exe' print('pycecream path... ' + self.module_path) #convention parameters self.project_folder = 'pycecream' self.append_date_to_output_directory = False self.save_ALL_parameters = True #global non-fitted parameters self.redshift = 0.0 self.high_frequency = 0.5 self.bh_mass = 1.e7 self.bh_efficieny = 0.1 self.N_iterations = 1000 self.lag_lims = [-10.0,50.0] #fitted parameters self.p_inclination = 0.0 self.p_inclination_step = 0.0 self.p_inclination_priorcentroid = None self.p_inclination_priorwidth = None self.p_accretion_rate = 0.1 self.p_accretion_rate_step = 0.0 self.p_accretion_rate_priorcentroid = None self.p_accretion_rate_priorwidth = None self.p_viscous_slope = 0.75 self.p_viscous_slope_step = 0.0 self.p_extra_variance_step = 0.1 #non configureable parameters self.count_lightcurves = 0 self.count_continuum_lightcurves = 0 self.count_line_lightcurves = 0 self.p_linelag_centroids_start = 0.0 self.p_linelag_centroids_step = 5.0 self.p_linelag_widths_start = 2.0 self.p_linelag_widths_step = 0.0 self.dir_pwd = os.getcwd() self.lightcurve_input_params = pd.DataFrame(columns=[ 'name', 'type', 'wavelength', 'noise model', 'share previous lag','temporary file name', 'mean', 'standard deviation', 'tophat centroid', 'tophat centroid step', 'tophat centroid prior cent', 'tophat centroid prior width', 'tophat width', 'tophat width step', 'tophat width prior cent', 'tophat width prior width', 'background offset start','vertical scaling start' ]) self.global_input_params = pd.DataFrame(columns = [ 'redshift','BH mass','BH efficiency','upper fourier frequency','' ]) def setup_directory_structure(self): ''' Set up the output directory structure for a cream simulation. Shouild be called once as you add the first light curve :return: ''' #make a directory into which to store the cream results dir_pycecream = self.project_folder if self.append_date_to_output_directory is True: dir_pycecream = self.project_folder+'_'+str(pd.datetime.today().strftime("%d_%m_%Y"))+'_' child_dirs = next(os.walk('.'))[1] number_of_pyceream_dirs = len( [c for c in child_dirs if dir_pycecream in c] ) dir_pycecream = dir_pycecream+str(number_of_pyceream_dirs) self.dir_pycecream = dir_pycecream self.dir_sim = 'simulation_files' try: os.mkdir(self.dir_pycecream) except: raise Exception('directory...'+self.dir_pycecream+' already exists. ' 'Please choose another using the ' 'self.dir_pycecream variable') os.mkdir(self.dir_pycecream+'/'+self.dir_sim) #copy fortran files to pycecream directory os.system('cp '+self.module_path+'/cream_f90.f90 ./'+self.dir_pycecream) print('copying file...') print(self.module_path) os.system('cp ' + self.module_path + '/creaminpar.par ./' + self.dir_pycecream) def add_lc(self,input, kind = 'line', wavelength = -1.0, expand_errors = ['var','multiplicative'], extra_variance_prior = [-1.0,-1.0], multiplicative_errorbar_prior = [-1.0,-1.0], name = None, share_previous_lag = False, background_offset_start=[-1.,-1.], vertical_scaling_start=[-1.,-1.], background_offset_prior = None, vertical_scaling_prior = None, tophat_centroid = None, tophat_centroid_step = None, tophat_centroid_prior = [0.0,-1.0], tophat_width = None, tophat_width_step = None, tophat_width_prior=[0.0, -0.1], background_polynomials = None): ''' This is the go to command to add a new light curve into the simulation. :param input: either a Nx3 numpy array of time,flux,errors or a link to a file in the same format :param kind: 'line' or 'continuum'. If continuum, must specify wavelegnth :param wavelength: The centroid wavelength of the contuum light curve :param expand_errors: :param share_previous_lag: :param name: optional to set name for a light curve to annotate on plots and in data frames. :param background_offset_start:[value,stepsize] start value and step size for the background offset parameter. Leave as default [-1.,-1.] to ignore. :param vertical_scaling_start: as above but for vertical scaling parameter. :param background_offset_prior: [mean,sd] of gaussian prior. Leave as None to ignore priors :param vertical_scaling_prior: as above but for the vertical scaling parameter :param background_polynomials: add variable background list of starting coefficients for each level of polynomial (advise [0.1,0.1] to add a quadratic polynomial ) :return: ''' #assertion errors assert(type(share_previous_lag) == bool) #set up the directory structure if first call if self.count_lightcurves == 0: self.setup_directory_structure() #count the numnber of line or continuum light curves already specified if kind is 'line': count = self.count_line_lightcurves self.count_line_lightcurves = self.count_line_lightcurves + 1 elif kind is 'continuum': count = self.count_continuum_lightcurves self.count_continuum_lightcurves = self.count_continuum_lightcurves + 1 if wavelength == -1.0: raise Exception('Must specify wavelength for a continuum light curve') else: raise Exception('kind argument must be "line" or "continuum"') #configure the naming convention if name is None: name_ann = kind + ' lightcurve ' + np.str(count) else: name_ann = name #load the data and save in required directory if type(input) is str: dat = np.loadtxt(input) elif type(input) is np.ndarray: dat = np.array(input) else: raise Exception('input to add_lc must be file name or numpy.ndarray') fname = kind+'_'+np.str(count)+'.dat' #check the data for problems and save check_for_bad_values(dat,name_ann) np.savetxt(self.dir_pycecream+'/'+self.dir_sim+'/'+fname,dat) ''' configure the line lag settings (if sharing the same response function as the previous line should then use the same step size else increment by a small positive number e.g 0.1 ''' if tophat_centroid is None: tophat_centroid = self.p_linelag_centroids_start if tophat_centroid_step is None: tophat_centroid_step = self.p_linelag_centroids_step if tophat_width is None: tophat_width = self.p_linelag_widths_start if tophat_width_step is None: tophat_width_step = self.p_linelag_widths_step if share_previous_lag is False: tophat_centroid_step = tophat_centroid_step + 0.1*self.count_lightcurves else: tophat_centroid_step = self.lightcurve_input_params['tophat centroid step'].values[-1] #update the lightcurve_input_params table of records df = pd.DataFrame(data = [name_ann,kind,wavelength,expand_errors, extra_variance_prior, multiplicative_errorbar_prior, share_previous_lag,fname, np.mean(dat[:,1]), np.std(dat[:,1]), tophat_centroid, tophat_centroid_step, tophat_centroid_prior[0], tophat_centroid_prior[1], tophat_width, tophat_width_step, tophat_width_prior[0], tophat_width_prior[1], background_offset_start, vertical_scaling_start, background_offset_prior, vertical_scaling_prior, background_polynomials ], index=['name', 'type', 'wavelength', 'noise model', 'extra variance prior','multiplicative errorbar prior', 'share previous lag','temporary file name', 'mean', 'standard deviation', 'tophat centroid', 'tophat centroid step', 'tophat centroid prior cent', 'tophat centroid prior width', 'tophat width', 'tophat width step', 'tophat width prior cent', 'tophat width prior width', 'background offset start','vertical scaling start', 'background offset prior','vertical scaling prior', 'background_polynomials']).T self.lightcurve_input_params = pd.DataFrame(pd.concat([self.lightcurve_input_params,df])) self.lightcurve_input_params['wavelength']= \ pd.to_numeric(self.lightcurve_input_params['wavelength'],downcast = 'float') self.lightcurve_input_params['mean'] = \ pd.to_numeric(self.lightcurve_input_params['mean'],downcast = 'float') self.lightcurve_input_params['standard deviation'] = \ pd.to_numeric(self.lightcurve_input_params['standard deviation'],downcast = 'float') self.lightcurve_input_params['tophat centroid']= \
pd.to_numeric(self.lightcurve_input_params['tophat centroid'],downcast = 'float')
pandas.to_numeric
# -*- coding: utf-8 -*- """ Pipeline-GUI for Analysis with MNE-Python @author: <NAME> @email: <EMAIL> @github: https://github.com/marsipu/mne_pipeline_hd License: BSD (3-clause) Written on top of MNE-Python Copyright © 2011-2020, authors of MNE-Python (https://doi.org/10.3389/fnins.2013.00267) inspired by <NAME>. (2018) (https://doi.org/10.3389/fnins.2018.00006) """ from ast import literal_eval from datetime import datetime import pandas as pd from PyQt5.QtCore import QAbstractItemModel, QAbstractListModel, QAbstractTableModel, QModelIndex, Qt from PyQt5.QtGui import QBrush, QFont from PyQt5.QtWidgets import QStyle from mne_pipeline_hd.gui.gui_utils import get_std_icon class BaseListModel(QAbstractListModel): """ A basic List-Model Parameters ---------- data : list() input existing list here, otherwise defaults to empty list show_index : bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. """ def __init__(self, data=None, show_index=False, drag_drop=False, **kwargs): super().__init__(**kwargs) self.show_index = show_index self.drag_drop = drag_drop if data is None: self._data = list() else: self._data = data def getData(self, index): return self._data[index.row()] def data(self, index, role=None): if role == Qt.DisplayRole: if self.show_index: return f'{index.row()}: {self.getData(index)}' else: return str(self.getData(index)) elif role == Qt.EditRole: return str(self.getData(index)) def rowCount(self, index=QModelIndex()): return len(self._data) def insertRows(self, row, count, index=QModelIndex()): self.beginInsertRows(index, row, row + count - 1) n = 0 for pos in range(row, row + count): item_name = f'__new{n}__' while item_name in self._data: n += 1 item_name = f'__new{n}__' self._data.insert(pos, item_name) self.endInsertRows() return True def removeRows(self, row, count, index=QModelIndex()): self.beginRemoveRows(index, row, row + count - 1) for item in [self._data[i] for i in range(row, row + count)]: self._data.remove(item) self.endRemoveRows() return True def flags(self, index): default_flags = QAbstractListModel.flags(self, index) if self.drag_drop: if index.isValid(): return default_flags | Qt.ItemIsDragEnabled | Qt.ItemIsDropEnabled else: return default_flags | Qt.ItemIsDropEnabled else: return default_flags def supportedDragActions(self): if self.drag_drop: return Qt.CopyAction | Qt.MoveAction class EditListModel(BaseListModel): """An editable List-Model Parameters ---------- data : list() input existing list here, otherwise defaults to empty list show_index: bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. """ def __init__(self, data, show_index=False, drag_drop=False, **kwargs): super().__init__(data, show_index, drag_drop, **kwargs) def flags(self, index=QModelIndex()): default_flags = BaseListModel.flags(self, index) if index.isValid(): return default_flags | Qt.ItemIsEditable else: return default_flags def setData(self, index, value, role=None): if role == Qt.EditRole: try: self._data[index.row()] = literal_eval(value) except (ValueError, SyntaxError): self._data[index.row()] = value self.dataChanged.emit(index, index) return True return False class CheckListModel(BaseListModel): """ A Model for a Check-List Parameters ---------- data : list() list with content to be displayed, defaults to empty list checked : list() list which stores the checked items from data show_index: bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. """ def __init__(self, data, checked, one_check=False, show_index=False, drag_drop=False, **kwargs): super().__init__(data, show_index, drag_drop, **kwargs) self.one_check = one_check if data is None: self._data = list() else: self._data = data if checked is None: self._checked = list() else: self._checked = checked def getChecked(self, index=QModelIndex()): return self.checked[index.row()] def data(self, index, role=None): if role == Qt.DisplayRole: if self.show_index: return f'{index.row()}: {self.getData(index)}' else: return str(self.getData(index)) if role == Qt.CheckStateRole: if self.getData(index) in self._checked: return Qt.Checked else: return Qt.Unchecked def setData(self, index, value, role=None): if role == Qt.CheckStateRole: if value == Qt.Checked: if self.one_check: self._checked.clear() self._checked.append(self.getData(index)) else: if self.getData(index) in self._checked: self._checked.remove(self.getData(index)) self.dataChanged.emit(index, index) return True return False def flags(self, index=QModelIndex()): return QAbstractItemModel.flags(self, index) | Qt.ItemIsUserCheckable class CheckDictModel(BaseListModel): """ A Model for a list, which marks items which are present in a dictionary Parameters ---------- data : list() list with content to be displayed, defaults to empty list check_dict : dict() dictionary which may contain items from data as keys show_index: bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. yes_bt: str Supply the name for a qt-standard-icon to mark the items existing in check_dict no_bt: str Supply the name for a qt-standard-icon to mark the items not existing in check_dict Notes ----- Names for QT standard-icons: https://doc.qt.io/qt-5/qstyle.html#StandardPixmap-enum """ def __init__(self, data, check_dict, show_index=False, drag_drop=False, yes_bt=None, no_bt=None, **kwargs): super().__init__(data, show_index, drag_drop, **kwargs) self._check_dict = check_dict self.yes_bt = yes_bt or 'SP_DialogApplyButton' self.no_bt = no_bt or 'SP_DialogCancelButton' def data(self, index, role=None): if role == Qt.DisplayRole: if self.show_index: return f'{index.row()}: {self.getData(index)}' else: return str(self.getData(index)) elif role == Qt.EditRole: return str(self.getData(index)) elif role == Qt.DecorationRole: if self.getData(index) in self._check_dict: return get_std_icon(self.yes_bt) else: return get_std_icon(self.no_bt) class CheckDictEditModel(CheckDictModel, EditListModel): """An editable List-Model Parameters ---------- data : list() list with content to be displayed, defaults to empty list check_dict : dict() dictionary which may contain items from data as keys show_index: bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. yes_bt: str Supply the name for a qt-standard-icon to mark the items existing in check_dict no_bt: str Supply the name for a qt-standard-icon to mark the items not existing in check_dict Notes ----- Names for QT standard-icons: https://doc.qt.io/qt-5/qstyle.html#StandardPixmap-enum """ def __init__(self, data, check_dict, show_index=False, drag_drop=False, yes_bt=None, no_bt=None): super().__init__(data, check_dict, show_index, drag_drop, yes_bt, no_bt) # EditListModel doesn't have to be initialized because in __init__ of EditListModel # only BaseListModel is initialized which is already done in __init__ of CheckDictModel class BaseDictModel(QAbstractTableModel): """Basic Model for Dictonaries Parameters ---------- data : dict | OrderedDict | None Dictionary with keys and values to be displayed, default to empty Dictionary Notes ----- Python 3.7 is required to ensure order in dictionary when inserting a normal dict (or use OrderedDict) """ def __init__(self, data=None, **kwargs): super().__init__(**kwargs) if data is None: self._data = dict() else: self._data = data def getData(self, index=QModelIndex()): try: if index.column() == 0: return list(self._data.keys())[index.row()] elif index.column() == 1: return list(self._data.values())[index.row()] # Happens, when a duplicate key is entered except IndexError: self.layoutChanged.emit() return '' def data(self, index, role=None): if role == Qt.DisplayRole or role == Qt.EditRole: return str(self.getData(index)) def headerData(self, idx, orientation, role=None): if role == Qt.DisplayRole: if orientation == Qt.Horizontal: if idx == 0: return 'Key' elif idx == 1: return 'Value' elif orientation == Qt.Vertical: return str(idx) def rowCount(self, index=QModelIndex()): return len(self._data) def columnCount(self, index=QModelIndex()): return 2 class EditDictModel(BaseDictModel): """An editable model for Dictionaries Parameters ---------- data : dict | OrderedDict | None Dictionary with keys and values to be displayed, default to empty Dictionary only_edit : 'keys' | 'values' | None Makes only keys or only values editable. Both are editable if None. Notes ----- Python 3.7 is required to ensure order in dictionary when inserting a normal dict (or use OrderedDict) """ def __init__(self, data=None, only_edit=None, **kwargs): super().__init__(data, **kwargs) self.only_edit = only_edit def setData(self, index, value, role=None): if role == Qt.EditRole: try: value = literal_eval(value) except (SyntaxError, ValueError): pass if index.column() == 0: self._data[value] = self._data.pop(list(self._data.keys())[index.row()]) elif index.column() == 1: self._data[list(self._data.keys())[index.row()]] = value else: return False self.dataChanged.emit(index, index, [role]) return True return False def flags(self, index=QModelIndex()): if not self.only_edit: return QAbstractItemModel.flags(self, index) | Qt.ItemIsEditable elif index.column() == 0 and self.only_edit == 'keys': return QAbstractItemModel.flags(self, index) | Qt.ItemIsEditable elif index.column() == 1 and self.only_edit == 'values': return QAbstractItemModel.flags(self, index) | Qt.ItemIsEditable else: return QAbstractItemModel.flags(self, index) def insertRows(self, row, count, index=QModelIndex()): self.beginInsertRows(index, row, row + count - 1) for n in range(count): key_name = f'__new{n}__' while key_name in self._data.keys(): n += 1 key_name = f'__new{n}__' self._data[key_name] = '' self.endInsertRows() return True def removeRows(self, row, count, index=QModelIndex()): self.beginRemoveRows(index, row, row + count - 1) for n in range(count): self._data.pop(list(self._data.keys())[row + n]) self.endRemoveRows() return True class BasePandasModel(QAbstractTableModel): """Basic Model for pandas DataFrame Parameters ---------- data : pandas.DataFrame | None pandas DataFrame with contents to be displayed, defaults to empty DataFrame """ def __init__(self, data=None, **kwargs): super().__init__(**kwargs) if data is None: self._data = pd.DataFrame([]) else: self._data = data def getData(self, index=QModelIndex()): return self._data.iloc[index.row(), index.column()] def data(self, index, role=None): if role == Qt.DisplayRole or role == Qt.EditRole: return str(self.getData(index)) def headerData(self, idx, orientation, role=None): if role == Qt.DisplayRole: if orientation == Qt.Horizontal: return str(self._data.columns[idx]) elif orientation == Qt.Vertical: return str(self._data.index[idx]) def rowCount(self, index=QModelIndex()): return len(self._data.index) def columnCount(self, index=QModelIndex()): return len(self._data.columns) class EditPandasModel(BasePandasModel): """ Editable TableModel for Pandas DataFrames Parameters ---------- data : pandas.DataFrame | None pandas DataFrame with contents to be displayed, defaults to empty DataFrame Notes ----- The reference of the original input-DataFrame is lost when edited by this Model, you need to retrieve it directly from the model after editing """ def __init__(self, data=None, **kwargs): super().__init__(data, **kwargs) def setData(self, index, value, role=None): if role == Qt.EditRole: try: value = literal_eval(value) # List or Dictionary not allowed here as PandasDataFrame-Item if isinstance(value, dict) or isinstance(value, list): value = str(value) except (SyntaxError, ValueError): pass self._data.iloc[index.row(), index.column()] = value self.dataChanged.emit(index, index, [role]) return True return False def setHeaderData(self, index, orientation, value, role=Qt.EditRole): if role == Qt.EditRole: if orientation == Qt.Vertical: # DataFrame.rename does rename all duplicate indices if existent, # that's why the index is reassigned directly new_index = list(self._data.index) new_index[index] = value self._data.index = new_index self.headerDataChanged.emit(Qt.Vertical, index, index) return True elif orientation == Qt.Horizontal: # DataFrame.rename does rename all duplicate columns if existent, # that's why the columns are reassigned directly new_columns = list(self._data.columns) new_columns[index] = value self._data.columns = new_columns self.headerDataChanged.emit(Qt.Horizontal, index, index) return True return False def flags(self, index=QModelIndex()): return QAbstractItemModel.flags(self, index) | Qt.ItemIsEditable def insertRows(self, row, count, index=QModelIndex()): self.beginInsertRows(index, row, row + count - 1) add_data = pd.DataFrame(columns=self._data.columns, index=[r for r in range(count)]) if row == 0: self._data = pd.concat([add_data, self._data]) elif row == len(self._data.index): self._data = self._data.append(add_data) else: self._data = pd.concat([self._data.iloc[:row], add_data, self._data.iloc[row:]]) self.endInsertRows() return True def insertColumns(self, column, count, index=QModelIndex()): self.beginInsertColumns(index, column, column + count - 1) add_data = pd.DataFrame(index=self._data.index, columns=[c for c in range(count)]) if column == 0: self._data = pd.concat([add_data, self._data], axis=1) elif column == len(self._data.columns): self._data =
pd.concat([self._data, add_data], axis=1)
pandas.concat
import numpy as np import pandas as pd import sidetable import plotly.graph_objects as go import plotly_express as px from plotly.subplots import make_subplots import matplotlib.pyplot as plt import seaborn as sns from clean_data.cleaner import Cleaner from do_data.getter import Reader from do_data.writer import Writer from do_data.config import Columns name = Columns() # from pandasgui import show from analyze_data.colors import Colors from scipy import stats import networkx as nx from collections import Counter import math from sklearn import preprocessing colors = Colors() class Network(): def __init__(self): self.G = nx.DiGraph() self.hubs = None self.blue = '#1f77b4' # muted blue self.orange = '#ff7f0e' # safety orange self.green = '#2ca02c' # cooked asparagus green self.red = '#d62728' # brick red self.purple = '#9467bd' # muted purple self.brown = '#8c564b' # chestnut brown self.pink = '#e377c2' # raspberry yogurt pink self.gray = '#7f7f7f' # middle gray self.yellow_green = '#bcbd22' # curry yellow-green self.teal = '#17becf' self.sentence_color = { 'Prison': self.red , 'Conversion': self.blue , 'Probation': self.blue , 'Jail': self.red , 'Conditional Discharge': self.green , 'Supervision': self.blue , 'Cook County Boot Camp': self.green , 'Probation Terminated Satisfactorily': self.green , 'Inpatient Mental Health Services': self.blue , 'Death': self.red , 'Conditional Release': self.green , 'Probation Terminated Instanter': self.orange , 'Probation Terminated Unsatisfactorily': self.orange , '2nd Chance Probation': self.orange } def ingest_df(self, df, filename): self.G.clear() judge_df = df.groupby(name.sentence_judge) edges = [] counter = 0 # df['sentence_color'] = df[name.sentence_type].apply(lambda x: self.sentence_color[x]) df['sentence_color'] = df[name.sentence_type].cat.codes scaler = preprocessing.MinMaxScaler(feature_range=(.5, 15.)) # https://towardsdatascience.com/data-normalization-with-pandas-and-scikit-learn-7c1cc6ed6475 df['scaled_commitment_days'] = pd.DataFrame(scaler.fit_transform(df[[name.commitment_days]])) self.hubs = list(df[name.sentence_court_name].unique()) sentence_types = list(df[name.sentence_type].unique()) sentence_facs = list(df[name.sentence_court_facility].unique()) mean_scaled_commitment_days = [] self.hubs.extend(sentence_types) self.hubs.extend(sentence_facs) self.hubs = list(set(self.hubs)) self.hubs.remove(np.nan) self.hubs.sort() for df1_name, df1 in judge_df: counter +=1 if len(df1) > 0: n_cases = len(df1) node_record = tuple((df1_name, {'n_cases':n_cases})) self.G.add_nodes_from([node_record]) court_df = df1.groupby(name.sentence_court_name) for df2_name, df2 in court_df: df2[name.sentence_court_facility] = df2[name.sentence_court_facility].cat.remove_unused_categories() if len(df2) > 0: n_cases = len(df2) node_record = tuple((df2_name, {'n_cases': n_cases})) self.G.add_nodes_from([node_record]) fac_df = df2.groupby(name.sentence_court_facility) for df3_name, df3 in fac_df: df3[name.sentence_court_name] = df2[name.sentence_court_name].cat.remove_unused_categories() if len(df3) > 0: # nx.add_path(self.G, [df1_name, df3_name, df2_name]) sentence_df = df3.groupby(name.sentence_type) n_cases = len(df3) node_record = tuple((df3_name, {'n_cases': n_cases})) self.G.add_nodes_from([node_record]) for df4_name, df4 in sentence_df: df4[name.sentence_type] = df4[name.sentence_type].cat.remove_unused_categories() if len(df4) > 0: n_cases = len(df4) node_record = tuple((df4_name, {'n_cases': n_cases})) self.G.add_nodes_from([node_record]) color = df4['sentence_color'].unique()[0] msc_day = df4['scaled_commitment_days'].fillna(0).median() n_cases = len(df4) nx.add_path(self.G, [df1_name, df3_name, df2_name, df4_name] , color=color , label=df4_name , msc_day=msc_day , judge=df1_name , n_cases=n_cases ) if filename: saved_name = str('data/'+filename+'.gpickle') nx.write_gpickle(self.G, saved_name, protocol=2) def graph_network(self, df=None, filename=None): if filename: read_name = str('data/'+filename+'.gpickle') self.G = nx.read_gpickle(read_name) if df is not None: self.hubs = list(df[name.sentence_court_name].unique()) self.types = list(set(df[name.sentence_type].unique())) sentence_facs = list(df[name.sentence_court_facility].unique()) mean_scaled_commitment_days = [] # self.hubs.extend(sentence_types) # self.hubs.extend(sentence_facs) self.hubs = list(set(self.hubs)) self.hubs.remove(np.nan) self.hubs.sort() self.judges = list(set(df[name.sentence_judge].unique())) self.judges.remove(np.nan) d = dict(self.G.degree) pos = nx.spring_layout(self.G, k=5 / math.sqrt(self.G.order()), seed=0) node_values = np.array([v for v in d.values()]).reshape(-1, 1) scaler = preprocessing.MinMaxScaler(feature_range=(5, 30)) scaled_node_values = scaler.fit_transform(node_values) vmin = min(scaled_node_values) vmax = max(scaled_node_values) # colors = [self.G[u][v]['color'] for u, v in self.G.edges()] edge_values = [self.G[n1][n2]['color'] for n1, n2 in self.G.edges()] edge_vmin = min(edge_values) edge_vmax = max(edge_values) plt.figure(figsize=(10, 10)) labels = {} for node in self.G.nodes(): if node in self.hubs: labels[node] = node nx.draw_networkx_nodes(self.G , cmap=plt.get_cmap('coolwarm') , node_color=scaled_node_values , pos=pos , vmin=vmin , vmax=vmax , node_size=scaled_node_values , label=False ) edge_widths=[self.G[n1][n2]['msc_day'] for n1, n2 in self.G.edges()] nx.draw_networkx_edges(self.G , edge_cmap=plt.get_cmap('tab20') , pos=pos , width=edge_widths , alpha =.8 , edge_vmin=edge_vmin , edge_vmax=edge_vmax , edge_color=edge_values ) edge_labels = nx.get_edge_attributes(self.G, 'label') # nx.draw_networkx_edge_labels(self.G # , pos=pos # , edge_labels=edge_labels # , font_size=4 # ) nx.draw_networkx_labels(self.G , pos=pos , labels=labels , font_size=8 , font_color='black' , font_weight='medium' ) # plt.show() return self.G, pos, edge_widths, scaled_node_values, self.hubs, self.judges, self.types def make_network(self): # neo 4 j # https://stackoverflow.com/questions/44611449/cannot-create-a-directed-graph-using-from-pandas-dataframe-from-networkx # types https://networkx.org/documentation/stable//reference/drawing.html """ https://stackoverflow.com/questions/45350222/select-nodes-and-edges-form-networkx-graph-with-attributes selected_nodes = [n for n, v in G.nodes(data=True) if v['ej_status'] == 'EM'] print(selected_nodes) https://stackoverflow.com/questions/13517614/draw-different-color-for-nodes-in-networkx-based-on-their-node-value """ G = nx.DiGraph() H = nx.DiGraph() df = pd.read_csv('data/testing.csv', index_col=0) df = df[df['ir'] != 'NOT ASSIGNED.'] df = df.dropna(subset=['ir']) df = df[(df['detainee_status_date']=='2020-07-15') | (df['detainee_status_date']=='2020-06-30')] df['detainee_status_date'] =
pd.to_datetime(df['detainee_status_date'])
pandas.to_datetime
import pandas as pd import plotly.graph_objects as go import dash_table from plotlydash.views.helpers import * def create_df(): df_node =
pd.DataFrame()
pandas.DataFrame
""" See also: test_reindex.py:TestReindexSetIndex """ from datetime import ( datetime, timedelta, ) import numpy as np import pytest from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, date_range, period_range, to_datetime, ) import pandas._testing as tm class TestSetIndex: def test_set_index_multiindex(self): # segfault in GH#3308 d = {"t1": [2, 2.5, 3], "t2": [4, 5, 6]} df = DataFrame(d) tuples = [(0, 1), (0, 2), (1, 2)] df["tuples"] = tuples index = MultiIndex.from_tuples(df["tuples"]) # it works! df.set_index(index) def test_set_index_empty_column(self): # GH#1971 df = DataFrame( [ {"a": 1, "p": 0}, {"a": 2, "m": 10}, {"a": 3, "m": 11, "p": 20}, {"a": 4, "m": 12, "p": 21}, ], columns=["a", "m", "p", "x"], ) result = df.set_index(["a", "x"]) expected = df[["m", "p"]] expected.index = MultiIndex.from_arrays([df["a"], df["x"]], names=["a", "x"]) tm.assert_frame_equal(result, expected) def test_set_index_empty_dataframe(self): # GH#38419 df1 = DataFrame( {"a": Series(dtype="datetime64[ns]"), "b": Series(dtype="int64"), "c": []} ) df2 = df1.set_index(["a", "b"]) result = df2.index.to_frame().dtypes expected = df1[["a", "b"]].dtypes tm.assert_series_equal(result, expected) def test_set_index_multiindexcolumns(self): columns = MultiIndex.from_tuples([("foo", 1), ("foo", 2), ("bar", 1)]) df = DataFrame(np.random.randn(3, 3), columns=columns) result = df.set_index(df.columns[0]) expected = df.iloc[:, 1:] expected.index = df.iloc[:, 0].values expected.index.names = [df.columns[0]] tm.assert_frame_equal(result, expected) def test_set_index_timezone(self): # GH#12358 # tz-aware Series should retain the tz idx = DatetimeIndex(["2014-01-01 10:10:10"], tz="UTC").tz_convert("Europe/Rome") df = DataFrame({"A": idx}) assert df.set_index(idx).index[0].hour == 11 assert DatetimeIndex(Series(df.A))[0].hour == 11 assert df.set_index(df.A).index[0].hour == 11 def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_set_index_dst(self): di = date_range("2006-10-29 00:00:00", periods=3, freq="H", tz="US/Pacific") df = DataFrame(data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=di).reset_index() # single level res = df.set_index("index") exp = DataFrame( data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=Index(di, name="index"), ) exp.index = exp.index._with_freq(None) tm.assert_frame_equal(res, exp) # GH#12920 res = df.set_index(["index", "a"]) exp_index = MultiIndex.from_arrays([di, [0, 1, 2]], names=["index", "a"]) exp = DataFrame({"b": [3, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp) def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_names(self): df = tm.makeDataFrame() df.index.name = "name" assert df.set_index(df.index).index.names == ["name"] mi = MultiIndex.from_arrays(df[["A", "B"]].T.values, names=["A", "B"]) mi2 = MultiIndex.from_arrays( df[["A", "B", "A", "B"]].T.values, names=["A", "B", "C", "D"] ) df = df.set_index(["A", "B"]) assert df.set_index(df.index).index.names == ["A", "B"] # Check that set_index isn't converting a MultiIndex into an Index assert isinstance(df.set_index(df.index).index, MultiIndex) # Check actual equality tm.assert_index_equal(df.set_index(df.index).index, mi) idx2 = df.index.rename(["C", "D"]) # Check that [MultiIndex, MultiIndex] yields a MultiIndex rather # than a pair of tuples assert isinstance(df.set_index([df.index, idx2]).index, MultiIndex) # Check equality tm.assert_index_equal(df.set_index([df.index, idx2]).index, mi2) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() return_value = result.set_index(keys, drop=drop, inplace=True) assert return_value is None else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH#1590 df = DataFrame({"val": [0, 1, 2], "key": ["a", "b", "c"]}) expected = DataFrame({"val": [1, 2]},
Index(["b", "c"], name="key")
pandas.Index
import torch import numpy as np import pandas as pd import os import sys from torchsummary import summary import torch.nn as nn from collections import defaultdict import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt matplotlib.style.use('ggplot') from matplotlib import cm import seaborn as sns sns.set( font_scale=1.5, style="whitegrid", rc={ 'text.usetex' : False, 'lines.linewidth': 2 } ) # sns.set_theme() # sns.set_style('whitegrid') import glob import copy import math import models import random import torch.optim import torch import argparse import utils from sklearn.linear_model import LogisticRegression try: from tqdm import tqdm except: def tqdm(x): return x """ Plot the data contained in quant (keys: the name of the experiments), agains the reference (contained in stats_ref) dirname: the output directory name """ def process_df(quant, dirname, stats_ref=None, args=None, args_model=None, save=True, split=False): global table_format col_names = ["experiment", "stat", "set", "layer"] quant = utils.assert_col_order(quant, col_names, id_vars="var") keys = list(quant.columns.levels[0].sort_values()) output_root = os.path.join(dirname, f"merge_" + "_".join(keys)) os.makedirs(output_root, exist_ok=True) idx = pd.IndexSlice cols_error = idx[:, 'error', :, :] N_L = len(quant.columns.unique(level="layer")) # number of hidden layers # errors = quant["error"] # losses = quant["loss"] quant.drop("val", axis=1,level="set", inplace=True, errors='ignore') quant.drop(("test", "loss"), axis=1, inplace=True, errors='ignore') if save: quant.to_csv(os.path.join(output_root, 'merge.csv')) if stats_ref is not None: stats_ref.to_csv(os.path.join(output_root, 'stats_ref.csv')) quant.sort_index(axis=1, inplace=True) quant.loc[:, cols_error] *= 100 # in % quant.groupby(level=["experiment", "stat", "set"], axis=1, group_keys=False).describe().to_csv(os.path.join(output_root, 'describe.csv')) quant_ref = None Ts = { -1: 0, 0: 0, 1: 12.71, 2: 4.303, 3: 3.182, 4: 2.776, 9: 2.262} # quant.where(quant != 0, 6.1*10**(-5), inplace=True) if args.yscale == "log": quant_log = np.log10(quant) # quant_log.loc[:, Idx['B', "loss", :, 10]] if stats_ref is not None: # the reference to plot against N_S = len(stats_ref.columns) quant_ref_merge = pd.DataFrame() stats_ref.loc[:, "error"] = stats_ref["error"].values * 100 if "layer" in stats_ref.columns.names: stats_ref.columns = stats_ref.columns.droplevel('layer') # confidence intervals for the reference loss quant_ref = stats_ref.agg(['mean', 'count', 'std']) quant_ref.loc['se'] = quant_ref.loc['std'] / np.sqrt(quant_ref.loc['count']) # standard error quant_ref.loc['ci95'] = [ Ts[n-1] * se for (n, se) in zip(quant_ref.loc['count'], quant_ref.loc['se']) ] # 95% CI if args.yscale == "log": quant_ref_log = np.log10(stats_ref).agg(['mean', 'count', 'std']) quant_ref_log.loc['se'] = quant_ref_log.loc['std'] / np.sqrt(quant_ref_log.loc['count']) quant_ref_log.loc['ci95'] = [ Ts[n-1] * se for (n, se) in zip(quant_ref_log.loc['count'], quant_ref_log.loc['se']) ] # 95% CI # if args_model is not None: # else: xlabels=[str(i) for i in range(N_L)] logstr = "_log" if args.yscale == "log" else "" has_ref = quant_ref is not None # if len(keys) <= 2: palette=sns.color_palette(n_colors=len(keys)) if not split: fig, axes = plt.subplots(2, 1, figsize=(4, 8), sharex=False) # sns.set(font_scale=1,rc={"lines.linewidth":3}) k = 0 # the confidence intervals df_ci = quant.describe() df_ci.loc["ymax", :] = [mean + Ts[int(n-1)] / np.sqrt(n) * std for (mean, std, n) in zip(df_ci.loc["mean", :], df_ci.loc["std", :], df_ci.loc["count", :])] df_ci.loc["ymin", :] = [mean - Ts[int(n-1)] / np.sqrt(n) * std for (mean, std, n) in zip(df_ci.loc["mean", :], df_ci.loc["std", :], df_ci.loc["count", :])] #confidence intervals for the log plot if args.yscale == "log": df_ci_log = quant_log.describe() df_ci_log.loc["ymax", :] = [mean + Ts[int(n-1)] / np.sqrt(n) * std for (mean, std, n) in zip(df_ci_log.loc["mean", :], df_ci_log.loc["std", :], df_ci_log.loc["count", :])] df_ci_log.loc["ymin", :] = [mean - Ts[int(n-1)] / np.sqrt(n) * std for (mean, std, n) in zip(df_ci_log.loc["mean", :], df_ci_log.loc["std", :], df_ci_log.loc["count", :])] #rp.set_axis_labels("layer", "Loss", labelpad=10) #quant.loc[1, Idx["loss", :, 0]].lineplot(x="layer_ids", y="value", hue="") for i, stat in enumerate(["loss","error" ]): for j, setn in enumerate(["train","test"]): if stat == "loss" and setn=="test": continue if stat == "error" and setn=="train": continue # axes[k] = rp.axes[j,i] log_plot = args.yscale == "log" and setn == "train" if split: fig, ax = plt.subplots(1, 1, figsize=(4, 4), sharex=False) else: ax = axes.flatten()[k] if log_plot: df_plot = quant_log.loc[:, Idx[:, stat, setn, :]] df_ci_plot = df_ci_log else: df_plot = quant.loc[:, Idx[:, stat, setn, :]]#.min(axis=0).to_frame(name="value") df_ci_plot = df_ci df_plot = pd.melt(df_plot.reset_index(), id_vars="var") lp = sns.lineplot( #data=rel_losses.min(axis=0).to_frame(name="loss"), data=df_plot, #hue="width", hue="experiment", hue_order=keys, x="layer", y="value", legend=None, # style='set', ci=None, palette=palette, #style='layer', markers=False, ax=ax, dashes=True, # linewidth=3., #legend_out=True, #y="value", ) lp.set(xticks=range(0, len(xlabels))) # rp.set_xticklabels(xlabels) # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels)) lp.set_xticklabels(xlabels)#, rotation=40*(is_vgg)) for j, exp in enumerate(keys): xs =quant.loc[:, Idx[exp, stat, setn, :]].columns.get_level_values('layer').unique() df_ci_pplot = df_ci_plot.loc[:, Idx[exp, stat, setn, xs]] ax.fill_between(xs, df_ci_pplot.loc["ymax",:].values, df_ci_pplot.loc["ymin", :].values, color=ax.lines[j].get_color(), alpha=0.3) # else: # lp.set_xticklabels(len(xlabels)*[None]) if not split: ax.set_title("{} {}{}".format(setn.title()+(setn=="train")*"ing", stat.title(), " (%)" if stat=="error" else '')) # ylabel = stat if stat == "loss" else "error (%)" ax.set_xlabel("layer index l") ax.set_ylabel(None) if setn == "test": ax.set_ylim(df_plot["value"].min(), df_plot["value"].max()) if log_plot: # set the axis in power of 10 values ax.get_yaxis().get_major_formatter().set_useMathText(True) ax.get_yaxis().set_major_formatter(lambda x, pos: "$10^{" + f"{int(x)}" + "}$") if has_ref: # data_ref = quant_ref[stat, setn].reset_index() if not log_plot: ax.axline((0,quant_ref[stat, setn][0]), (1, quant_ref[stat, setn][0]), ls=":", zorder=2, c='g') # for the mean y1 = quant_ref.loc['mean', (stat, setn)] + quant_ref.loc['ci95', (stat, setn)]#quant_ref.loc['std', (stat, setn)] # y2 = quant_ref.loc['mean', (stat, setn)] - quant_ref.loc['ci95', (stat, setn)] #quant_ref.loc['ci95', (stat, setn)] ax.axhspan(y1, y2, facecolor='g', alpha=0.5) else: ax.axline((0,quant_ref_log[stat, setn][0]), (1, quant_ref_log[stat, setn][0]), ls=":", zorder=2, c='g') # for the mean y1 = quant_ref_log.loc['mean', (stat, setn)] + quant_ref_log.loc['ci95', (stat, setn)]#quant_ref_log.loc['std', (stat, setn)] # y2 = quant_ref_log.loc['mean', (stat, setn)] - quant_ref_log.loc['ci95', (stat, setn)] #quant_ref_log.loc['ci95', (stat, setn)] ax.axhspan(y1, y2, facecolor='g', alpha=0.5) # data_ref.index = pd.Index(range(len(data_ref))) # ax=ax, # if setn == "train": # ax.set_yscale(args.yscale) if split: # if k == 1: labels=keys + has_ref*["ref."] if setn == "test": # reset the name (not log) logstr = "" fig.legend(handles=ax.lines, labels=labels, # title="Exp.", loc="upper right", borderaxespad=0, bbox_to_anchor=(0.9,0.9))#, bbox_transform=fig.transFigure) # fig.tight_layout() plt.margins() plt.savefig(fname=os.path.join(output_root, f"{setn}_{stat}{logstr}.pdf"), bbox_inches='tight') k += 1 # fig.subplots_adjust(top=0.85) # if is_vgg: if not split: labels=keys + has_ref*["ref."] fig.legend(handles=ax.lines, labels=labels, # title="Exp.", loc="upper right", borderaxespad=0, bbox_to_anchor=(0.9,0.9))#, bbox_transform=fig.transFigure) fig.tight_layout() # plt.margins() fig.savefig(fname=os.path.join(output_root, f"train_loss_test_error{logstr}.pdf"), bbox_inches='tight') k=0 # sns.set(font_scale=1,rc={"lines.linewidth":3}) fig, axes = plt.subplots(1, 1, figsize=(4, 4), sharex=False) for i, stat in enumerate(["error"]): for j, setn in enumerate(["train"]): if stat == "loss" and setn=="test": continue if stat=="error" and setn=="test": continue # axes[k] = rp.axes[j,i] ax = axes # df_plot = quant.loc[:, Idx[:, stat, setn, :]].min(axis=0).to_frame(name="value") df_plot = quant.loc[:, Idx[:, stat, setn, :]]#.min(axis=0).to_frame(name="value") df_plot = pd.melt(df_plot.reset_index(), id_vars="var") lp = sns.lineplot( #data=rel_losses.min(axis=0).to_frame(name="loss"), data=df_plot, #hue="width", hue="experiment", hue_order=keys, x="layer", y="value", legend=None, # style='set', ci=95, palette=palette, #style='layer', markers=False, ax=ax, dashes=True, #legend_out=True, #y="value", ) lp.set(xticks=range(0, len(xlabels))) # rp.set_xticklabels(xlabels) # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels)) # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels)) lp.set_xticklabels(xlabels)#, rotation=40*(is_vgg)) if not split: ax.set_title("{} {}{}".format(setn.title()+(setn=="train")*'ing', stat.title(), " (%)" if stat=="error" else '')) # ylabel = stat if stat == "loss" else "error (%)" ax.set_xlabel("layer index l") ax.set_ylabel(None) if setn == "train": ax.set_yscale(args.yscale) if quant_ref is not None: # data_ref = quant_ref[stat, setn].reset_index() ax.axline((0,quant_ref[stat, setn][0]), (1,quant_ref[stat, setn][0]), ls=":", zorder=2, c='g') # data_ref.index = pd.Index(range(len(data_ref))) # sns.lineplot( # data=data_ref, # repeat the datasaet N_L times # ax=ax, # # x=range(len(data_ref)), # # y="value", # # xc np.tile(np.linspace(1, N_L, num=N_L), 2), # # x='', # # hue='r', # # color='red', # palette=['red'], # # style='set', # # x='index', # # dashes=True, # legend=False, # # y="value" # ) # for ax in ax.lines[-1:]: # the last two # ax.set_linestyle('--') k += 1 # fig.subplots_adjust(top=0.85) # if is_vgg: labels=keys + ["ref."] fig.legend(handles=ax.lines, labels=keys, #title="Exp.", loc="upper right", bbox_to_anchor=(0.9,0.9),borderaxespad=0)#, bbox_transform=fig.transFigure) plt.margins() plt.savefig(fname=os.path.join(output_root, f"error_train{logstr}.pdf"), bbox_inches='tight') if "B" in keys: df_B = quant["B"] elif "B2" in keys: df_B = quant["B2"] else: return n_draws = len(df_B.index) # vary_draw=copy.deepcopy(df_B) df_B_plot = pd.melt(df_B.reset_index(), id_vars="var") cp = sns.FacetGrid( data=df_B_plot, # hue="experiment", # hue_order=["A", "B"], col="stat", col_order=["loss", "error"], row="set", row_order=["train", "test"], # x="layer", # y="value", # kind='line', # legend="full", # style='set', # ci='sd', # palette=palette, #style='layer', # markers=False, # dashes=True, #legend_out=True, # facet_kws={ sharey= False, sharex= True, #y="value", ) styles=['dotted', 'dashed', 'dashdot', 'solid'] # for i_k, k in enumerate([10, 50, 100, 200]): draws = len(df_B.index) df_bound =
pd.DataFrame(columns=df_B.columns)
pandas.DataFrame
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import explained_variance_score from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from scipy.interpolate import interp1d from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline # -------------------------------------------------------------------------------- 5.1 Approximation Demand and Supply # ---------- Demand and Supply Functions ---------- def demand(p): """Vectorized Function to determine *demand*. Args: p (np.array): Price vector for demand. Raises: ValueError: Argument p has to be an array. AssertionError: Type of q and p has to be identical. Returns: np.array: Returns demand quantity. """ if not isinstance(p, np.ndarray): raise TypeError("Price vector has to be an array!") r = np.random.rand() * 2 n = abs(np.random.randn()) * 2 q = ( 40 / (p + n) + 1 / (1 + np.exp(p - 75 + r)) + 2 / (1 + np.exp(p - 50 + r)) + 3 / (1 + np.exp(p - 25 + r)) ) q[q > 20] = np.nan assert type(q) == type(p), "Type of output does not equal type of input!" return q def supply(p): """Vectorized Function to determine *supply.* Args: p (np.array): Price vector for supply. Raises: ValueError: Argument p has to be an array. AssertionError: Type of q and p has to be identical. Returns: np.array: Returns supply quantity. """ if not isinstance(p, np.ndarray): raise TypeError("Price vector has to be an array!") q = np.zeros(p.shape) for i, c in enumerate(p): if (c > 0) and (c < 10): q[i] = 1.0 elif (c >= 10) and (c < 20): q[i] = 1.5 elif (c >= 20) and (c < 25): q[i] = 3.0 elif (c >= 25) and (c < 35): q[i] = 3.6 elif (c >= 35) and (c < 45): q[i] = 4.2 elif (c >= 45) and (c < 60): q[i] = 5.0 elif (c >= 60) and (c < 75): q[i] = 8.0 elif (c >= 75) and (c < 85): q[i] = 12.0 elif (c >= 85) and (c < 90): q[i] = 16.5 elif (c >= 90) and (c < 95): q[i] = 18.5 elif c >= 95: q[i] = 20.0 assert type(q) == type(p), "Type of output does not equals type of input!" return q # ---------- Approximation using scipy ---------- class PolynomialDS: """Object that approximates supply and demand functions using sicpy interpolate method. Args: a (int): Lower bound of prices. b (int): Upper bound of prices. nodes (int): Interpolation nodes for demand and supply. demand (function): Benchmark function supply. supply (function): Benchmark function demand. Raises: AssertionError: Price must be non-negative. AssertionError: By Assumption: price cannot exceed 100. """ def __init__(self, a, b, nodes, demand, supply): """Constructor method. """ self.a = a self.b = b assert a >= 0, "Price cannot be negative!" assert (b > a) and (b <= 100), "By Assumption: Price cannot exceed 100!" self.nodes = nodes self.demand = demand self.supply = supply self.p = np.linspace(a, b, nodes) self.qd = demand(self.p) self.qs = supply(self.p) def __len__(self): """Returns number of interpolation nodes. Returns: int: Number of known prices. """ return len(self.p) def __repr__(self): """String representation of object. """ p = np.around(self.p, decimals=2) qd = np.around(self.qd, decimals=2) qs = np.around(self.qs, decimals=2) return f"{len(self)} known values for Demand and Supply:\n\nPrices={p} \n\nDemand={qd} \nSupply={qs}" def __call__(self, p): """Returns true and approximated value of demand and supply for a given price. Args: p (np.array): Price vector. Returns: : Comparison. """ self.apprx_qd = interp1d(self.p, self.qd) self.apprx_qs = interp1d(self.p, self.qs) return f"-- Real value -- at price {p}: \n\nDemand = {self.demand(p)} \nSupply = {self.supply(p)} \n\n-- Approximated value -- at price {p}: \n\nDemand = {self.apprx_qd(p)} \nSupply = {self.apprx_qs(p)}" @staticmethod def __name__(): """Returns the name of the object. """ return "Demand and Supply Interpolator" def plt_approx(self, fs=(14, 7), num1=16.1, num2=16.2, num3=16.3, num4=16.4): """Plots Approximation and true supply as well as demand. Args: fs (tuple, optional): Figuresize. Defaults to (14, 7). num1 (float, optional): Number first figure. Defaults to 16.1. num2 (float, optional): Number second figure. Defaults to 16.2. num3 (float, optional): Number third figure. Defaults to 16.3. num4 (float, optional): Number fourth figure. Defaults to 16.4. """ prices = np.linspace(self.a, self.b, self.nodes * 150) apprx_qd = self.apprx_qd(prices) apprx_qs = self.apprx_qs(prices) qd = self.demand(prices) qs = self.supply(prices) fig, (ax1, ax2) = plt.subplots(2, 2, figsize=fs) ax1[0].plot(self.qd, self.p, "o", label="Nodes Demand", color="#4B045D") ax1[0].plot( apprx_qd, prices, label="Interpolation Demand", ls="--", color="#8E0C08" ) ax1[0].plot(qd, prices, label="Real Demand", alpha=0.7, color="#D98D08") ax1[0].set_title(f"Figure {num1}: Approximation of Demand") ax1[0].legend(loc="center right") ax1[0].grid() ax1[1].plot(self.qs, self.p, "o", label="Nodes Supply", color="#4B045D") ax1[1].plot( apprx_qs, prices, label="Interpolation Supply", ls="--", color="#0C5BCD" ) ax1[1].plot(qs, prices, label="Real Supply", alpha=0.7, color="#67853E") ax1[1].set_title(f"Figure {num2}: Approximation of Supply") ax1[1].legend(loc="center right") ax1[1].grid() ax2[0].plot( apprx_qd, prices, label="Interpolation Demand", ls="--", color="#8E0C08" ) ax2[0].plot( apprx_qs, prices, label="Interpolation Supply", ls="--", color="#0C5BCD" ) ax2[0].set_title(f"Figure {num3}: Approximated Demand and Supply") ax2[0].legend(loc="center right") ax2[0].grid() ax2[1].plot(qd, prices, label="Real Demand", color="#D98D08") ax2[1].plot(qs, prices, label="Real Supply", color="#67853E") ax2[1].set_title(f"Figure {num4}: True Demand and Supply") ax2[1].legend(loc="center right") ax2[1].grid() plt.show() abs_error_qd = np.array(abs(qd - apprx_qd)) abs_error_qd = abs_error_qd[~np.isnan(abs_error_qd)] abs_error_qs = np.array(abs(qs - apprx_qs)) print( f"Mean Absolute Error: \n\nDemand = {abs_error_qd.mean():.4f} \nSupply = {abs_error_qs.mean():.4f}" ) def close_intersection(self, nodes=1000000): """Returns true and approximated market equilibrium. Args: nodes (int, optional): Number of interpolation nodes. Defaults to 1000000. """ prices = np.linspace(self.a, self.b, nodes) f = lambda p: self.demand(p) - self.supply(p) abs_sd = f(prices) abs_sd = abs_sd[~np.isnan(abs_sd)] argmin = abs(abs_sd).argmin() pe = prices[argmin] qe_demand = np.around(demand(np.array([pe])), decimals=3) qe_supply = np.around(supply(np.array([pe])), decimals=3) g = lambda p: self.apprx_qd(p) - self.apprx_qs(p) abs_asd = f(prices) abs_asd = abs_asd[~np.isnan(abs_asd)] argmin_a = abs(abs_asd).argmin() pea = prices[argmin_a] aqe_demand = np.around(self.apprx_qd(np.array([pea])), decimals=3) aqe_supply = np.around(self.apprx_qs(np.array([pea])), decimals=3) print( f"Equilibrium True (Quantity, Price) \n*** *** *** *** \nDemand: {(qe_demand[0], np.around(pe, decimals=3))} \nSupply: {(qe_supply[0], np.around(pe, decimals=3))}\n" ) print( f"Equilibrium Approximation (Quantity, Price) \n*** *** *** *** \nDemand: {(aqe_demand[0], np.around(pea, decimals=3))} \nSupply: {(aqe_supply[0], np.around(pea, decimals=3))}" ) # ---------- Approximation using ML ---------- class AISupplyDemandApprox: """Object that approximates supply and demand using various ML methods. Args: nodes (int): Number of known nodes. supply (function): Unknown supply function. demand (function): Unknown demand function. a (int, optional): Lower bound of prices. Defaults to 0. b (int, optional): Upper bound of prices. Defaults to 100. ts (float, optional): Size of testing data. Defaults to 0.4. rs (int, optional): Random state. Defaults to 42. Raises: AssertionError: Price must be non-negative. AssertionError: Training data includes nan values. AssertionError: Testing data includes nan values. """ def __init__(self, nodes, supply, demand, a=0, b=100, ts=0.4, rs=42): """Constructor method. """ assert a >= 0, "Price must be Non Negative!" p = np.linspace(a, b, nodes) q = supply(p) qd = demand(p) p_train, p_test, q_train, q_test = train_test_split( p, q, test_size=ts, random_state=rs ) pd_train, pd_test, qd_train, qd_test = train_test_split( p, qd, test_size=ts, random_state=rs ) self.p_train = p_train.reshape(-1, 1) # reshape data self.p_test = p_test.reshape(-1, 1) # reshape data self.q_train = q_train.reshape(-1, 1) # reshape data self.q_test = q_test.reshape(-1, 1) # reshape data nan_ind = np.argwhere(np.isnan(qd_train)) # select index of nan values qd_train_mod = np.delete(qd_train, nan_ind) # delete nan index value pd_train_mod = np.delete(pd_train, nan_ind) self.pd_train = pd_train_mod.reshape(-1, 1) self.pd_test = pd_test.reshape(-1, 1) self.qd_train = qd_train_mod.reshape(-1, 1) self.qd_test = qd_test.reshape(-1, 1) assert np.isnan(self.pd_train).all() == False, "There are nan Values!" assert np.isnan(self.pd_test).all() == False, "There are nan Values!" @staticmethod def __name__(): """Returns name of AISupplyDemandApprox object. """ return "Modern-ML Demand and Supply Interpolator" def plots( self, colors=["teal", "yellowgreen", "gold"], label=["Training Values", "Testing Values"] * 2, markers=["x", "*", "v"], n_neighbors=4, degrees=[3, 6], weight="distance", fs=(15, 10), num1=17.1, num2=17.2, num3=17.3, num4=17.4, ): """Plots approximation results as well as training and testing data. Args: colors (list, optional): Colors of approximation results. Defaults to ["teal", "yellowgreen", "gold"]. label (list, optional): Labels of training and testing data. Defaults to ["Training Values", "Testing Values"]*2. markers (list, optional): Markers of approximation. Defaults to ["x", "*", "v"]. n_neighbors (int, optional): Number of k-nearest neighbors. Defaults to 4. degrees (list, optional): Number of degrees for Linear Regression. Defaults to [3, 6]. weight (str, optional): Weight of KNN Regression. Defaults to "distance". fs (tuple, optional): Figuresize. Defaults to (15, 10) num1 (float, optional): Number of first Figure. Defaults to 17.1. num2 (float, optional): Number of second Figure. Defaults to 17.2. num3 (float, optional): Number of third Figure. Defaults to 17.3. num4 (float, optional): Number of fourth Figure. Defaults to 17.4. Raises: AssertionError: Length of degrees is out of range. """ self.degrees = degrees assert len(degrees) == 2, "List out of range!" qsup, psup = [self.q_train, self.q_test], [self.p_train, self.p_test] qdem, pdem = [self.qd_train, self.qd_test], [self.pd_train, self.pd_test] fig, (ax1, ax2) = plt.subplots(2, 2, figsize=fs) for i, (qs, ps, qd, pd) in enumerate(zip(qsup, psup, qdem, pdem)): for ax in [ax1[0], ax1[1]]: ax.plot(qs, ps, "o", ms=4, label=label[i]) for ax in [ax2[0], ax2[1]]: ax.plot(qd, pd, "o", ms=4, label=label[i]) self.maes, self.maed = [], [] self.mses, self.msed = [], [] self.evss, self.evsd = [], [] self.r2s, self.r2d = [], [] for i, ax in enumerate([ax1, ax2]): for j, d in enumerate(degrees): model = make_pipeline(PolynomialFeatures(d), LinearRegression()) if i == 0: model.fit(self.p_train, self.q_train) pred = model.predict(self.p_test) ax[i].plot( pred, self.p_test, markers[j], color=colors[j], ms=5, label=f"Approximation Degree {d}", ) indexs_to_order_by = pred.ravel().argsort() pred_ordered = pred[indexs_to_order_by] ptest_ordered = self.p_test.ravel()[indexs_to_order_by] ax[i].plot(pred_ordered, ptest_ordered, color=colors[j], alpha=0.5) ax[i].set_title( f"Figure {num1}: Linear Regression Approximation Supply" ) ax[i].grid(True) ax[i].legend(loc="center right") self.maes.append(mean_absolute_error(pred, self.q_test)) self.mses.append(mean_squared_error(pred, self.q_test)) self.evss.append(explained_variance_score(pred, self.q_test)) self.r2s.append(r2_score(pred, self.q_test)) elif i == 1: model.fit(self.pd_train, self.qd_train) pred = model.predict(self.pd_test) ax[i - 1].plot( pred, self.pd_test, markers[j], color=colors[j], ms=5, label=f"Approximation Degree {d}", ) indexs_to_order_by = pred.ravel().argsort() pred_ordered = pred[indexs_to_order_by] ptest_ordered = self.pd_test.ravel()[indexs_to_order_by] ax[i - 1].plot( pred_ordered, ptest_ordered, color=colors[j], alpha=0.5 ) ax[i - 1].set_title( f"Figure {num3}: Linear Regression Approximation Demand" ) ax[i - 1].grid(True) ax[i - 1].legend(loc="center right") self.maed.append(mean_absolute_error(pred, self.qd_test)) self.msed.append(mean_squared_error(pred, self.qd_test)) self.evsd.append(explained_variance_score(pred, self.qd_test)) self.r2d.append(r2_score(pred, self.qd_test)) methods = ["KNN", "DecisionTree"] knn = KNeighborsRegressor(n_neighbors, weights=weight) tree = DecisionTreeRegressor() for i, ax in enumerate([ax1, ax2]): for j, m in enumerate([knn, tree]): if i == 0: m.fit(self.p_train, self.q_train) pred = m.predict(self.p_test) ax[i + 1].plot( pred, self.p_test, markers[j], color=colors[j], ms=4, label=f"Approximation using {methods[j]}", ) indexs_to_order_by = pred.ravel().argsort() pred_ordered = pred[indexs_to_order_by] ptest_ordered = self.pd_test.ravel()[indexs_to_order_by] ax[i + 1].plot( pred_ordered, ptest_ordered, color=colors[j], alpha=0.5 ) ax[i + 1].set_title( f"Figure {num2}: KNN and DT Approximation Supply" ) ax[i + 1].grid(True) ax[i + 1].legend(loc="center right") self.maes.append(mean_absolute_error(pred, self.q_test)) self.mses.append(mean_squared_error(pred, self.q_test)) self.evss.append(explained_variance_score(pred, self.q_test)) self.r2s.append(r2_score(pred, self.q_test)) elif i == 1: m.fit(self.pd_train, self.qd_train) pred = m.predict(self.pd_test) ax[i].plot( pred, self.pd_test, markers[j], color=colors[j], ms=4, label=f"Approximation using {methods[j]}", ) indexs_to_order_by = pred.ravel().argsort() pred_ordered = pred[indexs_to_order_by] ptest_ordered = self.pd_test.ravel()[indexs_to_order_by] ax[i].plot(pred_ordered, ptest_ordered, color=colors[j], alpha=0.5) ax[i].set_title(f"Figure {num4}: KNN and DT Approximation Demand") ax[i].grid(True) ax[i].legend(loc="center right") self.maed.append(mean_absolute_error(pred, self.qd_test)) self.msed.append(mean_squared_error(pred, self.qd_test)) self.evsd.append(explained_variance_score(pred, self.qd_test)) self.r2d.append(r2_score(pred, self.qd_test)) plt.show() def reslts_as_frame(self, num=14): """Returns accuracy of approximation using ML. Args: num (int, float, optional): Number of dataframe. Defaults to 14. Returns: pd.DataFrame: Accuracy of approximation. """ d1, d2 = self.degrees[0], self.degrees[1] index_as_array_sup = [ np.array(["Supply"] * 4), np.array(["Linear Regression"] * 2 + ["KNN Regression", "DTR"]), np.array([f"{d1} Degrees", f"{d2} Degrees", "", ""]), ] index_as_array_dem = [ np.array(["Demand"] * 4), np.array(["Linear Regression"] * 2 + ["KNN Regression", "DTR"]), np.array([f"{d1} Degrees", f"{d2} Degrees", "", ""]), ] col = [ "Mean Absolute Error", "Mean Squared Error", "Explained Variance Score", "$R^2$-Score", ] data_supply = pd.concat( [ pd.DataFrame(self.maes, index=index_as_array_sup), pd.DataFrame(self.mses, index=index_as_array_sup), pd.DataFrame(self.evss, index=index_as_array_sup),
pd.DataFrame(self.r2s, index=index_as_array_sup)
pandas.DataFrame
import pandas as pd from pathlib import Path """ This module contains functions to access training, validation and testing data for the river flow (discharge) of the Dranse river in Bioge, France. Hourly values for the years 2016, 2017, 2018, and 2019. """ def get_yearly_flow(year=2016): """ Reading text files with yearly data. :return: A DataFrame with DateTimeIndex and the discharge values """ file_path = (Path(__file__).parent / f"../data/hourly_flows_2016-19/flows-{year}.txt").resolve() flow_df = pd.read_csv(file_path, delimiter='\t').drop(columns='V') flow_df.columns = ['datetime', 'discharge'] flow_df['datetime'] = pd.to_datetime(flow_df['datetime'], dayfirst=True) flow_df = flow_df.set_index('datetime') return flow_df def get_combined_flow(): """ Combining dataframes from individual years into one dataframe. :return: a combined dataframe, with interpolated missing values. """ dfs = [] for year in range(2016, 2021): dfs.append(get_yearly_flow(year=year)) flow_df = pd.concat(dfs) flow_df = flow_df.asfreq('H').interpolate() return flow_df def get_combined_flow_split(): """ Splitting the combined data of four years into training, validation and test sets. :return: three dataframes """ flow_df = get_combined_flow() train = flow_df.loc[flow_df.index < pd.to_datetime('2018-07-01 00:00:00')] validation = flow_df.loc[(flow_df.index >
pd.to_datetime('2018-07-01 00:00:00')
pandas.to_datetime
# -*- encoding:utf-8 -*- import pandas as pd import numpy as np import datetime # from datetime import datetime dire = '../../data/' start = datetime.datetime.now() orderHistory_train = pd.read_csv(dire + 'train/orderHistory_train.csv', encoding='utf-8') orderFuture_train = pd.read_csv(dire + 'train/orderFuture_train.csv', encoding='utf-8') userProfile_train = pd.read_csv(dire + 'train/userProfile_train.csv', encoding='utf-8') userComment_train = pd.read_csv(dire + 'train/userComment_train.csv', encoding='utf-8') action_train = pd.read_csv(dire + 'train/insert_action_train2.csv', encoding='utf-8') city = pd.read_csv(dire + 'train/city.csv', encoding='utf-8') orderHistory_test = pd.read_csv(dire + 'test/orderHistory_test.csv', encoding='utf-8') orderFuture_test = pd.read_csv(dire + 'test/orderFuture_test.csv', encoding='utf-8') userProfile_test = pd.read_csv(dire + 'test/userProfile_test.csv', encoding='utf-8') userComment_test = pd.read_csv(dire + 'test/userComment_test.csv', encoding='utf-8') action_test = pd.read_csv(dire + 'test/insert_action_test2.csv', encoding='utf-8') # """ ############# 3.action feature_3 ############# """ # 1. 全部浏览记录中0-9出现的次数 # 2. 对应浏览记录中0-9出现的次数 # 3. 全部浏览记录浏览时间 # 4. 对应浏览记录浏览时间 # 5. 对应浏览记录是否出现5 6 # """ # 全部浏览记录中0-9出现的次数 def count_56789(orderFuture, action): action_1 = action[action['actionType'] == 1] action_2 = action[action['actionType'] == 2] action_3 = action[action['actionType'] == 3] action_4 = action[action['actionType'] == 4] action_5 = action[action['actionType'] == 5] action_6 = action[action['actionType'] == 6] action_7 = action[action['actionType'] == 7] action_8 = action[action['actionType'] == 8] action_9 = action[action['actionType'] == 9] action_1 = action_1.groupby(action_1.userid)['actionType'].count().reset_index() # 每个用户1操作的总数 action_2 = action_2.groupby(action_2.userid)['actionType'].count().reset_index() # 每个用户2操作的总数 action_3 = action_3.groupby(action_3.userid)['actionType'].count().reset_index() # 每个用户3操作的总数 action_4 = action_4.groupby(action_4.userid)['actionType'].count().reset_index() # 每个用户4操作的总数 action_5 = action_5.groupby(action_5.userid)['actionType'].count().reset_index() # 每个用户5操作的总数 action_6 = action_6.groupby(action_6.userid)['actionType'].count().reset_index() # 每个用户6操作的总数 action_7 = action_7.groupby(action_7.userid)['actionType'].count().reset_index() # 每个用户7操作的总数 action_8 = action_8.groupby(action_8.userid)['actionType'].count().reset_index() # 每个用户8操作的总数 action_9 = action_9.groupby(action_9.userid)['actionType'].count().reset_index() # 每个用户9操作的总数 action_all = action.groupby(action.userid)['actionType'].count().reset_index() # 每个用户 操作的总数 action_1.rename(columns={'actionType': 'action_1'}, inplace=True) action_2.rename(columns={'actionType': 'action_2'}, inplace=True) action_3.rename(columns={'actionType': 'action_3'}, inplace=True) action_4.rename(columns={'actionType': 'action_4'}, inplace=True) action_5.rename(columns={'actionType': 'action_5'}, inplace=True) action_6.rename(columns={'actionType': 'action_6'}, inplace=True) action_7.rename(columns={'actionType': 'action_7'}, inplace=True) action_8.rename(columns={'actionType': 'action_8'}, inplace=True) action_9.rename(columns={'actionType': 'action_9'}, inplace=True) action_all.rename(columns={'actionType': 'action_all'}, inplace=True) orderFuture = pd.merge(orderFuture, action_1, on='userid', how='left') orderFuture = pd.merge(orderFuture, action_2, on='userid', how='left') orderFuture =
pd.merge(orderFuture, action_3, on='userid', how='left')
pandas.merge
import os from loguru import logger import googlemaps import pandas as pd geo = os.getenv("LTC_FACILITIES_GEOCODED_CSV") if geo is None: raise ValueError("you must set a value for the LTC_FACILITIES_GEOCODED_CSV env variable") ltc_geo = pd.read_csv(geo) google_key = os.getenv("GOOGLE_API_KEY") if google_key is None: raise ValueError("you must set a value for the GOOGLE_API_KEY env variable") gmaps = googlemaps.Client(key=google_key) # hits the google reverse geocoding api to find an address from lat/lon for each facility # used for states that do not report city and county per facility def rev_geocode(record): if(record['lat'] == '' or record['lon'] == ''): return record if(record['geocoded_city'] != '' or record['geocoded_county'] != ''): return record latlon = (record['lat'],record['lon']) try: result = gmaps.reverse_geocode(latlon) except Exception as err: logger.error("geocode call failed for facility %s with error: %s" % (record['facility_name'], err)) return record if not result: logger.error("could not find geocode result for facility %s" % record['facility_name']) return record g = result[0] if not 'address_components' in g: logger.error("could not find reverse geocode results for facility %s" % record['facility_name']) return record address_components = g.get('address_components') city_results = [a for a in address_components if a["types"] == ['locality', 'political']] city = city_results[0] if city_results else {} county_results = [a for a in address_components if a["types"] == ['administrative_area_level_2', 'political']] county = county_results[0] if county_results else {} record['geocoded_city'] = city.get('long_name') record['geocoded_county'] = county.get('long_name') return record def main(): # these states do not provide facility location information, so we wish to capture city and county during geocoding rev_states =['NM', 'UT', 'IN', 'SC', 'OK', 'VT'] df = ltc_geo df = df.fillna(value='') to_rev = df[df['state'].isin(rev_states)] rev = to_rev.apply(rev_geocode, axis = 1) not_rev = df[~df['state'].isin(rev_states)] frames = [rev, not_rev] df =
pd.concat(frames)
pandas.concat
""" steep.py Computes similarity (Pearson or Spearman correlation). If given 1 gct, steep will compute all pairwise similarities between its columns. If given 2 gcts, steep will compute pairwise similarities between the columns of gct1 and the columns of gct2 (samples from gct1 will be in the rows). Required input is a path to a gct file. Output is a gct file containing a similarity matrix. """ import sys import logging import pandas as pd import argparse import merino.setup_logger as setup_logger import cmapPy.pandasGEXpress.GCToo as GCToo import cmapPy.pandasGEXpress.parse as parse import cmapPy.pandasGEXpress.write_gct as wg __author__ = "<NAME>" __email__ = "<EMAIL>" logger = logging.getLogger(setup_logger.LOGGER_NAME) SIMILARITY_METRIC_FIELD = "similarity_metric" def build_parser(): """Build argument parser.""" parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Required args parser.add_argument("--in_gct_path", "-i", required=True, help="path to input gct file") # Optional args parser.add_argument("--in_gct2_path", "-i2", help="path to second gct file") parser.add_argument("--out_name", "-o", default="steep_output.gct", help="what to name the output similarity file") parser.add_argument("--similarity_metric", "-s", default="spearman", choices=["spearman", "pearson"], help="similarity metric to use for comparing columns") parser.add_argument("--verbose", "-v", action="store_true", default=False, help="whether to increase the # of messages reported") return parser def main(args): # Read in the first gct gct1 = parse(args.in_gct_path, convert_neg_666=False, make_multiindex=True) # If second gct provided, compute similarity between 2 gcts if args.in_gct2_path is not None: logger.info("in_gct2_path was provided. Will compute pairwise similarities " + "between the columns of in_gct and in_gct2.") # Read in the second gct gct2 = parse(args.in_gct2_path, convert_neg_666=False, make_multiindex=True) # Compute similarities between gct1 and gct2 out_df = compute_similarity_bw_two_dfs(gct1.data_df, gct2.data_df, args.similarity_metric) # Row metadata is from gct1, column metadata is from gct2 row_metadata_df = gct1.col_metadata_df col_metadata_df = gct2.col_metadata_df # Append column to both metadata_dfs indicating which similarity_metric was used row_metadata_df[SIMILARITY_METRIC_FIELD] = args.similarity_metric col_metadata_df[SIMILARITY_METRIC_FIELD] = args.similarity_metric # Assemble output gct out_gct = GCToo.GCToo(out_df, row_metadata_df, col_metadata_df) # If only 1 gct provided, compute similarities between the columns of gct1 else: out_df = compute_similarity_within_df(gct1.data_df, args.similarity_metric) # Row and column metadata are both from gct1 metadata_df = gct1.col_metadata_df # Append column to metadata_df indicating which similarity_metric was used metadata_df[SIMILARITY_METRIC_FIELD] = args.similarity_metric # Assemble output gct out_gct = GCToo.GCToo(out_df, metadata_df, metadata_df) # Write output gct wg.write(out_gct, args.out_name, data_null="NaN", metadata_null="NA", filler_null="NA") def compute_similarity_bw_two_dfs(df1, df2, similarity_metric): """ Compute similarity between the columns of df1 and the columns of df2. The dfs are concated, all pairwise similarities are computed, and then only the requested ones (namely between df1 and df2, not within df1 or within df2) are returned. This can almost certainly be implemented more efficiently, but this method is faster than iterating over columns with a for-loop. Args: df1 (pandas df): size = m x n1 df2 (pandas df): size = m x n2 similarity_metric (string): "pearson" or "spearman" Returns: out_df (pandas df): size = n1 x n2 """ # Concatenate the matrices together df_concat =
pd.concat([df1, df2], axis=1)
pandas.concat
""" MIT License Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import pandas as pd from sklearn.inspection import partial_dependence from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.metrics import r2_score from sklearn import svm from sklearn.datasets import load_boston from articles.pd.support import load_rent, load_bulldozer, load_flights, \ toy_weather_data, toy_weight_data, \ df_cat_to_catcode, df_split_dates, \ df_string_to_cat, synthetic_interaction_data from stratx import plot_stratpd, plot_catstratpd, \ plot_stratpd_gridsearch, plot_catstratpd_gridsearch from stratx.partdep import partial_dependence from stratx.plot import marginal_plot_, plot_ice, plot_catice from stratx.ice import predict_ice, predict_catice, friedman_partial_dependence import inspect import matplotlib.patches as mpatches from collections import OrderedDict import matplotlib.pyplot as plt import os import shap import xgboost as xgb from colour import rgb2hex, Color from dtreeviz.trees import tree, ShadowDecTree figsize = (2.5, 2) figsize2 = (3.8, 3.2) GREY = '#444443' # This genfigs.py code is just demonstration code to generate figures for the paper. # There are lots of programming sins committed here; to not take this to be # our idea of good code. ;) # For data sources, please see notebooks/examples.ipynb def addnoise(df, n=1, c=0.5, prefix=''): if n == 1: df[f'{prefix}noise'] = np.random.random(len(df)) * c return for i in range(n): df[f'{prefix}noise{i + 1}'] = np.random.random(len(df)) * c def fix_missing_num(df, colname): df[colname + '_na'] = pd.isnull(df[colname]) df[colname].fillna(df[colname].median(), inplace=True) def savefig(filename, pad=0): plt.tight_layout(pad=pad, w_pad=0, h_pad=0) plt.savefig(f"images/{filename}.pdf", bbox_inches="tight", pad_inches=0) # plt.savefig(f"images/{filename}.png", dpi=150) plt.tight_layout() plt.show() plt.close() def rent(): print(f"----------- {inspect.stack()[0][3]} -----------") np.random.seed(1) # pick seed for reproducible article images X,y = load_rent(n=10_000) df_rent = X.copy() df_rent['price'] = y colname = 'bedrooms' colname = 'bathrooms' TUNE_RF = False TUNE_XGB = False X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) if TUNE_RF: rf, bestparams = tune_RF(X, y) # does CV on entire data set to tune # bedrooms # RF best: {'max_features': 0.3, 'min_samples_leaf': 1, 'n_estimators': 125} # validation R^2 0.7873724127323822 # bathrooms # RF best: {'max_features': 0.3, 'min_samples_leaf': 1, 'n_estimators': 200} # validation R^2 0.8066593395345907 else: rf = RandomForestRegressor(n_estimators=200, min_samples_leaf=1, max_features=.3, oob_score=True, n_jobs=-1) rf.fit(X_train, y_train) # Use training set for plotting print("RF OOB R^2", rf.oob_score_) rf_score = rf.score(X_test, y_test) print("RF validation R^2", rf_score) if TUNE_XGB: tuned_parameters = {'n_estimators': [400, 450, 500, 600, 1000], 'learning_rate': [0.008, 0.01, 0.02, 0.05, 0.08, 0.1, 0.11], 'max_depth': [3, 4, 5, 6, 7, 8, 9]} grid = GridSearchCV( xgb.XGBRegressor(), tuned_parameters, scoring='r2', cv=5, n_jobs=-1, verbose=2 ) grid.fit(X, y) # does CV on entire data set to tune print("XGB best:", grid.best_params_) b = grid.best_estimator_ # bedrooms # XGB best: {'max_depth': 7, 'n_estimators': 250} # XGB validation R^2 0.7945797751555217 # bathrooms # XGB best: {'learning_rate': 0.11, 'max_depth': 6, 'n_estimators': 1000} # XGB train R^2 0.9834399795800324 # XGB validation R^2 0.8244958014380593 else: b = xgb.XGBRegressor(n_estimators=1000, max_depth=6, learning_rate=.11, verbose=2, n_jobs=8) b.fit(X_train, y_train) xgb_score = b.score(X_test, y_test) print("XGB validation R^2", xgb_score) lm = LinearRegression() lm.fit(X_train, y_train) lm_score = lm.score(X_test, y_test) print("OLS validation R^2", lm_score) lm.fit(X, y) model, r2_keras = rent_deep_learning_model(X_train, y_train, X_test, y_test) fig, axes = plt.subplots(1, 6, figsize=(10, 1.8), gridspec_kw = {'wspace':0.15}) for i in range(len(axes)): axes[i].set_xlim(0-.3,4+.3) axes[i].set_xticks([0,1,2,3,4]) axes[i].set_ylim(1800, 9000) axes[i].set_yticks([2000,4000,6000,8000]) axes[1].get_yaxis().set_visible(False) axes[2].get_yaxis().set_visible(False) axes[3].get_yaxis().set_visible(False) axes[4].get_yaxis().set_visible(False) axes[0].set_title("(a) Marginal", fontsize=10) axes[1].set_title("(b) RF", fontsize=10) axes[1].text(2,8000, f"$R^2=${rf_score:.3f}", horizontalalignment='center', fontsize=9) axes[2].set_title("(c) XGBoost", fontsize=10) axes[2].text(2,8000, f"$R^2=${xgb_score:.3f}", horizontalalignment='center', fontsize=9) axes[3].set_title("(d) OLS", fontsize=10) axes[3].text(2,8000, f"$R^2=${lm_score:.3f}", horizontalalignment='center', fontsize=9) axes[4].set_title("(e) Keras", fontsize=10) axes[4].text(2,8000, f"$R^2=${r2_keras:.3f}", horizontalalignment='center', fontsize=9) axes[5].set_title("(f) StratPD", fontsize=10) avg_per_baths = df_rent.groupby(colname).mean()['price'] axes[0].scatter(df_rent[colname], df_rent['price'], alpha=0.07, s=5) axes[0].scatter(np.unique(df_rent[colname]), avg_per_baths, s=6, c='black', label="average price/{colname}") axes[0].set_ylabel("price") # , fontsize=12) axes[0].set_xlabel("bathrooms") axes[0].spines['right'].set_visible(False) axes[0].spines['top'].set_visible(False) ice = predict_ice(rf, X, colname, 'price', numx=30, nlines=100) plot_ice(ice, colname, 'price', alpha=.3, ax=axes[1], show_xlabel=True, show_ylabel=False) ice = predict_ice(b, X, colname, 'price', numx=30, nlines=100) plot_ice(ice, colname, 'price', alpha=.3, ax=axes[2], show_ylabel=False) ice = predict_ice(lm, X, colname, 'price', numx=30, nlines=100) plot_ice(ice, colname, 'price', alpha=.3, ax=axes[3], show_ylabel=False) scaler = StandardScaler() X_train_ = pd.DataFrame(scaler.fit_transform(X_train), columns=X_train.columns) # y_pred = model.predict(X_) # print("Keras training R^2", r2_score(y, y_pred)) # y_test in y ice = predict_ice(model, X_train_, colname, 'price', numx=30, nlines=100) # replace normalized unique X with unnormalized ice.iloc[0, :] = np.linspace(np.min(X_train[colname]), np.max(X_train[colname]), 30, endpoint=True) plot_ice(ice, colname, 'price', alpha=.3, ax=axes[4], show_ylabel=True) pdpx, pdpy, ignored = \ plot_stratpd(X, y, colname, 'price', ax=axes[5], pdp_marker_size=6, show_x_counts=False, hide_top_right_axes=False, show_xlabel=True, show_ylabel=False) print(f"StratPD ignored {ignored} records") axes[5].yaxis.tick_right() axes[5].yaxis.set_label_position('right') axes[5].set_ylim(-250,2250) axes[5].set_yticks([0,1000,2000]) axes[5].set_ylabel("price") savefig(f"{colname}_vs_price") def tune_RF(X, y, verbose=2): tuned_parameters = {'n_estimators': [50, 100, 125, 150, 200], 'min_samples_leaf': [1, 3, 5, 7], 'max_features': [.1, .3, .5, .7, .9]} grid = GridSearchCV( RandomForestRegressor(), tuned_parameters, scoring='r2', cv=5, n_jobs=-1, verbose=verbose ) grid.fit(X, y) # does CV on entire data set rf = grid.best_estimator_ print("RF best:", grid.best_params_) # # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # rf.fit(X_train, y_train) # print("validation R^2", rf.score(X_test, y_test)) return rf, grid.best_params_ def plot_with_noise_col(df, colname): features = ['bedrooms', 'bathrooms', 'latitude', 'longitude'] features_with_noise = ['bedrooms', 'bathrooms', 'latitude', 'longitude', colname + '_noise'] type = "noise" fig, axes = plt.subplots(2, 2, figsize=(5, 5), sharey=True, sharex=True) df = df.copy() addnoise(df, n=1, c=50, prefix=colname + '_') X = df[features] y = df['price'] # STRATPD ON ROW 1 X = df[features] y = df['price'] plot_stratpd(X, y, colname, 'price', ax=axes[0, 0], slope_line_alpha=.15, show_xlabel=True, show_ylabel=False) axes[0, 0].set_ylim(-1000, 5000) axes[0, 0].set_title(f"StratPD") X = df[features_with_noise] y = df['price'] plot_stratpd(X, y, colname, 'price', ax=axes[0, 1], slope_line_alpha=.15, show_ylabel=False) axes[0, 1].set_ylim(-1000, 5000) axes[0, 1].set_title(f"StratPD w/{type} col") # ICE ON ROW 2 X = df[features] y = df['price'] rf = RandomForestRegressor(n_estimators=100, min_samples_leaf=1, oob_score=True, n_jobs=-1) rf.fit(X, y) # do it w/o dup'd column ice = predict_ice(rf, X, colname, 'price', nlines=1000) uniq_x, pdp_curve = \ plot_ice(ice, colname, 'price', alpha=.05, ax=axes[1, 0], show_xlabel=True) axes[1, 0].set_ylim(-1000, 5000) axes[1, 0].set_title(f"FPD/ICE") for i in range(2): for j in range(2): axes[i, j].set_xlim(0, 6) X = df[features_with_noise] y = df['price'] rf = RandomForestRegressor(n_estimators=100, min_samples_leaf=1, oob_score=True, n_jobs=-1) rf.fit(X, y) ice = predict_ice(rf, X, colname, 'price', nlines=1000) uniq_x_, pdp_curve_ = \ plot_ice(ice, colname, 'price', alpha=.05, ax=axes[1, 1], show_xlabel=True, show_ylabel=False) axes[1, 1].set_ylim(-1000, 5000) axes[1, 1].set_title(f"FPD/ICE w/{type} col") # print(f"max ICE curve {np.max(pdp_curve):.0f}, max curve with dup {np.max(pdp_curve_):.0f}") axes[0, 0].get_xaxis().set_visible(False) axes[0, 1].get_xaxis().set_visible(False) def plot_with_dup_col(df, colname, min_samples_leaf): features = ['bedrooms', 'bathrooms', 'latitude', 'longitude'] features_with_dup = ['bedrooms', 'bathrooms', 'latitude', 'longitude', colname + '_dup'] fig, axes = plt.subplots(2, 3, figsize=(7.5, 5), sharey=True, sharex=True) type = "dup" verbose = False df = df.copy() df[colname + '_dup'] = df[colname] # df_rent[colname+'_dupdup'] = df_rent[colname] # STRATPD ON ROW 1 X = df[features] y = df['price'] print(f"shape is {X.shape}") plot_stratpd(X, y, colname, 'price', ax=axes[0, 0], slope_line_alpha=.15, show_xlabel=True, min_samples_leaf=min_samples_leaf, show_ylabel=True, verbose=verbose) axes[0, 0].set_ylim(-1000, 5000) axes[0, 0].set_title(f"StratPD") X = df[features_with_dup] y = df['price'] print(f"shape with dup is {X.shape}") plot_stratpd(X, y, colname, 'price', ax=axes[0, 1], slope_line_alpha=.15, show_ylabel=False, min_samples_leaf=min_samples_leaf, verbose=verbose) axes[0, 1].set_ylim(-1000, 5000) axes[0, 1].set_title(f"StratPD w/{type} col") plot_stratpd(X, y, colname, 'price', ax=axes[0, 2], slope_line_alpha=.15, show_xlabel=True, min_samples_leaf=min_samples_leaf, show_ylabel=False, n_trees=15, max_features=1, bootstrap=False, verbose=verbose ) axes[0, 2].set_ylim(-1000, 5000) axes[0, 2].set_title(f"StratPD w/{type} col") axes[0, 2].text(.2, 4000, "ntrees=15") axes[0, 2].text(.2, 3500, "max features per split=1") # ICE ON ROW 2 X = df[features] y = df['price'] rf = RandomForestRegressor(n_estimators=100, min_samples_leaf=1, oob_score=True, n_jobs=-1) rf.fit(X, y) # do it w/o dup'd column ice = predict_ice(rf, X, colname, 'price', nlines=1000) plot_ice(ice, colname, 'price', alpha=.05, ax=axes[1, 0], show_xlabel=True) axes[1, 0].set_ylim(-1000, 5000) axes[1, 0].set_title(f"FPD/ICE") for i in range(2): for j in range(3): axes[i, j].set_xlim(0, 6) # with dup'd column X = df[features_with_dup] y = df['price'] rf = RandomForestRegressor(n_estimators=100, min_samples_leaf=1, oob_score=True, n_jobs=-1) rf.fit(X, y) ice = predict_ice(rf, X, colname, 'price', nlines=1000) plot_ice(ice, colname, 'price', alpha=.05, ax=axes[1, 1], show_xlabel=True, show_ylabel=False) axes[1, 1].set_ylim(-1000, 5000) axes[1, 1].set_title(f"FPD/ICE w/{type} col") # print(f"max ICE curve {np.max(pdp_curve):.0f}, max curve with dup {np.max(pdp_curve_):.0f}") axes[1, 2].set_title(f"FPD/ICE w/{type} col") axes[1, 2].text(.2, 4000, "Cannot compensate") axes[1, 2].set_xlabel(colname) # print(f"max curve {np.max(curve):.0f}, max curve with dup {np.max(curve_):.0f}") axes[0, 0].get_xaxis().set_visible(False) axes[0, 1].get_xaxis().set_visible(False) def rent_ntrees(): np.random.seed(1) # pick seed for reproducible article images print(f"----------- {inspect.stack()[0][3]} -----------") X, y = load_rent(n=10_000) trees = [1, 5, 10, 30] supervised = True def onevar(colname, row, yrange=None): alphas = [.1,.08,.05,.04] for i, t in enumerate(trees): plot_stratpd(X, y, colname, 'price', ax=axes[row, i], slope_line_alpha=alphas[i], # min_samples_leaf=20, yrange=yrange, supervised=supervised, show_ylabel=t == 1, pdp_marker_size=2 if row==2 else 8, n_trees=t, max_features='auto', bootstrap=True, verbose=False) fig, axes = plt.subplots(3, 4, figsize=(8, 6), sharey=True) for i in range(1, 4): axes[0, i].get_yaxis().set_visible(False) axes[1, i].get_yaxis().set_visible(False) axes[2, i].get_yaxis().set_visible(False) for i in range(0, 4): axes[0, i].set_title(f"{trees[i]} trees") onevar('bedrooms', row=0, yrange=(-500, 4000)) onevar('bathrooms', row=1, yrange=(-500, 4000)) onevar('latitude', row=2, yrange=(-500, 4000)) savefig(f"rent_ntrees") plt.close() def meta_boston(): np.random.seed(1) # pick seed for reproducible article images print(f"----------- {inspect.stack()[0][3]} -----------") boston = load_boston() print(len(boston.data)) df = pd.DataFrame(boston.data, columns=boston.feature_names) df['MEDV'] = boston.target X = df.drop('MEDV', axis=1) y = df['MEDV'] plot_stratpd_gridsearch(X, y, 'AGE', 'MEDV', show_slope_lines=True, min_samples_leaf_values=[2,5,10,20,30], yrange=(-10,10)) # yranges = [(-30, 0), (0, 30), (-8, 8), (-11, 0)] # for nbins in range(6): # plot_meta_multivar(X, y, colnames=['LSTAT', 'RM', 'CRIM', 'DIS'], targetname='MEDV', # nbins=nbins, # yranges=yranges) savefig(f"meta_boston_age_medv") def plot_meta_multivar(X, y, colnames, targetname, nbins, yranges=None): np.random.seed(1) # pick seed for reproducible article images min_samples_leaf_values = [2, 5, 10, 30, 50, 100, 200] nrows = len(colnames) ncols = len(min_samples_leaf_values) fig, axes = plt.subplots(nrows, ncols + 2, figsize=((ncols + 2) * 2.5, nrows * 2.5)) if yranges is None: yranges = [None] * len(colnames) row = 0 for i, colname in enumerate(colnames): marginal_plot_(X, y, colname, targetname, ax=axes[row, 0]) col = 2 for msl in min_samples_leaf_values: print( f"---------- min_samples_leaf={msl}, nbins={nbins:.2f} ----------- ") plot_stratpd(X, y, colname, targetname, ax=axes[row, col], min_samples_leaf=msl, yrange=yranges[i], n_trees=1) axes[row, col].set_title( f"leafsz={msl}, nbins={nbins:.2f}", fontsize=9) col += 1 row += 1 rf = RandomForestRegressor(n_estimators=100, min_samples_leaf=1, oob_score=True) rf.fit(X, y) row = 0 for i, colname in enumerate(colnames): ice = predict_ice(rf, X, colname, targetname) plot_ice(ice, colname, targetname, ax=axes[row, 1]) row += 1 def unsup_rent(): np.random.seed(1) # pick seed for reproducible article images print(f"----------- {inspect.stack()[0][3]} -----------") X, y = load_rent(n=10_000) fig, axes = plt.subplots(4, 2, figsize=(4, 8)) plot_stratpd(X, y, 'bedrooms', 'price', ax=axes[0, 0], yrange=(-500,4000), slope_line_alpha=.2, supervised=False) plot_stratpd(X, y, 'bedrooms', 'price', ax=axes[0, 1], yrange=(-500,4000), slope_line_alpha=.2, supervised=True) plot_stratpd(X, y, 'bathrooms', 'price', ax=axes[1, 0], yrange=(-500,4000), slope_line_alpha=.2, supervised=False) plot_stratpd(X, y, 'bathrooms', 'price', ax=axes[1, 1], yrange=(-500,4000), slope_line_alpha=.2, supervised=True) plot_stratpd(X, y, 'latitude', 'price', ax=axes[2, 0], yrange=(-500,2000), slope_line_alpha=.2, supervised=False, verbose=True) plot_stratpd(X, y, 'latitude', 'price', ax=axes[2, 1], yrange=(-500,2000), slope_line_alpha=.2, supervised=True, verbose=True) plot_stratpd(X, y, 'longitude', 'price', ax=axes[3, 0], yrange=(-500,500), slope_line_alpha=.2, supervised=False) plot_stratpd(X, y, 'longitude', 'price', ax=axes[3, 1], yrange=(-500,500), slope_line_alpha=.2, supervised=True) axes[0, 0].set_title("Unsupervised") axes[0, 1].set_title("Supervised") for i in range(3): axes[i, 1].get_yaxis().set_visible(False) savefig(f"rent_unsup") plt.close() def weather(): np.random.seed(1) # pick seed for reproducible article images print(f"----------- {inspect.stack()[0][3]} -----------") TUNE_RF = False df_raw = toy_weather_data() df = df_raw.copy() df_string_to_cat(df) names = np.unique(df['state']) catnames = OrderedDict() for i,v in enumerate(names): catnames[i+1] = v df_cat_to_catcode(df) X = df.drop('temperature', axis=1) y = df['temperature'] # cats = catencoders['state'].values # cats = np.insert(cats, 0, None) # prepend a None for catcode 0 if TUNE_RF: rf, bestparams = tune_RF(X, y) # RF best: {'max_features': 0.9, 'min_samples_leaf': 5, 'n_estimators': 150} # validation R^2 0.9500072628270099 else: rf = RandomForestRegressor(n_estimators=150, min_samples_leaf=5, max_features=0.9, oob_score=True) rf.fit(X, y) # Use full data set for plotting print("RF OOB R^2", rf.oob_score_) fig, ax = plt.subplots(1, 1, figsize=figsize) df = df_raw.copy() avgtmp = df.groupby(['state', 'dayofyear'])[['temperature']].mean() avgtmp = avgtmp.reset_index() ca = avgtmp.query('state=="CA"') co = avgtmp.query('state=="CO"') az = avgtmp.query('state=="AZ"') wa = avgtmp.query('state=="WA"') nv = avgtmp.query('state=="NV"') ax.plot(ca['dayofyear'], ca['temperature'], lw=.5, c='#fdae61', label="CA") ax.plot(co['dayofyear'], co['temperature'], lw=.5, c='#225ea8', label="CO") ax.plot(az['dayofyear'], az['temperature'], lw=.5, c='#41b6c4', label="AZ") ax.plot(wa['dayofyear'], wa['temperature'], lw=.5, c='#a1dab4', label="WA") ax.plot(nv['dayofyear'], nv['temperature'], lw=.5, c='#a1dab4', label="NV") ax.legend(loc='upper left', borderpad=0, labelspacing=0) ax.set_xlabel("dayofyear") ax.set_ylabel("temperature") ax.set_title("(a) State/day vs temp") savefig(f"dayofyear_vs_temp") fig, ax = plt.subplots(1, 1, figsize=figsize) plot_stratpd(X, y, 'dayofyear', 'temperature', ax=ax, show_x_counts=False, yrange=(-10, 10), pdp_marker_size=2, slope_line_alpha=.5, n_trials=1) ax.set_title("(b) StratPD") savefig(f"dayofyear_vs_temp_stratpd") plt.close() fig, ax = plt.subplots(1, 1, figsize=figsize) plot_catstratpd(X, y, 'state', 'temperature', catnames=catnames, show_x_counts=False, # min_samples_leaf=30, min_y_shifted_to_zero=True, # alpha=.3, ax=ax, yrange=(-1, 55)) ax.set_yticks([0,10,20,30,40,50]) ax.set_title("(d) CatStratPD") savefig(f"state_vs_temp_stratpd") fig, ax = plt.subplots(1, 1, figsize=figsize) ice = predict_ice(rf, X, 'dayofyear', 'temperature') plot_ice(ice, 'dayofyear', 'temperature', ax=ax) ax.set_title("(c) FPD/ICE") savefig(f"dayofyear_vs_temp_pdp") fig, ax = plt.subplots(1, 1, figsize=figsize) ice = predict_catice(rf, X, 'state', 'temperature') plot_catice(ice, 'state', 'temperature', catnames=catnames, ax=ax, pdp_marker_size=15, min_y_shifted_to_zero = True, yrange=(-2, 50) ) ax.set_yticks([0,10,20,30,40,50]) ax.set_title("(b) FPD/ICE") savefig(f"state_vs_temp_pdp") fig, ax = plt.subplots(1, 1, figsize=figsize) ax.scatter(X['state'], y, alpha=.05, s=15) ax.set_xticks(range(1,len(catnames)+1)) ax.set_xticklabels(catnames.values()) ax.set_xlabel("state") ax.set_ylabel("temperature") ax.set_title("(a) Marginal") savefig(f"state_vs_temp") plt.close() def meta_weather(): np.random.seed(1) # pick seed for reproducible article images print(f"----------- {inspect.stack()[0][3]} -----------") # np.random.seed(66) nyears = 5 years = [] for y in range(1980, 1980 + nyears): df_ = toy_weather_data() df_['year'] = y years.append(df_) df_raw =
