prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from pandas_datareader import data as web import pandas as pd import datetime as dt import numpy as np import requests http_header = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36", "X-Requested-With": "XMLHttpRequest" } class PriceReader: def __init__(self, brTickerList, usTickerList, startDate='2018-01-01'): self.brTickerList = brTickerList self.usTickerList = usTickerList self.startDate = startDate self.fillDate = dt.datetime.today().strftime('%m-%d-%Y') self.df = pd.DataFrame(columns=['Date']) def load(self): # Read BR market data if((self.brTickerList != None) and (len(self.brTickerList) > 0)): self.df = self.readData(self.brTickerList, self.startDate).reset_index() self.df.columns = self.df.columns.str.replace('\.SA','') # Read US Market data if((self.usTickerList != None) and (len(self.usTickerList) > 0)): self.df = self.df.merge(self.readUSData(self.usTickerList, self.startDate).reset_index(), how='outer', on='Date') self.df = self.df.set_index('Date').sort_index() # self.df.to_csv('debug.csv', sep='\t') indexList = ['^BVSP', '^GSPC', 'BRLUSD=X'] self.brlIndex = self.readUSData(indexList, self.startDate).reset_index() self.brlIndex.rename(columns={'^BVSP':'IBOV', '^GSPC':'S&P500', 'BRLUSD=X':'USD'}, inplace=True) self.brlIndex = self.brlIndex.set_index('Date') # display(self.brlIndex) def setFillDate(self, date): self.fillDate = date def fillCurrentValue(self, row): row['PRICE'] = self.getCurrentValue(row['SYMBOL'], self.fillDate) return row def readData(self, code, startDate='2018-01-01'): s='' for c in code: s += c + '.SA ' tks = yf.Tickers(s) dfs = tks.history(start=startDate)[['Close']] dfs.columns = dfs.columns.droplevel() return dfs def readUSData(self, code, startDate='2018-01-01'): s='' for c in code: s += c + ' ' tks = yf.Tickers(s) dfs = tks.history(start=startDate)[['Close']] dfs.columns = dfs.columns.droplevel() return dfs def getHistory(self, code, start='2018-01-01'): return self.df.loc[start:][code] def getCurrentValue(self, code, date=None): if(date == None): return self.df.iloc[-1][code] available, date = self.checkLastAvailable(self.df, date, code) if available: return self.df.loc[date][code] return self.df.iloc[0][code] def getIndexHistory(self, code, end): ret = self.brlIndex.loc[:end][code] return ret.dropna() def getIndexCurrentValue(self, code, date=None): if(date == None): return self.brlIndex.iloc[-1][code] available,date = self.checkLastAvailable(self.brlIndex, date, code) if available: return self.brlIndex.loc[date][code] return self.brlIndex.iloc[0][code] def checkLastAvailable(self, dtframe, loockDate, field): date = pd.to_datetime(loockDate) day = pd.Timedelta(1, unit='d') #Look for last available date while((not (date in dtframe.index)) or pd.isna(dtframe.loc[date][field])): date = date - day if(date < dtframe.index[0]): return False,0 return True,date # ------------------------------------------------------------------------------------------------- class ADVFN_Page: urlDict = [{ 'url': 'https://br.advfn.com/bolsa-de-valores/bovespa/{}/dividendos/historico-de-proventos', 'index': 5 }, { 'url': 'https://br.advfn.com/bolsa-de-valores/bovespa/{}/dividendos', 'index': 6}] def read(self, ticker): res = pd.DataFrame() for attempt in range(2): url = self.urlDict[attempt]['url'].format(ticker) r = requests.get(url, headers=http_header) # print(url, urlDict[attempt]['index']) try: rawTable = pd.read_html(r.text, thousands='.',decimal=',')[self.urlDict[attempt]['index']] # display(rawTable) if(len(rawTable.columns) < 5): raise except: continue res = rawTable if ('Mês de Referência' in res.columns): res.rename(columns={'Mês de Referência':'Tipo do Provento'}, inplace=True) res['Tipo do Provento'] = 'Dividendo' res.rename(columns={'Tipo do Provento':'OPERATION', 'Data-Com':'DATE', 'Pagamento':'PAYDATE', 'Valor':'PRICE', 'Dividend Yield':'YIELD'}, inplace=True) break return res class Fundamentus_Page: urlDict = [ { 'url': 'https://www.fundamentus.com.br/proventos.php?papel={}&tipo=2', 'index': 0 }, { 'url': 'https://www.fundamentus.com.br/fii_proventos.php?papel={}&tipo=2', 'index': 0}] def read(self, ticker): res = pd.DataFrame() # if (ticker != 'SMLS3'): # return res for attempt in range(2): url = self.urlDict[attempt]['url'].format(ticker) r = requests.get(url, headers=http_header) # print(url, self.urlDict[attempt]['index']) try: rawTable = pd.read_html(r.text, thousands='.',decimal=',')[self.urlDict[attempt]['index']] # print(rawTable) if(len(rawTable.columns) < 4): raise except: continue res = rawTable if('Por quantas ações' in res.columns): res['Valor'] /= res['Por quantas ações'] if ('Última Data Com' in res.columns): res.rename(columns={'Última Data Com':'Data'}, inplace=True) res.rename(columns={'Tipo':'OPERATION', 'Data':'DATE', 'Data de Pagamento':'PAYDATE', 'Valor':'PRICE'}, inplace=True) break # print(res) return res class DividendReader: def __init__(self, dataFrame, startDate='2018-01-01'): self.brTickerList = dataFrame[dataFrame['TYPE'] == 'Ação']['SYMBOL'].unique() self.usTickerList = dataFrame[dataFrame['TYPE'] == 'STOCK']['SYMBOL'].unique() self.fiiList = dataFrame[dataFrame['TYPE'] == 'FII']['SYMBOL'].unique() self.startDate=startDate self.df = pd.DataFrame(columns=['SYMBOL', 'PRICE', 'PAYDATE']) def __init__(self, brTickers, fiiTickers, usTickers, startDate='2018-01-01'): self.brTickerList = brTickers self.usTickerList = usTickers self.fiiList = fiiTickers self.startDate = startDate self.df = pd.DataFrame(columns=['SYMBOL', 'DATE','PRICE', 'PAYDATE']) def load(self): if(self.brTickerList != None and len(self.brTickerList) > 0): self.df = self.df.append(self.loadData(self.brTickerList)) if(self.fiiList != None and len(self.fiiList) > 0): self.df = self.df.append(self.loadData(self.fiiList)) if(self.usTickerList != None and len(self.usTickerList) > 0): self.df = self.df.append(self.loadData(self.usTickerList)) if(not self.df.empty): self.df = self.df.sort_values(by=['DATE', 'SYMBOL']) self.df = self.df[self.df['DATE'] >= self.startDate] self.df.set_index('DATE', inplace = True) self.df = self.df[['SYMBOL', 'PRICE', 'PAYDATE']] # print(self.df.tail(5)) def loadData(self, paperList): tb =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) # GH9980, GH8028 idx = Index(['a|b', 'a|c', 'b|c']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=('a', 'b', 'c')) tm.assert_index_equal(result, expected) def test_get_dummies_with_name_dummy(self): # GH 12180 # Dummies named 'name' should work as expected s = Series(['a', 'b,name', 'b']) result = s.str.get_dummies(',') expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=['a', 'b', 'name']) tm.assert_frame_equal(result, expected) idx = Index(['a|b', 'name|c', 'b|name']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=('a', 'b', 'c', 'name')) tm.assert_index_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u( 'fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]])
tm.assert_almost_equal(result, exp)
pandas.util.testing.assert_almost_equal
import yfinance as yahoo import pandas as pd, numpy as np import ssl import urllib.request try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context #from pytickersymbols import PyTickerSymbols #https://pypi.org/project/pytickersymbols/ # functions to get info about each market and their current stock tickets # markets to operate: USA (Nasdaq & SP500), England, China, Japan, Canada, Brazil, Australia # the handlers will result with a list of metrics that will be use by main script # to build respective portfolio def GSPC(): USA = pd.read_html("https://topforeignstocks.com/indices/components-of-the-sp-500-index/")[0] USA = list(USA.Ticker.values) freeRisk = '^GSPC' df = yahoo.download(USA,period="1y")["Adj Close"].fillna(method="ffill") pct = df.pct_change()#.dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) riskpct = mean.mean() mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) sharpe_ratio = pd.DataFrame(mean_rf['Mean']/(std['Std']), columns=['SharpeRatio'],index=pct.columns) orderedsharpe = sharpe_ratio.sort_values('SharpeRatio', axis=0, ascending=False) lista = list(orderedsharpe.head(50).index.values) df = yahoo.download(lista,period="1y",interval="60m")["Adj Close"].fillna(method="ffill") riskfree = yahoo.download(freeRisk, period="1y",interval="60m")['Adj Close'].fillna(method='ffill') pct = df.pct_change().dropna() #(how='all') riskpct = riskfree.pct_change().dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) numerator = pct.sub(riskpct,axis=0) downside_risk = ((numerator[numerator<0].fillna(0))**2).mean() noa = len(df.columns) weigths = np.random.random(noa) weigths /= np.sum(weigths) observations = len(df.index) mean_returns = df.pct_change().mean() cov = df.pct_change().cov() alpha = 0.1 rf = riskpct.mean() num_portfolios = 1000 Upbound = 0.06 result = [df,riskfree,pct,riskpct,mean,mean_rf,std,numerator,downside_risk,noa,weigths\ ,observations,mean_returns,cov,alpha,rf,num_portfolios,Upbound] return result def Cedears(): comafi = pd.read_html('https://www.comafi.com.ar/2254-CEDEAR-SHARES.note.aspx')[0] # sorteamos por orden alfabético comafi = comafi.sort_values('Símbolo BYMA',axis=0,ascending=True) comafi.index = range(len(comafi)) # update index order values cells = list(comafi['Símbolo BYMA'].values) # cells.index('AAPL') way to get index number where ticker is located cedears = [c + '.BA' for c in cells] volume = yahoo.download(cedears,period="80d")['Volume'].fillna(method='ffill') votal = pd.DataFrame(index=volume.index) votal['totav'] = volume.T.sum() percentage = volume.div(votal['totav'], axis=0) ordered = pd.DataFrame(percentage.sum().T,columns=['percentage'],index=percentage.columns) ordered = ordered / ordered.sum() # ensure you round to 100% orderedalph = ordered.sort_values('percentage',axis=0,ascending=False) liquid = orderedalph.cumsum() listado = list(liquid.head(50).index.values) listado = [i.replace('.BA','') for i in listado] lista = [] for i in range(len(listado)): lista.append(comafi['Ticker en Mercado de Origen'][cells.index(f'{listado[i]}')]) freeRisk = '^GSPC' df = yahoo.download(lista,period="1y")["Adj Close"].fillna(method="ffill") pct = df.pct_change()#.dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) riskpct = mean.mean() mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) sharpe_ratio = pd.DataFrame(mean_rf['Mean']/(std['Std']), columns=['SharpeRatio'],index=pct.columns) orderedsharpe = sharpe_ratio.sort_values('SharpeRatio', axis=0, ascending=False) lista = list(orderedsharpe.head(50).index.values) df = yahoo.download(lista,period="1y",interval="60m")["Adj Close"].fillna(method="ffill") riskfree = yahoo.download(freeRisk, period="1y",interval="60m")['Adj Close'].fillna(method='ffill') pct = df.pct_change().dropna() #(how='all') riskpct = riskfree.pct_change().dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) numerator = pct.sub(riskpct,axis=0) downside_risk = ((numerator[numerator<0].fillna(0))**2).mean() noa = len(df.columns) weigths = np.random.random(noa) weigths /= np.sum(weigths) observations = len(df.index) mean_returns = df.pct_change().mean() cov = df.pct_change().cov() alpha = 0.1 rf = riskpct.mean() num_portfolios = 1000 Upbound = 0.06 result = [df,riskfree,pct,riskpct,mean,mean_rf,std,numerator,downside_risk,noa,weigths\ ,observations,mean_returns,cov,alpha,rf,num_portfolios,Upbound] return result def NIKKEI(): nikkei = pd.read_html("https://topforeignstocks.com/indices/the-components-of-the-nikkei-225-index/")[0] nikkei['tickets'] = [t + '.T' for t in nikkei.Code.astype(str)] nikkei = list(nikkei.tickets.values) freeRisk = '^N225' df = yahoo.download(nikkei,period="1y")["Adj Close"].fillna(method="ffill") pct = df.pct_change()#.dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) riskpct = mean.mean() mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) sharpe_ratio = pd.DataFrame(mean_rf['Mean']/(std['Std']), columns=['SharpeRatio'],index=pct.columns) orderedsharpe = sharpe_ratio.sort_values('SharpeRatio', axis=0, ascending=False) lista = list(orderedsharpe.head(50).index.values) df = yahoo.download(lista,period="1y",interval="60m")["Adj Close"].fillna(method="ffill") riskfree = yahoo.download(freeRisk, period="1y",interval="60m")['Adj Close'].fillna(method='ffill') pct = df.pct_change().dropna() #(how='all') riskpct = riskfree.pct_change().dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) numerator = pct.sub(riskpct,axis=0) downside_risk = ((numerator[numerator<0].fillna(0))**2).mean() noa = len(df.columns) weigths = np.random.random(noa) weigths /= np.sum(weigths) observations = len(df.index) mean_returns = df.pct_change().mean() cov = df.pct_change().cov() alpha = 0.1 rf = riskpct.mean() num_portfolios = 1000 Upbound = 0.06 result = [df,riskfree,pct,riskpct,mean,mean_rf,std,numerator,downside_risk,noa,weigths\ ,observations,mean_returns,cov,alpha,rf,num_portfolios,Upbound] return result def Shanghai(): china = pd.read_html('https://tradingeconomics.com/china/stock-market')[1] shanghai = [i + '.SS' for i in list(china['Unnamed: 0'].astype(str))] freeRisk = "000001.SS" df = yahoo.download(shanghai,period="1y")["Adj Close"].fillna(method="ffill") pct = df.pct_change()#.dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) riskpct = mean.mean() mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) sharpe_ratio = pd.DataFrame(mean_rf['Mean']/(std['Std']), columns=['SharpeRatio'],index=pct.columns) orderedsharpe = sharpe_ratio.sort_values('SharpeRatio', axis=0, ascending=False) lista = list(orderedsharpe.head(50).index.values) df = yahoo.download(lista,period="1y",interval="60m")["Adj Close"].fillna(method="ffill") riskfree = yahoo.download(freeRisk, period="1y",interval="60m")['Adj Close'].fillna(method='ffill') pct = df.pct_change().dropna() #(how='all') riskpct = riskfree.pct_change().dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) numerator = pct.sub(riskpct,axis=0) downside_risk = ((numerator[numerator<0].fillna(0))**2).mean() noa = len(df.columns) weigths = np.random.random(noa) weigths /= np.sum(weigths) observations = len(df.index) mean_returns = df.pct_change().mean() cov = df.pct_change().cov() alpha = 0.1 rf = riskpct.mean() num_portfolios = 1000 Upbound = 0.06 result = [df,riskfree,pct,riskpct,mean,mean_rf,std,numerator,downside_risk,noa,weigths\ ,observations,mean_returns,cov,alpha,rf,num_portfolios,Upbound] return result def BOVESPA(): bovespa = pd.read_html("https://topforeignstocks.com/indices/components-of-the-bovespa-index/")[0] bovespa = list(bovespa.Ticker.values) freeRisk = '^BVSP' df = yahoo.download(bovespa,period="1y")["Adj Close"].fillna(method="ffill") pct = df.pct_change()#.dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) riskpct = mean.mean() mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) sharpe_ratio = pd.DataFrame(mean_rf['Mean']/(std['Std']), columns=['SharpeRatio'],index=pct.columns) orderedsharpe = sharpe_ratio.sort_values('SharpeRatio', axis=0, ascending=False) lista = list(orderedsharpe.head(50).index.values) df = yahoo.download(lista,period="1y",interval="60m")["Adj Close"].fillna(method="ffill") riskfree = yahoo.download(freeRisk, period="1y",interval="60m")['Adj Close'].fillna(method='ffill') pct = df.pct_change().dropna() #(how='all') riskpct = riskfree.pct_change().dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) numerator = pct.sub(riskpct,axis=0) downside_risk = ((numerator[numerator<0].fillna(0))**2).mean() noa = len(df.columns) weigths = np.random.random(noa) weigths /= np.sum(weigths) observations = len(df.index) mean_returns = df.pct_change().mean() cov = df.pct_change().cov() alpha = 0.1 rf = riskpct.mean() num_portfolios = 1000 Upbound = 0.06 result = [df,riskfree,pct,riskpct,mean,mean_rf,std,numerator,downside_risk,noa,weigths\ ,observations,mean_returns,cov,alpha,rf,num_portfolios,Upbound] return result def CANADA(): canada = pd.read_html("https://topforeignstocks.com/indices/the-components-of-the-sptsx-composite-index/")[0] canada = list(canada.Ticker.values) freeRisk = '^GSPTSE' df = yahoo.download(canada,period="1y")["Adj Close"].fillna(method="ffill") pct = df.pct_change()#.dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) riskpct = mean.mean() mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) sharpe_ratio = pd.DataFrame(mean_rf['Mean']/(std['Std']), columns=['SharpeRatio'],index=pct.columns) orderedsharpe = sharpe_ratio.sort_values('SharpeRatio', axis=0, ascending=False) lista = list(orderedsharpe.head(50).index.values) df = yahoo.download(lista,period="1y",interval="60m")["Adj Close"].fillna(method="ffill") riskfree = yahoo.download(freeRisk, period="1y",interval="60m")['Adj Close'].fillna(method='ffill') pct = df.pct_change().dropna() #(how='all') riskpct = riskfree.pct_change().dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) numerator = pct.sub(riskpct,axis=0) downside_risk = ((numerator[numerator<0].fillna(0))**2).mean() noa = len(df.columns) weigths = np.random.random(noa) weigths /= np.sum(weigths) observations = len(df.index) mean_returns = df.pct_change().mean() cov = df.pct_change().cov() alpha = 0.1 rf = riskpct.mean() num_portfolios = 1000 Upbound = 0.06 result = [df,riskfree,pct,riskpct,mean,mean_rf,std,numerator,downside_risk,noa,weigths\ ,observations,mean_returns,cov,alpha,rf,num_portfolios,Upbound] return result def FTSE(): england = pd.read_html("https://topforeignstocks.com/indices/components-of-the-ftse-100-index/")[0] england = list(england.Ticker.values) freeRisk = '^FTSE' df = yahoo.download(england,period="1y")["Adj Close"].fillna(method="ffill") pct = df.pct_change()#.dropna() mean = pd.DataFrame(pct.mean(),columns=['Mean'],index=pct.columns) riskpct = mean.mean() mean_rf = mean - riskpct.mean() std = pd.DataFrame(pct.std(),columns=['Std'],index=pct.columns) sharpe_ratio =
pd.DataFrame(mean_rf['Mean']/(std['Std']), columns=['SharpeRatio'],index=pct.columns)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Helper module for performing MTSL GWAS inside of MTMLSEM model. Note that this has little to do with MTMLSEM, it merely fits the classical LMM model of the kind: Y = X B + E + U, where Y and X are deterministic data matrices, B is a matrix of regression coefficients, E and U are matrices random matrices with U being the random effect matrix, that takes genetic kinship between individuals into an account. """ from itertools import combinations, product from tqdm import tqdm import pandas as pd import numpy as np from utils import translate_names, unique_mapping def gwas_lmm(Model, y: list[str], phenos, genes, desc='', init_args=None, fit_args=None, dropna=True, verbose=True): """ Multi-trait single-locus GWAS via linear (possibly mixed) model. Parameters ---------- Model : class semopy class. y : list[str] List of phenotype names. phenos : pd.DataFrame Phenotypes + possibly other variables. genes : pd.DataFrame Genotypes/SNPs. desc : str, optional Extra model description. The default is ''. init_args : dict, optional Extra arguments for Model constructor. The default is None. fit_args : dict, optional Extra arguments for Model fit method (e.g., k). The default is None. dropna : bool, optional If True, then NaN rows are dropped for each gene test. The default is True. Returns ------- pd.DataFrame GWAS results. """ if init_args is None: init_args = dict() if fit_args is None: fit_args = dict() res = list() desc= desc + '\n{} ~ snp'.format(', '.join(y)) for a, b in combinations(y, 2): desc += f'\n{a} ~~ {b}' m = Model(desc, **init_args) phenos = phenos.copy() it = genes.iteritems() if verbose: it = tqdm(list(it)) for name, gene in it: chr, pos = translate_names(name) phenos['snp'] = gene.values if dropna: data = phenos.dropna() try: r = m.fit(data, clean_slate=True, **fit_args) if type(r) is not tuple: succ = r.success fun = r.fun else: succ = r[0].success & r[1].success fun = r[1].fun except np.linalg.LinAlgError: succ = False if not succ: t = [name, chr, pos, float('nan')] + [1.0] * len(y) t += [float('nan')] * len(y) res.append(t) else: ins = m.inspect() ins = ins[(ins['rval'] == 'snp') & (ins['op'] == '~')] pvals = list() ests = list() for _, row in ins.iterrows(): pvals.append(row['p-value']) ests.append(row['Estimate']) res.append([name, chr, pos, fun] + pvals + ests) cols = ['SNP', 'chr', 'pos'] + [f'{p}_p-value' for p in y] + [f'{p}_b' for p in y] return pd.DataFrame(res, columns=cols) def gwas_w(lt): gs, lt = lt mod, y, phenos, genes, desc, init_args, fit_args = lt return gwas(mod, y, phenos, genes[gs], desc, init_args, fit_args, verbose=False) def gwas(Model, y: list[str], phenos, genes, desc='', init_args=None, fit_args=None, num_processes=-1, chunk_size=1000, verbose=True): """ Multi-trait single-locus GWAS with multiprocessing support. Parameters ---------- Model : class semopy class. y : list[str] List of phenotype names. phenos : pd.DataFrame Phenotypes + possibly other variables. genes : pd.DataFrame Genotypes/SNPs. desc : str, optional Extra model description. The default is ''. init_args : dict, optional Extra arguments for Model constructor. The default is None. fit_args : dict, optional Extra arguments for Model fit method (e.g., k). The default is None. num_processes : int, optional Number of processes to run. If -1, then it is selected to number of avaialable CPU cores minus 1. "None" is the same as 1. The default is -1. chunk_size : int, optional Number of SNPs to be sent onto a single process. The default is 1000. verbose : bool, optional If False, then no progress bar will be printed. The default is True. Returns ------- pd.DataFrame GWAS results. """ from multiprocessing import Pool, cpu_count from tqdm.contrib.concurrent import process_map if num_processes == -1: num_processes = cpu_count() - 1 if num_processes in (None, 0, 1): return gwas_lmm(Model, y, phenos, genes, desc, init_args, fit_args, verbose=verbose) # We rule out duplicate SNPs to ease the computational burden: unique = unique_mapping(genes) genes = genes[list(unique.keys())] result = None lt = list(genes.columns) lt2 = [lt[i:i+chunk_size] for i in range(0, len(lt), chunk_size)] lt = (Model, y, phenos, genes, desc, init_args, fit_args) prod = product(lt2, lt) if not verbose: with Pool(num_processes) as p: for t in p.map(gwas_w, prod): if result is None: result = t else: result = pd.concat([result, t]) else: for t in process_map(gwas_w, list(prod)): if result is None: result = t else: result =
pd.concat([result, t])
pandas.concat
from data import load_data_gse from contextlib import closing import os import shutil import numpy as np import pandas as pd import urllib.request as request def processing_gse96058(clinical): assert isinstance(clinical, pd.DataFrame), 'Invalid clinical type. It should be a pandas data frame.' # cleaning clinical markers clinical = clinical.replace({'NA': None, 'na': None}) del clinical['scan-b_external_id'] clinical['instrument_model'] = clinical['instrument_model'].replace({ 'HiSeq 2000': 0, 'NextSeq 500': 1}) lymph_dummies = pd.get_dummies(clinical['lymph_node_group']) lymph_dummies.columns = ['lymph_node_group_' + c for c in lymph_dummies.columns] clinical =
pd.concat([clinical, lymph_dummies], axis=1)
pandas.concat
# gather import pandas as pd import io import time import zipfile import zlib import urllib.request urllib.request.urlretrieve('http://geoportal1-ons.opendata.arcgis.com/datasets/48d0b49ff7ec4ad0a4f7f8188f6143e8_3.zip', 'constituencies_super_generalised_shapefile.zip') with zipfile.ZipFile('constituencies_super_generalised_shapefile.zip', 'r') as zip_ref: zip_ref.extractall('constituencies_super_generalised_shapefile') petition_list = pd.read_csv( 'https://petition.parliament.uk/archived/petitions.csv?parliament=1&state=published') url_list = petition_list['URL'].tolist() count, start = 0, time.time() signatures, mp, errors = [], [], [] for petition_url in url_list: try: response = pd.read_json(petition_url + '.json') response = pd.DataFrame.from_dict(response.iloc[0, 0], orient='index') created_at = response.loc['created_at', 0] response = pd.DataFrame.from_dict( response.loc['signatures_by_constituency', 0]) response['created'] = created_at signatures.extend( response[['ons_code', 'signature_count', 'created']].values.tolist()) mp.extend( response[['ons_code', 'name', 'mp']].values.tolist()) except: errors.append(petition_url) count += 1 if count % 250 == 0: print('{} files reached in {}s'.format(count, time.time() - start)) if len(errors) != 0: print(errors) signatures = pd.DataFrame( signatures, columns=['ons_code', 'signature_count', 'date']) signatures['date'] = pd.to_datetime(signatures['date']) signatures = signatures.set_index('date').groupby( [pd.TimeGrouper(freq='M'), 'ons_code']).sum().reset_index().sort_values(['ons_code', 'date']) signatures['date'] = signatures.date.dt.to_period('M') mp = pd.DataFrame(mp, columns=['ons_code', 'constituency', 'mp']).drop_duplicates( 'ons_code', keep='last') mp = mp.replace('Ynys M?n', 'Ynys Mon') population = pd.read_excel( 'http://data.parliament.uk/resources/constituencystatistics/Population-by-age.xlsx', 'Data') population = population[['ONSConstID', 'RegionName', 'PopTotalConstNum']].rename( columns={'ONSConstID': 'ons_code', 'RegionName': 'region', 'PopTotalConstNum': 'population'}) eu =
pd.read_excel( 'https://secondreading.parliament.uk/wp-content/uploads/2017/02/eureferendum_constitunecy.xlsx', 'DATA')
pandas.read_excel
#definition of add_dataset that creates the meta-dataset import pandas as pd from pandas.core.dtypes.common import is_numeric_dtype from scipy.stats import pearsonr from sklearn.model_selection import train_test_split from supervised.automl import AutoML import os import pandas as pd from sklearn.preprocessing import LabelEncoder import numpy as np rootdir = os.path.dirname(__file__) results_dir = rootdir + '/results/' dataset_dir = rootdir + '/datasets_list_final/' datasets_to_add_dir = rootdir + '/datasets_list_toadd/' algorithm_list = ['Linear', 'Random Forest', 'Decision Tree', 'Neural Network'] def encode_y(y): le = LabelEncoder() le.fit(y) y_enc = le.transform(y) return y_enc def compute_max_corr(df): y = encode_y(df[df.columns[-1]]) y =
pd.Series(y)
pandas.Series
import pandas as pd import numpy as np import seaborn as sb import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.naive_bayes import GaussianNB #--------------------------------------------------- READING THE DATASET ------------------------------------- data =
pd.read_csv("Loan_Train.csv")
pandas.read_csv
"""Tests for Resource harvesting methods.""" from typing import Any, Dict, List import numpy as np import pandas as pd import pytest from pudl.metadata.classes import Package, Resource, RESOURCE_METADATA from pudl.metadata.helpers import most_frequent # ---- Helpers ---- # def _assert_frame_equal(a: pd.DataFrame, b: pd.DataFrame, **kwargs: Any) -> None: """Assert dataframes are equal, printing a useful error if not.""" try: pd.testing.assert_frame_equal(a, b, **kwargs) except AssertionError as error: msg = "\n\n".join(["Dataframes are not equal.", str(error), str(a), str(b)]) raise AssertionError(msg) # ---- Unit tests ---- # def test_all_resources_valid() -> None: """All resources in metadata pass validation tests.""" Package.from_resource_ids(RESOURCE_METADATA) STANDARD: Dict[str, Any] = { "name": "r", "harvest": {"harvest": False}, "schema": { "fields": [ {"name": "i", "type": "integer", "harvest": {"aggregate": most_frequent}}, {"name": "j", "type": "integer", "harvest": {"aggregate": most_frequent}}, {"name": "x", "type": "integer", "harvest": {"aggregate": most_frequent}}, {"name": "y", "type": "integer", "harvest": {"aggregate": most_frequent}} ], "primary_key": ["i", "j"] }, } HARVEST: Dict[str, Any] = {**STANDARD, "harvest": {"harvest": True}} def test_resource_ignores_input_with_different_name() -> None: """Standard resources ignore input dataframes not named the same as themselves.""" dfs = {0:
pd.DataFrame([{"i": 1, "j": 1, "x": 1, "y": 1}])
pandas.DataFrame
import labtool_ex2 from labtool_ex2.dtype import UfloatArray import pandas as pd import numpy as np import uncertainties.unumpy as unp import inspect import sys test_list = list(range(10)) + [4, np.nan] # type: ignore test_uarray = unp.uarray(test_list, [0.2]*len(test_list)) def test1(): print("\nTest 1\n") ufloatarray = UfloatArray(test_list) print(ufloatarray) def test2(): print("\nTest 2\n") series = pd.Series(test_uarray, dtype="ufloat") print(series) def test3(): print("\nTest 3\n") df_uarray = pd.DataFrame({"ufloats": UfloatArray(test_uarray), "ints": range(len(test_uarray)), }) print([(x.nominal_value, x.std_dev, x.tag) for x in test_uarray]) print(df_uarray.dtypes) print(type(df_uarray["ufloats"])) def test4(): print("\nTest 4\n") print(type(pd.Series(UfloatArray(test_uarray)).dtype)) def test5(): print("\nTest 5\n") df_uarray = pd.DataFrame({"ufloats": test_uarray, "ints": range(len(test_uarray))}) print(df_uarray.dtypes) def test6(): print("\nTest 6\n") series = pd.Series(test_uarray, name="u", dtype="ufloat") print(series.u.s) def test7(): print("\nTest 7\n") ints = range(len(test_uarray)) df_uarray = pd.DataFrame({"ufloats": test_uarray, "ints": ints, "strings": [chr(num**2) for num in ints]}) print(f"normal\n{df_uarray}\n") print(f"n\n{df_uarray.u.n}\n") print(f"s\n{df_uarray.u.s}\n") print(f"dtypes\n{df_uarray.dtypes}\n") print(f"dtypes n\n{df_uarray.u.n.dtypes}\n") def test8(): print("\nTest 8\n") ints = range(len(test_uarray)) df_uarray = pd.DataFrame({"ufloats": test_uarray, "ints": ints, "strings": [chr(num**2) for num in ints]}) df_4 = df_uarray*4 print(df_uarray) print((df_uarray*4).iloc[1:-1, :].u.sep) print(type(df_4.iloc[0,0])) def test9(): print("\nTest 9\n") ints = range(len(test_uarray)) df_uarray = pd.DataFrame({"ufloats": test_uarray, "ints": ints, "strings": [chr(num**2) for num in ints]}) print(df_uarray.u.sep) print(df_uarray.u.sep.u.com) print(f"\nfor comparison:\n{df_uarray}") def test10(): print("\nTest 10\n") df =
pd.read_csv("test_csv.csv")
pandas.read_csv
import numpy as np import scipy.sparse as sp import torch import torch.nn.functional as F import sys import csv import pandas as pd from tqdm import tqdm, trange from itertools import permutations from sklearn.metrics import f1_score, precision_score, recall_score from sklearn.model_selection import train_test_split # import networkx as nx N_TOTAL_PAPERS = 24251 N_TOTAL_AUTHORS = 42614 N_TOTAL_NODES = N_TOTAL_PAPERS + N_TOTAL_AUTHORS def encode_onehot(labels): classes = set(labels) classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)} labels_onehot = np.array(list(map(classes_dict.get, labels)), dtype=np.int32) return labels_onehot def load_reference_edges(path="dataset/"): print('Loading edge list...') reference_links = np.load("../edge_and_weight_01.npy") # reference_links = np.vstack([reference_links, np.fliplr(reference_links)]) # reference_links = pd.DataFrame(reference_links).drop_duplicates().values reference_edge_weight = np.expand_dims(reference_links[:, -1], 1) reference_edge_type = np.zeros((reference_links.shape[0], 1), dtype = int) # pd.DataFrame(reference_links, columns=['src', 'dst', 'weight']).to_csv(path + "reference_edgelist.csv", index=False) reference_links = reference_links[:, :-1] return reference_links, reference_edge_weight, reference_edge_type def count_citation(path="dataset/"): print("Running citation counting...") referenced = pd.read_csv(path + "paper_reference.csv").values[:, -1] return pd.Series(referenced).value_counts() def load_edges(path="dataset/"): print('Loading edge list...') reference_links = np.load(path + "reference_paper.npy") reference_links = np.vstack([reference_links, np.fliplr(reference_links)]) reference_links = pd.DataFrame(reference_links).drop_duplicates().values reference_edge_weight = np.ones((reference_links.shape[0], 1), dtype = float) ##########调reference_edge reference_edge_weight = reference_edge_weight ######################################################### reference_edge_type = np.zeros((reference_links.shape[0], 1), dtype = int) author_paper_links = pd.read_csv(path + "author_paper_all_with_year.csv").values[:, 0:-1] author_paper_links[:, 0] += N_TOTAL_PAPERS author_paper_links = np.vstack([author_paper_links, np.fliplr(author_paper_links)]) # author_paper_edges = np.hstack([author_paper_links, np.ones((author_paper_links.shape[0], 1))]) # author_paper_edges = np.hstack([author_paper_links, np.load(path + "author_paper_edge_weight.npy")]) # 1/k author_paper_edges = np.hstack([author_paper_links, np.ones((author_paper_links.shape[0], 1))]) author_paper_edges = pd.DataFrame(author_paper_edges, columns=['i', 'j', 'w']).drop_duplicates(subset=['i', 'j']).values author_paper_links = author_paper_edges[:, 0:-1] # author_paper_edge_weight = np.ones((author_paper_links.shape[0], 1)) # author_paper_edge_weight = np.expand_dims(author_paper_edges[:, -1], 1) / author_paper_edges[:, -1].mean() author_paper_edge_weight = np.expand_dims(author_paper_edges[:, -1], axis=-1) ##########调author_paper_edge author_paper_edge_weight = author_paper_edge_weight ####################################################################### author_paper_edge_type = np.ones((author_paper_links.shape[0], 1), dtype = int) coauthor_links = np.load(path + "coauthor.npy").astype(int) + N_TOTAL_PAPERS coauthor_links = np.vstack([coauthor_links, np.fliplr(coauthor_links)]) coauthor_edges = pd.DataFrame(coauthor_links).value_counts() coauthor_links = np.asarray(list(coauthor_edges.index)) # coauthor_edge_weight = np.ones((coauthor_links.shape[0], 1)) # coauthor_edge_weight = np.expand_dims(np.asarray(list(coauthor_edges.values)), 1) / coauthor_edges.values.mean() coauthor_edge_weight = 1 / (1 + np.exp(-0.5 * np.expand_dims(np.asarray(list(coauthor_edges.values)), 1))) ##########调coauthor_edge coauthor_edge_weight = coauthor_edge_weight ####################################################################### coauthor_edge_type = 2 * np.ones((coauthor_links.shape[0], 1), dtype = int) # same_author_links = np.load(path + "paper_same_author.npy") # same_author_links = np.vstack([same_author_links, np.fliplr(same_author_links)]) # same_author_links = pd.DataFrame(same_author_links).drop_duplicates().values # same_author_edge_type = 3 * np.ones((same_author_links.shape[0], 1), dtype = int) edges_unordered = np.vstack([reference_links, author_paper_links, coauthor_links]) edges_weight = np.vstack([reference_edge_weight, author_paper_edge_weight, coauthor_edge_weight]) # pd.DataFrame(np.hstack([edges_unordered, edges_weight]), columns=['src', 'dst', 'weight']).to_csv(path + "edgelist.csv", index=False) edges_type = np.vstack([reference_edge_type, author_paper_edge_type, coauthor_edge_type]) return edges_unordered, edges_weight, edges_type def load_data(path="dataset/", training=False): """Load citation network dataset (cora only for now)""" # print('Loading dataset...') # build graph edges, edge_weight, edge_type = load_edges() # print(edges.shape, edge_weight.shape, edge_type.shape) adj = sp.coo_matrix((edge_weight[:, 0], (edges[:, 0], edges[:, 1])), shape=(N_TOTAL_NODES, N_TOTAL_NODES), dtype=np.float32) # build symmetric adjacency matrix adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj) adj = normalize(adj + sp.eye(adj.shape[0])) # g = nx.Graph(adj) # pr = nx.pagerank(g, alpha=0.9) # pr_list = [] # for i in pr.values(): # pr_list.append(i) # pr_list = pr_list / max(pr.values()) # print(np.shape(pd.unique(edge_type[:, 0]))[0]) paper_label = np.load(path + "paper_label.npy") labels = encode_onehot(paper_label[:, -1]) idx_train, idx_val, _, _ = train_test_split(np.arange(len(paper_label)), labels, test_size=0.05, random_state=1) idx_test = np.array(range(len(paper_label), N_TOTAL_PAPERS)) # features = np.load(path + "vgae_embedding.npy") # features = np.zeros((N_TOTAL_NODES, 14)) features = np.zeros((N_TOTAL_NODES, 13)) # features = np.zeros((N_TOTAL_NODES, 10)) # features[:len(paper_label), :10] = labels # features[idx_val, :10] = np.zeros((len(idx_val), 10)) ###########全1 # features = np.ones((N_TOTAL_NODES, 128)) #####随机数 # features = np.random.random((N_TOTAL_NODES, 128)) #n2v # features = np.load(path + 'N2V_128d_3t.npy') # features = sp.csr_matrix(features, dtype=np.float32) # --------------------author nad unlabelled paper feature------------- # features[:, :10] = np.load(path + "features_v2.npy") # features[features>1] = 1 # -------------------------------------------------------------------- # -------------------labelled paper feature--------------------------- features[:len(paper_label), :10] = labels # -------------------------------------------------------------------- # features[len(paper_label):N_TOTAL_PAPERS, :10] = np.load(path + "unlabel_features.npy")*0.5 # features[N_TOTAL_PAPERS:, :10] = np.load(path + "author_features.npy") * 0.3 if not training: features[:len(paper_label), -3] = 1 features[len(paper_label):N_TOTAL_PAPERS, -2] = 1 features[N_TOTAL_PAPERS:, -1] = 1 # features[len(paper_label):, -1] = 1 else: features[idx_val, :10] = np.zeros((len(idx_val), 10)) # features[:, -4] = pr_list features[idx_train, -3] = 1 features[idx_val, -2] = 1 features[len(paper_label):N_TOTAL_PAPERS, -2] = 1 features[N_TOTAL_PAPERS:, -1] = 1 # pd.DataFrame(features).to_csv(path + "new_features.csv") # publication_year = pd.read_csv(path + "author_paper_all_with_year.csv").drop_duplicates(subset=["paper_id"]).values[:, -1] # extra_features = pd.read_csv(path + "node_extra_features.csv").values # features = np.hstack([extra_features, encode_onehot(publication_year)]) # features = np.load("../N2V_256d_{}t.npy".format(np.shape(pd.unique(edge_type[:, 0]))[0])) rows, cols = np.arange(N_TOTAL_NODES), np.arange(N_TOTAL_NODES) # features = sp.csr_matrix((np.ones((N_TOTAL_NODES, )), (rows, cols)), # shape=(N_TOTAL_NODES, N_TOTAL_NODES), dtype=np.float32) # features = sparse_mx_to_torch_sparse_tensor(features) class_tot = np.sum(labels, axis = 0) loss_coef = torch.from_numpy(np.mean(class_tot) / class_tot).float() # features = normalize(features) # adj = normalize(adj + sp.eye(adj.shape[0])) features = torch.FloatTensor(features) # features = torch.FloatTensor(np.array(features.todense())) labels = torch.LongTensor(np.where(labels)[1]) adj = sparse_mx_to_torch_sparse_tensor(adj) idx_train = torch.LongTensor(idx_train) idx_val = torch.LongTensor(idx_val) idx_test = torch.LongTensor(idx_test) return adj, features, labels, idx_train, idx_val, idx_test, loss_coef def normalize(mx): """Row-normalize sparse matrix""" rowsum = np.array(mx.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) mx = r_mat_inv.dot(mx) return mx def accuracy(output, labels): preds = output.max(1)[1].type_as(labels) correct = preds.eq(labels).double() correct = correct.sum() return correct / len(labels) def sparse_mx_to_torch_sparse_tensor(sparse_mx): """Convert a scipy sparse matrix to a torch sparse tensor.""" sparse_mx = sparse_mx.tocoo().astype(np.float32) indices = torch.from_numpy( np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)) values = torch.from_numpy(sparse_mx.data) shape = torch.Size(sparse_mx.shape) return torch.sparse.FloatTensor(indices, values, shape) def get_paper_label(test_output, given_labels): result = np.zeros((24251, )) result[:len(given_labels)] = given_labels preds = test_output.max(1)[1] result[len(given_labels):] = preds[len(given_labels):] return result def create_csv_from_result(result, submission_version='0'): author_paper_dic = np.load('author_paper_dic.npy',allow_pickle=True).item() # dictionary like {94: [25, 21083]} # transform to an "author with label" version author_label_dic = {} # dictionary like {0: [0, 1, 5]} for key in author_paper_dic: for index in author_paper_dic[key]: if key not in author_label_dic: author_label_dic[key] = [int(result[index])] else: if int(result[index]) not in author_label_dic[key]: author_label_dic[key].append(int(result[index])) unfiltered_submission_name = 'submission/unfiltered_submission_'+submission_version+'.csv' f = open(unfiltered_submission_name,'w',encoding='utf-8',newline='' "") csv_writer = csv.writer(f) csv_writer.writerow(["author_id","labels"]) for key in author_label_dic: csv_writer.writerow([key,' '.join([str(x) for x in author_label_dic[key]])]) f.close() def filter_csv(submission_version='0'): test_set = pd.read_csv("dataset/authors_to_pred.csv") test_authors = test_set.values.reshape((37066, )) unfiltered_submission_name = 'submission/unfiltered_submission_'+submission_version+'.csv' submission_name = 'submission/submission_'+submission_version+'.csv' submit =
pd.read_csv(unfiltered_submission_name)
pandas.read_csv
import pandas as pd import math import matplotlib.pyplot as plt import seaborn as sn import matplotlib.patches as mpatches from LoopVm_plot import * from natsort import index_natsorted, order_by_index #sn.set_context("paper", font_scale = 2) #single VM Only - (NO Comparisons) def latency_equilibrium(df, title): fig, ax = plt.subplots() ax.set_title("Migration Mechanism - Deviation relative to Latency Equilibrium " + title) ax.scatter(df['INDEX'], df['delta_lat_real_end'], label = 'Latency delta as migration completed') ax.plot(df['INDEX'], df['delta_lat_real_end']) ax.scatter(df['INDEX'], df['delta_lat_init'], label = 'Latency delta as migration started') ax.plot(df['INDEX'], df['delta_lat_init']) #ax.scatter(df['INDEX'], df['lat_source_init'], label = 'Latency to the source as migration started') #ax.plot(df['INDEX'], df['lat_source_init']) #ax.scatter(df['INDEX'], df['lat_target_init'], label = 'Latency to the target as migration started') #ax.plot(df['INDEX'], df['lat_target_init']) #ax.scatter(df['INDEX'], df['lat_source_end'], label = 'Latency to the source as migration completed') #ax.plot(df['INDEX'], df['lat_source_end']) #ax.scatter(df['INDEX'], df['lat_target_end'], label = 'Latency to the target as migration completed') #ax.plot(df['INDEX'], df['lat_target_end']) #ax.axhline(0,color= 'black') #i=0 #for id_lte, idtrip in zip(df['id_edge_origin'],df['TripID']): # ax.annotate("S_ID_LTE: "+str(id_lte) + "\nTripID: " + str(idtrip), (df['INDEX'].values[i], df['lat_source_init'].values[i])) # ax.annotate("S_ID_LTE: "+str(id_lte) + "\nTripID: " + str(idtrip), (df['INDEX'].values[i], df['lat_source_end'].values[i])) # i = i + 1 #i=0 #for id_lte, idtrip in zip(df['id_edge_target'],df['TripID']): # ax.annotate("T_ID_LTE: "+str(id_lte) + "\nTripID: " + str(idtrip), (df['INDEX'].values[i], df['lat_target_init'].values[i])) # ax.annotate("T_ID_LTE: "+str(id_lte) + "\nTripID: " + str(idtrip), (df['INDEX'].values[i], df['lat_target_end'].values[i])) # i = i + 1 #i=0 #for id_lte_o, id_lte_d in zip(df['id_edge_origin'],df['id_edge_target']): # ax.annotate(""+str(id_lte_o) + "->" + str(id_lte_d), (df['INDEX'].values[i], df['delta_lat_init'].values[i])) # ax.annotate(""+str(id_lte_o) + "->" + str(id_lte_d), (df['INDEX'].values[i], df['delta_lat_real_end'].values[i])) # i = i + 1 ax.set_xlabel('Migrations Performed') ax.set_ylabel('Delta Latency in ms') ax.legend() return 1 #single VM Only - (NO Comparisons) def distance_equilibrium(df, title): fig, ax = plt.subplots() ax.set_title("Migration Mechanism - Deviation relative to Distance Equilibrium " + title) ax.scatter(df['INDEX'], df['delta_dist_real_end'], label = 'Distance to equilibrium as migration completed') ax.plot(df['INDEX'], df['delta_dist_real_end']) ax.scatter(df['INDEX'], df['delta_dist_init'], label = 'Distance to equilibrium as migration started') ax.plot(df['INDEX'], df['delta_dist_init']) ax.scatter(df['INDEX'], df['dist_source_init'], label = 'Distance to the source as migration started') ax.plot(df['INDEX'], df['dist_source_init']) ax.scatter(df['INDEX'], df['dist_target_init'], label = 'Distance to the target as migration started') ax.plot(df['INDEX'], df['dist_target_init']) ax.scatter(df['INDEX'], df['dist_source_end'], label = 'Distance to the source as migration finished') ax.plot(df['INDEX'], df['dist_source_end']) ax.scatter(df['INDEX'], df['dist_target_end'], label = 'Distance to the target as migration finished') ax.plot(df['INDEX'], df['dist_target_end']) ax.axhline(0,color= 'black') i=0 for id_lte, idtrip in zip(df['id_edge_origin'],df['TripID']): ax.annotate("S_ID_LTE: "+str(id_lte) + "\nTripID: " + str(idtrip), (df['INDEX'].values[i], df['dist_source_init'].values[i])) ax.annotate("S_ID_LTE: "+str(id_lte) + "\nTripID: " + str(idtrip), (df['INDEX'].values[i], df['dist_source_end'].values[i])) i = i + 1 i=0 for id_lte, idtrip in zip(df['id_edge_target'],df['TripID']): ax.annotate("T_ID_LTE: "+str(id_lte) + "\nTripID: " + str(idtrip), (df['INDEX'].values[i], df['dist_target_init'].values[i])) ax.annotate("T_ID_LTE: "+str(id_lte) + "\nTripID: " + str(idtrip), (df['INDEX'].values[i], df['dist_target_end'].values[i])) i = i + 1 i=0 for id_lte_o, id_lte_d in zip(df['id_edge_origin'],df['id_edge_target']): ax.annotate(""+str(id_lte_o) + "->" + str(id_lte_d), (df['INDEX'].values[i], df['delta_dist_init'].values[i])) ax.annotate(""+str(id_lte_o) + "->" + str(id_lte_d), (df['INDEX'].values[i], df['delta_dist_real_end'].values[i])) i = i + 1 ax.set_xlabel('Migrations Performed') ax.set_ylabel('Delta Distance in m') ax.legend() return 1 #single VM Only - Single Plot + Compare Plot (OLD WAY) def client_latency(df, new_fig, fig, ax, label): if (new_fig == 1): fig, ax = plt.subplots() ax.set_title("Client Latency Evolution by Trip ") ax.plot(df.index, df['Latency'], label = 'Latency to the station ' + label) df = df.drop_duplicates(subset=['TripID']) for i in range(len(df.index)): latency = df.at[df.index[i], 'Latency'] tripid = df.at[df.index[i], 'TripID'] ax.annotate("TripID: " + str(tripid), (df.index[i], latency)) ax.scatter(df.index[i], latency, color='blue') ax.set_xlabel('Path coordinates') ax.set_ylabel('Latency in milliseconds') ax.legend() return fig, ax #single VM Only - Single Plot + Compare Plot (OLD WAY) def client_distance(df, new_fig, fig, ax, label): if (new_fig == 1): fig, ax = plt.subplots() ax.set_title("Evolution of Client Distance to Origin by Trip ") ax.plot(df.index, df['Distance'], label = 'Distance to the station ' + label) df = df.drop_duplicates(subset=['TripID']) for i in range(len(df.index)): distance = df.at[df.index[i], 'Distance'] tripid = df.at[df.index[i], 'TripID'] ax.annotate("TripID: " + str(tripid), (df.index[i], distance)) ax.scatter(df.index[i], distance, color='blue') ax.set_xlabel('Path coordinates') ax.set_ylabel('Distance in meters') ax.legend() return fig, ax #### #single VM - Single Plot + Compare Plot def prep_n_mig(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID'], {'Mig_ID':'count'}) dfaux.rename(columns={'TripID':'TripID', 'Mig_ID':'Number of Migrations'},inplace=True) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat = pd.concat(df_aux_list) return dfconcat def n_mig(df): fig, ax = plt.subplots() ax.set_title("Number of Migrations by Trip ") sn.barplot(x='TripID', y='Number of Migrations', hue='Class', palette=['C0','C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data=df, ax=ax) ax.set_xlabel('Trips') ax.set_ylabel('Number of migrations') ax.legend() return 1 #### #### #single VM - Single Plot + Compare Plot def prep_migtime(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID'], {'Mt_real':'sum', 'triptime': 'first'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat = pd.concat(df_aux_list) return dfconcat def migtime(df): fig, ax = plt.subplots() ax.set_title("Time Spent Migrating vs Trip Time ") ax.scatter(df['TripID'], df['triptime'], label = 'Total Trip Time', color='black') sn.barplot(x='TripID', y='Mt_real', hue='Class', palette=['C0','C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data=df, ax=ax) ax.set_xlabel('Trips') ax.set_ylabel('Time in Seconds') ax.legend() return 1 #### #### #single VM - Single Plot + Compare Plot def prep_downtime(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID'], {'DT_real':'sum'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat = pd.concat(df_aux_list) return dfconcat def downtime(df): fig, ax = plt.subplots() ax.set_title("Downtime by Trip") sn.barplot(x='TripID', y='DT_real', hue='Class', palette=['C0','C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data=df, ax=ax) ax.set_xlabel('Trips') ax.set_ylabel('Time in milliseconds') ax.legend() return 1 #### #### #single VM - Single Plot + Compare Plot def prep_mte_vs_mtr(plot_dict, df_lst_files): df_aux_list = list() i = 0 for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = df[df['TripID'].values == df['TripID'].values[0]] dfaux = Vm_groupby(dfaux, ['TripID'], {'Mt_est':'first', 'Mt_real':'first'}) dfaux.insert(0, 'Class', 'Estimate Migration Time') # + Class df_aux_list.append(dfaux) i = i + 1 if(i==1): break # Remove if migration estimate method is to be compared!!!!!! dfconcat = pd.concat(df_aux_list) return dfconcat def mte_vs_mtr(df): fig, ax = plt.subplots(1,2) fig.suptitle("Migration Time Estimate vs Real Migration Time") sn.barplot(x='TripID', y='Mt_real', data=df, ax=ax[0]) sn.barplot(x='TripID', y='Mt_est', hue='Class', palette=['C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data=df, ax=ax[1]) leg1 = mpatches.Patch(color='#1f77b4', label='Real Migration Time') ax[0].legend(handles=[leg1]) ax[0].set_ylim([0, 60]) ax[1].legend() ax[1].set_ylim([0, 60]) for i in range(2): ax[i].set_xlabel('Single Machine') ax[i].set_ylabel('Time in Seconds') ax[i].set_xticks([]) return 1 #### #### #single VM - Single Plot + Compare Plot def prep_transferred_data(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID'], {'transferred_dataGB':'sum'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat =
pd.concat(df_aux_list)
pandas.concat
# Pandas and numpy for data manipulation import pandas as pd import numpy as np np.random.seed(42) import pickle import sys import configargparse # Matplotlib and seaborn for plotting #import matplotlib.pyplot as plt #%matplotlib inline print('importing') #import matplotlib #matplotlib.rcParams['font.size'] = 16 #matplotlib.rcParams['figure.figsize'] = (9, 9) print('starting scipy') # Scipy helper functions from scipy.stats import percentileofscore from scipy import stats import scipy.stats as st print('done with scipy') # Standard ML Models for comparison import sklearn from sklearn.linear_model import LogisticRegression from sklearn.linear_model import ElasticNet from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.svm import SVR from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.neural_network import MLPClassifier from sklearn.naive_bayes import GaussianNB import xgboost from xgboost import XGBClassifier # Splitting data into training/testing from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import scale print('still importing') from sklearn.datasets import make_circles from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score from sklearn.metrics import roc_auc_score from sklearn.metrics import confusion_matrix from matplotlib import pyplot from sklearn.metrics import roc_curve, auc, roc_auc_score from sklearn.preprocessing import label_binarize from functools import reduce # Metrics from sklearn.metrics import mean_squared_error, mean_absolute_error, median_absolute_error # Distributions import scipy import pandas as pd import numpy as np import pymc3 as pm print('ok done importing') if __name__ == '__main__': if len (sys.argv) < 10 : print("Usage: python OperonMulti.py -f prediction_file -o operon_output -t threshold -g gff_file -d gff_delimiter\nNumber of arguements is " + str(len(sys.argv))) sys.exit (1) p = configargparse.ArgParser(description='given the six predictions from OperonSEQer and a threshold, this script strings together multigene operons') p.add('-f', required=True, help='six input predictions',dest='Opreds') p.add('-o', required=True, help='output name',dest='out') p.add('-t', required=False, help='threshold for call', dest='thr', type=int, choices=range(1,7)) p.add('-g', requied=False, help='gff file for stringing together operons (no header)', dest='gff') p.add('-d', requied=False, help='gff file delimiter (default as tab) - tab, space or comma', dest='deli') #print('we made it in') ##this is the format of the gff file: #0 Chromosome ena gene 190 255 . + . b0001 #1 Chromosome ena gene 337 2799 . + . b0002 args=p.parse_args() preds=pd.read_csv(args.Opreds, sep='\t') if args.thr: if args.gff: print('creating thresholded operon file') else: print('ERROR - if you want to string together operons, you need to provide a gff file') sys.exit(1) threshdict={1:'one',2:'two',3:'three',4:'four',5:'five',6:'six'} thresh=threshdict[args.thr] operons = preds[["SysName1", "SysName2", thresh]] operons.columns=['Gene1','Gene2','pred'] if args.deli: if args.deli=='tab': gff=pd.read_csv('/home/rkrishn/projects/CERES/Raga/Genome/Escherichia_coli_str_k_12_substr_mg1655.ASM584v2.37_lite.txt', sep='\t', header=None) elif args.deli=='comma': gff=
pd.read_csv('/home/rkrishn/projects/CERES/Raga/Genome/Escherichia_coli_str_k_12_substr_mg1655.ASM584v2.37_lite.txt', sep=',', header=None)
pandas.read_csv
# standard libraries import pandas as pd # dash and plotly import dash from dash import dcc from dash import html from dash.dependencies import State, Input, Output import dash_bootstrap_components as dbc from dash import dash_table # css for pictograms FONT_AWESOME = "https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css" app = dash.Dash( __name__, external_stylesheets=[dbc.themes.BOOTSTRAP, FONT_AWESOME], meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=1.0"} ], ) app.title = "Research based Stock Trading Strategies" # This is for gunicorn server = app.server # Side panel # side panel header portfolio_dropdown_text = html.P( id="header-strategy", children=["Trading", html.Br(), " Strategy"], ) # button group for trading strategies button_group = html.Div( [ dbc.RadioItems( id="radios", inputClassName="btn-check", labelClassName="btn btn-outline-primary", labelCheckedClassName="active", options=[ {"label": "Piotroski F-Score", "value": 'f_score'}, {"label": "PEAD", "value": 'pead'}, {"label": "Momentum", "value": 'momentum'}, {"label": "G-Score", "value": 'g_score'}, {"label": "Accruals Anatomy", "value": 'accruals'}, {"label": "Betting against Beta", "value": 'beta'}, {"label": "Equity Pairs", "value": 'pairs'}, ], value='f_score', ), html.Div(id="output"), ], className="radio-group", ) info = html.Div( id='info', children=[ dcc.Markdown( "All strategies are performed on companies based in the US handing in annual data to the [SEC](https://www.sec.gov/dera/data/financial-statement-data-sets.html)." ) ] ) # bringing the side panel together side_panel_layout = html.Div( id="panel-side", children=[ portfolio_dropdown_text, button_group, info, ], ) # main panel explanation = html.Div( children=[ dcc.Markdown( children="", id='explanation-text' ) ], className="six columns", id='explanation', ) stocks_header = html.Div( dcc.Markdown( "# Investments" ), id='stocks-header' ) long_header = html.Div( dcc.Markdown( "Long" ), id='long-header' ) long_stocks = html.Div( id='long-stocks', style={ 'margin-top': '-30px' } ) short_header = html.Div( dcc.Markdown( "Short" ), id='short-header' ) short_stocks = html.Div( id='short-stocks', style={ 'margin-top': '-30px' } ) long_short = html.Div( [ stocks_header, long_header, long_stocks, short_header, short_stocks ], className="six columns", id='long-short', ) book = html.Div([ explanation, long_short ], className='row', id='book-text' ) # bringing the main panel together main_panel_layout = html.Div( id="panel-upper-lower", style={ 'background-image': 'url("assets/book2.png")', 'background-repeat': 'no-repeat', 'background-position': 'center', 'background-size': '90%' }, children=[ book ], ) # bringing everything together, creating store-divs for used data root_layout = html.Div( id="root", children=[ dcc.Store( id="store-data", data={} ), dcc.Store( id="store-backtests-stats", data={} ), dcc.Store( id="store-backtests-prices", data={} ), dcc.Store( id="store-backtests-weights", data={} ), side_panel_layout, main_panel_layout, ], ) # creating the app app.layout = root_layout def create_signal_df(df, signal): """ :param signal: Long or Short Signal :return: Returns a DataFrame with all the stocks that have the given signal in df. """ # filter for signal df = df[df.loc[:, 'Signal'] == signal] # cut into 4 columns df['Header'] = pd.qcut(df.index, 8, labels=False) # create DataFrame with these 4 columns list_dict = {} for i in range(8): list_nr = df.loc[:, 'Stock'][df.loc[:, 'Header'] == i].to_list() list_dict[i] = list_nr df_signal = pd.DataFrame.from_dict(list_dict, orient='index').T return df_signal # Callbacks @app.callback( [ Output('explanation-text', 'children'), Output('long-stocks', 'children'), Output('short-stocks', 'children') ], [ Input('radios', 'value') ] ) def create_explanation(strategy): """ :return: starting with clicking the Calculate button, the function returns the price data for the selected stocks and saves it into the price-store """ long_df = pd.DataFrame() short_df =
pd.DataFrame()
pandas.DataFrame
from pandas._config import get_option from pandas.plotting._matplotlib.boxplot import ( BoxPlot, boxplot, boxplot_frame, boxplot_frame_groupby) from pandas.plotting._matplotlib.converter import deregister, register from pandas.plotting._matplotlib.core import ( AreaPlot, BarhPlot, BarPlot, HexBinPlot, LinePlot, PiePlot, ScatterPlot) from pandas.plotting._matplotlib.hist import ( HistPlot, KdePlot, hist_frame, hist_series) from pandas.plotting._matplotlib.misc import ( andrews_curves, autocorrelation_plot, bootstrap_plot, lag_plot, parallel_coordinates, radviz, scatter_matrix) from pandas.plotting._matplotlib.timeseries import tsplot from pandas.plotting._matplotlib.tools import table if
get_option("plotting.matplotlib.register_converters")
pandas._config.get_option
#General from datetime import datetime from collections import Counter import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import lines import seaborn as sns from seaborn import displot from seaborn import lineplot import statsmodels.api as sm import talib as ta from statsmodels.stats.proportion import * from math import sqrt import math from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from multiprocessing import Process from scipy.spatial.distance import pdist, squareform from itertools import compress from plotnine import * import talib as ta date = pd.date_range(start = '2020-01-1 00:00:00', end = '2021-06-10 00:00:00', freq='min') ### DATA PREFERENCE ### def chose_timeframe(timeframe): if (timeframe == 'daily'): df = pd.read_csv('/Users/manu/Quant Finance/OakTree & Lion/Binance_BTCUSDT_daily.csv') df = df[0:1270] df.info() df.index = df.date df.index = pd.to_datetime(df.index) df['returns'] = df.close.pct_change() df.info() return df elif (timeframe == 'hourly'): df = pd.read_csv('/Users/manu/Quant Finance/OakTree & Lion/Binance_BTCUSDT_hourly.csv') df = df[0:4806] df.info() df.index = df.date df.index = pd.to_datetime(df.index) df['returns'] = df.close.pct_change() df.info() return df elif (timeframe == 'minute'): df = pd.read_csv('/Users/manu/Quant Finance/OakTree & Lion/Binance_BTCUSDT_minute.csv') df = df[0:752458] df.info() df.index = df.date df.index =
pd.to_datetime(df.index)
pandas.to_datetime
# -*- coding: utf-8 -*- import pdb, importlib, inspect, time, datetime, json # from PyFin.api import advanceDateByCalendar # from data.polymerize import DBPolymerize from data.storage_engine import StorageEngine import time import pandas as pd import numpy as np from datetime import timedelta, datetime from valuation_estimation import factor_valuation_estimation from vision.db.signletion_engine import get_fin_consolidated_statements_pit, get_fundamentals, query from vision.table.industry_daily import IndustryDaily from vision.table.fin_cash_flow import FinCashFlow from vision.table.fin_balance import FinBalance from vision.table.fin_income import FinIncome from vision.table.fin_indicator import FinIndicator from vision.table.fin_indicator_ttm import FinIndicatorTTM from vision.table.fin_income_ttm import FinIncomeTTM from vision.table.fin_cash_flow_ttm import FinCashFlowTTM from vision.db.signletion_engine import * from vision.table.valuation import Valuation from vision.table.industry import Industry from vision.table.stk_daily_price import SkDailyPrice from data.sqlengine import sqlEngine from utilities.sync_util import SyncUtil # pd.set_option('display.max_columns', None) # pd.set_option('display.max_rows', None) # from ultron.cluster.invoke.cache_data import cache_data class CalcEngine(object): def __init__(self, name, url, methods=[ {'packet': 'valuation_estimation.factor_valuation_estimation', 'class': 'FactorValuationEstimation'}]): self._name = name self._methods = methods self._url = url def get_trade_date(self, trade_date, n, days=365): """ 获取当前时间前n年的时间点,且为交易日,如果非交易日,则往前提取最近的一天。 :param days: :param trade_date: 当前交易日 :param n: :return: """ syn_util = SyncUtil() trade_date_sets = syn_util.get_all_trades('001002', '19900101', trade_date) trade_date_sets = trade_date_sets['TRADEDATE'].values time_array = datetime.strptime(str(trade_date), "%Y%m%d") time_array = time_array - timedelta(days=days) * n date_time = int(datetime.strftime(time_array, "%Y%m%d")) if str(date_time) < min(trade_date_sets): # print('date_time %s is out of trade_date_sets' % date_time) return str(date_time) else: while str(date_time) not in trade_date_sets: date_time = date_time - 1 # print('trade_date pre %s year %s' % (n, date_time)) return str(date_time) def _func_sets(self, method): # 私有函数和保护函数过滤 return list(filter(lambda x: not x.startswith('_') and callable(getattr(method, x)), dir(method))) def loading_data(self, trade_date): """ 获取基础数据 按天获取当天交易日所有股票的基础数据 :param trade_date: 交易日 :return: """ time_array = datetime.strptime(trade_date, "%Y-%m-%d") trade_date = datetime.strftime(time_array, '%Y%m%d') engine = sqlEngine() trade_date_pre = self.get_trade_date(trade_date, 1, days=30) trade_date_1y = self.get_trade_date(trade_date, 1) trade_date_3y = self.get_trade_date(trade_date, 3) trade_date_4y = self.get_trade_date(trade_date, 4) trade_date_5y = self.get_trade_date(trade_date, 5) # report data columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date'] balance_report = engine.fetch_fundamentals_pit_extend_company_id(FinBalance, [FinBalance.total_assets, ], dates=[trade_date]) if len(balance_report) <= 0 or balance_report is None: balance_report = pd.DataFrame({'security_code': [], 'total_assets': []}) for column in columns: if column in list(balance_report.keys()): balance_report = balance_report.drop(column, axis=1) balance_report = balance_report.rename(columns={ 'total_assets': 'total_assets_report', # 资产总计 }) # valuation_report_sets = pd.merge(indicator_sets, balance_report, how='outer', on='security_code') # MRQ data cash_flow_mrq = engine.fetch_fundamentals_pit_extend_company_id(FinCashFlow, [FinCashFlow.cash_and_equivalents_at_end, ], dates=[trade_date]) if len(cash_flow_mrq) <= 0 or cash_flow_mrq is None: cash_flow_mrq = pd.DataFrame({'security_code': [], 'cash_and_equivalents_at_end': []}) for column in columns: if column in list(cash_flow_mrq.keys()): cash_flow_mrq = cash_flow_mrq.drop(column, axis=1) cash_flow_mrq = cash_flow_mrq.rename(columns={ 'cash_and_equivalents_at_end': 'cash_and_equivalents_at_end', # 期末现金及现金等价物余额 }) balance_mrq = engine.fetch_fundamentals_pit_extend_company_id(FinBalance, [FinBalance.longterm_loan, # 短期借款 FinBalance.total_assets, # 资产总计 FinBalance.shortterm_loan, # 短期借款 FinBalance.equities_parent_company_owners, # 归属于母公司股东权益合计 ], dates=[trade_date]) if len(balance_mrq) <= 0 or balance_mrq is None: balance_mrq = pd.DataFrame( {'security_code': [], 'longterm_loan': [], 'total_assets': [], 'shortterm_loan': [], 'equities_parent_company_owners': []}) for column in columns: if column in list(balance_mrq.keys()): balance_mrq = balance_mrq.drop(column, axis=1) balance_mrq = balance_mrq.rename(columns={ 'shortterm_loan': 'shortterm_loan', # 短期借款 'longterm_loan': 'longterm_loan', # 长期借款 'total_assets': 'total_assets', # 资产总计 'equities_parent_company_owners': 'equities_parent_company_owners', # 归属于母公司股东权益合计 }) valuation_mrq = pd.merge(cash_flow_mrq, balance_mrq, on='security_code') indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(FinIndicator, [FinIndicator.np_cut, ], dates=[trade_date]) for col in columns: if col in list(indicator_sets.keys()): indicator_sets = indicator_sets.drop(col, axis=1) # indicator_sets = indicator_sets.rename(columns={'EBIT': 'ebit_mrq'}) valuation_mrq = pd.merge(indicator_sets, valuation_mrq, how='outer', on='security_code') income_sets = engine.fetch_fundamentals_pit_extend_company_id(FinIncome, [FinIncome.income_tax, # 所得税 ], dates=[trade_date]) for col in columns: if col in list(income_sets.keys()): income_sets = income_sets.drop(col, axis=1) valuation_mrq = pd.merge(income_sets, valuation_mrq, how='outer', on='security_code') cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(FinCashFlow, [FinCashFlow.fixed_assets_depreciation, # 固定资产折旧 FinCashFlow.intangible_assets_amortization, # 无形资产摊销 FinCashFlow.fix_intan_other_asset_acqui_cash, # 购建固定资产、无形资产和其他... FinCashFlow.defferred_expense_amortization, # 长期待摊费用摊销 FinCashFlow.borrowing_repayment, # 偿还债务支付的现金 FinCashFlow.cash_from_borrowing, # 取得借款收到的现金 FinCashFlow.cash_from_bonds_issue, # 发行债券所收到的现金 ], dates=[trade_date]) for col in columns: if col in list(cash_flow_sets.keys()): cash_flow_sets = cash_flow_sets.drop(col, axis=1) valuation_mrq = pd.merge(cash_flow_sets, valuation_mrq, how='outer', on='security_code') balance_sets = engine.fetch_fundamentals_pit_extend_company_id(FinBalance, [FinBalance.shortterm_loan, FinBalance.total_current_assets, # 流动资产合计 FinBalance.total_current_liability, # 流动负债合计 ], dates=[trade_date]) for col in columns: if col in list(balance_sets.keys()): balance_sets = balance_sets.drop(col, axis=1) valuation_mrq = pd.merge(balance_sets, valuation_mrq, how='outer', on='security_code') balance_sets_pre = engine.fetch_fundamentals_pit_extend_company_id(FinBalance, [FinBalance.total_current_assets, # 流动资产合计 FinBalance.total_current_liability, # 流动负债合计 ], dates=[trade_date_pre]) for col in columns: if col in list(balance_sets_pre.keys()): balance_sets_pre = balance_sets_pre.drop(col, axis=1) balance_sets_pre = balance_sets_pre.rename(columns={ 'total_current_assets': 'total_current_assets_pre', 'total_current_liability': 'total_current_liability_pre', }) valuation_mrq = pd.merge(balance_sets_pre, valuation_mrq, how='outer', on='security_code') # TTM data # 总市值合并到TTM数据中, cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(FinCashFlowTTM, [FinCashFlowTTM.net_operate_cash_flow, ], dates=[trade_date]) if len(cash_flow_ttm_sets) <= 0 or cash_flow_ttm_sets is None: cash_flow_ttm_sets = pd.DataFrame({'security_code': [], 'net_operate_cash_flow': []}) for column in columns: if column in list(cash_flow_ttm_sets.keys()): cash_flow_ttm_sets = cash_flow_ttm_sets.drop(column, axis=1) cash_flow_ttm_sets = cash_flow_ttm_sets.rename(columns={ 'net_operate_cash_flow': 'net_operate_cash_flow', # 经营活动现金流量净额 }) indicator_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(FinIndicatorTTM, [FinIndicatorTTM.np_cut, ], dates=[trade_date_1y]) if len(indicator_ttm_sets) <= 0 or indicator_ttm_sets is None: indicator_ttm_sets = pd.DataFrame({'security_code': [], 'np_cut': []}) for column in columns: if column in list(indicator_ttm_sets.keys()): indicator_ttm_sets = indicator_ttm_sets.drop(column, axis=1) income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(FinIncomeTTM, [FinIncomeTTM.net_profit, FinIncomeTTM.np_parent_company_owners, FinIncomeTTM.total_operating_revenue, FinIncomeTTM.operating_revenue, FinIncomeTTM.total_profit, ], dates=[trade_date]) if len(income_ttm_sets) <= 0 or income_ttm_sets is None: income_ttm_sets = pd.DataFrame( {'security_code': [], 'net_profit': [], 'np_parent_company_owners': [], 'total_operating_revenue': [], 'operating_revenue': [], 'total_profit': []}) for column in columns: if column in list(income_ttm_sets.keys()): income_ttm_sets = income_ttm_sets.drop(column, axis=1) income_ttm_sets = income_ttm_sets.rename(columns={ 'total_profit': 'total_profit', # 利润总额 ttm 'net_profit': 'net_profit', # 净利润 'np_parent_company_owners': 'np_parent_company_owners', # 归属于母公司所有者的净利润 'total_operating_revenue': 'total_operating_revenue', # 营业总收入 'operating_revenue': 'operating_revenue', # 营业收入 }) income_ttm_sets_3 = engine.fetch_fundamentals_pit_extend_company_id(FinIncomeTTM, [FinIncomeTTM.np_parent_company_owners, ], dates=[trade_date_3y]) if len(income_ttm_sets_3) <= 0 or income_ttm_sets_3 is None: income_ttm_sets_3 = pd.DataFrame({'security_code': [], 'np_parent_company_owners': []}) for column in columns: if column in list(income_ttm_sets_3.keys()): income_ttm_sets_3 = income_ttm_sets_3.drop(column, axis=1) income_ttm_sets_3 = income_ttm_sets_3.rename(columns={ 'np_parent_company_owners': 'np_parent_company_owners_3', # 归属于母公司所有者的净利润 }) income_ttm_sets_5 = engine.fetch_fundamentals_pit_extend_company_id(FinIncomeTTM, [FinIncomeTTM.np_parent_company_owners, ], dates=[trade_date_5y]) if len(income_ttm_sets_5) <= 0 or income_ttm_sets_5 is None: income_ttm_sets_5 = pd.DataFrame({'security_code': [], 'np_parent_company_owners': []}) for column in columns: if column in list(income_ttm_sets_5.keys()): income_ttm_sets_5 = income_ttm_sets_5.drop(column, axis=1) income_ttm_sets_5 = income_ttm_sets_5.rename(columns={ 'np_parent_company_owners': 'np_parent_company_owners_5', # 归属于母公司所有者的净利润 }) valuation_ttm_sets = pd.merge(cash_flow_ttm_sets, income_ttm_sets, how='outer', on='security_code') valuation_ttm_sets = pd.merge(valuation_ttm_sets, indicator_ttm_sets, how='outer', on='security_code') valuation_ttm_sets = pd.merge(valuation_ttm_sets, income_ttm_sets_3, how='outer', on='security_code') valuation_ttm_sets = pd.merge(valuation_ttm_sets, income_ttm_sets_5, how='outer', on='security_code') # 流通市值,总市值 column = ['trade_date'] sk_daily_price_sets = get_fundamentals(query(SkDailyPrice.security_code, SkDailyPrice.trade_date, SkDailyPrice.tot_market_cap, SkDailyPrice.circulating_market_cap ).filter(SkDailyPrice.trade_date.in_([trade_date]))) if len(sk_daily_price_sets) <= 0 or sk_daily_price_sets is None: sk_daily_price_sets = pd.DataFrame({'security_code': [], 'tot_market_cap': [], 'circulating_market_cap': []}) for col in column: if col in list(sk_daily_price_sets.keys()): sk_daily_price_sets = sk_daily_price_sets.drop(col, axis=1) # PS, PE, PB, PCF column = ['trade_date'] valuation_sets = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.pe, Valuation.ps, Valuation.pb, Valuation.pcf, ).filter(Valuation.trade_date.in_([trade_date]))) if len(valuation_sets) <= 0 or valuation_sets is None: valuation_sets = pd.DataFrame({'security_code': [], 'pe': [], 'ps': [], 'pb': [], 'pcf': []}) for col in column: if col in list(valuation_sets.keys()): valuation_sets = valuation_sets.drop(col, axis=1) trade_date_6m = self.get_trade_date(trade_date, 1, 180) trade_date_3m = self.get_trade_date(trade_date, 1, 90) # trade_date_2m = self.get_trade_date(trade_date, 1, 60) trade_date_1m = self.get_trade_date(trade_date, 1, 30) pe_set = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.pe, ).filter(Valuation.trade_date.in_([trade_date]))) if len(pe_set) <= 0 or pe_set is None: pe_set = pd.DataFrame({'security_code': [], 'pe': []}) for col in column: if col in list(pe_set.keys()): pe_set = pe_set.drop(col, axis=1) pe_sets_6m = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.pe) .filter(Valuation.trade_date.between(trade_date_6m, trade_date))) if len(pe_sets_6m) <= 0 or pe_sets_6m is None: pe_sets_6m = pd.DataFrame({'security_code': [], 'pe': []}) for col in column: if col in list(pe_sets_6m.keys()): pe_sets_6m = pe_sets_6m.drop(col, axis=1) pe_sets_6m = pe_sets_6m.groupby('security_code').mean().rename(columns={'pe': 'pe_mean_6m'}) pe_sets_3m = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.pe) .filter(Valuation.trade_date.between(trade_date_3m, trade_date))) if len(pe_sets_3m) <= 0 or pe_sets_3m is None: pe_sets_3m = pd.DataFrame({'security_code': [], 'pe': []}) for col in column: if col in list(pe_sets_3m.keys()): pe_sets_3m = pe_sets_3m.drop(col, axis=1) pe_sets_3m = pe_sets_3m.groupby('security_code').mean().rename(columns={'pe': 'pe_mean_3m'}) pe_sets_2m = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.pe) .filter(Valuation.trade_date.between(trade_date_1m, trade_date))) if len(pe_sets_2m) <= 0 or pe_sets_2m is None: pe_sets_2m = pd.DataFrame({'security_code': [], 'pe': []}) for col in column: if col in list(pe_sets_2m.keys()): pe_sets_2m = pe_sets_2m.drop(col, axis=1) pe_sets_2m = pe_sets_2m.groupby('security_code').mean().rename(columns={'pe': 'pe_mean_1m'}) pe_sets_1y = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.pe) .filter(Valuation.trade_date.between(trade_date_1y, trade_date))) if len(pe_sets_1y) <= 0 or pe_sets_1y is None: pe_sets_1y = pd.DataFrame({'security_code': [], 'pe': []}) for col in column: if col in list(pe_sets_1y.keys()): pe_sets_1y = pe_sets_1y.drop(col, axis=1) pe_sets_1y = pe_sets_1y.groupby('security_code').mean().rename(columns={'pe': 'pe_mean_1y'}) pe_sets = pd.merge(pe_sets_6m, pe_sets_3m, how='outer', on='security_code') pe_sets = pd.merge(pe_sets, pe_sets_2m, how='outer', on='security_code') pe_sets = pd.merge(pe_sets, pe_sets_1y, how='outer', on='security_code') pe_sets = pd.merge(pe_sets, pe_set, how='outer', on='security_code') industry_set = ['801010', '801020', '801030', '801040', '801050', '801080', '801110', '801120', '801130', '801140', '801150', '801160', '801170', '801180', '801200', '801210', '801230', '801710', '801720', '801730', '801740', '801750', '801760', '801770', '801780', '801790', '801880', '801890'] column_sw = ['trade_date', 'symbol', 'company_id'] sw_indu = get_fundamentals_extend_internal(query(Industry.trade_date, Industry.symbol, Industry.isymbol) .filter(Industry.trade_date.in_([trade_date])), internal_type='symbol') for col in column_sw: if col in list(sw_indu.keys()): sw_indu = sw_indu.drop(col, axis=1) sw_indu = sw_indu[sw_indu['isymbol'].isin(industry_set)] # valuation_sets = pd.merge(valuation_sets, indicator_sets, how='outer', on='security_code') valuation_sets = pd.merge(valuation_sets, balance_report, how='outer', on='security_code') valuation_sets =
pd.merge(valuation_sets, valuation_mrq, how='outer', on='security_code')
pandas.merge
''' Class for a bipartite network ''' from pandas.core.indexes.base import InvalidIndexError from tqdm.auto import tqdm import numpy as np # from numpy_groupies.aggregate_numpy import aggregate import pandas as pd from pandas import DataFrame, Int64Dtype # from scipy.sparse.csgraph import connected_components import warnings import bipartitepandas as bpd from bipartitepandas import col_order, update_dict, to_list, logger_init, col_dict_optional_cols, aggregate_transform, ParamsDict import igraph as ig def recollapse_loop(force=False): ''' Decorator function that accounts for issues with selecting ids under particular restrictions for collapsed data. In particular, looking at a restricted set of observations can require recollapsing data, which can they change which observations meet the given restrictions. This function loops until stability is achieved. Arguments: force (bool): if True, force loop for non-collapsed data ''' def recollapse_loop_inner(func): def recollapse_loop_inner_inner(*args, **kwargs): # Do function self = args[0] frame = func(*args, **kwargs) if force or isinstance(self, (bpd.BipartiteLongCollapsed, bpd.BipartiteEventStudyCollapsed)): kwargs['copy'] = False if len(frame) != len(self): # If the frame changes, we have to re-loop until stability frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) while len(frame) != len(frame_prev): frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) return frame return recollapse_loop_inner_inner return recollapse_loop_inner # Define default parameter dictionaries _clean_params_default = ParamsDict({ 'connectedness': ('connected', 'set', ['connected', 'leave_one_observation_out', 'leave_one_firm_out', None], ''' (default='connected') When computing largest connected set of firms: if 'connected', keep observations in the largest connected set of firms; if 'leave_one_observation_out', keep observations in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', keep observations in the largest leave-one-firm-out connected set; if None, keep all observations. '''), 'component_size_variable': ('firms', 'set', ['len', 'length', 'firms', 'workers', 'stayers', 'movers'], ''' (default='firms') How to determine largest connected component. Options are 'len'/'length' (length of frame), 'firms' (number of unique firms), 'workers' (number of unique workers), 'stayers' (number of unique stayers), and 'movers' (number of unique movers). '''), 'i_t_how': ('max', 'set', ['max', 'sum', 'mean'], ''' (default='max') When dropping i-t duplicates: if 'max', keep max paying job; if 'sum', sum over duplicate worker-firm-year observations, then take the highest paying worker-firm sum; if 'mean', average over duplicate worker-firm-year observations, then take the highest paying worker-firm average. Note that if multiple time and/or firm columns are included (as in event study format), then data is converted to long, cleaned, then reconverted to its original format. '''), 'drop_multiples': (False, 'type', bool, ''' (default=False) If True, rather than collapsing over spells, drop any spells with multiple observations (this is for computational efficiency when re-collapsing data for biconnected components). '''), 'is_sorted': (False, 'type', bool, ''' (default=False) If False, dataframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'force': (True, 'type', bool, ''' (default=True) If True, force all cleaning methods to run; much faster if set to False. '''), 'copy': (True, 'type', bool, ''' (default=True) If False, avoid copying data when possible. ''') }) def clean_params(update_dict={}): ''' Dictionary of default clean_params. Arguments: update_dict (dict): user parameter values Returns: (ParamsDict) dictionary of clean_params ''' new_dict = _clean_params_default.copy() new_dict.update(update_dict) return new_dict _cluster_params_default = ParamsDict({ 'measures': (bpd.measures.cdfs(), 'list_of_type', (bpd.measures.cdfs, bpd.measures.moments), ''' (default=bpd.measures.cdfs()) How to compute measures for clustering. Options can be seen in bipartitepandas.measures. '''), 'grouping': (bpd.grouping.kmeans(), 'type', (bpd.grouping.kmeans, bpd.grouping.quantiles), ''' (default=bpd.grouping.kmeans()) How to group firms based on measures. Options can be seen in bipartitepandas.grouping. '''), 'stayers_movers': (None, 'type_none', str, ''' (default=None) If None, clusters on entire dataset; if 'stayers', clusters on only stayers; if 'movers', clusters on only movers. '''), 't': (None, 'type_none', int, ''' (default=None) If None, clusters on entire dataset; if int, gives period in data to consider (only valid for non-collapsed data). '''), 'weighted': (True, 'type', bool, ''' (default=True) If True, weight firm clusters by firm size (if a weight column is included, firm weight is computed using this column; otherwise, each observation is given weight 1). '''), 'dropna': (False, 'type', bool, ''' (default=False) If True, drop observations where firms aren't clustered; if False, keep all observations. '''), 'clean_params': (None, 'type_none', bpd.ParamsDict, ''' (default=None) Dictionary of parameters for cleaning. This is used when observations get dropped because they were not clustered. Default is None, which sets connectedness to be the connectedness measure previously used. Run bpd.clean_params().describe_all() for descriptions of all valid parameters. '''), 'is_sorted': (False, 'type', bool, ''' (default=False) For event study format. If False, dataframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'copy': (True, 'type', bool, ''' (default=True) If False, avoid copy. ''') }) def cluster_params(update_dict={}): ''' Dictionary of default cluster_params. Arguments: update_dict (dict): user parameter values Returns: (ParamsDict) dictionary of cluster_params ''' new_dict = _cluster_params_default.copy() new_dict.update(update_dict) return new_dict class BipartiteBase(DataFrame): ''' Base class for BipartitePandas, where BipartitePandas gives a bipartite network of firms and workers. Contains generalized methods. Inherits from DataFrame. Arguments: *args: arguments for Pandas DataFrame columns_req (list): required columns (only put general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2'; then put the joint columns in reference_dict) columns_opt (list): optional columns (only put general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'; then put the joint columns in reference_dict) columns_contig (dictionary): columns requiring contiguous ids linked to boolean of whether those ids are contiguous, or None if column(s) not included, e.g. {'i': False, 'j': False, 'g': None} (only put general column names for joint columns) reference_dict (dict): clarify which columns are associated with a general column name, e.g. {'i': 'i', 'j': ['j1', 'j2']} col_dtype_dict (dict): link column to datatype col_dict (dict or None): make data columns readable. Keep None if column names already correct include_id_reference_dict (bool): if True, create dictionary of Pandas dataframes linking original id values to contiguous id values log (bool): if True, will create log file(s) **kwargs: keyword arguments for Pandas DataFrame ''' # Attributes, required for Pandas inheritance _metadata = ['col_dict', 'reference_dict', 'id_reference_dict', 'col_dtype_dict', 'columns_req', 'columns_opt', 'columns_contig', 'default_cluster', 'dtype_dict', 'default_clean', 'connectedness', 'no_na', 'no_duplicates', 'i_t_unique', '_log_on_indicator', '_level_fn_dict'] def __init__(self, *args, columns_req=[], columns_opt=[], columns_contig=[], reference_dict={}, col_dtype_dict={}, col_dict=None, include_id_reference_dict=False, log=True, **kwargs): # Initialize DataFrame super().__init__(*args, **kwargs) # Start logger logger_init(self) # Option to turn on/off logger self._log_on_indicator = log # self.log('initializing BipartiteBase object', level='info') if len(args) > 0 and isinstance(args[0], BipartiteBase): # Note that isinstance works for subclasses self._set_attributes(args[0], include_id_reference_dict) else: self.columns_req = ['i', 'j', 'y'] + columns_req self.columns_opt = ['g', 'm'] + columns_opt self.columns_contig = update_dict({'i': False, 'j': False, 'g': None}, columns_contig) self.reference_dict = update_dict({'i': 'i', 'm': 'm'}, reference_dict) self._reset_id_reference_dict(include_id_reference_dict) # Link original id values to contiguous id values self.col_dtype_dict = update_dict({'i': 'int', 'j': 'int', 'y': 'float', 't': 'int', 'g': 'int', 'm': 'int'}, col_dtype_dict) default_col_dict = {} for col in to_list(self.columns_req): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = subcol for col in to_list(self.columns_opt): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = None # Create self.col_dict self.col_dict = col_dict_optional_cols(default_col_dict, col_dict, self.columns, optional_cols=[self.reference_dict[col] for col in self.columns_opt]) # Set attributes self._reset_attributes() # Dictionary of logger functions based on level self._level_fn_dict = { 'debug': self.logger.debug, 'info': self.logger.info, 'warning': self.logger.warning, 'error': self.logger.error, 'critical': self.logger.critical } self.dtype_dict = { 'int': ['int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'float': ['float', 'float8', 'float16', 'float32', 'float64', 'float128', 'int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'str': 'str' } # self.log('BipartiteBase object initialized', level='info') @property def _constructor(self): ''' For inheritance from Pandas. ''' return BipartiteBase def copy(self): ''' Return copy of self. Returns: bdf_copy (BipartiteBase): copy of instance ''' df_copy = DataFrame(self, copy=True) # Set logging on/off depending on current selection bdf_copy = self._constructor(df_copy, log=self._log_on_indicator) # This copies attribute dictionaries, default copy does not bdf_copy._set_attributes(self) return bdf_copy def log_on(self, on=True): ''' Toggle logger on or off. Arguments: on (bool): if True, turn logger on; if False, turn logger off ''' self._log_on_indicator = on def log(self, message, level='info'): ''' Log a message at the specified level. Arguments: message (str): message to log level (str): logger level. Options, in increasing severity, are 'debug', 'info', 'warning', 'error', and 'critical'. ''' if self._log_on_indicator: # Log message self._level_fn_dict[level](message) def summary(self): ''' Print summary statistics. This uses class attributes. To run a diagnostic to verify these values, run `.diagnostic()`. ''' ret_str = '' y = self.loc[:, self.reference_dict['y']].to_numpy() mean_wage = np.mean(y) median_wage = np.median(y) max_wage = np.max(y) min_wage = np.min(y) var_wage = np.var(y) ret_str += 'format: {}\n'.format(type(self).__name__) ret_str += 'number of workers: {}\n'.format(self.n_workers()) ret_str += 'number of firms: {}\n'.format(self.n_firms()) ret_str += 'number of observations: {}\n'.format(len(self)) ret_str += 'mean wage: {}\n'.format(mean_wage) ret_str += 'median wage: {}\n'.format(median_wage) ret_str += 'min wage: {}\n'.format(min_wage) ret_str += 'max wage: {}\n'.format(max_wage) ret_str += 'var(wage): {}\n'.format(var_wage) ret_str += 'no NaN values: {}\n'.format(self.no_na) ret_str += 'no duplicates: {}\n'.format(self.no_duplicates) ret_str += 'i-t (worker-year) observations unique (None if t column(s) not included): {}\n'.format(self.i_t_unique) for contig_col, is_contig in self.columns_contig.items(): ret_str += 'contiguous {} ids (None if not included): {}\n'.format(contig_col, is_contig) ret_str += 'connectedness (None if ignoring connectedness): {}'.format(self.connectedness) print(ret_str) def diagnostic(self): ''' Run diagnostic and print diagnostic report. ''' ret_str = '----- General Diagnostic -----\n' ##### Sorted by i (and t, if included) ##### sort_order = ['i'] if self._col_included('t'): # If t column sort_order.append(to_list(self.reference_dict['t'])[0]) is_sorted = (self.loc[:, sort_order] == self.loc[:, sort_order].sort_values(sort_order)).to_numpy().all() ret_str += 'sorted by i (and t, if included): {}\n'.format(is_sorted) ##### No NaN values ##### # Source: https://stackoverflow.com/a/29530601/17333120 no_na = (not self.isnull().to_numpy().any()) ret_str += 'no NaN values: {}\n'.format(no_na) ##### No duplicates ##### # https://stackoverflow.com/a/50243108/17333120 no_duplicates = (not self.duplicated().any()) ret_str += 'no duplicates: {}\n'.format(no_duplicates) ##### i-t unique ##### no_i_t_duplicates = (not self.duplicated(subset=sort_order).any()) ret_str += 'i-t (worker-year) observations unique (if t column(s) not included, then i observations unique): {}\n'.format(no_i_t_duplicates) ##### Contiguous ids ##### for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): contig_ids = self.unique_ids(contig_col) is_contig = (len(contig_ids) == (max(contig_ids) + 1)) ret_str += 'contiguous {} ids (None if not included): {}\n'.format(contig_col, is_contig) else: ret_str += 'contiguous {} ids (None if not included): {}\n'.format(contig_col, None) ##### Connectedness ##### is_connected_dict = { None: lambda : None, 'connected': lambda : self._construct_graph(self.connectedness).is_connected(), 'leave_one_observation_out': lambda: (len(self) == len(self._conset(connectedness=self.connectedness))), 'leave_one_firm_out': lambda: (len(self) == len(self._conset(connectedness=self.connectedness))) } is_connected = is_connected_dict[self.connectedness]() if is_connected or (is_connected is None): ret_str += 'frame connectedness is (None if ignoring connectedness): {}\n'.format(self.connectedness) else: ret_str += 'frame failed connectedness: {}\n'.format(self.connectedness) if self._col_included('m'): ##### m column ##### m_correct = (self.loc[:, 'm'] == self.gen_m(force=True).loc[:, 'm']).to_numpy().all() ret_str += "'m' column correct (None if not included): {}\n".format(m_correct) else: ret_str += "'m' column correct (None if not included): {}".format(None) print(ret_str) def unique_ids(self, id_col): ''' Unique ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (NumPy Array): unique ids ''' id_lst = [] for id_subcol in to_list(self.reference_dict[id_col]): id_lst += list(self.loc[:, id_subcol].unique()) return np.array(list(set(id_lst))) def n_unique_ids(self, id_col): ''' Number of unique ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (int): number of unique ids ''' return len(self.unique_ids(id_col)) def n_workers(self): ''' Get the number of unique workers. Returns: (int): number of unique workers ''' return self.loc[:, 'i'].nunique() def n_firms(self): ''' Get the number of unique firms. Returns: (int): number of unique firms ''' return self.n_unique_ids('j') def n_clusters(self): ''' Get the number of unique clusters. Returns: (int or None): number of unique clusters, None if not clustered ''' if not self._col_included('g'): # If cluster column not in dataframe return None return self.n_unique_ids('g') def original_ids(self, copy=True): ''' Return self merged with original column ids. Arguments: copy (bool): if False, avoid copy Returns: (BipartiteBase or None): copy of self merged with original column ids, or None if id_reference_dict is empty ''' frame = pd.DataFrame(self, copy=copy) if self.id_reference_dict: for id_col, reference_df in self.id_reference_dict.items(): if len(reference_df) > 0: # Make sure non-empty for id_subcol in to_list(self.reference_dict[id_col]): try: frame = frame.merge(reference_df.loc[:, ['original_ids', 'adjusted_ids_' + str(len(reference_df.columns) - 1)]].rename({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(len(reference_df.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) except TypeError: # Int64 error with NaNs frame.loc[:, id_col] = frame.loc[:, id_col].astype('Int64', copy=False) frame = frame.merge(reference_df.loc[:, ['original_ids', 'adjusted_ids_' + str(len(reference_df.columns) - 1)]].rename({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(len(reference_df.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) # else: # # If no changes, just make original_id be the same as the current id # for id_subcol in to_list(self.reference_dict[id_col]): # frame['original_' + id_subcol] = frame[id_subcol] return frame else: warnings.warn('id_reference_dict is empty. Either your id columns are already correct, or you did not specify `include_id_reference_dict=True` when initializing your BipartitePandas object') return None def _set_attributes(self, frame, no_dict=False, include_id_reference_dict=False): ''' Set class attributes to equal those of another BipartitePandas object. Arguments: frame (BipartitePandas): BipartitePandas object whose attributes to use no_dict (bool): if True, only set booleans, no dictionaries include_id_reference_dict (bool): if True, create dictionary of Pandas dataframes linking original id values to contiguous id values ''' # Dictionaries if not no_dict: self.columns_req = frame.columns_req.copy() self.columns_opt = frame.columns_opt.copy() self.reference_dict = frame.reference_dict.copy() self.col_dtype_dict = frame.col_dtype_dict.copy() self.col_dict = frame.col_dict.copy() self.columns_contig = frame.columns_contig.copy() # Required, even if no_dict if frame.id_reference_dict: self.id_reference_dict = {} # Must do a deep copy for id_col, reference_df in frame.id_reference_dict.items(): self.id_reference_dict[id_col] = reference_df.copy() else: # This is if the original dataframe DIDN'T have an id_reference_dict (but the new dataframe may or may not) self._reset_id_reference_dict(include_id_reference_dict) # # Logger # self.logger = frame.logger # Booleans self.connectedness = frame.connectedness # If False, not connected; if 'connected', all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored self.no_na = frame.no_na # If True, no NaN observations in the data self.no_duplicates = frame.no_duplicates # If True, no duplicate rows in the data self.i_t_unique = frame.i_t_unique # If True, each worker has at most one observation per period def _reset_attributes(self, columns_contig=True, connected=True, no_na=True, no_duplicates=True, i_t_unique=True): ''' Reset class attributes conditions to be False/None. Arguments: columns_contig (bool): if True, reset self.columns_contig connected (bool): if True, reset self.connectedness no_na (bool): if True, reset self.no_na no_duplicates (bool): if True, reset self.no_duplicates i_t_unique (bool): if True, reset self.i_t_unique Returns: self (BipartiteBase): self with reset class attributes ''' if columns_contig: for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): self.columns_contig[contig_col] = False else: self.columns_contig[contig_col] = None if connected: self.connectedness = None # If False, not connected; if 'connected', all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored if no_na: self.no_na = False # If True, no NaN observations in the data if no_duplicates: self.no_duplicates = False # If True, no duplicate rows in the data if i_t_unique: self.i_t_unique = None # If True, each worker has at most one observation per period; if None, t column not included (set to False later in method if t column included) # Verify whether period included if self._col_included('t'): self.i_t_unique = False # logger_init(self) return self def _reset_id_reference_dict(self, include=False): ''' Reset id_reference_dict. Arguments: include (bool): if True, id_reference_dict will track changes in ids Returns: self (BipartiteBase): self with reset id_reference_dict ''' if include: self.id_reference_dict = {id_col: pd.DataFrame() for id_col in self.reference_dict.keys()} else: self.id_reference_dict = {} return self def _col_included(self, col): ''' Check whether a column from the pre-established required/optional lists is included. Arguments: col (str): column to check. Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (bool): if True, column is included ''' if col in self.columns_req + self.columns_opt: for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: return False return True return False def _included_cols(self, flat=False): ''' Get all columns included from the pre-established required/optional lists. Arguments: flat (bool): if False, uses general column names for joint columns, e.g. returns 'j' instead of 'j1', 'j2'. Returns: all_cols (list): included columns ''' all_cols = [] for col in self.columns_req + self.columns_opt: include = True for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: include = False break if include: if flat: all_cols += to_list(self.reference_dict[col]) else: all_cols.append(col) return all_cols def drop(self, indices, axis=0, inplace=False, allow_required=False): ''' Drop indices along axis. Arguments: indices (int or str, optionally as a list): row(s) or column(s) to drop. For columns, use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be dropped axis (int): 0 to drop rows, 1 to drop columns inplace (bool): if True, modify in-place allow_required (bool): if True, allow to drop required columns Returns: frame (BipartiteBase): BipartiteBase with dropped indices ''' frame = self if axis == 1: for col in to_list(indices): if col in frame.columns or col in frame.columns_req or col in frame.columns_opt: if col in frame.columns_opt: # If column optional for subcol in to_list(frame.reference_dict[col]): if inplace: DataFrame.drop(frame, subcol, axis=1, inplace=True) else: frame = DataFrame.drop(frame, subcol, axis=1, inplace=False) frame.col_dict[subcol] = None if col in frame.columns_contig.keys(): # If column contiguous frame.columns_contig[col] = None if frame.id_reference_dict: # If id_reference_dict has been initialized frame.id_reference_dict[col] = pd.DataFrame() elif col not in frame._included_cols() and col not in frame._included_cols(flat=True): # If column is not pre-established if inplace: DataFrame.drop(frame, col, axis=1, inplace=True) else: frame = DataFrame.drop(frame, col, axis=1, inplace=False) else: if not allow_required: warnings.warn("{} is either (a) a required column and cannot be dropped or (b) a subcolumn that can be dropped, but only by specifying the general column name (e.g. use 'g' instead of 'g1' or 'g2')".format(col)) else: if inplace: DataFrame.drop(frame, col, axis=1, inplace=True) else: frame = DataFrame.drop(frame, col, axis=1, inplace=False) else: warnings.warn('{} is not in data columns'.format(col)) elif axis == 0: if inplace: DataFrame.drop(frame, indices, axis=0, inplace=True) else: frame = DataFrame.drop(frame, indices, axis=0, inplace=False) frame._reset_attributes() # frame.clean_data({'connectedness': frame.connectedness}) return frame def rename(self, rename_dict, inplace=True): ''' Rename a column. Arguments: rename_dict (dict): key is current column name, value is new column name. Use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be renamed inplace (bool): if True, modify in-place Returns: frame (BipartiteBase): BipartiteBase with renamed columns ''' if inplace: frame = self else: frame = self.copy() for col_cur, col_new in rename_dict.items(): if col_cur in frame.columns or col_cur in frame.columns_req or col_cur in frame.columns_opt: if col_cur in self.columns_opt: # If column optional if len(to_list(self.reference_dict[col_cur])) > 1: for i, subcol in enumerate(to_list(self.reference_dict[col_cur])): DataFrame.rename(frame, {subcol: col_new + str(i + 1)}, axis=1, inplace=True) frame.col_dict[subcol] = None else: DataFrame.rename(frame, {col_cur: col_new}, axis=1, inplace=True) frame.col_dict[col_cur] = None if col_cur in frame.columns_contig.keys(): # If column contiguous frame.columns_contig[col_cur] = None if frame.id_reference_dict: # If id_reference_dict has been initialized frame.id_reference_dict[col_cur] = pd.DataFrame() elif col_cur not in frame._included_cols() and col_cur not in frame._included_cols(flat=True): # If column is not pre-established