pd.concat(years, axis=0)
pandas.concat
import os import yaml import utils import pandas as pd import datetime as dt import matplotlib.pyplot as plt def compile_data(nwis_var_names, source): # select munged files we want to fetch data for files_to_process = [f for f in os.listdir(os.path.join('.', '02_munge', 'out')) if f.startswith(f'{source}_')] # create dataframe per variable var_dfs = {} for var in nwis_var_names: var_dfs[var] = pd.DataFrame() for f in files_to_process: print(f'processing {f}') # get site id site_id = os.path.splitext(f)[0].split('_')[-1] # read in data per site and append it to the appropriate dataframe site_data_csv = os.path.join('.', '02_munge', 'out', f) site_data_df = pd.read_csv(site_data_csv, index_col='datetime') # make index into datetime type site_data_df.index = pd.to_datetime(site_data_df.index) for var in site_data_df.columns: var_dfs[var][site_id] = site_data_df[var] return var_dfs def add_year_start_end(df, year): date_ny = f'{year+1}-01-01' df[date_ny] = np.nan if f'{year}-01-01' not in df.index: df[f'{year}-01-01'] = np.nan return df.sort_index() def gap_analysis_calc(source, var_dfs): # make output directory if it doesn't exist os.makedirs(os.path.join('data_exploration', 'out', 'gap_analysis_csvs'), exist_ok = True) # define metric names that we will calculate metrics = ['p_coverage', 'n_gaps', 'gap_median_days', 'gap_max_days'] gap_template_df = pd.DataFrame(columns=metrics) metric_dfs = {} for var, df in var_dfs.items(): print(f'calculating metrics for {var}') df.dropna(axis=0, how='all', inplace=True) if df.empty: continue metric_dfs[var] = {} # get list of years available for this variable # # include all years with any measurements at any of our sites years = df.index.year.unique() for site in df.columns: var_site_gap_df = gap_template_df.copy() for year in years: year_df = df[df.index.year==year][site] # year_df.dropna(inplace=True) if year == datetime.datetime.today().year: elapsed_days = datetime.datetime.today().timetuple().tm_yday else: elapsed_days = (datetime.datetime(year+1, 1, 1, 0, 0) - datetime.datetime(year, 1, 1, 0, 0)).days var_site_gap_df.loc[year, 'p_coverage'] = year_df.count()/elapsed_days # drop all nan values so that we can calculate gaps using indices delta_data = year_df.dropna() # add back first day of year and first day of subsequent year to capture # gaps at start/end of year delta_data = add_year_start_end(delta_data, year) # calculate the length of all data gaps deltas = delta_data.index.to_series().diff()[1:] gaps = deltas[deltas > dt.timedelta(days=1)] # populate metrics related to gaps var_site_gap_df.loc[year, 'n_gaps'] = len(gaps) var_site_gap_df.loc[year, 'gap_median_days'] = gaps.median().days if pd.notna(gaps.median().days) else 0 var_site_gap_df.loc[year, 'gap_max_days'] = gaps.max().days if pd.notna(gaps.max().days) else 0 var_site_gap_df.to_csv(os.path.join('data_exploration', 'out', 'gap_analysis_csvs', f'{source}_{var}_{site}_gap_analysis.csv')) metric_dfs[var][site]= var_site_gap_df return metric_dfs, metrics def plot_gap_analysis(source, metric_dfs, metrics, site_colors): # make output directory if it doesn't exist os.makedirs(os.path.join('data_exploration', 'out', 'gap_analysis_plots'), exist_ok = True) for var, data_by_site in metric_dfs.items(): print(f'plotting metrics for {var}') plot_df =
pd.DataFrame()
pandas.DataFrame
from typing import List, Tuple import pandas as pd class AgodaCancellationPreprocessor: SATURDAY = 5 def __init__(self, full_data: pd.DataFrame): self.number_of_times_customer_canceled = dict() for id, cancellation in full_data[ ["h_customer_id", "cancellation_datetime"]].itertuples( index=False): if cancellation == 0: if id in self.number_of_times_customer_canceled: self.number_of_times_customer_canceled[id] += 1 else: self.number_of_times_customer_canceled[id] = 1 self.average_cancellation_days_from_booking = dict() self.average_cancellation_days_to_checkin = dict() dates =
pd.DataFrame([])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Mar 26 10:52:43 2020 @author: Celina """ import pandas as pd import outdoor.excel_wrapper.Wrapping_Functions as WF def wrapp_GeneralData(obj, df1): """ Description ----------- Get general Process Data: Lifetime and Group Context ---------- Function is called in Wrapp_ProcessUnits Parameters ---------- df1 : Dataframe which holds information of LT and Group """ Name = df1.iloc[0,0] LifeTime = df1.iloc[4,0] ProcessGroup = df1.iloc[3,0] if not pd.isnull(df1.iloc[12,0]): emissions = df1.iloc[12,0] else: emissions = 0 if not pd.isnull(df1.iloc[13,0]): maintenance_factor = df1.iloc[13,0] else: maintenance_factor = 0.044875 cost_percentage = None time_span = None time_mode = 'No Mode' if not pd.isnull(df1.iloc[14,0]): cost_percentage = df1.iloc[14,0] time_span = df1.iloc[15,0] if df1.iloc[16,0] == 'Yearly': time_mode = 'Yearly' else: time_mode = 'Hourly' if not pd.isnull(df1.iloc[17,0]): full_load_hours = df1.iloc[17,0] else: full_load_hours = None obj.set_generalData(ProcessGroup, LifeTime, emissions, full_load_hours, maintenance_factor, cost_percentage, time_span, time_mode) def wrapp_ReacionData(obj, df1, df2 = None): """ Description ----------- Get Reaction Data (Stoichiometric or Yield Function) from Excel sheet Context ---------- Function is called in Wrapp_ProcessUnits Parameters ---------- df1 : Dataframe which either holds Stoichiometric or Yield Coefficents df2: Dataframe which is either empty or holds conversion factors """ if obj.Type == "Yield-Reactor": dict1 = WF.read_type1(df1,0,1) obj.set_xiFactors(dict1) list1 = WF.read_list_new(df1, 2, 0) obj.set_inertComponents(list1) else: dict1 = WF.read_type2(df1,0,1,2) obj.set_gammaFactors(dict1) dict2 = WF.read_type2(df2,0,1,2) obj.set_thetaFactors(dict2) def wrapp_EnergyData(obj, df, df2, df3): """ Description ----------- Define specific columns from the spreadsheet to set the energydatas. Sets Demands, ReferenceFlow Types and Components for El, Heat1 and Heat2. But only if there are values in the Excel, if not, than these values are left as None Also: Calls wrapp_Temperatures, which sets Temperature and Tau for Heat Context ---------- Function is called in Wrapp.ProcessUnits Parameters ---------- df : Dataframe which holds inforation of energy demand and reference flow type df2 : Dataframe which holds information of reference flow components df3 : Dataframe which holds information on heat temperatures """ # Set Reference Flow Type: if not pd.isnull(df.iloc[0,1]): ProcessElectricityDemand = df.iloc[0,1] ProcessElectricityReferenceFlow = df.iloc[1,1] ProcessElectricityReferenceComponentList = WF.read_list_new(df2, 1, 2) else: ProcessElectricityDemand = 0 ProcessElectricityReferenceFlow = None ProcessElectricityReferenceComponentList = [] if not pd.isnull(df.iloc[0,2]): ProcessHeatDemand = df.iloc[0,2] ProcessHeatReferenceFlow = df.iloc[1,2] ProcessHeatReferenceComponentList = WF.read_list_new(df2, 2, 2) else: ProcessHeatDemand = None ProcessHeatReferenceFlow = None ProcessHeatReferenceComponentList = [] if not
pd.isnull(df.iloc[0,3])
pandas.isnull
#!/Tsan/bin/python # -*- coding: utf-8 -*- # Libraries to use from __future__ import division import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime import json import mysql.connector # 读取数据库的指针设置 with open('conf.json', 'r') as fd: conf = json.load(fd) src_db = mysql.connector.connect(**conf['src_db']) # 一些常量 riskFreeRate = 0.02 # 无风险利率 varThreshold =0.05 # 5%VAR阈值 scaleParameter = 50 # 一年50周 # 表名 index_data_table = 'fund_weekly_index' # index时间序列数据 index_name_table = 'index_id_name_mapping' type_index_table = 'index_stype_code_mapping' # 表格名称-不同基金种类对应的指数 # 私募指数基金分类表格对应(只需要跑一次) def get_type_index_table(tableName = type_index_table): try: #sql_query='select id,name from student where age > %s' cursor = src_db .cursor() sql = "select * from %s" % (tableName) cursor.execute(sql) result = cursor.fetchall() finally: pass #pdResult = dict(result) pdResult = pd.DataFrame(result) pdResult = pdResult.dropna(axis=0) pdResult.columns = [i[0] for i in cursor.description] pdResult.set_index('stype_code',inplace=True) return pdResult # 私募指数名称及ID分类表格对应(只需要跑一次) def get_index_table(tableName = index_name_table): try: #sql_query='select id,name from student where age > %s' cursor = src_db .cursor() sql = "select * from %s" % (tableName) cursor.execute(sql) result = cursor.fetchall() finally: pass #pdResult = dict(result) pdResult = pd.DataFrame(result) pdResult = pdResult.dropna(axis=0) pdResult.columns = [i[0] for i in cursor.description] pdResult.set_index('index_id',inplace=True) return pdResult # 私募指数净值的时间序列 def get_index(index, tableName=index_data_table): try: # sql_query='select id,name from student where age > %s' cursor = src_db.cursor() sql = "select index_id,statistic_date,index_value from %s where index_id = '%s'" % (tableName, index) cursor.execute(sql) result = cursor.fetchall() finally: pass pdResult = pd.DataFrame(result, dtype=float) pdResult.columns = ['index', 'date', 'net_worth'] pdResult = pdResult.drop_duplicates().set_index('date') pdResult = pdResult.dropna(axis=0) pdResult = pdResult.fillna(method='ffill') return pdResult # 按季度分类 def byseasons(x): if 1<=x.month<=3: return str(x.year)+'_'+str(1) elif 4<= x.month <=6: return str(x.year)+'_'+str(2) elif 7<= x.month <=9: return str(x.year)+'_'+str(3) else: return str(x.year)+'_'+str(4) # 计算最大回撤,最大回撤开始结束时间 def cal_max_dd_indicator(networthSeries): maxdd = pd.DataFrame(index = networthSeries.index, data=None, columns =['max_dd','max_dd_start_date','max_dd_end_date'],dtype = float) maxdd.iloc[0] = 0 maxdd.is_copy = False for date in networthSeries.index[1:]: maxdd.loc[date] = [1 - networthSeries.loc[date] / networthSeries.loc[:date].max(),networthSeries.loc[:date].idxmax(),date] #maxdd[['max_dd_start_date','max_dd_end_date']].loc[date] = [[networthSeries.loc[:date].idxmax(),date]] #maxdd['max_dd_start_date'].loc[date] = networthSeries.loc[:date].idxmax() return maxdd['max_dd'].max(), maxdd.loc[maxdd['max_dd'].idxmax]['max_dd_start_date'],maxdd.loc[maxdd['max_dd'].idxmax]['max_dd_end_date'] # 计算最大回撤(每季度),输入为dataframe,输出也为dataframe def cal_maxdd_by_season(df): seasonList = sorted(list(set(df['season'].values))) maxdd_dict = {} for season in seasonList: temp = df[df['season'] == season] maxdd_dict[season] = np.round(cal_max_dd_indicator(temp['net_worth'])[0],4) maxdd_df = pd.DataFrame([maxdd_dict]).T maxdd_df.columns =[df['index'].iloc[0]] maxdd_df.index.name = 'season' return maxdd_df # 计算最大回撤(每年),输入为dataframe,输出也为dataframe def cal_maxdd_by_year(df): seasonList = sorted(list(set(df['year'].values))) maxdd_dict = {} for season in seasonList: temp = df[df['year'] == season] maxdd_dict[season] = np.round(cal_max_dd_indicator(temp['net_worth'])[0],4) maxdd_df = pd.DataFrame([maxdd_dict]).T maxdd_df.columns =[df['index'].iloc[0]] maxdd_df.index.name = 'year' return maxdd_df # 准备数据原始dataframe def get_count_data(cnx): cursor = cnx.cursor() sql = "select fund_id,foundation_date,fund_type_strategy from fund_info" cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(result) df.columns = ['fund_id', 'found_date', 'strategy'] sql = "select type_id, strategy from index_type_mapping" cursor.execute(sql) result = cursor.fetchall() meg = pd.DataFrame(result) meg.columns = ['type_id', 'strategy'] # 数据清理 df = df.dropna() df = df[df['strategy'] != u''] # 合并对应表 df = pd.merge(df, meg) # 加年份列 df['year'] = [str(i.year) for i in df['found_date']] # 加月份列 df['month'] = [str(i.year) + '_' + str(i.month) for i in df['found_date']] return df.drop('strategy', axis=1) # 得到按年份分类统计,输出 dataframe def get_ann_fund(df): temp = df.groupby(['type_id', 'year'])['fund_id'].count().to_frame() # 分类转dataframe temp = pd.pivot_table(temp, values='fund_id', index='year', columns=['type_id']) temp['Type_0'] = df.groupby(['year'])['fund_id'].count().to_frame()['fund_id'] # 添加全市场数据 temp.sort_index(axis=0) temp.sort_index(axis=1, inplace=True) return temp # 得到按月份分类统计, 输出dataframe def get_month_fund(df): temp = df.groupby(['type_id', 'month'])['fund_id'].count().to_frame() # 分类转dataframe temp = pd.pivot_table(temp, values='fund_id', index=['month'], columns=['type_id']) temp['Type_0'] = df.groupby(['month'])['fund_id'].count().to_frame()['fund_id'] # 添加全市场数据 temp.sort_index(axis=0) temp.sort_index(axis=1, inplace=True) return temp # 准备数据原始dataframe def get_org_count(cnx): cursor = cnx.cursor() sql = "SELECT org_id, found_date FROM PrivateEquityFund.org_info WHERE org_category LIKE '4%'" cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(result) df.columns = ['org_id', 'found_date'] # 数据清理 df = df.dropna() # 加年份列 df['year'] = [str(i.year) for i in df['found_date']] # 加月份列 df['month'] = [str(i.year) + '_0' + str(i.month) if i.month < 10 else str(i.year) + '_' + str(i.month) for i in df['found_date']] return df # 得到按年份分类统计,输出 dataframe def get_ann_org(df): temp = df.groupby(['year'])['org_id'].count().to_frame() # 分类转dataframe temp.sort_index(axis=0) return temp # 得到按月份分类统计, 输出dataframe def get_month_org(df): temp = df.groupby(['month'])['org_id'].count().to_frame() # 分类转dataframe temp.sort_index(axis=0) return temp if __name__ == '__main__': # 计算季度指标 maxddbyseason = pd.DataFrame() # 季度最大回撤 retbyseason =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=line-too-long """ Created on Tue Mar 5 10:25:35 2019 @authors: <NAME>, Maxence, <NAME> """ import sys import logging import time import pandas as pd import numpy as np import rdmmp.scraping as scraping import rdmmp.db as db import rdmmp.cleaning as cleaning import rdmmp.preprocessing as preprocessing import rdmmp.modeling as modeling import rdmmp.reporting as reporting import rdmmp.configvalues as cv def test(): """ This is an example of Google style. Args: param1: This is the first param. param2: This is a second param. Returns: This is a description of what is returned. Raises: KeyError: Raises an exception. """ # %% DoScraping def do_scraping(automatic, db_data): """ Handle the data scraping on Indeed If not in automatic mode ask for user inputs to let them choose to run the automatic scraping or to scrap data for the job and location they enter In automatic mode, Loop on the jobs and locations and call a scraping function for each tuple Args: automatic: boolean, ask for user inputs if false then scrap, otherwise scrap predefined lists of jobs and locations db_data: dataframe from database """ log = logging.getLogger('main') log.info("") log.info("****************************************") log.info("*** do_scraping") log.info("****************************************") if not automatic: # Ask if they want to choose what to scrape choose = input("Do you want to choose what to scrape (y/n) ? ") if choose in ("y", "Y"): # Ask the job and location job = input("Please enter the title to scrape data for: \n").lower() location = input("Please enter the location to scrape data for: \n").lower() # Ask the amount of pages to scrap while True: num_pages = input("Please enter the number of pages needed (integer only, negative or 0 for all): \n") try: num_pages = int(num_pages) break except ValueError: log.error("Invalid number of pages! Please try again.") # Scrap inputs log.info("Scraping %s in %s...", job, location) scraping.get_data(job, num_pages, location, db_data) else: # answer is n or N or something else automatic = True if automatic: # Init job and location lists jobs = cv.CFG.targets locations = cv.CFG.locations # Scrap thread_list = [] for location in locations: for job in jobs: log.info("Scraping %s in %s...", job, location) thread = scraping.ScrapingThread(job, -1, location, db_data) thread_list.append(thread) thread.start() time.sleep(3) for thread in thread_list: thread.join() # %% GetWorkingData def get_working_data(database_data): """ Combine data from CSV and mongoDB Returns: A pandas dataframe """ log = logging.getLogger('main') log.info("") log.info("****************************************") log.info("*** get_working_data") log.info("****************************************") # Get a dataframe from csv files created by the scraping csv_data = scraping.import_data_from_csv(cv.CFG.csv_dir, cv.CFG.targets, cv.CFG.locations) log.info('%d rows from database', database_data.shape[0]) log.info('%d rows from csv files', csv_data.shape[0]) # Concat the 2 dataframes dataframe = pd.concat([database_data, csv_data], join='inner') # drop duplicates except the first(database) dataframe.drop_duplicates(['Title', 'Company', 'Salary', 'City', 'Posting'], inplace=True) # reset index dataframe.reset_index(drop=True, inplace=True) log.info('%d rows in the merge', dataframe.shape[0]) return dataframe # %% Cleaner def do_cleaning(data): """ Clean the data to be used in the model Args: data: pandas dataframe to clean """ log = logging.getLogger('main') log.info("") log.info("****************************************") log.info("*** do_cleaning") log.info("****************************************") return cleaning.clean(data) # %% Preprocess def pre_processing(data): """ Preprocess the data to be used in the model Args: data: pandas dataframe to preprocessed """ log = logging.getLogger('main') log.info("") log.info("****************************************") log.info("*** pre_process") log.info("****************************************") #return preprocessing.preprocess(data) return preprocessing.prepro(data) # %% DoModel def make_model(x_train, x_test, y_train, y_test, x_pred, dnan): """ Fit the model on the data and predict salary when it's unknown Args: data: pandas dataframe to train and predict our model on """ log = logging.getLogger('main') log.info("") log.info("****************************************") log.info("*** make_model") log.info("****************************************") return modeling.modelize(x_train, x_test, y_train, y_test, x_pred, dnan) # %% UpdateDB def update_db(dataframe, data_krbf, data_forest): """ Save the data in the DB Args: data: pandas dataframe to be saved in mongoDB """ log = logging.getLogger('main') log.info("") log.info("****************************************") log.info("*** update_db") log.info("****************************************") krbd_df =
pd.DataFrame(index=dataframe.index)
pandas.DataFrame
import datetime import pandas as pd import numpy as np todays_date = datetime.datetime.now().date() index = pd.date_range(todays_date-datetime.timedelta(10), periods=10, freq='D') columns = ['A','B', 'C'] print(columns) df_ =
pd.DataFrame(index=index, columns=columns)
pandas.DataFrame
# Copyright 2021 NREL # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from datetime import timedelta as td from itertools import product import numpy as np import pandas as pd from floris.utilities import wrap_360 from . import utilities as fsut def df_movingaverage( df_in, cols_angular, window_width=td(seconds=60), min_periods=1, center=True, calc_median_min_max_std=False, return_index_mapping=False, ): # Copy and ensure dataframe is indexed by time df = df_in.copy() if "time" in df.columns: df = df.set_index("time") # Find non-angular columns if isinstance(cols_angular, bool): if cols_angular: cols_angular = [c for c in df.columns] else: cols_angular = [] cols_regular = [c for c in df.columns if c not in cols_angular] # Now calculate cos and sin components for angular columns sin_cols = ["{:s}_sin".format(c) for c in cols_angular] cos_cols = ["{:s}_cos".format(c) for c in cols_angular] df[sin_cols] = np.sin(df[cols_angular] * np.pi / 180.0) df[cos_cols] = np.cos(df[cols_angular] * np.pi / 180.0) # Drop angular columns df = df.drop(columns=cols_angular) # Now calculate rolling (moving) average df_roll = df.rolling( window_width, center=center, axis=0, min_periods=min_periods ) # First calculate mean values of non-angular columns df_ma = df_roll[cols_regular].mean().copy() # Now add mean values of angular columns df_ma[cols_angular] = wrap_360( np.arctan2( df_roll[sin_cols].mean().values, df_roll[cos_cols].mean().values ) * 180.0 / np.pi ) # Figure out which indices/data points belong to each window if (return_index_mapping or calc_median_min_max_std): df_tmp = df_ma[[]].copy().reset_index(drop=False) df_tmp["tmp"] = 1 df_tmp = df_tmp.rolling(window_width, center=center, axis=0, on="time")["tmp"] # Grab index of first and last time entry for each window windows_min = list(df_tmp.apply(lambda x: x.index[0]).astype(int)) windows_max = list(df_tmp.apply(lambda x: x.index[-1]).astype(int)) # Now create a large array that contains the array of indices, with # the values in each row corresponding to the indices upon which that # row's moving/rolling average is based. Note that we purposely create # a larger matrix than necessary, since some rows/windows rely on more # data (indices) than others. This is the case e.g., at the start of # the dataset, at the end, and when there are gaps in the data. We fill # the remaining matrix entries with "-1". dn = int(np.ceil(window_width/fsut.estimate_dt(df_in["time"]))) + 5 data_indices = -1 * np.ones((df_ma.shape[0], dn), dtype=int) for ii in range(len(windows_min)): lb = windows_min[ii] ub = windows_max[ii] ind = np.arange(lb, ub + 1, dtype=int) data_indices[ii, ind - lb] = ind # Calculate median, min, max, std if necessary if calc_median_min_max_std: # Append all current columns with "_mean" df_ma.columns = ["{:s}_mean".format(c) for c in df_ma.columns] # Add statistics for regular columns funs = ["median", "min", "max", "std"] cols_reg_stats = ["_".join(i) for i in product(cols_regular, funs)] df_ma[cols_reg_stats] = df_roll[cols_regular].agg(funs).copy() # Add statistics for angular columns # Firstly, create matrix with indices for the mean values data_indices_mean = np.tile(np.arange(0, df_ma.shape[0]), (dn, 1)).T # Grab raw and mean data and format as numpy arrays D = df_in[cols_angular].values M = df_ma[["{:s}_mean".format(c) for c in cols_angular]].values # Add NaN row as last row. This corresponds to the -1 indices # that we use as placeholders. This way, those indices do not # count towards the final statistics (median, min, max, std). D = np.vstack([D, np.nan * np.ones(D.shape[1])]) M = np.vstack([M, np.nan * np.ones(M.shape[1])]) # Now create a 3D matrix containing all values. The three dimensions # come from: # > [0] one dimension containing the rolling windows, # > [1] one with the raw data underlying each rolling window, # > [2] one for each angular column within the dataset values = D[data_indices, :] values_mean = M[data_indices_mean, :] # Center values around values_mean values[values > (values_mean + 180.0)] += -360.0 values[values < (values_mean - 180.0)] += 360.0 # Calculate statistical properties and wrap to [0, 360) values_median = wrap_360(np.nanmedian(values, axis=1)) values_min = wrap_360(np.nanmin(values, axis=1)) values_max = wrap_360(np.nanmax(values, axis=1)) values_std = wrap_360(np.nanstd(values, axis=1)) # Save to dataframe df_ma[["{:s}_median".format(c) for c in cols_angular]] = values_median df_ma[["{:s}_min".format(c) for c in cols_angular]] = values_min df_ma[["{:s}_max".format(c) for c in cols_angular]] = values_max df_ma[["{:s}_std".format(c) for c in cols_angular]] = values_std if return_index_mapping: return df_ma, data_indices return df_ma def df_downsample( df_in, cols_angular, window_width=td(seconds=60), min_periods=1, center=False, calc_median_min_max_std=False, return_index_mapping=False, ): # Copy and ensure dataframe is indexed by time df = df_in.copy() if "time" in df.columns: df = df.set_index("time") # Find non-angular columns cols_regular = [c for c in df.columns if c not in cols_angular] # Now calculate cos and sin components for angular columns sin_cols = ["{:s}_sin".format(c) for c in cols_angular] cos_cols = ["{:s}_cos".format(c) for c in cols_angular] df[sin_cols] = np.sin(df[cols_angular] * np.pi / 180.0) df[cos_cols] = np.cos(df[cols_angular] * np.pi / 180.0) # Drop angular columns df = df.drop(columns=cols_angular) # Add _N for each variable to keep track of n.o. data points cols_all = df.columns cols_N = ["{:s}_N".format(c) for c in cols_all] df[cols_N] = 1 - df[cols_all].isna().astype(int) # Now calculate downsampled dataframe, automatically # mark by label on the right (i.e., "past 10 minutes"). df_resample = df.resample(window_width, label="right", axis=0) # First calculate mean values of non-angular columns df_out = df_resample[cols_regular].mean().copy() # Now add mean values of angular columns df_out[cols_angular] = wrap_360( np.arctan2( df_resample[sin_cols].mean().values, df_resample[cos_cols].mean().values ) * 180.0 / np.pi ) # Check if we have enough samples for every measurement if min_periods > 1: N_counts = df_resample[cols_N].sum() df_out[N_counts < min_periods] = None # Remove data relying on too few samples # Figure out which indices/data points belong to each window if (return_index_mapping or calc_median_min_max_std): df_tmp = df[[]].copy().reset_index() df_tmp["tmp"] = 1 df_tmp = df_tmp.resample(window_width, on="time", label="right", axis=0)["tmp"] # Grab index of first and last time entry for each window def get_first_index(x): if len(x) <= 0: return -1 else: return x.index[0] def get_last_index(x): if len(x) <= 0: return -1 else: return x.index[-1] windows_min = list(df_tmp.apply(get_first_index).astype(int)) windows_max = list(df_tmp.apply(get_last_index).astype(int)) # Now create a large array that contains the array of indices, with # the values in each row corresponding to the indices upon which that # row's moving/rolling average is based. Note that we purposely create # a larger matrix than necessary, since some rows/windows rely on more # data (indices) than others. This is the case e.g., at the start of # the dataset, at the end, and when there are gaps in the data. We fill # the remaining matrix entries with "-1". dn = int(np.ceil(window_width/fsut.estimate_dt(df_in["time"]))) + 5 data_indices = -1 * np.ones((df_out.shape[0], dn), dtype=int) for ii in range(len(windows_min)): lb = windows_min[ii] ub = windows_max[ii] if not ((lb == -1) | (ub == -1)): ind = np.arange(lb, ub + 1, dtype=int) data_indices[ii, ind - lb] = ind # Calculate median, min, max, std if necessary if calc_median_min_max_std: # Append all current columns with "_mean" df_out.columns = ["{:s}_mean".format(c) for c in df_out.columns] # Add statistics for regular columns funs = ["median", "min", "max", "std"] cols_reg_stats = ["_".join(i) for i in product(cols_regular, funs)] df_out[cols_reg_stats] = df_resample[cols_regular].agg(funs).copy() # Add statistics for angular columns # Firstly, create matrix with indices for the mean values data_indices_mean = np.tile(np.arange(0, df_out.shape[0]), (dn, 1)).T # Grab raw and mean data and format as numpy arrays D = df_in[cols_angular].values M = df_out[["{:s}_mean".format(c) for c in cols_angular]].values # Add NaN row as last row. This corresponds to the -1 indices # that we use as placeholders. This way, those indices do not # count towards the final statistics (median, min, max, std). D = np.vstack([D, np.nan * np.ones(D.shape[1])]) M = np.vstack([M, np.nan * np.ones(M.shape[1])]) # Now create a 3D matrix containing all values. The three dimensions # come from: # > [0] one dimension containing the rolling windows, # > [1] one with the raw data underlying each rolling window, # > [2] one for each angular column within the dataset values = D[data_indices, :] values_mean = M[data_indices_mean, :] # Center values around values_mean values[values > (values_mean + 180.0)] += -360.0 values[values < (values_mean - 180.0)] += 360.0 # Calculate statistical properties and wrap to [0, 360) values_median = wrap_360(np.nanmedian(values, axis=1)) values_min = wrap_360(np.nanmin(values, axis=1)) values_max = wrap_360(np.nanmax(values, axis=1)) values_std = wrap_360(np.nanstd(values, axis=1)) # Save to dataframe df_out[["{:s}_median".format(c) for c in cols_angular]] = values_median df_out[["{:s}_min".format(c) for c in cols_angular]] = values_min df_out[["{:s}_max".format(c) for c in cols_angular]] = values_max df_out[["{:s}_std".format(c) for c in cols_angular]] = values_std if center: # Shift time column towards center of the bin df_out.index = df_out.index - window_width / 2.0 if return_index_mapping: return df_out, data_indices return df_out def df_resample_by_interpolation( df, time_array, circular_cols, interp_method='linear', max_gap=None, verbose=True ): # Copy with properties but no actual data df_res = df.head(0).copy() # Remove timezones, if any df = df.copy() time_array = [
pd.to_datetime(t)
pandas.to_datetime
from __future__ import division from contextlib import contextmanager from datetime import datetime from functools import wraps import locale import os import re from shutil import rmtree import string import subprocess import sys import tempfile import traceback import warnings import numpy as np from numpy.random import rand, randn from pandas._libs import testing as _testing import pandas.compat as compat from pandas.compat import ( PY2, PY3, Counter, StringIO, callable, filter, httplib, lmap, lrange, lzip, map, raise_with_traceback, range, string_types, u, unichr, zip) from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike_v_numeric, is_datetimelike_v_object, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, Panel, PeriodIndex, RangeIndex, Series, bdate_range) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArrayMixin as DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArrayMixin as TimedeltaArray, period_array) import pandas.core.common as com from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('always', _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option('^display.', silent=True) def round_trip_pickle(obj, path=None): """ Pickle an object and then read it again. Parameters ---------- obj : pandas object The object to pickle and then re-read. path : str, default None The path where the pickled object is written and then read. Returns ------- round_trip_pickled_object : pandas object The original object that was pickled and then re-read. """ if path is None: path = u('__{random_bytes}__.pickle'.format(random_bytes=rands(10))) with ensure_clean(path) as path: pd.to_pickle(obj, path) return pd.read_pickle(path) def round_trip_pathlib(writer, reader, path=None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip('pathlib').Path if path is None: path = '___pathlib___' with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path=None): """ Write an object to file specified by a py.path LocalPath and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip('py.path').local if path is None: path = '___localpath___' with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object Parameters ---------- path : str The path where the file is read from compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- f : file object """ if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.open(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path, 'rb') elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError('ZIP file {} error. Only one file per ZIP.' .format(path)) else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) try: yield f finally: f.close() if compression == "zip": zip_file.close() def assert_almost_equal(left, right, check_dtype="equiv", check_less_precise=False, **kwargs): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool / string {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): return assert_index_equal(left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.Series): return assert_series_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.DataFrame): return assert_frame_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if (isinstance(left, np.ndarray) or isinstance(right, np.ndarray)): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) return _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ err_msg = "{name} Expected type {exp_type}, found {act_type} instead" cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(left))) if not isinstance(right, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(right))) def assert_dict_equal(left, right, compare_keys=True): _check_isinstance(left, right, dict) return _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output def _default_locale_getter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".format(exception=e)) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if PY3: out_locales.append(str( x, encoding=pd.options.display.encoding)) else: out_locales.append(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if com._all_not_none(*normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales))) # ----------------------------------------------------------------------------- # Stdout / stderr decorators @contextmanager def set_defaultencoding(encoding): """ Set default encoding (as given by sys.getdefaultencoding()) to the given encoding; restore on exit. Parameters ---------- encoding : str """ if not PY2: raise ValueError("set_defaultencoding context is only available " "in Python 2.") orig = sys.getdefaultencoding() reload(sys) # noqa:F821 sys.setdefaultencoding(encoding) try: yield finally: sys.setdefaultencoding(orig) def capture_stdout(f): r""" Decorator to capture stdout in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stdout. Returns ------- f : callable The decorated test ``f``, which captures stdout. Examples -------- >>> from pandas.util.testing import capture_stdout >>> import sys >>> >>> @capture_stdout ... def test_print_pass(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "foo\n" >>> >>> @capture_stdout ... def test_print_fail(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stdout = StringIO() f(*args, **kwargs) finally: sys.stdout = sys.__stdout__ return wrapper def capture_stderr(f): r""" Decorator to capture stderr in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stderr. Returns ------- f : callable The decorated test ``f``, which captures stderr. Examples -------- >>> from pandas.util.testing import capture_stderr >>> import sys >>> >>> @capture_stderr ... def test_stderr_pass(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "foo\n" >>> >>> @capture_stderr ... def test_stderr_fail(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stderr = StringIO() f(*args, **kwargs) finally: sys.stderr = sys.__stderr__ return wrapper # ----------------------------------------------------------------------------- # Console debugging tools def debug(f, *args, **kwargs): from pdb import Pdb as OldPdb try: from IPython.core.debugger import Pdb kw = dict(color_scheme='Linux') except ImportError: Pdb = OldPdb kw = {} pdb = Pdb(**kw) return pdb.runcall(f, *args, **kwargs) def pudebug(f, *args, **kwargs): import pudb return pudb.runcall(f, *args, **kwargs) def set_trace(): from IPython.core.debugger import Pdb try: Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) except Exception: from pdb import Pdb as OldPdb OldPdb().set_trace(sys._getframe().f_back) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False): """Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. """ filename = filename or '' fd = None if return_filelike: f = tempfile.TemporaryFile(suffix=filename) try: yield f finally: f.close() else: # don't generate tempfile if using a path with directory specified if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(suffix=filename) except UnicodeEncodeError: import pytest pytest.skip('no unicode file names on this system') try: yield filename finally: try: os.close(fd) except Exception: print("Couldn't close file descriptor: {fdesc} (file: {fname})" .format(fdesc=fd, fname=filename)) try: if os.path.exists(filename): os.remove(filename) except Exception as e: print("Exception on removing file: {error}".format(error=e)) @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix='') try: yield directory_name finally: try: rmtree(directory_name) except Exception: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal(left, right, exact='equiv', check_names=True, check_less_precise=False, check_exact=True, check_categorical=True, obj='Index'): """Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True def _check_types(l, r, obj='Index'): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal('dtype', l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ('string', 'unicode'): assert r.inferred_type in ('string', 'unicode') else: assert_attr_equal('inferred_type', l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] labels = index.codes[level] filled = take_1d(unique.values, labels, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = '{obj} levels are different'.format(obj=obj) msg2 = '{nlevels}, {left}'.format(nlevels=left.nlevels, left=left) msg3 = '{nlevels}, {right}'.format(nlevels=right.nlevels, right=right) raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = '{obj} length are different'.format(obj=obj) msg2 = '{length}, {left}'.format(length=len(left), left=left) msg3 = '{length}, {right}'.format(length=len(right), right=right) raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = 'MultiIndex level [{level}]'.format(level=level) assert_index_equal(llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values) .astype(int)) * 100.0 / len(left) msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal(left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right) # metadata comparison if check_names: assert_attr_equal('names', left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal('freq', left, right, obj=obj) if (isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex)): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) def assert_class_equal(left, right, exact=True, obj='Input'): """checks classes are equal.""" __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return x.__class__.__name__ except AttributeError: return repr(type(x)) if exact == 'equiv': if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {'Int64Index', 'RangeIndex'}): msg = '{obj} classes are not equivalent'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = '{obj} classes are different'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj='Attributes'): """checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif (is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr)): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = 'Attribute "{attr}" are different'.format(attr=attr) raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ("one of 'objs' is not a matplotlib Axes instance, type " "encountered {name!r}").format(name=el.__class__.__name__) assert isinstance(el, (plt.Axes, dict)), msg else: assert isinstance(objs, (plt.Artist, tuple, dict)), ( 'objs is neither an ndarray of Artist instances nor a ' 'single Artist instance, tuple, or dict, "objs" is a {name!r}' .format(name=objs.__class__.__name__)) def isiterable(obj): return hasattr(obj, '__iter__') def is_sorted(seq): if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions return assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal(left, right, check_dtype=True, check_category_order=True, obj='Categorical'): """Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj='{obj}.categories'.format(obj=obj)) assert_numpy_array_equal(left.codes, right.codes, check_dtype=check_dtype, obj='{obj}.codes'.format(obj=obj)) else: assert_index_equal(left.categories.sort_values(), right.categories.sort_values(), obj='{obj}.categories'.format(obj=obj)) assert_index_equal(left.categories.take(left.codes), right.categories.take(right.codes), obj='{obj}.values'.format(obj=obj)) assert_attr_equal('ordered', left, right, obj=obj) def assert_interval_array_equal(left, right, exact='equiv', obj='IntervalArray'): """Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_index_equal(left.right, right.right, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_attr_equal('closed', left, right, obj=obj) def assert_period_array_equal(left, right, obj='PeriodArray'): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}.values'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def assert_datetime_array_equal(left, right, obj='DatetimeArray'): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) assert_attr_equal('tz', left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj='TimedeltaArray'): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if PY2 and isinstance(left, string_types): # left needs to be printable in native text type in python2 left = left.encode('utf-8') if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) if PY2 and isinstance(right, string_types): # right needs to be printable in native text type in python2 right = right.encode('utf-8') msg = """{obj} are different {message} [left]: {left} [right]: {right}""".format(obj=obj, message=message, left=left, right=right) if diff is not None: msg += "\n[diff]: {diff}".format(diff=diff) raise AssertionError(msg) def assert_numpy_array_equal(left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj='numpy array'): """ Checks that 'np.ndarray' is equivalent Parameters ---------- left : np.ndarray or iterable right : np.ndarray or iterable strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype: bool, default True check dtype if both a and b are np.ndarray err_msg : str, default None If provided, used as assertion message check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, 'base', None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == 'same': if left_base is not right_base: msg = "{left!r} is not {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) elif check_same == 'copy': if left_base is right_base: msg = "{left!r} is {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail(obj, '{obj} shapes are different' .format(obj=obj), left.shape, right.shape) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal('dtype', left, right, obj=obj) return True def assert_extension_array_equal(left, right, check_dtype=True, check_less_precise=False, check_exact=False): """Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), 'left is not an ExtensionArray' assert isinstance(right, ExtensionArray), 'right is not an ExtensionArray' if check_dtype: assert_attr_equal('dtype', left, right, obj='ExtensionArray') left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj='ExtensionArray NA mask') left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj='ExtensionArray') else: _testing.assert_almost_equal(left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj='ExtensionArray') # This could be refactored to use the NDFrame.equals method def assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, obj='Series'): """Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: # ToDo: There are some tests using rhs is sparse # lhs is dense. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = '{len}, {left}'.format(len=len(left), left=left.index) msg2 = '{len}, {right}'.format(len=len(right), right=right.index) raise_assert_detail(obj, 'Series length are different', msg1, msg2) # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if (is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical): pass else: assert_attr_equal('dtype', left, right) if check_exact: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype, obj='{obj}'.format(obj=obj),) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case if (is_datetimelike_v_numeric(left, right) or is_datetimelike_v_object(left, right) or needs_i8_conversion(left) or needs_i8_conversion(right)): # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left.values).equals(Index(right.values)): msg = ('[datetimelike_compat=True] {left} is not equal to ' '{right}.').format(left=left.values, right=right.values) raise AssertionError(msg) else: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype) elif is_interval_dtype(left) or is_interval_dtype(right): assert_interval_array_equal(left.array, right.array) elif (is_extension_array_dtype(left) and not is_categorical_dtype(left) and is_extension_array_dtype(right) and not is_categorical_dtype(right)): return assert_extension_array_equal(left.array, right.array) else: _testing.assert_almost_equal(left.get_values(), right.get_values(), check_less_precise=check_less_precise, check_dtype=check_dtype, obj='{obj}'.format(obj=obj)) # metadata comparison if check_names: assert_attr_equal('name', left, right, obj=obj) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) # This could be refactored to use the NDFrame.equals method def assert_frame_equal(left, right, check_dtype=True, check_index_type='equiv', check_column_type='equiv', check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj='DataFrame'): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool / string {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical, i.e. * left.index.names == right.index.names * left.columns.names == right.columns.names by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas.util.testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): AssertionError: Attributes are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: # ToDo: There are some tests using rhs is SparseDataFrame # lhs is DataFrame. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail(obj, 'DataFrame shape mismatch', '{shape!r}'.format(shape=left.shape), '{shape!r}'.format(shape=right.shape)) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) # column comparison assert_index_equal(left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.columns'.format(obj=obj)) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal(lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj='DataFrame.blocks') # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, obj='DataFrame.iloc[:, {idx}]'.format(idx=i)) def assert_panel_equal(left, right, check_dtype=True, check_panel_type=False, check_less_precise=False, check_names=False, by_blocks=False, obj='Panel'): """Check that left and right Panels are equal. Parameters ---------- left : Panel (or nd) right : Panel (or nd) check_dtype : bool, default True Whether to check the Panel dtype is identical. check_panel_type : bool, default False Whether to check the Panel class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_names : bool, default True Whether to check the Index names attribute. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. obj : str, default 'Panel' Specify the object name being compared, internally used to show the appropriate assertion message. """ if check_panel_type: assert_class_equal(left, right, obj=obj) for axis in left._AXIS_ORDERS: left_ind = getattr(left, axis) right_ind = getattr(right, axis) assert_index_equal(left_ind, right_ind, check_names=check_names) if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks array_equivalent(lblocks[dtype].values, rblocks[dtype].values) else: # can potentially be slow for i, item in enumerate(left._get_axis(0)): msg = "non-matching item (right) '{item}'".format(item=item) assert item in right, msg litem = left.iloc[i] ritem = right.iloc[i] assert_frame_equal(litem, ritem, check_less_precise=check_less_precise, check_names=check_names) for i, item in enumerate(right._get_axis(0)): msg = "non-matching item (left) '{item}'".format(item=item) assert item in left, msg def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left : Index, Series, DataFrame, ExtensionArray, or np.ndarray right : Index, Series, DataFrame, ExtensionArray, or np.ndarray **kwargs """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place if is_period_dtype(obj): return period_array(obj) elif is_datetime64_dtype(obj) or is_datetime64tz_dtype(obj): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(obj): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal(left, right, check_dtype=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False): """Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray check_dtype : bool, default True Whether to check the data dtype is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. """ _check_isinstance(left, right, pd.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values, check_dtype=check_dtype) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) if not check_kind: left_index = left.sp_index.to_block_index() right_index = right.sp_index.to_block_index() else: left_index = left.sp_index right_index = right.sp_index if consolidate_block_indices and left.kind == 'block': # we'll probably remove this hack... left_index = left_index.to_int_index().to_block_index() right_index = right_index.to_int_index().to_block_index() if not left_index.equals(right_index): raise_assert_detail('SparseArray.index', 'index are not equal', left_index, right_index) else: # Just ensure a pass if check_fill_value: assert_attr_equal('fill_value', left, right) if check_dtype: assert_attr_equal('dtype', left, right) assert_numpy_array_equal(left.values, right.values, check_dtype=check_dtype) def assert_sp_series_equal(left, right, check_dtype=True, exact_indices=True, check_series_type=True, check_names=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, obj='SparseSeries'): """Check that the left and right SparseSeries are equal. Parameters ---------- left : SparseSeries right : SparseSeries check_dtype : bool, default True Whether to check the Series dtype is identical. exact_indices : bool, default True check_series_type : bool, default True Whether to check the SparseSeries class is identical. check_names : bool, default True Whether to check the SparseSeries name attribute. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. obj : str, default 'SparseSeries' Specify the object name being compared, internally used to show the appropriate assertion message. """ _check_isinstance(left, right, pd.SparseSeries) if check_series_type: assert_class_equal(left, right, obj=obj) assert_index_equal(left.index, right.index, obj='{obj}.index'.format(obj=obj)) assert_sp_array_equal(left.values, right.values, check_kind=check_kind, check_fill_value=check_fill_value, consolidate_block_indices=consolidate_block_indices) if check_names: assert_attr_equal('name', left, right) if check_dtype: assert_attr_equal('dtype', left, right) assert_numpy_array_equal(np.asarray(left.values), np.asarray(right.values)) def assert_sp_frame_equal(left, right, check_dtype=True, exact_indices=True, check_frame_type=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, obj='SparseDataFrame'): """Check that the left and right SparseDataFrame are equal. Parameters ---------- left : SparseDataFrame right : SparseDataFrame check_dtype : bool, default True Whether to check the Series dtype is identical. exact_indices : bool, default True SparseSeries SparseIndex objects must be exactly the same, otherwise just compare dense representations. check_frame_type : bool, default True Whether to check the SparseDataFrame class is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. obj : str, default 'SparseDataFrame' Specify the object name being compared, internally used to show the appropriate assertion message. """ _check_isinstance(left, right, pd.SparseDataFrame) if check_frame_type: assert_class_equal(left, right, obj=obj) assert_index_equal(left.index, right.index, obj='{obj}.index'.format(obj=obj)) assert_index_equal(left.columns, right.columns, obj='{obj}.columns'.format(obj=obj)) if check_fill_value: assert_attr_equal('default_fill_value', left, right, obj=obj) for col, series in compat.iteritems(left): assert (col in right) # trade-off? if exact_indices: assert_sp_series_equal( series, right[col], check_dtype=check_dtype, check_kind=check_kind, check_fill_value=check_fill_value, consolidate_block_indices=consolidate_block_indices ) else: assert_series_equal(series.to_dense(), right[col].to_dense(), check_dtype=check_dtype) # do I care? # assert(left.default_kind == right.default_kind) for col in right: assert (col in left) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, "Did not contain item: '{key!r}'".format(key=k) def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ("Expected object {obj1!r} and object {obj2!r} to be " "different objects, but they were the same object." ).format(obj1=type(elem1), obj2=type(elem2)) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] def getArangeMat(): return np.arange(N * K).reshape((N, K)) # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex(np.random.choice(x, k), name=name, **kwargs) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(lrange(k), name=name) def makeUIntIndex(k=10, name=None): return Index([2**63 + i for i in lrange(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq='B', name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq='D', name=None, **kwargs): return pd.timedelta_range(start='1 day', periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) dr = PeriodIndex(start=dt, periods=k, freq='B', name=name, **kwargs) return dr def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product( (('foo', 'bar'), (1, 2)), names=names, **kwargs) def all_index_generator(k=10): """Generator which can be iterated over to get instances of all the various index classes. Parameters ---------- k: length of each of the index instances """ all_make_index_funcs = [makeIntIndex, makeFloatIndex, makeStringIndex, makeUnicodeIndex, makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeBoolIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex] for make_index_func in all_make_index_funcs: yield make_index_func(k=k) def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex ] for make_index_func in make_index_funcs: yield make_index_func def all_timeseries_index_generator(k=10): """Generator which can be iterated over to get instances of all the classes which represent time-seires. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeObjectSeries(name=None): dateIndex = makeDateIndex(N) dateIndex = Index(dateIndex, dtype=object) index = makeStringIndex(N) return Series(dateIndex, index=index, name=name) def getSeriesData(): index = makeStringIndex(N) return {c: Series(randn(N), index=index) for c in getCols(K)} def makeTimeSeries(nper=None, freq='B', name=None): if nper is None: nper = N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq='B'): return {c: makeTimeSeries(nper, freq) for c in getCols(K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(K)} # make frame def makeTimeDataFrame(nper=None, freq='B'): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(['a', 'b', 'c', 'd', 'e']) data = { 'A': [0., 1., 2., 3., 4.], 'B': [0., 1., 0., 1., 0.], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': bdate_range('1/1/2009', periods=5) } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makePanel(nper=None): with warnings.catch_warnings(record=True): warnings.filterwarnings("ignore", "\\nPanel", FutureWarning) cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]] data = {c: makeTimeDataFrame(nper) for c in cols} return Panel.fromDict(data) def makePeriodPanel(nper=None): with warnings.catch_warnings(record=True): warnings.filterwarnings("ignore", "\\nPanel", FutureWarning) cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]] data = {c: makePeriodFrame(nper) for c in cols} return Panel.fromDict(data) def makeCustomIndex(nentries, nlevels, prefix='#', names=False, ndupe_l=None, idx_type=None): """Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert (is_sequence(ndupe_l) and len(ndupe_l) <= nlevels) assert (names is None or names is False or names is True or len(names) is nlevels) assert idx_type is None or (idx_type in ('i', 'f', 's', 'u', 'dt', 'p', 'td') and nlevels == 1) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singelton case uniform if isinstance(names, compat.string_types) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = dict(i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex, u=makeUnicodeIndex, dt=makeDateIndex, td=makeTimedeltaIndex, p=makePeriodIndex).get(idx_type) if idx_func: idx = idx_func(nentries) # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError('"{idx_type}" is not a legal value for `idx_type`, ' 'use "i"/"f"/"s"/"u"/"dt/"p"/"td".' .format(idx_type=idx_type)) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return lmap(int, numeric_tuple) # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 cnt = Counter() for j in
range(div_factor)
pandas.compat.range
#!/usr/bin/env python3 """exfi.new_correct.py: fill small overlaps and gaps with abyss-sealer""" import logging from tempfile import \ mkstemp from subprocess import Popen import os import pandas as pd from exfi.io.bed import \ BED3_COLS, \ bed3_to_bed4, \ bed4_to_node2sequence, \ bed4_to_edge2overlap def prepare_sealer(bed4, transcriptome_dict, args): """exfi.new_correct.prepare_sealer: inspect the bed4 file and create a fasta file where pairs of exons have a small gap between them or have a small overlap. """ sealer_input = mkstemp() max_fp_bases = args["max_fp_bases"] max_gap_size = args["max_gap_size"] node2sequence = bed4_to_node2sequence(bed4, transcriptome_dict) edge2overlap = bed4_to_edge2overlap(bed4) node2sequence_dict = node2sequence.set_index("name").to_dict()["sequence"] # Disable warnings pd.options.mode.chained_assignment = None # Compute the small gaps small_gaps = edge2overlap\ .loc[(edge2overlap.overlap < 0) & (edge2overlap.overlap <= max_gap_size)] small_gaps["identifier"] = small_gaps['u'] + "~" + small_gaps['v'] small_gaps["data_to_map"] = tuple(zip(small_gaps.u, small_gaps.v)) small_gaps["sequence"] = small_gaps.data_to_map\ .map( lambda x: \ node2sequence_dict[x[0]][0:-max_fp_bases] + \ 100 * 'N' + \ node2sequence_dict[x[1]][max_fp_bases:] ) small_gaps = small_gaps[["identifier", "sequence"]] # Compute pairs of overlapping exons overlaps = edge2overlap.loc[edge2overlap.overlap >= 0] overlaps["data_to_map"] = tuple(zip(overlaps.u, overlaps.v, overlaps.overlap)) overlaps["identifier"] = overlaps.u + "~" + overlaps.v overlaps["sequence"] = overlaps.data_to_map\ .map( lambda x: \ node2sequence_dict[x[0]][0:-x[2] - max_fp_bases] + \ 100 * 'N' + \ node2sequence_dict[x[1]][x[2] + max_fp_bases:] ) overlaps = overlaps[["identifier", "sequence"]] # Put again the warning pd.options.mode.chained_assignment = 'warn' # Merge the results for_sealer =
pd.concat([small_gaps, overlaps])
pandas.concat
# --- # jupyter: # jupytext: # formats: notebooks//ipynb,rmd//Rmd,scripts//py # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Catchment Distance import pandas as pd import matplotlib.pyplot as plt import osmnx as ox import networkx as nx # + churches = ['mossleyhill','sthelens','gateway','stoneycroftsalvationarmy'] data = {} for church in churches: data[church] = pd.read_csv(f'../data/sensitive/derived/{church}.csv') # - pcdlatlng = pd.read_csv('../data/csv/pcdlatlng.csv.gz') location = {'mossleyhill' : 'L18 8DB', 'sthelens' : 'WA10 2DT', 'gateway' : 'L24 9HJ', 'stoneycroftsalvationarmy': 'L13 3BT'} def get_coords(postcode): "Lookup coordinates from conversion table." row = pcdlatlng.loc[pcdlatlng.postcode==postcode].iloc[0] return row.latitude, row.longitude distance = {} shortest = {} all_routes = {} mile = 1609 # metres BigMap = ox.graph_from_point(get_coords(location['mossleyhill']), distance=20*mile, network_type='drive') # + def get_distances(church): church_coords = get_coords(location[church]) dest_node = ox.get_nearest_node(BigMap, church_coords) shortest[church] = {} distance[church] = {} all_routes[church] = [] exceptions = [] postcodes = list(data[church].Postcode) for postcode in postcodes: try: orig_node = ox.get_nearest_node(BigMap, get_coords(postcode)) shortest[church][postcode] = nx.shortest_path(BigMap, orig_node, dest_node, weight='length') distance[church][postcode] = nx.shortest_path_length(BigMap, orig_node, dest_node, weight='length') / mile all_routes[church].append(shortest[church][postcode]) except: exceptions.append(postcode) postcodes.remove(postcode) # print(f'Could not find {exceptions} -- are these valid postcodes?') return distance[church] # - for church in churches: print(church) distance[church] = get_distances(church) dist_df = {} for church in churches: dist_df[church] =
pd.DataFrame(distance[church],index=['Distance'])
pandas.DataFrame
import pandas as pd from sklearn.model_selection import KFold from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics import roc_auc_score, accuracy_score, recall_score, precision_score from keras.models import Sequential from keras.layers import Dense from keras.callbacks import EarlyStopping class TuneSVM(object): def __init__(self, train_data, kernel, cv_num, stopwords, title): self.data = train_data self.kernel = kernel self.stopwords = stopwords self.title = title self.k_folds = KFold(n_splits=cv_num, shuffle=True) self.cv_scores = pd.DataFrame() def tune_parameters(self, params, vector): ngram_range = params['ngram_range'] max_df = params['max_df'] min_df = params['min_df'] C = params['C'] for n in ngram_range: for mx in max_df: for mn in min_df: for c in C: self.run_cv(n, mx, mn, c, vector) return None def save_scores_csv(self, title): self.cv_scores.to_csv('../../../results/tuning/%s_tuning.csv' % title) return None def run_cv(self, ngram_range, max_df, min_df, C, vector): fold = 0 for train_index, val_index in self.k_folds.split(self.data): fold += 1 print(fold) X_train = self.data.iloc[train_index]['text'].values y_train = self.data.iloc[train_index]['label'].values X_val = self.data.iloc[val_index]['text'].values y_val = self.data.iloc[val_index]['label'].values if vector == 'count': vectorizer = CountVectorizer(ngram_range=ngram_range, max_df=max_df, min_df=min_df, stop_words=self.stopwords) else: vectorizer = TfidfVectorizer(ngram_range=ngram_range, max_df=max_df, min_df=min_df, stop_words=self.stopwords) try: X_train_vec = vectorizer.fit_transform(X_train) X_val_vec = vectorizer.transform(X_val) except: return None else: clf = SVC(C=C, kernel=self.kernel, probability=True, gamma='scale') clf.fit(X_train_vec, y_train) y_train_pred = clf.predict(X_train_vec) y_train_prob = clf.predict_proba(X_train_vec) y_train_prob = y_train_prob[:, 1] train_scores = self.evaluate_cv_results(y_train, y_train_pred, y_train_prob, ngram_range, max_df, min_df, C) y_val_pred = clf.predict(X_val_vec) y_val_prob = clf.predict_proba(X_val_vec) y_val_prob = y_val_prob[:, 1] val_scores = self.evaluate_cv_results(y_val, y_val_pred, y_val_prob, ngram_range, max_df, min_df, C) eval_df = self.create_scores_dataframe(train_scores, val_scores, fold, vector) self.cv_scores = pd.concat([self.cv_scores, eval_df]) self.save_scores_csv('temp_%s' % self.title) return None def evaluate_cv_results(self, y_true, y_pred, y_prob, ngram_range, max_df, min_df, C): scores = {'ngram_range': [], 'max_df': [], 'min_df': [], 'C': [], 'Acc': [], 'recall': [], 'PPV': [], 'AUC': []} scores['ngram_range'].append(ngram_range) scores['max_df'].append(max_df) scores['min_df'].append(min_df) scores['C'].append(C) scores['Acc'].append(accuracy_score(y_true, y_pred)) scores['recall'].append(recall_score(y_true, y_pred)) scores['PPV'].append(precision_score(y_true, y_pred)) scores['AUC'].append(roc_auc_score(y_true, y_prob)) return scores def create_scores_dataframe(self, train_dict, val_dict, fold, vector): train_df = pd.DataFrame(train_dict) train_df['dataset'] = 'train' train_df['fold'] = fold train_df['vector'] = vector val_df = pd.DataFrame(val_dict) val_df['dataset'] = 'val' val_df['fold'] = fold val_df['vector'] = vector eval_df =
pd.concat([train_df, val_df])
pandas.concat
from __future__ import print_function from os.path import dirname, abspath import pandas as pd import numpy as np import glob import pysam from Bio import SeqIO from optaux import resources resource_dir = resources.__path__[0] here = dirname(abspath(__file__)) strain_to_characteristic = \ {'hisD': ['2,400,257', '3,178,254'], # lrhA/alaA, yqiC 'gltB': ['3,178,277', '4,546,084'], # yqiC, yjiC 'gltA': ['2,719,426'], # kgtP/rrfG 'pyrC': ['444,779'] # cyoB } pair_to_kos = {'hisD_pyrC': [['hisD'], ['pyrC']], 'hisD_gltA': [['hisD'], ['gltA', 'prpC']], 'hisD_gltB': [['hisD'], ['gltB', 'gdhA']]} gene_to_reaction_ko_abbrev = {'hisD': 'HISTD', 'gltA': 'CS', 'pyrC': 'DHORTS', 'gltB': 'GLUDy'} def _fill_missing_df_entries(df, pair): if pair != 'hisDpyrC': return df # lrhA, alaA (hisD characteristic mutation) df.loc['2,400,257', 'AUX hisD pyrC A3 F26 I0 R1'] = .144 # likely same mutation # cyoB (pyrC) df.loc['444,779', 'AUX hisD pyrC A3 F17 I0 R1'] = .905 df.loc['444,779', 'AUX hisD pyrC A3 F26 I0 R2'] = .961 df.loc['444,779', 'AUX hisD pyrC A4 F11 I0 R1'] = .836 df.loc['444,779', 'AUX hisD pyrC A4 F11 I0 R2'] = .857 df.loc['444,779', 'AUX hisD pyrC A4 F17 I0 R1'] = .892 # yqiC (hisD characteristic mutation) df.loc['3,178,254', 'AUX hisD pyrC A2 F10 I0 R1'] = .292 df.loc['3,178,254', 'AUX hisD pyrC A3 F26 I0 R1'] = .132 df.loc['3,178,254', 'AUX hisD pyrC A3 F26 I0 R2'] = 0. # not found df.loc['3,178,254', 'AUX hisD pyrC A4 F11 I0 R1'] = 0. # not found df.loc['3,178,254', 'AUX hisD pyrC A4 F11 I0 R2'] = .167 df.loc['3,178,254', 'AUX hisD pyrC A4 F17 I0 R1'] = .111 df.loc['3,178,254', 'AUX hisD pyrC A4 F24 I0 R1'] = 0. # not found df.loc['3,178,254', 'AUX hisD pyrC A4 F24 I0 R2'] = .088 # envZ (shouldn't be 100%, breseq rounds values to 100 in some cases) df.loc['3,529,197', 'AUX hisD pyrC A4 F11 I0 R2'] = .719 df.loc['3,529,197', 'AUX hisD pyrC A4 F17 I0 R1'] = .915 df.loc['3,529,197', 'AUX hisD pyrC A4 F24 I0 R2'] = .913 return df def _add_ale_numbers_to_df(df): df = df.T for i, exp in enumerate(df.T): df.loc[exp, 'Ale'] = int(exp.split(' ')[3].replace('A', '')) df.loc[exp, 'Flask'] = int(exp.split(' ')[4].replace('F', '')) df.loc[exp, 'Isolate'] = int(exp.split(' ')[5].replace('I', '')) df.set_index(['Ale', 'Flask', 'Isolate'], inplace=True) df = df.T.sort_index(axis=1) return df def _append_rows_to_abundance_df(out_df, strain1_name, strain2_name, strain1_abundance, strain2_abundance): # get reaction name from gene KO strain_1_ko = gene_to_reaction_ko_abbrev[strain1_name] strain_2_ko = gene_to_reaction_ko_abbrev[strain2_name] # normalize abundance to 100% strain_1 = strain1_abundance / (strain1_abundance + strain2_abundance) strain_2 = strain2_abundance / (strain1_abundance + strain2_abundance) out_df = \ out_df.append(pd.Series(strain_1, name='__'.join([strain_1_ko, strain_2_ko]))) out_df = \ out_df.append(pd.Series(strain_2, name='__'.join([strain_2_ko, strain_1_ko]))) return out_df def _get_abundance_statistics(df, strain_2_name, stats_df): df_new = df.T.reset_index() for ale in set(df_new['Ale']): filtered_df = df_new[df_new['Ale'] == ale] analysis_series = filtered_df['hisD'] / (filtered_df['hisD'] + filtered_df[strain_2_name]) stats_df.loc[ale, 'mean'] = analysis_series.mean() stats_df.loc[ale, 'Stdev'] = analysis_series.std() print(ale, '%.2f %.2f' % (analysis_series.mean(), analysis_series.std())) def abundances_to_df(pair, abundance_1, abundance_2): df = pd.DataFrame.from_dict({pair[:4]: abundance_1, pair[4:]: abundance_2}) return df def get_characteristic_abundance_df(save_loc): out_df = pd.DataFrame() stats_df = pd.DataFrame() for pair in ['hisDgltA', 'hisDgltB', 'hisDpyrC']: strain_1_name = pair[:4] strain_2_name = pair[4:] def _drop_column(name): if 'AUX' not in name: return True if 'A0' in name or 'A1 ' in name or 'A7' in name: return True if 'I40' in name or 'I30' in name: return True # Low coverage and no detected gltA characteristic mutation # for ALE '10-23-1-1'. Remove this point if 'A10' in name and 'F23' in name: return True return False df_raw = \ pd.read_csv('%s/resequencing_data/AUX %s %s Mutation Table.csv' % (resource_dir, strain_1_name, strain_2_name)) df_raw.set_index('Position', inplace=True) df = df_raw[[i for i in df_raw.columns if not _drop_column(i)]] df = _fill_missing_df_entries(df, pair) def _get_average_mutation_fraction(strain_name): """Some characteristic mutations are more difficult for breseq to pick up so they appear as being present at 0%. In these cases defer to the value of the other characteristic mutation""" strain_fraction = np.zeros(len(df.columns)) num_nonzero_array = np.zeros(len(df.columns)) for characteristic in strain_to_characteristic[strain_name]: strain_fraction += df.loc[characteristic].values num_nonzero_array += (1. * df.loc[characteristic].values > 0) return strain_fraction / num_nonzero_array strain_1_abundances = _get_average_mutation_fraction(strain_1_name) strain_2_abundances = _get_average_mutation_fraction(strain_2_name) abundance_df = abundances_to_df(pair, strain_1_abundances, strain_2_abundances).T abundance_df.columns = df.columns abundance_df = _add_ale_numbers_to_df(abundance_df) abundance_df.to_csv('%s/abundance_by_characteristic_%s.csv' % (save_loc, pair)) _get_abundance_statistics(abundance_df, strain_2_name, stats_df) out_df = \ _append_rows_to_abundance_df(out_df, strain_1_name, strain_2_name, strain_1_abundances, strain_2_abundances) print(out_df) out_df.to_excel('%s/characteristic_abundances_strain1.xlsx' % save_loc) stats_df.to_csv('%s/characteristic_hisD_abundance_stats.csv' % save_loc) def get_coverage_abundance_df(save_loc, alignment_loc): out_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Anomaly Detection Techniques in Python # ## Importing Libraries # In[1]: import numpy as np import pandas as pd from matplotlib import pyplot as plt import os from IPython.display import HTML from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import DBSCAN from matplotlib import cm from sklearn.ensemble import IsolationForest import seaborn as sns from sklearn.neighbors import LocalOutlierFactor from lazypredict.Supervised import LazyClassifier from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from imblearn.over_sampling import SMOTE import plotly as plty import plotly.graph_objs as go # ## Loading Dataset # In[2]: def fileRead(directory_path): file_name = list() for root, dirs, files in os.walk(directory_path): for filename in files: file_name.append(filename) return file_name directoryPath1 = "/home/mishraanurag218/Anurag/Projects/Untitled Folder/data/s1/" directoryPath2 = "/home/mishraanurag218/Anurag/Projects/Untitled Folder/data/s2/" s1 = fileRead(directoryPath1) #print(s1) s2 = fileRead(directoryPath2) #print(s2) # In[3]: cols = ['time','acc_frontal','acc_vertical','acc_lateral','id','rssi','phase','frequency','activity'] def folder_to_csv(directory_path,file_name,col_name): df_temp = pd.DataFrame() for f_n in file_name: df = pd.read_csv(directory_path+f_n,names=col_name) df['device_id'] = f_n[0:-1] df['sex'] = f_n[-1] df_temp = pd.concat([df_temp, df], ignore_index=True) return df_temp df_s1 = folder_to_csv(directoryPath1,s1,cols) df_s2 = folder_to_csv(directoryPath2,s2,cols) df = pd.concat([df_s1, df_s2], ignore_index=True) df.head(5) # ### Data Pre-processing` # ### Changing the sex into binary # In[4]: def categorical_to_binary(x): if x=='F': return 0 else: return 1 df['sex_b'] = df['sex'].apply(categorical_to_binary) df.head(5) # In[5]: df # ### removing non numerical attributes and categorical values and ids as machine learning algorithms only works on numerical values # In[6]: dfX = df.copy().drop(['sex','device_id','id','sex_b','time'],axis=1) dfY = df['sex_b'].copy() dfX.head() # ### Making the dataset to standard scale # In[7]: scaler = MinMaxScaler() data = scaler.fit_transform(dfX) dfX = pd.DataFrame(data, columns = dfX.columns) dfX.head(5) # ## Univariate Analysis on dataset # #### Function for Histogram plot # In[8]: def hist_plot(x,y): for i in y: sns.distplot(x[i],bins=150) plt.show() # In[9]: cols = ['time','acc_frontal','acc_vertical','acc_lateral','rssi','phase'] hist_plot(df,cols) # #### Function for joint plot # In[10]: def joint_plot(x,y,z): for i in y: sns.jointplot(x=i, y=z, data=x); plt.show() # In[11]: cols = ['acc_frontal','acc_vertical','acc_lateral','rssi','phase'] joint_plot(df,cols,'time') # #### Pair Plot # In[12]: sns.set_style("whitegrid"); sns.pairplot(df, hue="sex_b", height=3); plt.show() # #### implot # In[13]: def implot(x,y,z): for i in y: for j in y: if i!=j: sns.lmplot(x = i, y = j, data = x, hue = z, col = z) plt.show() implot(df,['acc_frontal','acc_vertical','acc_lateral','rssi','phase'],'sex_b') # In[14]: implot(df,['acc_frontal','acc_vertical','acc_lateral','rssi','phase'],'activity') # #### countplot # In[15]: def countPlot(x,y): for i in y: sns.countplot(x =i, data = x) plt.show() sns.countplot(x =y[0], hue = y[1], data = x) plt.show() countPlot(df,['sex_b','activity']) # #### Balancing the data # In[16]: sm = SMOTE(random_state = 2) df_X, df_Y = sm.fit_sample(dfX, dfY.ravel()) df_Y = pd.DataFrame(df_Y, columns = ['sex_b']) # In[17]: sns.countplot(x ='sex_b', data = df_Y) # #### Lazy predict classification # In[18]: X_train, X_test, y_train, y_test = train_test_split(df_X, df_Y,test_size=.33,random_state =123) clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None) models,predictions = clf.fit(X_train, X_test, y_train, y_test) models # ## DBSCAN (Density-Based Spatial Clustering of Applications with Noise) # #### This is a clustering algorithm (an alternative to K-Means) that clusters points together and identifies any points not belonging to a cluster as outliers. It’s like K-means, except the number of clusters does not need to be specified in advance. # #### The method, step-by-step: # #### Randomly select a point not already assigned to a cluster or designated as an outlier. Determine if it’s a core point by seeing if there are at least min_samples points around it within epsilon distance. # #### Create a cluster of this core point and all points within epsilon distance of it (all directly reachable points). # #### Find all points that are within epsilon distance of each point in the cluster and add them to the cluster. Find all points that are within epsilon distance of all newly added points and add these to the cluster. Rinse and repeat. (i.e. perform “neighborhood jumps” to find all density-reachable points and add them to the cluster). # ### Sklearn Implementation of DBSCAN: # In[19]: outlier_detection = DBSCAN( eps = .2, metric='euclidean', min_samples = 5, n_jobs = -1) clusters = outlier_detection.fit_predict(dfX) cmap = cm.get_cmap('Set1') # #### DBSCAN will output an array of -1’s and 0’s, where -1 indicates an outlier. Below, I visualize outputted outliers in red by plotting two variables. # In[20]: df.plot.scatter(x='time',y='acc_vertical', c=clusters, cmap=cmap, colorbar = False) plt.show() # In[21]: # fig = go.Figure(data=go.Scatter(x=df['time'], # y=df['acc_vertical'], # mode='markers', # marker_color=clusters, # text=clusters)) # hover text goes here # fig.update_layout(title='Scatter Plot to identify the outliers') # fig.show() # In[22]: import plotly.express as px fig = px.scatter(df, x="time", y="acc_vertical", color=clusters, hover_data=['time']) fig.show() fig = px.scatter(df[clusters==-1], x="time", y="acc_vertical", hover_data=['time']) fig.show() # In[23]: outliers = np.where(clusters==-1) df_X_db = df_X.drop(list(outliers[0])) df_Y_db = df_Y.drop(list(outliers[0])) df_dbScan = result = pd.concat([df_X_db,df_Y_db], axis=1, sort=False) df_dbScan.to_csv (r'Filtered_DBSCAN.csv', index = False, header=True) print(df_dbScan.head()) # In[24]: sns.countplot(x ='sex_b', data = df_dbScan) fig = px.histogram(df_dbScan, x="sex_b", color="sex_b") fig.update_layout(barmode='group') fig.show() # In[25]: X_train, X_test, y_train, y_test = train_test_split(df_X_db, df_Y_db,test_size=.33,random_state =123) clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None) models,predictions = clf.fit(X_train, X_test, y_train, y_test) models # ## Isolation Forests # #### Randomly select a feature and randomly select a value for that feature within its range. # #### If the observation’s feature value falls above (below) the selected value, then this value becomes the new min (max) of that feature’s range. # #### Check if at least one other observation has values in the range of each feature in the dataset, where some ranges were altered via step 2. If no, then the observation is isolated. # #### Repeat steps 1–3 until the observation is isolated. The number of times you had to go through these steps is the isolation number. The lower the number, the more anomalous the observation is. # ## Sklearn Implementation of Isolation Forests: # In[26]: rs=np.random.RandomState(0) clf = IsolationForest(max_samples=100,random_state=rs, contamination=.1) clf.fit(dfX) if_scores = clf.decision_function(dfX) if_anomalies=clf.predict(dfX) if_anomalies=
pd.Series(if_anomalies)
pandas.Series
import json import time, datetime import csv import os import preProcess import dataVis from pandas import DataFrame from pandas import TimeGrouper import pandas as pd from matplotlib import pyplot def readWholeCSV(docName): Folder_Path = r'/Users/siqiyaoyao/git/python3/fnirs/fnirsAnalysis/dataset/'+ docName #要拼接的文件夹及其完整路径,注意不要包含中文 #修改当前工作目录 os.chdir(Folder_Path) #将该文件夹下的所有文件名存入一个列表 file_list = os.listdir() file_list.remove('.DS_Store') print('doc list:', file_list) return file_list def getWholeParticipents(fileList): allGroupData =[] allDataSet =[] for file in fileList: seriesGroups,dataSet = dataVis.readDataFromcsv(file) allGroupData.append(seriesGroups) allDataSet.append(dataSet) return allGroupData,allDataSet def processPergroup(allSets,allParicipants): l = len(allParicipants) participants_label_arr = [] g1 = [] g2 = [] g3 =[] g4 = [] g5 = [] g6 = [] g7 = [] g8 =[] for i in range(0,l):# debug 1 indexList = dataVis.findGroupIndex(allParicipants[i].label) group_label = dataVis.groupData(indexList,allSets[i]) # 0-19 0 group 1 time 2-19 channel #normalizeData_devide(group_label) g1.append(group_label[0]) # 0-19 g2.append(group_label[1]) g3.append(group_label[2]) g4.append(group_label[3]) g5.append(group_label[4]) g6.append(group_label[5]) g7.append(group_label[6]) g8.append(group_label[7]) #participants_label_arr.append(group_label) return g1,g2,g3,g4,g5,g6,g7,g8 def normalizeData_devide(groups): labelArr =[] for index,data in enumerate(groups): # 8 groups, data [0] groupindex [1] time [2:19] channel n = len(data) groupIndex = data[0].mean() print(n,data[0].mean()) # def normalizeData_score(data): def plotPerGroup(group): labels1 = DataFrame() labels2 =
DataFrame()
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo')
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
import pandas as pd from models.JensModel import JensModel from utils.Recording import Recording def jens_windowize(dataCollection, window_size): """ in the working version expects dataframe with these columns: ['IMU-BACK-accX', 'IMU-BACK-accY', 'IMU-BACK-accZ', 'IMU-BACK-Quaternion1', 'IMU-BACK-Quaternion2', 'IMU-BACK-Quaternion3', 'IMU-BACK-Quaternion4', 'IMU-RLA-accX', 'IMU-RLA-accY', 'IMU-RLA-accZ', 'IMU-RLA-Quaternion1', 'IMU-RLA-Quaternion2', 'IMU-RLA-Quaternion3', 'IMU-RLA-Quaternion4', 'IMU-LLA-accX', 'IMU-LLA-accY', 'IMU-LLA-accZ', 'IMU-LLA-Quaternion1', 'IMU-LLA-Quaternion2', 'IMU-LLA-Quaternion3', 'IMU-LLA-Quaternion4', 'IMU-L-SHOE-EuX', 'IMU-L-SHOE-EuY', 'IMU-L-SHOE-EuZ', 'IMU-L-SHOE-Nav_Ax', 'IMU-L-SHOE-Nav_Ay', 'IMU-L-SHOE-Nav_Az', 'IMU-L-SHOE-Body_Ax', 'IMU-L-SHOE-Body_Ay', 'IMU-L-SHOE-Body_Az', 'IMU-L-SHOE-AngVelBodyFrameX', 'IMU-L-SHOE-AngVelBodyFrameY', 'IMU-L-SHOE-AngVelBodyFrameZ', 'IMU-L-SHOE-AngVelNavFrameX', 'IMU-L-SHOE-AngVelNavFrameY', 'IMU-L-SHOE-AngVelNavFrameZ', 'IMU-R-SHOE-EuX', 'IMU-R-SHOE-EuY', 'IMU-R-SHOE-EuZ', 'IMU-R-SHOE-Nav_Ax', 'IMU-R-SHOE-Nav_Ay', 'IMU-R-SHOE-Nav_Az', 'IMU-R-SHOE-Body_Ax', 'IMU-R-SHOE-Body_Ay', 'IMU-R-SHOE-Body_Az', 'IMU-R-SHOE-AngVelBodyFrameX', 'IMU-R-SHOE-AngVelBodyFrameY', 'IMU-R-SHOE-AngVelBodyFrameZ', 'IMU-R-SHOE-AngVelNavFrameX', 'IMU-R-SHOE-AngVelNavFrameY', 'IMU-R-SHOE-AngVelNavFrameZ', 'Locomotion', 'HL_Activity', 'file_index'] test subset: ['IMU-BACK-accX', 'IMU-BACK-accY', 'IMU-BACK-accZ', 'Locomotion', 'HL_Activity', 'file_index'] """ # print(dataCollection.columns) HL_Activity_i = dataCollection.columns.get_loc("HL_Activity") # convert the data frame to numpy array data = dataCollection.to_numpy() # segment the data n = len(data) X = [] y = [] start = 0 end = 0 while start + window_size - 1 < n: end = start + window_size - 1 # has planned window the same activity in the beginning and the end, is from the same file in the beginning and the end # what if it changes back and forth? if ( data[start][HL_Activity_i] == data[end][HL_Activity_i] and data[start][-1] == data[end][-1] # the last index is the file index ): # print(data[start:(end+1),0:(HL_Activity_i)]) # first part time axis, second part sensor axis -> get window X.append( data[start : (end + 1), 0 : (HL_Activity_i - 1)] # data[timeaxis/row, featureaxis/column] data[1, 2] gives specific value, a:b gives you an interval ) # slice before locomotion y.append(data[start][HL_Activity_i]) # the first data point is enough start += window_size // 2 # 50% overlap!!!!!!!!! # if the frame contains different activities or from different objects, find the next start point # if there is a rest smaller than the window size -> skip (window small enough?) else: while start + window_size - 1 < n: # find the switch point -> the next start point # different file check missing! will come here again (little overhead) if data[start][HL_Activity_i] != data[start + 1][HL_Activity_i]: break start += 1 start += 1 # dirty fix for the missing 'different file' check? return X, y # same example_recordings (first recording duplicated) from test_our_jens_windowize.py # same window expectation!!!! example_recordings = [ Recording( # 30 timesteps, 3 features sensor_frame = pd.DataFrame([[1,11,111],[2,22,222],[3,33,333],[4,44,444],[5,55,555], [6,66,666], [7,77,777], [8,88,888], [9,99,999], [10,100,1000], [11, 111, 1111], [12, 222, 2222], [13, 333, 3333], [14, 444, 4444], [15, 555, 5555], [16, 666, 6666], [17, 777, 7777], [18, 888, 8888], [19, 999, 9999], [20, 1000, 10000], [21, 111, 1111], [22, 222, 2222], [23, 333, 3333], [24, 444, 4444], [25, 555, 5555], [26, 666, 6666], [27, 777, 7777], [28, 888, 8888], [29, 999, 9999], [30, 1000, 10000]]), time_frame = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]), activities = pd.Series([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]), subject = "Bruder Jakob" ), Recording( # 30 timesteps, 3 features sensor_frame = pd.DataFrame([[1,11,111],[2,22,222],[3,33,333],[4,44,444],[5,55,555], [6,66,666], [7,77,777], [8,88,888], [9,99,999], [10,100,1000], [11, 111, 1111], [12, 222, 2222], [13, 333, 3333], [14, 444, 4444], [15, 555, 5555], [16, 666, 6666], [17, 777, 7777], [18, 888, 8888], [19, 999, 9999], [20, 1000, 10000], [21, 111, 1111], [22, 222, 2222], [23, 333, 3333], [24, 444, 4444], [25, 555, 5555], [26, 666, 6666], [27, 777, 7777], [28, 888, 8888], [29, 999, 9999], [30, 1000, 10000]]), time_frame = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]), activities = pd.Series([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]), subject = "Bruder Jakob 2" ), Recording( # only one timestep sensor_frame = pd.DataFrame([[1, 11, 111]]), time_frame = pd.Series([1]), activities =
pd.Series([0])
pandas.Series
import __main__ as main import sys import pandas as pd if not hasattr(main, '__file__'): argv = ['a', 'data/processed/census/oa_tile_reference.csv', 'data/raw/census/Eng_Wal_OA_Mid_Pop.csv', 'data/raw/census/OA_to_DZ.csv', 'data/raw/census/simd2020_withinds.csv', 'data/raw/census/NI_Mid_Pop.csv', "data/processed/census/tile_imd.csv"] else: argv = sys.argv tiles = pd.read_csv(argv[1]) england_oa =
pd.read_csv(argv[2])
pandas.read_csv
import os import pandas as pd import csv def process(path): files = os.listdir(path) s = [] neg, pos, neu = [], [], [] label = [] for file in files: # 遍历文件夹 f = pd.read_csv(path+'/'+file, header=0, index_col=0) s.extend(list(f['review'])) label.extend(list(f['rating'])) for i in range(len(f)): if int(f['rating'][i]) < 3: neg.append(f['review'][i]) elif int(f['rating'][i]) > 3: pos.append(f['review'][i]) else: neu.append(f['review'][i]) pd.DataFrame({'review': neg}).to_csv("../data/neg.csv", encoding='utf-8') pd.DataFrame({'review': pos}).to_csv("../data/pos.csv", encoding='utf-8')
pd.DataFrame({'review': neu})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import numpy as np import pandas as pd import pyprojroot import scipy.stats def convert_seg_error_rate_pct(df): df.avg_segment_error_rate = df.avg_segment_error_rate * 100 return df RESULTS_ROOT = pyprojroot.here() / 'results' segmentation_map = { 'ground_truth': 'segmented audio, manually cleaned', 'resegment': 'segmented audio, not cleaned', 'semi-automated-cleaning': 'segmented audio, semi-automated cleaning', 'not-cleaned': 'segmented audio, not cleaned', 'manually-cleaned': 'segmented audio, manually cleaned' } hvc_dfs = [] csv_filename = 'segment_error_across_birds.hvc.csv' for species in ('Bengalese_Finches', 'Canaries'): species_csv = RESULTS_ROOT / f'{species}/hvc/{csv_filename}' df = pd.read_csv(species_csv) df['Model'] = 'SVM' df['Input to model'] = df['segmentation'].map(segmentation_map) df['Species'] = species hvc_dfs.append(df) hvc_df = pd.concat(hvc_dfs) curve_df = [] for species in ('Bengalese_Finches', 'Canaries'): LEARNCURVE_RESULTS_ROOT = pyprojroot.here() / 'results' / species / 'learncurve' error_csv_path = LEARNCURVE_RESULTS_ROOT.joinpath('error_across_birds_with_cleanup.csv') df = pd.read_csv(error_csv_path) df = df[df.animal_id.isin(hvc_df.animal_id.unique())] df['Model'] = 'TweetyNet' df['Input to model'] = 'spectrogram' df['Species'] = species curve_df.append(df) del df curve_df = pd.concat(curve_df) CLEANUP = 'min_segment_dur_majority_vote' curve_df = curve_df[ curve_df.cleanup == CLEANUP ] all_df =
pd.concat([hvc_df, curve_df])
pandas.concat
import numpy as np import cv2 from astropy.io import fits import pandas as pd import io import requests from bs4 import BeautifulSoup import warnings # The aia image size is fixed by the size of the detector. For AIA raw data, this has no reason to change. aia_image_size = 4096 def scale_rotate(image, angle=0, scale_factor=1, reference_pixel=None): """ Perform scaled rotation with opencv. About 20 times faster than with Sunpy & scikit/skimage warp methods. The output is a padded image that holds the entire rescaled,rotated image, recentered around the reference pixel. Positive-angle rotation rotates image clockwise if the array origin (0,0) map to the bottom left of the image, and counterclockwise if the array origin map to the top left of the image. :param image: Numpy 2D array :param angle: rotation angle in degrees. Positive-angle rotation rotates image clockwise if the array origin (0,0) map to the bottom left of the image, and counterclockwise if the array origin map to the top left of the image. :param scale_factor: ratio of the wavelength-dependent pixel scale over the target scale of 0.6 arcsec :param reference_pixel: tuple of (x, y) coordinate. Given as (x, y) = (col, row) and not (row, col). :return: padded scaled and rotated image """ array_center = (np.array(image.shape)[::-1] - 1) / 2.0 if reference_pixel is None: reference_pixel = array_center # convert angle to radian angler = angle * np.pi / 180 # Get basic rotation matrix to calculate initial padding extent rmatrix = np.matrix([[np.cos(angler), -np.sin(angler)], [np.sin(angler), np.cos(angler)]]) extent = np.max(np.abs(np.vstack((image.shape * rmatrix, image.shape * rmatrix.T))), axis=0) # Calculate the needed padding or unpadding diff = np.asarray(np.ceil((extent - image.shape) / 2), dtype=int).ravel() diff2 = np.max(np.abs(reference_pixel - array_center)) + 1 # Pad the image array pad_x = int(np.ceil(np.max((diff[1], 0)) + diff2)) pad_y = int(np.ceil(np.max((diff[0], 0)) + diff2)) padded_reference_pixel = reference_pixel + np.array([pad_x, pad_y]) # padded_image = np.pad(image, ((pad_y, pad_y), (pad_x, pad_x)), mode='constant', constant_values=(0, 0)) padded_image = aia_pad(image, pad_x, pad_y) padded_array_center = (np.array(padded_image.shape)[::-1] - 1) / 2.0 # Get scaled rotation matrix accounting for padding rmatrix_cv = cv2.getRotationMatrix2D((padded_reference_pixel[0], padded_reference_pixel[1]), angle, scale_factor) # Adding extra shift to recenter: # move image so the reference pixel aligns with the center of the padded array shift = padded_array_center - padded_reference_pixel rmatrix_cv[0, 2] += shift[0] rmatrix_cv[1, 2] += shift[1] # Do the scaled rotation with opencv. ~20x faster than Sunpy's map.rotate() rotated_image = cv2.warpAffine(padded_image, rmatrix_cv, padded_image.shape, cv2.INTER_CUBIC) return rotated_image def aiaprep(fitsfile, cropsize=aia_image_size): hdul = fits.open(fitsfile) hdul[1].verify('silentfix') header = hdul[1].header data = hdul[1].data.astype(np.float64) data /= header['EXPTIME'] # Target scale is 0.6 arcsec/px target_scale = 0.6 scale_factor = header['CDELT1'] / target_scale # Center of rotation at reference pixel converted to a coordinate origin at 0 reference_pixel = [header['CRPIX1'] - 1, header['CRPIX2'] - 1] # Rotation angle with openCV uses coordinate origin at top-left corner. For solar images in numpy we need to invert the angle. angle = -header['CROTA2'] # Run scaled rotation. The output will be a rotated, rescaled, padded array. prepdata = scale_rotate(data, angle=angle, scale_factor=scale_factor, reference_pixel=reference_pixel) prepdata[prepdata < 0] = 0 if cropsize is not None: center = ((np.array(prepdata.shape) - 1) / 2.0).astype(int) half_size = int(cropsize / 2) prepdata = prepdata[center[1] - half_size:center[1] + half_size, center[0] - half_size:center[0] + half_size] return prepdata # Alternate padding method. On AIA, it is ~6x faster than numpy.pad used in Sunpy's aiaprep def aia_pad(image, pad_x, pad_y): newsize = [image.shape[0]+2*pad_y, image.shape[1]+2*pad_x] pimage = np.empty(newsize) pimage[0:pad_y,:] = 0 pimage[:,0:pad_x]=0 pimage[pad_y+image.shape[0]:, :] = 0 pimage[:, pad_x+image.shape[1]:] = 0 pimage[pad_y:image.shape[0]+pad_y, pad_x:image.shape[1]+pad_x] = image return pimage class AIAEffectiveArea: def __init__(self, url='https://hesperia.gsfc.nasa.gov/ssw/sdo/aia/response/', filename=None): ''' :param url: the online location of the response table :param filename: string optional location of a local response table to read, overrides url Usage aia_effective_area = AIAEffectiveArea() effective_area_ratio = aia_effective_area.effective_area_ratio(171, '2010-10-24 15:00:00') ''' # Local input possible else fetch response table file from GSFC mirror of SSW if filename is not None: response_table = filename else: soup = BeautifulSoup(requests.get(url).text, 'html.parser') all_versions = [node.get('href') for node in soup.find_all('a') if node.get('href').endswith('_response_table.txt')] latest_table_url = url + sorted([table_files for table_files in all_versions if table_files.startswith('aia_V')])[-1] tbl = requests.get(latest_table_url).content response_table = io.StringIO(tbl.decode('utf-8')) # Read in response table self.response_table = pd.read_csv(response_table, sep='\s+', parse_dates=[1], infer_datetime_format=True, index_col=1) def effective_area(self, wavelength, time): ''' :param wavelength: float wavelength of the aia target image :param time: string in a format to be read by pandas.to_datetime; the time of the aia target image :return: the effective area of the AIA detector interpolated to the target_time ''' eff_area_series = self._parse_series(wavelength.value) if (
pd.to_datetime(time)
pandas.to_datetime
import datetime import calendar import numpy as np import pandas as pd from scipy import stats from collections import defaultdict from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.base import BaseEstimator, TransformerMixin from sklearn.preprocessing import (StandardScaler, MinMaxScaler, RobustScaler, MaxAbsScaler, PowerTransformer, QuantileTransformer, OneHotEncoder, OrdinalEncoder, KBinsDiscretizer) from pyod.models.knn import KNN from pyod.models.iforest import IForest from pyod.models.pca import PCA as PCA_RO from sklearn.covariance import EllipticEnvelope from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import RFE from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier # from lightgbm import LGBMClassifier from sklearn.linear_model import LogisticRegression class Handle_Datatype(BaseEstimator,TransformerMixin): def __init__(self,target,ml_usecase,categorical_features=[],numerical_features=[],time_features=[],features_todrop=[],display_types=True): self.target = target self.ml_usecase= ml_usecase self.categorical_features =categorical_features self.numerical_features = numerical_features self.time_features =time_features self.features_todrop = features_todrop self.display_types = display_types def fit(self,dataset,y=None): data = dataset.copy() # drop any columns that were asked to drop data.drop(columns=self.features_todrop,errors='ignore',inplace=True) # if there are inf or -inf then replace them with NaN data.replace([np.inf,-np.inf],np.NaN,inplace=True) # also make sure that all the column names are string data.columns = [str(i) for i in data.columns] # try to clean columns names data.columns = data.columns.str.replace(r'[\,\}\{\]\[\:\"\']','') # try to convert categoric columns into numerical if possible for i in data.select_dtypes(include=['object']).columns: try: data[i] = data[i].astype('int64') except: None # convert pandas bool and categorical into categorical datatype for i in data.select_dtypes(include=['bool', 'category']).columns: data[i] = data[i].astype('object') # with csv format, if we have any null in a colum that was int -> panda will read it as float. for i in data.select_dtypes(include=['float64']).columns: na_count = sum(data[i].isna()) # count how many digits are there that have decimiles count_float = np.nansum([ False if r.is_integer() else True for r in data[i]]) # total decimiels digits count_float = count_float - na_count # reducing it because we know NaN is counted as a float digit # now if there isnt any float digit , & unique levales are less than 20 and there are Na's then convert it to object if ( (count_float == 0) & (data[i].nunique() <=20) & (na_count>0) ): data[i] = data[i].astype('object') for i in data.select_dtypes(include=['float64']).columns: if data[i].nunique()==2: data[i]= data[i].apply(str) for i in data.select_dtypes(include=['object']).drop(self.target,axis=1,errors='ignore').columns: try: data[i] = pd.to_datetime(data[i], infer_datetime_format=True, utc=False, errors='raise') except: continue # now in case we were given any specific columns dtypes in advance , we will over ride theos for i in self.categorical_features: try: data[i]=data[i].apply(str) except: data[i]=dataset[i].apply(str) for i in self.numerical_features: try: data[i]=data[i].astype('float64') except: data[i]=dataset[i].astype('float64') for i in self.time_features: try: data[i] =
pd.to_datetime(data[i], infer_datetime_format=True, utc=False, errors='raise')
pandas.to_datetime
from __future__ import print_function import unittest from unittest import mock import datetime import six import warnings from collections import defaultdict import pandas as pd import numpy as np from . import utils from .. import test_utils from dataprofiler.profilers import DateTimeColumn from dataprofiler.profilers.profiler_options import DateTimeOptions # This is taken from: https://github.com/rlworkgroup/dowel/pull/36/files # undo when cpython#4800 is merged. unittest.case._AssertWarnsContext.__enter__ = test_utils.patched_assert_warns class TestDateTimeColumnProfiler(unittest.TestCase): def setUp(self): utils.set_seed(seed=0) @staticmethod def _generate_datetime_data(date_format): gen_data = [] for i in range(50): start_date = pd.Timestamp(1950, 7, 14) end_date = pd.Timestamp(2020, 7, 14) date_sample = utils.generate_random_date_sample( start_date, end_date, [date_format] ) gen_data.append(date_sample) return pd.Series(gen_data) def _test_datetime_detection_helper(self, date_formats): for date_format in date_formats: # generate a few samples for each date format gen_data = self._generate_datetime_data(date_format) # Test to see if the format and col type is detected correctly. datetime_profile = DateTimeColumn(gen_data.name) datetime_profile.update(gen_data) self.assertEqual(date_format, datetime_profile.date_formats[0]) def test_base_case(self): data = pd.Series([], dtype=object) profiler = DateTimeColumn(data.name) profiler.update(data) profiler.update(data) # intentional to validate no changes if empty self.assertEqual(profiler.match_count, 0) self.assertIsNone(profiler.min) self.assertIsNone(profiler.max) self.assertListEqual([], profiler.date_formats) self.assertIsNone(profiler.data_type_ratio) def test_profiled_date_time_formats(self): """ Checks whether the profiler properly determines all datetime formats. :return: """ date_formats_1 = [ "%Y-%m-%d %H:%M:%S", # 2013-03-5 15:43:30 "%Y-%m-%dT%H:%M:%S", # 2013-03-6T15:43:30 "%Y-%m-%dT%H:%M:%S.%fZ", # 2013-03-6T15:43:30.123456Z "%m/%d/%y %H:%M", # 03/10/13 15:43 "%m/%d/%Y %H:%M", # 3/8/2013 15:43 "%Y%m%dT%H%M%S", # 2013036T154330 "%H:%M:%S.%f", # 05:46:30.258509 ] df_1 = pd.Series([], dtype=object) for date_format in date_formats_1: # generate a few samples for each date format df_1 = pd.concat( [df_1, self._generate_datetime_data(date_format)] ) date_formats_2 = [ "%Y-%m-%d", # 2013-03-7 "%m/%d/%Y", # 3/8/2013 "%m/%d/%y", # 03/10/13 "%B %d, %Y", # March 9, 2013 "%b %d, %Y", # Mar 11, 2013 "%d%b%y", # 12Mar13 "%b-%d-%y", # Mar-13-13 "%m%d%Y", # 03142013 ] df_2 = pd.Series([], dtype=object) for date_format in date_formats_2: # generate a few samples for each date format df_2 = pd.concat( [df_2, self._generate_datetime_data(date_format)] ) date_formats_all = date_formats_1 + date_formats_2 df_all = pd.concat([df_1, df_2]) datetime_profile = DateTimeColumn(df_all.name) datetime_profile.update(df_all) six.assertCountEqual(self, date_formats_all, set(datetime_profile.date_formats)) # Test chunks datetime_profile = DateTimeColumn(df_1.name) datetime_profile.update(df_1) six.assertCountEqual(self, date_formats_1, set(datetime_profile.date_formats)) datetime_profile.update(df_2) six.assertCountEqual(self, date_formats_all, datetime_profile.date_formats) def test_profiled_min(self): def date_linspace(start, end, steps): delta = (end - start) / steps increments = list(range(0, steps)) * np.array([delta] * steps) return start + increments df = pd.core.series.Series( date_linspace(datetime.datetime.min, datetime.datetime.max, 11) ) df = df.apply( lambda x: x - datetime.timedelta(microseconds=x.microsecond) ).apply(str) datetime_profile = DateTimeColumn(df[1:].name) datetime_profile.update(df[1:]) self.assertEqual(datetime_profile.min, df.iloc[1]) datetime_profile.update(df) self.assertEqual(datetime_profile.min, df.iloc[0]) datetime_profile.update(pd.Series([np.nan, df.iloc[3]])) self.assertEqual(datetime_profile.min, df.iloc[0]) datetime_profile.update(df[1:2]) # only way to keep as df self.assertEqual(datetime_profile.min, df.iloc[0]) def test_profiled_max(self): def date_linspace(start, end, steps): delta = (end - start) / steps increments = list(range(0, steps)) * np.array([delta] * steps) return start + increments df = pd.core.series.Series( date_linspace(datetime.datetime.min, datetime.datetime.max, 11) ) df = df.apply( lambda x: x - datetime.timedelta(microseconds=x.microsecond) ).apply(str) datetime_profile = DateTimeColumn(df[:-1].name) datetime_profile.update(df[:-1]) self.assertEqual(datetime_profile.max, df.iloc[-2]) datetime_profile.update(df) self.assertEqual(datetime_profile.max, df.iloc[-1]) datetime_profile.update(pd.Series([np.nan, df.iloc[3]])) self.assertEqual(datetime_profile.max, df.iloc[-1]) datetime_profile.update(df[1:2]) # only way to keep as df self.assertEqual(datetime_profile.max, df.iloc[-1]) def test_date_time_detection(self): """ Tests if get_datetime_params is able to detect the date time cols correctly :return: """ date_formats = [ "%Y-%m-%d %H:%M:%S", # 2013-03-5 15:43:30 "%Y-%m-%dT%H:%M:%S", # 2013-03-6T15:43:30 "%Y-%m-%dT%H:%M:%S.%fZ", # 2013-03-6T15:43:30.123456Z "%m/%d/%y %H:%M", # 03/10/13 15:43 "%m/%d/%Y %H:%M", # 3/8/2013 15:43 "%Y%m%dT%H%M%S", # 2013036T154330 "%H:%M:%S.%f" # 05:46:30.258509 ] self._test_datetime_detection_helper(date_formats) def test_date_time_detection_without_time(self): """ Tests if get_datetime_params is able to detect the date cols correctly :return: """ date_formats = [ "%Y-%m-%d", # 2013-03-7 "%m/%d/%Y", # 3/8/2013 "%m/%d/%y", # 03/10/13 "%B %d, %Y", # March 9, 2013 "%b %d, %Y", # Mar 11, 2013 "%d%b%y", # 12Mar13 "%b-%d-%y", # Mar-13-13 "%m%d%Y", # 03142013 ] self._test_datetime_detection_helper(date_formats) def test_data_ratio(self): data = [ 2.5, 12.5, '2013-03-5 15:43:30', 5, '03/10/13 15:43', 'Mar 11, 2013' ] df = pd.Series(data).apply(str) profiler = DateTimeColumn(df.name) self.assertEqual(profiler.data_type_ratio, None) profiler.update(df) self.assertEqual(profiler.data_type_ratio, 0.5) profiler.update(
pd.Series([None, '10/20/13', 'nan'])
pandas.Series
""" Run modisco """ import logging import matplotlib.pyplot as plt from argh.decorators import named, arg import shutil import pandas as pd import os from collections import OrderedDict from tqdm import tqdm from pathlib import Path from bpnet.utils import write_pkl, render_ipynb, remove_exists, add_file_logging, create_tf_session, pd_first_cols from bpnet.cli.contrib import ContribFile from bpnet.cli.train import _get_gin_files, log_gin_config from bpnet.modisco.files import ModiscoFile from bpnet.utils import write_json, read_json import gin import numpy as np import inspect filename = inspect.getframeinfo(inspect.currentframe()).filename this_path = os.path.dirname(os.path.abspath(filename)) logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) # -------------------------------------------- # load functions for the modisco directory def load_included_samples(modisco_dir): return np.load(os.path.join(modisco_dir, "modisco-run.subset-contrib-file.npy")) def load_ranges(modisco_dir): modisco_dir = Path(modisco_dir) included_samples = load_included_samples(modisco_dir) kwargs = read_json(modisco_dir / "modisco-run.kwargs.json") d = ContribFile(kwargs["contrib_file"], included_samples) df = d.get_ranges() d.close() return df def load_contrib_type(modisco_kwargs): """Load the contrib_wildcard contribution score """ # use the first one as the default contrib_types = [wildcard.split("/", maxsplit=1)[1] for wildcard in modisco_kwargs['contrib_wildcard'].split(",")] if not len(set(contrib_types)): contrib_wildcard = modisco_kwargs['contrib_wildcard'] logger.warn(f"contrib_wildcard: {contrib_wildcard} contains multiple contrib_types. " "Current code can by default only handle a single one.") contrib_type = contrib_types[0] return contrib_type def get_nonredundant_example_idx(ranges, width=200): """Get non - overlapping intervals(in the central region) Args: ranges: pandas.DataFrame returned by bpnet.cli.modisco.load_ranges width: central region considered that should not overlap between any interval """ from pybedtools import BedTool from bpnet.preproc import resize_interval # 1. resize ranges ranges['example_idx'] = np.arange(len(ranges)) # make sure r = ranges[['chrom', 'start', 'end', 'example_idx']] # add also the strand information if width is not None: r = resize_interval(r, width, ignore_strand=True) bt = BedTool.from_dataframe(r) btm = bt.sort().merge() df = btm.to_dataframe() df = df[(df.end - df.start) < width * 2] r_overlaps = bt.intersect(BedTool.from_dataframe(df), wb=True).to_dataframe() keep_idx = r_overlaps.drop_duplicates(['score', 'strand', 'thickStart'])['name'].astype(int) return keep_idx # -------------------------------------------- @gin.configurable def modisco_run(output_path, # specified by bpnet_modisco_run task_names, contrib_scores, hypothetical_contribs, one_hot, null_per_pos_scores, # specified by gin-config workflow=gin.REQUIRED, # TfModiscoWorkflow report=None): # reports to use """ Args: workflow: TfModiscoWorkflow objects report: path to the report ipynb """ import h5py modisco_results = workflow(task_names=task_names, contrib_scores=contrib_scores, hypothetical_contribs=hypothetical_contribs, one_hot=one_hot, null_per_pos_scores=null_per_pos_scores) # save the results logger.info(f"Saving modisco file to {output_path}") grp = h5py.File(output_path) modisco_results.save_hdf5(grp) grp.flush() grp.close() if report is not None: if report is not None: report = os.path.abspath(os.path.expanduser(report)) if not os.path.exists(report): raise ValueError(f"Report file {report} doesn't exist") logger.info("Running the report") # Run the jupyter notebook report_path = os.path.join(os.path.dirname(output_path), os.path.basename(report)) render_ipynb(report, report_path, params=dict(modisco_file=output_path, modisco_dir=os.path.dirname(output_path))) logger.info(f"Done rendering the report file: {report_path}") @named("modisco-run") @arg('contrib_file', help='path to the hdf5 file containing contribution scores') @arg('output_dir', help='output file directory') @arg('--null-contrib-file', help='Path to the null contribution scores') @arg('--premade', help='pre-made config file specifying modisco hyper-paramters to use.') @arg('--config', help='gin config file path(s) specifying the modisco workflow parameters.' ' Parameters specified here override the --premade parameters. Multiple ' 'config files can be separated by comma separation (i.e. --config=file1.gin,file2.gin)') @arg('--override', help='semi-colon separated list of additional gin bindings to use') @arg("--contrib-wildcard", help="Wildcard of the contribution scores to use for running modisco. For example, */profile/wn computes" "uses the profile contribution scores for all the tasks (*) using the wn normalization (see bpnet.heads.py)." "*/counts/pre-act uses the total count contribution scores for all tasks w.r.t. the pre-activation output " "of prediction heads. Multiple wildcards can be by comma-separating them.") @arg('--only-task-regions', help='If specified, only the contribution scores from regions corresponding to the tasks specified ' 'in --contrib-wildcard will be used. For example, if dataspec.yml contained Oct4 and Sox2 peaks when ' 'generating the contrib_file and `--contrib-wildcard=Oct4/profile/wn`, then modisco will be only ran ' 'in the Oct4 peaks. If `--contrib-wildcard=Oct4/profile/wn,Sox2/profile/wn` or `--contrib-wildcard=*/profile/wn`, ' 'then peaks of both Sox2 and Oct4 will be used.') @arg('--filter-npy', help='File path to the .npz file containing a boolean one-dimensional numpy array of the same length' 'as the contrib_file. Modisco will be ran on a subset of regions in the contrib_file ' 'where this array has value=True.') @arg('--exclude-chr', help='Comma-separated list of chromosomes to exclude.') @arg('--num-workers', help='number of workers to use in parallel for running modisco') @arg('--gpu', help='which gpu to use. Example: gpu=1') @arg('--memfrac-gpu', help='what fraction of the GPU memory to use') @arg('--overwrite', help='If True, the output files will be overwritten if they already exist.') def bpnet_modisco_run(contrib_file, output_dir, null_contrib_file=None, premade='modisco-50k', config=None, override='', contrib_wildcard="*/profile/wn", # on which contribution scores to run modisco only_task_regions=False, filter_npy=None, exclude_chr="", num_workers=10, gpu=None, # no need to use a gpu by default memfrac_gpu=0.45, overwrite=False, ): """Run TF-MoDISco on the contribution scores stored in the contribution score file generated by `bpnet contrib`. """ add_file_logging(output_dir, logger, 'modisco-run') if gpu is not None: logger.info(f"Using gpu: {gpu}, memory fraction: {memfrac_gpu}") create_tf_session(gpu, per_process_gpu_memory_fraction=memfrac_gpu) else: # Don't use any GPU's os.environ['CUDA_VISIBLE_DEVICES'] = '' os.environ['MKL_THREADING_LAYER'] = 'GNU' import modisco assert '/' in contrib_wildcard if filter_npy is not None: filter_npy = os.path.abspath(str(filter_npy)) if config is not None: config = os.path.abspath(str(config)) # setup output file paths output_path = os.path.abspath(os.path.join(output_dir, "modisco.h5")) remove_exists(output_path, overwrite=overwrite) output_filter_npy = os.path.abspath(os.path.join(output_dir, 'modisco-run.subset-contrib-file.npy')) remove_exists(output_filter_npy, overwrite=overwrite) kwargs_json_file = os.path.join(output_dir, "modisco-run.kwargs.json") remove_exists(kwargs_json_file, overwrite=overwrite) if config is not None: config_output_file = os.path.join(output_dir, 'modisco-run.input-config.gin') remove_exists(config_output_file, overwrite=overwrite) shutil.copyfile(config, config_output_file) # save the hyper-parameters write_json(dict(contrib_file=os.path.abspath(contrib_file), output_dir=str(output_dir), null_contrib_file=null_contrib_file, config=str(config), override=override, contrib_wildcard=contrib_wildcard, only_task_regions=only_task_regions, filter_npy=str(filter_npy), exclude_chr=exclude_chr, num_workers=num_workers, overwrite=overwrite, output_filter_npy=output_filter_npy, gpu=gpu, memfrac_gpu=memfrac_gpu), kwargs_json_file) # setup the gin config using premade, config and override cli_bindings = [f'num_workers={num_workers}'] gin.parse_config_files_and_bindings(_get_gin_files(premade, config), bindings=cli_bindings + override.split(";"), # NOTE: custom files were inserted right after # ther user's config file and before the `override` # parameters specified at the command-line skip_unknown=False) log_gin_config(output_dir, prefix='modisco-run.') # -------------------------------------------- # load the contribution file logger.info(f"Loading the contribution file: {contrib_file}") cf = ContribFile(contrib_file) tasks = cf.get_tasks() # figure out subset_tasks subset_tasks = set() for w in contrib_wildcard.split(","): task, head, head_summary = w.split("/") if task == '*': subset_tasks = None else: if task not in tasks: raise ValueError(f"task {task} not found in tasks: {tasks}") subset_tasks.add(task) if subset_tasks is not None: subset_tasks = list(subset_tasks) # -------------------------------------------- # subset the intervals logger.info(f"Loading ranges") ranges = cf.get_ranges() # include all samples at the beginning include_samples = np.ones(len(cf)).astype(bool) # --only-task-regions if only_task_regions: if subset_tasks is None: logger.warn("contrib_wildcard contains all tasks (specified by */<head>/<summary>). Not using --only-task-regions") elif np.all(ranges['interval_from_task'] == ''): raise ValueError("Contribution file wasn't created from multiple set of peaks. " "E.g. interval_from_task='' for all ranges. Please disable --only-task-regions") else: logger.info(f"Subsetting ranges according to `interval_from_task`") include_samples = include_samples & ranges['interval_from_task'].isin(subset_tasks).values logger.info(f"Using {include_samples.sum()} / {len(include_samples)} regions after --only-task-regions subset") # --exclude-chr if exclude_chr: logger.info(f"Excluding chromosomes: {exclude_chr}") chromosomes = ranges['chr'] include_samples = include_samples & (~
pd.Series(chromosomes)
pandas.Series
import logging, os from typing import Tuple, Optional import pandas as pd import dask import dask.dataframe as dd from dask.distributed import Client from dask.distributed import LocalCluster from .report_generator import combine_data_and_create_report def read_bcl2fastq_stats_data_using_dask(x: dict) -> Tuple[list, list, list]: try: i = x.get('ConversionResults') lane_number = i.get('LaneNumber') total_cluster_raw = i.get('TotalClustersRaw') total_cluster_pf = i.get('TotalClustersPF') total_yield = i.get('Yield') row_l = [{ 'Lane': lane_number, 'Total_cluster_raw': total_cluster_raw, 'Total_cluster_pf': total_cluster_pf, 'Total_yield': total_yield}] row_s = list() demux_results = i.get('DemuxResults') for j in demux_results: sample_id = j.get('SampleId') sample_name = j.get('SampleName') index = j.get('IndexMetrics')[0].get('IndexSequence') num_reads = j.get('NumberReads') yield_val = j.get('Yield') perfect_barcodes = j['IndexMetrics'][0]['MismatchCounts']['0'] yield_q30 = 0 qual_score_sum = 0 read_metrics = j.get('ReadMetrics') for read in read_metrics: q30_bases = int(read.get('YieldQ30')) yield_q30 += q30_bases qual_score = int(read.get('QualityScoreSum')) qual_score_sum += qual_score row_s.append({ 'Lane': lane_number, 'Sample_ID': sample_id, 'Sample_Name': sample_name, 'Index_seq': index, 'Num_reads': num_reads, 'Perfect_barcode': perfect_barcodes, 'Yield_q30': yield_q30, 'Yield': int(yield_val), 'Qual_score_sum': qual_score_sum}) unknown_df = list() unknown_entry = x['UnknownBarcodes'] lane_id = unknown_entry.get('Lane') barcodes = unknown_entry.get('Barcodes') for barcode, read in barcodes.items(): unknown_df.\ append({ 'Lane': lane_id, 'Barcode': barcode, 'Reads': read }) return row_l, row_s, unknown_df except Exception as e: logging.errror(e) raise ValueError(e) # def get_local_dask_cluster( # n_workers: Optional[int] = 4, # threads_per_worker: Optional[int] = 1, # memory_limit: Optional[str] = '1GB') -> LocalCluster: # try: # cluster = \ # LocalCluster( # n_workers=n_workers, # processes=True, # threads_per_worker=threads_per_worker, # memory_limit=memory_limit) # return cluster # except Exception as e: # logging.error(e) # raise ValueError(e) def read_data_via_dask_cluster( data_path: list, temp_dir: str, n_workers: Optional[int] = 4, threads_per_worker: Optional[int] = 1, memory_limit: Optional[str] = '1GB') -> \ Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: try: # client = \ # Client(dask_cluster) if not os.path.exists(temp_dir): raise IOError("Path {0} doesn't exists".format(temp_dir)) with LocalCluster( n_workers=n_workers, processes=False, threads_per_worker=threads_per_worker, local_dir=temp_dir, memory_limit=memory_limit) as cluster, Client(cluster) as client: # dask.config.set({'temporary_directory': temp_dir}) df_all = dd.read_json(data_path, orient='columns') df_all = df_all.compute() all_pdf = \ df_all.apply( read_bcl2fastq_stats_data_using_dask, axis=1, result_type='expand') lane_df = \ pd.DataFrame([v[0] for v in all_pdf[0].values]) sum_df = \ lane_df.groupby('Lane').agg(sum) sum_df = \ sum_df.reset_index() lane_sample_df = \ pd.DataFrame([w for v in all_pdf[1].values for w in v]) lane_unknown_df = \
pd.DataFrame([w for v in all_pdf[2].values for w in v])
pandas.DataFrame
import logging import numpy as np import pandas as pd from pytest import approx from lenskit.metrics.topn import recall from lenskit.util.test import demo_recs from lenskit import topn _log = logging.getLogger(__name__) def _test_recall(items, rel, **kwargs): recs = pd.DataFrame({'item': items}) truth = pd.DataFrame({'item': rel}).set_index('item') return recall(recs, truth, **kwargs) def test_recall_empty_zero(): prec = _test_recall([], [1, 3]) assert prec == approx(0) def test_recall_norel_na(): prec = _test_recall([1, 3], []) assert prec is None def test_recall_simple_cases(): prec = _test_recall([1, 3], [1, 3]) assert prec == approx(1.0) prec = _test_recall([1], [1, 3]) assert prec == approx(0.5) prec = _test_recall([1, 2, 3, 4], [1, 3]) assert prec == approx(1.0) prec = _test_recall([1, 2, 3, 4], [1, 3, 5]) assert prec == approx(2.0 / 3) prec = _test_recall([1, 2, 3, 4], range(5, 10)) assert prec == approx(0.0) prec = _test_recall([1, 2, 3, 4], range(4, 9)) assert prec == approx(0.2) def test_recall_series(): prec = _test_recall(pd.Series([1, 3]), pd.Series([1, 3])) assert prec == approx(1.0) prec = _test_recall(pd.Series([1, 2, 3]), pd.Series([1, 3, 5, 7])) assert prec == approx(0.5) prec = _test_recall(pd.Series([1, 2, 3, 4]), pd.Series(range(4, 9))) assert prec == approx(0.2) def test_recall_series_set(): prec = _test_recall(pd.Series([1, 2, 3, 4]), [1, 3, 5, 7]) assert prec == approx(0.5) prec = _test_recall(pd.Series([1, 2, 3, 4]), range(4, 9)) assert prec == approx(0.2) def test_recall_series_index(): prec = _test_recall(pd.Series([1, 3]), pd.Index([1, 3])) assert prec == approx(1.0) prec = _test_recall(pd.Series([1, 2, 3, 4]), pd.Index([1, 3, 5, 7])) assert prec == approx(0.5) prec = _test_recall(pd.Series([1, 2, 3, 4]), pd.Index(range(4, 9))) assert prec == approx(0.2) def test_recall_series_array(): prec = _test_recall(pd.Series([1, 3]), np.array([1, 3])) assert prec == approx(1.0) prec = _test_recall(pd.Series([1, 2, 3, 4]), np.array([1, 3, 5, 7])) assert prec == approx(0.5) prec = _test_recall(
pd.Series([1, 2, 3, 4])
pandas.Series
"""Main class and helper functions. """ import os from enum import Enum from collections import OrderedDict from functools import reduce from pathlib import Path from typing import Any, Union, Optional from typing import Iterable, Sized, Sequence, Mapping, MutableMapping from typing import Tuple, List, Dict, KeysView from copy import deepcopy import numpy as np from numpy import ma import pandas as pd from numpy.lib.recfunctions import rec_drop_fields from pandas.core.index import RangeIndex from pandas.api.types import is_string_dtype, is_categorical from scipy import sparse from scipy.sparse import issparse from scipy.sparse.sputils import IndexMixin from natsort import natsorted # try importing zarr try: from zarr.core import Array as ZarrArray except ImportError: class ZarrArray: @staticmethod def __rep__(): return 'mock zarr.core.Array' # try importing zappy try: from zappy.base import ZappyArray except ImportError: class ZappyArray: @staticmethod def __rep__(): return 'mock zappy.base.ZappyArray' from . import h5py from .layers import AnnDataLayers from . import utils from .utils import Index, get_n_items_idx from .logging import anndata_logger as logger from .compat import PathLike class StorageType(Enum): Array = np.ndarray Masked = ma.MaskedArray Sparse = sparse.spmatrix ZarrArry = ZarrArray ZappyArry = ZappyArray @classmethod def classes(cls): print(ZarrArray) return tuple(c.value for c in cls.__members__.values()) class BoundRecArr(np.recarray): """A :class:`numpy.recarray` to which fields can be added using ``.['key']``. To enable this, it is bound to a instance of AnnData. """ _attr_choices = ['obsm', 'varm'] def __new__(cls, input_array: np.ndarray, parent: Any, attr: str): """ Parameters ---------- input_array A (structured) numpy array. parent Any object to which the BoundRecArr shall be bound to. attr The name of the attribute as which it appears in parent. """ arr = np.asarray(input_array).view(cls) arr._parent = parent arr._attr = attr return arr def __array_finalize__(self, obj: Any): if obj is None: return self._parent = getattr(obj, '_parent', None) self._attr = getattr(obj, '_attr', None) def __reduce__(self) -> Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]: pickled_state = super().__reduce__() new_state = pickled_state[2] + (self.__dict__, ) return pickled_state[0], pickled_state[1], new_state def __setstate__(self, state: Sequence[Mapping[str, Any]]): for k, v in state[-1].items(): self.__setattr__(k, v) super().__setstate__(state[0:-1]) def copy(self, order='C') -> 'BoundRecArr': new = super().copy() new._parent = self._parent return new def flipped(self) -> 'BoundRecArr': new_attr = (self._attr_choices[1] if self._attr == self._attr_choices[0] else self._attr_choices[0]) return BoundRecArr(self, self._parent, new_attr) def keys(self) -> Tuple[str, ...]: return self.dtype.names def __setitem__(self, key: str, arr: np.ndarray): if not isinstance(arr, np.ndarray): raise ValueError( 'Can only assign numpy ndarrays to .{}[{!r}], not objects of class {}' .format(self._attr, key, type(arr)) ) if arr.ndim == 1: raise ValueError('Use adata.obs or adata.var for 1-dimensional arrays.') if self.shape[0] != arr.shape[0]: raise ValueError( 'Can only assign an array of same length ({}), not of length {}.' .format(self.shape[0], arr.shape[0]) ) # the following always allocates a new array # even if the key already exists and dimensions match # TODO: one could check for this case # dtype merged_dtype = [] found_key = False for descr in self.dtype.descr: if descr[0] == key: merged_dtype.append((key, arr.dtype, arr.shape[1])) found_key = True else: merged_dtype.append(descr) if not found_key: merged_dtype.append((key, arr.dtype, arr.shape[1])) # create new array new = np.empty(len(self), dtype=merged_dtype) # fill the array for name in new.dtype.names: if name == key: new[name] = arr else: new[name] = self[name] # make it a BoundRecArr # TODO: why can we not do this step before filling the array? new = BoundRecArr(new, self._parent, self._attr) setattr(self._parent, self._attr, new) def __delitem__(self, key: str): """Delete field with name.""" if key not in self.dtype.names: raise ValueError( 'Currently, can only delete single names from {}.' .format(self.dtype.names) ) new_array = rec_drop_fields(self, key) new = BoundRecArr(new_array, self._parent, self._attr) setattr(self._parent, self._attr, new) def to_df(self) -> pd.DataFrame: """Convert to pandas dataframe.""" df = pd.DataFrame(index=
RangeIndex(0, self.shape[0], name=None)
pandas.core.index.RangeIndex
import numpy as np import pytest from pandas import ( Categorical, DataFrame, Series, _testing as tm, concat, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, ) pytestmark = [ pytest.mark.single, # pytables https://github.com/PyTables/PyTables/issues/822 pytest.mark.filterwarnings( "ignore:a closed node found in the registry:UserWarning" ), ] def test_categorical(setup_path): with
ensure_clean_store(setup_path)
pandas.tests.io.pytables.common.ensure_clean_store
import csv import requests from bs4 import BeautifulSoup import csv import pandas as pd import re from PyQt4.QtGui import QApplication from PyQt4.QtCore import QUrl from PyQt4.QtWebKit import QWebPage import bs4 as bs import urllib.request import datetime import os today=datetime.date.today() urls=[] urls1=[] urls2=[] model=[] company=[] specs=[] country=[] display_list = [] memory_list = [] processor_list = [] camera_list = [] battery_list = [] thickness_list = [] extras_links = [] url="http://www.innjoo.com/Product/phone" r=requests.get(url) soup=BeautifulSoup(r.text,'html.parser') links=soup.find_all('li',attrs={'class':'dropdown dropdown-phone active'}) #print(links) for i in links: tt=i.find_all('ul',attrs={'class':'product-series-classify'}) for x in tt: z=x.find_all('a') for b in z: urls1.append('http://www.innjoo.com'+b['href']) for s in urls1: r=requests.get(s) soup=BeautifulSoup(r.text,'html.parser') link=soup.findAll('a', text = re.compile('Tech Specs')) for a in link: urls.append('http://www.innjoo.com'+a['href']) #print(urls) for u in urls: specs.append("NOT AVAILABLE") heads=[] dets=[] company.append("INJOO") country.append("CHINA") r=requests.get(u) soup=BeautifulSoup(r.text,'html.parser') s=soup.find_all('div',attrs={'class':'wd'}) t=soup.find_all('div',attrs={'class':"techspec-content ltr-style"}) m=soup.find_all('div',attrs={'class':"product-name"}) if s: k='' print(u) extras_links.append(u) for x in m: if x.text not in model: model.append(x.text) for tk in s: th=tk.find_all('span') heads.append(th[0].text.strip(":")) dets.append(th[1].text) for i in range(len(heads)): if 'CPU' in heads[i]: processor_list.append(dets[i]) #print("____") if 'Screen Size' in heads[i]: display_list.append(dets[i]) if 'Memory' in heads[i]: k=k+dets[i]+" " if 'Storage ' in heads[i]: k=k+dets[i] if 'Capacity' in heads[i]: battery_list.append(dets[i]) if 'Dimensions' in heads[i]: thickness_list.append(dets[i]) if 'Camera' in heads[i] or 'Pixel' in heads[i]: camera_list.append(dets[i]) #print("________") memory_list.append(k) if t: xx=[] bn=' ' print(u) if u not in extras_links: extras_links.append(u) for x in m: if x.text not in model: model.append(x.text) for k in t : th=k.find_all('td') for z in th: xx.append(z.text) #print(xx) for j in xx: if 'mAh' in j: battery_list.append(j) if 'inch' in j: display_list.append(j) if 'Front' in j and("Megapixel" in j or 'MP' in j or 'megapixel' in j or 'pixels' in j): camera_list.append(j) #print("________") if 'GB' in j: bn=bn+j+" " if 'mm' in j and('*' in j or 'x' in j): thickness_list.append(j) if 'GHz' in j and('MT' in j or 'Core' in j or 'core' in j): processor_list.append(j) #print("______") memory_list.append("RAM/ROM:"+bn) print(len(country)) print(len(company)) print(len(model)) print(len(specs)) print(len(display_list)) print(len(camera_list)) print(len(memory_list)) print(len(battery_list)) print(len(thickness_list)) print(len(processor_list)) print(len(extras_links)) records=[] for i in range(len(company)): records.append((country[i], company[i], model[i], specs[i], display_list[i], camera_list[i], memory_list[i], battery_list[i], thickness_list[i], processor_list[i], extras_links[i])) path='C:\\LavaWebScraper\\BrandWiseFiles\\' df =
pd.DataFrame(records, columns = ['COUNTRY', 'COMPANY', 'MODEL', 'USP', 'DISPLAY', 'CAMERA', 'MEMORY', 'BATTERY', 'THICKNESS', 'PROCESSOR', 'EXTRAS/ LINKS'])
pandas.DataFrame
""" MBD-LLBorder """ from functools import partial from itertools import combinations import numpy as np import pandas as pd from joblib import Parallel, delayed from ..base import BaseMiner, DiscovererMixin from ..itemsets.lcm import LCMMax from ..utils import _check_growth_rate, _check_min_supp, filter_maximal, filter_minimal def border_diff(U, S): """ Given a pair of borders <{∅}, {U}> and <{∅}, {S}>, ``border_diff`` derives another border <L2, {U}> such that [L2, {U}] = [{∅}, {U}] - [{∅}, {S}] Parameters ---------- U : set non empty part from the border to differentiate S : list of set non-empty part of a border. Noted as ``R1`` in the original paper References ---------- .. [1] <NAME> Efficient Mining of Emerging Patterns Discovering Notes ----- See ``BORDER-DIFF`` in section 4.1 """ # assert len(R1) < len(U) # assert we iterate on the smallest ensemble L2 = [{x} for x in U - S[0]] for i in range(1, len(S)): _L2 = [X | {x} for x in U - S[i] for X in L2] L2 = list(filter_minimal(_L2)) return L2, U def mbdllborder(isets1, isets2): """ References ---------- .. [1] <NAME> Efficient Mining of Emerging Patterns Discovering Notes ----- main algorithm, as explained in section 4.2 """ borders = list() for iset in isets2: if any((e > iset for e in isets1)): continue inter = (iset & e for e in isets1) R = filter_maximal(inter) diff = border_diff(iset, R) borders.append(diff) return borders def borders_to_patterns(left, right, min_size=None): """ Operates in a bread-first manner, outputting all valid patterns of a given size for each level. Bigger patterns first. Parameters ---------- left: list of set right: set min_size: int only accepts patterns with greater or equal size Returns ------- pd.Series """ min_size = min_size or min(map(len, left)) patterns = list() for size in range(len(right) - 1, min_size - 1, -1): # bigger patterns first combs = combinations(right, size) for pat in combs: if any((e.issuperset(set(pat)) for e in left)): continue patterns.append(pat) return
pd.Series(patterns)
pandas.Series
import pandas import numpy import sys import unittest import os import tempfile import random import string import json import copy import warnings sys.path.append("..") import nPYc from generateTestDataset import generateTestDataset from nPYc.enumerations import VariableType class test_dataset_synthetic(unittest.TestCase): """ Test Dataset object functions with synthetic data """ def setUp(self): # Load empty object and populate with sythetic data. # Empty object self.data = nPYc.Dataset() validChars = string.ascii_letters + string.digits # Function to generate random strings: def randomword(length): return ''.join(random.choice(validChars) for i in range(length)) # Randomly sized intensity data self.name = randomword(10) self.noFeat = numpy.random.randint(3,100) self.noSamp = numpy.random.randint(3,100) self.data._intensityData = numpy.random.rand(self.noSamp,self.noFeat) self.data.sampleMetadata['Sample File Name'] = list(map(str, numpy.linspace(1, self.noSamp, num=self.noSamp, dtype=int))) self.data.sampleMetadata['Sample Metadata'] = [randomword(10) for x in range(0, self.noSamp)] self.data.featureMetadata['Feature Name'] = list(map(str, numpy.linspace(1, self.noFeat, num=self.noFeat, dtype=int))) self.data.featureMetadata['Feature Metadata'] = [randomword(10) for x in range(0, self.noFeat)] self.data.VariableType = VariableType.Discrete def test_nofeatures(self): self.assertEqual(self.data.noFeatures, self.noFeat) def test_name(self): self.data.name = self.name self.assertEqual(self.data.name, self.name) def test_name_raises(self): with self.assertRaises(TypeError): self.data.name = 5 def test_normalisation(self): from nPYc.utilities import normalisation with self.subTest(msg='Check initialised with a NullNormaliser'): self.assertIsInstance(self.data.Normalisation, normalisation.NullNormaliser) numpy.testing.assert_equal(self.data.intensityData, self.data._intensityData) with self.subTest(msg='Check swap to TA normaliser'): self.data.Normalisation = normalisation.TotalAreaNormaliser() taNormaliser = normalisation.TotalAreaNormaliser() numpy.testing.assert_array_equal(self.data.intensityData, taNormaliser.normalise(self.data._intensityData)) def test_normalisation_raises(self): with self.assertRaises(TypeError): self.data.Normalisation = 'Not a Normaliser' def test_nosamples(self): self.assertEqual(self.data.noSamples, self.noSamp) def test__repr__(self): pointer = id(self.data) reprString = str(self.data) testString = "<%s instance at %s, named %s, with %d samples, %d features>" % (nPYc.Dataset().__class__.__name__, pointer, nPYc.Dataset().__class__.__name__, self.noSamp, self.noFeat) self.assertEqual(reprString, testString) def test_initialisemasks(self): self.data.initialiseMasks() featureMask = numpy.squeeze(numpy.ones([self.noFeat, 1], dtype=bool)) sampleMask = numpy.squeeze(numpy.ones([self.noSamp, 1], dtype=bool)) with self.subTest(msg='Checking featureMask.'): numpy.testing.assert_equal(self.data.featureMask, featureMask) with self.subTest(msg='Checking sampleMask.'): numpy.testing.assert_equal(self.data.sampleMask, sampleMask) def test_applymasks(self): # exclude feature 2, samples 1 and 3 featureMask = numpy.squeeze(numpy.ones([self.noFeat, 1], dtype=bool)) featureMask[1] = False sampleMask = numpy.squeeze(numpy.ones([self.noSamp, 1], dtype=bool)) sampleMask[[0, 2]] = False expectedDataset = copy.deepcopy(self.data) expectedDataset.sampleMetadataExcluded = [] expectedDataset.intensityDataExcluded = [] expectedDataset.featureMetadataExcluded = [] expectedDataset.excludedFlag = [] expectedDataset.sampleMetadataExcluded.append(expectedDataset.sampleMetadata.loc[~sampleMask, :]) expectedDataset.intensityDataExcluded.append(expectedDataset.intensityData[~sampleMask, :]) expectedDataset.featureMetadataExcluded.append(expectedDataset.featureMetadata) expectedDataset.excludedFlag.append('Samples') expectedDataset.featureMetadataExcluded.append(expectedDataset.featureMetadata.loc[~featureMask, :]) expectedDataset.intensityDataExcluded.append(expectedDataset.intensityData[sampleMask, :][:, ~featureMask]) expectedDataset.sampleMetadataExcluded.append(expectedDataset.sampleMetadata.loc[sampleMask, :]) expectedDataset.sampleMetadataExcluded[1].reset_index(drop=True, inplace=True) expectedDataset.excludedFlag.append('Features') expectedDataset.intensityData = expectedDataset.intensityData[sampleMask, :][:, featureMask] expectedDataset.sampleMetadata = expectedDataset.sampleMetadata.loc[sampleMask, :] expectedDataset.sampleMetadata.reset_index(drop=True, inplace=True) expectedDataset.featureMetadata = expectedDataset.featureMetadata.loc[featureMask, :] expectedDataset.featureMetadata.reset_index(drop=True, inplace=True) expectedDataset.initialiseMasks() maskedDataset = copy.deepcopy(self.data) maskedDataset.initialiseMasks() maskedDataset.featureMask[1] = False maskedDataset.sampleMask[[0, 2]] = False maskedDataset.applyMasks() with self.subTest(msg='Checking sampleMetadata'):
pandas.testing.assert_frame_equal(maskedDataset.sampleMetadata, expectedDataset.sampleMetadata)
pandas.testing.assert_frame_equal
from flask import Flask ,request from flask import render_template import pandas as pd import joblib from io import BytesIO import base64 import shap from keras.models import load_model import numpy as np import glob data=pd.read_csv("churn_telec.csv") data = data[data["Churn"] == "Yes"] loaded_model = joblib.load("decisiontree") deep_model=load_model("model.h5") x_df,x_train=pd.read_csv("x_df.csv"),pd.read_csv("x_train.csv") x_df_deep,x_train_deep=pd.read_csv("x_df_deep.csv"),pd.read_csv("x_train_deep.csv") x_train=x_train.drop("customerID",axis=1) x_train_deep=x_train_deep.drop("customerID",axis=1) columns=data.columns values=data.values explainer = shap.KernelExplainer(loaded_model.predict,x_train) explainer_deep = shap.KernelExplainer(deep_model.predict,x_train_deep) def find_file_deep(code): files=glob.glob("./Templates/deep_learning/*.html", recursive = True) return ("./Templates/deep_learning\\"+code+"deep.html") in files def find_file(code): files=glob.glob("./Templates/machine_learning/*.html", recursive = True) return ("./Templates/machine_learning\\"+code+".html") in files def blackbox(explainer, row): if(find_file(row.customerID.values[0])): return (row.customerID.values[0]+".html") else: shap_values = explainer.shap_values(row.drop("customerID",axis=1),nsamples=100) shap.initjs() f=shap.force_plot(explainer.expected_value, shap_values, row.drop("customerID",axis=1)) shap.save_html("./Templates/machine_learning/"+row.customerID.values[0]+".html", f) return (row.customerID.values[0]+".html") def blackbox_deep(explainer, row,code): if(find_file_deep(code)): return (code+"deep.html") else: shap_values = explainer.shap_values(row,nsamples=100) shap.initjs() f=shap.force_plot(explainer.expected_value, shap_values[0], row) shap.save_html("./Templates/deep_learning/"+code+"deep.html", f) return (code+"deep.html") app=Flask(__name__) @app.route('/') def index(): return render_template('home.html',file_ds="explainability_global.html") @app.route('/user',methods=["GET" , "POST"]) def function(): id=request.args.get('id') row=(
pd.DataFrame(x_df[x_df["customerID"]==id].iloc[-1])
pandas.DataFrame
""" Decrease the memory usage of the values and labels in the csv files. """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import gc # garbage collector import psutil def convert_obj_columns_to_cat(df, exclude_cols): """ Convert the datatype of object columns to category columns. :param df: Dataframe of the data :type df: pandas.core.frame.DataFrame :param exclude_cols: set of columns to exclude from conversion :type exclude_cols: set :returns: dataframe :rtype: pandas.core.frame.DataFrame """ column_list = df.select_dtypes(include=['object']).columns column_list = [col for col in column_list if col not in exclude_cols] for col in column_list: print("converting", col.ljust(30), "size: ", round(df[col].memory_usage(deep=True)*1e-6, 2), end="\t") df[col] = df[col].astype("category") print("->\t", round(df[col].memory_usage(deep=True)*1e-6, 2)) return df def downcast_df_int_columns(df): """ Change integer types to decrease memory usage. :param df: Dataframe of the data :type df: pandas.core.frame.DataFrame :returns: dataframe :rtype: pandas.core.frame.DataFrame """ list_of_columns = list(df.select_dtypes( include=["int32", "int64"]).columns) if len(list_of_columns) >= 1: # finds max string length for better status printing max_string_length = max([len(col) for col in list_of_columns]) print("\ndowncasting integers for:", list_of_columns, "\n") for col in list_of_columns: print("reduced memory usage for: ", col.ljust(max_string_length+2)[:max_string_length+2], "from", str(round(df[col].memory_usage(deep=True)*1e-6, 2)).rjust(8), "to", end=" ") df[col] = pd.to_numeric(df[col], downcast="integer") print(str(round(df[col].memory_usage(deep=True)*1e-6, 2)).rjust(8)) else: print("no columns to downcast") gc.collect() return df def compress_labels(df): """ Decrease memory size of labels :param df: Dataframe of the data :type df: pandas.core.frame.DataFrame :returns: dataframe :rtype: pandas.core.frame.DataFrame """ df['status_group'] = df['status_group'].astype("category") df['id'] =
pd.to_numeric(df['id'], downcast="integer")
pandas.to_numeric
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range('2012-1-1', periods=3, freq='D') v2 = pd.date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') tm.assert_series_equal(rs, xp) assert rs.dtype == 'timedelta64[ns]' df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' # series on the rhs result = df['A'] - df['A'].shift() assert result.dtype == 'timedelta64[ns]' result = df['A'] + td assert result.dtype == 'M8[ns]' # scalar Timestamp on rhs maxa = df['A'].max() assert isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() assert resultb.dtype == 'timedelta64[ns]' # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') tm.assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') tm.assert_series_equal(result, expected) assert result.dtype == 'm8[ns]' d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d assert resulta.dtype == 'm8[ns]' # roundtrip resultb = resulta + d tm.assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(resultb, df['A']) assert resultb.dtype == 'M8[ns]' # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(df['A'], resultb) assert resultb.dtype == 'M8[ns]' # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype='timedelta64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) # addition tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) # multiplication tm.assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) tm.assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box_with_array) msg = ("cannot subtract a datelike from|" "Could not operate|" "cannot perform operation") with pytest.raises(TypeError, match=msg): idx - Timestamp('2011-01-01') def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp('2011-01-01', tz=tz) idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03'], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdi = timedelta_range('1 day', periods=3) expected = pd.date_range('2012-01-02', periods=3) tdarr = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(ts + tdarr, expected) tm.assert_equal(tdarr + ts, expected) expected2 = pd.date_range('2011-12-31', periods=3, freq='-1D') expected2 = tm.box_expected(expected2, box_with_array) tm.assert_equal(ts - tdarr, expected2) tm.assert_equal(ts + (-tdarr), expected2) with pytest.raises(TypeError): tdarr - ts def test_tdi_sub_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) def test_td64arr_add_datetime64_nat(self, box_with_array): # GH#23215 other = np.datetime64('NaT') tdi = timedelta_range('1 day', periods=3) expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"]) tdser = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(tdser + other, expected) tm.assert_equal(other + tdser, expected) # ------------------------------------------------------------------ # Operations with int-like others def test_td64arr_add_int_series_invalid(self, box): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError int_ser = Series([2, 3, 4]) with pytest.raises(err): tdser + int_ser with pytest.raises(err): int_ser + tdser with pytest.raises(err): tdser - int_ser with pytest.raises(err): int_ser - tdser def test_td64arr_add_intlike(self, box_with_array): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box_with_array) err = TypeError if box_with_array in [pd.Index, tm.to_array]: err = NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box_with_array, scalar): box = box_with_array tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box in [pd.Index, tm.to_array] and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others # TODO: this was taken from tests.series.test_ops; de-duplicate @pytest.mark.parametrize('scalar_td', [timedelta(minutes=5, seconds=4), Timedelta(minutes=5, seconds=4), Timedelta('5m4s').to_timedelta64()]) def test_operators_timedelta64_with_timedelta(self, scalar_td): # smoke tests td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 + scalar_td scalar_td + td1 td1 - scalar_td scalar_td - td1 td1 / scalar_td scalar_td / td1 # TODO: this was taken from tests.series.test_ops; de-duplicate def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) def test_td64arr_add_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly if box is pd.DataFrame and names[1] == 'Venkman': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_add_sub_td64_nat(self, box): # GH#23320 special handling for timedelta64("NaT") tdi = pd.TimedeltaIndex([NaT, Timedelta('1s')]) other = np.timedelta64("NaT") expected = pd.TimedeltaIndex(["NaT"] * 2) obj = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) result = other - obj tm.assert_equal(result, expected) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, two_hours, box): # only test adding/sub offsets as + is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + two_hours tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, two_hours, box): # only test adding/sub offsets as - is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - two_hours tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets # TODO: this was taken from tests.series.test_operators; de-duplicate def test_timedelta64_operations_with_DateOffset(self): # GH#10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) tm.assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta(minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) tm.assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) tm.assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box): # GH#18849 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box): # GH#18824, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = None if box_with_array is pd.DataFrame else PerformanceWarning with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box_df_fail): # GH#18849 box = box_df_fail box2 = Series if box in [pd.Index, tm.to_array] else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box_with_array) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps: # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # TODO: Moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize("m", [1, 3, 10]) @pytest.mark.parametrize("unit", ['D', 'h', 'm', 's', 'ms', 'us', 'ns']) def test_timedelta64_conversions(self, m, unit): startdate = Series(pd.date_range('2013-01-01', '2013-01-03')) enddate = Series(pd.date_range('2013-03-01', '2013-03-03')) ser = enddate - startdate ser[2] = np.nan # op expected = Series([x / np.timedelta64(m, unit) for x in ser]) result = ser / np.timedelta64(m, unit) tm.assert_series_equal(result, expected) # reverse op expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in ser]) result = np.timedelta64(m, unit) / ser tm.assert_series_equal(result, expected) # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array): rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng * two_hours def test_tdi_mul_int_array_zerodim(self, box_with_array): rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_with_array): rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected =
TimedeltaIndex(rng5 ** 2)
pandas.TimedeltaIndex
import streamlit as st import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt from sklearn.neighbors import NearestNeighbors import random import missingno as msno import ppscore as pps from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler import base64 from io import BytesIO pd.set_option('display.max_columns', 500) @st.cache def readcsv(csv): df=pd.read_csv(csv) return df def load_data(): DATA_URL = ('https://raw.githubusercontent.com/guireis1/Codenation-Final-Project/master/estaticos_portfolio1.csv') data = pd.read_csv(DATA_URL) return data def head(dataframe): if len(dataframe) > 1000: lenght = 1000 else: lenght = len(dataframe) slider = st.slider('Linhas exibidas:', 10, lenght) st.dataframe(dataframe.head(slider)) def vis(data): for i in data.columns: if i == 'setor': sns.set(style="whitegrid") plt.figure(figsize=(20,10)) sns.countplot(x="setor", data=data, palette="Reds_r",saturation=0.5) plt.title('Contagem dos Setores',fontsize=20) plt.xlabel('') plt.ylabel('') st.pyplot() if i == 'natureza_juridica_macro': sns.set(style="whitegrid") plt.figure(figsize=(20,10)) sns.countplot(x="natureza_juridica_macro", data=data, palette="Reds_r",saturation=0.5) plt.title('Contagem da natureza jurídica',fontsize=20) plt.xlabel('') plt.ylabel('') st.pyplot() if i == 'de_faixa_faturamento_estimado_grupo': sns.set(style="whitegrid") plt.figure(figsize=(20,20)) sns.countplot(y="de_faixa_faturamento_estimado_grupo",hue='setor', data=data, palette="Reds_r",saturation=0.5) plt.title('Contagem do faturamento por setor',fontsize=20) plt.xlabel('') plt.ylabel('') st.pyplot() if i == 'nm_meso_regiao': sns.set(style="whitegrid") plt.figure(figsize=(20,20)) sns.countplot(y="nm_meso_regiao", data=data, palette="Reds_r",saturation=0.5) plt.title('Contagem Meso Região',fontsize=20) plt.xlabel('') plt.ylabel('') st.pyplot() @st.cache def descritiva(dataframe): desc = dataframe.describe().T desc['column'] = desc.index exploratory =
pd.DataFrame()
pandas.DataFrame
from Gray import read_image import pandas as pd import matplotlib.pyplot as plt # 原图 image,x,y=read_image('g.png') pixels=[] for i in range(x): for j in range(y): pixel=image.getpixel((i,j)) pixels.append((pixel)) pixels=pd.Series(pixels) proportitionDict=dict(pixels.value_counts(normalize=True)) hist_dict={} add=0 for i in range(256): if i in proportitionDict.keys(): add+=proportitionDict[i] hist_dict[i]=add table=[] for i in range(256): table.append(hist_dict[i]*255) plt.subplot(221) plt.hist(pixels,bins=256) # 目标图片 image,x,y=read_image('g2.png') pixels=[] for i in range(x): for j in range(y): pixel=image.getpixel((i,j)) pixels.append((pixel)) pixels=
pd.Series(pixels)
pandas.Series
__author__ = "<NAME>" __credits__ = ["<NAME>"] __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __version__ = "0.1" __license__ = "MIT" import pandas as pd import yaml from collections import OrderedDict def import_series(filename, series_label='precipitation', index_label='datetime', csv_reader_args=None): """ Args: filename: series_label: index_label: csv_reader_args: for example: sep="," or "." and decimal=";" or "," Returns: pandas.Series: precipitation series """ if filename.endswith('csv'): if csv_reader_args is None: csv_reader_args = dict(sep=';', decimal=',') try: ts = pd.read_csv(filename, index_col=0, header=0, squeeze=True, **csv_reader_args) ts.index = pd.to_datetime(ts.index) ts.index.name = index_label ts.name = series_label except: raise UserWarning('ERROR | ' 'Something is wrong with your csv format. The file should only include two columns. ' 'First column is the date and time index (prefered format is "YYYY-MM-DD HH:MM:SS") ' 'and second column the precipitation values in mm. ' 'As a separator use "{sep}" and as decimal sign use "{decimal}".'.format(**csv_reader_args)) return ts elif filename.endswith('parquet'): return pd.read_parquet(filename, columns=[series_label])[series_label].rename_axis(index_label, axis='index') elif filename.endswith('pkl'): return
pd.read_pickle(filename)
pandas.read_pickle
import numpy as np import pandas as pd import seaborn as sns from mpl_toolkits import mplot3d from pathlib import Path ############################################################################### #Non-Standard Imports ############################################################################### import dunlin._utils_plot as upp ############################################################################### #Raw Data ############################################################################### class TimeResponseData: consolidated_colors = {} ########################################################################### #Instantiation ########################################################################### def __init__(self, data, base_colors=None, palette_type='light_palette', roll=2, thin=2, truncate=None, levels=None, drop_scenarios=None, consolidate_colors=True, ): def _2dict(df): return {i: g.droplevel(axis=1, level=0) for i, g in df.groupby(axis=1, level=0)} data = self.preprocess(data, roll, thin, truncate, levels, drop_scenarios) colors = self.make_colors(data, base_colors, palette_type) self.colors = colors self._data = data self._dct = _2dict(data) self._t = pd.DataFrame(dict.fromkeys(colors, data.index), index=data.index) ########################################################################### #Supporting Methods ########################################################################### @classmethod def make_colors(cls, df, base_colors=None, palette_type='light_palette'): levels = list(range(df.columns.nlevels))[1:] scenarios = sorted([i for i, g in df.groupby(axis=1, level=levels)]) if palette_type == 'light_palette': colors = upp.make_light_scenarios(scenarios, base_colors) elif palette_type == 'dark_palette': colors = upp.make_dark_scenarios(scenarios, base_colors) else: colors = upp.make_color_scenarios(scenarios, base_colors) return colors @staticmethod def preprocess(df, roll=2, thin=2, truncate=None, levels=None, drop_scenarios=None): if levels: to_drop = [lvl for lvl in df.columns.names if lvl not in levels] df = df.droplevel(to_drop, axis=1) df = df.reorder_levels(levels, axis=1) if truncate: lb, ub = truncate df = df.loc[lb:ub] if drop_scenarios: lvls = df.columns.names[1:] temp = [g for i, g in df.groupby(level=lvls, axis=1) if i not in drop_scenarios] df =
pd.concat(temp, axis=1, sort=False)
pandas.concat
""" Wrapper to invoke retinanet training scripts from openem """ import subprocess import os import csv import pandas as pd import cv2 import numpy as np from collections import namedtuple from pprint import pprint from openem_train.util import utils from openem_train.util.roi_transform import RoiTransform from openem_train.util.img_augmentation import resizeAndFill import progressbar FishBoxDetection = namedtuple( 'FishBoxDetection', ['video_id', 'frame', 'x', 'y', 'width', 'height', 'theta', 'class_id']) def prep(config): """ Generates a csv file compatible with retinanet training script outputs it in the OPENEM_WORK area for subsequent commands to use """ work_dir = config.work_dir() retinanet_dir = os.path.join(work_dir, "retinanet") species_csv = os.path.join(retinanet_dir, "species.csv") retinanet_csv = os.path.join(retinanet_dir, "totalPopulation.csv") os.makedirs(retinanet_dir, exist_ok=True) # Generate the species csv file first # This is a csv file with each species on a new line, with no # header species=[] for idx,name in enumerate(config.species()): species.append({'species': name, 'id': idx}) species_df =
pd.DataFrame(columns=['species', 'id'], data=species)
pandas.DataFrame
import datetime as dt import gzip from bs4 import BeautifulSoup import numpy as np import pandas as pd from watchcbb.scrape.common import get_html class SportsRefScrape: """Class to perform various web-scraping routines from sports-reference.com/cbb""" def __init__(self): pass def get_gid(self, date, t1, t2): """ Return unique game id, with date and alphabetized teams, like 2020-02-15_indiana_purdue" """ tnames = sorted([t1, t2]) return "{0}_{1}_{2}".format(date,tnames[0],tnames[1]) def get_team_list(self, season=2020): """ Return a list of all teams in D-I for a given season """ teams_url = f"http://www.sports-reference.com/cbb/seasons/{season}-school-stats.html" teams_html = get_html(teams_url) teams_soup = BeautifulSoup(teams_html, "html.parser") teams = [] table = teams_soup.find("table", id="basic_school_stats").find("tbody") for td in table.find_all("td", {"data-stat":"school_name"}): team = td.find("a")["href"].split("/")[3] teams.append(team) return teams def get_game_data(self, season, fout=None, overwrite=False, gids=None, teams=None, startdate=None, enddate=None, verbose=False): """Retrieve individual game statistics for a set of teams in a given season Parameters: season: year of the season (i.e. 2020 for 2019-20 season) fout: file to write output CSV to (None to not write to file) overwrite: True to overwrite file, False to append to it (taking care to avoid duplicates) gids: optional list of gids to get. If not None, this overrides anything in teams, startdate, enddate teams: list of team IDs (from sports-reference) to retrive games for. If None, use all teams in D-I for the given season startdate: date to start retrieving games, defaults to beginning of season enddate: date to end retrieving games, defaults to full season verbose: print extra info Returns: list of comma-separated strings, as would be written into the lines of a CSV """ if teams is not None: if gids is not None: raise Exception("Only one of gids, teams can be non-null") else: if gids is None: teams = self.get_team_list(season) gids_to_get = None if gids is not None: gids_to_get = gids teams = [gid.split("_")[1] for gid in gids] teams = list(set(teams)) gids = {} lines = {} rows = [] # if we want to update the game file, record everything in the old file if fout is not None and overwrite==False: for line in open(fout).readlines()[1:]: sp = line.strip().split(",") date = sp[1] gid = self.get_gid(date,sp[3], sp[5]) if date not in gids.keys(): gids[date] = [] lines[date] = [] lines[date].append(line) gids[date].append(gid) stats = ["pts","fg","fga","fg3","fg3a","ft","fta","orb","trb","ast","stl","blk","tov","pf"] for team in teams: if verbose: print("Getting games for "+team+"...") url = f"http://www.sports-reference.com/cbb/schools/{team}/{season}-gamelogs.html" html = get_html(url) soup = BeautifulSoup(html, "html.parser") # this page only for "game type" (reg season, conf tourney, etc.) If before March, guaranteed Reg Season if enddate==None or enddate.month >= 2: url2 = "http://www.sports-reference.com/cbb/schools/{0}/{1}-schedule.html".format(team,season) html2 = get_html(url2) soup2 = BeautifulSoup(html2, "html.parser") table = soup.find("table", id="sgl-basic").find("tbody") for tr in table.find_all("tr"): if tr.get("id") == None: continue date = tr.find("td", {"data-stat":"date_game"}) if date.find("a") != None: date = date.find("a").string else: continue opp = tr.find("td", {"data-stat":"opp_id"}) if startdate!=None and startdate > dt.date(*[int(x) for x in date.split("-")]): continue if enddate!=None and enddate < dt.date(*[int(x) for x in date.split("-")]): continue if opp.find("a")==None: continue opp = opp.find("a")["href"].split("/")[3] gid = self.get_gid(date, team, opp) if gids_to_get is not None and gid not in gids_to_get: continue datem1day = str(dt.date(*[int(x) for x in date.split("-")]) - dt.timedelta(1)) gidm1day = self.get_gid(datem1day, team, opp) if date not in gids.keys(): gids[date] = [] lines[date] = [] if gid in gids[date] or (datem1day in gids.keys() and gidm1day in gids[datem1day]): continue else: gids[date].append(gid) if enddate==None or enddate.month >= 2: gtype = soup2.find("td",{"csk":date}).find_parent("tr").find("td",{"data-stat":"game_type"}).string else: gtype = "REG" if gtype == "REG": gtype = "RG" if gtype == "CTOURN": gtype = "CT" loc = tr.find("td", {"data-stat":"game_location"}).string if loc==None: loc="H" elif loc=="@": loc="A" elif loc=="N": loc="N" else: raise Exception(loc) numot = tr.find("td", {"data-stat":"game_result"}) if numot.find("small") != None: numot = int(numot.find("small").string.split("(")[1].split()[0]) else: numot = 0 statdict = {} opp_statdict = {} getint = lambda x: (0 if x is None else int(x)) for stat in stats: statdict[stat] = getint(tr.find("td",{"data-stat":stat}).string) opp_statdict[stat] = getint(tr.find("td",{"data-stat":"opp_"+stat}).string) if statdict["pts"] > opp_statdict["pts"]: wd, ld = statdict, opp_statdict wteam, lteam = team, opp else: wd, ld = opp_statdict, statdict wteam, lteam = opp, team if loc=="H": loc="A" elif loc=="A": loc="H" rowvals = [season,date,gtype,wteam,wd["pts"],lteam,ld["pts"],loc,numot, wd["fg"],wd["fga"],wd["fg3"],wd["fg3a"],wd["ft"],wd["fta"],wd["orb"], wd["trb"]-wd["orb"],wd["ast"],wd["tov"],wd["stl"],wd["blk"],wd["pf"], ld["fg"],ld["fga"],ld["fg3"],ld["fg3a"],ld["ft"],ld["fta"],ld["orb"], ld["trb"]-ld["orb"],ld["ast"],ld["tov"],ld["stl"],ld["blk"],ld["pf"] ] rows.append(rowvals) string = ",".join([str(x) for x in rowvals]) + '\n' lines[date].append(string) colnames = ["Season","Date","Type","WTeamID","WScore","LTeamID","LScore","WLoc","NumOT", "WFGM","WFGA","WFGM3","WFGA3","WFTM","WFTA","WOR","WDR","WAst","WTO","WStl", "WBlk","WPF","LFGM","LFGA","LFGM3","LFGA3","LFTM","LFTA","LOR","LDR","LAst", "LTO","LStl","LBlk","LPF" ] if fout: fout = open(fout, 'w') fout.write(",".join(colnames)+'\n') for date in sorted(gids.keys()): for s in lines[date]: fout.write(s) fout.close() return
pd.DataFrame(rows, columns=colnames)
pandas.DataFrame
#///////////////////////////////////////////////////////////////////////// #///////////////////////////////////////////////////////////////////////// # script: generateSummaryTable.py # author: Lincoln # date: 3.28.19 # # Takes as input GOI_out_AA.csv files (from getMutationCounts_overall_and_GOI.py), # patient metadata, seurat metadata, fusionsDF, and creates a BY CELL # summaryTable. The goal with this table is to provide an answer to questions like # 'which patients have which mutations?', and 'how many cells have clinically relevant # mutations?'. Currently i've got an ipynb that accomplishes this, but its like # super long and unwieldy, so i though converting it to a script would be a good # idea. Lets try and make this more modular and flowy. #///////////////////////////////////////////////////////////////////////// #///////////////////////////////////////////////////////////////////////// import myLib import pandas as pd import numpy as np pd.options.mode.chained_assignment = None # want to disable this SettingWithCopyWarning print('running...') # READ IN ALL OF THESE BY-GENE AMINO-ACID LEVEL MUTATION COUNTS OBJECTS mutsPATH = '/Users/lincoln.harris/code/SNP_calling_pipeline/getMutationCounts/' egfrPATH = mutsPATH + 'egfr_germline_out_AA.csv' brafPATH = mutsPATH + 'braf_germline_out_AA.csv' krasPATH = mutsPATH + 'kras_germline_out_AA.csv' egfr_df = pd.read_csv(egfrPATH, header=None, names=['cell', 'mutations']) braf_df = pd.read_csv(brafPATH, header=None, names=['cell', 'mutations']) kras_df = pd.read_csv(krasPATH, header=None, names=['cell', 'mutations']) # FIRST STEP IS TO GENERATE THE mutationsDF print('creating mutationsDF') mutationsDF =
pd.DataFrame(columns=['cell', 'brafMut', 'egfrMut', 'krasMut'])
pandas.DataFrame