DataFrame.rename(frame, {col_cur: col_new}, axis=1, inplace=True)
pandas.DataFrame.rename
from sklearn import metrics from sklearn.metrics import average_precision_score from sklearn.metrics import roc_auc_score from sklearn.metrics import matthews_corrcoef from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import classification_report from sklearn.metrics import cohen_kappa_score from sklearn.metrics import roc_curve, auc from sklearn.ensemble import BaggingClassifier import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import matplotlib.backends.backend_pdf import seaborn as sns # import rpy2 # import rpy2.robjects as robjects # robjects as python objects # import rpy2.robjects.packages as rpackages # helps download and import r packages import os import pandas as pd import numpy as np from collections import OrderedDict import pickle import MLPipeline import AppConfig as app_config DATA_FLD_NAME = app_config.CLF_FLD_NAME DATA_FILE_NAME_PRFX = app_config.CLF_FLD_PREFIX # BAGGING_FLD_NAME = "bagging" RESULTS_FLD_NAME = app_config.CLF_RESULTS_FLD_NAME # figcount = 0 # Figureset = [] class Evaluation: def __init__(self, ml_pipeline: MLPipeline): self.ml_pipeline = ml_pipeline self.jlogger = self.ml_pipeline.jlogger self.figcount = 0 self.Figureset = [] def evaluate_and_save_results(self, model, fld_name): x_train = self.ml_pipeline.x_train y_train = self.ml_pipeline.y_train x_test = self.ml_pipeline.x_test y_test = self.ml_pipeline.y_test fg_fld_name = os.path.basename(self.ml_pipeline.fg_clf_fld_path) fld_path = self.ml_pipeline.job_data['job_data_path'] fld_path = os.path.join(*[fld_path, DATA_FLD_NAME, fg_fld_name, fld_name]) os.makedirs(fld_path, exist_ok=True) clf_pkl_path = os.path.join(fld_path, DATA_FILE_NAME_PRFX + fld_name + ".pkl") train_preds_path = os.path.join(fld_path, DATA_FILE_NAME_PRFX + "train_preds.csv") test_preds_path = os.path.join(fld_path, DATA_FILE_NAME_PRFX + "test_preds.csv") with open(clf_pkl_path, 'wb') as f: pickle.dump(model, f) y_train_preds = model.predict(x_train) y_train_probas = model.predict_proba(x_train) y_test_preds = model.predict(x_test) y_test_probas = model.predict_proba(x_test) df_train = pd.DataFrame([], columns=['Prediction', 'Ground Truth', 'Prob 0', 'Prob 1']) df_train['Prediction'] = y_train_preds df_train['Ground Truth'] = y_train df_train['Prob 0'] = y_train_probas[:, 0] df_train['Prob 1'] = y_train_probas[:, 1] df_train.to_csv(train_preds_path, index=False) df_test = pd.DataFrame([], columns=['Prediction', 'Ground Truth', 'Prob 0', 'Prob 1']) df_test['Prediction'] = y_test_preds df_test['Ground Truth'] = y_test df_test['Prob 0'] = y_test_probas[:, 0] df_test['Prob 1'] = y_test_probas[:, 1] df_test.to_csv(test_preds_path, index=False) self.save_results(fld_name, df_train, df_test) def save_results(self, fld_name, df_train, df_test): # global Figureset y_train = df_train['Ground Truth'] y_train_preds = df_train['Prediction'] train_prob0 = df_train['Prob 0'].to_numpy() train_prob1 = df_train['Prob 1'].to_numpy() train_np_yprobas = np.c_[train_prob0, train_prob1] y_test = df_test['Ground Truth'] y_test_preds = df_test['Prediction'] test_prob0 = df_test['Prob 0'].to_numpy() test_prob1 = df_test['Prob 1'].to_numpy() test_np_yprobas = np.c_[test_prob0, test_prob1] train_fld_name = fld_name + "_train" test_fld_name = fld_name + "_test" self.save_all_model_plots(y_train_preds, y_train, train_np_yprobas, train_fld_name) self.save_all_model_plots(y_test_preds, y_test, test_np_yprobas, test_fld_name) self.save_plots_pdf(fld_name) def save_plots_pdf(self, fld_name): fg_fld_name = os.path.basename(self.ml_pipeline.fg_clf_fld_path) fld_path = self.ml_pipeline.job_data['job_results_path'] fld_path = os.path.join(*[fld_path, fg_fld_name, RESULTS_FLD_NAME]) os.makedirs(fld_path, exist_ok=True) pdf_file_path = os.path.join(fld_path, DATA_FILE_NAME_PRFX + fld_name + ".pdf") self.plot_all_figures(pdf_file_path) def save_all_model_plots(self, np_ypreds, np_ytrues, np_yprobas, title): self.print_confusion_matrix(np_ytrues, np_ypreds, "Confusion Matrix - " + title) #gt = np_ytrues.tolist() #probs = np_yprobas[:, 1].tolist() # fpr, tpr = self.get_smoothened_fpr_tpr_from_pROC(gt, probs) # self.plot_r_smoothened_curve(fpr, tpr, "ROC Curve - " + title) self.print_roc_curve(np_ytrues, np_ypreds, np_yprobas, "ROC Curve - " + title) res = self.evaluate_model(np_ypreds, np_ytrues, np_yprobas) self.jlogger.info("Evaluation of {} {}".format(title, res)) def evaluate_all_bagged_clf(self, bc, n, x_test, y_test): res_list = [] iters = [] res_dict_keys = {} for i in range(n): if i % 100 == 0: self.jlogger.debug("Completed Bagging Iter: " + str(i)) clf = bc.estimators_[i] ypred = clf.predict(x_test) yproba = clf.predict_proba(x_test) res = self.evaluate_model(ypred, y_test, yproba) res_list.append(list(res.values())) res_dict_keys = list(res.keys()) iters.append(i + 1) # print("-----------------------") results = pd.DataFrame(res_list, columns=res_dict_keys) return results def evaluate_and_save_bagging_results(self, bc, n, x_test, y_test, title, fld_path): # # resetting all figures # self.figcount = 0 # self.Figureset = [] # evaluate aggregated bagging clf bc_ypred = bc.predict(x_test) bc_yproba = bc.predict_proba(x_test) df_test = pd.DataFrame([], columns=['Prediction', 'Ground Truth', 'Prob 0', 'Prob 1']) df_test['Prediction'] = bc_ypred df_test['Ground Truth'] = y_test df_test['Prob 0'] = bc_yproba[:, 0] df_test['Prob 1'] = bc_yproba[:, 1] test_preds_path = os.path.join(fld_path, DATA_FILE_NAME_PRFX + title + ".csv") df_test.to_csv(test_preds_path, index=False) self.save_all_model_plots(bc_ypred, y_test, bc_yproba, title) # evaluate each of the bagged classifier results = self.evaluate_all_bagged_clf(bc, n, x_test, y_test) self.plot_box_plot_results(results, title) # fg_fld_name = os.path.basename(self.ml_pipeline.fg_clf_fld_path) # res_fld_path = self.ml_pipeline.job_data['job_results_path'] # res_fld_path = os.path.join(*[res_fld_path, fg_fld_name, RESULTS_FLD_NAME]) # # pdf_file_path = os.path.join(res_fld_path, DATA_FILE_NAME_PRFX + title + ".pdf") # self.plot_all_figures(pdf_file_path) iter_results_csv_path = os.path.join(fld_path, DATA_FILE_NAME_PRFX + title + " Iteration wise Evaluation Results.csv") stats_results_csv_path = os.path.join(fld_path, DATA_FILE_NAME_PRFX + title + " Evaluation Stats.csv") results.to_csv(iter_results_csv_path, float_format='%.4f') results.describe().to_csv(stats_results_csv_path, float_format='%.4f') def evaluate_bagging_model(self, clf, n, fld_name): # resetting all figures self.figcount = 0 self.Figureset = [] # convert to int in case float n = int(n) fg_fld_name = os.path.basename(self.ml_pipeline.fg_clf_fld_path) fld_path = self.ml_pipeline.job_data['job_data_path'] fld_path = os.path.join(*[fld_path, DATA_FLD_NAME, fg_fld_name, fld_name]) os.makedirs(fld_path, exist_ok=True) x_train = self.ml_pipeline.x_train y_train = self.ml_pipeline.y_train x_test = self.ml_pipeline.x_test y_test = self.ml_pipeline.y_test bc = BaggingClassifier(base_estimator=clf, n_estimators=n, bootstrap=True, random_state=42) bc.fit(x_train, y_train) clf_pkl_path = os.path.join(fld_path, DATA_FILE_NAME_PRFX + fld_name + ".pkl") with open(clf_pkl_path, 'wb') as f: pickle.dump(bc, f) self.evaluate_and_save_bagging_results(bc, n, x_train, y_train, "Training - " + fld_name, fld_path) self.evaluate_and_save_bagging_results(bc, n, x_test, y_test, "Testing - " + fld_name, fld_path) fg_fld_name = os.path.basename(self.ml_pipeline.fg_clf_fld_path) res_fld_path = self.ml_pipeline.job_data['job_results_path'] res_fld_path = os.path.join(*[res_fld_path, fg_fld_name, RESULTS_FLD_NAME]) pdf_file_path = os.path.join(res_fld_path, DATA_FILE_NAME_PRFX + fld_name + ".pdf") self.plot_all_figures(pdf_file_path) def evaluate_model(self, ytest_pred, ytest, ytest_probas): """ This method evaluates a model on various metrics. The evaluation happens per sample basis and not on aggregated individual basis. """ prf = precision_recall_fscore_support(ytest, ytest_pred, average="macro") accuracy = accuracy_score(ytest, ytest_pred) mcc = matthews_corrcoef(ytest, ytest_pred) tn, fp, fn, tp = confusion_matrix(ytest, ytest_pred).ravel() specificity = tn / (tn + fp) sensitivity = tp / (tp + fn) kappa = cohen_kappa_score(ytest, ytest_pred) fpr, tpr, thresholds = metrics.roc_curve(ytest, ytest_probas[:, 1]) aucroc = metrics.auc(fpr, tpr) ap = average_precision_score(ytest, ytest_probas[:, 1]) res = OrderedDict() res["Accuracy"] = accuracy res["Precision"] = prf[0] res["Recall"] = prf[1] res["F1-Score"] = prf[2] res["MCC"] = mcc res["Specificity"] = specificity res["Sensitivity"] = sensitivity res["Kappa"] = kappa res["AUCROC"] = aucroc res["AP"] = ap return res def print_confusion_matrix(self, testlabel, y_pred, title_name): # global figcount # global Figureset cf = confusion_matrix(testlabel, y_pred) df_cm =
pd.DataFrame(cf, index=[0, 1], columns=[0, 1])
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1:
pd.Timestamp("1961-02-01 00:00:00")
pandas.Timestamp
""" Provide a generic structure to support window functions, similar to how we have a Groupby object. """ from collections import defaultdict from datetime import timedelta from textwrap import dedent from typing import List, Optional, Set import warnings import numpy as np import pandas._libs.window as libwindow from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes.common import ( ensure_float64, is_bool, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDateOffset, ABCDatetimeIndex, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas._typing import Axis, FrameOrSeries from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.generic import _shared_docs from pandas.core.groupby.base import GroupByMixin _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ class _Window(PandasObject, SelectionMixin): _attributes = [ "window", "min_periods", "center", "win_type", "axis", "on", "closed", ] # type: List[str] exclusions = set() # type: Set[str] def __init__( self, obj, window=None, min_periods: Optional[int] = None, center: Optional[bool] = False, win_type: Optional[str] = None, axis: Axis = 0, on: Optional[str] = None, closed: Optional[str] = None, **kwargs ): self.__dict__.update(kwargs) self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self) -> Optional[bool]: return None @property def _on(self): return None @property def is_freq_type(self) -> bool: return self.win_type == "freq" def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in [ "right", "both", "left", "neither", ]: raise ValueError("closed must be 'right', 'left', 'both' or " "'neither'") def _create_blocks(self): """ Split data into blocks & return conformed data. """ obj = self._selected_obj # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj._to_dict_of_blocks(copy=False).values() return blocks, obj def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : str / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( "%r object has no attribute %r" % (type(self).__name__, attr) ) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None): return self.window @property def _window_type(self) -> str: return self.__class__.__name__ def __repr__(self) -> str: """ Provide a nice str repr of our rolling object. """ attrs = ( "{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None ) return "{klass} [{attrs}]".format( klass=self._window_type, attrs=",".join(attrs) ) def __iter__(self): url = "https://github.com/pandas-dev/pandas/issues/11704" raise NotImplementedError("See issue #11704 {url}".format(url=url)) def _get_index(self) -> Optional[np.ndarray]: """ Return index as an ndarray. Returns ------- None or ndarray """ if self.is_freq_type: return self._on.asi8 return None def _prep_values(self, values: Optional[np.ndarray] = None) -> np.ndarray: """Convert input to numpy arrays for Cython routines""" if values is None: values = getattr(self._selected_obj, "values", self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values.dtype): values = ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError( "ops for {action} for this " "dtype {dtype} are not " "implemented".format(action=self._window_type, dtype=values.dtype) ) else: try: values = ensure_float64(values) except (ValueError, TypeError): raise TypeError( "cannot handle this type -> {0}" "".format(values.dtype) ) # Always convert inf to nan values[np.isinf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None) -> FrameOrSeries: """ Wrap a single result. """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): from pandas import to_timedelta result = to_timedelta(result.ravel(), unit="ns").values.reshape( result.shape ) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj, exclude=None) -> FrameOrSeries: """ Wrap the results. Parameters ---------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) exclude: list of columns to exclude, default to None """ from pandas import Series, concat from pandas.core.index import ensure_index final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) # exclude nuisance columns so that they are not reindexed if exclude is not None and exclude: columns = [c for c in columns if c not in exclude] if not columns: raise DataError("No numeric types to aggregate") if not len(final): return obj.astype("float64") return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window) -> np.ndarray: """ Center the result in the window. """ if self.axis > result.ndim - 1: raise ValueError( "Requested axis is larger then no. of argument " "dimensions" ) offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def aggregate(self, func, *args, **kwargs): result, how = self._aggregate(func, *args, **kwargs) if result is None: return self.apply(func, raw=False, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs["sum"] = dedent( """ Calculate %(name)s sum of given DataFrame or Series. Parameters ---------- *args, **kwargs For compatibility with other %(name)s methods. Has no effect on the computed value. Returns ------- Series or DataFrame Same type as the input, with the same index, containing the %(name)s sum. See Also -------- Series.sum : Reducing sum for Series. DataFrame.sum : Reducing sum for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 >>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64 >>> s.expanding(3).sum() 0 NaN 1 NaN 2 6.0 3 10.0 4 15.0 dtype: float64 >>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64 For DataFrame, each %(name)s sum is computed column-wise. >>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25 >>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0 """ ) _shared_docs["mean"] = dedent( """ Calculate the %(name)s mean of the values. Parameters ---------- *args Under Review. **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.mean : Equivalent method for Series. DataFrame.mean : Equivalent method for DataFrame. Examples -------- The below examples will show rolling mean calculations with window sizes of two and three, respectively. >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 >>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64 """ ) class Window(_Window): """ Provide rolling window calculations. .. versionadded:: 0.18.0 Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, `min_periods` will default to 1. Otherwise, `min_periods` will default to the size of the window. center : bool, default False Set the labels at the center of the window. win_type : str, default None Provide a window type. If ``None``, all points are evenly weighted. See the notes below for further information. on : str, optional For a DataFrame, a datetime-like column on which to calculate the rolling window, rather than the DataFrame's index. Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window. axis : int or str, default 0 closed : str, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 Returns ------- a Window or Rolling sub-classed for the particular operation See Also -------- expanding : Provides expanding transformations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width) * ``exponential`` (needs tau), center is set to None. If ``win_type=None`` all points are evenly weighted. To learn more about different window types see `scipy.signal window functions <https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions>`__. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 0.5 2 1.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicitly set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [pd.Timestamp('20130101 09:00:00'), ... pd.Timestamp('20130101 09:00:02'), ... pd.Timestamp('20130101 09:00:03'), ... pd.Timestamp('20130101 09:00:05'), ... pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 """ def validate(self): super().validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window <= 0: raise ValueError("window must be > 0 ") import_optional_dependency( "scipy", extra="Scipy is required to generate window weight." ) import scipy.signal as sig if not isinstance(self.win_type, str): raise ValueError("Invalid win_type {0}".format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError("Invalid win_type {0}".format(self.win_type)) else: raise ValueError("Invalid window {0}".format(window)) def _prep_window(self, **kwargs): """ Provide validation for our window type, return the window we have already been validated. """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return com.asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = { "kaiser": ["beta"], "gaussian": ["std"], "general_gaussian": ["power", "width"], "slepian": ["width"], "exponential": ["tau"], } if win_type in arg_map: win_args = _pop_args(win_type, arg_map[win_type], kwargs) if win_type == "exponential": # exponential window requires the first arg (center) # to be set to None (necessary for symmetric window) win_args.insert(0, None) return tuple([win_type] + win_args) return win_type def _pop_args(win_type, arg_names, kwargs): msg = "%s window requires %%s" % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _apply_window(self, mean=True, **kwargs): """ Applies a moving window of type ``window_type`` on the data. Parameters ---------- mean : bool, default True If True computes weighted mean, else weighted sum Returns ------- y : same type as input argument """ window = self._prep_window(**kwargs) center = self.center blocks, obj = self._create_blocks() block_list = list(blocks) results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, len(window)) return libwindow.roll_window( np.concatenate((arg, additional_nans)) if center else arg, window, minp, avg=mean, ) result = np.apply_along_axis(f, self.axis, values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name="window") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply_window(mean=False, **kwargs) @Substitution(name="window") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply_window(mean=True, **kwargs) class _GroupByMixin(GroupByMixin): """ Provide the groupby facilities. """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop("parent", None) # noqa groupby = kwargs.pop("groupby", None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super().__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch("count") corr = GroupByMixin._dispatch("corr", other=None, pairwise=None) cov = GroupByMixin._dispatch("cov", other=None, pairwise=None) def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object. """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, str): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : str/callable to apply name : str, optional name of this function window : int/array, default to _get_window() center : bool, default to self.center check_minp : function, default to _use_window Returns ------- y : type of input """ if center is None: center = self.center if window is None: window = self._get_window() if check_minp is None: check_minp = _use_window blocks, obj = self._create_blocks() block_list = list(blocks) index_as_array = self._get_index() results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, str): cfunc = getattr(libwindow, func, None) if cfunc is None: raise ValueError( "we do not support this function " "in libwindow.{func}".format(func=func) ) def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) # ensure we are only rolling on floats arg = ensure_float64(arg) return cfunc(arg, window, minp, index_as_array, closed, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func( np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed, ) else: def calc(x): return func( x, window, min_periods=self.min_periods, closed=self.closed ) with np.errstate(all="ignore"): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) class _Rolling_and_Expanding(_Rolling): _shared_docs["count"] = dedent( r""" The %(name)s count of any non-NaN observations inside the window. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. DataFrame.count : Count of the full DataFrame. Examples -------- >>> s = pd.Series([2, 3, np.nan, 10]) >>> s.rolling(2).count() 0 1.0 1 2.0 2 1.0 3 1.0 dtype: float64 >>> s.rolling(3).count() 0 1.0 1 2.0 2 2.0 3 2.0 dtype: float64 >>> s.rolling(4).count() 0 1.0 1 2.0 2 2.0 3 3.0 dtype: float64 """ ) def count(self): blocks, obj = self._create_blocks() # Validate the index self._get_index() window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor( result, window=window, min_periods=0, center=self.center, axis=self.axis, closed=self.closed, ).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs["apply"] = dedent( r""" The %(name)s function's apply function. Parameters ---------- func : function Must produce a single value from an ndarray input if ``raw=True`` or a single value from a Series if ``raw=False``. raw : bool, default None * ``False`` : passes each row or column as a Series to the function. * ``True`` or ``None`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. The `raw` parameter is required and will show a FutureWarning if not passed. In the future `raw` will default to False. .. versionadded:: 0.23.0 *args, **kwargs Arguments and keyword arguments to be passed into func. Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ ) def apply(self, func, raw=None, args=(), kwargs={}): from pandas import Series kwargs.pop("_level", None) window = self._get_window() offset = _offset(window, self.center) index_as_array = self._get_index() # TODO: default is for backward compat # change to False in the future if raw is None: warnings.warn( "Currently, 'apply' passes the values as ndarrays to the " "applied function. In the future, this will change to passing " "it as Series objects. You need to specify 'raw=True' to keep " "the current behaviour, and you can pass 'raw=False' to " "silence this warning", FutureWarning, stacklevel=3, ) raw = True def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) if not raw: arg = Series(arg, index=self.obj.index) return libwindow.roll_generic( arg, window, minp, index_as_array, closed, offset, func, raw, args, kwargs, ) return self._apply(f, func, args=args, kwargs=kwargs, center=False, raw=raw) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply("roll_sum", "sum", **kwargs) _shared_docs["max"] = dedent( """ Calculate the %(name)s maximum. Parameters ---------- *args, **kwargs Arguments and keyword arguments to be passed into func. """ ) def max(self, *args, **kwargs): nv.validate_window_func("max", args, kwargs) return self._apply("roll_max", "max", **kwargs) _shared_docs["min"] = dedent( """ Calculate the %(name)s minimum. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with a Series. DataFrame.%(name)s : Calling object with a DataFrame. Series.min : Similar method for Series. DataFrame.min : Similar method for DataFrame. Examples -------- Performing a rolling minimum with a window size of 3. >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64 """ ) def min(self, *args, **kwargs): nv.validate_window_func("min", args, kwargs) return self._apply("roll_min", "min", **kwargs) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply("roll_mean", "mean", **kwargs) _shared_docs["median"] = dedent( """ Calculate the %(name)s median. Parameters ---------- **kwargs For compatibility with other %(name)s methods. Has no effect on the computed median. Returns ------- Series or DataFrame Returned type is the same as the original object. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.median : Equivalent method for Series. DataFrame.median : Equivalent method for DataFrame. Examples -------- Compute the rolling median of a series with a window size of 3. >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.rolling(3).median() 0 NaN 1 NaN 2 1.0 3 2.0 4 3.0 dtype: float64 """ ) def median(self, **kwargs): return self._apply("roll_median_c", "median", **kwargs) _shared_docs["std"] = dedent( """ Calculate %(name)s standard deviation. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.std : Equivalent method for Series. DataFrame.std : Equivalent method for DataFrame. numpy.std : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in Series.std is different than the default `ddof` of 0 in numpy.std. A minimum of one period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).std() 0 NaN 1 NaN 2 0.577350 3 1.000000 4 1.000000 5 1.154701 6 0.000000 dtype: float64 >>> s.expanding(3).std() 0 NaN 1 NaN 2 0.577350 3 0.957427 4 0.894427 5 0.836660 6 0.786796 dtype: float64 """ ) def std(self, ddof=1, *args, **kwargs): nv.validate_window_func("std", args, kwargs) window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _require_min_periods(1)(self.min_periods, window) return _zsqrt( libwindow.roll_var(arg, window, minp, index_as_array, self.closed, ddof) ) return self._apply( f, "std", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs["var"] = dedent( """ Calculate unbiased %(name)s variance. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.var : Equivalent method for Series. DataFrame.var : Equivalent method for DataFrame. numpy.var : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in :meth:`Series.var` is different than the default `ddof` of 0 in :func:`numpy.var`. A minimum of 1 period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).var() 0 NaN 1 NaN 2 0.333333 3 1.000000 4 1.000000 5 1.333333 6 0.000000 dtype: float64 >>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64 """ ) def var(self, ddof=1, *args, **kwargs): nv.validate_window_func("var", args, kwargs) return self._apply( "roll_var", "var", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs[ "skew" ] = """ Unbiased %(name)s skewness. Parameters ---------- **kwargs Keyword arguments to be passed into func. """ def skew(self, **kwargs): return self._apply( "roll_skew", "skew", check_minp=_require_min_periods(3), **kwargs ) _shared_docs["kurt"] = dedent( """ Calculate unbiased %(name)s kurtosis. This function uses Fisher's definition of kurtosis without bias. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.kurt : Equivalent method for Series. DataFrame.kurt : Equivalent method for DataFrame. scipy.stats.skew : Third moment of a probability density. scipy.stats.kurtosis : Reference SciPy method. Notes ----- A minimum of 4 periods is required for the %(name)s calculation. """ ) def kurt(self, **kwargs): return self._apply( "roll_kurt", "kurt", check_minp=_require_min_periods(4), **kwargs ) _shared_docs["quantile"] = dedent( """ Calculate the %(name)s quantile. Parameters ---------- quantile : float Quantile to compute. 0 <= quantile <= 1. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.23.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. **kwargs: For compatibility with other %(name)s methods. Has no effect on the result. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.quantile : Computes value at the given quantile over all data in Series. DataFrame.quantile : Computes values at the given quantile over requested axis in DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).quantile(.4, interpolation='lower') 0 NaN 1 1.0 2 2.0 3 3.0 dtype: float64 >>> s.rolling(2).quantile(.4, interpolation='midpoint') 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 """ ) def quantile(self, quantile, interpolation="linear", **kwargs): window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, window) if quantile == 1.0: return libwindow.roll_max( arg, window, minp, index_as_array, self.closed ) elif quantile == 0.0: return libwindow.roll_min( arg, window, minp, index_as_array, self.closed ) else: return libwindow.roll_quantile( arg, window, minp, index_as_array, self.closed, quantile, interpolation, ) return self._apply(f, "quantile", quantile=quantile, **kwargs) _shared_docs[ "cov" ] = """ Calculate the %(name)s sample covariance. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self and produce pairwise output. pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. **kwargs Keyword arguments to be passed into func. """ def cov(self, other=None, pairwise=None, ddof=1, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) # GH 16058: offset window if self.is_freq_type: window = self.win_freq else: window = self._get_window(other) def _get_cov(X, Y): # GH #12373 : rolling functions error on float32 data # to avoid potential overflow, cast the data to float64 X = X.astype("float64") Y = Y.astype("float64") mean = lambda x: x.rolling( window, self.min_periods, center=self.center ).mean(**kwargs) count = (X + Y).rolling(window=window, center=self.center).count(**kwargs) bias_adj = count / (count - ddof) return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise) ) _shared_docs["corr"] = dedent( """ Calculate %(name)s correlation. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self. pairwise : bool, default None Calculate pairwise combinations of columns within a DataFrame. If `other` is not specified, defaults to `True`, otherwise defaults to `False`. Not relevant for :class:`~pandas.Series`. **kwargs Unused. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.corr : Equivalent method for Series. DataFrame.corr : Equivalent method for DataFrame. %(name)s.cov : Similar method to calculate covariance. numpy.corrcoef : NumPy Pearson's correlation calculation. Notes ----- This function uses Pearson's definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). When `other` is not specified, the output will be self correlation (e.g. all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise` set to `True`. Function will return ``NaN`` for correlations of equal valued sequences; this is the result of a 0/0 division error. When `pairwise` is set to `False`, only matching columns between `self` and `other` will be used. When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame with the original index on the first level, and the `other` DataFrame columns on the second level. In the case of missing elements, only complete pairwise observations will be used. Examples -------- The below example shows a rolling calculation with a window size of four matching the equivalent function call using :meth:`numpy.corrcoef`. >>> v1 = [3, 3, 3, 5, 8] >>> v2 = [3, 4, 4, 4, 8] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> # numpy returns a 2X2 array, the correlation coefficient >>> # is the number at entry [0][1] >>> print(fmt.format(np.corrcoef(v1[:-1], v2[:-1])[0][1])) 0.333333 >>> print(fmt.format(np.corrcoef(v1[1:], v2[1:])[0][1])) 0.916949 >>> s1 = pd.Series(v1) >>> s2 = pd.Series(v2) >>> s1.rolling(4).corr(s2) 0 NaN 1 NaN 2 NaN 3 0.333333 4 0.916949 dtype: float64 The below example shows a similar rolling calculation on a DataFrame using the pairwise option. >>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.],\ [46., 31.], [50., 36.]]) >>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7)) [[1. 0.6263001] [0.6263001 1. ]] >>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7)) [[1. 0.5553681] [0.5553681 1. ]] >>> df = pd.DataFrame(matrix, columns=['X','Y']) >>> df X Y 0 51.0 35.0 1 49.0 30.0 2 47.0 32.0 3 46.0 31.0 4 50.0 36.0 >>> df.rolling(4).corr(pairwise=True) X Y 0 X NaN NaN Y NaN NaN 1 X NaN NaN Y NaN NaN 2 X NaN NaN Y NaN NaN 3 X 1.000000 0.626300 Y 0.626300 1.000000 4 X 1.000000 0.555368 Y 0.555368 1.000000 """ ) def corr(self, other=None, pairwise=None, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) window = self._get_window(other) def _get_corr(a, b): a = a.rolling( window=window, min_periods=self.min_periods, center=self.center ) b = b.rolling( window=window, min_periods=self.min_periods, center=self.center ) return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs)) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise) ) class Rolling(_Rolling_and_Expanding): @cache_readonly def is_datetimelike(self): return isinstance( self._on, (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex) ) @cache_readonly def _on(self): if self.on is None: return self.obj.index elif isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns: from pandas import Index return Index(self.obj[self.on]) else: raise ValueError( "invalid on specified as {0}, " "must be a column (if DataFrame) " "or None".format(self.on) ) def validate(self): super().validate() # we allow rolling on a datetimelike index if (self.obj.empty or self.is_datetimelike) and isinstance( self.window, (str, ABCDateOffset, timedelta) ): self._validate_monotonic() freq = self._validate_freq() # we don't allow center if self.center: raise NotImplementedError( "center is not implemented " "for datetimelike and offset " "based windows" ) # this will raise ValueError on non-fixed freqs self.win_freq = self.window self.window = freq.nanos self.win_type = "freq" # min_periods must be an integer if self.min_periods is None: self.min_periods = 1 elif not is_integer(self.window): raise ValueError("window must be an integer") elif self.window < 0: raise ValueError("window must be non-negative") if not self.is_datetimelike and self.closed is not None: raise ValueError( "closed only implemented for datetimelike " "and offset based windows" ) def _validate_monotonic(self): """ Validate on is_monotonic. """ if not self._on.is_monotonic: formatted = self.on or "index" raise ValueError("{0} must be " "monotonic".format(formatted)) def _validate_freq(self): """ Validate & return window frequency. """ from pandas.tseries.frequencies import to_offset try: return to_offset(self.window) except (TypeError, ValueError): raise ValueError( "passed window {0} is not " "compatible with a datetimelike " "index".format(self.window) ) _agg_see_also_doc = dedent( """ See Also -------- Series.rolling DataFrame.rolling """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3).sum() A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -2.655105 0.637799 -2.135068 3 -0.971785 -0.600366 -3.280224 4 -0.214334 -1.294599 -3.227500 5 1.514216 2.028250 -2.989060 6 1.074618 5.709767 -2.322600 7 2.718061 3.850718 0.256446 8 -0.289082 2.454418 1.416871 9 0.212668 0.403198 -0.093924 >>> df.rolling(3).agg({'A':'sum', 'B':'min'}) A B 0 NaN NaN 1 NaN NaN 2 -2.655105 -0.165272 3 -0.971785 -1.340923 4 -0.214334 -1.340923 5 1.514216 -1.340923 6 1.074618 0.211596 7 2.718061 -1.647453 8 -0.289082 -1.647453 9 0.212668 -1.647453 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name="rolling") @Appender(_shared_docs["count"]) def count(self): # different impl for freq counting if self.is_freq_type: return self._apply("roll_count", "count") return super().count() @Substitution(name="rolling") @Appender(_shared_docs["apply"]) def apply(self, func, raw=None, args=(), kwargs={}): return super().apply(func, raw=raw, args=args, kwargs=kwargs) @Substitution(name="rolling") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_rolling_func("sum", args, kwargs) return super().sum(*args, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["max"]) def max(self, *args, **kwargs): nv.validate_rolling_func("max", args, kwargs) return super().max(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["min"]) def min(self, *args, **kwargs): nv.validate_rolling_func("min", args, kwargs) return super().min(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_rolling_func("mean", args, kwargs) return super().mean(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["median"]) def median(self, **kwargs): return super().median(**kwargs) @Substitution(name="rolling") @Appender(_shared_docs["std"]) def std(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("std", args, kwargs) return super().std(ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["var"]) def var(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("var", args, kwargs) return super().var(ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["skew"]) def skew(self, **kwargs): return super().skew(**kwargs) _agg_doc = dedent( """ Examples -------- The example below will show a rolling calculation with a window size of four matching the equivalent function call using `scipy.stats`. >>> arr = [1, 2, 3, 4, 999] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> import scipy.stats >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr[1:], bias=False))) 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64 """ ) @Appender(_agg_doc) @Substitution(name="rolling") @Appender(_shared_docs["kurt"]) def kurt(self, **kwargs): return super().kurt(**kwargs) @Substitution(name="rolling") @Appender(_shared_docs["quantile"]) def quantile(self, quantile, interpolation="linear", **kwargs): return super().quantile( quantile=quantile, interpolation=interpolation, **kwargs ) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["cov"]) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super().cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["corr"]) def corr(self, other=None, pairwise=None, **kwargs): return super().corr(other=other, pairwise=pairwise, **kwargs) class RollingGroupby(_GroupByMixin, Rolling): """ Provide a rolling groupby implementation. .. versionadded:: 0.18.1 """ @property def _constructor(self): return Rolling def _gotitem(self, key, ndim, subset=None): # we are setting the index on the actual object # here so our index is carried thru to the selected obj # when we do the splitting for the groupby if self.on is not None: self._groupby.obj = self._groupby.obj.set_index(self._on) self.on = None return super()._gotitem(key, ndim, subset=subset) def _validate_monotonic(self): """ Validate that on is monotonic; we don't care for groupby.rolling because we have already validated at a higher level. """ pass class Expanding(_Rolling_and_Expanding): """ Provide expanding transformations. .. versionadded:: 0.18.0 Parameters ---------- min_periods : int, default 1 Minimum number of observations in window required to have a value (otherwise result is NA). center : bool, default False Set the labels at the center of the window. axis : int or str, default 0 Returns ------- a Window sub-classed for the particular operation See Also -------- rolling : Provides rolling window calculations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.expanding(2).sum() B 0 NaN 1 1.0 2 3.0 3 3.0 4 7.0 """ _attributes = ["min_periods", "center", "axis"] def __init__(self, obj, min_periods=1, center=False, axis=0, **kwargs): super().__init__(obj=obj, min_periods=min_periods, center=center, axis=axis) @property def _constructor(self): return Expanding def _get_window(self, other=None): """ Get the window length over which to perform some operation. Parameters ---------- other : object, default None The other object that is involved in the operation. Such an object is involved for operations like covariance. Returns ------- window : int The window length. """ axis = self.obj._get_axis(self.axis) length = len(axis) + (other is not None) * len(axis) other = self.min_periods or -1 return max(length, other) _agg_see_also_doc = dedent( """ See Also -------- DataFrame.expanding.aggregate DataFrame.rolling.aggregate DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name="expanding") @Appender(_shared_docs["count"]) def count(self, **kwargs): return super().count(**kwargs) @Substitution(name="expanding") @Appender(_shared_docs["apply"]) def apply(self, func, raw=None, args=(), kwargs={}): return super().apply(func, raw=raw, args=args, kwargs=kwargs) @Substitution(name="expanding") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_expanding_func("sum", args, kwargs) return super().sum(*args, **kwargs) @Substitution(name="expanding") @Appender(_doc_template) @Appender(_shared_docs["max"]) def max(self, *args, **kwargs): nv.validate_expanding_func("max", args, kwargs) return super().max(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["min"]) def min(self, *args, **kwargs): nv.validate_expanding_func("min", args, kwargs) return super().min(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_expanding_func("mean", args, kwargs) return super().mean(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["median"]) def median(self, **kwargs): return super().median(**kwargs) @Substitution(name="expanding") @Appender(_shared_docs["std"]) def std(self, ddof=1, *args, **kwargs): nv.validate_expanding_func("std", args, kwargs) return super().std(ddof=ddof, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["var"]) def var(self, ddof=1, *args, **kwargs): nv.validate_expanding_func("var", args, kwargs) return super().var(ddof=ddof, **kwargs) @
Substitution(name="expanding")
pandas.util._decorators.Substitution
#%% #importing... import yfinance as yf from sklearn.preprocessing import MinMaxScaler import pandas as pd from datetime import datetime as dt from sklearn.model_selection import train_test_split import numpy as np import matplotlib.pyplot as plt Scaler = MinMaxScaler(feature_range=(0,1)) from sklearn.linear_model import LinearRegression #imports for model from keras.models import Sequential from keras.layers import LSTM, Dense, Dropout from sklearn.model_selection import train_test_split import math from sklearn.metrics import mean_squared_error,accuracy_score import sys #sys.path.append('../DLpart/') #from PredictStock import Technicals import datetime class LSTMPrediction: def __init__(self,symbol,look_back): self.symbol = symbol self.timeframe = look_back def fetchFromYahoo(self): yobj = yf.Ticker(self.symbol) tickerDict = yobj.info #print(yobj.info.keys()) df = yobj.history(period=self.timeframe) df = df.drop(['Stock Splits','Dividends'],axis=1) df.index = pd.to_datetime(df.index) #print('\n'+tickerDict['longBusinessSummary']) print(df.tail()) plt.plot(df['Close']) return df,tickerDict def get_train_test_dataset(self,df,training_size=0.70,testing_size=0.30): try: print('this will return a training and test data') print('\n'+'Recent Data' + '\n',df.tail()) print('MEAN CLOSE: ',df['Close'].mean()) print('MAX CLOSE: ',df['Close'].max()) print('MIN CLOSE: ',df['Close'].min()) close_price = df.reset_index()['Close'] close_price = Scaler.fit_transform(np.array(close_price).reshape(-1,1)) train_size = int(len(close_price)*training_size) test_size = int(len(close_price*testing_size)) train_data = close_price[0:train_size,:] test_data = close_price[train_size:len(close_price),:1] return train_data,test_data except ValueError: print('Try a different Scrip') def prepare_data_for_LSTM_krish(self,dataset,timestep=1): dataX, dataY = [], [] for i in range(len(dataset)- timestep-1): record = dataset[i:(i+timestep),0] dataX.append(record) dataY.append(dataset[i + timestep, 0]) return np.array(dataX), np.array(dataY) def prepare_data_for_LSTM_kaggle(self,dataset): dataX = [] dataY = [] for i in range(60, len(dataset)): dataX.append(dataset[i-60:i, 0]) dataY.append(dataset[i, 0]) if i<=61 : print(dataX) print(dataY) print() dataX, dataY = np.array(dataX), np.array(dataY) return dataX, dataY def reshape_for_LSTM(self,train_data, test_data): train_data = train_data.reshape(train_data.shape[0],train_data.shape[1],1) test_data = test_data.reshape(test_data.shape[0],test_data.shape[1],1) return train_data, test_data def create_LSTM_model(self,lstm_layers_after_main=0,lstm_units=32,shape=(),loss='mean_squared_error',optimizer='adam'): dropout = 0.0 model = Sequential() model.add(LSTM(lstm_units,return_sequences=True,input_shape=shape)) if lstm_layers_after_main > 2 and lstm_layers_after_main < 5: dropout = 0.4 elif lstm_layers_after_main <= 2: dropout = 0.1 for i in range(lstm_layers_after_main): model.add(LSTM(lstm_units,return_sequences=True)) if i % 2 == 0: continue model.add(Dropout(dropout)) model.add(LSTM(lstm_units)) model.add(Dense(1)) print('Dropping out ' + str(dropout*100) + '%') model.summary() model.compile(loss=loss,optimizer=optimizer) return model class LinearRegPrediction: def get_preds_lin_reg(self, df, target_col='Close'): regressor = LinearRegression() x = df.drop(target_col, axis=1) y = df[target_col] xtrain, xtest, ytrain, ytest = train_test_split(x,y,test_size=0.1, random_state=0) regressor.fit(xtrain, ytrain) y_pred = regressor.predict(xtest) ytest = np.array(ytest).reshape(-1,1) y_pred = np.array(y_pred).reshape(-1,1) print(regressor.score(ytest,y_pred)) #pred_min = min(y_pred) #print(pred_min) valid = pd.DataFrame() valid['Valid'] = ytest valid['Prediction'] = y_pred print('Standard Deviation: ',np.std(y_pred)) print('RMSE: ' , np.sqrt(mean_squared_error(ytest,y_pred))) class Technicals: def __init__(self,symbol): self.symbol = symbol def EMA(self,timeframe=9,on_field='Close',plot=False, period = "1y", interval = "1d"): df = yf.Ticker(self.symbol).history(period=period, interval=interval) df = df.drop(['Stock Splits','Dividends'],axis=1) df.index = pd.to_datetime(df.index) EMA = df[on_field].ewm(span=timeframe, adjust=False).mean() df_new = df[[on_field]] df_new.reset_index(level=0, inplace=True) df_new.columns=['ds','y'] if plot == True: plt.figure(figsize=(16,8)) plt.plot(df_new.ds, df_new.y, label='price') plt.plot(df_new.ds, EMA, label='EMA line',color='red') plt.show() #print('Latest EMA on '+on_field+': ',EMA[len(EMA)-1],'\n') #return EMA return EMA[len(EMA)-1] def MACD(self,on_field='Close',plot=False): df = yf.Ticker(self.symbol).history(period="1y") df = df.drop(['Stock Splits','Dividends'],axis=1) df.index = pd.to_datetime(df.index) df_new = df[[on_field]] df_new.reset_index(level=0, inplace=True) df_new.columns=['ds','y'] #df_new.head() EMA12 = df_new.y.ewm(span=12, adjust=False).mean() EMA26 = df_new.y.ewm(span=26, adjust=False).mean() MACD = EMA12-EMA26 EMA9 = MACD.ewm(span=9, adjust=False).mean() #plt.plot(df_new.ds, df_new.y, label='price') if plot == True: plt.figure(figsize=(16,8)) plt.plot(df_new.ds, MACD, label=self.symbol+' MACD', color='blue') plt.plot(df_new.ds, EMA9, label=self.symbol+' Signal Line', color='red') plt.legend(loc='upper left') plt.show() #print('\n') #print(EMA9[len(EMA9)-1], MACD[len(MACD)-1]) if MACD[len(MACD)-1] > MACD[len(MACD)-2]: return True else: return False # if MACD[len(MACD)-1]-EMA9[len(EMA9)-1] <= 4 and MACD[len(MACD)-1]-EMA9[len(EMA9)-1] >= 0: # print('ALERT: MACD crossover about to occur, Sell side') # elif MACD[len(MACD)-1]-EMA9[len(EMA9)-1] >= -4 and MACD[len(MACD)-1]-EMA9[len(EMA9)-1] <= 0: # print('ALERT: MACD crossover about to occur, Buy side') # else: # print('No MACD crossovers') #return EMA9[len(EMA9)-1], MACD[len(MACD)-1] #latest value of EMA9 line and MACD value def RSI_backUpCode(self, period = 14): # If the RSI value is over 70, the security is considered overbought, if the value is lower than 30, # it is considered to be oversold # Using a conservative approach, sell when the RSI value intersects the overbought line # buy when the value intersects the oversold line (for blue chip stocks) yobj = yf.Ticker(self.symbol) df = yobj.history(period="1y") df = df.drop(['Stock Splits','Dividends'],axis=1) df_index = pd.to_datetime(df.index) change = [] gain = [] loss = [] AvgGain = [] AvgLoss = [] RS = [] RSI = [] df_new = pd.DataFrame(df['Close'], index=df.index) change.insert(0,0) #change calc for i in range(1,len(df_new)): diff = df_new.Close[i] - df_new.Close[i-1] change.append(diff) df_new['Change'] = change #Gain and loss for i in range(len(df_new)): if df_new.Change[i] > 0: gain.append(df_new.Change[i]) loss.append(0) elif df_new.Change[i] < 0: loss.append(abs(df_new.Change[i])) gain.append(0) else: gain.append(0) loss.append(0) df_new['Gain'] = gain df_new['Loss'] = loss #average gain/loss averageSum_forgain = 0 averageSum_forloss = 0 averageGain = 0 averageLoss = 0 count = 1 for i in range(0,len(df_new)): averageSum_forgain = averageSum_forgain + df_new.Gain[i] averageGain = averageSum_forgain/count AvgGain.insert(i,round(averageGain,4)) averageSum_forloss = averageSum_forloss + df_new.Loss[i] averageLoss = averageSum_forloss/count AvgLoss.insert(i,round(averageLoss,4)) count+=1 if averageGain == 0 or averageLoss == 0: RS.append(0.0) else: RS.append(averageGain/averageLoss) df_new['AvgGain'] = AvgGain df_new['AvgLoss'] = AvgLoss df_new['RS'] = RS rsi = 0 for i in range(0,len(df_new)): rsi = 100 - 100/(1+df_new.RS[i]) RSI.append(round(rsi,2)) df_new['RSI'] = RSI plt.figure(figsize=(16,8)) plt.plot(df_index[len(df_new)-period:len(df_new)],df_new.iloc[len(df_new)-period:len(df_new),-1], label='RSI value') plt.legend(loc='upper left') plt.show() print('\nCurrent RSI value: ' , df_new['RSI'][-1]) Latest_RSI_value = float(df_new['RSI'][-1]) return df_new, Latest_RSI_value def RSI(self,period = 14, plot = False): df = yf.Ticker(self.symbol).history(period="1y") df = df.drop(['Stock Splits','Dividends'],axis=1) df_index = pd.to_datetime(df.index) change = [] gain = [] loss = [] AvgGain = [] AvgLoss = [] RS = [] RSI = [] df_new = pd.DataFrame(df['Close'], index=df.index) change.insert(0,0) #change calc for i in range(1,len(df_new)): diff = df_new.Close[i] - df_new.Close[i-1] change.append(diff) df_new['Change'] = change #Gain and loss for i in range(len(df_new)): if df_new.Change[i] > 0: gain.append(df_new.Change[i]) loss.append(0) elif df_new.Change[i] < 0: loss.append(abs(df_new.Change[i])) gain.append(0) else: gain.append(0) loss.append(0) df_new['Gain'] = gain df_new['Loss'] = loss #average gain/loss averageSum_forgain = 0 averageSum_forloss = 0 averageGain = 0 averageLoss = 0 count = 1 for i in range(0,len(df_new)): averageSum_forgain = averageSum_forgain + df_new.Gain[i] averageGain = averageSum_forgain/count AvgGain.insert(i,averageGain) averageSum_forloss = averageSum_forloss + df_new.Loss[i] averageLoss = averageSum_forloss/count AvgLoss.insert(i,averageLoss) count+=1 if averageGain == 0 or averageLoss == 0: RS.append(0.0) else: RS.append(averageGain/averageLoss) df_new['AvgGain'] = AvgGain df_new['AvgLoss'] = AvgLoss df_new['RS'] = RS rsi = 0 for i in range(len(df)-14,len(df)): rsi = 100 - 100/(1+df_new.RS[i]) RSI.append(round(rsi,2)) #df_new['RSI'] = RSI if plot == True: plt.figure(figsize=(16,8)) plt.plot(df_index[len(df_new)-period:len(df_new)],RSI, label='RSI value') plt.legend(loc='upper left') plt.show() print('\nCurrent RSI value: ' , RSI[len(RSI)-1]) Latest_RSI_value = RSI[-1] Previous_day_rsi_value = RSI[-2] if (Previous_day_rsi_value < Latest_RSI_value) and (Latest_RSI_value >= 40) and (Latest_RSI_value <= 60): return True else: return False #return df_new, RSI #return RSI #return Latest_RSI_value def BollingerBands(self, degree_of_freedom = 20, period = 20, on_field = 'Close'): yobj = yf.Ticker(self.symbol) df = yobj.history(period="1mo") df = df.drop(['Stock Splits','Dividends'],axis=1) df_index = pd.to_datetime(df.index) #print(df[on_field].rolling(window = period).sum()/period) #SMA calculated MA = df[on_field].rolling(window = period).sum()/period typical_price = [] #printing SMA #printing BOLU BOLU = [] BOLD = [] for i in range(len(df)-period,len(df)): #typical price = (high+low+close)/3 typical_price.append((df.iloc[i,1] + df.iloc[i,2] + df.iloc[i,3]) / 3) typical_price = pd.Series(typical_price) for i in range(len(typical_price)): std = 2*( math.sqrt( math.pow(i-typical_price.mean(),2) / len(typical_price) ) ) BOLU.append(typical_price[i] + std) BOLD.append(typical_price[i] - std) # BOLU = pd.Series(BOLU) # BOLD = pd.Series(BOLD) print("Middle value: " + str(MA.iloc[-1])) print("Upper Band: " + str(BOLU[-1])) print("Lower Band: " + str(BOLD[-1])) #general analysis class StockListAnalysis: def __init__(self): self.niftyColumns = ['SYMBOL','OPEN','HIGH','LOW','PREVCLOSE','LTP','TODAYS_CHANGE', 'CHANGE_%','VOLUME','VALUE','52WH','52WL','1Y_CHANGE%','1M_CHANGE%'] self.niftySectorColumns = ['INDEX','CURRENT','%CHANGE','OPEN','HIGH','LOW','PREVCLOSE','PREVDAY','1W_CLOSE','1M_CLOSE','1Y_CLOSE', '52WH','52WL','1Y_CHANGE%','1M_CHANGE%'] try: self.nifty_100_data = pd.read_csv('../PreFedIndexData/MW-NIFTY-100-'+datetime.datetime.strftime(datetime.datetime.today(),"%d-%b-%Y")+'.csv', names=self.niftyColumns,header=0) self.nifty_sector_data = pd.read_csv('../PreFedIndexData/MW-All-Indices-'+datetime.datetime.strftime(datetime.datetime.today(),"%d-%b-%Y")+'.csv', names=self.niftySectorColumns, header=0) except FileNotFoundError: self.nifty_100_data = pd.read_csv('PreFedIndexData/MW-NIFTY-100-'+'12-Jun-2021'+'.csv', names=self.niftyColumns,header=0) self.nifty_sector_data = pd.read_csv('PreFedIndexData/MW-All-Indices-'+'12-Jun-2021'+'.csv', names=self.niftySectorColumns, header=0) def AnalyzeNiftySectors(self): print('\nBest Sectors to invest in right now...') #FILTERING NIFTY SECTORS ABOVE NIFTY_SECTORS = pd.DataFrame(self.nifty_sector_data.iloc[[13,14,15,17,18,19,20,21,22,23,24,44,45],:].values, columns=self.niftySectorColumns) NIFTY_SECTORS = NIFTY_SECTORS.reset_index(drop=True) #NIFTY_SECTORS.columns Highest_1Y_return_sectors = [] Highest_1M_return_sectors = [] for i in range(len(NIFTY_SECTORS)): if float(NIFTY_SECTORS['1Y_CHANGE%'][i]) > 50: #print(NIFTY_SECTORS['INDEX'][i]) Highest_1Y_return_sectors.append([NIFTY_SECTORS['INDEX'][i],NIFTY_SECTORS['1Y_CHANGE%'][i]]) if float(NIFTY_SECTORS['1M_CHANGE%'][i]) > 10: #print(NIFTY_SECTORS['INDEX'][i]) Highest_1M_return_sectors.append([NIFTY_SECTORS['INDEX'][i],NIFTY_SECTORS['1M_CHANGE%'][i]]) return pd.DataFrame(Highest_1Y_return_sectors, columns=['SECTOR','365_DAY_RETURN%']) , pd.DataFrame(Highest_1M_return_sectors, columns=['SECTOR','30_DAY_RETURN%']) def SwingTrade(self): #FILTERING NIFTY 100 nifty_filtered = [] for i in range(1,len(self.nifty_100_data)): try: if (float(self.nifty_100_data['1Y_CHANGE%'][i])>50) and (float(self.nifty_100_data['1M_CHANGE%'][i])>5): #self.nifty_100_data['1Y_CHANGE%'][i] #print(self.nifty_100_data['SYMBOL'][i]) nifty_filtered.append([self.nifty_100_data['SYMBOL'][i],self.nifty_100_data['1M_CHANGE%'][i]]) except: continue nifty_filtered = pd.DataFrame(nifty_filtered, columns = ['SYMBOL','1_MONTH_RETURN%']) #SUGGESTIONS suggestions = [] print('\n Please wait this might take a few seconds... \n') for i in range(len(nifty_filtered)): LTP = round(float(yf.Ticker(nifty_filtered['SYMBOL'][i]+'.NS').history(period='1d')['Close'][-1]),ndigits=2) suggestions.append([nifty_filtered['SYMBOL'][i],nifty_filtered['1_MONTH_RETURN%'][i],[Technicals(nifty_filtered['SYMBOL'][i] + '.NS').RSI()],[Technicals(nifty_filtered['SYMBOL'][i] + '.NS').EMA(timeframe=50)<LTP],[Technicals(nifty_filtered['SYMBOL'][i] + '.NS').MACD()],LTP,round(Technicals(nifty_filtered['SYMBOL'][i] + '.NS').EMA(timeframe=20, interval= "60m"),ndigits=-1)]) suggestions =
pd.DataFrame(suggestions, columns = ['SYMBOL','1_MONTH_RETURN%','GOOD_RSI_VALUE','LTP_ABOVE_50_EMA','GOOD_MACD','LAST_TRADED_PRICE_₹','20_EMA'])
pandas.DataFrame
import os import shutil from attrdict import AttrDict import numpy as np import pandas as pd from scipy.stats import gmean from deepsense import neptune from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split, KFold, StratifiedKFold from . import pipeline_config as cfg from .pipelines import PIPELINES from .hyperparameter_tuning import RandomSearchTuner, HyperoptTuner, SkoptTuner, set_params from .utils import init_logger, read_params, set_seed, create_submission, verify_submission, calculate_rank, \ read_oof_predictions, parameter_eval set_seed(cfg.RANDOM_SEED) logger = init_logger() ctx = neptune.Context() params = read_params(ctx, fallback_file='./configs/neptune.yaml') class PipelineManager: def train(self, pipeline_name, dev_mode): train(pipeline_name, dev_mode) def evaluate(self, pipeline_name, dev_mode): evaluate(pipeline_name, dev_mode) def predict(self, pipeline_name, dev_mode, submit_predictions): predict(pipeline_name, dev_mode, submit_predictions) def train_evaluate_cv(self, pipeline_name, model_level, dev_mode): train_evaluate_cv(pipeline_name, model_level, dev_mode) def train_evaluate_predict_cv(self, pipeline_name, model_level, dev_mode, submit_predictions): train_evaluate_predict_cv(pipeline_name, model_level, dev_mode, submit_predictions) def train(pipeline_name, dev_mode): logger.info('TRAINING') if bool(params.clean_experiment_directory_before_training) and os.path.isdir(params.experiment_directory): logger.info('Cleaning experiment_directory...') shutil.rmtree(params.experiment_directory) tables = _read_data(dev_mode) logger.info('Shuffling and splitting into train and test...') train_data_split, valid_data_split = train_test_split(tables.train_set, test_size=params.validation_size, random_state=cfg.RANDOM_SEED, shuffle=params.shuffle) logger.info('Target mean in train: {}'.format(train_data_split[cfg.TARGET_COLUMNS].mean())) logger.info('Target mean in valid: {}'.format(valid_data_split[cfg.TARGET_COLUMNS].mean())) logger.info('Train shape: {}'.format(train_data_split.shape)) logger.info('Valid shape: {}'.format(valid_data_split.shape)) train_data = {'main_table': {'X': train_data_split.drop(cfg.TARGET_COLUMNS, axis=1), 'y': train_data_split[cfg.TARGET_COLUMNS].values.reshape(-1), 'X_valid': valid_data_split.drop[cfg.TARGET_COLUMNS].values.reshape(-1), 'y_valid': valid_data_split[cfg.TARGET_COLUMNS].values.reshape(-1), }, 'application': {'X': tables.application}, 'bureau_balance': {'X': tables.bureau_balance}, 'bureau': {'X': tables.bureau}, 'credit_card_balance': {'X': tables.credit_card_balance}, 'installments_payments': {'X': tables.installments_payments}, 'pos_cash_balance': {'X': tables.pos_cash_balance}, 'previous_application': {'X': tables.previous_application}, } pipeline = PIPELINES[pipeline_name](config=cfg.SOLUTION_CONFIG, train_mode=True) pipeline.clean_cache() logger.info('Start pipeline fit and transform') pipeline.fit_transform(train_data) pipeline.clean_cache() def evaluate(pipeline_name, dev_mode): logger.info('EVALUATION') logger.info('Reading data...') tables = _read_data(dev_mode) logger.info('Shuffling and splitting to get validation split...') _, valid_data_split = train_test_split(tables.train_set, test_size=params.validation_size, random_state=cfg.RANDOM_SEED, shuffle=params.shuffle) logger.info('Target mean in valid: {}'.format(valid_data_split[cfg.TARGET_COLUMNS].mean())) logger.info('Valid shape: {}'.format(valid_data_split.shape)) y_true = valid_data_split[cfg.TARGET_COLUMNS].values eval_data = {'main_table': {'X': valid_data_split.drop(cfg.TARGET_COLUMNS, axis=1), 'y': None, }, 'application': {'X': tables.application}, 'bureau_balance': {'X': tables.bureau_balance}, 'bureau': {'X': tables.bureau}, 'credit_card_balance': {'X': tables.credit_card_balance}, 'installments_payments': {'X': tables.installments_payments}, 'pos_cash_balance': {'X': tables.pos_cash_balance}, 'previous_application': {'X': tables.previous_application}, } pipeline = PIPELINES[pipeline_name](config=cfg.SOLUTION_CONFIG, train_mode=False) pipeline.clean_cache() logger.info('Start pipeline transform') output = pipeline.transform(eval_data) pipeline.clean_cache() y_pred = output['prediction'] logger.info('Calculating ROC_AUC on validation set') score = roc_auc_score(y_true, y_pred) logger.info('ROC_AUC score on validation is {}'.format(score)) ctx.channel_send('ROC_AUC', 0, score) def predict(pipeline_name, dev_mode, submit_predictions): logger.info('PREDICTION') tables = _read_data(dev_mode) test_data = {'main_table': {'X': tables.test_set, 'y': None, }, 'application': {'X': tables.application}, 'bureau_balance': {'X': tables.bureau_balance}, 'bureau': {'X': tables.bureau}, 'credit_card_balance': {'X': tables.credit_card_balance}, 'installments_payments': {'X': tables.installments_payments}, 'pos_cash_balance': {'X': tables.pos_cash_balance}, 'previous_application': {'X': tables.previous_application}, } pipeline = PIPELINES[pipeline_name](config=cfg.SOLUTION_CONFIG, train_mode=False) pipeline.clean_cache() logger.info('Start pipeline transform') output = pipeline.transform(test_data) pipeline.clean_cache() y_pred = output['prediction'] if not dev_mode: logger.info('creating submission file...') submission = create_submission(tables.test_set, y_pred) logger.info('verifying submission...') sample_submission =
pd.read_csv(params.sample_submission_filepath)
pandas.read_csv
""" Tests for Series timezone-related methods """ from datetime import datetime from dateutil.tz import tzoffset import numpy as np import pytest from pandas import Series import pandas._testing as tm from pandas.core.indexes.datetimes import date_range class TestSeriesTimezones: def test_dateutil_tzoffset_support(self): values = [188.5, 328.25] tzinfo = tzoffset(None, 7200) index = [ datetime(2012, 5, 11, 11, tzinfo=tzinfo), datetime(2012, 5, 11, 12, tzinfo=tzinfo), ] series = Series(data=values, index=index) assert series.index.tz == tzinfo # it works! #2443 repr(series.index[0]) @pytest.mark.parametrize("copy", [True, False]) @pytest.mark.parametrize( "method, tz", [["tz_localize", None], ["tz_convert", "Europe/Berlin"]] ) def test_tz_localize_convert_copy_inplace_mutate(self, copy, method, tz): # GH 6326 result = Series( np.arange(0, 5), index=
date_range("20131027", periods=5, freq="1H", tz=tz)
pandas.core.indexes.datetimes.date_range
from django.shortcuts import render from django.http import HttpResponse from django.views import View import pytz import numpy as np from datetime import datetime, time import pandas as pd import os, subprocess, psutil from django.conf.urls.static import static from . forms import SubmitTickerSymbolForm BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #points to static folder class CommandCenterView(View): def __init__(self): self.the_form = SubmitTickerSymbolForm() self.month_year = datetime.now().strftime('%d | %B | %Y') def contextRender(self, request,*args,**kwargs): '''Common context renderer for the CommandCenterView''' context = { "title": "Command center", "form": self.the_form, "month_year": self.month_year, "twsRunning": kwargs['msg'], } return render(request, "ib/commandCenter.html", context) def get(self, request, *args, **kwargs): t_msg = "Keep up the good work :)" return self.contextRender(request\ ,msg=t_msg) def post(self, request, *args, **kwargs): form = SubmitTickerSymbolForm(request.POST) # launch trader work station(TWS) if request.method == 'POST' and 'launchTws' in request.POST.keys(): if "tws.exe" in (p.name() for p in psutil.process_iter()): t_msg = "TWS is running..." return self.contextRender(request\ ,msg=t_msg) else: subprocess.Popen(['C:\\Jts\\tws.exe']) t_msg = "Launching TWS..." return self.contextRender(request\ ,msg=t_msg) #add a ticker to forex list elif request.method == 'POST' and 'forexQuote0' in request.POST.keys(): fName = "static\\csv\\forexWatchList.csv" csvPathForex = os.path.join(BASE_DIR, fName ) forex_ticker = form.data['tickerSymbol'].upper() columns = ['ticker', 'pid', 'clientid'] emptydf = pd.DataFrame(columns=columns) try: df = pd.read_csv(csvPathForex) except: emptydf.to_csv(csvPathForex, sep=',', index=False) df = pd.read_csv(csvPathForex) client_id = [i for i in range(20, 25) if i not in df['clientid'].values ][0] if forex_ticker in df['ticker'].values: t_msg = "FAILED! "+forex_ticker+ " is already in the STOCK list" return self.contextRender(request\ ,msg=t_msg) else: insertPoint = len(df['ticker'].values) df.loc[insertPoint, 'ticker'] = forex_ticker # df.loc is the trick to add to eend of row df.loc[insertPoint, 'clientid'] = client_id df.to_csv(csvPathForex, sep=',', index=False) t_msg = " Added " + forex_ticker+ " to FOREX list" return self.contextRender(request\ ,msg=t_msg) #add a ticker to stock list elif request.method == 'POST' and 'stockQuote0' in request.POST.keys(): fName = "static\\csv\\stockWatchList.csv" csvPathStock = os.path.join(BASE_DIR, fName ) stock_ticker = form.data['tickerSymbol'].upper() columns = ['ticker', 'pid', 'clientid'] emptydf = pd.DataFrame(columns=columns) try: df = pd.read_csv(csvPathStock) except: emptydf.to_csv(csvPathStock, sep=',', index=False) df = pd.read_csv(csvPathStock) # insertPoint = len([i for i in df['ticker'].values if isinstance(i, str)]) client_id = [i for i in range(5, 20) if i not in df['clientid'].values ][0] if stock_ticker in df['ticker'].values: t_msg = "FAILED! "+stock_ticker+ " is already in the STOCK list" return self.contextRender(request\ ,msg=t_msg) else: #create emty csv to deal with file not found error fName = "static\\csv\\realtimeData\\" + stock_ticker + "_raw_realtime_ib.csv" csvPath = os.path.join(BASE_DIR, fName ) # original data columns = ['Time', 'Open', 'High', 'Low', 'Close'] try: if datetime.fromtimestamp(os.path.getmtime(csvPath)).date() < \ datetime.now(tz=pytz.timezone('US/Eastern')).date(): emptyDf = pd.DataFrame(columns=columns) emptyDf.to_csv(csvPath, sep=',', index=False) except: emptyDf =
pd.DataFrame(columns=columns)
pandas.DataFrame
# 1. Import packages from __future__ import unicode_literals import numpy as np import pandas as pd import sys import os import gensim from tqdm import tqdm from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Activation import logging import re from utils.stemming import stemming_row from utils.tokens import word_tokens from utils.dictionary import create_dict from utils.tfidf import tfidf from utils.longest import longest_question from utils.distance import distance logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',level=logging.INFO) # 2. User setting 1: Import data # Important: data needs to be stored in directory 'data' in parent folder of current working directory path = os.getcwd() os.chdir(path) train_df = pd.read_csv("data/train_data.csv", delimiter=',') test_df = pd.read_csv("data/test_data.csv", delimiter=',') train_duplicate = pd.read_csv("data/train_labels.csv", delimiter=',') #questions = list(train_df['question1'].values.astype('U')) + list(train_df['question2'].values.astype('U')) # -------------------------------------------- SECTION 2 # As you see, we start over with `train_df` in TFIDF print('question1: ', train_df['question1']) def filter(text): text = str(text) text = text.lower() # Clean the text text = re.sub(r"[^A-Za-z0-9^,!.\/'+-=]", " ", text) text = re.sub(r"what's", "what is ", text) text = re.sub(r"\'s", " ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", "cannot ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"i'm", "i am ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r",", " ", text) text = re.sub(r"\.", " ", text) text = re.sub(r"!", " ! ", text) text = re.sub(r"\/", " ", text) text = re.sub(r"\^", " ^ ", text) text = re.sub(r"\+", " + ", text) text = re.sub(r"\-", " - ", text) text = re.sub(r"\=", " = ", text) text = re.sub(r"'", " ", text) text = re.sub(r"(\d+)(k)", r"\g<1>000", text) text = re.sub(r":", " : ", text) text = re.sub(r" e g ", " eg ", text) text = re.sub(r" b g ", " bg ", text) text = re.sub(r" u s ", " american ", text) text = re.sub(r"\0s", "0", text) text = re.sub(r" 9 11 ", "911", text) text = re.sub(r"e - mail", "email", text) text = re.sub(r"j k", "jk", text) text = re.sub(r"\s{2,}", " ", text) return text train_df['question1'] = [filter(question1) for question1 in train_df['question1']] train_df['question2'] = [filter(question2) for question2 in train_df['question2']] test_df['question1'] = [filter(question1) for question1 in test_df['question1']] test_df['question2'] = [filter(question2) for question2 in test_df['question2']] # 7. TF-IDF train_df['q1_feats'] = tfidf(train_df['question1']) train_df['q2_feats'] = tfidf(train_df['question2']) test_df['q1_feats'] = tfidf(test_df['question1']) test_df['q2_feats'] = tfidf(test_df['question2']) # 8. Train set train_longest = longest_question(train_df['q1_feats'], train_df['q2_feats']) test_longest = longest_question(test_df['q1_feats'], test_df['q2_feats']) train_questions1 = sequence.pad_sequences(train_df['q1_feats'], train_longest) train_questions2 = sequence.pad_sequences(train_df['q2_feats'], train_longest) test_questions1 = sequence.pad_sequences(test_df['q1_feats'], test_longest) test_questions2 = sequence.pad_sequences(test_df['q2_feats'], test_longest) train_distances = distance(train_questions1, train_questions2) test_distances = distance(test_questions1, test_questions2) model = Sequential() model.add(Dense(64, input_dim=1, activation='relu')) model.add(Dense(16, activation='relu')) model.add(Dense(16, activation='relu')) model.add(Dense(16, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) #print('distances: ', distances) model.fit(train_distances, train_duplicate['is_duplicate'], epochs=10, batch_size=32) predictions = model.predict(test_distances, verbose=1) rounded = [int(round(x[0])) for x in predictions] submission_df =
pd.DataFrame(index=test_df.test_id, columns=['is_duplicate'], dtype=np.uint)
pandas.DataFrame
import dash import dash_table import pandas as pd import dash_core_components as dcc import dash_html_components as html import plotly.graph_objs as go # Read data from a csv z_data = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv') external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server app.config.suppress_callback_exceptions = False tab_selected_style = { 'backgroundColor': '#119DFF', 'color': 'white' } indata = pd.read_csv('input.txt', delim_whitespace=True, escapechar='#') indata.rename(columns=lambda x: x.strip(), inplace=True) outdata =
pd.read_csv('output.txt', delim_whitespace=True, escapechar='#')
pandas.read_csv
""" Author: <NAME> Date: 6th/July/2020 Copyright: <NAME>, 2020 email: <EMAIL> website: https://johdev.com """ import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt import joblib class ModelGenerator(object): """A General Model Generator Class to perform following opreation: * Add Model as a list into the Generator. * Perform Cross Validation process to calculate the MSE(Mean Square Error). * Select the model from the list which perform the best MSE result. * Perform the prediction for the test data based on the best performance model. Parameters ---------------- - models: List, a list to accept Model instance from Scikit-Learn. - data: Class, a data preprocessing class from `preprocessing.py` - best_model = None - predictions = None - mean_mse = {} Method ---------------- add_model(self, model): - Append the new model instance from scikit-learn into `models` list cross_validate(self, k=5, n_proces=-1): - Perform Cross Validation on the `models` list's model based on `data` class, in default 5 folds Cross Validation, and default `-1` n_jobs - return the `mean_mse` dict with model name and MES select_best_model(self): - select the model with lowest MES value. - return `best_model` best_model_fit(self, features, targets): - Train the best model from `best_model` best_model_predict(self, features): - make prediction on test set - return `predictions` save_results(self): - save the best performance model in `.joblib` file in ./models folder Static Method ---------------- get_feature_importance(models, col): - determine whether the particular model have `feature_importances_` attribute if yes, print out the `feature_importances_` Examples ---------------- >>> from src.preprocessing import DataSetGenerator >>> from src.features.build_features import FeatureGenerator >>> from src.models.predict_model import ModelGenerator >>> data = DataSetGenerator(train_feature_file, train_target_file, test_file, cat_cols, num_cols, target_col, id_col) >>> models = ModelGenerator(models=[], data=data) >>> models.add_model(LinearRegression()) >>> models.add_model(RandomForestRegressor(n_estimators=100, n_jobs=-1, max_depth=15, min_samples_split=80, max_features=8)) >>> models.cross_validate() >>> models.select_best_model() >>> models.best_model_fit(...) >>> models.best_model_predict(...) >>> models.get_feature_importance(...) >>> models.save_results('model.pkl')""" def __init__(self, models, data):#, default_num_iters=10, verbose_lvl=0): '''initializes model list and dicts''' self.models = list(models) self.data = data self.best_model = None self.predictions = None self.mean_mse = {} #self.default_num_iters = default_num_iters #self.verbose_lvl = verbose_lvl def add_model(self, model): self.models.append(model) def cross_validate(self, k=5, num_procs=-1): '''cross validate models using given data''' feature_df = self.data.train_df[self.data.feature_cols] target_df = self.data.train_df[self.data.target_col] for model in self.models: neg_mse = cross_val_score(model, feature_df, target_df, cv=k, n_jobs=num_procs, scoring='neg_mean_squared_error') self.mean_mse[model] = -1.0 * np.mean(neg_mse) def select_best_model(self): '''select model with lowest mse''' self.best_model = min(self.mean_mse, key=self.mean_mse.get) def best_model_fit(self, features, targets): '''fits best model''' self.best_model.fit(features, targets) def best_model_predict(self, features): '''scores features using best model''' self.predictions = self.best_model.predict(features) def save_results(self): joblib.dump(self.best_model, '../../model/best_model.joblib') @staticmethod def get_feature_importance(model, cols): '''retrieves and sorts feature importances''' if hasattr(model, 'feature_importances_'): importances = model.feature_importances_ feature_importances =
pd.DataFrame({'feature':cols, 'importance':importances})
pandas.DataFrame
import numpy as np import matplotlib.pyplot as plt import pandas as pd import math import scipy.stats as stats from matplotlib import gridspec from matplotlib.lines import Line2D from .util import * import seaborn as sns from matplotlib.ticker import FormatStrFormatter import matplotlib.pylab as pl import matplotlib.dates as mdates from matplotlib.patches import Patch from matplotlib.lines import Line2D import matplotlib.patheffects as pe from .sanker import Sanker import imageio class Visualizer(): def __init__(self, district_list, private_list, city_list, contract_list, bank_list, leiu_list): self.district_list = district_list.copy() self.private_list = private_list.copy() for x in city_list: self.private_list.append(x) self.contract_list = contract_list self.bank_list = bank_list self.leiu_list = leiu_list self.private_districts = {} for x in self.private_list: self.private_districts[x.name] = [] for xx in x.district_list: self.private_districts[x.name].append(xx) inflow_inputs = pd.read_csv('calfews_src/data/input/calfews_src-data.csv', index_col=0, parse_dates=True) x2_results = pd.read_csv('calfews_src/data/input/x2DAYFLOW.csv', index_col=0, parse_dates=True) self.observations = inflow_inputs.join(x2_results) self.observations['delta_outflow'] = self.observations['delta_inflow'] + self.observations['delta_depletions'] - self.observations['HRO_pump'] - self.observations['TRP_pump'] self.index_o = self.observations.index self.T_o = len(self.observations) self.day_month_o = self.index_o.day self.month_o = self.index_o.month self.year_o = self.index_o.year kern_bank_observations = pd.read_csv('calfews_src/data/input/kern_water_bank_historical.csv') kern_bank_observations = kern_bank_observations.set_index('Year') semitropic_bank_observations = pd.read_csv('calfews_src/data/input/semitropic_bank_historical.csv') semitropic_bank_observations = semitropic_bank_observations.set_index('Year') total_bank_kwb = np.zeros(self.T_o) total_bank_smi = np.zeros(self.T_o) for x in range(0, self.T_o): if self.month_o[x] > 9: year_str = self.year_o[x] else: year_str = self.year_o[x] - 1 if self.month_o[x] == 9 and self.day_month_o[x] == 30: year_str = self.year_o[x] total_bank_kwb[x] = kern_bank_observations.loc[year_str, 'Ag'] + kern_bank_observations.loc[year_str, 'Mixed Purpose'] deposit_history = semitropic_bank_observations[semitropic_bank_observations.index <= year_str] total_bank_smi[x] = deposit_history['Metropolitan'].sum() + deposit_history['South Bay'].sum() self.observations['kwb_accounts'] = pd.Series(total_bank_kwb, index=self.observations.index) self.observations['smi_accounts'] = pd.Series(total_bank_smi, index=self.observations.index) def get_results_sensitivity_number(self, results_file, sensitivity_number, start_month, start_year, start_day): self.values = {} numdays_index = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] with h5py.File(results_file, 'r') as f: data = f['s' + sensitivity_number] names = data.attrs['columns'] names = list(map(lambda x: str(x).split("'")[1], names)) df_data = pd.DataFrame(data[:], columns=names) for x in df_data: self.values[x] = df_data[x] datetime_index = [] monthcount = start_month yearcount = start_year daycount = start_day leapcount = np.remainder(start_year, 4) for t in range(0, len(self.values[x])): datetime_index.append(str(yearcount) + '-' + str(monthcount) + '-' + str(daycount)) daycount += 1 if leapcount == 0 and monthcount == 2: numdays_month = numdays_index[monthcount - 1] + 1 else: numdays_month = numdays_index[monthcount - 1] if daycount > numdays_month: daycount = 1 monthcount += 1 if monthcount == 13: monthcount = 1 yearcount += 1 leapcount += 1 if leapcount == 4: leapcount = 0 self.values['Datetime'] = pd.to_datetime(datetime_index) self.values = pd.DataFrame(self.values) self.values = self.values.set_index('Datetime') self.index = self.values.index self.T = len(self.values.index) self.day_year = self.index.dayofyear self.day_month = self.index.day self.month = self.index.month self.year = self.index.year self.starting_year = self.index.year[0] self.ending_year = self.index.year[-1] self.number_years = self.ending_year - self.starting_year total_kwb_sim = np.zeros(len(self.values)) total_smi_sim = np.zeros(len(self.values)) for district_partner in ['DLR', 'KCWA', 'ID4', 'SMI', 'TJC', 'WON', 'WRM']: total_kwb_sim += self.values['kwb_' + district_partner] self.values['kwb_total'] = pd.Series(total_kwb_sim, index = self.values.index) for district_partner in ['SOB', 'MET']: total_smi_sim += self.values['semitropic_' + district_partner] self.values['smi_total'] = pd.Series(total_smi_sim, index = self.values.index) def set_figure_params(self): self.figure_params = {} self.figure_params['delta_pumping'] = {} self.figure_params['delta_pumping']['extended_simulation'] = {} self.figure_params['delta_pumping']['extended_simulation']['outflow_list'] = ['delta_outflow', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['pump1_list'] = ['delta_HRO_pump', 'HRO_pump'] self.figure_params['delta_pumping']['extended_simulation']['pump2_list'] = ['delta_TRP_pump', 'TRP_pump'] self.figure_params['delta_pumping']['extended_simulation']['scenario_labels'] = ['Model Validation', 'Extended Simulation'] self.figure_params['delta_pumping']['extended_simulation']['simulation_labels'] = ['delta_HRO_pump', 'delta_TRP_pump', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['observation_labels'] = ['HRO_pump', 'TRP_pump', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['agg_list'] = ['AS-OCT', 'AS-OCT', 'D'] self.figure_params['delta_pumping']['extended_simulation']['unit_mult'] = [1.0, 1.0, cfs_tafd] self.figure_params['delta_pumping']['extended_simulation']['max_value_list'] = [5000, 5000, 15] self.figure_params['delta_pumping']['extended_simulation']['use_log_list'] = [False, False, True] self.figure_params['delta_pumping']['extended_simulation']['use_cdf_list'] = [False, False, True] self.figure_params['delta_pumping']['extended_simulation']['scenario_type_list'] = ['observation', 'validation', 'scenario'] self.figure_params['delta_pumping']['extended_simulation']['x_label_list'] = ['Total Pumping, SWP Delta Pumps (tAF/year)', 'Total Pumping, CVP Delta Pumps (tAF/year)', 'Daily Exceedence Probability', ''] self.figure_params['delta_pumping']['extended_simulation']['y_label_list'] = ['Probability Density', 'Probability Density', 'Daily Delta Outflow (tAF)', 'Relative Frequency of Water-year Types within Simulation'] self.figure_params['delta_pumping']['extended_simulation']['legend_label_names1'] = ['Historical (1996-2016) Observations', 'Historical (1996-2016) Model Validation', 'Extended Simulation'] self.figure_params['delta_pumping']['extended_simulation']['legend_label_names2'] = ['Critical', 'Dry', 'Below Normal', 'Above Normal', 'Wet'] self.figure_params['state_estimation'] = {} for x in ['publication', 'sacramento', 'sanjoaquin', 'tulare']: self.figure_params['state_estimation'][x] = {} self.figure_params['state_estimation'][x]['non_log'] = ['Snowpack (SWE)',] self.figure_params['state_estimation'][x]['predictor values'] = ['Mean Inflow, Prior 30 Days (tAF/day)','Snowpack (SWE)'] self.figure_params['state_estimation'][x]['colorbar_label_index'] = [0, 30, 60, 90, 120, 150, 180] self.figure_params['state_estimation'][x]['colorbar_label_list'] = ['Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr'] self.figure_params['state_estimation'][x]['subplot_annotations'] = ['A', 'B', 'C', 'D'] self.figure_params['state_estimation'][x]['forecast_periods'] = [30,'SNOWMELT'] self.figure_params['state_estimation'][x]['all_cols'] = ['DOWY', 'Snowpack', '30MA'] self.figure_params['state_estimation'][x]['forecast_values'] = [] for forecast_days in self.figure_params['state_estimation'][x]['forecast_periods']: if forecast_days == 'SNOWMELT': self.figure_params['state_estimation'][x]['forecast_values'].append('Flow Estimation, Snowmelt Season (tAF)') self.figure_params['state_estimation'][x]['all_cols'].append('Snowmelt Flow') else: self.figure_params['state_estimation'][x]['forecast_values'].append('Flow Estimation, Next ' + str(forecast_days) + ' Days (tAF)') self.figure_params['state_estimation'][x]['all_cols'].append(str(forecast_days) + ' Day Flow') self.figure_params['state_estimation']['publication']['watershed_keys'] = ['SHA', 'ORO', 'MIL', 'ISB'] self.figure_params['state_estimation']['publication']['watershed_labels'] = ['Shasta', 'Oroville', 'Millerton', 'Isabella'] self.figure_params['state_estimation']['sacramento']['watershed_keys'] = ['SHA', 'ORO', 'FOL', 'YRS'] self.figure_params['state_estimation']['sacramento']['watershed_labels'] = ['Shasta', 'Oroville', 'Folsom', 'New Bullards Bar'] self.figure_params['state_estimation']['sanjoaquin']['watershed_keys'] = ['NML', 'DNP', 'EXC', 'MIL'] self.figure_params['state_estimation']['sanjoaquin']['watershed_labels'] = ['New Melones', '<NAME>', 'Exchequer', 'Millerton'] self.figure_params['state_estimation']['tulare']['watershed_keys'] = ['PFT', 'KWH', 'SUC', 'ISB'] self.figure_params['state_estimation']['tulare']['watershed_labels'] = ['Pine Flat', 'Kaweah', 'Success', 'Isabella'] self.figure_params['model_validation'] = {} for x in ['delta', 'sierra', 'sanluis', 'bank']: self.figure_params['model_validation'][x] = {} self.figure_params['model_validation']['delta']['title_labels'] = ['State Water Project Pumping', 'Central Valley Project Pumping', 'Delta X2 Location'] num_subplots = len(self.figure_params['model_validation']['delta']['title_labels']) self.figure_params['model_validation']['delta']['label_name_1'] = ['delta_HRO_pump', 'delta_TRP_pump', 'delta_x2'] self.figure_params['model_validation']['delta']['label_name_2'] = ['HRO_pump', 'TRP_pump', 'DAY_X2'] self.figure_params['model_validation']['delta']['unit_converstion_1'] = [1.0, 1.0, 1.0] self.figure_params['model_validation']['delta']['unit_converstion_2'] = [cfs_tafd, cfs_tafd, 1.0] self.figure_params['model_validation']['delta']['y_label_timeseries'] = ['Pumping (tAF/week)', 'Pumping (tAF/week)', 'X2 inland distance (km)'] self.figure_params['model_validation']['delta']['y_label_scatter'] = ['(tAF/yr)', '(tAF/yr)', '(km)'] self.figure_params['model_validation']['delta']['timeseries_timestep'] = ['W', 'W', 'W'] self.figure_params['model_validation']['delta']['scatter_timestep'] = ['AS-OCT', 'AS-OCT', 'M'] self.figure_params['model_validation']['delta']['aggregation_methods'] = ['sum', 'sum', 'mean'] self.figure_params['model_validation']['delta']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['delta']['show_legend'] = [True] * num_subplots self.figure_params['model_validation']['sierra']['title_labels'] = ['Shasta', 'Oroville', 'Folsom', 'New Bullards Bar', 'New Melones', '<NAME>', 'Exchequer', 'Millerton', 'Pine Flat', 'Kaweah', 'Success', 'Isabella'] num_subplots = len(self.figure_params['model_validation']['sierra']['title_labels']) self.figure_params['model_validation']['sierra']['label_name_1'] = ['shasta_S', 'oroville_S', 'folsom_S', 'yuba_S', 'newmelones_S', 'donpedro_S', 'exchequer_S', 'millerton_S', 'pineflat_S', 'kaweah_S', 'success_S', 'isabella_S'] self.figure_params['model_validation']['sierra']['label_name_2'] = ['SHA_storage', 'ORO_storage', 'FOL_storage', 'YRS_storage', 'NML_storage', 'DNP_storage', 'EXC_storage', 'MIL_storage', 'PFT_storage', 'KWH_storage', 'SUC_storage', 'ISB_storage'] self.figure_params['model_validation']['sierra']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['sierra']['unit_converstion_2'] = [1.0/1000000.0] * num_subplots self.figure_params['model_validation']['sierra']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['sierra']['y_label_scatter'] = [] self.figure_params['model_validation']['sierra']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['sierra']['scatter_timestep'] = [] self.figure_params['model_validation']['sierra']['aggregation_methods'] = ['mean'] * num_subplots self.figure_params['model_validation']['sierra']['notation_location'] = ['bottom'] * num_subplots self.figure_params['model_validation']['sierra']['show_legend'] = [False] * num_subplots counter_kaweah = self.figure_params['model_validation']['sierra']['title_labels'].index('Kaweah') counter_success = self.figure_params['model_validation']['sierra']['title_labels'].index('Success') counter_isabella = self.figure_params['model_validation']['sierra']['title_labels'].index('Isabella') self.figure_params['model_validation']['sierra']['notation_location'][counter_kaweah] = 'top' self.figure_params['model_validation']['sierra']['notation_location'][counter_success] = 'topright' self.figure_params['model_validation']['sierra']['show_legend'][counter_isabella] = True self.figure_params['model_validation']['sanluis']['title_labels'] = ['State (SWP) Portion, San Luis Reservoir', 'Federal (CVP) Portion, San Luis Reservoir'] num_subplots = len(self.figure_params['model_validation']['sanluis']['title_labels']) self.figure_params['model_validation']['sanluis']['label_name_1'] = ['sanluisstate_S', 'sanluisfederal_S'] self.figure_params['model_validation']['sanluis']['label_name_2'] = ['SLS_storage', 'SLF_storage'] self.figure_params['model_validation']['sanluis']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['sanluis']['unit_converstion_2'] = [1.0/1000000.0] * num_subplots self.figure_params['model_validation']['sanluis']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['sanluis']['y_label_scatter'] = ['(mAF)'] * num_subplots self.figure_params['model_validation']['sanluis']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['sanluis']['scatter_timestep'] = ['M'] * num_subplots self.figure_params['model_validation']['sanluis']['aggregation_methods'] = ['point'] * num_subplots self.figure_params['model_validation']['sanluis']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['sanluis']['show_legend'] = [True] * num_subplots self.figure_params['model_validation']['bank']['title_labels'] = ['Kern Water Bank Accounts', 'Semitropic Water Bank Accounts'] num_subplots = len(self.figure_params['model_validation']['bank']['title_labels']) self.figure_params['model_validation']['bank']['label_name_1'] = ['kwb_total', 'smi_total'] self.figure_params['model_validation']['bank']['label_name_2'] = ['kwb_accounts', 'smi_accounts'] self.figure_params['model_validation']['bank']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['bank']['unit_converstion_2'] = [1.0/1000000.0, 1.0/1000.0] self.figure_params['model_validation']['bank']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['bank']['y_label_scatter'] = ['(mAF)'] * num_subplots self.figure_params['model_validation']['bank']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['bank']['scatter_timestep'] = ['AS-OCT'] * num_subplots self.figure_params['model_validation']['bank']['aggregation_methods'] = ['change'] * num_subplots self.figure_params['model_validation']['bank']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['bank']['show_legend'] = [False] * num_subplots self.figure_params['model_validation']['bank']['show_legend'][0] = True self.figure_params['state_response'] = {} self.figure_params['state_response']['sanluisstate_losthills'] = {} self.figure_params['state_response']['sanluisstate_losthills']['contract_list'] = ['swpdelta',] self.figure_params['state_response']['sanluisstate_losthills']['contributing_reservoirs'] = ['delta_uncontrolled_swp', 'oroville', 'yuba'] self.figure_params['state_response']['sanluisstate_losthills']['groundwater_account_names'] = ['LHL','WON'] self.figure_params['state_response']['sanluisstate_losthills']['reservoir_features'] = ['S', 'days_til_full', 'flood_deliveries'] self.figure_params['state_response']['sanluisstate_losthills']['reservoir_feature_colors'] = ['teal', '#3A506B', '#74B3CE', 'steelblue'] self.figure_params['state_response']['sanluisstate_losthills']['district_contracts'] = ['tableA',] self.figure_params['state_response']['sanluisstate_losthills']['subplot_titles'] = ['State Water Project Delta Operations', 'Lost Hills Drought Management', 'San Luis Reservoir Operations', 'Lost Hills Flood Management'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_1'] = ['Y.T.D Delta Pumping', 'Projected Unstored Exports', 'Projected Stored Exports, Oroville', 'Projected Stored Exports, New Bullards'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_2'] = ['Storage', 'Projected Days to Fill', 'Flood Release Deliveries'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_3'] = ['Remaining SW Allocation', 'SW Deliveries', 'Private GW Pumping', 'District GW Bank Recovery', 'Remaining GW Bank Recovery Capacity'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_4'] = ['Carryover Recharge Capacity', 'Recharged from Contract Allocation' 'Recharge of Uncontrolled Flood Spills'] self.figure_params['state_response'] = {} self.figure_params['state_response']['sanluisstate_wheeler'] = {} self.figure_params['state_response']['sanluisstate_wheeler']['contract_list'] = ['swpdelta',] self.figure_params['state_response']['sanluisstate_wheeler']['contributing_reservoirs'] = ['delta_uncontrolled_swp', 'oroville', 'yuba'] self.figure_params['state_response']['sanluisstate_wheeler']['groundwater_account_names'] = ['WRM'] self.figure_params['state_response']['sanluisstate_wheeler']['reservoir_features'] = ['S', 'days_til_full', 'flood_deliveries'] self.figure_params['state_response']['sanluisstate_wheeler']['reservoir_feature_colors'] = ['teal', '#3A506B', '#74B3CE', 'lightsteelblue'] self.figure_params['state_response']['sanluisstate_wheeler']['district_contracts'] = ['tableA',] self.figure_params['state_response']['sanluisstate_wheeler']['subplot_titles'] = ['State Water Project Delta Operations', 'Wheeler Ridge Drought Management', 'San Luis Reservoir Operations', 'Wheeler Ridge Flood Management'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_1'] = ['Y.T.D Delta Pumping', 'Projected Unstored Exports', 'Projected Stored Exports, Oroville', 'Projected Stored Exports, New Bullards'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_2'] = ['Storage', 'Projected Days to Fill', 'Flood Release Deliveries'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_3'] = ['Remaining SW Allocation', 'SW Deliveries', 'Private GW Pumping', 'District GW Bank Recovery', 'Remaining GW Bank Recovery Capacity'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_4'] = ['Carryover Recharge Capacity', 'Recharge of Uncontrolled Flood Spills', 'Recharged from Contract Allocation'] self.figure_params['district_water_use'] = {} self.figure_params['district_water_use']['physical'] = {} self.figure_params['district_water_use']['physical']['district_groups'] = ['Municipal Districts', 'Kern County Water Agency', 'CVP - Friant Contractors', 'CVP - San Luis Contractors', 'Groundwater Banks'] self.figure_params['district_water_use']['physical']['Municipal Districts'] = ['bakersfield', 'ID4', 'fresno', 'southbay', 'socal', 'centralcoast'] self.figure_params['district_water_use']['physical']['Kern County Water Agency'] = ['berrenda', 'belridge', 'buenavista', 'cawelo', 'henrymiller', 'losthills', 'rosedale', 'semitropic', 'tehachapi', 'tejon', 'westkern', 'wheeler', 'northkern', 'kerntulare'] self.figure_params['district_water_use']['physical']['CVP - Friant Contractors'] = ['arvin', 'delano', 'pixley', 'exeter', 'kerntulare', 'lindmore', 'lindsay', 'lowertule', 'porterville', 'saucelito', 'shaffer', 'sosanjoaquin', 'teapot', 'terra', 'chowchilla', 'maderairr', 'tulare', 'fresnoid'] self.figure_params['district_water_use']['physical']['CVP - San Luis Contractors'] = ['westlands', 'panoche', 'sanluiswater', 'delpuerto'] self.figure_params['district_water_use']['physical']['Groundwater Banks'] = ['stockdale', 'kernriverbed', 'poso', 'pioneer', 'kwb', 'b2800', 'irvineranch', 'northkernwb'] self.figure_params['district_water_use']['physical']['subplot columns'] = 2 self.figure_params['district_water_use']['physical']['color map'] = 'YlGbBu_r' self.figure_params['district_water_use']['physical']['write file'] = True self.figure_params['district_water_use']['annual'] = {} self.figure_params['district_water_use']['annual']['district_groups'] = ['Municipal Districts', 'Kern County Water Agency', 'CVP - Friant Contractors', 'CVP - San Luis Contractors'] self.figure_params['district_water_use']['annual']['Municipal Districts'] = ['bakersfield', 'ID4', 'fresno', 'southbay', 'socal', 'centralcoast'] self.figure_params['district_water_use']['annual']['Kern County Water Agency'] = ['berrenda', 'belridge', 'buenavista', 'cawelo', 'henrymiller', 'losthills', 'rosedale', 'semitropic', 'tehachapi', 'tejon', 'westkern', 'wheeler'] self.figure_params['district_water_use']['annual']['CVP - Friant Contractors'] = ['arvin', 'delano', 'pixley', 'exeter', 'kerntulare', 'lindmore', 'lindsay', 'lowertule', 'porterville', 'saucelito', 'shaffer', 'sosanjoaquin', 'teapot', 'terra', 'chowchilla', 'maderairr', 'tulare', 'fresnoid'] self.figure_params['district_water_use']['annual']['CVP - San Luis Contractors'] = ['westlands', 'panoche', 'sanluiswater', 'delpuerto'] self.figure_params['district_water_use']['annual']['subplot columns'] = 2 self.figure_params['district_water_use']['annual']['color map'] = 'BrBG_r' self.figure_params['district_water_use']['annual']['write file'] = True self.figure_params['flow_diagram'] = {} self.figure_params['flow_diagram']['tulare'] = {} self.figure_params['flow_diagram']['tulare']['column1'] = ['Shasta', 'Folsom', 'Oroville', 'New Bullards', 'Uncontrolled'] self.figure_params['flow_diagram']['tulare']['row1'] = ['Delta Outflow', 'Carryover',] self.figure_params['flow_diagram']['tulare']['column2'] = ['San Luis (Fed)', 'San Luis (State)', 'Millerton', 'Isabella', 'Pine Flat', 'Kaweah', 'Success'] self.figure_params['flow_diagram']['tulare']['row2'] = ['Carryover',] self.figure_params['flow_diagram']['tulare']['column3'] = ['Exchange', 'CVP-Delta', 'Cross Valley', 'State Water Project', 'Friant Class 1','Friant Class 2', 'Kern River', 'Kings River', 'Kaweah River', 'Tule River', 'Flood'] self.figure_params['flow_diagram']['tulare']['row3'] = ['Private Pumping', 'GW Banks'] self.figure_params['flow_diagram']['tulare']['column4'] = ['Exchange', 'CVP-Delta', 'Urban', 'KCWA', 'CVP-Friant','Other'] self.figure_params['flow_diagram']['tulare']['row4'] = ['Carryover',] self.figure_params['flow_diagram']['tulare']['column5'] = ['Irrigation', 'Urban', 'In-Lieu Recharge', 'Direct Recharge'] self.figure_params['flow_diagram']['tulare']['titles'] = ['Sacramento Basin\nSupplies', 'Tulare Basin\nSupplies', 'Surface Water\nContract Allocations', 'Contractor Groups', 'Water Use Type'] def scenario_compare(self, folder_name, figure_name, plot_name, validation_values, show_plot): outflow_list = self.figure_params[figure_name][plot_name]['outflow_list'] pump1_list = self.figure_params[figure_name][plot_name]['pump1_list'] pump2_list = self.figure_params[figure_name][plot_name]['pump2_list'] scenario_labels = self.figure_params[figure_name][plot_name]['scenario_labels'] simulation_labels = self.figure_params[figure_name][plot_name]['simulation_labels'] observation_labels = self.figure_params[figure_name][plot_name]['observation_labels'] agg_list = self.figure_params[figure_name][plot_name]['agg_list'] unit_mult = self.figure_params[figure_name][plot_name]['unit_mult'] max_value_list = self.figure_params[figure_name][plot_name]['max_value_list'] use_log_list = self.figure_params[figure_name][plot_name]['use_log_list'] use_cdf_list = self.figure_params[figure_name][plot_name]['use_cdf_list'] scenario_type_list = self.figure_params[figure_name][plot_name]['scenario_type_list'] x_label_list = self.figure_params[figure_name][plot_name]['x_label_list'] y_label_list = self.figure_params[figure_name][plot_name]['y_label_list'] legend_label_names1 = self.figure_params[figure_name][plot_name]['legend_label_names1'] legend_label_names2 = self.figure_params[figure_name][plot_name]['legend_label_names2'] color1 = sns.color_palette('spring', n_colors = 3) color2 = sns.color_palette('summer', n_colors = 3) color_list = np.array([color1[0], color1[2], color2[0]]) max_y_val = np.zeros(len(simulation_labels)) fig = plt.figure(figsize = (20, 16)) gs = gridspec.GridSpec(3,2, width_ratios=[3,1], figure = fig) ax1 = plt.subplot(gs[0, 0]) ax2 = plt.subplot(gs[1, 0]) ax3 = plt.subplot(gs[2, 0]) ax4 = plt.subplot(gs[:, 1]) axes_list = [ax1, ax2, ax3] counter = 0 for sim_label, obs_label, agg, max_value, use_log, use_cdf, ax_loop in zip(simulation_labels, observation_labels, agg_list, max_value_list, use_log_list, use_cdf_list, axes_list): data_type_dict = {} data_type_dict['scenario'] = self.values[sim_label].resample(agg).sum() * unit_mult[0] data_type_dict['validation'] = validation_values[sim_label].resample(agg).sum() * unit_mult[1] data_type_dict['observation'] = self.observations[obs_label].resample(agg).sum() * unit_mult[2] if use_log: for scen_type in scenario_type_list: values_int = data_type_dict[scen_type] data_type_dict[scen_type] = np.log(values_int[values_int > 0]) for scen_type in scenario_type_list: max_y_val[counter] = max([max(data_type_dict[scen_type]), max_y_val[counter]]) counter += 1 if use_cdf: for scen_type, color_loop in zip(scenario_type_list, color_list): cdf_values = np.zeros(100) values_int = data_type_dict[scen_type] for x in range(0, 100): x_val = int(np.ceil(max_value)) * (x/100) cdf_values[x] = len(values_int[values_int > x_val])/len(values_int) ax_loop.plot(cdf_values, np.arange(0, int(np.ceil(max_value)), int(np.ceil(max_value))/100), linewidth = 3, color = color_loop) else: pos = np.linspace(0, max_value, 101) for scen_type, color_loop in zip(scenario_type_list, color_list): kde_est = stats.gaussian_kde(data_type_dict[scen_type]) ax_loop.fill_between(pos, kde_est(pos), edgecolor = 'black', alpha = 0.6, facecolor = color_loop) sri_dict = {} sri_dict['validation'] = validation_values['delta_forecastSRI'] sri_dict['scenario'] = self.values['delta_forecastSRI'] sri_cutoffs = {} sri_cutoffs['W'] = [9.2, 100] sri_cutoffs['AN'] = [7.8, 9.2] sri_cutoffs['BN'] = [6.6, 7.8] sri_cutoffs['D'] = [5.4, 6.6] sri_cutoffs['C'] = [0.0, 5.4] wyt_list = ['W', 'AN', 'BN', 'D', 'C'] scenario_type_list = ['validation', 'scenario'] colors = sns.color_palette('RdBu_r', n_colors = 5) percent_years = {} for wyt in wyt_list: percent_years[wyt] = np.zeros(len(scenario_type_list)) for scen_cnt, scen_type in enumerate(scenario_type_list): ann_sri = [] for x_cnt, x in enumerate(sri_dict[scen_type]): if sri_dict[scen_type].index.month[x_cnt] == 9 and sri_dict[scen_type].index.day[x_cnt] == 30: ann_sri.append(x) ann_sri = np.array(ann_sri) for x_cnt, wyt in enumerate(wyt_list): mask_value = (ann_sri >= sri_cutoffs[wyt][0]) & (ann_sri < sri_cutoffs[wyt][1]) percent_years[wyt][scen_cnt] = len(ann_sri[mask_value])/len(ann_sri) colors = sns.color_palette('RdBu_r', n_colors = 5) last_type = np.zeros(len(scenario_type_list)) for cnt, x in enumerate(wyt_list): ax4.bar(['Validated Period\n(1997-2016)', 'Extended Simulation\n(1906-2016)'], percent_years[x], alpha = 1.0, label = wyt, facecolor = colors[cnt], edgecolor = 'black', bottom = last_type) last_type += percent_years[x] ax1.set_xlim([0.0, 500.0* np.ceil(max_y_val[0]/500.0)]) ax2.set_xlim([0.0, 500.0* np.ceil(max_y_val[1]/500.0)]) ax3.set_xlim([0.0, 1.0]) ax4.set_ylim([0, 1.15]) ax1.set_yticklabels('') ax2.set_yticklabels('') label_list = [] loc_list = [] for value_x in range(0, 120, 20): label_list.append(str(value_x) + ' %') loc_list.append(value_x/100.0) ax4.set_yticklabels(label_list) ax4.set_yticks(loc_list) ax3.set_xticklabels(label_list) ax3.set_xticks(loc_list) ax3.set_yticklabels(['4', '8', '16', '32', '64', '125', '250', '500', '1000', '2000', '4000']) ax3.set_yticks([np.log(4), np.log(8), np.log(16), np.log(32), np.log(64), np.log(125), np.log(250), np.log(500), np.log(1000), np.log(2000), np.log(4000)]) ax3.set_ylim([np.log(4), np.log(4000)]) for ax, x_lab, y_lab in zip([ax1, ax2, ax3, ax4], x_label_list, y_label_list): ax.set_xlabel(x_lab, fontsize = 16, fontname = 'Gill Sans MT', fontweight = 'bold') ax.set_ylabel(y_lab, fontsize = 16, fontname = 'Gill Sans MT', fontweight = 'bold') ax.grid(False) for tick in ax.get_xticklabels(): tick.set_fontname('Gill Sans MT') tick.set_fontsize(14) for tick in ax.get_yticklabels(): tick.set_fontname('Gill Sans MT') tick.set_fontsize(14) legend_elements = [] for x_cnt, x in enumerate(legend_label_names1): legend_elements.append(Patch(facecolor = color_list[x_cnt], edgecolor = 'black', label = x)) ax1.legend(handles = legend_elements, loc = 'upper left', framealpha = 0.7, shadow = True, prop={'family':'Gill Sans MT','weight':'bold','size':14}) legend_elements_2 = [] for x_cnt, x in enumerate(legend_label_names2): legend_elements_2.append(Patch(facecolor = colors[x_cnt], edgecolor = 'black', label = x)) ax4.legend(handles = legend_elements_2, loc = 'upper left', framealpha = 0.7, shadow = True, prop={'family':'Gill Sans MT','weight':'bold','size':14}) plt.savefig(folder_name + figure_name + '_' + plot_name + '.png', dpi = 150, bbox_inches = 'tight', pad_inches = 0.0) if show_plot: plt.show() plt.close() def make_deliveries_by_district(self, folder_name, figure_name, plot_name, scenario_name, show_plot): if plot_name == 'annual': name_bridge = {} name_bridge['semitropic'] = 'KER01' name_bridge['westkern'] = 'KER02' name_bridge['wheeler'] = 'KER03' name_bridge['kerndelta'] = 'KER04' name_bridge['arvin'] = 'KER05' name_bridge['belridge'] = 'KER06' name_bridge['losthills'] = 'KER07' name_bridge['northkern'] = 'KER08' name_bridge['northkernwb'] = 'KER08' name_bridge['ID4'] = 'KER09' name_bridge['sosanjoaquin'] = 'KER10' name_bridge['berrenda'] = 'KER11' name_bridge['buenavista'] = 'KER12' name_bridge['cawelo'] = 'KER13' name_bridge['rosedale'] = 'KER14' name_bridge['shaffer'] = 'KER15' name_bridge['henrymiller'] = 'KER16' name_bridge['kwb'] = 'KER17' name_bridge['b2800'] = 'KER17' name_bridge['pioneer'] = 'KER17' name_bridge['irvineranch'] = 'KER17' name_bridge['kernriverbed'] = 'KER17' name_bridge['poso'] = 'KER17' name_bridge['stockdale'] = 'KER17' name_bridge['delano'] = 'KeT01' name_bridge['kerntulare'] = 'KeT02' name_bridge['lowertule'] = 'TUL01' name_bridge['tulare'] = 'TUL02' name_bridge['lindmore'] = 'TUL03' name_bridge['saucelito'] = 'TUL04' name_bridge['porterville'] = 'TUL05' name_bridge['lindsay'] = 'TUL06' name_bridge['exeter'] = 'TUL07' name_bridge['terra'] = 'TUL08' name_bridge['teapot'] = 'TUL09' name_bridge['bakersfield'] = 'BAK' name_bridge['fresno'] = 'FRE' name_bridge['southbay'] = 'SOB' name_bridge['socal'] = 'SOC' name_bridge['tehachapi'] = 'TEH' name_bridge['tejon'] = 'TEJ' name_bridge['centralcoast'] = 'SLO' name_bridge['pixley'] = 'PIX' name_bridge['chowchilla'] = 'CHW' name_bridge['maderairr'] = 'MAD' name_bridge['fresnoid'] = 'FSI' name_bridge['westlands'] = 'WTL' name_bridge['panoche'] = 'PAN' name_bridge['sanluiswater'] = 'SLW' name_bridge['delpuerto'] = 'DEL' elif plot_name == 'monthly': name_bridge = {} name_bridge['semitropic'] = 'Semitropic Water Storage District' name_bridge['westkern'] = 'West Kern Water District' name_bridge['wheeler'] = 'Wheeler Ridge-Maricopa Water Storage District' name_bridge['kerndelta'] = 'Kern Delta Water District' name_bridge['arvin'] = 'Arvin-Edison Water Storage District' name_bridge['belridge'] = 'Belridge Water Storage District' name_bridge['losthills'] = 'Lost Hills Water District' name_bridge['northkern'] = 'North Kern Water Storage District' name_bridge['northkernwb'] = 'North Kern Water Storage District' name_bridge['ID4'] = 'Urban' name_bridge['sosanjoaquin'] = 'Southern San Joaquin Municipal Utility District' name_bridge['berrenda'] = 'Berrenda Mesa Water District' name_bridge['buenavista'] = 'Buena Vista Water Storage District' name_bridge['cawelo'] = 'Cawelo Water District' name_bridge['rosedale'] = 'Rosedale-Rio Bravo Water Storage District' name_bridge['shaffer'] = 'Shafter-Wasco Irrigation District' name_bridge['henrymiller'] = 'Henry Miller Water District' name_bridge['kwb'] = 'Kern Water Bank Authority' name_bridge['b2800'] = 'Kern Water Bank Authority' name_bridge['pioneer'] = 'Kern Water Bank Authority' name_bridge['irvineranch'] = 'Kern Water Bank Authority' name_bridge['kernriverbed'] = 'Kern Water Bank Authority' name_bridge['poso'] = 'Kern Water Bank Authority' name_bridge['stockdale'] = 'Kern Water Bank Authority' name_bridge['delano'] = 'Delano-Earlimart Irrigation District' name_bridge['kerntulare'] = 'Kern-Tulare Water District' name_bridge['lowertule'] = 'Lower Tule River Irrigation District' name_bridge['tulare'] = 'Tulare Irrigation District' name_bridge['lindmore'] = 'Lindmore Irrigation District' name_bridge['saucelito'] = 'Saucelito Irrigation District' name_bridge['porterville'] = 'Porterville Irrigation District' name_bridge['lindsay'] = 'Lindsay-Strathmore Irrigation District' name_bridge['exeter'] = 'Exeter Irrigation District' name_bridge['terra'] = 'Terra Bella Irrigation District' name_bridge['teapot'] = 'Tea Pot Dome Water District' name_bridge['bakersfield'] = 'Urban' name_bridge['fresno'] = 'Urban' name_bridge['southbay'] = 'Urban' name_bridge['socal'] = 'Urban' name_bridge['tehachapi'] = 'Tehachapi - Cummings County Water District' name_bridge['tejon'] = 'Tejon-Castac Water District' name_bridge['centralcoast'] = 'SLO' name_bridge['pixley'] = 'Pixley Irrigation District' name_bridge['chowchilla'] = 'Chowchilla Water District' name_bridge['maderairr'] = 'Madera Irrigation District' name_bridge['fresnoid'] = 'Fresno Irrigation District' name_bridge['westlands'] = 'Westlands Water District' name_bridge['panoche'] = 'Panoche Water District' name_bridge['sanluiswater'] = 'San Luis Water District' name_bridge['delpuerto'] = 'Del Puerto Water District' name_bridge['alta'] = 'Alta Irrigation District' name_bridge['consolidated'] = 'Consolidated Irrigation District' location_type = plot_name self.total_irrigation = {} self.total_recharge = {} self.total_pumping = {} self.total_flood_purchases = {} self.total_recovery_rebate = {} self.total_recharge_sales = {} self.total_recharge_purchases = {} self.total_recovery_sales = {} self.total_recovery_purchases = {} for bank in self.bank_list: self.total_irrigation[bank.name] = np.zeros(self.number_years*12) self.total_recharge[bank.name] = np.zeros(self.number_years*12) self.total_pumping[bank.name] = np.zeros(self.number_years*12) self.total_flood_purchases[bank.name] = np.zeros(self.number_years*12) self.total_recovery_rebate[bank.name] = np.zeros(self.number_years*12) self.total_recharge_sales[bank.name] = np.zeros(self.number_years*12) self.total_recharge_purchases[bank.name] = np.zeros(self.number_years*12) self.total_recovery_sales[bank.name] = np.zeros(self.number_years*12) self.total_recovery_purchases[bank.name] = np.zeros(self.number_years*12) for district in self.district_list: self.total_irrigation[district.name] = np.zeros(self.number_years*12) self.total_recharge[district.name] = np.zeros(self.number_years*12) self.total_pumping[district.name] = np.zeros(self.number_years*12) self.total_flood_purchases[district.name] = np.zeros(self.number_years*12) self.total_recovery_rebate[district.name] = np.zeros(self.number_years*12) self.total_recharge_sales[district.name] = np.zeros(self.number_years*12) self.total_recharge_purchases[district.name] = np.zeros(self.number_years*12) self.total_recovery_sales[district.name] = np.zeros(self.number_years*12) self.total_recovery_purchases[district.name] = np.zeros(self.number_years*12) date_list_labels = [] for year_num in range(self.starting_year, 2017): start_month = 1 end_month = 13 if year_num == self.starting_year: start_month = 10 if year_num == 2016: end_month = 10 for month_num in range(start_month, end_month): date_string_start = str(year_num) + '-' + str(month_num) + '-01' date_list_labels.append(date_string_start) for district in self.district_list: inleiu_name = district.name + '_inleiu_irrigation' inleiu_recharge_name = district.name + '_inleiu_recharge' direct_recover_name = district.name + '_recover_banked' indirect_surface_name = district.name + '_exchanged_SW' indirect_ground_name = district.name + '_exchanged_GW' inleiu_pumping_name = district.name + '_leiupumping' pumping_name = district.name + '_pumping' recharge_name = district.name + '_' + district.key + '_recharged' numdays_month = [31, 28, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31] for year_num in range(0, self.number_years+1): year_str = str(year_num + self.starting_year) start_month = 1 end_month = 13 if year_num == 0: start_month = 10 if year_num == self.number_years: end_month = 10 for month_num in range(start_month, end_month): if month_num == 1: month_num_prev = '12' year_str_prior = str(year_num + self.starting_year - 1) end_day_prior = str(numdays_month[11]) else: month_num_prev = str(month_num - 1) year_str_prior = str(year_num + self.starting_year) end_day_prior = str(numdays_month[month_num-2]) date_string_current = year_str + '-' + str(month_num) + '-' + str(numdays_month[month_num-1]) date_string_prior = year_str_prior + '-' + month_num_prev + '-' + end_day_prior ###GW/SW exchanges, if indirect_surface_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_surface_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ###GW/SW exchanges, if indirect_ground_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_ground_name].values[0] self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##In leiu deliveries for irrigation if inleiu_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_delivery if inleiu_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_recharge_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_recharge[district.name][year_num*12 + month_num - 10] += total_recharge self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_recharge #GW recovery if direct_recover_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), direct_recover_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), direct_recover_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), direct_recover_name].values[0] #if classifying by physical location, attribute to district recieving water (as irrigation) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##Pumnping for inleiu recovery if inleiu_pumping_name in self.values: if month_num == 10: total_leiupumping = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_pumping_name].values[0] else: total_leiupumping = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_pumping_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_pumping_name].values[0] #if classifying by physical location, to district operating the bank self.total_pumping[district.name][year_num*12 + month_num - 10] += total_leiupumping self.total_recovery_sales[district.name][year_num*12 + month_num - 10] += total_leiupumping self.total_recovery_rebate[district.name][year_num*12 + month_num - 10] += total_leiupumping #Recharge, in- and out- of district if recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), recharge_name].values[0] self.total_recharge[district.name][year_num*12 + month_num - 10] += total_recharge for bank_name in self.bank_list: bank_recharge_name = district.name + '_' + bank_name.key + '_recharged' if bank_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), bank_recharge_name].values[0] self.total_recharge[bank_name.name][year_num*12 + month_num - 10] += total_recharge self.total_recharge_purchases[district.name][year_num*12 + month_num - 10] += total_recharge for bank_name in self.leiu_list: bank_recharge_name = district.name + '_' + bank_name.key + '_recharged' if bank_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), bank_recharge_name].values[0] self.total_recharge_purchases[district.name][year_num*12 + month_num - 10] += total_recharge #Contract deliveries for contract in self.contract_list: delivery_name = district.name + '_' + contract.name + '_delivery' recharge_contract_name = district.name + '_' + contract.name + '_recharged' flood_irr_name = district.name + '_' + contract.name + '_flood_irrigation' flood_name = district.name + '_' + contract.name + '_flood' ###All deliveries made from a district's contract if delivery_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), delivery_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), delivery_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), delivery_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ##Deliveries made for recharge are subtracted from the overall contract deliveries if recharge_contract_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_contract_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_contract_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), recharge_contract_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] -= total_recharge #flood water used for irrigation - always attribute as irrigation if flood_irr_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_irr_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_irr_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), flood_irr_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_flood_purchases[district.name][year_num*12 + month_num - 10] += total_delivery if flood_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), flood_name].values[0] self.total_flood_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##Pumping (daily values aggregated by year) if pumping_name in self.values: annual_pumping = 0.0 for x in range(0, len(self.index)): monthly_index = (self.year[x] - self.starting_year)*12 + self.month[x] - 10 if self.day_month[x] == 1: self.total_pumping[district.name][monthly_index] += annual_pumping annual_pumping = 0.0 else: annual_pumping += self.values.loc[self.index[x], pumping_name] self.total_pumping[district.name][-1] += annual_pumping #Get values for any private entities within the district for private_name in self.private_list: private = private_name.name if district.key in self.private_districts[private]: inleiu_name = private + '_' + district.key + '_inleiu_irrigation' inleiu_recharge_name = private + '_' + district.key + '_inleiu_irrigation' direct_recover_name = private + '_' + district.key + '_recover_banked' indirect_surface_name = private + '_' + district.key + '_exchanged_SW' indirect_ground_name = private + '_' + district.key + '_exchanged_GW' inleiu_pumping_name = private + '_' + district.key + '_leiupumping' pumping_name = private + '_' + district.key + '_pumping' recharge_name = private + '_' + district.key + '_' + district.key + '_recharged' for year_num in range(0, self.number_years - 1): year_str = str(year_num + self.starting_year + 1) start_month = 1 end_month = 13 if year_num == 0: start_month = 10 if year_num == self.number_years - 1: end_month = 10 for month_num in range(start_month, end_month): if month_num == 1: month_num_prev = '12' year_str_prior = str(year_num + self.starting_year) end_day_prior = str(numdays_month[11]) else: month_num_prev = str(month_num - 1) year_str_prior = str(year_num + self.starting_year + 1) end_day_prior = str(numdays_month[month_num-2]) date_string_current = year_str + '-' + str(month_num) + '-' + str(numdays_month[month_num-1]) date_string_prior = year_str_prior + '-' + month_num_prev + '-' + end_day_prior ###GW/SW exchanges, if indirect_surface_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_surface_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ###GW/SW exchanges, if indirect_ground_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_ground_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##In leiu deliveries for irrigation if inleiu_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_delivery if inleiu_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] else: total_recharge = self.values.loc[
pd.DatetimeIndex([date_string_current])
pandas.DatetimeIndex
import pandas as pd import os def save_csv(df: pd.DataFrame, output_dir: str, filename: str) -> str: """ Save CSV Parameters ---------- df : pd.DataFrame Original output_dir : str Folder for save df filename : str Name of file Returns --------- filepath : str Absolute """ filepath: str = os.path.join(output_dir, filename) df.to_csv(filepath) return filepath def get_revenue_per_store(df: pd.DataFrame) -> pd.DataFrame: """ Get revenues Parameters ---------- Returns --------- pd.DataFrame Computed """ # Revenues revenue = ( df.groupby(by="store") .sum() .total.to_frame() .rename(columns={"total": "revenue"}) ) return revenue def get_pct_by_pay_method(df: pd.DataFrame, pay_method: str) -> pd.DataFrame: """ Get percentage by payment method Parameters ---------- df : pd.DataFrame Original pay_method : str Choose between cc or cash Returns --------- pd.DataFrame Computed """ # Filter and group-by revenue_per_store = get_revenue_per_store(df) revenue_per_store_filtered = ( df[df.pay == pay_method] .groupby(by="store") .sum() .total.to_frame() .rename(columns={"total": f"revenue_{pay_method}"}) ) # Match total and revenue per pay method temp_df =
pd.concat([revenue_per_store, revenue_per_store_filtered], axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 27 17:50:38 2020 @author: Miguel <NAME> Descrption: Script for reading the ISO NE dataset for load profiling in the context of the paper of NMF Correlated. It takes time series of real time demand, dew point, and temperature of a particular load zone selected by "location": 0: ME 1: NH 2: VT 3: CT 4: RI 5: SEMASS 6: WCMASS 7: NEMASSBOST Output: Data_test and Data_train, both of them data structures containing: Date, Day of the year, 24 values of hourly Real time,24 values of hourly Temperature, 24 values of hourly Dew point and the Weekday. The split into train and test of the whole data set is defined by a date specified by the variables "day", "month" and "year/" """ import pandas as pd import datetime import scipy import scipy.io import numpy as np import pickle from pathlib import Path LOCATIONS = ['ME','NH','VT','CT','RI','SEMASS','WCMASS','NEMASSBOST'] project_path = Path("/Users/apple/Desktop/PASAR") #================================================================== # SELEECT DATE THAT SPLITS DATA SET INTO TRAIN AND TEST #================================================================== #================================================================== start_day_train_val = 1 start_month_train_val = 1 start_year_train_val= 2011 end_day_train_val = 31 end_month_train_val = 12 end_year_train_val = 2017 start_day_test = 1 start_month_test = 1 start_year_test = 2018 end_day_test = 31 end_month_test = 12 end_year_test = 2018 #================================================================== data_folder = Path("/Users/apple/Desktop/PASAR/ISO_NE_Dataset_Final/Nestor") filename = "iso_ne.pickle" file_to_open = data_folder / filename pickle_in=open(file_to_open,'rb') iso_ne=pickle.load(pickle_in) for location in range(0,8): location_name = LOCATIONS[location] data2011=iso_ne[location][0] data2012=iso_ne[location][1] data2013=iso_ne[location][2] data2014=iso_ne[location][3] data2015=iso_ne[location][4] data2016=iso_ne[location][5] data2017=iso_ne[location][6] data2018=iso_ne[location][7] Y2011=data2011[['Date','Hour','DEMAND','DryBulb','DewPnt']] Y2012=data2012[['Date','Hour','DEMAND','DryBulb','DewPnt']] Y2013=data2013[['Date','Hour','DEMAND','DryBulb','DewPnt']] Y2014=data2014[['Date','Hour','DEMAND','DryBulb','DewPnt']] Y2015=data2015[['Date','Hour','DEMAND','DryBulb','DewPnt']] Y2016=data2016[['Date','Hr_End','RT_Demand','Dry_Bulb','Dew_Point']] Y2017=data2017[['Date','Hr_End','RT_Demand','Dry_Bulb','Dew_Point']] Y2018=data2018[['Date','Hr_End','RT_Demand','Dry_Bulb','Dew_Point']] Aux2011 = pd.to_datetime(Y2011['Date']).dt.strftime('%d-%b-%Y') Dates2011 = pd.Series(list(Aux2011[0::24])) DoWeek2011 = pd.to_datetime(Dates2011).dt.day_name() Load2011 = pd.Series(list(Y2011['DEMAND'].values.reshape(-1,24))) Temperature2011 = pd.Series(list(Y2011['DryBulb'].values.reshape(-1,24))) DewPoint2011 = pd.Series(list(Y2011['DewPnt'].values.reshape(-1,24))) del Y2011 frame2011 = { 'Date': Dates2011, 'Weekday': DoWeek2011} frame2011['Load'] = list(Load2011) frame2011['Temperature'] = list(Temperature2011) frame2011['DewPoint'] = list(DewPoint2011) Y2011 = pd.DataFrame(frame2011) Aux2012 = pd.to_datetime(Y2012['Date']).dt.strftime('%d-%b-%Y') Dates2012 = pd.Series(list(Aux2012[0::24])) DoWeek2012 = pd.to_datetime(Dates2012).dt.day_name() Load2012 = pd.Series(list(Y2012['DEMAND'].values.reshape(-1,24))) Temperature2012 = pd.Series(list(Y2012['DryBulb'].values.reshape(-1,24))) DewPoint2012 = pd.Series(list(Y2012['DewPnt'].values.reshape(-1,24))) del Y2012 frame2012 = { 'Date': Dates2012, 'Weekday': DoWeek2012} frame2012['Load'] = list(Load2012) frame2012['Temperature'] = list(Temperature2012) frame2012['DewPoint'] = list(DewPoint2012) Y2012 =
pd.DataFrame(frame2012)
pandas.DataFrame
import sys sys.path.append('../') import unittest import numpy as np import pandas as pd import shutil import os from azureml.studio.core.io.data_frame_directory import load_data_frame_from_directory, save_data_frame_to_directory import invoker class TestErrorInput(unittest.TestCase): def setUp(self): self.__input_path = './functional_test_input_data_frame_directory' self.__detect_mode = 'AnomalyOnly' self.__timestamp_column = '%7B%22isFilter%22%3Atrue%2C%22rules%22%3A%5B%7B%22exclude%22%3Afalse%2C%22ruleType%22%3A%22ColumnNames%22%2C%22columns%22%3A%5B%22timestamp%22%5D%7D%5D%7D' self.__value_column = '%7B%22isFilter%22%3Atrue%2C%22rules%22%3A%5B%7B%22exclude%22%3Afalse%2C%22ruleType%22%3A%22ColumnNames%22%2C%22columns%22%3A%5B%22value%22%5D%7D%5D%7D' self.__batch_size = 2000 self.__threshold = 0.3 self.__sensitivity = 99 self.__append_mode = True self.compute_stats_in_visualization = True, self.__output_path = './functional_test_output_data_frame_directory' def tearDown(self): self.deleteDataFrameDirectory() def deleteDataFrameDirectory(self): if os.path.exists(self.__input_path): shutil.rmtree(self.__input_path) if os.path.exists(self.__output_path): shutil.rmtree(self.__output_path) def testAnomalyOnlyMode(self): df = pd.DataFrame() df['timestamp'] = pd.date_range(start='2020-01-01', periods=200, freq='1D') df['value'] = np.sin(np.linspace(1, 20, 200)) save_data_frame_to_directory(self.__input_path, df) invoker.invoke(self.__input_path, self.__detect_mode, self.__timestamp_column, self.__value_column, self.__batch_size, self.__threshold, self.__sensitivity, self.__append_mode, self.compute_stats_in_visualization, self.__output_path) result = load_data_frame_from_directory(self.__output_path).data self.assertEqual(result.shape[0], 200) self.assertTrue('value' in result.columns) self.assertTrue('isAnomaly' in result.columns) self.assertTrue('score' in result.columns) self.assertTrue('expectedValue' not in result.columns) self.assertTrue('upperBoundary' not in result.columns) self.assertTrue('lowerBoundary' not in result.columns) def testAnomalyAndMargin(self): df = pd.DataFrame() df['timestamp'] = pd.date_range(start='2020-01-01', periods=200, freq='1D') df['value'] = np.sin(np.linspace(1, 20, 200)) save_data_frame_to_directory(self.__input_path, df) invoker.invoke(self.__input_path, "AnomalyAndMargin", self.__timestamp_column, self.__value_column, self.__batch_size, self.__threshold, self.__sensitivity, self.__append_mode, self.compute_stats_in_visualization, self.__output_path) result = load_data_frame_from_directory(self.__output_path).data self.assertEqual(result.shape[0], 200) self.assertTrue('value' in result.columns) self.assertTrue('isAnomaly' in result.columns) self.assertTrue('score' in result.columns) self.assertTrue('expectedValue' in result.columns) self.assertTrue('upperBoundary' in result.columns) self.assertTrue('lowerBoundary' in result.columns) def testBatchMode(self): df = pd.DataFrame() df['timestamp'] =
pd.date_range(start='2020-01-01', periods=200, freq='1D')
pandas.date_range
import numpy as np import os import pandas as pd ''' Takes in a pair file of .ades and .dat and extracts the channel names and the corresponding SEEG time series places them into four different files - raw numpy - headers csv - annotations csv - channels csv Which follows format that we place data from .edf files. Most data is empty since .ades does not get alot of these data points. ''' def rawtonumpy(raweeg, outputdatafile): # open output Numpy file to write npfile = open(outputdatafile, 'wb') np.save(npfile, raweeg) def chantocsv(chanlabels, samplerate, numsamps, outputchanfile): ##################### 2. Import channel headers ######################## # create list with dataframe column channel header names channelheaders = [[ 'Channel Number', 'Labels', 'Physical Maximum', 'Physical Minimum', 'Digital Maximum', 'Digital Minimum', 'Sample Frequency', 'Num Samples', 'Physical Dimensions', ]] # get the channel labels of file and convert to list of strings # -> also gets rid of excessive characters chanlabels = [str(x).replace('POL', '').replace(' ', '') for x in chanlabels] # read chan header data from each chan for each column and append to list for i in range(len(chanlabels)): channelheaders.append([ i + 1, chanlabels[i], '', '', '', '', samplerate, numsamps, '', ]) # create CSV file of channel header names and data channelheaders_df = pd.DataFrame(data=channelheaders) # create CSV file of file header names and data channelheaders_df.to_csv(outputchanfile, index=False, header=False) def annotationtocsv(outputannotationsfile): ##################### 3. Import File Annotations ######################## # create list annotationheaders = [[ 'Time (sec)', 'Duration', 'Description' ]] for n in np.arange(0): annotationheaders.append([ '', '', '' ]) annotationheaders_df = pd.DataFrame(data=annotationheaders) # create CSV file of channel header names and data annotationheaders_df.to_csv( outputannotationsfile, index=False, header=False) def headerstocsv(samplerate, numsamps, outputheadersfile): # create list with dataframe column file header names fileheaders = [[ 'pyedfib Version', 'Birth Date', 'Gender', 'Start Date (D-M-Y)', 'Start Time (H-M-S)', 'Patient Code', 'Equipment', 'Data Record Duration (s)', 'Number of Data Records in File', 'Number of Annotations in File', 'Sample Frequency', 'Samples in File', 'Physical Dimension' ]] # append file header data for each dataframe column to list # startdate = str(edffile.getStartdatetime().day) + '-' + str(edffile.getStartdatetime().month) + '-' + str(edffile.getStartdatetime().year) # starttime = str(edffile.getStartdatetime().hour) + '-' + str(edffile.getStartdatetime().minute) + '-' + str(edffile.getStartdatetime().second) fileheaders.append([ '', '', '', '', '', '', '', numsamps / float(samplerate), '', '', samplerate, numsamps, '', ]) # create dataframes from array of meta data fileheaders_df =
pd.DataFrame(data=fileheaders)
pandas.DataFrame
import sys sys.path.append('..') import pandas as pd import numpy as np import os from scripts.run_links import run from config import config results_dir = config['results_dir'] if __name__ == "__main__": np.seterr(all='ignore') dataset = '5ht6_KRFP_pca5' keys = ['cov_type', 'link_weight', 'k'] metrics = ['links_accuracy'] results = pd.DataFrame({'dataset': []}) for k in [5, 10, 15]: for lw in [1,2,4,8]: # n_folds - default 5 params = {'seed': 42, 'n_init': 10, 'n_jobs': 10, 'k': k, 'gauss_per_clust': 1, 'cov_type': 'fixed_spherical', 'verbose': False, 'link_weight': lw} key_params = [p for p in params if p in keys] res = {key: [params[key]] for key in key_params} res['dataset'] = [dataset] res_filename = "_".join(["{}:{}".format(key, v[0]) for key, v in res.iteritems()]) + ".csv" res_path = os.path.join(results_dir, res_filename) if not os.path.exists(res_path): ret = run(dataset, metrics, params) res.update({m: [ret[m]] for m in metrics}) part_results =
pd.DataFrame.from_dict(res)
pandas.DataFrame.from_dict
# Copyright 2020 The Private Cardinality Estimation Framework Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for wfa_cardinality_estimation_evaluation_framework.evaluations.tests.report_generator.""" import os import re from absl.testing import absltest from absl.testing import parameterized import numpy as np import pandas as pd from wfa_cardinality_estimation_evaluation_framework.estimators import exact_set from wfa_cardinality_estimation_evaluation_framework.evaluations import analyzer from wfa_cardinality_estimation_evaluation_framework.evaluations import configs from wfa_cardinality_estimation_evaluation_framework.evaluations import evaluator from wfa_cardinality_estimation_evaluation_framework.evaluations import report_generator from wfa_cardinality_estimation_evaluation_framework.evaluations.data import evaluation_configs from wfa_cardinality_estimation_evaluation_framework.simulations import set_generator class ReportGeneratorTest(parameterized.TestCase): def setUp(self): super(ReportGeneratorTest, self).setUp() exact_set_lossless = configs.SketchEstimatorConfig( name=evaluation_configs.construct_sketch_estimator_config_name( sketch_name='exact_set', sketch_config='set', estimator_name='lossless'), sketch_factory=exact_set.ExactMultiSet.get_sketch_factory(), estimator=exact_set.LosslessEstimator()) exact_set_less_one = configs.SketchEstimatorConfig( name=evaluation_configs.construct_sketch_estimator_config_name( sketch_name='exact_set', sketch_config='set', estimator_name='less_one'), sketch_factory=exact_set.ExactMultiSet.get_sketch_factory(), estimator=exact_set.LessOneEstimator(), sketch_noiser=exact_set.AddRandomElementsNoiser( num_random_elements=0, random_state=np.random.RandomState())) self.sketch_estimator_config_list = (exact_set_lossless, exact_set_less_one) self.evaluation_config = configs.EvaluationConfig( name='test_evaluation', num_runs=2, scenario_config_list=[ configs.ScenarioConfig( name='ind1', set_generator_factory=( set_generator.IndependentSetGenerator .get_generator_factory_with_num_and_size( universe_size=10, num_sets=5, set_size=2))), configs.ScenarioConfig( name='ind2', set_generator_factory=( set_generator.IndependentSetGenerator .get_generator_factory_with_num_and_size( universe_size=10, num_sets=5, set_size=2))), ]) self.evaluation_run_name = 'test_run' def _run_evaluation_and_simulation(out_dir): self.evaluator = evaluator.Evaluator( evaluation_config=self.evaluation_config, sketch_estimator_config_list=self.sketch_estimator_config_list, run_name=self.evaluation_run_name, out_dir=out_dir) self.evaluator() self.analyzer = analyzer.CardinalityEstimatorEvaluationAnalyzer( out_dir=out_dir, evaluation_directory=out_dir, evaluation_run_name=self.evaluation_run_name, evaluation_name=self.evaluation_config.name, estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)]) self.analyzer() self.run_evaluation_and_simulation = _run_evaluation_and_simulation exact_set_lossless_freq3 = configs.SketchEstimatorConfig( name=evaluation_configs.construct_sketch_estimator_config_name( sketch_name='exact_set', sketch_config='set', estimator_name='lossless', max_frequency=3), sketch_factory=exact_set.ExactMultiSet.get_sketch_factory(), estimator=exact_set.LosslessEstimator(), max_frequency=3) exact_set_less_one_freq3 = configs.SketchEstimatorConfig( name=evaluation_configs.construct_sketch_estimator_config_name( sketch_name='exact_set', sketch_config='set', estimator_name='less_one', max_frequency=3), sketch_factory=exact_set.ExactMultiSet.get_sketch_factory(), estimator=exact_set.LessOneEstimator(), sketch_noiser=exact_set.AddRandomElementsNoiser( num_random_elements=0, random_state=np.random.RandomState()), max_frequency=3) self.frequency_sketch_estimator_config_list = (exact_set_lossless_freq3, exact_set_less_one_freq3) self.frequency_evaluation_run_name = 'freq_test_run' def _run_frequency_evaluation_and_simulation(out_dir): self.evaluator = evaluator.Evaluator( evaluation_config=self.evaluation_config, sketch_estimator_config_list=( self.frequency_sketch_estimator_config_list), run_name=self.frequency_evaluation_run_name, out_dir=out_dir) self.evaluator() self.analyzer = analyzer.FrequencyEstimatorEvaluationAnalyzer( out_dir=out_dir, evaluation_directory=out_dir, evaluation_run_name=self.frequency_evaluation_run_name, evaluation_name=self.evaluation_config.name, estimable_criteria_list=[(0.05, 0.95), (1.01, 0.9)]) self.analyzer() self.run_frequency_evaluation_and_simulation = ( _run_frequency_evaluation_and_simulation) def test_parse_sketch_estimator_name(self): sketch_estimator_name = 'vector_of_counts-4096-sequential-ln3-infty' parsed_name = report_generator.ReportGenerator.parse_sketch_estimator_name( sketch_estimator_name) expected = { evaluation_configs.SKETCH: 'vector_of_counts', evaluation_configs.SKETCH_CONFIG: '4096', evaluation_configs.SKETCH_EPSILON: 'ln3', evaluation_configs.ESTIMATOR: 'sequential', evaluation_configs.ESTIMATE_EPSILON: 'infty', } self.assertEqual(parsed_name, expected) def test_add_parsed_sketch_estimator_name_cols(self): df = pd.DataFrame({ 'sketch_estimator': ['vector_of_counts-4096-sequential-ln3-infty', 'bloom_filter-1e6-union_estimator-infty-ln3']}) result = ( report_generator.ReportGenerator .add_parsed_sketch_estimator_name_cols(df, 'sketch_estimator')) expected = pd.DataFrame({ 'sketch_estimator': ['vector_of_counts-4096-sequential-ln3-infty', 'bloom_filter-1e6-union_estimator-infty-ln3'], evaluation_configs.SKETCH: ['vector_of_counts', 'bloom_filter'], evaluation_configs.SKETCH_CONFIG: ['4096', '1e6'], evaluation_configs.ESTIMATOR: ['sequential', 'union_estimator'], evaluation_configs.SKETCH_EPSILON: ['ln3', 'infty'], evaluation_configs.ESTIMATE_EPSILON: ['infty', 'ln3'], }) try:
pd.testing.assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
import sys import treelib import pandas as pd from treelib import Tree from tqdm import tqdm from collections import OrderedDict, deque from copy import deepcopy from functools import partial from tr.core.tree_utils import build_fleet_state, order_fleet_state from tr.core.tree_utils import NodeScheduleDays, generate_code from tr.core.tree_utils import fleet_operate_A, fleet_operate_C from tr.core.tree_utils import generate_D_check_code from tr.core.utils import advance_date, save_pickle, load_pickle # the order of this list reflects an heuristc (do maintenance first) maintenance_actions = [1, 0] type_checks = ['A', 'C'] # type of checks sys.setrecursionlimit(1500) # recurssion limit is reached class TreeDaysPlanner: def __init__(self, calendar, fleet, config_params): self.calendar = calendar self.fleet = fleet self.cp = config_params self.calendar_tree = {'A': Tree(), 'C': Tree(), 'A-RL': Tree()} iso_str = '1/1/2022' self.daterinos = pd.to_datetime(iso_str, format='%m/%d/%Y') self.removed_aircrafts = OrderedDict() try: self.phased_out = load_pickle("build/check_files/phased_out.pkl") self.final_calendar = load_pickle("build/check_files/C_checks.pkl") except: self.phased_out = OrderedDict() self.final_calendar = {'A': {}, 'C': {}} try: metrics_dict = load_pickle("metrics_dict") self.metrics(metrics_dict) except: pass self.utilization_ratio, self.code_generator, self.tats, self.finale_schedule = \ self.__build_calendar_helpers() for type_check in type_checks: fleet_state = build_fleet_state(self.fleet, type_check=type_check) fleet_state = order_fleet_state(fleet_state) root = NodeScheduleDays(calendar=OrderedDict(), day=self.calendar.start_date, fleet_state=fleet_state, action_maintenance=0, assignment=[], tag="Root", identifier="root") self.calendar_tree[type_check].add_node(root) fleet_state = build_fleet_state(self.fleet, type_check='A') fleet_state = order_fleet_state(fleet_state) root = NodeScheduleDays(calendar=OrderedDict(), day=self.calendar.start_date, fleet_state=fleet_state, action_maintenance=0, assignment=[], tag="Root", identifier="root") self.calendar_tree['A-RL'].add_node(root) self.schedule_counter = 0 self.all_schedules = deque(maxlen=100) # maintain only the top 10 def __build_calendar_helpers(self): fleet_state = build_fleet_state(self.fleet, type_check='C') code_generator = {'A': partial(generate_code, 4), 'C': partial(generate_code, 12)} utilization_ratio = OrderedDict() tats = OrderedDict() finale_schedule = OrderedDict() for _ in self.fleet.aircraft_info.keys(): utilization_ratio[_] = {} finale_schedule[_] = {} utilization_ratio[_]['DFH'] = self.fleet.aircraft_info[_]['DFH'] utilization_ratio[_]['DFC'] = self.fleet.aircraft_info[_]['DFC'] c_elapsed_time = self.fleet.aircraft_info[_]['C_ELAPSED_TIME'] c_elapsed_tats = list(c_elapsed_time.keys()) c_elapsed_tats.remove('Fleet') new_code = fleet_state[_]['C-SN'] tats[_] = {} # code to tat for tat in c_elapsed_tats: new_code = code_generator['C'](new_code) tats[_][new_code] = c_elapsed_time[tat] return utilization_ratio, code_generator, tats, finale_schedule # exceptions is a list of aircrafts that is in maintenance, thus not operating def fleet_operate_one_day(self, fleet_state, date, on_maintenance=[], type_check='A', on_c_maintenance=[], type_D_check=False): kwargs = { 'fleet_state': fleet_state, 'date': date, 'on_maintenance': on_maintenance, 'type_check': type_check, 'on_c_maintenance': on_c_maintenance, 'utilization_ratio': self.utilization_ratio, 'code_generator': self.code_generator } if type_check == 'A': fleet_state = fleet_operate_A(**kwargs) elif type_check == 'C': kwargs['type_D_check'] = type_D_check fleet_state = fleet_operate_C(**kwargs) return fleet_state def check_safety_fleet(self, fleet_state): for key in fleet_state.keys(): if fleet_state[key]['TOTAL-RATIO'] >= 1: return False return True def check_solved(self, current_calendar): if len(current_calendar) > 0: if list(current_calendar.keys())[-1] == self.daterinos: return True else: return False return False def get_slots(self, date, check_type): if check_type == 'A': slots = self.calendar.calendar[date]['resources']['slots']['a-type'] elif check_type == 'C': slots = self.calendar.calendar[date]['resources']['slots']['c-type'] return slots # there is no variables, just one bolean variable, do maintenance or not def expand_with_heuristic(self, node_schedule, type_check='A'): if type_check == 'A': childs = self.expand_a(node_schedule, type_check) elif type_check == 'C': childs = self.expand_c(node_schedule, type_check) elif type_check == 'A-RL': childs = self.expand_a(node_schedule, 'A') return childs def expand_a(self, node_schedule, type_check): # recebe uma copia do calendario C para consultar # precisamos do mesmo que a outra a dizer merged calendar_0 = deepcopy(node_schedule.calendar) calendar_1 = deepcopy(node_schedule.calendar) fleet_state_0 = deepcopy(node_schedule.fleet_state) fleet_state_1 = deepcopy(node_schedule.fleet_state) on_c_maintenance_0 = deepcopy(node_schedule.on_c_maintenance) on_c_maintenance_1 = deepcopy(node_schedule.on_c_maintenance) on_c_maintenance_tats_0 = deepcopy(node_schedule.on_c_maintenance_tats) on_c_maintenance_tats_1 = deepcopy(node_schedule.on_c_maintenance_tats) on_maintenance_merged_0 = deepcopy(node_schedule.on_maintenance_merged) on_maintenance_merged_1 = deepcopy(node_schedule.on_maintenance_merged) merged_flag = False day = node_schedule.day day_old = day childs = [] day = advance_date(day, days=int(1)) slots = self.get_slots(day, type_check) iso_str = '5/2/2019' daterinos = pd.to_datetime(iso_str, format='%m/%d/%Y') if day == daterinos: slots += 1 iso_str = '7/22/2019' daterinos = pd.to_datetime(iso_str, format='%m/%d/%Y') if day == daterinos: slots += 1 on_maintenance = list(fleet_state_1.keys())[0] ratio = fleet_state_0[on_maintenance]['TOTAL-RATIO'] if self.calendar_tree['A'].depth() <= self.cp['a-checks']['beta_1']: maintenance_actions = [1, 0] if ratio > self.cp['a-checks']['alpha_1'] else [0, 1] elif self.calendar_tree['A'].depth() <= self.cp['a-checks']['beta_2']: maintenance_actions = [1, 0] if ratio > self.cp['a-checks']['alpha_2'] else [0, 1] elif self.calendar_tree['A'].depth() <= self.cp['a-checks']['beta_3']: maintenance_actions = [1, 0] if ratio > self.cp['a-checks']['alpha_3'] else [0, 1] elif self.calendar_tree['A'].depth() <= self.cp['a-checks']['beta_4']: maintenance_actions = [1, 0] if ratio > self.cp['a-checks']['alpha_4'] else [0, 1] elif self.calendar_tree['A'].depth() <= self.cp['a-checks']['beta_5']: maintenance_actions = [1, 0] if ratio > self.cp['a-checks']['alpha_5'] else [0, 1] else: maintenance_actions = [1, 0] if ratio > self.cp['a-checks']['alpha_6'] else [0, 1] # if self.calendar_tree['A'].depth() <= 239: # maintenance_actions = [1, 0] if ratio > 0.78 else [0, 1] # elif self.calendar_tree['A'].depth() <= 342: # maintenance_actions = [1, 0] if ratio > 0.76 else [0, 1] # elif self.calendar_tree['A'].depth() <= 726: # maintenance_actions = [1, 0] if ratio > 0.76 else [0, 1] # elif self.calendar_tree['A'].depth() <= 784: # maintenance_actions = [1, 0] if ratio > 0.8 else [0, 1] # elif self.calendar_tree['A'].depth() <= 926: # maintenance_actions = [1, 0] if ratio > 0.8 else [0, 1] # else: # maintenance_actions = [1, 0] if ratio > 0.9 else [0, 1] for _ in self.phased_out.keys(): if self.phased_out[_] == day: print("{} phased out and is no longer in the fleet".format(_)) fleet_state_0.pop(_, None) fleet_state_1.pop(_, None) on_c_maintenance_all = deepcopy(on_c_maintenance_0) for _ in on_c_maintenance_all: print("{}-{} days remaining on maintenance".format(_, on_c_maintenance_tats_0[_])) if on_c_maintenance_tats_0[_] == 0: on_c_maintenance_0.remove(_) on_c_maintenance_tats_0.pop(_, None) on_c_maintenance_1.remove(_) on_c_maintenance_tats_1.pop(_, None) if _ in on_maintenance_merged_0: on_maintenance_merged_0.remove(_) on_maintenance_merged_1.remove(_) else: on_c_maintenance_tats_0[_] -= 1 on_c_maintenance_tats_1[_] -= 1 on_maintenance_merged = [] if self.final_calendar['C'][day]['MAINTENANCE']: on_c_calendar = self.final_calendar['C'][day]['ASSIGNMENT'] on_c_calendar_tat = self.final_calendar['C'][day]['ASSIGNED STATE']['TAT'] on_c_maintenance_0.append(on_c_calendar) on_c_maintenance_1.append(on_c_calendar) on_c_maintenance_tats_0[on_c_calendar] = on_c_calendar_tat on_c_maintenance_tats_1[on_c_calendar] = on_c_calendar_tat if self.calendar_tree['A'].depth() <= 60: if fleet_state_0[on_c_calendar]['TOTAL-RATIO'] > 0.40: if on_c_calendar not in on_maintenance_merged_0: on_maintenance_merged.append(on_c_calendar) merged_flag = True elif self.calendar_tree['A'].depth() <= 311: if fleet_state_0[on_c_calendar]['TOTAL-RATIO'] > 0.50: if on_c_calendar not in on_maintenance_merged_0: on_maintenance_merged.append(on_c_calendar) merged_flag = True else: if fleet_state_0[on_c_calendar]['TOTAL-RATIO'] > 0.70: if on_c_calendar not in on_maintenance_merged_0: on_maintenance_merged.append(on_c_calendar) merged_flag = True for action_value in maintenance_actions: if action_value and self.calendar.calendar[day]['allowed'][ 'public holidays'] and self.calendar.calendar[day]['allowed']['a-type']: on_maintenance = list(fleet_state_1.keys())[0:slots] # if flight hours are bellow 550, and there are 2 slots, use only one if slots == 2 and fleet_state_1[on_maintenance[-1]]['FH-A'] <= 550: on_maintenance = [list(fleet_state_1.keys())[0]] for _ in on_maintenance_merged_0: if _ in on_maintenance: slots += 1 on_maintenance = list(fleet_state_1.keys())[0:slots] on_maintenance.extend(on_maintenance_merged) fleet_state_1 = self.fleet_operate_one_day(fleet_state_1, day_old, on_maintenance, type_check, on_c_maintenance_1) fleet_state_1 = order_fleet_state(fleet_state_1) valid = self.check_safety_fleet(fleet_state_1) if valid: calendar_1[day] = {} calendar_1[day]['SLOTS'] = slots calendar_1[day]['MAINTENANCE'] = True calendar_1[day]['ASSIGNMENT'] = on_maintenance calendar_1[day]['MERGED FLAG'] = merged_flag calendar_1[day]['ASSIGNED STATE'] = {} for _ in on_maintenance: calendar_1[day]['ASSIGNED STATE'][_] = fleet_state_1[_] childs.append( NodeScheduleDays(calendar_1, day, fleet_state_1, action_value, assignment=on_maintenance, on_c_maintenance=on_c_maintenance_1, on_c_maintenance_tats=on_c_maintenance_tats_1, on_maintenance_merged=on_maintenance_merged)) if not action_value: on_maintenance = [] fleet_state_0 = self.fleet_operate_one_day(fleet_state_0, day_old, on_maintenance, type_check, on_c_maintenance_0) fleet_state_0 = order_fleet_state(fleet_state_0) valid = self.check_safety_fleet(fleet_state_0) if valid: calendar_0[day] = {} calendar_0[day]['SLOTS'] = slots calendar_0[day]['MAINTENANCE'] = False calendar_0[day]['ASSIGNMENT'] = None calendar_0[day]['MERGED FLAG'] = merged_flag childs.append( NodeScheduleDays(calendar_0, day, fleet_state_0, action_value, assignment=on_maintenance, on_c_maintenance=on_c_maintenance_0, on_c_maintenance_tats=on_c_maintenance_tats_0, on_maintenance_merged=on_maintenance_merged)) return childs def expand_c(self, node_schedule, type_check): calendar_0 = deepcopy(node_schedule.calendar) calendar_1 = deepcopy(node_schedule.calendar) fleet_state_0 = deepcopy(node_schedule.fleet_state) fleet_state_1 = deepcopy(node_schedule.fleet_state) on_c_maintenance_0 = deepcopy(node_schedule.on_c_maintenance) on_c_maintenance_1 = deepcopy(node_schedule.on_c_maintenance) c_maintenance_counter = deepcopy(node_schedule.c_maintenance_counter) on_c_maintenance_tats_0 = deepcopy(node_schedule.on_c_maintenance_tats) on_c_maintenance_tats_1 = deepcopy(node_schedule.on_c_maintenance_tats) fleet_phasing_out_0 = deepcopy(node_schedule.fleet_phasing_out) fleet_phasing_out_1 = deepcopy(node_schedule.fleet_phasing_out) phased_out_0 = deepcopy(node_schedule.phased_out) phased_out_1 = deepcopy(node_schedule.phased_out) day = node_schedule.day day_old = day childs = [] day = advance_date(day, days=int(1)) slots = self.get_slots(day, type_check) on_maintenance = list(fleet_state_1.keys())[0] ratio = fleet_state_0[on_maintenance]['TOTAL-RATIO'] if self.calendar_tree['C'].depth() <= self.cp['c-checks']['beta_1']: maintenance_actions = [1, 0] if ratio > self.cp['c-checks']['alpha_1'] else [0, 1] elif self.calendar_tree['C'].depth() <= self.cp['c-checks']['beta_2']: maintenance_actions = [1, 0] if ratio > self.cp['c-checks']['alpha_2'] else [0, 1] elif self.calendar_tree['C'].depth() <= self.cp['c-checks']['beta_3']: maintenance_actions = [1, 0] if ratio > self.cp['c-checks']['alpha_2'] else [0, 1] elif self.calendar_tree['C'].depth() <= self.cp['c-checks']['beta_4']: maintenance_actions = [1, 0] if ratio > self.cp['c-checks']['alpha_4'] else [0, 1] elif self.calendar_tree['C'].depth() <= self.cp['c-checks']['beta_5']: maintenance_actions = [1, 0] if ratio > self.cp['c-checks']['alpha_5'] else [0, 1] elif self.calendar_tree['C'].depth() <= self.cp['c-checks']['beta_6']: maintenance_actions = [1, 0] if ratio > self.cp['c-checks']['alpha_6'] else [0, 1] else: maintenance_actions = [1, 0] if ratio > self.cp['c-checks']['alpha_7'] else [0, 1] # if self.calendar_tree['C'].depth() <= 240: # maintenance_actions = [1, 0] if ratio > 0.65 else [0, 1] # elif self.calendar_tree['C'].depth() <= 343: # maintenance_actions = [1, 0] if ratio > 0.65 else [0, 1] # elif self.calendar_tree['C'].depth() <= 727: # maintenance_actions = [1, 0] if ratio > 0.65 else [0, 1] # elif self.calendar_tree['C'].depth() <= 785: # maintenance_actions = [1, 0] if ratio > 0.75 else [0, 1] # elif self.calendar_tree['C'].depth() <= 927: # maintenance_actions = [1, 0] if ratio > 0.8 else [0, 1] # elif self.calendar_tree['C'].depth() <= 960: # maintenance_actions = [1, 0] if ratio > 0.8 else [0, 1] # else: # maintenance_actions = [1, 0] if ratio > 0.84 else [0, 1] fleet_keys = list(fleet_state_0.keys()) for _ in fleet_keys: last_code = self.code_generator['C'](fleet_state_0[_]['C-SN']) if self.tats[_][last_code] == -1: fleet_phasing_out_0[_] = deepcopy(fleet_state_0[_]) fleet_phasing_out_1[_] = deepcopy(fleet_state_1[_]) fleet_state_0.pop(_, None) fleet_state_1.pop(_, None) on_c_maintenance_all = deepcopy(on_c_maintenance_0) for _ in on_c_maintenance_all: print("{}-{} days remaining on maintenance".format(_, on_c_maintenance_tats_0[_])) if on_c_maintenance_tats_0[_] == 0: on_c_maintenance_0.remove(_) on_c_maintenance_tats_0.pop(_, None) on_c_maintenance_1.remove(_) on_c_maintenance_tats_1.pop(_, None) else: on_c_maintenance_tats_0[_] -= 1 on_c_maintenance_tats_1[_] -= 1 if c_maintenance_counter > 0: c_maintenance_counter -= 1 for action_value in maintenance_actions: if action_value and self.calendar.calendar[day]['allowed'][ 'public holidays'] and self.calendar.calendar[day]['allowed'][ 'c-type'] and self.calendar.calendar[day]['allowed']['c_peak']: on_maintenance = list(fleet_state_1.keys())[0] le_d_check = False for key in fleet_state_1.keys(): d_ratio = fleet_state_1[key]['DY-D-RATIO'] if d_ratio >= 1: on_maintenance = key le_d_check = True new_code = self.code_generator['C'](fleet_state_1[on_maintenance]['C-SN']) valid_c, on_c_maintenance_1, real_tats = self.c_allowed( day, on_maintenance, on_c_maintenance_1, slots, c_maintenance_counter, new_code, on_c_maintenance_tats_1) if valid_c: is_D_check = (self.is_d_check(on_maintenance, fleet_state_1) or le_d_check) fleet_state_1 = self.fleet_operate_one_day(fleet_state_1, day_old, on_c_maintenance_1, type_check=type_check, type_D_check=is_D_check) fleet_state_1 = order_fleet_state(fleet_state_1) fleet_phasing_out_1 = self.fleet_operate_one_day(fleet_phasing_out_1, day_old, [], type_check=type_check) fleet_phasing_out_1, phased_out_1 = self.phasing_out( fleet_phasing_out_1, phased_out_1, day_old) valid = self.check_safety_fleet(fleet_state_1) if valid: calendar_1[day] = {} calendar_1[day]['SLOTS'] = slots calendar_1[day]['MAINTENANCE'] = True calendar_1[day]['ASSIGNMENT'] = on_maintenance calendar_1[day]['ASSIGNED STATE'] = {} calendar_1[day]['ASSIGNED STATE']['STATE'] = fleet_state_1[on_maintenance] calendar_1[day]['ASSIGNED STATE']['TAT'] = real_tats[on_maintenance] c_maintenance_counter = 3 childs.append( NodeScheduleDays(calendar_1, day, fleet_state_1, action_value, assignment=on_maintenance, on_c_maintenance=on_c_maintenance_1, c_maintenance_counter=c_maintenance_counter, on_c_maintenance_tats=real_tats, fleet_phasing_out=fleet_phasing_out_1, phased_out=phased_out_1)) if not action_value: fleet_state_0 = self.fleet_operate_one_day(fleet_state_0, day_old, on_c_maintenance_0, type_check) fleet_state_0 = order_fleet_state(fleet_state_0) fleet_phasing_out_0 = self.fleet_operate_one_day(fleet_phasing_out_0, day_old, [], type_check) fleet_phasing_out_0, phased_out_0 = self.phasing_out(fleet_phasing_out_0, phased_out_0, day_old) valid = self.check_safety_fleet(fleet_state_0) if valid: calendar_0[day] = {} calendar_0[day]['SLOTS'] = slots calendar_0[day]['MAINTENANCE'] = False calendar_0[day]['ASSIGNMENT'] = None childs.append( NodeScheduleDays(calendar_0, day, fleet_state_0, action_value, assignment=[], on_c_maintenance=on_c_maintenance_0, c_maintenance_counter=c_maintenance_counter, on_c_maintenance_tats=on_c_maintenance_tats_0, fleet_phasing_out=fleet_phasing_out_0, phased_out=phased_out_0)) return childs def expand_a_RL(self, node_schedule, type_check): # recebe uma copia do calendario C para consultar # precisamos do mesmo que a outra a dizer merged calendar_0 = deepcopy(node_schedule.calendar) calendar_1 = deepcopy(node_schedule.calendar) fleet_state_0 = deepcopy(node_schedule.fleet_state) fleet_state_1 = deepcopy(node_schedule.fleet_state) on_c_maintenance_0 = deepcopy(node_schedule.on_c_maintenance) on_c_maintenance_1 = deepcopy(node_schedule.on_c_maintenance) on_c_maintenance_tats_0 = deepcopy(node_schedule.on_c_maintenance_tats) on_c_maintenance_tats_1 = deepcopy(node_schedule.on_c_maintenance_tats) on_maintenance_merged_0 = deepcopy(node_schedule.on_maintenance_merged) on_maintenance_merged_1 = deepcopy(node_schedule.on_maintenance_merged) merged_flag = False day = node_schedule.day day_old = day childs = [] day = advance_date(day, days=int(1)) slots = self.get_slots(day, type_check) iso_str = '5/2/2019' daterinos = pd.to_datetime(iso_str, format='%m/%d/%Y') if day == daterinos: slots += 1 iso_str = '7/22/2019' daterinos =
pd.to_datetime(iso_str, format='%m/%d/%Y')
pandas.to_datetime
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [150.0, 250.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50, } ) return pd.concat( [ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ] ) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (-1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100), "effective_date": ( pd.Timestamp("2014-01-01"), # Filter out # Split before Q1 event & after first estimate pd.Timestamp("2015-01-07"), # Split before Q1 event pd.Timestamp("2015-01-09"), # Split before Q1 event pd.Timestamp("2015-01-13"), # Split before Q1 event pd.Timestamp("2015-01-15"), # Split before Q1 event pd.Timestamp("2015-01-18"), # Split after Q1 event and before Q2 event pd.Timestamp("2015-01-30"), # Filter out - this is after our date index pd.Timestamp("2016-01-01"), ), } ) sid_10_splits = pd.DataFrame( { SID_FIELD_NAME: 10, "ratio": (0.2, 0.3), "effective_date": ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp("2015-01-07"), # Apply a single split before Q1 event. pd.Timestamp("2015-01-20"), ), } ) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame( { SID_FIELD_NAME: 20, "ratio": ( 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), pd.Timestamp("2015-01-30"), ), } ) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame( { SID_FIELD_NAME: 30, "ratio": (8, 9, 10, 11, 12), "effective_date": ( # Split before the event and before the # split-asof-date. pd.Timestamp("2015-01-07"), # Split on date of event but before the # split-asof-date. pd.Timestamp("2015-01-09"), # Split after the event, but before the # split-asof-date. pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), ), } ) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame( { SID_FIELD_NAME: 40, "ratio": (13, 14), "effective_date": ( pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-22"), ), } ) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame( { SID_FIELD_NAME: 50, "ratio": (15, 16), "effective_date": ( pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ), } ) return pd.concat( [ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ] ) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-12") ] ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-01-21") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 221 * 0.8 * 0.9,
pd.Timestamp("2015-02-10")
pandas.Timestamp
# <NAME>'s Kaggle Utilities # Copyright 2019 by <NAME>, Open Source, Released under the Apache License # For more information: https://github.com/jeffheaton/jh-kaggle-util # # Tune for XGBoost, based on: https://towardsdatascience.com/fine-tuning-xgboost-in-python-like-a-boss-b4543ed8b1e # from util import * from xgboost.sklearn import XGBClassifier from sklearn.model_selection import GridSearchCV import multiprocessing import itertools import demjson import time import pandas as pd import numpy as np import xgboost as xgb import time import os import zipfile import operator from sklearn.metrics import log_loss import scipy from train_xgboost import TrainXGBoost # http://stackoverflow.com/questions/2853212/all-possible-permutations-of-a-set-of-lists-in-python FOLDS = 5 EARLY_STOP = 50 MAX_ROUNDS = 5 PARAMS1 = { 'objective': 'reg:linear', 'eval_metric': 'rmse', 'silent' : 1, 'learning_rate':0.0045,'seed':4242 } train = TrainXGBoost("1",params=PARAMS1,run_single_fold=True) def modelfit(params,x,y): #Fit the algorithm on the data print("fit") alg = XGBClassifier(**params) alg.fit(x,y,verbose=True) feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False) print(feat_imp) def update(base_dict, update_copy): for key in update_copy.keys(): base_dict[key] = update_copy[key] def step1_find_depth_and_child(params): test1 = { 'max_depth': list(range(3,12,2)), 'min_child_weight': list(range(1,10,2)) } return grid_search(params, test1, 1) def step2_narrow_depth(params): max_depth = params['max_depth'] test2 = { 'max_depth': [max_depth-1,max_depth,max_depth+1] } return grid_search(params, test2, 2) def step3_gamma(params): test3 = { 'gamma': list([i/10.0 for i in range(0,5)]) } return grid_search(params, test3, 3) def step4_sample(params): test4 = { 'subsample':list([i/10.0 for i in range(6,10)]), 'colsample_bytree':list([i/10.0 for i in range(6,10)]) } return grid_search(params, test4, 4) def step5_reg1(params): test5 = { 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100] } return grid_search(params, test5, 5) def grid_search(params,grid,num): keys = set(grid.keys()) l = [grid[x] for x in keys] perm = list(itertools.product(*l)) jobs = [] for i in perm: jobs.append({k:v for k,v in zip(keys,i)}) print("Total number of jobs: {}".format(len(jobs))) column_step = [] column_score = [] column_jobs = [] for i,job in enumerate(jobs): print("** Starting job: {}:{}/{}".format(num,i+1,len(jobs))) params2 = dict(params) update(params2,job) train.params = params2 train.rounds = MAX_ROUNDS train.early_stop = EARLY_STOP result = train.run_cv() print("Result: {}".format(result)) column_jobs.append(str(job)) column_score.append(result[0]) column_step.append(result[1]) df =
pd.DataFrame({'job':column_jobs,'step':column_step,'score':column_score},columns=['job','score','step'])
pandas.DataFrame
from glob import glob import pandas as pd def concat_csv_files_irt(folder_with_csv="/content/csvs_IRT"): # print(folder_with_csv) df_aux=[] for csv in glob(folder_with_csv+"/*.csv"): df = pd.read_csv(csv, index_col=None, header=0) df.rename(columns={'Unnamed: 0': 'filename'},inplace=True) df["pert"]=csv.split(".")[-3] df_aux.append(df) df = pd.concat(df_aux, axis=0, ignore_index=True) return df def concat_csv_files_porcentajes(folder_with_csv="/content/csvs_IRT"): # print(folder_with_csv) df_aux=[] for csv in glob(folder_with_csv+"/*.csv"): df = pd.read_csv(csv, index_col=None, header=0,converters={'filename': lambda x: str(x).split(".")[0]}) df.rename(columns={'Unnamed: 0': 'filename'},inplace=True) df["pert"]=csv.split("_")[-1].split(".")[0] df_aux.append(df) df =
pd.concat(df_aux, axis=0, ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Sun May 30 14:37:43 2021 @author: Three_Gold """ """ 1、对提供的图书大数据做初步探索性分析。分析每一张表的数据结构。 2、对给定数据做数据预处理(数据清洗),去重,去空。 3、按照分配的院系保留自己需要的数据(教师的和学生的都要),这部分数据为处理好的数据。 4、将处理好的数据保存,文件夹名称为预处理后数据。 """ import pandas as pd import time import os import jieba import wordcloud path = os.getcwd()#获取项目根目录 path = path.replace('\\', '/')#设置项目根目录路径 Path = path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/'#设置预处理后数据根目录路径 #数据清洗,去重,去空 A1_UserID = pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/原始数据/读者信息.xlsx') A1_UserID = A1_UserID.dropna()#去除空值 A1_UserID = A1_UserID.drop_duplicates()#去重 A1_UserID = A1_UserID.reset_index(drop=True)#重设索引 A1_UserID.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/读者信息.xlsx')#保存数据 book_list = pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/原始数据/图书目录.xlsx')#读取图书目录预处理后数据 book_list = book_list.dropna()#去除空值 book_list = book_list.drop_duplicates()#去重 book_list = book_list.reset_index(drop=True)#重设索引 book_list.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/图书目录.xlsx')#保存数据 def bookyearsdata():#对借还信息进行去重去空再保存 Year_All = ['2014','2015','2016','2017'] for year in Year_All: address = path + '/代码/12暖暖小组01号彭鑫项目/原始数据/图书借还' + year +'.xlsx'#获得预处理后数据路径 address_last = path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/图书借还' + year +'.xlsx'#获得清洗后数据保存路径 book = pd.read_excel(address)#读取预处理后数据 book = book.dropna()#去除空值 book = book.drop_duplicates()#去重 book = book.reset_index(drop=True)#重设索引 book.to_excel(address_last)#保存清洗后数据至新路径 pass pass bookyearsdata()#调用上述方法 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))#获取打印本地当时时间 print('数据清洗,去重,去空完毕') #利用原有数据重新制作图书分类表 #制作大类表 n=0#截取数据得到基本的大类对应表 with open(path + '/代码/12暖暖小组01号彭鑫项目/原始数据/《中国图书馆图书分类法》简表.txt',"r", encoding='UTF-8') as f:#用文件管理器打开预处理后数据文档 with open(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/图书大类表.txt', "w", encoding='UTF-8') as f1:#用文件管理器打开(创建)新的分类表 for line in f.readlines():#读取预处理后数据文档的每一行 n=n+1#行数累加 if n <22:#截取行数小于22的行,对应所有图书大类的分类详情 f1.writelines(line)#将行数小于22的行信息写入新的分类表 All_Book_List = pd.read_csv(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/图书大类表.txt', names= ['图书分类号及类别'], sep='\n', encoding='utf8')#读取新的分类表 All_Book_List = All_Book_List.drop_duplicates()#去重 All_Book_List = All_Book_List.applymap(lambda x:x.strip() if type(x)==str else x)#去除左右空格 All_Book_List = All_Book_List.replace('K 历史、地理 N 自然科学总论','K 历史、地理')#清洗数据 All_Book_List = All_Book_List.replace('V 航空、航天','V 航空、航天')#针对性修改数据 All_Book_List = All_Book_List.replace('X 环境科学、劳动保护科学(安全科学)','X 环境科学、劳动保护科学(安全科学)')#针对性修改数据 All_Book_List.loc[21] = ("N 自然科学总论")#针对性添加数据 All_Book_List['图书分类号'] = All_Book_List['图书分类号及类别'].map(lambda x:x.split()[0])#截取中间空格前字符 All_Book_List['类别'] = All_Book_List['图书分类号及类别'].map(lambda x:x.split()[-1])#截取中间空格后字符 All_Book_List = All_Book_List[['图书分类号','类别']]#保留所需列 All_Book_List.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/图书大类表.xlsx')#写入保存 os.remove(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/图书大类表.txt')#删除过渡数据 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))#获取打印本地当时时间 print("制作大类表完毕") #制作小说类别表,用于求小说类等 Novel_List = pd.read_csv(path + '/代码/12暖暖小组01号彭鑫项目/原始数据/《中国图书馆图书分类法》简表.txt',"r" ,names= ['图书分类号及类别'],encoding='UTF-8')#读取总表信息 Novel_List =Novel_List.loc[Novel_List['图书分类号及类别'].str.contains('I24')]#模糊搜索小说类别截取保存 Novel_List = Novel_List.drop_duplicates()#去重 Novel_List = Novel_List.applymap(lambda x:x.strip() if type(x)==str else x)#去除左右空格 Novel_List['图书分类号'] = Novel_List['图书分类号及类别'].map(lambda x:x.split(' ',1)[0])#截取中间空格前字符 Novel_List['类别'] = Novel_List['图书分类号及类别'].map(lambda x:x.split(' ',1)[-1])#截取中间空格后字符 Novel_List = Novel_List[['图书分类号','类别']]#保留所需列 for index,row in Novel_List['图书分类号'].iteritems():#添加未在分类法里有而数据里有的细化分类号 if len(row) == 6:#判定为细化分类号的行 I_row = pd.DataFrame()#创建临时空值表 I_row_ = Novel_List.loc[Novel_List['图书分类号'] == row]#截取判定为细化分类号的行 for i in range(10):#为截取判定为细化分类号的行细化数据添加尾号0-9 i = str(i)#转型为str I_row_i = I_row_.replace(row,row+i)#再截取数据上进行修改加上尾号 Novel_List = Novel_List.append(I_row_i)#写入添加架上尾号的数据 pass pass Novel_List.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/小说类别表.xlsx')#写入保存 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))#获取打印本地当时时间 print("制作小说类别表完毕") #制作图书目录字典 Book_xlsx = pd.DataFrame(pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/图书目录.xlsx',index_col=0))#导入数据 Book_Dic_Numble = Book_xlsx.set_index("图书ID").to_dict()['图书分类号']#创建图书id:图书分类号字典 Book_Dic_Name = Book_xlsx.set_index("图书ID").to_dict()['书名']#创建图书id:书名字典 #选择对应院系信息 A3_UserID = pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/读者信息.xlsx')#导入数据 A3_TeacherUserID = A3_UserID[A3_UserID['单位'] == '计算机与科学技术学院']#得到教师信息 A3_TeacherUserID = A3_TeacherUserID.append(A3_UserID[A3_UserID['单位'] == '计算机与信息技术学院'])#得到教师信息 A3_UserID = pd.DataFrame(A3_UserID[A3_UserID['读者类型'] == '本科生'])#得到所有本科生信息 A3_UserID_a = A3_UserID[A3_UserID['单位'] == '计2011-2']#筛选特殊专业 A3_UserID_b = A3_UserID[A3_UserID['单位'] == '计2012-08']#筛选特殊专业 A3_UserID_c = A3_UserID[A3_UserID['单位'] == '计2012-2']#筛选特殊专业 A3_UserID_All = pd.DataFrame()#学生数据总表 A3_UserID_All = A3_UserID_All.append(A3_UserID_a)#添加 A3_UserID_All = A3_UserID_All.append(A3_UserID_b)#添加 A3_UserID_All = A3_UserID_All.append(A3_UserID_c)#添加 glass = ['计2013', '计2014', '计2015', '计2016', '计2017', '软工2011','软工2013', '软件2014','软件2015','软件2016','软件2017', '物联2013','物联2014','物联2015','物联2016','物联2017', '信息2013','信息2014','信息2015','信息2016','信息2017']#制作院系专业表 for j in glass:#循环遍历得到所有专业表学生数据 for i in range(1,7): glass_test = str(j)+ '-' + str(i) A3_UserID_test = A3_UserID[A3_UserID['单位']==glass_test] A3_UserID_All = A3_UserID_All.append(A3_UserID_test) A3_StudentUserID_All = A3_UserID_All A3_AllUserID = A3_StudentUserID_All.append(A3_TeacherUserID)#制成学院总表 A3_TeacherUserID = A3_TeacherUserID[['读者ID','读者类型','单位']] A3_TeacherUserID.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/计算机院教师读者信息表.xlsx')#写入保存 A3_StudentUserID_All = A3_StudentUserID_All[['读者ID','读者类型','单位']] A3_StudentUserID_All.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/计算机院学生读者信息表.xlsx')#写入保存 A3_AllUserID = A3_AllUserID[['读者ID','读者类型','单位']] A3_AllUserID.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/计算机院读者信息表.xlsx')#写入保存 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) print("选择对应院系信息完毕") #得到图书借还的院系信息 def ChooseInf():#初步清洗各个年份数据,得到计算机院数据并将其保存 Year_All = ['2014','2015','2016','2017'] for Year in Year_All: AfterPath = path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/' A3_AllUser_bb = pd.DataFrame(pd.read_excel(AfterPath + '图书借还' + Year + '.xlsx',index_col=0)) A3_TeacherUser = pd.DataFrame(pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/计算机院教师读者信息表.xlsx',index_col=0)) A3_StudentUser = pd.DataFrame(pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/计算机院学生读者信息表.xlsx',index_col=0)) A3_AllUser_bb['读者ID'] = A3_AllUser_bb['读者ID'].apply(str)#转换为统一数据类型 A3_TeacherUser['读者ID'] = A3_TeacherUser['读者ID'].apply(str)#转换为统一数据类型 A3_StudentUser['读者ID'] = A3_StudentUser['读者ID'].apply(str)#转换为统一数据类型 A3_Result_Teacher = pd.merge(A3_AllUser_bb,A3_TeacherUser,how='outer',left_on = A3_AllUser_bb['读者ID'],right_on = A3_TeacherUser['读者ID'])#拼接两个数据表,得到有效数据和无效空值数据 A3_Result_Teacher = A3_Result_Teacher.dropna()#去除缺失值行 A3_Result_Teacher = A3_Result_Teacher.drop_duplicates()#去除重复值行 A3_Result_Teacher = A3_Result_Teacher[['操作时间','操作类型','图书ID']]#保留有效信息 A3_Result_Teacher.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/计算机院教师图书借还' + Year + '.xlsx')#保存该年份清洗后数据 print('保存' + Year + '教师借阅初始信息成功') A3_Result_Student = pd.merge(A3_AllUser_bb,A3_StudentUser,how='outer',left_on = A3_AllUser_bb['读者ID'],right_on = A3_StudentUser['读者ID'])#拼接两个数据表,得到有效数据和无效空值数据 A3_Result_Student = A3_Result_Student.dropna()#去除缺失值行 A3_Result_Student = A3_Result_Student.drop_duplicates()#去除重复值行 A3_Result_Student = A3_Result_Student[['操作时间','操作类型','图书ID']]#保留有效信息 A3_Result_Student.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/计算机院学生图书借还' + Year + '.xlsx')#拼接两个数据表,得到有效数据和无效空值数据 print('保存' + Year + '学生借阅初始信息成功') pass ChooseInf() print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) print("得到图书借还的院系信息完毕") def AddInf():#将各个年份数据添加到总表,去除还书数据,得到完整的借书数据 Year_All = ['2014','2015','2016','2017'] Da_Teacher_All = pd.DataFrame() Da_Student_All = pd.DataFrame() for Year in Year_All: Da_Teacher = pd.DataFrame(pd.read_excel(Path + '计算机院教师图书借还' + Year +'.xlsx',index_col=0)) Da_Teacher_All = Da_Teacher_All.append(Da_Teacher) print('已添加%s教师信息至总表'%(Year)) Da_Student = pd.DataFrame(pd.read_excel(Path + '计算机院学生图书借还' + Year +'.xlsx',index_col=0)) Da_Student_All = Da_Student_All.append(Da_Student) print('已添加%s学生信息至总表'%(Year)) pass Da_Teacher_All = Da_Teacher_All.reset_index(drop=True) Da_Student_All = Da_Student_All.reset_index(drop=True) #去除所有同一本书的"还"数据 Da_Teacher_All_Back = Da_Teacher_All['操作类型'].isin(['还']) Da_Student_All_Back = Da_Student_All['操作类型'].isin(['还']) Da_Teacher_All_Borrow = Da_Teacher_All[~Da_Teacher_All_Back] Da_Student_All_Borrow = Da_Student_All[~Da_Student_All_Back] #去除同一本书同时被两个读者借的情况(即一个读者两个ID,数据默认保留第一条) Da_Teacher_All_Borrow = Da_Teacher_All_Borrow.drop_duplicates(subset=['操作时间','图书ID'],keep ='first') Da_Student_All_Borrow = Da_Student_All_Borrow.drop_duplicates(subset=['操作时间','图书ID'],keep ='first') Da_Student_All_Borrow = Da_Student_All_Borrow.reset_index() Da_Student_All_Borrow.to_excel(Path + '计算机院学生图书借总表.xlsx') print('生成计算机院学生图书借总表成功') Da_Teacher_All_Borrow = Da_Teacher_All_Borrow.reset_index() Da_Teacher_All_Borrow.to_excel(Path + '计算机院教师图书借总表.xlsx') print('生成计算机院教师图书借总表成功') pass AddInf() '''以上为任务基础代码''' '''===========================================================================================================================================''' '''以下为各个任务代码''' #加载必要的库 import pandas as pd import os import time import jieba import wordcloud #设置路径 path = os.getcwd()#获取项目根目录 path = path.replace('\\', '/')#设置项目根目录路径 Path = path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/'#设置预处理后数据根目录路径 #为下面程序提供数据,避免重复加载 Da_Teacher_All_Borrow = pd.DataFrame(pd.read_excel(Path + '计算机院教师图书借总表.xlsx',index_col=0))#导入数据 Da_Teacher_All_Borrow['操作时间']=Da_Teacher_All_Borrow['操作时间'].apply(str)#将数据转化为str类型 Da_Student_All_Borrow = pd.DataFrame(pd.read_excel(Path + '计算机院学生图书借总表.xlsx',index_col=0))#导入数据 Da_Student_All_Borrow['操作时间']=Da_Student_All_Borrow['操作时间'].apply(str)#将数据转化为str类型 All_Book_List = pd.DataFrame(pd.read_excel(Path + '图书大类表.xlsx',index_col=0))#导入数据 Book_xlsx = pd.DataFrame(pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/图书目录.xlsx',index_col=0))#导入数据 Novel_List = pd.DataFrame(pd.read_excel(Path + '小说类别表.xlsx',index_col=0))#导入数据 # 5、统计你分配的那个学院的教师2014年,2015年,2016年,2017年所借书籍类别占前10的都是什么类别。 def Task5(): Year_All = ['2014','2015','2016','2017'] for Year in Year_All: Book_xlsx['图书ID'] = Book_xlsx['图书ID'].apply(str)#转型以便拼接 Da_Teacher_All_Borrow_Year = Da_Teacher_All_Borrow[Da_Teacher_All_Borrow['操作时间'].str.contains(Year)]#截取该年份信息 Da_Teacher_All_Borrow_Year = pd.merge(Da_Teacher_All_Borrow_Year,Book_xlsx,how='left',left_on=Da_Teacher_All_Borrow_Year['图书ID'],right_on=Book_xlsx['图书ID'])#将借信息与图书目录信息按照图书id进行拼接 Da_Teacher_All_Borrow_Year_BookNumble = Da_Teacher_All_Borrow_Year[['图书分类号']]#保留所需信息 Da_Teacher_All_Borrow_Year_BookNumble = Da_Teacher_All_Borrow_Year_BookNumble['图书分类号'].str.extract('([A-Z])', expand=False)#利用正则表达式获取图书分类号首字母 Da_Teacher_All_Borrow_Year_mes = pd.merge(Da_Teacher_All_Borrow_Year_BookNumble,All_Book_List)#将获取的首字母与图书大类表进行拼接 Da_Teacher_All_Borrow_Year_10 = Da_Teacher_All_Borrow_Year_mes['类别'].value_counts()[:10]#保留排名前10的信息 Da_Teacher_All_Borrow_Year_10 = Da_Teacher_All_Borrow_Year_10.reset_index()#重设索引 Da_Teacher_All_Borrow_Year_10.columns = ['类别','数量']#设置列名 Da_Teacher_All_Borrow_Year_10.index = Da_Teacher_All_Borrow_Year_10.index + 1#将索引加1得到排名 Da_Teacher_All_Borrow_Year_10.index.name = '排名'#将索引名称设置为排名 print('---------%s---------'%(Year) + '\n' + '%s教师所借书籍前十'%(Year)) print(Da_Teacher_All_Borrow_Year_10)#打印信息 pass pass pass # 6、统计你分配的那个学院的教师2014年,2015年,2016年,2017年所最喜欢看的小说分别是那一本。 def Task6(): Year_All = ['2014','2015','2016','2017'] for Year in Year_All: Book_xlsx['图书ID'] = Book_xlsx['图书ID'].apply(str)#转型以便拼接 Da_Teacher_All_Borrow_Year = Da_Teacher_All_Borrow[Da_Teacher_All_Borrow['操作时间'].str.contains(Year)]#截取该年份信息 Da_Teacher_All_Borrow_Year = pd.merge(Da_Teacher_All_Borrow_Year,Book_xlsx,how='left',left_on=Da_Teacher_All_Borrow_Year['图书ID'],right_on=Book_xlsx['图书ID'])#将借信息与图书目录信息按照图书id进行拼接 Da_Teacher_All_Borrow_Year_BookNumble = Da_Teacher_All_Borrow_Year[['图书分类号','书名']]#保留所需信息 Da_Teacher_All_Borrow_Year_BookNumble['图书分类号'] = Da_Teacher_All_Borrow_Year_BookNumble['图书分类号'].apply(str)#转型以便拼接 Da_Teacher_All_Borrow_Year_novel = Da_Teacher_All_Borrow_Year_BookNumble.loc[Da_Teacher_All_Borrow_Year_BookNumble['图书分类号'].str.contains('I24')]#模糊搜索小说信息截取保存 Da_Teacher_All_Borrow_Year_novel_1 =Da_Teacher_All_Borrow_Year_novel['书名'].value_counts()[:1]#对书名进行数量排序,并得到数量最多的书名 Da_Teacher_All_Borrow_Year_novel_1.index.name = '书名'#将索引名设置为'书名' print('---------%s---------'%(Year) + '\n' + '%s教师最喜欢看的小说'%(Year)) print(Da_Teacher_All_Borrow_Year_novel_1)#打印信息 pass pass # 7、统计你分配的那个学院的教师2014年,2015年,2016年,2017年一共借了多少书,专业书籍多少本。 def Task7(): Year_All = ['2014','2015','2016','2017'] All_Book = 0#初始化数据 All_MBook = 0#初始化数据 for Year in Year_All: Book_xlsx['图书ID'] = Book_xlsx['图书ID'].apply(str)#转型以便拼接 Da_Teacher_All_Borrow_Year = Da_Teacher_All_Borrow[Da_Teacher_All_Borrow['操作时间'].str.contains(Year)]#截取该年份信息 Da_Teacher_All_Borrow_Year = pd.merge(Da_Teacher_All_Borrow_Year,Book_xlsx,how='left',left_on=Da_Teacher_All_Borrow_Year['图书ID'],right_on=Book_xlsx['图书ID'])#将借信息与图书目录信息按照图书id进行拼接 Da_Teacher_All_Borrow_Year_BookNumble = Da_Teacher_All_Borrow_Year[['图书分类号','书名']]#保留所需信息 Da_Teacher_All_Borrow_Year_major = Da_Teacher_All_Borrow_Year_BookNumble#数据另存为 Da_Teacher_All_Borrow_Year_major['图书分类号'] = Da_Teacher_All_Borrow_Year_major['图书分类号'].apply(str)#转型以便拼接 Da_Teacher_All_Borrow_Year_major = Da_Teacher_All_Borrow_Year_major.loc[Da_Teacher_All_Borrow_Year_major['图书分类号'].str.contains('TP3')]#模糊搜索专业书籍信息截取保存 All_Book = All_Book + Da_Teacher_All_Borrow_Year_BookNumble.shape[0]#加上每一年借书本数 All_MBook = All_MBook + Da_Teacher_All_Borrow_Year_major.shape[0]#加上每一年借专业书本书 print('---------%s---------'%(Year)) print('%s教师总共借书'%(Year) + str(Da_Teacher_All_Borrow_Year_BookNumble.shape[0]) + '本')#打印信息 print('%s教师借了专业书籍'%(Year) + str(Da_Teacher_All_Borrow_Year_major.shape[0]) + '本')#打印信息 pass print('-------------------------------') print('计算机与信息技术学院教师(2014年-2017年)一共借'+str(All_Book)+'书')#打印信息 print('计算机与信息技术学院教师(2014年-2017年)一共借了专业书'+str(All_MBook)+'书')#打印信息 pass # 8、统计你分配的那个学院的教师2014年,2015年,2016年,2017年一共有多少本书没有归还。没有归还的书籍哪类书籍最多。 def Task8(): Da_Teacher_All = pd.DataFrame(pd.read_excel(Path + '计算机院教师图书借总表.xlsx',index_col=0))#读取院系借还信息 Da_Teacher_All = Da_Teacher_All.sort_values(by = '操作时间')#根据时间降序排列 Da_Teacher_All_Unback = Da_Teacher_All.drop_duplicates(subset=['图书ID'],keep ='last')#根据图书ID去重,保留最后一条信息 Da_Teacher_All_Unback_Num = pd.merge(Da_Teacher_All_Unback,Book_xlsx)#将信息与图书目录按照图书id拼接 Da_Teacher_All_Unback_Num = Da_Teacher_All_Unback_Num[['图书分类号']]#保留所需信息 Da_Teacher_All_Unback_Num['图书分类号'] = Da_Teacher_All_Unback_Num['图书分类号'].apply(str)#转型以便拼接 Da_Teacher_All_Unback_Num = Da_Teacher_All_Unback_Num['图书分类号'].str.extract('([A-Z])', expand=False)#利用正则表达式获取图书分类号首字母 Da_Teacher_All_Unback_Num = pd.merge(Da_Teacher_All_Unback_Num,All_Book_List)#将获取的首字母与图书大类表进行拼接 Da_Teacher_All_Unback_Num = Da_Teacher_All_Unback_Num['类别'].value_counts()[:1]#对类别进行数量排序,并得到数量最多的类别 print('------------------' + '\n' + '2014~2017教师总共未归还书籍' + str(Da_Teacher_All_Unback.shape[0]) + '本')#打印信息 print('教师未归还书籍中最多的类别是') print(Da_Teacher_All_Unback_Num) print('\n') pass '''下列9-12代码结构与上面基本相似省略注释''' # 9、统计你分配的那个学院的学生2014年,2015年,2016年,2017年所借书籍类别占前10的都是什么类别。 def Task9(): Year_All = ['2014','2015','2016','2017'] for Year in Year_All: Book_xlsx['图书ID'] = Book_xlsx['图书ID'].apply(str) Da_Student_All_Borrow_Year = Da_Student_All_Borrow[Da_Student_All_Borrow['操作时间'].str.contains(Year)] Da_Student_All_Borrow_Year = pd.merge(Da_Student_All_Borrow_Year,Book_xlsx,how='left',left_on=Da_Student_All_Borrow_Year['图书ID'],right_on=Book_xlsx['图书ID']) Da_Student_All_Borrow_Year_BookNumble = Da_Student_All_Borrow_Year[['图书分类号']] Da_Student_All_Borrow_Year_BookNumble['图书分类号'] = Da_Student_All_Borrow_Year_BookNumble['图书分类号'].apply(str) Da_Student_All_Borrow_Year_BookNumble = Da_Student_All_Borrow_Year_BookNumble['图书分类号'].str.extract('([A-Z])', expand=False) Da_Student_All_Borrow_Year_mes = pd.merge(Da_Student_All_Borrow_Year_BookNumble,All_Book_List) Da_Student_All_Borrow_Year_10 = Da_Student_All_Borrow_Year_mes['类别'].value_counts()[:10] Da_Student_All_Borrow_Year_10 = Da_Student_All_Borrow_Year_10.reset_index() Da_Student_All_Borrow_Year_10.columns = ['类别','数量'] Da_Student_All_Borrow_Year_10.index = Da_Student_All_Borrow_Year_10.index + 1 Da_Student_All_Borrow_Year_10.index.name = '排名' print('---------%s---------'%(Year) + '\n' + '%s学生所借书籍前十'%(Year)) print(Da_Student_All_Borrow_Year_10) pass pass # 10、统计你分配的那个学院的学生2014年,2015年,2016年,2017年所最喜欢看的小说分别是那一本。 def Task10(): Year_All = ['2014','2015','2016','2017'] for Year in Year_All: Book_xlsx['图书ID'] = Book_xlsx['图书ID'].apply(str) Da_Student_All_Borrow_Year = Da_Student_All_Borrow[Da_Student_All_Borrow['操作时间'].str.contains(Year)] Da_Student_All_Borrow_Year = pd.merge(Da_Student_All_Borrow_Year,Book_xlsx,how='left',left_on=Da_Student_All_Borrow_Year['图书ID'],right_on=Book_xlsx['图书ID']) Da_Student_All_Borrow_Year_BookNumble = Da_Student_All_Borrow_Year[['图书分类号','书名']] Da_Student_All_Borrow_Year_BookNumble['图书分类号'] = Da_Student_All_Borrow_Year_BookNumble['图书分类号'].apply(str) Da_Student_All_Borrow_Year_novel = Da_Student_All_Borrow_Year_BookNumble.loc[Da_Student_All_Borrow_Year_BookNumble['图书分类号'].str.contains('I24')] Da_Student_All_Borrow_Year_novel_1 =Da_Student_All_Borrow_Year_novel['书名'].value_counts()[:1] Da_Student_All_Borrow_Year_novel_1.index.name = '书名' print('---------%s---------'%(Year) + '\n' + '%s学生最喜欢看的小说'%(Year)) print(Da_Student_All_Borrow_Year_novel_1) pass pass # 11、统计你分配的那个学院的学生2014年,2015年,2016年,2017年一共借了多少书,专业书籍多少本。 def Task11(): Year_All = ['2014','2015','2016','2017'] All_Book = 0 All_MBook = 0 for Year in Year_All: Book_xlsx['图书ID'] = Book_xlsx['图书ID'].apply(str) Da_Student_All_Borrow_Year = Da_Student_All_Borrow[Da_Student_All_Borrow['操作时间'].str.contains(Year)] Da_Student_All_Borrow_Year = pd.merge(Da_Student_All_Borrow_Year,Book_xlsx,how='left',left_on=Da_Student_All_Borrow_Year['图书ID'],right_on=Book_xlsx['图书ID']) Da_Student_All_Borrow_Year_BookNumble = Da_Student_All_Borrow_Year[['图书分类号','书名']] Da_Student_All_Borrow_Year_major = Da_Student_All_Borrow_Year_BookNumble Da_Student_All_Borrow_Year_major['图书分类号'] = Da_Student_All_Borrow_Year_major['图书分类号'].apply(str) Da_Student_All_Borrow_Year_major = Da_Student_All_Borrow_Year_major.loc[Da_Student_All_Borrow_Year_major['图书分类号'].str.contains('TP3')] All_Book = All_Book + Da_Student_All_Borrow_Year_BookNumble.shape[0] All_MBook = All_MBook + Da_Student_All_Borrow_Year_major.shape[0] print('---------%s---------'%(Year)) print('%s学生总共借书'%(Year) + str(Da_Student_All_Borrow_Year_BookNumble.shape[0]) + '本') print('%s学生借了专业书籍'%(Year) + str(Da_Student_All_Borrow_Year_major.shape[0]) + '本') pass print('-------------------------------') print('计算机与信息技术学院学生(2014年-2017年)一共借'+str(All_Book)+'书') print('计算机与信息技术学院学生(2014年-2017年)一共借了专业书'+str(All_MBook)+'书') pass # 12、统计你分配的那个学院的学生2014年,2015年,2016年,2017年一共有多少本书没有归还。没有归还的书籍哪类书籍最多。 def Task12(): Da_Student_All = pd.DataFrame(pd.read_excel(Path + '计算机院学生图书借总表.xlsx',index_col=0)) Da_Student_All = Da_Student_All.sort_values(by = '操作时间') Da_Student_All_Unback = Da_Student_All.drop_duplicates(subset=['图书ID'],keep ='last') Da_Student_All_Unback_Num =
pd.merge(Da_Student_All_Unback,Book_xlsx)
pandas.merge
import torch import json import pandas as pd import numpy as np from tqdm import tqdm import src.config as config import src.model_utils as mutils from src.dataset import CustomDataset def predict(df, model, device, label_list, description_col=config.TEXT_COLUMN): test_dataset = CustomDataset( description=df[description_col].values ) test_sampler = torch.utils.data.SequentialSampler(test_dataset) test_data_loader = torch.utils.data.DataLoader( test_dataset, batch_size=config.VALID_BATCH_SIZE, sampler=test_sampler, num_workers=2 ) all_logits = None model.eval() tk0 = tqdm(test_data_loader, total=len(test_data_loader)) for step, batch in enumerate(tk0): input_ids = batch['input_id'] input_mask= batch['input_mask'] segment_ids = batch['segment_id'] input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) with torch.no_grad(): logits, _ = model(input_ids, segment_ids, input_mask) logits = logits.sigmoid() if all_logits is None: all_logits = logits.detach().cpu().numpy() else: all_logits = np.concatenate((all_logits, logits.detach().cpu().numpy()), axis=0) return pd.merge(df,
pd.DataFrame(all_logits, columns=label_list)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/8/7 14:43 # @Author : <NAME> # @File : AE_run.py import pandas as pd import numpy as np import argparse from tqdm import tqdm import autoencoder_model import torch import torch.utils.data as Data def setup_seed(seed): torch.manual_seed(seed) np.random.seed(seed) def work(data, in_feas, lr=0.001, bs=32, epochs=100, device=torch.device('cpu'), a=0.4, b=0.3, c=0.3, mode=0, topn=100): #name of sample sample_name = data['Sample'].tolist() #change data to a Tensor X,Y = data.iloc[:,1:].values, np.zeros(data.shape[0]) TX, TY = torch.tensor(X, dtype=torch.float, device=device), torch.tensor(Y, dtype=torch.float, device=device) #train a AE model if mode == 0 or mode == 1: print('Training model...') Tensor_data = Data.TensorDataset(TX, TY) train_loader = Data.DataLoader(Tensor_data, batch_size=bs, shuffle=True) #initialize a model mmae = autoencoder_model.MMAE(in_feas, latent_dim=100, a=a, b=b, c=c) mmae.to(device) mmae.train() mmae.train_MMAE(train_loader, learning_rate=lr, device=device, epochs=epochs) mmae.eval() #before save and test, fix the variables torch.save(mmae, 'model/AE/MMAE_model.pkl') #load saved model, used for reducing dimensions if mode == 0 or mode == 2: print('Get the latent layer output...') mmae = torch.load('model/AE/MMAE_model.pkl') omics_1 = TX[:, :in_feas[0]] omics_2 = TX[:, in_feas[0]:in_feas[0]+in_feas[1]] omics_3 = TX[:, in_feas[0]+in_feas[1]:in_feas[0]+in_feas[1]+in_feas[2]] latent_data, decoded_omics_1, decoded_omics_2, decoded_omics_3 = mmae.forward(omics_1, omics_2, omics_3) latent_df = pd.DataFrame(latent_data.detach().cpu().numpy()) latent_df.insert(0, 'Sample', sample_name) #save the integrated data(dim=100) latent_df.to_csv('result/latent_data.csv', header=True, index=False) print('Extract features...') extract_features(data, in_feas, epochs, topn) return def extract_features(data, in_feas, epochs, topn=100): # extract features #get each omics data data_omics_1 = data.iloc[:, 1: 1+in_feas[0]] data_omics_2 = data.iloc[:, 1+in_feas[0]: 1+in_feas[0]+in_feas[1]] data_omics_3 = data.iloc[:, 1+in_feas[0]+in_feas[1]: 1+in_feas[0]+in_feas[1]+in_feas[2]] #get all features of each omics data feas_omics_1 = data_omics_1.columns.tolist() feas_omics_2 = data_omics_2.columns.tolist() feas_omics_3 = data_omics_3.columns.tolist() #calculate the standard deviation of each feature std_omics_1 = data_omics_1.std(axis=0) std_omics_2 = data_omics_2.std(axis=0) std_omics_3 = data_omics_3.std(axis=0) #record top N features every 10 epochs topn_omics_1 = pd.DataFrame() topn_omics_2 = pd.DataFrame() topn_omics_3 = pd.DataFrame() #used for feature extraction, epoch_ls = [10,20,...], if epochs % 10 != 0, add the last epoch epoch_ls = list(range(10, epochs+10,10)) if epochs %10 != 0: epoch_ls.append(epochs) for epoch in tqdm(epoch_ls): #load model mmae = torch.load('model/AE/model_{}.pkl'.format(epoch)) #get model variables model_dict = mmae.state_dict() #get the absolute value of weights, the shape of matrix is (n_features, latent_layer_dim) weight_omics1 = np.abs(model_dict['encoder_omics_1.0.weight'].detach().cpu().numpy().T) weight_omics2 = np.abs(model_dict['encoder_omics_2.0.weight'].detach().cpu().numpy().T) weight_omics3 = np.abs(model_dict['encoder_omics_3.0.weight'].detach().cpu().numpy().T) weight_omics1_df = pd.DataFrame(weight_omics1, index=feas_omics_1) weight_omics2_df = pd.DataFrame(weight_omics2, index=feas_omics_2) weight_omics3_df = pd.DataFrame(weight_omics3, index=feas_omics_3) #calculate the weight sum of each feature --> sum of each row weight_omics1_df['Weight_sum'] = weight_omics1_df.apply(lambda x:x.sum(), axis=1) weight_omics2_df['Weight_sum'] = weight_omics2_df.apply(lambda x:x.sum(), axis=1) weight_omics3_df['Weight_sum'] = weight_omics3_df.apply(lambda x:x.sum(), axis=1) weight_omics1_df['Std'] = std_omics_1 weight_omics2_df['Std'] = std_omics_2 weight_omics3_df['Std'] = std_omics_3 #importance = Weight * Std weight_omics1_df['Importance'] = weight_omics1_df['Weight_sum']*weight_omics1_df['Std'] weight_omics2_df['Importance'] = weight_omics2_df['Weight_sum']*weight_omics2_df['Std'] weight_omics3_df['Importance'] = weight_omics3_df['Weight_sum']*weight_omics3_df['Std'] #select top N features fea_omics_1_top = weight_omics1_df.nlargest(topn, 'Importance').index.tolist() fea_omics_2_top = weight_omics2_df.nlargest(topn, 'Importance').index.tolist() fea_omics_3_top = weight_omics3_df.nlargest(topn, 'Importance').index.tolist() #save top N features in a dataframe col_name = 'epoch_'+str(epoch) topn_omics_1[col_name] = fea_omics_1_top topn_omics_2[col_name] = fea_omics_2_top topn_omics_3[col_name] = fea_omics_3_top #all of top N features topn_omics_1.to_csv('result/topn_omics_1.csv', header=True, index=False) topn_omics_2.to_csv('result/topn_omics_2.csv', header=True, index=False) topn_omics_3.to_csv('result/topn_omics_3.csv', header=True, index=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--mode', '-m', type=int, choices=[0,1,2], default=0, help='Mode 0: train&intagrate, Mode 1: just train, Mode 2: just intagrate, default: 0.') parser.add_argument('--seed', '-s', type=int, default=0, help='Random seed, default=0.') parser.add_argument('--path1', '-p1', type=str, required=True, help='The first omics file name.') parser.add_argument('--path2', '-p2', type=str, required=True, help='The second omics file name.') parser.add_argument('--path3', '-p3', type=str, required=True, help='The third omics file name.') parser.add_argument('--batchsize', '-bs', type=int, default=32, help='Training batchszie, default: 32.') parser.add_argument('--learningrate', '-lr', type=float, default=0.001, help='Learning rate, default: 0.001.') parser.add_argument('--epoch', '-e', type=int, default=100, help='Training epochs, default: 100.') parser.add_argument('--latent', '-l', type=int, default=100, help='The latent layer dim, default: 100.') parser.add_argument('--device', '-d', type=str, choices=['cpu', 'gpu'], default='cpu', help='Training on cpu or gpu, default: cpu.') parser.add_argument('--a', '-a', type=float, default=0.6, help='[0,1], float, weight for the first omics data') parser.add_argument('--b', '-b', type=float, default=0.1, help='[0,1], float, weight for the second omics data.') parser.add_argument('--c', '-c', type=float, default=0.3, help='[0,1], float, weight for the third omics data.') parser.add_argument('--topn', '-n', type=int, default=100, help='Extract top N features every 10 epochs, default: 100.') args = parser.parse_args() #read data omics_data1 = pd.read_csv(args.path1, header=0, index_col=None) omics_data2 = pd.read_csv(args.path2, header=0, index_col=None) omics_data3 =
pd.read_csv(args.path3, header=0, index_col=None)
pandas.read_csv