#!/usr/bin/env python3 import os import argparse import pandas as pd from pathlib import Path from plumbum import local from argparse import RawTextHelpFormatter from plumbum.commands.processes import ProcessExecutionError from scipy.cluster.hierarchy import ward, complete, average, dendrogram, fcluster, linkage """ Run all three python scripts in BioData workflow to generate combined results Display options provided in KEGG_decoder will be available for final step only """ class ArgParse: def __init__(self, arguments_list, description, *args, **kwargs): self.arguments_list = arguments_list self.args = [] # Instantiate ArgumentParser self.parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter, description=description, *args, **kwargs) # Add all arguments stored in self.arguments_list self._parse_arguments() # Parse arguments try: self.args = self.parser.parse_args() except: exit(1) def _parse_arguments(self): """ Protected method for adding all arguments stored in self.arguments_list Checks value of "require" and sets accordingly """ for args in self.arguments_list: self.parser.add_argument(*args[0], **args[1]) @staticmethod def description_builder(header_line, help_dict, flag_dict): """ Static method provides summary of programs/requirements :param header_line: :param help_dict: :param flag_dict: :return: """ assert set(help_dict.keys()) == set(flag_dict.keys()), "Program names do not match in key/help dictionaries" to_return = header_line + "\n\nAvailable Programs:\n\n" programs = sorted(flag_dict.keys()) for program in programs: to_return += program + ": " + help_dict[program] + "\n\t" + \ "\t(Flags: {})".format(" --" + " --".join(flag_dict[program])) + "\n" to_return += "\n" return to_return def hClust_euclidean(genome_df): linkage_matrix = linkage(genome_df, method='average', metric='euclidean') # linkage_matrix = linkage(df, metric='braycurtis') names = genome_df.index.tolist() # clust = dendrogram(linkage_matrix, orientation="right", labels=names, get_leaves=True) clust = dendrogram(linkage_matrix, no_plot=True, labels=names, get_leaves=True) leaves = clust['ivl'] leave_order = list(leaves) genome_df = genome_df.reindex(leave_order) return genome_df def hClust_correlation(genome_df): linkage_matrix = linkage(genome_df, method='single', metric='correlation') # linkage_matrix = linkage(df, metric='braycurtis') names = genome_df.index.tolist() # clust = dendrogram(linkage_matrix, orientation="right", labels=names, get_leaves=True) clust = dendrogram(linkage_matrix, no_plot=True, labels=names, get_leaves=True) leaves = clust['ivl'] leave_order = list(leaves) genome_df = genome_df.reindex(leave_order) return genome_df def hClust_most_least(genome_df): sort_dex = genome_df.sum(axis=1).sort_values(ascending=True).index genome_df = genome_df.loc[sort_dex] return genome_df def hClust_least_most(genome_df): sort_dex = genome_df.sum(axis=1).sort_values(ascending=False).index genome_df = genome_df.loc[sort_dex] return genome_df def default_viz(genome_df, outfile_name): import seaborn as sns import matplotlib.pyplot as plt sns.set(font_scale=1.2) sns.set_style({"savefig.dpi": 200}) ax = sns.heatmap(genome_df, cmap=plt.cm.YlOrRd, linewidths=2, linecolor='k', square=True, xticklabels=True, yticklabels=True, cbar_kws={"shrink": 0.1}) ax.xaxis.tick_top() # ax.set_yticklabels(ax.get_yticklabels(), rotation=90) plt.xticks(rotation=90) plt.yticks(rotation=0) # get figure (usually obtained via "fig,ax=plt.subplots()" with matplotlib) fig = ax.get_figure() # specify dimensions and save # xLen = len(genome_df.columns.values.tolist())*20 # yLen = len(genome_df.index.tolist())*20 fig.set_size_inches(100, 100) fig.savefig(outfile_name, bbox_inches='tight', pad_inches=0.1) def prefix(_path): """ Get prefix of file :param _path: Path, possibly relative :return: """ return os.path.splitext(Path(_path).resolve())[0] def try_which(): """ Locate hmmsearch on path, if possible :return: """ try: return str(local["which"]["hmmsearch"]()).rstrip("\r\n") except ProcessExecutionError: return "None" def print_run(cmd): """ :param cmd: plumbum local object :return: """ print(cmd) cmd() def plotly_viz(genome_df, output_file): # build heatmap in plotly.offline Euclidean_genome_df = hClust_euclidean(genome_df) Correlation_genome_df = hClust_correlation(genome_df) Most_Least_genome_df = hClust_most_least(genome_df) Least_Most_genome_df = hClust_least_most(genome_df) import plotly.graph_objs as go import plotly.offline as py xLen = len(genome_df.columns.values.tolist()) * 20 len_genomes = len(genome_df.index.tolist()) if len_genomes >= 200: yLen = len_genomes * 40 menL = 1.05 elif len_genomes >= 100: yLen = len_genomes * 30 menL = 1.2 elif len_genomes >= 50: yLen = len_genomes * 20 menL = 1.5 elif len_genomes >= 25: yLen = len_genomes * 10 menL = 2.0 else: yLen = 750 menL = 3.0 colorscale = [ [0, '#f1eef6'], [0.2, '#f1eef6'], [0.2, '#bdc9e1'], [0.4, '#bdc9e1'], [0.4, '#74a9cf'], [0.6, '#74a9cf'], [0.6, '#2b8cbe'], [0.8, '#2b8cbe'], [0.8, '#045a8d'], [1, '#045a8d']] colorbar = {'tick0': 0, 'dtick': 0.2, 'lenmode': 'pixels', 'len': 500, 'y': 1} Euclidean_clust = go.Heatmap(x=Euclidean_genome_df.columns.values.tolist(), y=Euclidean_genome_df.index.tolist(), z=Euclidean_genome_df.values.tolist(), colorscale=colorscale, colorbar=colorbar, hovertemplate='Sample: %{y}<br>Function: %{x}<br>Proportion: %{z}<extra></extra>', xgap=1, ygap=1) Correlation_clust = go.Heatmap(x=Correlation_genome_df.columns.values.tolist(), y=Correlation_genome_df.index.tolist(), z=Correlation_genome_df.values.tolist(), colorscale=colorscale, colorbar=colorbar, xgap=1, ygap=1, hovertemplate='Sample: %{y}<br>Function: %{x}<br>Proportion: %{z}<extra></extra>', visible=False) Most_Least_clust = go.Heatmap(x=Most_Least_genome_df.columns.values.tolist(), y=Most_Least_genome_df.index.tolist(), z=Most_Least_genome_df.values.tolist(), colorscale=colorscale, colorbar=colorbar, xgap=1, ygap=1, hovertemplate='Sample: %{y}<br>Function: %{x}<br>Proportion: %{z}<extra></extra>', visible=False) Least_Most_clust = go.Heatmap(x=Least_Most_genome_df.columns.values.tolist(), y=Least_Most_genome_df.index.tolist(), z=Least_Most_genome_df.values.tolist(), colorscale=colorscale, colorbar=colorbar, xgap=1, ygap=1, hovertemplate='Sample: %{y}<br>Function: %{x}<br>Proportion: %{z}<extra></extra>', visible=False) data = [Euclidean_clust, Correlation_clust, Most_Least_clust, Least_Most_clust] updatemenus = [dict( buttons=[ dict(label='Euclidean_Clustering', method='update', args=[{'visible': [True, False, False, False]}]), dict(label='Correlation_Clustering', method='update', args=[{'visible': [False, True, False, False]}]), dict(label='Most_to_Least', method='update', args=[{'visible': [False, False, True, False]}]), dict(label='Least_to_Most', method='update', args=[{'visible': [False, False, False, True]}]) ], direction='down', pad={'r': 10, 't': 10}, showactive=True, x=0.1, xanchor='left', y=menL, yanchor='top' )] layout = go.Layout(xaxis={'side': 'top'}, autosize=False, width=xLen, height=yLen, plot_bgcolor='#000000', margin=go.layout.Margin(t=500), updatemenus=updatemenus, ) fig = go.Figure(data=data, layout=layout) py.plot(fig, filename=output_file, auto_open=False) def make_tanglegram(genome_df, newick, output_file, tanglegram_opt): import pandas as pd import itertools from Bio import Phylo import tanglegram as tg from scipy.spatial.distance import pdist, squareform # FORMAT KEGGDECODER OUTPUT # generate distance matrix for genome_df from pathway values # genome_df = pd.read_csv(genome_df, index_col=0, sep='\t') kegg_d = squareform(pdist(genome_df, metric='euclidean')) kegg_m =
pd.DataFrame(kegg_d)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Nov 4 11:25:03 2019 @author: lealp """ import pandas as pd pd.set_option('display.width', 50000)
pd.set_option('display.max_rows', 50000)
pandas.set_option
from pathlib import Path from typing import Sequence, Union import numpy as np import pandas as pd import xarray as xr from scipy.io import loadmat def load_data_SESL( sl_fpath: Union[str, Path], T_fpath: Union[str, Path], use_cov: bool, use_Mar_T0: bool, Mar_fpath: Union[str, Path, None] = None, T_err_sc: float = 1, cov_tau: float = 100, no_neg_cov: bool = True, baseperiod: Sequence[int] = [1400, 1800], T0_temp_level: float = 100, T0_period_st: int = -2000, ) -> xr.Dataset: """Load historical temperature and sea level reconstructions Parameters ---------- sl_fpath : str or :class:`pathlib.Path` Path to sea level reconstruction input ``.mat`` file. T_fpath : str or :class:`pathlib.Path` Path to temperature reconstruction input ``.mat`` file. use_cov : bool If True, use covariance matrix of SL reconstruction data (if existing) to estimate likelihood of parameter set. use_Mar_T0 : bool If True, use Marcott long-running temperature reconstruction to calculate ``T0`` value until reconstruction at ``T_fpath`` starts. Mar_fpath : str or :class:`pathlib.Path` or None, optional Path to Marcott sea level reconstruction input ``.mat`` file. Only used if ``use_Mar_T0`` is True. T_err_sc : float, optional Scaling factor for temperature error uncertainty. cov_tau : float, optional Time scale for covariance. If not null, take the elementwise product of the covariance and a tapering function exp(-delta(t)/cov_tau). Only used if ``use_cov`` is True. no_neg_cov : bool, optional Bound covariance matrix to be non-negative. Default True. baseperiod : array-like, optional Reference period used for sea level data. Data are normed to have 0 mean over this period. Default [1400, 1800]. T0_temp_level : int, optional If ``use_Mar_T0`` is True, number of years over which to harmonize the mean of the Marcott T time series and time series at ``T_fpath`` in order to calculate T0 from Marcott. T0_period_st : int, optional Starting year of period used to calculate an initial T0(0). Returns ------- :class:`xarray.Dataset` Contains the processed estimated value and error for the temperature reconstruction at ``T_fpath``, the sea level reconstruction at ``sl_fpath``, and the derived T0 timeseries using ``sl_fpath`` and (optionally) the long-running Marcott reconstruction """ # load SL proxy data sl_data = loadmat(sl_fpath, squeeze_me=True) sl = sl_data["sl"] proxy_sl = pd.DataFrame( { "val": (sl[:, 1] / 10).astype(np.float64), "err": (sl[:, 2] / 10).astype(np.float64), }, index=pd.Index(sl[:, 0].astype(np.int16), name="year"), ) C = (sl_data["C"] / 100).astype(np.float64) C += np.eye(len(C)) * np.finfo(C.dtype).eps if use_cov: if cov_tau is not None: Csc = np.exp( -np.abs( np.expand_dims(proxy_sl.index.values, 0) - np.expand_dims(proxy_sl.index.values, 1) ) / cov_tau ) C *= Csc else: raise NotImplementedError if no_neg_cov: C = np.maximum(C, 0) # rebase proxy SL data to base period proxy_sl["val"] -= proxy_sl.loc[baseperiod[0] : baseperiod[1], "val"].mean() # convert to long format proxy_sl = proxy_sl.stack() proxy_sl.index = proxy_sl.index.rename("kind", level=-1) proxy_sl.name = "sl" # load T reconstruction data T = loadmat(T_fpath, squeeze_me=True)["T"] T = pd.DataFrame( T[:, 1:3], columns=["val", "err"], index=pd.Index(T[:, 0], name="year").astype(np.int16), ) # assert common timestep dyr = np.diff(T.index) assert len(np.unique(dyr)) == 1 dyr = dyr[0] # scale by predefined scaling factor T["err"] *= T_err_sc # convert to long format T_long = T.stack() T_long.index = T_long.index.rename("kind", level=-1) T_long.name = "T" # aggregate into Dataset data = xr.merge( ( proxy_sl.to_xarray().rename(year="sl_year"), T_long.to_xarray().rename(year="T_year"), ) ) # Use Mar data for early T values if using for initializing T0 if use_Mar_T0: T_mar = loadmat(Mar_fpath)["T"] T_mar = pd.DataFrame( T_mar[:, 1:], columns=["val", "err"], index=pd.Index(T_mar[:, 0], name="year").astype(np.int16), ) T_mar_overlap_mean = T_mar.loc[ T.index.min() : T.index.min() + T0_temp_level, "val" ].mean() T_overlap_mean = T.loc[: T.index.min() + T0_temp_level, "val"].mean() T_mar["val"] = T_mar["val"] - T_mar_overlap_mean + T_overlap_mean T_mar = T_mar.loc[: T.index.min() - int((dyr - 1) / 2)] T0_temp =
pd.concat((T_mar, T))
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 01 10:00:58 2021 @author: <NAME> """ #------------------------------------------------------------------# # # # # # Imports # # # # # #------------------------------------------------------------------# from math import e import numpy as np import pandas as pd import os import time import glob import itertools from joblib import Parallel, delayed from generate_files import GenerateFiles import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import LogNorm import seaborn as sns import matplotlib.style as style style.use('seaborn-poster') #sets the size of the charts style.use('ggplot') from scipy import ndimage from astropy.io import fits from astropy.wcs import WCS from astropy.utils.data import get_pkg_data_filename from astropy.coordinates import SkyCoord, match_coordinates_sky import astropy.units as u from astropy.stats import mad_std import astrotools.healpytools as hpt import astropy_healpix as ahp from astropy.coordinates import ICRS from tqdm import tqdm from collections import Counter import warnings warnings.filterwarnings('ignore') import healpy as hp from hpproj import CutSky, to_coord import logging cs_logger = logging.getLogger('cutsky') cs_logger.setLevel(logging.WARNING) cs_logger.propagate = False hpproj_logger = logging.getLogger('hpproj') hpproj_logger.setLevel(logging.WARNING) mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) #------------------------------------------------------------------# # # # # # Functions # # # # # #------------------------------------------------------------------# class MakeData(object): """Class to create and preprocess input/output files from full sky-maps. """ def __init__(self, dataset, npix, loops, planck_path, milca_path, disk_radius=None, output_path=None): """ Args: dataset (str): file name for the cluster catalog that will used. Options are 'planck_z', 'planck_z_no-z', 'MCXC', 'RM30', 'RM50'. bands (list): list of full sky-maps that will be used for the input file. loops (int): number of times the dataset containing patches with at least one cluster within will be added again to training set with random variations (translations/rotations). Options are 100GHz','143GHz','217GHz','353GHz','545GHz','857GHz', and 'y-map'. More full sky-maps will be added later on (e.g. CO2, X-ray, density maps). planck_path (str): path to directory containing planck HFI 6 frequency maps. Files should be named as following 'HFI_SkyMap_100-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_353-psb-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_545-field-Int_2048_R3.00_full.fits', 'HFI_SkyMap_857-field-Int_2048_R3.00_full.fits'. milca_path (str): path to directory containing MILCA full sky map. File should be named 'milca_ymaps.fits'. disk_radius (float, optional): Disk radius that will be used to create segmentation masks for output files. Defaults to None. output_path (str, optional): Path to output directory. Output directory needs be created beforehand using 'python xcluster.py -m True' selecting same output directory in 'params.py'. If None, xcluster path will be used. Defaults to None. """ self.path = os.getcwd() + '/' self.dataset = dataset # 'planck_z', 'planck_z_no-z', 'MCXC', 'RM30', 'RM50' self.bands = ['100GHz','143GHz','217GHz','353GHz','545GHz','857GHz','y-map','CO','p-noise'] self.loops = loops self.n_labels = 2 maps = [] self.freq = 1022 self.planck_freq = 126 if '100GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_100-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 100', 'docontour': True})) # self.freq += 2 # self.planck_freq += 2 if '143GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 143', 'docontour': True})) # self.freq += 4 # self.planck_freq += 4 if '217GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_217-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 217', 'docontour': True})) # self.freq += 8 # self.planck_freq += 8 if '353GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_353-psb-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 353', 'docontour': True})) # self.freq += 16 # self.planck_freq += 16 if '545GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_545-field-Int_2048_R3.00_full.fits", {'legend': 'HFI 545', 'docontour': True})) # self.freq += 32 # self.planck_freq += 32 if '857GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_857-field-Int_2048_R3.00_full.fits", {'legend': 'HFI 857', 'docontour': True})) # self.freq += 64 # self.planck_freq += 64 if 'y-map' in self.bands: maps.append((milca_path + "milca_ymaps.fits", {'legend': 'MILCA y-map', 'docontour': True})) # self.freq += 128 if 'CO' in self.bands: maps.append((planck_path + "COM_CompMap_CO21-commander_2048_R2.00.fits", {'legend': 'CO', 'docontour': True})) # self.freq += 256 if 'p-noise' in self.bands: maps.append((planck_path + 'COM_CompMap_Compton-SZMap-milca-stddev_2048_R2.00.fits', {'legend': 'noise', 'docontour': True})) # self.freq += 512 maps.append((milca_path + "milca_ymaps.fits", {'legend': 'MILCA y-map', 'docontour': True})) #used for plots only self.maps = maps self.temp_path = self.path + 'to_clean/' self.disk_radius = disk_radius self.npix = npix #in pixels self.pixsize = 1.7 #in arcmin self.ndeg = (self.npix * self.pixsize)/60 #in deg self.nside = 2 if output_path is None: self.output_path = self.path + 'output/' + self.dataset + time.strftime("/%Y-%m-%d/") else: self.output_path = output_path + 'output/' + self.dataset + time.strftime("/%Y-%m-%d/") self.dataset_path = self.path + 'datasets/' + self.dataset + '/' self.planck_path = planck_path self.milca_path = milca_path self.test_regions = [[0, 360, 90, 70], [0, 120, 70, 40], [120, 240, 70, 40], [240, 360, 70, 40], [0, 120, 40, 18], [120, 240, 40, 18], [240, 360, 40, 18], [0, 120, -18, -40], [120, 240, -18, -40], [240, 360, -18, -40], [0, 120, -40, -70], [120, 240, -40, -70], [240, 360, -40, -70], [0, 360, -70, -90]] self.val_regions = [[0, 180, -20, -40], [0, 180, -20, -40], [0, 180, -20, -40], [0, 180, -20, -40], [0, 360, -40, -60], [0, 360, -40, -60], [0, 360, -40, -60], [0, 360, 60, 40], [0, 360, 60, 40], [0, 360, 60, 40], [0, 180, 40, 20], [0, 180, 40, 20], [0, 180, 40, 20], [0, 180, 40, 20]] def plot_psz2_clusters(self, healpix_path): """Saves plots containing patches for planck frequency maps and y-map. Function is deprecated and will be removed in later versions. Args: healpix_path (str): output path for plots (deprecated). """ maps = self.maps PSZ2 = fits.open(self.planck_path + 'PSZ2v1.fits') glon = PSZ2[1].data['GLON'] glat = PSZ2[1].data['GLAT'] freq = ['100GHz','143GHz','217GHz','353GHz','545GHz','857GHz', 'y-map'] for j in range(len(glon)): fig = plt.figure(figsize=(21,14), tight_layout=False) fig.suptitle(r'$glon=$ {:.2f} $^\circ$, $glat=$ {:.2f} $^\circ$'.format(glon[j], glat[j]), y=0.92, fontsize=20) cutsky = CutSky(maps, npix=self.npix, pixsize=self.pixsize, low_mem=False) coord = to_coord([glon[j], glat[j]]) result = cutsky.cut_fits(coord) for i,nu in enumerate(freq): ax = fig.add_subplot(3,4,1+i) divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) HDU = result[i]['fits'] im = ax.imshow(HDU.data, origin="lower") w = WCS(HDU.header) sky = w.world_to_pixel_values(glon[j], glat[j]) segmentation = plt.Circle((sky[0], sky[1]), 2.5/1.7, color='white', alpha=0.1) ax.add_patch(segmentation) ax.axvline(sky[0], ymin=0, ymax=(self.npix//2-10)/self.npix, color='white', linestyle='--') ax.axvline(sky[0], ymin=(self.npix//2+10)/self.npix, ymax=1, color='white', linestyle='--') ax.axhline(sky[1], xmin=0, xmax=(self.npix//2-10)/self.npix, color='white', linestyle='--') ax.axhline(sky[1], xmin=(self.npix//2+10)/self.npix, xmax=1, color='white', linestyle='--') # ax.scatter(sky[0], sky[1], color='red') ax.set_title(r'%s'%nu) fig.colorbar(im, cax=cax, orientation='vertical') plt.savefig(healpix_path + 'PSZ2/PSZ2_skycut_%s.png'%j, bbox_inches='tight', transparent=False) plt.show() plt.close() def create_catalogs(self, plot=False): """Creates the following catalogs using 'PSZ2v1.fits', 'MCXC-Xray-clusters.fits', and 'redmapper_dr8_public_v6.3_catalog.fits' (see <NAME> 2018 for more details): planck_z (pd.DataFrame): dataframe with the following columns for PSZ2 clusters with known redshift: 'RA', 'DEC', 'GLON', 'GLAT', 'M500', 'R500', 'Y5R500', 'REDMAPPER', 'MCXC', 'Z' planck_no_z (pd.DataFrame): dataframe with the following columns for PSZ2 clusters with unknown redshift: 'RA', 'DEC', 'GLON', 'GLAT', 'M500', 'R500', 'Y5R500', 'REDMAPPER', 'MCXC' MCXC_no_planck (pd.DataFrame): dataframe with the following columns for MCXC clusters: 'RA', 'DEC', 'R500', 'M500', 'Z' RM50_no_planck (pd.DataFrame): dataframe with the following columns for RedMaPPer clusters with lambda>50: 'RA', 'DEC', 'LAMBDA', 'Z' RM30_no_planck (pd.DataFrame): dataframe with the following columns for RedMaPPer clusters with lambda>30: 'RA', 'DEC', 'LAMBDA', 'Z' Catalogs are saved in output_path + /catalogs/. Input catalogs are in planck_path. Args: plot (bool, optional): If True, will save duplicates distance from each other distribution plots. Defaults to False. """ PSZ2 = fits.open(self.planck_path + 'PSZ2v1.fits') df_psz2 = pd.DataFrame(data={'RA': PSZ2[1].data['RA'].tolist(), 'DEC': PSZ2[1].data['DEC'].tolist(), 'GLON': PSZ2[1].data['GLON'].tolist(), 'GLAT':PSZ2[1].data['GLAT'].tolist(), 'M500': PSZ2[1].data['MSZ'].tolist(), 'R500': PSZ2[1].data['Y5R500'].tolist(), 'REDMAPPER': PSZ2[1].data['REDMAPPER'].tolist(), 'MCXC': PSZ2[1].data['MCXC'].tolist(), 'Z': PSZ2[1].data['REDSHIFT'].tolist()}) df_psz2 = df_psz2.replace([-1, -10, -99], np.nan) planck_no_z = df_psz2.query('Z.isnull()', engine='python') planck_z = df_psz2.query('Z.notnull()', engine='python') # planck_no_z = planck_no_z[['RA', 'DEC']].copy() # planck_z = planck_z[['RA', 'DEC']].copy() planck_no_z.to_csv(self.path + 'catalogs/planck_no-z' + '.csv', index=False) planck_z.to_csv(self.path + 'catalogs/planck_z' + '.csv', index=False) MCXC = fits.open(self.planck_path + 'MCXC-Xray-clusters.fits') MCXC_skycoord = SkyCoord(ra=MCXC[1].data['RA'].tolist(), dec=MCXC[1].data['DEC'].tolist(), unit=u.degree) MCXC_GLON = list(MCXC_skycoord.galactic.l.degree) MCXC_GLAT = list(MCXC_skycoord.galactic.b.degree) df_MCXC = pd.DataFrame(data={'RA': MCXC[1].data['RA'].tolist(), 'DEC': MCXC[1].data['DEC'].tolist(), 'R500': MCXC[1].data['RADIUS_500'].tolist(), 'M500': MCXC[1].data['MASS_500'].tolist(), 'GLON': MCXC_GLON, 'GLAT': MCXC_GLAT, 'Z': MCXC[1].data['REDSHIFT'].tolist()}) REDMAPPER = fits.open(self.planck_path + 'redmapper_dr8_public_v6.3_catalog.fits') REDMAPPER_skycoord = SkyCoord(ra=REDMAPPER[1].data['RA'].tolist(), dec=REDMAPPER[1].data['DEC'].tolist(), unit=u.degree) REDMAPPER_GLON = list(REDMAPPER_skycoord.galactic.l.degree) REDMAPPER_GLAT = list(REDMAPPER_skycoord.galactic.b.degree) df_REDMAPPER = pd.DataFrame(data={'RA': REDMAPPER[1].data['RA'].tolist(), 'DEC': REDMAPPER[1].data['DEC'].tolist(), 'LAMBDA': REDMAPPER[1].data['LAMBDA'].tolist(), 'GLON': REDMAPPER_GLON, 'GLAT': REDMAPPER_GLAT, 'Z': REDMAPPER[1].data['Z_SPEC'].tolist()}) df_REDMAPPER_30 = df_REDMAPPER.query("LAMBDA > 30") df_REDMAPPER_50 = df_REDMAPPER.query("LAMBDA > 50") ACT = fits.open(self.planck_path + 'sptecs_catalog_oct919_forSZDB.fits') SPT = fits.open(self.planck_path + 'DR5_cluster-catalog_v1.1_forSZDB.fits') df_act = pd.DataFrame(data={'RA': list(ACT[1].data['RA']), 'DEC': list(ACT[1].data['DEC']), 'GLON': list(ACT[1].data['GLON']), 'GLAT': list(ACT[1].data['GLAT'])}) df_spt = pd.DataFrame(data={'RA': list(SPT[1].data['RA']), 'DEC': list(SPT[1].data['DEC']), 'GLON': list(SPT[1].data['GLON']), 'GLAT': list(SPT[1].data['GLAT'])}) self.remove_duplicates_on_radec(df_MCXC, df_psz2, output_name='MCXC_no_planck', plot=plot) self.remove_duplicates_on_radec(df_REDMAPPER_30, df_psz2, output_name='RM30_no_planck', plot=plot) self.remove_duplicates_on_radec(df_REDMAPPER_50, df_psz2, output_name='RM50_no_planck', plot=plot) self.remove_duplicates_on_radec(df_act, df_psz2, output_name='ACT_no_planck', plot=plot) self.remove_duplicates_on_radec(df_spt, df_psz2, output_name='SPT_no_planck', plot=plot) PSZ2.close() MCXC.close() MCXC.close() REDMAPPER.close() ACT.close() SPT.close() def create_fake_source_catalog(self): PGCC = fits.open(self.planck_path + 'HFI_PCCS_GCC_R2.02.fits') df_pgcc = pd.DataFrame(data={'RA': list(PGCC[1].data['RA']), 'DEC': list(PGCC[1].data['DEC']), 'GLON': list(PGCC[1].data['GLON']), 'GLAT': list(PGCC[1].data['GLAT'])}) PGCC.close() df_pgcc.to_csv(self.path + 'catalogs/' + 'PGCC' + '.csv', index=False) df = pd.DataFrame(columns=['RA','DEC','GLON','GLAT']) bands = ['100GHz', '143GHz', '217GHz', '353GHz', '545GHz', '857GHz'] cs_100 = fits.open(self.planck_path + 'COM_PCCS_100_R2.01.fits') cs_143 = fits.open(self.planck_path + 'COM_PCCS_143_R2.01.fits') cs_217 = fits.open(self.planck_path + 'COM_PCCS_217_R2.01.fits') cs_353 = fits.open(self.planck_path + 'COM_PCCS_353_R2.01.fits') cs_545 = fits.open(self.planck_path + 'COM_PCCS_545_R2.01.fits') cs_857 = fits.open(self.planck_path + 'COM_PCCS_857_R2.01.fits') df_cs_100 = pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}) df_cs_100.to_csv(self.path + 'catalogs/' + 'cs_100' + '.csv', index=False) df_cs_143 = pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}) df_cs_143.to_csv(self.path + 'catalogs/' + 'cs_143' + '.csv', index=False) df_cs_217 = pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}) df_cs_217.to_csv(self.path + 'catalogs/' + 'cs_217' + '.csv', index=False) df_cs_353 = pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}) df_cs_353.to_csv(self.path + 'catalogs/' + 'cs_353' + '.csv', index=False) df_cs_545 = pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}) df_cs_545.to_csv(self.path + 'catalogs/' + 'cs_545' + '.csv', index=False) df_cs_857 = pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}) df_cs_857.to_csv(self.path + 'catalogs/' + 'cs_857' + '.csv', index=False) freq = 0 if '100GHz' in bands: freq += 2 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}))) if '143GHz' in bands: freq += 4 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}))) if '217GHz' in bands: freq += 8 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}))) if '353GHz' in bands: freq += 16 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}))) if '545GHz' in bands: freq += 32 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}))) if '857GHz' in bands: freq += 64 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}))) df = pd.concat((df_pgcc, df)) df = self.remove_duplicates_on_radec(df, with_itself=True, tol=2) df.to_csv(self.path + 'catalogs/' + 'False_SZ_catalog_f%s'%freq + '.csv', index=False) df = pd.DataFrame(columns=['RA','DEC','GLON','GLAT']) for L in range(1, len(bands)): for subset in tqdm(itertools.combinations(bands, L)): freq = 0 if '100GHz' in subset: freq += 2 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}))) if '143GHz' in subset: freq += 4 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}))) if '217GHz' in subset: freq += 8 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}))) if '353GHz' in subset: freq += 16 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}))) if '545GHz' in subset: freq += 32 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}))) if '857GHz' in subset: freq += 64 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}))) df = pd.concat((df_pgcc, df)) df = self.remove_duplicates_on_radec(df, with_itself=True, tol=2) df.to_csv(self.path + 'catalogs/' + 'False_SZ_catalog_f%s'%freq + '.csv', index=False) cs_100.close() cs_143.close() cs_217.close() cs_353.close() cs_545.close() cs_857.close() def remove_duplicates_on_radec(self, df_main, df_with_dup=None, output_name=None, with_itself=False, tol=5, plot=False): """"Takes two different dataframes with columns 'RA' & 'DEC' and performs a spatial coordinate match with a tol=5 arcmin tolerance. Saves a .csv file containing df_main without objects in common from df_with_dup. Args: df_main (pd.DataFrame): main dataframe. df_with_dup (pd.DataFrame): dataframe that contains objects from df_main. Defaults to None. output_name (str): name that will be used in the saved/plot file name. If None, no file will be saved. Defaults to None. with_itself (bool, optional): If True, the spatial coordinates match will be performed with df_main. Defaults to False. tol (int, optional): tolerance for spatial coordinates match in arcmin. Defaults to 5. plot (bool, optional): If True, will save duplicates distance from each other distribution plots. Defaults to False. """ if with_itself == True: scatalog_sub = SkyCoord(ra=df_main['RA'].values, dec=df_main['DEC'].values, unit='deg') idx, d2d, _ = match_coordinates_sky(scatalog_sub, scatalog_sub, nthneighbor=2) ismatched = d2d < tol*u.arcminute #threshold to consider whether or not two galaxies are the same df_d2d = pd.DataFrame(data={'ismatched': ismatched, 'idx': idx, 'd2d': d2d}) df_main['ismatched'], df_main['ID'] = ismatched, idx df_main.query("ismatched == False", inplace=True) df_main.drop(columns=['ismatched', 'ID'], inplace=True) df_main = df_main.replace([-1, -10, -99], np.nan) if output_name is not None: df_main.to_csv(self.path + 'catalogs/' + output_name + '.csv', index=False) elif with_itself == False: assert df_with_dup is not None ID = np.arange(0, len(df_with_dup)) df_with_dup = df_with_dup[['RA', 'DEC']].copy() df_with_dup.insert(loc=0, value=ID, column='ID') scatalog_sub = SkyCoord(ra=df_main['RA'].values, dec=df_main['DEC'].values, unit='deg') pcatalog_sub = SkyCoord(ra=df_with_dup['RA'].values, dec=df_with_dup['DEC'].values, unit='deg') idx, d2d, _ = match_coordinates_sky(scatalog_sub, pcatalog_sub, nthneighbor=1) ismatched = d2d < tol*u.arcminute #threshold to consider whether or not two galaxies are the same df_d2d = pd.DataFrame(data={'ismatched': ismatched, 'idx': idx, 'd2d': d2d}) df_main['ismatched'], df_main['ID'] = ismatched, idx df_with_dup.drop(columns=['RA', 'DEC'], inplace=True) df_wo_dup = pd.merge(df_main, df_with_dup, indicator=True, on='ID', how='outer').query('_merge=="both"').drop('_merge', axis=1) df_wo_dup.query("ismatched == False", inplace=True) df_wo_dup.drop(columns=['ismatched', 'ID'], inplace=True) df_wo_dup = df_wo_dup.replace([-1, -10, -99], np.nan) if output_name is not None: df_wo_dup.to_csv(self.path + 'catalogs/' + output_name + '.csv', index=False) df_main = df_wo_dup.copy() if plot == True and output_name is not None: fig = plt.figure(figsize=(8,8), tight_layout=False) ax = fig.add_subplot(111) ax.set_facecolor('white') ax.grid(True, color='grey', lw=0.5) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.set_xlabel(r'$\mathrm{angular\;distance\;\left(arcmin\right)}$', fontsize=20) ax.set_ylabel(output_name, fontsize=20) ax.hist(np.array(df_d2d['d2d'].values)*60, bins = 400) ax.axvline(tol, color='k', linestyle='--') ax.set_xlim(0, 2*tol) plt.savefig(self.output_path + 'figures/' + 'd2d_' + output_name + '.png', bbox_inches='tight', transparent=False) plt.show() plt.close() return df_main def remove_duplicates_on_lonlat(self, df_main, df_with_dup=None, output_name=None, with_itself=False, tol=2, plot=False): """"Takes two different dataframes with columns 'GLON' & 'GLAT' and performs a spatial coordinate match with a tol=2 arcmin tolerance. Saves a .csv file containing df_main without objects in common from df_with_dup. Args: df_main (pd.DataFrame): main dataframe. output_name (str): name that will be used in the saved/plot file name. If None, no file will be saved. Defaults to None. df_with_dup (pd.DataFrame): dataframe that contains objects from df_main. Defaults to None. with_itself (bool, optional): If True, the spatial coordinates match will be performed with df_main. Defaults to False. tol (int, optional): tolerance for spatial coordinates match in arcmin. Defaults to 2. plot (bool, optional): If True, will save duplicates distance from each other distribution plots. Defaults to False. """ if with_itself == True: scatalog_sub = SkyCoord(df_main['GLON'].values, df_main['GLAT'].values, unit='deg', frame='galactic') idx, d2d, _ = match_coordinates_sky(scatalog_sub, scatalog_sub, nthneighbor=2) ismatched = d2d < tol*u.arcminute #threshold to consider whether or not two galaxies are the same df_d2d = pd.DataFrame(data={'ismatched': ismatched, 'idx': idx, 'd2d': d2d}) df_main['ismatched'], df_main['ID'] = ismatched, idx df_main.query("ismatched == False", inplace=True) df_main.drop(columns=['ismatched', 'ID'], inplace=True) df_main = df_main.replace([-1, -10, -99], np.nan) if output_name is not None: df_main.to_csv(self.path + 'catalogs/' + output_name + '.csv', index=False) elif with_itself == False: assert df_with_dup is not None ID = np.arange(0, len(df_with_dup)) df_with_dup = df_with_dup[['GLON', 'GLAT']].copy() df_with_dup.insert(loc=0, value=ID, column='ID') scatalog_sub = SkyCoord(df_main['GLON'].values, df_main['GLAT'].values, unit='deg', frame='galactic') pcatalog_sub = SkyCoord(df_with_dup['GLON'].values, df_with_dup['GLAT'].values, unit='deg', frame='galactic') idx, d2d, _ = match_coordinates_sky(scatalog_sub, pcatalog_sub, nthneighbor=1) ismatched = d2d < tol*u.arcminute #threshold to consider whether or not two galaxies are the same df_d2d = pd.DataFrame(data={'ismatched': ismatched, 'idx': idx, 'd2d': d2d}) df_main['ismatched'], df_main['ID'] = ismatched, idx df_with_dup.drop(columns=['GLON', 'GLAT'], inplace=True) df_wo_dup = pd.merge(df_main, df_with_dup, indicator=True, on='ID', how='outer').query('_merge=="both"').drop('_merge', axis=1) df_wo_dup.query("ismatched == False", inplace=True) df_wo_dup.drop(columns=['ismatched', 'ID'], inplace=True) df_wo_dup = df_wo_dup.replace([-1, -10, -99], np.nan) if output_name is not None: df_wo_dup.to_csv(self.path + 'catalogs/' + output_name + '.csv', index=False) df_main = df_wo_dup.copy() if plot == True and output_name is not None: fig = plt.figure(figsize=(8,8), tight_layout=False) ax = fig.add_subplot(111) ax.set_facecolor('white') ax.grid(True, color='grey', lw=0.5) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.set_xlabel(r'$\mathrm{angular\;distance\;\left(arcmin\right)}$', fontsize=20) ax.set_ylabel(output_name, fontsize=20) ax.hist(np.array(df_d2d['d2d'].values)*60, bins = 400) ax.axvline(tol, color='k', linestyle='--') ax.set_xlim(0, 2*tol) plt.savefig(self.output_path + 'figures/' + 'd2d_' + output_name + '.png', bbox_inches='tight', transparent=False) plt.show() plt.close() return df_main def create_circular_mask(self, h, w, center, ang_center, radius): """Takes a list of center positions and returns a segmentation mask with circulat masks at the center's position. Args: h (int): patch height. w (int): patch width. center (list of tuples): In pixels. List of tupples containing center coordinates to mask. ang_center (list of tuples): In ICRS. Same as center radius ([type]): In arcmin. Disk radius for mask Returns: np.ndarray: ndarray with shape (h,w) filled with zeros except at centers position where circular masks with size radius are equal to one. """ if radius is None: size_distribution = fits.open(self.path + 'catalogs/exp_joined_ami_carma_plck_psz1_psz2_act_spt_YT.fits')[1].data['T500'] heights, bins = np.histogram(size_distribution, bins=8, density=False, range=[0,15]) heights = heights/sum(heights) bins = bins[1:] radius = np.random.choice(bins, p=heights)/self.pixsize else: radius = radius/self.pixsize Y, X = np.ogrid[:h, :w] mask = np.zeros((h,w)) count = 0 ra, dec = [], [] for i,c in enumerate(center): if np.isnan(c[0]): continue elif np.isnan(c[1]): continue else: dist_from_center = np.sqrt((X - int(c[0]))**2 + (Y - int(c[1]))**2) mask += (dist_from_center <= radius).astype(int) is_all_zero = np.all(((dist_from_center <= radius).astype(int) == 0)) if is_all_zero == False: count += 1 ra.append(ang_center[i][0]) dec.append(ang_center[i][1]) return np.where(mask > 1, 1, mask), count, ra, dec def return_coord_catalog(self): """ Returns coordinate catalogs Returns: DataFrame: cluster coordinate catalog DataFrame: other sources coordinate catalog """ if self.dataset == 'planck_z': planck_z =
pd.read_csv(self.path + 'catalogs/planck_z' + '.csv')
pandas.read_csv
from os.path import join, exists, dirname, basename from os import makedirs import sys import pandas as pd from glob import glob import seaborn as sns import numpy as np from scipy import stats import xlsxwriter import matplotlib.pyplot as plt from scripts.parse_samplesheet import get_min_coverage, get_role, add_aliassamples, get_species from scripts.snupy import check_snupy_status import json import datetime import getpass import socket import requests from requests.auth import HTTPBasicAuth import urllib3 import yaml import pickle urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) plt.switch_backend('Agg') RESULT_NOT_PRESENT = -5 def report_undertermined_filesizes(fp_filesizes, fp_output, fp_error, zscorethreshold=1): # read all data fps_sizes = glob(join(dirname(fp_filesizes), '*.txt')) pds_sizes = [] for fp_size in fps_sizes: data = pd.read_csv( fp_size, sep="\t", names=["filesize", "filename", "status"], index_col=1) # mark given read as isme=True while all other data in the dir # are isme=False data['isme'] = fp_filesizes in fp_size data['filesize'] /= 1024**3 pds_sizes.append(data) pd_sizes = pd.concat(pds_sizes) # compute z-score against non-bad known runs pd_sizes['z-score'] = np.nan idx_nonbad = pd_sizes[pd_sizes['status'] != 'bad'].index pd_sizes.loc[idx_nonbad, 'z-score'] = stats.zscore( pd_sizes.loc[idx_nonbad, 'filesize']) # plot figure fig = plt.figure() ax = sns.distplot( pd_sizes[(pd_sizes['isme'] == np.False_) & (pd_sizes['status'] != 'bad')]['filesize'], kde=False, rug=False, color="black", label='known runs') ax = sns.distplot( pd_sizes[(pd_sizes['isme'] == np.False_) & (pd_sizes['status'] == 'bad')]['filesize'], kde=False, rug=False, color="red", label='bad runs') ax = sns.distplot( pd_sizes[pd_sizes['isme'] == np.True_]['filesize'], kde=False, rug=True, color="green", label='this run') _ = ax.set_ylabel('number of files') _ = ax.set_xlabel('file-size in GB') ax.set_title('run %s' % basename(fp_filesizes)[:-4]) ax.legend() # raise error if current run contains surprisingly large undetermined # filesize if pd_sizes[(pd_sizes['isme'] == np.True_) & (pd_sizes['status'] == 'unknown')]['z-score'].max() > zscorethreshold: ax.set_title('ERROR: %s' % ax.get_title()) fig.savefig(fp_error, bbox_inches='tight') raise ValueError( ("Compared to known historic runs, your run contains surprisingly " "(z-score > %f) large file(s) of undetermined reads. You will find" " an supporting image at '%s'. Please do the following things:\n" "1. discuss with lab personal about the quality of the run.\n" "2. should you decide to keep going with this run, mark file " "status (3rd column) in file '%s' as 'good'.\n" "3. for future automatic considerations, mark file status (3rd " "column) as 'bad' if you have decided to abort processing due to" " too low quality (z-score kind of averages about known values)." ) % (zscorethreshold, fp_error, fp_filesizes)) else: fig.savefig(fp_output, bbox_inches='tight') def report_exome_coverage( fps_sample, fp_plot, min_coverage=30, min_targets=80, coverage_cutoff=200): """Creates an exome coverage plot for multiple samples. Parameters ---------- fps_sample : [str] A list of file-paths with coverage data in csv format. fp_plot : str Filepath of output graph. min_coverage : int Default: 30. An arbitraty threshold of minimal coverage that we expect. A vertical dashed line is drawn at this value. min_targets : float Default: 80. An arbitraty threshold of minimal targets that we expect to be covered. A horizontal dashed line is drawn at this value. coverage_cutoff : float Default: 200. Rightmost coverage cut-off value where X-axis is limited. Raises ------ ValueError : If one of the sample's coverage falls below expected thresholds. """ # Usually we aim for a 30X coverage on 80% of the sites. fig, ax = plt.subplots() ax.axhline(y=min_targets, xmin=0, xmax=coverage_cutoff, color='gray', linestyle='--') ax.axvline(x=min_coverage, ymin=0, ymax=100, color='gray', linestyle='--') samples_below_coverage_threshold = [] for fp_sample in fps_sample: coverage = pd.read_csv(fp_sample, sep="\t") samplename = fp_sample.split('/')[-1].split('.')[0] linewidth = 1 if coverage[coverage['#coverage'] == min_coverage]['percent_cumulative'].min() < min_targets: linewidth = 4 samples_below_coverage_threshold.append(samplename) ax.plot(coverage['#coverage'], coverage['percent_cumulative'], label=samplename, linewidth=linewidth) ax.set_xlim((0, coverage_cutoff)) ax.set_xlabel('Read Coverage') ax.set_ylabel('Targeted Exome Bases') ax.legend() if len(samples_below_coverage_threshold) > 0: fp_plot = fp_plot.replace('.pdf', '.error.pdf') fig.savefig(fp_plot, bbox_inches='tight') if len(samples_below_coverage_threshold) > 0: raise ValueError( "The following %i sample(s) have coverage below expected " "thresholds. Please discuss with project PIs on how to proceed. " "Maybe, samples need to be re-sequenced.\n\t%s\nYou will find more" " information in the generated coverage plot '%s'." % ( len(samples_below_coverage_threshold), '\n\t'.join(samples_below_coverage_threshold), fp_plot)) ACTION_PROGRAMS = [ {'action': 'background', 'program': 'GATK', 'fileending_snupy_extract': '.snp_indel.gatk', 'fileending_spike_calls': '.gatk.snp_indel.vcf', 'stepname_spike_calls': 'gatk_CombineVariants', }, {'action': 'background', 'program': 'Platypus', 'fileending_snupy_extract': '.indel.ptp', 'fileending_spike_calls': '.ptp.annotated.filtered.indels.vcf', 'stepname_spike_calls': 'platypus_filtered', }, {'action': 'tumornormal', 'program': 'Varscan', 'fileending_snupy_extract': '.somatic.varscan', 'fileending_spike_calls': {'homo sapiens': '.snp.somatic_germline.vcf', 'mus musculus': '.indel_snp.vcf'}, 'stepname_spike_calls': 'merge_somatic', }, {'action': 'tumornormal', 'program': 'Mutect', 'fileending_snupy_extract': '.somatic.mutect', 'fileending_spike_calls': '.all_calls.vcf', 'stepname_spike_calls': 'mutect', }, {'action': 'tumornormal', 'program': 'Excavator2', 'fileending_snupy_extract': '.somatic.cnv.excavator2', 'fileending_spike_calls': '.vcf', 'stepname_spike_calls': 'excavator_somatic', }, {'action': 'trio', 'program': 'Varscan\ndenovo', 'fileending_snupy_extract': '.denovo.varscan', 'fileending_spike_calls': '.var2denovo.vcf', 'stepname_spike_calls': 'writing_headers', }, {'action': 'trio', 'program': 'Excavator2', 'fileending_snupy_extract': '.trio.cnv.excavator2', 'fileending_spike_calls': '.vcf', 'stepname_spike_calls': 'excavator_trio', }, ] def _get_statusdata_demultiplex(samplesheets, prefix, config): demux_yields = [] for flowcell in samplesheets['run'].unique(): fp_yielddata = '%s%s%s/Data/%s.yield_data.csv' % (prefix, config['dirs']['intermediate'], config['stepnames']['yield_report'], flowcell) if exists(fp_yielddata): demux_yields.append( pd.read_csv(fp_yielddata, sep="\t").rename(columns={'Project': 'Sample_Project', 'Sample': 'Sample_ID', 'Yield': 'yield'})) #.set_index(['Project', 'Lane', 'Sample', 'Barcode sequence']) if len(demux_yields) <= 0: return pd.DataFrame() demux_yields = add_aliassamples(pd.concat(demux_yields, axis=0), config) # map yields of original sampels to aliases for idx, row in demux_yields[demux_yields['is_alias'] == True].iterrows(): orig = demux_yields[(demux_yields['Sample_Project'] == row['fastq-prefix'].split('/')[0]) & (demux_yields['Sample_ID'] == row['fastq-prefix'].split('/')[1])]['yield'] if orig.shape[0] > 0: demux_yields.loc[idx, 'yield'] = orig.sum() demux_yields = demux_yields.dropna(subset=['yield']) return pd.DataFrame(demux_yields).groupby(['Sample_Project', 'Sample_ID'])['yield'].sum() def _get_statusdata_coverage(samplesheets, prefix, config, min_targets=80): coverages = [] for (sample_project, sample_id), meta in samplesheets.groupby(['Sample_Project', 'Sample_ID']): role_sample_project, role_sample_id = sample_project, sample_id if (meta['is_alias'] == True).any(): role_sample_project, role_sample_id = get_role(sample_project, meta['spike_entity_id'].unique()[0], meta['spike_entity_role'].unique()[0], samplesheets).split('/') fp_coverage = join(prefix, config['dirs']['intermediate'], config['stepnames']['exome_coverage'], role_sample_project, '%s.exome_coverage.csv' % role_sample_id) if exists(fp_coverage): coverage = pd.read_csv(fp_coverage, sep="\t") if coverage.shape[0] > 0: coverages.append({ 'Sample_Project': sample_project, 'Sample_ID': sample_id, 'coverage': coverage.loc[coverage['percent_cumulative'].apply(lambda x: abs(x-min_targets)).idxmin(), '#coverage']}) if len(coverages) <= 0: return pd.DataFrame() return pd.DataFrame(coverages).set_index(['Sample_Project', 'Sample_ID'])['coverage'] def _isKnownDuo(sample_project, spike_entity_id, config): """Checks if trio is a known duo, i.e. missing samples won't be available in the future. Parameters ---------- sample_project : str spike_entity_id : str config : dict() Snakemake configuration. Returns ------- Boolean: True, if spike_entity_id is in config list of known duos for given project. False, otherwise. """ if 'projects' in config: if sample_project in config['projects']: if 'known_duos' in config['projects'][sample_project]: if spike_entity_id in config['projects'][sample_project]['known_duos']: return True return False def _get_statusdata_snupyextracted(samplesheets, prefix, snupy_instance, config): results = [] for sample_project, meta in samplesheets.groupby('Sample_Project'): # project in config file is not properly configure for snupy! if config['projects'].get(sample_project, None) is None: continue if config['projects'][sample_project].get('snupy', None) is None: continue if config['projects'][sample_project]['snupy'][snupy_instance].get('project_id', None) is None: continue r = requests.get('%s/experiments/%s.json' % (config['credentials']['snupy'][snupy_instance]['host'], config['projects'][sample_project]['snupy'][snupy_instance]['project_id']), auth=HTTPBasicAuth(config['credentials']['snupy'][snupy_instance]['username'], config['credentials']['snupy'][snupy_instance]['password']), verify=False) check_snupy_status(r) samples = [sample['name'] for sample in r.json()['samples']] for sample_id, meta_sample in meta.groupby('Sample_ID'): for file_ending, action, program in [(ap['fileending_snupy_extract'], ap['action'], ap['program']) for ap in ACTION_PROGRAMS]: # in some cases "sample name" hold spike_entity_id, in others Sample_ID entity = sample_id runs = '+'.join(sorted(meta_sample['run'].unique())) if (action == 'trio'): if meta_sample['spike_entity_role'].unique()[0] == 'patient': entity = meta_sample['spike_entity_id'].iloc[0] runs = '+'.join(sorted(samplesheets[samplesheets['spike_entity_id'] == meta_sample['spike_entity_id'].iloc[0]]['run'].unique())) if (action == 'tumornormal'): if meta_sample['spike_entity_role'].unique()[0] == 'tumor': entity = meta_sample['spike_entity_id'].iloc[0] runs = '+'.join(sorted(samplesheets[samplesheets['spike_entity_id'] == meta_sample['spike_entity_id'].iloc[0]]['run'].unique())) name = '%s_%s/%s%s' % (runs, sample_project, entity, file_ending) if (sample_project in config['projects']) and (pd.notnull(meta_sample['spike_entity_role'].iloc[0])): if ((action == 'trio') and (meta_sample['spike_entity_role'].iloc[0] in ['patient', 'sibling']) and (not _isKnownDuo(sample_project, meta_sample['spike_entity_id'].iloc[0], config))) or\ ((action == 'background')) or\ ((action == 'tumornormal') and (meta_sample['spike_entity_role'].iloc[0].startswith('tumor'))): results.append({ 'Sample_Project': sample_project, 'Sample_ID': sample_id, 'action': action, 'program': program, 'status': name in samples, 'snupy_sample_name': name }) if len(results) <= 0: return pd.DataFrame() return pd.DataFrame(results).set_index(['Sample_Project', 'Sample_ID', 'action', 'program']) def _get_statusdata_numberpassingcalls(samplesheets, prefix, config, RESULT_NOT_PRESENT, verbose=sys.stderr): results = [] # leave out samples aliases for (sample_project, spike_entity_id, spike_entity_role, fastq_prefix), meta in samplesheets[samplesheets['is_alias'] != True].fillna('not defined').groupby(['Sample_Project', 'spike_entity_id', 'spike_entity_role', 'fastq-prefix']): def _get_fileending(file_ending, fastq_prefix, samplesheets, config): if isinstance(file_ending, dict): return file_ending[get_species(fastq_prefix, samplesheets, config)] else: return file_ending for ap in ACTION_PROGRAMS: fp_vcf = None if (ap['action'] == 'background') and pd.notnull(spike_entity_role): if (ap['program'] == 'GATK'): fp_vcf = '%s%s%s/%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], fastq_prefix, _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) elif (ap['program'] == 'Platypus'): fp_vcf = '%s%s%s/%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], fastq_prefix, _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) elif (ap['action'] == 'tumornormal'): for (alias_sample_project, alias_spike_entity_role, alias_sample_id), alias_meta in samplesheets[(samplesheets['fastq-prefix'] == fastq_prefix) & (samplesheets['spike_entity_role'].apply(lambda x: x.split('_')[0] if pd.notnull(x) else x).isin(['tumor']))].groupby(['Sample_Project', 'spike_entity_role', 'Sample_ID']): # for Keimbahn, the tumor sample needs to include the name of the original sample ID instance_id = '%s/%s' % (alias_sample_project, alias_sample_id) if alias_spike_entity_role == 'tumor': # for Maus_Hauer, the filename holds the entity name, but not the Sample ID instance_id = '%s/%s' % (sample_project, spike_entity_id) if (alias_spike_entity_role.split('_')[0] in set(['tumor'])): if (ap['program'] == 'Varscan'): fp_vcf = '%s%s%s/%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], instance_id, _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) elif (ap['program'] == 'Mutect'): fp_vcf = '%s%s%s/%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], instance_id, _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) elif (ap['program'] == 'Excavator2'): fp_vcf = '%s%s%s/%s/Results/%s/EXCAVATORRegionCall_%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], instance_id, fastq_prefix.split('/')[-1], fastq_prefix.split('/')[-1], _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) elif (ap['action'] == 'trio'): for (alias_sample_project, alias_spike_entity_role, alias_sample_id, alias_spike_entity_id), alias_meta in samplesheets[(samplesheets['fastq-prefix'] == fastq_prefix) & (samplesheets['spike_entity_role'].isin(['patient', 'sibling']))].groupby(['Sample_Project', 'spike_entity_role', 'Sample_ID', 'spike_entity_id']): # Trios are a more complicated case, since by default the result name is given by the # spike_entity_id, but if computed for siblings, the name is given by the fastq-prefix if (ap['program'] == 'Varscan\ndenovo'): if (alias_spike_entity_role in set(['patient'])): fp_vcf = '%s%s%s/%s/%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], alias_sample_project, alias_spike_entity_id, _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) elif (alias_spike_entity_role in set(['sibling'])): fp_vcf = '%s%s%s/%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], fastq_prefix, _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) elif (ap['program'] == 'Excavator2'): if (alias_spike_entity_role in set(['patient'])): fp_vcf = '%s%s%s/%s/%s/Results/%s/EXCAVATORRegionCall_%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], alias_sample_project, alias_spike_entity_id, fastq_prefix.split('/')[-1], fastq_prefix.split('/')[-1], _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) elif (alias_spike_entity_role in set(['sibling'])): fp_vcf = '%s%s%s/%s/Results/%s/EXCAVATORRegionCall_%s%s' % (prefix, config['dirs']['intermediate'], config['stepnames'][ap['stepname_spike_calls']], fastq_prefix, fastq_prefix.split('/')[-1], fastq_prefix.split('/')[-1], _get_fileending(ap['fileending_spike_calls'], fastq_prefix, meta, config)) # remove entry, if it is known (config.yaml) that this trio is incomplete if (spike_entity_role == 'patient') and (spike_entity_id in config.get('projects', []).get(sample_project, []).get('known_duos', [])): fp_vcf = None results.append({ 'Sample_Project': sample_project, 'Sample_ID': fastq_prefix.split('/')[-1], 'action': ap['action'], 'program': ap['program'], 'fp_calls': fp_vcf, }) status = 0 num_status = 20 if verbose is not None: print('of %i: ' % num_status, file=verbose, end="") for i, res in enumerate(results): if (verbose is not None) and int(i % (len(results) / num_status)) == 0: status+=1 print('%i ' % status, file=verbose, end="") nr_calls = RESULT_NOT_PRESENT if (res['fp_calls'] is not None) and exists(res['fp_calls']): try: if res['program'] == 'Varscan': nr_calls = pd.read_csv(res['fp_calls'], comment='#', sep="\t", dtype=str, header=None, usecols=[7], squeeze=True).apply(lambda x: ';SS=2;' in x).sum() else: nr_calls = pd.read_csv(res['fp_calls'], comment='#', sep="\t", dtype=str, header=None, usecols=[6], squeeze=True).value_counts()['PASS'] except pd.io.common.EmptyDataError: nr_calls = 0 res['number_calls'] = nr_calls if verbose is not None: print('done.', file=verbose) if len(results) <= 0: return pd.DataFrame() results = pd.DataFrame(results) results = results[pd.notnull(results['fp_calls'])].set_index(['Sample_Project', 'Sample_ID', 'action', 'program'])['number_calls'] # add alias sample results for (sample_project, spike_entity_id, spike_entity_role, fastq_prefix), meta in samplesheets[samplesheets['is_alias'] == True].groupby(['Sample_Project', 'spike_entity_id', 'spike_entity_role', 'fastq-prefix']): for (_, _, action, program), row in results.loc[fastq_prefix.split('/')[0], fastq_prefix.split('/')[-1], :].iteritems(): results.loc[sample_project, meta['Sample_ID'].unique()[0], action, program] = row # remove samples, that don't have their own role, but were used for aliases for (sample_project, sample_id), _ in samplesheets[pd.isnull(samplesheets['spike_entity_role'])].groupby(['Sample_Project', 'Sample_ID']): idx_to_drop = results.loc[sample_project, sample_id, ['tumornormal', 'trio'], :].index if len(idx_to_drop) > 0: results.drop(index=idx_to_drop, inplace=True) return results def _get_genepanel_data(samplesheets, prefix, config): results = [] columns = ['Sample_Project', 'Sample_ID', 'genepanel', 'gene'] # leave out samples aliases for (sample_project, spike_entity_id, spike_entity_role, fastq_prefix), meta in samplesheets[samplesheets['is_alias'] != True].fillna('not defined').groupby(['Sample_Project', 'spike_entity_id', 'spike_entity_role', 'fastq-prefix']): #print(sample_project, spike_entity_id, spike_entity_role, fastq_prefix) for file in glob('%s%s%s/*/%s.tsv' % (prefix, config['dirs']['intermediate'], config['stepnames']['genepanel_coverage'], fastq_prefix)): #print("\t", file) coverage = pd.read_csv(file, sep="\t") parts = file.split('/') # determine genepanel name, project and sample_id from filename coverage['Sample_Project'] = sample_project coverage['Sample_ID'] = meta['Sample_ID'].unique()[0] coverage['genepanel'] = parts[-3][:-5] coverage = coverage.set_index(columns) results.append(coverage) if len(results) > 0: results = pd.concat(results).sort_values(by=columns) else: results =
pd.DataFrame(columns=columns)
pandas.DataFrame
from numpy.testing import assert_equal, assert_allclose from pandas.testing import assert_frame_equal import numpy as np import pandas as pd from sciparse import find_lcr_dataline, parse_lcr_header, parse_lcr from sciparse import convert_lcr_to_standard import pytest import os @pytest.fixture def filename(): dir_name = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(dir_name, 'data/lcr_test_data.dat') filename = str(filename) return filename @pytest.fixture def metadata(filename): metadata = parse_lcr_header(filename) return metadata @pytest.fixture def data(filename): data, metadata = parse_lcr(filename) return data def test_extract_header(metadata): desiredMode = "SWEEP" actualMode = metadata['mode'] assert_equal(actualMode, desiredMode) desiredStartVoltage = 10 actualStartVoltage = metadata['start_voltage'] assert_equal(actualStartVoltage, desiredStartVoltage, err_msg="stop voltage") desiredStopVoltage = -20 actualStopVoltage = metadata['stop_voltage'] assert_equal(actualStopVoltage, desiredStopVoltage, err_msg="start voltage") desiredStepVoltage = -0.25 actualStepVoltage = metadata['step_voltage'] assert_equal(actualStepVoltage, desiredStepVoltage, err_msg="step voltage") desiredPoints = 121 actualPoints = metadata['n_samples'] assert_equal(actualPoints, desiredPoints, err_msg="number points") def test_find_datalines(filename): desiredStartLine = 28 actualStartLine = find_lcr_dataline(filename) assert_equal(actualStartLine, desiredStartLine) def test_parse_data_header(data): # Confirm we got the right data types actualDataTypes = data.columns.values desiredDataTypes = ['Z', 'THETA', 'BIAS', 'VM', 'IM'] assert_equal(actualDataTypes, desiredDataTypes) def test_parse_data_length(data): # Confirm we got the right length of data desired_data_points = 121 actual_data_points = len(data) assert_equal(actual_data_points, desired_data_points) def test_parse_data(data): desiredZData = 5.57723*1e6 actualZData = data['Z'].iloc[1] assert_allclose(desiredZData, actualZData) desiredBIASData = 8.5 actualBIASData = data['BIAS'].iloc[6] assert_allclose(desiredBIASData, actualBIASData) def test_convert_data_CP_RP(): frequency = 1 / (2*np.pi) * 1000 # 1krad/s test_metadata = {'frequency': frequency} test_data = pd.DataFrame({'CP': [1e-9], 'RP': 1e6}) desired_data = pd.DataFrame({ 'Z (ohm)': [1 / np.sqrt(2) * 1e6], 'THETA (rad)': [-np.pi/4]}) actual_data = convert_lcr_to_standard(test_data, test_metadata) assert_frame_equal(actual_data, desired_data) def test_convert_data_CS_RS(): frequency = 1 / (2*np.pi) * 1000 # 1krad/s test_metadata = {'frequency': frequency} test_data = pd.DataFrame({'CS': [1e-9], 'RS': 1e6}) desired_data = pd.DataFrame({ 'Z (ohm)': [np.sqrt(2) * 1e6], 'THETA (rad)': [-np.pi/4]}) actual_data = convert_lcr_to_standard(test_data, test_metadata)
assert_frame_equal(actual_data, desired_data)
pandas.testing.assert_frame_equal
""" Utils to plot graphs with arrows """ import matplotlib.transforms import matplotlib.patches import matplotlib.colors import matplotlib.cm import numpy as np import pandas as pd import logging from tctx.util import plot def _clip_arrows(arrows, tail_offset, head_offset): """ shorten head & tail so the arrows don't overlap with markers :param arrows: a pd.DataFrame with columns: 'source_x', 'source_y', 'target_x', 'target_y' :param tail_offset: how much shorter to make the tail (so it doesn't overlap with the markers) :param head_offset: how much shorter to make the head (so it doesn't overlap with the markers) :return: 2 numpy arrays of shape Nx2 """ source_pos = arrows[['source_x', 'source_y']].values target_pos = arrows[['target_x', 'target_y']].values direction = target_pos - source_pos length = np.sqrt(np.sum(np.square(direction), axis=1)) direction = direction / length[:, np.newaxis] source_pos = source_pos + direction * tail_offset target_pos = target_pos + direction * (-1 * head_offset) return source_pos, target_pos def plot_arrows_cmap( ax, arrows, c, cmap=None, norm=None, tail_offset=0, head_offset=0, head_length=4, head_width=1.25, **kwargs): """ Draw multiple arrows using a colormap. :param ax: matplotlib.axes.Axes :param arrows: a pd.DataFrame with columns: 'source_x', 'source_y', 'target_x', 'target_y' :param c: a pd.Series with the same index as arrows or a string that identifies a column in it. :param tail_offset: how much shorter to make the tail (so it doesn't overlap with the markers) :param head_offset: how much shorter to make the head (so it doesn't overlap with the markers) :param kwargs: args for matplotlib.patches.FancyArrowPatch :return: matplotlib.cm.Mappable that can be used for a colorbar :param cmap: :param norm: :param head_length: :param head_width: :return: """ if cmap is None: cmap = 'default' if isinstance(cmap, str): cmap = plot.lookup_cmap(cmap) if isinstance(c, str): c = arrows[c] if norm is None: norm = matplotlib.colors.Normalize(vmin=c.min(), vmax=c.max()) arrowstyle = matplotlib.patches.ArrowStyle.CurveFilledB(head_length=head_length, head_width=head_width) kwargs.setdefault('linewidth', .75) source_pos, target_pos = _clip_arrows(arrows, tail_offset, head_offset) for i, idx in enumerate(arrows.index): color = cmap(norm(c[idx])) _plot_single_arrow(ax, source_pos[i], target_pos[i], arrowstyle, color, **kwargs) sm = matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm) sm.set_array(c.values) return sm def _plot_single_arrow(ax, source_pos, target_pos, arrowstyle, color, **kwargs): patch_kwargs = kwargs.copy() patch_kwargs.setdefault('edgecolor', color) patch_kwargs.setdefault('facecolor', color) patch = matplotlib.patches.FancyArrowPatch( posA=source_pos, posB=target_pos, arrowstyle=arrowstyle, **patch_kwargs, ) ax.add_artist(patch) def plot_arrows_solid( ax, arrows, color=None, tail_offset=0, head_offset=0, head_length=4, head_width=1.25, **kwargs): """ Draw multiple arrows using a solid color. :param ax: matplotlib.axes.Axes :param arrows: a pd.DataFrame with columns: 'source_x', 'source_y', 'target_x', 'target_y' :param tail_offset: how much shorter to make the tail (so it doesn't overlap with the markers) :param head_offset: how much shorter to make the head (so it doesn't overlap with the markers) :param kwargs: args for matplotlib.patches.FancyArrowPatch :param color: :param head_length: :param head_width: :param kwargs: :return: """ arrowstyle = matplotlib.patches.ArrowStyle.CurveFilledB(head_length=head_length, head_width=head_width) kwargs.setdefault('linewidth', .75) source_pos, target_pos = _clip_arrows(arrows, tail_offset, head_offset) for i, idx in enumerate(arrows.index): _plot_single_arrow(ax, source_pos[i], target_pos[i], arrowstyle, color, **kwargs) class Graph: """ A class to plot graphs with per-node and per-edge styles """ def __init__(self, nodes, edges, styles=None, transform=None, kwargs_nodes=None, kwargs_edges=None): """ :param nodes: a pd.DataFrame with columns ['x', 'y'] representing the 2d position and column 'style' that can be indexed into the styles DF :param edges: a pd.DataFrame with columns ['source', 'target'] that can be indexed into the nodes DF and column 'style' that can be indexed into the styles DF :param styles: pd.DataFrame with columns for different cmaps ('cmap_from_white', etc), color levels ('light', 'dark', etc). By default: plot.styles_df :param kwargs_nodes: default kwargs to nodes plotting :param kwargs_edges: default kwargs to edges plotting :param transform: the transform to apply to the graph. Useful when drawing an inset. """ assert np.all(edges['source'] != edges['target']), 'self edges' assert np.all([np.issubdtype(nodes[c].dtype, np.number) for c in ['x', 'y']]) if styles is None: styles = plot.styles_df.copy() self.styles = styles self.nodes = nodes self.edges = edges self.transform = transform self.default_kwargs_nodes = dict( cmap='cmap', marker='marker_time', linewidth=.5, facecolor='light', edgecolor='darker', ) self.default_kwargs_nodes.update(kwargs_nodes or {}) self.default_kwargs_edges = dict( cmap='cmap', facecolor='main', edgecolor='main', ) self.default_kwargs_edges.update(kwargs_edges or {}) edge_len = self.get_edge_lengths() too_short = np.count_nonzero(np.isclose(edge_len, 0)) if too_short: logging.warning(f'{too_short}/{len(edge_len)} edges of zero length') # pandas complains when editing categories which is inconvenient if self.nodes['style'].dtype.name == 'category': self.nodes['style'] = self.nodes['style'].astype(str) if self.edges['style'].dtype.name == 'category': self.edges['style'] = self.edges['style'].astype(str) def copy(self): return Graph( nodes=self.nodes.copy(), edges=self.edges.copy(), styles=self.styles.copy(), transform=None if self.transform is None else self.transform.copy(), kwargs_nodes=self.default_kwargs_nodes.copy(), kwargs_edges=self.default_kwargs_edges.copy(), ) def get_edge_lengths(self): xy0 = self.nodes.loc[self.edges['source'], ['x', 'y']].values xy1 = self.nodes.loc[self.edges['target'], ['x', 'y']].values edge_len = np.sqrt(np.sum(np.square(xy0 - xy1), axis=1)) return pd.Series(edge_len, index=self.edges.index) def _get_arrows(self, selection=None): if selection is None: selection = self.edges if isinstance(selection, (np.ndarray, pd.Index)): selection = self.edges.loc[selection] arrows = [selection] for end in ['source', 'target']: pos = self.nodes[['x', 'y']].reindex(selection[end]) pos.index = selection.index pos.columns = [end + '_' + c for c in pos.columns] arrows.append(pos) arrows = pd.concat(arrows, axis=1) return arrows def _lookup_style_kwargs(self, style, kwargs): kwargs = kwargs.copy() if 'style' in kwargs: specific = kwargs.pop('style') if style in specific: kwargs.update(specific[style]) styled_kwargs = kwargs.copy() for k, v in kwargs.items(): if isinstance(v, str) and v in self.styles.columns: styled_kwargs[k] = self.styles.loc[style, v] if self.transform is not None: styled_kwargs['transform'] = self.transform return styled_kwargs def plot_nodes_solid(self, ax, selection=None, **kwargs): """ Plot all of the nodes with a flat color :param ax: :param selection: an array, index or boolean series that can be used on self.nodes.loc to draw a subset of the known nodes :param kwargs: scatter params :return: """ final_kwargs = self.default_kwargs_nodes.copy() final_kwargs.update(kwargs) nodes_to_draw = self.nodes if selection is not None: assert isinstance(selection, (np.ndarray, pd.Index, pd.Series)) nodes_to_draw = self.nodes.loc[selection] for style, nodes in nodes_to_draw.groupby('style'): style_kwargs = self._lookup_style_kwargs(style, final_kwargs) if 'cmap' in style_kwargs: style_kwargs.pop('cmap') ax.scatter( nodes.x, nodes.y, **style_kwargs, ) def plot_nodes_cmap(self, ax, c=None, selection=None, **kwargs): """ Plot all of the nodes with a color map :param ax: :param c: series or array matching length of self.nodes, if none indicated, we expect a column 'c' in self.nodes :param selection: an array, index or boolean series that can be used on self.nodes.loc to draw a subset of the known nodes :param kwargs: scatter params :return: a dict of style to mappable for use in colorbars """ final_kwargs = self.default_kwargs_nodes.copy() final_kwargs.update(kwargs) nodes_to_draw = self.nodes if selection is not None: assert isinstance(selection, (np.ndarray, pd.Index, pd.Series)) nodes_to_draw = self.nodes.loc[selection] if c is None: c = 'c' if isinstance(c, str): c = self.nodes[c] if isinstance(c, np.ndarray): c = pd.Series(c, index=self.nodes.index) all_sm = {} for style, nodes in nodes_to_draw.groupby('style'): style_kwargs = self._lookup_style_kwargs(style, final_kwargs) if 'facecolor' in style_kwargs: style_kwargs.pop('facecolor') all_sm[style] = ax.scatter( nodes.x, nodes.y, c=c.loc[nodes.index], **style_kwargs, ) return all_sm def plot_nodes_labels(self, ax, nodes=None, va='center', ha='center', fmt='{index}', fontsize=6, **kwargs): """ plot a descriptive text for each node. By default, the index is show, modify fmt to use something else """ # TODO allow the style column in the fmt to color by dark of the "label" column. if nodes is None: nodes = self.nodes else: nodes = self.nodes.loc[nodes] for idx, row in nodes.iterrows(): ax.text(row['x'], row['y'], fmt.format(index=idx, **row), va=va, ha=ha, fontsize=fontsize, **kwargs) def plot_edges_cmap(self, ax, c=None, **kwargs): """ Plot all of the nodes with a color map :param ax: :param c: series or array matching length of self.edges, if none indicated, we expect a column 'c' in self.edges :param kwargs: params to plot_arrows_cmap :return: a dict of style to mappable for use in colorbars """ final_kwargs = self.default_kwargs_edges.copy() final_kwargs.update(kwargs) if c is None: c = self.edges['c'] all_sm = {} for style, arrows in self._get_arrows().groupby('style'): style_kwargs = self._lookup_style_kwargs(style, final_kwargs) if 'facecolor' in style_kwargs: style_kwargs.pop('facecolor') if 'edgecolor' in style_kwargs: style_kwargs.pop('edgecolor') all_sm[style] = plot_arrows_cmap( ax, arrows, c, **style_kwargs ) return all_sm def plot_edges_solid(self, ax, selection=None, **kwargs): """ Plot all of the edges with a flat color :param ax: :param selection: :param kwargs: :return: """ final_kwargs = self.default_kwargs_edges.copy() final_kwargs.update(kwargs) for style, arrows in self._get_arrows(selection=selection).groupby('style'): style_kwargs = self._lookup_style_kwargs(style, final_kwargs) if 'cmap' in style_kwargs: style_kwargs.pop('cmap') plot_arrows_solid( ax, arrows, **style_kwargs ) @classmethod def from_conns(cls, conns, cells, node_style='ei_type', edge_style='con_type'): """plot the connections in XY space""" all_gids = np.unique(conns[['source_gid', 'target_gid']].values.flatten()) nodes = cells.loc[all_gids, ['x', 'y']].copy() nodes['style'] = cells.loc[nodes.index, node_style] edges = conns[['source_gid', 'target_gid']].copy() edges.columns = ['source', 'target'] edges['style'] = conns.loc[edges.index, edge_style] return cls(nodes, edges) @classmethod def from_conn_jumps( cls, selected_jumps, detailed_spikes, node_keys, edge_style, **kwargs): """plot spike jumps""" assert 'x' in node_keys and 'y' in node_keys and 'style' in node_keys nodes = {} for k, v in node_keys.items(): if isinstance(v, str): v = detailed_spikes[v] else: assert isinstance(v, (tuple, list, pd.Series, np.ndarray)) nodes[k] = v nodes = pd.DataFrame(nodes) edges = selected_jumps[['source_spike', 'target_spike']].copy() edges.columns = ['source', 'target'] edges['style'] = selected_jumps.loc[edges.index, edge_style] return cls(nodes, edges, **kwargs) def get_floating_nodes(self) -> pd.Index: """ :return: the index of nodes with no connections in or out """ return self.nodes.index[ ~self.nodes.index.isin(self.edges['source']) & ~self.nodes.index.isin(self.edges['target']) ] def get_linked_nodes(self) -> pd.Index: """ :return: the index of nodes with at least a connection in or out """ return self.nodes.index[~self.nodes.index.isin(self.get_floating_nodes())] def drop_nodes(self, drop_gids: pd.Index): """ remove the given nodes from the graph. This will also remove edges to/from those nodes :param drop_gids: either a list of node ids or a boolean mask (True == remove) :return: """ if drop_gids.dtype == 'bool': if isinstance(drop_gids, pd.Series): drop_gids = drop_gids.reindex(self.nodes.index, fill_value=False) assert len(drop_gids) == len(self.nodes) drop_gids = self.nodes.index[drop_gids] drop_gids = pd.Index(np.asarray(drop_gids)) remaining_gids = self.nodes.index.difference(drop_gids) self.nodes = self.nodes.loc[remaining_gids].copy() bad_edges = ( self.edges['source'].isin(drop_gids) | self.edges['target'].isin(drop_gids) ) self.edges = self.edges.loc[~bad_edges].copy() def drop_edges(self, drop_gids: pd.Index): """ remove the given edges from the graph example: graph.drop_edges(graph.edges['weight'] < .75 * 70) :param drop_gids: either a list of edge ids or a boolean mask (True == remove) :return: """ if drop_gids.dtype == 'bool': if isinstance(drop_gids, pd.Series): drop_gids = drop_gids.reindex(self.edges.index, fill_value=False) assert len(drop_gids) == len(self.edges) drop_gids = self.edges.index[drop_gids] drop_gids = pd.Index(np.asarray(drop_gids)) remaining_gids = self.edges.index.difference(drop_gids) self.edges = self.edges.loc[remaining_gids].copy() def add_edges(self, new_edges: pd.DataFrame, **overwrite_cols): """ Add edges to this graph. Inplace. :param overwrite_cols: pairs of <column, value> to assign to new_edges before adding them. For example, to set a style. """ new_edges = new_edges.copy() for c, v in overwrite_cols.items(): new_edges[c] = v missing_cols = self.edges.columns.difference(new_edges.columns) if len(missing_cols) > 0: logging.error(f'Missing columns: {list(missing_cols)}. Got: {list(new_edges.columns)}') return repeated = self.edges.index.intersection(new_edges.index) if len(repeated): logging.warning(f'Repeated edges will be ignored: {repeated}') new_edges = new_edges.drop(repeated) valid = ( new_edges['source'].isin(self.nodes.index) & new_edges['target'].isin(self.nodes.index) ) if np.any(~valid): logging.warning(f'{np.count_nonzero(~valid):,g} edges without source or target will be ignored') new_edges = new_edges[valid] all_edges = pd.concat([self.edges, new_edges], axis=0, sort=False) assert all_edges.index.is_unique self.edges = all_edges def add_nodes(self, new_nodes: pd.DataFrame, **overwrite_cols): """ Add edges to this graph. Inplace. :param overwrite_cols: pairs of <column, value> to assign to new_nodes before adding them. For example, to set a style. """ new_nodes = new_nodes.copy() for c, v in overwrite_cols.items(): new_nodes[c] = v missing_cols = self.nodes.columns.difference(new_nodes.columns) if len(missing_cols) > 0: logging.warning(f'Missing columns: {list(missing_cols)}. Got: {list(new_nodes.columns)}') repeated = self.nodes.index.intersection(new_nodes.index) if len(repeated): logging.warning(f'Repeated nodes will be ignored: {repeated}') new_nodes = new_nodes.drop(repeated) all_nodes = pd.concat([self.nodes, new_nodes], axis=0, sort=False) assert all_nodes.index.is_unique self.nodes = all_nodes def add_graph(self, other): """ Add another graph to this one. Inplace. """ self.add_nodes(other.nodes) self.add_edges(other.edges) def drop_edges_orphan(self): """remove edges without a known source or target""" mask_edges = ( self.edges['source'].isin(self.nodes.index) & self.edges['target'].isin(self.nodes.index) ) self.edges = self.edges[mask_edges].copy() def layout_spring(self, edges_idx=None, iterations=100, source_gid=None, **kwargs): """ modify inplace the XY positions of the graph using a spring force algorithm if source_gid is provided, it will be fixed at coordinate (0, 0) initial position are taken from the current XY. """ fixed = kwargs.pop('fixed', None) if source_gid is not None: if fixed is None: fixed = {} fixed[source_gid] = (0, 0) from networkx import spring_layout pos = spring_layout( self._get_as_networkx_digraph(edges_idx), pos={i: (x, y) for i, x, y in self.nodes[['x', 'y']].itertuples()}, fixed=fixed, iterations=iterations, **kwargs, ) self._set_node_xy(pd.DataFrame.from_dict(pos, orient='index', columns=['x', 'y'])) def layout_graphviz(self, edges_idx=None, **kwargs): """ modify inplace the XY positions of the graph using a one of the graphviz algorithms see https://stackoverflow.com/questions/21978487/improving-python-networkx-graph-layout """ from networkx.drawing.nx_agraph import graphviz_layout pos = graphviz_layout( self._get_as_networkx_digraph(edges_idx), **kwargs) self._set_node_xy(pd.DataFrame.from_dict(pos, orient='index', columns=['x', 'y'])) def layout_raster_graphviz(self, all_spikes): """ modify inplace the Y positions of the graph (preserving X) using the 'dot' algorithm (hierarchical) """ oldx = self.nodes['x'].copy() self.layout_graphviz(prog='dot') self.layout_transpose() self.layout_reflect('x') # restore x as time self.nodes['x'] = oldx # force y to be different and unique per gid self.nodes['y'] = self.nodes['y'].astype(np.float) gids = all_spikes.loc[self.nodes.index, 'gid'].values yloc = self.nodes['y'].groupby(gids).median().rank(method='first').reindex(gids) yloc.index = self.nodes.index self.nodes['y'] = yloc assert np.all([np.issubdtype(self.nodes[c].dtype, np.number) for c in ['x', 'y']]) def layout_best_fit(self, around, orientation='vertical'): """ Place nodes using graphviz. For 'floating' (disconnected) nodes, force them at the bottom of the plot. Rotate plot to best use the orientation :return: """ floating_gids = self.get_floating_nodes() self.layout_graphviz() center = self._layout_around(around) # make sure floating gids don't interfere when we are rotationg our graph # their position will get set afterwards self.nodes.loc[floating_gids, 'x'] = center[0] self.nodes.loc[floating_gids, 'y'] = center[1] self.layout_rotate_to_match(around=center, orientation=orientation) linked_gids = self.get_linked_nodes() bbox = ( np.minimum(self.nodes.loc[linked_gids, ['x', 'y']].min(), -10), np.maximum(self.nodes.loc[linked_gids, ['x', 'y']].max(), +10), ) x = np.linspace(bbox[0]['x'], bbox[1]['x'], len(floating_gids) + 2)[1:-1] self.nodes.loc[floating_gids, 'x'] = x y = bbox[0]['y'] - (bbox[1]['y'] - bbox[0]['y']) * .2 self.nodes.loc[floating_gids, 'y'] = y def _layout_around(self, around): """ translate the "around" param of other functions :param around: None: the center of mass of the graph tuple, list or array: the exact 2d coordinates anything else: the ID of the node we want to center around :return: array of 2 elements containing xy position """ xy = self.nodes[['x', 'y']].values if around is None: around = np.mean(xy, axis=0) elif isinstance(around, (list, tuple, np.ndarray)): around = np.array(around) else: around = self.nodes.loc[around, ['x', 'y']].values.astype(np.float) assert np.issubdtype(around.dtype, np.number) return around def sort_edges(self, by, ascending=True): """sort the edges by the given series. inplace""" if isinstance(by, str): by = self.edges[by] if not isinstance(by, pd.Series): by = pd.Series(np.asarray(by), by.index) assert isinstance(by, pd.Series) by = by.reindex(self.edges.index) by = by.sort_values(ascending=ascending) self.edges = self.edges.loc[by.index] def layout_get_dists(self): """ get the distances for every node with respect to (0, 0) :return: """ xy = self.nodes[['x', 'y']].values.T dists = np.sqrt(np.sum(np.square(xy), axis=0)) return pd.Series(dists, index=self.nodes.index) def layout_get_angles(self): """ get the angles for every node with respect to (0, 0) :return: """ dists = self.layout_get_dists() xy = self.nodes[['x', 'y']].values.T vectors = xy / dists.values angles = np.degrees(np.arctan2(vectors[1], vectors[0])) return
pd.Series(angles, index=self.nodes.index)
pandas.Series
# pylint: disable=C0103,C0301,E0401 """Process raw IEM data, output single optimized pickle file""" import argparse import os import sys import time from multiprocessing import Pool from pathlib import Path import numpy as np import pandas as pd import ruptures as rpt # note: this would not install properly on AWS EB! # only needed for preprocessing, not the app, so # it has been removed as a dependency from this project's Pipfile # bias-correction = {git = "https://github.com/pankajkarman/bias_correction.git"} # git+https://github.com/pankajkarman/bias_correction.git#egg=bias-correction from bias_correction import BiasCorrection from scipy.signal import find_peaks # this hack is done to alllow import from luts.py in app dir sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from luts import decades def filter_spurious(station, tname="ts"): """Identify and remove spurious observations, returns filtered data and flagged observations""" station = station.set_index(tname) # ignore missing speed data ws_series = station[~np.isnan(station["sped"])]["sped"] # identify and remove completely obvious peaks, to help with dip detection obv_peaks, _ = find_peaks(ws_series, prominence=30, threshold=50) # if-else in case no obvious spikes if obv_peaks.shape[0] != 0: obv_spikes = ws_series[obv_peaks] ws_series = ws_series.drop(obv_spikes.index) else: obv_spikes = pd.Series() # invert series, identify dips using less strict criteria dip_peaks, _ = find_peaks(ws_series * -1, prominence=30, threshold=35) # if-else in case no dips found if dip_peaks.shape[0] != 0: dips = ws_series[dip_peaks] ws_series = ws_series.drop(dips.index) else: dips = pd.Series() # identify less obvious peaks peaks, properties = find_peaks(ws_series, prominence=25, width=(None, 2)) # combine with obvious peaks if present if peaks.shape[0] != 0: # condition on width_heights property to reduce sensitivty (see ancillary/raw_qc.ipynb) spikes = pd.concat( [obv_spikes, ws_series[peaks[properties["width_heights"] >= 18]]] ) else: spikes = pd.concat([obv_spikes, pd.Series()]) # subset the station data to keep these flagged observations, # then remove from station data if dips.size != 0: dips = station.loc[dips.index] station = station.drop(dips.index) else: # take empty slice dips = station[station["station"] == "cats"] if spikes.size != 0: # subset station data frame for spikes and dips spikes = station.loc[spikes.index] station = station.drop(spikes.index) else: # take empty slice dips = station[station["station"] == "dogs"] return station.reset_index(), spikes.reset_index(), dips.reset_index() def filter_to_hour(station): """Aggregate observations to nearest hour""" # METAR reports are typically recorded close to a clock hour, either # on the hour, or something like 1:07, or 12:55, etc. Instead of aggregating # multiple observations, in this case other SPECIals recorded, just take # the observation nearest to the hour. # (this represents the most likely "routine" METAR record), # and could help avoid potential sampling bias from SPECIals # done by finding record with minimum timedelta from hour station["ts"] = station["valid"].dt.round("H") station["delta_dt"] = abs((station["ts"] - station["valid"])) min_dt_station = ( station.groupby("ts") .agg(min_delta_dt=
pd.NamedAgg("delta_dt", "min")
pandas.NamedAgg
import pandas as pd def make_descriptions(df): df['split_name'] = df['name'].apply(lambda x: x.split('-')) df['main_description'] = df['split_name'].apply(lambda x: x[-1]) df['detailed_description'] = ( df['split_name'].apply( lambda x: ','.join(x[1:-1]) if len(x) > 2 else ( ','.join(x[0:-1]) if len(x) > 1 else None ) ) ) df['more_details'] = ( df['split_name'].apply(lambda x: x[0] if len(x) > 2 else None)) return df def make_chart_data(df, column): df_grouped = ( df .groupby([column]) .duration.sum() .reset_index() .sort_values(by=['duration'], ascending=False) ) # df_grouped['duration'] = ( # df_grouped['duration'].apply(lambda x: round(x, 2)) # ) df_grouped['time'] = ( df_grouped['duration'] .round() .apply(pd.to_timedelta, unit='s') ).astype(str) df_grouped.columns = ['name', 'duration', 'time'] return list(df_grouped.T.to_dict().values()) def total_duration(df): return str(pd.to_timedelta(df.duration.sum().round(), unit='s')) def total_idle(df): return str( pd.to_timedelta( df[df["main_description"] == 'user_idle'] .duration .sum() .round(), unit='s') ) def metrics_bundle(data, drill_level): df =
pd.DataFrame(data)
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13:
pd.Timestamp("2013-05-14 00:00:00")
pandas.Timestamp
import glob import datetime import os import pandas as pd import numpy as np import re from tkinter import filedialog from tkinter import * from tkinter import ttk from tkinter import messagebox # pyinstaller --onefile --noconsole --icon GetCSV.ico Arca_GetCSVConverter_2-0-0.py #for MMW 18-6 spreadsheets probCol = False #infer desktop desktopPath = os.path.expanduser("~/Desktop/") filelist=[''] probRecords = [] probColls = [] #filename = r'arms_modsonly_May9.csv' col_names = ["IslandoraContentModel","BCRDHSimpleObjectPID",'imageLink','filename','directory','childKey','title', 'alternativeTitle', 'creator1', 'creator2','creator3'] col_names += ['corporateCreator1','corporateCreator2','contributor1','contributor2','corporateContributor1','publisher_original','publisher_location'] col_names += ['dateCreated','description','extent','topicalSubject1','topicalSubject2','topicalSubject3','topicalSubject4','topicalSubject5'] col_names += ['geographicSubject1','coordinates','personalSubject1','personalSubject2','corporateSubject1','corporateSubject2', 'dateIssued_start'] col_names += ['dateIssued_end','dateRange', 'frequency','genre','genreAuthority','type','internetMediaType','language1','language2','notes'] col_names += ['accessIdentifier','localIdentifier','ISBN','classification','URI'] col_names += ['source','rights','creativeCommons_URI','rightsStatement_URI','relatedItem_title','relatedItem_PID','recordCreationDate','recordOrigin'] pattern1 = r'^[A-Z][a-z]{2}-\d{2}$' #%b-%Y date (e.g. Jun-17) pattern2 = r'^\d{2}-\d{2}-[1-2]\d{3}$' contentModels = { r"info:fedora/islandora:sp_large_image_cmodel": "Large Image", r"info:fedora/islandora:sp_basic_image": "Basic Image", r"info:fedora/islandora:bookCModel": "Book", r"info:fedora/islandora:newspaperIssueCModel":"Newspaper - issue", r"info:fedora/islandora:newspaperPageCModel":"Newspaper", r"info:fedora/islandora:sp_PDF":"PDF", r"info:fedora/islandora:sp-audioCModel":"Audio", r"info:fedora/islandora:sp_videoCModel":"Video", r"info:fedora/islandora:sp_compoundCModel":"Compound", r"info:fedora/ir:citationCModel":"Citation" } def browse_button(): # Allow user to select a directory and store it in global var # called folder_path1 lbl1['text'] = "" csvname = filedialog.askopenfilename(initialdir = desktopPath,title = "Select file",filetypes = (("csv files","*.csv"),("all files","*.*"))) if ".csv" not in csvname: lbl1['text'] = "**Please choose a file with a .csv extension!" else: filelist[0] = csvname lbl1['text'] = csvname def splitMultiHdgs(hdgs): if pd.notna(hdgs): hdgs = hdgs.replace("\\,",";") hdgs = hdgs.split(",") newhdgs = [] for hdg in hdgs: newhdg = hdg.replace(";", ",") newhdgs.append(newhdg) return newhdgs else: return None def getMultiVals(item, string, df, pd): hdgs = df.filter(like=string).columns for hdg in hdgs: vals = df.at[item.Index,hdg] if pd.notna(vals): vals = splitMultiHdgs(vals) return vals return None def convert_date(dt_str, letter_date): """ Converts an invalid formatted date into a proper date for ARCA Mods Correct format: Y-m-d Fixes: Incorrect format: m-d-Y Incorrect format (letter date): m-d e.g. Jun-17 :param dt_str: the date string :param letter_date: whether the string is a letter date. Letter date is something like Jun-17 :return: the correctly formatted date """ if letter_date: rev_date = datetime.datetime.strptime(dt_str, '%b-%y').strftime('%Y-%m') # convert date to yymm string format rev_date_pts = rev_date.split("-") year_num = int(rev_date_pts[0]) if year_num > 1999: year_num = year_num - 100 year_str = str(year_num) rev_date_pts[0] = year_str revised = "-".join(rev_date_pts) else: revised = datetime.datetime.strptime(dt_str, '%d-%m-%Y').strftime( '%Y-%m-%d') # convert date to YY-mm string format return revised def sortValues(lst): for item in lst: if pd.isna(item): lst.remove(item) lst = set(lst) lst = list(lst) return lst def dropNullCols(df): nullcols = [] for col in df.columns: notNull = df[col].notna().sum() if notNull < 1: nullcols.append(col) return nullcols def convert(): probCol = False df2 = pd.DataFrame(columns = col_names) df2.append(pd.Series(), ignore_index=True) f=filelist[0] # if not os.path.exists(savePath): #if folder does not exist # os.makedirs(savePath) try: df = pd.read_csv(f,dtype = "string", encoding = 'utf_7') except UnicodeDecodeError: df = pd.read_csv(f,dtype = "string", encoding = 'utf_8') nullcols = dropNullCols(df) df.drop(nullcols, axis=1, inplace=True) i = 1 for item in df.itertuples(): #PID df2.at[i, 'BCRDHSimpleObjectPID'] = item.PID if 'mods_subject_name_personal_namePart_ms' in df.columns: pNames = item.mods_subject_name_personal_namePart_ms #ContentModel cModel = item.RELS_EXT_hasModel_uri_s df2.at[i,"IslandoraContentModel"] =contentModels[cModel] #Local Identifier if 'mods_identifier_local_ms' in df.columns: localID = item.mods_identifier_local_ms if pd.notna(localID) and localID != "None": df2.at[i,'localIdentifier'] = localID #Access Identifer if 'mods_identifier_access_ms' in df.columns: accessID = item.mods_identifier_access_ms if pd.notna(accessID): df2.at[i,'accessIdentifier'] = accessID #Image Link # Link to Image PIDparts = item.PID.split(":") repo = PIDparts[0] #repository code num = PIDparts[1] #auto-generated accession number imageLink = "https://bcrdh.ca/islandora/object/" + repo + "%3A" + num df2.at[i, 'imageLink'] = imageLink #Title if 'mods_titleInfo_title_ms' in df.columns: title = item.mods_titleInfo_title_ms if pd.notna(title): df2.at[i,'title'] = title.replace("\,",",") #Alternative Title if "mods_titleInfo_alternative_title_ms" in df.columns: altTitle = item.mods_titleInfo_alternative_title_ms if pd.notna(altTitle): df2.at[i, 'alternativeTitle'] = altTitle.replace("\,",",") #Date if "mods_originInfo_dateIssued_ms" in df.columns: dt = item.mods_originInfo_dateIssued_ms if pd.notna(dt): if (re.match(pattern1, dt)): #letter date, i.e. Jun-17 dt = convert_date(dt, True) elif (re.match(pattern2, dt)): #reverse date dt = convert_date(dt, False) df2.at[i,'dateCreated'] = dt #Date Issued Start if 'mods_originInfo_encoding_w3cdtf_keyDate_yes_point_start_dateIssued_ms' in df.columns: startDt = item.mods_originInfo_encoding_w3cdtf_keyDate_yes_point_start_dateIssued_ms if pd.notna(startDt): df2.at[i,'dateIssued_start'] = startDt #Date Issued End if 'mods_originInfo_encoding_w3cdtf_keyDate_yes_point_end_dateIssued_ms' in df.columns: endDt = item.mods_originInfo_encoding_w3cdtf_keyDate_yes_point_end_dateIssued_ms if pd.notna(endDt): df2.at[i,'dateIssued_end'] = startDt #Publisher if 'mods_originInfo_publisher_ms' in df.columns: pub = item.mods_originInfo_publisher_ms if pd.notna(pub): df2.at[i, 'publisher_original'] = pub #Publisher Location if 'mods_originInfo_place_placeTerm_text_ms' in df.columns: place = item.mods_originInfo_place_placeTerm_text_ms if
pd.notna(place)
pandas.notna
"""Rules for conversion between SQL, pandas, and odbc data types.""" import pandas as pd import pyodbc rules = pd.DataFrame.from_records( [ { "sql_type": "bit", "sql_category": "boolean", "min_value": False, "max_value": True, "pandas_type": "boolean", "odbc_type": pyodbc.SQL_BIT, "odbc_size": 1, "odbc_precision": 0, }, { "sql_type": "tinyint", "sql_category": "exact numeric", "min_value": 0, "max_value": 255, "pandas_type": "UInt8", "odbc_type": pyodbc.SQL_TINYINT, "odbc_size": 1, "odbc_precision": 0, }, { "sql_type": "smallint", "sql_category": "exact numeric", "min_value": -(2 ** 15), "max_value": 2 ** 15 - 1, "pandas_type": "Int16", "odbc_type": pyodbc.SQL_SMALLINT, "odbc_size": 2, "odbc_precision": 0, }, { "sql_type": "int", "sql_category": "exact numeric", "min_value": -(2 ** 31), "max_value": 2 ** 31 - 1, "pandas_type": "Int32", "odbc_type": pyodbc.SQL_INTEGER, "odbc_size": 4, "odbc_precision": 0, }, { "sql_type": "bigint", "sql_category": "exact numeric", "min_value": -(2 ** 63), "max_value": 2 ** 63 - 1, "pandas_type": "Int64", "odbc_type": pyodbc.SQL_BIGINT, "odbc_size": 8, "odbc_precision": 0, }, { "sql_type": "float", "sql_category": "approximate numeric", "min_value": -(1.79 ** 308), "max_value": 1.79 ** 308, "pandas_type": "float64", "odbc_type": pyodbc.SQL_FLOAT, "odbc_size": 8, "odbc_precision": 53, }, { "sql_type": "time", "sql_category": "date time", "min_value": pd.Timedelta("00:00:00.0000000"), "max_value": pd.Timedelta("23:59:59.9999999"), "pandas_type": "timedelta64[ns]", "odbc_type": pyodbc.SQL_SS_TIME2, "odbc_size": 16, "odbc_precision": 7, }, { "sql_type": "date", "sql_category": "date time", "min_value": (pd.Timestamp.min + pd.DateOffset(days=1)).date(), "max_value":
pd.Timestamp.max.date()
pandas.Timestamp.max.date
import pandas as pd from pandas.api.types import is_numeric_dtype from pathlib import Path class Csv2Pandas(object): """ Private Properties and Getters """ @property def df(self): pass @df.getter def df(self): return self.__df @property def file_name(self): pass @df.getter def file_name(self): return self.__file_name """ Constructor """ def __init__(self, file_path = None): self.file_path = file_path def _fetch(self, file_path): if not self.file_path: raise AttributeError('file_path is not properly prepared.') file_name = Path(self.file_path) self.__file_name = file_name.stem self.__df = pd.read_csv(file_path ,header=0) def fetch(self): self._fetch(self.file_path) @staticmethod def property(prop): return None if
pd.isnull(prop)
pandas.isnull
import vectorbt as vbt import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from vectorbt.generic import nb as generic_nb from vectorbt.generic.enums import range_dt from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) mask = pd.DataFrame([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ]), columns=['a', 'b', 'c']) ts = pd.Series([1., 2., 3., 2., 1.], index=mask.index) price = pd.DataFrame({ 'open': [10, 11, 12, 11, 10], 'high': [11, 12, 13, 12, 11], 'low': [9, 10, 11, 10, 9], 'close': [11, 12, 11, 10, 9] }) group_by = pd.Index(['g1', 'g1', 'g2']) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# accessors.py ############# # class TestAccessors: def test_indexing(self): assert mask.vbt.signals['a'].total() == mask['a'].vbt.signals.total() def test_freq(self): assert mask.vbt.signals.wrapper.freq == day_dt assert mask['a'].vbt.signals.wrapper.freq == day_dt assert mask.vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert mask['a'].vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([False, True]).vbt.signals.wrapper.freq is None assert pd.Series([False, True]).vbt.signals(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([False, True]).vbt.signals(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(mask['a'].vbt.signals.fshift(test_n), mask['a'].shift(test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.fshift(test_n).values, generic_nb.fshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.fshift(test_n), mask.shift(test_n, fill_value=False)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal( mask['a'].vbt.signals.bshift(test_n), mask['a'].shift(-test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.bshift(test_n).values, generic_nb.bshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.bshift(test_n), mask.shift(-test_n, fill_value=False)) def test_empty(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.empty(5, index=np.arange(10, 15), name='a'), pd.Series(np.full(5, False), index=np.arange(10, 15), name='a') ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty((5, 3), index=np.arange(10, 15), columns=['a', 'b', 'c']), pd.DataFrame(np.full((5, 3), False), index=np.arange(10, 15), columns=['a', 'b', 'c']) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.empty_like(mask['a']), pd.Series(np.full(mask['a'].shape, False), index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty_like(mask), pd.DataFrame(np.full(mask.shape, False), index=mask.index, columns=mask.columns) ) def test_generate(self): @njit def choice_func_nb(from_i, to_i, col, n): if col == 0: return np.arange(from_i, to_i) elif col == 1: return np.full(1, from_i) else: return np.full(1, to_i - n) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate(5, choice_func_nb, 1, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate((5, 2), choice_func_nb, 1) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [True, False, False], [True, False, False], [True, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, pick_first=True, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [False, False, False], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_generate_both(self): @njit def entry_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] @njit def exit_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) en, ex = pd.Series.vbt.signals.generate_both( 5, entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, True, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, True], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=1, exit_wait=0) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=0, exit_wait=1) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) @njit def entry_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] @njit def exit_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func2_nb, (temp_int,), exit_func2_nb, (temp_int,), entry_pick_first=False, exit_pick_first=False, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_exits(self): @njit def choice_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_exits(choice_func_nb, temp_int), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) @njit def choice_func2_nb(from_i, to_i, col, temp_int): for i in range(from_i, to_i): temp_int[i - from_i] = i return temp_int[:to_i - from_i] pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func2_nb, temp_int, until_next=False, pick_first=False), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [True, True, False], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) mask2 = pd.Series([True, True, True, True, True], index=mask.index) pd.testing.assert_series_equal( mask2.vbt.signals.generate_exits(choice_func_nb, temp_int, until_next=False, skip_until_exit=True), pd.Series( np.array([False, True, False, True, False]), index=mask.index ) ) def test_clean(self): entries = pd.DataFrame([ [True, False, True], [True, False, False], [True, True, True], [False, True, False], [False, True, True] ], index=mask.index, columns=mask.columns) exits = pd.Series([True, False, True, False, True], index=mask.index) pd.testing.assert_frame_equal( entries.vbt.signals.clean(), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[1], pd.DataFrame( np.array([ [False, True, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.clean(entries, entries, entries) def test_generate_random(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, n=3, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([False, True, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), n=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=3, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [True, True, True], [True, True, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [False, False, True], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, prob=0.5, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), prob=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=0.5, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, True], [False, True, False], [False, False, False], [False, False, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, True, True], [False, False, True], [False, False, True], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], pick_first=True, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_random_both(self): # n en, ex = pd.Series.vbt.signals.generate_random_both( 5, n=2, seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, False]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=2, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, True, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, False, True], [False, True, False], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, True], [False, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((2, 3), n=2, seed=seed, entry_wait=1, exit_wait=0) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True] ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((3, 3), n=2, seed=seed, entry_wait=0, exit_wait=1) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((7, 3), n=2, seed=seed, entry_wait=2, exit_wait=2) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True] ]) ) ) n = 10 a = np.full(n * 2, 0.) for i in range(10000): en, ex = pd.Series.vbt.signals.generate_random_both(1000, n, entry_wait=2, exit_wait=2) _a = np.empty((n * 2,), dtype=np.int_) _a[0::2] = np.flatnonzero(en) _a[1::2] = np.flatnonzero(ex) a += _a greater = a > 10000000 / (2 * n + 1) * np.arange(0, 2 * n) less = a < 10000000 / (2 * n + 1) * np.arange(2, 2 * n + 2) assert np.all(greater & less) # probs en, ex = pd.Series.vbt.signals.generate_random_both( 5, entry_prob=0.5, exit_prob=1., seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=0.5, exit_prob=1., seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=[0., 0.5, 1.], exit_prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, True, True], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., exit_wait=0, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=False, exit_pick_first=True, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=True, exit_pick_first=False, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) # none with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) def test_generate_random_exits(self): pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(seed=seed), pd.Series( np.array([False, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, False], [False, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(prob=1., seed=seed), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=[0., 0.5, 1.], seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., wait=0, seed=seed), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., until_next=False, seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_stop_exits(self): e = pd.Series([True, False, False, False, False, False]) t = pd.Series([2, 3, 4, 3, 2, 1]).astype(np.float64) # stop loss pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits(t.vbt.tile(3), [np.nan, -0.5, -1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, True, False], [False, True, False] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # take profit pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits((4 - t).vbt.tile(3), [np.nan, 0.5, 1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, True, True], [False, True, True] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # chain e = pd.Series([True, True, True, True, True, True]) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, True])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, entry_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, False, True])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) # until_next and pick_first e2 = pd.Series([True, True, True, True, True, True]) t2 = pd.Series([6, 5, 4, 3, 2, 1]).astype(np.float64) ex = e2.vbt.signals.generate_stop_exits(t2, -0.1, until_next=False, pick_first=False) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, True, True, True, True, True])) ) def test_generate_ohlc_stop_exits(self): with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=-0.1) with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=-0.1) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1, reverse=True) ) def _test_ohlc_stop_exits(**kwargs): out_dict = {'stop_price': np.nan, 'stop_type': -1} result = mask.vbt.signals.generate_ohlc_stop_exits( price['open'], price['high'], price['low'], price['close'], out_dict=out_dict, **kwargs ) if isinstance(result, tuple): _, ex = result else: ex = result return result, out_dict['stop_price'], out_dict['stop_type'] ex, stop_price, stop_type = _test_ohlc_stop_exits() pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, 0], [0, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 11.7, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, 1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=[np.nan, 0.1, 0.2], sl_trail=True, tp_stop=[np.nan, 0.1, 0.2]) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, True, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 9.6] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, 1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1, exit_wait=0) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [9.0, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 11.7], [10.8, 9.0, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, 1, -1] ]), index=mask.index, columns=mask.columns) ) (en, ex), stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=0.1, sl_trail=True, tp_stop=0.1, chain=True) pd.testing.assert_frame_equal( en, pd.DataFrame(np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) def test_between_ranges(self): ranges = mask.vbt.signals.between_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 0, 3, 1), (1, 1, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask.vbt.wrapper mask2 = pd.DataFrame([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [False, False, False] ], index=mask.index, columns=mask.columns) other_mask = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [False, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_ranges(other=other_mask) record_arrays_close( ranges.values, np.array([ (0, 0, 0, 1, 1), (1, 0, 1, 1, 1), (2, 1, 0, 2, 1), (3, 1, 1, 2, 1), (4, 2, 0, 3, 1), (5, 2, 1, 3, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper ranges = mask2.vbt.signals.between_ranges(other=other_mask, from_other=True) record_arrays_close( ranges.values, np.array([ (0, 0, 1, 1, 1), (1, 0, 1, 2, 1), (2, 1, 1, 2, 1), (3, 1, 1, 3, 1), (4, 2, 1, 3, 1), (5, 2, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_partition_ranges(self): mask2 = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [True, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 0, 4, 4, 0), (2, 1, 2, 4, 1), (3, 2, 3, 4, 0) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_between_partition_ranges(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 1, 2, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.pos_rank(), pd.Series([-1, 0, 1, -1, 0], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 2, 2], [2, -1, 3] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask['a'], allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 0, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask, allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) def test_partition_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.partition_pos_rank(), pd.Series([-1, 0, 0, -1, 1], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 1, 1], [1, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [0, 0, -1], [-1, 0, 0], [1, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask['a']), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_fns(self): pd.testing.assert_frame_equal( (~mask).vbt.signals.first(), pd.DataFrame( np.array([ [False, True, True], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(1), pd.DataFrame( np.array([ [False, False, False], [False, False, True], [True, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(2), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.from_nth(0), pd.DataFrame( np.array([ [False, True, True], [True, False, True], [True, True, False], [False, True, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 1, 0, 0, 1, 0, 0, 1]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_partition_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.partition_pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 0, 1, 0, 0, 1, 0, 0]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_nth_index(self): assert mask['a'].vbt.signals.nth_index(0) == pd.Timestamp('2020-01-01 00:00:00') pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1), pd.Series([ pd.Timestamp('2020-01-04 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-2), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), np.nan ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) def test_norm_avg_index(self): assert mask['a'].vbt.signals.norm_avg_index() == -0.25 pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(), pd.Series([-0.25, 0.25, 0.0], index=mask.columns, name='norm_avg_index') ) pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(group_by=group_by), pd.Series([0.0, 0.0], index=['g1', 'g2'], name='norm_avg_index') ) def test_index_mapped(self): mapped = mask.vbt.signals.index_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 3, 1, 4, 2]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 1, 1, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 3, 1, 4, 2]) ) assert mapped.wrapper == mask.vbt.wrapper def test_total(self): assert mask['a'].vbt.signals.total() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total(), pd.Series([2, 2, 1], index=mask.columns, name='total') ) pd.testing.assert_series_equal( mask.vbt.signals.total(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total') ) def test_rate(self): assert mask['a'].vbt.signals.rate() == 0.4 pd.testing.assert_series_equal( mask.vbt.signals.rate(), pd.Series([0.4, 0.4, 0.2], index=mask.columns, name='rate') ) pd.testing.assert_series_equal( mask.vbt.signals.rate(group_by=group_by), pd.Series([0.4, 0.2], index=['g1', 'g2'], name='rate') ) def test_total_partitions(self): assert mask['a'].vbt.signals.total_partitions() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(), pd.Series([2, 2, 1], index=mask.columns, name='total_partitions') ) pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total_partitions') ) def test_partition_rate(self): assert mask['a'].vbt.signals.partition_rate() == 1.0 pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(), pd.Series([1.0, 1.0, 1.0], index=mask.columns, name='partition_rate') ) pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(group_by=group_by), pd.Series([1.0, 1.0], index=['g1', 'g2'], name='partition_rate') ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Total', 'Rate [%]', 'First Index', 'Last Index', 'Norm Avg Index [-1, 1]', 'Distance: Min', 'Distance: Max', 'Distance: Mean', 'Distance: Std', 'Total Partitions', 'Partition Rate [%]', 'Partition Length: Min', 'Partition Length: Max', 'Partition Length: Mean', 'Partition Length: Std', 'Partition Distance: Min', 'Partition Distance: Max', 'Partition Distance: Mean', 'Partition Distance: Std' ], dtype='object') pd.testing.assert_series_equal( mask.vbt.signals.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 1.6666666666666667, 33.333333333333336, pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), 0.0, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 1.6666666666666667, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 2, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 2, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a', settings=dict(to_timedelta=False)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), 5, 2, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, 3.0, 3.0, 3.0, np.nan, 2, 100.0, 1.0, 1.0, 1.0, 0.0, 3.0, 3.0, 3.0, np.nan ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a', settings=dict(other=mask['b'], from_other=True)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 2, 40.0, 0, 0.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 2, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=pd.Index([ 'Start', 'End', 'Period', 'Total', 'Rate [%]', 'Total Overlapping', 'Overlapping Rate [%]', 'First Index', 'Last Index', 'Norm Avg Index [-1, 1]', 'Distance <- Other: Min', 'Distance <- Other: Max', 'Distance <- Other: Mean', 'Distance <- Other: Std', 'Total Partitions', 'Partition Rate [%]', 'Partition Length: Min', 'Partition Length: Max', 'Partition Length: Mean', 'Partition Length: Std', 'Partition Distance: Min', 'Partition Distance: Max', 'Partition Distance: Mean', 'Partition Distance: Std' ], dtype='object'), name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 4, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), 0.0, pd.Timedelta('3 days 00:00:00'),
pd.Timedelta('3 days 00:00:00')
pandas.Timedelta
import numpy as np import pandas as pd class NB: def __init__(self): self.target = "" # name of the label self.columns = pd.Index([]) # name of the features self.num_cols = pd.Index([]) # name of numerical features self.cat_cols = pd.Index([]) # name of categorical features self.py = {} # P(y) self.px = {} # P(xi|y) def train(self, X: pd.DataFrame, y: pd.Series): # Sanity check assert all(X.index == y.index), "Indices mismatch" # Drop rows with missing data Xy = pd.concat([X, y], axis=1).dropna(axis=0, how='any') _X, _y = Xy[X.columns], Xy[y.name] # Initialization self.target = _y.name self.columns = _X.columns self.num_cols = _X.select_dtypes(include='number').columns self.cat_cols = _X.select_dtypes(exclude='number').columns self.cat_cols = self.columns.drop(self.num_cols) # Estimate log P(y) y_counts = _y.value_counts() y_total = y_counts.sum() self.py = {y_val: y_count / y_total for y_val, y_count in y_counts.iteritems()} # Estimate log P(xi|y) for y_val, py in self.py.items(): self.px[y_val] = {} X_given_y = _X[_y == y_val] # Split X_given_y into numerical and categorical parts X_num_given_y = X_given_y[self.num_cols] X_cat_given_y = X_given_y[self.cat_cols] # Numerical: mean and standard deviation self.px[y_val]['numerical'] = X_num_given_y.describe().loc[['mean', 'std'], :] # Categorical: frequency self.px[y_val]['categorical'] = {feature: xi.value_counts(normalize=True) for feature, xi in X_cat_given_y.iteritems()} def predict(self, X: pd.DataFrame, return_LL: bool = False): r"""Predict the labels of all the instances in a feature matrix Args: X: pd.DataFrame return_LL: bool If set to True, return the log-posterior Returns: pred (return_LL=False) pred, LL (return_LL=True) """ pred = [] LL = [] for index, x in X.iterrows(): # Compute log-likelihood ll = self.LL_numerical(x) + self.LL_categorical(x) # Find the most likely label ll.sort_values(ascending=False, inplace=True) LL.append(ll) if np.inf in ll.values: # xi contains values not included by the training set # Break ties by comparing P(y) pred.append(pd.Series(self.py).sort_values(ascending=False).index[0]) else: pred.append(ll.index[0]) # Clean up LL and pred LL =
pd.concat(LL, axis=1)
pandas.concat
from ...utils import constants import pandas as pd import geopandas as gpd import numpy as np import shapely import pytest from contextlib import ExitStack from sklearn.metrics import mean_absolute_error from ...preprocessing import detection, clustering from ...models.sts_epr import STS_epr from ...core.trajectorydataframe import TrajDataFrame from ...models.markov_diary_generator import MarkovDiaryGenerator def global_variables(): # tessellation tess_polygons = [[[7.481, 45.184], [7.481, 45.216], [7.526, 45.216], [7.526, 45.184], [7.481, 45.184]], [[7.481, 45.216], [7.481, 45.247], [7.526, 45.247], [7.526, 45.216], [7.481, 45.216]], [[7.526, 45.184], [7.526, 45.216], [7.571, 45.216], [7.571, 45.184], [7.526, 45.184]], [[7.526, 45.216], [7.526, 45.247], [7.571, 45.247], [7.571, 45.216], [7.526, 45.216]]] geom = [shapely.geometry.Polygon(p) for p in tess_polygons] tessellation = gpd.GeoDataFrame(geometry=geom, crs="EPSG:4326") tessellation = tessellation.reset_index().rename(columns={"index": constants.TILE_ID}) relevance = np.random.randint(5, 10, size=len(tessellation)) tessellation[constants.RELEVANCE] = relevance social_graph = [[0,1],[0,2],[0,3],[1,3],[2,4]] # mobility diary generator lats_lngs = np.array([[39.978253, 116.3272755], [40.013819, 116.306532], [39.878987, 116.1266865], [40.013819, 116.306532], [39.97958, 116.313649], [39.978696, 116.3262205], [39.98153775, 116.31079], [39.978161, 116.3272425], [38.978161, 115.3272425]]) traj = pd.DataFrame(lats_lngs, columns=[constants.LATITUDE, constants.LONGITUDE]) traj[constants.DATETIME] = pd.to_datetime([ '20130101 8:34:04', '20130101 10:34:08', '20130105 10:34:08', '20130110 12:34:15', '20130101 1:34:28', '20130101 3:34:54', '20130101 4:34:55', '20130105 5:29:12', '20130115 00:29:12']) traj[constants.UID] = [1 for _ in range(5)] + [2 for _ in range(3)] + [3] tdf = TrajDataFrame(traj) ctdf = clustering.cluster(tdf) mdg = MarkovDiaryGenerator() mdg.fit(ctdf, 3, lid='cluster') return tessellation, social_graph, mdg tessellation, social_graph, mdg = global_variables() sts_epr = STS_epr() @pytest.mark.parametrize('start_date', [pd.to_datetime('2020/01/01 08:00:00')]) @pytest.mark.parametrize('end_date', [pd.to_datetime('2020/01/10 08:00:00')]) @pytest.mark.parametrize('spatial_tessellation', [tessellation]) @pytest.mark.parametrize('diary_generator', [mdg]) @pytest.mark.parametrize('social_graph', [social_graph, 'random']) @pytest.mark.parametrize('n_agents', [1,5]) @pytest.mark.parametrize('rsl', [True, False]) @pytest.mark.parametrize('relevance_column',['relevance']) @pytest.mark.parametrize('random_state', [2]) @pytest.mark.parametrize('show_progress', [True]) # First test set: CORRECT arguments, no ERRORS expected (#test: 8) def test_sts_generate_success(start_date, end_date, spatial_tessellation, diary_generator, social_graph, n_agents, rsl, relevance_column, random_state, show_progress): sts_epr = STS_epr() tdf = sts_epr.generate(start_date=start_date, end_date=end_date, spatial_tessellation=spatial_tessellation, social_graph=social_graph, diary_generator=diary_generator, n_agents= n_agents, rsl=rsl, relevance_column=relevance_column, random_state=random_state, show_progress=show_progress) assert isinstance(tdf, TrajDataFrame) # Second test set: WRONG arguments, expected to FAIL # test 2.1: wrong n_agents (#test: 3) @pytest.mark.parametrize('start_date', [pd.to_datetime('2020/01/01 08:00:00')]) @pytest.mark.parametrize('end_date', [pd.to_datetime('2020/01/10 08:00:00')]) @pytest.mark.parametrize('spatial_tessellation', [tessellation]) @pytest.mark.parametrize('diary_generator', [mdg]) @pytest.mark.parametrize('social_graph', [social_graph]) @pytest.mark.parametrize('n_agents', [-2,-1,0]) @pytest.mark.parametrize('rsl', [True]) @pytest.mark.parametrize('relevance_column',['relevance']) @pytest.mark.parametrize('random_state', [2]) @pytest.mark.parametrize('show_progress', [True]) @pytest.mark.xfail(raises=ValueError) def test_sts_wrong_n_agents(start_date, end_date, spatial_tessellation, diary_generator, social_graph, n_agents, rsl, relevance_column, random_state, show_progress): sts_epr = STS_epr() tdf = sts_epr.generate(start_date=start_date, end_date=end_date, spatial_tessellation=spatial_tessellation, social_graph=social_graph, diary_generator=diary_generator, n_agents= n_agents, rsl=rsl, relevance_column=relevance_column, random_state=random_state, show_progress=show_progress) assert isinstance(tdf, TrajDataFrame) # test 2.2: end_date prior to start_date (#test: 1) @pytest.mark.parametrize('start_date', [pd.to_datetime('2020/01/10 08:00:00')]) @pytest.mark.parametrize('end_date', [pd.to_datetime('2020/01/01 08:00:00')]) @pytest.mark.parametrize('spatial_tessellation', [tessellation]) @pytest.mark.parametrize('diary_generator', [mdg]) @pytest.mark.parametrize('social_graph', [social_graph]) @pytest.mark.parametrize('n_agents', [5]) @pytest.mark.parametrize('rsl', [True]) @pytest.mark.parametrize('relevance_column',['relevance']) @pytest.mark.parametrize('random_state', [2]) @pytest.mark.parametrize('show_progress', [True]) @pytest.mark.xfail(raises=ValueError) def test_sts_wrong_dates(start_date, end_date, spatial_tessellation, diary_generator, social_graph, n_agents, rsl, relevance_column, random_state, show_progress): sts_epr = STS_epr() tdf = sts_epr.generate(start_date=start_date, end_date=end_date, spatial_tessellation=spatial_tessellation, social_graph=social_graph, diary_generator=diary_generator, n_agents= n_agents, rsl=rsl, relevance_column=relevance_column, random_state=random_state, show_progress=show_progress) # test 2.3: wrong rsl type (#test: 3) @pytest.mark.parametrize('start_date', [pd.to_datetime('2020/01/01 08:00:00')]) @pytest.mark.parametrize('end_date', [pd.to_datetime('2020/01/10 08:00:00')]) @pytest.mark.parametrize('spatial_tessellation', [tessellation]) @pytest.mark.parametrize('diary_generator', [mdg]) @pytest.mark.parametrize('social_graph', [social_graph]) @pytest.mark.parametrize('n_agents', [5]) @pytest.mark.parametrize('rsl', [1, None, 'True']) @pytest.mark.parametrize('relevance_column',['relevance']) @pytest.mark.parametrize('random_state', [2]) @pytest.mark.parametrize('show_progress', [True]) @pytest.mark.xfail(raises=TypeError) def test_sts_wrong_rsl_type(start_date, end_date, spatial_tessellation, diary_generator, social_graph, n_agents, rsl, relevance_column, random_state, show_progress): sts_epr = STS_epr() tdf = sts_epr.generate(start_date=start_date, end_date=end_date, spatial_tessellation=spatial_tessellation, social_graph=social_graph, diary_generator=diary_generator, n_agents= n_agents, rsl=rsl, relevance_column=relevance_column, random_state=random_state, show_progress=show_progress) # test 2.4: wrong type for the spatial_tessellation (#test: 5) @pytest.mark.parametrize('start_date', [pd.to_datetime('2020/01/01 08:00:00')]) @pytest.mark.parametrize('end_date', [pd.to_datetime('2020/01/10 08:00:00')]) @pytest.mark.parametrize('spatial_tessellation', ["", None, [], "tessellation", [1,2,3]]) @pytest.mark.parametrize('diary_generator', [mdg]) @pytest.mark.parametrize('social_graph', [social_graph]) @pytest.mark.parametrize('n_agents', [5]) @pytest.mark.parametrize('rsl', [True]) @pytest.mark.parametrize('relevance_column',['relevance']) @pytest.mark.parametrize('random_state', [2]) @pytest.mark.parametrize('show_progress', [True]) @pytest.mark.xfail(raises=TypeError) def test_sts_wrong_tex_type(start_date, end_date, spatial_tessellation, diary_generator, social_graph, n_agents, rsl, relevance_column, random_state, show_progress): sts_epr = STS_epr() tdf = sts_epr.generate(start_date=start_date, end_date=end_date, spatial_tessellation=spatial_tessellation, social_graph=social_graph, diary_generator=diary_generator, n_agents= n_agents, rsl=rsl, relevance_column=relevance_column, random_state=random_state, show_progress=show_progress) # test 2.5: # of tiles in spatial_tessellation < 3 (#test: 3) @pytest.mark.parametrize('start_date', [pd.to_datetime('2020/01/01 08:00:00')]) @pytest.mark.parametrize('end_date', [pd.to_datetime('2020/01/10 08:00:00')]) @pytest.mark.parametrize('spatial_tessellation', [pd.DataFrame(),tessellation[:1],tessellation[:2]]) @pytest.mark.parametrize('diary_generator', [mdg]) @pytest.mark.parametrize('social_graph', [social_graph]) @pytest.mark.parametrize('n_agents', [5]) @pytest.mark.parametrize('rsl', [True]) @pytest.mark.parametrize('relevance_column',['relevance']) @pytest.mark.parametrize('random_state', [2]) @pytest.mark.parametrize('show_progress', [True]) @pytest.mark.xfail(raises=ValueError) def test_sts_wrong_tiles_num(start_date, end_date, spatial_tessellation, diary_generator, social_graph, n_agents, rsl, relevance_column, random_state, show_progress): sts_epr = STS_epr() tdf = sts_epr.generate(start_date=start_date, end_date=end_date, spatial_tessellation=spatial_tessellation, social_graph=social_graph, diary_generator=diary_generator, n_agents= n_agents, rsl=rsl, relevance_column=relevance_column, random_state=random_state, show_progress=show_progress) # test 2.6: wrong relevance's column name (#test: 1) @pytest.mark.parametrize('start_date', [pd.to_datetime('2020/01/01 08:00:00')]) @pytest.mark.parametrize('end_date', [pd.to_datetime('2020/01/10 08:00:00')]) @pytest.mark.parametrize('spatial_tessellation', [tessellation]) @pytest.mark.parametrize('diary_generator', [mdg]) @pytest.mark.parametrize('social_graph', [social_graph]) @pytest.mark.parametrize('n_agents', [5]) @pytest.mark.parametrize('rsl', [True,]) @pytest.mark.parametrize('relevance_column',['rel']) @pytest.mark.parametrize('random_state', [2]) @pytest.mark.parametrize('show_progress', [True]) @pytest.mark.xfail(raises=IndexError) def test_sts_wrong_relevance_col_name(start_date, end_date, spatial_tessellation, diary_generator, social_graph, n_agents, rsl, relevance_column, random_state, show_progress): sts_epr = STS_epr() tdf = sts_epr.generate(start_date=start_date, end_date=end_date, spatial_tessellation=spatial_tessellation, social_graph=social_graph, diary_generator=diary_generator, n_agents= n_agents, rsl=rsl, relevance_column=relevance_column, random_state=random_state, show_progress=show_progress) # test 2.7: wrong type for the diary_generator (#test: 3) @pytest.mark.parametrize('start_date', [pd.to_datetime('2020/01/01 08:00:00')]) @pytest.mark.parametrize('end_date', [pd.to_datetime('2020/01/10 08:00:00')]) @pytest.mark.parametrize('spatial_tessellation', [tessellation]) @pytest.mark.parametrize('diary_generator', [[],None,pd.DataFrame()]) @pytest.mark.parametrize('social_graph', [social_graph]) @pytest.mark.parametrize('n_agents', [5]) @pytest.mark.parametrize('rsl', [True,]) @pytest.mark.parametrize('relevance_column',['relevance']) @pytest.mark.parametrize('random_state', [2]) @pytest.mark.parametrize('show_progress', [True]) @pytest.mark.xfail(raises=TypeError) def test_sts_wrong_relevance_col_name(start_date, end_date, spatial_tessellation, diary_generator, social_graph, n_agents, rsl, relevance_column, random_state, show_progress): sts_epr = STS_epr() tdf = sts_epr.generate(start_date=start_date, end_date=end_date, spatial_tessellation=spatial_tessellation, social_graph=social_graph, diary_generator=diary_generator, n_agents= n_agents, rsl=rsl, relevance_column=relevance_column, random_state=random_state, show_progress=show_progress) # Third test set: assert the correctness of the model's functions def all_equal(a, b, threshold=1e-3): return mean_absolute_error(a, b) <= threshold def correcteness_set_exp(a,b): for i in range(len(b)): if a[i]>0 and b[i]>0: return False return True def correcteness_set_ret(a, b): for i in range(len(b)): if b[i]>0 and a[i]==0: return False return True def correcteness_set_exp_social(lva,lvc,choices): for i in range(len(choices)): if choices[i]>0: if not (lva[i]==0 and lvc[i]>0): return False return True def correcteness_set_ret_social(lva,lvc,choices): for i in range(len(choices)): if choices[i]>0: if not (lva[i]>0 and lvc[i]>0): return False return True # test 3.1: correct random_weighted_choice (#test: 1) @pytest.mark.parametrize('size', [1000]) @pytest.mark.parametrize('n_picks', [int(1e4)]) def test_weighted_random_choice(size,n_picks): np.random.seed(24) sts_epr = STS_epr() weigths = np.random.randint(0, 10, size=size) theoretical = weigths/np.sum(weigths) empirical = [0]*len(weigths) for j in range(n_picks): i = sts_epr.random_weighted_choice(weigths) empirical[i]+=1 empirical = empirical/np.sum(empirical) assert(all_equal(theoretical,empirical)) # test 3.2: correct exploration choices (#test: 1) # create a fake location vector of size n for the agent A (id=0) # m elements = 0 and j elements > 0, m+j=n # RETURN @pytest.mark.parametrize('m', [3]) @pytest.mark.parametrize('j', [1]) @pytest.mark.parametrize('n_picks', [int(1e4)]) @pytest.mark.parametrize('start_date', [
pd.to_datetime('2020/01/01 08:00:00')
pandas.to_datetime
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10)
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
import pandas as pd import numpy as np import matplotlib.pyplot as plt TCGA_GENE_EXPRESSION = '../../drp-data/preprocessed/gdsc_tcga/tcga_labeled_log2_gene_expr.csv' tcga = pd.read_csv(TCGA_GENE_EXPRESSION, index_col=0) genes = tcga.index print("feature genes:", len(genes)) pathway_file = '../../drp-data/pathways/9606.enrichr_pathway.edge' pathway = pd.read_csv(pathway_file, sep='\t', header=None) print("pathways:", pathway[0].nunique()) print("pathway genes:", pathway[1].nunique()) ppi_file = '../../drp-data/pathways/9606.STRING_experimental.edge' ppi = pd.read_csv(ppi_file, sep='\t', header=None) print("PPI original edges:", len(ppi)) ppi['norm_score'] = ppi[2]/ppi[2].max() ppi = ppi.loc[ppi['norm_score'] > 0.5] print("PPI filtered edges:", len(ppi)) nodes = list(set(ppi[0]).union(set(ppi[1]))) print("PPI nodes:", len(nodes) ) mean_attribution_file = '../../' drugs = [ 'bleomycin', 'cisplatin', 'cyclophosphamide', 'docetaxel', 'doxorubicin', 'etoposide', 'gemcitabine', 'irinotecan', 'oxaliplatin', 'paclitaxel', 'pemetrexed', 'tamoxifen', 'temozolomide', 'vinorelbine'] folder = 'CX_ens10' attr_dict = {} for i, drug in enumerate(drugs): print(drug) _, _, _, test_tcga_expr = dataset.filter_and_normalize_data(drug) exp = CXPlain.load('gene_finding/results/%s/%s/explainer'%(folder, drug), custom_model_loader=None, relpath=True) attr,_ = exp.explain(test_tcga_expr.values) attr = pd.DataFrame(attr, index=test_tcga_expr.index, columns=dataset.genes) attr_dict[drug]=attr fig, axes = plt.subplots(7, 2, figsize=(14, 35)) writer_a = pd.ExcelWriter('gene_finding/results/%s/top_genes_mean_aggregation.xlsx'%folder, engine='xlsxwriter') # writer_b = pd.ExcelWriter('gene_finding/results/%s/all_attributions.xlsx'%folder, engine='xlsxwriter') conv =
pd.DataFrame(index=dataset.genes, columns=['hgnc'])
pandas.DataFrame
"""A collection of pandas data interfaces to a project instance.""" from __future__ import absolute_import import os.path as osp from glob import glob import warnings try: import pandas as pd except ImportError: raise ImportError('The pandas package is required for this plugin. ' 'Try pip install pandas') class ProjectOrRunData(pd.DataFrame): """ A representation of data read from either the project, a Run or path. """ path = None plugin = [] def __init__(self, projectrunorpath): from modelmanager.project import Project # init DataFrame
pd.DataFrame.__init__(self)
pandas.DataFrame.__init__
import pandas as pd data = pd.read_excel('Questions.xlsx') df =
pd.DataFrame(data)
pandas.DataFrame
from layers.makeup_dataframe import merge_initialized_table from libs.extensions import Extension import pandas as pd import numpy as np class Yjzt(Extension): """预警状态""" """ 计算公式: 当同比或环比的绝对值超过20%即为告警,绝对值超过10%即为异常,否则为平稳 """ def __init__(self, apis_copy, apis, *args, **kwargs): # 执行父类方法,获得self.apis/self.apis_copy/self.value super(Yjzt, self).__init__(apis_copy, apis, *args, **kwargs) # 执行父类方法,获得self.apis/self.apis_copy def before_search(self): self._before_search() # 此时self.before_waiting_for_search中就有了最基本的内容 condition_tb = Yjzt.params_parse_tb(self.apis.copy()) condition_hb = Yjzt.params_parse_hb(self.apis.copy()) condition_tb_container = self.before_waiting_for_search[0]["conditions"].copy() condition_hb_container = self.before_waiting_for_search[0]["conditions"].copy() condition_tb_container.append(condition_tb) condition_hb_container.append(condition_hb) # waiting_for_search = [{"conditions: [当前, 同比的上一阶段]"}, {"conditions: [当前, 环比的上一阶段]"}] self.before_waiting_for_search.append(self.before_waiting_for_search[0].copy()) self.before_waiting_for_search[0]["conditions"] = condition_tb_container self.before_waiting_for_search[1]["conditions"] = condition_hb_container self.code, self.msg, self.waiting_for_search = Yjzt.get_waiting_for_search(self.before_waiting_for_search) def after_search(self): """ self.db_results: [[df_my],[df_bmy],[df_jbmy]] :return: """ # 获取结果 self.db_results[0][0] = Extension.groupby_and_sum(self.db_results[0][0], self.value) self.db_results[0][1] = Extension.groupby_and_sum(self.db_results[0][1], self.value) self.db_results[1][0] = Extension.groupby_and_sum(self.db_results[1][0], self.value) self.db_results[1][1] = Extension.groupby_and_sum(self.db_results[1][1], self.value) if isinstance(self.db_results[0][0], pd.DataFrame) and self.db_results[0][0].shape[1] == 1 and self.db_results[0][0][self.value][0] is None: self.db_results[0][0] = np.int32(0) if isinstance(self.db_results[0][1], pd.DataFrame) and self.db_results[0][1].shape[1] == 1 and self.db_results[0][1][self.value][0] is None: self.db_results[0][1] = np.int32(0) if isinstance(self.db_results[1][0], pd.DataFrame) and self.db_results[1][0].shape[1] == 1 and self.db_results[1][0][self.value][0] is None: self.db_results[1][0] = np.int32(0) if isinstance(self.db_results[1][1], pd.DataFrame) and self.db_results[1][1].shape[1] == 1 and self.db_results[1][1][self.value][0] is None: self.db_results[1][1] = np.int32(0) df_tb, df_hb = Yjzt.calculate_tb_and_hb(self.db_results, self.apis_copy) self.apis_copy["value"] = "yjzt" if not isinstance(df_tb, pd.DataFrame) or not isinstance(df_hb, pd.DataFrame): res = "平稳" if abs(df_tb) > 0.2 or abs(df_hb) > 0.2: res = "告警" elif abs(df_tb) > 0.1 or abs(df_hb) > 0.1: res = "异常" self.df =
pd.DataFrame({"yjzt": [res]})
pandas.DataFrame
import numpy as np import numpy.testing as npt import pandas as pd from stumpy import aampi, core, config import pytest import naive substitution_locations = [(slice(0, 0), 0, -1, slice(1, 3), [0, 3])] substitution_values = [np.nan, np.inf] def test_aampi_int_input(): with pytest.raises(TypeError): aampi(np.arange(10), 5) def test_aampi_self_join(): m = 3 for p in [1.0, 2.0, 3.0]: seed = np.random.randint(100000) np.random.seed(seed) n = 30 T = np.random.rand(n) stream = aampi(T, m, egress=False, p=p) for i in range(34): t = np.random.rand() stream.update(t) comp_P = stream.P_ comp_I = stream.I_ comp_left_P = stream.left_P_ comp_left_I = stream.left_I_ ref_mp = naive.aamp(stream.T_, m, p=p) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_P = np.full(ref_P.shape, np.inf) ref_left_I = ref_mp[:, 2] for i, j in enumerate(ref_left_I): if j >= 0: ref_left_P[i] = np.linalg.norm( stream.T_[i : i + m] - stream.T_[j : j + m], ord=p ) naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) np.random.seed(seed) n = 30 T = np.random.rand(n) T = pd.Series(T) stream = aampi(T, m, egress=False, p=p) for i in range(34): t = np.random.rand() stream.update(t) comp_P = stream.P_ comp_I = stream.I_ comp_left_P = stream.left_P_ comp_left_I = stream.left_I_ naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) def test_aampi_self_join_egress(): m = 3 for p in [1.0, 2.0, 3.0]: seed = np.random.randint(100000) np.random.seed(seed) n = 30 T = np.random.rand(n) ref_mp = naive.aampi_egress(T, m, p=p) ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ stream = aampi(T, m, egress=True, p=p) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) for i in range(34): t = np.random.rand() ref_mp.update(t) stream.update(t) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) np.random.seed(seed) T = np.random.rand(n) T = pd.Series(T) ref_mp = naive.aampi_egress(T, m, p=p) ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ stream = aampi(T, m, egress=True, p=p) comp_P = stream.P_.copy() comp_I = stream.I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) for i in range(34): t = np.random.rand() ref_mp.update(t) stream.update(t) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) @pytest.mark.parametrize("substitute", substitution_values) @pytest.mark.parametrize("substitution_locations", substitution_locations) def test_aampi_init_nan_inf_self_join(substitute, substitution_locations): m = 3 seed = np.random.randint(100000) # seed = 58638 for substitution_location in substitution_locations: np.random.seed(seed) n = 30 T = np.random.rand(n) if substitution_location == -1: substitution_location = T.shape[0] - 1 T[substitution_location] = substitute stream = aampi(T, m, egress=False) for i in range(34): t = np.random.rand() stream.update(t) comp_P = stream.P_ comp_I = stream.I_ stream.T_[substitution_location] = substitute ref_mp = naive.aamp(stream.T_, m) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) np.random.seed(seed) n = 30 T = np.random.rand(n) if substitution_location == -1: # pragma: no cover substitution_location = T.shape[0] - 1 T[substitution_location] = substitute T = pd.Series(T) stream = aampi(T, m, egress=False) for i in range(34): t = np.random.rand() stream.update(t) comp_P = stream.P_ comp_I = stream.I_ naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("substitute", substitution_values) @pytest.mark.parametrize("substitution_locations", substitution_locations) def test_aampi_init_nan_inf_self_join_egress(substitute, substitution_locations): m = 3 seed = np.random.randint(100000) # seed = 58638 for substitution_location in substitution_locations: np.random.seed(seed) n = 30 T = np.random.rand(n) if substitution_location == -1: substitution_location = T.shape[0] - 1 T[substitution_location] = substitute ref_mp = naive.aampi_egress(T, m) ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ stream = aampi(T, m, egress=True) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) for i in range(34): t = np.random.rand() ref_mp.update(t) stream.update(t) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) np.random.seed(seed) n = 30 T = np.random.rand(n) T = pd.Series(T) ref_mp = naive.aampi_egress(T, m) ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ stream = aampi(T, m, egress=True) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) naive.replace_inf(ref_left_P) naive.replace_inf(comp_left_P) for i in range(34): t = np.random.rand() ref_mp.update(t) stream.update(t) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) @pytest.mark.parametrize("substitute", substitution_values) @pytest.mark.parametrize("substitution_locations", substitution_locations) def test_aampi_stream_nan_inf_self_join(substitute, substitution_locations): m = 3 seed = np.random.randint(100000) for substitution_location in substitution_locations: np.random.seed(seed) n = 30 T = np.random.rand(64) stream = aampi(T[:n], m, egress=False) if substitution_location == -1: substitution_location = T[n:].shape[0] - 1 T[n:][substitution_location] = substitute for t in T[n:]: stream.update(t) comp_P = stream.P_ comp_I = stream.I_ stream.T_[n:][substitution_location] = substitute ref_mp = naive.aamp(stream.T_, m) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) np.random.seed(seed) T = np.random.rand(64) stream = aampi(pd.Series(T[:n]), m, egress=False) if substitution_location == -1: # pragma: no cover substitution_location = T[n:].shape[0] - 1 T[n:][substitution_location] = substitute for t in T[n:]: stream.update(t) comp_P = stream.P_ comp_I = stream.I_ naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("substitute", substitution_values) @pytest.mark.parametrize("substitution_locations", substitution_locations) def test_aampi_stream_nan_inf_self_join_egress(substitute, substitution_locations): m = 3 seed = np.random.randint(100000) for substitution_location in substitution_locations: np.random.seed(seed) n = 30 T = np.random.rand(64) ref_mp = naive.aampi_egress(T[:n], m) ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ stream = aampi(T[:n], m, egress=True) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) if substitution_location == -1: substitution_location = T[n:].shape[0] - 1 T[n:][substitution_location] = substitute for t in T[n:]: ref_mp.update(t) stream.update(t) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) np.random.seed(seed) T = np.random.rand(64) ref_mp = naive.aampi_egress(T[:n], m) ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ stream = aampi(pd.Series(T[:n]), m, egress=True) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) if substitution_location == -1: # pragma: no cover substitution_location = T[n:].shape[0] - 1 T[n:][substitution_location] = substitute for t in T[n:]: ref_mp.update(t) stream.update(t) comp_P = stream.P_.copy() comp_I = stream.I_ comp_left_P = stream.left_P_.copy() comp_left_I = stream.left_I_ ref_P = ref_mp.P_.copy() ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() ref_left_I = ref_mp.left_I_ naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) npt.assert_almost_equal(ref_left_I, comp_left_I) def test_aampi_constant_subsequence_self_join(): m = 3 seed = np.random.randint(100000) np.random.seed(seed) T = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(10, dtype=np.float64))) stream = aampi(T, m, egress=False) for i in range(34): t = np.random.rand() stream.update(t) comp_P = stream.P_ # comp_I = stream.I_ ref_mp = naive.aamp(stream.T_, m) ref_P = ref_mp[:, 0] # ref_I = ref_mp[:, 1] naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) # npt.assert_almost_equal(ref_I, comp_I) np.random.seed(seed) T = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(10, dtype=np.float64))) T = pd.Series(T) stream = aampi(T, m, egress=False) for i in range(34): t = np.random.rand() stream.update(t) comp_P = stream.P_ # comp_I = stream.I_ naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) # npt.assert_almost_equal(ref_I, comp_I) def test_aampi_constant_subsequence_self_join_egress(): m = 3 seed = np.random.randint(100000) np.random.seed(seed) T = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(10, dtype=np.float64))) ref_mp = naive.aampi_egress(T, m) ref_P = ref_mp.P_.copy() # ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() # ref_left_I = ref_mp.left_I_ stream = aampi(T, m, egress=True) comp_P = stream.P_.copy() # comp_I = stream.I_ comp_left_P = stream.left_P_.copy() # comp_left_I = stream.left_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) # npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) # npt.assert_almost_equal(ref_left_I, comp_left_I) for i in range(34): t = np.random.rand() ref_mp.update(t) stream.update(t) comp_P = stream.P_.copy() # comp_I = stream.I_ comp_left_P = stream.left_P_.copy() # comp_left_I = stream.left_I_ ref_P = ref_mp.P_.copy() # ref_I = ref_mp.I_ ref_left_P = ref_mp.left_P_.copy() # ref_left_I = ref_mp.left_I_ naive.replace_inf(ref_P) naive.replace_inf(ref_left_P) naive.replace_inf(comp_P) naive.replace_inf(comp_left_P) npt.assert_almost_equal(ref_P, comp_P) # npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_P, comp_left_P) # npt.assert_almost_equal(ref_left_I, comp_left_I) np.random.seed(seed) T = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(10, dtype=np.float64))) T =
pd.Series(T)
pandas.Series
import pandas as pd import pytest import numpy as np import dask.dataframe as dd from dask.dataframe.utils import assert_eq, PANDAS_VERSION N = 40 df = pd.DataFrame( { "a": np.random.randn(N).cumsum(), "b": np.random.randint(100, size=(N,)), "c": np.random.randint(100, size=(N,)), "d": np.random.randint(100, size=(N,)), "e": np.random.randint(100, size=(N,)), } ) ddf = dd.from_pandas(df, 3) idx = ( pd.date_range("2016-01-01", freq="3s", periods=100) | pd.date_range("2016-01-01", freq="5s", periods=100) )[:N] ts = pd.DataFrame( { "a": np.random.randn(N).cumsum(), "b": np.random.randint(100, size=(N,)), "c": np.random.randint(100, size=(N,)), "d": np.random.randint(100, size=(N,)), "e": np.random.randint(100, size=(N,)), }, index=idx, ) dts = dd.from_pandas(ts, 3) def shifted_sum(df, before, after, c=0): a = df.shift(before) b = df.shift(-after) return df + a + b + c def ts_shifted_sum(df, before, after, c=0): a = df.shift(before.seconds) b = df.shift(-after.seconds) return df + a + b + c @pytest.mark.parametrize("npartitions", [1, 4]) def test_map_overlap(npartitions): ddf = dd.from_pandas(df, npartitions) for before, after in [(0, 3), (3, 0), (3, 3), (0, 0)]: # DataFrame res = ddf.map_overlap(shifted_sum, before, after, before, after, c=2) sol = shifted_sum(df, before, after, c=2) assert_eq(res, sol) # Series res = ddf.b.map_overlap(shifted_sum, before, after, before, after, c=2) sol = shifted_sum(df.b, before, after, c=2) assert_eq(res, sol) def test_map_overlap_names(): npartitions = 3 ddf = dd.from_pandas(df, npartitions) res = ddf.map_overlap(shifted_sum, 0, 3, 0, 3, c=2) res2 = ddf.map_overlap(shifted_sum, 0, 3, 0, 3, c=2) assert set(res.dask) == set(res2.dask) res3 = ddf.map_overlap(shifted_sum, 0, 3, 0, 3, c=3) assert res3._name != res._name # Difference is just the final map diff = set(res3.dask).difference(res.dask) assert len(diff) == npartitions res4 = ddf.map_overlap(shifted_sum, 3, 0, 0, 3, c=2) assert res4._name != res._name def test_map_overlap_errors(): # Non-integer with pytest.raises(ValueError): ddf.map_overlap(shifted_sum, 0.5, 3, 0, 2, c=2) # Negative with pytest.raises(ValueError): ddf.map_overlap(shifted_sum, 0, -5, 0, 2, c=2) # Partition size < window size with pytest.raises(NotImplementedError): ddf.map_overlap(shifted_sum, 0, 100, 0, 100, c=2).compute() # Offset with non-datetime with pytest.raises(TypeError): ddf.map_overlap(shifted_sum, pd.Timedelta("1s"), pd.Timedelta("1s"), 0, 2, c=2) def test_map_overlap_provide_meta(): df = pd.DataFrame( {"x": [1, 2, 4, 7, 11], "y": [1.0, 2.0, 3.0, 4.0, 5.0]} ).rename_axis("myindex") ddf = dd.from_pandas(df, npartitions=2) # Provide meta spec, but not full metadata res = ddf.map_overlap( lambda df: df.rolling(2).sum(), 2, 0, meta={"x": "i8", "y": "i8"} ) sol = df.rolling(2).sum() assert_eq(res, sol) def mad(x): return np.fabs(x - x.mean()).mean() rolling_method_args_check_less_precise = [ ("count", (), False), ("sum", (), False), ("mean", (), False), ("median", (), False), ("min", (), False), ("max", (), False), ("std", (), True), ("var", (), True), ("skew", (), True), # here and elsewhere, results for kurt and skew are ("kurt", (), True), # checked with check_less_precise=True so that we are # only looking at 3ish decimal places for the equality check # rather than 5ish. I have encountered a case where a test # seems to have failed due to numerical problems with kurt. # So far, I am only weakening the check for kurt and skew, # as they involve third degree powers and higher ("quantile", (0.38,), False), ("apply", (mad,), False), ] @pytest.mark.parametrize( "method,args,check_less_precise", rolling_method_args_check_less_precise ) @pytest.mark.parametrize("window", [1, 2, 4, 5]) @pytest.mark.parametrize("center", [True, False]) def test_rolling_methods(method, args, window, center, check_less_precise): # DataFrame prolling = df.rolling(window, center=center) drolling = ddf.rolling(window, center=center) if method == "apply": kwargs = {"raw": False} else: kwargs = {} assert_eq( getattr(prolling, method)(*args, **kwargs), getattr(drolling, method)(*args, **kwargs), check_less_precise=check_less_precise, ) # Series prolling = df.a.rolling(window, center=center) drolling = ddf.a.rolling(window, center=center) assert_eq( getattr(prolling, method)(*args, **kwargs), getattr(drolling, method)(*args, **kwargs), check_less_precise=check_less_precise, ) if PANDAS_VERSION <= "0.25.0": filter_panel_warning = pytest.mark.filterwarnings( "ignore::DeprecationWarning:pandas[.*]" ) else: filter_panel_warning = lambda f: f @filter_panel_warning @pytest.mark.parametrize("window", [1, 2, 4, 5]) @pytest.mark.parametrize("center", [True, False]) def test_rolling_cov(window, center): # DataFrame prolling = df.drop("a", 1).rolling(window, center=center) drolling = ddf.drop("a", 1).rolling(window, center=center) assert_eq(prolling.cov(), drolling.cov()) # Series prolling = df.b.rolling(window, center=center) drolling = ddf.b.rolling(window, center=center) assert_eq(prolling.cov(), drolling.cov()) def test_rolling_raises(): df = pd.DataFrame( {"a": np.random.randn(25).cumsum(), "b": np.random.randint(100, size=(25,))} ) ddf = dd.from_pandas(df, 3) pytest.raises(ValueError, lambda: ddf.rolling(1.5)) pytest.raises(ValueError, lambda: ddf.rolling(-1)) pytest.raises(ValueError, lambda: ddf.rolling(3, min_periods=1.2)) pytest.raises(ValueError, lambda: ddf.rolling(3, min_periods=-2)) pytest.raises(ValueError, lambda: ddf.rolling(3, axis=10)) pytest.raises(ValueError, lambda: ddf.rolling(3, axis="coulombs")) pytest.raises(NotImplementedError, lambda: ddf.rolling(100).mean().compute()) def test_rolling_names(): df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) a = dd.from_pandas(df, npartitions=2) assert sorted(a.rolling(2).sum().dask) == sorted(a.rolling(2).sum().dask) def test_rolling_axis(): df = pd.DataFrame(np.random.randn(20, 16)) ddf = dd.from_pandas(df, npartitions=3) assert_eq(df.rolling(3, axis=0).mean(), ddf.rolling(3, axis=0).mean()) assert_eq(df.rolling(3, axis=1).mean(), ddf.rolling(3, axis=1).mean()) assert_eq( df.rolling(3, min_periods=1, axis=1).mean(), ddf.rolling(3, min_periods=1, axis=1).mean(), ) assert_eq( df.rolling(3, axis="columns").mean(), ddf.rolling(3, axis="columns").mean() ) assert_eq(df.rolling(3, axis="rows").mean(), ddf.rolling(3, axis="rows").mean()) s = df[3] ds = ddf[3] assert_eq(s.rolling(5, axis=0).std(), ds.rolling(5, axis=0).std()) def test_rolling_partition_size(): df = pd.DataFrame(np.random.randn(50, 2)) ddf = dd.from_pandas(df, npartitions=5) for obj, dobj in [(df, ddf), (df[0], ddf[0])]: assert_eq(obj.rolling(10).mean(), dobj.rolling(10).mean()) assert_eq(obj.rolling(11).mean(), dobj.rolling(11).mean()) with pytest.raises(NotImplementedError): dobj.rolling(12).mean().compute() def test_rolling_repr(): ddf = dd.from_pandas(pd.DataFrame([10] * 30), npartitions=3) res = repr(ddf.rolling(4)) assert res == "Rolling [window=4,center=False,axis=0]" def test_time_rolling_repr(): res = repr(dts.rolling("4s")) assert res == "Rolling [window=4000000000,center=False,win_type=freq,axis=0]" def test_time_rolling_constructor(): result = dts.rolling("4s") assert result.window == "4s" assert result.min_periods is None assert result.win_type is None assert result._win_type == "freq" assert result._window == 4000000000 # ns assert result._min_periods == 1 @pytest.mark.parametrize( "method,args,check_less_precise", rolling_method_args_check_less_precise ) @pytest.mark.parametrize("window", ["1S", "2S", "3S", pd.offsets.Second(5)]) def test_time_rolling_methods(method, args, window, check_less_precise): # DataFrame if method == "apply": kwargs = {"raw": False} else: kwargs = {} prolling = ts.rolling(window) drolling = dts.rolling(window) assert_eq( getattr(prolling, method)(*args, **kwargs), getattr(drolling, method)(*args, **kwargs), check_less_precise=check_less_precise, ) # Series prolling = ts.a.rolling(window) drolling = dts.a.rolling(window) assert_eq( getattr(prolling, method)(*args, **kwargs), getattr(drolling, method)(*args, **kwargs), check_less_precise=check_less_precise, ) @filter_panel_warning @pytest.mark.parametrize("window", ["1S", "2S", "3S", pd.offsets.Second(5)]) def test_time_rolling_cov(window): # DataFrame prolling = ts.drop("a", 1).rolling(window) drolling = dts.drop("a", 1).rolling(window) assert_eq(prolling.cov(), drolling.cov()) # Series prolling = ts.b.rolling(window) drolling = dts.b.rolling(window) assert_eq(prolling.cov(), drolling.cov()) @pytest.mark.parametrize( "window,N", [("1s", 10), ("2s", 10), ("10s", 10), ("10h", 10), ("10s", 100), ("10h", 100)], ) def test_time_rolling_large_window_fixed_chunks(window, N): df = pd.DataFrame( { "a":
pd.date_range("2016-01-01 00:00:00", periods=N, freq="1s")
pandas.date_range
from pathlib import Path import numpy as np import pandas as pd import time import pickle import json import h5py import sys import traceback import warnings import Analyses.spike_functions as spike_funcs import Analyses.spatial_functions as spatial_funcs import Analyses.open_field_functions as of_funcs import Pre_Processing.pre_process_functions as pp_funcs from Utils.robust_stats import robust_zscore import Analyses.tree_maze_functions as tmf import Analyses.plot_functions as pf import scipy.signal as signal """ Classes in this file will have several retrieval processes to acquire the required information for each subject and session. :class SubjectInfo -> class that takes a subject as an input. contains general information about what processes have been performed, clusters, and importantly all the session paths. The contents of this class are saved as a pickle in the results folder. :class SubjectSessionInfo -> children class of SubjectInfo, takes session as an input. This class contains session specific retrieval methods Low level things, like reading position (eg. 'get_track_dat') are self contained in the class. Higher level functions like 'get_spikes', are outsourced to the appropriate submodules in the Analyses folder. If it is the first time calling a retrieval method, the call will save the contents according the paths variable Otherwise the contents will be loaded from existing data, as opposed to recalculation. Exception is the get_time method, as this is easily regenerated on each call. """ class SummaryInfo: subjects = ['Li', 'Ne', 'Cl', 'Al', 'Ca', 'Mi'] min_n_units = 1 min_n_trials = 50 # task criteria min_pct_coverage = 0.75 # open field criteria invalid_sessions = ['Li_OF_080718'] figure_names = [f"f{ii}" for ii in range(5)] _root_paths = dict(GD=Path("/home/alexgonzalez/google-drive/TreeMazeProject/"), BigPC=Path("/mnt/Data_HD2T/TreeMazeProject/")) def __init__(self, data_root='BigPC'): self.main_path = self._root_paths[data_root] self.paths = self._get_paths() self.unit_table = self.get_unit_table() self.analyses_table = self.get_analyses_table() self.valid_track_table = self.get_track_validity_table() self.sessions_by_subject = {} self.tasks_by_subject = {} for s in self.subjects: self.sessions_by_subject[s] = self.unit_table[self.unit_table.subject == s].session.unique() self.tasks_by_subject[s] = self.unit_table[self.unit_table.subject == s].task.unique() def run_analyses(self, task='all', which='all', verbose=False, overwrite=False): interrupt_flag = False for subject in self.subjects: if not interrupt_flag: subject_info = SubjectInfo(subject) for session in subject_info.sessions: try: if task == 'all': pass elif task not in session: continue else: pass if verbose: t0 = time.time() print(f'Processing Session {session}') session_info = SubjectSessionInfo(subject, session) session_info.run_analyses(overwrite=overwrite, which=which, verbose=verbose) if verbose: t1 = time.time() print(f"Session Processing Completed: {t1 - t0:0.2f}s") print() else: print(".", end='') except KeyboardInterrupt: interrupt_flag = True break except ValueError: pass except FileNotFoundError: pass except: if verbose: traceback.print_exc(file=sys.stdout) pass if verbose: print(f"Subject {subject} Analyses Completed.") def get_analyses_table(self, overwrite=False): if not self.paths['analyses_table'].exists() or overwrite: analyses_table = pd.DataFrame() for subject in self.subjects: analyses_table = analyses_table.append(SubjectInfo(subject).get_sessions_analyses()) analyses_table.to_csv(self.paths['analyses_table']) else: analyses_table = pd.read_csv(self.paths['analyses_table'], index_col=0) self.analyses_table = analyses_table return analyses_table def get_track_validity_table(self, overwrite=False): if not self.paths['valid_track_table'].exists() or overwrite: valid_track_table = pd.DataFrame() for subject in self.subjects: valid_track_table = valid_track_table.append(SubjectInfo(subject).valid_track_table) valid_track_table.to_csv(self.paths['valid_track_table']) else: valid_track_table = pd.read_csv(self.paths['valid_track_table'], index_col=0) return valid_track_table def get_behav_perf(self, overwrite=False): if not self.paths['behavior'].exists() or overwrite: perf = pd.DataFrame() for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if 'T3' in session: try: session_info = SubjectSessionInfo(subject, session) b = session_info.get_event_behavior() sp = b.get_session_perf() sp['session'] = session sp['task'] = session_info.task sp['subject'] = subject sp['n_units'] = session_info.n_units sp['n_cells'] = session_info.n_cells sp['n_mua'] = session_info.n_mua perf = pd.concat((perf, sp), ignore_index=True) except: pass perf.to_csv(self.paths['behavior']) else: perf = pd.read_csv(self.paths['behavior'], index_col=0) return perf def _get_paths(self, root_path=None): if root_path is None: results_path = self.main_path / 'Results_Summary' figures_path = self.main_path / 'Figures' else: results_path = root_path / 'Results_Summary' figures_path = root_path / 'Figures' paths = dict( analyses_table=results_path / 'analyses_table.csv', valid_track_table=results_path / 'valid_track_table.csv', behavior=results_path / 'behavior_session_perf.csv', units=results_path / 'all_units_table.csv', of_metric_scores=results_path / 'of_metric_scores_summary_table.csv', of_model_scores=results_path / 'of_model_scores_summary_table_agg.csv', zone_rates_comps=results_path / 'zone_rates_comps_summary_table.csv', zone_rates_remap=results_path / 'zone_rates_remap_summary_table.csv', bal_conds_seg_rates=results_path / 'bal_conds_seg_rates_summary_table.csv', ) paths['results'] = results_path paths['figures'] = figures_path return paths def update_paths(self): for subject in self.subjects: _ = SubjectInfo(subject, overwrite=True) def get_zone_rates_comps(self, overwrite=False): """ Aggregates tables across sessions and adds unit information. Note, that overwrite only overwrites the aggregate table and does not perform the analysis on each session. :param overwrite: :return: pandas data frame with n_units as index """ if not self.paths['zone_rates_comps'].exists() or overwrite: sessions_validity = self.get_track_validity_table() zone_rates = pd.DataFrame() unit_count = 0 valid_sessions = list(self.analyses_table.loc[self.analyses_table.zone_rates_comps == True].index) for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if session in valid_sessions: session_info = SubjectSessionInfo(subject, session) n_session_units = session_info.n_units if n_session_units > 0: try: session_zone_rate_comp_table = session_info.get_zone_rates_remapping() comp_table_columns = session_zone_rate_comp_table.columns session_table = pd.DataFrame(index=np.arange(n_session_units), columns=['unit_id', 'subject', 'session', 'session_pct_cov', 'session_valid', 'session_unit_id', 'unit_type', 'tt', 'tt_cl', 'cl_name']) session_table['session'] = session session_table['subject'] = session_info.subject session_table['session_unit_id'] = np.arange(n_session_units) session_table['unit_id'] = np.arange(n_session_units) + unit_count session_table['unit_type'] = [v[0] for k, v in session_info.cluster_ids.items()] session_table['tt'] = [v[1] for k, v in session_info.cluster_ids.items()] session_table['tt_cl'] = [v[2] for k, v in session_info.cluster_ids.items()] if session in sessions_validity.columns: session_table['session_pct_cov'] = sessions_validity[session] session_table['session_valid'] = 1 else: session_table['session_pct_cov'] = 0 session_table['session_valid'] = 0 cl_names = [] for k, v in session_info.cluster_ids.items(): tt = v[1] cl = v[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" cl_names.append(cl_name) session_table['cl_name'] = cl_names unit_count += n_session_units session_table = session_table.join(session_zone_rate_comp_table) except: print(f'Error Processing Session {session}') traceback.print_exc(file=sys.stdout) continue zone_rates = zone_rates.append(session_table) zone_rates = zone_rates.reset_index(drop=True) zone_rates.to_csv(self.paths['zone_rates_comps']) else: zone_rates = pd.read_csv(self.paths['zone_rates_comps'], index_col=0) return zone_rates def get_bal_conds_seg_rates(self, segment_type='bigseg', overwrite=False): fn = self.paths['bal_conds_seg_rates'] if segment_type != 'bigseg': name = fn.name.split('.') name2 = name[0] + segment_type + name[1] fn = fn.parent / name2 if not fn.exists() or overwrite: sessions_validity = self.get_track_validity_table() seg_rates = pd.DataFrame() unit_count = 0 valid_sessions = list(self.analyses_table.loc[self.analyses_table.bal_conds_seg_rates == True].index) for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if session in valid_sessions: session_info = SubjectSessionInfo(subject, session) n_session_units = session_info.n_units if n_session_units > 0: try: session_zone_rate_comp_table = session_info.get_bal_conds_seg_rates(segment_type=segment_type) comp_table_columns = session_zone_rate_comp_table.columns session_table = pd.DataFrame(index=np.arange(n_session_units), columns=['unit_id', 'subject', 'session', 'session_pct_cov', 'session_valid', 'session_unit_id', 'unit_type', 'tt', 'tt_cl', 'cl_name']) session_table['session'] = session session_table['subject'] = session_info.subject session_table['session_unit_id'] = np.arange(n_session_units) session_table['unit_id'] = np.arange(n_session_units) + unit_count session_table['unit_type'] = [v[0] for k, v in session_info.cluster_ids.items()] session_table['tt'] = [v[1] for k, v in session_info.cluster_ids.items()] session_table['tt_cl'] = [v[2] for k, v in session_info.cluster_ids.items()] if session in sessions_validity.columns: session_table['session_pct_cov'] = sessions_validity[session] session_table['session_valid'] = 1 else: session_table['session_pct_cov'] = 0 session_table['session_valid'] = 0 cl_names = [] for k, v in session_info.cluster_ids.items(): tt = v[1] cl = v[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" cl_names.append(cl_name) session_table['cl_name'] = cl_names unit_count += n_session_units session_table = session_table.join(session_zone_rate_comp_table) except: print(f'Error Processing Session {session}') traceback.print_exc(file=sys.stdout) continue seg_rates = seg_rates.append(session_table) seg_rates = seg_rates.reset_index(drop=True) seg_rates.to_csv(fn) else: seg_rates = pd.read_csv(fn, index_col=0) return seg_rates def get_zone_rates_remap(self, overwrite=False): if not self.paths['zone_rates_remap'].exists() or overwrite: sessions_validity = self.get_track_validity_table() zone_rates = pd.DataFrame() unit_count = 0 valid_sessions = list(self.analyses_table.loc[self.analyses_table.zone_rates_comps == True].index) for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if session in valid_sessions: session_info = SubjectSessionInfo(subject, session) n_session_units = session_info.n_units if n_session_units > 0: try: session_zone_rate_comp_table = session_info.get_zone_rates_remap() comp_table_columns = session_zone_rate_comp_table.columns session_table = pd.DataFrame(index=np.arange(n_session_units), columns=['unit_id', 'subject', 'session', 'session_pct_cov', 'session_valid', 'session_unit_id', 'unit_type', 'tt', 'tt_cl', 'cl_name']) session_table['session'] = session session_table['subject'] = session_info.subject session_table['session_unit_id'] = np.arange(n_session_units) session_table['unit_id'] = np.arange(n_session_units) + unit_count session_table['unit_type'] = [v[0] for k, v in session_info.cluster_ids.items()] session_table['tt'] = [v[1] for k, v in session_info.cluster_ids.items()] session_table['tt_cl'] = [v[2] for k, v in session_info.cluster_ids.items()] if session in sessions_validity.columns: session_table['session_pct_cov'] = sessions_validity[session] session_table['session_valid'] = 1 else: session_table['session_pct_cov'] = 0 session_table['session_valid'] = 0 cl_names = [] for k, v in session_info.cluster_ids.items(): tt = v[1] cl = v[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" cl_names.append(cl_name) session_table['cl_name'] = cl_names unit_count += n_session_units session_table = session_table.join(session_zone_rate_comp_table) except: print(f'Error Processing Session {session}') traceback.print_exc(file=sys.stdout) continue zone_rates = zone_rates.append(session_table) zone_rates = zone_rates.reset_index(drop=True) zone_rates.to_csv(self.paths['zone_rates_remap']) else: zone_rates = pd.read_csv(self.paths['zone_rates_remap'], index_col=0) return zone_rates def get_of_results(self, overwrite=False): curate_flag = False # get metrics if not self.paths['of_metric_scores'].exists() or overwrite: metric_scores = self._get_of_metric_scores() curate_flag = True else: metric_scores = pd.read_csv(self.paths['of_metric_scores'], index_col=0) # get models if not self.paths['of_model_scores'].exists() or overwrite: model_scores = self._get_of_models_scores() curate_flag = True else: model_scores = pd.read_csv(self.paths['of_model_scores'], index_col=0) if curate_flag: metric_scores, model_scores = self._match_unit_ids(metric_scores, model_scores) for session in self.invalid_sessions: unit_idx = self.unit_table[self.unit_table.session == session].unique_cl_name metric_scores.loc[metric_scores.cl_name.isin(unit_idx), 'session_valid'] = False model_scores.loc[model_scores.cl_name.isin(unit_idx), 'session_valid'] = False metric_scores.to_csv(self.paths['of_metric_scores']) model_scores.to_csv(self.paths['of_model_scores']) return metric_scores, model_scores def _get_of_metric_scores(self, overwrite=False): if not self.paths['of_metric_scores'].exists() or overwrite: analyses = ['speed', 'hd', 'border', 'grid', 'stability'] output_scores_names = ['score', 'sig'] n_analyses = len(analyses) unit_count = 0 metric_scores = pd.DataFrame() for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if 'OF' in session: session_info = SubjectSessionInfo(subject, session) if session_info.n_units > 0: temp = session_info.get_scores() session_scores = pd.DataFrame(index=np.arange(session_info.n_units * n_analyses), columns=['unit_id', 'subject', 'session', 'session_pct_cov', 'session_valid', 'session_unit_id', 'unit_type', 'tt', 'tt_cl', 'cl_name', 'analysis_type', 'score', 'sig', ]) session_scores['analysis_type'] = np.repeat(np.array(analyses), session_info.n_units) session_scores['session'] = session_info.session session_scores['subject'] = session_info.subject session_scores['session_unit_id'] = np.tile(np.arange(session_info.n_units), n_analyses) session_scores['unit_id'] = np.tile(np.arange(session_info.n_units), n_analyses) + unit_count session_scores['unit_type'] = [v[0] for k, v in session_info.cluster_ids.items()] * n_analyses session_scores['tt'] = [v[1] for k, v in session_info.cluster_ids.items()] * n_analyses session_scores['tt_cl'] = [v[2] for k, v in session_info.cluster_ids.items()] * n_analyses behav = session_info.get_track_data() # noinspection PyTypeChecker coverage = np.around(behav['pos_valid_mask'].mean(), 2) session_scores['session_pct_cov'] = coverage session_scores['session_valid'] = coverage >= self.min_pct_coverage cl_names = [] for k, v in session_info.cluster_ids.items(): tt = v[1] cl = v[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" cl_names.append(cl_name) session_scores['cl_name'] = cl_names * n_analyses unit_count += session_info.n_units try: for ii, analysis in enumerate(analyses): indices = np.arange(session_info.n_units) + ii * session_info.n_units session_scores.at[indices, 'sig'] = temp[analysis + '_sig'].values if analysis == 'stability': session_scores.at[indices, 'score'] = temp[analysis + '_corr'].values else: session_scores.at[indices, 'score'] = temp[analysis + '_score'].values except: print(f'Error Processing Session {session}') traceback.print_exc(file=sys.stdout) pass session_scores[output_scores_names] = session_scores[output_scores_names].astype(float) metric_scores = metric_scores.append(session_scores) metric_scores = metric_scores.reset_index(drop=True) metric_scores.to_csv(self.paths['of_metric_scores']) else: metric_scores = pd.read_csv(self.paths['of_metric_scores'], index_col=0) return metric_scores def _get_of_models_scores(self): models = ['speed', 'hd', 'border', 'grid', 'pos', 'agg_all', 'agg_sdp', 'agg_sdbg'] metrics = ['r2', 'map_r', 'n_err', 'coef', 'agg_all_coef', 'agg_sdbg_coef', 'agg_sdp_coef'] splits = ['train', 'test'] unit_count = 0 model_scores = pd.DataFrame() for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if 'OF' in session: session_info = SubjectSessionInfo(subject, session) n_session_units = session_info.n_units if n_session_units > 0: try: temp = session_info.get_encoding_models_scores() if temp.empty: continue # noinspection PyTypeChecker mask = (temp['metric'].isin(metrics)) & (temp['model'].isin(models)) session_models_scores = pd.DataFrame(index=range(mask.sum()), columns=['unit_id', 'subject', 'session', 'session_unit_id', 'unit_type', 'session_pct_cov', 'session_valid', 'tt', 'tt_cl', 'model', 'split', 'metric', 'value']) session_models_scores.loc[:, ['model', 'split', 'metric', 'value']] = \ temp.loc[mask, ['model', 'split', 'metric', 'value']].values session_models_scores['session'] = session_info.session session_models_scores['subject'] = session_info.subject session_models_scores['session_unit_id'] = temp.loc[mask, 'unit_id'].values session_models_scores['unit_id'] = session_models_scores['session_unit_id'] + unit_count for session_unit_id, cluster_info in session_info.cluster_ids.items(): mask = session_models_scores.session_unit_id == int(session_unit_id) tt = cluster_info[1] cl = cluster_info[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" session_models_scores.loc[mask, 'unit_type'] = cluster_info[0] session_models_scores.loc[mask, 'tt'] = tt session_models_scores.loc[mask, 'tt_cl'] = cl session_models_scores.loc[mask, 'cl_name'] = cl_name behav = session_info.get_track_data() # noinspection PyTypeChecker coverage = np.around(behav['pos_valid_mask'].mean(), 2) session_models_scores['session_pct_cov'] = coverage session_models_scores['session_valid'] = coverage >= self.min_pct_coverage # model_scores = model_scores.append(session_models_scores) unit_count += n_session_units except ValueError: traceback.print_exc(file=sys.stdout) pass # model_scores = model_scores.reset_index(drop=True) model_scores = model_scores.astype({"value": float}) model_scores = model_scores.to_csv(self.paths['of_model_scores']) return model_scores def _match_unit_ids(self, metric_scores, model_scores): session_unit_id_array = metric_scores[['session', 'session_unit_id']].values session_unit_id_tuple = [tuple(ii) for ii in session_unit_id_array] sid_2_uid = {} uid_2_sid = {} used_ids = [] unique_id_cnt = 0 for suid in session_unit_id_tuple: if not suid in used_ids: sid_2_uid[suid] = unique_id_cnt uid_2_sid[unique_id_cnt] = suid unique_id_cnt += 1 used_ids += [suid] session_unit_id_array = model_scores[['session', 'session_unit_id']].values session_unit_id_tuple = [tuple(ii) for ii in session_unit_id_array] model_scores['unit_id'] = [sid_2_uid[suid] for suid in session_unit_id_tuple] metric_scores.to_csv(self.paths['of_metric_scores']) model_scores = model_scores.to_csv(self.paths['of_model_scores']) return metric_scores, model_scores def get_unit_table(self, overwrite=False): if not self.paths['units'].exists() or overwrite: raise NotImplementedError else: unit_table = pd.read_csv(self.paths['units'], index_col=0) return unit_table def plot(self, fig_id, save=False, dpi=1000, root_dir=None, fig_format='jpg'): if fig_id == 'f1': f1 = pf.Fig1() f = f1.plot_all() else: return if save: fn = f"{fig_id}.