USAGE = """ python Metrics.py Needs access to these box folders and M Drive Box/Modeling and Surveys/Urban Modeling/Bay Area UrbanSim 1.5/PBA50/Draft Blueprint runs/ Box/Horizon and Plan Bay Area 2050/Equity and Performance/7_Analysis/Metrics/ Processes model outputs and creates a single csv with scenario metrics in this folder: Box/Horizon and Plan Bay Area 2050/Equity and Performance/7_Analysis/Metrics/ This csv file will have 6 columns: 1) modelrun ID 2) metric ID 3) metric name 4) year (note: for metrics that depict change from 2015 to 2050, this value will be 2050) 5) blueprint type 6) metric value """ import datetime, os, sys import numpy, pandas as pd from collections import OrderedDict, defaultdict def calculate_urbansim_highlevelmetrics(runid, dbp, parcel_sum_df, county_sum_df, metrics_dict): metric_id = "Overall" #################### Housing # all households metrics_dict[runid,metric_id,'TotHH_region',y2,dbp] = parcel_sum_df['tothh_2050'].sum() metrics_dict[runid,metric_id,'TotHH_region',y1,dbp] = parcel_sum_df['tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_growth_region',y_diff,dbp] = metrics_dict[runid,metric_id,'TotHH_region',y2,dbp] / metrics_dict[runid,metric_id,'TotHH_region',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotHH_growth_region_number',y_diff,dbp] = parcel_sum_df['tothh_2050'].sum() - parcel_sum_df['tothh_2015'].sum() # HH growth by county for index,row in county_sum_df.iterrows(): metrics_dict[runid,metric_id,'TotHH_county_growth_%s' % row['county'],y_diff,dbp] = row['tothh_growth'] metrics_dict[runid,metric_id,'TotHH_county_shareofgrowth_%s' % row['county'],y_diff,dbp] = row['tothh_growth'] / metrics_dict[runid,metric_id,'TotHH_growth_region_number',y_diff,dbp] # HH Growth in all GGs metrics_dict[runid,metric_id,'TotHH_GG',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('GG', na=False), 'tothh_2050'].sum() metrics_dict[runid,metric_id,'TotHH_GG',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('GG', na=False), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_GG_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotHH_GG',y2,dbp] / metrics_dict[runid,metric_id,'TotHH_GG',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotHH_GG_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotHH_GG',y2,dbp] - metrics_dict[runid,metric_id,'TotHH_GG',y1,dbp]) / metrics_dict[runid,metric_id,'TotHH_growth_region_number',y_diff,dbp] # HH Growth in PDAs metrics_dict[runid,metric_id,'TotHH_PDA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pda_id'].str.contains('', na=False), 'tothh_2050'].sum() metrics_dict[runid,metric_id,'TotHH_PDA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pda_id'].str.contains('', na=False), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_PDA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotHH_PDA',y2,dbp] / metrics_dict[runid,metric_id,'TotHH_PDA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotHH_PDA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotHH_PDA',y2,dbp] - metrics_dict[runid,metric_id,'TotHH_PDA',y1,dbp]) / metrics_dict[runid,metric_id,'TotHH_growth_region_number',y_diff,dbp] # HH Growth in GGs that are not PDAs metrics_dict[runid,metric_id,'TotHH_GG_notPDA',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('GG', na=False)) & \ (parcel_sum_df['pda_id'].str.contains('', na=False)==0), 'tothh_2050'].sum() metrics_dict[runid,metric_id,'TotHH_GG_notPDA',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('GG', na=False)) & \ (parcel_sum_df['pda_id'].str.contains('', na=False)==0), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_GG_notPDA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotHH_GG_notPDA',y2,dbp] / metrics_dict[runid,metric_id,'TotHH_GG_notPDA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotHH_GG_notPDA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotHH_GG_notPDA',y2,dbp] - metrics_dict[runid,metric_id,'TotHH_GG_notPDA',y1,dbp]) / metrics_dict[runid,metric_id,'TotHH_growth_region_number',y_diff,dbp] # HH Growth in HRAs metrics_dict[runid,metric_id,'TotHH_HRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'tothh_2050'].sum() metrics_dict[runid,metric_id,'TotHH_HRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_HRA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotHH_HRA',y2,dbp] / metrics_dict[runid,metric_id,'TotHH_HRA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotHH_HRA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotHH_HRA',y2,dbp] - metrics_dict[runid,metric_id,'TotHH_HRA',y1,dbp]) / metrics_dict[runid,metric_id,'TotHH_growth_region_number',y_diff,dbp] # HH Growth in TRAs metrics_dict[runid,metric_id,'TotHH_TRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'tothh_2050'].sum() metrics_dict[runid,metric_id,'TotHH_TRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_TRA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotHH_TRA',y2,dbp] / metrics_dict[runid,metric_id,'TotHH_TRA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotHH_TRA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotHH_TRA',y2,dbp] - metrics_dict[runid,metric_id,'TotHH_TRA',y1,dbp]) / metrics_dict[runid,metric_id,'TotHH_growth_region_number',y_diff,dbp] # HH Growth in areas that are both HRAs and TRAs metrics_dict[runid,metric_id,'TotHH_HRAandTRA',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) &\ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) , 'tothh_2050'].sum() metrics_dict[runid,metric_id,'TotHH_HRAandTRA',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) &\ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) , 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_HRAandTRA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotHH_HRAandTRA',y2,dbp] / metrics_dict[runid,metric_id,'TotHH_HRAandTRA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotHH_HRAandTRA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotHH_HRAandTRA',y2,dbp] - metrics_dict[runid,metric_id,'TotHH_HRAandTRA',y1,dbp]) / metrics_dict[runid,metric_id,'TotHH_growth_region_number',y_diff,dbp] #################### Jobs # all jobs metrics_dict[runid,metric_id,'TotJobs_region',y2,dbp] = parcel_sum_df['totemp_2050'].sum() metrics_dict[runid,metric_id,'TotJobs_region',y1,dbp] = parcel_sum_df['totemp_2015'].sum() metrics_dict[runid,metric_id,'TotJobs_growth_region',y_diff,dbp] = metrics_dict[runid,metric_id,'TotJobs_region',y2,dbp] / metrics_dict[runid,metric_id,'TotJobs_region',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotJobs_growth_region_number',y_diff,dbp] = parcel_sum_df['totemp_2050'].sum() - parcel_sum_df['totemp_2015'].sum() #Job growth by county for index,row in county_sum_df.iterrows(): metrics_dict[runid,metric_id,'TotJobs_growth_%s' % row['county'],y_diff,dbp] = row['totemp_growth'] metrics_dict[runid,metric_id,'TotJobs_county_shareofgrowth_%s' % row['county'],y_diff,dbp] = row['totemp_growth'] / metrics_dict[runid,metric_id,'TotJobs_growth_region_number',y_diff,dbp] # Job Growth in all GGs metrics_dict[runid,metric_id,'TotJobs_GG',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('GG', na=False), 'totemp_2050'].sum() metrics_dict[runid,metric_id,'TotJobs_GG',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('GG', na=False), 'totemp_2015'].sum() metrics_dict[runid,metric_id,'TotJobs_GG_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotJobs_GG',y2,dbp] / metrics_dict[runid,metric_id,'TotJobs_GG',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotJobs_GG_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotJobs_GG',y2,dbp] - metrics_dict[runid,metric_id,'TotJobs_GG',y1,dbp]) / metrics_dict[runid,metric_id,'TotJobs_growth_region_number',y_diff,dbp] # Job Growth in PDAs metrics_dict[runid,metric_id,'TotJobs_PDA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pda_id'].str.contains('', na=False), 'totemp_2050'].sum() metrics_dict[runid,metric_id,'TotJobs_PDA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pda_id'].str.contains('', na=False), 'totemp_2015'].sum() metrics_dict[runid,metric_id,'TotJobs_PDA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotJobs_PDA',y2,dbp] / metrics_dict[runid,metric_id,'TotJobs_PDA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotJobs_PDA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotJobs_PDA',y2,dbp] - metrics_dict[runid,metric_id,'TotJobs_PDA',y1,dbp]) / metrics_dict[runid,metric_id,'TotJobs_growth_region_number',y_diff,dbp] # Job Growth in GGs that are not PDAs metrics_dict[runid,metric_id,'TotJobs_GG_notPDA',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('GG', na=False)) & \ (parcel_sum_df['pda_id'].str.contains('', na=False)==0), 'totemp_2050'].sum() metrics_dict[runid,metric_id,'TotJobs_GG_notPDA',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('GG', na=False)) & \ (parcel_sum_df['pda_id'].str.contains('', na=False)==0), 'totemp_2015'].sum() metrics_dict[runid,metric_id,'TotJobs_GG_notPDA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotJobs_GG_notPDA',y2,dbp] / metrics_dict[runid,metric_id,'TotJobs_GG_notPDA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotJobs_GG_notPDA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotJobs_GG_notPDA',y2,dbp] - metrics_dict[runid,metric_id,'TotJobs_GG_notPDA',y1,dbp]) / metrics_dict[runid,metric_id,'TotJobs_growth_region_number',y_diff,dbp] # Job Growth in HRAs metrics_dict[runid,metric_id,'TotJobs_HRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'totemp_2050'].sum() metrics_dict[runid,metric_id,'TotJobs_HRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'totemp_2015'].sum() metrics_dict[runid,metric_id,'TotJobs_HRA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotJobs_HRA',y2,dbp] / metrics_dict[runid,metric_id,'TotJobs_HRA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotJobs_HRA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotJobs_HRA',y2,dbp] - metrics_dict[runid,metric_id,'TotJobs_HRA',y1,dbp]) / metrics_dict[runid,metric_id,'TotJobs_growth_region_number',y_diff,dbp] # Job Growth in TRAs metrics_dict[runid,metric_id,'TotJobs_TRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'totemp_2050'].sum() metrics_dict[runid,metric_id,'TotJobs_TRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'totemp_2015'].sum() metrics_dict[runid,metric_id,'TotJobs_TRA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotJobs_TRA',y2,dbp] / metrics_dict[runid,metric_id,'TotJobs_TRA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotJobs_TRA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotJobs_TRA',y2,dbp] - metrics_dict[runid,metric_id,'TotJobs_TRA',y1,dbp]) / metrics_dict[runid,metric_id,'TotJobs_growth_region_number',y_diff,dbp] # Job Growth in areas that are both HRAs and TRAs metrics_dict[runid,metric_id,'TotJobs_HRAandTRA',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) &\ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) , 'totemp_2050'].sum() metrics_dict[runid,metric_id,'TotJobs_HRAandTRA',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) &\ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) , 'totemp_2015'].sum() metrics_dict[runid,metric_id,'TotJobs_HRAandTRA_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'TotJobs_HRAandTRA',y2,dbp] / metrics_dict[runid,metric_id,'TotJobs_HRAandTRA',y1,dbp] - 1 metrics_dict[runid,metric_id,'TotJobs_HRAandTRA_shareofgrowth',y_diff,dbp] = (metrics_dict[runid,metric_id,'TotJobs_HRAandTRA',y2,dbp] - metrics_dict[runid,metric_id,'TotJobs_HRAandTRA',y1,dbp]) / metrics_dict[runid,metric_id,'TotJobs_growth_region_number',y_diff,dbp] ############################ # LIHH metrics_dict[runid,metric_id,'LIHH_share_2050',y2,dbp] = (parcel_sum_df['hhq1_2050'].sum() + parcel_sum_df['hhq2_2050'].sum()) / parcel_sum_df['totemp_2050'].sum() metrics_dict[runid,metric_id,'LIHH_share_2015',y1,dbp] = (parcel_sum_df['hhq1_2015'].sum() + parcel_sum_df['hhq2_2050'].sum()) / parcel_sum_df['totemp_2015'].sum() metrics_dict[runid,metric_id,'LIHH_growth_region',y_diff,dbp] = (parcel_sum_df['hhq1_2050'].sum() + parcel_sum_df['hhq2_2050'].sum()) / (parcel_sum_df['hhq1_2015'].sum() + parcel_sum_df['hhq2_2050'].sum()) for index,row in county_sum_df.iterrows(): metrics_dict[runid,metric_id,'LIHH_growth_%s' % row["county"],y_diff,dbp] = row['LIHH_growth'] # all jobs metrics_dict[runid,metric_id,'tot_jobs_2050',y2,dbp] = parcel_sum_df['totemp_2050'].sum() metrics_dict[runid,metric_id,'tot_jobs_2015',y1,dbp] = parcel_sum_df['totemp_2015'].sum() metrics_dict[runid,metric_id,'jobs_growth_region',y_diff,dbp] = (parcel_sum_df['totemp_2050'].sum() / parcel_sum_df['totemp_2015'].sum()) for index,row in county_sum_df.iterrows(): metrics_dict[runid,metric_id,'jobs_growth_%s' % row["county"],y_diff,dbp] = row['totemp_growth'] def calculate_tm_highlevelmetrics(runid, dbp, parcel_sum_df, county_sum_df, metrics_dict): metric_id = "Overall_TM" # TBD def calculate_normalize_factor_Q1Q2(parcel_sum_df): return ((parcel_sum_df['hhq1_2050'].sum() + parcel_sum_df['hhq2_2050'].sum()) / parcel_sum_df['tothh_2050'].sum()) \ / ((parcel_sum_df['hhq1_2015'].sum() + parcel_sum_df['hhq2_2015'].sum()) / parcel_sum_df['tothh_2015'].sum()) def calculate_normalize_factor_Q1(parcel_sum_df): return (parcel_sum_df['hhq1_2050'].sum() / parcel_sum_df['tothh_2050'].sum()) \ / (parcel_sum_df['hhq1_2015'].sum() / parcel_sum_df['tothh_2015'].sum()) def calculate_Affordable1_transportation_costs(runid, year, dbp, tm_scen_metrics_df, tm_auto_owned_df, tm_auto_times_df, tm_travel_cost_df, metrics_dict): metric_id = "A1" days_per_year = 300 # Total number of households tm_tot_hh = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'].str.contains("total_households_inc") == True), 'value'].sum() tm_tot_hh_inc1 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_households_inc1"),'value'].item() tm_tot_hh_inc2 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_households_inc2"),'value'].item() # Total household income (model outputs are in 2000$, annual) tm_total_hh_inc = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'].str.contains("total_hh_inc") == True), 'value'].sum() tm_total_hh_inc_inc1 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_hh_inc_inc1"),'value'].item() tm_total_hh_inc_inc2 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_hh_inc_inc2"),'value'].item() # Total transit fares (model outputs are in 2000$, per day) tm_tot_transit_fares = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'].str.contains("total_transit_fares") == True), 'value'].sum() * days_per_year tm_tot_transit_fares_inc1 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_transit_fares_inc1"),'value'].item() * days_per_year tm_tot_transit_fares_inc2 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_transit_fares_inc2"),'value'].item() * days_per_year # Total auto op cost (model outputs are in 2000$, per day) tm_tot_auto_op_cost = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'].str.contains("total_auto_cost_inc") == True), 'value'].sum() * days_per_year tm_tot_auto_op_cost_inc1 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_auto_cost_inc1"),'value'].item() * days_per_year tm_tot_auto_op_cost_inc2 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_auto_cost_inc2"),'value'].item() * days_per_year # Total auto parking cost (model outputs are in 2000$, per day, in cents) #tm_travel_cost_df['park_cost'] = (tm_travel_cost_df['pcost_indiv']+tm_travel_cost_df['pcost_joint']) * tm_travel_cost_df['freq'] tm_tot_auto_park_cost = (tm_travel_cost_df.pcost_indiv.sum() + tm_travel_cost_df.pcost_joint.sum()) * days_per_year / 100 tm_tot_auto_park_cost_inc1 = (tm_travel_cost_df.loc[(tm_travel_cost_df['incQ'] == 1),'pcost_indiv'].sum() + tm_travel_cost_df.loc[(tm_travel_cost_df['incQ'] == 1),'pcost_joint'].sum()) * days_per_year / 100 tm_tot_auto_park_cost_inc2 = (tm_travel_cost_df.loc[(tm_travel_cost_df['incQ'] == 2),'pcost_indiv'].sum() + tm_travel_cost_df.loc[(tm_travel_cost_df['incQ'] == 2),'pcost_joint'].sum()) * days_per_year / 100 # Calculating number of autos owned from autos_owned.csv tm_auto_owned_df['tot_autos'] = tm_auto_owned_df['autos'] * tm_auto_owned_df['households'] tm_tot_autos_owned = tm_auto_owned_df['tot_autos'].sum() tm_tot_autos_owned_inc1 = tm_auto_owned_df.loc[(tm_auto_owned_df['incQ'] == 1), 'tot_autos'].sum() tm_tot_autos_owned_inc2 = tm_auto_owned_df.loc[(tm_auto_owned_df['incQ'] == 2), 'tot_autos'].sum() # Total auto ownership cost in 2000$ tm_tot_auto_owner_cost = tm_tot_autos_owned * auto_ownership_cost * inflation_18_20 / inflation_00_20 tm_tot_auto_owner_cost_inc1 = tm_tot_autos_owned_inc1 * auto_ownership_cost_inc1 * inflation_18_20 / inflation_00_20 tm_tot_auto_owner_cost_inc2 = tm_tot_autos_owned_inc2 * auto_ownership_cost_inc2 * inflation_18_20 / inflation_00_20 # Total Transportation Cost (in 2000$) tp_cost = tm_tot_auto_op_cost + tm_tot_transit_fares + tm_tot_auto_owner_cost + tm_tot_auto_park_cost tp_cost_inc1 = tm_tot_auto_op_cost_inc1 + tm_tot_transit_fares_inc1 + tm_tot_auto_owner_cost_inc1 + tm_tot_auto_park_cost_inc1 tp_cost_inc2 = tm_tot_auto_op_cost_inc2 + tm_tot_transit_fares_inc2 + tm_tot_auto_owner_cost_inc2 + tm_tot_auto_park_cost_inc2 # Mean transportation cost per household in 2020$ tp_cost_mean = tp_cost / tm_tot_hh * inflation_00_20 tp_cost_mean_inc1 = tp_cost_inc1 / tm_tot_hh_inc1 * inflation_00_20 tp_cost_mean_inc2 = tp_cost_inc2 / tm_tot_hh_inc2 * inflation_00_20 metrics_dict[runid,metric_id,'mean_transportation_cost_2020$',year,dbp] = tp_cost_mean metrics_dict[runid,metric_id,'mean_transportation_cost_2020$_inc1',year,dbp] = tp_cost_mean_inc1 metrics_dict[runid,metric_id,'mean_transportation_cost_2020$_inc2',year,dbp] = tp_cost_mean_inc2 # Transportation cost % of income tp_cost_pct_inc = tp_cost / tm_total_hh_inc tp_cost_pct_inc_inc1 = tp_cost_inc1 / tm_total_hh_inc_inc1 tp_cost_pct_inc_inc2 = tp_cost_inc2 / tm_total_hh_inc_inc2 tp_cost_pct_inc_inc1and2 = (tp_cost_inc1+tp_cost_inc2) / (tm_total_hh_inc_inc1+tm_total_hh_inc_inc2) # Transportation cost % of income metrics metrics_dict[runid,metric_id,'transportation_cost_pct_income',year,dbp] = tp_cost_pct_inc metrics_dict[runid,metric_id,'transportation_cost_pct_income_inc1',year,dbp] = tp_cost_pct_inc_inc1 metrics_dict[runid,metric_id,'transportation_cost_pct_income_inc2',year,dbp] = tp_cost_pct_inc_inc2 metrics_dict[runid,metric_id,'transportation_cost_pct_income_inc1and2',year,dbp] = tp_cost_pct_inc_inc1and2 # Transportation cost % of income metrics; split by cost bucket metrics_dict[runid,metric_id,'transportation_cost_pct_income_autoop',year,dbp] = tm_tot_auto_op_cost / tm_total_hh_inc metrics_dict[runid,metric_id,'transportation_cost_pct_income_autopark',year,dbp] = tm_tot_auto_park_cost / tm_total_hh_inc metrics_dict[runid,metric_id,'transportation_cost_pct_income_transitfare',year,dbp] = tm_tot_transit_fares / tm_total_hh_inc metrics_dict[runid,metric_id,'transportation_cost_pct_income_autoown',year,dbp] = tm_tot_auto_owner_cost / tm_total_hh_inc # Add housing costs from Shimon's outputs housing_costs_2050_df = pd.read_csv('C:/Users/ATapase/Box/Horizon and Plan Bay Area 2050/Equity and Performance/7_Analysis/Metrics/metrics_files/2050 Share of Income Spent on Housing.csv') housing_costs_2015_df = pd.read_csv('C:/Users/ATapase/Box/Horizon and Plan Bay Area 2050/Equity and Performance/7_Analysis/Metrics/metrics_files/2015 Share of Income Spent on Housing.csv') housing_costs_2015_df['totcosts'] = housing_costs_2015_df['share_income'] * housing_costs_2015_df['households'] if year == "2050": metrics_dict[runid,metric_id,'housing_cost_pct_income',year,dbp] = housing_costs_2050_df['w_all'].sum() metrics_dict[runid,metric_id,'housing_cost_pct_income_inc1',year,dbp] = housing_costs_2050_df['w_q1'].sum() metrics_dict[runid,metric_id,'housing_cost_pct_income_inc2',year,dbp] = housing_costs_2050_df['w_q2'].sum() metrics_dict[runid,metric_id,'housing_cost_pct_income_inc1and2',year,dbp] = housing_costs_2050_df['w_q1_q2'].sum() elif year == "2015": metrics_dict[runid,metric_id,'housing_cost_pct_income',year,dbp] = housing_costs_2015_df.loc[(housing_costs_2015_df['tenure'].str.contains("Total")), 'totcosts'].sum() / \ housing_costs_2015_df.loc[(housing_costs_2015_df['tenure'].str.contains("Total")), 'households'].sum() metrics_dict[runid,metric_id,'housing_cost_pct_income_inc1',year,dbp] = housing_costs_2015_df.loc[(housing_costs_2015_df['short_name'].str.contains("q1t")), 'share_income'].sum() metrics_dict[runid,metric_id,'housing_cost_pct_income_inc2',year,dbp] = housing_costs_2015_df.loc[(housing_costs_2015_df['short_name'].str.contains("q2t")), 'share_income'].sum() metrics_dict[runid,metric_id,'housing_cost_pct_income_inc1and2',year,dbp] = (housing_costs_2015_df.loc[(housing_costs_2015_df['short_name'].str.contains("q1t")), 'totcosts'].sum() + housing_costs_2015_df.loc[(housing_costs_2015_df['short_name'].str.contains("q2t")), 'totcosts'].sum()) / \ (housing_costs_2015_df.loc[(housing_costs_2015_df['short_name'].str.contains("q1t")), 'households'].sum() + housing_costs_2015_df.loc[(housing_costs_2015_df['short_name'].str.contains("q2t")), 'households'].sum()) # Total H+T Costs pct of income metrics_dict[runid,metric_id,'HplusT_cost_pct_income',year,dbp] = metrics_dict[runid,metric_id,'transportation_cost_pct_income',year,dbp] + \ metrics_dict[runid,metric_id,'housing_cost_pct_income',year,dbp] metrics_dict[runid,metric_id,'HplusT_cost_pct_income_inc1',year,dbp] = metrics_dict[runid,metric_id,'transportation_cost_pct_income_inc1',year,dbp] + \ metrics_dict[runid,metric_id,'housing_cost_pct_income_inc1',year,dbp] metrics_dict[runid,metric_id,'HplusT_cost_pct_income_inc2',year,dbp] = metrics_dict[runid,metric_id,'transportation_cost_pct_income_inc2',year,dbp] + \ metrics_dict[runid,metric_id,'housing_cost_pct_income_inc2',year,dbp] metrics_dict[runid,metric_id,'HplusT_cost_pct_income_inc1and2',year,dbp] = metrics_dict[runid,metric_id,'transportation_cost_pct_income_inc1and2',year,dbp] + \ metrics_dict[runid,metric_id,'housing_cost_pct_income_inc1and2',year,dbp] # Tolls & Fares # Reading auto times file tm_auto_times_df = tm_auto_times_df.sum(level='Income') # Calculating Total Tolls per day = bridge tolls + value tolls (2000$) total_tolls = OrderedDict() for inc_level in range(1,5): total_tolls['inc%d' % inc_level] = tm_auto_times_df.loc['inc%d' % inc_level, ['Bridge Tolls', 'Value Tolls']].sum()/100 # cents -> dollars total_tolls_allHH = sum(total_tolls.values()) total_tolls_LIHH = total_tolls['inc1'] + total_tolls['inc2'] # Average Daily Tolls per household metrics_dict[runid,metric_id,'tolls_per_HH',year,dbp] = total_tolls_allHH / tm_tot_hh * inflation_00_20 metrics_dict[runid,metric_id,'tolls_per_LIHH',year,dbp] = total_tolls_LIHH / (tm_tot_hh_inc1+tm_tot_hh_inc2) * inflation_00_20 metrics_dict[runid,metric_id,'tolls_per_inc1HH',year,dbp] = total_tolls['inc1'] / tm_tot_hh_inc1 * inflation_00_20 # Average Daily Fares per Household (note: transit fares totals calculated above are annual and need to be divided by days_per_year) metrics_dict[runid,metric_id,'fares_per_HH',year,dbp] = tm_tot_transit_fares / tm_tot_hh * inflation_00_20 / days_per_year metrics_dict[runid,metric_id,'fares_per_LIHH',year,dbp] = (tm_tot_transit_fares_inc1 + tm_tot_transit_fares_inc2) / (tm_tot_hh_inc1+tm_tot_hh_inc2) * inflation_00_20 / days_per_year metrics_dict[runid,metric_id,'fares_per_inc1HH',year,dbp] = tm_tot_transit_fares_inc1 / tm_tot_hh_inc1 * inflation_00_20 / days_per_year # per trip # Total auto trips per day (model outputs are in trips, per day) tm_tot_auto_trips = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'].str.contains("total_auto_trips") == True), 'value'].sum() tm_tot_auto_trips_inc1 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_auto_trips_inc1"),'value'].item() tm_tot_auto_trips_inc2 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_auto_trips_inc2"),'value'].item() # Total transit trips per day (model outputs are in trips, per day) tm_tot_transit_trips = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'].str.contains("total_transit_trips") == True), 'value'].sum() tm_tot_transit_trips_inc1 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_transit_trips_inc1"),'value'].item() tm_tot_transit_trips_inc2 = tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "total_transit_trips_inc2"),'value'].item() # Average Tolls per trip (total_tolls_xx is calculated above as per day tolls in 2000 dollars) metrics_dict[runid,metric_id,'tolls_per_trip',year,dbp] = total_tolls_allHH / tm_tot_auto_trips * inflation_00_20 metrics_dict[runid,metric_id,'tolls_per_trip_inc1and2',year,dbp] = total_tolls_LIHH / (tm_tot_auto_trips_inc1+tm_tot_auto_trips_inc2) * inflation_00_20 metrics_dict[runid,metric_id,'tolls_per_trip_inc1',year,dbp] = total_tolls['inc1'] / tm_tot_auto_trips_inc1 * inflation_00_20 # Total auto operating cost per trip (tm_tot_auto_op_cost and tm_tot_auto_park_cost are calculated above as annual costs in 2000 dollars) metrics_dict[runid,metric_id,'autocost_per_trip',year,dbp] = (tm_tot_auto_op_cost + tm_tot_auto_park_cost) / tm_tot_auto_trips * inflation_00_20 / days_per_year metrics_dict[runid,metric_id,'autocost_per_trip_inc1and2',year,dbp] = (tm_tot_auto_op_cost_inc1 + tm_tot_auto_op_cost_inc2 + tm_tot_auto_park_cost_inc1 + tm_tot_auto_park_cost_inc2) / (tm_tot_auto_trips_inc1+tm_tot_auto_trips_inc2) * inflation_00_20 / days_per_year metrics_dict[runid,metric_id,'autocost_per_trip_inc1',year,dbp] = (tm_tot_auto_op_cost_inc1 + tm_tot_auto_park_cost_inc1) / tm_tot_auto_trips_inc1 * inflation_00_20 / days_per_year # Average Fares per trip (note: transit fares totals calculated above are annual and need to be divided by days_per_year) metrics_dict[runid,metric_id,'fares_per_trip',year,dbp] = tm_tot_transit_fares / tm_tot_transit_trips * inflation_00_20 / days_per_year metrics_dict[runid,metric_id,'fares_per_trip_inc1and2',year,dbp] = (tm_tot_transit_fares_inc1 + tm_tot_transit_fares_inc2) / (tm_tot_transit_trips_inc1+tm_tot_transit_trips_inc2) * inflation_00_20 / days_per_year metrics_dict[runid,metric_id,'fares_per_trip_inc1',year,dbp] = tm_tot_transit_fares_inc1 / tm_tot_transit_trips_inc1 * inflation_00_20 / days_per_year def calculate_Affordable2_deed_restricted_housing(runid, dbp, parcel_sum_df, metrics_dict): metric_id = "A2" # totals for 2050 and 2015 metrics_dict[runid,metric_id,'deed_restricted_total',y2,dbp] = parcel_sum_df['deed_restricted_units_2050'].sum() metrics_dict[runid,metric_id,'deed_restricted_total',y1,dbp] = parcel_sum_df['deed_restricted_units_2015'].sum() metrics_dict[runid,metric_id,'residential_units_total',y2,dbp] = parcel_sum_df['residential_units_2050'].sum() metrics_dict[runid,metric_id,'residential_units_total',y1,dbp] = parcel_sum_df['residential_units_2015'].sum() metrics_dict[runid,metric_id,'deed_restricted_HRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'deed_restricted_units_2050'].sum() metrics_dict[runid,metric_id,'deed_restricted_HRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'deed_restricted_units_2015'].sum() metrics_dict[runid,metric_id,'residential_units_HRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'residential_units_2050'].sum() metrics_dict[runid,metric_id,'residential_units_HRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'residential_units_2015'].sum() metrics_dict[runid,metric_id,'deed_restricted_TRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'deed_restricted_units_2050'].sum() metrics_dict[runid,metric_id,'deed_restricted_TRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'deed_restricted_units_2015'].sum() metrics_dict[runid,metric_id,'residential_units_TRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'residential_units_2050'].sum() metrics_dict[runid,metric_id,'residential_units_TRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'residential_units_2015'].sum() metrics_dict[runid,metric_id,'deed_restricted_CoC',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['coc_flag_pba2050']==1, 'deed_restricted_units_2050'].sum() metrics_dict[runid,metric_id,'deed_restricted_CoC',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['coc_flag_pba2050']==1, 'deed_restricted_units_2015'].sum() metrics_dict[runid,metric_id,'residential_units_CoC',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['coc_flag_pba2050']==1, 'residential_units_2050'].sum() metrics_dict[runid,metric_id,'residential_units_CoC',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['coc_flag_pba2050']==1, 'residential_units_2015'].sum() # diff between 2050 and 2015 metrics_dict[runid,metric_id,'deed_restricted_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_total',y2,dbp] - metrics_dict[runid,metric_id,'deed_restricted_total',y1,dbp] metrics_dict[runid,metric_id,'residential_units_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'residential_units_total',y2,dbp] - metrics_dict[runid,metric_id,'residential_units_total',y1,dbp] metrics_dict[runid,metric_id,'deed_restricted_HRA_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_HRA',y2,dbp] - metrics_dict[runid,metric_id,'deed_restricted_HRA',y1,dbp] metrics_dict[runid,metric_id,'residential_units_HRA_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'residential_units_HRA',y2,dbp] - metrics_dict[runid,metric_id,'residential_units_HRA',y1,dbp] metrics_dict[runid,metric_id,'deed_restricted_TRA_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_TRA',y2,dbp] - metrics_dict[runid,metric_id,'deed_restricted_TRA',y1,dbp] metrics_dict[runid,metric_id,'residential_units_TRA_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'residential_units_TRA',y2,dbp] - metrics_dict[runid,metric_id,'residential_units_TRA',y1,dbp] metrics_dict[runid,metric_id,'deed_restricted_nonHRA_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_diff',y_diff,dbp] - metrics_dict[runid,metric_id,'deed_restricted_HRA_diff',y_diff,dbp] metrics_dict[runid,metric_id,'residential_units_nonHRA_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'residential_units_diff',y_diff,dbp] - metrics_dict[runid,metric_id,'residential_units_HRA_diff',y_diff,dbp] metrics_dict[runid,metric_id,'deed_restricted_CoC_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_CoC',y2,dbp] - metrics_dict[runid,metric_id,'deed_restricted_CoC',y1,dbp] metrics_dict[runid,metric_id,'residential_units_CoC_diff',y_diff,dbp] = metrics_dict[runid,metric_id,'residential_units_CoC',y2,dbp] - metrics_dict[runid,metric_id,'residential_units_CoC',y1,dbp] # metric: deed restricted % of total units: overall, HRA and non-HRA metrics_dict[runid,metric_id,'deed_restricted_pct_new_units',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_diff',y_diff,dbp] / metrics_dict[runid,metric_id,'residential_units_diff',y_diff,dbp] metrics_dict[runid,metric_id,'deed_restricted_pct_new_units_HRA',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_HRA_diff',y_diff,dbp]/metrics_dict[runid,metric_id,'residential_units_HRA_diff',y_diff,dbp] metrics_dict[runid,metric_id,'deed_restricted_pct_new_units_TRA',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_TRA_diff',y_diff,dbp]/metrics_dict[runid,metric_id,'residential_units_TRA_diff',y_diff,dbp] metrics_dict[runid,metric_id,'deed_restricted_pct_new_units_nonHRA',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_nonHRA_diff',y_diff,dbp]/metrics_dict[runid,metric_id,'residential_units_nonHRA_diff',y_diff,dbp] metrics_dict[runid,metric_id,'deed_restricted_pct_new_units_CoC',y_diff,dbp] = metrics_dict[runid,metric_id,'deed_restricted_CoC_diff',y_diff,dbp]/metrics_dict[runid,metric_id,'residential_units_CoC_diff',y_diff,dbp] print('********************A2 Affordable********************') print('DR pct of new units %s' % dbp,metrics_dict[runid,metric_id,'deed_restricted_pct_new_units',y_diff,dbp] ) print('DR pct of new units in HRAs %s' % dbp,metrics_dict[runid,metric_id,'deed_restricted_pct_new_units_HRA',y_diff,dbp] ) print('DR pct of new units in TRAs %s' % dbp,metrics_dict[runid,metric_id,'deed_restricted_pct_new_units_TRA',y_diff,dbp] ) print('DR pct of new units outside of HRAs %s' % dbp,metrics_dict[runid,metric_id,'deed_restricted_pct_new_units_nonHRA',y_diff,dbp]) # Forcing preservation metrics metrics_dict[runid,metric_id,'preservation_affordable_housing',y_diff,dbp] = 1 def calculate_Connected1_accessibility(runid, year, dbp, tm_scen_metrics_df, metrics_dict): metric_id = "C1" # % of Jobs accessible by 30 min car OR 45 min transit metrics_dict[runid,metric_id,'pct_jobs_acc_by_allmodes',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_accessible_job_share"), 'value'].item() metrics_dict[runid,metric_id,'pct_jobs_acc_by_allmodes_coc',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_accessible_job_share_coc"), 'value'].item() metrics_dict[runid,metric_id,'pct_jobs_acc_by_allmodes_noncoc',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_accessible_job_share_noncoc"), 'value'].item() # % of Jobs accessible by 30 min car only metrics_dict[runid,metric_id,'pct_jobs_acc_by_drv_only',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_drv_only_acc_accessible_job_share"), 'value'].item() \ + tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_drv_acc_accessible_job_share"), 'value'].item() metrics_dict[runid,metric_id,'pct_jobs_acc_by_drv_only_coc',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_drv_only_acc_accessible_job_share_coc"), 'value'].item() \ + tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_drv_acc_accessible_job_share_coc"), 'value'].item() metrics_dict[runid,metric_id,'pct_jobs_acc_by_drv_only_noncoc',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_drv_only_acc_accessible_job_share_noncoc"), 'value'].item() \ + tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_drv_acc_accessible_job_share_noncoc"), 'value'].item() # % of Jobs accessible by 45 min transit only metrics_dict[runid,metric_id,'pct_jobs_acc_by_trn_only',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_only_acc_accessible_job_share"), 'value'].item() \ + tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_drv_acc_accessible_job_share"), 'value'].item() metrics_dict[runid,metric_id,'pct_jobs_acc_by_trn_only_coc',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_only_acc_accessible_job_share_coc"), 'value'].item() \ + tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_drv_acc_accessible_job_share_coc"), 'value'].item() metrics_dict[runid,metric_id,'pct_jobs_acc_by_trn_only_noncoc',year,dbp] = \ tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_only_acc_accessible_job_share_noncoc"), 'value'].item() \ + tm_scen_metrics_df.loc[(tm_scen_metrics_df['metric_name'] == "jobacc_trn_drv_acc_accessible_job_share_noncoc"), 'value'].item() def calculate_Connected1_proximity(runid, year, dbp, tm_scen_metrics_df, metrics_dict): metric_id = "C1" def calculate_Connected2_crowding(runid, year, dbp, transit_operator_df, metrics_dict): metric_id = "C2" if "2015" in runid: tm_run_location = tm_run_location_ipa else: tm_run_location = tm_run_location_bp tm_crowding_df = pd.read_csv(tm_run_location+runid+'/OUTPUT/metrics/transit_crowding_complete.csv') tm_crowding_df = tm_crowding_df[['TIME','SYSTEM','ABNAMESEQ','period','load_standcap','AB_VOL']] tm_crowding_df = tm_crowding_df.loc[tm_crowding_df['period'] == "AM"] tm_crowding_df['time_overcapacity'] = tm_crowding_df.apply (lambda row: row['TIME'] if (row['load_standcap']>1) else 0, axis=1) tm_crowding_df['time_crowded'] = tm_crowding_df.apply (lambda row: row['TIME'] if (row['load_standcap']>0.85) else 0, axis=1) tm_crowding_df['person_hrs_total'] = tm_crowding_df['TIME'] * tm_crowding_df['AB_VOL'] tm_crowding_df['person_hrs_overcap'] = tm_crowding_df['time_overcapacity'] * tm_crowding_df['AB_VOL'] tm_crowding_df['person_hrs_crowded'] = tm_crowding_df['time_crowded'] * tm_crowding_df['AB_VOL'] tm_crowding_df = pd.merge(left=tm_crowding_df, right=transit_operator_df, left_on="SYSTEM", right_on="SYSTEM", how="left") system_crowding_df = tm_crowding_df[['person_hrs_total','person_hrs_overcap','person_hrs_crowded']].groupby(tm_crowding_df['operator']).sum().reset_index() system_crowding_df['pct_overcapacity'] = system_crowding_df['person_hrs_overcap'] / system_crowding_df['person_hrs_total'] system_crowding_df['pct_crowded'] = system_crowding_df['person_hrs_crowded'] / system_crowding_df['person_hrs_total'] for index,row in system_crowding_df.iterrows(): if row['operator'] in ['AC Transit Local','AC Transit Transbay','SFMTA LRT','SFMTA Bus','VTA Bus Local','VTA LRT','BART','Caltrain','SamTrans Local','GGT Express','WETA']: metrics_dict[runid,metric_id,'crowded_pct_personhrs_AM_%s' % row['operator'],year,dbp] = row['pct_crowded'] def calculate_Connected2_hwy_traveltimes(runid, year, dbp, hwy_corridor_links_df, metrics_dict): metric_id = "C2" if "2015" in runid: tm_run_location = tm_run_location_ipa else: tm_run_location = tm_run_location_bp tm_loaded_network_df = pd.read_csv(tm_run_location+runid+'/OUTPUT/avgload5period.csv') # Keeping essential columns of loaded highway network: node A and B, distance, free flow time, congested time tm_loaded_network_df = tm_loaded_network_df.rename(columns=lambda x: x.strip()) tm_loaded_network_df = tm_loaded_network_df[['a','b','distance','fft','ctimAM']] tm_loaded_network_df['link'] = tm_loaded_network_df['a'].astype(str) + "_" + tm_loaded_network_df['b'].astype(str) # merging df that has the list of all hwy_corridor_links_df = pd.merge(left=hwy_corridor_links_df, right=tm_loaded_network_df, left_on="link", right_on="link", how="left") corridor_travel_times_df = hwy_corridor_links_df[['distance','fft','ctimAM']].groupby(hwy_corridor_links_df['route']).sum().reset_index() for index,row in corridor_travel_times_df.iterrows(): metrics_dict[runid,metric_id,'travel_time_AM_%s' % row['route'],year,dbp] = row['ctimAM'] def calculate_Connected2_trn_traveltimes(runid, year, dbp, transit_operator_df, metrics_dict): metric_id = "C2" if "2015" in runid: tm_run_location = tm_run_location_ipa else: tm_run_location = tm_run_location_bp tm_trn_line_df = pd.read_csv(tm_run_location+runid+'/OUTPUT/trn/trnline.csv') # It doesn't really matter which path ID we pick, as long as it is AM tm_trn_line_df = tm_trn_line_df.loc[tm_trn_line_df['path id'] == "am_wlk_loc_wlk"] tm_trn_line_df = pd.merge(left=tm_trn_line_df, right=transit_operator_df, left_on="mode", right_on="mode", how="left") # grouping by transit operator, and summing all line times and distances, to get metric of "time per unit distance", in minutes/mile trn_operator_travel_times_df = tm_trn_line_df[['line time','line dist']].groupby(tm_trn_line_df['operator']).sum().reset_index() trn_operator_travel_times_df['time_per_dist_AM'] = trn_operator_travel_times_df['line time'] / trn_operator_travel_times_df['line dist'] # grouping by mode, and summing all line times and distances, to get metric of "time per unit distance", in minutes/mile trn_mode_travel_times_df = tm_trn_line_df[['line time','line dist']].groupby(tm_trn_line_df['mode_name']).sum().reset_index() trn_mode_travel_times_df['time_per_dist_AM'] = trn_mode_travel_times_df['line time'] / trn_mode_travel_times_df['line dist'] for index,row in trn_operator_travel_times_df.iterrows(): if row['operator'] in ['AC Transit Local','AC Transit Transbay','SFMTA LRT','SFMTA Bus','VTA Bus Local','VTA LRT','BART','Caltrain','SamTrans Local']: metrics_dict[runid,metric_id,'time_per_dist_AM_%s' % row['operator'],year,dbp] = row['time_per_dist_AM'] for index,row in trn_mode_travel_times_df.iterrows(): metrics_dict[runid,metric_id,'time_per_dist_AM_%s' % row['mode_name'],year,dbp] = row['time_per_dist_AM'] def calculate_Diverse1_LIHHinHRAs(runid, dbp, parcel_sum_df, tract_sum_df, GG_sum_df, normalize_factor_Q1Q2, normalize_factor_Q1, metrics_dict): metric_id = "D1" # Share of region's LIHH households that are in HRAs metrics_dict[runid,metric_id,'LIHH_total',y2,dbp] = parcel_sum_df['hhq1_2050'].sum() + parcel_sum_df['hhq2_2050'].sum() metrics_dict[runid,metric_id,'LIHH_total',y1,dbp] = parcel_sum_df['hhq1_2015'].sum() + parcel_sum_df['hhq2_2015'].sum() metrics_dict[runid,metric_id,'LIHH_inHRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'hhq1_2050'].sum() + parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'hhq2_2050'].sum() metrics_dict[runid,metric_id,'LIHH_inHRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'hhq1_2015'].sum() + parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'hhq2_2015'].sum() metrics_dict[runid,metric_id,'LIHH_shareinHRA',y2,dbp] = metrics_dict[runid,metric_id,'LIHH_inHRA',y2,dbp] / metrics_dict[runid,metric_id,'LIHH_total',y2,dbp] metrics_dict[runid,metric_id,'LIHH_shareinHRA',y1,dbp] = metrics_dict[runid,metric_id,'LIHH_inHRA',y1,dbp] / metrics_dict[runid,metric_id,'LIHH_total',y1,dbp] # normalizing for overall growth in LIHH metrics_dict[runid,metric_id,'LIHH_shareinHRA_normalized',y1,dbp] = metrics_dict[runid,metric_id,'LIHH_shareinHRA',y1,dbp] * normalize_factor_Q1Q2 # Total number of Households # Total HHs in HRAs, in 2015 and 2050 metrics_dict[runid,metric_id,'TotHH_inHRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inHRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'tothh_2050'].sum() # Total HHs in TRAs, in 2015 and 2050 metrics_dict[runid,metric_id,'TotHH_inTRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inTRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'tothh_2050'].sum() # Total HHs in HRAs only, in 2015 and 2050 metrics_dict[runid,metric_id,'TotHH_inHRAonly',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) & \ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False) == False), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inHRAonly',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) & \ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False) == False), 'tothh_2050'].sum() # Total HHs in TRAs only, in 2015 and 2050 metrics_dict[runid,metric_id,'TotHH_inTRAonly',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) & \ (parcel_sum_df['pba50chcat'].str.contains('HRA', na=False) == False), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inTRAonly',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) & \ (parcel_sum_df['pba50chcat'].str.contains('HRA', na=False) == False), 'tothh_2050'].sum() # Total HHs in HRA/TRAs, in 2015 and 2050 metrics_dict[runid,metric_id,'TotHH_inHRATRA',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) & \ (parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inHRATRA',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) & \ (parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)), 'tothh_2050'].sum() # Total HHs in DR Tracts, in 2015 and 2050 metrics_dict[runid,metric_id,'TotHH_inDRTracts',y1,dbp] = tract_sum_df.loc[(tract_sum_df['DispRisk'] == 1), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inDRTracts',y2,dbp] = tract_sum_df.loc[(tract_sum_df['DispRisk'] == 1), 'tothh_2050'].sum() # Total HHs in CoC Tracts, in 2015 and 2050 metrics_dict[runid,metric_id,'TotHH_inCoCTracts',y1,dbp] = tract_sum_df.loc[(tract_sum_df['coc_flag_pba2050'] == 1), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inCoCTracts',y2,dbp] = tract_sum_df.loc[(tract_sum_df['coc_flag_pba2050'] == 1), 'tothh_2050'].sum() # Total HHs in remainder of region (RoR); i.e. not HRA or TRA or CoC or DR metrics_dict[runid,metric_id,'TotHH_inRoR',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False) == False) & \ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False) == False) & \ (parcel_sum_df['pba50chcat'].str.contains('DR', na=False) == False) & \ (parcel_sum_df['coc_flag_pba2050'] == 0), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inRoR',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False) == False) & \ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False) == False) & \ (parcel_sum_df['pba50chcat'].str.contains('DR', na=False) == False) & \ (parcel_sum_df['coc_flag_pba2050'] == 0), 'tothh_2050'].sum() # Total HHs in GGs, in 2015 and 2050 metrics_dict[runid,metric_id,'TotHH_inGGs',y1,dbp] = GG_sum_df['tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inGGs',y2,dbp] = GG_sum_df['tothh_2050'].sum() # Total HHs in Transit Rich GGs, in 2015 and 2050 GG_TRich_sum_df = GG_sum_df[GG_sum_df['Designation']=="Transit-Rich"] metrics_dict[runid,metric_id,'TotHH_inTRichGGs',y1,dbp] = GG_TRich_sum_df['tothh_2015'].sum() metrics_dict[runid,metric_id,'TotHH_inTRichGGs',y2,dbp] = GG_TRich_sum_df['tothh_2050'].sum() ########### Tracking movement of Q1 households: Q1 share of Households # Share of Households that are Q1, within each geography type in this order: # Overall Region; HRAs; TRAs, DR Tracts; CoCs; Rest of Region; and also GGs and TRichGGs metrics_dict[runid,metric_id,'Q1HH_shareofRegion',y1,dbp] = parcel_sum_df['hhq1_2015'].sum() / parcel_sum_df['tothh_2015'].sum() metrics_dict[runid,metric_id,'Q1HH_shareofRegion_normalized',y1,dbp] = parcel_sum_df['hhq1_2015'].sum() / parcel_sum_df['tothh_2015'].sum() * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofRegion',y2,dbp] = parcel_sum_df['hhq1_2050'].sum() / parcel_sum_df['tothh_2050'].sum() metrics_dict[runid,metric_id,'Q1HH_shareofHRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inHRA',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofHRA_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofHRA',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofHRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('HRA', na=False), 'hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inHRA',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofTRA',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inTRA',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofTRA_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofTRA',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofTRA',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('tra', na=False), 'hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inTRA',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofHRAonly',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) & (parcel_sum_df['pba50chcat'].str.contains('tra', na=False) == False), 'hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inHRAonly',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofHRAonly_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofHRAonly',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofHRAonly',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) & (parcel_sum_df['pba50chcat'].str.contains('tra', na=False) == False), 'hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inHRAonly',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofTRAonly',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) & (parcel_sum_df['pba50chcat'].str.contains('HRA', na=False) == False), 'hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inTRAonly',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofTRAonly_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofTRAonly',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofTRAonly',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('tra', na=False)) & (parcel_sum_df['pba50chcat'].str.contains('HRA', na=False) == False), 'hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inTRAonly',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofHRATRA',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) & (parcel_sum_df['pba50chcat'].str.contains('tra', na=False)), 'hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inHRATRA',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofHRATRA_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofHRATRA',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofHRATRA',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False)) & (parcel_sum_df['pba50chcat'].str.contains('tra', na=False)), 'hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inHRATRA',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofDRTracts',y1,dbp] = tract_sum_df.loc[(tract_sum_df['DispRisk'] == 1), 'hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inDRTracts',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofDRTracts_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofDRTracts',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofDRTracts',y2,dbp] = tract_sum_df.loc[(tract_sum_df['DispRisk'] == 1), 'hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inDRTracts',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofCoCTracts',y1,dbp] = tract_sum_df.loc[(tract_sum_df['coc_flag_pba2050'] == 1), 'hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inCoCTracts',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofCoCTracts_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofCoCTracts',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofCoCTracts',y2,dbp] = tract_sum_df.loc[(tract_sum_df['coc_flag_pba2050'] == 1), 'hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inCoCTracts',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofRoR',y1,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False) == False) & \ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False) == False) & \ (parcel_sum_df['pba50chcat'].str.contains('DR', na=False) == False) & \ (parcel_sum_df['coc_flag_pba2050'] == 0), 'hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inRoR',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofRoR_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofRoR',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofRoR',y2,dbp] = parcel_sum_df.loc[(parcel_sum_df['pba50chcat'].str.contains('HRA', na=False) == False) & \ (parcel_sum_df['pba50chcat'].str.contains('tra', na=False) == False) & \ (parcel_sum_df['pba50chcat'].str.contains('DR', na=False) == False) & \ (parcel_sum_df['coc_flag_pba2050'] == 0), 'hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inRoR',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofGGs',y1,dbp] = GG_sum_df['hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inGGs',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofGGs_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofGGs',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofGGs',y2,dbp] = GG_sum_df['hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inGGs',y2,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofTRichGGs',y1,dbp] = GG_TRich_sum_df['hhq1_2015'].sum() / metrics_dict[runid,metric_id,'TotHH_inTRichGGs',y1,dbp] metrics_dict[runid,metric_id,'Q1HH_shareofTRichGGs_normalized',y1,dbp] = metrics_dict[runid,metric_id,'Q1HH_shareofTRichGGs',y1,dbp] * normalize_factor_Q1 metrics_dict[runid,metric_id,'Q1HH_shareofTRichGGs',y2,dbp] = GG_TRich_sum_df['hhq1_2050'].sum() / metrics_dict[runid,metric_id,'TotHH_inTRichGGs',y2,dbp] ''' print('********************D1 Diverse********************') print('Growth of LIHH share of population (normalize factor))',normalize_factor_Q1Q2 ) print('LIHH Share in HRA 2050 %s' % dbp,metrics_dict[runid,metric_id,'LIHH_shareinHRA',y2,dbp] ) print('LIHH Share in HRA 2015 %s' % dbp,metrics_dict[runid,metric_id,'LIHH_shareinHRA_normalized',y1,dbp] ) print('LIHH Share of HRA 2050 %s' % dbp,metrics_dict[runid,metric_id,'LIHH_shareofHRA',y2,dbp]) print('LIHH Share of HRA 2015 %s' % dbp,metrics_dict[runid,metric_id,'LIHH_shareofHRA_normalized',y1,dbp] ) ''' def calculate_Diverse2_LIHH_Displacement(runid, dbp, parcel_sum_df, tract_sum_df, TRA_sum_df, GG_sum_df, normalize_factor_Q1Q2, normalize_factor_Q1, metrics_dict): metric_id = "D2" # For reference: total number of LIHH in tracts metrics_dict[runid,metric_id,'LIHH_inDR',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('DR', na=False), 'hhq1_2050'].sum() metrics_dict[runid,metric_id,'LIHH_inDR',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('DR', na=False), 'hhq1_2015'].sum() metrics_dict[runid,metric_id,'LIHH_inDR_normalized',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('DR', na=False), 'hhq1_2015'].sum() * normalize_factor_Q1 print('********************D2 Diverse********************') print('Total Number of LIHH in DR tracts in 2050',metrics_dict[runid,metric_id,'LIHH_inDR',y2,dbp] ) print('Number of LIHH in DR tracts in 2015',metrics_dict[runid,metric_id,'LIHH_inDR',y1,dbp] ) print('Number of LIHH in DR tracts in normalized',metrics_dict[runid,metric_id,'LIHH_inDR_normalized',y1,dbp] ) ###### Displacement at Tract Level (for Displacement Risk Tracts and CoC Tracts and HRA Tracts) # Total number of DR, CoC, HRA Tracts metrics_dict[runid,metric_id,'Num_DRtracts_total',y1,dbp] = tract_sum_df.loc[(tract_sum_df['DispRisk'] == 1), 'tract_id'].nunique() metrics_dict[runid,metric_id,'Num_CoCtracts_total',y1,dbp] = tract_sum_df.loc[(tract_sum_df['coc_flag_pba2050'] == 1), 'tract_id'].nunique() metrics_dict[runid,metric_id,'Num_HRAtracts_total',y1,dbp] = tract_sum_df.loc[(tract_sum_df['hra'] == 1), 'tract_id'].nunique() # Calculating share of Q1 households at tract level / we are not going to normalize this since we want to check impacts at neighborhood level #tract_sum_df['hhq1_pct_2015_normalized'] = tract_sum_df['hhq1_2015'] / tract_sum_df['tothh_2015'] * normalize_factor_Q1 tract_sum_df['hhq1_pct_2050'] = tract_sum_df['hhq1_2050'] / tract_sum_df['tothh_2050'] tract_sum_df['hhq1_pct_2015'] = tract_sum_df['hhq1_2015'] / tract_sum_df['tothh_2015'] # Creating functions to check if rows of a dataframe lost hhq1 share or absolute; applied to tract_summary_df and TRA_summary_df def check_losthhq1_share(row,j): if (row['hhq1_pct_2015'] == 0): return 0 elif ((row['hhq1_pct_2050']/row['hhq1_pct_2015'])<j): return 1 else: return 0 def check_losthhq1_abs(row,j): if (row['hhq1_2015'] == 0): return 0 elif ((row['hhq1_2050']/row['hhq1_2015'])<j): return 1 else: return 0 # Calculating number of Tracts that Lost LIHH, with "lost" defined as any loss, or 10% loss for i in [0, 10]: if i == 0: j = 1 else: j = 0.9 # Calculating change in share of LIHH at tract level to check gentrification tract_sum_df['lost_hhq1_%dpct' % i] = tract_sum_df.apply (lambda row: check_losthhq1_share(row,j), axis=1) #(lambda row: 1 if ((row['hhq1_pct_2050']/row['hhq1_pct_2015_normalized'])<j) else 0, axis=1) #(lambda row: 1 if (row['hhq1_pct_2050'] < (row['hhq1_pct_2015']*j)) else 0, axis=1) # Calculating absolute change in LIHH at tract level to check true displacement tract_sum_df['lost_hhq1_abs_%dpct' % i] = tract_sum_df.apply (lambda row: check_losthhq1_abs(row,j), axis=1) #(lambda row: 1 if (row['hhq1_2050'] < (row['hhq1_2015']*j)) else 0, axis=1) ############################### Gentrification ######## Gentrification in Displacement Risk Tracts # Number or percent of DR tracts that lost Q1 households as a share of total HH metrics_dict[runid,metric_id,'Num_DRtracts_lostLIHH_%dpct' % i,y_diff,dbp] = tract_sum_df.loc[((tract_sum_df['DispRisk'] == 1) & (tract_sum_df['lost_hhq1_%dpct' % i] == 1)), 'tract_id'].nunique() metrics_dict[runid,metric_id,'Pct_DRtracts_lostLIHH_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_DRtracts_lostLIHH_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_DRtracts_total',y1,dbp] ) print('Number of DR Tracts that lost LIHH (as a share) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_DRtracts_lostLIHH_%dpct' % i,y_diff,dbp] ) print('Pct of DR Tracts that lost LIHH (as a share) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_DRtracts_lostLIHH_%dpct' % i,y_diff,dbp] ) ######## Gentrification in Communities of Concern # Number or percent of CoC tracts that lost Q1 households as a share of total HH metrics_dict[runid,metric_id,'Num_CoCtracts_lostLIHH_%dpct' % i,y_diff,dbp] = tract_sum_df.loc[((tract_sum_df['coc_flag_pba2050'] == 1) & (tract_sum_df['lost_hhq1_%dpct' % i] == 1)), 'tract_id'].nunique() metrics_dict[runid,metric_id,'Pct_CoCtracts_lostLIHH_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_CoCtracts_lostLIHH_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_CoCtracts_total',y1,dbp] ) print('Number of CoC Tracts that lost LIHH (as a share) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_CoCtracts_lostLIHH_%dpct' % i,y_diff,dbp] ) print('Pct of CoC Tracts that lost LIHH (as a share) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_CoCtracts_lostLIHH_%dpct' % i,y_diff,dbp] ) ######## Gentrification in HRAs # Number or percent of HRA tracts that lost Q1 households as a share of total HH metrics_dict[runid,metric_id,'Num_HRAtracts_lostLIHH_%dpct' % i,y_diff,dbp] = tract_sum_df.loc[((tract_sum_df['hra'] == 1) & (tract_sum_df['lost_hhq1_%dpct' % i] == 1)), 'tract_id'].nunique() metrics_dict[runid,metric_id,'Pct_HRAtracts_lostLIHH_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_HRAtracts_lostLIHH_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_HRAtracts_total',y1,dbp] ) print('Number of HRA Tracts that lost LIHH (as a share) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_HRAtracts_lostLIHH_%dpct' % i,y_diff,dbp] ) print('Pct of HRA Tracts that lost LIHH (as a share) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_HRAtracts_lostLIHH_%dpct' % i,y_diff,dbp] ) ############################### Displacement ######## Displacement in Displacement Risk Tracts # Number or percent of DR tracts that lost Q1 households in absolute numbers metrics_dict[runid,metric_id,'Num_DRtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] = tract_sum_df.loc[((tract_sum_df['DispRisk'] == 1) & (tract_sum_df['lost_hhq1_abs_%dpct' % i] == 1)), 'tract_id'].nunique() metrics_dict[runid,metric_id,'Pct_DRtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_DRtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_DRtracts_total',y1,dbp] ) print('Number of DR Tracts that lost LIHH from (in absolute numbers) 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_DRtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] ) print('Pct of DR Tracts that lost LIHH from (in absolute numbers) 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_DRtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] ) ######## Displacement in Communities of Concern # Number or percent of CoC tracts that lost Q1 households in absolute numbers metrics_dict[runid,metric_id,'Num_CoCtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] = tract_sum_df.loc[((tract_sum_df['coc_flag_pba2050'] == 1) & (tract_sum_df['lost_hhq1_abs_%dpct' % i] == 1)), 'tract_id'].nunique() metrics_dict[runid,metric_id,'Pct_CoCtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_CoCtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_CoCtracts_total',y1,dbp] ) print('Number of CoC Tracts that lost LIHH (in absolute numbers) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_CoCtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] ) print('Pct of CoC Tracts that lost LIHH (in absolute numbers) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_CoCtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] ) ######## Displacement in HRAs # Number or percent of HRA tracts that lost Q1 households in absolute numbers metrics_dict[runid,metric_id,'Num_HRAtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] = tract_sum_df.loc[((tract_sum_df['hra'] == 1) & (tract_sum_df['lost_hhq1_abs_%dpct' % i] == 1)), 'tract_id'].nunique() metrics_dict[runid,metric_id,'Pct_HRAtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_HRAtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_HRAtracts_total',y1,dbp] ) print('Number of HRA Tracts that lost LIHH (in absolute numbers) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_HRAtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] ) print('Pct of HRA Tracts that lost LIHH (in absolute numbers) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_HRAtracts_lostLIHH_abs_%dpct' % i,y_diff,dbp] ) ##### Calculating displacement risk using the PBA2040 methodology # The analysis estimated which zones (i.e., TAZs) gained or lost lower-income households; those zones # that lost lower-income households over the time period would be flagged as being at risk of displacement. # The share of lower-income households at risk of displacement would be calculated by # dividing the number of lower-income households living in TAZs flagged as PDAs, TPAs, or # highopportunity areas with an increased risk of displacement by the total number of lower-income # households living in TAZs flagged as PDAs, TPAs, or high-opportunity areas in 2040 # Calculating this first for all DR Risk/CoC/HRA tracts; and next for TRA areas ######## PBA40 Displacement risk in DR Risk/CoC/HRA tracts # Q1 only #metrics_dict[runid,metric_id,'Num_LIHH_inDRCoCHRAtracts',y1,dbp] = tract_sum_df.loc[((tract_sum_df['DispRisk'] == 1)|(tract_sum_df['coc_flag_pba2050'] == 1)|\ # (tract_sum_df['hra'] == 1)), 'hhq1_2015'].nunique() metrics_dict[runid,metric_id,'Num_LIHH_inDRCoCHRAtracts',y2,dbp] = tract_sum_df.loc[((tract_sum_df['DispRisk'] == 1)|(tract_sum_df['coc_flag_pba2050'] == 1)|\ (tract_sum_df['hra'] == 1)), 'hhq1_2050'].sum() # Total number of LIHH in HRA/CoC/DR tracts that lost hhq1 metrics_dict[runid,metric_id,'Num_LIHH_inDRCoCHRAtracts_disp',y_diff,dbp] = tract_sum_df.loc[(((tract_sum_df['DispRisk'] == 1)|(tract_sum_df['coc_flag_pba2050'] == 1)|\ (tract_sum_df['hra'] == 1)) & (tract_sum_df['lost_hhq1_abs_0pct'] == 1)), 'hhq1_2050'].sum() metrics_dict[runid,metric_id,'DispRisk_PBA40_DRCoCHRAtracts',y_diff,dbp] = metrics_dict[runid,metric_id,'Num_LIHH_inDRCoCHRAtracts_disp',y_diff,dbp] / \ metrics_dict[runid,metric_id,'Num_LIHH_inDRCoCHRAtracts',y2,dbp] #For both Q1, Q2 - because this is how it was done in PBA40 metrics_dict[runid,metric_id,'Num_Q1Q2HH_inDRCoCHRAtracts',y2,dbp] = tract_sum_df.loc[((tract_sum_df['DispRisk'] == 1)|(tract_sum_df['coc_flag_pba2050'] == 1)|\ (tract_sum_df['hra'] == 1)), 'hhq1_2050'].sum() + \ tract_sum_df.loc[((tract_sum_df['DispRisk'] == 1)|(tract_sum_df['coc_flag_pba2050'] == 1)|\ (tract_sum_df['hra'] == 1)), 'hhq2_2050'].sum() metrics_dict[runid,metric_id,'Num_Q1Q2HH_inDRCoCHRAtracts_disp',y_diff,dbp] = tract_sum_df.loc[(((tract_sum_df['DispRisk'] == 1)|(tract_sum_df['coc_flag_pba2050'] == 1)|\ (tract_sum_df['hra'] == 1)) & (tract_sum_df['lost_hhq1_abs_0pct'] == 1)), 'hhq1_2050'].sum() + \ tract_sum_df.loc[(((tract_sum_df['DispRisk'] == 1)|(tract_sum_df['coc_flag_pba2050'] == 1)|\ (tract_sum_df['hra'] == 1)) & (tract_sum_df['lost_hhq1_abs_0pct'] == 1)), 'hhq2_2050'].sum() metrics_dict[runid,metric_id,'DispRisk_PBA40_Q1Q2_DRCoCHRAtracts',y_diff,dbp] = metrics_dict[runid,metric_id,'Num_Q1Q2HH_inDRCoCHRAtracts_disp',y_diff,dbp] / \ metrics_dict[runid,metric_id,'Num_Q1Q2HH_inDRCoCHRAtracts',y2,dbp] ########### Repeating all above analysis for TRAs # Calculating share of Q1 households at TRA level using TRA summary dataframe TRA_sum_df['hhq1_pct_2015'] = TRA_sum_df['hhq1_2015'] / TRA_sum_df['tothh_2015'] #TRA_sum_df['hhq1_pct_2015_normalized'] = TRA_sum_df['hhq1_pct_2015'] * normalize_factor_Q1 TRA_sum_df['hhq1_pct_2050'] = TRA_sum_df['hhq1_2050'] / TRA_sum_df['tothh_2050'] # Total number of TRAs metrics_dict[runid,metric_id,'Num_TRAs_total',y1,dbp] = TRA_sum_df['juris_tra'].nunique() # Calculating number of TRAs that Lost LIHH as a share of total HH, with "lost" defined as any loss, or 10% loss for i in [0, 10]: if i == 0: j = 1 else: j = 0.9 # Calculating change in share of LIHH at TRA level to check gentrification TRA_sum_df['lost_hhq1_%dpct' % i] = TRA_sum_df.apply (lambda row: check_losthhq1_share(row,j), axis=1) # Calculating absolute change in LIHH at TRA level to check true displacement TRA_sum_df['lost_hhq1_abs_%dpct' % i] = TRA_sum_df.apply (lambda row: check_losthhq1_abs(row,j), axis=1) ######## Gentrification in TRAs # Number or percent of TRAs that lost Q1 households as a share of total HH metrics_dict[runid,metric_id,'Num_TRAs_lostLIHH_%dpct' % i,y_diff,dbp] = TRA_sum_df.loc[(TRA_sum_df['lost_hhq1_%dpct' % i] == 1), 'juris_tra'].nunique() metrics_dict[runid,metric_id,'Pct_TRAs_lostLIHH_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_TRAs_lostLIHH_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_TRAs_total',y1,dbp]) print('Number of TRAs that lost LIHH (as a share) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_TRAs_lostLIHH_%dpct' % i,y_diff,dbp] ) print('Pct of TRAs that lost LIHH (as a share) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_TRAs_lostLIHH_%dpct' % i,y_diff,dbp] ) ######## Displacement in TRAs # Number or percent of DR tracts that lost Q1 households in absolute numbers metrics_dict[runid,metric_id,'Num_TRAs_lostLIHH_abs_%dpct' % i,y_diff,dbp] = TRA_sum_df.loc[(TRA_sum_df['lost_hhq1_abs_%dpct' % i] == 1), 'juris_tra'].nunique() metrics_dict[runid,metric_id,'Pct_TRAs_lostLIHH_abs_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_TRAs_lostLIHH_abs_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_TRAs_total',y1,dbp]) print('Number of TRAs that lost LIHH (in absolute numbers) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_TRAs_lostLIHH_abs_%dpct' % i,y_diff,dbp] ) print('Pct of TRAs that lost LIHH (in absolute numbers) from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_TRAs_lostLIHH_abs_%dpct' % i,y_diff,dbp] ) ######## PBA40 Displacement Risk metric in TRAs metrics_dict[runid,metric_id,'Num_LIHH_inTRAs',y2,dbp] = TRA_sum_df['hhq1_2050'].sum() metrics_dict[runid,metric_id,'Num_LIHH_inTRAs_disp',y_diff,dbp] = TRA_sum_df.loc[(TRA_sum_df['lost_hhq1_abs_0pct'] == 1), 'hhq1_2050'].sum() metrics_dict[runid,metric_id,'DispRisk_PBA40_TRAs',y_diff,dbp] = metrics_dict[runid,metric_id,'Num_LIHH_inTRAs_disp',y_diff,dbp] / \ metrics_dict[runid,metric_id,'Num_LIHH_inTRAs',y2,dbp] metrics_dict[runid,metric_id,'Num_Q1Q2HH_inTRAs',y2,dbp] = TRA_sum_df['hhq1_2050'].sum() + TRA_sum_df['hhq2_2050'].sum() metrics_dict[runid,metric_id,'Num_Q1Q2_inTRAs_disp',y_diff,dbp] = TRA_sum_df.loc[(TRA_sum_df['lost_hhq1_abs_0pct'] == 1), 'hhq1_2050'].sum() + TRA_sum_df.loc[(TRA_sum_df['lost_hhq1_abs_0pct'] == 1), 'hhq2_2050'].sum() metrics_dict[runid,metric_id,'DispRisk_PBA40_Q1Q2_TRAs',y_diff,dbp] = metrics_dict[runid,metric_id,'Num_Q1Q2_inTRAs_disp',y_diff,dbp] / \ metrics_dict[runid,metric_id,'Num_Q1Q2HH_inTRAs',y2,dbp] ######## Displacement from Growth Geographies # Calculating GG rows that lost inc1 Households GG_sum_df['hhq1_pct_2015'] = GG_sum_df['hhq1_2015'] / GG_sum_df['tothh_2015'] #GG_sum_df['hhq1_pct_2015_normalized'] = GG_sum_df['hhq1_pct_2015'] * normalize_factor_Q1 GG_sum_df['hhq1_pct_2050'] = GG_sum_df['hhq1_2050'] / GG_sum_df['tothh_2050'] # Total number of GGs metrics_dict[runid,metric_id,'Num_GGs_total',y1,dbp] = GG_sum_df['PDA_ID'].nunique() # Total number of Transit Rich GGs GG_TRich_sum_df = GG_sum_df[GG_sum_df['Designation']=="Transit-Rich"] metrics_dict[runid,metric_id,'Num_GGs_TRich_total',y1,dbp] = GG_TRich_sum_df['PDA_ID'].nunique() # Calculating number of GGs that Lost LIHH as a share of total HH, with "lost" defined as any loss, or 10% loss for i in [0, 10]: if i == 0: j = 1 else: j = 0.9 GG_sum_df['lost_hhq1_%dpct' % i] = GG_sum_df.apply (lambda row: check_losthhq1_share(row,j), axis=1) GG_TRich_sum_df['lost_hhq1_%dpct' % i] = GG_TRich_sum_df.apply (lambda row: check_losthhq1_share(row,j), axis=1) # Number or percent of GGs that lost Q1 households as a proportion of total HH metrics_dict[runid,metric_id,'Num_GG_lostLIHH_%dpct' % i,y_diff,dbp] = GG_sum_df.loc[(GG_sum_df['lost_hhq1_%dpct' % i] == 1), 'PDA_ID'].nunique() metrics_dict[runid,metric_id,'Pct_GG_lostLIHH_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_GG_lostLIHH_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_GGs_total',y1,dbp]) print('Number of GGs that lost LIHH from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_GG_lostLIHH_%dpct' % i,y_diff,dbp] ) print('Pct of GGs that lost LIHH from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_GG_lostLIHH_%dpct' % i,y_diff,dbp] ) # Number or percent of Transit Rich GGs that lost Q1 households as a proportion of total HH metrics_dict[runid,metric_id,'Num_GG_TRich_lostLIHH_%dpct' % i,y_diff,dbp] = GG_TRich_sum_df.loc[(GG_TRich_sum_df['lost_hhq1_%dpct' % i] == 1), 'PDA_ID'].nunique() metrics_dict[runid,metric_id,'Pct_GG_TRich_lostLIHH_%dpct' % i,y_diff,dbp] = float(metrics_dict[runid,metric_id,'Num_GG_TRich_lostLIHH_%dpct' % i,y_diff,dbp]) / float(metrics_dict[runid,metric_id,'Num_GGs_TRich_total',y1,dbp]) print('Number of Transit Rich GGs that lost LIHH from 2015 to 2050: ',metrics_dict[runid,metric_id,'Num_GG_TRich_lostLIHH_%dpct' % i,y_diff,dbp] ) print('Pct of Transit Rich GGs that lost LIHH from 2015 to 2050: ',metrics_dict[runid,metric_id,'Pct_GG_TRich_lostLIHH_%dpct' % i,y_diff,dbp] ) tract_sum_filename = 'C:/Users/{}/Box/Horizon and Plan Bay Area 2050/Equity and Performance/7_Analysis/Metrics/tract_summary_output.csv'.format(os.getenv('USERNAME')) tract_sum_df.to_csv(tract_sum_filename, header=True, sep=',') def calculate_Healthy1_HHs_SLRprotected(runid, dbp, parcel_sum_df, metrics_dict): metric_id = "H1" # Renaming Parcels as "Protected", "Unprotected", and "Unaffected" ''' #Basic def label_SLR(row): if (row['SLR'] == 12): return 'Unprotected' elif (row['SLR'] == 24): return 'Unprotected' elif (row['SLR'] == 36): return 'Unprotected' elif (row['SLR'] == 100): return 'Protected' else: return 'Unaffected' parcel_sum_df['SLR_protection'] = parcel_sum_df.apply (lambda row: label_SLR(row), axis=1) ''' def label_SLR(row): if ((row['SLR'] == 12) or (row['SLR'] == 24) or (row['SLR'] == 36)): return 'Unprotected' elif row['SLR'] == 100: return 'Protected' else: return 'Unaffected' parcel_sum_df['SLR_protection'] = parcel_sum_df.apply (lambda row: label_SLR(row), axis=1) # Calculating protected households # All households tothh_2050_affected = parcel_sum_df.loc[(parcel_sum_df['SLR_protection'].str.contains("rotected") == True), 'tothh_2050'].sum() tothh_2050_protected = parcel_sum_df.loc[(parcel_sum_df['SLR_protection'].str.contains("Protected") == True), 'tothh_2050'].sum() tothh_2015_affected = parcel_sum_df.loc[(parcel_sum_df['SLR_protection'].str.contains("rotected") == True), 'tothh_2015'].sum() tothh_2015_protected = parcel_sum_df.loc[(parcel_sum_df['SLR_protection'].str.contains("Protected") == True), 'tothh_2015'].sum() # Q1 Households hhq1_2050_affected = parcel_sum_df.loc[(parcel_sum_df['SLR_protection'].str.contains("rotected") == True), 'hhq1_2050'].sum() hhq1_2050_protected = parcel_sum_df.loc[(parcel_sum_df['SLR_protection'].str.contains("Protected") == True), 'hhq1_2050'].sum() hhq1_2015_affected = parcel_sum_df.loc[(parcel_sum_df['SLR_protection'].str.contains("rotected") == True), 'hhq1_2015'].sum() hhq1_2015_protected = parcel_sum_df.loc[(parcel_sum_df['SLR_protection'].str.contains("Protected") == True), 'hhq1_2015'].sum() # CoC Households CoChh_2050_affected = parcel_sum_df.loc[((parcel_sum_df['SLR_protection'].str.contains("rotected") == True) & \ parcel_sum_df['coc_flag_pba2050']==1), 'tothh_2050'].sum() CoChh_2050_protected = parcel_sum_df.loc[((parcel_sum_df['SLR_protection'].str.contains("Protected") == True) & \ parcel_sum_df['coc_flag_pba2050']==1), 'tothh_2050'].sum() CoChh_2015_affected = parcel_sum_df.loc[((parcel_sum_df['SLR_protection'].str.contains("rotected") == True) & \ parcel_sum_df['coc_flag_pba2050']==1), 'tothh_2015'].sum() CoChh_2015_protected = parcel_sum_df.loc[((parcel_sum_df['SLR_protection'].str.contains("Protected") == True) & \ parcel_sum_df['coc_flag_pba2050']==1), 'tothh_2015'].sum() metrics_dict[runid,metric_id,'SLR_protected_pct_affected_tothh',y2,dbp] = tothh_2050_protected / tothh_2050_affected metrics_dict[runid,metric_id,'SLR_protected_pct_affected_hhq1',y2,dbp] = hhq1_2050_protected / hhq1_2050_affected metrics_dict[runid,metric_id,'SLR_protected_pct_affected_CoChh',y2,dbp] = CoChh_2050_protected / CoChh_2050_affected print('********************H1 Healthy********************') print('Pct of HHs affected by 3ft SLR that are protected in 2050 in %s' % dbp,metrics_dict[runid,metric_id,'SLR_protected_pct_affected_tothh',y2,dbp]) print('Pct of Q1 HHs affected by 3ft SLR that are protected in 2050 in %s' % dbp,metrics_dict[runid,metric_id,'SLR_protected_pct_affected_hhq1',y2,dbp]) print('Pct of CoC HHs affected by 3ft SLR that are protected in 2050 in %s' % dbp,metrics_dict[runid,metric_id,'SLR_protected_pct_affected_CoChh',y2,dbp]) def calculate_Healthy1_HHs_EQprotected(runid, dbp, parcel_sum_df, metrics_dict): metric_id = "H1" ''' # Reading building codes file, which has info at building level, on which parcels are inundated and protected buildings_code = pd.read_csv('C:/Users/ATapase/Box/Horizon and Plan Bay Area 2050/Equity and Performance/7_Analysis/Metrics/Healthy/buildings_with_eq_code.csv') buildings_eq = pd.merge(left=buildings_code[['building_id', 'parcel_id', 'residential_units', 'year_built', 'earthquake_code']], right=parcel_sum_df[['parcel_id','zone_id','tract_id','coc_flag_pba2050','pba50chcat','hhq1_2015','hhq1_2050','tothh_2015','tothh_2050']], left_on="parcel_id", right_on="parcel_id", how="left") buildings_eq = pd.merge(left=buildings_eq, right=coc_flag[['tract_id_coc','county_fips']], left_on="tract_id", right_on="tract_id_coc", how="left") buildings_cat = pd.read_csv('C:/Users/ATapase/Box/Horizon and Plan Bay Area 2050/Equity and Performance/7_Analysis/Metrics/Healthy/building_eq_categories.csv') buildings_eq = pd.merge(left=buildings_eq, right=buildings_cat, left_on="earthquake_code", right_on="building_eq_code", how="inner") buildings_eq.drop(['building_eq_code', 'tract_id_coc'], axis=1, inplace=True) buildings_eq['cost_retrofit_total'] = buildings_eq['residential_units'] * buildings_eq['cost_retrofit'] # Calculated protected households in PLus # Number of Units retrofitted metrics_dict['H2_eq_num_units_retrofit'] = buildings_eq['residential_units'].sum() metrics_dict['H2_eq_num_CoC_units_retrofit'] = buildings_eq.loc[(buildings_eq['coc_flag_pba2050']== 1), 'residential_units'].sum() metrics_dict['H2_eq_total_cost_retrofit'] = buildings_eq['cost_retrofit_total'].sum() metrics_dict['H2_eq_CoC_cost_retrofit'] = buildings_eq.loc[(buildings_eq['coc_flag_pba2050']== 1), 'cost_retrofit_total'].sum() print('Total number of units retrofited',metrics_dict['H2_eq_num_units_retrofit']) print('CoC number of units retrofited',metrics_dict['H2_eq_num_CoC_units_retrofit']) print('Total cost of retrofit',metrics_dict['H2_eq_total_cost_retrofit']) print('CoC cost of retrofit',metrics_dict['H2_eq_CoC_cost_retrofit']) ''' def calculate_Healthy1_HHs_WFprotected(runid, dbp, parcel_sum_df, metrics_dict): metric_id = "H1" ''' # ''' def calculate_Healthy1_safety(runid, year, dbp, tm_taz_input_df, safety_df, metrics_dict): metric_id = "H1" population = tm_taz_input_df.TOTPOP.sum() per_x_people = 1000000 print('population %d' % population) fatalities = safety_df.loc[(safety_df['index']=="N_total_fatalities") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() fatalities_m = safety_df.loc[(safety_df['index']=="N_motorist_fatalities") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() fatalities_b = safety_df.loc[(safety_df['index']=="N_bike_fatalities") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() fatalities_p = safety_df.loc[(safety_df['index']=="N_ped_fatalities") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() injuries = safety_df.loc[(safety_df['index']=="N_injuries") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() metrics_dict[runid,metric_id,'fatalities_annual_per_MNppl',year,dbp] = fatalities / population * per_x_people metrics_dict[runid,metric_id,'fatalities_auto_annual_per_MNppl',year,dbp] = fatalities_m / population * per_x_people metrics_dict[runid,metric_id,'fatalities_bike_annual_per_MNppl',year,dbp] = fatalities_b / population * per_x_people metrics_dict[runid,metric_id,'fatalities_ped_annual_per_MNppl',year,dbp] = fatalities_p / population * per_x_people metrics_dict[runid,metric_id,'injuries_annual_per_MNppl',year,dbp] = injuries / population * per_x_people metrics_dict[runid,metric_id,'fatalities_annual_per_100MVMT',year,dbp] = safety_df.loc[(safety_df['index']=="N_total_fatalities_per_100M_VMT") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() metrics_dict[runid,metric_id,'fatalities_auto_annual_per_100MVMT',year,dbp] = safety_df.loc[(safety_df['index']=="N_motorist_fatalities_per_100M_VMT") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() metrics_dict[runid,metric_id,'fatalities_bike_annual_per_100MVMT',year,dbp] = safety_df.loc[(safety_df['index']=="N_bike_fatalities_per_100M_VMT") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() metrics_dict[runid,metric_id,'fatalities_ped_annual_per_100MVMT',year,dbp] = safety_df.loc[(safety_df['index']=="N_ped_fatalities_per_100M_VMT") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() metrics_dict[runid,metric_id,'injuries_annual_per_100MVMT',year,dbp] = safety_df.loc[(safety_df['index']=="N_injuries_per_100M_VMT") & (safety_df['modelrunID'].str.contains(dbp)), 'value'].sum() def calculate_Healthy2_emissions(runid, year, dbp, tm_taz_input_df, tm_auto_times_df, emfac_df, metrics_dict): metric_id = "H2" population = tm_taz_input_df.TOTPOP.sum() tm_auto_times_df = tm_auto_times_df.sum(level='Mode') dailyVMT = tm_auto_times_df['Vehicle Miles'].sum() - tm_auto_times_df.loc['truck', ['Vehicle Miles']].sum() metrics_dict[runid,metric_id,'daily_vmt_per_capita',year,dbp] = dailyVMT / population metrics_dict[runid,metric_id,'daily_vmt_per_capita',"2005","2005"] = emfac_df.loc[(emfac_df['dbp']==2005), 'VMT per capita'].sum() metrics_dict[runid,metric_id,'daily_vmt_per_capita',"2035","2035"] = emfac_df.loc[(emfac_df['dbp']==2035), 'VMT per capita'].sum() metrics_dict["emfac_hardcode",metric_id,'ghg_emissions_lbs_per_capita',"2005","2005"] = emfac_df.loc[(emfac_df['dbp']==2005), 'Total CO2 Emissions Per Capita (lbs)'].sum() metrics_dict["emfac_hardcode",metric_id,'ghg_emissions_lbs_per_capita',"2015","2015"] = emfac_df.loc[(emfac_df['dbp']==2015), 'Total CO2 Emissions Per Capita (lbs)'].sum() metrics_dict["emfac_hardcode",metric_id,'ghg_emissions_lbs_per_capita',"2035","2035"] = emfac_df.loc[(emfac_df['dbp']==2035), 'Total CO2 Emissions Per Capita (lbs)'].sum() metrics_dict["emfac_hardcode",metric_id,'ghg_emissions_lbs_per_capita',"2050","Plus"] = 0 metrics_dict["emfac_hardcode",metric_id,'ghg_emissions_nonSB375_lbs_per_capita',"2005","2005"] = emfac_df.loc[(emfac_df['dbp']==2005), 'Total CO2 Emissions Per Capita (lbs)'].sum() metrics_dict["emfac_hardcode",metric_id,'ghg_emissions_nonSB375_lbs_per_capita',"2015","2015"] = emfac_df.loc[(emfac_df['dbp']==2015), 'Total CO2 Emissions Per Capita (lbs)'].sum() metrics_dict["emfac_hardcode",metric_id,'ghg_emissions_nonSB375_lbs_per_capita',"2035","2035"] = emfac_df.loc[(emfac_df['dbp']==2035), 'Total CO2 Emissions Per Capita (lbs)'].sum() metrics_dict["emfac_hardcode",metric_id,'ghg_emissions_nonSB375_lbs_per_capita',"2050","Plus"] = 0 def calculate_Vibrant1_JobsHousing(runid, dbp, county_sum_df, metrics_dict): metric_id = "V1" metrics_dict[runid,metric_id,'jobs_housing_ratio_region',y1,dbp] = county_sum_df['totemp_2015'].sum() / county_sum_df['tothh_2015'].sum() metrics_dict[runid,metric_id,'jobs_housing_ratio_region',y2,dbp] = county_sum_df['totemp_2050'].sum() / county_sum_df['tothh_2050'].sum() for index,row in county_sum_df.iterrows(): metrics_dict[runid,metric_id,'jobs_housing_ratio_%s' % row['county'],y1,dbp] = row['totemp_2015'] / row['tothh_2015'] metrics_dict[runid,metric_id,'jobs_housing_ratio_%s' % row['county'],y2,dbp] = row['totemp_2050'] / row['tothh_2050'] def calculate_Vibrant1_median_commute(runid, year, dbp, tm_commute_df, metrics_dict): metric_id = "V1" tm_commute_df['total_commute_miles'] = tm_commute_df['freq'] * tm_commute_df['distance'] commute_dist_df = tm_commute_df[['incQ','freq','total_commute_miles']].groupby(['incQ']).sum() metrics_dict[runid,metric_id,'mean_commute_distance',year,dbp] = commute_dist_df['total_commute_miles'].sum() / commute_dist_df['freq'].sum() metrics_dict[runid,metric_id,'mean_commute_distance_inc1',year,dbp] = commute_dist_df['total_commute_miles'][1] / commute_dist_df['freq'][1] metrics_dict[runid,metric_id,'mean_commute_distance_inc2',year,dbp] = commute_dist_df['total_commute_miles'][2] / commute_dist_df['freq'][2] metrics_dict[runid,metric_id,'mean_commute_distance_inc3',year,dbp] = commute_dist_df['total_commute_miles'][3] / commute_dist_df['freq'][3] metrics_dict[runid,metric_id,'mean_commute_distance_inc4',year,dbp] = commute_dist_df['total_commute_miles'][4] / commute_dist_df['freq'][4] def calculate_Vibrant2_Jobs(runid, dbp, parcel_sum_df, metrics_dict): metric_id = 'V2' print('********************V2 Vibrant********************') # Total Jobs Growth metrics_dict[runid,metric_id,'Total_jobs',y2,dbp] = parcel_sum_df['totemp_2050'].sum() metrics_dict[runid,metric_id,'Total_jobs',y1,dbp] = parcel_sum_df['totemp_2015'].sum() metrics_dict[runid,metric_id,'Total_jobs_growth',y_diff,dbp] = metrics_dict[runid,metric_id,'Total_jobs',y2,dbp]/metrics_dict[runid,metric_id,'Total_jobs',y1,dbp] - 1 print('Number of Jobs in 2050 %s' % dbp,metrics_dict[runid,metric_id,'Total_jobs',y2,dbp]) print('Number of Jobs in 2015 %s' % dbp,metrics_dict[runid,metric_id,'Total_jobs',y1,dbp]) print('Job Growth from 2015 to 2050 %s' % dbp,metrics_dict[runid,metric_id,'Total_jobs_growth',y_diff,dbp]) # MWTEMPN jobs metrics_dict[runid,metric_id,'Total_MWTEMPN_jobs',y2,dbp] = parcel_sum_df['MWTEMPN_2050'].sum() metrics_dict[runid,metric_id,'Total_MWTEMPN_jobs',y1,dbp] = parcel_sum_df['MWTEMPN_2015'].sum() metrics_dict[runid,metric_id,'Total_jobs_growth_MWTEMPN',y_diff,dbp] = metrics_dict[runid,metric_id,'Total_MWTEMPN_jobs',y2,dbp]/metrics_dict[runid,metric_id,'Total_MWTEMPN_jobs',y1,dbp] - 1 print('Number of Total MWTEMPN Jobs 2050 %s' % dbp,metrics_dict[runid,metric_id,'Total_MWTEMPN_jobs',y2,dbp]) print('Number of Total MWTEMPN Jobs 2015 %s' % dbp,metrics_dict[runid,metric_id,'Total_MWTEMPN_jobs',y1,dbp]) print('Job Growth Total MWTEMPN from 2015 to 2050 %s' % dbp,metrics_dict[runid,metric_id,'Total_jobs_growth_MWTEMPN',y_diff,dbp]) # Jobs Growth in PPAs metrics_dict[runid,metric_id,'PPA_jobs',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('ppa', na=False), 'totemp_2050'].sum() metrics_dict[runid,metric_id,'PPA_jobs',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('ppa', na=False), 'totemp_2015'].sum() metrics_dict[runid,metric_id,'jobs_growth_PPA',y_diff,dbp] = metrics_dict[runid,metric_id,'PPA_jobs',y2,dbp]/metrics_dict[runid,metric_id,'PPA_jobs',y1,dbp] - 1 print('Number of Jobs in PPAs 2050 %s' % dbp,metrics_dict[runid,metric_id,'PPA_jobs',y2,dbp]) print('Number of Jobs in PPAs 2015 %s' % dbp,metrics_dict[runid,metric_id,'PPA_jobs',y1,dbp]) print('Job Growth in PPAs from 2015 to 2050 %s' % dbp,metrics_dict[runid,metric_id,'jobs_growth_PPA',y_diff,dbp]) ''' AGREMPN = Agriculture & Natural Resources MWTEMPN = Manufacturing & Wholesale, Transportation & Utilities RETEMPN = Retail FPSEMPN = Financial & Leasing, Professional & Managerial Services HEREMPN = Health & Educational Services OTHEMPN = Construction, Government, Information totemp = total employment ''' # Jobs Growth MWTEMPN in PPAs (Manufacturing & Wholesale, Transportation & Utilities) metrics_dict[runid,metric_id,'PPA_MWTEMPN_jobs',y2,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('ppa', na=False), 'MWTEMPN_2050'].sum() metrics_dict[runid,metric_id,'PPA_MWTEMPN_jobs',y1,dbp] = parcel_sum_df.loc[parcel_sum_df['pba50chcat'].str.contains('ppa', na=False), 'MWTEMPN_2015'].sum() metrics_dict[runid,metric_id,'jobs_growth_MWTEMPN_PPA',y_diff,dbp] = metrics_dict[runid,metric_id,'PPA_MWTEMPN_jobs',y2,dbp]/metrics_dict[runid,metric_id,'PPA_MWTEMPN_jobs',y1,dbp] - 1 print('Number of MWTEMPN Jobs in PPAs 2050 %s' % dbp,metrics_dict[runid,metric_id,'PPA_MWTEMPN_jobs',y2,dbp]) print('Number of MWTEMPN Jobs in PPAs 2015 %s' % dbp,metrics_dict[runid,metric_id,'PPA_MWTEMPN_jobs',y1,dbp]) print('Job Growth MWTEMPN in PPAs from 2015 to 2050 %s' % dbp,metrics_dict[runid,metric_id,'jobs_growth_MWTEMPN_PPA',y_diff,dbp]) def calculate_travelmodel_metrics_change(list_tm_runid_blueprintonly, metrics_dict): for tm_runid in list_tm_runid_blueprintonly: year = tm_runid[:4] if "Basic" in tm_runid: dbp = "Basic" elif "Plus" in tm_runid: dbp = "Plus" #elif "PlusCrossing_01" in tm_runid: # dbp = "Plus_01" #elif "PlusFixItFirst" in tm_runid: # dbp = "PlusFixItFirst" else: dbp = "Unknown" metric_id = "A1" # Tolls metrics_dict[tm_runid,metric_id,'tolls_per_HH_change_2015',year,dbp] = metrics_dict[tm_runid,metric_id,'tolls_per_HH',year,dbp] / metrics_dict[tm_2015_runid,metric_id,'tolls_per_HH',y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'tolls_per_HH_change_2050noproject',year,dbp] = metrics_dict[tm_runid,metric_id,'tolls_per_HH',year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'tolls_per_HH',y2,"NoProject"] - 1 metrics_dict[tm_runid,metric_id,'tolls_per_LIHH_change_2015',year,dbp] = metrics_dict[tm_runid,metric_id,'tolls_per_LIHH',year,dbp] / metrics_dict[tm_2015_runid,metric_id,'tolls_per_LIHH',y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'tolls_per_LIHH_change_2050noproject',year,dbp] = metrics_dict[tm_runid,metric_id,'tolls_per_LIHH',year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'tolls_per_LIHH',y2,"NoProject"] - 1 metrics_dict[tm_runid,metric_id,'tolls_per_inc1HH_change_2015',year,dbp] = metrics_dict[tm_runid,metric_id,'tolls_per_inc1HH',year,dbp] / metrics_dict[tm_2015_runid,metric_id,'tolls_per_inc1HH',y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'tolls_per_inc1HH_change_2050noproject',year,dbp] = metrics_dict[tm_runid,metric_id,'tolls_per_inc1HH',year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'tolls_per_inc1HH',y2,"NoProject"] - 1 # Transit Fares metrics_dict[tm_runid,metric_id,'fares_per_HH_change_2015',year,dbp] = metrics_dict[tm_runid,metric_id,'fares_per_HH',year,dbp] / metrics_dict[tm_2015_runid,metric_id,'fares_per_HH',y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'fares_per_HH_change_2050noproject',year,dbp] = metrics_dict[tm_runid,metric_id,'fares_per_HH',year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'fares_per_HH',y2,"NoProject"] - 1 metrics_dict[tm_runid,metric_id,'fares_per_LIHH_change_2015',year,dbp] = metrics_dict[tm_runid,metric_id,'fares_per_LIHH',year,dbp] / metrics_dict[tm_2015_runid,metric_id,'fares_per_LIHH',y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'fares_per_LIHH_change_2050noproject',year,dbp] = metrics_dict[tm_runid,metric_id,'fares_per_LIHH',year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'fares_per_LIHH',y2,"NoProject"] - 1 metrics_dict[tm_runid,metric_id,'fares_per_inc1HH_change_2015',year,dbp] = metrics_dict[tm_runid,metric_id,'fares_per_inc1HH',year,dbp] / metrics_dict[tm_2015_runid,metric_id,'fares_per_inc1HH',y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'fares_per_inc1HH_change_2050noproject',year,dbp] = metrics_dict[tm_runid,metric_id,'fares_per_inc1HH',year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'fares_per_inc1HH',y2,"NoProject"] - 1 metric_id = "C2" # Highway corridor travel times for route in ['Antioch_SF','Vallejo_SF','SanJose_SF','Oakland_SanJose','Oakland_SF']: metrics_dict[tm_runid,metric_id,'travel_time_AM_change_2015_%s' % route,year,dbp] = metrics_dict[tm_runid,metric_id,'travel_time_AM_%s' % route,year,dbp] / metrics_dict[tm_2015_runid,metric_id,'travel_time_AM_%s' % route,y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'travel_time_AM_change_2050noproject_%s' % route,year,dbp] = metrics_dict[tm_runid,metric_id,'travel_time_AM_%s' % route,year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'travel_time_AM_%s' % route,y2,'NoProject'] - 1 # Transit Crowding by operator for operator in ['AC Transit Local','AC Transit Transbay','SFMTA LRT','SFMTA Bus','VTA Bus Local','VTA LRT','BART','Caltrain','SamTrans Local','GGT Express','WETA']: try: metrics_dict[tm_runid,metric_id,'crowded_pct_personhrs_AM_change_2015_%s' % operator,year,dbp] = metrics_dict[tm_runid,metric_id,'crowded_pct_personhrs_AM_%s' % operator,year,dbp] / metrics_dict[tm_2015_runid,metric_id,'crowded_pct_personhrs_AM_%s' % operator,y1,'2015'] - 1 except: metrics_dict[tm_runid,metric_id,'crowded_pct_personhrs_AM_change_2015_%s' % operator,year,dbp] = 0 try: metrics_dict[tm_runid,metric_id,'crowded_pct_personhrs_AM_change_2050noproject_%s' % operator,year,dbp] = metrics_dict[tm_runid,metric_id,'crowded_pct_personhrs_AM_%s' % operator,year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'crowded_pct_personhrs_AM_%s' % operator,y2,'NoProject'] - 1 except: metrics_dict[tm_runid,metric_id,'crowded_pct_personhrs_AM_change_2050noproject_%s' % operator,year,dbp] = 0 # Transit travel times by operator for operator in ['AC Transit Local','AC Transit Transbay','SFMTA LRT','SFMTA Bus','VTA Bus Local','VTA LRT','BART','Caltrain','SamTrans Local']: metrics_dict[tm_runid,metric_id,'time_per_dist_AM_change_2015_%s' % operator,year,dbp] = metrics_dict[tm_runid,metric_id,'time_per_dist_AM_%s' % operator,year,dbp] / metrics_dict[tm_2015_runid,metric_id,'time_per_dist_AM_%s' % operator,y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'time_per_dist_AM_change_2050noproject_%s' % operator,year,dbp] = metrics_dict[tm_runid,metric_id,'time_per_dist_AM_%s' % operator,year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'time_per_dist_AM_%s' % operator,y2,'NoProject'] - 1 # Transit travel times by mode for mode_name in ['Local','Express','Ferry','Light Rail','Heavy Rail','Commuter Rail']: metrics_dict[tm_runid,metric_id,'time_per_dist_AM_change_2015_%s' % mode_name,year,dbp] = metrics_dict[tm_runid,metric_id,'time_per_dist_AM_%s' % mode_name,year,dbp] / metrics_dict[tm_2015_runid,metric_id,'time_per_dist_AM_%s' % mode_name,y1,'2015'] - 1 metrics_dict[tm_runid,metric_id,'time_per_dist_AM_change_2050noproject_%s' % mode_name,year,dbp] = metrics_dict[tm_runid,metric_id,'time_per_dist_AM_%s' % mode_name,year,dbp] / metrics_dict[tm_2050_DBP_NoProject_runid,metric_id,'time_per_dist_AM_%s' % mode_name,y2,'NoProject'] - 1 def parcel_building_output_sum(urbansim_runid): #################### creating parcel level df from buildings output building_output_2050 = pd.read_csv((urbansim_runid+'_building_data_2050.csv')) building_output_2015 = pd.read_csv((urbansim_runid+'_building_data_2015.csv')) parcel_building_output_2050 = building_output_2050[['parcel_id','residential_units','deed_restricted_units']].groupby(['parcel_id']).sum() parcel_building_output_2015 = building_output_2015[['parcel_id','residential_units','deed_restricted_units']].groupby(['parcel_id']).sum() parcel_building_output_2050 = parcel_building_output_2050.add_suffix('_2050') parcel_building_output_2015 = parcel_building_output_2015.add_suffix('_2015') return pd.merge(left=parcel_building_output_2050, right=parcel_building_output_2015, left_on="parcel_id", right_on="parcel_id", how="left") def calc_pba40urbansim(): urbansim_runid = 'C:/Users/{}/Box/Modeling and Surveys/Share Data/plan-bay-area-2040/RTP17 UrbanSim Output/r7224c/run7224'.format(os.getenv('USERNAME')) runid = "plan-bay-area-2040/RTP17 UrbanSim Output/r7224c/run7224" dbp = "PBA40" metric_id = "Overall" year2 = "2040" year1 = "2010" yeardiff = "2040" parcel_geo_df = pd.read_csv(parcel_geography_file) ################## Creating parcel summary hhq_list = ['hhq1','hhq2','hhq3','hhq4'] emp_list = ['AGREMPN','MWTEMPN','RETEMPN','FPSEMPN','HEREMPN','OTHEMPN'] parcel_output_2040_df = pd.read_csv((urbansim_runid+'_parcel_data_2040.csv')) parcel_output_2040_df['tothh'] = parcel_output_2040_df[hhq_list].sum(axis=1, skipna=True) parcel_output_2040_df['totemp'] = parcel_output_2040_df[emp_list].sum(axis=1, skipna=True) parcel_output_2010_df = pd.read_csv((urbansim_runid+'_parcel_data_2010.csv')) parcel_output_2010_df['tothh'] = parcel_output_2010_df[hhq_list].sum(axis=1, skipna=True) parcel_output_2010_df['totemp'] = parcel_output_2010_df[emp_list].sum(axis=1, skipna=True) # keeping essential columns / renaming columns parcel_output_2040_df.drop(['x','y','zoned_du','zoned_du_underbuild', 'zoned_du_underbuild_nodev', 'first_building_type_id'], axis=1, inplace=True) parcel_output_2010_df.drop(['x','y','zoned_du','zoned_du_underbuild', 'zoned_du_underbuild_nodev', 'first_building_type_id'], axis=1, inplace=True) parcel_output_2040_df = parcel_output_2040_df.add_suffix('_2040') parcel_output_2010_df = parcel_output_2010_df.add_suffix('_2010') # creating parcel summaries with 2040 and 2010 outputs, and parcel geographic categories parcel_sum_df =
pd.merge(left=parcel_output_2040_df, right=parcel_output_2010_df, left_on="parcel_id_2040", right_on="parcel_id_2010", how="left")
pandas.merge