{fig_format}" if root_dir is None: f.savefig(self.paths['figures'] / fn, dpi=dpi, bbox_inches='tight') else: if root_dir in self._root_paths.keys(): paths = self._get_paths(self._root_paths[root_dir]) f.savefig(paths['figures'] / fn, dpi=dpi, bbox_inches='tight') return f class SubjectInfo: def __init__(self, subject, sorter='KS2', data_root='BigPC', overwrite=False, time_step=0.02, samp_rate=32000, n_tetrodes=16, fr_temporal_smoothing=0.125, spk_outlier_thr=None, overwrite_cluster_stats=False, overwrite_session_clusters=False): subject = str(subject.title()) self.subject = subject self.sorter = sorter self.params = {'time_step': time_step, 'samp_rate': samp_rate, 'n_tetrodes': n_tetrodes, 'fr_temporal_smoothing': fr_temporal_smoothing, 'spk_outlier_thr': spk_outlier_thr, 'spk_recording_buffer': 3} self.tetrodes = np.arange(n_tetrodes, dtype=int) + 1 if data_root == 'BigPC': if subject in ['Li', 'Ne']: self.root_path = Path('/mnt/Data1_SSD2T/Data') elif subject in ['Cl']: self.root_path = Path('/mnt/Data2_SSD2T/Data') elif subject in ['Ca', 'Mi', 'Al']: self.root_path = Path('/mnt/Data3_SSD2T/Data') self.raw_path = Path('/mnt/Raw_Data/Data', subject) elif data_root == 'oak': self.root_path = Path('/mnt/o/giocomo/alexg/') self.raw_path = self.root_path / 'RawData/InVivo' / subject # self.sorted_path = self.root_path / 'Clustered' / subject # self.results_path = self.root_path / 'Analyses' / subject else: self.root_path = Path(data_root) self.raw_path = self.root_path / 'Raw_Data' / subject self.preprocessed_path = self.root_path / 'PreProcessed' / subject self.sorted_path = self.root_path / 'Sorted' / subject self.results_path = self.root_path / 'Results' / subject self.subject_info_file = self.results_path / ('subject_info_{}_{}.pkl'.format(sorter, subject)) # check if instance of DataPaths for subject and sorter exists already if self.subject_info_file.exists() and not overwrite: self.load_subject_info() else: # get channel table self._channel_table_file = self.preprocessed_path / ('chan_table_{}.csv'.format(subject)) if not self._channel_table_file.exists(): _task_fn = self.preprocessed_path / 'TasksDir' / f"pp_table_{self.subject}.json" if _task_fn.exists(): with _task_fn.open(mode='r') as f: _task_table = json.load(f) pp_funcs.post_process_channel_table(self.subject, _task_table) else: sys.exit(f"Error. Task table for pre-processing does not exists: {_task_fn}") self.channel_table = pd.read_csv(self._channel_table_file, index_col=0) # get sessions from channel table information self.sessions = list(self.channel_table.index) self.n_sessions = len(self.sessions) self.session_paths = {} for session in self.sessions: self.session_paths[session] = self._session_paths(session) # get cluster information try: if overwrite_cluster_stats: # overwrite cluster stats & clusters tables self.update_clusters() else: # load tables self.session_clusters = self.get_session_clusters(overwrite=overwrite_session_clusters) self.sort_tables = self.get_sort_tables(overwrite=overwrite_session_clusters) except: print("Error obtaining clusters.") print(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2].tb_lineno) traceback.print_exc(file=sys.stdout) # get tetrode depths & match sessions self.sessions_tt_positions = self.get_sessions_tt_position() self.tt_depth_match = self.get_tetrode_depth_match() # hack because get sessions analyses calls subjects info before it saves, # so need to save it first. alternative is to feed subject session info the subject_info object instead. # TO DO # self.save_subject_info() # check analyses table self.analyses_table = self.get_sessions_analyses() self.valid_track_table = self.check_track_data_validty() self.save_subject_info() def load_subject_info(self): with self.subject_info_file.open(mode='rb') as f: loaded_self = pickle.load(f) self.__dict__.update(loaded_self.__dict__) return self def save_subject_info(self): with self.subject_info_file.open(mode='wb') as f: pickle.dump(self, f, protocol=pickle.HIGHEST_PROTOCOL) def get_sessions_analyses(self): analyses_table = pd.DataFrame() for session in self.sessions: session_info = SubjectSessionInfo(self.subject, session) analyses_table = analyses_table.append(session_info.session_analyses_table) analyses_table.fillna(-1, inplace=True) return analyses_table def check_track_data_validty(self): df = pd.DataFrame(index=self.sessions, columns=['task', 'validity']) for session in self.sessions: if self.analyses_table.loc[session, 'track_data'] == 1: session_info = SubjectSessionInfo(self.subject, session) df.loc[session, 'task'] = session_info.task df.loc[session, 'validity'] = session_info.check_track_data_validity() return df # tetrode methods def update_clusters(self): self.session_clusters = self.get_session_clusters(overwrite=True) self.sort_tables = self.get_sort_tables(overwrite=True) self.save_subject_info() def get_sessions_tt_position(self): p = Path(self.results_path / f"{self.subject}_tetrodes.csv") if p.exists(): tt_pos = pd.read_csv(p) tt_pos['Date'] = pd.to_datetime(tt_pos['Date']).dt.strftime('%m%d%y') tt_pos = tt_pos.set_index('Date') tt_pos = tt_pos[['TT' + str(tt) + '_overall' for tt in self.tetrodes]] session_dates = {session: session.split('_')[2] for session in self.sessions} sessions_tt_pos = pd.DataFrame(index=self.sessions, columns=['tt_' + str(tt) for tt in self.tetrodes]) tt_pos_dates = tt_pos.index prev_date = tt_pos_dates[0] for session in self.sessions: date = session_dates[session] # below if is to correct for incorrect session dates for Cl if (date in ['010218', '010318', '010418']) & (self.subject == 'Cl'): date = date[:5] + '9' # this part accounts for missing dates by assigning it to the previous update if date in tt_pos_dates: sessions_tt_pos.loc[session] = tt_pos.loc[date].values prev_date = str(date) else: sessions_tt_pos.loc[session] = tt_pos.loc[prev_date].values return sessions_tt_pos else: print(f"Tetrode depth table not found at '{str(p)}'") return None def get_depth_wf(self): raise NotImplementedError def get_session_tt_wf(self, session, tt, cluster_ids=None, wf_lims=None, n_wf=200): import Sorting.sort_functions as sort_funcs if wf_lims is None: wf_lims = [-12, 20] tt_str = 'tt_' + str(tt) _sort_path = Path(self.session_paths[session]['Sorted'], tt_str, self.sorter) _cluster_spike_time_fn = _sort_path / 'spike_times.npy' _cluster_spike_ids_fn = _sort_path / 'spike_clusters.npy' _hp_data_fn = _sort_path / 'recording.dat' if _hp_data_fn.exists(): hp_data = sort_funcs.load_hp_binary_data(_hp_data_fn) else: # filter data hp_data = self._spk_filter_data(session, tt) spike_times = np.load(_cluster_spike_time_fn) spike_ids = np.load(_cluster_spike_ids_fn) wf_samps = np.arange(wf_lims[0], wf_lims[1]) if cluster_ids is None: cluster_ids = np.unique(spike_ids) n_clusters = len(cluster_ids) out = np.zeros((n_clusters, n_wf, len(wf_samps) * 4), dtype=np.float16) for cl_idx, cluster in enumerate(cluster_ids): cl_spk_times = spike_times[spike_ids == cluster] n_cl_spks = len(cl_spk_times) if n_wf == 'all': sampled_spikes = cl_spk_times elif n_wf > n_cl_spks: # Note that if number of spikes < n_wf, spikes will be repeated such that sampled_spikes has n_wf sampled_spikes = cl_spk_times[np.random.randint(n_cl_spks, size=n_wf)] else: # sample from spikes sampled_spikes = cl_spk_times[np.random.choice(np.arange(n_cl_spks), size=n_wf, replace=False)] for wf_idx, samp_spk in enumerate(sampled_spikes): out[cl_idx, wf_idx] = hp_data[:, wf_samps + samp_spk].flatten() return out def get_session_clusters(self, overwrite=False): _clusters_file = self.sorted_path / ('clusters_{}_{}.json'.format(self.sorter, self.subject)) if _clusters_file.exists() and not overwrite: # load with _clusters_file.open(mode='r') as f: session_clusters = json.load(f) else: # create session_clusters = {} for session in self.sessions: self._cluster_stats(session) session_clusters[session] = self._session_clusters(session) try: with _clusters_file.open(mode='w') as f: json.dump(session_clusters, f, indent=4) except TypeError: print(session) return session_clusters # cluster matching methods def get_tetrode_depth_match(self): tt_pos = self.sessions_tt_positions try: tt_depth_matchs = {tt: {} for tt in self.tetrodes} for tt in self.tetrodes: tt_str = 'tt_' + str(tt) tt_depths = tt_pos[tt_str].unique() for depth in tt_depths: tt_depth_matchs[tt][depth] = list(tt_pos[tt_pos[tt_str] == depth].index) return tt_depth_matchs except: print("Error Matching Sessions based on tetrode depth") print(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2].tb_lineno) traceback.print_exc(file=sys.stdout) return None def get_session_match_analysis(self): # # determine sessions/tt to match based on depth # matching_analyses = [] # for tt in np.arange(1, 17): # tt_depths = list(self.tt_depth_match[tt].keys()) # # for tt_d in tt_depths: # tt_d_sessions = self.tt_depth_match[tt][tt_d] # # check if there are more 2 or more sessions with units # n_cells_session = np.zeros(len(tt_d_sessions), dtype=int) # # for ii, session in enumerate(tt_d_sessions): # session_cell_ids = self.session_clusters[session]['cell_IDs'] # if tt in session_cell_ids.keys(): # n_cells_session[ii] = len(session_cell_ids[tt]) # sessions_with_cells = np.where(n_cells_session > 0)[0] # # if len(sessions_with_cells) >= 2: # n_units = n_cells_session[sessions_with_cells].sum() # matching_analyses.append((tt, tt_d, np.array(tt_d_sessions)[sessions_with_cells].tolist(), # n_units, n_cells_session[sessions_with_cells].tolist())) ## version as a dict ## matching_analyses = {} cnt = 0 for tt in np.arange(1, 17): tt_depths = list(self.tt_depth_match[tt].keys()) for tt_d in tt_depths: tt_d_sessions = self.tt_depth_match[tt][tt_d] # check if there are more 2 or more sessions with units n_cells_session = np.zeros(len(tt_d_sessions), dtype=int) for ii, session in enumerate(tt_d_sessions): session_cell_ids = self.session_clusters[session]['cell_IDs'] if tt in session_cell_ids.keys(): n_cells_session[ii] = len(session_cell_ids[tt]) sessions_with_cells = np.where(n_cells_session > 0)[0] n_units = n_cells_session[sessions_with_cells].sum() if len(sessions_with_cells) >= 1: matching_analyses[cnt] = {'tt': tt, 'd': tt_d, 'n_units': n_units, 'sessions': np.array(tt_d_sessions)[sessions_with_cells].tolist(), 'n_session_units': n_cells_session[sessions_with_cells].tolist()} cnt += 1 return matching_analyses def get_cluster_dists(self, overwrite=False, **kwargs): import Analyses.cluster_match_functions as cmf params = {'dim_reduc_method': 'umap', 'n_wf': 1000, 'zscore_wf': True} params.update(kwargs) cl_dists_fn = self.results_path / f"cluster_dists.pickle" if not cl_dists_fn.exists() or overwrite: matching_analyses = self.get_session_match_analysis() n_wf = params['n_wf'] dim_reduc_method = params['dim_reduc_method'] n_samps = 32 * 4 cluster_dists = {k: {} for k in np.arange(len(matching_analyses))} for analysis_id, analysis in matching_analyses.items(): tt, d, sessions = analysis['tt'], analysis['d'], analysis['sessions'] n_units, n_session_units = analysis['n_units'], analysis['n_session_units'] # Obtain cluster labels & mapping between labels [this part can be improved] cl_names = [] for session_num, session in enumerate(sessions): cluster_ids = self.session_clusters[session]['cell_IDs'][tt] for cl_num, cl_id in enumerate(cluster_ids): cl_name = f"{session}-tt{tt}_d{d}_cl{cl_id}" cl_names.append(cl_name) # load waveforms X = np.empty((0, n_wf, n_samps), dtype=np.float16) for session in sessions: cluster_ids = self.session_clusters[session]['cell_IDs'][tt] session_cell_wf = self.get_session_tt_wf(session, tt, cluster_ids=cluster_ids, n_wf=n_wf) X = np.concatenate((X, session_cell_wf), axis=0) if params['zscore_wf']: X = robust_zscore(X, axis=2) X[np.isnan(X)] = 0 X[np.isinf(X)] = 0 # Obtain cluster label namess clusters_label_num = np.arange(n_units).repeat(n_wf) # Reduce dims X_2d = cmf.dim_reduction(X.reshape(-1, X.shape[-1]), method=dim_reduc_method) # compute covariance and location clusters_loc, clusters_cov = cmf.get_clusters_moments(data=X_2d, labels=clusters_label_num) # compute distance metrics dist_mats = cmf.get_clusters_all_dists(clusters_loc, clusters_cov, data=X_2d, labels=clusters_label_num) # create data frames with labeled cluster names dists_mats_df = {} for metric, dist_mat in dist_mats.items(): dists_mats_df[metric] = pd.DataFrame(dist_mat, index=cl_names, columns=cl_names) # store clusters_loc = {k: v for k, v in zip(cl_names, clusters_loc)} clusters_cov = {k: v for k, v in zip(cl_names, clusters_cov)} cluster_dists[analysis_id] = {'analysis': analysis, 'cl_names': cl_names, 'clusters_loc': clusters_loc, 'clusters_cov': clusters_cov, 'dists_mats': dists_mats_df} print(".", end="") with cl_dists_fn.open(mode='wb') as f: pickle.dump(cluster_dists, f, protocol=pickle.HIGHEST_PROTOCOL) else: with cl_dists_fn.open(mode='rb') as f: cluster_dists = pickle.load(f) return cluster_dists def match_clusters(self, overwrite=False, require_subsets=True, **kwargs): import Analyses.cluster_match_functions as cmf params = {'dist_metric': 'pe', 'dist_metric_thr': 0.5, 'select_lower': True} params.update(kwargs) dist_metric = params['dist_metric'] dist_metric_thr = params['dist_metric_thr'] select_lower = params['select_lower'] if require_subsets: # rs -> require subsets, conservative in grouping clusters cl_match_results_fn = self.results_path / f"cluster_matches_rs_{params['dist_metric']}.pickle" else: # nrs -> doesn't require subsets, results in more sessions being grouped cl_match_results_fn = self.results_path / f"cluster_matches_nrs_{params['dist_metric']}.pickle" if not cl_match_results_fn.exists() or overwrite: cluster_dists = self.get_cluster_dists() matching_analyses = self.get_session_match_analysis() # [cluster_dists[k]['analysis'] for k in cluster_dists.keys()] cluster_match_results = {k: {} for k in np.arange(len(matching_analyses))} for analysis_id, analysis in matching_analyses.items(): dist_mat = cluster_dists[analysis_id]['dists_mats'][dist_metric] matches_dict = cmf.find_session_cl_matches(dist_mat, thr=dist_metric_thr, session_cl_sep="-", select_lower=select_lower) unique_matches_sets, unique_matches_dict = \ cmf.matches_dict_to_unique_sets(matches_dict, dist_mat, select_lower=select_lower, require_subsets=require_subsets) cluster_match_results[analysis_id] = {'analysis': analysis, 'matches_dict': unique_matches_dict, 'matches_sets': unique_matches_sets } with cl_match_results_fn.open(mode='wb') as f: pickle.dump(cluster_match_results, f, protocol=pickle.HIGHEST_PROTOCOL) else: with cl_match_results_fn.open(mode='rb') as f: cluster_match_results = pickle.load(f) return cluster_match_results # sort/unit tables methods def get_sort_tables(self, overwrite=False): _sort_table_ids = ['tt', 'valid', 'curated', 'summary'] _sort_table_files = {ii: Path(self.sorted_path, 'sort_{}_{}_{}'.format(ii, self.sorter, self.subject)) for ii in _sort_table_ids} if _sort_table_files['summary'].exists() and not overwrite: sort_tables = {ii: [] for ii in _sort_table_ids} for ii in _sort_table_ids: sort_tables[ii] = pd.read_csv(_sort_table_files[ii], index_col=0) else: sort_tables = self._sort_tables() for ii in _sort_table_ids: sort_tables[ii].to_csv(_sort_table_files[ii]) return sort_tables def get_units_table(self, overwrite=False): units_table_fn = self.results_path / f"units_table.csv" if not units_table_fn.exists() or overwrite: n_total_units = 0 for session in self.sessions: n_total_units += self.session_clusters[session]['n_cell'] n_total_units += self.session_clusters[session]['n_mua'] subject_units_table = pd.DataFrame(index=np.arange(n_total_units), columns=["subject_cl_id", "subject", "session", "task", "date", "subsession", "tt", "depth", "unique_cl_name", "session_cl_id", "unit_type", "n_matches_con", "subject_cl_match_con_id", "n_matches_lib", "subject_cl_match_lib_id", "snr", "fr", "isi_viol_rate"]) subject_units_table["subject"] = self.subject subject_cl_matches_con = self.match_clusters() matches_con_sets = {} matches_con_set_num = {} matches_con_dict = {} cnt = 0 for k, cma in subject_cl_matches_con.items(): matches_con_sets.update({cnt + ii: clx_set for ii, clx_set in enumerate(cma['matches_sets'])}) cnt = len(matches_con_sets) matches_con_dict.update(cma['matches_dict']) # creates a dict indexing each session to a set number for set_num, clm_set in matches_con_sets.items(): for cl in clm_set: matches_con_set_num[cl] = set_num subject_cl_matches_lib = self.match_clusters(require_subsets=False) matches_lib_sets = {} matches_lib_set_num = {} matches_lib_dict = {} cnt = 0 for k, cma in subject_cl_matches_lib.items(): matches_lib_sets.update({cnt + ii: clx_set for ii, clx_set in enumerate(cma['matches_sets'])}) cnt = len(matches_lib_sets) matches_lib_dict.update(cma['matches_dict']) for set_num, clm_set in matches_lib_sets.items(): for cl in clm_set: matches_lib_set_num[cl] = set_num try: unit_cnt = 0 for session in self.sessions: session_details = session.split("_") if len(session_details) > 3: subsession = session_details[3] else: subsession = "0000" session_clusters = self.session_clusters[session] n_session_cells = session_clusters['n_cell'] n_session_mua = session_clusters['n_mua'] n_session_units = n_session_cells + n_session_mua session_unit_idx = np.arange(n_session_units) + unit_cnt subject_units_table.loc[session_unit_idx, "subject_cl_id"] = session_unit_idx subject_units_table.loc[session_unit_idx, "session"] = session subject_units_table.loc[session_unit_idx, "task"] = session_details[1] subject_units_table.loc[session_unit_idx, "date"] = session_details[2] subject_units_table.loc[session_unit_idx, "subsession"] = subsession for unit_type in ['cell', 'mua']: for tt, tt_clusters in session_clusters[f'{unit_type}_IDs'].items(): if len(tt_clusters) > 0: depth = self.sessions_tt_positions.loc[session, f"tt_{tt}"] for cl in tt_clusters: cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" subject_units_table.loc[unit_cnt, "subject_cl_id"] = unit_cnt subject_units_table.loc[unit_cnt, "unique_cl_name"] = cl_name subject_units_table.loc[unit_cnt, "tt"] = tt subject_units_table.loc[unit_cnt, "depth"] = depth subject_units_table.loc[unit_cnt, "unit_type"] = unit_type subject_units_table.loc[unit_cnt, "session_cl_id"] = cl subject_units_table.loc[unit_cnt, "snr"] = session_clusters["clusters_snr"][tt][cl] subject_units_table.loc[unit_cnt, "fr"] = session_clusters["clusters_fr"][tt][cl] subject_units_table.loc[unit_cnt, "isi_viol_rate"] = \ session_clusters["clusters_isi_viol_rate"][tt][cl] if unit_type == 'cell': # add fields of conservative cluster matching (requires subset) if cl_name in matches_con_dict.keys(): cl_matches = matches_con_dict[cl_name][0] subject_units_table.loc[unit_cnt, "n_matches_con"] = len(cl_matches) subject_units_table.loc[unit_cnt, "subject_cl_match_con_id"] = \ matches_con_set_num[cl_name] # add fields of liberal cluster matching ( does not require subset matching) if cl_name in matches_lib_dict.keys(): cl_matches = matches_lib_dict[cl_name][0] subject_units_table.loc[unit_cnt, "n_matches_lib"] = len(cl_matches) subject_units_table.loc[unit_cnt, "subject_cl_match_lib_id"] = \ matches_lib_set_num[cl_name] unit_cnt += 1 except: print(session, tt, cl) traceback.print_exc(file=sys.stdout) subject_units_table.to_csv(units_table_fn) else: subject_units_table = pd.read_csv(units_table_fn, index_col=0) return subject_units_table # private methods def _spk_filter_data(self, session, tt): tt_str = 'tt_' + str(tt) sos, _ = pp_funcs.get_sos_filter_bank(['Sp'], fs=self.params['samp_rate']) sig = np.load(self.session_paths[session]['PreProcessed'] / (tt_str + '.npy')) hp_data = np.zeros_like(sig) for ch in range(4): hp_data[ch] = signal.sosfiltfilt(sos, sig[ch]) return hp_data def _session_paths(self, session): time_step = self.params['time_step'] samp_rate = self.params['samp_rate'] tmp = session.split('_') subject = tmp[0] task = tmp[1] date = tmp[2] paths = {'session': session, 'subject': subject, 'task': task, 'date': date, 'step': time_step, 'SR': samp_rate, 'Sorted': self.sorted_path / session, 'Raw': self.raw_path / session, 'PreProcessed': self.preprocessed_path / session, 'Results': self.results_path / session} paths['Results'].mkdir(parents=True, exist_ok=True) paths['behav_track_data'] = paths['Results'] / ('behav_track_data{}ms.pkl'.format(int(time_step * 1000))) # these paths are mostly legacy paths['Spike_IDs'] = paths['Results'] / 'Spike_IDs.json' for ut in ['Cell', 'Mua']: paths[ut + '_wf_info'] = paths['Results'] / (ut + '_wf_info.pkl') paths[ut + '_Spikes'] = paths['Results'] / (ut + '_Spikes.json') paths[ut + '_WaveForms'] = paths['Results'] / (ut + '_WaveForms.pkl') paths[ut + '_Bin_Spikes'] = paths['Results'] / ('{}_Bin_Spikes_{}ms.npy'.format(ut, int(time_step * 1000))) paths[ut + '_FR'] = paths['Results'] / ('{}_FR_{}ms.npy'.format(ut, int(time_step * 1000))) paths['cluster_spikes'] = paths['Results'] / 'spikes.npy' paths['cluster_spikes_ids'] = paths['Results'] / 'spikes_ids.json' paths['cluster_wf_info'] = paths['Results'] / 'wf_info.pkl' paths['cluster_binned_spikes'] = paths['Results'] / f'binned_spikes_{int(time_step * 1000)}ms.npy' paths['cluster_fr'] = paths['Results'] / 'fr.npy' paths['cluster_spike_maps'] = paths['Results'] / 'spike_maps.npy' paths['cluster_fr_maps'] = paths['Results'] / 'maps.npy' if task == 'OF': paths['cluster_OF_metrics'] = paths['Results'] / 'OF_metrics.csv' paths['cluster_OF_encoding_models'] = paths['Results'] / 'OF_encoding.csv' paths['cluster_OF_encoding_agg_coefs'] = paths['Results'] / 'OF_encoding_agg_coefs.csv' else: paths['trial_table'] = paths['Results'] / 'trial_table.csv' paths['event_table'] = paths['Results'] / 'event_table.csv' paths['track_table'] = paths['Results'] / 'track_table.csv' paths['event_time_series'] = paths['Results'] / 'event_time_series.csv' paths['not_valid_pos_samps'] = paths['Results'] / 'not_valid_pos_samps.npy' paths['pos_zones'] = paths['Results'] / 'pos_zones.npy' paths['pos_zones_invalid_samps'] = paths['Results'] / 'pos_zones_invalid_samps.npy' paths['trial_zone_rates'] = paths['Results'] / 'trial_zone_rates.npy' paths['zone_rates_comps'] = paths['Results'] / 'zone_rates_comps.csv' paths['zone_rates_remap'] = paths['Results'] / 'zone_rates_remap.csv' paths['bal_conds_seg_rates'] = paths['Results'] / 'bal_conds_seg_rates.csv' paths['zone_analyses'] = paths['Results'] / 'ZoneAnalyses.pkl' paths['TrialInfo'] = paths['Results'] / 'TrInfo.pkl' paths['TrialCondMat'] = paths['Results'] / 'TrialCondMat.csv' paths['TrLongPosMat'] = paths['Results'] / 'TrLongPosMat.csv' paths['TrLongPosFRDat'] = paths['Results'] / 'TrLongPosFRDat.csv' paths['TrModelFits2'] = paths['Results'] / 'TrModelFits2.csv' paths['CueDesc_SegUniRes'] = paths['Results'] / 'CueDesc_SegUniRes.csv' paths['CueDesc_SegDecRes'] = paths['Results'] / 'CueDesc_SegDecRes.csv' paths['CueDesc_SegDecSumRes'] = paths['Results'] / 'CueDesc_SegDecSumRes.csv' paths['PopCueDesc_SegDecSumRes'] = paths['Results'] / 'PopCueDesc_SegDecSumRes.csv' # plots directories # paths['Plots'] = paths['Results'] / 'Plots' # # paths['Plots'].mkdir(parents=True, exist_ok=True) # paths['SampCountsPlots'] = paths['Plots'] / 'SampCountsPlots' # # paths['SampCountsPlots'].mkdir(parents=True, exist_ok=True) # # paths['ZoneFRPlots'] = paths['Plots'] / 'ZoneFRPlots' # # paths['ZoneFRPlots'].mkdir(parents=True, exist_ok=True) # # paths['ZoneCorrPlots'] = paths['Plots'] / 'ZoneCorrPlots' # # paths['ZoneCorrPlots'].mkdir(parents=True, exist_ok=True) # paths['SIPlots'] = paths['Plots'] / 'SIPlots' # # paths['SIPlots'].mkdir(parents=True, exist_ok=True) # # paths['TrialPlots'] = paths['Plots'] / 'TrialPlots' # # paths['TrialPlots'].mkdir(parents=True, exist_ok=True) # # paths['CueDescPlots'] = paths['Plots'] / 'CueDescPlots' # # paths['CueDescPlots'].mkdir(parents=True, exist_ok=True) return paths def _cluster_stats(self, session): import Sorting.sort_functions as sort_funcs sort_path = self.session_paths[session]['Sorted'] for tt in self.tetrodes: tt_str = 'tt_' + str(tt) _cluster_spike_time_fn = Path(sort_path, tt_str, self.sorter, 'spike_times.npy') _cluster_spike_ids_fn = Path(sort_path, tt_str, self.sorter, 'spike_clusters.npy') _cluster_groups_fn = Path(sort_path, ('tt_' + str(tt)), self.sorter, 'cluster_group.tsv') _cluster_stats_fn = Path(sort_path, ('tt_' + str(tt)), self.sorter, 'cluster_stats.csv') _hp_data_fn = Path(sort_path, tt_str, self.sorter, 'recording.dat') _hp_data_info_fn = Path(sort_path, tt_str, tt_str + '_info.pickle') _cluster_stats_fn2 = Path(sort_path, tt_str, self.sorter, 'cluster_stats_curated.csv') try: # load cluster_groups = pd.read_csv(_cluster_groups_fn, sep='\t') try: cluster_stats = pd.read_csv(_cluster_stats_fn2, index_col=0) except: cluster_stats = pd.DataFrame(columns=['cl_num']) # get units and units already with computed stats valid_units = cluster_groups.cluster_id.values unit_keys_with_stats = cluster_stats.index.values units_with_stats = cluster_stats.cl_num.values unit_overlap = np.intersect1d(valid_units, units_with_stats) missing_units = np.setdiff1d(valid_units, units_with_stats) # get stats for overlapping units cluster_stats2 = cluster_stats.loc[cluster_stats.cl_num.isin(valid_units)].copy() if len(missing_units) > 0: spike_times = np.load(_cluster_spike_time_fn) spike_ids = np.load(_cluster_spike_ids_fn) spike_times_dict = {unit: spike_times[spike_ids == unit].flatten() for unit in missing_units} # print(spike_times_dict[0]) if _hp_data_fn.exists(): hp_data = sort_funcs.load_hp_binary_data(_hp_data_fn) else: # filter data hp_data = self._spk_filter_data(session, tt) with _hp_data_info_fn.open(mode='rb') as f: hp_data_info = pickle.load(f) cluster_stats_missing = sort_funcs.get_cluster_stats(spike_times_dict, hp_data, hp_data_info) # cluster_stats2 = cluster_stats_missing cluster_stats2 = cluster_stats2.append(cluster_stats_missing) cluster_stats2 = cluster_stats2.sort_values('cl_num') cluster_stats2 = cluster_stats2.drop_duplicates() # attached curated group labels to table cluster_stats2.loc[cluster_stats2.cl_num.isin(valid_units), 'group'] \ = cluster_groups.loc[cluster_groups.cluster_id.isin(valid_units), 'group'].values cluster_stats2.to_csv(_cluster_stats_fn2) except FileNotFoundError: pass except: print(f"Error Computing Cluster Stats for {session}") pass def _session_clusters(self, session): table = {'session': session, 'path': str(self.session_paths[session]['Sorted']), 'n_cell': 0, 'n_mua': 0, 'n_noise': 0, 'n_unsorted': 0, 'sorted_TTs': [], 'curated_TTs': [], 'cell_IDs': {}, 'mua_IDs': {}, 'noise_IDs': {}, 'unsorted_IDs': {}, 'clusters_snr': {}, 'clusters_fr': {}, 'clusters_valid': {}, 'clusters_isi_viol_rate': {}} sort_paths = table['path'] _cluster_stats_names = ['fr', 'snr', 'isi_viol_rate', 'valid'] for tt in self.tetrodes: _cluster_groups_file = Path(sort_paths, ('tt_' + str(tt)), self.sorter, 'cluster_group.tsv') # check what stats file to load if Path(sort_paths, ('tt_' + str(tt)), self.sorter, 'cluster_stats_curated.csv').exists(): _cl_stat_file = Path(sort_paths, ('tt_' + str(tt)), self.sorter, 'cluster_stats_curated.csv') else: _cl_stat_file = Path(sort_paths, ('tt_' + str(tt)), self.sorter, 'cluster_stats.csv') if _cl_stat_file.exists(): table['sorted_TTs'].append(int(tt)) d = pd.read_csv(_cl_stat_file, index_col=0) d = d.astype({'cl_num': int, 'valid': bool}) keys = d.index.values for st in _cluster_stats_names: if st == 'valid': table['clusters_valid'][int(tt)] = {int(d.loc[k, 'cl_num']): int(d.loc[k, 'valid']) for k in keys} else: try: table['clusters_' + st][int(tt)] = {int(d.loc[k, 'cl_num']): np.around(d.loc[k, st], 2) for k in keys} except TypeError: print(st, keys, tt, session) sys.exit() if _cluster_groups_file.exists(): d =
pd.read_csv(_cluster_groups_file, delimiter='\t')
pandas.read_csv
# -*- coding: UTF-8 -*- import csv import pandas as pd import os mainlineGames = ["Pokémon Sword", "Pokémon Shield", "Pokémon Ultra Sun", "Pokémon Ultra Moon", "Pokémon Sun", "Pokémon Moon", "Pokémon X", "Pokémon Y", "Pokémon Omega Ruby", "Pokémon Alpha Sapphire", "Pokémon Black 2", "Pokémon White 2", "Pokémon Black", "Pokémon White", "Pokémon HeartGold", "Pokémon SoulSilver", "Pokémon Diamond", "Pokémon Pearl", "Pokémon Platinum", "Pokémon Sword and Shield", "Pokémon Ultra Sun and Ultra Moon", "Pokémon Omega Ruby and Alpha Sapphire", "Pokémon X and Y", "Pokémon Black 2 and White 2", "Pokémon Black and White", "Pokémon HeartGold and SoulSilver", "Pokémon Diamond and Pearl"] forbiddenMethods = ["Trade", "Event", "Poké Transfer", "Pokémon HOME", "Unobtainable", "Pokémon Home", "event", "Trade, Event", "Poké Transfer, Event", "", "Pokémon Bank", "Global Link Event", "Poké Pelago*"] data = pd.read_csv("PokemonCatchMethods.csv") pokemonCatchMethodsPreProcessed = data.values.tolist() #Remove non-mainline games, trade pokemonCatchMethods = [] for method in pokemonCatchMethodsPreProcessed: gameFlag = False for game in mainlineGames: if(game == method[0]): #print(game + " = " +method[0]) gameFlag = True methodFlag = True for badMethod in forbiddenMethods: if(badMethod == method[1].rstrip(os.linesep).strip()): methodFlag = False if(gameFlag and methodFlag): pokemonCatchMethods.append(method) #print(method[2] + "(" +method[1] + "): " +method[0]) pokemonNames = [] pokemonGames = [] catchMethods = [] for method in pokemonCatchMethods: pokemonNames.append(method[2]) pokemonGames.append(method[0]) catchMethods.append(method[1]) df =
pd.DataFrame({"Catch Method": catchMethods, "Pokemon Game":pokemonGames, "Pokemon Name":pokemonNames })
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd # Monthly time-series starting in May, 1874 values = [ 365.1, 415.2, 1033.5, 954.1, 335.3, 515.0, 465.4, 192.5, 89.8, 399.2, 423.0, 393.8, 145.4, 454.0, 76.8, 124.2, 34.0, 132.4, 194.0, 91.0, 167.5, 263.6, 231.4, 15.8, 37.3, 15.2, 67.8, 34.7, 104.4, 155.3, 69.1, 149.3, 188.9, 66.2, 65.7, 93.8, 85.5, 69.0, 4.2, 34.9, 73.0, 126.3, 283.5, 23.3, 14.9, 18.1, 47.9, 0.4, 51.5, 41.0, 0.4, 0.0, 57.2, 9.6, 23.6, 2.0, 1.2, 0.0, 0.0, 50.5, 5.8, 19.6, 51.4, 38.5, 41.3, 81.5, 112.4, 33.8, 292.2, 337.6, 142.7, 232.2, 409.0, 488.2, 206.1, 821.3, 926.5, 561.5, 483.1, 460.6, 585.2, 675.9, 640.5, 530.2, 376.9, 612.4, 941.1, 738.0, 867.0, 705.1, 840.4, 641.2, 364.0, 673.1, 928.9, 1799.1, 1519.6, 557.8, 461.5, 607.6, 1026.9, 1393.8, 1931.1, 352.9, 849.8, 734.8, 621.2, 1132.5, 339.4, 1451.4, 2007.7, 595.6, 1230.2, 1793.3, 1725.6, 1305.4, 1669.7, 1536.9, 1207.3, 1581.2, 1210.8, 501.6, 561.3, 727.1, 1115.1, 994.5, 438.0, 866.0, 512.0, 1083.1, 747.0, 855.4, 1059.0, 1702.4, 1155.4, 598.0, 646.0, 718.5, 425.2, 220.5, 544.5, 312.9, 1032.2, 623.6, 688.4, 398.1, 395.4, 115.4, 193.6, 57.5, 1.6, 189.7, 79.7, 75.6, 30.5, 44.8, 252.7, 302.1, 370.5, 162.9, 121.8, 54.0, 52.3, 580.2, 117.4, 91.4, 88.2, 26.0, 185.6, 32.5, 22.2, 65.3, 98.7, 10.5, 240.3, 77.0, 2.4, 27.9, 27.8, 26.9, 14.4, 217.2, 153.5, 282.3, 89.9, 11.6, 0.0, 66.4, 42.3, 1.4, 69.5, 8.9, 21.8, 9.3, 139.8, 157.6, 229.0, 245.6, 181.5, 78.5, 211.7, 266.7, 158.7, 354.4, 553.4, 594.5, 1021.9, 550.7, 1301.4, 605.3, 637.4, 541.2, 1252.7, 1788.1, 757.8, 994.3, 1541.8, 1117.7, 1920.7, 1429.5, 1002.7, 910.9, 953.6, 865.5, 1158.1, 1283.8, 962.9, 1178.4, 1161.8, 1379.0, 1573.8, 2340.8, 1644.5, 1504.0, 1312.7, 2027.7, 1564.7, 1486.2, 623.5, 1603.6, 1779.1, 1898.4, 1740.6, 1164.5, 666.2, 1227.8, 585.4, 1038.5, 942.0, 937.1, 1018.0, 1074.5, 901.8, 1143.5, 465.2, 1376.0, 831.7, 1231.8, 722.5, 1037.1, 285.0, 900.0, 543.6, 423.5, 181.1, 820.6, 513.4, 273.6, 1182.6, 303.6, 608.6, 533.1, 1331.0, 912.6, 523.8, 384.1, 398.3, 217.5, 308.7, 492.7, 703.9, 82.7, 34.2, 750.3, 411.0, 524.0, 624.5, 159.1, 247.5, 64.8, 48.1, 463.8, 858.2, 605.5, 317.4, 172.0, 215.6, 40.1, 280.6, 143.7, 50.7, 203.3, 197.1, 1.4, 25.4, 74.8, 32.9, 54.2, 56.5, 109.9, 151.5, 97.4, 127.6, 113.7, 51.5, 10.7, 23.1, 138.2, 11.6, 0.0, 0.2, 6.4, 13.3, 0.0, 208.5, 41.6, 1.0, 0.0, 0.2, 14.8, 48.3, 0.0, 98.3, 0.4, 179.8, 0.0, 36.1, 5.9, 0.3, 2.4, 76.0, 161.4, 149.6, 3.5, 30.0, 129.9, 189.8, 336.3, 84.1, 105.9, 277.3, 112.8, 84.4, 1204.7, 911.3, 596.7, 411.7, 345.4, 375.8, 901.3, 268.1, 330.4, 511.3, 576.2, 254.6, 634.9, 470.5, 777.9, 1100.6, 1983.4, 1297.7, 408.4, 667.6, 651.4, 1585.3, 1159.5, 696.2, 2060.5, 1946.3, 793.7, 736.5, 395.1, 1057.4, 687.9, 1105.5, 749.3, 1446.9, 738.5, 516.3, 98.7, 560.7, 1207.0, 1196.7, 2453.0, 809.0, 700.9, 608.3, 949.4, 882.5, 824.5, 1410.2, 1193.4, 1074.6, 1002.8, 507.2, 270.4, 217.9, 707.3, 508.7, 630.8, 350.8, 1750.4, 1701.4, 369.3, 717.5, 638.1, 1192.5, 774.4, 1026.5, 470.9, 503.1, 282.7, 563.5, 128.9, 801.6, 866.9, 794.0, 893.3, 381.8, 632.8, 287.4, 70.0, 326.8, 118.3, 186.5, 181.7, 434.4, 511.7, 23.7, 37.0, 39.3, 88.5, 70.5, 260.0, 101.8, 30.0, 11.5, 27.6, 53.1, 17.9, 57.2, 15.5, 0.0, 0.0, 57.4, 88.2, 21.4, 84.4, 9.5, 0.3, 47.3, 55.0, 2.9, 81.6, 14.8, 23.2, 0.8, 3.3, 0.0, 0.0, 6.8, 0.0, 3.6, 14.8, 5.2, 17.8, 13.0, 10.7, 38.7, 286.8, 69.9, 172.5, 46.7, 296.7, 344.0, 33.1, 222.0, 294.5, 302.5, 670.6, 483.1, 964.9, 528.3, 969.0, 1307.9, 946.2, 750.0, 647.3, 444.9, 358.5, 509.6, 712.6, 950.9, 806.4, 1037.8, 1156.9, 572.5, 338.9, 466.2, 722.0, 637.5, 794.2, 1045.8, 1415.4, 1152.9, 919.7, 1445.9, 1717.2, 1554.0, 2977.7, 1875.0, 978.5, 1027.9, 2297.1, 1797.4, 800.4, 854.2, 979.4, 953.3, 567.5, 1281.5, 1805.1, 944.4, 1229.1, 1040.8, 1097.7, 623.5, 1363.4, 1190.2, 707.5, 1651.3, 1876.6, 902.4, 1383.9, 1095.4, 774.4, 761.2, 326.4, 1167.2, 553.0, 1416.0, 327.8, 301.4, 539.2, 407.1, 183.6, 851.6, 617.6, 603.4, 439.2, 490.7, 318.0, 392.6, 448.6, 604.0, 387.4, 577.4, 270.8, 332.9, 310.6, 505.4, 397.0, 90.5, 493.0, 1235.9, 85.4, 123.8, 16.1, 116.8, 86.6, 57.5, 63.5, 176.3, 478.1, 93.5, 1.8, 16.0, 30.4, 19.5, 73.6, 29.3, 1.7, 134.4, 117.2, 112.7, 25.8, 1.7, 68.0, 33.3, 148.5, 246.8, 427.0, 358.5, 360.3, 422.8, 468.5, 608.4, 192.3, 36.2, 313.6, 231.0, 311.8, 703.2, 648.3, 426.1, 473.7, 759.7, 1304.9, 1432.5, 3259.9, 2695.0, 1915.8, 1272.8, 469.0, 1085.9, 1277.2, 842.5, 874.5, 1216.3, 1418.6, 650.3, 1439.9, 1810.0, 1364.8, 902.3, 1379.0, 967.3, 873.6, 811.8, 1030.1, 1173.1, 819.3, 975.2, 623.1, 1509.2, 1146.2, 1694.3, 1368.1, 1243.1, 1358.9, 1936.4, 1331.9, 2213.5, 992.5, 794.4, 1078.5, 980.1, 821.6, 1058.0, 1037.0, 849.4, 1199.0, 1026.9, 744.0, 278.0, 1309.9, 2478.8, 3084.3, 1141.3, 683.7, 656.7, 561.5, 490.3, 278.7, 152.9, 283.1, 368.2, 682.3, 661.3, 239.3, 179.7, 812.1, 552.6, 431.8, 291.6, 178.5, 108.6, 82.9, 149.1, 94.5, 263.2, 204.2, 127.1, 123.5, 150.4, 222.5, 323.0, 344.0, 116.1, 79.9, 8.6, 71.0, 125.2, 266.5, 179.8, 608.5, 162.3, 15.4, 15.7, 39.0, 12.2, 0.3, 19.5, 37.3, 4.3, 0.7, 42.8, 58.9, 11.4, 355.0, 373.4, 99.7, 105.9, 96.5, 21.1, 21.1, 79.9, 153.0, 312.2, 256.1, 196.9, 126.2, 361.8, 690.2, 571.8, 444.5, 544.7, 741.4, 1557.1, 1662.0, 1647.4, 1226.7, 1128.0, 1044.6, 566.0, 804.2, 628.8, 952.0, 924.1, 1084.8, 1938.1, 1745.4, 2252.9, 2347.5, 1142.9, 2256.6, 2337.3, 2712.5, 3363.4, 2504.1, 1504.5, 2358.4, 852.8, 1240.4, 2264.8, 1744.0, 1473.5, 2365.6, 2319.7, 1322.8, 3163.3, 1678.7, 1603.4, 1917.3, 2412.9, 1916.8, 1159.1, 1031.2, 763.2, 1999.7, 1751.0, 1130.6, 1962.4, 2326.9, 3165.1, 1920.3, 1170.6, 541.9, 1158.5, 963.7, 1467.5, 642.1, 668.3, 1297.0, 893.1, 1899.8, 945.8, 1057.6, 594.3, 858.3, 483.9, 478.9, 519.5, 347.3, 206.5, 775.8, 997.1, 907.8, 1347.8, 828.7, 641.7, 362.5, 361.8, 991.3, 923.6, 977.6, 275.5, 89.5, 188.0, 242.4, 108.7, 230.9, 485.4, 253.3, 72.3, 551.6, 628.0, 753.2, 248.6, 36.7, 240.0, 142.7, 242.0, 234.7, 126.8, 284.6, 25.6, 1.6, 145.3, 0.7, 8.8, 52.5, 24.2, 78.4, 250.1, 192.8, 177.5, 538.3, 182.3, 92.2, 514.6, 584.6, 283.0, 399.2, 505.6, 270.7, 450.7, 1111.2, 398.6, 325.3, 1237.5, 3091.0, 1550.9, 1433.5, 1084.9, 715.7, 2912.4, 2290.7, 1859.8, 1344.5, 1852.4, 2513.5, 2307.6, 2721.0, 3595.8, 3950.3, 3741.3, 1933.8, 2451.1, 3207.3, 1991.6, 2379.8, 1686.4, 1642.6, 1113.1, 1089.6, 1261.3, 3432.1, 3305.2, 2559.4, 1766.0, 2075.3, 1864.9, 1745.3, 1006.1, 2476.9, 2240.0, 3640.3, 3276.7, 1882.3, 1217.1, 1606.4, 1752.0, 2265.1, 2185.5, 1815.0, 2313.0, 1486.5, 1416.2, 1927.3, 1660.3, 2359.1, 1578.1, 1048.3, 1255.7, 1068.5, 488.4, 571.1, 744.9, 610.2, 746.4, 626.7, 845.2, 1599.0, 2899.0, 2477.1, 779.9, 664.0, 959.9, 757.4, 666.0, 602.5, 464.0, 305.4, 141.9, 351.0, 256.6, 393.1, 654.3, 688.7, 307.0, 339.5, 455.4, 477.3, 288.7, 10.5, 70.3, 405.5, 195.6, 217.8, 80.7, 268.9, 141.1, 47.0, 9.1, 6.0, 0.7, 1.4, 157.4, 3.2, 0.8, 1.8, 10.5, 58.0, 2.2, 15.7, 57.8, 106.2, 540.9, 287.4, 37.2, 80.1, 302.1, 490.5, 216.4, 574.0, 436.8, 921.3, 1664.7, 1076.8, 1584.0, 2878.2, 1855.9, 1418.5, 2220.6, 1673.4, 1872.8, 3016.2, 2598.4, 2385.4, 3823.3, 3409.6, 2328.1, 1454.6, 1814.2, 2064.0, 2568.7, 4535.8, 3150.3, 2356.6, 4554.0, 4473.7, 3011.6, 4270.1, 2994.3, 2546.6, 4437.6, 3603.3, 2707.8, 2600.3, 3298.8, 2899.1, 3340.6, 2597.1, 1877.9, 3231.8, 4902.0, 2410.2, 3740.2, 2701.0, 2807.4, 3080.9, 2684.8, 3535.9, 2415.1, 1465.1, 2386.1, 2346.6, 2536.1, 1805.2, 1191.7, 1786.5, 2078.9, 1414.4, 1857.3, 2034.0, 1439.2, 1168.6, 1476.1, 906.6, 772.7, 357.6, 512.6, 638.1, 459.9, 961.9, 1155.5, 498.4, 963.1, 329.0, 314.8, 398.4, 593.8, 826.9, 693.0, 554.3, 634.0, 362.8, 262.9, 140.3, 657.5, 371.6, 291.1, 174.0, 174.5, 194.1, 144.5, 303.0, 507.2, 349.4, 147.9, 322.5, 622.7, 433.9, 185.3, 69.0, 105.1, 84.0, 149.8, 17.8, 30.9, 25.2, 7.6, 51.5, 16.6, 24.6, 27.1, 106.7, 145.9, 112.5, 52.9, 23.6, 224.6, 94.1, 73.4, 22.0, 156.1, 175.3, 139.6, 139.7, 283.2, 240.3, 563.8, 786.9, 411.9, 318.8, 762.1, 521.5, 939.3, 637.7, 710.4, 934.8, 1840.4, 1493.2, 2081.5, 892.2, 1730.6, 1025.7, 1476.4, 2128.5, 886.1, 1117.5, 1553.4, 2004.2, 2482.8, 1879.3, 1117.5, 1002.0, 1904.1, 1838.5, 1481.9, 1640.6, 1264.4, 1406.7, 1134.3, 1685.0, 1571.0, 1272.4, 2187.3, 1508.7, 1335.5, 1793.9, 1167.6, 1200.1, 845.8, 1574.1, 1698.7, 1246.5, 1593.4, 2255.9, 1382.8, 1920.1, 2126.9, 1529.6, 1646.2, 1310.9, 1256.4, 1271.2, 1566.3, 1355.4, 1942.5, 1433.8, 688.1, 884.0, 701.8, 487.3, 1122.0, 1156.2, 599.0, 954.6, 913.9, 999.2, 522.4, 1338.2, 1207.6, 572.4, 1318.6, 1321.9, 929.2, 1051.7, 604.7, 1017.1, 554.9, 561.7, 399.1, 423.7, 722.0, 765.1, 411.5, 441.0, 281.6, 262.2, 883.4, 407.0, 242.6, 251.4, 204.6, 252.8, 128.2, 513.5, 382.9, 292.6, 831.1, 432.2, 584.3, 603.0, 309.5, 251.6, 155.4, 80.2, 64.1, 17.3, 59.9, 106.9, 353.6, 702.0, 74.0, 114.2, 235.1, 34.2, 115.5, 11.3, 336.3, 376.3, 104.1, 76.3, 8.7, 290.7, 169.3, 181.9, 92.0, 274.9, 148.4, 216.0, 36.6, 123.9, 131.9, 617.4, 205.2, 273.2, 885.7, 611.0, 270.7, 644.5, 558.6, 1901.5, 1294.5, 1520.7, 1346.8, 1175.9, 878.4, 530.5, 1996.2, 1455.6, 1436.0, 2327.5, 2688.0, 2217.3, 1581.6, 1823.8, 1676.7, 2614.9, 1795.6, 2003.7, 2258.3, 2703.9, 3132.3, 1838.2, 1935.2, 2113.0, 1134.0, 2827.5, 2884.0, 1960.7, 2003.4, 1456.5, 1994.8, 2469.2, 3083.3, 2067.0, 1248.5, 2216.6, 2348.6, 2216.7, 2082.4, 1451.1, 3295.0, 1840.5, 2572.0, 3239.7, 2207.1, 2524.7, 1607.7, 3857.0, 3569.5, 2053.7, 1390.1, 3070.7, 1909.0, 2065.2, 1778.5, 1539.5, 1851.3, 2707.4, 1214.4, 957.5, 905.9, 976.7, 1736.5, 1577.8, 1105.1, 845.9, 607.1, 904.1, 203.5, 293.5, 1582.0, 2174.8, 1033.3, 1723.4, 1619.0, 588.9, 289.0, 191.5, 130.7, 69.1, 234.3, 99.8, 168.5, 102.0, 132.3, 368.2, 342.5, 246.9, 392.5, 45.2, 19.1, 193.3, 100.3, 51.0, 32.5, 417.5, 145.9, 174.5, 45.2, 1.9, 105.2, 81.7, 23.8, 359.9, 94.3, 14.0, 25.3, 13.5, 108.8, 502.6, 457.3, 104.1, 256.5, 565.9, 249.7, 493.6, 490.0, 294.5, 489.5, 507.9, 870.7, 1032.7, 492.3, 1755.6, 2044.0, 1714.3, 1220.8, 2081.5, 1593.2, 2423.8, 2952.2, 2592.5, 3054.7, 1954.4, 1824.1, 3713.7, 1503.4, 3150.0, 3308.7, 2007.9, 2489.2, 2399.9, 2080.1, 1727.0, 1826.8, 1565.2, 1872.4, 1333.7, 2074.3, 3414.2, 1662.3, 1957.7, 2793.5, 2277.0, 3211.4, 3168.0, 2794.1, 1486.8, 2275.7, 2728.6, 2525.4, 2646.0, 1635.2, 2753.9, 1370.1, 3047.0, 2413.4, 2837.2, 1271.3, 1336.5, 761.9, 721.5, 1201.3, 1135.8, 733.8, 1411.3, 1399.1, 967.4, 613.7, 1550.5, 1001.2, 687.9, 568.6, 595.5, 481.9, 409.2, 311.7, 798.0, 655.2, 681.0, 1030.1, 438.0, 171.2, 120.9, 251.5, 196.0, 295.4, 216.8, 390.1, 523.9, 113.4, 337.4, 185.6, 235.5, 315.2, 142.8, 189.7, 136.7, 149.0, 82.2, 54.6, 269.6, 90.1, 64.6, 74.1, 16.9, 49.2, 22.4, 47.9, 83.5, 163.5, 130.1, 5.1, 1.8, 277.7, 110.6, 10.8, 38.0, 51.0, 86.8, 116.5, 60.7, 38.8, 149.5, 726.1, 131.4, 632.3, 481.0, 257.9, 308.0, 810.2, 520.8, 673.8, 679.0, 690.1, 1358.9, 1331.9, 469.2, 1006.6, 1050.5, 634.5, 937.0, 655.7, 460.1, 1146.6, 1690.3, 1533.7, 1397.3, 609.9, 1509.7, 1871.8, 1497.5, 927.2, 1460.5, 2221.5, 1862.9, 2182.2, 2093.5, 2343.9, 1082.5, 1872.3, 948.8, 1351.0, 1024.3, 934.8, 669.5, 1671.0, 1892.8, 1109.2, 1785.9, 819.2, 1619.0, 3040.4, 2128.9, 2424.1, 2354.3, 1781.4, 1637.0, 1367.6, 2053.3, 2182.2, 1346.8, 2196.6, 2527.2, 2093.5, 1799.5, 1843.8, 1115.9, 987.7, 474.0, 1183.2, 1107.9, 950.6, 1280.1, 1177.4, 948.8, 593.6, 2261.2, 1594.1, 632.3, 762.8, 619.9, 700.0, 439.6, 627.3, 593.6, 1239.5, 985.4, 566.1, 600.4, 796.1, 274.6, 900.5, 534.5, 419.5, 395.7, 795.3, 701.9, 700.0, 539.2, 598.3, 52.4, 398.1, 475.5, 150.8, 10.5, 78.6, 490.9, 188.8, 196.9, 214.6, 438.5, 193.2, 79.5, 528.7, 370.3, 377.5, 200.5, 41.5, 132.5, 209.5, 220.3, 193.3, 64.1, 15.4, 4.5, 5.1, 135.9, 14.5, 8.7, 144.5, 28.9, 11.1, 9.3, 1.8, 0.0, 3.3, 15.8, 31.7, 4.1, 5.9, 3.5, 1.8, 1.9, 7.7, 17.7, 51.9, 0.5, 31.3, 82.2, 14.5, 99.8, 223.5, 182.0, 222.0, 71.4, 55.3, 89.6, 187.9, 233.9, 399.1, 405.1, 193.7, 308.0, 237.8, 404.5, 981.4, 662.2, 380.9, 314.5, 452.3, 613.1, 1205.4, 1256.6, 1536.6, 949.5, 1000.8, 380.4, 802.1, 739.9, 1047.1, 768.0, 1282.1, 709.5, 706.5, 840.5, 825.5, 460.2, 996.7, 442.5, 635.4, 1116.3, 1117.1, 635.6, 668.8, 605.2, ] dr = pd.date_range("1874-05-31", periods=len(values), freq="M") tsd =
pd.Series(values, index=dr)
pandas.Series
import emoji import collections as c import pandas as pd # for visualization import plotly.express as px import matplotlib.pyplot as plt # word cloud from wordcloud import WordCloud, STOPWORDS def authors_name(data): """ It returns the name of participants in chat. """ authors = data.Author.unique().tolist() return [name for name in authors if name != None] def extract_emojis(s): """ This function is used to calculate emojis in text and return in a list. """ return [c for c in s if c in emoji.UNICODE_EMOJI] def stats(data): """ This function takes input as data and return number of messages and total emojis used in chat. """ total_messages = data.shape[0] media_messages = data[data['Message'] == '<Media omitted>'].shape[0] emojis = sum(data['emoji'].str.len()) return "Total Messages 💬: {} \n Total Media 🎬: {} \n Total Emoji's 😂: {}".format(total_messages, media_messages, emojis) def popular_emoji(data): """ This function returns the list of emoji's with it's frequency. """ total_emojis_list = list([a for b in data.emoji for a in b]) emoji_dict = dict(c.Counter(total_emojis_list)) emoji_list = sorted(emoji_dict.items(), key=lambda x: x[1], reverse=True) return emoji_list def visualize_emoji(data): """ This function is used to make pie chart of popular emoji's. """ emoji_df = pd.DataFrame(popular_emoji(data), columns=['emoji', 'count']) fig = px.pie(emoji_df, values='count', names='emoji') fig.update_traces(textposition='inside', textinfo='percent+label') # fig.show() return fig def word_cloud(df): """ This function is used to generate word cloud using dataframe. """ df = df[df['Message'] != '<Media omitted>'] df = df[df['Message'] != 'This message was deleted'] words = ' '.join(df['Message']) processed_words = ' '.join([word for word in words.split() if 'http' not in word and not word.startswith('@') and word != 'RT']) # To stop article, punctuations wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', height=640, width=800).generate(processed_words) # plt.figure(figsize=(45,8)) plt.imshow(wordcloud, interpolation='bilinear') plt.xticks([]) plt.yticks([]) def active_date(data): """ This function is used to generate horizontal bar graph between date and number of messages dataframe. """ ax = data['Date'].value_counts().head(10).plot.barh() ax.set_title('Top 10 active date') ax.set_xlabel('Number of Messages') ax.set_ylabel('Date') plt.tight_layout() def active_time(data): """ This function generate horizontal bar graph between time and number of messages. Parameters ---------- data : Dataframe With this data graph is generated. Returns ------- None. """ ax = data['Time'].value_counts().head(10).plot.barh() ax.set_title('Top 10 active time') ax.set_xlabel('Number of messages') ax.set_ylabel('Time') plt.tight_layout() def day_wise_count(data): """ This function generate a line polar plot. Parameters ---------- data : DataFrame DESCRIPTION. Returns ------- fig : TYPE DESCRIPTION. """ days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] day_df =
pd.DataFrame(data["Message"])
pandas.DataFrame
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/7/8 22:08 Desc: 金十数据中心-经济指标-美国 https://datacenter.jin10.com/economic """ import json import time import pandas as pd import demjson import requests from akshare.economic.cons import ( JS_USA_NON_FARM_URL, JS_USA_UNEMPLOYMENT_RATE_URL, JS_USA_EIA_CRUDE_URL, JS_USA_INITIAL_JOBLESS_URL, JS_USA_CORE_PCE_PRICE_URL, JS_USA_CPI_MONTHLY_URL, JS_USA_LMCI_URL, JS_USA_ADP_NONFARM_URL, JS_USA_GDP_MONTHLY_URL, ) # 东方财富-美国-未决房屋销售月率 def macro_usa_phs(): """ 未决房屋销售月率 http://data.eastmoney.com/cjsj/foreign_0_5.html :return: 未决房屋销售月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { 'type': 'GJZB', 'sty': 'HKZB', 'js': '({data:[(x)],pages:(pc)})', 'p': '1', 'ps': '2000', 'mkt': '0', 'stat': '5', 'pageNo': '1', 'pageNum': '1', '_': '1625474966006' } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json['data']]) temp_df.columns = [ '时间', '前值', '现值', '发布日期', ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) return temp_df # 金十数据中心-经济指标-美国-经济状况-美国GDP def macro_usa_gdp_monthly(): """ 美国国内生产总值(GDP)报告, 数据区间从20080228-至今 https://datacenter.jin10.com/reportType/dc_usa_gdp :return: pandas.Series 2008-02-28 0.6 2008-03-27 0.6 2008-04-30 0.9 2008-06-26 1 2008-07-31 1.9 ... 2019-06-27 3.1 2019-07-26 2.1 2019-08-29 2 2019-09-26 2 2019-10-30 0 """ t = time.time() res = requests.get( JS_USA_GDP_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国国内生产总值(GDP)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "53", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "gdp" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国CPI月率报告 def macro_usa_cpi_monthly(): """ 美国CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_cpi https://cdn.jin10.com/dc/reports/dc_usa_cpi_all.js?v=1578741110 :return: 美国CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_CPI_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国居民消费价格指数(CPI)(月环比)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "9", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "cpi_monthly" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国核心CPI月率报告 def macro_usa_core_cpi_monthly(): """ 美国核心CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_core_cpi https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v=1578740570 :return: 美国核心CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心CPI月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "6", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_core_cpi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国个人支出月率报告 def macro_usa_personal_spending(): """ 美国个人支出月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_personal_spending https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v=1578741327 :return: 美国个人支出月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国个人支出月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "35", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_personal_spending" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国零售销售月率报告 def macro_usa_retail_sales(): """ 美国零售销售月率报告, 数据区间从19920301-至今 https://datacenter.jin10.com/reportType/dc_usa_retail_sales https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v=1578741528 :return: 美国零售销售月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国零售销售月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "39", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_retail_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国进口物价指数报告 def macro_usa_import_price(): """ 美国进口物价指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_import_price https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v=1578741716 :return: 美国进口物价指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国进口物价指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "18", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_import_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国出口价格指数报告 def macro_usa_export_price(): """ 美国出口价格指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_export_price https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v=1578741832 :return: 美国出口价格指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国出口价格指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "79", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_export_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-LMCI def macro_usa_lmci(): """ 美联储劳动力市场状况指数报告, 数据区间从20141006-至今 https://datacenter.jin10.com/reportType/dc_usa_lmci https://cdn.jin10.com/dc/reports/dc_usa_lmci_all.js?v=1578742043 :return: 美联储劳动力市场状况指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_LMCI_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美联储劳动力市场状况指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "93", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "lmci" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国失业率报告 def macro_usa_unemployment_rate(): """ 美国失业率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_unemployment_rate https://cdn.jin10.com/dc/reports/dc_usa_unemployment_rate_all.js?v=1578821511 :return: 获取美国失业率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_UNEMPLOYMENT_RATE_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国失业率"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "47", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "unemployment_rate" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国挑战者企业裁员人数报告 def macro_usa_job_cuts(): """ 美国挑战者企业裁员人数报告, 数据区间从19940201-至今 https://datacenter.jin10.com/reportType/dc_usa_job_cuts https://cdn.jin10.com/dc/reports/dc_usa_job_cuts_all.js?v=1578742262 :return: 美国挑战者企业裁员人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_job_cuts_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国挑战者企业裁员人数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "78", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_job_cuts" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国非农就业人数报告 def macro_usa_non_farm(): """ 美国非农就业人数报告, 数据区间从19700102-至今 https://datacenter.jin10.com/reportType/dc_nonfarm_payrolls https://cdn.jin10.com/dc/reports/dc_nonfarm_payrolls_all.js?v=1578742490 :return: 美国非农就业人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_NON_FARM_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国非农就业人数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "33", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "non_farm" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国ADP就业人数报告 def macro_usa_adp_employment(): """ 美国ADP就业人数报告, 数据区间从20010601-至今 https://datacenter.jin10.com/reportType/dc_adp_nonfarm_employment https://cdn.jin10.com/dc/reports/dc_adp_nonfarm_employment_all.js?v=1578742564 :return: 美国ADP就业人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_ADP_NONFARM_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ADP就业人数(万人)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "1", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "adp" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国核心PCE物价指数年率报告 def macro_usa_core_pce_price(): """ 美国核心PCE物价指数年率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_core_pce_price https://cdn.jin10.com/dc/reports/dc_usa_core_pce_price_all.js?v=1578742641 :return: 美国核心PCE物价指数年率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_CORE_PCE_PRICE_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心PCE物价指数年率"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "80", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "core_pce_price" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国实际个人消费支出季率初值报告 def macro_usa_real_consumer_spending(): """ 美国实际个人消费支出季率初值报告, 数据区间从20131107-至今 https://datacenter.jin10.com/reportType/dc_usa_real_consumer_spending https://cdn.jin10.com/dc/reports/dc_usa_real_consumer_spending_all.js?v=1578742802 :return: 美国实际个人消费支出季率初值报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_real_consumer_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国实际个人消费支出季率初值报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "81", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_real_consumer_spending" return temp_df # 金十数据中心-经济指标-美国-贸易状况-美国贸易帐报告 def macro_usa_trade_balance(): """ 美国贸易帐报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_trade_balance https://cdn.jin10.com/dc/reports/dc_usa_trade_balance_all.js?v=1578742911 :return: 美国贸易帐报告-今值(亿美元) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_trade_balance_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国贸易帐报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(亿美元)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "42", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_trade_balance" return temp_df # 金十数据中心-经济指标-美国-贸易状况-美国经常帐报告 def macro_usa_current_account(): """ 美国经常帐报告, 数据区间从20080317-至今 https://datacenter.jin10.com/reportType/dc_usa_current_account https://cdn.jin10.com/dc/reports/dc_usa_current_account_all.js?v=1578743012 :return: 美国经常帐报告-今值(亿美元) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_current_account_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国经常账报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(亿美元)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "12", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_current_account" return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-贝克休斯钻井报告 def macro_usa_rig_count(): """ 贝克休斯钻井报告, 数据区间从20080317-至今 https://datacenter.jin10.com/reportType/dc_rig_count_summary https://cdn.jin10.com/dc/reports/dc_rig_count_summary_all.js?v=1578743203 :return: 贝克休斯钻井报告-当周 :rtype: pandas.Series """ t = time.time() params = { "_": t } res = requests.get("https://cdn.jin10.com/data_center/reports/baker.json", params=params) temp_df = pd.DataFrame(res.json().get("values")).T big_df = pd.DataFrame() big_df["钻井总数_钻井数"] = temp_df["钻井总数"].apply(lambda x: x[0]) big_df["钻井总数_变化"] = temp_df["钻井总数"].apply(lambda x: x[1]) big_df["美国石油钻井_钻井数"] = temp_df["美国石油钻井"].apply(lambda x: x[0]) big_df["美国石油钻井_变化"] = temp_df["美国石油钻井"].apply(lambda x: x[1]) big_df["混合钻井_钻井数"] = temp_df["混合钻井"].apply(lambda x: x[0]) big_df["混合钻井_变化"] = temp_df["混合钻井"].apply(lambda x: x[1]) big_df["美国天然气钻井_钻井数"] = temp_df["美国天然气钻井"].apply(lambda x: x[0]) big_df["美国天然气钻井_变化"] = temp_df["美国天然气钻井"].apply(lambda x: x[1]) big_df = big_df.astype("float") return big_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国个人支出月率报告 # 金十数据中心-经济指标-美国-产业指标-制造业-美国生产者物价指数(PPI)报告 def macro_usa_ppi(): """ 美国生产者物价指数(PPI)报告, 数据区间从20080226-至今 https://datacenter.jin10.com/reportType/dc_usa_ppi https://cdn.jin10.com/dc/reports/dc_usa_ppi_all.js?v=1578743628 :return: 美国生产者物价指数(PPI)报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ppi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国生产者物价指数(PPI)报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "37", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ppi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国核心生产者物价指数(PPI)报告 def macro_usa_core_ppi(): """ 美国核心生产者物价指数(PPI)报告, 数据区间从20080318-至今 https://datacenter.jin10.com/reportType/dc_usa_core_ppi https://cdn.jin10.com/dc/reports/dc_usa_core_ppi_all.js?v=1578743709 :return: 美国核心生产者物价指数(PPI)报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_core_ppi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心生产者物价指数(PPI)报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "7", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_core_ppi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国API原油库存报告 def macro_usa_api_crude_stock(): """ 美国API原油库存报告, 数据区间从20120328-至今 https://datacenter.jin10.com/reportType/dc_usa_api_crude_stock https://cdn.jin10.com/dc/reports/dc_usa_api_crude_stock_all.js?v=1578743859 :return: 美国API原油库存报告-今值(万桶) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_api_crude_stock_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国API原油库存报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万桶)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "69", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_api_crude_stock" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国Markit制造业PMI初值报告 def macro_usa_pmi(): """ 美国Markit制造业PMI初值报告, 数据区间从20120601-至今 https://datacenter.jin10.com/reportType/dc_usa_pmi https://cdn.jin10.com/dc/reports/dc_usa_pmi_all.js?v=1578743969 :return: 美国Markit制造业PMI初值报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国Markit制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "74", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国ISM制造业PMI报告 def macro_usa_ism_pmi(): """ 美国ISM制造业PMI报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_ism_pmi https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v=1578744071 :return: 美国ISM制造业PMI报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "28", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国工业产出月率报告 def macro_usa_industrial_production(): """ 美国工业产出月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_industrial_production https://cdn.jin10.com/dc/reports/dc_usa_industrial_production_all.js?v=1578744188 :return: 美国工业产出月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_industrial_production_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国工业产出月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "20", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_industrial_production" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国耐用品订单月率报告 def macro_usa_durable_goods_orders(): """ 美国耐用品订单月率报告, 数据区间从20080227-至今 https://datacenter.jin10.com/reportType/dc_usa_durable_goods_orders https://cdn.jin10.com/dc/reports/dc_usa_durable_goods_orders_all.js?v=1578744295 :return: 美国耐用品订单月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_durable_goods_orders_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国耐用品订单月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "13", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_durable_goods_orders" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国工厂订单月率报告 def macro_usa_factory_orders(): """ 美国工厂订单月率报告, 数据区间从19920401-至今 https://datacenter.jin10.com/reportType/dc_usa_factory_orders https://cdn.jin10.com/dc/reports/dc_usa_factory_orders_all.js?v=1578744385 :return: 美国工厂订单月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_factory_orders_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国工厂订单月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "16", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_factory_orders" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国Markit服务业PMI初值报告 def macro_usa_services_pmi(): """ 美国Markit服务业PMI初值报告, 数据区间从20120701-至今 https://datacenter.jin10.com/reportType/dc_usa_services_pmi https://cdn.jin10.com/dc/reports/dc_usa_services_pmi_all.js?v=1578744503 :return: 美国Markit服务业PMI初值报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_services_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国Markit服务业PMI初值报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "89", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_services_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国商业库存月率报告 def macro_usa_business_inventories(): """ 美国商业库存月率报告, 数据区间从19920301-至今 https://datacenter.jin10.com/reportType/dc_usa_business_inventories https://cdn.jin10.com/dc/reports/dc_usa_business_inventories_all.js?v=1578744618 :return: 美国商业库存月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_business_inventories_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国商业库存月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "4", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_business_inventories" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国ISM非制造业PMI报告 def macro_usa_ism_non_pmi(): """ 美国ISM非制造业PMI报告, 数据区间从19970801-至今 https://datacenter.jin10.com/reportType/dc_usa_ism_non_pmi https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v=1578744693 :return: 美国ISM非制造业PMI报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM非制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "29", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_non_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国NAHB房产市场指数报告 def macro_usa_nahb_house_market_index(): """ 美国NAHB房产市场指数报告, 数据区间从19850201-至今 https://datacenter.jin10.com/reportType/dc_usa_nahb_house_market_index https://cdn.jin10.com/dc/reports/dc_usa_nahb_house_market_index_all.js?v=1578744817 :return: 美国NAHB房产市场指数报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_nahb_house_market_index_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国NAHB房产市场指数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "31", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_nahb_house_market_index" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋开工总数年化报告 def macro_usa_house_starts(): """ 美国新屋开工总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_house_starts https://cdn.jin10.com/dc/reports/dc_usa_house_starts_all.js?v=1578747388 :return: 美国新屋开工总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_house_starts_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国新屋开工总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "17", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_house_starts" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋销售总数年化报告 def macro_usa_new_home_sales(): """ 美国新屋销售总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_new_home_sales https://cdn.jin10.com/dc/reports/dc_usa_new_home_sales_all.js?v=1578747501 :return: 美国新屋销售总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_new_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国新屋销售总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "32", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_new_home_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国营建许可总数报告 def macro_usa_building_permits(): """ 美国营建许可总数报告, 数据区间从20080220-至今 https://datacenter.jin10.com/reportType/dc_usa_building_permits https://cdn.jin10.com/dc/reports/dc_usa_building_permits_all.js?v=1578747599 :return: 美国营建许可总数报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_building_permits_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国营建许可总数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "3", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_building_permits" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋销售总数年化报告 def macro_usa_exist_home_sales(): """ 美国成屋销售总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_exist_home_sales https://cdn.jin10.com/dc/reports/dc_usa_exist_home_sales_all.js?v=1578747703 :return: 美国成屋销售总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_exist_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国成屋销售总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "15", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_exist_home_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国FHFA房价指数月率报告 def macro_usa_house_price_index(): """ 美国FHFA房价指数月率报告, 数据区间从19910301-至今 https://datacenter.jin10.com/reportType/dc_usa_house_price_index https://cdn.jin10.com/dc/reports/dc_usa_house_price_index_all.js?v=1578747781 :return: 美国FHFA房价指数月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_house_price_index_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国FHFA房价指数月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "51", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_house_price_index" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国S&P/CS20座大城市房价指数年率报告 def macro_usa_spcs20(): """ 美国S&P/CS20座大城市房价指数年率报告, 数据区间从20010201-至今 https://datacenter.jin10.com/reportType/dc_usa_spcs20 https://cdn.jin10.com/dc/reports/dc_usa_spcs20_all.js?v=1578747873 :return: 美国S&P/CS20座大城市房价指数年率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_spcs20_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国S&P/CS20座大城市房价指数年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "52", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_spcs20" temp_df = temp_df.astype(float) return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋签约销售指数月率报告 def macro_usa_pending_home_sales(): """ 美国成屋签约销售指数月率报告, 数据区间从20010301-至今 https://datacenter.jin10.com/reportType/dc_usa_pending_home_sales https://cdn.jin10.com/dc/reports/dc_usa_pending_home_sales_all.js?v=1578747959 :return: 美国成屋签约销售指数月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_pending_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国成屋签约销售指数月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "34", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_pending_home_sales" temp_df = temp_df.astype(float) return temp_df # 金十数据中心-经济指标-美国-领先指标-美国谘商会消费者信心指数报告 def macro_usa_cb_consumer_confidence(): """ 美国谘商会消费者信心指数报告, 数据区间从19700101-至今 https://cdn.jin10.com/dc/reports/dc_usa_cb_consumer_confidence_all.js?v=1578576859 :return: 美国谘商会消费者信心指数报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_cb_consumer_confidence_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}") json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国谘商会消费者信心指数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "5", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index =
pd.to_datetime(temp_se.iloc[:, 0])
pandas.to_datetime
import numpy as np import data_generator_lib import pandas as pd import librosa import data_cnn_format as cnn import gccphat import constants import rotate import final_models import utility_methods from plotting import plotting class Simulation: """ Class for running a single simulation of doa estimation based on synthetic data """ def __init__(self, directory, source_azimuth, source_distance, model): self.current_position = 0 self.iteration = 0 self.directory = directory self.predictions = [] self.source_azimuth = source_azimuth self.source_distance = source_distance self.model = model self.rotation = 0 self.mic_centre = np.array([1.5, 1.5]) self.rotation_list = [0] self.prediction = 0 self.initial_adjust = False self.current_model = self.get_model() # init self.results = [] self.audio_number = 0 # TODO: move doa to here def store_prediction(self, doa_list): """ convert relative prediction to home coordinates """ true_doas = [utility_methods.cylindrical(self.current_position + doa_list[0]), utility_methods.cylindrical(self.current_position + doa_list[1])] self.predictions.append(true_doas) def get_model(self): model = None if self.model == "gcc_cnn": model = final_models.gcc_cnn() elif self.model == "raw_cnn": model = final_models.raw_cnn() elif self.model == "raw_resnet": model = final_models.raw_resnet() elif self.model == "gcc_dsp": model = final_models.gcc_dsp() else: print("Error -> No file found") return model def simulated_record(self, mic_rotation): """ Simulation of recording audio. Takes source position and mic rotation, simulates acoustics, and records to wav :param mic_rotation: angle of rotation of microphone to simulate the head movements """ data_point = data_generator_lib.get_data(subset_size=1)[self.audio_number] wav_id, true_azimuth = data_generator_lib.generate_training_data(source_azimuth_degrees=self.source_azimuth, source_distance_from_room_centre=self.source_distance, SNR=-20, RT60=0.3, source=data_point, mic_centre=self.mic_centre, mic_rotation_degrees=mic_rotation, binaural_object=constants.room, dir=self.directory) output = [wav_id, true_azimuth, self.iteration] df =
pd.DataFrame([output], columns=['stereo wav', 'True Azimuth', 'Rotation Iteration'])
pandas.DataFrame
""" MIT License Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pandas as pd import numpy as np import sys, os, site, zipfile, math, time, json, io import googlemaps, urllib, shapely, shutil, requests import xml.etree.ElementTree as ET from glob import glob from urllib.error import HTTPError from urllib.request import URLError from http.client import IncompleteRead from zipfile import BadZipFile from tqdm import tqdm, trange from warnings import warn ########################### ### IMPORT PROJECT PATH ### import pvvm.settings revmpath = pvvm.settings.revmpath datapath = pvvm.settings.datapath apikeys = pvvm.settings.apikeys nsrdbparams = pvvm.settings.nsrdbparams ##################### ### Imports from pvvm import pvvm.toolbox import pvvm.io ####################### ### DICTS AND LISTS ### ####################### isos = ['CAISO', 'ERCOT', 'MISO', 'PJM', 'NYISO', 'ISONE'] resolutionlmps = { ('CAISO', 'da'): 60, ('CAISO', 'rt'): 5, ('ERCOT', 'da'): 60, ('ERCOT', 'rt'): 5, ('MISO', 'da'): 60, ('MISO', 'rt'): 60, ('PJM', 'da'): 60, ('PJM', 'rt'): 60, ('NYISO', 'da'): 60, ('NYISO', 'rt'): 5, ('ISONE', 'da'): 60, ('ISONE', 'rt'): 60, } ################ ### DOWNLOAD ### ################ ############### ### General use def constructpayload(**kwargs): out = [] for kwarg in kwargs: out.append('{}={}'.format(kwarg, kwargs[kwarg])) stringout = '&'.join(out) return stringout def constructquery(urlstart, **kwargs): out = '{}{}'.format(urlstart, constructpayload(**kwargs)) return out def stampify(date, interval=pd.Timedelta('1H')): datetime = pd.Timestamp(date) if interval == pd.Timedelta('1H'): dateout = '{}{:02}{:02}T{:02}'.format( datetime.year, datetime.month, datetime.day, datetime.hour) elif interval == pd.Timedelta('1D'): dateout = '{}{:02}{:02}'.format( datetime.year, datetime.month, datetime.day) return dateout def download_file_series(urlstart, urlend, fileseries, filepath, overwrite=False, sleeptime=60, numattempts=200, seriesname=True): """ Example ------- You want to download a list of files at urls = [ 'http://www.test.com/foo001.csv', 'http://www.test.com/foo002.csv']. Then: urlstart = 'http://www.test.com/foo' urlend = '.csv' fileseries = ['001', '002'] If you want the files to be named 'foo001.csv', use seriesname=False If you want the files to be named '001.csv', use seriesname=True """ filepath = pvvm.toolbox.pathify(filepath, make=True) ### Make lists of urls, files to download, and filenames urls = [(urlstart + file + urlend) for file in fileseries] todownload = [os.path.basename(url) for url in urls] if seriesname == True: filenames = [os.path.basename(file) + urlend for file in fileseries] else: filenames = todownload ### Get the list of downloaded files downloaded = [os.path.basename(file) for file in glob(filepath + '*')] ### Remake the list if overwrite == False if overwrite == False: filestodownload = [] urlstodownload = [] fileseriesnames = [] for i in range(len(filenames)): if filenames[i] not in downloaded: filestodownload.append(todownload[i]) urlstodownload.append(urls[i]) fileseriesnames.append(filenames[i]) elif overwrite == True: filestodownload = todownload urlstodownload = urls fileseriesnames = filenames ### Download the files for i in trange(len(urlstodownload)): ### Attempt the download attempts = 0 while attempts < numattempts: try: urllib.request.urlretrieve( urlstodownload[i], filepath + fileseriesnames[i]) break except (HTTPError, IncompleteRead, EOFError) as err: print(urlstodownload[i]) print(filestodownload[i]) print('Rebuffed on attempt # {} at {} by "{}".' 'Will retry in {} seconds.'.format( attempts, pvvm.toolbox.nowtime(), err, sleeptime)) attempts += 1 time.sleep(sleeptime) ########################### ### Geographic manipulation def rowlatlon2x(row): latrad = row['latitude'] * math.pi / 180 lonrad = row['longitude'] * math.pi / 180 x = math.cos(latrad) * math.cos(lonrad) return x def rowlatlon2y(row): latrad = row['latitude'] * math.pi / 180 lonrad = row['longitude'] * math.pi / 180 y = math.cos(latrad) * math.sin(lonrad) return y def rowlatlon2z(row): latrad = row['latitude'] * math.pi / 180 z = math.sin(latrad) return z ############ ### ISO LMPs """ Note: These scripts worked as of early 2018, but MISO, PJM, and NYISO have since changed their websites, and CAISO has removed data prior to 20150303. Scripts are included here for documentary purposes and as a resource for future data collection, but are unlikely to work given ISO website changes. """ def download_caiso_lmp_allnodes(market, start, filepathout, product='LMP', numattempts=200, waittime=10): urlstart = 'http://oasis.caiso.com/oasisapi/GroupZip?' columnsout = [ 'INTERVALSTARTTIME_GMT', 'NODE', 'MW', 'OPR_DT', 'OPR_HR', 'OPR_INTERVAL'] if market in ['RTM', 'HASP', 'RTPD']: interval = pd.Timedelta('1H') elif market in ['DAM', 'RUC']: interval = pd.Timedelta('1D') starttimestamp = pd.Timestamp(start) endtimestamp = starttimestamp + interval startdatetime = '{}{:02}{:02}T{:02}:00-0000'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day, starttimestamp.hour) enddatetime = '{}{:02}{:02}T{:02}:00-0000'.format( endtimestamp.year, endtimestamp.month, endtimestamp.day, endtimestamp.hour) if interval == pd.Timedelta('1D'): fileout = '{}{:02}{:02}.gz'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day) elif interval == pd.Timedelta('1H'): fileout = '{}{:02}{:02}T{:02}.gz'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day, starttimestamp.hour) url = constructquery( urlstart, groupid='{}_LMP_GRP'.format(market), startdatetime=startdatetime, enddatetime=enddatetime, version=1, resultformat=6) attempts = 0 while attempts < numattempts: try: # if product.lower() in ['mcc', 'mce', 'mcl']: # if (market.upper() in ['DAM', 'RUC']) and (starttimestamp.year >= 2016): # if market.upper() in ['DAM', 'RUC']: if ((product.lower() in ['mcc', 'mce', 'mcl']) or ((market == 'DAM') and product.lower() == 'lmp')): zip_file = zipfile.ZipFile(io.BytesIO( urllib.request.urlopen(url).read())) for csv_file in zip_file.infolist(): if csv_file.filename.endswith( '{}_v1.csv'.format(product.upper())): df = pd.read_csv(zip_file.open(csv_file.filename)) else: df = pd.read_csv(url, compression='zip') dfout = df[df['LMP_TYPE'] == product.upper()][columnsout] dfout.to_csv( '{}{}'.format(filepathout, fileout), columns=columnsout, index=False, compression='gzip') return dfout except ( URLError, IncompleteRead, pd.errors.ParserError, BadZipFile, KeyError, HTTPError, UnboundLocalError) as error: print( 'Error for {} on attempt {}/{}: {}'.format( start, attempts, numattempts, error), # end='\r', ) attempts += 1 time.sleep(waittime) if attempts >= numattempts: raise URLError('{}{}'.format(filepathout, fileout)) def download_lmps(year, iso, market, overwrite=False, sleeptime=60, product='LMP', submarket=None, numattempts=200, subset=None, waittime=10, filepath=None): """ Inputs ------ subset: None or slice() Notes ----- * ERCOT LMPs more than 30 days old must be requested from ERCOT. Requests can be filed at http://www.ercot.com/about/contact/inforequest. Files should be placed in the folder revmpath + 'ERCOT/in/lmp/{}/{}/'.format(market, year) where year is the year of the timestamp within the files. Note that the date in the filename for day-ahead LMPs is the date before the timestamps within the file: for example, file ('cdr.00012328.0000000000000000.20151231.125905514.DAMHRLMPNP4183_csv') contains timestamps for 20160101, and should be placed in the 2016 folder. """ ### Normalize inputs iso = iso.upper() market = market.lower() year = int(year) assert market in ['da', 'rt'] assert iso in ['CAISO', 'MISO', 'PJM', 'NYISO', 'ISONE'] ### Set file structure if filepath is None: filepath = revmpath+'{}/in/lmp/{}/'.format(iso, market) if not os.path.exists(filepath): os.makedirs(filepath) ### Adjust inputs for different isos urlstart = { 'ISONE': { 'da': 'https://www.iso-ne.com/static-transform/csv/histRpts/da-lmp/WW_DALMP_ISO_', 'rt': 'https://www.iso-ne.com/static-transform/csv/histRpts/rt-lmp/lmp_rt_final_'}, 'MISO': { # 'da': 'https://old.misoenergy.org/Library/Repository/Market%20Reports/', # 'rt': 'https://old.misoenergy.org/Library/Repository/Market%20Reports/', 'da': 'https://docs.misoenergy.org/marketreports/', 'rt': 'https://docs.misoenergy.org/marketreports/', }, 'PJM': { 'da': 'http://www.pjm.com/pub/account/lmpda/', 'rt': 'http://www.pjm.com/pub/account/lmp/'}, 'NYISO': { 'da': 'http://mis.nyiso.com/public/csv/damlbmp/', 'rt': 'http://mis.nyiso.com/public/csv/realtime/'}, } urlend = { 'ISONE': {'da': '.csv', 'rt': '.csv'}, 'MISO': {'da': '_da_lmp.csv', 'rt': '_rt_lmp_final.csv'}, 'PJM': {'da': '-da.zip', 'rt': '.zip'}, 'NYISO': {'da': 'damlbmp_gen_csv.zip', 'rt': 'realtime_gen_csv.zip'}, } files = { 'ISONE': pvvm.toolbox.makedays(year), 'MISO': pvvm.toolbox.makedays(year), 'PJM': pvvm.toolbox.makedays(year), 'NYISO': ['{}{:02}01'.format(year, month) for month in range(1,13)] } ### Download files if iso == 'ISONE': download_file_series( urlstart=urlstart[iso][market], urlend=urlend[iso][market], fileseries=files[iso], filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'MISO': urls = [(urlstart[iso][market] + file + '_da_expost_lmp.csv') if (int(file) >= 20150301) and (market == 'da') else (urlstart[iso][market] + file + urlend[iso][market]) for file in files[iso]] download_file_series( urlstart='', urlend='', fileseries=urls, filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'PJM': da_updated = { '20151201': '-da_updated.zip', '20150930': '-da_updated.zip', '20140617': '-da_updated.zip', '20150616': '-da_updated.zip', '20150615': '-da_updated.zip', '20150614': '-da_updated.zip', '20140613': '-da_updated.zip', '20150603': '-da_updated.zip', '20150602': '-da_updated.zip', '20150601': '-da_updated.zip', '20150409': '-da_updated.zip', '20140327': '-da_updated.zip', '20111012': '-da_update.zip', '20111011': '-da_update.zip', } rt_updated = { '20170116': '_updated.zip', '20170115': '_updated.zip', '20170114': '_updated.zip', '20170113': '_updated.zip', '20160923': '_updated.zip', '20160417': '_updated.zip', '20160416': '_updated.zip', '20160415': '_updated.zip', '20151110': '_updated.zip', '20150929': '_updated.zip', '20150901': '_updated.zip', '20150831': '_updated.zip', '20150601': '_updated.zip', '20150504': '_updated.zip', '20150427': '_updated.zip', '20150407': '_updated.zip', '20150310': '_updated.zip', '20150309': '_updated.zip', '20150201': '_updated.zip', '20150131': '_updated.zip', '20150130': '_updated.zip', '20141112': '_updated.zip', '20141023': '_updated.zip', '20141013': '_updated.zip', '20140805': '_updated.zip', '20140710': '_updated.zip', '20140507': '_updated.zip', '20140128': '_updated.zip', '20131125': '_updated.zip', '20131120': '_updated.zip', '20130424': '_updated.zip', '20130307': '_updated.zip', '20121109': '_updated.zip', '20121023': '_updated.zip', '20121004': '_updated.zip', '20121003': '_updated2.zip', '20121001': '_updated.zip', '20110914': '_updated.zip', '20110829': '_updated.zip', '20110617': '_updated.zip', '20110306': '_updated.zip', '20110305': '_updated.zip', '20110304': '_updated.zip', '20101005': '_updated.zip', '20100526': '_updated.zip', '20100201': '_updated.zip', '20100129': '_updated.zip', '20100125': '_updated.zip', '20080904': '_updated.zip', '20080413': '_updated.zip', '20080305': '_updated.zip', '20080215': '_updated.zip', '20080214': '_updated.zip', '20071002': '_updated.zip', '20070822': '_updated.zip', } if market == 'da': # print("Download 'updated' files from http://www.pjm.com/markets-and-operations/" # "energy/day-ahead/lmpda.aspx and replace the files of the corresponding date" # "downloaded here") # ### Files switch from .zip to .csv on 20171109 for day-ahead # urls = [(urlstart[iso][market] + file + '-da.csv') # if int(file) >= 20171109 # else (urlstart[iso][market] + file + '-da.zip') # for file in files[iso]] # ^ Out of date; files have been reposted as zips (20180621) urls = [(urlstart[iso][market] + file + da_updated[file]) if file in da_updated.keys() else (urlstart[iso][market] + file + '-da.zip') for file in files[iso]] elif market == 'rt': # print("Download 'updated' files from http://www.pjm.com/markets-and-operations/" # "energy/real-time/lmpda.aspx and replace the files of the corresponding date" # "downloaded here") # ### Files switch from .zip to .csv on 20171212 for real-time # urls = [(urlstart[iso][market] + file + '.csv') # if int(file) >= 20171212 # else (urlstart[iso][market] + file + '.zip') # for file in files[iso]] # ^ Out of date; files have been reposted as zips (20180621) urls = [(urlstart[iso][market] + file + rt_updated[file]) if file in rt_updated.keys() else (urlstart[iso][market] + file + '.zip') for file in files[iso]] download_file_series( urlstart='', urlend='', fileseries=urls, filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'NYISO': ### NYISO files are zipped by month; put them in a separate folder zippath = '{}/in/lmp/{}-zip/'.format(iso, market) if not os.path.exists(zippath): os.makedirs(zippath) download_file_series( urlstart=urlstart[iso][market], urlend=urlend[iso][market], fileseries=files[iso], filepath=zippath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) ### Unzip files zips = [(zippath + file + urlend[iso][market]) for file in files[iso]] for i in trange(len(zips)): zip_ref = zipfile.ZipFile(zips[i], 'r') zip_ref.extractall(filepath) zip_ref.close() elif iso == 'CAISO': if (submarket == None) and (market == 'rt'): submarket = 'RTM' elif (submarket == None) and (market == 'da'): submarket = 'DAM' if submarket in ['RTM', 'HASP', 'RTPD']: interval = pd.Timedelta('1H') elif submarket in ['DAM', 'RUC']: interval = pd.Timedelta('1D') ### Set output filepath filepath = '{}/in/{}/{}/'.format(iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepath = '{}/in/{}/{}/{}/'.format( iso, product.lower(), market, submarket) if not os.path.exists(filepath): os.makedirs(filepath) queries = pd.date_range( start=pd.Timestamp('{}-01-01T00:00'.format(year)), end=(pd.Timestamp('{}-01-01T00:00'.format(year+1)) - interval), freq=interval) ### Initialize error container and subset if necessary errors = [] if subset == None: subset = slice(None) # already_downloaded = glob('{}{}*'.format(filepath, year)) for query in tqdm(queries[subset]): # if '{}{}.gz'.format(filepath, stampify(query)) not in already_downloaded: if interval == pd.Timedelta('1D'): fileout = stampify(query)[:-3] elif interval == pd.Timedelta('1H'): fileout = stampify(query) if not os.path.exists('{}{}.gz'.format(filepath, fileout)): # if overwrite == False: # if os.path.exists('{}{}.gz'.format(filepath, stampify(query))): # break try: download_caiso_lmp_allnodes( market=submarket, start=str(query), filepathout=filepath, product=product, numattempts=numattempts, waittime=waittime) except (URLError, IncompleteRead, pd.errors.ParserError, BadZipFile, HTTPError) as error: errors.append(error) print(error) if len(errors) > 0: pd.Series(errors).to_csv( '{}__Errors__{}.csv'.format(filepath, time.strftime('%Y%m%dT%H%M%S')), index=False) ################ ### NODALIZE ### def nodalize(year, market, iso, filepathin=None, filepathout=None, nodesfile=None, product='LMP', submarket=None, fillmissinghour=True): """ """ ### Set defaults if necessary if iso.upper() == 'CAISO': if filepathin == None: filepathin = revmpath+'{}/in/{}/{}'.format( iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepathin = revmpath+'{}/in/{}/{}/{}/'.format( iso, product.lower(), market, submarket) if filepathout == None: filepathout = revmpath+'{}/io/{}-nodal/{}/'.format( iso, product.lower(), market) if (market == 'rt') and (submarket == 'RTM'): filepathout = revmpath+'{}/io/{}-nodal/{}-month/'.format( iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepathout = revmpath+'{}/io/{}-nodal/{}/{}/'.format( iso, product.lower(), market, submarket) if (submarket == None) and (market == 'rt'): submarket = 'RTM' elif (submarket == None) and (market == 'da'): submarket = 'DAM' elif iso.upper() == 'ERCOT': if (filepathin == None) and (market == 'da'): filepathin = revmpath+'{}/in/lmp/{}/{}/'.format(iso, market, year) elif (filepathout == None) and (market == 'rt'): filepathout = revmpath+'{}/io/lmp-nodal/{}-month/'.format(iso, market) elif filepathout == None: filepathout = revmpath+'{}/io/lmp-nodal/{}/'.format(iso, market) else: if filepathin == None: filepathin = revmpath+'{}/in/lmp/{}/'.format(iso, market) if filepathout == None: filepathout = revmpath+'{}/io/lmp-nodal/{}/'.format(iso, market) ### Make output folders if necessary if not os.path.exists(filepathout): os.makedirs(filepathout, exist_ok=True) if not os.path.exists(revmpath+'{}/io/missingnodes/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/missingnodes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/datatimes/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/datatimes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/fulltimenodes/year/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/datatimes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/fulltimenodes/day/{}/'.format(iso.upper(), market)): os.makedirs(revmpath+'{}/io/fulltimenodes/day/{}/'.format(iso.upper(), market), exist_ok=True) print(filepathout) ### Shared components nodesfiles = { 'CAISO': revmpath+'CAISO/io/caiso-node-latlon.csv', 'ERCOT': revmpath+'ERCOT/io/ercot-node-latlon.csv', #'MISO': revmpath+'MISO/in/miso-node-map.csv', 'MISO': revmpath+'MISO/io/miso-node-latlon.csv', # 'PJM': revmpath+'PJM/io/pjm-pnode-latlon-uniquepoints.csv', 'PJM': revmpath+'PJM/io/pjm-node-latlon.csv', 'NYISO': revmpath+'NYISO/io/nyiso-node-latlon.csv', 'ISONE': revmpath+'ISONE/io/isone-node-latlon.csv' } if nodesfile is None: nodesfile = nodesfiles[iso] resolution = { 'CAISO': {'da': 60, 'rt': 5}, 'ERCOT': {'da': 60, 'rt': 5}, 'MISO': {'da': 60, 'rt': 60}, 'PJM': {'da': 60, 'rt': 60}, 'NYISO': {'da': 60, 'rt': 5}, 'ISONE': {'da': 60, 'rt': 60}, } ### Get file list and iso/market info # files = glob('{}{}*'.format(filepathin, year)) files = sorted(glob('{}{}*'.format(filepathin, year))) print('head(files):') for file in files[:3]: print(file) print('tail(files):') for file in files[-3:]: print(file) timezone = pvvm.toolbox.tz_iso[iso] res = resolution[iso][market] ### Make the inputs easier to work with iso = iso.upper() hours = pvvm.toolbox.yearhours(year) dates = pvvm.toolbox.makedays(year) ### DO: figure out how to generalize this # if len(files) != len(dates): # print('len(files) = {}'.format(len(files))) # print('len(dates) = {}'.format(len(dates))) # raise Exception("files and dates don't match") if iso == 'ISONE': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node'], skiprows=1) ### Load daily files colnames = ['intime', 'node', 'lmp'] dfdict = {} for i in trange(len(files)): dfday = pd.read_csv( files[i], skiprows=6, usecols=[2,4,6], names=colnames, dtype={'intime':str, 'node':'category', 'lmp':float}) dfday.drop(dfday.index[-1], inplace=True) dfday.loc[:,'intime'] = dates[i] + 'H' + dfday.loc[:,'intime'] dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) ### Make new index oldtime = list(dfall.intime.unique()) newtime = list(pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year))) for i in range(len(newtime)): newtime[i] = str(newtime[i]) indexconvert = dict(zip(oldtime, newtime)) dfall.loc[:,'intime'] = dfall.loc[:,'intime'].apply( lambda x: indexconvert[x]) dfall.loc[:,'intime'] = pd.to_datetime(dfall['intime']) fullindex = pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year)) fullindex = fullindex.tz_localize(timezone) fullindex = pd.DataFrame(index=fullindex) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = dfall[dfall['node'] == nodesin[j]][['intime','lmp']].copy() df.index = df['intime'].values del df['intime'] df.index = df.index.tz_localize(timezone) df = df.merge(fullindex, how='right', left_index=True, right_index=True) numhours = hours - len(df[df['lmp'].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'MISO': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node']) ### Pick columns from input file usecols = [0, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14, 15,16,17,18,19,20,21,22,23,24,25,26] ### Load daily files dfdict = {} for i in trange(len(files)): colnames = ['Node', 'Value'] for j in range(24): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=5, header=None, usecols=usecols, dtype={0: 'category'}, names=colnames) dfday = dfin.loc[dfin['Value'] == 'LMP'].T.copy() dfday.columns = dfday.iloc[0,:] dfday = dfday.drop(dfday.index[[0,1]]) dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) dfall.index = dfall.index.droplevel(0) dfall.index = pd.date_range(dates[0], periods=hours, freq='H') dfall.index = dfall.index.tz_localize(timezone) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = pd.DataFrame(dfall.loc[:,nodesin[j]]) numhours = hours - len(df[df[nodesin[j]].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'PJM': ### Set skiprows (different headers for 'da' and 'rt' markets) skiprows = {'da': 8, 'rt': 18} ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True) ### Pick columns from input file usecols = [1, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76] usecols_dst_springforward = [1, 7, 10, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76] usecols_dst_fallback = [1, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79] ### Load daily files dfdict = {} for i in trange(len(files)): colnames = ['PnodeID'] if dates[i] not in [pvvm.toolbox.dst_springforward[year], pvvm.toolbox.dst_fallback[year]]: for j in range(24): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols, dtype={1: 'category'}, names=colnames) elif dates[i] == pvvm.toolbox.dst_springforward[year]: for j in range(23): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols_dst_springforward, dtype={1: 'category'}, names=colnames) elif dates[i] == pvvm.toolbox.dst_fallback[year]: for j in range(25): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols_dst_fallback, dtype={1: 'category'}, names=colnames) dfday = dfin.T.copy() dfday.columns = dfday.iloc[0,:] dfday = dfday.drop(dfday.index[[0]]) del dfday[np.nan] dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) dfall.index = dfall.index.droplevel(0) dfall.index = pd.date_range(dates[0], periods=hours, freq='H') dfall.index = dfall.index.tz_localize(timezone) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = pd.DataFrame(dfall.loc[:,nodesin[j].astype(str)]) numhours = hours - len(df[df[nodesin[j].astype(str)].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv(filepathout + '{}-{}.gz'.format(nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'NYISO': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['node'], skiprows=1) if market == 'da': dates = pvvm.toolbox.makedays(year) if len(files) != len(dates): print('len(files) = {}'.format(len(files))) print('len(dates) = {}'.format(len(dates))) raise Exception("files and dates don't match") ### Make daylight savings mangler def dstfallback(dataframe): fallback = pvvm.toolbox.dst_fallback[year] backfall = '{}/{}/{}'.format(fallback[4:6], fallback[6:], fallback[:4]) fallbackhalf = int(len(dataframe[dataframe['intime'] == backfall + ' 01:00'])/2) if str(dataframe[dataframe['intime'] == backfall + ' 01:00'].iloc[0,1]) != \ str(dataframe[dataframe['intime'] == backfall + ' 01:00'].iloc[fallbackhalf,1]): raise Exception("DST fallback ptid's don't match.") mask = dataframe['intime'] == backfall + ' 01:00' mask.iloc[fallbackhalf:2*fallbackhalf] = False dataframe.loc[mask, 'intime'] = backfall + ' 01:00 DST' print("DST fallback conversion worked!") return dataframe ### Make datetime converter def makeindexconvert(files, dates): """ """ dicttimes = {} for i in trange(len(files)): df = pd.read_csv(files[i], usecols = [0,2,3], skiprows=1, names=['intime', 'node', 'lmp'], dtype={'ptid': 'category', 'lmp': float}) if dates[i] == pvvm.toolbox.dst_fallback[year]: # print(df.head()) df = dstfallback(df) dicttimes[dates[i]] = df dftimes = pd.concat(dicttimes, copy=False) oldtime = list(dftimes.intime.unique()) print('len(oldtime) = {}'.format(len(oldtime))) newtime = list(pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year))) print('len(newtime) = {}'.format(len(newtime))) for i in range(len(newtime)): newtime[i] = str(newtime[i]) indexconvert = dict(zip(oldtime, newtime)) return indexconvert indexconvert = makeindexconvert(files, dates) ### Load daily files dfdict = {} for i in trange(len(files)): dfday = pd.read_csv(files[i], usecols = [0,2,3], skiprows=1, names=['intime', 'node', 'lmp'], dtype={'ptid': 'category', 'lmp': float}) if dates[i] == pvvm.toolbox.dst_fallback[year]: dfday = dstfallback(dfday) dfday.loc[:,'intime'] = dfday.loc[:,'intime'].apply(lambda x: indexconvert[x]) dfday.loc[:,'intime'] = pd.to_datetime(dfday['intime']) dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index ### copy=False is experimental dfall = pd.concat(dfdict, copy=False) ### Change node type to 'category'. SUPER important. >10x speedup. dfall['node'] = dfall['node'].astype('category') ### Make new index fullindex = pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year)) fullindex = fullindex.tz_localize(timezone) fullindex = pd.DataFrame(index=fullindex) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] fulldaynodes = {} for j in trange(len(nodesin)): # for j in trange(20): node = str(nodesin[j]) try: df = dfall[dfall['node'] == nodesin[j]][['intime','lmp']].copy() df.index = df['intime'].values del df['intime'] df.index = df.index.tz_localize(timezone) df = df.merge(fullindex, how='right', left_index=True, right_index=True) ## Record datapoints numhours = hours - len(df[df['lmp'].isnull()]) datalength.append([nodesin[j], numhours]) ## Determine full-data days dfcount = df.groupby([df.index.month, df.index.day]).count() for date in dates: month = int(date[4:6]) day = int(date[6:]) count = dfcount.loc[month].loc[day][0] if count == 24: nodes = fulldaynodes.get(date, []) nodes.append(node) fulldaynodes[date] = nodes ## Write nodalized file df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif market == 'rt': datesprev = pvvm.toolbox.makedays(year - 1) datesthis = pvvm.toolbox.makedays(year) dates = [datesprev[-1]] + datesthis filesprev = sorted(glob('{}{}*'.format(filepathin, (year - 1)))) filesthis = sorted(glob('{}{}*'.format(filepathin, year))) files = [filesprev[-1]] + filesthis if len(files) != len(dates): print('len(files) = {}'.format(len(files))) print('len(dates) = {}'.format(len(dates))) for date in dates: if date not in [file[88:96] for file in files]: print(date) raise Exception("files and dates don't match") ### Make nice index niceindex_hourstart = pd.date_range( start='{}-01-01 00:00'.format(year), periods = hours * 12, freq = '5T', tz=pvvm.toolbox.tz_iso[iso]) niceindex = pd.DataFrame(index=niceindex_hourstart) ### Load daily files dfdict = {} for i in trange(len(files)): df = pd.read_csv( files[i], usecols=[0,2,3], skiprows=1, names=['intime', 'node', 'lmp'], dtype={'intime': 'category', 'node': 'category', 'lmp': float}, parse_dates=['intime'], infer_datetime_format=True) dfdict[dates[i]] = df ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict, copy=False) ### Change node type to 'category'. SUPER important. >10x speedup. dfall['node'] = dfall['node'].astype('category') ### Check number of nodes. Good for error checking. numnodes = len(dfall['node'].unique()) print("len(dfall['node']): {}".format(numnodes)) ### Reset index dfall.index = dfall['intime'].values dfall.index = dfall.index.tz_localize(pvvm.toolbox.tz_iso[iso]) ### Fix DST dststart = dfall.index.get_loc(pvvm.toolbox.dst_springforward[year] + ' 01:55') print('len(dststart) = {}'.format(len(dststart))) print('num nodes = {}'.format(numnodes)) if len(dststart) > numnodes: raise Exception('len(dststart) > numnodes') dststart = dststart[-1] + 1 if year == 2012: dstend = dfall.index.get_loc(pvvm.toolbox.dst_fallback[year] + ' 01:59:34') else: dstend = dfall.index.get_loc(pvvm.toolbox.dst_fallback[year] + ' 01:55') print('len(dstend) = {}'.format(len(dstend))) if year == 2012: if len(dstend) > numnodes: raise Exception('len(dststart) > numnodes') dstend = dstend[-1] else: if len(dstend) % 2 != 0: raise Exception('len(dstend) % 2 != 0') if len(dstend) / 2 > numnodes: raise Exception('len(dstend) / 2 > numnodes') if ((dstend[int(len(dstend)/2) + 0] - dstend[int(len(dstend)/2) - 1] - 1) / 11 != (len(dstend) / 2)): print((dstend[int(len(dstend)/2) + 0] - dstend[int(len(dstend)/2) - 1] - 1) / 11) print(len(dstend) / 2) raise Exception('node added or lost during DST fallback') dstend = dstend[int(len(dstend)/2) - 1] dfall.iloc[dststart:(dstend + 1),0] = ( dfall.iloc[dststart:(dstend + 1),0] + pd.Timedelta(-1, unit='h')) ### Reset index dfall.index = dfall['intime'].values dfall.index = dfall.index.tz_localize(pvvm.toolbox.tz_iso[iso]) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] fulldaynodes = {} for j in trange(len(nodesin)): node = str(nodesin[j]) try: dfin = dfall[dfall['node'] == node].copy() ## Add missing timestamps df = dfin.merge( niceindex, how='outer', left_index=True, right_index=True) ## Fill gaps, using off-5T values df = df['lmp'].interpolate(method='time', limit=11) ## Remove off-5T values dfout = pd.DataFrame(df).merge( niceindex, how='right', left_index=True, right_index=True) ## Fill missing hour if desired if fillmissinghour: dfout = dfout.interpolate('linear', limit=12) ## Record datapoints numpoints = dfout.notnull().sum().values[0] datalength.append([nodesin[j], numpoints]) ## Determine full-data days dfcount = dfout.groupby([dfout.index.month, dfout.index.day]).count() for date in dates[1:]: month = int(date[4:6]) day = int(date[6:]) count = dfcount.loc[month].loc[day][0] if count == 288: nodes = fulldaynodes.get(date, []) nodes.append(node) fulldaynodes[date] = nodes ## Write nodalized file dfout.to_csv( '{}{}-{}.gz'.format( filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(node) continue elif iso == 'CAISO': if market == 'da': ### Input housekeeping filesin = sorted(glob('{}{}*'.format(filepathin, year))) datesin = pvvm.toolbox.makedays(year) if len(filesin) != len(datesin): print('filepathin = {}'.format(filepathin)) print('len(filesin) = {}'.format(len(filesin))) print('len(datesin) = {}'.format(len(datesin))) raise Exception("files and dates don't match") ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node'], skiprows=1) ### Make nice hourly index hourlyindex = pd.date_range( start='{}-01-01 00:00'.format(year), end='{}-12-31 23:00'.format(year), freq = '1H', tz=pvvm.toolbox.tz_iso[iso]) hourlyindex = pd.DataFrame(index=hourlyindex) ### Make nice daily index dailyindex = pd.date_range( start='{}-01-01'.format(year), end='{}-12-31'.format(year), freq='1D') ### Load daily files dfdict = {} for i in trange(len(filesin)): if ((product == 'lmp') and (market == 'da')): df = pd.read_csv( filesin[i], usecols=[1,2,3], skiprows=1, names=['node', 'intime', product], dtype={'intime':'category', 'node':'category', product:float}, # index_col='intime', parse_dates=['intime'], infer_datetime_format=True ) # df.intime = df.intime.map( # lambda x: pd.to_datetime('{}{}{} {}:00'.format(x[:4], x[5:7], x[9:11], x[12:14]))) else: df = pd.read_csv( filesin[i], usecols=[0,1,2], skiprows=1, names=['intime', 'node', product], dtype={'intime':'category', 'node':'category', product:float}, parse_dates=['intime'], infer_datetime_format=True ) dfdict[datesin[i]] = df ### Concat into one dataframe dfall = pd.concat(dfdict, copy=False) # dfall.reset_index(level=0, drop=True, inplace=True) ### Categorize nodes (accelerates lookup) dfall['node'] = dfall['node'].astype('category') ### Check number of nodes. Good for error checking. numnodes = len(dfall['node'].unique()) print("numnodes = {}".format(numnodes)) ### Reset index and set to local timezone dfall.index = dfall['intime'].values dfall.index = ( dfall.index .tz_localize('UTC') .tz_convert(pvvm.toolbox.tz_iso[iso])) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] fulldaynodes = {} for j in trange(len(nodesin)): node = str(nodesin[j]) try: dfin = dfall[dfall['node'] == node].copy() ## Add missing timestamps df = dfin.merge( hourlyindex, how='right', left_index=True, right_index=True) df = pd.DataFrame(df[product]) ## Record datapoints numpoints = df.notnull().sum().values[0] datalength.append([nodesin[j], numpoints]) ## Determine full-data days dfcount = df.groupby([df.index.month, df.index.day]).count() for date in dailyindex: month = date.month day = date.day count = dfcount.loc[month].loc[day][0] if count == 24: nodes = fulldaynodes.get(date.strftime('%Y%m%d'), []) nodes.append(node) fulldaynodes[date.strftime('%Y%m%d')] = nodes ## Write nodalized file ## ONLY if it contains data if df.notnull().sum()[0] > 0: df.to_csv( '{}{}-{}.gz'.format( filepathout, node, year), compression='gzip', header=False) else: missingnodes.append(node) except KeyError: missingnodes.append(node) elif market == 'rt': ### Make convenience variables months = list(range(1,13)) ### Load file containing nodes with geographic information nodesin = list(pd.read_csv( nodesfile, usecols=[0], squeeze=True )) ### Loop over months for month in months: datetimesin = pd.date_range( start='{}{:02}01T{:02}:00'.format(year, month, abs(pvvm.toolbox.timezone_iso[iso])), periods = pvvm.toolbox.monthhours(year, month), freq = 'H') files = ['{}{}.gz'.format(filepathin, d.strftime('%Y%m%dT%H')) for d in datetimesin] ### Make nice MONTHLY index niceindex = pd.date_range( start='{}-{:02}-01 00:00'.format(year, month), periods = (pvvm.toolbox.monthhours(year, month) * 60 / res), freq = '5T', tz=pvvm.toolbox.tz_iso[iso]) niceindex = pd.DataFrame(index=niceindex) ### Make date index (for labeling daily output files) dates = pd.date_range( start = '{}-{:02}-01'.format(year, month), periods = (pvvm.toolbox.monthhours(year, month) / 24), freq = '1D') dates = [date.strftime('%Y%m%d') for date in dates] ### Load daily files dfdict = {} for i in trange(len(files)): df = pd.read_csv( files[i], usecols=[0,1,2], skiprows=1, names=['intime', 'node', 'lmp'], dtype={ 'intime': 'category', 'node': 'category', 'lmp': float}, parse_dates=['intime'], infer_datetime_format=True) dfdict[datetimesin[i]] = df ### Concat into one dataframe dfall = pd.concat(dfdict, copy=False) ### Categorize nodes (accelerates lookup) dfall['node'] = dfall['node'].astype('category') ### Check number of nodes. Good for error checking. numnodes = len(dfall['node'].unique()) print("numnodes({:02}) = {}".format(month, numnodes)) ### Reset index and set to local timezone dfall.index = dfall['intime'].values dfall.index = ( dfall.index .tz_localize('UTC') .tz_convert(pvvm.toolbox.tz_iso[iso])) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] fulldaynodes = {} for j in trange(len(nodesin)): node = str(nodesin[j]) try: dfin = dfall[dfall['node'] == node].copy() ## Add missing timestamps df = dfin.merge( niceindex, how='right', left_index=True, right_index=True) df = pd.DataFrame(df['lmp']) ## Record datapoints numpoints = df.notnull().sum().values[0] datalength.append([nodesin[j], numpoints]) ## Determine full-data days dfcount = df.groupby([df.index.month, df.index.day]).count() for date in dates: day = int(date[6:]) count = dfcount.loc[month].loc[day][0] if count == 288: nodes = fulldaynodes.get(date, []) nodes.append(node) fulldaynodes[date] = nodes ## Write nodalized file ## ONLY if it contains data if df.notnull().sum()[0] > 0: df.to_csv( '{}{}-{}{:02}.gz'.format( filepathout, nodesin[j], year, month), compression='gzip', header=False) else: missingnodes.append(node) except KeyError: missingnodes.append(node) ############################# ### Unmonthify the nodal lmps ### Set new filepaths filepathin = revmpath+'{}/io/lmp-nodal/{}-month/'.format(iso, market) filepathout = revmpath+'{}/io/lmp-nodal/{}/'.format(iso, market) if not os.path.exists(filepathout): os.makedirs(filepathout) ### Make list of all files for year filesin = sorted(glob('{}*-{}??.gz'.format(filepathin, year))) ### Make list of all nodes (with duplicates) nodes = [] for i in range(len(filesin)): nodes.append(filesin[i][:filesin[i].find('-{}'.format(year))]) ### Make list of unique nodes uniquenodes = np.unique(np.array(nodes)) ### Make dict of monthly files for each node dictfiles = {} for node in uniquenodes: out = [] for file in filesin: if file.find(node) != -1: out.append(file) dictfiles[node] = out ### Load and concat monthly files for each node, then write as yearly csv for node in tqdm(uniquenodes): dfdict = {} for file in dictfiles[node]: dfin = pd.read_csv( file, header=None, names=['datetime', 'lmp'], ) dfdict[file[-5:-3]] = dfin dfyear = pd.concat(dfdict, ignore_index=True) dfyear.to_csv( '{}{}-{}.gz'.format(filepathout, node[20:], year), index=False, header=False, compression='gzip' ) elif iso == 'ERCOT': ############# ### Functions def makeindexconvert(files, dates): """ Datetime converter for day-ahead """ dicttimes = {} for i in trange(len(files)): try: df = pd.read_csv(files[i], usecols=[0,1,4], dtype={ 'DeliveryDate': 'category', 'HourEnding': 'category', 'DSTFlag': 'category'}) df.loc[:,'DSTFlag'] = ( df.loc[:,'DeliveryDate'].astype(str) + 'H' + df.loc[:,'HourEnding'].astype(str) + df.loc[:,'DSTFlag'].astype(str)).astype('category') except ValueError as err: df = pd.read_csv(files[i], usecols=[0,1], dtype={ 'DeliveryDate': 'category', 'HourEnding': 'category'}) df['DSTFlag'] = ( df['DeliveryDate'].astype(str) + 'H' + df['HourEnding'].astype(str) + 'N').astype('category') dicttimes[dates[i]] = df ### copy=False is experimental dftimes = pd.concat(dicttimes, copy=False) oldtime = list(dftimes.DSTFlag.unique()) print('len(oldtime) = {}'.format(len(oldtime))) newtime = list(pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year))) print('len(newtime) = {}'.format(len(newtime))) if len(oldtime) != len(newtime): raise Exception("len(oldtime) and len(newtime) don't match") for i in range(len(newtime)): newtime[i] = str(newtime[i]) indexconvert = dict(zip(oldtime, newtime)) return indexconvert def datetimefromfile(file, clean=False): """ Only works for ERCOT bus RTLMP files Example: ('cdr.00011485.0000000000000000.20101201.005033.' 'LMPSELECTBUSNP6787_20101201_005025_csv.zip') """ basename = os.path.basename(file) file_datetime = basename[65:80] year = file_datetime[:4] if year == 'retr': file_datetime = basename[71:86] if year == '87_2': file_datetime = basename[68:83] if year == '87_r': file_datetime = basename[74:89] year = file_datetime[:4] try: year = int(year) except: print(year) print(type(year)) print(basename) raise ValueError if (year < 2010) or (year > 2017): print(year) print(type(year)) print(basename) raise ValueError springforward_date = pvvm.toolbox.dst_springforward[year] fallback_date = pvvm.toolbox.dst_fallback[year] springforward_time = pd.to_datetime( '{} 03:00:00'.format(springforward_date)) fallback_time = pd.to_datetime( '{} 02:00:00'.format(fallback_date)) if basename.find('xhr') == -1: dst = False else: dst = True if not clean: datetime_predst = pd.to_datetime( file_datetime, format='%Y%m%d_%H%M%S') elif clean: datetime_predst = pd.to_datetime( file_datetime[:-2], format='%Y%m%d_%H%M') if ( (datetime_predst >= springforward_time) & (datetime_predst < fallback_time) & (not dst) ): datetime = datetime_predst - pd.Timedelta('1H') else: datetime = datetime_predst return datetime def datetimebin(datetime, mod=5): """ Take a datetime and determine what bin it falls into. If mod == 5, then 08:39:42 --> 08:35:00. """ assert 60 % mod == 0, "60 must be divisible by mod" assert type(datetime) == pd.Timestamp, "datetime must be pd.Timestamp" newminute = int(datetime.minute / mod) * mod out = pd.Timestamp( year=datetime.year, month=datetime.month, day=datetime.day, hour=datetime.hour, minute=newminute) return out ############# ### Procedure if market == 'da': ### Make the inputs easier to work with files = sorted(glob(filepathin + '*csv.zip')) dates = pvvm.toolbox.makedays(year) if len(files) != len(dates): print('filepathin = {}'.format(filepathin)) print('len(files) = {}'.format(len(files))) print('len(dates) = {}'.format(len(dates))) raise Exception("files and dates don't match") ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node'], skiprows=1) nodesin.drop_duplicates(inplace=True) nodesin = list(nodesin) for i in range(len(nodesin)): nodesin[i] = nodesin[i].upper() ### Convert datetimes indexconvert = makeindexconvert(files, dates) ### Load daily files dfdict = {} for i in trange(len(files)): try: dfday = pd.read_csv(files[i], dtype={ 'DeliveryDate': 'category', 'HourEnding': 'category', 'BusName': 'category', 'LMP': float, 'DSTFlag': 'category'}) dfday.loc[:,'DSTFlag'] = ( dfday.loc[:,'DeliveryDate'].astype(str) + 'H' + dfday.loc[:,'HourEnding'].astype(str) + dfday.loc[:,'DSTFlag'].astype(str)).astype('category') except KeyError as err: dfday = pd.read_csv(files[i], dtype={ 'DeliveryDate': 'category', 'HourEnding': 'category', 'BusName': 'category', 'LMP': float}) dfday['DSTFlag'] = ( dfday['DeliveryDate'].astype(str) + 'H' + dfday['HourEnding'].astype(str) + 'N').astype('category') dfday.loc[:,'DSTFlag'] = dfday.loc[:,'DSTFlag'].apply(lambda x: indexconvert[x]) dfday.loc[:,'DSTFlag'] = pd.to_datetime(dfday['DSTFlag']) del dfday['DeliveryDate'] del dfday['HourEnding'] dfday = dfday.rename(columns={'BusName': 'node', 'DSTFlag': 'intime', 'LMP': 'lmp'}) dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index ### copy=False is experimental dfall = pd.concat(dfdict, copy=False) ### Change node type to 'category'. SUPER important. >10x speedup. dfall['node'] = dfall['node'].astype('category') # if len(dfall.index.unique()) != pvvm.toolbox.yearhours(year): # raise Exception("len(dfall.index.unique() != pvvm.toolbox.yearhours(year)") ### Make new index fullindex = pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year)) fullindex = fullindex.tz_localize(timezone) fullindex = pd.DataFrame(index=fullindex) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = dfall[dfall['node'] == nodesin[j]][['intime','lmp']].copy() df.index = df['intime'].values del df['intime'] df.index = df.index.tz_localize(timezone) df = df.merge(fullindex, how='right', left_index=True, right_index=True) numhours = hours - len(df[df['lmp'].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif market == 'rt': ### Set defaults months = list(range(1,13)) ################################ ###### Make filekey if necessary ###### It takes a while to make, so save ane load if possible filekey = revmpath+'{}/io/{}-{}-filekey-cleaned-existing.csv'.format( iso.upper(), iso.lower(), market) ### Check if it exists already and is long enough to contain data through end 2017 if (os.path.exists(filekey)) and (len(pd.read_csv(filekey, usecols=[2])) >= 743827): pass else: ### Make list of ALL ERCOT RT LMP files allyears = range(2010,2051) files = {} for i_year in list(allyears): files[i_year] = sorted(glob('{}{}/*csv.zip'.format(filepathin, i_year))) files_all = sum([files[i] for i in allyears], []) ### Round all files to start of 5-minute bin filestodatetimes = {} for i in trange(len(files_all)): filestodatetimes[files_all[i]] = datetimefromfile(files_all[i], clean=False) filetimes = [filestodatetimes[key] for key in filestodatetimes] dffiles = pd.DataFrame(files_all, columns=['Filename']) dffiles['Datetime'] = filetimes dffiles['Retry'] = dffiles.apply( lambda row: row['Filename'].find('retr') != -1, axis=1) dffiles.drop_duplicates(subset='Datetime', keep='last', inplace=True) datetimes_binned = [] for i in dffiles.index: try: datetimes_binned.append(datetimebin(dffiles.loc[i, 'Datetime'])) except: print(i) print(dffiles.loc[i, 'Datetime']) raise TypeError dffiles['Datetime-Binned'] = datetimes_binned dffiles.drop_duplicates(subset='Datetime-Binned', keep='first', inplace=True) dffiles.to_csv( revmpath+'{}/io/{}-{}-filekey-cleaned-existing.csv'.format( iso.upper(), iso.lower(), market), index=False) ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node'], skiprows=1) nodesin.drop_duplicates(inplace=True) nodesin = list(nodesin) for i in range(len(nodesin)): nodesin[i] = nodesin[i].upper() ### Load file with datetime-filename key dffiles = pd.read_csv( filekey, dtype={'Filename': str, 'Retry': bool, 'one': float}, parse_dates=['Datetime', 'Datetime-Binned'], infer_datetime_format=True ) dffiles.index = dffiles['Datetime-Binned'] ############# ### PROCEDURE ### Set DST switch times springforward_date = pvvm.toolbox.dst_springforward[year] fallback_date = pvvm.toolbox.dst_fallback[year] springforward_time = pd.to_datetime( '{} 03:00:00'.format(springforward_date)) fallback_time = pd.to_datetime( '{} 02:00:00'.format(fallback_date)) ### Loop over months for month in months: print('{}-{:02}'.format(year, month)) ### Make nice 5T timestamps for month monthindex = pd.date_range( start='{}-{:02}-01 00:00'.format(year, month), periods = (pvvm.toolbox.monthhours(year, month) * 60 / res), freq = '5T', # tz=pvvm.toolbox.tz_iso[iso] ) monthindex = pd.DataFrame(index=monthindex) ### Make date index (for labeling daily output files) dates = pd.date_range( start = '{}-{:02}-01'.format(year, month), periods = (pvvm.toolbox.monthhours(year, month) / 24), freq = '1D') dates = [date.strftime('%Y%m%d') for date in dates] ### Make nice 5T timestamps for year yearindex = pd.date_range( start='{}-01-01 00:00'.format(year), periods = int(pvvm.toolbox.yearhours(year) * 60 / res), freq = '{}T'.format(res), # tz=pvvm.toolbox.tz_iso[iso] ) yearindex = pd.DataFrame(index=yearindex) ### Create list of files to load dfmonth = dffiles.loc[ (dffiles['Datetime-Binned'] >= ( pd.Timestamp('{}-{:02}-01 00:00'.format(year, month))) - pd.Timedelta('1H')) & (dffiles['Datetime-Binned'] <= ( pd.Timestamp('{}-{:02}-01 00:00'.format(year, month))) + pd.Timedelta('{}H'.format(pvvm.toolbox.monthhours(year, month) + 1))) ] filestoload = list(dfmonth['Filename']) ### Load the files dfdict = {} badzipfilecount = 0 for i in trange(len(filestoload)): file = filestoload[i] datetime = datetimefromfile(file) try: df = pd.read_csv( file, skiprows=1, usecols=[2,3], names=['node', 'lmp'], dtype={'node': 'category', 'lmp': float}) df['datetime'] = datetime df['datetime'] = df['datetime'].map(datetimebin) df.index = df['datetime'] dfdict[datetime.strftime('%Y%m%d_%H%M%S')] = df[['node', 'lmp']] except zipfile.BadZipFile as err: badzipfilecount += 1 print("zipfile.BadZipFile error number {}".format(badzipfilecount)) print(err) print(file) print(datetime) ### Concat into one dataframe dfall = pd.concat(dfdict, copy=False).reset_index(level=0, drop=True) ### Clear dfdict to conserve memory (?) dfdict = 0 ### Categorize nodes (accelerates lookup) dfall['node']= dfall['node'].astype('category') ### Determine missing nodes and data coverage, and save as one-node files missingnodes, datalength, fulldaynodes = [], [], {} ### v OR could do "for j in trange(len(dfall['node'].unique()" ### v then node = str(uniquenodes[j]), to write all nodes ### v (not just those with geographic information) for j in trange(len(nodesin)): node = str(nodesin[j]) try: dfin = dfall[dfall['node'] == node].copy() ## Add missing timestamps df = dfin.merge( monthindex, how='outer', left_index=True, right_index=True) df = pd.DataFrame(df['lmp']) ## For debugging: ## df['interpolated'] = df['lmp'].isnull() ## Fill gaps using linear interpolation df.interpolate( method='time', # limit=12, # limit_direction='both', inplace=True) ## Remove off-5T values dfout = pd.DataFrame(df).merge( monthindex, how='right', left_index=True, right_index=True) ########### Drop Duplicates ############ ## Drop duplicates dfout = dfout.reset_index().drop_duplicates('index').copy() dfout.index = dfout['index'] dfout = dfout.drop('index', axis=1).copy() ######################################## ## Record datapoints numpoints = dfout.notnull().sum().values[0] datalength.append([nodesin[j], numpoints]) ## Determine full-data days dfcount = dfout.groupby([dfout.index.month, dfout.index.day]).count() for date in dates: day = int(date[6:]) count = dfcount.loc[month].loc[day][0] if count == 288: nodes = fulldaynodes.get(date, []) nodes.append(node) fulldaynodes[date] = nodes ## Write nodalized file ## ONLY if it contains data if dfout.notnull().sum()[0] > 0: dfout.to_csv( '{}{}-{}{:02}.gz'.format( filepathout, nodesin[j], year, month), compression='gzip', header=False) else: missingnodes.append(node) except KeyError: missingnodes.append(node) ############################# ### Unmonthify the nodal lmps ### Set new filepaths filepathin = revmpath+'{}/io/lmp-nodal/{}-month/'.format(iso, market) filepathout = revmpath+'{}/io/lmp-nodal/{}/'.format(iso, market) if not os.path.exists(filepathout): os.makedirs(filepathout) ### Make list of all files for year filesin = sorted(glob('{}*-{}??.gz'.format(filepathin, year))) print('len(filesin) = {}'.format(len(filesin))) if len(filesin) == 0: raise Exception("No files in filepathin") ### Make list of all nodes (with duplicates) nodes = [] for i in range(len(filesin)): nodes.append(filesin[i][:filesin[i].find('-{}'.format(year))]) ### Make list of unique nodes uniquenodes = np.unique(np.array(nodes)) print('len(uniquenodes) = {}'.format(len(uniquenodes))) ### Make dict of monthly files for each node dictfiles = {} for node in uniquenodes: out = [] for file in filesin: if file.find(node) != -1: out.append(file) dictfiles[node] = out ### Load and concat monthly files for each node, then write as yearly csv for node in tqdm(uniquenodes): dfdict = {} for file in dictfiles[node]: dfin = pd.read_csv( file, header=None, names=['datetime', 'lmp'], parse_dates=['datetime'] ) dfdict[file[-5:-3]] = dfin dfyear = pd.concat(dfdict, ignore_index=True) dfyear.index = dfyear.datetime dfyear.index = dfyear.index.tz_localize(pvvm.toolbox.tz_iso[iso]) dfyear.to_csv( '{}{}-{}.gz'.format( filepathout, node[len(filepathin):], year), index_label=False, header=False, columns=['lmp'], compression='gzip' ) ###### Write summary outputs if (iso in ['CAISO', 'ERCOT'] and (market == 'rt')): ## List of nodes from nodemap that don't have LMP data pd.Series(missingnodes).to_csv( revmpath+'{}/io/missingnodes/{}-{}lmp-{}-{}{:02}.csv'.format( iso.upper(), iso.lower(), market, submarket, year, month), index=False) ## Intervals (hours or 5-min chunks) of LMP data per node pd.DataFrame(datalength).to_csv( revmpath+'{}/io/datatimes/{}-{}lmp-{}-{}{:02}.csv'.format( iso.upper(), iso.lower(), market, submarket, year, month), index=False, header=False) ## List of nodes with complete data over year fulltime = pd.DataFrame(datalength) fulltime = fulltime[ fulltime[1] == pvvm.toolbox.monthhours(year, month) * 12] fulltime.to_csv( ### Original # revmpath+'{}/io/fulltimenodes/year/{}-{}lmp{}-{}{:02}.csv'.format( ### New revmpath+'{}/io/fulltimenodes/{}-{}lmp{}-{}{:02}.csv'.format( iso.upper(), iso.lower(), market, {None:''}.get(submarket,'-'+submarket), year, month), index=False, header=False, columns=[0]) else: ## List of nodes from nodemap that don't have LMP data pd.Series(missingnodes).to_csv( revmpath+'{}/io/missingnodes/{}-{}lmp-missing-{}.csv'.format( iso.upper(), iso.lower(), market, year), index=False) ## Intervals (hours or 5-min chunks) of LMP data per node pd.DataFrame(datalength).to_csv( revmpath+'{}/io/datatimes/{}-{}lmp-datatimes-{}.csv'.format( iso.upper(), iso.lower(), market, year), index=False, header=False) ## List of nodes with complete data over year fulltime = pd.DataFrame(datalength) fulltime = fulltime[fulltime[1] == hours * int(24 * 60 / res)] fulltime.to_csv( ### Original # revmpath+'{}/io/fulltimenodes/year/{}-{}lmp-fulltime-{}.csv'.format( ### New revmpath+'{}/io/fulltimenodes/{}-{}lmp-fulltime-{}.csv'.format( iso.upper(), iso.lower(), market, year), index=False, header=False, columns=[0]) ###### Write daily nodecounts if iso == 'ISONE': for i in trange(len(dates)): dfcount = dfall.loc[dates[i]] dfday = dfcount.groupby(dfcount.node).count()['lmp'] fulltimenodes = list(dfday[dfday == int(24 * 60 / res)].index) pd.Series(fulltimenodes).to_csv( revmpath+'{}/io/fulltimenodes/day/{}/{}.csv'.format( iso.upper(), market, dates[i]), index=False) elif (iso in ['MISO', 'PJM']) or ((iso, market) == ('ERCOT', 'da')): if iso == 'ERCOT': dfcount = dfall.reset_index(level=0, drop=True) dfcount = dfall.groupby([dfall.index.month, dfall.index.day]).count().copy() daterange = pd.date_range(dates[0], periods=int(hours / 24), freq='D') for i in range(len(daterange)): dfday = dfcount.loc[daterange[i].month].loc[daterange[i].day].copy() fulltimenodes = list(dfday[dfday == int(24 * 60 / res)].index) pd.Series(fulltimenodes).to_csv( revmpath+'{}/io/fulltimenodes/day/{}/{}.csv'.format( iso.upper(), market, dates[i]), index=False) elif (iso in ['NYISO', 'CAISO']) or ((iso, market) == ('ERCOT', 'rt')): for date in fulldaynodes: nodes = fulldaynodes.get(date, []) pd.Series(nodes).to_csv( revmpath+'{}/io/fulltimenodes/day/{}/{}.csv'.format(iso.upper(), market, date), index=False) ############################## ### EXTRACT NODE LOCATIONS ### def nodelocations_pjm(): """ """ ### Set up googlemaps gmaps = googlemaps.Client(key=apikeys['googlemaps']) ### Test if zip code mapping file exists and download if it does not zipnodefile = revmpath+'PJM/in/zip-code-mapping.xls' if not os.path.exists(zipnodefile): url = 'https://www.pjm.com/-/media/markets-ops/energy/lmp-model-info/zip-code-mapping.ashx' filepathout = revmpath+'PJM/in/zip-code-mapping.xls' urllib.request.urlretrieve(url, filepathout) ## Make a clean csv version dfin = pd.read_excel(zipnodefile, skiprows=9, dtype={'Zip Code': 'category'}) dfin['Zip Code'] = dfin['Zip Code'].map(lambda x: '{:>05}'.format(x)) dfin.to_csv(revmpath+'PJM/in/zip-code-mapping.csv', index=False) ## Save the unique zip codes df = pd.read_csv(revmpath+'PJM/in/zip-code-mapping.csv', dtype={'Zip Code': 'category'}) df['Zip Code'] = df['Zip Code'].map(lambda x: '{:>05}'.format(x)) zips_unique = pd.Series(df['Zip Code'].unique()) zips_unique.to_csv(revmpath+'PJM/io/zips-pjm-unique.csv', index=False) ###### Look up zipcode centers numattempts = 200 sleeptime = 60 zipcodes = pd.read_csv( revmpath+'PJM/io/zips-pjm-unique.csv', dtype='category', names=['zipcode'], squeeze=True) zipcodes = zipcodes.map(lambda x: '{:>05}'.format(x)) out=[] for i, zipcode in enumerate(tqdm(zipcodes)): attempts = 0 while attempts < numattempts: try: ### Original version only added 'zipcode' for these two zipcodes. ### Now, additional googlemaps queries return erroneous locations, ### so we append 'zipcode' for everything. # if zipcode in ['15775', '15777']: # ### These two zipcodes, if queried alone, return locations # ### outside of the PJM territory # location = gmaps.geocode('zipcode {}'.format(zipcode)) # else: # location = gmaps.geocode(zipcode) location = gmaps.geocode('zipcode {}'.format(zipcode)) ### Continue lat = location[0]['geometry']['location']['lat'] lon = location[0]['geometry']['location']['lng'] out.append([lat, lon]) time.sleep(0.02) break except HTTPError as err: print('Rebuffed for {} on attempt # {} by "{}".' 'Will retry in {} seconds.'.format( zipcode, attempts, err, sleeptime)) attempts += 1 time.sleep(sleeptime) if attempts >= numattempts: raise Exception('Failed on {} after {} attempts'.format( zipcode, attempts)) dfout = pd.DataFrame(out, columns=['latitude', 'longitude']) zipgeo = pd.concat([zipcodes, dfout], axis=1) ### NOTE: zip code 45418, when searched in google maps, returns a ### location in Mexico. So look up zip code at ### https://www.unitedstateszipcodes.org/45418/ ### and change by hand. zipgeo.loc[zipgeo.zipcode.astype(str) == '45418', ['latitude', 'longitude']] = (39.69, -84.26) ### Additional error for 25572 fixed by hand zipgeo.loc[zipgeo.zipcode.astype(str) == '25572', ['latitude', 'longitude']] = (38.16, -81.91) ## Write zipcode coordinates zipgeo.to_csv(revmpath+'PJM/io/zips-latlon-pjm.csv', index=False) ###### Determine node locations ### Load input files zips = pd.read_csv( revmpath+'PJM/io/zips-latlon-pjm.csv', dtype={'zipcode': 'category'}, index_col='zipcode') dfnodes = pd.read_csv(revmpath+'PJM/in/zip-code-mapping.csv', dtype='category') dfnodes['Zip Code'] = dfnodes['Zip Code'].map(lambda x: '{:>05}'.format(x)) dfnodes.PNODEID = dfnodes.PNODEID.astype(int) dfnodes = dfnodes.drop_duplicates().copy() dfnodes = dfnodes.merge(zips, left_on='Zip Code', right_index=True, how='left') pnodeids = list(dfnodes['PNODEID'].sort_values().unique()) zipcodes = list(dfnodes['Zip Code'].unique()) ### Put lat, lon in cartesian coordinates (assuming spherical Earth) dfnodes['x'] = dfnodes.apply(rowlatlon2x, axis=1) dfnodes['y'] = dfnodes.apply(rowlatlon2y, axis=1) dfnodes['z'] = dfnodes.apply(rowlatlon2z, axis=1) ### Determine centroid of zipcodes listed for each node lats, lons = [], [] for i, pnode in enumerate(pnodeids): x = dfnodes[dfnodes['PNODEID'] == pnode]['x'].mean() y = dfnodes[dfnodes['PNODEID'] == pnode]['y'].mean() z = dfnodes[dfnodes['PNODEID'] == pnode]['z'].mean() outlon = math.atan2(y, x) * 180 / math.pi rho = math.sqrt(x*x + y*y) outlat = math.atan2(z, rho) * 180 / math.pi lats.append(outlat) lons.append(outlon) ### Make output dataframe dfout = (dfnodes[['PNODEID', 'PNODENAME']] .drop_duplicates() .sort_values('PNODEID') .reset_index(drop=True) # .rename(columns={col:col.lower() for col in ['PNODEID','PNODENAME']}) .rename(columns={'PNODEID':'node','PNODENAME':'nodename'}) ) dfout['latitude'] = lats dfout['longitude'] = lons ### Identify duplicate (lat,lon) tuples for NSRDB latlons = dfout[['latitude', 'longitude']].drop_duplicates().copy() latlons['latlonindex'] = range(len(latlons)) dfout = dfout.merge(latlons, on=['latitude', 'longitude'], how='left') dfout.to_csv(revmpath+'PJM/io/pjm-node-latlon.csv', index=False) latlons[['latlonindex', 'latitude', 'longitude']].to_csv( revmpath+'PJM/io/pjm-pnode-unique-latlons-for-nsrdb.csv', index=False) return dfout def nodelocations_caiso(): ### Test if nodemap xml exists and download if it does not nodemapxml = revmpath+'CAISO/in/GetPriceContourMap.xml' if not os.path.exists(nodemapxml): print("Need to download the input file by hand from " "'http://wwwmobile.caiso.com/Web.Service.Chart/api/v1/ChartService/GetPriceContourMap'" " and save it at (revmpath + 'CAISO/in/GetPriceContourMap.xml).") raise Exception("Input file not found") # ### For some reason this downloades the file in json format. Just do it by hand. # url = 'http://wwwmobile.caiso.com/Web.Service.Chart/api/v1/ChartService/GetPriceContourMap' # xmlfile = revmpath+'CAISO/in/GetPriceContourMap.xml' # urllib.request.urlretrieve(url, xmlfile) ### Import xml nodemap tree = ET.parse(nodemapxml) root = tree.getroot() ### Get node names, areas, types, and latlons names, areas, types, latlonsraw = [], [], [], [] for node in root.iter(tag='{urn:schemas.caiso.com/mobileapp/2014/03}n'): names.append(node.text) for node in root.iter(tag='{urn:schemas.caiso.com/mobileapp/2014/03}a'): areas.append(node.text) for node in root.iter(tag='{urn:schemas.caiso.com/mobileapp/2014/03}p'): types.append(node.text) latlonsraw = [] for node in root.iter(tag='{http://schemas.microsoft.com/2003/10/Serialization/Arrays}decimal'): latlonsraw.append(float(node.text)) lats = latlonsraw[::2] lons = latlonsraw[1::2] ### Generate output dataframe dfout = pd.DataFrame({'node': names, 'latitude': lats, 'longitude': lons, 'area': areas, 'type': types}).sort_values('node') ### Clean up output: Drop nodes with erroneous coordinates dfclean = dfout.loc[ (dfout.longitude > -180) & (dfout.longitude < 0) & (dfout.latitude > 20) ].copy()[['node', 'latitude', 'longitude', 'area', 'type']] ### Write output dfclean.to_csv(revmpath+'CAISO/io/caiso-node-latlon.csv', index=False) return dfclean def nodelocations_miso(): import geopandas as gpd ### Test if nodemap json files exist and download if not filepaths = { 'Nodes': revmpath + 'MISO/in/MISO_GEN_INT_LZN.json', 'Hubs': revmpath + 'MISO/in/PNODELMPLabels_2.json', 'ReserveZones': revmpath + 'MISO/in/ASMZones_2.json', 'PlanningZones': revmpath + 'MISO/in/Planning_Zones.json', } if not os.path.exists(filepaths['Nodes']): url = ('https://api.misoenergy.org/MISORTWDDataBroker/DataBrokerServices.asmx' '?messageType=getvectorsource&nodeTypes=GEN,INT,LZN') # urllib.request.urlretrieve(url, filepaths['Nodes']) r = requests.get(url, allow_redirects=True) with open(filepaths['Nodes'], 'wb') as writer: writer.write(r.content) if not os.path.exists(filepaths['Hubs']): url = 'https://api.misoenergy.org/MISORTWD/map/PNODELMPLabels_2.json' # urllib.request.urlretrieve(url, filepaths['Hubs']) r = requests.get(url, allow_redirects=True) with open(filepaths['Hubs'], 'wb') as writer: writer.write(r.content) ###### GEN, INT, LZN nodes ### Load node file and extract names, types, regions, and locations with open(filepaths['Nodes']) as f: data = json.load(f) dfall = pd.io.json.json_normalize(data) proj = data['proj'] df = pd.io.json.json_normalize(data['f']) nodenames = [(i[0]) for i in df.p] nodetypes = [(i[1]) for i in df.p] noderegions = [(i[2]) for i in df.p] nodexy = [tuple(df['g.c'][i]) for i in range(len(df.p))] ###### Original version - now kills the kernel # ### Convert to lat/lon # g = gpd.GeoSeries( # [shapely.geometry.Point(nodexy[i]) for i in range(len(nodexy))]) # g.crs = proj # gnode = g.to_crs({'init': 'epsg:4326'}) ###### New version import pyproj import shapely.geometry latlonproj = pyproj.CRS.from_epsg(4326) misoproj = pyproj.CRS(proj) transform = pyproj.Transformer.from_crs( crs_from=misoproj, crs_to=latlonproj, always_xy=True) gnode = gpd.GeoSeries( [shapely.geometry.Point(transform.transform(xy[0], xy[1])) for xy in nodexy]) ### Generate output dataframe dfout = pd.DataFrame(gnode) dfout['node'] = nodenames dfout['latitude'] = gnode.y dfout['longitude'] = gnode.x dfout['type'] = nodetypes dfout['region'] = noderegions dfout.drop(0, axis=1, inplace=True) ###### HUB nodes with open(filepaths['Hubs']) as f: data = json.load(f) dfall = pd.io.json.json_normalize(data) proj = data['proj'] df = pd.io.json.json_normalize(data['f']) hubnames = [(i[0][:-4]) for i in df.p] hubxy = [tuple(df['g.c'][i]) for i in range(len(df.p))] ###### Original version - now kills the kernel # ### Convert to lat/lon # g = gpd.GeoSeries( # [shapely.geometry.Point(hubxy[i]) for i in range(len(hubxy))]) # g.crs = proj # ghub = g.to_crs({'init': 'epsg:4326'}) ###### New version latlonproj = pyproj.CRS.from_epsg(4326) misoproj = pyproj.CRS(proj) transform = pyproj.Transformer.from_crs( crs_from=misoproj, crs_to=latlonproj, always_xy=True) ghub = gpd.GeoSeries( [shapely.geometry.Point(transform.transform(xy[0], xy[1])) for xy in hubxy]) ### Generate output dataframe hubout = pd.DataFrame(ghub) hubout['node'] = [i+'.HUB' for i in hubnames] hubout['latitude'] = ghub.y hubout['longitude'] = ghub.x hubout['type'] = 'Hub' hubout['region'] = 'MISO' hubout.drop(0, axis=1, inplace=True) ### Combine and write output dataframes dfout = pd.concat([dfout, hubout], ignore_index=True) dfout.to_csv(revmpath + 'MISO/io/miso-node-latlon.csv', index=False) return dfout def nodelocations_isone(filepath_input=None): """ File must be requested from ISONE """ if (filepath_input==None) or (os.path.exists(filepath_input)==False): print("Example: revmpath + 'ISONE/in/nepnode_lat_long.xlsx'. " "File can be requested from ISONE at: " "'https://www.iso-ne.com/participate/support/request-information/'") raise Exception("Need filename of nepnode_lat_long.xlsx file.") ### Load file, rename columns, and write output dfin = pd.read_excel(filepath_input, sheet_name='New England') dfin.rename( columns={'Node Name': 'node', 'LATITUDE': 'latitude', 'LONGITUDE': 'longitude', 'RSP Area': 'area', 'Dispatch Zone': 'zone', 'Reserve ID': 'reserveid', 'Zone ID': 'zoneid'}, inplace=True) dfout = dfin[['node', 'latitude', 'longitude', 'area', 'zone', 'reserveid', 'zoneid']] dfout.to_csv(revmpath+'ISONE/io/isone-node-latlon.csv', index=False) return dfout def nodelocations_ercot(filepath_input=None): """ http://www.ercot.com/services/rq/imre https://mis.ercot.com/pps/tibco/mis/Pages/Grid+Information/Long+Term+Planning 'CRR Network Model (Monthly)' > download and unzip one of the available files and use the filepath as the input value for filepath_input. """ ### Functions def latlonify(coordinates): foo = coordinates.split(' ') bar = [] for line in foo: if line not in bar: bar.append(line) latitude = 0 longitude = 0 for line in bar: longitude += float(line.split(',')[0]) latitude += float(line.split(',')[1]) latitude = latitude / 4 longitude = longitude / 4 return latitude, longitude ### Load and parse the input kml file if (filepath_input==None) or (os.path.exists(filepath_input)==False): print("Missing input file. To get this file, register as an IMRE at " "http://www.ercot.com/services/rq/imre. Go to " "https://mis.ercot.com/pps/tibco/mis/Pages/Grid+Information/Long+Term+Planning, " "then select 'CRR Network Model (Monthly)'. " "Download and unzip one of the available files and use the filepath " "as the input value for filepath_input. " "Example: revmpath+'ERCOT/in/rpt.00011205.0000000000000000.20170530" ".140432154.JUL2017MonthlyCRRNetworkModel/" "2017.JUL.Monthly.Auction.OneLineDiagram.kml'") raise Exception("Need path to CRRNetworkModel OneLineDiagram file") tree = ET.parse(filepath_input) root = tree.getroot() buses = root[0][6] ### Extract the node names and coordinates names, coordinates, latitudes, longitudes = [], [], [], [] for node in buses.iter(tag='{http://www.opengis.net/kml/2.2}name'): if node.text.find(' ') == -1 and node.text != 'Buses': names.append(node.text) for node in buses.iter( tag='{http://www.opengis.net/kml/2.2}coordinates'): coordinates.append(node.text) for node in coordinates: latitudes.append(latlonify(node)[0]) longitudes.append(latlonify(node)[1]) ### Extract the areas and zones (optional) descriptions = [] for node in buses.iter( tag='{http://www.opengis.net/kml/2.2}description'): descriptions.append(node.text) areas = [] for i in range(len(descriptions)): foo = descriptions[i] bar = foo[(foo.find('Area')+14):] out = bar[:bar.find('</td>')] areas.append(out) zones = [] for i in range(len(descriptions)): foo = descriptions[i] bar = foo[(foo.find('Zone')+14):] out = bar[:bar.find('</td>')] zones.append(out) settlementzones = [] for i in range(len(descriptions)): foo = descriptions[i] bar = foo[(foo.find('Settlement Zone')+25):] out = bar[:bar.find('</td>')] settlementzones.append(out) ### Make the output dataframe dfout = pd.DataFrame({ 'node': names, 'latitude': latitudes, 'longitude': longitudes, 'area': areas, 'zone': zones, 'settlementzone': settlementzones })[['node', 'latitude', 'longitude', 'area', 'zone', 'settlementzone']] ### Normalize node names dfout['node'] = dfout.node.map(lambda x: str(x).strip().upper()) ### Identify duplicate (lat,lon) tuples for NSRDB latlons = dfout[['latitude', 'longitude']].drop_duplicates().copy() latlons['latlonindex'] = range(len(latlons)) dfout = dfout.merge(latlons, on=['latitude', 'longitude'], how='left') ### Write outputs dfout.to_csv(revmpath+'ERCOT/io/ercot-node-latlon.csv', index=False) latlons[['latlonindex', 'latitude', 'longitude']].to_csv( revmpath+'ERCOT/io/ercot-node-latlon-unique.csv', index=False) return dfout def nodelocations_nyiso(): ###### Download input data ### Identify urls years = range(2005, 2018) ### Old version # urlbase = ('http://www.nyiso.com/public/webdocs/markets_operations/' # 'services/planning/Documents_and_Resources/' # 'Planning_Data_and_Reference_Docs/Data_and_Reference_Docs/') # urls = {year: urlbase + '{}_NYCA_Generators.xls'.format(year) # for year in years} # urls[2012] = urlbase + '2012_NYCA_Generating_Facilities.xls' # urls[2015] = urlbase + '2015_NYCA_Generators_Revised.xls' base = 'https://www.nyiso.com/documents/20142/1402024/' urls = { 2005: base+'2005_NYCA_Generators.xls/64f2ffcf-7859-714f-dc9c-cca2519f453a', 2006: base+'2006_NYCA_Generators.xls/bb67c807-9a27-7039-f3ef-8793d3e72cce', 2007: base+'2007_NYCA_Generators.xls/2e0da2c4-be90-caa3-b201-f211a3f9389b', 2008: base+'2008_NYCA_Generators.xls/cb944d0f-84c5-0f46-1ac3-424e3cbac850', 2009: base+'2009_NYCA_Generators.xls/962f951d-03a0-ccff-1296-5bfedadfeee9', 2010: base+'2010_NYCA_Generators.xls/ede624bb-40f6-6bd6-6fae-664a819b9058', 2011: base+'2011_NYCA_Generators.xls/432a163b-8860-99f0-2f61-8a54d2a7c74d', 2012: base+'2012_NYCA_Generating_Facilities.xls/1bb796f7-7221-2787-d164-9fc669c2ef52', 2013: base+'2013_NYCA_Generators.xls/58f988d4-d72c-510c-ae2f-2afa9b5dc0b3', 2014: base+'2014_NYCA_Generators.xls/92af4de1-ffc4-69cb-bab6-bac4afcec0ca', 2015: base+'2015_NYCA_Generators_Revised.xls/b1dfb906-56d6-b245-1c21-9649038050fd', 2016: base+'2016_NYCA_Generators.xls/b38728a0-0a95-d4e8-3b7b-fe14b4419e89', 2017: base+'2017_NYCA_Generators.xls/42b3e346-b89c-4284-3457-30bd73e3ea19', } ### Download files for year in years: filepathout = revmpath + 'NYISO/in/' + os.path.basename(urls[year]) urllib.request.urlretrieve(urls[year], filepathout) ### Concat input files into clean csv filesin = {year: revmpath + 'NYISO/in/' + os.path.basename(urls[year]) for year in years} ### Set columns columns = {} columns[2005] = [ 'line_ref_number', 'owner_operator_billing_org', 'station_unit', 'zone', 'ptid', 'town', 'county', 'state', 'date_in_service', 'capability_MW_sum', 'capability_MW_win', 'dual_cogen', 'unit_type', 'FT', 'CS', 'fuel_type_1', 'fuel_type_2', 'fuel_type_3', 'net_energy_MWh_prev_year', 'notes', ] columns[2006] = columns[2005] ### 2007, 2008, 2009 columns[2007] = [ 'line_ref_number', 'owner_operator_billing_org', 'station_unit', 'zone', 'ptid', 'town', 'county', 'state', 'date_in_service', 'nameplate_rating_kW', 'capability_kW_sum', 'capability_kW_win', 'dual_cogen', 'unit_type', 'FT', 'CS', 'fuel_type_1', 'fuel_type_2', 'fuel_type_3', 'net_energy_MWh_prev_year', 'notes', ] columns[2008], columns[2009] = columns[2007], columns[2007] ### 2010, 2011, 2012, columns[2010] = [ 'line_ref_number', 'owner_operator_billing_org', 'station_unit', 'zone', 'ptid', 'town', 'county', 'state', 'date_in_service', 'nameplate_rating_MW', 'CRIS_sum_cap_MW', 'capability_MW_sum', 'capability_MW_win', 'dual_cogen', 'unit_type', 'FT', 'CS', 'fuel_type_1', 'fuel_type_2', 'fuel_type_3', 'net_energy_GWh_prev_year', 'notes', ] columns[2011], columns[2012] = columns[2010], columns[2010] ### 2013, 2014, 2015, 2016, 2017, columns[2013] = [ 'line_ref_number', 'owner_operator_billing_org', 'station_unit', 'zone', 'ptid', 'town', 'county', 'state', 'date_in_service', 'nameplate_rating_MW', 'CRIS_sum_cap_MW', 'capability_MW_sum', 'capability_MW_win', 'dual_cogen', 'unit_type', 'fuel_type_1', 'fuel_type_2', 'fuel_type_3', 'net_energy_GWh_prev_year', 'notes', ] columns[2014], columns[2015], columns[2016], columns[2017] = ( columns[2013], columns[2013], columns[2013], columns[2013]) ### 2018 # columns[2018] = [ # 'line_ref_number', 'owner_operator_billing_org', 'station_unit', # 'zone', 'ptid', 'town', 'county', 'state', # 'date_in_service', 'nameplate_rating_MW', # 'CRIS_sum_cap_MW', 'CRIS_win_cap_MW', # 'capability_MW_sum', 'capability_MW_win', # 'dual_cogen', 'unit_type', # 'fuel_type_1', 'fuel_type_2', # 'net_energy_GWh_prev_year', 'notes', # ] ### Set other spreadsheet loading parameters skiprows = { 2005: 6, 2006: 7, 2007: 7, 2008: 7, 2009: 7, 2010: 6, 2011: 6, 2012: 6, 2013: 6, 2014: 6, 2015: 6, 2016: 6, 2017: 6, } skip_footer = { 2005: 2, 2006: 2, 2007: 2, 2008: 2, 2009: 1, 2010: 1, 2011: 2, 2012: 2, 2013: 2, 2014: 3, 2015: 3, 2016: 3, 2017: 1, } sheet_name = {year: 0 for year in years} sheet_name[2016] = 'NYCA_2016' sheet_name[2017] = 'NYCA_2017' ### Load and concat all dataframes dfs = {} for year in years: df = pd.read_excel( filesin[year], skiprows=skiprows[year], sheet_name=sheet_name[year], names=columns[year], usecols=len(columns[year])-1, skip_footer=skip_footer[year]) dfs[year] = df[['ptid', 'town', 'county', 'state']] dfgens = pd.concat(dfs, axis=0) dfgens = (dfgens.reset_index(level=0).rename(columns={'level_0':'year'}) .reset_index(drop=True).copy()) ### Define location codes statecodes = {36: 'NY', 42: 'PA', 25: 'MA', 34: 'NJ'} codestates = {'NY': 36, 'PA': 42, 'MA': 25, 'NJ': 34} dfs = {} ### NY df = pd.read_excel(filesin[2017], sheet_name='Gen_Codes', skiprows=29, usecols=[2, 3, 4, 5]).dropna() dfs['NY'] = pd.DataFrame(df.values.reshape(len(df)*2,2)) ### PA df = pd.read_excel(filesin[2017], sheet_name='Gen_Codes', skiprows=29, usecols=[7, 8, 9, 10]).dropna() dfs['PA'] = pd.DataFrame(df.values.reshape(len(df)*2,2)) ### MA df = pd.read_excel(filesin[2017], sheet_name='Gen_Codes', skiprows=29, usecols=[13, 14]).dropna() dfs['MA'] = pd.DataFrame(df.values.reshape(len(df),2)) ### NJ df = pd.read_excel(filesin[2017], sheet_name='Gen_Codes', skiprows=29, usecols=[18, 19]).dropna() dfs['NJ'] = pd.DataFrame(df.values.reshape(len(df),2)) codes = pd.concat(dfs).reset_index(level=0).rename( columns={'level_0':'state', 0: 'countycode', 1: 'county'}) codes['statecode'] = codes['state'].map(lambda x: codestates[x]) codes['countycode'] = codes['countycode'].map(lambda x: x[:3]) codes['code_state'] = codes['countycode'].astype(str) + '_' + codes['state'] codes['county_state'] = codes['county'] + ' county, ' + codes['state'] # codes = codes[['state', 'county', 'county_state', 'code_state']].copy() # codes.to_csv(revmpath + 'NYISO/test/io/nyiso-county-codes.csv') ###### Determine unique list of locations ### Generate nodes dataframe dfnodes = dfgens.drop('year',axis=1).drop_duplicates().dropna(subset=['ptid']) ### Turn county codes into counties countycodes = dict(zip(codes.code_state, codes.county_state)) def foo(x): if type(x) == int: return '{:03}'.format(x) elif x == ' -': return 'nan' elif type(x) == str: return x else: return 'nan' dfnodes['county'] = dfnodes.county.map(foo) ### Clean up dfnodes dfnodes = dfnodes.drop(dfnodes.loc[dfnodes.county == 'nan'].index) dfnodes['county, state'] = dfnodes.apply( lambda row: countycodes['{}_{}'.format(row['county'], statecodes[row['state']])], axis=1) ### Correct some typos replace = { 'Gilboa NY': 'Gilboa', 'Kittanning PA': 'Kittanning', 'Linden NJ': 'Linden', 'LyonsFalls': 'Lyons Falls', 'Mahwah NJ': 'Mahwah NJ', '<NAME>': '<NAME>erson', 'SouthHampton': 'Southampton', 'South Hampton': 'Southampton', 'Wappingers Falls': 'Wappingers', '': 'nan', } dfnodes['town'] = dfnodes.town.map(lambda x: str(x).strip()) dfnodes['town'].replace(replace, inplace=True) ### For each row: ### * If a town is listed, use the town. ### * If a town is not listed, use the county. def foo(row): if row['town'] == 'nan': return row['county, state'] else: return '{}, {}'.format(row['town'], statecodes[row['state']]) dfnodes['location'] = dfnodes.apply(foo, axis=1) ###### Look up locations ### Set up googlemaps gmaps = googlemaps.Client(key=apikeys['googlemaps']) ### Get centers from googlemaps numattempts = 200 sleeptime = 60 locations = dfnodes[['location']].drop_duplicates().reset_index(drop=True) out=[] for i, location in enumerate(tqdm(locations.values)): attempts = 0 while attempts < numattempts: try: location = gmaps.geocode(location) lat = location[0]['geometry']['location']['lat'] lon = location[0]['geometry']['location']['lng'] out.append([lat, lon]) time.sleep(0.02) break except HTTPError as err: print('Rebuffed for {} on attempt # {} by "{}".' 'Will retry in {} seconds.'.format( location, attempts, err, sleeptime)) attempts += 1 time.sleep(sleeptime) if attempts >= numattempts: raise Exception('Failed on {} after {} attempts'.format( location, attempts)) dfout = pd.DataFrame(out, columns=['latitude', 'longitude']) geo = pd.concat([locations, dfout], axis=1) ###### Average all locations for each node ### Add lat,lon info to nodes df dfnodes = dfnodes.merge(geo, on='location', how='left') dfnodes.drop_duplicates(inplace=True) dfnodes.drop(dfnodes.loc[dfnodes.ptid.map(lambda x: type(x) != int)].index, inplace=True) dfnodes['x'] = np.nan dfnodes['y'] = np.nan dfnodes['z'] = np.nan ptids = list(dfnodes['ptid'].sort_values().unique()) ### Put lat, lon in cartesian coordinates (assuming spherical Earth) dfnodes['x'] = dfnodes.apply(rowlatlon2x, axis=1) dfnodes['y'] = dfnodes.apply(rowlatlon2y, axis=1) dfnodes['z'] = dfnodes.apply(rowlatlon2z, axis=1) ### Determine centroid of locations listed for each node lats, lons = [], [] for i, pnode in enumerate(ptids): x = dfnodes[dfnodes['ptid'] == pnode]['x'].mean() y = dfnodes[dfnodes['ptid'] == pnode]['y'].mean() z = dfnodes[dfnodes['ptid'] == pnode]['z'].mean() outlon = math.atan2(y, x) * 180 / math.pi rho = math.sqrt(x*x + y*y) outlat = math.atan2(z, rho) * 180 / math.pi lats.append(outlat) lons.append(outlon) ### Make output dataframe dfout = pd.DataFrame( {'node':ptids, 'latitude': lats, 'longitude': lons} )[['node', 'latitude', 'longitude']] ### Identify duplicate (lat,lon) tuples for NSRDB latlons = dfout[['latitude', 'longitude']].drop_duplicates().copy() latlons['latlonindex'] = range(len(latlons)) dfout = dfout.merge(latlons, on=['latitude', 'longitude'], how='left') ### Write outputs geo.to_csv(revmpath+'NYISO/io/nyiso-locations-latlon.csv', index=False) dfout.to_csv(revmpath+'NYISO/io/nyiso-node-latlon.csv', index=False) latlons[['latlonindex', 'latitude', 'longitude']].to_csv( revmpath+'NYISO/io/nyiso-node-unique-latlons-for-nsrdb.csv', index=False) return dfout def nodelocations(iso, filein=None): """ """ if iso.upper() == 'CAISO': nodelocations_caiso() elif iso.upper() == 'ERCOT': nodelocations_ercot(filein=filein) elif iso.upper() == 'MISO': nodelocations_miso() elif iso.upper() == 'PJM': nodelocations_pjm() elif iso.upper() == 'NYISO': nodelocations_nyiso() elif iso.upper() == 'ISONE': nodelocations_isone() ########################### ### DOWNLOAD NSRDB DATA ### def lonlat2wkt(lon, lat): return 'POINT({:+f}{:+f})'.format(lon, lat) def lonlats2wkt(lonlats): out = ['{}%20{}'.format(lonlat[0], lonlat[1]) for lonlat in lonlats] return 'MULTIPOINT({})'.format('%2C'.join(out)) def querify(**kwargs): out = ['{}={}'.format(key, kwargs[key]) for key in kwargs] return '&'.join(out) def convertattributes_2to3(attributes): attributes_2to3 = { 'surface_air_temperature_nwp': 'air_temperature', 'surface_pressure_background': 'surface_pressure', 'surface_relative_humidity_nwp': 'relative_humidity', 'total_precipitable_water_nwp': 'total_precipitable_water', 'wind_direction_10m_nwp': 'wind_direction', 'wind_speed_10m_nwp': 'wind_speed', } attributes_in = attributes.split(',') attributes_out = [attributes_2to3.get(attribute, attribute) for attribute in attributes_in] return ','.join(attributes_out) def convertattributes_3to2(attributes): attributes_3to2 = { 'air_temperature': 'surface_air_temperature_nwp', 'surface_pressure': 'surface_pressure_background', 'relative_humidity': 'surface_relative_humidity_nwp', 'total_precipitable_water': 'total_precipitable_water_nwp', 'wind_direction': 'wind_direction_10m_nwp', 'wind_speed': 'wind_speed_10m_nwp', } attributes_in = attributes.split(',') attributes_out = [attributes_3to2.get(attribute, attribute) for attribute in attributes_in] return ','.join(attributes_out) def postNSRDBsize( years, lonlats, attributes='ghi,dni,dhi,solar_zenith_angle,air_temperature,wind_speed', leap_day='true', interval='30', norm=False): """ Determine size of NSRDB POST request """ numyears = len(years) numattributes = len(attributes.split(',')) numintervals = sum([pvvm.toolbox.yearhours(year) * 60 / int(interval) for year in years]) numsites = len(lonlats) if norm: return numsites * numattributes * numyears * numintervals / 175000000 return numsites * numattributes * numyears * numintervals def postNSRDBfiles( years, lonlats, psmversion=3, api_key=apikeys['nsrdb'], attributes='ghi,dni,dhi,solar_zenith_angle,air_temperature,wind_speed', leap_day='true', interval='30', utc='false'): """ """ ### Set url based on version of PSM if psmversion in [2, '2', 2.]: url = 'http://developer.nrel.gov/api/solar/nsrdb_0512_download.json?api_key={}'.format( api_key) attributes = convertattributes_3to2(attributes) elif psmversion in [3, '3', 3.]: url = 'http://developer.nrel.gov/api/solar/nsrdb_psm3_download.json?api_key={}'.format( api_key) attributes = convertattributes_2to3(attributes) else: raise Exception("Invalid psmversion; must be 2 or 3") names = ','.join([str(year) for year in years]) wkt = lonlats2multipoint(lonlats) payload = querify( wkt=wkt, attributes=attributes, names=names, utc=utc, leap_day=leap_day, interval=interval, full_name=nsrdbparams['full_name'], email=nsrdbparams['email'], affiliation=nsrdbparams['affiliation'], reason=nsrdbparams['reason'], mailing_list=nsrdbparams['mailing_list'] ) headers = { 'content-type': "application/x-www-form-urlencoded", 'cache-control': "no-cache" } response = requests.request("POST", url, data=payload, headers=headers) output = response.text print(output[output.find("errors"):output.find("inputs")], '\n', output[output.find("outputs"):]) def downloadNSRDBfile( lat, lon, year, filepath=None, nodename='default', filetype='.gz', attributes='ghi,dni,dhi,solar_zenith_angle,air_temperature,wind_speed', leap_day='true', interval='30', utc='false', psmversion=3, write=True, return_savename=False, urlonly=False): ''' Downloads file from NSRDB. NOTE: PSM v2 doesn't include 'surface_albedo' attribute. NOTE: For PSM v3, can use either v2 or v3 version of attribute labels. Full list of attributes for PSM v2: attributes=( 'dhi,dni,ghi,clearsky_dhi,clearsky_dni,clearsky_ghi,cloud_type,' + 'dew_point,surface_air_temperature_nwp,surface_pressure_background,' + 'surface_relative_humidity_nwp,solar_zenith_angle,' + 'total_precipitable_water_nwp,wind_direction_10m_nwp,' + 'wind_speed_10m_nwp,fill_flag') Full list of attributes for PSM v3: attributes=( 'dhi,dni,ghi,clearsky_dhi,clearsky_dni,clearsky_ghi,cloud_type,' + 'dew_point,air_temperature,surface_pressure,' + 'relative_humidity,solar_zenith_angle,' + 'total_precipitable_water,wind_direction,' + 'wind_speed,fill_flag,surface_albedo') Parameters ---------- filename: string nodename: string lat: numeric lon: numeric year: numeric Returns ------- if write == True: # default '.csv' file if filetype == '.csv', or '.gz' file if filetype == '.gz' if return_savename == False: pandas.DataFrame # default if return_savename == True: (pandas.DataFrame, savename) # type(savename) = str ''' ### Check inputs if filetype not in ['.csv', '.gz']: raise Exception("filetype must be '.csv' or '.gz'.") if write not in [True, False]: raise Exception('write must be True or False.') if return_savename not in [True, False]: raise Exception('return_savename must be True or False.') ### Set psmversion to 3 if year is 2016 (since v2 doesn't have 2016) if year in [2016, '2016', 2016.]: psmversion = 3 ### Remove solar_zenith_angle if year == 'tmy' if year == 'tmy': attributes = attributes.replace('solar_zenith_angle,','') attributes = attributes.replace('solar_zenith_angle','') year = str(year) ### Set url based on version of PSM if psmversion in [2, '2', 2.]: urlbase = 'http://developer.nrel.gov/api/solar/nsrdb_0512_download.csv?' attributes = convertattributes_3to2(attributes) elif psmversion in [3, '3', 3.]: urlbase = 'https://developer.nrel.gov/api/solar/nsrdb_psm3_download.csv?' attributes = convertattributes_2to3(attributes) else: raise Exception("Invalid psmversion; must be 2 or 3") url = ( urlbase + querify( api_key=apikeys['nsrdb'], full_name=nsrdbparams['full_name'], email=nsrdbparams['email'], affiliation=nsrdbparams['affiliation'], reason=nsrdbparams['reason'], mailing_list=nsrdbparams['mailing_list'], wkt=lonlat2wkt(lon, lat), names=year, attributes=attributes, leap_day=leap_day, utc=utc, interval=interval)) if urlonly: return url try: df = pd.read_csv(url) except HTTPError as err: print(url) print(err) raise HTTPError df = df.fillna('') columns = df.columns if write == True: if len(filepath) != 0 and filepath[-1] != '/': filepath = filepath + '/' if nodename in [None, 'default']: savename = (filepath + df.loc[0,'Location ID'] + '_' + df.loc[0,'Latitude'] + '_' + df.loc[0,'Longitude'] + '_' + year + filetype) else: # savename = str(filepath + nodename + '-' + year + filetype) savename = os.path.join( filepath, '{}-{}{}'.format(nodename, year, filetype)) ### Determine number of columns to write (used to always write 11) numcols = max(len(attributes.split(','))+5, 11) ### Write the output if filetype == '.gz': df.to_csv(savename, columns=columns[0:numcols], index=False, compression='gzip') elif filetype == '.csv': df.to_csv(savename, columns=columns[0:numcols], index=False) if return_savename == True: return df, savename else: return df return df def downloadNSRDBfiles( dfin, years, nsrdbpath, namecolumn=None, resolution=None, latlonlabels=None, filetype='.gz', psmversion=3, attributes='ghi,dni,dhi,solar_zenith_angle,air_temperature,wind_speed', wait=0.5, maxattempts=200,): """ """ ###### Set defaults ### Convert attributes if necessary if psmversion in [2, '2', 2.]: attributes = convertattributes_3to2(attributes) elif psmversion in [3, '3', 3.]: attributes = convertattributes_2to3(attributes) ### Get lat, lon labels if ('latitude' in dfin.columns) and ('longitude' in dfin.columns): latlabel, lonlabel = 'latitude', 'longitude' elif ('Latitude' in dfin.columns) and ('Longitude' in dfin.columns): latlabel, lonlabel = 'Latitude', 'Longitude' elif ('lat' in dfin.columns) and ('lon' in dfin.columns): latlabel, lonlabel = 'lat', 'lon' elif ('lat' in dfin.columns) and ('long' in dfin.columns): latlabel, lonlabel = 'lat', 'long' elif ('x' in dfin.columns) and ('y' in dfin.columns): latlabel, lonlabel = 'x', 'y' else: latlabel, lonlabel = latlonlabels[0], latlonlabels[1] ### Loop over years for year in years: ### Set defaults if (resolution == None) and (year == 'tmy'): resolution = 60 elif (resolution == None) and (type(year) == int): resolution = 30 ### Set up output folder outpath = nsrdbpath+'{}/{}min/'.format(year, resolution) os.makedirs(outpath, exist_ok=True) ### Make list of files downloaded so far downloaded = glob(outpath + '*') ## or os.listdir(outpath) downloaded = [os.path.basename(file) for file in downloaded] ### Make list of files to download if 'latlonindex' in dfin.columns: dfin.drop_duplicates('latlonindex', inplace=True) dfin['name'] = dfin['latlonindex'].copy() dfin['file'] = dfin['latlonindex'].map( lambda x: '{}{}-{}{}'.format(outpath, x, year, filetype)) elif namecolumn is not None: dfin['name'] = dfin[namecolumn].copy() dfin['file'] = dfin[namecolumn].map( lambda x: '{}{}-{}{}'.format(outpath, x, year, filetype)) elif namecolumn is None: dfin['name'] = None dfin['file'] = None dfin['todownload'] = dfin['file'].map( lambda x: os.path.basename(x) not in downloaded) dftodownload = dfin[dfin['todownload']].reset_index(drop=True) print('{}: {} done, {} to download'.format( year, len(downloaded), len(dftodownload))) ### Loop over locations for i in trange(len(dftodownload)): attempts = 0 while attempts < maxattempts: try: downloadNSRDBfile( lat=dftodownload[latlabel][i], lon=dftodownload[lonlabel][i], year=year, filepath=outpath, nodename=dftodownload['name'][i], interval=str(resolution), psmversion=psmversion, attributes=attributes) break except HTTPError as err: if str(err) in ['HTTP Error 504: Gateway Time-out', 'HTTP Error 500: Internal Server Error']: print(('Rebuffed on attempt # {} at {} by "{}". ' 'Retry in 5 minutes.').format( attempts, pvvm.toolbox.nowtime(), err)) attempts += 1 time.sleep(5 * 60) else: print(('Rebuffed on attempt # {} at {} by "{}". ' 'Retry in {} hours.').format( attempts, pvvm.toolbox.nowtime(), err, wait)) attempts += 1 time.sleep(wait * 60 * 60) if attempts >= maxattempts: print("Something must be wrong. No response after {} attempts.".format( attempts)) def downloadNSRDBfiles_iso(year, resolution=None, isos=['CAISO', 'ERCOT', 'MISO', 'NYISO', 'PJM', 'ISONE'], filetype='.gz', wait=0.5, psmversion=3, attributes='ghi,dni,dhi,solar_zenith_angle,air_temperature,wind_speed'): """ """ # nodemap = { # 'CAISO': os.path.join(revmpath, 'CAISO/io/caiso-node-latlon.csv'), # 'ERCOT': os.path.join(revmpath, 'ERCOT/io/ercot-node-latlon.csv'), # 'MISO': os.path.join(revmpath, 'MISO/in/miso-node-map.csv'), # 'PJM': os.path.join(revmpath, 'PJM/io/pjm-pnode-latlon-uniquepoints.csv'), # 'NYISO': os.path.join(revmpath, 'NYISO/io/nyiso-node-latlon.csv'), # 'ISONE': os.path.join(revmpath, 'ISONE/io/isone-node-latlon.csv') # }[iso] ### Set defaults if (resolution == None) and (year == 'tmy'): resolution = 60 elif (resolution == None) and (type(year) == int): resolution = 30 ### Convert attributes if necessary if psmversion in [2, '2', 2.]: attributes = convertattributes_3to2(attributes) elif psmversion in [3, '3', 3.]: attributes = convertattributes_2to3(attributes) for iso in isos: nodemap = revmpath + '{}/io/{}-node-latlon.csv'.format( iso.upper(), iso.lower()) ### Load node key dfin = pd.read_csv(nodemap) dfin.rename( columns={'name': 'node', 'pnodename': 'node', 'ptid': 'node'}, inplace=True) ### Set up output folder outpath = os.path.join(revmpath, '{}/in/NSRDB/{}/{}min/'.format( iso, year, resolution)) if not os.path.isdir(outpath): os.makedirs(outpath) ### Make list of files downloaded so far downloaded = glob(outpath + '*') ## or os.listdir(outpath) downloaded = [os.path.basename(file) for file in downloaded] ### Make list of files to download if 'latlonindex' in dfin.columns: dfin.drop_duplicates('latlonindex', inplace=True) dfin['name'] = dfin['latlonindex'].copy() dfin['file'] = dfin['latlonindex'].map( lambda x: '{}{}-{}{}'.format(outpath, x, year, filetype)) else: dfin['name'] = dfin['node'].copy() dfin['file'] = dfin['node'].map( lambda x: '{}{}-{}{}'.format(outpath, x, year, filetype)) dfin['todownload'] = dfin['file'].map( lambda x: os.path.basename(x) not in downloaded) dftodownload = dfin[dfin['todownload']].reset_index(drop=True) print('{} {}: {} done, {} to download'.format( iso.upper(), year, len(downloaded), len(dftodownload))) for i in trange(len(dftodownload)): attempts = 0 while attempts < 200: try: downloadNSRDBfile( lat=dftodownload['latitude'][i], lon=dftodownload['longitude'][i], year=year, filepath=outpath, nodename=str(dftodownload['name'][i]), interval=str(resolution), psmversion=psmversion, attributes=attributes) break except HTTPError as err: if str(err) in ['HTTP Error 504: Gateway Time-out', 'HTTP Error 500: Internal Server Error']: print(('Rebuffed on attempt # {} at {} by "{}". ' 'Retry in 5 minutes.').format( attempts, pvvm.toolbox.nowtime(), err)) attempts += 1 time.sleep(5 * 60) else: print(('Rebuffed on attempt # {} at {} by "{}". ' 'Retry in {} hours.').format( attempts, pvvm.toolbox.nowtime(), err, wait)) attempts += 1 time.sleep(wait * 60 * 60) if attempts >= 200: print("Something must be wrong. No response after {} attempts.".format( attempts)) def postNSRDBfiles_iso(year, yearkey, resolution=None, isos=['CAISO', 'ERCOT', 'MISO', 'NYISO', 'PJM', 'ISONE'], filetype='.gz', wait=3, psmversion=2, chunksize=1000, attributes='ghi,dni,dhi,solar_zenith_angle,air_temperature,wind_speed'): """ Notes ----- * This function can only be run after all NSRDB files for a given year have been downloaded using downloadNSRDBfiles(), as the POST request scrambles the node-to-NSRDBid correspondence. * The files will be sent to settings.nsrdbparams['email']. Need to download and unzip them. Default location for unzipped files is revmpath+'USA/in/NSRDB/nodes/{}/'.format(year). """ # nodemap = { # 'CAISO': os.path.join(revmpath, 'CAISO/io/caiso-node-latlon.csv'), # 'ERCOT': os.path.join(revmpath, 'ERCOT/io/ercot-node-latlon.csv'), # 'MISO': os.path.join(revmpath, 'MISO/in/miso-node-map.csv'), # 'PJM': os.path.join(revmpath, 'PJM/io/pjm-pnode-latlon-uniquepoints.csv'), # 'NYISO': os.path.join(revmpath, 'NYISO/io/nyiso-node-latlon.csv'), # 'ISONE': os.path.join(revmpath, 'ISONE/io/isone-node-latlon.csv') # }[iso] ### Set defaults if (resolution == None) and (year == 'tmy'): resolution = 60 elif (resolution == None) and (type(year) == int): resolution = 30 ### Convert attributes if necessary if psmversion in [2, '2', 2.]: attributes = convertattributes_3to2(attributes) elif psmversion in [3, '3', 3.]: attributes = convertattributes_2to3(attributes) ### Make dataframe of nodes from all ISOs dictnodes = {} for iso in isos: ### Load node key nodemap = revmpath + '{}/io/{}-node-latlon.csv'.format( iso.upper(), iso.lower()) dfin = pd.read_csv(nodemap) dfin.rename( columns={'name': 'node', 'pnodename': 'node', 'ptid': 'node'}, inplace=True) inpath = os.path.join(revmpath, '{}/in/NSRDB/{}/{}min/'.format( iso, yearkey, resolution)) ### Make list of files downloaded so far downloaded = glob(inpath + '*') ## or os.listdir(inpath) ### Make list of files to download if 'latlonindex' in dfin.columns: dfin.drop_duplicates('latlonindex', inplace=True) dfin['name'] = dfin['latlonindex'].copy() dfin['file'] = dfin['latlonindex'].map( lambda x: '{}{}-{}{}'.format(inpath, x, yearkey, filetype)) else: dfin['name'] = dfin['node'].copy() dfin['file'] = dfin['node'].map( lambda x: '{}{}-{}{}'.format(inpath, x, yearkey, filetype)) dfin['todownload'] = dfin['file'].map( lambda x: x not in downloaded) dictnodes[iso] = dfin.copy() dfnodes = pd.concat(dictnodes) ### Identify locations to include in query nsrdbids, nsrdblats, nsrdblons = [], [], [] for file in tqdm(dfnodes['file'].values): df = pd.read_csv(file, nrows=1) nsrdbids.append(df['Location ID'][0]) nsrdblats.append(df['Latitude'][0]) nsrdblons.append(df['Longitude'][0]) dfnodes['NSRDBid'] = nsrdbids dfnodes['NSRDBlat'] = nsrdblats dfnodes['NSRDBlon'] = nsrdblons dfnodes = dfnodes.reset_index(level=0).rename(columns={'level_0': 'iso'}) dfnodes.reset_index(drop=True, inplace=True) ### Save dfnodes for use in unpacking if not os.path.exists(revmpath+'USA/io/'): os.makedirs(revmpath+'USA/io/') dfnodes.to_csv(revmpath+'USA/io/nsrdbnodekey-{}.csv'.format(yearkey), index=False) ### Post NSRDB requests in 400-unit chunks, dropping duplicate NSRDBids dftodownload = dfnodes.drop_duplicates('NSRDBid').copy() lonlatstodownload = list(zip(dftodownload['NSRDBlon'], dftodownload['NSRDBlat'])) for i in range(0,len(lonlatstodownload), chunksize): print(i) postNSRDBfiles(years=[year], lonlats=lonlatstodownload[i:i+chunksize], psmversion=psmversion, attributes=attributes) time.sleep(wait) def unpackpostNSRDBfiles_iso(year, yearkey, postpath=None, isos=['CAISO', 'ERCOT', 'MISO', 'NYISO', 'PJM', 'ISONE'], resolution=None, filetypeout='.gz', attributes='ghi,dni,dhi,solar_zenith_angle,air_temperature,wind_speed'): """ Notes ----- * This function can only be run after postNSRDBfiles_iso(). * Default location for unzipped posted files is revmpath+'USA/in/NSRDB/nodes/{}/'.format(year). * Defualt location for dfnodes is revmpath+'USA/io/nsrdbnodekey-{}.csv'.format(yearkey) """ ### Set defaults, if necessary if postpath==None: postpath = revmpath+'USA/in/NSRDB/nodes/{}/'.format(year) if (resolution == None) and (year == 'tmy'): resolution = 60 elif (resolution == None) and (type(year) == int): resolution = 30 compression = 'gzip' if filetypeout not in ['gzip', '.gz']: compression = None ### Load dfnodes from default location dfnodes = pd.read_csv(revmpath+'USA/io/nsrdbnodekey-{}.csv'.format(yearkey)) ### Get downloaded file list postfiles = glob(postpath + '*') ### Extract parameters from filename def fileparams(filepath, filetype='.csv'): filename = os.path.basename(filepath) nsrdbid = filename[:filename.find('_')] lat = filename[filename.find('_')+1:filename.find('_-')] lon = filename[filename.find('_-')+1:filename.find(filetype)][:-5] year = filename[-(len(filetype)+4):-len(filetype)] return nsrdbid, lat, lon, year dfpostfiles =