import pandas as pd import numpy as np import datetime class Durations(object): @classmethod def set(cls, X, extract_cols, dataset): print("... ... Durations") all_df = dataset["all_df"] # duration from first action to clickout dffac_df = all_df[["session_id", "timestamp", "timestamp_dt"]].groupby( "session_id").first().reset_index() dffac_df = dffac_df[["session_id", "timestamp_dt"]] dffac_df.columns = ["session_id", "first_timestamp_dt"] X = pd.merge(X, dffac_df, on="session_id", how="left") X["session_duration"] = X.apply(lambda x: (x.timestamp_dt - x.first_timestamp_dt).seconds, axis=1) extract_cols = extract_cols + ["session_duration"] del dffac_df # duration from last distination to clickout dflsc_df = all_df[["session_id", "_session_id", "timestamp", "timestamp_dt"]].groupby( "_session_id").first().reset_index() dflsc_df = dflsc_df[dflsc_df._session_id.isin(X._session_id)] dflsc_df = dflsc_df[["session_id", "timestamp_dt"]] dflsc_df.columns = ["session_id", "step_first_timestamp_dt"] X = pd.merge(X, dflsc_df, on="session_id", how="left") X["step_duration"] = X.apply(lambda x: (x.timestamp_dt - x.step_first_timestamp_dt).seconds, axis=1) extract_cols = extract_cols + ["step_duration"] del dflsc_df return (X, extract_cols) class JustClickout(object): @classmethod def set(cls, X, extract_cols): print("... ... JustClickout") # append current fillters def get_cf_features(x): sbp = 1 if "Sort by Price" in x.current_filters else 0 sbd = 1 if "Sort By Distance" in x.current_filters else 0 sbr = 1 if "Sort By Rating" in x.current_filters else 0 fod = 1 if "Focus on Distance" in x.current_filters else 0 fsr = 1 if "Focus on Rating" in x.current_filters else 0 bev = 1 if "Best Value" in x.current_filters else 0 return pd.Series({'cf_sbp': sbp , 'cf_sbd': sbd , 'cf_sbr': sbr , 'cf_fod': fod , 'cf_fsr': fsr , 'cf_bev': bev}) X["current_filters"] = X["current_filters"].fillna("") curf_df = X[["current_filters"]].apply(lambda x: get_cf_features(x), axis=1) X = pd.concat([X, curf_df], axis=1) extract_cols = extract_cols + list(curf_df.columns) del curf_df return (X, extract_cols) class JustBeforeClickout(object): @classmethod def set(cls, X, dataset): print("... ... JustBeforeClickout") all_df = dataset["all_df"] # last action_type lasttype_df = all_df[["session_id", "action_type", "is_y"]].copy() lasttype_df["lat"] = lasttype_df["action_type"].shift(1) lasttype_df["last_session_id"] = lasttype_df["session_id"].shift(1) lasttype_df = lasttype_df[lasttype_df.is_y == 1] lasttype_df = lasttype_df[lasttype_df.session_id == lasttype_df.last_session_id] lasttype_df = lasttype_df[["session_id", "lat"]] onehot_lat = pd.get_dummies(lasttype_df, columns=['lat']) X = pd.merge(X, onehot_lat, on="session_id", how="left") lat_cols = list(onehot_lat.columns) lat_cols.remove("session_id") for lat_col in lat_cols: X[lat_col] = X[lat_col].fillna(0) del lasttype_df del onehot_lat return X class Record2Impression(object): @classmethod def expand(cls, X, extract_cols, dataset): print("... ... Record2Impression") # create expanded X = X.reset_index() X["gid"] = X.index X["n_imps"] = X[["impressions"]].apply(lambda x: len(str(x.impressions).split("|")), axis=1) X["price_mean"] = X[["prices"]].apply(lambda x: np.mean(np.array(str(x.prices).split("|")).astype(int)), axis=1) X["price_std"] = X[["prices"]].apply(lambda x: np.std(np.array(str(x.prices).split("|")).astype(int)), axis=1) X["impression"] = X[["impressions"]].apply(lambda x: str(x.impressions).split("|"), axis=1) X["price"] = X[["prices"]].apply(lambda x: str(x.prices).split("|"), axis=1) X_impression = X[["gid", "impression"]].set_index('gid').impression.apply(pd.Series).stack().reset_index( level=0).rename(columns={0: 'impression'}) X_price = X[["gid", "price"]].set_index('gid').price.apply(pd.Series).stack().reset_index(level=0).rename( columns={0: 'price'}) X_position = X[["gid", "impression"]].set_index('gid').impression.apply( lambda x: pd.Series(range(len(x)))).stack().reset_index(level=0).rename(columns={0: 'position'}) X_expanded = pd.concat([X_impression, X_price], axis=1) X_expanded = pd.concat([X_expanded, X_position], axis=1) X_expanded.columns = ["gid", "impression", "gid2", "price", "gid3", "position"] X_expanded = X_expanded[["gid", "impression", "price", "position"]] # join expaned X = pd.merge(X_expanded, X[["gid", "n_imps", "price_mean", "price_std"] + extract_cols], on="gid", how="left") # to normalize position and price X["pos_rate"] = X["position"] / X["n_imps"] X["pos"] = X["position"] + 1 X["price_norm"] = (X["price"].astype(float) - X["price_mean"].astype(float)) / X["price_std"].astype(float) # join price_norm rank pnorm_rank_df = X[["session_id", "price_norm"]].copy() pnorm_rank_df = pnorm_rank_df[["session_id", "price_norm"]].groupby("session_id").rank(ascending=False) pnorm_rank_df.columns = ["price_norm_rank"] X = pd.concat([X, pnorm_rank_df], axis=1) del pnorm_rank_df # calc discount rate X["price"] = X["price"].astype(float) prices_df = X[["impression", "price"]].groupby("impression").agg({'price': np.mean}).reset_index() prices_df.columns = ["impression", "item_price_mean"] X = pd.merge(X, prices_df, on="impression", how="left") X["discount_rate"] = X["price"] / X["item_price_mean"] del prices_df # append some important props and other props with over 0.2 coverage sum_item_props_df = dataset["sum_item_props_df"] item_props = dataset["item_props"] prop_cols = ["pGood Rating" , "pVery Good Rating" , "pExcellent Rating" , "pSatisfactory Rating" , "p1 Star" , "p2 Star" , "p3 Star" , "p4 Star" , "p5 Star" , "pBusiness Centre" , "pBusiness Hotel" , "pConference Rooms"] c02over_prop_cols = sum_item_props_df[sum_item_props_df.coverage >= 0.2]["prop"].tolist() prop_cols = prop_cols + c02over_prop_cols prop_cols = list(set(prop_cols)) X = pd.merge(X, item_props[["item_id"] + prop_cols], left_on="impression", right_on="item_id", how="left") X[prop_cols] = X[prop_cols].fillna(0) return (X, extract_cols) class DecisionMakingProcess(object): @classmethod def detect(cls, X, dataset): print("... ... Decision Making Process") print("... ... ... Attention and Perceptual Encoding") print("... ... ... Information Acquisition and Evaluation") all_df = dataset["all_df"] # join pos stats" copos_df = all_df[all_df.action_type == "clickout item"][ ["session_id", "reference", "impressions", "is_y"]].copy() copos_df = copos_df[copos_df.is_y == 0] copos_df["impression"] = copos_df[["impressions"]].apply(lambda x: str(x.impressions).split("|"), axis=1) copos_df["co_pos"] = copos_df[["impression", "reference"]].apply( lambda x: x.impression.index(x.reference) + 1 if x.reference in x.impression else 1, axis=1) copos_df_stats = copos_df[["session_id", "co_pos"]].groupby("session_id").agg( {'co_pos': [np.min, np.max, np.mean]}).reset_index() copos_df_stats.columns = ["session_id", "co_pos_min", "co_pos_max", "co_pos_mean"] X = pd.merge(X, copos_df_stats, on="session_id", how="left") X["co_pos_min"] = X["co_pos_min"].fillna(1) X["co_pos_mean"] = X["co_pos_mean"].fillna(1) X["co_pos_max"] = X["co_pos_max"].fillna(1) X["co_pos_min_diff"] = X["pos"] - X["co_pos_min"] X["co_pos_mean_diff"] = X["pos"] - X["co_pos_mean"] X["clickouted_pos_max_diff"] = X["co_pos_max"] - X["pos"] del copos_df del copos_df_stats # is_last and is_last_elapsed_time action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] lastref_df = all_df[["session_id", "action_type", "reference", "timestamp", "is_y"]].copy() lastref_df["is_target"] = 0 lastref_df.loc[lastref_df.is_y == 1, "is_target"] = 1 lastref_df = lastref_df[lastref_df.action_type.isin(action_types)] lastref_df["last_session_id"] = lastref_df["session_id"].shift(1) lastref_df["last_reference"] = lastref_df["reference"].shift(1) lastref_df["last_timestamp"] = lastref_df["timestamp"].shift(1) lastref_df = lastref_df[lastref_df.session_id == lastref_df.last_session_id] lastref_df = lastref_df[lastref_df.is_target == 1][["session_id", "last_reference", "last_timestamp"]] X = pd.merge(X, lastref_df, on="session_id", how="left") X[["last_reference"]] = X[["last_reference"]].fillna("-1") X[["last_timestamp"]] = X[["last_timestamp"]].fillna(-1) X["is_last"] = X[["impression", "last_reference"]].apply(lambda x: 1 if x.impression == x.last_reference else 0, axis=1) X["elapsed_time_between_is_last"] = X[["impression", "last_reference", "timestamp", "last_timestamp"]].apply( lambda x: int(x.timestamp) - int(x.last_timestamp) if x.impression == x.last_reference else np.nan, axis=1) lastdur_df = X[["session_id", "elapsed_time_between_is_last"]].copy() lastdur_df = lastdur_df.dropna(axis=0, how='any') X.drop("elapsed_time_between_is_last", axis=1, inplace=True) X = pd.merge(X, lastdur_df, on="session_id", how="left") del lastref_df del lastdur_df # join is_last_last lastref_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() lastref_df["last_last_session_id"] = lastref_df["session_id"].shift(2) lastref_df["last_last_reference"] = lastref_df["reference"].shift(2) lastref_df = lastref_df[lastref_df.is_y == 1] lastref_df = lastref_df[lastref_df.session_id == lastref_df.last_last_session_id] lastref_df = lastref_df[["session_id", "last_last_reference"]] lastref_df = lastref_df[~lastref_df.duplicated()] X = pd.merge(X, lastref_df, on="session_id", how="left") X[["last_last_reference"]] = X[["last_last_reference"]].fillna("-1") X["is_last_last"] = X[["impression", "last_last_reference"]].apply( lambda x: 1 if x.impression == x.last_last_reference else 0, axis=1) del lastref_df # elapsed next mean by item "it's kind of a future information." action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] isnext_df = all_df[["session_id", "action_type", "reference", "timestamp", "is_y"]].copy() isnext_df["next_session_id"] = isnext_df["session_id"].shift(-1) isnext_df["next_timestamp"] = isnext_df["timestamp"].shift(-1) isnext_df = isnext_df[isnext_df.session_id == isnext_df.next_session_id] isnext_df["elapsed_next"] = isnext_df["next_timestamp"] - isnext_df["timestamp"] isnext_df = isnext_df[isnext_df.action_type.isin(action_types)] isnext_df = isnext_df[isnext_df.is_y == 0] isnext_gp_df = isnext_df[["reference", "elapsed_next"]].groupby("reference").agg( {"elapsed_next": np.mean}).reset_index() isnext_gp_df.columns = ["impression", "next_elapsed_time"] X = pd.merge(X, isnext_gp_df, on="impression", how="left") del isnext_gp_df isnext_gp_df = isnext_df[isnext_df.action_type == "clickout item"][["reference", "elapsed_next"]].groupby( "reference").agg({"elapsed_next": np.mean}).reset_index() isnext_gp_df.columns = ["impression", "next_elapsed_time_byco"] X = pd.merge(X, isnext_gp_df, on="impression", how="left") del isnext_df del isnext_gp_df # clickouted item during session couted_df = all_df[["action_type", "session_id", "reference", "is_y"]].copy() couted_df = couted_df[couted_df.action_type == "clickout item"] couted_df = couted_df[couted_df.is_y == 0] # to prevent leakage couted_df = couted_df[["session_id", "reference"]] couted_df.columns = ["session_id", "impression"] couted_df = couted_df[~couted_df.duplicated()] couted_df["clickouted"] = 1 X = pd.merge(X, couted_df, on=["session_id", "impression"], how="left") X["clickouted"] = X["clickouted"].fillna(0) X["clickouted"] = X["clickouted"].astype(int) # diff between clickouted price mean co_price_df = all_df[all_df.action_type == "clickout item"][ ["session_id", "reference", "prices", "impressions", "is_y"]].copy() co_price_df = co_price_df[co_price_df.is_y == 0] # to prevent leakage def get_price(reference, impressions, prices): imps = str(impressions).split("|") prs = str(prices).split("|") if reference in imps: return prs[imps.index(reference)] else: return 0 co_price_df["price"] = co_price_df.apply(lambda x: get_price(x.reference, x.impressions, x.prices), axis=1) co_price_df["price"] = co_price_df["price"].astype(float) co_price_df = co_price_df.groupby("session_id").agg({'price': np.mean}).reset_index() co_price_df.columns = ["session_id", "couted_price_mean"] X = pd.merge(X, co_price_df, on="session_id", how="left") X["couted_price_mean"] = X["couted_price_mean"].fillna(-1) X["clickouted_price_diff"] = X["price"].astype(float) / X["couted_price_mean"] X.loc[X.clickouted_price_diff < 0, "clickouted_price_diff"] = 0 del co_price_df # set two above displayed item and five below displayed item u_cols = [] def set_undert_the_clickouted_and_islast(X, target_col, nu=5): u_col = target_col + "_u" X[u_col] = X["session_id"] X.loc[X[target_col] != 1, u_col] = "" for u in [_ for _ in range(-2, nu + 1, 1) if _ != 0]: new_col = u_col + str(u).replace("-", "p") X[new_col] = X[u_col].shift(u) X[new_col] = X[new_col].fillna("") X.loc[X[new_col] == X["session_id"], new_col] = "1" X.loc[X[new_col] != "1", new_col] = 0 X.loc[X[new_col] == "1", new_col] = 1 u_cols.append(new_col) X.drop(u_col, axis=1, inplace=True) set_undert_the_clickouted_and_islast(X, "clickouted", 5) set_undert_the_clickouted_and_islast(X, "is_last", 5) # sum of number of above displayed item u_coted_cols = [col for col in u_cols if "clickouted" in col] u_islast_col = [col for col in u_cols if "is_last" in col] X["clickouted_sum"] = X[u_coted_cols].sum(axis=1) X["is_last_sum"] = X[u_islast_col].sum(axis=1) # step_elapsed_mean which represents velocity of user activities. selapsed_df = all_df[["session_id", "step", "timestamp", "timestamp_dt", "action_type", "reference"]].copy() selapsed_df["pre_timestamp"] = selapsed_df["timestamp"].shift(1) selapsed_df["pre_timestamp_dt"] = selapsed_df["timestamp_dt"].shift(1) selapsed_df["pre_session_id"] = selapsed_df["session_id"].shift(1) selapsed_df = selapsed_df[selapsed_df.session_id == selapsed_df.pre_session_id] selapsed_df["elapsed"] = selapsed_df["timestamp"] - selapsed_df["pre_timestamp"] selapsed_df = selapsed_df[["session_id", "elapsed"]] selapsed_df = selapsed_df[selapsed_df.elapsed.notna()] selapsed_df = selapsed_df[selapsed_df.elapsed > 0] selapsed_df = selapsed_df.groupby("session_id").agg({"elapsed": np.mean}).reset_index() selapsed_df.columns = ["session_id", "step_elapsed_mean"] X = pd.merge(X, selapsed_df, on="session_id", how="left") del selapsed_df # last duration all "is it same as is_last_elapsed_time?" lduration_all_df = all_df[["session_id", "action_type", "timestamp", "is_y"]].copy() lduration_all_df["pre_timestamp"] = lduration_all_df["timestamp"].shift(1) lduration_all_df["pre_session_id"] = lduration_all_df["session_id"].shift(1) lduration_all_df = lduration_all_df[lduration_all_df.session_id == lduration_all_df.pre_session_id] lduration_all_df["elapsed_time"] = lduration_all_df["timestamp"] - lduration_all_df["pre_timestamp"] lduration_all_df = lduration_all_df[lduration_all_df.is_y == 1] lduration_all_df = lduration_all_df[["session_id", "elapsed_time"]] X = pd.merge(X, lduration_all_df, on="session_id", how="left") del lduration_all_df # first action_type firsta_df = all_df[["session_id", "_session_id", "action_type", "is_y"]].copy() firsta_df = firsta_df[firsta_df.is_y == 0] # to prevent leakage firsta_df = firsta_df.groupby("_session_id").first().reset_index() firsta_df = firsta_df.groupby("session_id").last().reset_index() firsta_df.loc[firsta_df["action_type"] == "search for destination", "action_type"] = "fa_sfd" firsta_df.loc[firsta_df["action_type"] == "interaction item image", "action_type"] = "fa_iii" firsta_df.loc[firsta_df["action_type"] == "clickout item", "action_type"] = "fa_coi" firsta_df.loc[firsta_df["action_type"] == "search for item", "action_type"] = "fa_sfi" firsta_df.loc[firsta_df["action_type"] == "search for poi", "action_type"] = "fa_sfp" firsta_df.loc[firsta_df["action_type"] == "change of sort order", "action_type"] = "fa_coso" firsta_df.loc[firsta_df["action_type"] == "filter selection", "action_type"] = "fa_fis" firsta_df.loc[firsta_df["action_type"] == "interaction item info", "action_type"] = "fa_iiinfo" firsta_df.loc[firsta_df["action_type"] == "interaction item rating", "action_type"] = "fa_iirat" firsta_df.loc[firsta_df["action_type"] == "interaction item deals", "action_type"] = "fa_iidea" firsta_df = firsta_df[["session_id", "action_type"]] firsta_df.columns = ["session_id", "at"] onehot_firsta = pd.get_dummies(firsta_df, columns=['at']) firsta_cols = list(onehot_firsta.columns) firsta_cols.remove("session_id") X = pd.merge(X, onehot_firsta, on="session_id", how="left") for firsta_col in firsta_cols: X[firsta_col] = X[firsta_col].fillna(0) del firsta_df del onehot_firsta # price norm by item rating prop X["r6"] = 0 X["r7"] = 0 X["r8"] = 0 X["r9"] = 0 X.loc[X["pSatisfactory Rating"] == 1, "r6"] = 6 X.loc[X["pGood Rating"] == 1, "r7"] = 7 X.loc[X["pVery Good Rating"] == 1, "r8"] = 8 X.loc[X["pExcellent Rating"] == 1, "r9"] = 9 X["rating"] = X[["r6", "r7", "r8", "r9"]].apply( lambda x: np.mean(np.trim_zeros(np.array([x.r6, x.r7, x.r8, x.r9]))), axis=1) X["rating"] = X["rating"].fillna(-1) pns_df = X[["session_id", "rating", "price"]].groupby(["session_id", "rating"]).agg( {'price': [np.mean, np.std]}).reset_index() pns_df.columns = ["session_id", "rating", "r_price_mean", "r_price_std"] pns_df["r_price_std"] = pns_df["r_price_std"].fillna(1) X = pd.merge(X, pns_df, on=["session_id", "rating"], how="left") X["r_price_norm"] = (X["price"].astype(float) - X["r_price_mean"].astype(float)) / X["r_price_std"].astype( float) del pns_df # price norm by star X["star"] = -1 X.loc[X["p1 Star"] == 1, "star"] = 1 X.loc[X["p2 Star"] == 1, "star"] = 2 X.loc[X["p3 Star"] == 1, "star"] = 3 X.loc[X["p4 Star"] == 1, "star"] = 4 X.loc[X["p5 Star"] == 1, "star"] = 5 pns_df = X[["session_id", "star", "price"]].groupby(["session_id", "star"]).agg( {'price': [np.mean, np.std]}).reset_index() pns_df.columns = ["session_id", "star", "s_price_mean", "s_price_std"] pns_df["s_price_std"] = pns_df["s_price_std"].fillna(1) X = pd.merge(X, pns_df, on=["session_id", "star"], how="left") X["s_price_norm"] = (X["price"].astype(float) - X["s_price_mean"].astype(float)) / X["s_price_std"].astype( float) del pns_df return X class ByItem(object): @classmethod def set(cls, X, dataset): print("... ... ByItem") all_df = dataset["all_df"] # imps score impscore_df = dataset["impscore_df"] item_props = dataset["item_props"] X = pd.merge(X, impscore_df, on="impression", how="left") X["impsocre"] = X["impsocre"].fillna(0) # # append some important props and other props with over 0.2 coverage # sum_item_props_df = dataset["sum_item_props_df"] # prop_cols = ["pGood Rating" # , "pVery Good Rating" # , "pExcellent Rating" # , "pSatisfactory Rating" # , "p1 Star" # , "p2 Star" # , "p3 Star" # , "p4 Star" # , "p5 Star" # , "pBusiness Centre" # , "pBusiness Hotel" # , "pConference Rooms"] # c02over_prop_cols = sum_item_props_df[sum_item_props_df.coverage >= 0.2]["prop"].tolist() # prop_cols = prop_cols + c02over_prop_cols # prop_cols = list(set(prop_cols)) # X = pd.merge(X, item_props[["item_id"] + prop_cols], left_on="impression", right_on="item_id", how="left") # X[prop_cols] = X[prop_cols].fillna(0) # append item svd n_components=10 item_props_svd = dataset["item_props_svd"] prop_svd_cols = list(item_props_svd.columns) prop_svd_cols.remove("item_id") X = pd.merge(X, item_props_svd, left_on="impression", right_on="item_id", how="left") X[prop_svd_cols] = X[prop_svd_cols].fillna(0) # # price norm by item rating prop # X["r6"] = 0 # X["r7"] = 0 # X["r8"] = 0 # X["r9"] = 0 # X.loc[X["pSatisfactory Rating"] == 1, "r6"] = 6 # X.loc[X["pGood Rating"] == 1, "r7"] = 7 # X.loc[X["pVery Good Rating"] == 1, "r8"] = 8 # X.loc[X["pExcellent Rating"] == 1, "r9"] = 9 # X["rating"] = X[["r6", "r7", "r8", "r9"]].apply( # lambda x: np.mean(np.trim_zeros(np.array([x.r6, x.r7, x.r8, x.r9]))), axis=1) # X["rating"] = X["rating"].fillna(-1) # pns_df = X[["session_id", "rating", "price"]].groupby(["session_id", "rating"]).agg( # {'price': [np.mean, np.std]}).reset_index() # pns_df.columns = ["session_id", "rating", "r_price_mean", "r_price_std"] # pns_df["r_price_std"] = pns_df["r_price_std"].fillna(1) # X = pd.merge(X, pns_df, on=["session_id", "rating"], how="left") # X["r_price_norm"] = (X["price"].astype(float) - X["r_price_mean"].astype(float)) / X["r_price_std"].astype( # float) # del pns_df # # # price norm by star # X["star"] = -1 # X.loc[X["p1 Star"] == 1, "star"] = 1 # X.loc[X["p2 Star"] == 1, "star"] = 2 # X.loc[X["p3 Star"] == 1, "star"] = 3 # X.loc[X["p4 Star"] == 1, "star"] = 4 # X.loc[X["p5 Star"] == 1, "star"] = 5 # pns_df = X[["session_id", "star", "price"]].groupby(["session_id", "star"]).agg( # {'price': [np.mean, np.std]}).reset_index() # pns_df.columns = ["session_id", "star", "s_price_mean", "s_price_std"] # pns_df["s_price_std"] = pns_df["s_price_std"].fillna(1) # X = pd.merge(X, pns_df, on=["session_id", "star"], how="left") # X["s_price_norm"] = (X["price"].astype(float) - X["s_price_mean"].astype(float)) / X["s_price_std"].astype( # float) # del pns_df # item ctr ctrbyitem_df = all_df[all_df.action_type == "clickout item"][["session_id", "reference", "is_y"]].copy() ctrbyitem_df = ctrbyitem_df[ctrbyitem_df.is_y == 0] ref_df = ctrbyitem_df[["reference"]].groupby(["reference"]).size().reset_index() ref_df.columns = ["impression", "rcnt"] ref_df["ctrbyitem"] = ref_df["rcnt"].astype(float) / ref_df.shape[0] ref_df = ref_df[["impression", "ctrbyitem"]] X = pd.merge(X, ref_df, on="impression", how="left") X["ctrbyitem"] = X["ctrbyitem"].fillna(0) del ctrbyitem_df del ref_df # item ctr by city cr_tmp_df = all_df[all_df.action_type == "clickout item"].copy() cr_tmp_df = cr_tmp_df[cr_tmp_df.is_y == 0] # to prevent leakage city_df = cr_tmp_df[["city"]].groupby(["city"]).size().reset_index() city_df.columns = ["city", "ccnt"] cityref_df = cr_tmp_df[["city", "reference"]].groupby(["city", "reference"]).size().reset_index() cityref_df.columns = ["city", "impression", "rcnt"] cityref_df = pd.merge(cityref_df, city_df, on="city", how="left") cityref_df["ctrbycity"] = cityref_df["rcnt"].astype(float) / cityref_df["ccnt"].astype(float) cityref_df = cityref_df[["city", "impression", "ctrbycity"]] X = pd.merge(X, cityref_df, on=["city", "impression"], how="left") X["ctrbycity"] = X["ctrbycity"].fillna(0) del cr_tmp_df del city_df del cityref_df # item ctr by city rank ctrbycity_rank_df = X[["session_id", "ctrbycity"]].copy() ctrbycity_rank_df = ctrbycity_rank_df[["session_id", "ctrbycity"]].groupby("session_id").rank(ascending=False) ctrbycity_rank_df.columns = ["ctrbycity_rank"] X = pd.concat([X, ctrbycity_rank_df], axis=1) del ctrbycity_rank_df # bayes likelihood by item bayes_likelihood = dataset["bayes_likelihood"] X["rlr"] = X["impression"].astype(str) + X["last_reference"].astype(str) def set_bayes_li(rlr): if rlr in bayes_likelihood: return bayes_likelihood[rlr] return 0.0 X["bayes_li"] = X[["rlr"]].apply(lambda x: set_bayes_li(x.rlr), axis=1) # clickouted item 2 item during session v2v_counter = dataset["v2v_counter"] def extract_sv2v_counter(iids): v = {} for iid in iids: if iid in v2v_counter: for s in v2v_counter[iid]: if not s in v: v[s] = v2v_counter[iid][s] return v couted_df = all_df[["action_type", "session_id", "reference", "is_y"]].copy() couted_df = couted_df[couted_df.action_type == "clickout item"] couted_df = couted_df[couted_df.is_y == 0] # to prevent leakage couted_df = couted_df[["session_id", "reference"]] couted_df.columns = ["session_id", "impression"] couted_df = couted_df[~couted_df.duplicated()] couted_df["clickouted"] = 1 sv2v_df = couted_df.groupby("session_id").apply( lambda x: extract_sv2v_counter(list(x.impression))).reset_index() sv2v_df.columns = ["session_id", "sv2v"] X = pd.merge(X, sv2v_df, on="session_id", how="left") X["sv2v"] = X["sv2v"].fillna("{}") X["sv2v_score"] = X[["impression", "sv2v"]].apply( lambda x: x.sv2v[x.impression] if x.impression in x.sv2v else np.nan, axis=1) X.drop("sv2v", axis=1, inplace=True) sv2vs_stats = X.groupby("session_id").agg({"sv2v_score": [np.mean, np.std]}).reset_index() sv2vs_stats.columns = ["session_id", "sv2v_score_mean", "sv2v_score_std"] X = pd.merge(X, sv2vs_stats, on="session_id", how="left") X["sv2v_score_norm"] = X["sv2v_score"] - X["sv2v_score_mean"] / X["sv2v_score_std"] del couted_df del sv2v_df del sv2vs_stats # some action_types are already done by each item during each session couted_df = all_df[["action_type", "session_id", "reference"]].copy() action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item"] ated_cols = ["iired" , "iifed" , "iiied" , "iided" , "sfied"] for i, action_type in enumerate(action_types): at_df = couted_df[couted_df.action_type == action_type].copy() at_df = at_df[["session_id", "reference"]] at_df.columns = ["session_id", "impression"] at_df = at_df[~at_df.duplicated()] at_df[ated_cols[i]] = 1 X = pd.merge(X, at_df, on=["session_id", "impression"], how="left") X[ated_cols[i]] = X[ated_cols[i]].fillna(0) X[ated_cols[i]] = X[ated_cols[i]].astype(int) del at_df del couted_df # dropout rate by each item during each session dropout_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() dropout_df = dropout_df[dropout_df.action_type.isin(["interaction item image", "clickout item"])] dropout_df = dropout_df[dropout_df.is_y == 0] # to prevent leakage dropout_df.loc[dropout_df["action_type"] == "interaction item image", "iii"] = 1 dropout_df["iii"] = dropout_df["iii"].fillna(0) dropout_df.loc[dropout_df["action_type"] == "clickout item", "cko"] = 1 dropout_df["cko"] = dropout_df["cko"].fillna(0) def is_dropout(iii, cko): if iii != 0 and cko != 0: return 0 elif iii != 0 and cko == 0: return 1 else: return -1 dropout_df = dropout_df[["session_id", "reference", "iii", "cko"]].groupby(["session_id", "reference"]).apply( lambda x: is_dropout(np.sum(x.iii), np.sum(x.cko))).reset_index() dropout_df.columns = ["session_id", "reference", "dropout"] dropout_df = dropout_df[dropout_df != -1] dropout_df = dropout_df[["reference", "dropout"]].groupby("reference").apply( lambda x: np.sum(x.dropout).astype(float) / len(x.dropout)).reset_index() dropout_df.columns = ["impression", "dropout_rate"] X = pd.merge(X, dropout_df, on="impression", how="left") del dropout_df # dropout rate by each item during all sessions action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item"] dropout_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() dropout_df = dropout_df[dropout_df.action_type.isin(action_types + ["clickout item"])] dropout_df = dropout_df[dropout_df.is_y == 0] # to prevent leakage dropout_df.loc[dropout_df.action_type.isin(action_types), "iii"] = 1 dropout_df["iii"] = dropout_df["iii"].fillna(0) dropout_df.loc[dropout_df["action_type"] == "clickout item", "cko"] = 1 dropout_df["cko"] = dropout_df["cko"].fillna(0) dropout_df = dropout_df[["session_id", "reference", "iii", "cko"]].groupby(["session_id", "reference"]).apply( lambda x: is_dropout(np.sum(x.iii), np.sum(x.cko))).reset_index() dropout_df.columns = ["session_id", "reference", "dropout"] dropout_df = dropout_df[dropout_df != -1] dropout_df = dropout_df[["reference", "dropout"]].groupby("reference").apply( lambda x: np.sum(x.dropout).astype(float) / len(x.dropout)).reset_index() dropout_df.columns = ["impression", "all_dropout_rate"] X = pd.merge(X, dropout_df, on="impression", how="left") del dropout_df # action_type rate by each item action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] atstats_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() atstats_df = atstats_df[atstats_df.action_type.isin(action_types)] atstats_df = atstats_df[atstats_df.is_y == 0] # to prevent leakage atstats_df = atstats_df[["reference", "action_type"]].groupby(["reference", "action_type"]).size().reset_index() atstats_df.columns = ["reference", "action_type", "at_cnt"] atstats_refcnt_df = atstats_df[["reference", "at_cnt"]].groupby("reference").sum().reset_index() atstats_refcnt_df.columns = ["reference", "rf_cnt"] atstats_df = pd.merge(atstats_df, atstats_refcnt_df, on="reference", how="left") atstats_df["at_rate"] = atstats_df["at_cnt"].astype(float) / atstats_df["rf_cnt"] atstats_df = atstats_df.pivot(index='reference', columns='action_type', values='at_rate').reset_index() at_rate_cols = ["co_at_rate", "iid_at_rate", "iii_at_rate", "iif_at_rate", "iir_at_rate", "sfi_at_rate"] atstats_df.columns = ["impression"] + at_rate_cols atstats_df = atstats_df.fillna(0) X = pd.merge(X, atstats_df, on="impression", how="left") for at_rate_col in at_rate_cols: X[at_rate_col] = X[at_rate_col].fillna(0) del atstats_df # action_type rate in-session rank by each item at_rate_cols = ["co_at_rate" , "iid_at_rate" , "iii_at_rate" , "iif_at_rate" , "iir_at_rate" , "sfi_at_rate"] at_rank_cols = [] for at_rate_col in at_rate_cols: at_rank_col = at_rate_col + "_rank" at_rank_cols.append(at_rank_col) at_rank_df = X[["session_id", at_rate_col]].copy() at_rank_df = at_rank_df[["session_id", at_rate_col]].groupby("session_id").rank(ascending=False) at_rank_df.columns = [at_rank_col] X = pd.concat([X, at_rank_df], axis=1) del at_rank_df # reference_elapsed_mean and by action_type action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] relapsed_df = all_df[ ["session_id", "step", "timestamp", "timestamp_dt", "action_type", "reference", "is_y"]].copy() relapsed_df["pre_timestamp"] = relapsed_df["timestamp"].shift(1) relapsed_df["pre_timestamp_dt"] = relapsed_df["timestamp_dt"].shift(1) relapsed_df["pre_session_id"] = relapsed_df["session_id"].shift(1) relapsed_df = relapsed_df[relapsed_df.session_id == relapsed_df.pre_session_id] relapsed_df["elapsed"] = relapsed_df["timestamp"] - relapsed_df["pre_timestamp"] relapsed_df = relapsed_df[relapsed_df.action_type.isin(action_types)] relapsed_df = relapsed_df[relapsed_df.is_y == 0] # to prevent leakage relapsed_df = relapsed_df[relapsed_df.elapsed.notna()] relapsed_df = relapsed_df[relapsed_df.elapsed > 0] r_relapsed_df = relapsed_df[["reference", "elapsed"]].groupby("reference").agg( {"elapsed": np.mean}).reset_index() r_relapsed_rate_cols = ["ref_elapsed_mean"] r_relapsed_df.columns = ["impression"] + r_relapsed_rate_cols a_relapsed_df = relapsed_df[["reference", "action_type", "elapsed"]].groupby(["reference", "action_type"]).agg( {"elapsed": np.mean}).reset_index() a_relapsed_df.columns = ["reference", "action_type", "at_elapsed_mean"] a_relapsed_df = a_relapsed_df.pivot(index='reference', columns='action_type', values='at_elapsed_mean').reset_index() a_relapsed_rate_cols = ["co_ref_elapsed_mean", "iid_ref_elapsed_mean", "iii_ref_elapsed_mean", "iif_ref_elapsed_mean", "iir_ref_elapsed_mean", "sfi_ref_elapsed_mean"] a_relapsed_df.columns = ["impression"] + a_relapsed_rate_cols X = pd.merge(X, r_relapsed_df, on="impression", how="left") X = pd.merge(X, a_relapsed_df, on="impression", how="left") del relapsed_df del r_relapsed_df del a_relapsed_df # tsh "time split by hour" item ctr tsh_df = all_df[all_df.action_type == "clickout item"][ ["session_id", "action_type", "reference", "timestamp_dt", "is_y"]].copy() tsh_df["tsh24"] = -1 X["tsh24"] = -1 ts_min = tsh_df["timestamp_dt"].min() ts_max = tsh_df["timestamp_dt"].max() def set_tscol(hours): tscol = "tsh" + str(hours) ts_start = ts_min ts_end = ts_start + datetime.timedelta(hours=hours) ts_bin = 1 while True: tsh_df.loc[(tsh_df.timestamp_dt >= ts_start) & (tsh_df.timestamp_dt < ts_end), tscol] = ts_bin X.loc[(X.timestamp_dt >= ts_start) & (X.timestamp_dt < ts_end), tscol] = ts_bin ts_start = ts_end ts_end = ts_start + datetime.timedelta(hours=hours) if ts_start > ts_max: break ts_bin += 1 set_tscol(24) tsh_df = tsh_df[tsh_df.is_y == 0] tsh24_df = tsh_df[["tsh24"]].groupby(["tsh24"]).size().reset_index() tsh24_df.columns = ["tsh24", "allcnt"] tsh24ref_df = tsh_df[["tsh24", "reference"]].groupby(["tsh24", "reference"]).size().reset_index() tsh24ref_df.columns = ["tsh24", "impression", "rcnt"] tsh24ref_df = pd.merge(tsh24ref_df, tsh24_df, on="tsh24", how="left") tsh24ref_df["ctrbytsh24"] = tsh24ref_df["rcnt"].astype(float) / tsh24ref_df["allcnt"].astype(float) tsh24ref_df = tsh24ref_df[["tsh24", "impression", "ctrbytsh24"]] X = pd.merge(X, tsh24ref_df, on=["tsh24", "impression"], how="left") X["ctrbytsh24"] = X["ctrbytsh24"].fillna(0) del tsh_df del tsh24_df del tsh24ref_df # item ctr by some props ctrbyprops_df = all_df[all_df.action_type == "clickout item"][["session_id", "reference", "is_y"]].copy() ctrbyprops_df.columns = ["session_id", "item_id", "is_y"] star_cols = ["p1 Star", "p2 Star", "p3 Star", "p4 Star", "p5 Star"] rating_cols = ["pSatisfactory Rating", "pGood Rating", "pVery Good Rating", "pExcellent Rating"] ctrbyprops_df = pd.merge(ctrbyprops_df, item_props[["item_id"] + star_cols + rating_cols], on="item_id", how="left") ctrbyprops_df["star"] = -1 ctrbyprops_df.loc[ctrbyprops_df["p1 Star"] == 1, "star"] = 1 ctrbyprops_df.loc[ctrbyprops_df["p2 Star"] == 1, "star"] = 2 ctrbyprops_df.loc[ctrbyprops_df["p3 Star"] == 1, "star"] = 3 ctrbyprops_df.loc[ctrbyprops_df["p4 Star"] == 1, "star"] = 4 ctrbyprops_df.loc[ctrbyprops_df["p5 Star"] == 1, "star"] = 5 ctrbyprops_df["r6"] = 0 ctrbyprops_df["r7"] = 0 ctrbyprops_df["r8"] = 0 ctrbyprops_df["r9"] = 0 ctrbyprops_df.loc[ctrbyprops_df["pSatisfactory Rating"] == 1, "r6"] = 6 ctrbyprops_df.loc[ctrbyprops_df["pGood Rating"] == 1, "r7"] = 7 ctrbyprops_df.loc[ctrbyprops_df["pVery Good Rating"] == 1, "r8"] = 8 ctrbyprops_df.loc[ctrbyprops_df["pExcellent Rating"] == 1, "r9"] = 9 ctrbyprops_df["rating"] = ctrbyprops_df[["r6", "r7", "r8", "r9"]].apply( lambda x: np.mean(np.trim_zeros(np.array([x.r6, x.r7, x.r8, x.r9]))), axis=1) ctrbyprops_df["rating"] = ctrbyprops_df["rating"].fillna(-1) ctrbyprops_df["star_rating"] = "sr_" + ctrbyprops_df["star"].astype(str) + "_" + ctrbyprops_df["rating"].astype( str) ctrbyprops_df = ctrbyprops_df[["session_id", "star_rating", "item_id", "is_y"]] ctrbyprops_df = ctrbyprops_df[ctrbyprops_df.is_y == 0] # to prevent leakage ctrbyprops_df = ctrbyprops_df[["item_id", "star_rating"]] ctrbyprops_df.columns = ["impression", "star_rating"] prop_df = ctrbyprops_df[["star_rating"]].groupby(["star_rating"]).size().reset_index() prop_df.columns = ["star_rating", "allcnt"] propref_df = ctrbyprops_df[["star_rating", "impression"]].groupby( ["star_rating", "impression"]).size().reset_index() propref_df.columns = ["star_rating", "impression", "rcnt"] propref_df = pd.merge(propref_df, prop_df, on="star_rating", how="left") propref_df["ctrbyprops"] = propref_df["rcnt"].astype(float) / propref_df["allcnt"].astype(float) propref_df = propref_df[["star_rating", "impression", "ctrbyprops"]] X["star_rating"] = "sr_" + X["star"].astype(str) + "_" + X["rating"].astype(str) X = pd.merge(X, propref_df, on=["star_rating", "impression"], how="left") X["ctrbyprops"] = X["ctrbyprops"].fillna(0) del ctrbyprops_df del prop_df del propref_df # is no serach item action_types = ["clickout item"] is_nosi_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() is_nosi_df = is_nosi_df.groupby("session_id").first().reset_index() is_nosi_df = is_nosi_df[(is_nosi_df.action_type.isin(action_types)) & (is_nosi_df.is_y == 0)] is_nosi_df = is_nosi_df[["reference"]].groupby("reference").size().reset_index() is_nosi_df.columns = ["impression", "nosearch_cnt"] X =
pd.merge(X, is_nosi_df, on="impression", how="left")
pandas.merge
""" Misc tools for implementing data structures """ try: import cPickle as pickle except ImportError: # pragma: no cover import pickle try: from io import BytesIO except ImportError: # pragma: no cover # Python < 2.6 from cStringIO import StringIO as BytesIO import itertools from cStringIO import StringIO from numpy.lib.format import read_array, write_array import numpy as np import pandas._tseries as lib from pandas.util import py3compat import codecs import csv # XXX: HACK for NumPy 1.5.1 to suppress warnings try: np.seterr(all='ignore') np.set_printoptions(suppress=True) except Exception: # pragma: no cover pass class PandasError(Exception): pass class AmbiguousIndexError(PandasError, KeyError): pass def isnull(obj): ''' Replacement for numpy.isnan / -numpy.isfinite which is suitable for use on object arrays. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean ''' if np.isscalar(obj) or obj is None: return lib.checknull(obj) from pandas.core.generic import PandasObject from pandas import Series if isinstance(obj, np.ndarray): if obj.dtype.kind in ('O', 'S'): # Working around NumPy ticket 1542 shape = obj.shape result = np.empty(shape, dtype=bool) vec = lib.isnullobj(obj.ravel()) result[:] = vec.reshape(shape) if isinstance(obj, Series): result = Series(result, index=obj.index, copy=False) elif obj.dtype == np.datetime64: # this is the NaT pattern result = obj.view('i8') == lib.NaT else: result = -np.isfinite(obj) return result elif isinstance(obj, PandasObject): # TODO: optimize for DataFrame, etc. return obj.apply(isnull) else: return obj is None def notnull(obj): ''' Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean ''' res = isnull(obj) if np.isscalar(res): return not res return -res def _pickle_array(arr): arr = arr.view(np.ndarray) buf = BytesIO() write_array(buf, arr) return buf.getvalue() def _unpickle_array(bytes): arr = read_array(BytesIO(bytes)) return arr def _take_1d_datetime(arr, indexer, out, fill_value=np.nan): view = arr.view(np.int64) outview = out.view(np.int64) lib.take_1d_bool(view, indexer, outview, fill_value=fill_value) def _take_2d_axis0_datetime(arr, indexer, out, fill_value=np.nan): view = arr.view(np.int64) outview = out.view(np.int64) lib.take_1d_bool(view, indexer, outview, fill_value=fill_value) def _take_2d_axis1_datetime(arr, indexer, out, fill_value=np.nan): view = arr.view(np.uint8) outview = out.view(np.uint8) lib.take_1d_bool(view, indexer, outview, fill_value=fill_value) def _view_wrapper(f, wrap_dtype, na_override=None): def wrapper(arr, indexer, out, fill_value=np.nan): if na_override is not None and np.isnan(fill_value): fill_value = na_override view = arr.view(wrap_dtype) outview = out.view(wrap_dtype) f(view, indexer, outview, fill_value=fill_value) return wrapper _take1d_dict = { 'float64' : lib.take_1d_float64, 'int32' : lib.take_1d_int32, 'int64' : lib.take_1d_int64, 'object' : lib.take_1d_object, 'bool' : _view_wrapper(lib.take_1d_bool, np.uint8), 'datetime64[us]' : _view_wrapper(lib.take_1d_int64, np.int64, na_override=lib.NaT), } _take2d_axis0_dict = { 'float64' : lib.take_2d_axis0_float64, 'int32' : lib.take_2d_axis0_int32, 'int64' : lib.take_2d_axis0_int64, 'object' : lib.take_2d_axis0_object, 'bool' : _view_wrapper(lib.take_2d_axis0_bool, np.uint8), 'datetime64[us]' : _view_wrapper(lib.take_2d_axis0_int64, np.int64, na_override=lib.NaT), } _take2d_axis1_dict = { 'float64' : lib.take_2d_axis1_float64, 'int32' : lib.take_2d_axis1_int32, 'int64' : lib.take_2d_axis1_int64, 'object' : lib.take_2d_axis1_object, 'bool' : _view_wrapper(lib.take_2d_axis1_bool, np.uint8), 'datetime64[us]' : _view_wrapper(lib.take_2d_axis1_int64, np.int64, na_override=lib.NaT), } def _get_take2d_function(dtype_str, axis=0): if axis == 0: return _take2d_axis0_dict[dtype_str] else: return _take2d_axis1_dict[dtype_str] def take_1d(arr, indexer, out=None, fill_value=np.nan): """ Specialized Cython take which sets NaN values in one pass """ dtype_str = arr.dtype.name n = len(indexer) if not isinstance(indexer, np.ndarray): # Cython methods expects 32-bit integers indexer = np.array(indexer, dtype=np.int32) indexer = _ensure_int32(indexer) out_passed = out is not None take_f = _take1d_dict.get(dtype_str) if dtype_str in ('int32', 'int64', 'bool'): try: if out is None: out = np.empty(n, dtype=arr.dtype) take_f(arr, indexer, out=out, fill_value=fill_value) except ValueError: mask = indexer == -1 if len(arr) == 0: if not out_passed: out = np.empty(n, dtype=arr.dtype) else: out = arr.take(indexer, out=out) if mask.any(): if out_passed: raise Exception('out with dtype %s does not support NA' % out.dtype) out = _maybe_upcast(out) np.putmask(out, mask, fill_value) elif dtype_str in ('float64', 'object', 'datetime64[us]'): if out is None: out = np.empty(n, dtype=arr.dtype) take_f(arr, indexer, out=out, fill_value=fill_value) else: out = arr.take(indexer, out=out) mask = indexer == -1 if mask.any(): if out_passed: raise Exception('out with dtype %s does not support NA' % out.dtype) out = _maybe_upcast(out) np.putmask(out, mask, fill_value) return out def take_2d(arr, indexer, out=None, mask=None, needs_masking=None, axis=0, fill_value=np.nan): """ Specialized Cython take which sets NaN values in one pass """ dtype_str = arr.dtype.name out_shape = list(arr.shape) out_shape[axis] = len(indexer) out_shape = tuple(out_shape) if not isinstance(indexer, np.ndarray): # Cython methods expects 32-bit integers indexer = np.array(indexer, dtype=np.int32) indexer = _ensure_int32(indexer) if dtype_str in ('int32', 'int64', 'bool'): if mask is None: mask = indexer == -1 needs_masking = mask.any() if needs_masking: # upcasting may be required result = arr.take(indexer, axis=axis, out=out) result = _maybe_mask(result, mask, needs_masking, axis=axis, out_passed=out is not None, fill_value=fill_value) return result else: if out is None: out = np.empty(out_shape, dtype=arr.dtype) take_f = _get_take2d_function(dtype_str, axis=axis) take_f(arr, indexer, out=out, fill_value=fill_value) return out elif dtype_str in ('float64', 'object', 'datetime64[us]'): if out is None: out = np.empty(out_shape, dtype=arr.dtype) take_f = _get_take2d_function(dtype_str, axis=axis) take_f(arr, indexer, out=out, fill_value=fill_value) return out else: if mask is None: mask = indexer == -1 needs_masking = mask.any() # GH #486 if out is not None and arr.dtype != out.dtype: arr = arr.astype(out.dtype) result = arr.take(indexer, axis=axis, out=out) result = _maybe_mask(result, mask, needs_masking, axis=axis, out_passed=out is not None, fill_value=fill_value) return result def mask_out_axis(arr, mask, axis, fill_value=np.nan): indexer = [slice(None)] * arr.ndim indexer[axis] = mask arr[tuple(indexer)] = fill_value def take_fast(arr, indexer, mask, needs_masking, axis=0, out=None, fill_value=np.nan): if arr.ndim == 2: return take_2d(arr, indexer, out=out, mask=mask, needs_masking=needs_masking, axis=axis, fill_value=fill_value) result = arr.take(indexer, axis=axis, out=out) result = _maybe_mask(result, mask, needs_masking, axis=axis, out_passed=out is not None, fill_value=fill_value) return result def _maybe_mask(result, mask, needs_masking, axis=0, out_passed=False, fill_value=np.nan): if needs_masking: if out_passed and _need_upcast(result): raise Exception('incompatible type for NAs') else: # a bit spaghettified result = _maybe_upcast(result) mask_out_axis(result, mask, axis, fill_value) return result def _maybe_upcast(values): if issubclass(values.dtype.type, np.integer): values = values.astype(float) elif issubclass(values.dtype.type, np.bool_): values = values.astype(object) return values def _need_upcast(values): if issubclass(values.dtype.type, (np.integer, np.bool_)): return True return False def _interp_wrapper(f, wrap_dtype, na_override=None): def wrapper(arr, mask, limit=None): view = arr.view(wrap_dtype) f(view, mask, limit=limit) return wrapper _pad_1d_datetime = _interp_wrapper(lib.pad_inplace_int64, np.int64) _pad_2d_datetime = _interp_wrapper(lib.pad_2d_inplace_int64, np.int64) _backfill_1d_datetime = _interp_wrapper(lib.backfill_inplace_int64, np.int64) _backfill_2d_datetime = _interp_wrapper(lib.backfill_2d_inplace_int64, np.int64) def pad_1d(values, limit=None): if is_float_dtype(values): _method = lib.pad_inplace_float64 elif is_datetime64_dtype(values): _method = _pad_1d_datetime elif values.dtype == np.object_: _method = lib.pad_inplace_object else: # pragma: no cover raise ValueError('Invalid dtype for padding') _method(values, isnull(values).view(np.uint8), limit=limit) def backfill_1d(values, limit=None): if is_float_dtype(values): _method = lib.backfill_inplace_float64 elif is_datetime64_dtype(values): _method = _backfill_1d_datetime elif values.dtype == np.object_: _method = lib.backfill_inplace_object else: # pragma: no cover raise ValueError('Invalid dtype for padding') _method(values, isnull(values).view(np.uint8), limit=limit) def pad_2d(values, limit=None): if is_float_dtype(values): _method = lib.pad_2d_inplace_float64 elif is_datetime64_dtype(values): _method = _pad_2d_datetime elif values.dtype == np.object_: _method = lib.pad_2d_inplace_object else: # pragma: no cover raise ValueError('Invalid dtype for padding') _method(values, isnull(values).view(np.uint8), limit=limit) def backfill_2d(values, limit=None): if is_float_dtype(values): _method = lib.backfill_2d_inplace_float64 elif is_datetime64_dtype(values): _method = _backfill_2d_datetime elif values.dtype == np.object_: _method = lib.backfill_2d_inplace_object else: # pragma: no cover raise ValueError('Invalid dtype for padding') _method(values, isnull(values).view(np.uint8), limit=limit) def _consensus_name_attr(objs): name = objs[0].name for obj in objs[1:]: if obj.name != name: return None return name #---------------------------------------------------------------------- # Lots of little utilities def _infer_dtype(value): if isinstance(value, (float, np.floating)): return np.float_ elif isinstance(value, (bool, np.bool_)): return np.bool_ elif isinstance(value, (int, np.integer)): return np.int_ else: return np.object_ def _possibly_cast_item(obj, item, dtype): chunk = obj[item] if chunk.values.dtype != dtype: if dtype in (np.object_, np.bool_): obj[item] = chunk.astype(np.object_) elif not issubclass(dtype, (np.integer, np.bool_)): # pragma: no cover raise ValueError("Unexpected dtype encountered: %s" % dtype) def _is_bool_indexer(key): if isinstance(key, np.ndarray) and key.dtype == np.object_: if not lib.is_bool_array(key): if isnull(key).any(): raise ValueError('cannot index with vector containing ' 'NA / NaN values') return False return True elif isinstance(key, np.ndarray) and key.dtype == np.bool_: return True elif isinstance(key, list): try: return np.asarray(key).dtype == np.bool_ except TypeError: # pragma: no cover return False return False def _default_index(n): from pandas.core.index import Index return Index(np.arange(n)) def ensure_float(arr): if issubclass(arr.dtype.type, np.integer): arr = arr.astype(float) return arr def _mut_exclusive(arg1, arg2): if arg1 is not None and arg2 is not None: raise Exception('mutually exclusive arguments') elif arg1 is not None: return arg1 else: return arg2 def _any_none(*args): for arg in args: if arg is None: return True return False def _all_not_none(*args): for arg in args: if arg is None: return False return True def _try_sort(iterable): listed = list(iterable) try: return sorted(listed) except Exception: return listed def _count_not_none(*args): return sum(x is not None for x in args) #------------------------------------------------------------------------------ # miscellaneous python tools def rands(n): """Generates a random alphanumeric string of length *n*""" from random import Random import string return ''.join(Random().sample(string.ascii_letters+string.digits, n)) def adjoin(space, *lists): """ Glues together two sets of strings using the amount of space requested. The idea is to prettify. """ out_lines = [] newLists = [] lengths = [max(map(len, x)) + space for x in lists[:-1]] # not the last one lengths.append(max(map(len, lists[-1]))) maxLen = max(map(len, lists)) for i, lst in enumerate(lists): nl = [x.ljust(lengths[i]) for x in lst] nl.extend([' ' * lengths[i]] * (maxLen - len(lst))) newLists.append(nl) toJoin = zip(*newLists) for lines in toJoin: out_lines.append(_join_unicode(lines)) return _join_unicode(out_lines, sep='\n') def _join_unicode(lines, sep=''): try: return sep.join(lines) except UnicodeDecodeError: sep = unicode(sep) return sep.join([x.decode('utf-8') if isinstance(x, str) else x for x in lines]) def iterpairs(seq): """ Parameters ---------- seq: sequence Returns ------- iterator returning overlapping pairs of elements Example ------- >>> iterpairs([1, 2, 3, 4]) [(1, 2), (2, 3), (3, 4) """ # input may not be sliceable seq_it = iter(seq) seq_it_next = iter(seq) _ = seq_it_next.next() return itertools.izip(seq_it, seq_it_next) def indent(string, spaces=4): dent = ' ' * spaces return '\n'.join([dent + x for x in string.split('\n')]) def banner(message): """ Return 80-char width message declaration with = bars on top and bottom. """ bar = '=' * 80 return '%s\n%s\n%s' % (bar, message, bar) class groupby(dict): """ A simple groupby different from the one in itertools. Does not require the sequence elements to be sorted by keys, however it is slower. """ def __init__(self, seq, key=lambda x:x): for value in seq: k = key(value) self.setdefault(k, []).append(value) try: __iter__ = dict.iteritems except AttributeError: # pragma: no cover # Python 3 def __iter__(self): return iter(dict.items(self)) def map_indices_py(arr): """ Returns a dictionary with (element, index) pairs for each element in the given array/list """ return dict([(x, i) for i, x in enumerate(arr)]) def union(*seqs): result = set([]) for seq in seqs: if not isinstance(seq, set): seq = set(seq) result |= seq return type(seqs[0])(list(result)) def difference(a, b): return type(a)(list(set(a) - set(b))) def intersection(*seqs): result = set(seqs[0]) for seq in seqs: if not isinstance(seq, set): seq = set(seq) result &= seq return type(seqs[0])(list(result)) def _asarray_tuplesafe(values, dtype=None): if not isinstance(values, (list, tuple, np.ndarray)): values = list(values) if isinstance(values, list) and dtype in [np.object_, object]: return
lib.list_to_object_array(values)
pandas._tseries.list_to_object_array
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Time : 2022/1/8 4:54 下午 # @Author: zhoumengjie # @File : BondUtils.py import json import logging import random import time import urllib import pandas as pd import requests from wxcloudrun.common import akclient header = {'Accept': '*/*', 'Connection': 'keep-alive', 'Content-type': 'application/json;charset=utf-8', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36' } cookie = requests.cookies.RequestsCookieJar() cookie.set('kbzw__user_login', '7Obd08_P1ebax9aXzaPEpdCYrqXR0dTn8OTb3crUja2aqtqr2cPSkavfqKHcnKiYppOprtXdxtPGqqyon7ClmJ2j1uDb0dWMppOkqqefmqekt7e_1KLA59vZzeDapJ6nnJeKw8La4OHs0OPJr5m-1-3R44LDwtqXwsuByIGlqdSarsuui5ai5-ff3bjVw7_i6Ziun66QqZeXn77Atb2toJnh0uTRl6nbxOLmnJik2NPj5tqYsqSlkqSVrqyrppmggcfa28rr1aaXqZilqqk.;') cookie.set('kbz_newcookie', '1;') cookie.set('kbzw_r_uname', 'VANDY;') cookie.set('kbzw__Session', 'fcqdk3pa4tlatoh6c338e19ju2;') log = logging.getLogger('log') jisilu_host = 'https://www.jisilu.cn' cninfo_webapi_host = 'http://webapi.cninfo.com.cn' east_host = 'https://emweb.securities.eastmoney.com' zsxg_host = 'https://zsxg.cn' cninfo_host = 'http://www.cninfo.com.cn' cninfo_static_host = 'http://static.cninfo.com.cn/' image_host = 'https://dficimage.toutiao.com' code_suff_cache = {} def format_func(num): return '{:g}'.format(float(num)) class Crawler: def __init__(self, timeout=10): self.__timeout = timeout def query_list(self): r""" 查询待发可转债列表 :return: """ # 时间戳 now = time.time() # 原始时间数据 timestamp = int(round(now * 1000)) param = {"___jsl": "LST___t=" + str(timestamp)} r = requests.post(jisilu_host + "/data/cbnew/pre_list/", params=param, headers=header, cookies=cookie) if r.status_code != 200: log.info("查询待发可转债列表失败:status_code = " + str(r.status_code)) return None return r.json()['rows'] def user_info(self): r = requests.post(jisilu_host + '/webapi/account/userinfo/', headers=header, cookies=cookie) if r.status_code != 200: print("查询集思录用户信息失败:status_code = " + str(r.status_code)) return False data = r.json() return data['code'] == 200 and data['data'] is not None def login(self): h = { 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'X-Requested-With': 'XMLHttpRequest', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36' } data = 'return_url=' + 'https://www.jisilu.cn/web/data/cb/list' + '&user_name=<PASSWORD>&password=<PASSWORD>&net_auto_login=1&agreement_chk=agree&_post_type=ajax&aes=1' r = requests.post(jisilu_host + '/account/ajax/login_process/', data=data, headers=h, cookies=cookie) if r.status_code != 200: log.info("登录失败:status_code = " + str(r.status_code)) return False # 重新设置cookies cookies = r.cookies.get_dict() for key in cookies.keys(): cookie.set(key, cookies[key]) # refer h = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36' } r = requests.get(jisilu_host + '/', cookies=cookie, headers=h) if r.status_code != 200: log.info("登录重定向失败:status_code = " + str(r.status_code)) return False cookies = r.cookies.get_dict() for key in cookies.keys(): cookie.set(key, cookies[key]) return True def query_all_bond_list(self) -> pd.DataFrame: r""" 查询所有已经上市的可转债 :return: """ # 先判断是否登录,如果没有则登录 is_login = self.user_info() if not is_login: print('jisilu no login...') is_login = self.login() print('jisilu login result:{}'.format(is_login)) h = { 'Content-Type': 'application/json; charset=utf-8', 'Init': '1', 'Referer': 'https://www.jisilu.cn/web/data/cb/list', 'Columns': '1,70,2,3,5,6,11,12,14,15,16,29,30,32,34,35,75,44,46,47,52,53,54,56,57,58,59,60,62,63,67', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.75 Safari/537.36' } # data = 'btype=C&listed=Y&qflag=N' r = requests.get(jisilu_host + "/webapi/cb/list_new/", headers=h, cookies=cookie) if r.status_code != 200: print("查询所有可转债列表失败:status_code = " + str(r.status_code)) return None rows = r.json()['data'] df = pd.DataFrame(rows) return df def query_industry_list(self, industry_code): r""" 查询行业可转债列表 :return: """ # 先判断是否登录,如果没有则登录 is_login = self.user_info() if not is_login: log.info('jisilu no login...') is_login = self.login() log.info('jisilu login result:{}'.format(is_login)) h = { 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36' } #list=Y=仅看已上市 data = 'sw_cd=' + industry_code + '&listed=Y' # fprice=&tprice=&curr_iss_amt=&volume=&svolume=&premium_rt=&ytm_rt=&rating_cd=&is_search=Y&market_cd%5B%5D=shmb&market_cd%5B%5D=shkc&market_cd%5B%5D=szmb&market_cd%5B%5D=szcy&btype=C&listed=N&qflag=N&sw_cd=630303&bond_ids=&rp=50 r = requests.post(jisilu_host + "/data/cbnew/cb_list_new/", data=data, headers=h, cookies=cookie) if r.status_code != 200: log.info("查询行业可转债列表失败:status_code = " + str(r.status_code)) return None return r.json()['rows'] def query_announcement_list(self) -> pd.DataFrame: r""" 查询转债的最新公告 :return: """ h = { 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36' } data = 'code=&title=&tp[0]=Y' r = requests.post(jisilu_host + "/webapi/cb/announcement_list/", data=data, headers=h) if r.status_code != 200: print("查询转债的最新公告失败:status_code = " + str(r.status_code)) return None rows = r.json()['data'] df = pd.DataFrame(rows) return df def query_bond_data(self) -> pd.DataFrame: r""" 查询交易中的可转债数据 :return: """ # 先判断是否登录,如果没有则登录 is_login = self.user_info() if not is_login: log.info('jisilu no login...') is_login = self.login() log.info('jisilu login result:{}'.format(is_login)) h = { 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36', 'Referer': 'https://www.jisilu.cn/data/cbnew/' } #list=Y=仅看已上市 data = 'btype=C&listed=Y&qflag=N' # fprice=&tprice=&curr_iss_amt=&volume=&svolume=&premium_rt=&ytm_rt=&rating_cd=&is_search=Y&market_cd%5B%5D=shmb&market_cd%5B%5D=shkc&market_cd%5B%5D=szmb&market_cd%5B%5D=szcy&btype=C&listed=N&qflag=N&sw_cd=630303&bond_ids=&rp=50 r = requests.post(jisilu_host + "/data/cbnew/cb_list_new/", data=data, headers=h, cookies=cookie) if r.status_code != 200: log.info("查询交易中的可转债数据:status_code = " + str(r.status_code)) return None rows = r.json()['rows'] cells = list(map(lambda x: x['cell'], rows)) df =
pd.DataFrame(cells)
pandas.DataFrame
import pandas as pd import pandas.api.types as types from Levenshtein.StringMatcher import distance """ Find and replace """ def find_replace(dataframe: pd.DataFrame, column_name: str, to_replace, value) -> pd.DataFrame: dataframe[column_name].replace(to_replace, value, inplace=True) return dataframe def find_replace_regex(dataframe: pd.DataFrame, column_name: str, to_replace: str, value: str) -> pd.DataFrame: if types.is_string_dtype(dataframe[column_name]): dataframe[column_name].replace(to_replace, value, inplace=True, regex=True) return dataframe def find_replace_all(dataframe: pd.DataFrame, to_replace, value) -> pd.DataFrame: dataframe.replace(to_replace, value, inplace=True) return dataframe """ Normalization """ def normalize(dataframe: pd.DataFrame, column_name: str) -> pd.DataFrame: col = dataframe[column_name] if not types.is_numeric_dtype(col): return dataframe dataframe[column_name] = (col - col.min()) / (col.max() - col.min()) return dataframe def normalize_all(dataframe: pd.DataFrame) -> pd.DataFrame: func = {False: lambda col: col, True: lambda col: (col - col.min()) / (col.max() - col.min())} return dataframe.transform(lambda col: func[types.is_numeric_dtype(dataframe[col.name])](col)) """ Outliers """ def remove_outliers(dataframe: pd.DataFrame, column_name: str, outside_range: float) -> pd.DataFrame: col = dataframe[column_name] if not types.is_numeric_dtype(col): return dataframe return dataframe[(col - col.mean()).abs() <= (col.std() * outside_range)] def remove_all_outliers(dataframe: pd.DataFrame, outside_range: float) -> pd.DataFrame: return dataframe[dataframe.apply(lambda col: not
types.is_numeric_dtype(dataframe[col.name])
pandas.api.types.is_numeric_dtype
import pprint pp = pprint.PrettyPrinter(indent=4) import numpy as np import pandas as pd import joblib import autopluspy import streamlit as st # Function : def display_results(results): ## Display results st.title(f'Predicted price : {results} euros') # Config reg_mdl_filename = 'final_reg.sav' std_mdl_filename = 'final_std.sav' features_filename = 'final_features.sav' data_dict_path = 'data_dict.txt' # Call saved file loaded_model = joblib.load(reg_mdl_filename) loaded_std = joblib.load(std_mdl_filename) features_list = joblib.load(features_filename) data_dict = autopluspy.data_eng.read_data_dict(data_dict_path) features_name = list(data_dict.keys()) features_name = features_name[1:] # Start the app st.title('Car price estimator') st.write(' ') st.write(' ') d = {} temp = {} quanti_features = [] quality_features = [] for feature in features_list: d[feature] = 0 for feature in features_name: if data_dict[feature]['type'] == 'numerical': key = feature value = st.number_input(f'Insert {feature}:') temp[key] = value quanti_features.append(feature) if data_dict[feature]['type'] == 'categorical': key = feature value = st.selectbox(f'Select {feature}: ', tuple(data_dict[feature]['unique_value'])) temp[key] = value quality_features.append(feature) ## Running Prediction if st.button('Run'): x_temp =
pd.DataFrame(data=temp, index=[0])
pandas.DataFrame
import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Series, isna, notna import pandas._testing as tm import pandas.tseries.offsets as offsets def _check_moment_func( static_comp, name, raw, has_min_periods=True, has_center=True, has_time_rule=True, fill_value=None, zero_min_periods_equal=True, series=None, frame=None, **kwargs, ): def get_result(obj, window, min_periods=None, center=False): r = obj.rolling(window=window, min_periods=min_periods, center=center) return getattr(r, name)(**kwargs) series_result = get_result(series, window=50) assert isinstance(series_result, Series) tm.assert_almost_equal(series_result.iloc[-1], static_comp(series[-50:])) frame_result = get_result(frame, window=50) assert isinstance(frame_result, DataFrame) tm.assert_series_equal( frame_result.iloc[-1, :], frame.iloc[-50:, :].apply(static_comp, axis=0, raw=raw), check_names=False, ) # check time_rule works if has_time_rule: win = 25 minp = 10 ser = series[::2].resample("B").mean() frm = frame[::2].resample("B").mean() if has_min_periods: series_result = get_result(ser, window=win, min_periods=minp) frame_result = get_result(frm, window=win, min_periods=minp) else: series_result = get_result(ser, window=win, min_periods=0) frame_result = get_result(frm, window=win, min_periods=0) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = series[::2].truncate(prev_date, last_date) trunc_frame = frame[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], static_comp(trunc_series)) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(static_comp, raw=raw), check_names=False, ) # excluding NaNs correctly obj = Series(randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN if has_min_periods: result = get_result(obj, 50, min_periods=30) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # min_periods is working correctly result = get_result(obj, 20, min_periods=15) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(randn(20)) result = get_result(obj2, 10, min_periods=5) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if zero_min_periods_equal: # min_periods=0 may be equivalent to min_periods=1 result0 = get_result(obj, 20, min_periods=0) result1 = get_result(obj, 20, min_periods=1) tm.assert_almost_equal(result0, result1) else: result = get_result(obj, 50) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # window larger than series length (#7297) if has_min_periods: for minp in (0, len(series) - 1, len(series)): result = get_result(series, len(series) + 1, min_periods=minp) expected = get_result(series, len(series), min_periods=minp) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) else: result = get_result(series, len(series) + 1, min_periods=0) expected = get_result(series, len(series), min_periods=0) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) # check center=True if has_center: if has_min_periods: result = get_result(obj, 20, min_periods=15, center=True) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=15 )[9:].reset_index(drop=True) else: result = get_result(obj, 20, min_periods=0, center=True) print(result) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=0 )[9:].reset_index(drop=True) tm.assert_series_equal(result, expected) # shifter index s = [f"x{x:d}" for x in range(12)] if has_min_periods: minp = 10 series_xp = ( get_result( series.reindex(list(series.index) + s), window=25, min_periods=minp ) .shift(-12) .reindex(series.index) ) frame_xp = ( get_result( frame.reindex(list(frame.index) + s), window=25, min_periods=minp ) .shift(-12) .reindex(frame.index) ) series_rs = get_result(series, window=25, min_periods=minp, center=True) frame_rs = get_result(frame, window=25, min_periods=minp, center=True) else: series_xp = ( get_result( series.reindex(list(series.index) + s), window=25, min_periods=0 ) .shift(-12) .reindex(series.index) ) frame_xp = ( get_result( frame.reindex(list(frame.index) + s), window=25, min_periods=0 ) .shift(-12) .reindex(frame.index) ) series_rs = get_result(series, window=25, min_periods=0, center=True) frame_rs = get_result(frame, window=25, min_periods=0, center=True) if fill_value is not None: series_xp = series_xp.fillna(fill_value) frame_xp = frame_xp.fillna(fill_value) tm.assert_series_equal(series_xp, series_rs) tm.assert_frame_equal(frame_xp, frame_rs) def test_centered_axis_validation(): # ok Series(np.ones(10)).rolling(window=3, center=True, axis=0).mean() # bad axis msg = "No axis named 1 for object type Series" with pytest.raises(ValueError, match=msg): Series(np.ones(10)).rolling(window=3, center=True, axis=1).mean() # ok ok DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=0).mean() DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=1).mean() # bad axis msg = "No axis named 2 for object type DataFrame" with pytest.raises(ValueError, match=msg): (DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=2).mean()) @td.skip_if_no_scipy def test_cmov_mean(): # GH 8238 vals = np.array([6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48]) result = Series(vals).rolling(5, center=True).mean() expected_values = [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] expected = Series(expected_values) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window(): # GH 8238 vals = np.array([6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48]) result = Series(vals).rolling(5, win_type="boxcar", center=True).mean() expected_values = [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] expected = Series(expected_values) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window_corner(): # GH 8238 # all nan vals = pd.Series([np.nan] * 10) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert np.isnan(result).all() # empty vals = pd.Series([], dtype=object) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert len(result) == 0 # shorter than window vals = pd.Series(np.random.randn(5)) result = vals.rolling(10, win_type="boxcar").mean() assert np.isnan(result).all() assert len(result) == 5 @td.skip_if_no_scipy @pytest.mark.parametrize( "f,xp", [ ( "mean", [ [np.nan, np.nan], [np.nan, np.nan], [9.252, 9.392], [8.644, 9.906], [8.87, 10.208], [6.81, 8.588], [7.792, 8.644], [9.05, 7.824], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "std", [ [np.nan, np.nan], [np.nan, np.nan], [3.789706, 4.068313], [3.429232, 3.237411], [3.589269, 3.220810], [3.405195, 2.380655], [3.281839, 2.369869], [3.676846, 1.801799], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "var", [ [np.nan, np.nan], [np.nan, np.nan], [14.36187, 16.55117], [11.75963, 10.48083], [12.88285, 10.37362], [11.59535, 5.66752], [10.77047, 5.61628], [13.51920, 3.24648], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "sum", [ [np.nan, np.nan], [np.nan, np.nan], [46.26, 46.96], [43.22, 49.53], [44.35, 51.04], [34.05, 42.94], [38.96, 43.22], [45.25, 39.12], [np.nan, np.nan], [np.nan, np.nan], ], ), ], ) def test_cmov_window_frame(f, xp): # Gh 8238 df = DataFrame( np.array( [ [12.18, 3.64], [10.18, 9.16], [13.24, 14.61], [4.51, 8.11], [6.15, 11.44], [9.14, 6.21], [11.31, 10.67], [2.94, 6.51], [9.42, 8.39], [12.44, 7.34], ] ) ) xp = DataFrame(np.array(xp)) roll = df.rolling(5, win_type="boxcar", center=True) rs = getattr(roll, f)() tm.assert_frame_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_na_min_periods(): # min_periods vals = Series(np.random.randn(10)) vals[4] = np.nan vals[8] = np.nan xp = vals.rolling(5, min_periods=4, center=True).mean() rs = vals.rolling(5, win_type="boxcar", min_periods=4, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular(win_types): # GH 8238 vals = np.array([6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48]) xps = { "hamming": [ np.nan, np.nan, 8.71384, 9.56348, 12.38009, 14.03687, 13.8567, 11.81473, np.nan, np.nan, ], "triang": [ np.nan, np.nan, 9.28667, 10.34667, 12.00556, 13.33889, 13.38, 12.33667, np.nan, np.nan, ], "barthann": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], "bohman": [ np.nan, np.nan, 7.61599, 9.1764, 12.83559, 14.17267, 14.65923, 11.10401, np.nan, np.nan, ], "blackmanharris": [ np.nan, np.nan, 6.97691, 9.16438, 13.05052, 14.02156, 15.10512, 10.74574, np.nan, np.nan, ], "nuttall": [ np.nan, np.nan, 7.04618, 9.16786, 13.02671, 14.03559, 15.05657, 10.78514, np.nan, np.nan, ], "blackman": [ np.nan, np.nan, 7.73345, 9.17869, 12.79607, 14.20036, 14.57726, 11.16988, np.nan, np.nan, ], "bartlett": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], } xp =
Series(xps[win_types])
pandas.Series
#!/usr/bin/env python3 import unittest from unittest.mock import patch import pandas as pd import numpy as np from tmc import points from tmc.utils import load, get_out, patch_helper module_name="src.operations_on_series" create_series = load(module_name, "create_series") modify_series = load(module_name, "modify_series") main = load(module_name, "main") ph = patch_helper(module_name) @points('p03-14.1') class OperationsOnSeries(unittest.TestCase): def test_creation(self): self.assertEqual("", "") L1=[2,3,4] L2=[9,8,7] indices=list("abc") # with patch(patch_name(module_name, "pd.core.series.Series"), wraps=pd.core.series.Series) as ps: with patch(ph("pd.Series"), wraps=pd.Series) as ps: ret = create_series(L1, L2) self.assertEqual(len(ret), 2, msg="Expected a pair of Series as a return value from function create_series!") s1, s2 = ret #ps.assert_called() self.assertEqual(ps.call_count, 2, msg="Expected the constructor pd.Series to be called exactly twice!") np.testing.assert_array_equal(s1.values, L1, err_msg="Expected values of first series to be %s" % L1) np.testing.assert_array_equal(s2.values, L2, err_msg="Expected values of second series to be %s" % L2) np.testing.assert_array_equal(s1.index, indices, err_msg="Expected the index of first series to be %s" % indices) np.testing.assert_array_equal(s2.index, indices, err_msg="Expected the index of second series to be %s" % indices) def test_modification(self): indices=list("abc") s1 = pd.Series([0,1,2], index=indices) s2 =
pd.Series([3,4,5], index=indices)
pandas.Series
""" Data structures for sparse float data. Life is made simpler by dealing only with float64 data """ # pylint: disable=E1101,E1103,W0231,E0202 from numpy import nan import numpy as np from pandas.core.common import _pickle_array, _unpickle_array, _try_sort from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import _check_slice_bounds, _maybe_convert_indices from pandas.core.series import Series from pandas.core.frame import (DataFrame, extract_index, _prep_ndarray, _default_index) from pandas.util.decorators import cache_readonly import pandas.core.common as com import pandas.core.datetools as datetools from pandas.sparse.series import SparseSeries from pandas.util.decorators import Appender import pandas.lib as lib class _SparseMockBlockManager(object): def __init__(self, sp_frame): self.sp_frame = sp_frame def get(self, item): return self.sp_frame[item].values def iget(self, i): return self.get(self.sp_frame.columns[i]) @property def shape(self): x, y = self.sp_frame.shape return y, x @property def axes(self): return [self.sp_frame.columns, self.sp_frame.index] @property def blocks(self): """ return our series in the column order """ return [ self.iget(i) for i, c in enumerate(self.sp_frame.columns) ] def get_numeric_data(self): # does not check, but assuming all numeric for now return self.sp_frame def get_bool_data(self): raise NotImplementedError class SparseDataFrame(DataFrame): """ DataFrame containing sparse floating point data in the form of SparseSeries objects Parameters ---------- data : same types as can be passed to DataFrame index : array-like, optional column : array-like, optional default_kind : {'block', 'integer'}, default 'block' Default sparse kind for converting Series to SparseSeries. Will not override SparseSeries passed into constructor default_fill_value : float Default fill_value for converting Series to SparseSeries. Will not override SparseSeries passed in """ _columns = None _series = None _is_mixed_type = False _col_klass = SparseSeries ndim = 2 def __init__(self, data=None, index=None, columns=None, default_kind='block', default_fill_value=None): if default_fill_value is None: default_fill_value = np.nan self.default_kind = default_kind self.default_fill_value = default_fill_value if isinstance(data, dict): sdict, columns, index = self._init_dict(data, index, columns) elif isinstance(data, (np.ndarray, list)): sdict, columns, index = self._init_matrix(data, index, columns) elif isinstance(data, DataFrame): sdict, columns, index = self._init_dict(data, data.index, data.columns) elif data is None: sdict = {} if index is None: index = Index([]) else: index = _ensure_index(index) if columns is None: columns = Index([]) else: for c in columns: sdict[c] = SparseSeries(np.nan, index=index, kind=self.default_kind, fill_value=self.default_fill_value) self._series = sdict self.columns = columns self.index = index def _from_axes(self, data, axes): columns, index = axes return self._constructor(data, index=index, columns=columns) @cache_readonly def _data(self): return _SparseMockBlockManager(self) def _consolidate_inplace(self): # do nothing when DataFrame calls this method pass def convert_objects(self, convert_dates=True): # XXX return self @property def _constructor(self): def wrapper(data, index=None, columns=None, copy=False): sf = SparseDataFrame(data, index=index, columns=columns, default_fill_value=self.default_fill_value, default_kind=self.default_kind) if copy: sf = sf.copy() return sf return wrapper def _init_dict(self, data, index, columns, dtype=None): # pre-filter out columns if we passed it if columns is not None: columns = _ensure_index(columns) data = dict((k, v) for k, v in data.iteritems() if k in columns) else: columns = Index(_try_sort(data.keys())) if index is None: index = extract_index(data.values()) sp_maker = lambda x: SparseSeries(x, index=index, kind=self.default_kind, fill_value=self.default_fill_value, copy=True) sdict = {} for k, v in data.iteritems(): if isinstance(v, Series): # Force alignment, no copy necessary if not v.index.equals(index): v = v.reindex(index) if not isinstance(v, SparseSeries): v = sp_maker(v) else: if isinstance(v, dict): v = [v.get(i, nan) for i in index] v = sp_maker(v) sdict[k] = v # TODO: figure out how to handle this case, all nan's? # add in any other columns we want to have (completeness) nan_vec = np.empty(len(index)) nan_vec.fill(nan) for c in columns: if c not in sdict: sdict[c] = sp_maker(nan_vec) return sdict, columns, index def _init_matrix(self, data, index, columns, dtype=None): data = _prep_ndarray(data, copy=False) N, K = data.shape if index is None: index = _default_index(N) if columns is None: columns = _default_index(K) if len(columns) != K: raise Exception('Column length mismatch: %d vs. %d' % (len(columns), K)) if len(index) != N: raise Exception('Index length mismatch: %d vs. %d' % (len(index), N)) data = dict([(idx, data[:, i]) for i, idx in enumerate(columns)]) return self._init_dict(data, index, columns, dtype) def __array_wrap__(self, result): return SparseDataFrame(result, index=self.index, columns=self.columns, default_kind=self.default_kind, default_fill_value=self.default_fill_value) def __getstate__(self): series = dict((k, (v.sp_index, v.sp_values)) for k, v in self.iteritems()) columns = self.columns index = self.index return (series, columns, index, self.default_fill_value, self.default_kind) def __setstate__(self, state): series, cols, idx, fv, kind = state if not isinstance(cols, Index): # pragma: no cover columns =
_unpickle_array(cols)
pandas.core.common._unpickle_array
""" Download, transform and simulate various binary datasets. """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: MIT from re import sub from collections import Counter from itertools import product from urllib.parse import urljoin from string import ascii_lowercase from zipfile import ZipFile from io import BytesIO, StringIO import requests import numpy as np import pandas as pd from sklearn.utils import check_X_y from imblearn.datasets import make_imbalance from .base import Datasets, FETCH_URLS, RANDOM_STATE class ImbalancedBinaryDatasets(Datasets): """Class to download, transform and save binary class imbalanced datasets.""" MULTIPLICATION_FACTORS = [2, 3] @staticmethod def _calculate_ratio(multiplication_factor, y): """Calculate ratio based on IRs multiplication factor.""" ratio = Counter(y).copy() ratio[1] = int(ratio[1] / multiplication_factor) return ratio def _make_imbalance(self, data, multiplication_factor): """Undersample the minority class.""" X_columns = [col for col in data.columns if col != "target"] X, y = check_X_y(data.loc[:, X_columns], data.target) if multiplication_factor > 1.0: sampling_strategy = self._calculate_ratio(multiplication_factor, y) X, y = make_imbalance( X, y, sampling_strategy=sampling_strategy, random_state=RANDOM_STATE ) data = pd.DataFrame(np.column_stack((X, y))) data.iloc[:, -1] = data.iloc[:, -1].astype(int) return data def download(self): """Download the datasets and append undersampled versions of them.""" super(ImbalancedBinaryDatasets, self).download() undersampled_datasets = [] for (name, data), factor in list( product(self.content_, self.MULTIPLICATION_FACTORS) ): ratio = self._calculate_ratio(factor, data.target) if ratio[1] >= 15: data = self._make_imbalance(data, factor) undersampled_datasets.append((f"{name} ({factor})", data)) self.content_ += undersampled_datasets return self def fetch_breast_tissue(self): """Download and transform the Breast Tissue Data Set. The minority class is identified as the `car` and `fad` labels and the majority class as the rest of the labels. http://archive.ics.uci.edu/ml/datasets/breast+tissue """ data = pd.read_excel(FETCH_URLS["breast_tissue"], sheet_name="Data") data = data.drop(columns="Case #").rename(columns={"Class": "target"}) data["target"] = data["target"].isin(["car", "fad"]).astype(int) return data def fetch_ecoli(self): """Download and transform the Ecoli Data Set. The minority class is identified as the `pp` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/ecoli """ data =
pd.read_csv(FETCH_URLS["ecoli"], header=None, delim_whitespace=True)
pandas.read_csv
import random import pickle import numpy as np import pandas as pd from sklearn.model_selection import train_test_split random.seed(1234) class dataPreprocess(object): def __init__(self, filepath): ''' Description: Initialization/Constructor function ''' self.filepath = filepath def preprocess(self): ''' Description: Function to preprocess the data and store as '.pkl' files INPUT: Path to the dataset folder (keep the dataset as 'ratings_data.txt' for ratings data and 'trust_data.txt' for social trust data OUTPUT: This function doesn't return anything but stores the data is '.pkl' files at the same folder. ''' ratingsData = np.loadtxt(self.filepath+'/ratings_data.txt', dtype = np.int32) trustData = np.loadtxt(self.filepath+'/trust_data.txt', dtype = np.int32) ratingsList = [] trustList = [] users = set() items = set() for row in ratingsData: userId = row[0] itemId = row[1] rating = row[2] if userId not in users: users.add(userId) if itemId not in items: items.add(itemId) ratingsList.append([userId,itemId,rating]) userCount = len(users) itemCount = len(items) for row in trustData: user1 = row[0] user2 = row[1] trust = row[2] trustList.append([user1, user2, trust]) newDF = pd.DataFrame(ratingsList, columns=['userId','itemId','rating']) X = np.array([newDF['userId'],newDF['itemId']]).T y = np.array([newDF['rating']]).T X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0, stratify=y) train = pd.DataFrame(X_train,columns = ['userId','itemId']) train['rating'] =
pd.DataFrame(y_train)
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright © 2017 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause # This software may be modified and distributed under the terms # of the BSD license. See the LICENSE file for details. from __future__ import print_function as _ from __future__ import division as _ from __future__ import absolute_import as _ from ..data_structures.sarray import SArray from ..data_structures.sframe import SFrame from ..data_structures.sarray import load_sarray from .._cython.cy_flexible_type import GMT from . import util import pandas as pd import numpy as np import unittest import random import datetime as dt import copy import os import math import shutil import array import time import warnings import functools import tempfile import sys import six class SArrayTest(unittest.TestCase): def setUp(self): self.int_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.bool_data = [x % 2 == 0 for x in range(10)] self.datetime_data = [dt.datetime(2013, 5, 7, 10, 4, 10), dt.datetime(1902, 10, 21, 10, 34, 10).replace(tzinfo=GMT(0.0)),None] self.datetime_data2 = [dt.datetime(2013, 5, 7, 10, 4, 10, 109321), dt.datetime(1902, 10, 21, 10, 34, 10, 991111).replace(tzinfo=GMT(0.0)),None] self.float_data = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.] self.string_data = ["abc", "def", "hello", "world", "pika", "chu", "hello", "world"] self.vec_data = [array.array('d', [i, i+1]) for i in self.int_data] self.np_array_data = [np.array(x) for x in self.vec_data] self.empty_np_array_data = [np.array([])] self.np_matrix_data = [np.matrix(x) for x in self.vec_data] self.list_data = [[i, str(i), i * 1.0] for i in self.int_data] self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] self.url = "http://s3-us-west-2.amazonaws.com/testdatasets/a_to_z.txt.gz" def __test_equal(self, _sarray, _data, _type): self.assertEqual(_sarray.dtype, _type) self.assertEqual(len(_sarray), len(_data)) sarray_contents = list(_sarray.head(len(_sarray))) if _type == np.ndarray: # Special case for np.ndarray elements, which assertSequenceEqual # does not handle. np.testing.assert_array_equal(sarray_contents, _data) else: # Use unittest methods when possible for better consistency. self.assertSequenceEqual(sarray_contents, _data) def __test_almost_equal(self, _sarray, _data, _type): self.assertEqual(_sarray.dtype, _type) self.assertEqual(len(_sarray), len(_data)) l = list(_sarray) for i in range(len(l)): if type(l[i]) in (list, array.array): for j in range(len(l[i])): self.assertAlmostEqual(l[i][j], _data[i][j]) else: self.assertAlmostEqual(l[i], _data[i]) def __test_creation_raw(self, data, dtype, expected): s = SArray(data, dtype) self.__test_equal(s, expected, dtype) def __test_creation_pd(self, data, dtype, expected): s = SArray(pd.Series(data), dtype) self.__test_equal(s, expected, dtype) def __test_creation(self, data, dtype, expected): """ Create sarray from data with dtype, and test it equals to expected. """ self.__test_creation_raw(data, dtype, expected) self.__test_creation_pd(data, dtype, expected) def __test_creation_type_inference_raw(self, data, expected_dtype, expected): s = SArray(data) self.__test_equal(s, expected, expected_dtype) def __test_creation_type_inference_pd(self, data, expected_dtype, expected): s = SArray(pd.Series(data)) self.__test_equal(s, expected, expected_dtype) def __test_creation_type_inference(self, data, expected_dtype, expected): """ Create sarray from data with dtype, and test it equals to expected. """ self.__test_creation_type_inference_raw(data, expected_dtype, expected) self.__test_creation_type_inference_pd(data, expected_dtype, expected) def test_creation(self): self.__test_creation(self.int_data, int, self.int_data) self.__test_creation(self.int_data, float, [float(x) for x in self.int_data]) self.__test_creation(self.int_data, str, [str(x) for x in self.int_data]) self.__test_creation(self.float_data, float, self.float_data) self.assertRaises(TypeError, self.__test_creation, [self.float_data, int]) self.__test_creation(self.string_data, str, self.string_data) self.assertRaises(TypeError, self.__test_creation, [self.string_data, int]) self.assertRaises(TypeError, self.__test_creation, [self.string_data, float]) expected_output = [chr(x) for x in range(ord('a'), ord('a') + 26)] self.__test_equal(SArray(self.url, str), expected_output, str) self.__test_creation(self.vec_data, array.array, self.vec_data) self.__test_creation(self.np_array_data, np.ndarray, self.np_array_data) self.__test_creation(self.empty_np_array_data, np.ndarray, self.empty_np_array_data) self.__test_creation(self.np_matrix_data, np.ndarray, self.np_matrix_data) self.__test_creation(self.list_data, list, self.list_data) self.__test_creation(self.dict_data, dict, self.dict_data) # test with map/filter type self.__test_creation_raw(map(lambda x: x + 10, self.int_data), int, [x + 10 for x in self.int_data]) self.__test_creation_raw(map(lambda x: x * 10, self.int_data), float, [float(x) * 10 for x in self.int_data]) self.__test_creation_raw(map(lambda x: x * 10, self.string_data), str, [x * 10 for x in self.string_data]) self.__test_creation_raw(filter(lambda x: x < 5, self.int_data), int, list(filter(lambda x: x < 5, self.int_data))) self.__test_creation_raw(filter(lambda x: x > 5, self.float_data), float, list(filter(lambda x: x > 5, self.float_data))) self.__test_creation_raw(filter(lambda x: len(x) > 3, self.string_data), str, list(filter(lambda x: len(x) > 3, self.string_data))) self.__test_creation_pd(map(lambda x: x + 10, self.int_data), int, [x + 10 for x in self.int_data]) self.__test_creation_pd(map(lambda x: x * 10, self.int_data), float, [float(x) * 10 for x in self.int_data]) self.__test_creation_pd(map(lambda x: x * 10, self.string_data), str, [x * 10 for x in self.string_data]) # test with type inference self.__test_creation_type_inference(self.int_data, int, self.int_data) self.__test_creation_type_inference(self.float_data, float, self.float_data) self.__test_creation_type_inference(self.bool_data, int, [int(x) for x in self.bool_data]) self.__test_creation_type_inference(self.string_data, str, self.string_data) self.__test_creation_type_inference(self.vec_data, array.array, self.vec_data) self.__test_creation_type_inference(self.np_array_data, np.ndarray, self.np_array_data) self.__test_creation_type_inference(self.empty_np_array_data, np.ndarray, self.empty_np_array_data) self.__test_creation_type_inference(self.np_matrix_data, np.ndarray, self.np_matrix_data) self.__test_creation_type_inference([np.bool_(True),np.bool_(False)],int,[1,0]) self.__test_creation((1,2,3,4), int, [1,2,3,4]) self.__test_creation_type_inference_raw(map(lambda x: x + 10, self.int_data), int, [x + 10 for x in self.int_data]) self.__test_creation_type_inference_raw(map(lambda x: x * 10, self.float_data), float, [x * 10 for x in self.float_data]) self.__test_creation_type_inference_raw(map(lambda x: x * 10, self.string_data), str, [x * 10 for x in self.string_data]) self.__test_creation_type_inference_pd(map(lambda x: x + 10, self.int_data), int, [x + 10 for x in self.int_data]) self.__test_creation_type_inference_pd(map(lambda x: x * 10, self.float_data), float, [float(x) * 10 for x in self.float_data]) self.__test_creation_type_inference_pd(map(lambda x: x * 10, self.string_data), str, [x * 10 for x in self.string_data]) self.__test_creation_type_inference_raw(filter(lambda x: x < 5, self.int_data), int, list(filter(lambda x: x < 5, self.int_data))) self.__test_creation_type_inference_raw(filter(lambda x: x > 5, self.float_data), float, list(filter(lambda x: x > 5, self.float_data))) self.__test_creation_type_inference_raw(filter(lambda x: len(x) > 3, self.string_data), str, list(filter(lambda x: len(x) > 3, self.string_data))) # genertors def __generator_parrot(data): for ii in data: yield ii self.__test_creation_raw(__generator_parrot(self.int_data), int, self.int_data) self.__test_creation_raw(__generator_parrot(self.float_data), float, self.float_data) self.__test_creation_raw(__generator_parrot(self.string_data), str, self.string_data) self.__test_creation_pd(__generator_parrot(self.int_data), int, self.int_data) self.__test_creation_pd(__generator_parrot(self.float_data), float, self.float_data) self.__test_creation_pd(__generator_parrot(self.string_data), str, self.string_data) self.__test_creation_type_inference_raw(__generator_parrot(self.int_data), int, self.int_data) self.__test_creation_type_inference_raw(__generator_parrot(self.float_data), float, self.float_data) self.__test_creation_type_inference_raw(__generator_parrot(self.string_data), str, self.string_data) self.__test_creation_type_inference_pd(__generator_parrot(self.int_data), int, self.int_data) self.__test_creation_type_inference_pd(__generator_parrot(self.float_data), float, self.float_data) self.__test_creation_type_inference_pd(__generator_parrot(self.string_data), str, self.string_data) # Test numpy types, which are not compatible with the pd.Series path in # __test_creation and __test_creation_type_inference self.__test_equal(SArray(np.array(self.vec_data), array.array), self.vec_data, array.array) self.__test_equal(SArray(np.matrix(self.vec_data), array.array), self.vec_data, array.array) self.__test_equal(SArray(np.array(self.vec_data)), self.vec_data, array.array) self.__test_equal(SArray(np.matrix(self.vec_data)), self.vec_data, array.array) # Test python 3 self.__test_equal(SArray(filter(lambda x: True, self.int_data)), self.int_data, int) self.__test_equal(SArray(map(lambda x: x, self.int_data)), self.int_data, int) def test_list_with_none_creation(self): tlist=[[2,3,4],[5,6],[4,5,10,None]] g=SArray(tlist) self.assertEqual(len(g), len(tlist)) for i in range(len(tlist)): self.assertEqual(g[i], tlist[i]) def test_list_with_array_creation(self): import array t = array.array('d',[1.1,2,3,4,5.5]) g=SArray(t) self.assertEqual(len(g), len(t)) self.assertEqual(g.dtype, float) glist = list(g) for i in range(len(glist)): self.assertAlmostEqual(glist[i], t[i]) t = array.array('i',[1,2,3,4,5]) g=SArray(t) self.assertEqual(len(g), len(t)) self.assertEqual(g.dtype, int) glist = list(g) for i in range(len(glist)): self.assertEqual(glist[i], t[i]) def test_in(self): sint = SArray(self.int_data, int) self.assertTrue(5 in sint) self.assertFalse(20 in sint) sstr = SArray(self.string_data, str) self.assertTrue("abc" in sstr) self.assertFalse("zzzzzz" in sstr) self.assertFalse("" in sstr) self.__test_equal(sstr.contains("ll"), ["ll" in i for i in self.string_data], int) self.__test_equal(sstr.contains("a"), ["a" in i for i in self.string_data], int) svec = SArray([[1.0,2.0],[2.0,3.0],[3.0,4.0],[4.0,5.0]], array.array) self.__test_equal(svec.contains(1.0), [1,0,0,0], int) self.__test_equal(svec.contains(0.0), [0,0,0,0], int) self.__test_equal(svec.contains(2), [1,1,0,0], int) slist = SArray([[1,"22"],[2,"33"],[3,"44"],[4,None]], list) self.__test_equal(slist.contains(1.0), [1,0,0,0], int) self.__test_equal(slist.contains(3), [0,0,1,0], int) self.__test_equal(slist.contains("33"), [0,1,0,0], int) self.__test_equal(slist.contains("3"), [0,0,0,0], int) self.__test_equal(slist.contains(None), [0,0,0,1], int) sdict = SArray([{1:"2"},{2:"3"},{3:"4"},{"4":"5"}], dict) self.__test_equal(sdict.contains(1.0), [1,0,0,0], int) self.__test_equal(sdict.contains(3), [0,0,1,0], int) self.__test_equal(sdict.contains("4"), [0,0,0,1], int) self.__test_equal(sdict.contains("3"), [0,0,0,0], int) self.__test_equal(SArray(['ab','bc','cd']).is_in('abc'), [1,1,0], int) self.__test_equal(SArray(['a','b','c']).is_in(['a','b']), [1,1,0], int) self.__test_equal(SArray([1,2,3]).is_in(array.array('d',[1.0,2.0])), [1,1,0], int) self.__test_equal(SArray([1,2,None]).is_in([1, None]), [1,0,1], int) self.__test_equal(SArray([1,2,None]).is_in([1]), [1,0,0], int) def test_save_load(self): # Check top level load function with util.TempDirectory() as f: sa = SArray(self.float_data) sa.save(f) sa2 = load_sarray(f) self.__test_equal(sa2, self.float_data, float) # Make sure these files don't exist before testing self._remove_sarray_files("intarr") self._remove_sarray_files("fltarr") self._remove_sarray_files("strarr") self._remove_sarray_files("vecarr") self._remove_sarray_files("listarr") self._remove_sarray_files("dictarr") sint = SArray(self.int_data, int) sflt = SArray([float(x) for x in self.int_data], float) sstr = SArray([str(x) for x in self.int_data], str) svec = SArray(self.vec_data, array.array) slist = SArray(self.list_data, list) sdict = SArray(self.dict_data, dict) sint.save('intarr.sidx') sflt.save('fltarr.sidx') sstr.save('strarr.sidx') svec.save('vecarr.sidx') slist.save('listarr.sidx') sdict.save('dictarr.sidx') sint2 = SArray('intarr.sidx') sflt2 = SArray('fltarr.sidx') sstr2 = SArray('strarr.sidx') svec2 = SArray('vecarr.sidx') slist2 = SArray('listarr.sidx') sdict2 = SArray('dictarr.sidx') self.assertRaises(IOError, lambda: SArray('__no_such_file__.sidx')) self.__test_equal(sint2, self.int_data, int) self.__test_equal(sflt2, [float(x) for x in self.int_data], float) self.__test_equal(sstr2, [str(x) for x in self.int_data], str) self.__test_equal(svec2, self.vec_data, array.array) self.__test_equal(slist2, self.list_data, list) self.__test_equal(sdict2, self.dict_data, dict) #cleanup del sint2 del sflt2 del sstr2 del svec2 del slist2 del sdict2 self._remove_sarray_files("intarr") self._remove_sarray_files("fltarr") self._remove_sarray_files("strarr") self._remove_sarray_files("vecarr") self._remove_sarray_files("listarr") self._remove_sarray_files("dictarr") def test_save_load_text(self): self._remove_single_file('txt_int_arr.txt') sint = SArray(self.int_data, int) sint.save('txt_int_arr.txt') self.assertTrue(os.path.exists('txt_int_arr.txt')) f = open('txt_int_arr.txt') lines = f.readlines() for i in range(len(sint)): self.assertEqual(int(lines[i]), sint[i]) self._remove_single_file('txt_int_arr.txt') self._remove_single_file('txt_int_arr') sint.save('txt_int_arr', format='text') self.assertTrue(os.path.exists('txt_int_arr')) f = open('txt_int_arr') lines = f.readlines() for i in range(len(sint)): self.assertEqual(int(lines[i]), sint[i]) self._remove_single_file('txt_int_arr') def _remove_single_file(self, filename): try: os.remove(filename) except: pass def _remove_sarray_files(self, prefix): filelist = [ f for f in os.listdir(".") if f.startswith(prefix) ] for f in filelist: shutil.rmtree(f) def test_transform(self): sa_char = SArray(self.url, str) sa_int = sa_char.apply(lambda char: ord(char), int) expected_output = [x for x in range(ord('a'), ord('a') + 26)] self.__test_equal(sa_int, expected_output, int) # Test randomness across segments, randomized sarray should have different elements. sa_random = SArray(range(0, 16), int).apply(lambda x: random.randint(0, 1000), int) vec = list(sa_random.head(len(sa_random))) self.assertFalse(all([x == vec[0] for x in vec])) # test transform with missing values sa = SArray([1,2,3,None,4,5]) sa1 = sa.apply(lambda x : x + 1) self.__test_equal(sa1, [2,3,4,None,5,6], int) def test_transform_with_multiple_lambda(self): sa_char = SArray(self.url, str) sa_int = sa_char.apply(lambda char: ord(char), int) sa2_int = sa_int.apply(lambda val: val + 1, int) expected_output = [x for x in range(ord('a') + 1, ord('a') + 26 + 1)] self.__test_equal(sa2_int, expected_output, int) def test_transform_with_exception(self): sa_char = SArray(['a' for i in range(10000)], str) # # type mismatch exception self.assertRaises(TypeError, lambda: sa_char.apply(lambda char: char, int).head(1)) # # divide by 0 exception self.assertRaises(ZeroDivisionError, lambda: sa_char.apply(lambda char: ord(char) / 0, float)) def test_transform_with_type_inference(self): sa_char = SArray(self.url, str) sa_int = sa_char.apply(lambda char: ord(char)) expected_output = [x for x in range(ord('a'), ord('a') + 26)] self.__test_equal(sa_int, expected_output, int) sa_bool = sa_char.apply(lambda char: ord(char) > ord('c')) expected_output = [int(x > ord('c')) for x in range(ord('a'), ord('a') + 26)] self.__test_equal(sa_bool, expected_output, int) # # divide by 0 exception self.assertRaises(ZeroDivisionError, lambda: sa_char.apply(lambda char: ord(char) / 0)) # Test randomness across segments, randomized sarray should have different elements. sa_random = SArray(range(0, 16), int).apply(lambda x: random.randint(0, 1000)) vec = list(sa_random.head(len(sa_random))) self.assertFalse(all([x == vec[0] for x in vec])) def test_transform_on_lists(self): sa_int = SArray(self.int_data, int) sa_vec2 = sa_int.apply(lambda x: [x, x+1, str(x)]) expected = [[i, i + 1, str(i)] for i in self.int_data] self.__test_equal(sa_vec2, expected, list) sa_int_again = sa_vec2.apply(lambda x: int(x[0])) self.__test_equal(sa_int_again, self.int_data, int) # transform from vector to vector sa_vec = SArray(self.vec_data, array.array) sa_vec2 = sa_vec.apply(lambda x: x) self.__test_equal(sa_vec2, self.vec_data, array.array) # transform on list sa_list = SArray(self.list_data, list) sa_list2 = sa_list.apply(lambda x: x) self.__test_equal(sa_list2, self.list_data, list) # transform dict to list sa_dict = SArray(self.dict_data, dict) # Python 3 doesn't return keys in same order from identical dictionaries. sort_by_type = lambda x : str(type(x)) sa_list = sa_dict.apply(lambda x: sorted(list(x), key = sort_by_type)) self.__test_equal(sa_list, [sorted(list(x), key = sort_by_type) for x in self.dict_data], list) def test_transform_dict(self): # lambda accesses dict sa_dict = SArray([{'a':1}, {1:2}, {'c': 'a'}, None], dict) sa_bool_r = sa_dict.apply(lambda x: 'a' in x if x is not None else None, skip_na=False) expected_output = [1, 0, 0, None] self.__test_equal(sa_bool_r, expected_output, int) # lambda returns dict expected_output = [{'a':1}, {1:2}, None, {'c': 'a'}] sa_dict = SArray(expected_output, dict) lambda_out = sa_dict.apply(lambda x: x) self.__test_equal(lambda_out, expected_output, dict) def test_filter_dict(self): expected_output = [{'a':1}] sa_dict = SArray(expected_output, dict) ret = sa_dict.filter(lambda x: 'a' in x) self.__test_equal(ret, expected_output, dict) # try second time to make sure the lambda system still works expected_output = [{1:2}] sa_dict = SArray(expected_output, dict) lambda_out = sa_dict.filter(lambda x: 1 in x) self.__test_equal(lambda_out, expected_output, dict) def test_filter(self): # test empty s = SArray([], float) no_change = s.filter(lambda x : x == 0) self.assertEqual(len(no_change), 0) # test normal case s = SArray(self.int_data, int) middle_of_array = s.filter(lambda x: x > 3 and x < 8) self.assertEqual(list(middle_of_array.head(10)), [x for x in range(4,8)]) # test normal string case s = SArray(self.string_data, str) exp_val_list = [x for x in self.string_data if x != 'world'] # Remove all words whose second letter is not in the first half of the alphabet second_letter = s.filter(lambda x: len(x) > 1 and (ord(x[1]) > ord('a')) and (ord(x[1]) < ord('n'))) self.assertEqual(list(second_letter.head(10)), exp_val_list) # test not-a-lambda def a_filter_func(x): return ((x > 4.4) and (x < 6.8)) s = SArray(self.int_data, float) another = s.filter(a_filter_func) self.assertEqual(list(another.head(10)), [5.,6.]) sa = SArray(self.float_data) # filter by self sa2 = sa[sa] self.assertEqual(list(sa.head(10)), list(sa2.head(10))) # filter by zeros sa_filter = SArray([0,0,0,0,0,0,0,0,0,0]) sa2 = sa[sa_filter] self.assertEqual(len(sa2), 0) # filter by wrong size sa_filter = SArray([0,2,5]) with self.assertRaises(IndexError): sa2 = sa[sa_filter] def test_any_all(self): s = SArray([0,1,2,3,4,5,6,7,8,9], int) self.assertEqual(s.any(), True) self.assertEqual(s.all(), False) s = SArray([0,0,0,0,0], int) self.assertEqual(s.any(), False) self.assertEqual(s.all(), False) s = SArray(self.string_data, str) self.assertEqual(s.any(), True) self.assertEqual(s.all(), True) s = SArray(self.int_data, int) self.assertEqual(s.any(), True) self.assertEqual(s.all(), True) # test empty s = SArray([], int) self.assertEqual(s.any(), False) self.assertEqual(s.all(), True) s = SArray([[], []], array.array) self.assertEqual(s.any(), False) self.assertEqual(s.all(), False) s = SArray([[],[1.0]], array.array) self.assertEqual(s.any(), True) self.assertEqual(s.all(), False) def test_astype(self): # test empty s = SArray([], int) as_out = s.astype(float) self.assertEqual(as_out.dtype, float) # test float -> int s = SArray(list(map(lambda x: x+0.2, self.float_data)), float) as_out = s.astype(int) self.assertEqual(list(as_out.head(10)), self.int_data) # test int->string s = SArray(self.int_data, int) as_out = s.astype(str) self.assertEqual(list(as_out.head(10)), list(map(lambda x: str(x), self.int_data))) i_out = as_out.astype(int) self.assertEqual(list(i_out.head(10)), list(s.head(10))) s = SArray(self.vec_data, array.array) with self.assertRaises(RuntimeError): s.astype(int) with self.assertRaises(RuntimeError): s.astype(float) s = SArray(["a","1","2","3"]) with self.assertRaises(RuntimeError): s.astype(int) self.assertEqual(list(s.astype(int,True).head(4)), [None,1,2,3]) s = SArray(["[1 2 3]","[4;5]"]) ret = list(s.astype(array.array).head(2)) self.assertEqual(ret, [array.array('d',[1,2,3]),array.array('d',[4,5])]) s = SArray(["[1,\"b\",3]","[4,5]"]) ret = list(s.astype(list).head(2)) self.assertEqual(ret, [[1,"b",3],[4,5]]) s = SArray(["{\"a\":2,\"b\":3}","{}"]) ret = list(s.astype(dict).head(2)) self.assertEqual(ret, [{"a":2,"b":3},{}]) s = SArray(["[1abc]"]) ret = list(s.astype(list).head(1)) self.assertEqual(ret, [["1abc"]]) s = SArray(["{1xyz:1a,2b:2}"]) ret = list(s.astype(dict).head(1)) self.assertEqual(ret, [{"1xyz":"1a","2b":2}]) # astype between list and array s = SArray([array.array('d',[1.0,2.0]), array.array('d',[2.0,3.0])]) ret = list(s.astype(list)) self.assertEqual(ret, [[1.0, 2.0], [2.0,3.0]]) ret = list(s.astype(list).astype(array.array)) self.assertEqual(list(s), list(ret)) with self.assertRaises(RuntimeError): ret = list(SArray([["a",1.0],["b",2.0]]).astype(array.array)) badcast = list(SArray([["a",1.0],["b",2.0]]).astype(array.array, undefined_on_failure=True)) self.assertEqual(badcast, [None, None]) with self.assertRaises(TypeError): s.astype(None) def test_clip(self): # invalid types s = SArray(self.string_data, str) with self.assertRaises(RuntimeError): s.clip(25,26) with self.assertRaises(RuntimeError): s.clip_lower(25) with self.assertRaises(RuntimeError): s.clip_upper(26) # int w/ int, test lower and upper functions too # int w/float, no change s = SArray(self.int_data, int) clip_out = s.clip(3,7).head(10) # test that our list isn't cast to float if nothing happened clip_out_nc = s.clip(0.2, 10.2).head(10) lclip_out = s.clip_lower(3).head(10) rclip_out = s.clip_upper(7).head(10) self.assertEqual(len(clip_out), len(self.int_data)) self.assertEqual(len(lclip_out), len(self.int_data)) self.assertEqual(len(rclip_out), len(self.int_data)) for i in range(0,len(clip_out)): if i < 2: self.assertEqual(clip_out[i], 3) self.assertEqual(lclip_out[i], 3) self.assertEqual(rclip_out[i], self.int_data[i]) self.assertEqual(clip_out_nc[i], self.int_data[i]) elif i > 6: self.assertEqual(clip_out[i], 7) self.assertEqual(lclip_out[i], self.int_data[i]) self.assertEqual(rclip_out[i], 7) self.assertEqual(clip_out_nc[i], self.int_data[i]) else: self.assertEqual(clip_out[i], self.int_data[i]) self.assertEqual(clip_out_nc[i], self.int_data[i]) # int w/float, change # float w/int # float w/float clip_out = s.clip(2.8, 7.2).head(10) fs = SArray(self.float_data, float) ficlip_out = fs.clip(3, 7).head(10) ffclip_out = fs.clip(2.8, 7.2).head(10) for i in range(0,len(clip_out)): if i < 2: self.assertAlmostEqual(clip_out[i], 2.8) self.assertAlmostEqual(ffclip_out[i], 2.8) self.assertAlmostEqual(ficlip_out[i], 3.) elif i > 6: self.assertAlmostEqual(clip_out[i], 7.2) self.assertAlmostEqual(ffclip_out[i], 7.2) self.assertAlmostEqual(ficlip_out[i], 7.) else: self.assertAlmostEqual(clip_out[i], self.float_data[i]) self.assertAlmostEqual(ffclip_out[i], self.float_data[i]) self.assertAlmostEqual(ficlip_out[i], self.float_data[i]) vs = SArray(self.vec_data, array.array) clipvs = vs.clip(3, 7).head(100) self.assertEqual(len(clipvs), len(self.vec_data)) for i in range(0, len(clipvs)): a = clipvs[i] b = self.vec_data[i] self.assertEqual(len(a), len(b)) for j in range(0, len(b)): if b[j] < 3: b[j] = 3 elif b[j] > 7: b[j] = 7 self.assertEqual(a, b) def test_missing(self): s=SArray(self.int_data, int) self.assertEqual(s.countna(), 0) s=SArray(self.int_data + [None], int) self.assertEqual(s.countna(), 1) s=SArray(self.float_data, float) self.assertEqual(s.countna(), 0) s=SArray(self.float_data + [None], float) self.assertEqual(s.countna(), 1) s=SArray(self.string_data, str) self.assertEqual(s.countna(), 0) s=SArray(self.string_data + [None], str) self.assertEqual(s.countna(), 1) s=SArray(self.vec_data, array.array) self.assertEqual(s.countna(), 0) s=SArray(self.vec_data + [None], array.array) self.assertEqual(s.countna(), 1) def test_nonzero(self): # test empty s = SArray([],int) nz_out = s.nnz() self.assertEqual(nz_out, 0) # test all nonzero s = SArray(self.float_data, float) nz_out = s.nnz() self.assertEqual(nz_out, len(self.float_data)) # test all zero s = SArray([0 for x in range(0,10)], int) nz_out = s.nnz() self.assertEqual(nz_out, 0) # test strings str_list = copy.deepcopy(self.string_data) str_list.append("") s = SArray(str_list, str) nz_out = s.nnz() self.assertEqual(nz_out, len(self.string_data)) def test_std_var(self): # test empty s = SArray([], int) self.assertTrue(s.std() is None) self.assertTrue(s.var() is None) # increasing ints s = SArray(self.int_data, int) self.assertAlmostEqual(s.var(), 8.25) self.assertAlmostEqual(s.std(), 2.8722813) # increasing floats s = SArray(self.float_data, float) self.assertAlmostEqual(s.var(), 8.25) self.assertAlmostEqual(s.std(), 2.8722813) # vary ddof self.assertAlmostEqual(s.var(ddof=3), 11.7857143) self.assertAlmostEqual(s.var(ddof=6), 20.625) self.assertAlmostEqual(s.var(ddof=9), 82.5) self.assertAlmostEqual(s.std(ddof=3), 3.4330328) self.assertAlmostEqual(s.std(ddof=6), 4.5414755) self.assertAlmostEqual(s.std(ddof=9), 9.08295106) # bad ddof with self.assertRaises(RuntimeError): s.var(ddof=11) with self.assertRaises(RuntimeError): s.std(ddof=11) # bad type s = SArray(self.string_data, str) with self.assertRaises(RuntimeError): s.std() with self.assertRaises(RuntimeError): s.var() # overflow test huge_int = 9223372036854775807 s = SArray([1, huge_int], int) self.assertAlmostEqual(s.var(), 21267647932558653957237540927630737409.0) self.assertAlmostEqual(s.std(), 4611686018427387900.0) def test_tail(self): # test empty s = SArray([], int) self.assertEqual(len(s.tail()), 0) # test standard tail s = SArray([x for x in range(0,40)], int) self.assertEqual(list(s.tail()), [x for x in range(30,40)]) # smaller amount self.assertEqual(list(s.tail(3)), [x for x in range(37,40)]) # larger amount self.assertEqual(list(s.tail(40)), [x for x in range(0,40)]) # too large self.assertEqual(list(s.tail(81)), [x for x in range(0,40)]) def test_max_min_sum_mean(self): # negative and positive s = SArray([-2,-1,0,1,2], int) self.assertEqual(s.max(), 2) self.assertEqual(s.min(), -2) self.assertEqual(s.sum(), 0) self.assertAlmostEqual(s.mean(), 0.) # test valid and invalid types s = SArray(self.string_data, str) with self.assertRaises(RuntimeError): s.max() with self.assertRaises(RuntimeError): s.min() with self.assertRaises(RuntimeError): s.sum() with self.assertRaises(RuntimeError): s.mean() s = SArray(self.int_data, int) self.assertEqual(s.max(), 10) self.assertEqual(s.min(), 1) self.assertEqual(s.sum(), 55) self.assertAlmostEqual(s.mean(), 5.5) s = SArray(self.float_data, float) self.assertEqual(s.max(), 10.) self.assertEqual(s.min(), 1.) self.assertEqual(s.sum(), 55.) self.assertAlmostEqual(s.mean(), 5.5) # test all negative s = SArray(list(map(lambda x: x*-1, self.int_data)), int) self.assertEqual(s.max(), -1) self.assertEqual(s.min(), -10) self.assertEqual(s.sum(), -55) self.assertAlmostEqual(s.mean(), -5.5) # test empty s = SArray([], float) self.assertTrue(s.max() is None) self.assertTrue(s.min() is None) self.assertTrue(s.mean() is None) # test sum t = SArray([], float).sum() self.assertTrue(type(t) == float) self.assertTrue(t == 0.0) t = SArray([], int).sum() self.assertTrue(type(t) == int or type(t) == long) self.assertTrue(t == 0) self.assertTrue(SArray([], array.array).sum() == array.array('d',[])) # test big ints huge_int = 9223372036854775807 s = SArray([1, huge_int], int) self.assertEqual(s.max(), huge_int) self.assertEqual(s.min(), 1) # yes, we overflow self.assertEqual(s.sum(), (huge_int+1)*-1) # ...but not here self.assertAlmostEqual(s.mean(), 4611686018427387904.) a = SArray([[1,2],[1,2],[1,2]], array.array) self.assertEqual(a.sum(), array.array('d', [3,6])) self.assertEqual(a.mean(), array.array('d', [1,2])) with self.assertRaises(RuntimeError): a.max() with self.assertRaises(RuntimeError): a.min() a = SArray([[1,2],[1,2],[1,2,3]], array.array) with self.assertRaises(RuntimeError): a.sum() with self.assertRaises(RuntimeError): a.mean() def test_max_min_sum_mean_missing(self): # negative and positive s = SArray([-2,0,None,None,None], int) self.assertEqual(s.max(), 0) self.assertEqual(s.min(), -2) self.assertEqual(s.sum(), -2) self.assertAlmostEqual(s.mean(), -1) s = SArray([None,None,None], int) self.assertEqual(s.max(), None) self.assertEqual(s.min(), None) self.assertEqual(s.sum(), 0) self.assertEqual(s.mean(), None) def test_python_special_functions(self): s = SArray([], int) self.assertEqual(len(s), 0) self.assertEqual(str(s), '[]') self.assertRaises(ValueError, lambda: bool(s)) # increasing ints s = SArray(self.int_data, int) self.assertEqual(len(s), len(self.int_data)) self.assertEqual(list(s), self.int_data) self.assertRaises(ValueError, lambda: bool(s)) realsum = sum(self.int_data) sum1 = sum([x for x in s]) sum2 = s.sum() sum3 = s.apply(lambda x:x, int).sum() self.assertEqual(sum1, realsum) self.assertEqual(sum2, realsum) self.assertEqual(sum3, realsum) # abs s=np.array(range(-10, 10)) t = SArray(s, int) self.__test_equal(abs(t), list(abs(s)), int) t = SArray(s, float) self.__test_equal(abs(t), list(abs(s)), float) t = SArray([s], array.array) self.__test_equal(SArray(abs(t)[0]), list(abs(s)), float) def test_scalar_operators(self): s=np.array([1,2,3,4,5,6,7,8,9,10]) t = SArray(s, int) self.__test_equal(t + 1, list(s + 1), int) self.__test_equal(t - 1, list(s - 1), int) # we handle division differently. All divisions cast to float self.__test_equal(t / 2, list(s / 2.0), float) self.__test_equal(t * 2, list(s * 2), int) self.__test_equal(t ** 2, list(s ** 2), float) self.__test_almost_equal(t ** 0.5, list(s ** 0.5), float) self.__test_equal(((t ** 2) ** 0.5 + 1e-8).astype(int), list(s), int) self.__test_equal(t < 5, list(s < 5), int) self.__test_equal(t > 5, list(s > 5), int) self.__test_equal(t <= 5, list(s <= 5), int) self.__test_equal(t >= 5, list(s >= 5), int) self.__test_equal(t == 5, list(s == 5), int) self.__test_equal(t != 5, list(s != 5), int) self.__test_equal(t % 5, list(s % 5), int) self.__test_equal(t // 5, list(s // 5), int) self.__test_equal(t + 1, list(s + 1), int) self.__test_equal(+t, list(+s), int) self.__test_equal(-t, list(-s), int) self.__test_equal(1.5 - t, list(1.5 - s), float) self.__test_equal(2.0 / t, list(2.0 / s), float) self.__test_equal(2 / t, list(2.0 / s), float) self.__test_equal(2.5 * t, list(2.5 * s), float) self.__test_equal(2**t, list(2**s), float) s_neg = np.array([-1,-2,-3,5,6,7,8,9,10]) t_neg = SArray(s_neg, int) self.__test_equal(t_neg // 5, list(s_neg // 5), int) self.__test_equal(t_neg % 5, list(s_neg % 5), int) s=["a","b","c"] t = SArray(s, str) self.__test_equal(t + "x", [i + "x" for i in s], str) with self.assertRaises(RuntimeError): t - 'x' with self.assertRaises(RuntimeError): t * 'x' with self.assertRaises(RuntimeError): t / 'x' s = SArray(self.vec_data, array.array) self.__test_equal(s + 1, [array.array('d', [float(j) + 1 for j in i]) for i in self.vec_data], array.array) self.__test_equal(s - 1, [array.array('d', [float(j) - 1 for j in i]) for i in self.vec_data], array.array) self.__test_equal(s * 2, [array.array('d', [float(j) * 2 for j in i]) for i in self.vec_data], array.array) self.__test_equal(s / 2, [array.array('d', [float(j) / 2 for j in i]) for i in self.vec_data], array.array) s = SArray([1,2,3,4,None]) self.__test_equal(s == None, [0, 0, 0, 0, 1], int) self.__test_equal(s != None, [1, 1, 1, 1, 0], int) def test_modulus_operator(self): l = [-5,-4,-3,-2,-1,0,1,2,3,4,5] t = SArray(l, int) self.__test_equal(t % 2, [i % 2 for i in l], int) self.__test_equal(t % -2, [i % -2 for i in l], int) def test_vector_operators(self): s=np.array([1,2,3,4,5,6,7,8,9,10]) s2=np.array([5,4,3,2,1,10,9,8,7,6]) t = SArray(s, int) t2 = SArray(s2, int) self.__test_equal(t + t2, list(s + s2), int) self.__test_equal(t - t2, list(s - s2), int) # we handle division differently. All divisions cast to float self.__test_equal(t / t2, list(s.astype(float) / s2), float) self.__test_equal(t * t2, list(s * s2), int) self.__test_equal(t ** t2, list(s ** s2), float) self.__test_almost_equal(t ** (1.0 / t2), list(s ** (1.0 / s2)), float) self.__test_equal(t > t2, list(s > s2), int) self.__test_equal(t <= t2, list(s <= s2), int) self.__test_equal(t >= t2, list(s >= s2), int) self.__test_equal(t == t2, list(s == s2), int) self.__test_equal(t != t2, list(s != s2), int) s = SArray(self.vec_data, array.array) self.__test_almost_equal(s + s, [array.array('d', [float(j) + float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s - s, [array.array('d', [float(j) - float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s * s, [array.array('d', [float(j) * float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s / s, [array.array('d', [float(j) / float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s ** s, [array.array('d', [float(j) ** float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(s // s, [array.array('d', [float(j) // float(j) for j in i]) for i in self.vec_data], array.array) t = SArray(self.float_data, float) self.__test_almost_equal(s + t, [array.array('d', [float(j) + i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s - t, [array.array('d', [float(j) - i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s * t, [array.array('d', [float(j) * i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s / t, [array.array('d', [float(j) / i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s ** t, [array.array('d', [float(j) ** i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(s // t, [array.array('d', [float(j) // i[1] for j in i[0]]) for i in zip(self.vec_data, self.float_data)], array.array) self.__test_almost_equal(+s, [array.array('d', [float(j) for j in i]) for i in self.vec_data], array.array) self.__test_almost_equal(-s, [array.array('d', [-float(j) for j in i]) for i in self.vec_data], array.array) neg_float_data = [-v for v in self.float_data] t = SArray(neg_float_data, float) self.__test_almost_equal(s + t, [array.array('d', [float(j) + i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s - t, [array.array('d', [float(j) - i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s * t, [array.array('d', [float(j) * i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s / t, [array.array('d', [float(j) / i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s ** t, [array.array('d', [float(j) ** i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(s // t, [array.array('d', [float(j) // i[1] for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) self.__test_almost_equal(t // s, [array.array('d', [i[1] // float(j) for j in i[0]]) for i in zip(self.vec_data, neg_float_data)], array.array) s = SArray([1,2,3,4,None]) self.assertTrue((s==s).all()) s = SArray([1,2,3,4,None]) self.assertFalse((s!=s).any()) def test_div_corner(self): def try_eq_sa_val(left_val, right_val): if type(left_val) is list: left_val = array.array('d', left_val) if type(right_val) is list: right_val = array.array('d', right_val) left_type = type(left_val) v1 = (SArray([left_val], left_type) // right_val)[0] if type(right_val) is array.array: if type(left_val) is array.array: v2 = array.array('d', [lv // rv for lv, rv in zip(left_val, right_val)]) else: v2 = array.array('d', [left_val // rv for rv in right_val]) else: if type(left_val) is array.array: v2 = array.array('d', [lv // right_val for lv in left_val]) else: v2 = left_val // right_val if type(v1) in six.integer_types: self.assertTrue(type(v2) in six.integer_types) else: self.assertEqual(type(v1), type(v2)) self.assertEqual(v1, v2) try_eq_sa_val(1, 2) try_eq_sa_val(1.0, 2) try_eq_sa_val(1, 2.0) try_eq_sa_val(1.0, 2.0) try_eq_sa_val(-1, 2) try_eq_sa_val(-1.0, 2) try_eq_sa_val(-1, 2.0) try_eq_sa_val(-1.0, 2.0) try_eq_sa_val([1, -1], 2) try_eq_sa_val([1, -1], 2.0) try_eq_sa_val(2,[3, -3]) try_eq_sa_val(2.0,[3, -3]) def test_floodiv_corner(self): def try_eq_sa_val(left_val, right_val): if type(left_val) is list: left_val = array.array('d', left_val) if type(right_val) is list: right_val = array.array('d', right_val) left_type = type(left_val) v1 = (SArray([left_val], left_type) // right_val)[0] if type(right_val) is array.array: if type(left_val) is array.array: v2 = array.array('d', [lv // rv for lv, rv in zip(left_val, right_val)]) else: v2 = array.array('d', [left_val // rv for rv in right_val]) else: if type(left_val) is array.array: v2 = array.array('d', [lv // right_val for lv in left_val]) else: v2 = left_val // right_val if type(v1) in six.integer_types: self.assertTrue(type(v2) in six.integer_types) else: self.assertEqual(type(v1), type(v2)) self.assertEqual(v1, v2) try_eq_sa_val(1, 2) try_eq_sa_val(1.0, 2) try_eq_sa_val(1, 2.0) try_eq_sa_val(1.0, 2.0) try_eq_sa_val(-1, 2) try_eq_sa_val(-1.0, 2) try_eq_sa_val(-1, 2.0) try_eq_sa_val(-1.0, 2.0) try_eq_sa_val([1, -1], 2) try_eq_sa_val([1, -1], 2.0) try_eq_sa_val(2,[3, -3]) try_eq_sa_val(2.0,[3, -3]) from math import isnan def try_eq_sa_correct(left_val, right_val, correct): if type(left_val) is list: left_val = array.array('d', left_val) if type(right_val) is list: right_val = array.array('d', right_val) left_type = type(left_val) v1 = (SArray([left_val], left_type) // right_val)[0] if type(correct) is not list: v1 = [v1] correct = [correct] for v, c in zip(v1, correct): if type(v) is float and isnan(v): assert isnan(c) else: self.assertEqual(type(v), type(c)) self.assertEqual(v, c) try_eq_sa_correct(1, 0, None) try_eq_sa_correct(0, 0, None) try_eq_sa_correct(-1, 0, None) try_eq_sa_correct(1.0, 0, float('inf')) try_eq_sa_correct(0.0, 0, float('nan')) try_eq_sa_correct(-1.0, 0, float('-inf')) try_eq_sa_correct([1.0,0,-1], 0, [float('inf'), float('nan'), float('-inf')]) try_eq_sa_correct(1, [1.0, 0], [1., float('inf')]) try_eq_sa_correct(-1, [1.0, 0], [-1., float('-inf')]) try_eq_sa_correct(0, [1.0, 0], [0., float('nan')]) def test_logical_ops(self): s=np.array([0,0,0,0,1,1,1,1]) s2=np.array([0,1,0,1,0,1,0,1]) t = SArray(s, int) t2 = SArray(s2, int) self.__test_equal(t & t2, list(((s & s2) > 0).astype(int)), int) self.__test_equal(t | t2, list(((s | s2) > 0).astype(int)), int) def test_logical_ops_missing_value_propagation(self): s=[0, 0,0,None, None, None,1,1, 1] s2=[0,None,1,0, None, 1, 0,None,1] t = SArray(s, int) t2 = SArray(s2, int) and_result = [0,0,0,0,None,None,0,None,1] or_result = [0,None,1,None,None,1,1,1,1] self.__test_equal(t & t2, and_result, int) self.__test_equal(t | t2, or_result, int) def test_string_operators(self): s=["a","b","c","d","e","f","g","h","i","j"] s2=["e","d","c","b","a","j","i","h","g","f"] t = SArray(s, str) t2 = SArray(s2, str) self.__test_equal(t + t2, ["".join(x) for x in zip(s,s2)], str) self.__test_equal(t + "x", [x + "x" for x in s], str) self.__test_equal(t < t2, [x < y for (x,y) in zip(s,s2)], int) self.__test_equal(t > t2, [x > y for (x,y) in zip(s,s2)], int) self.__test_equal(t == t2, [x == y for (x,y) in zip(s,s2)], int) self.__test_equal(t != t2, [x != y for (x,y) in zip(s,s2)], int) self.__test_equal(t <= t2, [x <= y for (x,y) in zip(s,s2)], int) self.__test_equal(t >= t2, [x >= y for (x,y) in zip(s,s2)], int) def test_vector_operator_missing_propagation(self): t = SArray([1,2,3,4,None,6,7,8,9,None], float) # missing 4th and 9th t2 = SArray([None,4,3,2,np.nan,10,9,8,7,6], float) # missing 0th and 4th self.assertEqual(len((t + t2).dropna()), 7) self.assertEqual(len((t - t2).dropna()), 7) self.assertEqual(len((t * t2).dropna()), 7) def test_dropna(self): no_nas = ['strings', 'yeah', 'nan', 'NaN', 'NA', 'None'] t = SArray(no_nas) self.assertEqual(len(t.dropna()), 6) self.assertEqual(list(t.dropna()), no_nas) t2 = SArray([None,np.nan]) self.assertEqual(len(t2.dropna()), 0) self.assertEqual(list(SArray(self.int_data).dropna()), self.int_data) self.assertEqual(list(SArray(self.float_data).dropna()), self.float_data) def test_fillna(self): # fillna shouldn't fill anything no_nas = ['strings', 'yeah', 'nan', 'NaN', 'NA', 'None'] t = SArray(no_nas) out = t.fillna('hello') self.assertEqual(list(out), no_nas) # Normal integer case (float auto casted to int) t = SArray([53,23,None,np.nan,5]) self.assertEqual(list(t.fillna(-1.0)), [53,23,-1,-1,5]) # dict type t = SArray(self.dict_data+[None]) self.assertEqual(list(t.fillna({1:'1'})), self.dict_data+[{1:'1'}]) # list type t = SArray(self.list_data+[None]) self.assertEqual(list(t.fillna([0,0,0])), self.list_data+[[0,0,0]]) # vec type t = SArray(self.vec_data+[None]) self.assertEqual(list(t.fillna(array.array('f',[0.0,0.0]))), self.vec_data+[array.array('f',[0.0,0.0])]) # empty sarray t = SArray() self.assertEqual(len(t.fillna(0)), 0) def test_sample(self): sa = SArray(data=self.int_data) sa_sample = sa.sample(.5, 9) sa_sample2 = sa.sample(.5, 9) self.assertEqual(list(sa_sample.head()), list(sa_sample2.head())) for i in sa_sample: self.assertTrue(i in self.int_data) with self.assertRaises(ValueError): sa.sample(3) sa_sample = SArray().sample(.5, 9) self.assertEqual(len(sa_sample), 0) self.assertEqual(len(SArray.from_sequence(100).sample(0.5, 1, exact=True)), 50) self.assertEqual(len(SArray.from_sequence(100).sample(0.5, 2, exact=True)), 50) def test_hash(self): a = SArray([0,1,0,1,0,1,0,1], int) b = a.hash() zero_hash = b[0] one_hash = b[1] self.assertTrue((b[a] == one_hash).all()) self.assertTrue((b[1-a] == zero_hash).all()) # I can hash other stuff too # does not throw a.astype(str).hash().__materialize__() a.apply(lambda x: [x], list).hash().__materialize__() # Nones hash too! a = SArray([None, None, None], int).hash() self.assertTrue(a[0] is not None) self.assertTrue((a == a[0]).all()) # different seeds give different hash values self.assertTrue((a.hash(seed=0) != a.hash(seed=1)).all()) def test_random_integers(self): a = SArray.random_integers(0) self.assertEqual(len(a), 0) a = SArray.random_integers(1000) self.assertEqual(len(a), 1000) def test_vector_slice(self): d=[[1],[1,2],[1,2,3]] g=SArray(d, array.array) self.assertEqual(list(g.vector_slice(0).head()), [1,1,1]) self.assertEqual(list(g.vector_slice(0,2).head()), [None,array.array('d', [1,2]),array.array('d', [1,2])]) self.assertEqual(list(g.vector_slice(0,3).head()), [None,None,array.array('d', [1,2,3])]) g=SArray(self.vec_data, array.array) self.__test_equal(g.vector_slice(0), self.float_data, float) self.__test_equal(g.vector_slice(0, 2), self.vec_data, array.array) def _my_element_slice(self, arr, start=None, stop=None, step=1): return arr.apply(lambda x: x[slice(start, stop, step)], arr.dtype) def _slice_equality_test(self, arr, start=None, stop=None, step=1): self.assertEqual( list(arr.element_slice(start, stop, step)), list(self._my_element_slice(arr,start,stop,step))) def test_element_slice(self): #string slicing g=SArray(range(1,1000, 10)).astype(str) self._slice_equality_test(g, 0, 2) self._slice_equality_test(g, 0, -1, 2) self._slice_equality_test(g, -1, -3) self._slice_equality_test(g, -1, -2, -1) self._slice_equality_test(g, None, None, -1) self._slice_equality_test(g, -100, -1) #list slicing g=SArray(range(1,10)).apply(lambda x: list(range(x)), list) self._slice_equality_test(g, 0, 2) self._slice_equality_test(g, 0, -1, 2) self._slice_equality_test(g, -1, -3) self._slice_equality_test(g, -1, -2, -1) self._slice_equality_test(g, None, None, -1) self._slice_equality_test(g, -100, -1) #array slicing import array g=SArray(range(1,10)).apply(lambda x: array.array('d', range(x))) self._slice_equality_test(g, 0, 2) self._slice_equality_test(g, 0, -1, 2) self._slice_equality_test(g, -1, -3) self._slice_equality_test(g, -1, -2, -1) self._slice_equality_test(g, None, None, -1) self._slice_equality_test(g, -100, -1) #this should fail with self.assertRaises(TypeError): g=SArray(range(1,1000)).element_slice(1) with self.assertRaises(TypeError): g=SArray(range(1,1000)).astype(float).element_slice(1) def test_lazy_eval(self): sa = SArray(range(-10, 10)) sa = sa + 1 sa1 = sa >= 0 sa2 = sa <= 0 sa3 = sa[sa1 & sa2] item_count = len(sa3) self.assertEqual(item_count, 1) def __test_append(self, data1, data2, dtype): sa1 = SArray(data1, dtype) sa2 = SArray(data2, dtype) sa3 = sa1.append(sa2) self.__test_equal(sa3, data1 + data2, dtype) sa3 = sa2.append(sa1) self.__test_equal(sa3, data2 + data1, dtype) def test_append(self): n = len(self.int_data) m = n // 2 self.__test_append(self.int_data[0:m], self.int_data[m:n], int) self.__test_append(self.bool_data[0:m], self.bool_data[m:n], int) self.__test_append(self.string_data[0:m], self.string_data[m:n], str) self.__test_append(self.float_data[0:m], self.float_data[m:n], float) self.__test_append(self.vec_data[0:m], self.vec_data[m:n], array.array) self.__test_append(self.dict_data[0:m], self.dict_data[m:n], dict) def test_append_exception(self): val1 = [i for i in range(1, 1000)] val2 = [str(i) for i in range(-10, 1)] sa1 = SArray(val1, int) sa2 = SArray(val2, str) with self.assertRaises(RuntimeError): sa3 = sa1.append(sa2) def test_word_count(self): sa = SArray(["This is someurl http://someurl!!", "中文 应该也 行", 'Сблъсъкът между']) expected = [{"this": 1, "http://someurl!!": 1, "someurl": 1, "is": 1}, {"中文": 1, "应该也": 1, "行": 1}, {"Сблъсъкът": 1, "между": 1}] expected2 = [{"This": 1, "http://someurl!!": 1, "someurl": 1, "is": 1}, {"中文": 1, "应该也": 1, "行": 1}, {"Сблъсъкът": 1, "между": 1}] sa1 = sa._count_words() self.assertEqual(sa1.dtype, dict) self.__test_equal(sa1, expected, dict) sa1 = sa._count_words(to_lower=False) self.assertEqual(sa1.dtype, dict) self.__test_equal(sa1, expected2, dict) #should fail if the input type is not string sa = SArray([1, 2, 3]) with self.assertRaises(TypeError): sa._count_words() def test_word_count2(self): sa = SArray(["This is some url http://www.someurl.com!!", "Should we? Yes, we should."]) #TODO: Get some weird unicode whitespace in the Chinese and Russian tests expected1 = [{"this": 1, "is": 1, "some": 1, "url": 1, "http://www.someurl.com!!": 1}, {"should": 1, "we?": 1, "we": 1, "yes,": 1, "should.": 1}] expected2 = [{"this is some url http://www.someurl.com": 1}, {"should we": 1, " yes": 1, " we should.": 1}] word_counts1 = sa._count_words() word_counts2 = sa._count_words(delimiters=["?", "!", ","]) self.assertEqual(word_counts1.dtype, dict) self.__test_equal(word_counts1, expected1, dict) self.assertEqual(word_counts2.dtype, dict) self.__test_equal(word_counts2, expected2, dict) def test_ngram_count(self): sa_word = SArray(["I like big dogs. They are fun. I LIKE BIG DOGS", "I like.", "I like big"]) sa_character = SArray(["Fun. is. fun","Fun is fun.","fu", "fun"]) # Testing word n-gram functionality result = sa_word._count_ngrams(3) result2 = sa_word._count_ngrams(2) result3 = sa_word._count_ngrams(3,"word", to_lower=False) result4 = sa_word._count_ngrams(2,"word", to_lower=False) expected = [{'fun i like': 1, 'i like big': 2, 'they are fun': 1, 'big dogs they': 1, 'like big dogs': 2, 'are fun i': 1, 'dogs they are': 1}, {}, {'i like big': 1}] expected2 = [{'i like': 2, 'dogs they': 1, 'big dogs': 2, 'are fun': 1, 'like big': 2, 'they are': 1, 'fun i': 1}, {'i like': 1}, {'i like': 1, 'like big': 1}] expected3 = [{'I like big': 1, 'fun I LIKE': 1, 'I LIKE BIG': 1, 'LIKE BIG DOGS': 1, 'They are fun': 1, 'big dogs They': 1, 'like big dogs': 1, 'are fun I': 1, 'dogs They are': 1}, {}, {'I like big': 1}] expected4 = [{'I like': 1, 'like big': 1, 'I LIKE': 1, 'BIG DOGS': 1, 'are fun': 1, 'LIKE BIG': 1, 'big dogs': 1, 'They are': 1, 'dogs They': 1, 'fun I': 1}, {'I like': 1}, {'I like': 1, 'like big': 1}] self.assertEqual(result.dtype, dict) self.__test_equal(result, expected, dict) self.assertEqual(result2.dtype, dict) self.__test_equal(result2, expected2, dict) self.assertEqual(result3.dtype, dict) self.__test_equal(result3, expected3, dict) self.assertEqual(result4.dtype, dict) self.__test_equal(result4, expected4, dict) #Testing character n-gram functionality result5 = sa_character._count_ngrams(3, "character") result6 = sa_character._count_ngrams(2, "character") result7 = sa_character._count_ngrams(3, "character", to_lower=False) result8 = sa_character._count_ngrams(2, "character", to_lower=False) result9 = sa_character._count_ngrams(3, "character", to_lower=False, ignore_space=False) result10 = sa_character._count_ngrams(2, "character", to_lower=False, ignore_space=False) result11 = sa_character._count_ngrams(3, "character", to_lower=True, ignore_space=False) result12 = sa_character._count_ngrams(2, "character", to_lower=True, ignore_space=False) expected5 = [{'fun': 2, 'nis': 1, 'sfu': 1, 'isf': 1, 'uni': 1}, {'fun': 2, 'nis': 1, 'sfu': 1, 'isf': 1, 'uni': 1}, {}, {'fun': 1}] expected6 = [{'ni': 1, 'is': 1, 'un': 2, 'sf': 1, 'fu': 2}, {'ni': 1, 'is': 1, 'un': 2, 'sf': 1, 'fu': 2}, {'fu': 1}, {'un': 1, 'fu': 1}] expected7 = [{'sfu': 1, 'Fun': 1, 'uni': 1, 'fun': 1, 'nis': 1, 'isf': 1}, {'sfu': 1, 'Fun': 1, 'uni': 1, 'fun': 1, 'nis': 1, 'isf': 1}, {}, {'fun': 1}] expected8 = [{'ni': 1, 'Fu': 1, 'is': 1, 'un': 2, 'sf': 1, 'fu': 1}, {'ni': 1, 'Fu': 1, 'is': 1, 'un': 2, 'sf': 1, 'fu': 1}, {'fu': 1}, {'un': 1, 'fu': 1}] expected9 = [{' fu': 1, ' is': 1, 's f': 1, 'un ': 1, 'Fun': 1, 'n i': 1, 'fun': 1, 'is ': 1}, {' fu': 1, ' is': 1, 's f': 1, 'un ': 1, 'Fun': 1, 'n i': 1, 'fun': 1, 'is ': 1}, {}, {'fun': 1}] expected10 = [{' f': 1, 'fu': 1, 'n ': 1, 'is': 1, ' i': 1, 'un': 2, 's ': 1, 'Fu': 1}, {' f': 1, 'fu': 1, 'n ': 1, 'is': 1, ' i': 1, 'un': 2, 's ': 1, 'Fu': 1}, {'fu': 1}, {'un': 1, 'fu': 1}] expected11 = [{' fu': 1, ' is': 1, 's f': 1, 'un ': 1, 'n i': 1, 'fun': 2, 'is ': 1}, {' fu': 1, ' is': 1, 's f': 1, 'un ': 1, 'n i': 1, 'fun': 2, 'is ': 1}, {}, {'fun': 1}] expected12 = [{' f': 1, 'fu': 2, 'n ': 1, 'is': 1, ' i': 1, 'un': 2, 's ': 1}, {' f': 1, 'fu': 2, 'n ': 1, 'is': 1, ' i': 1, 'un': 2, 's ': 1}, {'fu': 1}, {'un': 1, 'fu': 1}] self.assertEqual(result5.dtype, dict) self.__test_equal(result5, expected5, dict) self.assertEqual(result6.dtype, dict) self.__test_equal(result6, expected6, dict) self.assertEqual(result7.dtype, dict) self.__test_equal(result7, expected7, dict) self.assertEqual(result8.dtype, dict) self.__test_equal(result8, expected8, dict) self.assertEqual(result9.dtype, dict) self.__test_equal(result9, expected9, dict) self.assertEqual(result10.dtype, dict) self.__test_equal(result10, expected10, dict) self.assertEqual(result11.dtype, dict) self.__test_equal(result11, expected11, dict) self.assertEqual(result12.dtype, dict) self.__test_equal(result12, expected12, dict) sa = SArray([1, 2, 3]) with self.assertRaises(TypeError): #should fail if the input type is not string sa._count_ngrams() with self.assertRaises(TypeError): #should fail if n is not of type 'int' sa_word._count_ngrams(1.01) with self.assertRaises(ValueError): #should fail with invalid method sa_word._count_ngrams(3,"bla") with self.assertRaises(ValueError): #should fail with n <0 sa_word._count_ngrams(0) with warnings.catch_warnings(record=True) as context: warnings.simplefilter("always") sa_word._count_ngrams(10) assert len(context) == 1 def test_dict_keys(self): # self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] sa = SArray(self.dict_data) sa_keys = sa.dict_keys() self.assertEqual([set(i) for i in sa_keys], [{str(i), i} for i in self.int_data]) # na value d = [{'a': 1}, {None: 2}, {"b": None}, None] sa = SArray(d) sa_keys = sa.dict_keys() self.assertEqual(list(sa_keys), [['a'], [None], ['b'], None]) #empty SArray sa = SArray() with self.assertRaises(RuntimeError): sa.dict_keys() # empty SArray with type sa = SArray([], dict) self.assertEqual(list(sa.dict_keys().head(10)), [], list) def test_dict_values(self): # self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] sa = SArray(self.dict_data) sa_values = sa.dict_values() self.assertEqual(list(sa_values), [[i, float(i)] for i in self.int_data]) # na value d = [{'a': 1}, {None: 'str'}, {"b": None}, None] sa = SArray(d) sa_values = sa.dict_values() self.assertEqual(list(sa_values), [[1], ['str'], [None], None]) #empty SArray sa = SArray() with self.assertRaises(RuntimeError): sa.dict_values() # empty SArray with type sa = SArray([], dict) self.assertEqual(list(sa.dict_values().head(10)), [], list) def test_dict_trim_by_keys(self): # self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] d = [{'a':1, 'b': [1,2]}, {None: 'str'}, {"b": None, "c": 1}, None] sa = SArray(d) sa_values = sa.dict_trim_by_keys(['a', 'b']) self.assertEqual(list(sa_values), [{}, {None: 'str'}, {"c": 1}, None]) #empty SArray sa = SArray() with self.assertRaises(RuntimeError): sa.dict_trim_by_keys([]) sa = SArray([], dict) self.assertEqual(list(sa.dict_trim_by_keys([]).head(10)), [], list) def test_dict_trim_by_values(self): # self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] d = [{'a':1, 'b': 20, 'c':None}, {"b": 4, None: 5}, None] sa = SArray(d) sa_values = sa.dict_trim_by_values(5,10) self.assertEqual(list(sa_values), [{'c':None}, {None:5}, None]) # no upper key sa_values = sa.dict_trim_by_values(2) self.assertEqual(list(sa_values), [{'b': 20, 'c':None}, {"b": 4, None:5}, None]) # no param sa_values = sa.dict_trim_by_values() self.assertEqual(list(sa_values), [{'a':1, 'b': 20, 'c':None}, {"b": 4, None: 5}, None]) # no lower key sa_values = sa.dict_trim_by_values(upper=7) self.assertEqual(list(sa_values), [{'a':1, 'c':None}, {"b": 4, None: 5}, None]) #empty SArray sa = SArray() with self.assertRaises(RuntimeError): sa.dict_trim_by_values() sa = SArray([], dict) self.assertEqual(list(sa.dict_trim_by_values().head(10)), [], list) def test_dict_has_any_keys(self): d = [{'a':1, 'b': 20, 'c':None}, {"b": 4, None: 5}, None, {'a':0}] sa = SArray(d) sa_values = sa.dict_has_any_keys([]) self.assertEqual(list(sa_values), [0,0,None,0]) sa_values = sa.dict_has_any_keys(['a']) self.assertEqual(list(sa_values), [1,0,None,1]) # one value is auto convert to list sa_values = sa.dict_has_any_keys("a") self.assertEqual(list(sa_values), [1,0,None,1]) sa_values = sa.dict_has_any_keys(['a', 'b']) self.assertEqual(list(sa_values), [1,1,None,1]) with self.assertRaises(TypeError): sa.dict_has_any_keys() #empty SArray sa = SArray() with self.assertRaises(TypeError): sa.dict_has_any_keys() sa = SArray([], dict) self.assertEqual(list(sa.dict_has_any_keys([]).head(10)), [], list) def test_dict_has_all_keys(self): d = [{'a':1, 'b': 20, 'c':None}, {"b": 4, None: 5}, None, {'a':0}] sa = SArray(d) sa_values = sa.dict_has_all_keys([]) self.assertEqual(list(sa_values), [1,1,None,1]) sa_values = sa.dict_has_all_keys(['a']) self.assertEqual(list(sa_values), [1,0,None,1]) # one value is auto convert to list sa_values = sa.dict_has_all_keys("a") self.assertEqual(list(sa_values), [1,0,None,1]) sa_values = sa.dict_has_all_keys(['a', 'b']) self.assertEqual(list(sa_values), [1,0,None,0]) sa_values = sa.dict_has_all_keys([None, "b"]) self.assertEqual(list(sa_values), [0,1,None,0]) with self.assertRaises(TypeError): sa.dict_has_all_keys() #empty SArray sa = SArray() with self.assertRaises(TypeError): sa.dict_has_all_keys() sa = SArray([], dict) self.assertEqual(list(sa.dict_has_all_keys([]).head(10)), [], list) def test_save_load_cleanup_file(self): # similarly for SArray with util.TempDirectory() as f: sa = SArray(range(1,1000000)) sa.save(f) # 17 for each sarray, 1 object.bin, 1 ini file_count = len(os.listdir(f)) self.assertTrue(file_count > 2) # sf1 now references the on disk file sa1 = SArray(f) # create another SFrame and save to the same location sa2 = SArray([str(i) for i in range(1,100000)]) sa2.save(f) file_count = len(os.listdir(f)) self.assertTrue(file_count > 2) # now sf1 should still be accessible self.__test_equal(sa1, list(sa), int) # and sf2 is correct too sa3 = SArray(f) self.__test_equal(sa3, list(sa2), str) # when sf1 goes out of scope, the tmp files should be gone sa1 = 1 time.sleep(1) # give time for the files being deleted file_count = len(os.listdir(f)) self.assertTrue(file_count > 2) # list_to_compare must have all unique values for this to work def __generic_unique_test(self, list_to_compare): test = SArray(list_to_compare + list_to_compare) self.assertEqual(sorted(list(test.unique())), sorted(list_to_compare)) def test_unique(self): # Test empty SArray test = SArray([]) self.assertEqual(list(test.unique()), []) # Test one value test = SArray([1]) self.assertEqual(list(test.unique()), [1]) # Test many of one value test = SArray([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) self.assertEqual(list(test.unique()), [1]) # Test all unique values test = SArray(self.int_data) self.assertEqual(sorted(list(test.unique())), self.int_data) # Test an interesting sequence interesting_ints = [4654,4352436,5453,7556,45435,4654,5453,4654,5453,1,1,1,5,5,5,8,66,7,7,77,90,-34] test = SArray(interesting_ints) u = test.unique() self.assertEqual(len(u), 13) # We do not preserve order self.assertEqual(sorted(list(u)), sorted(np.unique(interesting_ints))) # Test other types self.__generic_unique_test(self.string_data[0:6]) # only works reliably because these are values that floats can perform # reliable equality tests self.__generic_unique_test(self.float_data) self.__generic_unique_test(self.list_data) self.__generic_unique_test(self.vec_data) with self.assertRaises(TypeError): SArray(self.dict_data).unique() def test_item_len(self): # empty SArray test = SArray([]) with self.assertRaises(TypeError): self.assertEqual(test.item_length()) # wrong type test = SArray([1,2,3]) with self.assertRaises(TypeError): self.assertEqual(test.item_length()) test = SArray(['1','2','3']) with self.assertRaises(TypeError): self.assertEqual(test.item_length()) # vector type test = SArray([[], [1], [1,2], [1,2,3], None]) item_length = test.item_length() self.assertEqual(list(item_length), list([0, 1,2,3,None])) # dict type test = SArray([{}, {'key1': 1}, {'key2':1, 'key1':2}, None]) self.assertEqual(list(test.item_length()), list([0, 1,2,None])) # list type test = SArray([[], [1,2], ['str', 'str2'], None]) self.assertEqual(list(test.item_length()), list([0, 2,2,None])) def test_random_access(self): t = list(range(0,100000)) s = SArray(t) # simple slices self.__test_equal(s[1:10000], t[1:10000], int) self.__test_equal(s[0:10000:3], t[0:10000:3], int) self.__test_equal(s[1:10000:3], t[1:10000:3], int) self.__test_equal(s[2:10000:3], t[2:10000:3], int) self.__test_equal(s[3:10000:101], t[3:10000:101], int) # negative slices self.__test_equal(s[-5:], t[-5:], int) self.__test_equal(s[-1:], t[-1:], int) self.__test_equal(s[-100:-10], t[-100:-10], int) self.__test_equal(s[-100:-10:2], t[-100:-10:2], int) # single element reads self.assertEqual(s[511], t[511]) self.assertEqual(s[1912], t[1912]) self.assertEqual(s[-1], t[-1]) self.assertEqual(s[-10], t[-10]) # A cache boundary self.assertEqual(s[32*1024-1], t[32*1024-1]) self.assertEqual(s[32*1024], t[32*1024]) # totally different self.assertEqual(s[19312], t[19312]) # edge case oddities self.__test_equal(s[10:100:100], t[10:100:100], int) self.__test_equal(s[-100:len(s):10], t[-100:len(t):10], int) self.__test_equal(s[-1:-2], t[-1:-2], int) self.__test_equal(s[-1:-1000:2], t[-1:-1000:2], int) with self.assertRaises(IndexError): s[len(s)] # with caching abilities; these should be fast, as 32K # elements are cached. for i in range(0, 100000, 100): self.assertEqual(s[i], t[i]) for i in range(0, 100000, 100): self.assertEqual(s[-i], t[-i]) def test_sort(self): test = SArray([1,2,3,5,1,4]) ascending = SArray([1,1,2,3,4,5]) descending = SArray([5,4,3,2,1,1]) result = test.sort() self.assertEqual(list(result), list(ascending)) result = test.sort(ascending = False) self.assertEqual(list(result), list(descending)) with self.assertRaises(TypeError): SArray([[1,2], [2,3]]).sort() def test_unicode_encode_should_not_fail(self): g=SArray([{'a':u'\u2019'}]) g=SArray([u'123',u'\u2019']) g=SArray(['123',u'\u2019']) def test_from_const(self): g = SArray.from_const('a', 100) self.assertEqual(len(g), 100) self.assertEqual(list(g), ['a']*100) g = SArray.from_const(dt.datetime(2013, 5, 7, 10, 4, 10),10) self.assertEqual(len(g), 10) self.assertEqual(list(g), [dt.datetime(2013, 5, 7, 10, 4, 10)]*10) g = SArray.from_const(0, 0) self.assertEqual(len(g), 0) g = SArray.from_const(None, 100) self.assertEqual(list(g), [None] * 100) self.assertEqual(g.dtype, float) g = SArray.from_const(None, 100, str) self.assertEqual(list(g), [None] * 100) self.assertEqual(g.dtype, str) g = SArray.from_const(0, 100, float) self.assertEqual(list(g), [0.0] * 100) self.assertEqual(g.dtype, float) g = SArray.from_const(0.0, 100, int) self.assertEqual(list(g), [0] * 100) self.assertEqual(g.dtype, int) g = SArray.from_const(None, 100, float) self.assertEqual(list(g), [None] * 100) self.assertEqual(g.dtype, float) g = SArray.from_const(None, 100, int) self.assertEqual(list(g), [None] * 100) self.assertEqual(g.dtype, int) g = SArray.from_const(None, 100, list) self.assertEqual(list(g), [None] * 100) self.assertEqual(g.dtype, list) g = SArray.from_const([1], 100, list) self.assertEqual(list(g), [[1]] * 100) self.assertEqual(g.dtype, list) def test_from_sequence(self): with self.assertRaises(TypeError): g = SArray.from_sequence() g = SArray.from_sequence(100) self.assertEqual(list(g), list(range(100))) g = SArray.from_sequence(10, 100) self.assertEqual(list(g), list(range(10, 100))) g = SArray.from_sequence(100, 10) self.assertEqual(list(g), list(range(100, 10))) def test_datetime(self): sa = SArray(self.datetime_data) self.__test_equal(sa ,self.datetime_data,dt.datetime) sa = SArray(self.datetime_data2) self.__test_equal(sa ,self.datetime_data2,dt.datetime) ret = sa.split_datetime(limit=['year','month','day','hour','minute', 'second','us','weekday', 'isoweekday','tmweekday']) self.assertEqual(ret.num_columns(), 10) self.__test_equal(ret['X.year'] , [2013, 1902, None], int) self.__test_equal(ret['X.month'] , [5, 10, None], int) self.__test_equal(ret['X.day'] , [7, 21, None], int) self.__test_equal(ret['X.hour'] , [10, 10, None], int) self.__test_equal(ret['X.minute'] , [4, 34, None], int) self.__test_equal(ret['X.second'] , [10, 10, None], int) self.__test_equal(ret['X.us'] , [109321, 991111, None], int) self.__test_equal(ret['X.weekday'] , [1, 1, None], int) self.__test_equal(ret['X.isoweekday'] , [2, 2, None], int) self.__test_equal(ret['X.tmweekday'] , [2, 2, None], int) def test_datetime_difference(self): sa = SArray(self.datetime_data) sa2 = SArray(self.datetime_data2) res = sa2 - sa expected = [float(x.microsecond) / 1000000.0 if x is not None else x for x in self.datetime_data2] self.assertEqual(len(res), len(expected)) for i in range(len(res)): if res[i] is None: self.assertEqual(res[i], expected[i]) else: self.assertAlmostEqual(res[i], expected[i], places=6) def test_datetime_lambda(self): data = [dt.datetime(2013, 5, 7, 10, 4, 10, 109321), dt.datetime(1902, 10, 21, 10, 34, 10, 991111, tzinfo=GMT(1))] g=SArray(data) gstr=g.apply(lambda x:str(x)) self.__test_equal(gstr, [str(x) for x in g], str) gident=g.apply(lambda x:x) self.__test_equal(gident, list(g), dt.datetime) def test_datetime_to_str(self): sa = SArray(self.datetime_data) sa_string_back = sa.datetime_to_str() self.__test_equal(sa_string_back,['2013-05-07T10:04:10', '1902-10-21T10:34:10GMT+00', None],str) sa = SArray([None,None,None],dtype=dt.datetime) sa_string_back = sa.datetime_to_str() self.__test_equal(sa_string_back,[None,None,None],str) sa = SArray(dtype=dt.datetime) sa_string_back = sa.datetime_to_str() self.__test_equal(sa_string_back,[],str) sa = SArray([None,None,None]) self.assertRaises(TypeError,sa.datetime_to_str) sa = SArray() self.assertRaises(TypeError,sa.datetime_to_str) def test_str_to_datetime(self): sa_string = SArray(['2013-05-07T10:04:10', '1902-10-21T10:34:10GMT+00', None]) sa_datetime_back = sa_string.str_to_datetime() expected = self.datetime_data self.__test_equal(sa_datetime_back,expected,dt.datetime) sa_string = SArray([None,None,None],str) sa_datetime_back = sa_string.str_to_datetime() self.__test_equal(sa_datetime_back,[None,None,None],dt.datetime) sa_string = SArray(dtype=str) sa_datetime_back = sa_string.str_to_datetime() self.__test_equal(sa_datetime_back,[],dt.datetime) sa = SArray([None,None,None]) self.assertRaises(TypeError,sa.str_to_datetime) sa = SArray() self.assertRaises(TypeError,sa.str_to_datetime) # hour without leading zero sa = SArray(['10/30/2014 9:01']) sa = sa.str_to_datetime('%m/%d/%Y %H:%M') expected = [dt.datetime(2014, 10, 30, 9, 1)] self.__test_equal(sa,expected,dt.datetime) # without delimiters sa = SArray(['10302014 0901', '10302014 2001']) sa = sa.str_to_datetime('%m%d%Y %H%M') expected = [dt.datetime(2014, 10, 30, 9, 1), dt.datetime(2014, 10, 30, 20, 1)] self.__test_equal(sa,expected,dt.datetime) # another without delimiter test sa = SArray(['20110623T191001']) sa = sa.str_to_datetime("%Y%m%dT%H%M%S%F%q") expected = [dt.datetime(2011, 6, 23, 19, 10, 1)] self.__test_equal(sa,expected,dt.datetime) # am pm sa = SArray(['10/30/2014 9:01am', '10/30/2014 9:01pm']) sa = sa.str_to_datetime('%m/%d/%Y %H:%M%p') expected = [dt.datetime(2014, 10, 30, 9, 1), dt.datetime(2014, 10, 30, 21, 1)] self.__test_equal(sa,expected,dt.datetime) sa = SArray(['10/30/2014 9:01AM', '10/30/2014 9:01PM']) sa = sa.str_to_datetime('%m/%d/%Y %H:%M%P') expected = [dt.datetime(2014, 10, 30, 9, 1), dt.datetime(2014, 10, 30, 21, 1)] self.__test_equal(sa,expected,dt.datetime) # failure 13pm sa = SArray(['10/30/2014 13:01pm']) with self.assertRaises(RuntimeError): sa.str_to_datetime('%m/%d/%Y %H:%M%p') # failure hour 13 when %l should only have up to hour 12 sa = SArray(['10/30/2014 13:01']) with self.assertRaises(RuntimeError): sa.str_to_datetime('%m/%d/%Y %l:%M') with self.assertRaises(RuntimeError): sa.str_to_datetime('%m/%d/%Y %L:%M') sa = SArray(['2013-05-07T10:04:10', '1902-10-21T10:34:10UTC+05:45']) expected = [dt.datetime(2013, 5, 7, 10, 4, 10), dt.datetime(1902, 10, 21, 10, 34, 10).replace(tzinfo=GMT(5.75))] self.__test_equal(sa.str_to_datetime() ,expected,dt.datetime) def test_apply_with_partial(self): sa = SArray([1, 2, 3, 4, 5]) def concat_fn(character, number): return '%s%d' % (character, number) my_partial_fn = functools.partial(concat_fn, 'x') sa_transformed = sa.apply(my_partial_fn) self.assertEqual(list(sa_transformed), ['x1', 'x2', 'x3', 'x4', 'x5']) def test_apply_with_functor(self): sa = SArray([1, 2, 3, 4, 5]) class Concatenator(object): def __init__(self, character): self.character = character def __call__(self, number): return '%s%d' % (self.character, number) concatenator = Concatenator('x') sa_transformed = sa.apply(concatenator) self.assertEqual(list(sa_transformed), ['x1', 'x2', 'x3', 'x4', 'x5']) def test_argmax_argmin(self): sa = SArray([1,4,-1,10,3,5,8]) index = [sa.argmax(),sa.argmin()] expected = [3,2] self.assertEqual(index,expected) sa = SArray([1,4.3,-1.4,0,3,5.6,8.9]) index = [sa.argmax(),sa.argmin()] expected = [6,2] self.assertEqual(index,expected) #empty case sa = SArray([]) index = [sa.argmax(),sa.argmin()] expected = [None,None] self.assertEqual(index,expected) # non-numeric type sa = SArray(["434","43"]) with self.assertRaises(TypeError): sa.argmax() with self.assertRaises(TypeError): sa.argmin() def test_apply_with_recursion(self): sa = SArray(range(1000)) sastr = sa.astype(str) rets = sa.apply(lambda x:sastr[x]) self.assertEqual(list(rets), list(sastr)) def test_save_sarray(self): '''save lazily evaluated SArray should not materialize to target folder ''' data = SArray(range(1000)) data = data[data > 50] #lazy and good tmp_dir = tempfile.mkdtemp() data.save(tmp_dir) shutil.rmtree(tmp_dir) print(data) def test_to_numpy(self): X = SArray(range(100)) import numpy as np import numpy.testing as nptest Y = np.array(range(100)) nptest.assert_array_equal(X.to_numpy(), Y) X = X.astype(str) Y = np.array([str(i) for i in range(100)]) nptest.assert_array_equal(X.to_numpy(), Y) def test_rolling_mean(self): data = SArray(range(1000)) neg_data = SArray(range(-100,100,2)) ### Small backward window including current res = data.rolling_mean(-3,0) expected = [None for i in range(3)] + [i + .5 for i in range(1,998)] self.__test_equal(res,expected,float) # Test float inputs as well res = data.astype(float).rolling_mean(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_mean(-3, 0, min_observations=5) self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=4) self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=3) expected[2] = 1.0 self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=2) expected[1] = 0.5 self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=1) expected[0] = 0.0 self.__test_equal(res,expected,float) res = data.rolling_mean(-3, 0, min_observations=0) self.__test_equal(res,expected,float) with self.assertRaises(ValueError): res = data.rolling_mean(-3,0,min_observations=-1) res = neg_data.rolling_mean(-3,0) expected = [None for i in range(3)] + [float(i) for i in range(-97,96,2)] self.__test_equal(res,expected,float) # Test float inputs as well res = neg_data.astype(float).rolling_mean(-3,0) self.__test_equal(res,expected,float) # Test vector input res = SArray(self.vec_data).rolling_mean(-3,0) expected = [None for i in range(3)] + [array.array('d',[i+.5, i+1.5]) for i in range(2,9)] self.__test_equal(res,expected,array.array) ### Small forward window including current res = data.rolling_mean(0,4) expected = [float(i) for i in range(2,998)] + [None for i in range(4)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(0,4) expected = [float(i) for i in range(-96,95,2)] + [None for i in range(4)] self.__test_equal(res,expected,float) ### Small backward window not including current res = data.rolling_mean(-5,-1) expected = [None for i in range(5)] + [float(i) for i in range(2,997)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(-5,-1) expected = [None for i in range(5)] + [float(i) for i in range(-96,94,2)] self.__test_equal(res,expected,float) ### Small forward window not including current res = data.rolling_mean(1,5) expected = [float(i) for i in range(3,998)] + [None for i in range(5)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(1,5) expected = [float(i) for i in range(-94,96,2)] + [None for i in range(5)] self.__test_equal(res,expected,float) ### "Centered" rolling aggregate res = data.rolling_mean(-2,2) expected = [None for i in range(2)] + [float(i) for i in range(2,998)] + [None for i in range(2)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(-2,2) expected = [None for i in range(2)] + [float(i) for i in range(-96,96,2)] + [None for i in range(2)] self.__test_equal(res,expected,float) ### Lopsided rolling aggregate res = data.rolling_mean(-2,1) expected = [None for i in range(2)] + [i + .5 for i in range(1,998)] + [None for i in range(1)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(-2,1) expected = [None for i in range(2)] + [float(i) for i in range(-97,97,2)] + [None for i in range(1)] self.__test_equal(res,expected,float) ### A very forward window res = data.rolling_mean(500,502) expected = [float(i) for i in range(501,999)] + [None for i in range(502)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(50,52) expected = [float(i) for i in range(2,98,2)] + [None for i in range(52)] self.__test_equal(res,expected,float) ### A very backward window res = data.rolling_mean(-502,-500) expected = [None for i in range(502)] + [float(i) for i in range(1,499)] self.__test_equal(res,expected,float) res = neg_data.rolling_mean(-52,-50) expected = [None for i in range(52)] + [float(i) for i in range(-98,-2,2)] self.__test_equal(res,expected,float) ### A window size much larger than anticipated segment size res = data.rolling_mean(0,749) expected = [i + .5 for i in range(374,625)] + [None for i in range(749)] self.__test_equal(res,expected,float) ### A window size larger than the array res = data.rolling_mean(0,1000) expected = [None for i in range(1000)] self.__test_equal(res,expected,type(None)) ### A window size of 1 res = data.rolling_mean(0,0) self.__test_equal(res, list(data), float) res = data.rolling_mean(-2,-2) expected = [None for i in range(2)] + list(data[0:998]) self.__test_equal(res, expected, float) res = data.rolling_mean(3,3) expected = list(data[3:1000]) + [None for i in range(3)] self.__test_equal(res, expected, float) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_mean(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_mean(0,1) ### Empty SArray sa = SArray() res = sa.rolling_mean(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_mean(0,1) self.__test_equal(res, [1.5,2.5,None], float) def test_rolling_sum(self): data = SArray(range(1000)) neg_data = SArray(range(-100,100,2)) ### Small backward window including current res = data.rolling_sum(-3,0) expected = [None for i in range(3)] + [i for i in range(6,3994,4)] self.__test_equal(res,expected,int) # Test float inputs as well res = data.astype(float).rolling_sum(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_sum(-3, 0, min_observations=5) self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=4) self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=3) expected[2] = 3 self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=2) expected[1] = 1 self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=1) expected[0] = 0 self.__test_equal(res,expected,int) res = data.rolling_sum(-3, 0, min_observations=0) self.__test_equal(res,expected,int) with self.assertRaises(ValueError): res = data.rolling_sum(-3,0,min_observations=-1) res = neg_data.rolling_sum(-3,0) expected = [None for i in range(3)] + [i for i in range(-388,388,8)] self.__test_equal(res,expected,int) # Test float inputs as well res = neg_data.astype(float).rolling_sum(-3,0) self.__test_equal(res,expected,float) # Test vector input res = SArray(self.vec_data).rolling_sum(-3,0) expected = [None for i in range(3)] + [array.array('d',[i, i+4]) for i in range(10,38,4)] self.__test_equal(res,expected,array.array) ### Small forward window including current res = data.rolling_sum(0,4) expected = [i for i in range(10,4990,5)] + [None for i in range(4)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(0,4) expected = [i for i in range(-480,480,10)] + [None for i in range(4)] self.__test_equal(res,expected,int) ### Small backward window not including current res = data.rolling_sum(-5,-1) expected = [None for i in range(5)] + [i for i in range(10,4985,5)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(-5,-1) expected = [None for i in range(5)] + [i for i in range(-480,470,10)] self.__test_equal(res,expected,int) ### Small forward window not including current res = data.rolling_sum(1,5) expected = [i for i in range(15,4990,5)] + [None for i in range(5)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(1,5) expected = [i for i in range(-470,480,10)] + [None for i in range(5)] self.__test_equal(res,expected,int) ### "Centered" rolling aggregate res = data.rolling_sum(-2,2) expected = [None for i in range(2)] + [i for i in range(10,4990,5)] + [None for i in range(2)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(-2,2) expected = [None for i in range(2)] + [i for i in range(-480,480,10)] + [None for i in range(2)] self.__test_equal(res,expected,int) ### Lopsided rolling aggregate res = data.rolling_sum(-2,1) expected = [None for i in range(2)] + [i for i in range(6,3994,4)] + [None for i in range(1)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(-2,1) expected = [None for i in range(2)] + [i for i in range(-388,388,8)] + [None for i in range(1)] self.__test_equal(res,expected,int) ### A very forward window res = data.rolling_sum(500,502) expected = [i for i in range(1503,2997,3)] + [None for i in range(502)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(50,52) expected = [i for i in range(6,294,6)] + [None for i in range(52)] self.__test_equal(res,expected,int) ### A very backward window res = data.rolling_sum(-502,-500) expected = [None for i in range(502)] + [i for i in range(3,1497,3)] self.__test_equal(res,expected,int) res = neg_data.rolling_sum(-52,-50) expected = [None for i in range(52)] + [i for i in range(-294,-6,6)] self.__test_equal(res,expected,int) ### A window size much larger than anticipated segment size res = data.rolling_sum(0,749) expected = [i for i in range(280875,469125,750)] + [None for i in range(749)] self.__test_equal(res,expected,int) ### A window size larger than the array res = data.rolling_sum(0,1000) expected = [None for i in range(1000)] self.__test_equal(res,expected,type(None)) ### A window size of 1 res = data.rolling_sum(0,0) self.__test_equal(res, list(data), int) res = data.rolling_sum(-2,-2) expected = [None for i in range(2)] + list(data[0:998]) self.__test_equal(res, expected, int) res = data.rolling_sum(3,3) expected = list(data[3:1000]) + [None for i in range(3)] self.__test_equal(res, expected, int) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_sum(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_sum(0,1) ### Empty SArray sa = SArray() res = sa.rolling_sum(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_sum(0,1) self.__test_equal(res, [3,5,None], int) def test_rolling_max(self): data = SArray(range(1000)) ### Small backward window including current res = data.rolling_max(-3,0) expected = [None for i in range(3)] + [i for i in range(3,1000)] self.__test_equal(res,expected,int) # Test float inputs as well res = data.astype(float).rolling_max(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_max(-3, 0, min_observations=5) self.__test_equal(res,expected,int) res = data.rolling_max(-3, 0, min_observations=4) self.__test_equal(res,expected,int) res = data.rolling_max(-3, 0, min_observations=3) expected[2] = 2 self.__test_equal(res,expected,int) with self.assertRaises(ValueError): res = data.rolling_max(-3,0,min_observations=-1) # Test vector input with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.vec_data).rolling_max(-3,0) ### Small forward window including current res = data.rolling_max(0,4) expected = [float(i) for i in range(4,1000)] + [None for i in range(4)] self.__test_equal(res,expected,int) ### A window size of 1 res = data.rolling_max(0,0) self.__test_equal(res, list(data), int) res = data.rolling_max(-2,-2) expected = [None for i in range(2)] + list(data[0:998]) self.__test_equal(res, expected, int) res = data.rolling_max(3,3) expected = list(data[3:1000]) + [None for i in range(3)] self.__test_equal(res, expected, int) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_max(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_max(0,1) ### Empty SArray sa = SArray() res = sa.rolling_max(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_max(0,1) self.__test_equal(res, [2,3,None], int) def test_rolling_min(self): data = SArray(range(1000)) ### Small backward window including current res = data.rolling_min(-3,0) expected = [None for i in range(3)] + [i for i in range(0,997)] self.__test_equal(res,expected,int) # Test float inputs as well res = data.astype(float).rolling_min(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_min(-3, 0, min_observations=5) self.__test_equal(res,expected,int) res = data.rolling_min(-3, 0, min_observations=4) self.__test_equal(res,expected,int) res = data.rolling_min(-3, 0, min_observations=3) expected[2] = 0 self.__test_equal(res,expected,int) with self.assertRaises(ValueError): res = data.rolling_min(-3,0,min_observations=-1) # Test vector input with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.vec_data).rolling_min(-3,0) ### Small forward window including current res = data.rolling_min(0,4) expected = [float(i) for i in range(0,996)] + [None for i in range(4)] self.__test_equal(res,expected,int) ### A window size of 1 res = data.rolling_min(0,0) self.__test_equal(res, list(data), int) res = data.rolling_min(-2,-2) expected = [None for i in range(2)] + list(data[0:998]) self.__test_equal(res, expected, int) res = data.rolling_min(3,3) expected = list(data[3:1000]) + [None for i in range(3)] self.__test_equal(res, expected, int) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_min(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_min(0,1) ### Empty SArray sa = SArray() res = sa.rolling_min(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_min(0,1) self.__test_equal(res, [1,2,None], int) def test_rolling_var(self): data = SArray(range(1000)) ### Small backward window including current res = data.rolling_var(-3,0) expected = [None for i in range(3)] + [1.25 for i in range(997)] self.__test_equal(res,expected,float) # Test float inputs as well res = data.astype(float).rolling_var(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_var(-3, 0, min_observations=5) self.__test_equal(res,expected,float) res = data.rolling_var(-3, 0, min_observations=4) self.__test_equal(res,expected,float) res = data.rolling_var(-3, 0, min_observations=3) expected[2] = (2.0/3.0) self.__test_equal(res,expected,float) with self.assertRaises(ValueError): res = data.rolling_var(-3,0,min_observations=-1) # Test vector input with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.vec_data).rolling_var(-3,0) ### Small forward window including current res = data.rolling_var(0,4) expected = [2 for i in range(996)] + [None for i in range(4)] self.__test_equal(res,expected,float) ### A window size of 1 res = data.rolling_var(0,0) self.__test_equal(res, [0 for i in range(1000)], float) res = data.rolling_var(-2,-2) self.__test_equal(res, [None,None] + [0 for i in range(998)], float) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_var(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_var(0,1) ### Empty SArray sa = SArray() res = sa.rolling_var(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_var(0,1) self.__test_equal(res, [.25,.25,None], float) def test_rolling_stdv(self): data = SArray(range(1000)) ### Small backward window including current res = data.rolling_stdv(-3,0) expected = [None for i in range(3)] + [1.118033988749895 for i in range(997)] self.__test_equal(res,expected,float) # Test float inputs as well res = data.astype(float).rolling_stdv(-3,0) self.__test_equal(res,expected,float) # Test min observations res = data.rolling_stdv(-3, 0, min_observations=5) self.__test_equal(res,expected,float) res = data.rolling_stdv(-3, 0, min_observations=4) self.__test_equal(res,expected,float) res = data.rolling_stdv(-3, 0, min_observations=3) expected[2] = math.sqrt(2.0/3.0) self.__test_equal(res,expected,float) with self.assertRaises(ValueError): res = data.rolling_stdv(-3,0,min_observations=-1) # Test vector input with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.vec_data).rolling_stdv(-3,0) ### Small forward window including current res = data.rolling_stdv(0,4) expected = [math.sqrt(2) for i in range(996)] + [None for i in range(4)] self.__test_equal(res,expected,float) ### A window size of 1 res = data.rolling_stdv(0,0) self.__test_equal(res, [0 for i in range(1000)], float) res = data.rolling_stdv(-2,-2) self.__test_equal(res, [None,None] + [0 for i in range(998)], float) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_stdv(4,2) ### Non-numeric with self.assertRaisesRegexp(RuntimeError, '.*support.*type.*'): res = SArray(self.string_data).rolling_stdv(0,1) ### Empty SArray sa = SArray() res = sa.rolling_stdv(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_stdv(0,1) self.__test_equal(res, [.5,.5,None], float) def test_rolling_count(self): data = SArray(range(100)) ### Small backward window including current res = data.rolling_count(-3,0) expected = [1,2,3] + [4 for i in range(97)] self.__test_equal(res,expected,int) # Test float inputs res = data.astype(float).rolling_count(-3,0) self.__test_equal(res,expected,int) # Test vector input res = SArray(self.vec_data).rolling_count(-3,0) expected = [1,2,3] + [4 for i in range(7)] self.__test_equal(res,expected,int) ### Test string input res = SArray(self.string_data).rolling_count(-3,0) self.__test_equal(res,expected[0:8],int) ### Small forward window including current res = data.rolling_count(0,4) expected = [5 for i in range(0,96)] + [4,3,2,1] self.__test_equal(res,expected,int) ### A window size of 1 res = data.rolling_count(0,0) self.__test_equal(res, [1 for i in range(100)], int) res = data.rolling_count(-2,-2) self.__test_equal(res, [0,0] + [1 for i in range(98)], int) ### A negative window size with self.assertRaises(RuntimeError): res = data.rolling_count(4,2) ### Empty SArray sa = SArray() res = sa.rolling_count(0,1) self.__test_equal(res, [], type(None)) ### Small SArray sa = SArray([1,2,3]) res = sa.rolling_count(0,1) self.__test_equal(res, [2,2,1], int) sa = SArray([1,2,None]) res = sa.rolling_count(0,1) self.__test_equal(res, [2,1,0], int) def cumulative_aggregate_comparison(self, out, ans): import array self.assertEqual(out.dtype, ans.dtype) self.assertEqual(len(out), len(ans)) for i in range(len(out)): if out[i] is None: self.assertTrue(ans[i] is None) if ans[i] is None: self.assertTrue(out[i] is None) if type(out[i]) != array.array: self.assertAlmostEqual(out[i], ans[i]) else: self.assertEqual(len(out[i]), len(ans[i])) oi = out[i] ansi = ans[i] for j in range(len(oi)): self.assertAlmostEqual(oi, ansi) def test_cumulative_sum(self): def single_test(src, ans): out = src.cumulative_sum() self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_sum() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_sum() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_sum() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_sum() single_test( SArray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55]) ) single_test( SArray([0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1]), SArray([0.1, 1.2, 3.3, 6.4, 10.5, 15.6, 21.7, 28.8]) ) single_test( SArray([[11.0, 2.0], [22.0, 1.0], [3.0, 4.0], [4.0, 4.0]]), SArray([[11.0, 2.0], [33.0, 3.0], [36.0, 7.0], [40.0, 11.0]]) ) single_test( SArray([None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([None, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55]) ) single_test( SArray([None, 1, None, 3, None, 5]), SArray([None, 1, 1, 4, 4, 9]) ) single_test( SArray([None, [33.0, 3.0], [3.0, 4.0], [4.0, 4.0]]), SArray([None, [33.0, 3.0], [36.0, 7.0], [40.0, 11.0]]) ) single_test( SArray([None, [33.0, 3.0], None, [4.0, 4.0]]), SArray([None, [33.0, 3.0], [33.0, 3.0], [37.0, 7.0]]) ) def test_cumulative_mean(self): def single_test(src, ans): out = src.cumulative_mean() self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_mean() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_mean() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_mean() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_mean() single_test( SArray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]) ) single_test( SArray([0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1]), SArray([0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 3.1, 3.6]) ) single_test( SArray([[11.0, 22.0], [33.0, 66.0], [4.0, 2.0], [4.0, 2.0]]), SArray([[11.0, 22.0], [22.0, 44.0], [16.0, 30.0], [13.0, 23.0]]) ) single_test( SArray([None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([None, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]) ) single_test( SArray([None, 1, None, 3, None, 5]), SArray([None, 1, 1.0, 2.0, 2.0, 3.0]) ) single_test( SArray([None, [11.0, 22.0], [33.0, 66.0], [4.0, 2.0]]), SArray([None, [11.0, 22.0], [22.0, 44.0], [16.0, 30.0]]) ) single_test( SArray([None, [11.0, 22.0], None, [33.0, 66.0], [4.0, 2.0]]), SArray([None, [11.0, 22.0], [11.0, 22.0], [22.0, 44.0], [16.0, 30.0]]) ) def test_cumulative_min(self): def single_test(src, ans): out = src.cumulative_min() self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_min() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_min() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_min() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_min() with self.assertRaises(RuntimeError): sa = SArray([[1], [1], [1], [1]]).cumulative_min() single_test( SArray([0, 1, 2, 3, 4, 5, -1, 7, 8, -2, 10]), SArray([0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2]) ) single_test( SArray([7.1, 6.1, 3.1, 3.9, 4.1, 2.1, 2.9, 0.1]), SArray([7.1, 6.1, 3.1, 3.1, 3.1, 2.1, 2.1, 0.1]) ) single_test( SArray([None, 8, 6, 3, 4, None, 6, 2, 8, 9, 1]), SArray([None, 8, 6, 3, 3, 3, 3, 2, 2, 2, 1]) ) single_test( SArray([None, 5, None, 3, None, 10]), SArray([None, 5, 5, 3, 3, 3]) ) def test_cumulative_max(self): def single_test(src, ans): out = src.cumulative_max() self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_max() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_max() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_max() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_max() with self.assertRaises(RuntimeError): sa = SArray([[1], [1], [1], [1]]).cumulative_max() single_test( SArray([0, 1, 0, 3, 5, 4, 1, 7, 6, 2, 10]), SArray([0, 1, 1, 3, 5, 5, 5, 7, 7, 7, 10]) ) single_test( SArray([2.1, 6.1, 3.1, 3.9, 2.1, 8.1, 8.9, 10.1]), SArray([2.1, 6.1, 6.1, 6.1, 6.1, 8.1, 8.9, 10.1]) ) single_test( SArray([None, 1, 6, 3, 4, None, 4, 2, 8, 9, 1]), SArray([None, 1, 6, 6, 6, 6, 6, 6, 8, 9, 9]) ) single_test( SArray([None, 2, None, 3, None, 10]), SArray([None, 2, 2, 3, 3, 10]) ) def test_cumulative_std(self): def single_test(src, ans): out = src.cumulative_std() self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_std() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_std() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_std() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_std() with self.assertRaises(RuntimeError): sa = SArray([[1], [1], [1], [1]]).cumulative_std() single_test( SArray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([0.0, 0.5, 0.816496580927726, 1.118033988749895, 1.4142135623730951, 1.707825127659933, 2.0, 2.29128784747792, 2.581988897471611, 2.8722813232690143, 3.1622776601683795]) ) single_test( SArray([0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1]), SArray([0.0, 0.5, 0.81649658092772603, 1.1180339887498949, 1.4142135623730949, 1.707825127659933, 1.9999999999999998, 2.2912878474779195]) ) single_test( SArray([None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([None, 0.0, 0.5, 0.816496580927726, 1.118033988749895, 1.4142135623730951, 1.707825127659933, 2.0, 2.29128784747792, 2.581988897471611, 2.8722813232690143, 3.1622776601683795]) ) single_test( SArray([None, 1, None, 3, None, 5]), SArray([None, 0.0, 0.0, 1.0, 1.0, 1.6329931618554521]) ) def test_cumulative_var(self): def single_test(src, ans): out = src.cumulative_var() self.cumulative_aggregate_comparison(out, ans) with self.assertRaises(RuntimeError): sa = SArray(["foo"]).cumulative_var() with self.assertRaises(RuntimeError): sa = SArray([[1], ["foo"]]).cumulative_var() with self.assertRaises(RuntimeError): sa = SArray([{"bar": 1}]).cumulative_var() with self.assertRaises(RuntimeError): sa = SArray([[1], [1,1], [1], [1]]).cumulative_var() with self.assertRaises(RuntimeError): sa = SArray([[1], [1], [1], [1]]).cumulative_var() single_test( SArray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([0.0, 0.25, 0.6666666666666666, 1.25, 2.0, 2.9166666666666665, 4.0, 5.25, 6.666666666666667, 8.25, 10.0]) ) single_test( SArray([0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1]), SArray( [0.0, 0.25000000000000006, 0.6666666666666666, 1.25, 1.9999999999999996, 2.916666666666666, 3.999999999999999, 5.249999999999998]) ) single_test( SArray([None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), SArray([None, 0.0, 0.25, 0.6666666666666666, 1.25, 2.0, 2.9166666666666665, 4.0, 5.25, 6.666666666666667, 8.25, 10.0]) ) single_test( SArray([None, 1, None, 3, None, 5]), SArray([None, 0.0, 0.0, 1.0, 1.0, 2.6666666666666665]) ) def test_numpy_datetime64(self): # Make all datetimes naive expected = [i.replace(tzinfo=GMT(0.0)) \ if i is not None and i.tzinfo is None else i for i in self.datetime_data] # A regular list iso_str_list = [np.datetime64('2013-05-07T10:04:10Z'), np.datetime64('1902-10-21T10:34:10Z'), None] sa = SArray(iso_str_list) self.__test_equal(sa,expected,dt.datetime) iso_str_list[2] = np.datetime64('NaT') sa = SArray(iso_str_list) self.__test_equal(sa,expected,dt.datetime) # A numpy array np_ary = np.array(iso_str_list) sa = SArray(np_ary) self.__test_equal(sa,expected,dt.datetime) ### Every possible type of datetime64 test_str = '1969-12-31T23:59:56Z' available_time_units = ['h','m','s','ms','us','ns','ps','fs','as'] expected = [dt.datetime(1969,12,31,23,59,56,tzinfo=GMT(0.0)) for i in range(7)] expected.insert(0,dt.datetime(1969,12,31,23,59,0,tzinfo=GMT(0.0))) expected.insert(0,dt.datetime(1969,12,31,23,0,0,tzinfo=GMT(0.0))) for i in range(len(available_time_units)): sa = SArray([np.datetime64(test_str,available_time_units[i])]) self.__test_equal(sa,[expected[i]],dt.datetime) test_str = '1908-06-01' available_date_units = ['Y','M','W','D'] expected = [dt.datetime(1908,6,1,0,0,0,tzinfo=GMT(0.0)) for i in range(4)] expected[2] = dt.datetime(1908,5,28,0,0,0,tzinfo=GMT(0.0)) # weeks start on Thursday? expected[0] = dt.datetime(1908,1,1,0,0,0,tzinfo=GMT(0.0)) for i in range(len(available_date_units)): sa = SArray([np.datetime64(test_str,available_date_units[i])]) self.__test_equal(sa,[expected[i]],dt.datetime) # Daylight savings time (Just to be safe. datetime64 deals in UTC, and # we store times in UTC by default, so this shouldn't affect anything) sa = SArray([np.datetime64('2015-03-08T02:38:00-08')]) expected = [dt.datetime(2015,3,8,10,38,tzinfo=GMT(0.0))] self.__test_equal(sa, expected, dt.datetime) # timezone considerations sa = SArray([np.datetime64('2016-01-01T05:45:00+0545')]) expected = [dt.datetime(2016,1,1,0,0,0,tzinfo=GMT(0.0))] self.__test_equal(sa, expected, dt.datetime) ### Out of our datetime range with self.assertRaises(TypeError): sa = SArray([np.datetime64('1066-10-14T09:00:00Z')]) def test_pandas_timestamp(self): iso_str_list = [pd.Timestamp('2013-05-07T10:04:10'),
pd.Timestamp('1902-10-21T10:34:10Z')
pandas.Timestamp
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ''' Loop over all runs and find the optimal policy for each. Plot them over time and include demand and order count. ''' for run in range(10): p_df = pd.read_csv('./data/Pgrid_%d.csv' % run) p_data = p_df.to_numpy()[:,1:] o_df = pd.read_csv('./data/Ogrid_%d.csv' % run) o_data = o_df.to_numpy()[:,1:] d_df = pd.read_csv('./data/demand_time%d.csv' % run) demand = d_df.to_numpy()[:,1] ''' Get max Profit and track the inventory path. We use armax to get the index of the maximum profit in a row. ''' print(p_data.shape) max_idx = np.argmax(p_data[1,:]) print("Starting invantory size for max profit:", max_idx) # Init empty arrays inv_array = np.zeros(1000) order_array = np.zeros(1000) order_n = o_data[0, max_idx] demand_array = np.zeros(1000) demand_array[0] = demand[0] inv_array[0] = max_idx - demand[0] # Loop over all timesteps and track the optimal policy order_array[0] = order_n idx = max_idx for n in range(1,1000): idx = int(idx + order_n) order_n = o_data[n, idx] inv_array[n] = inv_array[n-1] - demand[n] order_array[n] = order_array[n] + order_n demand_array[n] = demand_array[n-1] + demand[n] # It follow an overcomplicated code to prepare the data for a plot time_array = np.linspace(0,1000, num=1000, dtype=int) df_order = pd.DataFrame() df_order['Amount'] = order_array df_order['Timesteps'] = time_array df_order['Feature'] = ["Order"]*1000 df_inv = pd.DataFrame() df_inv['Amount'] = inv_array df_inv['Timesteps'] = time_array df_inv['Feature'] = ["Inventory"]*1000 df_demand = pd.DataFrame() df_demand['Amount'] = demand_array df_demand['Timesteps'] = time_array df_demand['Feature'] = ["Demand"]*1000 # We concatenate the data to fit it in one plot if run == 0: df_plot = pd.concat([df_inv, df_order, df_demand]) else: df_plot2 =
pd.concat([df_inv, df_order, df_demand])
pandas.concat
"""InPhaDel: Genotypes and phase deletions on a single chromosome using a specific classification model Trains models for phasing deletions using underlying WGS+HiC data """ import sys import os import pickle import pandas as pd import numpy as np import warnings from itertools import izip from sklearn import svm from sklearn import ensemble from sklearn.cross_validation import StratifiedKFold from sklearn.grid_search import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from svphase.utils.common import logger from svphase.utils.config import RANDOM_STATE,DATA_PREFIX from svphase.learn.cov import FileStructureDataWithTruth, RPKMAdaptor from svphase.learn.evaluation import Evaluation from svphase.learn.features import HicOnlySubset, WgsOnlySubset from svphase.inphadel import default_arguments class Model(object): def __init__(self, model_pkl, random_state): self.pkl = model_pkl self.random_state = random_state self.clf = None self.params = {} def clf_stats(self): pass class SVMModel(Model): def __init__(self, model_pkl, random_state): Model.__init__(self, model_pkl, random_state) self.clf = svm.SVC(kernel='linear', probability=True, random_state=self.random_state) self.params = {'C':[.1,1,10,100]} class RFModel(Model): def __init__(self, model_pkl, random_state): Model.__init__(self, model_pkl, random_state) self.clf = ensemble.RandomForestClassifier(oob_score=True, random_state=self.random_state) self.params = {'n_estimators':[10,20,50,100], 'max_depth':[2,5,10,20]} def clf_stats(self): logger.info('RFModel: OOB_Score {0:0.4f}'.format(self.clf.oob_score_)) class KNNModel(Model): def __init__(self, model_pkl, random_state): Model.__init__(self, model_pkl, random_state) self.clf = KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='brute') self.params = {'n_neighbors':[2,4,8,16,32]} class Trainer(Evaluation): def __init__(self, k=5, feature_subset=None): Evaluation.__init__(self, feature_subset=feature_subset) self.k = k self.inner_models = [] self.inner_accuracies = [] self._cpred_index =map(lambda x:'cpred:'+x,self.label_obj.classes) self._tpred_index =map(lambda x:'tpred:'+x,self.label_obj.classes) def check_stable(self, scores, common_params_df): thresh = 0.10 deviation = max(scores)-min(scores) if deviation>thresh: logger.warning('Model test accuracies deviate more than {thresh:0.1f}%, Deviation {dev:0.4f}'.format(thresh=thresh*100, dev=deviation)) if len(common_params_df.index)>1: logger.warning('Model had unstable parameters\n{len:s}'.format(len=common_params_df)) def _to_series(self, outer_fold, inner_fold, test_accuracy, correct_preds, total_preds, params): if correct_preds is None: c = pd.Series([0,]*len(self.label_obj.classes), index=self._cpred_index, dtype=int) else: c = pd.Series(correct_preds, index=self._cpred_index, dtype=int) if total_preds is None: t = pd.Series([0,]*len(self.label_obj.classes), index=self._tpred_index, dtype=int) else: t = pd.Series(total_preds, index=self._tpred_index, dtype=int) return pd.concat([
pd.Series([outer_fold, inner_fold, test_accuracy], index=['outer_fold','inner_fold', 'test_accuracy'])
pandas.Series
import pandas as pd import numpy as np def clean_static_df(static_df): static_df_clean = static_df static_df_clean = pd.get_dummies(data=static_df_clean, columns=[ 'sex']).drop('sex_MALE', axis=1) static_df_clean.drop('discharge_destination', axis=1, inplace=True) static_df_clean.loc[:, 'datetime_min'] = pd.to_datetime(static_df_clean['datetime_min'], dayfirst=True) first_lab_time_col = pd.to_datetime( static_df_clean['datetime_min'], dayfirst=True) static_df_clean.loc[:, 'icu_in_year'] = first_lab_time_col.dt.year static_df_clean.loc[:, 'icu_in_month'] = first_lab_time_col.dt.month static_df_clean.loc[:, 'icu_in_day'] = first_lab_time_col.dt.day static_df_clean.drop('datetime_min', axis=1, inplace=True) static_df_clean.drop('datetime_max', axis=1, inplace=True) # TODO: why is there no hourly info? static_df_clean.set_index('patient_id') return static_df_clean def clean_dynamic_df(dynamic_df, static_df): dynamic_df_times = dynamic_df.merge(static_df[['patient_id','datetime_min']], how='inner', on='patient_id') dynamic_df_times.loc[:, 'datetime_min'] = pd.to_datetime(dynamic_df_times['datetime_min'], dayfirst=True) dynamic_df_times.loc[:, 'datetime'] = pd.to_datetime(dynamic_df_times['datetime'], dayfirst=True) dynamic_df_times.loc[:, 'hours_in'] = \ (dynamic_df_times['datetime'] - dynamic_df_times['datetime_min']) dynamic_df_times = dynamic_df_times.drop(['datetime','datetime_min'], axis=1) # upsample to hourly dynamic_df_hourly = dynamic_df_times.set_index('hours_in').groupby('patient_id').resample('H').mean() dynamic_df_hourly = dynamic_df_hourly.drop('patient_id', axis=1).reset_index() # dynamic_df_hourly = dynamic_df_hourly.set_index('patient_id') dynamic_df_clean = dynamic_df_hourly.set_index(['patient_id','hours_in']).dropna(how='all') return dynamic_df_clean def clean_treat_df(treat_df, static_df): treat_df_times = treat_df.merge(static_df[['patient_id','datetime_min']], how='inner', on='patient_id') treat_df_times.loc[:, 'datetime_min'] = pd.to_datetime(treat_df_times['datetime_min'], dayfirst=True) treat_df_times.loc[:, 'datetime'] = pd.to_datetime(treat_df_times['date'], dayfirst=True) treat_df_times.loc[:, 'hours_in'] = \ (treat_df_times['datetime'] - treat_df_times['datetime_min']) treat_df_times = treat_df_times.drop(['datetime','datetime_min'], axis=1) treat_df_hourly = treat_df_times.set_index('hours_in').groupby('patient_id').resample('H').mean() treat_df_hourly = treat_df_hourly.drop('patient_id', axis=1).reset_index() treat_df_clean = treat_df_hourly.set_index(['patient_id','hours_in']).dropna(how='all') return treat_df_clean def clean_outcome_df(static_df): outcome_df = static_df[['patient_id','discharge_destination','datetime_min','datetime_max']] outcome_df.loc[:,'datetime_min'] = pd.to_datetime(outcome_df['datetime_min']) outcome_df.loc[:,'datetime_max'] = pd.to_datetime(outcome_df.loc[:,'datetime_max']) outcome_df['hours_in'] = outcome_df['datetime_max'] - outcome_df['datetime_min'] outcome_df.loc[:, 'death'] = (outcome_df['discharge_destination'] == 'Fallecimiento') * 1.0 outcome_df = outcome_df.drop(['discharge_destination','datetime_min','datetime_max'], axis=1) outcome_df = outcome_df.set_index('patient_id') return outcome_df def get_CXYT_for_modeling(static_df, dynamic_df, treat_df, outcome_df, output_filepath): static_df = static_df.reset_index() dynamic_df = dynamic_df.reset_index() treat_df = treat_df.reset_index() outcome_df = outcome_df.reset_index() # upsample treatemnt to hourly before merging treat_df.loc[:, 'hours_in'] = pd.to_timedelta(treat_df['hours_in']) dynamic_df.loc[:, 'hours_in'] =
pd.to_timedelta(dynamic_df['hours_in'])
pandas.to_timedelta
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors":
pandas.StringDtype()
pandas.StringDtype
from abc import abstractmethod import datetime as dt import numpy as np from numpy.random import RandomState from numpy.testing import assert_equal from pandas import DataFrame, Series, Timedelta, date_range import pytest from arch import doc from arch.univariate.base import implicit_constant from arch.utility.array import ( ConcreteClassMeta, DocStringInheritor, cutoff_to_index, date_to_index, ensure1d, ensure2d, find_index, parse_dataframe, ) @pytest.fixture(scope="function") def rng(): return RandomState(12345) def test_ensure1d(): out = ensure1d(1.0, "y") assert_equal(out, np.array([1.0])) out = ensure1d(np.arange(5.0), "y") assert_equal(out, np.arange(5.0)) out = ensure1d(np.arange(5.0)[:, None], "y") assert_equal(out, np.arange(5.0)) in_array = np.reshape(np.arange(16.0), (4, 4)) with pytest.raises(ValueError): ensure1d(in_array, "y") y = Series(np.arange(5.0)) ys = ensure1d(y, "y") assert isinstance(ys, np.ndarray) ys = ensure1d(y, "y", True) assert isinstance(ys, Series) y = DataFrame(y) ys = ensure1d(y, "y") assert isinstance(ys, np.ndarray) ys = ensure1d(y, "y", True) assert isinstance(ys, Series) y.columns = [1] ys = ensure1d(y, "y", True) assert isinstance(ys, Series) assert ys.name == "1" y = Series(np.arange(5.0), name="series") ys = ensure1d(y, "y") assert isinstance(ys, np.ndarray) ys = ensure1d(y, "y", True) assert isinstance(ys, Series) y = DataFrame(y) ys = ensure1d(y, "y") assert isinstance(ys, np.ndarray) ys = ensure1d(y, "y", True) assert isinstance(ys, Series) ys.name = 1 ys = ensure1d(ys, None, True) assert isinstance(ys, Series) assert ys.name == "1" y = DataFrame(np.reshape(np.arange(10), (5, 2))) with pytest.raises(ValueError): ensure1d(y, "y") def test_ensure2d(): s = Series([1, 2, 3], name="x") df = ensure2d(s, "x") assert isinstance(df, DataFrame) df2 = ensure2d(df, "x") assert df is df2 npa = ensure2d(s.values, "x") assert isinstance(npa, np.ndarray) assert npa.ndim == 2 npa = ensure2d(np.array(1.0), "x") assert isinstance(npa, np.ndarray) assert npa.ndim == 2 with pytest.raises(ValueError): ensure2d(np.array([[[1]]]), "x") with pytest.raises(TypeError): ensure2d([1], "x") def test_parse_dataframe(): s = Series(np.arange(10.0), name="variable") out = parse_dataframe(s, "y") assert_equal(out[1], np.arange(10.0)) assert_equal(out[0], ["variable"]) df = DataFrame(s) out = parse_dataframe(df, "y") assert_equal(out[1], np.arange(10.0)) assert_equal(out[0], ["variable"]) out = parse_dataframe(np.arange(10.0), "y") assert_equal(out[1], np.arange(10.0)) assert_equal(out[0], ["y"]) out = parse_dataframe(None, "name") assert out[0] == ["name"] assert isinstance(out[1], np.ndarray) assert out[1].shape == (0,) def test_implicit_constant(rng): x = rng.standard_normal((1000, 2)) assert not implicit_constant(x) x[:, 0] = 1.0 assert implicit_constant(x) x = rng.standard_normal((1000, 3)) x[:, 0] = x[:, 0] > 0 x[:, 1] = 1 - x[:, 0] assert implicit_constant(x) def test_docstring_inheritor(): class A(object, metaclass=DocStringInheritor): """ Docstring """ class B(A): pass assert_equal(B.__doc__, A.__doc__) def test_date_to_index(): dr = date_range("20000101", periods=3000, freq="W") y = Series(np.arange(3000.0), index=dr) date_index = y.index index = date_to_index(date_index[0], date_index) assert_equal(index, 0) index = date_to_index(date_index[-1], date_index) assert_equal(index, date_index.shape[0] - 1) index = date_to_index("2009-08-02", date_index) assert_equal(index, 500) index = date_to_index("2009-08-04", date_index) assert_equal(index, 501) index = date_to_index("2009-08-01", date_index) assert_equal(index, 500) index = date_to_index(dt.datetime(2009, 8, 1), date_index) assert_equal(index, 500) with pytest.raises(ValueError): date_to_index(dt.date(2009, 8, 1), date_index) z = y + 0.0 z.index = np.arange(3000) num_index = z.index with pytest.raises(ValueError): date_to_index(dt.datetime(2009, 8, 1), num_index) idx = date_range("1999-12-31", periods=3) df = DataFrame([1, 2, 3], index=idx[::-1]) with pytest.raises(ValueError): date_to_index(idx[0], df.index) df = DataFrame([1, 2, 3], index=[idx[0]] * 3) with pytest.raises(ValueError): date_to_index(idx[0], df.index) with pytest.raises(ValueError): date_to_index("NaT", idx) # check whether this also works for a localized datetimeindex date_index = date_range("20000101", periods=3000, freq="W", tz="Europe/Berlin") index = date_to_index(date_index[0], date_index) assert_equal(index, 0) def test_date_to_index_timestamp(): dr = date_range("20000101", periods=3000, freq="W") y = Series(np.arange(3000.0), index=dr) date_index = y.index date = y.index[1000] date_pydt = date.to_pydatetime() date_npdt = date.to_datetime64() date_str = date_pydt.strftime("%Y-%m-%d") index = date_to_index(date, date_index) index_pydt = date_to_index(date_pydt, date_index) index_npdt = date_to_index(date_npdt, date_index) index_str = date_to_index(date_str, date_index) assert_equal(index, 1000) assert_equal(index, index_npdt) assert_equal(index, index_pydt) assert_equal(index, index_str) def test_(): dr = date_range("20000101", periods=3000, freq="W") y = Series(np.arange(3000.0), index=dr) date_index = y.index date = date_index[1000] + Timedelta(1, "D") date_pydt = date.to_pydatetime() date_npdt = date.to_datetime64() date_str = date_pydt.strftime("%Y-%m-%d") index = date_to_index(date, date_index) index_pydt = date_to_index(date_pydt, date_index) index_npdt = date_to_index(date_npdt, date_index) index_str = date_to_index(date_str, date_index) assert_equal(index, 1001) assert_equal(index, index_npdt) assert_equal(index, index_pydt) assert_equal(index, index_str) date = date_index[0] - Timedelta(1, "D") index = date_to_index(date, date_index) assert_equal(index, 0) date_pydt = date.to_pydatetime() date_npdt = date.to_datetime64() date_str = date_pydt.strftime("%Y-%m-%d") index_pydt = date_to_index(date_pydt, date_index) index_npdt = date_to_index(date_npdt, date_index) index_str = date_to_index(date_str, date_index) assert_equal(index, index_npdt) assert_equal(index, index_pydt) assert_equal(index, index_str) def test_cutoff_to_index(): dr =
date_range("20000101", periods=3000, freq="W")
pandas.date_range
import argparse from datetime import datetime, timezone from xml.etree import ElementTree as ET import requests import pandas as pd from src import config def get_time(): utc_dt = datetime.now(timezone.utc) dt = utc_dt.astimezone() return dt def get_response_status_code(root): status_code = '500' if root.tag != 'response': return status_code for code in root.iter('resultCode'): status_code = code.text return status_code def get_holiday_info(year, month, operation): month_fill = '{0:02d}'.format(int(month)) url = '/'.join([config.PUBLIC_DATA_DOMAIN, config.PUBLIC_DATA_HOLIDAY_URI, operation]) params = { 'solYear' : year, 'solMonth' : month_fill, 'ServiceKey' : config.PUBLIC_DATA_PORTAL_KEY, 'numOfRows' : config.DEFAULT_NUM_PAGE } res = requests.get(url=url, params=params) return res def parse_response(root, holiday_df): total_count = root.find('body/totalCount') if total_count is not None and (total_count.text > '0') : for item in root.findall('body/items/item'): res = {'date' : item.find('locdate').text, 'name' : item.find('dateName').text, 'type' : item.find('dateKind').text, 'is_holiday' : item.find('isHoliday').text } holiday_df = holiday_df.append(res, ignore_index=True) return holiday_df def run(year): holiday_df =
pd.DataFrame(columns=['date', 'name', 'type', 'is_holiday'])
pandas.DataFrame
# IMPORTING LIBRARIES ----------------------------------------------------------------------------------- #region import pandas as pd import numpy as np import os import re import glob import csv import shutil #endregion # INPUT VARIABLES---------------------------------------------------------------------------------------- #region # Directory folder of the csv files you want to process Input_path_CSVs = 'C:/FILES/Input_CSV/' # Can change to xlsx if needed, other changes will be nessesary to code Extension = 'csv' # Csv files seperator for input and output files..generally (,) or (|) Delimiter = '|' # Directory folder of the TKC cross reference table Input_path_TKC_files = 'D:/FILES/Input_TKC_files/' # Directory excel file of the Sample Point Table Input_path_SPT = 'C:/FILES/Sample Points_37883_20180926_134607.xlsx' # Output folder of the CSV files Output_path_processed_csv = 'C:/FILES/Output_CSV_Processed/' # Output folder path of bad SPT CSV files Output_path_badSPT = 'C:/FILES/Output_CSV_Bad_SPT/' # Output folder path of TKC Unmapped Data Output_path_badTKC = 'C:/FILES/Output_CSV_Bad_TKC/' # Output folder path of Retest CSV files Output_path_Retests = 'C:/FILES/Output_CSV_Retests/' # Output folder path of CSV Files with Structure that can't be Analysed Output_path_bad_structure = 'C:/FILES/Output_CSV_Bad_Column_Structure/' # Output folder path of Report on Analysed files Output_path_Report = 'C:/FILES/' print('Directories loaded...') #endregion # READ AND PROCESS THE UNIQUE SAMPLE POINTS FILE---------------------------------------------------------------- #region df_SPTs =
pd.read_excel(Input_path_SPT, sheet_name='Data', dtype={'Name': object, 'OldSiteCode_post2007': object})
pandas.read_excel
import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize( "values, dtype", [ ([], "object"), ([1, 2, 3], "int64"), ([1.0, 2.0, 3.0], "float64"), (["a", "b", "c"], "object"), (["a", "b", "c"], "string"), ([1, 2, 3], "datetime64[ns]"), ([1, 2, 3], "datetime64[ns, CET]"), ([1, 2, 3], "timedelta64[ns]"), (["2000", "2001", "2002"], "Period[D]"), ([1, 0, 3], "Sparse"), ([
pd.Interval(0, 1)
pandas.Interval
import os import html5lib import pandas as pd from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from datetime import date, timedelta, datetime as dt from pymongo import MongoClient from itertools import cycle import numpy as np # from kdriver import RemoteDriverStartService class RemoteDriverStartService(): options = webdriver.ChromeOptions() # Set user app data to a new directory options.add_argument("user-data-dir=C:\\Users\\Donley\\App Data\\Google\\Chrome\\Application\\User Data\\Kit") options.add_experimental_option("Proxy", "null") options.add_experimental_option("excludeSwitches", ["ignore-certificate-errors"]) # Create a download path for external data sources as default: options.add_experimental_option("prefs", { "download.default_directory": r"C:\Users\Donley\Documents\GA_TECH\SUBMISSIONS\PROJECT2-CHALLENGE\data\external", "download.prompt_for_download": False, "download.directory_upgrade": True, "safebrowsing.enabled": True }), # Add those optional features to capabilities caps = options.to_capabilities() def start_driver(self): return webdriver.Remote(command_executor='http://127.0.0.1:4444', desired_capabilities=self.caps) # Connect to MongoDB client = MongoClient("mongodb://localhost:27017") db = client['investopedia'] def invsto_scrape(): # Set class equal to new capabilities: DesiredCapabilities = RemoteDriverStartService() # Create variables for scraping: investo = "https://www.investopedia.com/top-communications-stocks-4583180" # Download data to paths, csv's, json, etc: # for external data sources external = "../data/external/" # for processed data sources with ID's processed = "../data/processed/" # Locate Driver in system current_path = os.getcwd() # save the .exe file under the same directory of the web-scrape python script. Path = os.path.join(current_path, "chromedriver") # Initialize Chrome driver and start browser session controlled by automated test software under Kit profile. caps = webdriver.DesiredCapabilities.CHROME.copy() caps['acceptInsecureCerts'] = True # caps = webdriver.DesiredCapabilities.CHROME.copy() # caps['acceptInsecureCerts'] = True # driver = webdriver.Chrome(options=options, desired_capabilities=caps) driver = webdriver.Chrome(executable_path='chromedriver', desired_capabilities=caps) ##Step 3: Find the IDs of the items we want to scrape for [5] # Start Grabbing Information from investopedia: driver.get(investo) driver.maximize_window() timeout = 30 # Find an ID on the page and wait before executing anything until found: try: WebDriverWait(driver, timeout).until(EC.visibility_of_element_located((By.ID, "main_1-0"))) except TimeoutException: driver.quit() ##Step 5: The full code that runs the scraper and save the data to .csv files itable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') itables = pd.read_html(itable) communications_bv = itables[0] communications_bv.columns = ["Communictaions Best Value", "Price", "Market Cap", "12-Month Trailing P/E Ratio"] communications_bv # Locate column containing ticker symbols: communications_bv_df = communications_bv.iloc[1:] # Only keep tick information within parentheses: communications_bv_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in communications_bv_df["Communictaions Best Value"]] communications_bv_ticks communications_fg = itables[1] communications_fg.columns = ["Communications Fastest Growing", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] communications_fg_df = communications_fg.iloc[1:] communications_fg_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in communications_fg_df["Communications Fastest Growing"]] communications_fg_ticks communications_mm = itables[2] communications_mm.columns = ["Communications Most Momentum", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] communications_mm_df = communications_mm.iloc[1:] communications_mm_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in communications_mm_df["Communications Most Momentum"]] del communications_mm_ticks[-2:] communications_mm_ticks discretionary = driver.find_elements(By.CSS_SELECTOR, '#journey-nav__sublist_1-0 > li:nth-child(3) > a') discretionary discretionary[0].click() dtable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') dtables =
pd.read_html(dtable)
pandas.read_html
import logging from collections import defaultdict import paramiko import pandas as pd from stat import S_ISDIR from ipso_phen.ipapi.database.pandas_wrapper import PandasDbWrapper from ipso_phen.ipapi.file_handlers.fh_phenopsys import FileHandlerPhenopsis try: from ipso_phen.ipapi.database.db_connect_data import db_connect_data as dbc conf = dbc.get("phenopsis", {}) except Exception as e: conf = {} logger = logging.getLogger(__name__) PHENOPSIS_ROOT_FOLDER = "./phenopsis" FILES_PER_CONNEXION = 400 IMAGE_EXTENSIONS = (".jpg", ".tiff", ".png", ".bmp", ".tif", ".pim", ".csv") def connect_to_phenodb(): p = paramiko.SSHClient() p.set_missing_host_key_policy(paramiko.AutoAddPolicy) p.connect( conf["address"], port=conf["port"], username=conf["user"], password=conf["password"], ) return p def get_pheno_db_ftp(): return connect_to_phenodb().open_sftp() def get_phenopsis_exp_list() -> list: assert conf, "Unable to connect to phenoserre" try: ftp = get_pheno_db_ftp() exp_lst = sorted(ftp.listdir(path=PHENOPSIS_ROOT_FOLDER)) ftp.close() except Exception as e: logger.error("Unable to reach Phenopsis") return [] else: return [exp for exp in exp_lst if exp != "csv"] def isdir(ftp, path): try: return S_ISDIR(ftp.stat(path).st_mode) except IOError: # Path does not exist, so by definition not a directory return False class PhenopsisDbWrapper(PandasDbWrapper): def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.df_builder = self.get_exp_as_df self.main_selector = {"view_option": "sw755"} def get_all_files( self, ftp, path, extensions, ): ret = [] sf = ftp.listdir_attr(path=path) for fd in sf: obj_path = f"{path}/{fd.filename}" self._callback_undefined() if isdir(ftp=ftp, path=obj_path): ret.extend( self.get_all_files( ftp=ftp, path=obj_path, extensions=extensions, ) ) else: if obj_path.lower().endswith(extensions): ret.append(FileHandlerPhenopsis(file_path=obj_path, database=None)) return ret def get_local_df(self, exp_name) -> pd.DataFrame: csv_path = ( "C:/Users/fmavianemac/Documents/Felicia/Python/database/data_out/phenopsis/" + f"{exp_name.lower()}.dst.csv" ) dataframe = pd.read_csv(csv_path) dataframe["Experiment"] = dataframe["experiment"].str.lower() dataframe["Plant"] = dataframe["plant"].str.lower() dataframe["date_time"] =
pd.to_datetime(dataframe["date_time"], utc=True)
pandas.to_datetime