pd.DataFrame(postfiles, columns=['filepath'])
pandas.DataFrame
# Written By : <NAME> # Adviser : <NAME>, Phd # Research : Using a neural network to maximize the significance of tttHH production. # Description: Script that trains and test a Keras NN. # Reference :http://cdsweb.cern.ch/record/2220969/files/ATL-PHYS-PUB-2016-023.pdf ########################################################################################################################### # Imported packages. import csv, sys import uproot import pandas as pd import numpy as np from numpy import array np.set_printoptions(threshold=sys.maxsize) import shap import argparse import tensorflow as tf import tkinter import matplotlib # matplotlib.use("TkAgg") import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import math import time from math import log, sqrt from tensorflow import keras from tensorflow.keras import metrics from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from sklearn.model_selection import train_test_split from sklearn.utils import shuffle status = len(tf.config.experimental.list_physical_devices("GPU")) from sklearn.metrics import ( precision_recall_curve, plot_precision_recall_curve, average_precision_score, roc_curve, auc, roc_auc_score, precision_recall_curve, ) from sklearn.metrics import confusion_matrix from datetime import datetime import slug # Library with common functions used in multiple scripts. parser = argparse.ArgumentParser(description="number of jets") parser.add_argument("--num", type=str, help="Use '--num=' followed by a Number of jets") args = parser.parse_args() # numofjets = int(args.num) numofjets = 10 # Fixed values. tree = "OutputTree" seed = 42 phase = 1 branches = slug.dataCol(phase,numofjets) # Number of features. numBranches = len(branches) - 2 mikeHancePATH = '/data/users/mhance/tthh/' jTellecheaPATH = '~/neural_networks/data/flat_btageff_0.77/' # jTellecheaPATH = '~/neural_networks/data/flat_btageff_0.85/' # Data read from file. signal = uproot.open(jTellecheaPATH+"new_TTHH.root")[tree] df_signal = signal.pandas.df(branches) bkgTTBB = uproot.open(jTellecheaPATH+"new_TTBB.root")[tree] df_bkgTTBB = bkgTTBB.pandas.df(branches) bkgTTH = uproot.open(jTellecheaPATH+"new_TTH.root")[tree] df_bkgTTH = bkgTTH.pandas.df(branches) bkgTTZ = uproot.open(jTellecheaPATH+"new_TTZ.root")[tree] df_bkgTTZ = bkgTTZ.pandas.df(branches) df_background =
pd.concat([df_bkgTTBB, df_bkgTTH, df_bkgTTZ])
pandas.concat
import dask.dataframe as dd import pandas as pd import pytest import featuretools as ft from featuretools.entityset import EntitySet, Relationship def test_create_entity_from_dask_df(pd_es): dask_es = EntitySet(id="dask_es") log_dask = dd.from_pandas(pd_es["log"].df, npartitions=2) dask_es = dask_es.entity_from_dataframe( entity_id="log_dask", dataframe=log_dask, index="id", time_index="datetime", variable_types=pd_es["log"].variable_types ) pd.testing.assert_frame_equal(pd_es["log"].df, dask_es["log_dask"].df.compute(), check_like=True) def test_create_entity_with_non_numeric_index(pd_es, dask_es): df = pd.DataFrame({"id": ["A_1", "A_2", "C", "D"], "values": [1, 12, -34, 27]}) dask_df = dd.from_pandas(df, npartitions=2) pd_es.entity_from_dataframe( entity_id="new_entity", dataframe=df, index="id") dask_es.entity_from_dataframe( entity_id="new_entity", dataframe=dask_df, index="id", variable_types={"id": ft.variable_types.Id, "values": ft.variable_types.Numeric}) pd.testing.assert_frame_equal(pd_es['new_entity'].df.reset_index(drop=True), dask_es['new_entity'].df.compute()) def test_create_entityset_with_mixed_dataframe_types(pd_es, dask_es): df = pd.DataFrame({"id": [0, 1, 2, 3], "values": [1, 12, -34, 27]}) dask_df = dd.from_pandas(df, npartitions=2) # Test error is raised when trying to add Dask entity to entitset with existing pandas entities err_msg = "All entity dataframes must be of the same type. " \ "Cannot add entity of type {} to an entityset with existing entities " \ "of type {}".format(type(dask_df), type(pd_es.entities[0].df)) with pytest.raises(ValueError, match=err_msg): pd_es.entity_from_dataframe( entity_id="new_entity", dataframe=dask_df, index="id") # Test error is raised when trying to add pandas entity to entitset with existing dask entities err_msg = "All entity dataframes must be of the same type. " \ "Cannot add entity of type {} to an entityset with existing entities " \ "of type {}".format(type(df), type(dask_es.entities[0].df)) with pytest.raises(ValueError, match=err_msg): dask_es.entity_from_dataframe( entity_id="new_entity", dataframe=df, index="id") def test_add_last_time_indexes(): pd_es = EntitySet(id="pd_es") dask_es = EntitySet(id="dask_es") sessions = pd.DataFrame({"id": [0, 1, 2, 3], "user": [1, 2, 1, 3], "time": [pd.to_datetime('2019-01-10'), pd.to_datetime('2019-02-03'), pd.to_datetime('2019-01-01'), pd.to_datetime('2017-08-25')], "strings": ["I am a string", "23", "abcdef ghijk", ""]}) sessions_dask = dd.from_pandas(sessions, npartitions=2) sessions_vtypes = { "id": ft.variable_types.Id, "user": ft.variable_types.Id, "time": ft.variable_types.DatetimeTimeIndex, "strings": ft.variable_types.Text } transactions = pd.DataFrame({"id": [0, 1, 2, 3, 4, 5], "session_id": [0, 0, 1, 2, 2, 3], "amount": [1.23, 5.24, 123.52, 67.93, 40.34, 50.13], "time": [pd.to_datetime('2019-01-10 03:53'),
pd.to_datetime('2019-01-10 04:12')
pandas.to_datetime
# MIT License # Copyright (c) [2017] [<NAME>] # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import pandas as pd from numpy.linalg import norm from scipy.sparse import issparse from .utils import svd_wrapper, centering class pca(object): """ Computes the Principal Components Analysis (PCA) of a data matrix X (n_samples x n_features). Parameters ---------- n_components: int, default = None rank of the decomposition. If None, will compute full PCA. center: str, default = None How to center the columns of X. If None, will not center the columns (i.e. just computes the SVD). Attributes ---------- scores_: pd.DataFrame - scores_ shape: (n_samples, n_components) The orthonormal matrix of (normalized) scores. loadings_: pd.DataFrame - loadings_ shape: (n_features, n_components) The orthonormal matrix of loadings. svals_: pd.Series - svals_ shape: (n_components, ) The singular values. m_: np.array - m_ shape: (n_features, ) The vector used to center the data. frob_norm_: float The Frobenius norm of the training data matrix X. shape_: tuple - shape_ length: 2 The shape of the original data matrix. """ def __init__(self, n_components=None, center='mean'): self.n_components = n_components self.center = center def get_params(self): return {'n_components': self.n_components, 'center': self.center} def __repr__(self): if not hasattr(self, 'scores_'): return 'pca object, nothing has been computed yet' else: return 'Rank {} pca of a {} matrix'.format(self.n_components, self.shape_) def fit(self, X): """ Computes the PCA decomposition of X. Parameters ---------- X: array-like or sparse matrix - X.shape = (n_samples, n_features) """ self.shape_, obs_names, var_names, self.n_components, \ = _arg_checker(X, self.n_components) # possibly mean center X X, self.m_ = centering(X, self.center) # compute SVD U, D, V = svd_wrapper(X, self.n_components) # compute variance explained if self.n_components == min(X.shape): self.frob_norm_ = np.sqrt(sum(D ** 2)) else: self.frob_norm_ = _safe_frob_norm(X) self.var_expl_prop_ = D ** 2 / self.frob_norm_ ** 2 self.var_expl_cum_ = np.cumsum(self.var_expl_prop_) if self.n_components is None: self.n_components = self.scores_.shape[1] self.scores_, self.svals_, self.loadings_ = \ svd2pd(U, D, V, obs_names=obs_names, var_names=var_names) return self @classmethod def from_precomputed(cls, n_components=None, center=None, scores=None, loadings=None, svals=None, obs_names=None, var_names=None, comp_names=None, m=None, frob_norm=None, var_expl_prop=None, shape=None): """ Loads the pca object from a precomputed PCA decomposition. Returns ------ X: pca object """ x = cls() if n_components is None and scores is not None: n_components = scores.shape[1] x.n_components = n_components if shape is not None: shape = shape else: shape = [None, None] if scores is not None: shape[0] = scores.shape[0] if loadings is not None: shape[1] = loadings.shape[0] x.shape_ = shape if scores is not None and type(scores) != pd.DataFrame: if obs_names is None: obs_names = _default_obs_names(scores.shape[0]) if comp_names is None: comp_names = _default_comp_names(scores.shape[1]) scores = pd.DataFrame(scores, index=obs_names, columns=comp_names) if svals is not None and type(svals) != pd.Series: if comp_names is None: comp_names = _default_comp_names(loadings.shape[1]) svals =
pd.Series(svals, index=comp_names)
pandas.Series
from distutils.version import LooseVersion from warnings import catch_warnings import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import ( DataFrame, HDFStore, Index, MultiIndex, Series, _testing as tm, bdate_range, concat, date_range, isna, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io.pytables import Term pytestmark = pytest.mark.single def test_select_columns_in_where(setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_select_with_dups(setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_select(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( { "ts": bdate_range("2012-01-01", periods=300), "A": np.random.randn(300), } ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select("df", f"boolv == {v}", columns=["A", "boolv"]) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select("df", f"boolv == {v}", columns=["A", "boolv"]) tm.assert_frame_equal(expected, result) # integer index df = DataFrame({"A": np.random.rand(20), "B": np.random.rand(20)}) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( { "A": np.random.rand(20), "B": np.random.rand(20), "index": np.arange(20, dtype="f8"), } ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame({"cols": range(11), "values": range(11)}, dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame({"cols": range(11), "values": range(11)}, dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "ts": bdate_range("2012-01-01", periods=300), "A": np.random.randn(300), "B": range(300), "users": ["a"] * 50 + ["b"] * 50 + ["c"] * 100 + [f"a{i:03d}" for i in range(100)], } ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select("df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']") expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + [f"a{i:03d}" for i in range(60)] result = store.select("df", "ts>=Timestamp('2012-02-01') and users=selector") expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") msg = "can only use an iterator or chunksize on a table" with pytest.raises(TypeError, match=msg): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError, match=msg): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select("df") tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = f"index >= '{beg_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = f"index <= '{end_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = f"index >= '{beg_dt}' & index <= '{end_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = list(store.select("df", chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = f"index >= '{beg_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = f"index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = f"index >= '{beg_dt}' & index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = f"index >= '{beg_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = f"index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = f"index >= '{beg_dt}' & index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[(expected.index >= beg_dt) & (expected.index <= end_dt)] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) end_dt = expected.index[-1] # select w/iterator and where clause, single term, begin of range where = f"index > '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) assert 0 == len(results) def test_select_iterator_many_empty_frames(setup_path): # GH 8014 # using iterator and where clause can return many empty # frames. chunksize = 10_000 # with iterator, range limited to the first chunk with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100000, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[chunksize - 1] # select w/iterator and where clause, single term, begin of range where = f"index >= '{beg_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = f"index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) assert len(results) == 1 result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = f"index >= '{beg_dt}' & index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) # should be 1, is 10 assert len(results) == 1 result = concat(results) rexpected = expected[(expected.index >= beg_dt) & (expected.index <= end_dt)] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause which selects # *nothing*. # # To be consistent with Python idiom I suggest this should # return [] e.g. `for e in []: print True` never prints # True. where = f"index <= '{beg_dt}' & index >= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) # should be [] assert len(results) == 0 def test_frame_select(setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") date = df.index[len(df) // 2] crit1 = Term("index>=date") assert crit1.env.scope["date"] == date crit2 = "columns=['A', 'D']" crit3 = "columns=A" result = store.select("frame", [crit1, crit2]) expected = df.loc[date:, ["A", "D"]] tm.assert_frame_equal(result, expected) result = store.select("frame", [crit3]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # invalid terms df = tm.makeTimeDataFrame() store.append("df_time", df) msg = "could not convert string to Timestamp" with pytest.raises(ValueError, match=msg): store.select("df_time", "index>0") # can't select if not written as table # store['frame'] = df # with pytest.raises(ValueError): # store.select('frame', [crit1, crit2]) def test_frame_select_complex(setup_path): # select via complex criteria df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[df.index[0:4], "string"] = "bar" with ensure_clean_store(setup_path) as store: store.put("df", df, format="table", data_columns=["string"]) # empty result = store.select("df", 'index>df.index[3] & string="bar"') expected = df.loc[(df.index > df.index[3]) & (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select("df", 'index>df.index[3] & string="foo"') expected = df.loc[(df.index > df.index[3]) & (df.string == "foo")] tm.assert_frame_equal(result, expected) # or result = store.select("df", 'index>df.index[3] | string="bar"') expected = df.loc[(df.index > df.index[3]) | (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select( "df", '(index>df.index[3] & index<=df.index[6]) | string="bar"' ) expected = df.loc[ ((df.index > df.index[3]) & (df.index <= df.index[6])) | (df.string == "bar") ] tm.assert_frame_equal(result, expected) # invert result = store.select("df", 'string!="bar"') expected = df.loc[df.string != "bar"] tm.assert_frame_equal(result, expected) # invert not implemented in numexpr :( msg = "cannot use an invert condition when passing to numexpr" with pytest.raises(NotImplementedError, match=msg): store.select("df", '~(string="bar")') # invert ok for filters result = store.select("df", "~(columns=['A','B'])") expected = df.loc[:, df.columns.difference(["A", "B"])] tm.assert_frame_equal(result, expected) # in result = store.select("df", "index>df.index[3] & columns in ['A','B']") expected = df.loc[df.index > df.index[3]].reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_frame_select_complex2(setup_path): with ensure_clean_path(["parms.hdf", "hist.hdf"]) as paths: pp, hh = paths # use non-trivial selection criteria parms = DataFrame({"A": [1, 1, 2, 2, 3]}) parms.to_hdf(pp, "df", mode="w", format="table", data_columns=["A"]) selection = read_hdf(pp, "df", where="A=[2,3]") hist = DataFrame( np.random.randn(25, 1), columns=["data"], index=MultiIndex.from_tuples( [(i, j) for i in range(5) for j in range(5)], names=["l1", "l2"] ), ) hist.to_hdf(hh, "df", mode="w", format="table") expected = read_hdf(hh, "df", where="l1=[2, 3, 4]") # scope with list like l = selection.index.tolist() # noqa store = HDFStore(hh) result = store.select("df", where="l1=l") tm.assert_frame_equal(result, expected) store.close() result = read_hdf(hh, "df", where="l1=l") tm.assert_frame_equal(result, expected) # index index = selection.index # noqa result = read_hdf(hh, "df", where="l1=index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) # scope with index store = HDFStore(hh) result = store.select("df", where="l1=index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) store.close() def test_invalid_filtering(setup_path): # can't use more than one filter (atm) df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") msg = "unable to collapse Joint Filters" # not implemented with pytest.raises(NotImplementedError, match=msg): store.select("df", "columns=['A'] | columns=['B']") # in theory we could deal with this with pytest.raises(NotImplementedError, match=msg): store.select("df", "columns=['A','B'] & columns=['C']") def test_string_select(setup_path): # GH 2973 with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() # test string ==/!= df["x"] = "none" df.loc[df.index[2:7], "x"] = "" store.append("df", df, data_columns=["x"]) result = store.select("df", "x=none") expected = df[df.x == "none"] tm.assert_frame_equal(result, expected) result = store.select("df", "x!=none") expected = df[df.x != "none"] tm.assert_frame_equal(result, expected) df2 = df.copy() df2.loc[df2.x == "", "x"] = np.nan store.append("df2", df2, data_columns=["x"]) result = store.select("df2", "x!=none") expected = df2[isna(df2.x)] tm.assert_frame_equal(result, expected) # int ==/!= df["int"] = 1 df.loc[df.index[2:7], "int"] = 2 store.append("df3", df, data_columns=["int"]) result = store.select("df3", "int=2") expected = df[df.int == 2] tm.assert_frame_equal(result, expected) result = store.select("df3", "int!=2") expected = df[df.int != 2] tm.assert_frame_equal(result, expected) def test_select_as_multiple(setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df2["foo"] = "bar" with ensure_clean_store(setup_path) as store: msg = "keys must be a list/tuple" # no tables stored with pytest.raises(TypeError, match=msg): store.select_as_multiple(None, where=["A>0", "B>0"], selector="df1") store.append("df1", df1, data_columns=["A", "B"]) store.append("df2", df2) # exceptions with pytest.raises(TypeError, match=msg): store.select_as_multiple(None, where=["A>0", "B>0"], selector="df1") with pytest.raises(TypeError, match=msg): store.select_as_multiple([None], where=["A>0", "B>0"], selector="df1") msg = "'No object named df3 in the file'" with pytest.raises(KeyError, match=msg): store.select_as_multiple( ["df1", "df3"], where=["A>0", "B>0"], selector="df1" ) with pytest.raises(KeyError, match=msg): store.select_as_multiple(["df3"], where=["A>0", "B>0"], selector="df1") with pytest.raises(KeyError, match="'No object named df4 in the file'"): store.select_as_multiple( ["df1", "df2"], where=["A>0", "B>0"], selector="df4" ) # default select result = store.select("df1", ["A>0", "B>0"]) expected = store.select_as_multiple( ["df1"], where=["A>0", "B>0"], selector="df1" ) tm.assert_frame_equal(result, expected) expected = store.select_as_multiple("df1", where=["A>0", "B>0"], selector="df1") tm.assert_frame_equal(result, expected) # multiple result = store.select_as_multiple( ["df1", "df2"], where=["A>0", "B>0"], selector="df1" ) expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected, check_freq=False) # FIXME: 2021-01-20 this is failing with freq None vs 4B on some builds # multiple (diff selector) result = store.select_as_multiple( ["df1", "df2"], where="index>df2.index[4]", selector="df2" ) expected = concat([df1, df2], axis=1) expected = expected[5:] tm.assert_frame_equal(result, expected) # test exception for diff rows store.append("df3", tm.makeTimeDataFrame(nper=50)) msg = "all tables must have exactly the same nrows!" with pytest.raises(ValueError, match=msg): store.select_as_multiple( ["df1", "df3"], where=["A>0", "B>0"], selector="df1" ) @pytest.mark.skipif( LooseVersion(tables.__version__) < LooseVersion("3.1.0"), reason=("tables version does not support fix for nan selection bug: GH 4858"), ) def test_nan_selection_bug_4858(setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame({"cols": range(6), "values": range(6)}, dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[0] = np.nan expected = DataFrame( {"cols": ["13.0", "14.0", "15.0"], "values": [3.0, 4.0, 5.0]}, index=[3, 4, 5], ) # write w/o the index on that particular column store.append("df", df, data_columns=True, index=["cols"]) result = store.select("df", where="values>2.0") tm.assert_frame_equal(result, expected) def test_query_with_nested_special_character(setup_path): df = DataFrame( { "a": ["a", "a", "c", "b", "test & test", "c", "b", "e"], "b": [1, 2, 3, 4, 5, 6, 7, 8], } ) expected = df[df.a == "test & test"] with ensure_clean_store(setup_path) as store: store.append("test", df, format="table", data_columns=True) result = store.select("test", 'a = "test & test"') tm.assert_frame_equal(expected, result) def test_query_long_float_literal(setup_path): # GH 14241 df =
DataFrame({"A": [1000000000.0009, 1000000000.0011, 1000000000.0015]})
pandas.DataFrame
import numpy as np import pandas as pd from PIL import Image import streamlit as st import sklearn from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn import svm data = pd.read_csv('PL.csv') X_all = data.drop(['FTR'],1) y_all = data['FTR'] # Standardising the data. from sklearn.preprocessing import scale #Center to the mean and component wise scale to unit variance. cols = [['H_ST','H_SOG','H_SFG','H_PT','H_COR','H_FL','H_YC','H_RC','A_ST','A_SOG','A_SFG','A_PT','A_COR','A_FL','A_YC','A_RC']] for col in cols: X_all[col] = scale(X_all[col]) X_all = data.drop(['HTAG','HTHG','FTAG','FTHG','HTR','Date','FTR','Country','League','Type','Season','Home_Team','Away_team','ETR','ETHG','ETAG','PENR','PENHG','PENAG'],1) from sklearn.feature_selection import SelectKBest, chi2 sel = SelectKBest(chi2, k = 5) sel.fit(X_all, y_all) X = sel.transform(X_all) X = pd.DataFrame(X) from sklearn.model_selection import train_test_split # Shuffle and split the dataset into training and testing set. X_train, X_test, y_train, y_test = train_test_split(X, y_all, test_size = 0.20, random_state = 3, stratify = y_all) SuperVector = svm.SVC() param_grid = {'C':[0.1,1], 'kernel':['rbf', 'poly', 'sigmoid','linear'], 'degree':[1,2,3]} SVMGrid=GridSearchCV(estimator=SuperVector, param_grid=param_grid) SVMGrid.fit(X_train, y_train) SVMPred = SVMGrid.predict(X_test) Arsenal = { 'name' : 'Arsenal', 'logo' : Image.open('logo/arsenal_logo2.png'), 'data' : pd.DataFrame([0,1,2,4,4]).transpose() } Inter = { 'name' : 'Internazionale', 'logo' : Image.open('logo/inter_logo.png'), 'data' : pd.DataFrame([4,1,2,4,5]).transpose() } Milan = { 'name' : 'Milan', 'logo' : Image.open('logo/milan_logo.png'), 'data' : pd.DataFrame([2,1,2,4,5]).transpose() } Chelsea = { 'name' : 'Chelsea', 'logo':Image.open('logo/chelsea_logo.png'), 'data': pd.DataFrame([1,1,1,3,0]).transpose() } Manchester_United = { 'name' : 'Manchester United', 'logo':Image.open('logo/manchester_united_logo.png'), 'data': pd.DataFrame([0,0,1,1,0]).transpose() } Liverpool = { 'name': 'Liverpool', 'logo': Image.open('logo/liverpool_logo.png'), 'data': pd.DataFrame([0,0,1,1,1]).transpose() } Manchester_City = { 'name' : 'Manchester City', 'logo':Image.open('logo/man_city_logo.png'), 'data': pd.DataFrame([3,4,2,1,8]).transpose() } Juventus = { 'name' : 'Juventus', 'logo':Image.open('logo/juve_logo.png'), 'data': pd.DataFrame([3,4,2,1,2]).transpose() } Barcelone = { 'name' : 'Barcelone', 'logo':Image.open('logo/barcelone_logo.png'), 'data': pd.DataFrame([3,4,2,1,8]).transpose() } Real_Madrid = { 'name' : '<NAME>', 'logo':Image.open('logo/real_madrid_logo.png'), 'data':
pd.DataFrame([3,4,2,1,1])
pandas.DataFrame
''' /******************************************************************************* * Copyright 2016-2019 Exactpro (Exactpro Systems Limited) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************/ ''' import numpy import matplotlib.pyplot as plt import scipy.stats as stats import pandas import datetime import calendar class RelativeFrequencyChart: # returns coordinates for each chart column def get_coordinates(self, data, bins): # bins - chart columns count self.btt = numpy.array(list(data)) self.y, self.x, self.bars = plt.hist(self.btt, weights=numpy.zeros_like(self.btt) + 1. / self.btt.size, bins=bins) return self.x, self.y class FrequencyDensityChart: def get_coordinates_histogram(self, data, bins): self.btt = numpy.array(list(data)) self.y, self.x, self.bars = plt.hist(self.btt, bins=bins, density=True) return self.x, self.y def get_coordinates_line(self, data): try: self.btt = numpy.array(list(data)) self.density = stats.kde.gaussian_kde(list(data)) self.x_den = numpy.linspace(0, data.max(), data.count()) self.density = self.density(self.x_den) return self.x_den, self.density except numpy.linalg.linalg.LinAlgError: return [-1], [-1] class DynamicChart: def get_coordinates(self, frame, step_size): self.plot = {} # chart coordinates self.dynamic_bugs = [] self.x = [] self.y = [] self.plot['period'] = step_size if step_size == 'W-SUN': self.periods = DynamicChart.get_periods(self, frame, step_size) # separates DataFrame to the specified periods if len(self.periods) == 0: return 'error' self.cumulative = 0 # cumulative total of defect submission for specific period for self.period in self.periods: # checks whether the first day of period is Monday (if not then we change first day to Monday) if pandas.to_datetime(self.period[0]) < pandas.to_datetime(frame['Created_tr']).min(): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(self.period[1]))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()))) self.y.append(self.cumulative) else: self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(self.period[0])) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(self.period[1]))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str((self.period[0]))) self.y.append(self.cumulative) # check whether the date from new DataFrame is greater than date which is specified in settings if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(self.periods[-1][1]): # processing of days which are out of full period set self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) > pandas.to_datetime(self.periods[-1][1])) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(datetime.datetime.date(pandas.to_datetime(self.periods[-1][1], format='%Y-%m-%d')) + datetime.timedelta(days=1))) self.y.append(self.cumulative) self.dynamic_bugs.append(self.x) self.dynamic_bugs.append(self.y) self.plot['dynamic bugs'] = self.dynamic_bugs self.cumulative = 0 return self.plot if step_size in ['7D', '10D', '3M', '6M', 'A-DEC']: self.count0 = 0 self.count1 = 1 self.periods = DynamicChart.get_periods(self, frame, step_size) # DataFrame separation by the specified periods if len(self.periods) == 0: return 'error' self.cumulative = 0 self.countPeriodsList = len(self.periods) # count of calculated periods self.count = 1 if self.countPeriodsList == 1: if step_size == '7D': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()) +datetime.timedelta(days=7)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=7)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+ datetime.timedelta(days=7))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=7), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == '10D': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == '3M': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 3)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 3)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 3))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 3), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == '6M': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 6)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 6)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 6))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 6), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == 'A-DEC': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(str(int(self.periods[0])+1)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if(pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(str(int(self.periods[0])+1))): self.newFrame = frame[(
pandas.to_datetime(frame['Created_tr'])
pandas.to_datetime
import pandas import numpy as np import patsy import argparse import statsmodels.discrete.count_model as cm import seaborn as sb from scipy.stats import nbinom # # TODO -- this should really be part of bin3C or use proxigenomics_toolkit # and derive all this information itself. The logic for producing the # contacts is important. An existing issue is that bin3C is Python 2.7 # while I strongly suspect the latest codebase of important modules # will only be deployed for Python >3 # def fit_data(df, n_sample=None): if n_sample is None: return df else: return df.sample(n=n_sample) def mul_ab(df, index1, index2, col): return df.loc[index1, col].values * df.loc[index2, col].values def scaler(a, _mu=None, _sigma=None): if not _mu: _mu = a.mean() if not _sigma: _sigma = a.std() return (a - float(_mu)) / float(_sigma), _mu, _sigma def make_table(_contacts, _sites, _lengths, _coverage): return pandas.DataFrame({'contacts': _contacts, 'sites': _sites, 'length': _lengths, 'coverage': _coverage}) def convert_params(mu, alpha): """ Convert mean/dispersion parameterization of a negative binomial to the ones scipy supports See https://en.wikipedia.org/wiki/Negative_binomial_distribution#Alternative_formulations """ r = 1. / alpha var = mu + 1. / r * mu ** 2 p = (var - mu) / var return r, 1. - p def nbinom_cdf(c, mu, alpha): """ Re-parameterised scipy negative binomial :param c: observed count :param mu: expected count :param alpha: dispersion (alpha = 1/r) :return: cumulative probability """ return nbinom.cdf(c, *convert_params(mu, alpha)) parser = argparse.ArgumentParser() parser.add_argument('--threshold', '-t', type=float, default=0.1, help='Threshold cut-off for significant contacts') parser.add_argument('--n-sample', '-n', type=int, help='Limit number of observations used in model fitting') parser.add_argument('coverage', help='Coverage file [name,depth]') parser.add_argument('contig_info', help="Contig information file [name,length,sites]") parser.add_argument('intra_contacts', help='Intra-genome contacts') parser.add_argument('raw_contacts', help='All raw contacts') parser.add_argument('valid_out', help='Output table of valid contacts') parser.add_argument('spur_out', help='Output table of spurious contacts') args = parser.parse_args() print('Reading input data') coverage = pandas.read_csv(args.coverage, header=None, names=['contig_name', 'coverage']) contig_info =
pandas.read_csv(args.contig_info, header=None, names=['contig_name', 'length', 'sites'])
pandas.read_csv
"""Main helper""" __docformat__ = "numpy" import argparse from datetime import datetime, timedelta from typing import List import matplotlib.pyplot as plt import mplfinance as mpf import pandas as pd import pyEX import pytz import yfinance as yf from alpha_vantage.timeseries import TimeSeries from numpy.core.fromnumeric import transpose from tabulate import tabulate from gamestonk_terminal import config_plot as cfgPlot from gamestonk_terminal import config_terminal as cfg from gamestonk_terminal import feature_flags as gtff from gamestonk_terminal.common.technical_analysis import trendline_api as trend from gamestonk_terminal.helper_funcs import ( parse_known_args_and_warn, plot_autoscale, valid_date, ) # pylint: disable=no-member,too-many-branches,C0302 def clear( other_args: List[str], s_ticker: str, s_start, s_interval: str, df_stock: pd.DataFrame, ): """Clears loaded stock and returns empty variables Parameters ---------- other_args : List[str] Argparse arguments s_ticker : str Ticker s_start : str Start date s_interval : str Interval to get data for df_stock : pd.DataFrame Preloaded dataframe Returns ------- str Ticker str Start date str Interval pd.DataFrame Dataframe of data """ parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="clear", description="""Clear previously loaded stock ticker.""", ) try: ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return "", "", "", pd.DataFrame() print("Clearing stock ticker to be used for analysis\n") return "", "", "", pd.DataFrame() except SystemExit: print("") return s_ticker, s_start, s_interval, df_stock def load( other_args: List[str], s_ticker: str, s_start, s_interval: str, df_stock: pd.DataFrame, ): """Load selected ticker Parameters ---------- other_args : List[str] Argparse arguments s_ticker : str Ticker s_start : str Start date s_interval : str Interval to get data for df_stock : pd.DataFrame Preloaded dataframe Returns ------- str Ticker str Start date str Interval pd.DataFrame Dataframe of data. """ parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="load", description="Load stock ticker to perform analysis on. When the data source is 'yf', an Indian ticker can be" " loaded by using '.NS' at the end, e.g. 'SBIN.NS'. See available market in" " https://help.yahoo.com/kb/exchanges-data-providers-yahoo-finance-sln2310.html.", ) parser.add_argument( "-t", "--ticker", action="store", dest="s_ticker", required="-h" not in other_args, help="Stock ticker", ) parser.add_argument( "-s", "--start", type=valid_date, default=(datetime.now() - timedelta(days=366)).strftime("%Y-%m-%d"), dest="s_start_date", help="The starting date (format YYYY-MM-DD) of the stock", ) parser.add_argument( "-i", "--interval", action="store", dest="n_interval", type=int, default=1440, choices=[1, 5, 15, 30, 60], help="Intraday stock minutes", ) parser.add_argument( "--source", action="store", dest="source", choices=["yf", "av", "iex"], default="yf", help="Source of historical data.", ) parser.add_argument( "-p", "--prepost", action="store_true", default=False, dest="b_prepost", help="Pre/After market hours. Only works for 'yf' source, and intraday data", ) try: # For the case where a user uses: 'load BB' if other_args and "-t" not in other_args and "-h" not in other_args: other_args.insert(0, "-t") ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return [s_ticker, s_start, s_interval, df_stock] # Daily if ns_parser.n_interval == 1440: # Alpha Vantage Source if ns_parser.source == "av": ts = TimeSeries(key=cfg.API_KEY_ALPHAVANTAGE, output_format="pandas") # pylint: disable=unbalanced-tuple-unpacking df_stock_candidate, _ = ts.get_daily_adjusted( symbol=ns_parser.s_ticker, outputsize="full" ) df_stock_candidate.columns = [ val.split(". ")[1].capitalize() for val in df_stock_candidate.columns ] df_stock_candidate = df_stock_candidate.rename( columns={ "Adjusted close": "Adj Close", } ) # Check that loading a stock was not successful # pylint: disable=no-member if df_stock_candidate.empty: print("") return [s_ticker, s_start, s_interval, df_stock] # pylint: disable=no-member df_stock_candidate.sort_index(ascending=True, inplace=True) # Slice dataframe from the starting date YYYY-MM-DD selected df_stock_candidate = df_stock_candidate[ns_parser.s_start_date :] # Yahoo Finance Source elif ns_parser.source == "yf": df_stock_candidate = yf.download( ns_parser.s_ticker, start=ns_parser.s_start_date, progress=False ) # Check that loading a stock was not successful if df_stock_candidate.empty: print("") return [s_ticker, s_start, s_interval, df_stock] df_stock_candidate.index.name = "date" # IEX Cloud Source elif ns_parser.source == "iex": client = pyEX.Client(api_token=cfg.API_IEX_TOKEN, version="v1") df_stock_candidate = client.chartDF(ns_parser.s_ticker) # Check that loading a stock was not successful if df_stock_candidate.empty: print("") return [s_ticker, s_start, s_interval, df_stock] df_stock_candidate = df_stock_candidate[ ["uClose", "uHigh", "uLow", "uOpen", "fClose", "volume"] ] df_stock_candidate = df_stock_candidate.rename( columns={ "uClose": "Close", "uHigh": "High", "uLow": "Low", "uOpen": "Open", "fClose": "Adj Close", "volume": "Volume", } ) df_stock_candidate.sort_index(ascending=True, inplace=True) # Slice dataframe from the starting date YYYY-MM-DD selected df_stock_candidate = df_stock_candidate[ns_parser.s_start_date :] # Check if start time from dataframe is more recent than specified if df_stock_candidate.index[0] > pd.to_datetime(ns_parser.s_start_date): s_start = df_stock_candidate.index[0] else: s_start = ns_parser.s_start_date elif ns_parser.source == "av": ts = TimeSeries(key=cfg.API_KEY_ALPHAVANTAGE, output_format="pandas") # pylint: disable=unbalanced-tuple-unpacking df_stock_candidate, _ = ts.get_intraday( symbol=ns_parser.s_ticker, outputsize="full", interval=str(ns_parser.n_interval) + "min", ) df_stock_candidate.columns = [ val.split(". ")[1].capitalize() for val in df_stock_candidate.columns ] df_stock_candidate = df_stock_candidate.rename( columns={ "Adjusted close": "Adj Close", } ) s_interval = str(ns_parser.n_interval) + "min" # Check that loading a stock was not successful # pylint: disable=no-member if df_stock_candidate.empty: print("") return [s_ticker, s_start, s_interval, df_stock] # pylint: disable=no-member df_stock_candidate.sort_index(ascending=True, inplace=True) # Slice dataframe from the starting date YYYY-MM-DD selected df_stock_candidate = df_stock_candidate[ns_parser.s_start_date :] # Check if start time from dataframe is more recent than specified if df_stock_candidate.index[0] > pd.to_datetime(ns_parser.s_start_date): s_start = df_stock_candidate.index[0] else: s_start = ns_parser.s_start_date elif ns_parser.source == "yf": s_int = str(ns_parser.n_interval) + "m" s_interval = s_int + "in" d_granularity = {"1m": 6, "5m": 59, "15m": 59, "30m": 59, "60m": 729} s_start_dt = datetime.utcnow() - timedelta(days=d_granularity[s_int]) s_date_start = s_start_dt.strftime("%Y-%m-%d") if s_start_dt > ns_parser.s_start_date: # Using Yahoo Finance with granularity {s_int} the starting date is set to: {s_date_start} df_stock_candidate = yf.download( ns_parser.s_ticker, start=s_date_start, progress=False, interval=s_int, prepost=ns_parser.b_prepost, ) else: df_stock_candidate = yf.download( ns_parser.s_ticker, start=ns_parser.s_start_date.strftime("%Y-%m-%d"), progress=False, interval=s_int, prepost=ns_parser.b_prepost, ) # Check that loading a stock was not successful if df_stock_candidate.empty: print("") return [s_ticker, s_start, s_interval, df_stock] if s_start_dt > ns_parser.s_start_date: s_start = pytz.utc.localize(s_start_dt) else: s_start = ns_parser.s_start_date df_stock_candidate.index.name = "date" elif ns_parser.source == "iex": s_interval = str(ns_parser.n_interval) + "min" client = pyEX.Client(api_token=cfg.API_IEX_TOKEN, version="v1") df_stock_candidate = client.chartDF(ns_parser.s_ticker) df_stock_candidate = client.intradayDF(ns_parser.s_ticker).iloc[ 0 :: ns_parser.n_interval ] df_stock_candidate = df_stock_candidate[ ["close", "high", "low", "open", "volume", "close"] ] df_stock_candidate.columns = [ x.capitalize() for x in df_stock_candidate.columns ] df_stock_candidate.columns = list(df_stock_candidate.columns[:-1]) + [ "Adj Close" ] df_stock_candidate.sort_index(ascending=True, inplace=True) new_index = [] for idx in range(len(df_stock_candidate)): dt_time = datetime.strptime(df_stock_candidate.index[idx][1], "%H:%M") new_index.append( df_stock_candidate.index[idx][0] + timedelta(hours=dt_time.hour, minutes=dt_time.minute) ) df_stock_candidate.index =
pd.DatetimeIndex(new_index)
pandas.DatetimeIndex
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 11 16:31:58 2021 @author: snoone """ import os import glob import pandas as pd pd.options.mode.chained_assignment = None # default='warn' OUTDIR = "D:/Python_CDM_conversion/hourly/qff/cdm_out/observations_table" os.chdir("D:/Python_CDM_conversion/hourly/qff/test") extension = 'qff' #my_file = open("D:/Python_CDM_conversion/hourly/qff/ls1.txt", "r") #all_filenames = my_file.readlines() #print(all_filenames) ##use alist of file name sto run 5000 parallel #with open("D:/Python_CDM_conversion/hourly/qff/ls.txt", "r") as f: # all_filenames = f.read().splitlines() all_filenames = [i for i in glob.glob('*.{}'.format(extension))] ##to start at begining of files for filename in all_filenames: ##to start at next file after last processe #for filename in all_filenames[all_filenames.index('SWM00002338.qff'):] : df=pd.read_csv(filename, sep="|") ##set up master df to extrcat each variable df["report_id"]="" df["observation_id"]="" df["data_policy_licence"]="" df["date_time_meaning"]="1" df["observation_duration"]="0" df["latitude"]=df["Latitude"] df["longitude"]=df["Longitude"] df["crs"]="" df["z_coordinate"]="" df["z_coordinate_type"]="" df["observation_height_above_station_surface"]="" df["observed_variable"]="" df["secondary_variable"]="" df["observation_value"]="" df["value_significance"]="12" df["secondary_value"]="" df["units"]="" df["code_table"]="" df["conversion_flag"]="" df["location_method"]="" df["location_precision"]="" df["z_coordinate_method"]="" df["bbox_min_longitude"]="" df["bbox_max_longitude"]="" df["bbox_min_latitude"]="" df["bbox_max_latitude"]="" df["spatial_representativeness"]="" df["original_code_table"]="" df["quality_flag"]="" df["numerical_precision"]="" df["sensor_id"]="" df["sensor_automation_status"]="" df["exposure_of_sensor"]="" df["original_precision"]="" df["original_units"]="" df["original_code_table"]="" df["original_value"]="" df["conversion_method"]="" df["processing_code"]="" df["processing_level"]="0" df["adjustment_id"]="" df["traceability"]="" df["advanced_qc"]="" df["advanced_uncertainty"]="" df["advanced_homogenisation"]="" df["advanced_assimilation_feedback"]="" df["source_id"]="" df["source_record_id"]="" df["primary_station_id"]=df["Station_ID"] df["Timestamp2"] = df["Year"].map(str) + "-" + df["Month"].map(str)+ "-" + df["Day"].map(str) df["Seconds"]="00" df["offset"]="+00" df["date_time"] = df["Timestamp2"].map(str)+ " " + df["Hour"].map(str)+":"+df["Minute"].map(str)+":"+df["Seconds"].map(str) df['date_time'] = pd.to_datetime(df['date_time'], format='%Y/%m/%d' " ""%H:%M") df['date_time'] = df['date_time'].astype('str') df.date_time = df.date_time + '+00' #========================================================================================= ##convert temperature changes for each variable dft = df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dft["observation_value"]=df["temperature"]+273.15 dft["source_id"]=df["temperature_Source_Code"] dft["Seconds"]="00" dft["quality_flag"]=df["temperature_QC_flag"] dft["qc_method"]=dft["quality_flag"] dft["conversion_flag"]="0" dft["conversion_method"]="1" dft["numerical_precision"]="0.01" dft["original_precision"]="0.1" dft["original_units"]="60" dft["original_value"]=df["temperature"] dft["observation_height_above_station_surface"]="2" dft["units"]="5" dft["observed_variable"]="85" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dft.loc[dft['quality_flag'].notnull(), "quality_flag"] = 1 dft = dft.fillna("Null") dft.quality_flag[dft.quality_flag == "Null"] = 0 #change for each variable if required ##remove unwanted mising data rows dft = dft.fillna("null") dft = dft.replace({"null":"-99999"}) dft = dft[dft.observation_value != -99999] #df = df.astype(str) dft["source_id"] = pd.to_numeric(dft["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dft['source_id'] = dft['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dft['primary_station_id_2']=dft['primary_station_id'].astype(str)+'-'+dft['source_id'].astype(str) dft["observation_value"] = pd.to_numeric(dft["observation_value"],errors='coerce') #dft.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv") dft = dft.astype(str) df2 = df2.astype(str) dft= df2.merge(dft, on=['primary_station_id_2']) dft['data_policy_licence'] = dft['data_policy_licence_x'] dft['data_policy_licence'] = dft['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dft['observation_id']=dft['primary_station_id'].astype(str)+'-'+dft['record_number'].astype(str)+'-'+dft['date_time'].astype(str) dft['observation_id'] = dft['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dft['observation_id'] = dft['observation_id'].str[:-6] dft["observation_id"]=dft["observation_id"]+'-'+dft['observed_variable'].astype(str)+'-'+dft['value_significance'].astype(str) dft["report_id"]=dft["observation_id"].str[:-6] ##set up qc table dft = dft[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] df.dropna(subset = ["observation_value"], inplace=True) dft['source_id'] = dft['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dft['data_policy_licence'] = dft['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dft["source_id"] = pd.to_numeric(dft["source_id"],errors='coerce') dft["observation_value"] = pd.to_numeric(dft["observation_value"],errors='coerce') dft["observation_value"]= dft["observation_value"].round(2) #dft.to_csv("isuest.csv", index=False, sep=",") #================================================================================= ##convert dew point temperature changes for each variable dfdpt= df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dfdpt["observation_value"]=df["dew_point_temperature"]+273.15 dfdpt["source_id"]=df["dew_point_temperature_Source_Code"] dfdpt["Seconds"]="00" dfdpt["quality_flag"]=df["dew_point_temperature_QC_flag"] dfdpt["conversion_flag"]="0" dfdpt["conversion_method"]="1" dfdpt["numerical_precision"]="0.01" dfdpt["original_precision"]="0.1" dfdpt["original_units"]="60" dfdpt["original_value"]=df["dew_point_temperature"] dfdpt["observation_height_above_station_surface"]="2" dfdpt["units"]="5" dfdpt["observed_variable"]="36" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dfdpt.loc[dfdpt['quality_flag'].notnull(), "quality_flag"] = 1 dfdpt= dfdpt.fillna("Null") dfdpt.quality_flag[dfdpt.quality_flag == "Null"] = 0 ##remove unwanted mising data rows dfdpt= dfdpt.fillna("null") dfdpt= dfdpt.replace({"null":"-99999"}) dfdpt= dfdpt[dfdpt.observation_value != -99999] #df = df.astype(str) dfdpt["source_id"] = pd.to_numeric(dfdpt["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dfdpt['source_id'] = dfdpt['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['primary_station_id_2']=dfdpt['primary_station_id'].astype(str)+'-'+dfdpt['source_id'].astype(str) dfdpt["observation_value"] = pd.to_numeric(dfdpt["observation_value"],errors='coerce') #dfdpt.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv") dfdpt= dfdpt.astype(str) df2 = df2.astype(str) dfdpt= df2.merge(dfdpt, on=['primary_station_id_2']) dfdpt['data_policy_licence'] = dfdpt['data_policy_licence_x'] dfdpt['data_policy_licence'] = dfdpt['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['observation_id']=dfdpt['primary_station_id'].astype(str)+'-'+dfdpt['record_number'].astype(str)+'-'+dfdpt['date_time'].astype(str) dfdpt['observation_id'] = dfdpt['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dfdpt['observation_id'] = dfdpt['observation_id'].str[:-6] dfdpt["observation_id"]=dfdpt["observation_id"]+'-'+dfdpt['observed_variable'].astype(str)+'-'+dfdpt['value_significance'].astype(str) dfdpt["report_id"]=dfdpt["observation_id"].str[:-6] ##set up qc table dfdpt= dfdpt[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] dfdpt.dropna(subset = ["observation_value"], inplace=True) dfdpt['source_id'] = dfdpt['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['data_policy_licence'] = dfdpt['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt["source_id"] = pd.to_numeric(dfdpt["source_id"],errors='coerce') dfdpt["observation_value"] = pd.to_numeric(dfdpt["observation_value"],errors='coerce') dfdpt["observation_value"]= dfdpt["observation_value"].round(2) #==================================================================================== #convert station level to cdmlite dfslp = df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dfslp["observation_value"]=df["station_level_pressure"] dfslp["source_id"]=df["station_level_pressure_Source_Code"] dfslp["Seconds"]="00" dfslp["quality_flag"]=df["station_level_pressure_QC_flag"] dfslp["conversion_flag"]="0" dfslp["conversion_method"]="7" dfslp["numerical_precision"]="10" dfslp["original_precision"]="0.1" dfslp["original_units"]="530" dfslp["original_value"]=df["station_level_pressure"] dfslp["observation_height_above_station_surface"]="2" dfslp["units"]="32" dfslp["observed_variable"]="57" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dfslp.loc[dfslp['quality_flag'].notnull(), "quality_flag"] = 1 dfslp = dfslp.fillna("Null") dfslp.quality_flag[dfslp.quality_flag == "Null"] = 0 #change for each variable if required ##remove unwanted mising data rows dfslp = dfslp.fillna("null") dfslp = dfslp.replace({"null":"-99999"}) dfslp = dfslp[dfslp.observation_value != -99999] #df = df.astype(str) dfslp["source_id"] = pd.to_numeric(dfslp["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dfslp['source_id'] = dfslp['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfslp['primary_station_id_2']=dfslp['primary_station_id'].astype(str)+'-'+dfslp['source_id'].astype(str) dfslp["observation_value"] = pd.to_numeric(dfslp["observation_value"],errors='coerce') #dfslp.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv") dfslp = dfslp.astype(str) df2 = df2.astype(str) dfslp= df2.merge(dfslp, on=['primary_station_id_2']) dfslp['data_policy_licence'] = dfslp['data_policy_licence_x'] dfslp['data_policy_licence'] = dfslp['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfslp['observation_id']=dfslp['primary_station_id'].astype(str)+'-'+dfslp['record_number'].astype(str)+'-'+dfslp['date_time'].astype(str) dfslp['observation_id'] = dfslp['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dfslp['observation_id'] = dfslp['observation_id'].str[:-6] dfslp["observation_id"]=dfslp["observation_id"]+'-'+dfslp['observed_variable'].astype(str)+'-'+dfslp['value_significance'].astype(str) dfslp["report_id"]=dfslp["observation_id"].str[:-6] ##set up qc table dfslp = dfslp[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] ##make sure no decimal places an dround value to reuqred decimal places dfslp['observation_value'] = dfslp['observation_value'].map(float) dfslp['observation_value'] = (dfslp['observation_value']*100) dfslp['observation_value'] = dfslp['observation_value'].map(int) dfslp['source_id'] = dfslp['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfslp['data_policy_licence'] = dfslp['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfslp["source_id"] = pd.to_numeric(dfslp["source_id"],errors='coerce') dfslp['observation_value'] = dfslp['observation_value'].astype(str).apply(lambda x: x.replace('.0','')) #dfslp.to_csv("slp.csv", index=False, sep=",") #=========================================================================================== #convert sea level presure to cdmlite dfmslp = df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dfmslp["observation_value"]=df["sea_level_pressure"] dfmslp["source_id"]=df["sea_level_pressure_Source_Code"] dfmslp["Seconds"]="00" dfmslp["quality_flag"]=df["sea_level_pressure_QC_flag"] dfmslp["conversion_flag"]="0" dfmslp["conversion_method"]="7" dfmslp["numerical_precision"]="10" dfmslp["original_precision"]="0.1" dfmslp["original_units"]="530" dfmslp["original_value"]=df["temperature"] dfmslp["observation_height_above_station_surface"]="2" dfmslp["units"]="32" dfmslp["observed_variable"]="58" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dfmslp.loc[dfmslp['quality_flag'].notnull(), "quality_flag"] = 1 dfmslp = dfmslp.fillna("null") dfmslp.quality_flag[dfmslp.quality_flag == "Null"] = 0 #change for each variable if required ##remove unwanted mising data rows dfmslp = dfmslp.fillna("null") dfmslp = dfmslp.replace({"null":"-99999"}) dfmslp = dfmslp[dfmslp.observation_value != -99999] #df = df.astype(str) dfmslp["source_id"] =
pd.to_numeric(dfmslp["source_id"],errors='coerce')
pandas.to_numeric
import numpy as np import pandas as pd from numpy import nan from pvlib import modelchain, pvsystem from pvlib.modelchain import ModelChain from pvlib.pvsystem import PVSystem from pvlib.tracking import SingleAxisTracker from pvlib.location import Location from pandas.util.testing import assert_series_equal, assert_frame_equal import pytest from test_pvsystem import sam_data from conftest import requires_scipy @pytest.fixture def system(sam_data): modules = sam_data['sandiamod'] module_parameters = modules['Canadian_Solar_CS5P_220M___2009_'].copy() inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def cec_dc_snl_ac_system(sam_data): modules = sam_data['cecmod'] module_parameters = modules['Canadian_Solar_CS5P_220M'].copy() module_parameters['b'] = 0.05 module_parameters['EgRef'] = 1.121 module_parameters['dEgdT'] = -0.0002677 inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def cec_dc_adr_ac_system(sam_data): modules = sam_data['cecmod'] module_parameters = modules['Canadian_Solar_CS5P_220M'].copy() module_parameters['b'] = 0.05 module_parameters['EgRef'] = 1.121 module_parameters['dEgdT'] = -0.0002677 inverters = sam_data['adrinverter'] inverter = inverters['Zigor__Sunzet_3_TL_US_240V__CEC_2011_'].copy() system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def pvwatts_dc_snl_ac_system(sam_data): module_parameters = {'pdc0': 220, 'gamma_pdc': -0.003} inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def pvwatts_dc_pvwatts_ac_system(sam_data): module_parameters = {'pdc0': 220, 'gamma_pdc': -0.003} inverter_parameters = {'eta_inv_nom': 0.95} system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter_parameters) return system @pytest.fixture() def location(): return Location(32.2, -111, altitude=700) def test_ModelChain_creation(system, location): mc = ModelChain(system, location) @pytest.mark.parametrize('strategy, expected', [ (None, (32.2, 180)), ('None', (32.2, 180)), ('flat', (0, 180)), ('south_at_latitude_tilt', (32.2, 180)) ]) def test_orientation_strategy(strategy, expected, system, location): mc = ModelChain(system, location, orientation_strategy=strategy) # the || accounts for the coercion of 'None' to None assert (mc.orientation_strategy == strategy or mc.orientation_strategy is None) assert system.surface_tilt == expected[0] assert system.surface_azimuth == expected[1] @requires_scipy def test_run_model(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array([ 183.522449305, -2.00000000e-02]), index=times) assert_series_equal(ac, expected, check_less_precise=2) def test_run_model_with_irradiance(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, weather=irradiance).ac expected = pd.Series(np.array([ 1.90054749e+02, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) def test_run_model_perez(system, location): mc = ModelChain(system, location, transposition_model='perez') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, weather=irradiance).ac expected = pd.Series(np.array([ 190.194545796, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) def test_run_model_gueymard_perez(system, location): mc = ModelChain(system, location, airmass_model='gueymard1993', transposition_model='perez') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, weather=irradiance).ac expected = pd.Series(np.array([ 190.194760203, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) @requires_scipy def test_run_model_with_weather(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') weather = pd.DataFrame({'wind_speed':5, 'temp_air':10}, index=times) ac = mc.run_model(times, weather=weather).ac expected = pd.Series(np.array([ 201.691634921, -2.00000000e-02]), index=times) assert_series_equal(ac, expected, check_less_precise=2) @requires_scipy def test_run_model_tracker(system, location): system = SingleAxisTracker(module_parameters=system.module_parameters, inverter_parameters=system.inverter_parameters) mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array([119.067713606, nan]), index=times) assert_series_equal(ac, expected, check_less_precise=2) expect = pd.DataFrame(np. array([[ 54.82513187, 90. , 11.0039221 , 11.0039221 ], [ nan, 0. , 0. , nan]]), columns=['aoi', 'surface_azimuth', 'surface_tilt', 'tracker_theta'], index=times) expect = expect[['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt']] assert_frame_equal(mc.tracking, expect, check_less_precise=2) def poadc(mc): mc.dc = mc.total_irrad['poa_global'] * 0.2 mc.dc.name = None # assert_series_equal will fail without this @requires_scipy @pytest.mark.parametrize('dc_model, expected', [ ('sapm', [181.604438144, -2.00000000e-02]), ('singlediode', [181.044109596, -2.00000000e-02]), ('pvwatts', [190.028186986, 0]), (poadc, [189.183065667, 0]) # user supplied function ]) def test_dc_models(system, cec_dc_snl_ac_system, pvwatts_dc_pvwatts_ac_system, location, dc_model, expected): dc_systems = {'sapm': system, 'singlediode': cec_dc_snl_ac_system, 'pvwatts': pvwatts_dc_pvwatts_ac_system, poadc: pvwatts_dc_pvwatts_ac_system} system = dc_systems[dc_model] mc = ModelChain(system, location, dc_model=dc_model, aoi_model='no_loss', spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array(expected), index=times) assert_series_equal(ac, expected, check_less_precise=2) @requires_scipy @pytest.mark.parametrize('dc_model', ['sapm', 'singlediode', 'pvwatts_dc']) def test_infer_dc_model(system, cec_dc_snl_ac_system, pvwatts_dc_pvwatts_ac_system, location, dc_model, mocker): dc_systems = {'sapm': system, 'singlediode': cec_dc_snl_ac_system, 'pvwatts_dc': pvwatts_dc_pvwatts_ac_system} system = dc_systems[dc_model] m = mocker.spy(system, dc_model) mc = ModelChain(system, location, aoi_model='no_loss', spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') mc.run_model(times) assert m.call_count == 1 assert isinstance(mc.dc, (pd.Series, pd.DataFrame)) def acdc(mc): mc.ac = mc.dc @requires_scipy @pytest.mark.parametrize('ac_model, expected', [ ('snlinverter', [181.604438144, -2.00000000e-02]), ('adrinverter', [np.nan, -25.00000000e-02]), ('pvwatts', [190.028186986, 0]), (acdc, [199.845296258, 0]) # user supplied function ]) def test_ac_models(system, cec_dc_adr_ac_system, pvwatts_dc_pvwatts_ac_system, location, ac_model, expected): ac_systems = {'snlinverter': system, 'adrinverter': cec_dc_adr_ac_system, 'pvwatts': pvwatts_dc_pvwatts_ac_system, acdc: pvwatts_dc_pvwatts_ac_system} system = ac_systems[ac_model] mc = ModelChain(system, location, ac_model=ac_model, aoi_model='no_loss', spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array(expected), index=times) assert_series_equal(ac, expected, check_less_precise=2) def constant_aoi_loss(mc): mc.aoi_modifier = 0.9 @requires_scipy @pytest.mark.parametrize('aoi_model, expected', [ ('sapm', [182.784057666, -2.00000000e-02]), ('ashrae', [180.825930547, -2.00000000e-02]), ('physical', [181.453077805, -2.00000000e-02]), ('no_loss', [181.604438144, -2.00000000e-02]), (constant_aoi_loss, [164.997043305, -2e-2]) ]) def test_aoi_models(system, location, aoi_model, expected): mc = ModelChain(system, location, dc_model='sapm', aoi_model=aoi_model, spectral_model='no_loss') times =
pd.date_range('20160101 1200-0700', periods=2, freq='6H')
pandas.date_range
""" for f in sorted(glob('*.py')): # print(f'nohup python -u {f} 0 > LOG/log_{f}.txt &') print(f'python -u {f} > LOG/log_{f}.txt') """ import warnings warnings.filterwarnings("ignore") import pandas as pd import numpy as np from glob import glob import os from socket import gethostname HOSTNAME = gethostname() from tqdm import tqdm #from itertools import combinations from sklearn.model_selection import KFold from time import time, sleep from datetime import datetime from multiprocessing import cpu_count, Pool import gc # ============================================================================= # global variables # ============================================================================= COMPETITION_NAME = 'santander-customer-transaction-prediction' IMP_FILE = 'LOG/xxx.csv' IMP_FILE_BEST = 'LOG/xxx.csv' SUB_BEST = '../output/0328-1.csv.gz' # ============================================================================= # def # ============================================================================= def start(fname): global st_time st_time = time() print(""" #============================================================================== # START!!! {} PID: {} time: {} #============================================================================== """.format( fname, os.getpid(), datetime.today() )) send_line(f'{HOSTNAME} START {fname} time: {elapsed_minute():.2f}min') return def reset_time(): global st_time st_time = time() return def end(fname): print(""" #============================================================================== # SUCCESS !!! {} #============================================================================== """.format(fname)) print('time: {:.2f}min'.format( elapsed_minute() )) send_line(f'{HOSTNAME} FINISH {fname} time: {elapsed_minute():.2f}min') return def elapsed_minute(): return (time() - st_time)/60 def mkdir_p(path): try: os.stat(path) except: os.mkdir(path) def to_feature(df, path): if df.columns.duplicated().sum()>0: raise Exception(f'duplicated!: { df.columns[df.columns.duplicated()] }') df.reset_index(inplace=True, drop=True) df.columns = [c.replace('/', '-').replace(' ', '-') for c in df.columns] for c in df.columns: df[[c]].to_feather(f'{path}_{c}.f') return def to_pickles(df, path, split_size=3, inplace=True): """ path = '../output/mydf' wirte '../output/mydf/0.p' '../output/mydf/1.p' '../output/mydf/2.p' """ print(f'shape: {df.shape}') if inplace==True: df.reset_index(drop=True, inplace=True) else: df = df.reset_index(drop=True) gc.collect() mkdir_p(path) kf = KFold(n_splits=split_size) for i, (train_index, val_index) in enumerate(tqdm(kf.split(df))): df.iloc[val_index].to_pickle(f'{path}/{i:03d}.p') return def read_pickles(path, col=None, use_tqdm=True): if col is None: if use_tqdm: df = pd.concat([ pd.read_pickle(f) for f in tqdm(sorted(glob(path+'/*'))) ]) else: print(f'reading {path}') df = pd.concat([ pd.read_pickle(f) for f in sorted(glob(path+'/*')) ]) else: df = pd.concat([ pd.read_pickle(f)[col] for f in tqdm(sorted(glob(path+'/*'))) ]) return df def to_pkl_gzip(df, path): df.to_pickle(path) os.system('rm ' + path + '.gz') os.system('gzip ' + path) return def save_test_features(df): for c in df.columns: df[[c]].to_pickle(f'../feature/test_{c}.pkl') return # ============================================================================= # # ============================================================================= def get_dummies(df): """ binary would be drop_first """ col = df.select_dtypes('O').columns.tolist() nunique = df[col].nunique() col_binary = nunique[nunique==2].index.tolist() [col.remove(c) for c in col_binary] df = pd.get_dummies(df, columns=col) df =
pd.get_dummies(df, columns=col_binary, drop_first=True)
pandas.get_dummies
import slack from flask import Response import pandas as pd import numpy as np from numpy import nan import re import os import networkx as nx from pyvis.network import Network from dotenv import load_dotenv, dotenv_values from statsmodels.tsa.arima.model import ARIMA # load environment variables # config = dotenv_values(".env") load_dotenv() SLACK_TOKEN = os.getenv('SLACK_TOKEN') # define slack client client = slack.WebClient(token=SLACK_TOKEN) # function to retrieve the display name of the user based on user id def get_name(user_id): try: out = client.users_info(user=user_id)["user"]["profile"]["real_name"] except: out = None return out # function to get the channels that a user is active in def get_user_channels(user_id): return client.users_conversations(user=user_id)["channels"] # send response message to user def send_response_message(user_id): # define message to be posted message = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': ( ":sparkles: Hey, check out our latest analysis of your team here: <https://network-analysis.azurewebsites.net|LINK> :sparkles:" ) } } client.chat_postMessage(channel=user_id, blocks=[message]) # function used to retrieve network analysis data for a specific channel def get_slack_data(user_id, text): # define channel id try: channel_id = [channel["id"] for channel in get_user_channels(user_id) if channel["name"] == text][0] except: channel_id = "C01T6GGTBQD" # get channel history result = client.conversations_history(channel=channel_id, limit=1000) # retrieve messages conversation_history = result["messages"] # create DataFrame messages = pd.DataFrame(conversation_history) # add channel id to df messages["user_id"] = str(user_id) # convert timestamp to datetime object messages['date'] =
pd.to_datetime(messages['ts'], unit="s")
pandas.to_datetime
import numpy as np import pandas as pd from tqdm import tqdm import datetime as dt from collections import defaultdict from dateutil.relativedelta import relativedelta def collect_dates_for_cohort(df_pop, control_reservoir, control_dates, col_names=None): ''' Fill 'control_used' dictionary with the dates (specified in 'control_dates') of each person (represented by their CPF) regarding the main events considered in the analysis. Args: df_pop: pandas.DataFrame. control_reservoir: collections.defaultdict. control_used: collections.defaultdict. control_dates: collections.defaultdict. col_names: dictionary. Return: None. ''' if col_names is None: col_names = { "D1": "data D1(VACINADOS)", "D2": "data D2(VACINADOS)", "OBITO COVID": "data_obito(OBITO COVID)", "OBITO GERAL": "data falecimento(CARTORIOS)", "HOSPITALIZACAO COVID": "DATA HOSPITALIZACAO", } for j in tqdm(range(df_pop.shape[0])): cpf = df_pop["CPF"].iat[j] sex, age = df_pop["SEXO"].iat[j], df_pop["IDADE"].iat[j] # Different outcomes' dates dt_d1 = df_pop[col_names["D1"]].iat[j] dt_d2 = df_pop[col_names["D2"]].iat[j] dt_death = df_pop[col_names["OBITO COVID"]].iat[j] dt_death_general = df_pop[col_names["OBITO GERAL"]].iat[j] dt_hosp_covid = df_pop[col_names["HOSPITALIZACAO COVID"]].iat[j] control_reservoir[(age,sex)].append(cpf) if pd.notna(dt_d1): control_dates["D1"][cpf] = dt_d1 if pd.notna(dt_d2): control_dates["D2"][cpf] = dt_d2 if pd.notna(dt_death): control_dates["DEATH COVID"][cpf] = dt_death if pd.notna(dt_death_general): control_dates["DEATH GENERAL"][cpf] = dt_death_general if pd.notna(dt_hosp_covid): control_dates["HOSPITALIZATION COVID"][cpf] = dt_hosp_covid def rearrange_controls(control_reservoir, seed): ''' Shuffle the order of the controls in the structure containing all control candidates. Args: control_reservoir: collections.defaultdict. seed: Integer. Return: None. ''' np.random.seed(seed) for key in control_reservoir.keys(): np.random.shuffle(control_reservoir[key]) def perform_matching(datelst, df_vac, control_reservoir, control_used, control_dates, col_names): ''' Description. Args: datelst: List of datetime.date. df_vac: pandas.DataFrame. control_reservoir: collections.defaultdict. control_used: collections.defaultdict. control_dates: collections.defaultdict. col_names: dictionary. Return: pareados: pandas.DataFrame. matched: dictionary. ''' if col_names is None: col_names = { "D1": "data D1(VACINADOS)", "D2": "data D2(VACINADOS)", "OBITO COVID": "data_obito(OBITO COVID)", "OBITO GERAL": "data falecimento(CARTORIOS)" } matchings = defaultdict(lambda:-1) matched = defaultdict(lambda:False) for current_date in tqdm(datelst): # Select all people who was vaccinated at the current date df_vac["compare_date"] = df_vac[col_names["D1"]].apply(lambda x: True if x==current_date else False) current_vaccinated = df_vac[df_vac["compare_date"]==True] cpf_list = current_vaccinated["CPF"].tolist() age_list = current_vaccinated["IDADE"].tolist() sex_list = current_vaccinated["SEXO"].tolist() # For each person vaccinated at the current date, check if there is a control for he/she. for j in range(0, len(cpf_list)): pair = find_pair(current_date, age_list[j], sex_list[j], control_reservoir, control_used, control_dates) if pair!=-1: matchings[cpf_list[j]] = pair items_matching = matchings.items() pareados = pd.DataFrame({"CPF CASO": [ x[0] for x in items_matching ], "CPF CONTROLE": [ x[1] for x in items_matching ]}) for cpf in [ x[0] for x in items_matching ]+[ x[1] for x in items_matching ]: matched[cpf]=True return pareados, matched def get_events(df_pop, pareados, matched, col_names): ''' Description. Args: df_pop: pareados: matched: col_names: Return: datas: pandas.DataFrame. ''' if col_names is None: col_names = { "D1": "data D1(VACINADOS)", "D2": "data D2(VACINADOS)", "OBITO COVID": "data_obito(OBITO COVID)", "OBITO GERAL": "data falecimento(CARTORIOS)" } data_obito = defaultdict(lambda:np.nan) data_obito_geral = defaultdict(lambda:np.nan) data_d1 = defaultdict(lambda:np.nan) data_d2 = defaultdict(lambda:np.nan) for j in range(df_pop.shape[0]): cpf = df_pop["CPF"].iat[j] d1_dt = df_pop[col_names["D1"]].iat[j] d2_dt = df_pop[col_names["D2"]].iat[j] obito = df_pop[col_names["OBITO COVID"]].iat[j] obito_geral = df_pop[col_names["OBITO GERAL"]].iat[j] #teste = df_pop["DATA SOLICITACAO(TESTES)"].iat[j] if not pd.isna(obito): data_obito[cpf] = obito elif not pd.isna(obito_geral): data_obito_geral[cpf] = obito_geral if not pd.isna(d1_dt): data_d1[cpf] = d1_dt if not pd.isna(d2_dt): data_d2[cpf] = d2_dt # -- create cols with dates -- datas = { "CPF": [], "DATA D1": [], "DATA D2": [], "DATA OBITO COVID": [], "DATA OBITO GERAL": [], "TIPO": [], "PAR": [], "PAREADO": [] } print("Criando tabela de eventos ...") for j in tqdm(range(0, pareados.shape[0])): cpf_caso = pareados["CPF CASO"].iat[j] cpf_control = pareados["CPF CONTROLE"].iat[j] # Fill new columns datas["CPF"] += [cpf_caso, cpf_control] datas["DATA D1"] += [data_d1[cpf_caso], data_d1[cpf_control]] datas["DATA D2"] += [data_d2[cpf_caso], data_d2[cpf_control]] datas["DATA OBITO COVID"] += [data_obito[cpf_caso], data_obito[cpf_control]] datas["DATA OBITO GERAL"] += [data_obito_geral[cpf_caso], data_obito_geral[cpf_control]] #datas["DATA HOSPITALIZACAO"] += [data_hospitalizado[cpf_caso], data_hospitalizado[cpf_control]] #datas["DATA TESTE"] += [data_teste[cpf_caso], data_teste[cpf_control]] datas["TIPO"] += ["CASO", "CONTROLE"] datas["PAR"] += [cpf_control, cpf_caso] datas["PAREADO"] += [True, True] print("Criando tabela de eventos ... Concluído") print("Incluindo não pareados ...") for j in tqdm(range(df_pop.shape[0])): cpf = df_pop["CPF"].iat[j] if matched[cpf]==False: datas["CPF"] += [cpf] datas["DATA D1"] += [data_d1[cpf]] datas["DATA D2"] += [data_d2[cpf]] datas["DATA OBITO COVID"] += [data_obito[cpf]] datas["DATA OBITO GERAL"] += [data_obito_geral[cpf]] #datas["DATA HOSPITALIZACAO"] += [data_hospitalizado[cpf]] #datas["DATA TESTE"] += [data_teste[cpf]] datas["TIPO"] += ["NAO PAREADO"] datas["PAR"] += [np.nan] datas["PAREADO"] += [False] print("Incluindo não pareados ... Concluído.") datas = pd.DataFrame(datas) return datas def get_events_per_pair(df_pop, pareados, col_names): ''' Description. Args: df_pop: pareados: matched: col_names: Return: datas: pandas.DataFrame. ''' if col_names is None: col_names = { "D1": "data D1(VACINADOS)", "D2": "data D2(VACINADOS)", "OBITO COVID": "data_obito(OBITO COVID)", "OBITO GERAL": "data falecimento(CARTORIOS)" } data_obito = defaultdict(lambda:np.nan) data_obito_geral = defaultdict(lambda:np.nan) data_d1 = defaultdict(lambda:np.nan) data_d2 = defaultdict(lambda:np.nan) for j in range(df_pop.shape[0]): cpf = df_pop["cpf"].iat[j] d1_dt = df_pop[col_names["D1"]].iat[j] d2_dt = df_pop[col_names["D2"]].iat[j] obito = df_pop[col_names["OBITO COVID"]].iat[j] obito_geral = df_pop[col_names["OBITO GERAL"]].iat[j] #teste = df_pop["DATA SOLICITACAO(TESTES)"].iat[j] if not pd.isna(obito): data_obito[cpf] = obito elif not pd.isna(obito_geral): data_obito_geral[cpf] = obito_geral if not pd.isna(d1_dt): data_d1[cpf] = d1_dt if not pd.isna(d2_dt): data_d2[cpf] = d2_dt # -- create cols with dates -- datas = { "CPF CASO": [], "DATA D1 CASO": [], "DATA D2 CASO": [], "DATA OBITO COVID CASO": [], "DATA OBITO GERAL CASO": [], "CPF CONTROLE": [], "DATA D1 CONTROLE": [], "DATA D2 CONTROLE": [], "DATA OBITO COVID CONTROLE": [], "DATA OBITO GERAL CONTROLE": [] } print("Criando tabela de eventos por par ...") for j in tqdm(range(0, pareados.shape[0])): cpf_caso = pareados["CPF CASO"].iat[j] cpf_control = pareados["CPF CONTROLE"].iat[j] # Fill new columns datas["CPF CASO"] += [cpf_caso] datas["CPF CONTROLE"] += [cpf_control] datas["DATA D1 CASO"] += [data_d1[cpf_caso]] datas["DATA D1 CONTROLE"] += [data_d1[cpf_control]] datas["DATA D2 CASO"] += [data_d2[cpf_caso]] datas["DATA D2 CONTROLE"] += [data_d2[cpf_control]] datas["DATA OBITO COVID CASO"] += [data_obito[cpf_caso]] datas["DATA OBITO COVID CONTROLE"] += [data_obito[cpf_control]] datas["DATA OBITO GERAL CASO"] += [data_obito_geral[cpf_caso]] datas["DATA OBITO GERAL CONTROLE"] += [data_obito_geral[cpf_control]] print("Criando tabela de eventos por par ... Concluído") datas = pd.DataFrame(datas) return datas def get_intervals_events(events_pair_df, final_cohort, which="D1"): ''' Calculate the intervals between the start of the pair's cohort and all possible events for the case and control. For both case and control individuals, there 4 possible events: - Death by Covid (Outcome) - Death due to another cause (Censored) - Control vaccination (Censored) - End of the cohort (Censored) The intervals are calculated for all events, and for the survival analysis only the earliest event should be considered. Args: events_pair_df: pandas.DataFrame. Return: data: pandas.DataFrame Return: ... ''' # Column names translator. colname = { "CPF CASO": "CPF CASO", "D1 CASO": "DATA D1 CASO", "D2 CASO": "DATA D2 CASO", "OBITO CASO": "DATA OBITO GERAL CASO", "OBITO COVID CASO": "DATA OBITO COVID CASO", "CPF CONTROLE": "CPF CONTROLE", "D1 CONTROLE": "DATA D1 CONTROLE", "D2 CONTROLE": "DATA D2 CONTROLE", "OBITO CONTROLE": "DATA OBITO GERAL CONTROLE", "OBITO COVID CONTROLE": "DATA OBITO COVID CONTROLE", } # Calculate intervals for case. sbst1 = [colname["OBITO COVID CASO"], colname[f"{which} CASO"]] sbst2 = [colname["OBITO CASO"], colname[f"{which} CASO"]] events_pair_df[f"INTV OBITO COVID CASO({which})"] = events_pair_df[sbst1].apply(lambda x: calc_interval(x,sbst1), axis=1) events_pair_df[f"INTV OBITO GERAL CASO({which})"] = events_pair_df[sbst2].apply(lambda x: calc_interval(x,sbst2), axis=1) sbst_d1d2 = [colname[f"D2 CASO"], colname[f"D1 CASO"]] if which=="D1": events_pair_df[f"INTV D2-D1 CASO"] = events_pair_df[sbst_d1d2].apply(lambda x: calc_interval(x, sbst_d1d2), axis=1) # Calculate intervals for control sbst1 = [colname["OBITO COVID CONTROLE"], colname[f"{which} CASO"]] sbst2 = [colname["OBITO CONTROLE"], colname[f"{which} CASO"]] events_pair_df[f"INTV OBITO COVID CONTROLE({which})"] = events_pair_df[sbst1].apply(lambda x: calc_interval(x,sbst1), axis=1) events_pair_df[f"INTV OBITO GERAL CONTROLE({which})"] = events_pair_df[sbst2].apply(lambda x: calc_interval(x,sbst2), axis=1) sbst_d1d2 = [colname[f"D2 CONTROLE"], colname[f"D1 CONTROLE"]] if which=="D1": events_pair_df[f"INTV D2-D1 CONTROLE"] = events_pair_df[sbst_d1d2].apply(lambda x: calc_interval(x, sbst_d1d2), axis=1) # Interval in common for both individuals sbst_d1 = [colname["D1 CONTROLE"], colname[f"{which} CASO"]] events_pair_df[f"INTV D1 CASO CONTROLE({which})"] = events_pair_df[sbst_d1].apply(lambda x: calc_interval(x,sbst_d1), axis=1) events_pair_df[f"INTV FIM COORTE({which})"] = events_pair_df[colname[f"{which} CASO"]].apply(lambda x: (final_cohort-x.date()).days if not pd.isna(x) else np.nan) return events_pair_df def get_intervals(events_pair_df, final_cohort=dt.date(2021, 8, 31)): ''' Description. Args: events_df: pandas.DataFrame. Return: data: pandas.DataFrame. ''' colname = { "CPF CASO": "CPF CASO", "D1 CASO": "DATA D1 CASO", "D2 CASO": "DATA D2 CASO", "OBITO CASO": "DATA OBITO GERAL CASO", "OBITO COVID CASO": "DATA OBITO COVID CASO", "CPF CONTROLE": "CPF CONTROLE", "D1 CONTROLE": "DATA D1 CONTROLE", "D2 CONTROLE": "DATA D2 CONTROLE", "OBITO CONTROLE": "DATA OBITO GERAL CONTROLE", "OBITO COVID CONTROLE": "DATA OBITO COVID CONTROLE", } data = { "CPF": [], "DATA D1": [], "DATA D2": [], "DATA OBITO COVID": [], "DATA OBITO GERAL": [], "TIPO": [], "PAR": [], "PAREADO": [], "OBITO COVID DURACAO": [], "COM DESFECHO - OBITO COVID": [] } # --> Go through each pair for j in tqdm(range(events_pair_df.shape[0])): cpf_caso = events_pair_df[colname["CPF CASO"]].iat[j] cpf_controle = events_pair_df[colname["CPF CONTROLE"]].iat[j] d2_caso = events_pair_df[colname["D2 CASO"]].iat[j] d2_controle = events_pair_df[colname["D2 CONTROLE"]].iat[j] init = events_pair_df[colname["D1 CASO"]].iat[j].date() events_caso = { "OBITO CASO": events_pair_df[colname["OBITO CASO"]].iat[j], "OBITO COVID CASO": events_pair_df[colname["OBITO COVID CASO"]].iat[j], "COORTE FINAL": final_cohort } events_controle = { "D1 CONTROLE": events_pair_df[colname["D1 CONTROLE"]].iat[j], "OBITO CONTROLE": events_pair_df[colname["OBITO CONTROLE"]].iat[j], "OBITO COVID CONTROLE": events_pair_df[colname["OBITO COVID CONTROLE"]].iat[j], "COORTE FINAL": final_cohort } # Convert date strings to date formats. for key in events_caso.keys(): if not pd.isna(events_caso[key]) and type(events_caso[key])!=dt.date: events_caso[key] = events_caso[key].date() for key in events_controle.keys(): if not pd.isna(events_controle[key]) and type(events_controle[key])!=dt.date: events_controle[key] = events_controle[key].date() # Determine final day of each person of the pair. # --> For case: timeline_namecaso = ["D1 CONTROLE", "OBITO COVID CASO", "OBITO CASO", "COORTE FINAL"] timeline_caso = [events_controle["D1 CONTROLE"], events_caso["OBITO COVID CASO"], events_caso["OBITO CASO"], events_caso["COORTE FINAL"]] # replace NaN for any date later than "COORTE FINAL" timeline_caso = [x if not pd.isna(x) else dt.date(2050, 1, 1) for x in timeline_caso ] sorted_tp_caso = sorted(zip(timeline_caso, timeline_namecaso)) final_namecaso = sorted_tp_caso[0][1] final_caso = sorted_tp_caso[0][0] interval_caso = (final_caso-init).days #print(sorted_tp_caso, interval_caso, final_namecaso, final_caso) if final_namecaso!="OBITO COVID CASO": type_caso = False else: type_caso = True # --> For control: timeline_namecontrole = ["D1 CONTROLE", "OBITO COVID CONTROLE", "OBITO CONTROLE", "COORTE FINAL"] timeline_controle = [events_controle["D1 CONTROLE"], events_controle["OBITO COVID CONTROLE"], events_controle["OBITO CONTROLE"], events_controle["COORTE FINAL"]] timeline_controle = [x if not pd.isna(x) else dt.date(2050, 1, 1) for x in timeline_controle ] sorted_tp_controle = sorted(zip(timeline_controle, timeline_namecontrole)) final_namecontrole = sorted_tp_controle[0][1] final_controle = sorted_tp_controle[0][0] interval_controle = (final_controle-init).days #print(sorted_tp_caso, interval_caso, final_namecaso, final_caso) if final_namecontrole!="OBITO COVID CONTROLE": type_controle = False else: type_controle = True # --> Organize values data["CPF"] += [cpf_caso, cpf_controle] data["DATA D1"] += [init, events_pair_df[colname["D1 CONTROLE"]].iat[j]] data["DATA D2"] += [d2_caso, d2_controle] data["DATA OBITO COVID"] += [events_caso["OBITO COVID CASO"], events_controle["OBITO COVID CONTROLE"]] data["DATA OBITO GERAL"] += [events_caso["OBITO CASO"], events_controle["OBITO CONTROLE"]] data["TIPO"] += ["CASO", "CONTROLE"] data["PAR"] += [cpf_controle, cpf_caso] data["PAREADO"] += [True, True] data["OBITO COVID DURACAO"] += [interval_caso, interval_controle] data["COM DESFECHO - OBITO COVID"] += [type_caso, type_controle] data =
pd.DataFrame(data)
pandas.DataFrame