# coding=utf-8 # pylint: disable-msg=E1101,W0612 """ test get/set & misc """ import pytest from datetime import timedelta import numpy as np import pandas as pd from pandas.core.dtypes.common import is_scalar from pandas import (Series, DataFrame, MultiIndex, Timestamp, Timedelta, Categorical) from pandas.tseries.offsets import BDay from pandas.compat import lrange, range from pandas.util.testing import (assert_series_equal) import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestMisc(TestData): def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') assert result == 4 expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] assert self.series[idx1] == self.series.get(idx1) assert self.objSeries[idx2] == self.objSeries.get(idx2) assert self.series[idx1] == self.series[5] assert self.objSeries[idx2] == self.objSeries[5] assert self.series.get(-1) == self.series.get(self.series.index[-1]) assert self.series[5] == self.series.get(self.series.index[5]) # missing d = self.ts.index[0] - BDay() pytest.raises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) assert result is None def test_getitem_int64(self): idx = np.int64(5) assert self.ts[idx] == self.ts[5] def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] assert self.series.index[2] == slice1.index[1] assert self.objSeries.index[2] == slice2.index[1] assert self.series[2] == slice1[1] assert self.objSeries[2] == slice2[1] def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) @pytest.mark.parametrize( 'result_1, duplicate_item, expected_1', [ [ pd.Series({1: 12, 2: [1, 2, 2, 3]}), pd.Series({1: 313}), pd.Series({1: 12, }, dtype=object), ], [ pd.Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), pd.Series({1: [1, 2, 3]}), pd.Series({1: [1, 2, 3], }), ], ]) def test_getitem_with_duplicates_indices( self, result_1, duplicate_item, expected_1): # GH 17610 result = result_1.append(duplicate_item) expected = expected_1.append(duplicate_item) assert_series_equal(result[1], expected) assert result[2] == result_1[2] def test_getitem_out_of_bounds(self): # don't segfault, GH #495 pytest.raises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) pytest.raises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) assert s.iloc[0] == s['a'] s.iloc[0] = 5 tm.assert_almost_equal(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] assert isinstance(value, np.float64) def test_series_box_timestamp(self): rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng) assert isinstance(ser[5], pd.Timestamp) rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng, index=rng) assert isinstance(ser[5], pd.Timestamp) assert isinstance(ser.iat[5], pd.Timestamp) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) pytest.raises(KeyError, s.__getitem__, 1) pytest.raises(KeyError, s.loc.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) assert is_scalar(obj['c']) assert obj['c'] == 0 def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .loc internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = s.loc[['foo', 'bar', 'bah', 'bam']] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) pytest.raises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] assert result == s.loc['A'] result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.loc[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] assert self.series.index[9] not in numSlice.index assert self.objSeries.index[9] not in objSlice.index assert len(numSlice) == len(numSlice.index) assert self.series[numSlice.index[0]] == numSlice[numSlice.index[0]] assert numSlice.index[1] == self.series.index[11] assert tm.equalContents(numSliceEnd, np.array(self.series)[-10:]) # Test return view. sl = self.series[10:20] sl[:] = 0 assert (self.series[10:20] == 0).all() def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN assert np.isnan(self.ts[6]) assert np.isnan(self.ts[2]) self.ts[np.isnan(self.ts)] = 5 assert not np.isnan(self.ts[2]) # caught this bug when writing tests series = Series(
tm.makeIntIndex(20)
pandas.util.testing.makeIntIndex
from __future__ import division #brings in Python 3.0 mixed type calculation rules import logging import numpy as np import pandas as pd class TerrplantFunctions(object): """ Function class for Stir. """ def __init__(self): """Class representing the functions for Sip""" super(TerrplantFunctions, self).__init__() def run_dry(self): """ EEC for runoff for dry areas """ self.out_run_dry = (self.application_rate / self.incorporation_depth) * self.runoff_fraction return self.out_run_dry def run_semi(self): """ EEC for runoff to semi-aquatic areas """ self.out_run_semi = (self.application_rate / self.incorporation_depth) * self.runoff_fraction * 10 return self.out_run_semi def spray(self): """ EEC for spray drift """ self.out_spray = self.application_rate * self.drift_fraction return self.out_spray def total_dry(self): """ EEC total for dry areas """ self.out_total_dry = self.out_run_dry + self.out_spray return self.out_total_dry def total_semi(self): """ EEC total for semi-aquatic areas """ self.out_total_semi = self.out_run_semi + self.out_spray return self.out_total_semi def nms_rq_dry(self): """ Risk Quotient for NON-LISTED MONOCOT seedlings exposed to Pesticide X in a DRY area """ self.out_nms_rq_dry = self.out_total_dry / self.ec25_nonlisted_seedling_emergence_monocot return self.out_nms_rq_dry def loc_nms_dry(self): """ Level of concern for non-listed monocot seedlings exposed to pesticide X in a dry area """ msg_pass = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk." msg_fail = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nms_rq_dry] self.out_nms_loc_dry = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) # exceed_boolean = self.out_nms_rq_dry >= 1.0 # self.out_nms_loc_dry = exceed_boolean.map(lambda x: # 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk.' if x == True # else 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is minimal.') return self.out_nms_loc_dry def nms_rq_semi(self): """ Risk Quotient for NON-LISTED MONOCOT seedlings exposed to Pesticide X in a SEMI-AQUATIC area """ self.out_nms_rq_semi = self.out_total_semi / self.ec25_nonlisted_seedling_emergence_monocot return self.out_nms_rq_semi def loc_nms_semi(self): """ Level of concern for non-listed monocot seedlings exposed to pesticide X in a semi-aquatic area """ msg_pass = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk." msg_fail = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nms_rq_semi] self.out_nms_loc_semi = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nms_rq_semi >= 1.0 #self.out_nms_loc_semi = exceed_boolean.map(lambda x: # 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk.' if x == True # else 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is minimal.') return self.out_nms_loc_semi def nms_rq_spray(self): """ Risk Quotient for NON-LISTED MONOCOT seedlings exposed to Pesticide X via SPRAY drift """ self.out_nms_rq_spray = self.out_spray / self.out_min_nms_spray return self.out_nms_rq_spray def loc_nms_spray(self): """ Level of concern for non-listed monocot seedlings exposed to pesticide via spray drift """ msg_pass = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via spray drift indicates a potential risk." msg_fail = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via spray drift indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nms_rq_spray] self.out_nms_loc_spray = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nms_rq_spray >= 1.0 #self.out_nms_loc_spray = exceed_boolean.map(lambda x: # 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via spray drift indicates a potential risk.' if x == True # else 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via spray drift indicates that potential risk is minimal.') return self.out_nms_loc_spray def lms_rq_dry(self): """ Risk Quotient for LISTED MONOCOT seedlings exposed to Pesticide X in a DRY areas """ self.out_lms_rq_dry = self.out_total_dry / self.noaec_listed_seedling_emergence_monocot return self.out_lms_rq_dry def loc_lms_dry(self): """ Level of concern for listed monocot seedlings exposed to pesticide via runoff in a dry area """ msg_pass = "The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk." msg_fail = "The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lms_rq_dry] self.out_lms_loc_dry = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lms_rq_dry >= 1.0 #self.out_lms_loc_dry = exceed_boolean.map(lambda x: # 'The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk.' if x == True # else 'The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is minimal.') return self.out_lms_loc_dry def lms_rq_semi(self): """ Risk Quotient for LISTED MONOCOT seedlings exposed to Pesticide X in a SEMI-AQUATIC area """ self.out_lms_rq_semi = self.out_total_semi / self.noaec_listed_seedling_emergence_monocot return self.out_lms_rq_semi def loc_lms_semi(self): """ Level of concern for listed monocot seedlings exposed to pesticide X in semi-aquatic areas """ msg_pass = "The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk." msg_fail = "The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lms_rq_semi] self.out_lms_loc_semi = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lms_rq_semi >= 1.0 #self.out_lms_loc_semi = exceed_boolean.map(lambda x: # 'The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk.' if x == True # else 'The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is minimal.') return self.out_lms_loc_semi def lms_rq_spray(self): """ Risk Quotient for LISTED MONOCOT seedlings exposed to Pesticide X via SPRAY drift """ self.out_lms_rq_spray = self.out_spray / self.out_min_lms_spray return self.out_lms_rq_spray def loc_lms_spray(self): """ Level of concern for listed monocot seedlings exposed to pesticide X via spray drift """ msg_pass = "The risk quotient for listed monocot seedlings exposed to the pesticide via spray drift indicates a potential risk." msg_fail = "The risk quotient for listed monocot seedlings exposed to the pesticide via spray drift indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lms_rq_spray] self.out_lms_loc_spray = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lms_rq_spray >= 1.0 #self.out_lms_loc_spray = exceed_boolean.map(lambda x: # 'The risk quotient for listed monocot seedlings exposed to the pesticide via spray drift indicates a potential risk.' if x == True # else 'The risk quotient for listed monocot seedlings exposed to the pesticide via spray drift indicates that potential risk is minimal.') return self.out_lms_loc_spray def nds_rq_dry(self): """ Risk Quotient for NON-LISTED DICOT seedlings exposed to Pesticide X in DRY areas """ self.out_nds_rq_dry = self.out_total_dry / self.ec25_nonlisted_seedling_emergence_dicot return self.out_nds_rq_dry def loc_nds_dry(self): """ Level of concern for non-listed dicot seedlings exposed to pesticide X in dry areas """ msg_pass = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk." msg_fail = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nds_rq_dry] self.out_nds_loc_dry = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nds_rq_dry >= 1.0 #self.out_nds_loc_dry = exceed_boolean.map(lambda x: # 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk.' if x == True # else 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is minimal.') return self.out_nds_loc_dry def nds_rq_semi(self): """ Risk Quotient for NON-LISTED DICOT seedlings exposed to Pesticide X in SEMI-AQUATIC areas """ self.out_nds_rq_semi = self.out_total_semi / self.ec25_nonlisted_seedling_emergence_dicot return self.out_nds_rq_semi def loc_nds_semi(self): """ Level of concern for non-listed dicot seedlings exposed to pesticide X in semi-aquatic areas """ msg_pass = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk." msg_fail = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nds_rq_semi] self.out_nds_loc_semi = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nds_rq_semi >= 1.0 #self.out_nds_loc_semi = exceed_boolean.map(lambda x: #'The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk.' if x == True # else 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is minimal.') return self.out_nds_loc_semi def nds_rq_spray(self): """ # Risk Quotient for NON-LISTED DICOT seedlings exposed to Pesticide X via SPRAY drift """ self.out_nds_rq_spray = self.out_spray / self.out_min_nds_spray return self.out_nds_rq_spray def loc_nds_spray(self): """ Level of concern for non-listed dicot seedlings exposed to pesticide X via spray drift """ msg_pass = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via spray drift indicates a potential risk." msg_fail = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via spray drift indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nds_rq_spray] self.out_nds_loc_spray = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nds_rq_spray >= 1.0 #self.out_nds_loc_spray = exceed_boolean.map(lambda x: # 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via spray drift indicates a potential risk.' if x == True # else 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via spray drift indicates that potential risk is minimal.') return self.out_nds_loc_spray def lds_rq_dry(self): """ Risk Quotient for LISTED DICOT seedlings exposed to Pesticide X in DRY areas """ self.out_lds_rq_dry = self.out_total_dry / self.noaec_listed_seedling_emergence_dicot return self.out_lds_rq_dry def loc_lds_dry(self): """ Level of concern for listed dicot seedlings exposed to pesticideX in dry areas """ msg_pass = "The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk." msg_fail = "The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lds_rq_dry] self.out_lds_loc_dry = pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lds_rq_dry >= 1.0 #self.out_lds_loc_dry = exceed_boolean.map(lambda x: # 'The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk.' if x == True # else 'The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is minimal.') return self.out_lds_loc_dry def lds_rq_semi(self): """ Risk Quotient for LISTED DICOT seedlings exposed to Pesticide X in SEMI-AQUATIC areas """ self.out_lds_rq_semi = self.out_total_semi / self.noaec_listed_seedling_emergence_dicot return self.out_lds_rq_semi def loc_lds_semi(self): """ Level of concern for listed dicot seedlings exposed to pesticide X in dry areas """ msg_pass = "The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk." msg_fail = "The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lds_rq_semi] self.out_lds_loc_semi =
pd.Series([msg_pass if boo else msg_fail for boo in boo_ratios])
pandas.Series
from django.conf import settings import pandas as pd import os info_path = os.path.join(settings.BASE_DIR, 'info.pkl') fin_path = os.path.join(settings.BASE_DIR, 'fin.pkl') mc_path = os.path.join(settings.BASE_DIR, 'mc.pkl') info = pd.read_pickle(info_path) fin = pd.read_pickle(fin_path) mc = pd.read_pickle(mc_path) def backtest(model, n): bt = Backtest(model=model, bm=BM, fin=fin, mc=mc, info=info, n=n) bt.run() return bt def get_fisyear(date): if type(date)==str: date =
pd.Timestamp(date)
pandas.Timestamp
import glob, os, sys import pandas as pd def get_name(files): name = [] for i in range(len(files)): basename = os.path.basename(files[i]) split = os.path.splitext(basename) name.append(split[0]) return name if __name__ == '__main__': # exception handling os.makedirs('./result/data', exist_ok=True) if (os.path.isdir('./output') == True): files = glob.glob('./output/*.csv') else: print('Error: Not found ./output') sys.exit() if files == []: print('Error: Not found csv file') sys.exit() # aggregate predict results name = get_name(files) ind = ['original', 'sm', 'b1', 'b2', 'enn', 'tom', 'ada', 'mnd'] col = ['os', 'Sensitivity', 'Specificity', 'G-mean', 'F-1', 'MCC', 'AUC'] for i in range(len(ind)): svm = pd.DataFrame(index=[], columns=col) tree = pd.DataFrame(index=[], columns=col) knn =
pd.DataFrame(index=[], columns=col)
pandas.DataFrame
""" Script to process the HDF5 files and convert them to netcdf """ #============================================================================== __title__ = "Site Vegetation data" __author__ = "<NAME>" __version__ = "v1.0(04.04.2019)" __email__ = "<EMAIL>" #============================================================================== # +++++ Check the paths and set ex path to fireflies folder +++++ import os import sys if not os.getcwd().endswith("fireflies"): if "fireflies" in os.getcwd(): p1, p2, _ = os.getcwd().partition("fireflies") os.chdir(p1+p2) else: raise OSError( "This script was called from an unknown path. CWD can not be set" ) sys.path.append(os.getcwd()) #============================================================================== # Import packages import numpy as np import pandas as pd import argparse import datetime as dt from collections import OrderedDict import warnings as warn from scipy import stats import xarray as xr from numba import jit import bottleneck as bn import scipy as sp import glob from dask.diagnostics import ProgressBar import myfunctions.PlotFunctions as pf import myfunctions.corefunctions as cf from netCDF4 import Dataset, num2date, date2num import shutil # from netCDF4 import Dataset, num2date, date2num # from scipy import stats # import statsmodels.stats.multitest as smsM # Import plotting and colorpackages import matplotlib.pyplot as plt import matplotlib.colors as mpc import matplotlib as mpl import palettable import seaborn as sns import cartopy.crs as ccrs import cartopy.feature as cpf from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER # Import debugging packages import ipdb print("numpy version : ", np.__version__) print("pandas version : ", pd.__version__) print("xarray version : ", xr.__version__) #============================================================================== def main(): force = False # ========== loop over the sensors and start years for sen, yrst, dsn in zip(["terra", "aqua"], [2000, 2002], ["MOD13C1", "MYD13C1"]): # ========== Make the path and tmp folder ========== path = "/media/ubuntu/Seagate Backup Plus Drive/Data51/NDVI/5.MODIS/%s/" % sen if sen == "aqua": path += "5km/" tmp = path + "tmp/" cf.pymkdir(tmp) prop = path+"processed/" cf.pymkdir(prop) # ========== Set out the file types ========== nclist = ["complete", "monmax", "anmax"] fncom = [prop + 'MODIS_%s_%s_5kmCMG_%s.nc' % (sen, dsn, ty) for ty in nclist] # ipdb.set_trace() if all([os.path.isfile(fn) for fn in fncom]) and not force: # ds = xr.open_dataset(fncom) ftmp = glob.glob("%s%s.A*.*.nc" % (path, dsn)) fmmtmp = glob.glob("%s/monmax/*.nc" % (path)) famtmp = glob.glob("%s/anmax/*.nc" % (path)) # ipdb.set_trace() else: # ========== Make a list of the temp files ========== ftmp = [] fmmtmp = [] famtmp = [] # ========== Loop over each year ========== for year in range(yrst, 2020): # ========== get the list of files in a given year ========== files = glob.glob("%s%s.A%d*.*.hdf" % (path, dsn, year)) fctmp = [filefix(sen, fname, tmp, year, force) for fname in files] ftmp += fctmp dsin = xr.open_mfdataset(fctmp) # ========== Fix the datte issues ========== dsin = dsin.reindex(time=sorted(dsin.time.values)) mm, am = dsresample(dsin, sen, dsn, tmp, year, force) fmmtmp.append(mm) famtmp.append(am) # ========== Loop over the configs ========== for ty, fnl, fn in zip(nclist, [ftmp, fmmtmp, famtmp], fncom): if not os.path.isfile(fn) or force: print("stacking the %s MODIS %s data: " % (ty, sen), pd.Timestamp.now()) # ========== Create a new multifile dataset ========== ds = xr.open_mfdataset(fnl) # ========== Fix the datte issues ========== ds = ds.reindex(time=sorted(ds.time.values)) # # ========== Slice off the unnessary data ========== if ty == "anmax": ds = ds.sel(time=slice(None,"2018-12-31")) dts = datefixer(
pd.to_datetime(ds.time.values)
pandas.to_datetime
"""Extract minimal growth media and growth rates.""" import pandas as pd import micom from micom import load_pickle from micom.media import minimal_medium from micom.workflows import workflow from micom.logger import logger logger = micom.logger.logger try: max_procs = snakemake.threads except NameError: max_procs = 20 def media_and_gcs(sam): com = load_pickle("data/models/" + sam + ".pickle") # Get growth rates try: sol = com.cooperative_tradeoff(fraction=0.5) rates = sol.members["growth_rate"].copy() rates["community"] = sol.growth_rate rates.name = sam except Exception: logger.warning("Could not solve cooperative tradeoff for %s." % sam) return None # Get the minimal medium med = minimal_medium(com, 0.95 * sol.growth_rate, exports=True) med.name = sam # Apply medium and reoptimize com.medium = med[med > 0] sol = com.cooperative_tradeoff(fraction=0.5, fluxes=True, pfba=False) fluxes = sol.fluxes fluxes["sample"] = sam return {"medium": med, "gcs": rates, "fluxes": fluxes} samples = pd.read_csv("data/recent.csv") gcs =
pd.DataFrame()
pandas.DataFrame
""" """ """ >>> # --- >>> # SETUP >>> # --- >>> import os >>> import logging >>> logger = logging.getLogger('PT3S.Rm') >>> # --- >>> # path >>> # --- >>> if __name__ == "__main__": ... try: ... dummy=__file__ ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ','path = os.path.dirname(__file__)'," .")) ... path = os.path.dirname(__file__) ... except NameError: ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ',"path = '.' because __file__ not defined and: "," from Rm import Rm")) ... path = '.' ... from Rm import Rm ... else: ... path = '.' ... logger.debug("{0:s}{1:s}".format('Not __main__ Context: ',"path = '.' .")) >>> try: ... from PT3S import Mx ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Mx: ImportError: ","trying import Mx instead ... maybe pip install -e . is active ...")) ... import Mx >>> try: ... from PT3S import Xm ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Xm: ImportError: ","trying import Xm instead ... maybe pip install -e . is active ...")) ... import Xm >>> # --- >>> # testDir >>> # --- >>> # globs={'testDir':'testdata'} >>> try: ... dummy= testDir ... except NameError: ... testDir='testdata' >>> # --- >>> # dotResolution >>> # --- >>> # globs={'dotResolution':''} >>> try: ... dummy= dotResolution ... except NameError: ... dotResolution='' >>> import pandas as pd >>> import matplotlib.pyplot as plt >>> pd.set_option('display.max_columns',None) >>> pd.set_option('display.width',666666666) >>> # --- >>> # LocalHeatingNetwork SETUP >>> # --- >>> xmlFile=os.path.join(os.path.join(path,testDir),'LocalHeatingNetwork.XML') >>> xm=Xm.Xm(xmlFile=xmlFile) >>> mx1File=os.path.join(path,os.path.join(testDir,'WDLocalHeatingNetwork\B1\V0\BZ1\M-1-0-1'+dotResolution+'.MX1')) >>> mx=Mx.Mx(mx1File=mx1File,NoH5Read=True,NoMxsRead=True) >>> mx.setResultsToMxsFile(NewH5Vec=True) 5 >>> xm.MxSync(mx=mx) >>> rm=Rm(xm=xm,mx=mx) >>> # --- >>> # Plot 3Classes False >>> # --- >>> plt.close('all') >>> ppi=72 # matplotlib default >>> dpi_screen=2*ppi >>> fig=plt.figure(dpi=dpi_screen,linewidth=1.) >>> timeDeltaToT=mx.df.index[2]-mx.df.index[0] >>> # 3Classes und FixedLimits sind standardmaessig Falsch; RefPerc ist standardmaessig Wahr >>> # die Belegung von MCategory gemaess FixedLimitsHigh/Low erfolgt immer ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66,pFWVBGCategory=['BLNZ1u5u7'],pVICsDf=pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']})) >>> # --- >>> # Check pFWVB Return >>> # --- >>> f=lambda x: "{0:8.5f}".format(x) >>> print(pFWVB[['Measure','MCategory','GCategory','VIC']].round(2).to_string(formatters={'Measure':f})) Measure MCategory GCategory VIC 0 0.81000 Top BLNZ1u5u7 NaN 1 0.67000 Middle NaN 2 0.66000 Middle BLNZ1u5u7 NaN 3 0.66000 Bottom BLNZ1u5u7 VIC1 4 0.69000 Middle NaN >>> # --- >>> # Print >>> # --- >>> (wD,fileName)=os.path.split(xm.xmlFile) >>> (base,ext)=os.path.splitext(fileName) >>> plotFileName=wD+os.path.sep+base+'.'+'pdf' >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) >>> plt.savefig(plotFileName,dpi=2*dpi_screen) >>> os.path.exists(plotFileName) True >>> # --- >>> # Plot 3Classes True >>> # --- >>> plt.close('all') >>> # FixedLimits wird automatisch auf Wahr gesetzt wenn 3Classes Wahr ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasure3Classes=True,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66) >>> # --- >>> # LocalHeatingNetwork Clean Up >>> # --- >>> if os.path.exists(mx.h5File): ... os.remove(mx.h5File) >>> if os.path.exists(mx.mxsZipFile): ... os.remove(mx.mxsZipFile) >>> if os.path.exists(mx.h5FileVecs): ... os.remove(mx.h5FileVecs) >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) """ __version__='172.16.58.3.dev1' import warnings # 3.6 #...\Anaconda3\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. # from ._conv import register_converters as _register_converters warnings.simplefilter(action='ignore', category=FutureWarning) #C:\Users\Wolters\Anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. # warnings.warn(message, mplDeprecation, stacklevel=1) import matplotlib.cbook warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation) import os import sys import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import pandas as pd import h5py from collections import namedtuple from operator import attrgetter import subprocess import warnings import tables import math import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.colorbar import make_axes import matplotlib as mpl import matplotlib.gridspec as gridspec import matplotlib.dates as mdates from matplotlib import markers from matplotlib.path import Path from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.backends.backend_pdf import PdfPages import numpy as np import scipy import networkx as nx from itertools import chain import math import sys from copy import deepcopy from itertools import chain import scipy from scipy.signal import savgol_filter import logging # --- # --- PT3S Imports # --- logger = logging.getLogger('PT3S') if __name__ == "__main__": logger.debug("{0:s}{1:s}".format('in MODULEFILE: __main__ Context','.')) else: logger.debug("{0:s}{1:s}{2:s}{3:s}".format('in MODULEFILE: Not __main__ Context: ','__name__: ',__name__," .")) try: from PT3S import Mx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Mx - trying import Mx instead ... maybe pip install -e . is active ...')) import Mx try: from PT3S import Xm except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Xm - trying import Xm instead ... maybe pip install -e . is active ...')) import Xm try: from PT3S import Am except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Am - trying import Am instead ... maybe pip install -e . is active ...')) import Am try: from PT3S import Lx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Lx - trying import Lx instead ... maybe pip install -e . is active ...')) import Lx # --- # --- main Imports # --- import argparse import unittest import doctest import math from itertools import tee # --- Parameter Allgemein # ----------------------- DINA6 = (4.13 , 5.83) DINA5 = (5.83 , 8.27) DINA4 = (8.27 , 11.69) DINA3 = (11.69 , 16.54) DINA2 = (16.54 , 23.39) DINA1 = (23.39 , 33.11) DINA0 = (33.11 , 46.81) DINA6q = ( 5.83, 4.13) DINA5q = ( 8.27, 5.83) DINA4q = ( 11.69, 8.27) DINA3q = ( 16.54,11.69) DINA2q = ( 23.39,16.54) DINA1q = ( 33.11,23.39) DINA0q = ( 46.81,33.11) dpiSize=72 DINA4_x=8.2677165354 DINA4_y=11.6929133858 DINA3_x=DINA4_x*math.sqrt(2) DINA3_y=DINA4_y*math.sqrt(2) linestyle_tuple = [ ('loosely dotted', (0, (1, 10))), ('dotted', (0, (1, 1))), ('densely dotted', (0, (1, 1))), ('loosely dashed', (0, (5, 10))), ('dashed', (0, (5, 5))), ('densely dashed', (0, (5, 1))), ('loosely dashdotted', (0, (3, 10, 1, 10))), ('dashdotted', (0, (3, 5, 1, 5))), ('densely dashdotted', (0, (3, 1, 1, 1))), ('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))), ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))), ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))] ylimpD=(-5,70) ylimpDmlc=(600,1350) #(300,1050) ylimQD=(-75,300) ylim3rdD=(0,3) yticks3rdD=[0,1,2,3] yGridStepsD=30 yticksALD=[0,3,4,10,20,30,40] ylimALD=(yticksALD[0],yticksALD[-1]) yticksRD=[0,2,4,10,15,30,45] ylimRD=(-yticksRD[-1],yticksRD[-1]) ylimACD=(-5,5) yticksACD=[-5,0,5] yticksTVD=[0,100,135,180,200,300] ylimTVD=(yticksTVD[0],yticksTVD[-1]) plotTVAmLabelD='TIMER u. AM [Sek. u. (N)m3*100]' def getDerivative(df,col,shiftSize=1,windowSize=60,fct=None,savgol_polyorder=None): """ returns a df df: the df col: the col of df to be derived shiftsize: the Difference between 2 indices for dValue and dt windowSize: size for rolling mean or window_length of savgol_filter; choosen filtertechnique is applied after fct windowsSize must be an even number for savgol_filter windowsSize-1 is used fct: function to be applied on dValue/dt savgol_polyorder: if not None savgol_filter is applied; pandas' rolling.mean() is applied otherwise new cols: dt (with shiftSize) dValue (from col) dValueDt (from col); fct applied dValueDtFiltered; choosen filtertechnique is applied """ mDf=df.dropna().copy(deep=True) try: dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) if savgol_polyorder == None: mDf['dValueDtFiltered']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] else: mDf['dValueDtFiltered']=savgol_filter(mDf['dValueDt'].values,windowSize-1, savgol_polyorder) mDf=mDf.iloc[windowSize/2+1+savgol_polyorder-1:] #mDf=mDf.iloc[windowSize-1:] except Exception as e: raise e finally: return mDf def fCVDNodesFromName(x): Nodes=x.replace('°','~') Nodes=Nodes.split('~') Nodes =[Node.lstrip().rstrip() for Node in Nodes if len(Node)>0] return Nodes def fgetMaxpMinFromName(CVDName,dfSegsNodesNDataDpkt): """ returns max. pMin for alle NODEs in CVDName """ nodeLst=fCVDNodesFromName(CVDName) df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['NODEsName'].isin(nodeLst)][['pMin','pMinMlc']] s=df.max() return s.pMin # --- Funktionen Allgemein # ----------------------- def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def genTimespans(timeStart ,timeEnd ,timeSpan=pd.Timedelta('12 Minutes') ,timeOverlap=pd.Timedelta('0 Seconds') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ): # generates timeSpan-Sections # if timeStart is # an int, it is considered as the number of desired Sections before timeEnd; timeEnd must be a time # a time, it is considered as timeStart # if timeEnd is # an int, it is considered as the number of desired Sections after timeStart; timeStart must be a time # a time, it is considered as timeEnd # if timeSpan is # an int, it is considered as the number of desired Sections # a time, it is considered as timeSpan # returns an array of tuples logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) xlims=[] try: if type(timeStart) == int: numOfDesiredSections=timeStart timeStartEff=timeEnd+timeEndPostfix-numOfDesiredSections*timeSpan+(numOfDesiredSections-1)*timeOverlap-timeStartPraefix else: timeStartEff=timeStart-timeStartPraefix logger.debug("{0:s}timeStartEff: {1:s}".format(logStr,str(timeStartEff))) if type(timeEnd) == int: numOfDesiredSections=timeEnd timeEndEff=timeStart-timeStartPraefix+numOfDesiredSections*timeSpan-(numOfDesiredSections-1)*timeOverlap+timeEndPostfix else: timeEndEff=timeEnd+timeEndPostfix logger.debug("{0:s}timeEndEff: {1:s}".format(logStr,str(timeEndEff))) if type(timeSpan) == int: numOfDesiredSections=timeSpan dt=timeEndEff-timeStartEff timeSpanEff=dt/numOfDesiredSections+(numOfDesiredSections-1)*timeOverlap else: timeSpanEff=timeSpan logger.debug("{0:s}timeSpanEff: {1:s}".format(logStr,str(timeSpanEff))) logger.debug("{0:s}timeOverlap: {1:s}".format(logStr,str(timeOverlap))) timeStartAct = timeStartEff while timeStartAct < timeEndEff: logger.debug("{0:s}timeStartAct: {1:s}".format(logStr,str(timeStartAct))) timeEndAct=timeStartAct+timeSpanEff xlim=(timeStartAct,timeEndAct) xlims.append(xlim) timeStartAct = timeEndAct - timeOverlap except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def gen2Timespans( timeStart # Anfang eines "Prozesses" ,timeEnd # Ende eines "Prozesses" ,timeSpan=pd.Timedelta('12 Minutes') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ,roundStr=None # i.e. '5min': timeStart.round(roundStr) und timeEnd dito ): """ erzeugt 2 gleich lange Zeitbereiche 1 um timeStart herum 1 um timeEnd herum """ #print("timeStartPraefix: {:s}".format(str(timeStartPraefix))) #print("timeEndPostfix: {:s}".format(str(timeEndPostfix))) xlims=[] logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if roundStr != None: timeStart=timeStart.round(roundStr) timeEnd=timeEnd.round(roundStr) xlims.append((timeStart-timeStartPraefix,timeStart-timeStartPraefix+timeSpan)) xlims.append((timeEnd+timeEndPostfix-timeSpan,timeEnd+timeEndPostfix)) return xlims except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def fTotalTimeFromPairs( x ,denominator=None # i.e. pd.Timedelta('1 minute') for totalTime in Minutes ,roundToInt=True # round to and return as int if denominator is specified; else td is rounded by 2 ): tdTotal=pd.Timedelta('0 seconds') for idx,tPairs in enumerate(x): t1,t2=tPairs if idx==0: tLast=t2 else: if t1 <= tLast: print("Zeitpaar überlappt?!") td=t2-t1 if td < pd.Timedelta('1 seconds'): pass #print("Zeitpaar < als 1 Sekunde?!") tdTotal=tdTotal+td if denominator==None: return tdTotal else: td=tdTotal / denominator if roundToInt: td=int(round(td,0)) else: td=round(td,2) return td def findAllTimeIntervalls( df ,fct=lambda row: True if row['col'] == 46 else False ,tdAllowed=None ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: rows,cols=df.shape if df.empty: logger.debug("{:s}df ist leer".format(logStr)) elif rows == 1: logger.debug("{:s}df hat nur 1 Zeile: {:s}".format(logStr,df.to_string())) rowValue=fct(df.iloc[0]) if rowValue: tPair=(df.index[0],df.index[0]) tPairs.append(tPair) else: pass else: tEin=None # paarweise über alle Zeilen for (i1, row1), (i2, row2) in pairwise(df.iterrows()): row1Value=fct(row1) row2Value=fct(row2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not row1Value and row2Value: tEin=i2 # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif row1Value and not row2Value: if tEin != None: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: pass # sonst: Bed. ist jetzt Aus und war nicht Ein # Bed. kann nur im ersten Fall Ein gehen # wenn 1 x und 2 x elif row1Value and row2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # letztes Paar if row1Value and row2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) if tdAllowed != None: tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def findAllTimeIntervallsSeries( s=pd.Series() ,fct=lambda x: True if x == 46 else False ,tdAllowed=None # if not None all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=True ): """ # if fct: # alle [Zeitbereiche] finden fuer die fct Wahr ist; diese Zeitbereiche werden geliefert; es werden nur Paare geliefert; Wahr-Solitäre gehen nicht verloren sondern werden als Paar (t,t) geliefert # Wahr-Solitäre sind NUR dann enthalten, wenn s nur 1 Wert enthält und dieser Wahr ist; das 1 gelieferte Paar enthaelt dann den Solitär-Zeitstempel für beide Zeiten # tdAllowed can be be specified # dann im Anschluss in Zeitbereiche zusammenfassen, die nicht mehr als tdAllowed auseinander liegen; diese Zeitbereiche werden dann geliefert # if fct None: # tdAllowed must be specified # in Zeitbereiche zerlegen, die nicht mehr als Schwellwert tdAllowed auseinander liegen; diese Zeitbereiche werden geliefert # generell hat jeder gelieferte Zeitbereich Anfang und Ende (d.h. 2 Zeiten), auch dann, wenn dadurch ein- oder mehrfach der Schwellwert ignoriert werden muss # denn es soll kein Zeitbereich verloren gehen, der in s enthalten ist # wenn s nur 1 Wert enthält, wird 1 Zeitpaar mit demselben Zeitstempel für beide Zeiten geliefert, wenn Wert nicht Null # returns array of Time-Pair-Tuples >>> import pandas as pd >>> t=pd.Timestamp('2021-03-19 01:02:00') >>> t1=t +pd.Timedelta('1 second') >>> t2=t1+pd.Timedelta('1 second') >>> t3=t2+pd.Timedelta('1 second') >>> t4=t3+pd.Timedelta('1 second') >>> t5=t4+pd.Timedelta('1 second') >>> t6=t5+pd.Timedelta('1 second') >>> t7=t6+pd.Timedelta('1 second') >>> d = {t1: 46, t2: 0} # geht aus - kein Paar >>> s1PaarGehtAus=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 46} # geht ein - kein Paar >>> s1PaarGehtEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t5: 46, t6: 0} # geht ausE - kein Paar >>> s1PaarGehtAusE=pd.Series(data=d, index=[t5, t6]) >>> d = {t5: 0, t6: 46} # geht einE - kein Paar >>> s1PaarGehtEinE=pd.Series(data=d, index=[t5, t6]) >>> d = {t1: 46, t2: 46} # geht aus - ein Paar >>> s1PaarEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 0} # geht aus - kein Paar >>> s1PaarAus=pd.Series(data=d, index=[t1, t2]) >>> s2PaarAus=pd.concat([s1PaarGehtAus,s1PaarGehtAusE]) >>> s2PaarEin=pd.concat([s1PaarGehtEin,s1PaarGehtEinE]) >>> s2PaarAusEin=pd.concat([s1PaarGehtAus,s1PaarGehtEinE]) >>> s2PaarEinAus=pd.concat([s1PaarGehtEin,s1PaarGehtAusE]) >>> # 1 Wert >>> d = {t1: 46} # 1 Wert - Wahr >>> s1WertWahr=pd.Series(data=d, index=[t1]) >>> d = {t1: 44} # 1 Wert - Falsch >>> s1WertFalsch=pd.Series(data=d, index=[t1]) >>> d = {t1: None} # 1 Wert - None >>> s1WertNone=pd.Series(data=d, index=[t1]) >>> ### >>> # 46 0 >>> # 0 46 >>> # 0 0 >>> # 46 46 !1 Paar >>> # 46 0 46 0 >>> # 46 0 0 46 >>> # 0 46 0 46 >>> # 0 46 46 0 !1 Paar >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus) [] >>> findAllTimeIntervallsSeries(s1PaarGehtEin) [] >>> findAllTimeIntervallsSeries(s1PaarEin) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarEin) [] >>> findAllTimeIntervallsSeries(s2PaarAusEin) [] >>> findAllTimeIntervallsSeries(s2PaarEinAus) [(Timestamp('2021-03-19 01:02:02'), Timestamp('2021-03-19 01:02:05'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertFalsch) [] >>> ### >>> # 46 0 !1 Paar >>> # 0 46 !1 Paar >>> # 0 0 !1 Paar >>> # 46 46 !1 Paar >>> # 46 0 46 0 !2 Paare >>> # 46 0 0 46 !2 Paare >>> # 0 46 0 46 !2 Paare >>> # 0 46 46 0 !2 Paare >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarGehtEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s2PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarAusEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEinAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr,fct=None) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertNone,fct=None) [] >>> ### >>> d = {t1: 0, t3: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t1, t3]) >>> findAllTimeIntervallsSeries(s1PaarmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:03'))] >>> d = {t4: 0, t5: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t4, t5]) >>> s2PaarmZoZ=pd.concat([s1PaarmZ,s1PaaroZ]) >>> findAllTimeIntervallsSeries(s2PaarmZoZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t1: 0, t2: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t1, t2]) >>> d = {t3: 0, t5: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t3, t5]) >>> s2PaaroZmZ=pd.concat([s1PaaroZ,s1PaarmZ]) >>> findAllTimeIntervallsSeries(s2PaaroZmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t6: 0, t7: 0} >>> s1PaaroZ2=pd.Series(data=d, index=[t6, t7]) >>> d = {t4: 0} >>> solitaer=pd.Series(data=d, index=[t4]) >>> s5er=pd.concat([s1PaaroZ,solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s5er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] >>> s3er=pd.concat([s1PaaroZ,solitaer]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:04'))] >>> s3er=pd.concat([solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: if s.empty: logger.debug("{:s}Series {!s:s} ist leer".format(logStr,s.name)) elif s.size == 1: logger.debug("{:s}Series {!s:s} hat nur 1 Element: {:s}".format(logStr,s.name,s.to_string())) if fct != None: # 1 Paar mit selben Zeiten wenn das 1 Element Wahr sValue=fct(s.iloc[0]) if sValue: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: # 1 Paar mit selben Zeiten wenn das 1 Element nicht None sValue=s.iloc[0] if sValue != None: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: tEin=None if fct != None: # paarweise über alle Zeiten for idx,((i1, s1), (i2, s2)) in enumerate(pairwise(s.iteritems())): s1Value=fct(s1) s2Value=fct(s2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not s1Value and s2Value: tEin=i2 if idx > 0: # Info pass else: # beim ersten Paar "geht Ein" pass # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif s1Value and not s2Value: if tEin != None: if tEin<i1: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: # singulaeres Ereignis # Paar mit selben Zeiten tPair=(tEin,i1) tPairs.append(tPair) pass else: # geht Aus ohne Ein zu sein if idx > 0: # Info pass else: # im ersten Paar pass # wenn 1 x und 2 x elif s1Value and s2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # Behandlung letztes Paar # bleibt Ein am Ende der Series: Paar speichern if s1Value and s2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) # Behandlung tdAllowed if tdAllowed != None: if debugOutput: logger.debug("{:s}Series {!s:s}: Intervalle werden mit {!s:s} zusammengefasst ...".format(logStr,s.name,tdAllowed)) tPairsOld=tPairs.copy() tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed,debugOutput=debugOutput) if debugOutput: tPairsZusammengefasst=sorted(list(set(tPairsOld) - set(tPairs))) if len(tPairsZusammengefasst)>0: logger.debug("{:s}Series {!s:s}: Intervalle wurden wg. {!s:s} zusammengefasst. Nachfolgend die zusgefassten Intervalle: {!s:s}. Sowie die entsprechenden neuen: {!s:s}".format( logStr ,s.name ,tdAllowed ,tPairsZusammengefasst ,sorted(list(set(tPairs) - set(tPairsOld))) )) else: # paarweise über alle Zeiten # neues Paar beginnen anzInPair=1 # Anzahl der Zeiten in aktueller Zeitspanne for (i1, s1), (i2, s2) in pairwise(s.iteritems()): td=i2-i1 if td > tdAllowed: # Zeit zwischen 2 Zeiten > als Schwelle: Zeitspanne ist abgeschlossen if tEin==None: # erstes Paar liegt bereits > als Schwelle auseinander # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert # aktuelle Zeitspanne beginnt beim 1. Wert und geht über Schwellwert tEin=i1 anzInPair=2 else: if anzInPair>=2: # Zeitspanne abschließen tPair=(tEin,i1) tPairs.append(tPair) # neue Zeitspanne beginnen tEin=i2 anzInPair=1 else: # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert anzInPair=2 else: # Zeitspanne zugelassen, weiter ... if tEin==None: tEin=i1 anzInPair=anzInPair+1 # letztes Zeitpaar behandeln if anzInPair>=2: tPair=(tEin,i2) tPairs.append(tPair) else: # ein letzter Wert wuerde ueber bleiben, letzte Zeitspanne verlängern ... tPair=tPairs[-1] tPair=(tPair[0],i2) tPairs[-1]=tPair except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def fCombineSubsequenttPairs( tPairs ,tdAllowed=pd.Timedelta('1 second') # all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=False ): # returns tPairs logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: for idx,(tp1,tp2) in enumerate(pairwise(tPairs)): t1Ende=tp1[1] t2Start=tp2[0] if t2Start-t1Ende <= tdAllowed: if debugOutput: logger.debug("{:s} t1Ende: {!s:s} t2Start: {!s:s} Gap: {!s:s}".format(logStr,t1Ende,t2Start,t2Start-t1Ende)) tPairs[idx]=(tp1[0],tp2[1]) # Folgepaar in vorheriges Paar integrieren tPairs.remove(tp2) # Folgepaar löschen tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) # Rekursion except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs class RmError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') # --- Parameter und Funktionen LDS Reports # ---------------------------------------- def pltMakeCategoricalColors(color,nOfSubColorsReq=3,reversedOrder=False): """ Returns an array of rgb colors derived from color. Parameter: color: a rgb color nOfSubColorsReq: number of SubColors requested Raises: RmError >>> import matplotlib >>> color='red' >>> c=list(matplotlib.colors.to_rgb(color)) >>> import Rm >>> Rm.pltMakeCategoricalColors(c) array([[1. , 0. , 0. ], [1. , 0.375, 0.375], [1. , 0.75 , 0.75 ]]) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) rgb=None try: chsv = matplotlib.colors.rgb_to_hsv(color[:3]) arhsv = np.tile(chsv,nOfSubColorsReq).reshape(nOfSubColorsReq,3) arhsv[:,1] = np.linspace(chsv[1],0.25,nOfSubColorsReq) arhsv[:,2] = np.linspace(chsv[2],1,nOfSubColorsReq) rgb = matplotlib.colors.hsv_to_rgb(arhsv) if reversedOrder: rgb=list(reversed(rgb)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return rgb # Farben fuer Druecke SrcColorp='green' SrcColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorp)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorp='blue' SnkColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorp)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe # Farben fuer Fluesse SrcColorQ='red' SrcColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorQ)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorQ='orange' SnkColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorQ)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe lwBig=4.5 lwSmall=2.5 attrsDct={ 'p Src':{'color':SrcColorp,'lw':lwBig,'where':'post'} ,'p Snk':{'color':SnkColorp,'lw':lwSmall+1.,'where':'post'} ,'p Snk 2':{'color':'mediumorchid','where':'post'} ,'p Snk 3':{'color':'darkviolet','where':'post'} ,'p Snk 4':{'color':'plum','where':'post'} ,'Q Src':{'color':SrcColorQ,'lw':lwBig,'where':'post'} ,'Q Snk':{'color':SnkColorQ,'lw':lwSmall+1.,'where':'post'} ,'Q Snk 2':{'color':'indianred','where':'post'} ,'Q Snk 3':{'color':'coral','where':'post'} ,'Q Snk 4':{'color':'salmon','where':'post'} ,'Q Src RTTM':{'color':SrcColorQ,'lw':matplotlib.rcParams['lines.linewidth']+1.,'ls':'dotted','where':'post'} ,'Q Snk RTTM':{'color':SnkColorQ,'lw':matplotlib.rcParams['lines.linewidth'] ,'ls':'dotted','where':'post'} ,'Q Snk 2 RTTM':{'color':'indianred','ls':'dotted','where':'post'} ,'Q Snk 3 RTTM':{'color':'coral','ls':'dotted','where':'post'} ,'Q Snk 4 RTTM':{'color':'salmon','ls':'dotted','where':'post'} ,'p ISrc 1':{'color':SrcColorsp[-1],'ls':'dashdot','where':'post'} ,'p ISrc 2':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 3':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISrc 4':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 5':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 6':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISnk 1':{'color':SnkColorsp[0],'ls':'dashdot','where':'post'} ,'p ISnk 2':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 3':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISnk 4':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 5':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 6':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'Q xSrc 1':{'color':SrcColorsQ[-1],'ls':'dashdot','where':'post'} ,'Q xSrc 2':{'color':SrcColorsQ[-2],'ls':'dashdot','where':'post'} ,'Q xSrc 3':{'color':SrcColorsQ[-3],'ls':'dashdot','where':'post'} ,'Q xSnk 1':{'color':SnkColorsQ[0],'ls':'dashdot','where':'post'} ,'Q xSnk 2':{'color':SnkColorsQ[1],'ls':'dashdot','where':'post'} ,'Q xSnk 3':{'color':SnkColorsQ[2],'ls':'dashdot','where':'post'} ,'Q (DE) Me':{'color': 'indigo','ls': 'dashdot','where': 'post','lw':1.5} ,'Q (DE) Re':{'color': 'cyan','ls': 'dashdot','where': 'post','lw':3.5} ,'p (DE) SS Me':{'color': 'magenta','ls': 'dashdot','where': 'post'} ,'p (DE) DS Me':{'color': 'darkviolet','ls': 'dashdot','where': 'post'} ,'p (DE) SS Re':{'color': 'magenta','ls': 'dotted','where': 'post'} ,'p (DE) DS Re':{'color': 'darkviolet','ls': 'dotted','where': 'post'} ,'p OPC LDSErgV':{'color':'olive' ,'lw':lwSmall-.5 ,'ms':matplotlib.rcParams['lines.markersize'] ,'marker':'x' ,'mec':'olive' ,'mfc':'olive' ,'where':'post'} ,'p OPC Src':{'color':SrcColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorp ,'mfc':SrcColorQ ,'where':'post'} ,'p OPC Snk':{'color':SnkColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorp ,'mfc':SnkColorQ ,'where':'post'} ,'Q OPC Src':{'color':SrcColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorQ ,'mfc':SrcColorp ,'where':'post'} ,'Q OPC Snk':{'color':SnkColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorQ ,'mfc':SnkColorp ,'where':'post'} } attrsDctLDS={ 'Seg_AL_S_Attrs':{'color':'blue','lw':3.,'where':'post'} ,'Druck_AL_S_Attrs':{'color':'blue','lw':3.,'ls':'dashed','where':'post'} ,'Seg_MZ_AV_Attrs':{'color':'orange','zorder':3,'where':'post'} ,'Druck_MZ_AV_Attrs':{'color':'orange','zorder':3,'ls':'dashed','where':'post'} ,'Seg_LR_AV_Attrs':{'color':'green','zorder':1,'where':'post'} ,'Druck_LR_AV_Attrs':{'color':'green','zorder':1,'ls':'dashed','where':'post'} ,'Seg_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'where':'post'} ,'Druck_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'ls':'dashed','where':'post'} ,'Seg_NG_AV_Attrs':{'color':'red','zorder':2,'where':'post'} ,'Druck_NG_AV_Attrs':{'color':'red','zorder':2,'ls':'dashed','where':'post'} ,'Seg_SB_S_Attrs':{'color':'black','alpha':.5,'where':'post'} ,'Druck_SB_S_Attrs':{'color':'black','ls':'dashed','alpha':.75,'where':'post','lw':1.0} ,'Seg_AC_AV_Attrs':{'color':'indigo','where':'post'} ,'Druck_AC_AV_Attrs':{'color':'indigo','ls':'dashed','where':'post'} ,'Seg_ACF_AV_Attrs':{'color':'blueviolet','where':'post','lw':1.0} ,'Druck_ACF_AV_Attrs':{'color':'blueviolet','ls':'dashed','where':'post','lw':1.0} ,'Seg_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_TIMER_AV_Attrs':{'color':'chartreuse','where':'post'} ,'Druck_TIMER_AV_Attrs':{'color':'chartreuse','ls':'dashed','where':'post'} ,'Seg_AM_AV_Attrs':{'color':'chocolate','where':'post'} ,'Druck_AM_AV_Attrs':{'color':'chocolate','ls':'dashed','where':'post'} # ,'Seg_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_DPDT_AV_Attrs':{'color':'fuchsia','where':'post','lw':2.0} ,'Druck_DPDT_AV_Attrs':{'color':'fuchsia','ls':'dashed','where':'post','lw':2.0} ,'Seg_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[6][1],'where':'post','lw':1.0} # 'loosely dashdotted' ,'Druck_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[10][1],'where':'post','lw':1.0} # 'loosely dashdotdotted' } pSIDEvents=re.compile('(?P<Prae>IMDI\.)?Objects\.(?P<colRegExMiddle>3S_FBG_ESCHIEBER|FBG_ESCHIEBER{1})\.(3S_)?(?P<colRegExSchieberID>[a-z,A-Z,0-9,_]+)\.(?P<colRegExEventID>(In\.ZUST|In\.LAEUFT|In\.LAEUFT_NICHT|In\.STOER|Out\.AUF|Out\.HALT|Out\.ZU)$)') # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren eventCCmds={ 'Out.AUF':0 ,'Out.ZU':1 ,'Out.HALT':2} eventCStats={'In.LAEUFT':3 ,'In.LAEUFT_NICHT':4 ,'In.ZUST':5 ,'Out.AUF':6 ,'Out.ZU':7 ,'Out.HALT':8 ,'In.STOER':9} valRegExMiddleCmds='3S_FBG_ESCHIEBER' # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) LDSParameter=[ 'ACC_SLOWTRANSIENT' ,'ACC_TRANSIENT' ,'DESIGNFLOW' ,'DT' ,'FILTERWINDOW' #,'L_PERCENT' ,'L_PERCENT_STDY' ,'L_PERCENT_STRAN' ,'L_PERCENT_TRANS' ,'L_SHUTOFF' ,'L_SLOWTRANSIENT' ,'L_SLOWTRANSIENTQP' ,'L_STANDSTILL' ,'L_STANDSTILLQP' ,'L_TRANSIENT' ,'L_TRANSIENTQP' ,'L_TRANSIENTVBIGF' ,'L_TRANSIENTPDNTF' ,'MEAN' ,'NAME' ,'ORDER' ,'TIMER' ,'TTIMERTOALARM' ,'TIMERTOLISS' ,'TIMERTOLIST' ] LDSParameterDataD={ 'ACC_SLOWTRANSIENT':0.1 ,'ACC_TRANSIENT':0.8 ,'DESIGNFLOW':250. ,'DT':1 ,'FILTERWINDOW':180 #,'L_PERCENT':1.6 ,'L_PERCENT_STDY':1.6 ,'L_PERCENT_STRAN':1.6 ,'L_PERCENT_TRANS':1.6 ,'L_SHUTOFF':2. ,'L_SLOWTRANSIENT':4. ,'L_SLOWTRANSIENTQP':4. ,'L_STANDSTILL':2. ,'L_STANDSTILLQP':2. ,'L_TRANSIENT':10. ,'L_TRANSIENTQP':10. ,'L_TRANSIENTVBIGF':3. ,'L_TRANSIENTPDNTF':1.5 ,'MEAN':1 ,'ORDER':1 ,'TIMER':180 ,'TTIMERTOALARM':45 # TIMER/4 ,'TIMERTOLISS':180 ,'TIMERTOLIST':180 ,'NAME':'' } def fSEGNameFromPV_2(Beschr): # fSEGNameFromSWVTBeschr # 2,3,4,5 if Beschr in ['',None]: return None m=re.search(Lx.pID,Beschr) if m == None: return Beschr return m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5') def fSEGNameFromPV_3(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') def fSEGNameFromPV_3m(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) #print("C4: {:s} C6: {:s}".format(m.group('C4'),m.group('C6'))) if m.group('C4')=='AAD' and m.group('C6')=='_OHN': return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_OHV1' elif m.group('C4')=='OHN' and m.group('C6')=='_NGD': return m.group('C3')+'_'+'OHV2'+'_'+m.group('C5')+m.group('C6') else: return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') # Ableitung eines DIVPipelineNamens von PV def fDIVNameFromPV(PV): m=re.search(Lx.pID,PV) return m.group('C2')+'-'+m.group('C4') # Ableitung eines DIVPipelineNamens von SEGName def fDIVNameFromSEGName(SEGName): if pd.isnull(SEGName): return None # dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) m=re.search('(\d+)_(\w+)_(\w+)_(\w+)',SEGName) if m == None: return SEGName return m.group(1)+'_'+m.group(3) #def getNamesFromOPCITEM_ID(dfSegsNodesNDataDpkt # ,OPCITEM_ID): # """ # Returns tuple (DIVPipelineName,SEGName) from OPCITEM_ID PH # """ # df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['OPCITEM_ID']==OPCITEM_ID] # if not df.empty: # return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def fGetBaseIDFromResID( ID='Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.MW.value' ): """ Returns 'Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.' funktioniert im Prinzip fuer SEG- und Druck-Ergs: jede Erg-PV eines Vektors liefert die Basis gueltig fuer alle Erg-PVs des Vektors d.h. die Erg-PVs eines Vektors unterscheiden sich nur hinten siehe auch fGetSEGBaseIDFromSEGName """ if pd.isnull(ID): return None m=re.search(Lx.pID,ID) if m == None: return None try: base=m.group('A')+'.'+m.group('B')\ +'.'+m.group('C1')\ +'_'+m.group('C2')\ +'_'+m.group('C3')\ +'_'+m.group('C4')\ +'_'+m.group('C5')\ +m.group('C6') #print(m.groups()) #print(m.groupdict()) if 'C7' in m.groupdict().keys(): if m.group('C7') != None: base=base+m.group('C7') base=base+'.'+m.group('D')\ +'.' #print(base) except: base=m.group(0)+' (Fehler in fGetBaseIDFromResID)' return base def fGetSEGBaseIDFromSEGName( SEGName='6_AAD_41_OHV1' ): """ Returns 'Objects.3S_FBG_SEG_INFO.3S_L_'+SEGName+'.In.' In some cases SEGName is manipulated ... siehe auch fGetBaseIDFromResID """ if SEGName == '6_AAD_41_OHV1': x='6_AAD_41_OHN' elif SEGName == '6_OHV2_41_NGD': x='6_OHN_41_NGD' else: x=SEGName return 'Objects.3S_FBG_SEG_INFO.3S_L_'+x+'.In.' def getNamesFromSEGResIDBase(dfSegsNodesNDataDpkt ,SEGResIDBase): """ Returns tuple (DIVPipelineName,SEGName) from SEGResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==SEGResIDBase] if not df.empty: return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt ,DruckResIDBase): """ Returns tuple (DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) from DruckResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase']==DruckResIDBase] if not df.empty: #return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0],df['SEGResIDBase'].iloc[0]) tupleLst=[] for index,row in df.iterrows(): tupleItem=(row['DIVPipelineName'],row['SEGName'],row['SEGResIDBase'],row['SEGOnlyInLDSPara']) tupleLst.append(tupleItem) return tupleLst else: return [] def fGetErgIDsFromBaseID( baseID='Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_BUA.In.' ,dfODI=pd.DataFrame() # df mit ODI Parametrierungsdaten ,strSep=' ' ,patternPat='^IMDI.' # ,pattern=True # nur ergIDs, fuer die 2ndPatternPat zutrifft liefern ): """ returns string mit strSep getrennten IDs aus dfODI, welche baseID enthalten (und bei pattern WAHR patternPat matchen) baseID (und group(0) von patternPat bei pattern WAHR) sind in den IDs entfernt """ if baseID in [None,'']: return None df=dfODI[dfODI.index.str.contains(baseID)] if df.empty: return None if pattern: ergIDs=''.join([e.replace(baseID,'').replace(re.search(patternPat,e).group(0),'')+' ' for e in df.index if re.search(patternPat,e) != None]) else: ergIDs=''.join([e.replace(baseID,'')+' ' for e in df.index if re.search(patternPat,e) == None]) return ergIDs def dfSegsNodesNDataDpkt( VersionsDir=r"C:\3s\Projekte\Projekt\04 - Versionen\Version82.3" ,Model=r"MDBDOC\FBG.mdb" # a Access Model ,am=None # a Access Model already processed ,SEGsDefPattern='(?P<SEG_Ki>\S+)~(?P<SEG_Kk>\S+)$' # RSLW-Beschreibung: liefert die Knotennamen der Segmentdefinition () ,RIDefPattern='(?P<Prae>\S+)\.(?P<Post>RICHT.S)$' # SWVT-Beschreibung (RICHT-DP): liefert u.a. SEGName ,fSEGNameFromPV_2=fSEGNameFromPV_2 # Funktion, die von SWVT-Beschreibung (RICHT-DP) u.a. SEGName liefert ,fGetBaseIDFromResID=fGetBaseIDFromResID # Funktion, die von OPCITEM-ID des PH-Kanals eines KNOTens den Wortstamm der Knotenergebnisse liefert ,fGetSEGBaseIDFromSEGName=fGetSEGBaseIDFromSEGName # Funktion, die aus SEGName den Wortstamm der Segmentergebnisse liefert ,LDSPara=r"App LDS\Modelle\WDFBG\B1\V0\BZ1\LDS_Para.xml" ,LDSParaPT=r"App LDS\SirOPC\AppLDS_DPDTParams.csv" ,ODI=r"App LDS\SirOPC\AppLDS_ODI.csv" ,LDSParameter=LDSParameter ,LDSParameterDataD=LDSParameterDataD ): """ alle Segmente mit Pfaddaten (Kantenzuege) mit Kanten- und Knotendaten sowie Parametrierungsdaten returns df: DIVPipelineName SEGName SEGNodes (Ki~Kk; Schluessel in LDSPara) SEGOnlyInLDSPara NODEsRef NODEsRef_max NODEsSEGLfdNr NODEsSEGLfdNrType NODEsName OBJTYPE ZKOR Blockname ATTRTYPE (PH) CLIENT_ID OPCITEM_ID NAME (der DPKT-Gruppe) DruckResIDBase SEGResIDBase SEGResIDs SEGResIDsIMDI DruckResIDs DruckResIDsIMDI NODEsSEGDruckErgLfdNr # LDSPara ACC_SLOWTRANSIENT ACC_TRANSIENT DESIGNFLOW DT FILTERWINDOW L_PERCENT_STDY L_PERCENT_STRAN L_PERCENT_TRANS L_SHUTOFF L_SLOWTRANSIENT L_SLOWTRANSIENTQP L_STANDSTILL L_STANDSTILLQP L_TRANSIENT L_TRANSIENTPDNTF L_TRANSIENTQP L_TRANSIENTVBIGF MEAN ORDER TIMER TIMERTOLISS TIMERTOLIST TTIMERTOALARM # LDSParaPT #ID pMin DT_Vorhaltemass TTimer_PMin Faktor_PMin MaxL_PMin pMinMlc pMinMlcMinSEG pMinMlcMaxSEG """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfSegsNodesNDataDpkt=pd.DataFrame() try: ###### --- LDSPara LDSParaFile=os.path.join(VersionsDir,LDSPara) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSPara',LDSPara)) with open(LDSParaFile) as f: xml = f.read() xmlWellFormed='<root>'+xml+'</root>' root=ET.fromstring(xmlWellFormed) LDSParameterData={} for key in LDSParameterDataD.keys(): LDSParameterData[key]=[] logger.debug("{:s}LDSParameter: {!s:s}.".format(logStr,LDSParameter)) for idx,element in enumerate(root.iter(tag='LDSI')): attribKeysMute=[] for key,value in element.attrib.items(): if key not in LDSParameter: logger.warning("{:s}{:s}: Parameter: {:s} undefiniert.".format(logStr,element.attrib['NAME'],key)) attribKeysMute.append(key) keysIst=element.attrib.keys() keysSoll=set(LDSParameter) keysExplizitFehlend=keysSoll-keysIst LDSIParaDct=element.attrib for key in keysExplizitFehlend: if key=='ORDER': LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) elif key=='TTIMERTOALARM': LDSIParaDct[key]=int(LDSIParaDct['TIMER'])/4 logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) else: LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) keyListToProcess=[key for key in LDSIParaDct.keys() if key not in attribKeysMute] for key in keyListToProcess: LDSParameterData[key].append(LDSIParaDct[key]) df=pd.DataFrame.from_dict(LDSParameterData) df=df.set_index('NAME').sort_index() df.index.rename('SEGMENT', inplace=True) df=df[sorted(df.columns.to_list())] df = df.apply(pd.to_numeric) #logger.debug("{:s}df: {:s}".format(logStr,df.to_string())) logger.debug("{:s}Parameter, die nicht auf Standardwerten sind:".format(logStr)) for index, row in df.iterrows(): for colName, colValue in zip(df.columns.to_list(),row): if colValue != LDSParameterDataD[colName]: logger.debug("Segment: {:30s}: Parameter: {:20s} Wert: {:10s} (Standard: {:s})".format(index,colName,str(colValue),str(LDSParameterDataD[colName]))) dfPara=df # --- Einlesen Modell if am == None: accFile=os.path.join(VersionsDir,Model) logger.info("{:s}###### {:10s}: {:s}: Lesen und verarbeiten ...".format(logStr,'Modell',Model)) am=Am.Am(accFile=accFile) V_BVZ_RSLW=am.dataFrames['V_BVZ_RSLW'] V_BVZ_SWVT=am.dataFrames['V_BVZ_SWVT'] V3_KNOT=am.dataFrames['V3_KNOT'] V3_VBEL=am.dataFrames['V3_VBEL'] V3_DPKT=am.dataFrames['V3_DPKT'] V3_RSLW_SWVT=am.dataFrames['V3_RSLW_SWVT'] # --- Segmente ermitteln # --- per Modell SEGsDefinesPerRICHT=V3_RSLW_SWVT[ (V3_RSLW_SWVT['BESCHREIBUNG'].str.match(SEGsDefPattern).isin([True])) # Muster Ki~Kk ... & #! (V3_RSLW_SWVT['BESCHREIBUNG_SWVT'].str.match(RIDefPattern).isin([True])) # Muster Förderrichtungs-PV ... ].copy(deep=True) SEGsDefinesPerRICHT=SEGsDefinesPerRICHT[['BESCHREIBUNG','BESCHREIBUNG_SWVT']] # --- nur per LDS Para lSEGOnlyInLDSPara=[str(SEGNodes) for SEGNodes in dfPara.index if str(SEGNodes) not in SEGsDefinesPerRICHT['BESCHREIBUNG'].values] for SEGNodes in lSEGOnlyInLDSPara: logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) # --- zusammenfassen SEGsDefines=pd.concat([SEGsDefinesPerRICHT,pd.DataFrame(lSEGOnlyInLDSPara,columns=['BESCHREIBUNG'])]) # Knotennamen der SEGDef ergänzen df=SEGsDefines['BESCHREIBUNG'].str.extract(SEGsDefPattern,expand=True) dfCols=df.columns.to_list() SEGsDefines=pd.concat([SEGsDefines,df],axis=1) # ausduennen SEGsDefines=SEGsDefines[dfCols+['BESCHREIBUNG_SWVT','BESCHREIBUNG']] # sortieren SEGsDefines=SEGsDefines.sort_values(by=['BESCHREIBUNG_SWVT','BESCHREIBUNG']).reset_index(drop=True) # SEGName SEGsDefines['BESCHREIBUNG_SWVT']=SEGsDefines.apply(lambda row: row['BESCHREIBUNG_SWVT'] if not pd.isnull(row['BESCHREIBUNG_SWVT']) else row['BESCHREIBUNG'] ,axis=1) #print(SEGsDefines) SEGsDefines['SEGName']=SEGsDefines['BESCHREIBUNG_SWVT'].apply(lambda x: fSEGNameFromPV_2(x)) # --- Segmentkantenzuege ermitteln dfSegsNodeLst={} # nur zu Kontrollzwecken dfSegsNode=[] for index,row in SEGsDefines[~SEGsDefines[dfCols[-1]].isnull()].iterrows(): df=Xm.Xm.constructShortestPathFromNodeList(df=V3_VBEL.reset_index() ,sourceCol='NAME_i' ,targetCol='NAME_k' ,nl=[row[dfCols[0]],row[dfCols[-1]]] ,weight=None,query=None,fmask=None,filterNonQ0Rows=True) s=pd.concat([pd.Series([row[dfCols[0]]]),df['nextNODE']]) s.name=row['SEGName'] dfSegsNodeLst[row['SEGName']]=s.reset_index(drop=True) df2=pd.DataFrame(s.reset_index(drop=True)).rename(columns={s.name:'NODEs'}) df2['SEGName']=s.name df2=df2[['SEGName','NODEs']] sObj=pd.concat([pd.Series(['None']),df['OBJTYPE']]) sObj.name='OBJTYPE' df3=pd.concat([df2,pd.DataFrame(sObj.reset_index(drop=True))],axis=1) df4=df3.reset_index().rename(columns={'index':'NODEsLfdNr','NODEs':'NODEsName'})[['SEGName','NODEsLfdNr','NODEsName','OBJTYPE']] df4['NODEsType']=df4.apply(lambda row: row['NODEsLfdNr'] if row['NODEsLfdNr'] < df4.index[-1] else -1, axis=1) df4=df4[['SEGName','NODEsLfdNr','NODEsType','NODEsName','OBJTYPE']] df4['SEGNodes']=row[dfCols[0]]+'~'+row[dfCols[-1]] dfSegsNode.append(df4) dfSegsNodes=pd.concat(dfSegsNode).reset_index(drop=True) # --- dfSegsNodes['SEGOnlyInLDSPara']=dfSegsNodes.apply(lambda row: True if row['SEGNodes'] in lSEGOnlyInLDSPara else False,axis=1) dfSegsNodes['NODEsRef']=dfSegsNodes.sort_values( by=['NODEsName','SEGOnlyInLDSPara','NODEsType','SEGName'] ,ascending=[True,True,False,True]).groupby(['NODEsName']).cumcount() + 1 dfSegsNodes=pd.merge(dfSegsNodes,dfSegsNodes.groupby(['NODEsName']).max(),left_on='NODEsName',right_index=True,suffixes=('','_max')) dfSegsNodes=dfSegsNodes[['SEGName','SEGNodes','SEGOnlyInLDSPara' ,'NODEsRef' ,'NODEsRef_max' ,'NODEsLfdNr','NODEsType','NODEsName','OBJTYPE']] dfSegsNodes=dfSegsNodes.rename(columns={'NODEsLfdNr':'NODEsSEGLfdNr','NODEsType':'NODEsSEGLfdNrType'}) ### # --- ### dfSegsNodes['SEGOnlyInLDSPara']=dfSegsNodes.apply(lambda row: True if row['SEGNodes'] in lSEGOnlyInLDSPara else False,axis=1) dfSegsNodes=dfSegsNodes[['SEGName','SEGNodes','SEGOnlyInLDSPara' ,'NODEsRef' ,'NODEsRef_max' ,'NODEsSEGLfdNr','NODEsSEGLfdNrType','NODEsName','OBJTYPE']] # --- Knotendaten ergaenzen dfSegsNodesNData=pd.merge(dfSegsNodes,V3_KNOT, left_on='NODEsName',right_on='NAME',suffixes=('','KNOT')) dfSegsNodesNData=dfSegsNodesNData.filter(items=dfSegsNodes.columns.to_list()+['ZKOR','NAME_CONT','NAME_VKNO','pk']) dfSegsNodesNData=dfSegsNodesNData.rename(columns={'NAME_CONT':'Blockname','NAME_VKNO':'Bl.Kn. fuer Block'}) # --- Knotendatenpunktdaten ergänzen V3_DPKT_KNOT=pd.merge(V3_DPKT,V3_KNOT,left_on='fkOBJTYPE',right_on='pk',suffixes=('','_KNOT')) V3_DPKT_KNOT_PH=V3_DPKT_KNOT[V3_DPKT_KNOT['ATTRTYPE'].isin(['PH'])] # Mehrfacheintraege sollte es nicht geben ... # V3_DPKT_KNOT_PH[V3_DPKT_KNOT_PH.duplicated(subset=['fkOBJTYPE'])] df=pd.merge(dfSegsNodesNData,V3_DPKT_KNOT_PH,left_on='pk',right_on='fkOBJTYPE',suffixes=('','_DPKT'),how='left') cols=dfSegsNodesNData.columns.to_list() cols.remove('pk') df=df.filter(items=cols+['ATTRTYPE','CLIENT_ID','OPCITEM_ID','NAME']) dfSegsNodesNDataDpkt=df #dfSegsNodesNDataDpkt # --- colList=dfSegsNodesNDataDpkt.columns.to_list() dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: fDIVNameFromSEGName(x)) ### dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt.filter(items=['DIVPipelineName']+colList) dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt.sort_values(by=['DIVPipelineName','SEGName','NODEsSEGLfdNr']).reset_index(drop=True) dfSegsNodesNDataDpkt['DruckResIDBase']=dfSegsNodesNDataDpkt['OPCITEM_ID'].apply(lambda x: fGetBaseIDFromResID(x) ) dfSegsNodesNDataDpkt['SEGResIDBase']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: fGetSEGBaseIDFromSEGName(x) ) ###### --- ODI ODIFile=os.path.join(VersionsDir,ODI) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'ODI',ODI)) dfODI=Lx.getDfFromODI(ODIFile) dfSegsNodesNDataDpkt['SEGResIDs']=dfSegsNodesNDataDpkt['SEGResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=False)) dfSegsNodesNDataDpkt['SEGResIDsIMDI']=dfSegsNodesNDataDpkt['SEGResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=True)) dfSegsNodesNDataDpkt['DruckResIDs']=dfSegsNodesNDataDpkt['DruckResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=False)) dfSegsNodesNDataDpkt['DruckResIDsIMDI']=dfSegsNodesNDataDpkt['DruckResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=True)) # --- lfd. Nr. der Druckmessstelle im Segment ermitteln df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase'].notnull()].copy() df['NODEsSEGDruckErgLfdNr']=df.groupby('SEGName').cumcount() + 1 df['NODEsSEGDruckErgLfdNr']=df['NODEsSEGDruckErgLfdNr'].astype(int) cols=dfSegsNodesNDataDpkt.columns.to_list() cols.append('NODEsSEGDruckErgLfdNr') dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt ,df ,left_index=True ,right_index=True ,how='left' ,suffixes=('','_df') ).filter(items=cols) dfSegsNodesNDataDpkt['NODEsSEGDruckErgLfdNr']=dfSegsNodesNDataDpkt['NODEsSEGDruckErgLfdNr'].astype(int,errors='ignore') # LDSPara ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,dfPara,left_on='SEGNodes',right_index=True,suffixes=('','_LDSPara'),how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) #for SEGNodes in [str(SEGNodes) for SEGNodes in df.index if str(SEGNodes) not in dfSegsNodesNDataDpkt['SEGNodes'].values]: # logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) ###### --- LDSParaPT LDSParaPTFile=os.path.join(VersionsDir,LDSParaPT) if os.path.exists(LDSParaPTFile): logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSParaPT',LDSParaPT)) dfDPDTParams=pd.read_csv(LDSParaPTFile,delimiter=';',error_bad_lines=False,warn_bad_lines=True) dfMehrfach=dfDPDTParams.groupby(by='#ID').filter(lambda x: len(x) > 1) rows,cols=dfMehrfach.shape if rows > 0: logger.warning("{:s}Mehrfachkonfigurationen:".format(logStr)) logger.warning("{:s}".format(dfMehrfach.to_string())) dfDPDTParams=dfDPDTParams.groupby(by='#ID').first() # LDSParaPT ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,dfDPDTParams,left_on='CLIENT_ID',right_on='#ID',how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfOhne=dfSegsNodesNDataDpkt[(~pd.isnull(dfSegsNodesNDataDpkt['CLIENT_ID']) & dfSegsNodesNDataDpkt['CLIENT_ID'].str.len()>0 ) & (pd.isnull(dfSegsNodesNDataDpkt['pMin'])) ][['DIVPipelineName','SEGName','NODEsName','ZKOR','CLIENT_ID']].reset_index(drop=True) rows,cols=dfOhne.shape if rows > 0: logger.debug("{:s}Druckmessstellen ohne Mindestdruck:".format(logStr)) logger.debug("{:s}".format(dfOhne.to_string())) dfSegsNodesNDataDpkt['pMinMlc']=dfSegsNodesNDataDpkt.apply(lambda row: row['ZKOR']+row['pMin']*100000/(794.*9.81),axis=1) g=dfSegsNodesNDataDpkt.groupby(by='SEGName') df=g.pMinMlc.agg(pMinMlcMinSEG=np.min,pMinMlcMaxSEG=np.max) # pMinMlcMinSEG, pMinMlcMaxSEG ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,df,left_on='SEGName',right_index=True,how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) # Segmente ohne Mindestdruecke ausgeben df=dfSegsNodesNDataDpkt.groupby(['SEGName']).first() df=df[pd.isnull(df['pMinMlcMinSEG'])][['DIVPipelineName','SEGNodes']] rows,cols=df.shape if rows > 0: logger.debug("{:s}ganze Segmente ohne Mindestdruck:".format(logStr)) logger.debug("{:s}".format(df.to_string())) # Mindestdruecke ausgeben df=dfSegsNodesNDataDpkt[(~pd.isnull(dfSegsNodesNDataDpkt['CLIENT_ID']) & dfSegsNodesNDataDpkt['CLIENT_ID'].str.len()>0 ) & (~pd.isnull(dfSegsNodesNDataDpkt['pMin'])) ][['DIVPipelineName','SEGName','NODEsName','ZKOR','CLIENT_ID','pMin']].reset_index(drop=True) logger.debug("{:s}dfSegsNodesNDataDpkt: Mindestdrücke: {!s:s}".format(logStr,df.to_string())) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfSegsNodesNDataDpkt def fResValidSeriesSTAT_S(x): # STAT_S if pd.isnull(x)==False: if x >=0: return True else: return False else: return False def fResValidSeriesSTAT_S601(x): # STAT_S if pd.isnull(x)==False: if x==601: return True else: return False else: return False def fResValidSeriesAL_S(x,value=20): # AL_S if pd.isnull(x)==False: if x==value: return True else: return False else: return False def fResValidSeriesAL_S10(x): return fResValidSeriesAL_S(x,value=10) def fResValidSeriesAL_S4(x): return fResValidSeriesAL_S(x,value=4) def fResValidSeriesAL_S3(x): return fResValidSeriesAL_S(x,value=3) ResChannelFunctions=[fResValidSeriesSTAT_S,fResValidSeriesAL_S,fResValidSeriesSTAT_S601] ResChannelResultNames=['Zustaendig','Alarm','Stoerung'] ResChannelTypes=['STAT_S','AL_S','STAT_S'] # (fast) alle verfuegbaren Erg-Kanaele ResChannelTypesAll=['AL_S','STAT_S','SB_S','MZ_AV','LR_AV','NG_AV','LP_AV','AC_AV','ACCST_AV','ACCTR_AV','ACF_AV','TIMER_AV','AM_AV','DNTD_AV','DNTP_AV','DPDT_AV' ,'DPDT_REF_AV' ,'DPDT_REF' # Workaround ,'QM_AV','ZHKNR_S'] baseColorsSchieber=[ # Schieberfarben 'g' # 1 ,'b' # 2 ,'m' # 3 ,'r' # 4 ,'c' # 5 # alle Basisfarben außer y gelb ,'tab:blue' # 6 ,'tab:orange' # 7 ,'tab:green' # 8 ,'tab:red' # 9 ,'tab:purple' # 10 ,'tab:brown' # 11 ,'tab:pink' # 12 ,'gold' # 13 ,'fuchsia' # 14 ,'coral' # 15 ] markerDefSchieber=[ # Schiebersymobole '^' # 0 Auf ,'v' # 1 Zu ,'>' # 2 Halt # ab hier Zustaende ,'4' # 3 Laeuft ,'3' # 4 Laeuft nicht ,'P' # 5 Zust ,'1' # 6 Auf ,'2' # 7 Zu ,'+' # 8 Halt ,'x' # 9 Stoer ] # --- Reports LDS: Funktionen und Hilfsfunktionen # ----------------------------------------------- def getLDSResVecDf( ResIDBase='ID.' # i.e. for Segs Objects.3S_XYZ_SEG_INFO.3S_L_6_EL1_39_TUD.In. / i.e. for Drks Objects.3S_XYZ_DRUCK.3S_6_EL1_39_PTI_02_E.In. ,LDSResBaseType='SEG' # or Druck ,lx=None ,timeStart=None,timeEnd=None ,ResChannelTypes=ResChannelTypesAll ,timeShiftPair=None ): """ returns a df: the specified LDSResChannels (AL_S, ...) for an ResIDBase """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfResVec=pd.DataFrame() try: # zu lesende IDs basierend auf ResIDBase bestimmen ErgIDs=[ResIDBase+ext for ext in ResChannelTypes] IMDIErgIDs=['IMDI.'+ID for ID in ErgIDs] ErgIDsAll=[*ErgIDs,*IMDIErgIDs] # Daten lesen von TC-H5s dfFiltered=lx.getTCsFromH5s(timeStart=timeStart,timeEnd=timeEnd,LDSResOnly=True,LDSResColsSpecified=ErgIDsAll,LDSResTypeSpecified=LDSResBaseType,timeShiftPair=timeShiftPair) # Spalten umbenennen colDct={} for col in dfFiltered.columns: m=re.search(Lx.pID,col) colDct[col]=m.group('E') dfResVec=dfFiltered.rename(columns=colDct) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfResVec def fGetResTimes( ResIDBases=[] # Liste der Wortstaemme der Ergebnisvektoren ,df=pd.DataFrame() # TCsLDSRes... ,ResChannelTypes=ResChannelTypes # ['STAT_S','AL_S','STAT_S'] # Liste der Ergebnisvektoren Postfixe ,ResChannelFunctions=ResChannelFunctions # [fResValidSeriesSTAT_S,ResValidSeriesAL_S,fResValidSeriesSTAT_S601] # Liste der Ergebnisvektoren Funktionen ,ResChannelResultNames=ResChannelResultNames # ['Zustaendig','Alarm','Stoerung'] # Liste der key-Namen der Ergebnisse ,tdAllowed=pd.Timedelta('1 second') # erlaubte Zeitspanne zwischen geht und kommt (die beiden an diese Zeitspanne angrenzenden Zeitbereiche werden als 1 Zeit gewertet) ): """ Return: dct key: ResIDBase value: dct: key: ResChannelResultName Value: Liste mit Zeitpaaren (oder leere Liste) """ resTimesDct={} for ResIDBase in ResIDBases: tPairsDct={} for idx,ext in enumerate(ResChannelTypes): ID=ResIDBase+ext if ext == 'AL_S': debugOutput=True else: debugOutput=False if ID in df: #print("{:s} in Ergliste".format(ID)) tPairs=findAllTimeIntervallsSeries( s=df[ID].dropna() #! ,fct=ResChannelFunctions[idx] ,tdAllowed=tdAllowed#pd.Timedelta('1 second') ,debugOutput=debugOutput ) else: #print("{:s} nicht in Ergliste".format(ID)) tPairs=[] tPairsDct[ResChannelResultNames[idx]]=tPairs resTimesDct[ResIDBase]=tPairsDct return resTimesDct def getAlarmStatistikData( h5File='a.h5' ,dfSegsNodesNDataDpkt=pd.DataFrame() ,timeShiftPair=None # z.B. (1,'H') bei Replay ): """ Returns TCsLDSRes1,TCsLDSRes2,dfCVDataOnly """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) TCsLDSRes1=pd.DataFrame() TCsLDSRes2=pd.DataFrame() try: # "connect" to the App Logs lx=Lx.AppLog(h5File=h5File) if hasattr(lx, 'h5FileLDSRes'): logger.error("{0:s}{1:s}".format(logStr,'In den TCs nur Res und nicht Res1 und Res2?!')) raise RmError # zu lesende Daten ermitteln l=dfSegsNodesNDataDpkt['DruckResIDBase'].unique() l = l[~pd.isnull(l)] DruckErgIDs=[*[ID+'AL_S' for ID in l],*[ID+'STAT_S' for ID in l],*[ID+'SB_S' for ID in l],*[ID+'ZHKNR_S' for ID in l]] # l=dfSegsNodesNDataDpkt['SEGResIDBase'].unique() l = l[~pd.isnull(l)] SEGErgIDs=[*[ID+'AL_S' for ID in l],*[ID+'STAT_S' for ID in l],*[ID+'SB_S' for ID in l],*[ID+'ZHKNR_S' for ID in l]] ErgIDs=[*DruckErgIDs,*SEGErgIDs] # Daten lesen TCsLDSRes1,TCsLDSRes2=lx.getTCsFromH5s(LDSResOnly=True,LDSResColsSpecified=ErgIDs,timeShiftPair=timeShiftPair) (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) dfCVDataOnly=lx.getCVDFromH5(timeDelta=timeDelta,returnDfCVDataOnly=True) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return TCsLDSRes1,TCsLDSRes2,dfCVDataOnly def processAlarmStatistikData( TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,tdAllowed=None # pd.Timedelta('1 second') # Alarm geht ... Alarm kommt (wieder): wenn Zeitspanne ... <= tdAllowed, dann wird dies _gewertet als dieselbe Alarmzeitspanne # d.h. es handelt sich _gewertet inhaltlich um denselben Alarm # None zählt die Alarme strikt getrennt ): """ Returns: SEGResDct,DruckResDct ResDct: key: baseID (i.e. Objects.3S_FBG_SEG_INFO.<KEY>. value: dct key: Zustaendig: value: Zeitbereiche, in denen der Ergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen der Ergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen der Ergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) key: AL_S_SB_S: value: Liste mit Listen (den verschiedenen SB_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) key: <KEY>S: value: Liste mit Listen (den verschiedenen ZHKNR_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Zeiten SEGErgs mit zustaendig und Alarm ... l=[baseID for baseID in dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']]['SEGResIDBase'].unique() if not pd.isnull(baseID)] SEGResDct=fGetResTimes(ResIDBases=l,df=TCsLDSRes1,tdAllowed=tdAllowed) logger.debug("{:s}SEGResDct: {!s:s}".format(logStr,SEGResDct)) # Zeiten DruckErgs mit zustaendig und Alarm ... l=[baseID for baseID in dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']]['DruckResIDBase'].unique() if not pd.isnull(baseID)] DruckResDct=fGetResTimes(ResIDBases=l,df=TCsLDSRes2,tdAllowed=tdAllowed) logger.debug("{:s}DruckResDct: {!s:s}".format(logStr,DruckResDct)) # verschiedene Auspraegungen pro Alarmzeit ermitteln for ResDct, ResSrc, LDSResBaseType in zip([SEGResDct, DruckResDct],[TCsLDSRes1,TCsLDSRes2],['SEG','Druck']): for idxID,(ID,IDDct) in enumerate(ResDct.items()): # IDDct: das zu erweiternde Dct # Alarme tPairs=IDDct['Alarm'] for keyStr, colExt in zip(['AL_S_SB_S','<KEY>'],['SB_S','ZHKNR_S']): lGes=[] if tPairs != []: for tPair in tPairs: col=ID+colExt lSingle=ResSrc.loc[tPair[0]:tPair[1],col] lSingle=[int(x) for x in lSingle if pd.isnull(x)==False] lSingle=[lSingle[0]]+[lSingle[i] for i in range(1,len(lSingle)) if lSingle[i]!=lSingle[i-1]] lGes.append(lSingle) IDDct[keyStr]=lGes # das erweiterte Dct zuweisen ResDct[ID]=IDDct except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGResDct,DruckResDct def addNrToAlarmStatistikData( SEGResDct={} ,DruckResDct={} ,dfAlarmEreignisse=pd.DataFrame() ): """ Returns: SEGResDct,DruckResDct added with key AL_S_NR ResDct: key: baseID (i.e. Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_SPV.In. value: dct key: Zustaendig: value: Zeitbereiche, in denen der Ergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen der Ergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen der Ergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) key: AL_S_SB_S: value: Liste mit Listen (den verschiedenen SB_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) key: AL_S_ZHKNR_S: value: Liste mit Listen (den verschiedenen ZHKNR_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) # ergänzt: key: AL_S_NR: value: Liste mit der Nr. (aus dfAlarmEreignisse) pro Alarm (Länge der Liste == Länge der Liste von Alarm) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # for ResDct, LDSResBaseType in zip([SEGResDct, DruckResDct],['SEG','Druck']): for idxID,(ID,IDDct) in enumerate(ResDct.items()): # IDDct: das zu erweiternde Dct # Alarme tPairs=IDDct['Alarm'] lNr=[] if tPairs != []: ZHKNRnListen=IDDct['AL_S_ZHKNR_S'] for idxAlarm,tPair in enumerate(tPairs): ZHKNRnListe=ZHKNRnListen[idxAlarm] ZHKNR=ZHKNRnListe[0] ae=AlarmEvent(tPair[0],tPair[1],ZHKNR,LDSResBaseType) Nr=dfAlarmEreignisse[dfAlarmEreignisse['AlarmEvent']==ae]['Nr'].iloc[0] lNr.append(Nr) IDDct['AL_S_NR']=lNr # das erweiterte Dct zuweisen ResDct[ID]=IDDct except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGResDct,DruckResDct def processAlarmStatistikData2( DruckResDct=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ): """ Druckergebnisaussagen auf Segmentergebnisaussagen geeignet verdichtet Returns: SEGDruckResDct ResDct: key: baseID value: dct sortiert und direkt angrenzende oder gar ueberlappende Zeiten aus Druckergebnissen zusammenfasst key: Zustaendig: value: Zeitbereiche, in denen ein Druckergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen ein Druckergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen ein Druckergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) voneiander verschiedene Ausprägungen (sortiert) aus Druckergebnissen key: AL_S_SB_S: Liste key: AL_S_ZHKNR_S: Liste key: AL_S_NR: Liste """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Druckergebnisaussagen auf Segmentergebnisaussagen geeignet verdichtet SEGDruckResDct={} # merken, ob eine ID bereits bei einem SEG gezählt wurde; die Alarme einer ID sollen nur bei einem SEG gezaehlt werden IDBereitsGezaehlt={} # über alle DruckErgs for idx,(ID,tPairsDct) in enumerate(DruckResDct.items()): # SEG ermitteln # ein DruckErg kann zu mehreren SEGs gehoeren z.B. gehoert ein Verzweigungsknoten i.d.R. zu 3 versch. SEGs tupleLst=getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt,ID) for idxTuple,(DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) in enumerate(tupleLst): # wenn internes SEG if SEGOnlyInLDSPara: logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt da dieses SEG intern.".format(logStr,ID,SEGName)) continue # ID wurde bereits gezählt if ID in IDBereitsGezaehlt.keys(): logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt sondern wurde bereits bei SEGName {:s} gezaehlt.".format(logStr,ID,SEGName,IDBereitsGezaehlt[ID])) continue else: # ID wurde noch nicht gezaehlt IDBereitsGezaehlt[ID]=SEGName #if idxTuple>0: # logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt sondern nur bei SEGName {:s}.".format(logStr,ID,SEGName,tupleLst[0][1])) # continue if len(tPairsDct['Alarm'])>0: logger.debug("{:s}SEGName {:20s}: durch ID {:40s} mit Alarm. Nr des Verweises von ID auf ein Segment: {:d}".format(logStr,SEGName,ID, idxTuple+1)) if SEGResIDBase not in SEGDruckResDct.keys(): # auf dieses SEG wurde noch nie verwiesen SEGDruckResDct[SEGResIDBase]=deepcopy(tPairsDct) # das Segment erhält die Ergebnisse des ersten Druckvektors der zum Segment gehört else: # ergaenzen # Zeitlisten ergänzen for idx2,ext in enumerate(ResChannelTypes): tPairs=tPairsDct[ResChannelResultNames[idx2]] for idx3,tPair in enumerate(tPairs): if True: #tPair not in SEGDruckResDct[SEGResIDBase][ResChannelResultNames[idx2]]: # keine identischen Zeiten mehrfach zaehlen # die Ueberlappung von Zeiten wird weiter unten behandelt SEGDruckResDct[SEGResIDBase][ResChannelResultNames[idx2]].append(tPair) # weitere Listen ergaenzen for ext in ['AL_S_SB_S','AL_S_ZHKNR_S','AL_S_NR']: SEGDruckResDct[SEGResIDBase][ext]=SEGDruckResDct[SEGResIDBase][ext]+tPairsDct[ext] # Ergebnis: sortieren und dann direkt angrenzende oder gar ueberlappende Zeiten zusammenfassen for idx,(ID,tPairsDct) in enumerate(SEGDruckResDct.items()): for idx2,ext in enumerate(tPairsDct.keys()): if ext in ['AL_S_SB_S','AL_S_ZHKNR_S','AL_S_NR']: # keine Zeiten pass else: tPairs=tPairsDct[ResChannelResultNames[idx2]] tPairs=sorted(tPairs,key=lambda tup: tup[0]) tPairs=fCombineSubsequenttPairs(tPairs) SEGDruckResDct[ID][ResChannelResultNames[idx2]]=tPairs # voneiander verschiedene Ausprägungen (sortiert) for idx,(ID,tPairsDct) in enumerate(SEGDruckResDct.items()): for idx2,ext in enumerate(tPairsDct.keys()): v=tPairsDct[ext] if ext in ['AL_S_SB_S','AL_S_ZHKNR_S']: # Liste von Listen l=[*{*chain.from_iterable(v)}] l=sorted(pd.unique(l)) SEGDruckResDct[ID][ext]=l elif ext in ['AL_S_NR']: # Liste l=sorted(pd.unique(v)) SEGDruckResDct[ID][ext]=l else: pass logger.debug("{:s}SEGDruckResDct: {!s:s}".format(logStr,SEGDruckResDct)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGDruckResDct def buildAlarmDataframes( TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,dfCVDataOnly=pd.DataFrame() ,SEGResDct={} ,DruckResDct={} ,replaceTup=('2021-','') ,NrBy=['LDSResBaseType','SEGName','Ort','tA','ZHKNR'] ,NrAsc=[False]+4*[True] ): """ Returns dfAlarmStatistik,dfAlarmEreignisse,SEGDruckResDct """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfAlarmStatistik=pd.DataFrame() dfAlarmEreignisse=pd.DataFrame() try: # Ereignisse dfAlarmEreignisse=buildDfAlarmEreignisse( SEGResDct=SEGResDct ,DruckResDct=DruckResDct ,TCsLDSRes1=TCsLDSRes1 ,TCsLDSRes2=TCsLDSRes2 ,dfCVDataOnly=dfCVDataOnly ,dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt ,replaceTup=replaceTup ,NrBy=NrBy ,NrAsc=NrAsc ) # in dfAlarmEreignisse erzeugte Alarm-Nr. an Dct merken SEGResDct,DruckResDct=addNrToAlarmStatistikData( SEGResDct ,DruckResDct ,dfAlarmEreignisse ) # BZKat der Alarme def fGetAlarmKat(row): """ """ # baseID des Alarms baseID=row['OrteIDs'][0] # dct des Alarms if row['LDSResBaseType']=='SEG': dct=SEGResDct[baseID] else: dct=DruckResDct[baseID] # Nrn der baseID Nrn=dct['AL_S_NR'] # idx dieses Alarms innerhalb der Alarme der baseID idxAl=Nrn.index(row['Nr']) # Zustaende dieses alarms SB_S=dct['AL_S_SB_S'][idxAl] kat='' if 3 in SB_S: kat='instationär' else: if 2 in SB_S: kat = 'schw. instationär' else: if 1 in SB_S: kat = 'stat. Fluss' elif 4 in SB_S: kat = 'stat. Ruhe' return kat dfAlarmEreignisse['BZKat']=dfAlarmEreignisse.apply(lambda row: fGetAlarmKat(row),axis=1) # Segment-verdichtete Druckergebnisse SEGDruckResDct=processAlarmStatistikData2( DruckResDct ,TCsLDSRes2 ,dfSegsNodesNDataDpkt ) # Alarmstatistik bilden dfAlarmStatistik=dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']] dfAlarmStatistik=dfAlarmStatistik[['DIVPipelineName','SEGName','SEGNodes','SEGResIDBase']].drop_duplicates(keep='first').reset_index(drop=True) dfAlarmStatistik['Nr']=dfAlarmStatistik.apply(lambda row: "{:2d}".format(int(row.name)),axis=1) # SEG dfAlarmStatistik['FörderZeiten']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Zustaendig']) dfAlarmStatistik['FörderZeitenAl']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Alarm']) dfAlarmStatistik['FörderZeitenSt']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Stoerung']) dfAlarmStatistik['FörderZeitenAlAnz']=dfAlarmStatistik['FörderZeitenAl'].apply(lambda x: len(x)) dfAlarmStatistik['FörderZeitenAlSbs']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['AL_S_SB_S']) dfAlarmStatistik['FörderZeitenAlNrn']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['AL_S_NR']) # Druck (SEG-verdichtet) dfAlarmStatistik['RuheZeiten']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Zustaendig'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAl']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Alarm'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenSt']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Stoerung'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAlSbs']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['AL_S_SB_S'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAlNrn']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['AL_S_NR'] if x in SEGDruckResDct.keys() else []) #dfAlarmStatistik['RuheZeitenAlAnz']=dfAlarmStatistik['RuheZeitenAl'].apply(lambda x: len(x)) dfAlarmStatistik['RuheZeitenAlAnz']=dfAlarmStatistik['RuheZeitenAlNrn'].apply(lambda x: len(x)) # je 3 Zeiten bearbeitet dfAlarmStatistik['FörderZeit']=dfAlarmStatistik['FörderZeiten'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeit']=dfAlarmStatistik['RuheZeiten'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['FörderZeitAl']=dfAlarmStatistik['FörderZeitenAl'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeitAl']=dfAlarmStatistik['RuheZeitenAl'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['FörderZeitSt']=dfAlarmStatistik['FörderZeitenSt'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeitSt']=dfAlarmStatistik['RuheZeitenSt'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse, dfAlarmStatistik,SEGDruckResDct def plotDfAlarmStatistik( dfAlarmStatistik=pd.DataFrame() ): """ Returns the plt.table """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) df=dfAlarmStatistik[[ 'Nr' ,'DIVPipelineName' ,'SEGName' ,'FörderZeit' ,'FörderZeitenAlAnz' ,'FörderZeitAl' ,'FörderZeitSt' ,'RuheZeit' ,'RuheZeitenAlAnz' ,'RuheZeitAl' ,'RuheZeitSt' ]].copy() # diese Zeiten um (Störzeiten) annotieren df['FörderZeit']=df.apply(lambda row: "{!s:s} ({!s:s})".format(row['FörderZeit'],row['FörderZeitSt']) if row['FörderZeitSt'] > 0. else row['FörderZeit'] ,axis=1) df['RuheZeit']=df.apply(lambda row: "{!s:s} ({!s:s})".format(row['RuheZeit'],row['RuheZeitSt']) if row['RuheZeitSt'] > 0. else row['RuheZeit'],axis=1) # LfdNr. annotieren df['LfdNr']=df.apply(lambda row: "{:2d} - {:s}".format(int(row.Nr)+1,str(row.DIVPipelineName)),axis=1) # Zeiten Alarm um Alarm-Nrn annotieren def fAddZeitMitNrn(zeit,lAlNr): if len(lAlNr) > 0: if len(lAlNr) <= 3: return "{!s:s} (Nrn.: {!s:s})".format(zeit,lAlNr) else: # mehr als 3 Alarme... return "{!s:s} (Nrn.: {!s:s}, ...)".format(zeit,lAlNr[0]) else: return zeit df['FörderZeitAl']=dfAlarmStatistik.apply(lambda row: fAddZeitMitNrn(row['FörderZeitAl'],row['FörderZeitenAlNrn']),axis=1) df['RuheZeitAl']=dfAlarmStatistik.apply(lambda row: fAddZeitMitNrn(row['RuheZeitAl'],row['RuheZeitenAlNrn']),axis=1) df=df[[ 'LfdNr' ,'SEGName' ,'FörderZeit' ,'FörderZeitenAlAnz' ,'FörderZeitAl' ,'RuheZeit' ,'RuheZeitenAlAnz' ,'RuheZeitAl' ]] try: t=plt.table(cellText=df.values, colLabels=df.columns, loc='center') cols=df.columns.to_list() colIdxLfdNr=cols.index('LfdNr') colIdxFoerderZeit=cols.index('FörderZeit') colIdxFoerderZeitenAlAnz=cols.index('FörderZeitenAlAnz') colIdxFoerderZeitAl=cols.index('FörderZeitAl') colIdxRuheZeit=cols.index('RuheZeit') colIdxRuheZeitenAlAnz=cols.index('RuheZeitenAlAnz') colIdxRuheZeitAl=cols.index('RuheZeitAl') cells = t.properties()["celld"] for cellTup,cellObj in cells.items(): cellObj.set_text_props(ha='left') row,col=cellTup # row: 0 fuer Ueberschrift bei Ueberschrift; col mit 0 if row == 0: if col in [colIdxRuheZeit,colIdxRuheZeitenAlAnz,colIdxRuheZeitAl]: pass cellObj.set_text_props(backgroundcolor='plum') elif col in [colIdxFoerderZeit,colIdxFoerderZeitenAlAnz,colIdxFoerderZeitAl]: pass cellObj.set_text_props(backgroundcolor='lightsteelblue') if col == colIdxLfdNr: if row==0: continue if 'color' in dfAlarmStatistik.columns.to_list(): color=dfAlarmStatistik['color'].iloc[row-1] cellObj.set_text_props(backgroundcolor=color) if col == colIdxFoerderZeit: if row==0: continue if dfAlarmStatistik.loc[row-1,'FörderZeit']==0: pass else: if dfAlarmStatistik.loc[row-1,'FörderZeitSt']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: cellObj.set_text_props(backgroundcolor='goldenrod') if col == colIdxFoerderZeitenAlAnz: if row==0: continue if dfAlarmStatistik.loc[row-1,'FörderZeit']==0: cellObj.set_text_props(backgroundcolor='lightgrey') else: # hat Förderzeit if df.loc[row-1,'FörderZeitenAlAnz']==0: cellObj.set_text_props(backgroundcolor='springgreen') else: cellObj.set_text_props(ha='center') cellObj.set_text_props(backgroundcolor='navajowhite') # palegoldenrod #if df.loc[row-1,'FörderZeitAl']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: if dfAlarmStatistik.loc[row-1,'FörderZeitAl']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: cellObj.set_text_props(backgroundcolor='tomato') if col == colIdxRuheZeit: if row==0: continue if dfAlarmStatistik.loc[row-1,'RuheZeit']==0: pass else: if dfAlarmStatistik.loc[row-1,'RuheZeitSt']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: cellObj.set_text_props(backgroundcolor='goldenrod') if col == colIdxRuheZeitenAlAnz: if row==0: continue if dfAlarmStatistik.loc[row-1,'RuheZeit']==0: cellObj.set_text_props(backgroundcolor='lightgrey') else: # hat Ruhezeit if df.loc[row-1,'RuheZeitenAlAnz']==0: cellObj.set_text_props(backgroundcolor='springgreen') else: pass cellObj.set_text_props(ha='center') cellObj.set_text_props(backgroundcolor='navajowhite') # # palegoldenrod #if df.loc[row-1,'RuheZeitAl']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: if dfAlarmStatistik.loc[row-1,'RuheZeitAl']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: cellObj.set_text_props(backgroundcolor='tomato') plt.axis('off') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return t def fOrteStripped(LDSResBaseType,OrteIDs): """ returns Orte stripped """ if LDSResBaseType == 'SEG': # 'Objects.3S_FBG_SEG_INFO.3S_L_6_MHV_02_FUD.In.'] orteStripped=[] for OrtID in OrteIDs: pass m=re.search(Lx.pID,OrtID+'dummy') ortStripped=m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_'+m.group('C6') orteStripped.append(ortStripped) return orteStripped elif LDSResBaseType == 'Druck': # Objects.3S_FBG_DRUCK.3S_6_BNV_01_PTI_01.In orteStripped=[] for OrtID in OrteIDs: pass m=re.search(Lx.pID,OrtID+'dummy') ortStripped=m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') orteStripped.append(ortStripped) return orteStripped else: return None def fCVDTime(row,dfSEG,dfDruck,replaceTup=('2021-','')): """ in: dfSEG/dfDruck: TCsLDSRes1/TCsLDSRes2 row: Zeile aus dfAlarmEreignisse von row verwendet: LDSResBaseType: SEG (dfSEG) oder nicht (dfDruck) OrteIDs: ==> ID von ZHKNR_S in dfSEG/dfDruck ZHKNR: ZHKNR returns: string: xZeitA - ZeitEx ZeitA: erste Zeit in der ZHKNR_S in dfSEG/dfDruck den Wert von ZHKNR trägt ZeitE: letzte Zeit in der ZHKNR_S in dfSEG/dfDruck den Wert von ZHKNR trägt xZeitA, wenn ZeitA die erste Zeit in dfSEG/dfDruck ist mit einem von Null verschiedenen Wert xZeitE, wenn ZeitE die letzte Zeit in dfSEG/dfDruck ist mit einem von Null verschiedenen Wert in Zeit wurde replaceTup angewendet """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: Time="" ID=row['OrteIDs'][0]+'ZHKNR_S' ZHKNR=row['ZHKNR'] if row['LDSResBaseType']=='SEG': df=dfSEG else: df=dfDruck s=df[df[ID]==ZHKNR][ID] # eine Spalte; Zeilen in denen ZHKNR_S den Wert von ZHKNR trägt tA=s.index[0] # 1. Zeit tE=s.index[-1] # letzte Zeit Time=" {!s:s} - {!s:s} ".format(tA,tE) try: if tA==df[ID].dropna().index[0]: Time='x'+Time.lstrip() except: logger.debug("{0:s}Time: {1:s}: x-tA Annotation Fehler; keine Annotation".format(logStr,Time)) try: if tE==df[ID].dropna().index[-1]: Time=Time.rstrip()+'x' except: logger.debug("{0:s}Time: {1:s}: x-tE Annotation Fehler; keine Annotation".format(logStr,Time)) Time=Time.replace(replaceTup[0],replaceTup[1]) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return Time def buildDfAlarmEreignisse( SEGResDct={} ,DruckResDct={} ,TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfCVDataOnly=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,replaceTup=('2021-','') ,NrBy=['LDSResBaseType','SEGName','Ort','tA','ZHKNR'] # Sortierspalten für die Nr. der Ereignisse ,NrAsc=[False]+4*[True] # aufsteigend j/n für die o.g. Sortierspalten ): """ Returns dfAlarmEreignisse: Nr: lfd. Nr (gebildet gem. NrBy und NrAsc) tA: Anfangszeit tE: Endezeit tD: Dauer des Alarms ZHKNR: ZHKNR (die zeitlich 1., wenn der Alarm sich über mehrere ZHKNRn erstreckt) tD_ZHKNR: Lebenszeit der ZHKNR; x-Annotationen am Anfang/Ende, wenn ZHK beginnt bei Res12-Anfang / andauert bei Res12-Ende; '-1', wenn Lebenszeit nicht ermittelt werden konnte ZHKNRn: sortierte Liste der ZHKNRn des Alarms; eine davon ist ZHKNR; typischerweise die 1. der Liste LDSResBaseType: SEG oder Druck OrteIDs: OrteIDs des Alarms Orte: Kurzform von OrteIDs des Alarms Ort: der 1. Ort von Orte SEGName: Segment zu dem der 1. Ort des Alarms gehört DIVPipelineName: Voralarm: ermittelter Vorlalarm des Alarms; -1, wenn kein Voralarm in Res12 gefunden werden konnte Type: Typ des Kontrollraumns; z.B. p-p für vollständige Flussbilanzen; '', wenn kein Typ gefunden werden konnte Name: Name des Bilanzraumes NrSD: lfd. Nr Alarm BaseType NrName: lfd. Nr Alarm Name NrSEGName: lfd. Nr Alarm SEGName AlarmEvent: AlarmEvent-Objekt ###BZKat: Betriebszustandskategorie des Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfAlarmEreignisse=pd.DataFrame() try: AlarmEvents=[] # Liste von AlarmEvent AlarmEventsOrte={} # dct der Orte, die diesen (key) AlarmEvent melden AlarmEventsZHKNRn={} # dct der ZHKNRn, die zu diesem (key) gehoeren # über SEG- und Druck-Ergebnisvektoren for ResDct, ResSrc, LDSResBaseType in zip([SEGResDct, DruckResDct],[TCsLDSRes1,TCsLDSRes2],['SEG','Druck']): for ResIDBase,dct in ResDct.items(): AL_S=dct['Alarm'] if len(AL_S) > 0: # eine Erg-ID weist Alarme [(tA,tE),...] auf # korrespondiernede Liste der ZHKs: [(999,1111),...] ZHKNRnListen=dct['AL_S_ZHKNR_S'] ID=ResIDBase+'ZHKNR_S' # fuer nachfolgende Ausgabe # ueber alle Alarme der Erg-ID for idx,AL_S_Timepair in enumerate(AL_S): (t1,t2)=AL_S_Timepair # tA, tE ZHKNR_S_Lst=ZHKNRnListen[idx] # Liste der ZHKs in dieser Zeit if len(ZHKNR_S_Lst) != 1: logger.warning(("{:s}ID:\n\t {:s}: Alarm {:d} der ID\n\t Zeit von {!s:s} bis {!s:s}:\n\t Anzahl verschiedener ZHKNRn !=1: {:d} {:s}:\n\t ZHKNR eines Alarms wechselt waehrend eines Alarms. Alarm wird identifiziert mit 1. ZHKNR.".format(logStr,ID ,idx ,t1 ,t2 ,len(ZHKNR_S_Lst) ,str(ZHKNR_S_Lst) ))) # die erste wird verwendet ZHKNR=int(ZHKNR_S_Lst[0]) # AlarmEvent erzeugen alarmEvent=AlarmEvent(t1,t2,ZHKNR,LDSResBaseType) if alarmEvent not in AlarmEvents: # diesen Alarm gibt es noch nicht in der Ereignisliste ... AlarmEvents.append(alarmEvent) AlarmEventsOrte[alarmEvent]=[] AlarmEventsZHKNRn[alarmEvent]=[] else: pass # Ort ergaenzen (derselbe Alarm wird erst ab V83.5.3 nur an einem Ort - dem lexikalisch kleinsten des Bilanzraumes - ausgegeben; zuvor konnte derselbe Alarm an mehreren Orten auftreten) AlarmEventsOrte[alarmEvent].append(ResIDBase) # ZHKNR(n) ergaenzen (ein Alarm wird unter 1 ZHKNR geführt) AlarmEventsZHKNRn[alarmEvent].append(ZHKNR_S_Lst) # df erzeugen dfAlarmEreignisse=pd.DataFrame.from_records( [alarmEvent for alarmEvent in AlarmEvents], columns=AlarmEvent._fields ) # Liste der EventOrte erstellen, zuweisen l=[] for idx,alarmEvent in enumerate(AlarmEvents): l.append(AlarmEventsOrte[alarmEvent]) dfAlarmEreignisse['OrteIDs']=l # abgekuerzte Orte dfAlarmEreignisse['Orte']=dfAlarmEreignisse.apply(lambda row: fOrteStripped(row.LDSResBaseType,row.OrteIDs),axis=1) dfAlarmEreignisse['Ort']=dfAlarmEreignisse['Orte'].apply(lambda x: x[0]) # Liste der ZHKNRn erstellen, zuweisen l=[] for idx,alarmEvent in enumerate(AlarmEvents): lOfZl=AlarmEventsZHKNRn[alarmEvent] lOfZ=[*{*chain.from_iterable(lOfZl)}] lOfZ=sorted(pd.unique(lOfZ)) l.append(lOfZ) dfAlarmEreignisse['ZHKNRn']=l # Segmentname eines Ereignisses dfAlarmEreignisse['SEGName']=dfAlarmEreignisse.apply(lambda row: dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==row['OrteIDs'][0]]['SEGName'].iloc[0] if row['LDSResBaseType']=='SEG' else [tuple for tuple in getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt,row['OrteIDs'][0]) if not tuple[-1]][0][1],axis=1) # DIVPipelineName eines Ereignisses dfAlarmEreignisse['DIVPipelineName']=dfAlarmEreignisse.apply(lambda row: dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGName']==row['SEGName']]['DIVPipelineName'].iloc[0] ,axis=1) # Alarm: --- #tA: Anfangszeit #tE: Endezeit #ZHKNR: ZHKNR (1. bei mehreren Alarmen) #LDSResBaseType: SEG oder Druck # Orte: --- #OrteIDs: OrteIDs des Alarms #Orte: Kurzform von OrteIDs des Alarms #ZHKNRn: #SEGName: Segmentname #DIVPipelineName ## Nr. dfAlarmEreignisse.sort_values(by=NrBy,ascending=NrAsc,inplace=True) dfAlarmEreignisse['Nr']=dfAlarmEreignisse.index+1 #dfAlarmEreignisse['Nr']=dfAlarmEreignisse['Nr']+1 logger.debug("{0:s}{1:s}: {2:s}".format(logStr,'dfAlarmEreignisse',dfAlarmEreignisse.to_string())) # Voralarm VoralarmTypen=[] for index, row in dfAlarmEreignisse.iterrows(): # zur Information bei Ausgaben OrteIDs=row['OrteIDs'] OrtID=OrteIDs[0] VoralarmTyp=None try: if row['LDSResBaseType']=='SEG': VoralarmTyp=TCsLDSRes1.loc[:row['tA']-pd.Timedelta('1 second'),OrtID+'AL_S'].iloc[-1] elif row['LDSResBaseType']=='Druck': VoralarmTyp=TCsLDSRes2.loc[:row['tA']-pd.Timedelta('1 second'),OrtID+'AL_S'].iloc[-1] except: pass if pd.isnull(VoralarmTyp): # == None: #?! - ggf. Nachfolger eines neutralen Bilanzraumwechsels VoralarmTyp=-1 logger.warning("{:s}PV: {:40s} Alarm Nr. {:d} ZHKNR {:d}\n\t tA {!s:s}: kein (isnull) Vorlalarm gefunden?! (ggf. neutraler BRWechsel) - Voralarm gesetzt auf: {:d}".format(logStr ,row['OrteIDs'][0] ,int(row['Nr']) ,row['ZHKNR'] ,row['tA'],int(VoralarmTyp))) if int(VoralarmTyp)==0: # == 0: #?! - ggf. Nachfolger eines neutralen Bilanzraumwechsels VoralarmTyp=0 logger.warning("{:s}PV: {:40s} Alarm Nr. {:d} ZHKNR {:d}\n\t tA {!s:s}: Vorlalarm 0?! (ggf. war Bilanz in Stoerung)".format(logStr ,row['OrteIDs'][0] ,int(row['Nr']) ,row['ZHKNR'] ,row['tA'])) if int(VoralarmTyp) not in [-1,0,3,4,10]: logger.warning("{:s}PV: {:s} Alarm Nr. {:d} {:d} tA {!s:s}: unbekannter Vorlalarm gefunden: {:d}".format(logStr,row['OrteIDs'][0],int(row['Nr']),row['ZHKNR'],row['tA'],int(VoralarmTyp))) logger.debug("{:s}{:d} {!s:s} VoralarmTyp:{:d}".format(logStr,int(row['Nr']),row['tA'],int(VoralarmTyp))) VoralarmTypen.append(VoralarmTyp) dfAlarmEreignisse['Voralarm']=[int(x) for x in VoralarmTypen] # Type (aus dfCVDataOnly) und Erzeugungszeit (aus dfCVDataOnly) und Name (aus dfCVDataOnly) dfAlarmEreignisse['ZHKNR']=dfAlarmEreignisse['ZHKNR'].astype('int64') dfAlarmEreignisse['ZHKNRStr']=dfAlarmEreignisse['ZHKNR'].astype('string') dfCVDataOnly['ZHKNRStr']=dfCVDataOnly['ZHKNR'].astype('string') # wg. aelteren App-Log Versionen in denen ZHKNR in dfCVDataOnly nicht ermittelt werden konnte # Type,ScenTime,Name sind dann undefiniert dfAlarmEreignisse=pd.merge(dfAlarmEreignisse,dfCVDataOnly,on='ZHKNRStr',suffixes=('','_CVD'),how='left').filter(items=dfAlarmEreignisse.columns.to_list()+['Type' #,'ScenTime' ,'Name']) dfAlarmEreignisse=dfAlarmEreignisse.drop(['ZHKNRStr'],axis=1) dfAlarmEreignisse=dfAlarmEreignisse.fillna(value='') # lfd. Nummern dfAlarmEreignisse['NrSD']=dfAlarmEreignisse.groupby(['LDSResBaseType']).cumcount() + 1 dfAlarmEreignisse['NrName']=dfAlarmEreignisse.groupby(['Name']).cumcount() + 1 dfAlarmEreignisse['NrSEGName']=dfAlarmEreignisse.groupby(['SEGName']).cumcount() + 1 # Lebenszeit der ZHKNR try: dfAlarmEreignisse['tD_ZHKNR']=dfAlarmEreignisse.apply(lambda row: fCVDTime(row,TCsLDSRes1,TCsLDSRes2,replaceTup),axis=1) except: logger.debug("{:s}Spalte tD_ZHKNR (Lebenszeit einer ZHKNR) konnte nicht ermittelt werden. Vmtl. aeltere App-Log Version.".format(logStr)) dfAlarmEreignisse['tD_ZHKNR']='-1' # Dauer des Alarms dfAlarmEreignisse['tD']=dfAlarmEreignisse.apply(lambda row: row['tE']-row['tA'],axis=1) dfAlarmEreignisse['tD']= dfAlarmEreignisse['tD'].apply(lambda x: "{!s:s}".format(x).replace('days','Tage').replace('0 Tage','').replace('Tage','T')) # AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') dfAlarmEreignisse=dfAlarmEreignisse[['Nr','tA', 'tE','tD','ZHKNR','tD_ZHKNR','ZHKNRn','LDSResBaseType' ,'OrteIDs', 'Orte', 'Ort', 'SEGName','DIVPipelineName' ,'Voralarm', 'Type', 'Name' ,'NrSD', 'NrName', 'NrSEGName' ]] dfAlarmEreignisse['AlarmEvent']=dfAlarmEreignisse.apply(lambda row: AlarmEvent(row['tA'],row['tE'],row['ZHKNR'],row['LDSResBaseType']),axis=1) # unklar, warum erforderlich dfAlarmEreignisse['Nr']=dfAlarmEreignisse.index+1 except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse def fCVDName(Name ): """ """ lName=len(Name) if len(Name)==0: Name='ZHKName vmtl. nicht in Log' lNameMaxH=20 if lName > 2*lNameMaxH: Name=Name[:lNameMaxH-2]+'....'+Name[lName-lNameMaxH+2:] Name=Name.replace('°','|') return Name def plotDfAlarmEreignisse( dfAlarmEreignisse=pd.DataFrame() ,sortBy=[] ,replaceTup=('2021-','') ,replaceTuptD=('0 days','') ): """ Returns the plt.table """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: df=dfAlarmEreignisse[['Nr','LDSResBaseType','Voralarm','Type','NrSD','tA','tE','tD','ZHKNR','Name','Orte','tD_ZHKNR','NrName','NrSEGName','SEGName','BZKat']].copy() df['tA']=df['tA'].apply(lambda x: str(x).replace(replaceTup[0],replaceTup[1])) df['tE']=df['tE'].apply(lambda x: str(x).replace(replaceTup[0],replaceTup[1])) ###df['Anz']=df['Orte'].apply(lambda x: len(x)) ##df['Orte']=df['Orte'].apply(lambda x: str(x).replace('[','').replace(']','').replace("'","")) df['Orte']=df['Orte'].apply(lambda x: str(x[0])) df['LDSResBaseType']=df.apply(lambda row: "{:s} {:s} - {:d}".format(row['LDSResBaseType'],row['Type'],row['Voralarm']),axis=1) df=df[['Nr','LDSResBaseType','NrSD','tA','tE','tD','ZHKNR','Name','NrName','NrSEGName','SEGName','tD_ZHKNR','Orte','BZKat']] df.rename(columns={'LDSResBaseType':'ResTyp - Voralarm'},inplace=True) df.rename(columns={'tD_ZHKNR':'ZHKZeit','Name':'ZHKName'},inplace=True) ###df['ZHKName']=df['ZHKName'].apply(lambda x: fCVDName(x)) ####df['ZHKName']=df['Orte'].apply(lambda x: x[0]) df['NrSEGName (SEGName)']=df.apply(lambda row: "{!s:2s} ({!s:s})".format(row['NrSEGName'],row['SEGName']),axis=1) df=df[['Nr','ResTyp - Voralarm','NrSD','tA','tD','ZHKNR' ,'Orte' #'ZHKName' ,'BZKat' ,'NrName','NrSEGName (SEGName)','ZHKZeit']] df.rename(columns={'Orte':'ID'},inplace=True) df['tD']=df['tD'].apply(lambda x: str(x).replace(replaceTuptD[0],replaceTuptD[1])) def fGetZHKNRStr(row,dfOrig): """ returns: ZHKNStr in Abhängigkeit der aktuellen Zeile und dfOrig """ s=dfOrig[dfOrig['Nr']==row['Nr']].iloc[0] if len(s.ZHKNRn)>1: if len(s.ZHKNRn)==2: return "{:d} ({!s:s})".format(row['ZHKNR'],s.ZHKNRn[1:]) else: return "{:d} (+{:d})".format(row['ZHKNR'],len(s.ZHKNRn)-1) else: return "{:d}".format(row['ZHKNR']) df['ZHKNR']=df.apply(lambda row: fGetZHKNRStr(row,dfAlarmEreignisse),axis=1) if sortBy!=[]: df=df.sort_values(by=sortBy) t=plt.table(cellText=df.values, colLabels=df.columns ,colWidths=[.03,.1 # Nr ResTyp-Voralarm ,.04 # NrSD ,.08,.08 # tA tD ,.085 # ZHKNR ,.1125,.07 #.1125 # ID BZKat ,.04 # NrName ,.14 # NrSEGName (SEGName) ,.2125] # ZHKZeit , cellLoc='left' , loc='center') t.auto_set_font_size(False) t.set_fontsize(10) cols=df.columns.to_list() #colIdxOrte=cols.index('Orte') #colIdxName=cols.index('ZHKName') colIdxNrSD=cols.index('NrSD') colIdxNrSEG=cols.index('NrSEGName (SEGName)') # ResTyp - Voralarm colIdxResTypVA=cols.index('ResTyp - Voralarm') cells = t.properties()["celld"] for cellTup,cellObj in cells.items(): cellObj.set_text_props(ha='left') row,col=cellTup # row: 0 fuer Ueberschrift bei Ueberschrift; col mit 0 #if col == colIdxName: # cellObj.set_text_props(ha='left') if col == colIdxNrSD: if row > 0: if dfAlarmEreignisse.loc[row-1,'LDSResBaseType']=='SEG': cellObj.set_text_props(backgroundcolor='lightsteelblue') else: cellObj.set_text_props(backgroundcolor='plum') elif col == colIdxNrSEG: if row==0: continue if 'color' in dfAlarmEreignisse.columns.to_list(): color=dfAlarmEreignisse['color'].iloc[row-1] cellObj.set_text_props(backgroundcolor=color) elif col == colIdxResTypVA and row > 0: pass if dfAlarmEreignisse.loc[row-1,'Voralarm'] in [10]: cellObj.set_text_props(backgroundcolor='sandybrown') elif dfAlarmEreignisse.loc[row-1,'Voralarm'] in [4]: cellObj.set_text_props(backgroundcolor='pink') elif dfAlarmEreignisse.loc[row-1,'Voralarm'] in [3]: cellObj.set_text_props(backgroundcolor='lightcoral') else: pass #cellObj.set_text_props(fontsize=16) plt.axis('off') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return t def plotDfAlarmStatistikReportsSEGErgs( h5File='a.h5' ,dfAlarmStatistik=pd.DataFrame() ,SEGResDct={} ,timeStart=None,timeEnd=None ,SEGErgsFile='SEGErgs.pdf' ,stopAtSEGNr=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,byhour=[0,3,6,9,12,15,18,21] ,byminute=None ,bysecond=None ,timeFloorCeilStr=None #'1H' # Runden (1 Stunde) ,timeFloorCeilStrDetailPre='6T' # Runden (3 Minuten) ,timeFloorCeilStrDetailPost='3T' ,timeShiftPair=None ): """ Creates PDF for all SEGs with FörderZeitenAlAnz>0 1 Base Plot and Detail Plots for the Alarms Creates corresponding Single-PNGs Returns xlimsDct: key: BaseID value: list of Timepairs of the Detail Plots for the Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lx=Lx.AppLog(h5File=h5File) firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal=lx.getTotalLogTime() if timeStart==None: if timeFloorCeilStr != None: timeStart = firstTime.floor(freq=timeFloorCeilStr) else: timeStart = firstTime if timeEnd==None: if timeFloorCeilStr != None: timeEnd = lastTime.ceil(freq=timeFloorCeilStr) else: timeEnd = lastTime logger.debug("{0:s}timeStart (ohne timeShift): {1:s} timeEnd (ohne timeShift): {2:s}".format(logStr,str(timeStart),str(timeEnd))) xlimsDct={} pdf=PdfPages(SEGErgsFile) (fileNameBase,ext)= os.path.splitext(SEGErgsFile) if timeShiftPair != None: (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) else: timeDelta=pd.Timedelta('0 Seconds') idxSEGPlotted=0 for idx,(index,row) in enumerate(dfAlarmStatistik.iterrows()): if stopAtSEGNr != None: if idxSEGPlotted>=stopAtSEGNr: break titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,row['SEGResIDBase']) if row['FörderZeitenAlAnz']==0: # and row['RuheZeitenAlAnz']==0: logger.info("{:s}: FörderZeitenAlAnz: 0".format(titleStr)) continue # keine SEGs ohne Alarme drucken # Erg lesen ResIDBase=row['SEGResIDBase'] dfSegReprVec=getLDSResVecDf(ResIDBase=ResIDBase,LDSResBaseType='SEG',lx=lx,timeStart=timeStart,timeEnd=timeEnd,timeShiftPair=timeShiftPair) ID='AL_S' if ID not in dfSegReprVec.keys(): continue idxSEGPlotted=idxSEGPlotted+1 xlimsDct[ResIDBase]=[] logger.debug("{:s}ResIDBase: {:s} dfSegReprVec: Spalten: {!s:s}".format(logStr,ResIDBase,dfSegReprVec.columns.to_list())) # Plot Basis ########################################################### fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStart+timeDelta,timeEnd+timeDelta) ,dateFormat=dateFormat ,byhour=byhour ,byminute=byminute ,bysecond=bysecond ,plotLegend=True ) backgroundcolor='white' if row['FörderZeit']==0: backgroundcolor='lightgrey' else: # hat Förderzeit if row['FörderZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['FörderZeitAl']/row['FörderZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: FörderZeit: {:8.2f} FörderZeitenAlAnz: {:d}".format(row['SEGNodes'],row['FörderZeit'],row['FörderZeitenAlAnz']) if row['FörderZeitenAlAnz'] > 0: if row['FörderZeitenAlAnz'] <= 3: txtNr=" Nrn.: {!s:s}".format(row['FörderZeitenAlNrn']) else: txtNr=" Nrn.: {!s:s} u.w.".format(row['FörderZeitenAlNrn'][0]) txt=txt+txtNr else: txtNr='' ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['FörderZeitSt']>0: backgroundcolor='white' if row['FörderZeitSt']/row['FörderZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: FörderZeitSt: {:8.2f})".format(row['FörderZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png fileName="{:s} {:2d} - {:s} {:s} {:s}.png".format(fileNameBase ,int(row.Nr)+1 ,str(row.DIVPipelineName) ,row['SEGName'] ,txtNr.replace('Nrn.: ','Nrn ').replace(',','').replace('[','').replace(']','').replace('u.w.','u w')) plt.savefig(fileName) plt.show() ###plt.clf() plt.close() # Plot Alarme ########################################################### dct=SEGResDct[row['SEGResIDBase']] timeFirstAlarmStarts,dummy=dct['Alarm'][0] dummy,timeLastAlarmEnds=dct['Alarm'][-1] for idxAl,AlNr in enumerate(row['FörderZeitenAlNrn']): timeAlarmStarts,timeAlarmEnds=dct['Alarm'][idxAl] timeStartDetail = timeAlarmStarts.floor(freq=timeFloorCeilStrDetailPre) timeEndDetail = timeAlarmEnds.ceil(freq=timeFloorCeilStrDetailPost) # wenn AlarmRand - PlotRand < 3 Minuten: um 3 Minuten erweitern if timeAlarmStarts-timeStartDetail<pd.Timedelta('3 Minutes'): timeStartDetail=timeStartDetail-pd.Timedelta('3 Minutes') if timeEndDetail-timeAlarmEnds<pd.Timedelta('3 Minutes'): timeEndDetail=timeEndDetail+pd.Timedelta('3 Minutes') xlimsDct[ResIDBase].append((timeStartDetail,timeEndDetail)) fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStartDetail,timeEndDetail) # wenn die dct-Zeiten time-geshifted sind ist das korrekt ,dateFormat=dateFormat ,byhour=None#byhour ,byminute=list(np.arange(0,60))#byminute ,bysecond=None#bysecond ) backgroundcolor='white' if row['FörderZeit']==0: backgroundcolor='lightgrey' else: # hat Förderzeit if row['FörderZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['FörderZeitAl']/row['FörderZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: FörderZeit: {:8.2f} FörderZeitenAlAnz: {:d}".format(row['SEGNodes'],row['FörderZeit'],row['FörderZeitenAlAnz']) txtNr=" Nr.: {!s:s}".format(AlNr) txt=txt+txtNr ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['FörderZeitSt']>0: backgroundcolor='white' if row['FörderZeitSt']/row['FörderZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: FörderZeitSt: {:8.2f})".format(row['FörderZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) ax.set_title( titleStr,loc='left') #logger.info("{:s}".format(titleStr)) fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png #(fileName,ext)= os.path.splitext(SEGErgsFile) fileNameAlarm="{:s} {:s}.png".format(fileName.replace('.png','') ,txtNr.replace('Nr.: ','Nr ').replace(',','').replace('[','').replace(']','')) plt.savefig(fileNameAlarm) plt.show() ###plt.clf() plt.close() ###plt.close() pdf.close() except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlimsDct def plotDfAlarmStatistikReportsDruckErgs( h5File='a.h5' ,dfAlarmStatistik=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,DruckResDct={} ,timeStart=None,timeEnd=None ,DruckErgsFile='DruckErgs.pdf' ,stopAtSEGNr=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,byhour=[0,3,6,9,12,15,18,21] ,byminute=None ,bysecond=None ,timeFloorCeilStr=None #'1H' ,timeFloorCeilStrDetailPre='6T' # Runden (3 Minuten) ,timeFloorCeilStrDetailPost='3T' ,timeShiftPair=None ): """ Creates PDF for all SEGs with RuheZeitenAlAnz>0 1 Base Plot for a Druck with an Alarm and Detail Plots for the Alarms Creates corresponding Single-PNGs Returns xlimsDct: key: BaseID value: list of Timepairs of the Detail Plots for the Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lx=Lx.AppLog(h5File=h5File) firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal=lx.getTotalLogTime() logger.debug("{0:s}firstTime (ohne TimeShift): {1:s} lastTime (ohne TimeShift): {2:s}".format(logStr,str(firstTime),str(lastTime))) if timeStart==None: if timeFloorCeilStr != None: timeStart = firstTime.floor(freq=timeFloorCeilStr) # https://stackoverflow.com/questions/35339139/where-is-the-documentation-on-pandas-freq-tags else: timeStart = firstTime if timeEnd==None: if timeFloorCeilStr != None: timeEnd = lastTime.ceil(freq=timeFloorCeilStr) else: timeEnd = lastTime if timeShiftPair != None: (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) else: timeDelta=pd.Timedelta('0 Seconds') logger.debug("{0:s}timeStart abgerundet (ohne TimeShift): {1:s} timeEnd aufgerundet (ohne TimeShift): {2:s} TimeShift: {3:s}".format(logStr ,str(timeStart) ,str(timeEnd) ,str(timeDelta))) xlimsDct={} pdf=PdfPages(DruckErgsFile) (fileNameBase,ext)= os.path.splitext(DruckErgsFile) # über alle Segmente der Alarmstatistik (die DruckIDs sollen in der Reihenfolge der Alarmstatistik abgearbeitet werden) idxSEGPlotted=0 for idx,(index,row) in enumerate(dfAlarmStatistik.iterrows()): if row['RuheZeitenAlAnz']==0: # and row['RuheZeitenAlAnz']==0: logger.info("LfdNr {:2d} - {:s}: {:s}: RuheZeitenAlAnz: 0".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'])) continue # keine SEGs ohne Alarme drucken if stopAtSEGNr != None: if idxSEGPlotted>=stopAtSEGNr: break idxSEGPlotted=idxSEGPlotted+1 # DruckIDs eines Segmentes DruckIDs=sorted([ID for ID in dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGName']==row['SEGName']]['DruckResIDBase'].unique() if not pd.isnull(ID)]) for idxDruckID,DruckResIDBase in enumerate(DruckIDs): dct=DruckResDct[DruckResIDBase] if len(dct['Alarm'])==0: # nur DruckIDs mit Alarmen plotten continue fig=plt.figure(figsize=DINA4q,dpi=dpiSize) # Erg lesen ResIDBase=DruckResIDBase dfDruckReprVec=getLDSResVecDf(ResIDBase=ResIDBase,LDSResBaseType='Druck',lx=lx,timeStart=timeStart,timeEnd=timeEnd,timeShiftPair=timeShiftPair) logger.debug("{:s}ResIDBase: {:s} dfDruckReprVec: Spalten: {!s:s}".format(logStr,ResIDBase,dfDruckReprVec.columns.to_list())) logger.debug("{:s}ID: {:s}: timeStart (mit TimeShift): {:s} timeEnd (mit TimeShift): {:s}".format(logStr ,DruckResIDBase ,str(dfDruckReprVec.index[0]) ,str(dfDruckReprVec.index[-1]) )) ID='AL_S' if ID not in dfDruckReprVec.keys(): continue xlimsDct[ResIDBase]=[] ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=dfDruckReprVec # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStart+timeDelta,timeEnd+timeDelta) ,dateFormat=dateFormat ,byhour=byhour ,byminute=byminute ,bysecond=bysecond ) backgroundcolor='white' if row['RuheZeit']==0: backgroundcolor='lightgrey' else: # hat Ruhezeit if row['RuheZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['RuheZeitAl']/row['RuheZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: LfdNr {:2d}: RuheZeit: {:8.2f} RuheZeitenAlAnz: {:d}".format( row['SEGNodes'] ,int(row.Nr)+1 ,row['RuheZeit'] ,row['RuheZeitenAlAnz']) ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['RuheZeitSt']>0: backgroundcolor='white' if row['RuheZeitSt']/row['RuheZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: RuheZeitSt: {:8.2f})".format(row['RuheZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) RuheZeiten=DruckResDct[DruckResIDBase]['Zustaendig'] RuheZeit=fTotalTimeFromPairs(RuheZeiten,pd.Timedelta('1 minute'),False) AlarmZeiten=DruckResDct[DruckResIDBase]['Alarm'] AlarmZeit=fTotalTimeFromPairs(AlarmZeiten,pd.Timedelta('1 minute'),False) RuheZeitenSt=DruckResDct[DruckResIDBase]['Stoerung'] RuheZeitSt=fTotalTimeFromPairs(RuheZeitenSt,pd.Timedelta('1 minute'),False) txt="Druck: RuheZeit: {:8.2f} (davon St: {:8.2f}) RuheZeitenAlAnz: {:3d}".format( RuheZeit ,RuheZeitSt ,len(AlarmZeiten)) ax.text(.98, .15,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor='white', transform=ax.transAxes) titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,DruckResIDBase) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # png fileName="{:s} {:2d} - {:s} {:s} {:s}.png".format(fileNameBase ,int(row.Nr)+1 ,str(row.DIVPipelineName) ,row['SEGName'] ,fOrteStripped('Druck',[DruckResIDBase])[0] ) plt.savefig(fileName) plt.show() pdf.savefig(fig) plt.close() # Plot Alarme ########################################################### dct=DruckResDct[DruckResIDBase] timeFirstAlarmStarts,dummy=dct['Alarm'][0] dummy,timeLastAlarmEnds=dct['Alarm'][-1] for idxAl,AlNr in enumerate(row['RuheZeitenAlNrn']): timeAlarmStarts,timeAlarmEnds=dct['Alarm'][idxAl] timeStartDetail = timeAlarmStarts.floor(freq=timeFloorCeilStrDetailPre) timeEndDetail = timeAlarmEnds.ceil(freq=timeFloorCeilStrDetailPost) if timeAlarmStarts-timeStartDetail<pd.Timedelta('3 Minutes'): timeStartDetail=timeStartDetail-pd.Timedelta('3 Minutes') if timeEndDetail-timeAlarmEnds<pd.Timedelta('3 Minutes'): timeEndDetail=timeEndDetail+pd.Timedelta('3 Minutes') xlimsDct[ResIDBase].append((timeStartDetail,timeEndDetail)) fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=dfDruckReprVec # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStartDetail,timeEndDetail) # wenn die dct-Zeiten time-geshifted sind ist das korrekt ,dateFormat=dateFormat ,byhour=None#byhour ,byminute=list(np.arange(0,60))#byminute ,bysecond=None#bysecond ) backgroundcolor='white' if row['RuheZeit']==0: backgroundcolor='lightgrey' else: # hat Ruhezeit if row['RuheZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['RuheZeitAl']/row['RuheZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: LfdNr {:2d}: RuheZeit: {:8.2f} RuheZeitenAlAnz: {:d}".format( row['SEGNodes'] ,int(row.Nr)+1 ,row['RuheZeit'] ,row['RuheZeitenAlAnz']) ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['RuheZeitSt']>0: backgroundcolor='white' if row['RuheZeitSt']/row['RuheZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: RuheZeitSt: {:8.2f})".format(row['RuheZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) RuheZeiten=DruckResDct[DruckResIDBase]['Zustaendig'] RuheZeit=fTotalTimeFromPairs(RuheZeiten,pd.Timedelta('1 minute'),False) AlarmZeiten=DruckResDct[DruckResIDBase]['Alarm'] AlarmZeit=fTotalTimeFromPairs(AlarmZeiten,pd.Timedelta('1 minute'),False) RuheZeitenSt=DruckResDct[DruckResIDBase]['Stoerung'] RuheZeitSt=fTotalTimeFromPairs(RuheZeitenSt,pd.Timedelta('1 minute'),False) txt="Druck: RuheZeit: {:8.2f} (davon St: {:8.2f}) RuheZeitenAlAnz: {:3d} Nr. {:4d}".format( RuheZeit ,RuheZeitSt ,len(AlarmZeiten) ,AlNr) ax.text(.98, .15,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor='white', transform=ax.transAxes) titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,DruckResIDBase) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png fileNameAlarm="{:s} Nr {:d}.png".format(fileName.replace('.png',''),AlNr) plt.savefig(fileNameAlarm) plt.show() plt.close() #plt.close() pdf.close() except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlimsDct def plotTimespans( xlims # list of sections ,orientation='landscape' # oben HYD unten LDS; 'portrait': # links HYD rechts LDS ,pad=3.5 # tight_layout() can take keyword arguments of pad, w_pad and h_pad. These control the extra padding around the figure border and between subplots. The pads are specified in fraction of fontsize. ,w_pad=0.5 ,h_pad=0.5 # 'portrait' # links HYD rechts LDS ,rectSpalteLinks=[0, 0, 0.5, 1] ,rectSpalteRechts=[0.325, 0, 1, 1] # 'landscape': # oben HYD unten LDS ,rectZeileOben=[0, .5, 1, 1] ,rectZeileUnten=[0, 0, 1, .5] ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None #[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,figTitle='' #! ,figSave=False #! ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,sectionTitlesLDS=None # list of section titles to be used ,sectionTextsLDS=None # list of section texts to be used ,vLinesX=[] # plotted in each HYD section if X-time fits ,hLinesY=[] # plotted in each HYD section ,vAreasX=[] # for each HYD section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXLDS=None # plotted in each LDS section if X-time fits ,vAreasXLDS=None # for each LDS section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' ,vLinesXColorLDS=None ,vAreasXColorLDS=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,ySpanMin=0.9 ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSErgVec selbst ,plotLegend1stOnly=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # --- Args Fct. HYD ---: ,TCsLDSIn=pd.DataFrame() # es werden nur die aDct-definierten geplottet ,TCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorstehenden Dcts ist die ID (der Spaltenname) in den TCs ,TCsOPCScenTimeShift=pd.Timedelta('1 hour') ,TCsSIDEvents=pd.DataFrame() # es werden alle Schieberevents geplottet ,TCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,TCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,TCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={} ,pDct={} ,QDctOPC={} ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} ,plotRTTM=True # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #[0,50,100] #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,yGridSteps=yGridStepsD # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber # --- Args Fct. LDS ---: ,dfSegReprVec=pd.DataFrame() ,dfDruckReprVec=pd.DataFrame() ,ylimAL=ylimALD ,yticksAL=yticksALD ,ylimR=ylimRD #can be a list #None #(-10,10) #wenn undef., dann min/max dfSegReprVec ,ylimRxlim=False # can be a list #wenn Wahr und ylimR undef. (None), dann wird xlim beruecksichtigt bei min/max dfSegReprVec ,yticksR=yticksRD # can be a list of lists #[0,2,4,10,15,30,40] #wenn undef. (None), dann aus ylimR; matplotlib "vergrößert" mit dem Setzen von yTicks ein ebenfalls gesetztes ylim wenn die Ticks außerhalb des ylims liegen # <NAME>. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: fig=plt.gcf() if orientation=='landscape': # oben HYD unten LDS gsHYD = gridspec.GridSpec(1,len(xlims),figure=fig) axLstHYD=[fig.add_subplot(gsHYD[idx]) for idx in np.arange(gsHYD.ncols)] gsLDS = gridspec.GridSpec(1,len(xlims),figure=fig) axLstLDS=[fig.add_subplot(gsLDS[idx]) for idx in np.arange(gsLDS.ncols)] else: # links HYD rechts LDS gsHYD = gridspec.GridSpec(len(xlims),1,figure=fig) axLstHYD=[fig.add_subplot(gsHYD[idx]) for idx in np.arange(gsHYD.nrows)] gsLDS = gridspec.GridSpec(len(xlims),1,figure=fig) axLstLDS=[fig.add_subplot(gsLDS[idx]) for idx in np.arange(gsLDS.nrows)] pltLDSpQAndEventsResults=plotTimespansHYD( axLst=axLstHYD ,xlims=xlims ,figTitle=figTitle # '' ,figSave=figSave # False ,sectionTitles=sectionTitles ,sectionTexts=sectionTexts ,vLinesX=vLinesX ,hLinesY=hLinesY ,vAreasX=vAreasX ,vLinesXColor=vLinesXColor ,vAreasXColor=vAreasXColor ,plotLegend=plotLegend ,plotLegend1stOnly=plotLegend1stOnly # --- Args Fct. ---: ,dfTCsLDSIn=TCsLDSIn ,dfTCsOPC=TCsOPC ,dfTCsOPCScenTimeShift=TCsOPCScenTimeShift ,dfTCsSIDEvents=TCsSIDEvents ,dfTCsSIDEventsTimeShift=TCsSIDEventsTimeShift ,dfTCsSIDEventsInXlimOnly=TCsSIDEventsInXlimOnly ,QDct=QDct ,pDct=pDct ,QDctOPC=QDctOPC ,pDctOPC=pDctOPC ,attrsDct=attrsDct ,fctsDct=fctsDct ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,plotRTTM=plotRTTM ,ylimp=ylimp ,ylabelp=ylabelp ,yticksp=yticksp ,ylimQ=ylimQ ,yticksQ=yticksQ ,yGridSteps=yGridSteps ,ylim3rd=ylim3rd ,yticks3rd=yticks3rd ) if orientation=='landscape': # oben HYD unten LDS gsHYD.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectZeileOben) else: # links HYD rechts LDS gsHYD.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectSpalteLinks) if sectionTitlesLDS==None: sectionTitlesLDS=sectionTitles if sectionTextsLDS==None: sectionTextsLDS=sectionTexts if vLinesXLDS==None: vLinesXLDS=vLinesX if vAreasXLDS==None: vAreasXLDS=vAreasX if vLinesXColorLDS==None: vLinesXColorLDS=vLinesXColor if vAreasXColorLDS==None: vAreasXColorLDS=vAreasXColor pltLDSErgVecResults=plotTimespansLDS( axLst=axLstLDS ,xlims=xlims ,figTitle=figTitle # '' ,figSave=figSave # False ,sectionTitles=sectionTitlesLDS ,sectionTexts=sectionTextsLDS ,vLinesX=vLinesXLDS ,vAreasX=vAreasXLDS ,vLinesXColor=vLinesXColorLDS ,vAreasXColor=vAreasXColorLDS ,plotLegend=plotLegend ,plotLegend1stOnly=plotLegend1stOnly # --- Args Fct. ---: ,dfSegReprVec=dfSegReprVec ,dfDruckReprVec=dfDruckReprVec ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,ylimR=ylimR ,ylimRxlim=ylimRxlim ,yticksR=yticksR ,plotLPRate=plotLPRate ,plotR2FillSeg=plotR2FillSeg ,plotR2FillDruck=plotR2FillDruck ,plotAC=plotAC ,ylimAC=ylimAC ,ylimACxlim=ylimACxlim ,yticksAC=yticksAC ,plotTV=plotTV ,plotTVTimerFct=plotTVTimerFct ,plotTVAmFct=plotTVAmFct ,plotTVAmLabel=plotTVAmLabel ,ylimTV=ylimTV ,yticksTV=yticksTV ,plotDPDT=plotDPDT ,plotSB_S=plotSB_S ) # wenn weniger als 5 Achsen geplottet werden stimmt der erste Wert von rectSpalteRechts nicht #(axes,lines)=pltLDSErgVecResults[0] # # numOfYAxes=len(axes) #corFac=5-numOfYAxes #rectSpalteRechtsCor=rectSpalteRechts #[0.325, 0, 1, 1] #rectSpalteRechtsCor[0]=rectSpalteRechtsCor[0]+0.06*corFac if orientation=='landscape': # oben HYD unten LDS gsLDS.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectZeileUnten) else: # links HYD rechts LDS gsLDS.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectSpalteRechts) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return gsHYD,gsLDS,pltLDSpQAndEventsResults,pltLDSErgVecResults def plotTimespansHYD( axLst # list of axes to be used ,xlims # list of sections ,figTitle='' # the title of the plot; will be extended by min. and max. time calculated over all sections; will be also the pdf and png fileName ,figSave=False #True # creates pdf and png ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,vLinesX=[] # plotted in each section if X-time fits ,hLinesY=[] # plotted in each section ,vAreasX=[] # for each section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' # --- Args Fct. ---: ,dfTCsLDSIn=pd.DataFrame() # es werden nur die aDct-definierten geplottet ,dfTCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorstehenden Dcts ist die ID (der Spaltenname) in den TCs ,dfTCsOPCScenTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEvents=pd.DataFrame() # es werden alle Schieberevents geplottet ,dfTCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,dfTCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={ # Exanple 'Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value':{'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,'Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value':{'IDPlt':'Q Snk','RTTM':'IMDI.Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value'} } ,pDct={ # Example 'Objects.FBG_HPS_M.6_KED_39_PTI_01_E.In.MW.value':{'IDPlt':'p Src'} ,'Objects.FBG_HPS_M.6_TUD_39_PTI_01_E.In.MW.value':{'IDPlt':'p Snk'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_01_E.In.MW.value':{'IDPlt':'p ISrc 1'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_02_E.In.MW.value':{'IDPlt':'p ISnk 2'} } ,QDctOPC={ # Exanple 'Objects.FBG_MESSW.6_EL1_39_FT_01.In.MW.value':{'IDPlt':'Q xSrc 1'} } ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} # a Dct with Fcts ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None#[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,plotRTTM=True # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #[0,50,100] #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,yGridSteps=yGridStepsD ,ySpanMin=0.9 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSpQAndEvents selbst ,plotLegend1stOnly=True # diese Funktion plottet wenn plotLegend=True die Legende nur im ersten Plot ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) # plots pltLDSpQAndEvents-Sections # returns a Lst of pltLDSpQAndEvents-Results, a Lst of (axes,lines,scatters) try: if sectionTitles==[] or sectionTitles==None: sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if not isinstance(sectionTitles, list): logger.warning("{0:s}sectionTitles muss eine Liste von strings sein.".format(logStr)) sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if len(sectionTitles)!=len(xlims): logger.debug("{0:s}sectionTitles muss dieselbe Laenge haben wie xlims.".format(logStr)) if len(sectionTitles) == 1: sectionTitles=len(xlims)*[sectionTitles[0]] else: sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if sectionTexts==[] or sectionTexts==None: sectionTexts=len(xlims)*[''] if not isinstance(sectionTexts, list): logger.warning("{0:s}sectionTexts muss eine Liste von strings sein.".format(logStr)) sectionTexts=len(xlims)*[''] if len(sectionTexts)!=len(xlims): logger.warning("{0:s}sectionTexts muss dieselbe Laenge haben wie xlims.".format(logStr)) sectionTexts=len(xlims)*[''] if plotLegend: plotLegendFct=False else: plotLegendFct=True pltLDSpQAndEventsResults=[] for idx,xlim in enumerate(xlims): ax = axLst[idx] if isinstance(dateFormat, list): dateFormatIdx=dateFormat[idx] else: dateFormatIdx=dateFormat bysecondIdx=bysecond if isinstance(bysecond, list): if any(isinstance(el, list) for el in bysecond): bysecondIdx=bysecond[idx] byminuteIdx=byminute if isinstance(byminute, list): if any(isinstance(el, list) for el in byminute): byminuteIdx=byminute[idx] byhourIdx=byhour if isinstance(byhour, list): if any(isinstance(el, list) for el in byhour): byhourIdx=byhour[idx] (axes,lines,scatters)=pltLDSpQAndEvents( ax ,dfTCsLDSIn=dfTCsLDSIn ,dfTCsOPC=dfTCsOPC ,dfTCsOPCScenTimeShift=dfTCsOPCScenTimeShift ,dfTCsSIDEvents=dfTCsSIDEvents ,dfTCsSIDEventsTimeShift=dfTCsSIDEventsTimeShift ,dfTCsSIDEventsInXlimOnly=dfTCsSIDEventsInXlimOnly ,dfTCsSIDEventsyOffset=dfTCsSIDEventsyOffset ,QDct=QDct ,pDct=pDct ,QDctOPC=QDctOPC ,pDctOPC=pDctOPC ,attrsDct=attrsDct ,fctsDct=fctsDct ,xlim=xlim ,dateFormat=dateFormatIdx ,bysecond=bysecondIdx ,byminute=byminuteIdx ,byhour=byhourIdx ,plotRTTM=plotRTTM ,ylimp=ylimp ,ylabelp=ylabelp ,yticksp=yticksp ,ylimQ=ylimQ ,yticksQ=yticksQ # 3. Achse ,ylim3rd=ylim3rd ,yticks3rd=yticks3rd ,yGridSteps=yGridSteps ,plotLegend=plotLegendFct ,baseColorsDef=baseColorsDef ) pltLDSpQAndEventsResults.append((axes,lines,scatters)) sectionText=sectionTexts[idx] ax.text( 0.5, 0.5, sectionText, ha='center', va='top', transform=ax.transAxes ) (timeStart,timeEnd)=xlim sectionTitleSingle="{:s}: Plot Nr. {:d} - Zeitspanne: {:s}".format(sectionTitles[idx],idx+1,str(timeEnd-timeStart)).replace('days','Tage') ax.set_title(sectionTitleSingle) for vLineX in vLinesX: if vLineX >= timeStart and vLineX <= timeEnd: ax.axvline(x=vLineX,ymin=0, ymax=1, color=vLinesXColor,ls=linestyle_tuple[11][1]) for hLineY in hLinesY: ax.axhline(y=hLineY,xmin=0, xmax=1,color='gray',ls=linestyle_tuple[11][1]) if len(vAreasX) == len(xlims): vAreasXSection=vAreasX[idx] if vAreasXSection==[] or vAreasXSection==None: pass else: for vArea in vAreasXSection: ax.axvspan(vArea[0], vArea[1], alpha=0.6, color=vAreasXColor) else: if len(vAreasX)>0: logger.warning("{0:s}vAreasX muss dieselbe Laenge haben wie xlims.".format(logStr)) # Legend if plotLegend: legendHorizontalPos='center' if len(xlims)>1: if idx in [0,2,4]: # Anfahren ... legendHorizontalPos='right' elif idx in [1,3,5]: # Abfahren ... legendHorizontalPos='left' if plotLegend1stOnly: legendHorizontalPos='center' # wenn nur 1x Legende dann Mitte if plotLegend1stOnly and idx>0: pass else: patterBCp='^p S[rc|nk]' patterBCQ='^Q S[rc|nk]' patterBCpQ='^[p|Q] S[rc|nk]' linesp=[line for line in lines if re.search(patterBCp,line) != None] linesQ=[line for line in lines if re.search(patterBCQ,line) != None] linespTxt=tuple([lines[line] for line in linesp]) linesQTxt=tuple([lines[line] for line in linesQ]) moreLines=[line for line in lines if re.search(patterBCpQ,line) == None] moreLinesp=[line for line in moreLines if re.search('^p',line) != None] moreLinesQ=[line for line in moreLines if re.search('^Q',line) != None] moreLinespTxt=tuple([lines[line] for line in moreLinesp]) moreLinesQTxt=tuple([lines[line] for line in moreLinesQ]) axes['p'].add_artist(axes['p'].legend( linespTxt+moreLinespTxt ,linesp+moreLinesp ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) axes['Q'].add_artist(axes['Q'].legend( linesQTxt+moreLinesQTxt ,linesQ+moreLinesQ ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if 'SID' in axes.keys() and len(scatters)>0: if legendHorizontalPos == 'center': legendHorizontalPosAct='' else: legendHorizontalPosAct=' '+legendHorizontalPos axes['SID'].legend(loc='center'+legendHorizontalPosAct ,framealpha=legendFramealpha ,facecolor=legendFacecolor) # Titel tMin=xlims[0][0] tMax=xlims[-1][1] for tPair in xlims: (t1,t2)=tPair if t1 < tMin: tMin=t1 if t2>tMax: tMax=t2 if figTitle not in ['',None]: figTitle="{:s} - {:s} - {:s}".format(figTitle,str(tMin),str(tMax)).replace(':',' ') fig=plt.gcf() fig.suptitle(figTitle) # speichern?! if figSave: fig.tight_layout(pad=2.) # gs.tight_layout(fig,pad=2.) plt.savefig(figTitle+'.png') plt.savefig(figTitle+'.pdf') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return pltLDSpQAndEventsResults def plotTimespansLDS( axLst # list of axes to be used ,xlims # list of sections ,figTitle='' # the title of the plot; will be extended by min. and max. time calculated over all sections; will be also the pdf and png fileName ,figSave=False #True # creates pdf and png ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,vLinesX=[] # plotted in each section if X-time fits ,vAreasX=[] # for each section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' # --- Args Fct. ---: ,dfSegReprVec=pd.DataFrame() ,dfDruckReprVec=pd.DataFrame() #,xlim=None ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None #[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,ylimAL=ylimALD ,yticksAL=yticksALD ,yTwinedAxesPosDeltaHPStart=-0.0125 ,yTwinedAxesPosDeltaHP=-0.0875 ,ylimR=ylimRD # can be a list ,ylimRxlim=False # can be a list ,yticksR=yticksRD # can be a list # dito Beschl. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,ySpanMin=0.9 ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSErgVec selbst ,plotLegend1stOnly=True # diese Funktion plottet wenn plotLegend=True die Legende nur im ersten Plot ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): # plots pltLDSErgVec-Sections # returns a Lst of pltLDSErgVec-Results, a Lst of (axes,lines) logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if sectionTitles==[] or sectionTitles ==None: sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if not isinstance(sectionTitles, list): logger.warning("{0:s}sectionTitles muss eine Liste von strings sein.".format(logStr)) sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if len(sectionTitles)!=len(xlims): logger.debug("{0:s}sectionTitles muss dieselbe Laenge haben wie xlims.".format(logStr)) if len(sectionTitles) == 1: sectionTitles=len(xlims)*[sectionTitles[0]] else: sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if sectionTexts==[] or sectionTexts==None: sectionTexts=len(xlims)*[''] if not isinstance(sectionTexts, list): logger.warning("{0:s}sectionTexts muss eine Liste von strings sein.".format(logStr)) sectionTexts=len(xlims)*[''] if len(sectionTexts)!=len(xlims): logger.warning("{0:s}sectionTexts muss dieselbe Laenge haben wie xlims.".format(logStr)) sectionTexts=len(xlims)*[''] if plotLegend: plotLegendFct=False else: plotLegendFct=True pltLDSErgVecResults=[] for idx,xlim in enumerate(xlims): ax = axLst[idx] if isinstance(dateFormat, list): dateFormatIdx=dateFormat[idx] else: dateFormatIdx=dateFormat bysecondIdx=bysecond if isinstance(bysecond, list): if any(isinstance(el, list) for el in bysecond): bysecondIdx=bysecond[idx] byminuteIdx=byminute if isinstance(byminute, list): if any(isinstance(el, list) for el in byminute): byminuteIdx=byminute[idx] byhourIdx=byhour if isinstance(byhour, list): if any(isinstance(el, list) for el in byhour): byhourIdx=byhour[idx] ylimRIdx=ylimR if isinstance(ylimR, list): ylimRIdx=ylimR[idx] ylimRxlimIdx=ylimRxlim if isinstance(ylimRxlim, list): ylimRxlimIdx=ylimRxlim[idx] yticksRIdx=yticksR if isinstance(yticksR, list): if any(isinstance(el, list) for el in yticksR): yticksRIdx=yticksR[idx] (axes,lines)=pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec ,dfDruckReprVec=dfDruckReprVec ,xlim=xlims[idx] ,dateFormat=dateFormatIdx ,bysecond=bysecondIdx ,byminute=byminuteIdx ,byhour=byhourIdx ,ylimAL=ylimAL ,yticksAL=yticksAL ,yTwinedAxesPosDeltaHPStart=yTwinedAxesPosDeltaHPStart ,yTwinedAxesPosDeltaHP=yTwinedAxesPosDeltaHP ,ylimR=ylimRIdx ,ylimRxlim=ylimRxlimIdx ,yticksR=yticksRIdx ,ylimAC=ylimAC ,ylimACxlim=ylimACxlim ,yticksAC=yticksAC ,ySpanMin=ySpanMin ,plotLegend=plotLegendFct ,legendLoc=legendLoc ,legendFramealpha=legendFramealpha ,legendFacecolor=legendFacecolor ,attrsDctLDS=attrsDctLDS ,plotLPRate=plotLPRate ,plotR2FillSeg=plotR2FillSeg ,plotR2FillDruck=plotR2FillDruck ,plotAC=plotAC ,plotACCLimits=plotACCLimits ,highlightAreas=highlightAreas ,Seg_Highlight_Color=Seg_Highlight_Color ,Seg_Highlight_Alpha=Seg_Highlight_Alpha ,Seg_Highlight_Fct=Seg_Highlight_Fct ,Seg_HighlightError_Color=Seg_HighlightError_Color ,Seg_Highlight_Alpha_Error=Seg_Highlight_Alpha_Error # ,Seg_HighlightError_Fct=Seg_HighlightError_Fct ,Druck_Highlight_Color=Druck_Highlight_Color ,Druck_Highlight_Alpha=Druck_Highlight_Alpha ,Druck_Highlight_Fct=Druck_Highlight_Fct ,Druck_HighlightError_Color=Druck_HighlightError_Color ,Druck_Highlight_Alpha_Error=Druck_Highlight_Alpha_Error # ,Druck_HighlightError_Fct=Druck_HighlightError_Fct ,plotTV=plotTV ,plotTVTimerFct=plotTVTimerFct ,plotTVAmFct=plotTVAmFct ,plotTVAmLabel=plotTVAmLabel ,ylimTV=ylimTV ,yticksTV=yticksTV ,plotDPDT=plotDPDT ,plotSB_S=plotSB_S ) pltLDSErgVecResults.append((axes,lines)) sectionText=sectionTexts[idx] ax.text( 0.5, 0.5, sectionText, ha='center', va='top', transform=ax.transAxes ) (timeStart,timeEnd)=xlim sectionTitleSingle="{:s}: Plot Nr. {:d} - Zeitspanne: {:s}".format(sectionTitles[idx],idx+1,str(timeEnd-timeStart)).replace('days','Tage') ax.set_title(sectionTitleSingle) for vLineX in vLinesX: if vLineX >= timeStart and vLineX <= timeEnd: ax.axvline(x=vLineX,ymin=0, ymax=1, color=vLinesXColor,ls=linestyle_tuple[11][1]) if len(vAreasX) == len(xlims): vAreasXSection=vAreasX[idx] if vAreasXSection==[] or vAreasXSection==None: pass else: for vArea in vAreasXSection: ax.axvspan(vArea[0], vArea[1], alpha=0.6, color=vAreasXColor) else: if len(vAreasX)>0: logger.warning("{0:s}vAreasX muss dieselbe Laenge haben wie xlims.".format(logStr)) # Legend if plotLegend: legendHorizontalPos='center' if len(xlims)>1: if idx in [0,2,4]: # Anfahren ... legendHorizontalPos='right' elif idx in [1,3,5]: # Abfahren ... legendHorizontalPos='left' if plotLegend1stOnly and idx>0: pass else: if not dfSegReprVec.empty: patternSeg='Seg$' axes['A'].add_artist(axes['A'].legend( tuple([lines[line] for line in lines if re.search(patternSeg,line) != None]) ,tuple([line for line in lines if re.search(patternSeg,line) != None]) ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if not dfDruckReprVec.empty: patternDruck='Drk$' axes['A'].add_artist(axes['A'].legend( tuple([lines[line] for line in lines if re.search(patternDruck,line) != None]) ,tuple([line for line in lines if re.search(patternDruck,line) != None]) ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) # Titel tMin=xlims[0][0] tMax=xlims[-1][1] for tPair in xlims: (t1,t2)=tPair if t1 < tMin: tMin=t1 if t2>tMax: tMax=t2 if figTitle not in ['',None]: figTitle="{:s} - {:s} - {:s}".format(figTitle,str(tMin),str(tMax)).replace(':',' ') fig=plt.gcf() fig.suptitle(figTitle) # speichern?! if figSave: fig.tight_layout(pad=2.) # gs.tight_layout(fig,pad=2.) plt.savefig(figTitle+'.png') plt.savefig(figTitle+'.pdf') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return pltLDSErgVecResults def pltLDSpQAndEvents( ax ,dfTCsLDSIn # es werden nur die aDct-definierten geplottet ,dfTCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorgenannten Dcts ist die ID (der Spaltenname) in den TCs ,dfTCsOPCScenTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEvents=pd.DataFrame() ,dfTCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,dfTCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={ # Exanple 'Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value':{'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,'Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value':{'IDPlt':'Q Snk','RTTM':'IMDI.Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value'} } ,pDct={# Example 'Objects.FBG_HPS_M.6_KED_39_PTI_01_E.In.MW.value':{'IDPlt':'p Src'} ,'Objects.FBG_HPS_M.6_TUD_39_PTI_01_E.In.MW.value':{'IDPlt':'p Snk'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_01_E.In.MW.value':{'IDPlt':'p ISrc 1'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_02_E.In.MW.value':{'IDPlt':'p ISnk 2'} } ,QDctOPC={ # Exanple 'Objects.FBG_MESSW.6_EL1_39_FT_01.In.MW.value':{'IDPlt':'Q xSnk 1'} } ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} # a Dct with Fcts ,xlim=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,bysecond=None #[0,15,30,45] ,byminute=None ,byhour=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,plotRTTM=True # plot RTTM-Echoes # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None #wenn undef., dann aus ylimQ ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,ylabel3rd='Schieber (ZUSTände 0,1,2 jew. + x; Befehle)' ,yGridSteps=30 # 0: das y-Gitter besteht dann bei ylimp=ylimQ=yticksp=yticksQ None nur aus min/max (also 1 Gitterabschnitt) ,ySpanMin=0.9 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber ): """ zeichnet pq-Zeitkurven - ggf. ergaenzt durch Events Returns: * axes (Dct of axes) * lines (Dct of lines) * scatters (List of ax.scatter-Results) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) axes={} lines={} scatters=[] try: axes['p']=ax # x-Achse ---------------- if xlim == None: xlimMin=dfTCsLDSIn.index[0] xlimMax=dfTCsLDSIn.index[-1] xlim=(xlimMin,xlimMax) (xlimMin,xlimMax)=xlim ax.set_xlim(xlim) logger.debug("{0:s}dfTCsOPCScenTimeShift: {1:s}".format(logStr,str(dfTCsOPCScenTimeShift))) logger.debug("{0:s}bysecond: {1:s}".format(logStr,str(bysecond))) logger.debug("{0:s}byminute: {1:s}".format(logStr,str(byminute))) logger.debug("{0:s}byhour: {1:s}".format(logStr,str(byhour))) pltHelperX( ax ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart ) # Eindeutigkeit der IDPlts pruefen keys=[] keysUneindeutig=[] for dct in [QDct,pDct,QDctOPC,pDctOPC]: for key, value in dct.items(): if IDPltKey in value.keys(): IDPltValue=value[IDPltKey] if IDPltValue in keys: print("IDPlt {:s} bereits vergeben".format(IDPltValue)) keysUneindeutig.append(IDPltValue) else: keys.append(IDPltValue) # 1. Achse p ----------------------- logger.debug("{0:s}{1:s}".format(logStr,'# 1. Achse p')) for key, value in pDct.items(): # nur die konfigurierten IDs plotten if key in dfTCsLDSIn.columns: # nur dann, wenn ID als Spalte enthalten label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsLDSIn ,ID=key # Spaltenname ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct # a Dct with - i.e. {'Q Src':{'color':'red'},...} ,IDPltKey=IDPltKey # Schluesselbezeichner in value ,IDPltValuePostfix=None ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('1 hour') # pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) if 'RTTM' in value.keys(): if value['RTTM'] in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsLDSIn ,ID=value['RTTM'] ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=' RTTM' ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('0 hour') #pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,value['RTTM'])) if not dfTCsOPC.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 1. Achse p OPC')) for key, value in pDctOPC.items(): if key in dfTCsOPC.columns: label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsOPC ,ID=key ,xDctValue=value ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct ,timeShift=dfTCsOPCScenTimeShift ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) ylimp,yticksp=pltLDSpQHelperYLimAndTicks( dfTCsLDSIn ,pDct.keys() ,ylim=ylimp ,yticks=yticksp ,ylimxlim=ylimpxlim ,xlim=xlim ,ySpanMin=ySpanMin ,yGridSteps=yGridSteps ) ax.set_ylim(ylimp) ax.set_yticks(yticksp) ax.grid() ax.set_zorder(10) ax.patch.set_visible(False) ax.set_ylabel(ylabelp) # 2. y-Achse Q ---------------------------------------- logger.debug("{0:s}{1:s}".format(logStr,'# 2. Achse Q')) ax2 = ax.twinx() axes['Q']=ax2 pltHelperX( ax2 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+yTwinedAxesPosDeltaHP ) for key, value in QDct.items(): if key in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsLDSIn ,ID=key ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct # ,timeShift=pd.Timedelta('0 hour') # pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) if 'RTTM' in value.keys() and plotRTTM: if value['RTTM'] in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsLDSIn ,ID=value['RTTM'] ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=' RTTM' ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('0 hour') #pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,value['RTTM'])) if not dfTCsOPC.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 2. Achse Q OPC')) for key, value in QDctOPC.items(): if key in dfTCsOPC.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsOPC ,ID=key ,xDctValue=value ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct ,timeShift=dfTCsOPCScenTimeShift ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) pltLDSHelperY(ax2) ylimQ,yticksQ=pltLDSpQHelperYLimAndTicks( dfTCsLDSIn ,QDct.keys() ,ylim=ylimQ ,yticks=yticksQ ,ylimxlim=ylimQxlim ,xlim=xlim ,ySpanMin=ySpanMin ,yGridSteps=yGridSteps ) ax2.set_ylim(ylimQ) ax2.set_yticks(yticksQ) ax2.grid() ax2.set_ylabel(ylabelQ) # ggf. 3. Achse if not dfTCsSIDEvents.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 3. Achse SID')) ax3 = ax.twinx() axes['SID']=ax3 pltHelperX( ax3 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP ) if dfTCsSIDEventsInXlimOnly: # auf xlim beschränken dfTCsSIDEventsPlot=dfTCsSIDEvents[ (dfTCsSIDEvents.index-dfTCsSIDEventsTimeShift>=xlim[0]) &#: (dfTCsSIDEvents.index-dfTCsSIDEventsTimeShift<=xlim[1]) ] # weiter beschränken auf die, die in xlim mind. 1 Eintrag haben dfTCsSIDEventsPlot=dfTCsSIDEventsPlot.dropna(axis=1,how='all') else: dfTCsSIDEventsPlot=dfTCsSIDEvents # doppelte bzw. mehrfache Spaltennamen eliminieren (das waere ein Aufruf-Fehler) dfTCsSIDEventsPlot = dfTCsSIDEventsPlot.loc[:,~dfTCsSIDEventsPlot.columns.duplicated()] logger.debug("{:s}dfTCsSIDEventsPlot.dropna(how='all'): {:s}".format(logStr,dfTCsSIDEventsPlot.dropna(how='all').to_string())) if not dfTCsSIDEventsPlot.dropna(how='all').empty: # mind. 1 Ereignis in irgendeiner Spalte muss ueberbleiben # aus Performanzgruenden wird nur zum Plot gegeben, was in xlim auch zu sehen sein wird dfTCsSIDEventsPlot2=dfTCsSIDEventsPlot[ ( dfTCsSIDEventsPlot.index-dfTCsSIDEventsTimeShift>=xlim[0]) &#: ( dfTCsSIDEventsPlot.index-dfTCsSIDEventsTimeShift<=xlim[1]) ] labelsOneCall,scattersOneCall=pltLDSSIDHelper( ax3 ,dfTCsSIDEventsPlot2 ,dfTCsSIDEventsTimeShift ,dfTCsSIDEventsyOffset ,pSIDEvents ,valRegExMiddleCmds ,eventCCmds ,eventCStats ,markerDef ,baseColorsDef ) scatters=scatters+scattersOneCall pltLDSHelperY(ax3) ax3.set_ylim(ylim3rd) ax3.set_yticks(yticks3rd) ax3.set_ylabel(ylabel3rd) if plotLegend: legendHorizontalPos='center' patterBCp='^p S[rc|nk]' patterBCQ='^Q S[rc|nk]' patterBCpQ='^[p|Q] S[rc|nk]' linesp=[line for line in lines if re.search(patterBCp,line) != None] linesQ=[line for line in lines if re.search(patterBCQ,line) != None] linespTxt=tuple([lines[line] for line in linesp]) linesQTxt=tuple([lines[line] for line in linesQ]) moreLines=[line for line in lines if re.search(patterBCpQ,line) == None] moreLinesp=[line for line in moreLines if re.search('^p',line) != None] moreLinesQ=[line for line in moreLines if re.search('^Q',line) != None] moreLinespTxt=tuple([lines[line] for line in moreLinesp]) moreLinesQTxt=tuple([lines[line] for line in moreLinesQ]) axes['p'].add_artist(axes['p'].legend( linespTxt+moreLinespTxt ,linesp+moreLinesp ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) axes['Q'].add_artist(axes['Q'].legend( linesQTxt+moreLinesQTxt ,linesQ+moreLinesQ ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if 'SID' in axes.keys() and len(scatters)>0: if legendHorizontalPos == 'center': legendHorizontalPosAct='' else: legendHorizontalPosAct=' '+legendHorizontalPos axes['SID'].legend(loc='center'+legendHorizontalPosAct ,framealpha=legendFramealpha ,facecolor=legendFacecolor) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return axes,lines,scatters def pltLDSErgVec( ax=None # Axes auf die geplottet werden soll (und aus der neue axes ge-twinx-ed werden; plt.gcf().gca() wenn undef. ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=None # tuple (xmin,xmax); wenn undef. gelten min/max aus vorgenannten Daten als xlim; wenn Seg angegeben, gilt Seg ,dateFormat='%y.%m.%d: %H:%M:%S' ,bysecond=None #[0,15,30,45] ,byminute=None ,byhour=None ,ylimAL=ylimALD ,yticksAL=yticksALD #[0,10,20,30,40] ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,ylimR=ylimRD #None #(-10,10) #wenn undef., dann min/max dfSegReprVec ,ylimRxlim=False #wenn Wahr und ylimR undef. (None), dann wird xlim beruecksichtigt bei min/max dfSegReprVec ,yticksR=yticksRD #[0,2,4,10,15,30,40] #wenn undef. (None), dann aus ylimR; matplotlib "vergrößert" mit dem Setzen von yTicks ein ebenfalls gesetztes ylim wenn die Ticks außerhalb des ylims liegen # <NAME>. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,ySpanMin=0.9 # wenn ylim R/AC undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): """ zeichnet Zeitkurven von App LDS Ergebnisvektoren auf ax return: axes (Dct der Achsen), yLines (Dct der Linien) Dct der Achsen: 'A': Alarm etc.; 'R': m3/h; 'a': ACC; 'TV': Timer und Leckvolumen #! Lücken (nicht plotten) wenn keine Zeiten """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) axes={} yLines={} try: if dfSegReprVec.empty and dfDruckReprVec.empty: logger.error("{0:s}{1:s}".format(logStr,'dfSegReprVec UND dfDruckReprVec leer?! Return.')) return if not dfSegReprVec.empty: # keine komplett leeren Zeilen dfSegReprVec=dfSegReprVec[~dfSegReprVec.isnull().all(1)] # keine doppelten Indices dfSegReprVec=dfSegReprVec[~dfSegReprVec.index.duplicated(keep='last')] # dfSegReprVec.groupby(dfSegReprVec.index).last() # df[~df.index.duplicated(keep='last')] if not dfDruckReprVec.empty: # keine komplett leeren Zeilen dfDruckReprVec=dfDruckReprVec[~dfDruckReprVec.isnull().all(1)] # keine doppelten Indices dfDruckReprVec=dfDruckReprVec[~dfDruckReprVec.index.duplicated(keep='last')] # dfDruckReprVec.groupby(dfDruckReprVec.index).last() # df[~df.index.duplicated(keep='last')] if ax==None: ax=plt.gcf().gca() axes['A']=ax # x-Achse ---------------- if xlim == None: if not dfSegReprVec.empty: xlimMin=dfSegReprVec.index[0] xlimMax=dfSegReprVec.index[-1] elif not dfDruckReprVec.empty: xlimMin=dfDruckReprVec.index[0] xlimMax=dfDruckReprVec.index[-1] xlim=(xlimMin,xlimMax) (xlimMin,xlimMax)=xlim ax.set_xlim(xlim) logger.debug("{0:s}bysecond: {1:s}".format(logStr,str(bysecond))) logger.debug("{0:s}byminute: {1:s}".format(logStr,str(byminute))) logger.debug("{0:s}byhour: {1:s}".format(logStr,str(byhour))) logger.debug("{0:s}dateFormat: {1:s}".format(logStr,dateFormat)) pltHelperX( ax ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart ) # 1. Achse Alarm ----------------------- if not dfSegReprVec.empty and highlightAreas: tPairs=findAllTimeIntervalls(dfSegReprVec,Seg_Highlight_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Seg_Highlight_Alpha, color=Seg_Highlight_Color) tPairs=findAllTimeIntervalls(dfSegReprVec,Seg_HighlightError_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Seg_Highlight_Alpha_Error, color=Seg_HighlightError_Color) if not dfDruckReprVec.empty and highlightAreas: tPairs=findAllTimeIntervalls(dfDruckReprVec,Druck_Highlight_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Druck_Highlight_Alpha, color=Druck_Highlight_Color) tPairs=findAllTimeIntervalls(dfDruckReprVec,Druck_HighlightError_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Druck_Highlight_Alpha_Error, color=Druck_HighlightError_Color) if not dfSegReprVec.empty: lines = pltLDSErgVecHelper(ax,dfSegReprVec,'AL_S',attrsDctLDS['Seg_AL_S_Attrs']) yLines['AL_S Seg']=lines[0] if not dfDruckReprVec.empty: lines = pltLDSErgVecHelper(ax,dfDruckReprVec,'AL_S',attrsDctLDS['Druck_AL_S_Attrs']) yLines['AL_S Drk']=lines[0] if not dfSegReprVec.empty and plotSB_S: lines = pltLDSErgVecHelper(ax,dfSegReprVec,'SB_S',attrsDctLDS['Seg_SB_S_Attrs'],fct=lambda x: x*10) yLines['SB_S Seg']=lines[0] if not dfDruckReprVec.empty and plotSB_S: lines = pltLDSErgVecHelper(ax,dfDruckReprVec,'SB_S',attrsDctLDS['Druck_SB_S_Attrs'],fct=lambda x: x*10) yLines['SB_S Drk']=lines[0] ax.set_ylim(ylimAL) ax.set_yticks(yticksAL) ax.grid() ax.set_zorder(10) ax.patch.set_visible(False) ax.set_ylabel('A [0/10/20] u. 10x B [0/1/2/3/4]') # 2. y-<NAME> ---------------------------------------- ax2 = ax.twinx() axes['R']=ax2 pltHelperX( ax2 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+yTwinedAxesPosDeltaHP ) pltLDSHelperY(ax2) if not dfSegReprVec.empty: lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'MZ_AV',attrsDctLDS['Seg_MZ_AV_Attrs']) yLines['MZ_AV (R1) Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'LR_AV',attrsDctLDS['Seg_LR_AV_Attrs']) yLines['LR_AV (R2) Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'NG_AV',attrsDctLDS['Seg_NG_AV_Attrs']) yLines['NG_AV Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'QM_AV',attrsDctLDS['Seg_QM16_AV_Attrs'],fct=lambda x: x*1.6/100.) yLines['QM16_AV Seg']=lines[0] if plotLPRate: # R2 = R1 - LP # R2 - R1 = -LP # LP = R1 - R2 lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'LP_AV',attrsDctLDS['Seg_LP_AV_Attrs']) yLines['LP_AV Seg']=lines[0] if plotR2FillSeg: df=dfSegReprVec df=df.reindex(pd.date_range(start=df.index[0], end=df.index[-1], freq='1s')) df=df.fillna(method='ffill').fillna(method='bfill') # R2 unter 0 dummy=ax2.fill_between(df.index, df['LR_AV'],0 ,where=df['LR_AV']<0,color='grey',alpha=.2) # zwischen R2 und 0 dummy=ax2.fill_between(df.index, 0, df['LR_AV'] ,where=df['LR_AV']>0 #,color='yellow',alpha=.1 ,color='red',alpha=.1 ) # R2 über 0 aber unter NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=(df['LR_AV']>0) & (df['LR_AV']<df['NG_AV']) #,color='red',alpha=.1 ,color='yellow',alpha=.1 ) # R2 über NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=df['LR_AV']>df['NG_AV'] ,color='red',alpha=.2) if not dfDruckReprVec.empty: lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'MZ_AV',attrsDctLDS['Druck_MZ_AV_Attrs']) yLines['MZ_AV (R1) Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'LR_AV',attrsDctLDS['Druck_LR_AV_Attrs']) yLines['LR_AV (R2) Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'NG_AV',attrsDctLDS['Druck_NG_AV_Attrs']) yLines['NG_AV Drk']=lines[0] if plotLPRate: lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'LP_AV',attrsDctLDS['Druck_LP_AV_Attrs']) yLines['LP_AV Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'QM_AV',attrsDctLDS['Druck_QM16_AV_Attrs'],fct=lambda x: x*1.6/100.) yLines['QM16_AV Drk']=lines[0] if plotR2FillDruck: df=dfDruckReprVec df=df.reindex(
pd.date_range(start=df.index[0], end=df.index[-1], freq='1s')
pandas.date_range
from collections import Counter from datetime import datetime import re from typing import Iterator, List, Optional, Tuple, Union from dateutil.relativedelta import relativedelta import pandas as pd from .utils import get_config INCREMENT_TO_DAY_MAP = { "month": 30.5, "day": 7, } def now() -> str: """String ISO Timestamp of current date""" return datetime.now().strftime("%Y-%m-%d") class BudgetPeriod: """A helper class for dealing with dates and stuff for budgeting periods""" def __init__(self, period: str = "month", relative_to: str = f"{now()[:4]}-01-01"): """ Parameters ---------- period The string representation of this period. Can take the form: [n_](week|month), or all_time relative_to The datetime (as a string) to start counting from when determining periods. Defaults to the beginning of the current year """ if relative_to > now(): raise ValueError("relative_to must not be in the future") self.period = period self.relative_to = relative_to if self.period in ["month", "week", "quarter"]: self.increment = self.period self.unit = 1 elif re.search(r"\d_.*", self.period): self.increment = self.period[2:] self.unit = int(self.period[0]) else: raise ValueError(f"Unrecognized Period Format {self.period}") if self.increment == "quarter": self.increment = "month" self.unit *= 3 def latest(self) -> str: """The last occurrence of this period (i.e. May 1st if period = month and today is May 15th)""" for start_date, _ in self.bounds_iter(): pass return start_date def next(self) -> str: """The next occurrence of this period (i.e. June 1st if period = month and today is May 15th)""" for _, end_date in self.bounds_iter(): pass return end_date def perc_complete(self) -> float: """The proportion of time through the current period""" latest_date = datetime.strptime(self.latest(), "%Y-%m-%d") next_date = datetime.strptime(self.next(), "%Y-%m-%d") return (datetime.now() - latest_date).days * 1.0 / (next_date - latest_date).days def bounds_iter(self) -> Iterator[Tuple[str, str]]: """An iterator that yields start & end date tuples since self.relative_to""" start_date = datetime.strptime(self.relative_to, "%Y-%m-%d") now_date = datetime.strptime(now(), "%Y-%m-%d") assert start_date < now_date while start_date < now_date: end_date = start_date + relativedelta(**{ # Should only be "month" or "week" at this point f"{self.increment}s": self.unit }) yield start_date.strftime("%Y-%m-%d"), end_date.strftime("%Y-%m-%d") start_date = end_date def translation_multiplier(self, other_period: "BudgetPeriod") -> float: """Get a multiplier to indicate how to transform this period to reflect the length of another""" # Simple case if other_period.increment == self.increment: return other_period.unit * 1.0 / self.unit return ( ( other_period.unit * INCREMENT_TO_DAY_MAP[other_period.increment] ) * 1.0 / ( self.unit * INCREMENT_TO_DAY_MAP[self.increment] ) ) class BudgetItem: """A single budget item (category, period, TBD)""" def __init__(self, category: str, limit: float, period: Optional[Union[BudgetPeriod, str]]): """ Parameters ---------- category Name of the category for this item limit Budget amount for this category (over the specified period) period Period that this budget item applies to """ self.category = category self.limit = limit if type(period) is str: period = BudgetPeriod(period) self.period = period def period_limit(self, period: BudgetPeriod) -> float: """Gets the translated budget amount for the period""" if self.period is None: return self.limit return self.limit * self.period.translation_multiplier(period) def on_track(self, amount_spent: float) -> bool: """Whether we are on track for the current period given the spending amount""" return self.under_projected_budget(amount_spent) >= 0 def under_projected_budget(self, amount_spent: float) -> float: """The amount under budget we are currently""" if self.period is None: return self.limit - amount_spent return self.period.perc_complete() * self.limit - amount_spent class TotalBudgetItem(BudgetItem): def __init__(self, limit: float, period: BudgetPeriod): super().__init__("total", limit, period) if self.period is None: raise ValueError("period cannot be None for TotalBudgetItem") class BudgetPlan: """A plan with overall and categorical spending limits""" def __init__( self, total_budget_item: Optional[TotalBudgetItem] = None, category_budget_items: Optional[List[BudgetItem]] = None, ): """ Parameters ---------- total_budget_item The budget item for the total budget (if left empty, will use the sum of category budgets) category_budget_items The budgets for each category """ if total_budget_item is None and category_budget_items is None: raise ValueError("Must specify one of total_budget_item or category_budget_items") if category_budget_items is None: self.category_budgets = {} else: self.category_budgets = { budget_item.category: budget_item for budget_item in category_budget_items } if total_budget_item is None: # Using most common period from categories for default period counter = Counter() counter.update([ budget_item.period.period for budget_item in self.category_budgets.values() ]) default_period = BudgetPeriod(counter.most_common(1)[0][0]) total_budget_item = TotalBudgetItem( sum([ budget_item.period_limit(default_period) for budget_item in self.category_budgets.values() ]), default_period, ) self.total_budget_item = total_budget_item @classmethod def from_config(cls, config: dict) -> "BudgetPlan": """Helper to build a plan from the config.json subsection Parameters ---------- config A dict of the form: { total: float, period: { default: period_str, category_1: period_str, ... }, categories: { category_1: float, category_2: float, ... } } where period_str take the form of: [n_](week|month), or all_time """ default_period = config.get("period", {}).get("default", "month") if config.get("total"): total_budget_item = TotalBudgetItem(config["total"], default_period) else: total_budget_item = None if config.get("categories"): category_budget_items = [ BudgetItem( category, limit, config.get("period", {}).get(category, default_period) ) for category, limit in config["categories"].items() ] else: category_budget_items = None return cls( total_budget_item=total_budget_item, category_budget_items=category_budget_items ) # TODO: Use budgets for "you met X% of your goals over the last year" or something like that class Budget: """A budget set by via config.json with overall and category spending limits""" def __init__(self, transactions_df: pd.DataFrame): self.transactions_df = transactions_df.copy() config = get_config()["settings"].get("budget") if config is not None: self.budget_plan = BudgetPlan.from_config(config) else: self.budget_plan = None def current_summary(self): """The breakdown of spending for the current period""" summary = { category: self._current_budget_item_summary(budget_item) for category, budget_item in self.budget_plan.category_budgets.items() } summary["overall"] = self._current_budget_item_summary(self.budget_plan.total_budget_item) return summary def _current_budget_item_summary(self, budget_item: BudgetItem): """TODO""" if budget_item.category == "total": df = self.transactions_df else: df = self.transactions_df[self.transactions_df["category_1"] == budget_item.category] if budget_item.period is not None: df = df[df["date"] >= budget_item.period.latest()] spending = df["amount"].sum() return { "category": budget_item.category, "spending": spending, "budget": budget_item.limit, "over_budget": spending > budget_item.limit, "under_projection_amount": budget_item.under_projected_budget(spending), } def simple_summary(self, date_inc: str, period: str) -> pd.DataFrame: """Returns a simple summary for a single period Mainly used to generate a bar chart with ticks for the budget and projected spending amounts Parameters ---------- date_inc One of month, week, year period A single year, month, or week to drill into """ budget_period = BudgetPeriod(date_inc) curr_df = self.transactions_df[self.transactions_df[date_inc] == period] summary = { "category": [], "spent": [], "total_budget": [], "projected_budget": [], } for category, cat_budget in self.budget_plan.category_budgets.items(): limit = cat_budget.period_limit(budget_period) projected_limit = budget_period.perc_complete() * limit cat_spending = curr_df[curr_df["category_1"] == category]["amount"].sum() summary["category"].append(category) summary["spent"].append(cat_spending) summary["total_budget"].append(limit) summary["projected_budget"].append(projected_limit) # Including "Other" Category other_limit = self.total_limit(date_inc) - sum(summary["total_budget"]) summary["category"].append("Other") summary["spent"].append(curr_df["amount"].sum() - sum(summary["spent"])) summary["total_budget"].append(other_limit) summary["projected_budget"].append(budget_period.perc_complete() * other_limit) return
pd.DataFrame(summary)
pandas.DataFrame
""" MicroGridsPy - Multi-year capacity-expansion (MYCE) Linear Programming framework for microgrids least-cost sizing, able to account for time-variable load demand evolution and capacity expansion. Authors: <NAME> - Department of Energy, Politecnico di Milano <NAME> - Department of Energy, Politecnico di Milano <NAME> - Department of Energy, Politecnico di Milano / Fondazione Eni Enrico Mattei <NAME> - Department of Energy, Politecnico di Milano <NAME> - Department of Energy, Politecnico di Milano Based on the original model by: <NAME> - Department of Mechanical and Aerospace Engineering, University of Liège / San Simon University, Centro Universitario de Investigacion en Energia <NAME> - Department of Mechanical Engineering Technology, KU Leuven """ import pandas as pd import re #%% This section extracts the values of Scenarios, Periods, Years from data.dat and creates ranges for them Data_file = "Inputs/data.dat" Data_import = open(Data_file).readlines() for i in range(len(Data_import)): if "param: Scenarios" in Data_import[i]: n_scenarios = int((re.findall('\d+',Data_import[i])[0])) if "param: Years" in Data_import[i]: n_years = int((re.findall('\d+',Data_import[i])[0])) if "param: Periods" in Data_import[i]: n_periods = int((re.findall('\d+',Data_import[i])[0])) if "param: Generator_Types" in Data_import[i]: n_generators = int((re.findall('\d+',Data_import[i])[0])) scenario = [i for i in range(1,n_scenarios+1)] year = [i for i in range(1,n_years+1)] period = [i for i in range(1,n_periods+1)] generator = [i for i in range(1,n_generators+1)] #%% This section is useful to define the number of investment steps as well as to assign each year to its corresponding step def Initialize_Upgrades_Number(model): Data_file = "Inputs/data.dat" Data_import = open(Data_file).readlines() for i in range(len(Data_import)): if "param: Years" in Data_import[i]: n_years = int((re.findall('\d+',Data_import[i])[0])) if "param: Step_Duration" in Data_import[i]: step_duration = int((re.findall('\d+',Data_import[i])[0])) if "param: Min_Last_Step_Duration" in Data_import[i]: min_last_step_duration = int((re.findall('\d+',Data_import[i])[0])) if n_years % step_duration == 0: n_upgrades = n_years/step_duration return n_upgrades else: n_upgrades = 1 for y in range(1, n_years + 1): if y % step_duration == 0 and n_years - y > min_last_step_duration: n_upgrades += 1 return int(n_upgrades) def Initialize_YearUpgrade_Tuples(model): upgrade_years_list = [1 for i in range(len(model.steps))] s_dur = model.Step_Duration for i in range(1, len(model.steps)): upgrade_years_list[i] = upgrade_years_list[i-1] + s_dur yu_tuples_list = [0 for i in model.years] if model.Steps_Number == 1: for y in model.years: yu_tuples_list[y-1] = (y, 1) else: for y in model.years: for i in range(len(upgrade_years_list)-1): if y >= upgrade_years_list[i] and y < upgrade_years_list[i+1]: yu_tuples_list[y-1] = (y, model.steps[i+1]) elif y >= upgrade_years_list[-1]: yu_tuples_list[y-1] = (y, len(model.steps)) print('\nTime horizon (year,investment-step): ' + str(yu_tuples_list)) return yu_tuples_list #%% This section imports the multi-year Demand and Renewable-Energy output and creates a Multi-indexed DataFrame for it Demand = pd.read_excel('Inputs/Demand.xls') Energy_Demand_Series = pd.Series() for i in range(1,n_years*n_scenarios+1): dum = Demand[i][:] Energy_Demand_Series = pd.concat([Energy_Demand_Series,dum]) Energy_Demand = pd.DataFrame(Energy_Demand_Series) frame = [scenario,year,period] index = pd.MultiIndex.from_product(frame, names=['scenario','year','period']) Energy_Demand.index = index Energy_Demand_2 = pd.DataFrame() for s in scenario: Energy_Demand_Series_2 = pd.Series() for y in year: dum_2 = Demand[(s-1)*n_years + y][:] Energy_Demand_Series_2 = pd.concat([Energy_Demand_Series_2,dum_2]) Energy_Demand_2.loc[:,s] = Energy_Demand_Series_2 index_2 = pd.RangeIndex(1,n_years*n_periods+1) Energy_Demand_2.index = index_2 def Initialize_Demand(model, s, y, t): return float(Energy_Demand[0][(s,y,t)]) Renewable_Energy =
pd.read_excel('Inputs/Renewable_Energy.xls')
pandas.read_excel
# -*- coding: utf-8 -*- """ Created on Tue Mar 6 22:03:26 2018 """ #### 0. Loading libraries, setting working directory import pandas as pd import numpy as np import matplotlib.pyplot as plt import os import gc import timeit from functools import reduce from itertools import chain from datetime import datetime from statsmodels.tsa.stattools import adfuller, grangercausalitytests from sklearn import linear_model from scipy import stats # Loading custom functioons functions os.chdir('F:\Damian\github\HN_SO_analysis\HN_SO_analysis\codes') from hn_plots import hn_plots, todays_date from diff_nonstationary import diff_nonstationary from useful import repeated # Useful function from the Web from grangercausalitytests_mod import grangercausalitytests_mod from calc_granger_causality import calc_granger_causality from sel_data_min_date import sel_data_min_date os.chdir('F:\Damian\github\HN_SO_analysis\HN_SO_analysis') ### 1. Stack Overflow data stack_data1 = pd.read_csv('.\\stack_data\\tags_per_day_1_20180325.csv') stack_data2 = pd.read_csv('.\\stack_data\\tags_per_day_2_20180306.csv') stack_data3 = pd.read_csv('.\\stack_data\\tags_per_day_3_20180306.csv') stack_data4 = pd.read_csv( '.\\stack_data\\tags_per_day_4_d3js_tensorflow_20180403.csv') stack_data = pd.concat([stack_data1, stack_data2, stack_data3, stack_data4]) stack_data['tags'] = stack_data['tags'].str.replace('<', '').str.replace('>', '') stack_data['post_date'] = pd.to_datetime(stack_data['post_date']) stack_data.loc[stack_data['tags'] == 'd3js'].describe() del stack_data1, stack_data2, stack_data3, stack_data4 stack_data.tags.replace('apache-spark', 'spark', inplace = True) stack_data.tags.replace('d3.js', 'd3js', inplace = True) stack_data = stack_data.rename(columns = {'score_sum': 'so_score_sum', 'views': 'so_views', 'answers': 'so_answers', 'favorites': 'so_favorites', 'comments': 'so_comments', 'usage_cnt': 'so_usage_cnt'}) ### 2. Kaggle data kaggle_data_raw =
pd.read_csv('.\\kaggle_data\\kaggle_data_20180414_1358.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon May 30 06:44:09 2016 @author: subhajit """ import pandas as pd import datetime from sklearn import cross_validation import xgboost as xgb import numpy as np import h5py import os os.chdir('D:\Data Science Competitions\Kaggle\Expedia Hotel Recommendations\codes') def map5eval(preds, dtrain): actual = dtrain.get_label() predicted = preds.argsort(axis=1)[:,-np.arange(5)] metric = 0. for i in range(5): metric += np.sum(actual==predicted[:,i])/(i+1) metric /= actual.shape[0] return 'MAP@5', -metric def pre_process(data): try: data.loc[data.srch_ci.str.endswith('00'),'srch_ci'] = '2015-12-31' data['srch_ci'] = data.srch_ci.astype(np.datetime64) data.loc[data.date_time.str.endswith('00'),'date_time'] = '2015-12-31' data['date_time'] = data.date_time.astype(np.datetime64) except: pass data.fillna(0, inplace=True) data['srch_duration'] = data.srch_co-data.srch_ci data['srch_duration'] = data['srch_duration'].apply(lambda td: td/np.timedelta64(1, 'D')) data['time_to_ci'] = data.srch_ci-data.date_time data['time_to_ci'] = data['time_to_ci'].apply(lambda td: td/np.timedelta64(1, 'D')) data['ci_month'] = data['srch_ci'].apply(lambda dt: dt.month) data['ci_day'] = data['srch_ci'].apply(lambda dt: dt.day) #data['ci_year'] = data['srch_ci'].apply(lambda dt: dt.year) data['bk_month'] = data['date_time'].apply(lambda dt: dt.month) data['bk_day'] = data['date_time'].apply(lambda dt: dt.day) #data['bk_year'] = data['date_time'].apply(lambda dt: dt.year) data['bk_hour'] = data['date_time'].apply(lambda dt: dt.hour) data.drop(['date_time', 'user_id', 'srch_ci', 'srch_co'], axis=1, inplace=True) if os.path.exists('../output/srch_dest_hc_hm_agg.csv'): agg1 = pd.read_csv('../output/srch_dest_hc_hm_agg.csv') else: reader = pd.read_csv('../input/train.csv', parse_dates=['date_time', 'srch_ci', 'srch_co'], chunksize=200000) pieces = [chunk.groupby(['srch_destination_id','hotel_country','hotel_market','hotel_cluster'])['is_booking'].agg(['sum','count']) for chunk in reader] agg = pd.concat(pieces).groupby(level=[0,1,2,3]).sum() del pieces agg.dropna(inplace=True) agg['sum_and_cnt'] = 0.85*agg['sum'] + 0.15*agg['count'] agg = agg.groupby(level=[0,1,2]).apply(lambda x: x.astype(float)/x.sum()) agg.reset_index(inplace=True) agg1 = agg.pivot_table(index=['srch_destination_id','hotel_country','hotel_market'], columns='hotel_cluster', values='sum_and_cnt').reset_index() agg1.to_csv('../output/srch_dest_hc_hm_agg.csv', index=False) del agg destinations = pd.read_csv('../input/destinations.csv') submission = pd.read_csv('../input/sample_submission.csv') clf = xgb.XGBClassifier(#missing=9999999999, objective = 'multi:softmax', max_depth = 5, n_estimators=300, learning_rate=0.01, nthread=4, subsample=0.7, colsample_bytree=0.7, min_child_weight = 3, #scale_pos_weight = ratio, #reg_alpha=0.03, #seed=1301, silent=False) if os.path.exists('rows_complete.txt'): with open('rows_complete.txt', 'r') as f: skipsize = int(f.readline()) else: skipsize = 0 skip = 0 if skipsize==0 else range(1, skipsize) tchunksize = 1000000 print('%d rows will be skipped and next %d rows will be used for training' % (skipsize, tchunksize)) train = pd.read_csv('../input/train.csv', parse_dates=['date_time', 'srch_ci', 'srch_co'], skiprows=skip, nrows=tchunksize) train = train[train.is_booking==1] train = pd.merge(train, destinations, how='left', on='srch_destination_id') train =
pd.merge(train, agg1, how='left', on=['srch_destination_id','hotel_country','hotel_market'])
pandas.merge
#!/usr/bin/env python # -*- coding: utf-8 -*- # ##-------- [PPC] Jobshop Scheduling --------- # * Author: <NAME> # * Date: Apr 30th, 2020 # * Description: # Using the event-driven scheuling method # to solve the JSS prob. Here is a sample # code with the style of OOP. Feel free to # modify it as you like. ##-------------------------------------------- # import os import numpy as np import pandas as pd from gantt_plot import Gantt infinity = float('inf') #entity class Order: def __init__(self, ID, AT, DD, routing, PT): self.ID = ID self.AT = AT #AT: arrival time self.DD = DD #DD: due date self.PT = PT #PT: processing time self.routing = routing self.progress = 0 #resource in factory class Source: def __init__(self, order_info): self.order_info = order_info self.output = 0 def arrival_event(self, fac): order_num = self.order_info.shape[0] #num of total orders #generate and release the order ID = self.order_info.loc[self.output, "ID"] routing = self.order_info.loc[self.output, "routing"].split(',') PT = [int(i) for i in self.order_info.loc[self.output, "process_time"].split(',')] DD = self.order_info.loc[self.output, "due_date"] AT = T_NOW order = Order(ID, AT, DD, routing, PT) if LOG == True: print("{} : order {} release.".format(T_NOW, order.ID)) self.output += 1 #update the future event list - next order arrival event if self.output < order_num: fac.event_lst.loc["Arrival"]["time"] = self.order_info.loc[self.output, "arrival_time"] else: fac.event_lst.loc['Arrival']['time'] = infinity #send order to correlated station target = order.routing[order.progress] machine = fac.machines[target] machine.buffer.append(order) #update the future event list - dispatch machines to process the jobs if machine.state == 'idle': fac.event_lst.loc["dispatching"]['time'] = T_NOW class Machine: def __init__(self, ID, DP_rule): self.ID = ID self.state = 'idle' self.buffer = [] self.wspace = [] #wspace: working space self.DP_rule = DP_rule def start_processing(self, fac): #check state if self.state == 'idle': #get a new order from buffer by DP_rule if len(self.buffer) > 0: if self.DP_rule == "FIFO": order = self.buffer[0] elif self.DP_rule == "EDD": idx = np.argmin([j.DD for j in self.buffer]) order = self.buffer[idx] elif self.DP_rule == "SPT": idx = np.argmin([j.PT[j.progress] for j in self.buffer]) order = self.buffer[idx] #remove order from buffer self.buffer.remove(order) #start processing the order self.wspace.append(order) self.state = 'busy' processing_time = order.PT[order.progress] #[Gantt plot preparing] udate the start/finish processing time of machine fac.gantt_plot.update_gantt(self.ID, T_NOW, processing_time, order.ID) if LOG == True: print("{} : machine {} start processing order {} - {} progress".format(T_NOW, self.ID, order.ID, order.progress)) #update the future event list - job complete event fac.event_lst.loc["{}_complete".format(self.ID)]['time'] = T_NOW + processing_time order.progress += 1 def end_process_event(self, fac): order = self.wspace[0] if LOG == True: print("{} : machine {} complete order {} - {} progress".format(T_NOW, self.ID, order.ID, order.progress)) self.wspace.remove(order) self.state = 'idle' #send the processed order to next place if order.progress >= len(order.routing): #update factory statistic fac.throughput += 1 #update order statistic fac.update_order_statistic(order) else: #send the order to next station target = order.routing[order.progress] next_machine = fac.machines[target] next_machine.buffer.append(order) #update the future event list - wait for the dispatching to get a new job fac.event_lst.loc["dispatching"]['time'] = T_NOW fac.event_lst.loc["{}_complete".format(self.ID)]["time"] = infinity class Factory: def __init__(self, order_info, DP_rule): self.order_info = order_info self.DP_rule = DP_rule self.event_lst = pd.DataFrame(columns=["event_type", "time"]) #[Plug in] tool of gantt plotting self.gantt_plot = Gantt() #statistics self.throughput = 0 self.order_statistic =
pd.DataFrame(columns = ["ID", "release_time", "complete_time", "due_date", "flow_time", "tardiness", "lateness"])
pandas.DataFrame
''' results = StrategyTestLowHigh.objects.filter( strategy_code=strategy, ts_code=ts_code, test_period=test_period).order_by('trade_date') 1. 获得回测关键点的trade_date (make it index?) 2. 根据filter类型,大盘 or 个股 (创建大盘历史数据表 - done) 3. 根据输入的过滤条件创建filter 4. 对dataframe进行过滤(在low high, expected pct加字段:vol,amount,ma25,ma60,ma200 - ) 譬如:df[df['ma25_slope']>0],df[df['ma60_slope']>0],df[df['ma200_slope']>0],df[df['vol']>?] 5. 得到过滤后的trade_date 6. 使用第5步中的trade_date过滤low high或者expected pct ''' import pandas as pd from analysis.models import StockIndexHistory,StrategyTestLowHigh, BStrategyOnFixedPctTest from .utils import get_market_code def build_condition(filter_params=[]): ''' return string filter connected by & ''' # column = cond_list[0] #['vol', 'ma25_slope', 'ma60_slope'] # ops = cond_list[1] #['>', '>', '<'] # condition = cond_list[2] # [4, 0, '0'] return ' & '.join(filter_params) def pct_on_period_filter(ts_code, trade_date_list, filter_params=[]): ''' filter_param_list = {'ma25':'1','ma60':'0','ma200':'1','vol':'25670'} 指数 index trade_date ma25_slope ma60_slope ma200_slope vol 0 20200101 0.23 0.1 -0.123 234244 1 20200219 0.23 0.1 -0.123 234244 个股 index trade_date ma25_slope ma60_slope ma200_slope vol 0 20200101 0.23 0.1 -0.123 234244 1 20200219 0.23 0.1 -0.123 234244 e.g. limits_dic = {"A" : 0, "B" : 2, "C" : 0} query = ' & '.join(['{}>{}'.format(k, v) for k, v in limits_dic.items()]) temp = df.query(query) temp e.g 2 df = pd.DataFrame({'gender':list('MMMFFF'), 'height':[4,5,4,5,5,4], 'age':[70,80,90,40,2,3]}) df column = ['height', 'age', 'gender'] equal = ['>', '>', '=='] condition = [4, 20, 'M'] query = ' & '.join(f'{i} {j} {repr(k)}' for i, j, k in zip(column, equal, condition)) df.query(query) idx1 = pd.Index([1, 2, 3, 4]) idx2 = pd.Index([3, 4, 5, 6]) idx1.intersection(idx2) {'I': } ''' df_index = None df_stock = None for key in filter_params: if key == 'I': if len(filter_params[key]) > 0: results = StockIndexHistory.objects.filter(ts_code=get_market_code(ts_code), trade_date__in=trade_date_list).order_by('trade_date') df = pd.DataFrame(results.values('trade_date','ma25_slope','ma60_slope','ma200_slope','vol','amount')) if df is not None and len(df) > 0: query = build_condition(filter_params[key]) df_index = df.query(query) if key == 'E': if len(filter_params[key]) > 0: results = StrategyTestLowHigh.objects.filter(ts_code=ts_code, trade_date__in=trade_date_list).order_by('trade_date') df = pd.DataFrame(results.values( 'trade_date', 'ma25_slope', 'ma60_slope', 'ma200_slope', 'vol', 'amount')) if df is not None and len(df) > 0: query = build_condition(filter_params[key]) df_stock = df.query(query) if df_index is not None and df_stock is not None: return list(set(df_index['trade_date']).intersection(set(df_stock['trade_date']))) else: return df_index['trade_date'].tolist() if df_index is not None else df_stock['trade_date'].tolist() def period_on_pct_filter(trade_date_list, filter_params=[]): df_index = None df_stock = None for key in filter_params: if key == 'I': results = StockIndexHistory.objects.filter(trade_date__in=trade_date_list).order_by('trade_date') df = pd.DataFrame(results) if df is not None and len(df) > 0: query = build_condition(filter_params[key]) df_index = df.query(query) if key == 'E': results = BStrategyOnFixedPctTest.objects.filter(trade_date__in=trade_date_list).order_by('trade_date') df =
pd.DataFrame(results)
pandas.DataFrame
import pytz import pytest import dateutil import warnings import numpy as np from datetime import timedelta from itertools import product import pandas as pd import pandas._libs.tslib as tslib import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas.core.indexes.datetimes import cdate_range from pandas import (DatetimeIndex, PeriodIndex, Series, Timestamp, Timedelta, date_range, TimedeltaIndex, _np_version_under1p10, Index, datetime, Float64Index, offsets, bdate_range) from pandas.tseries.offsets import BMonthEnd, CDay, BDay from pandas.tests.test_base import Ops START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setup_method(self, method): super(TestDatetimeIndexOps, self).setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: pytest.raises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 pytest.raises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) assert idx1.is_monotonic # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.min() == Timestamp('2011-01-01', tz=tz) assert idx.max() == Timestamp('2011-01-03', tz=tz) assert idx.argmin() == 0 assert idx.argmax() == 2 for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) assert pd.isna(getattr(obj, op)()) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') assert np.min(dr) == Timestamp('2016-01-15 00:00:00', freq='D') assert np.max(dr) == Timestamp('2016-01-20 00:00:00', freq='D') errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, errmsg, np.min, dr, out=0) tm.assert_raises_regex(ValueError, errmsg, np.max, dr, out=0) assert np.argmin(dr) == 0 assert np.argmax(dr) == 5 if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex( ValueError, errmsg, np.argmin, dr, out=0) tm.assert_raises_regex( ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) assert elt.round(freq='H') == expected_elt msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assert_raises_regex(ValueError, msg): rng.round(freq='foo') with tm.assert_raises_regex(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assert_raises_regex(ValueError, msg, rng.round, freq='M') tm.assert_raises_regex(ValueError, msg, elt.round, freq='M') # GH 14440 & 15578 index = pd.DatetimeIndex(['2016-10-17 12:00:00.0015'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.002000'], tz=tz) tm.assert_index_equal(result, expected) for freq in ['us', 'ns']: tm.assert_index_equal(index, index.round(freq)) index = pd.DatetimeIndex(['2016-10-17 12:00:00.00149'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001000'], tz=tz) tm.assert_index_equal(result, expected) index = pd.DatetimeIndex(['2016-10-17 12:00:00.001501031']) result = index.round('10ns') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001501030']) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(): ts = '2016-10-17 12:00:00.001501031' pd.DatetimeIndex([ts]).round('1010ns') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assert_raises_regex(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() assert result == expected def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) assert result == expected def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() assert result == expected def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with pytest.raises(TypeError): dti + dti with pytest.raises(TypeError): dti_tz + dti_tz with pytest.raises(TypeError): dti_tz + dti with pytest.raises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): assert idx[0] in idx def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = idx.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.append(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.drop_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) assert result.freq == freq def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): assert pd.DatetimeIndex._na_value is pd.NaT assert pd.DatetimeIndex([])._na_value is pd.NaT for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert not idx.hasnans tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.asobject) assert idx.asobject.equals(idx) assert idx.asobject.equals(idx.asobject) assert not idx.equals(list(idx)) assert not idx.equals(pd.Series(idx)) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') assert not idx.equals(idx2) assert not idx.equals(idx2.copy()) assert not idx.equals(idx2.asobject) assert not idx.asobject.equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(pd.Series(idx2)) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) assert not idx.equals(idx3) assert not idx.equals(idx3.copy()) assert not idx.equals(idx3.asobject) assert not idx.asobject.equals(idx3) assert not idx.equals(list(idx3)) assert not idx.equals(pd.Series(idx3)) class TestDateTimeIndexToJulianDate(object): def test_1700(self): r1 = Float64Index([2345897.5, 2345898.5, 2345899.5, 2345900.5, 2345901.5]) r2 = date_range(start=Timestamp('1710-10-01'), periods=5, freq='D').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_2000(self): r1 = Float64Index([2451601.5, 2451602.5, 2451603.5, 2451604.5, 2451605.5]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='D').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_hour(self): r1 = Float64Index( [2451601.5, 2451601.5416666666666666, 2451601.5833333333333333, 2451601.625, 2451601.6666666666666666]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='H').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_minute(self): r1 = Float64Index( [2451601.5, 2451601.5006944444444444, 2451601.5013888888888888, 2451601.5020833333333333, 2451601.5027777777777777]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='T').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_second(self): r1 = Float64Index( [2451601.5, 2451601.500011574074074, 2451601.5000231481481481, 2451601.5000347222222222, 2451601.5000462962962962]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='S').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) # GH 10699 @pytest.mark.parametrize('klass,assert_func', zip([Series, DatetimeIndex], [tm.assert_series_equal, tm.assert_index_equal])) def test_datetime64_with_DateOffset(klass, assert_func): s = klass(date_range('2000-01-01', '2000-01-31'), name='a') result = s + pd.DateOffset(years=1) result2 = pd.DateOffset(years=1) + s exp = klass(date_range('2001-01-01', '2001-01-31'), name='a') assert_func(result, exp) assert_func(result2, exp) result = s - pd.DateOffset(years=1) exp = klass(date_range('1999-01-01', '1999-01-31'), name='a') assert_func(result, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = klass([Timestamp('2000-01-16 00:15:00', tz='US/Central'), Timestamp('2000-02-16', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = klass([Timestamp('2000-01-31 00:15:00', tz='US/Central'), Timestamp('2000-02-29', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) # array of offsets - valid for Series only if klass is Series: with tm.assert_produces_warning(PerformanceWarning): s = klass([Timestamp('2000-1-1'), Timestamp('2000-2-1')]) result = s + Series([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]) exp = klass([Timestamp('2001-1-1'), Timestamp('2000-2-29') ]) assert_func(result, exp) # same offset result = s + Series([pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)]) exp = klass([Timestamp('2001-1-1'), Timestamp('2001-2-1')]) assert_func(result, exp) s = klass([Timestamp('2000-01-05 00:15:00'), Timestamp('2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp('2000-03-31'), Timestamp('2000-02-29'),
Timestamp('2000-12-31')
pandas.Timestamp
import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal from woodwork.logical_types import ( Boolean, Categorical, Datetime, Double, Integer, ) from evalml.pipelines import DelayedFeatureTransformer @pytest.fixture def delayed_features_data(): X = pd.DataFrame({"feature": range(1, 32)}) y = pd.Series(range(1, 32)) return X, y def test_delayed_features_transformer_init(): delayed_features = DelayedFeatureTransformer( max_delay=4, delay_features=True, delay_target=False, date_index="Date", random_seed=1, ) assert delayed_features.parameters == { "max_delay": 4, "delay_features": True, "delay_target": False, "gap": 0, "forecast_horizon": 1, "date_index": "Date", } def encode_y_as_string(y): y = y.astype("category") y_answer = y.astype(int) - 1 y = y.map(lambda val: str(val).zfill(2)) return y, y_answer def encode_X_as_string(X): X_answer = X.astype(int) - 1 # So that the encoder encodes the values in ascending order. This makes it easier to # specify the answer for each unit test X.feature = pd.Categorical(X.feature.map(lambda val: str(val).zfill(2))) return X, X_answer def encode_X_y_as_strings(X, y, encode_X_as_str, encode_y_as_str): y_answer = y if encode_y_as_str: y, y_answer = encode_y_as_string(y) X_answer = X if encode_X_as_str: X, X_answer = encode_X_as_string(X) return X, X_answer, y, y_answer @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_delayed_feature_extractor_maxdelay3_forecasthorizon1_gap0( encode_X_as_str, encode_y_as_str, delayed_features_data ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) answer = pd.DataFrame( { "feature_delay_1": X_answer.feature.shift(1), "feature_delay_2": X_answer.feature.shift(2), "feature_delay_3": X_answer.feature.shift(3), "feature_delay_4": X_answer.feature.shift(4), "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=3, gap=0, forecast_horizon=1).fit_transform( X=X, y=y ), ) answer_only_y = pd.DataFrame( { "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), } ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=3, gap=0, forecast_horizon=1).fit_transform( X=None, y=y ), ) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_delayed_feature_extractor_maxdelay5_forecasthorizon1_gap0( encode_X_as_str, encode_y_as_str, delayed_features_data ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) answer = pd.DataFrame( { "feature_delay_1": X_answer.feature.shift(1), "feature_delay_2": X_answer.feature.shift(2), "feature_delay_3": X_answer.feature.shift(3), "feature_delay_4": X_answer.feature.shift(4), "feature_delay_5": X_answer.feature.shift(5), "feature_delay_6": X_answer.feature.shift(6), "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), "target_delay_5": y_answer.shift(5), "target_delay_6": y_answer.shift(6), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=5, gap=0, forecast_horizon=1).fit_transform( X, y ), ) answer_only_y = pd.DataFrame( { "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), "target_delay_5": y_answer.shift(5), "target_delay_6": y_answer.shift(6), } ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=5, gap=0, forecast_horizon=1).fit_transform( X=None, y=y ), ) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_delayed_feature_extractor_maxdelay3_forecasthorizon7_gap1( encode_X_as_str, encode_y_as_str, delayed_features_data ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) answer = pd.DataFrame( { "feature_delay_8": X_answer.feature.shift(8), "feature_delay_9": X_answer.feature.shift(9), "feature_delay_10": X_answer.feature.shift(10), "feature_delay_11": X_answer.feature.shift(11), "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), "target_delay_11": y_answer.shift(11), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7, gap=1).fit_transform( X, y ), ) answer_only_y = pd.DataFrame( { "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), "target_delay_11": y_answer.shift(11), } ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7, gap=1).fit_transform( X=None, y=y ), ) def test_delayed_feature_extractor_numpy(delayed_features_data): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings(X, y, False, False) X_np = X.values y_np = y.values answer = pd.DataFrame( { "0_delay_8": X_answer.feature.shift(8), "0_delay_9": X_answer.feature.shift(9), "0_delay_10": X_answer.feature.shift(10), "0_delay_11": X_answer.feature.shift(11), "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), "target_delay_11": y_answer.shift(11), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7, gap=1).fit_transform( X_np, y_np ), ) answer_only_y = pd.DataFrame( { "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), "target_delay_11": y_answer.shift(11), } ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7, gap=1).fit_transform( X=None, y=y_np ), ) @pytest.mark.parametrize( "delay_features,delay_target", [(False, True), (True, False), (False, False)] ) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_lagged_feature_extractor_delay_features_delay_target( encode_y_as_str, encode_X_as_str, delay_features, delay_target, delayed_features_data, ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) all_delays = pd.DataFrame( { "feature_delay_1": X_answer.feature.shift(1), "feature_delay_2": X_answer.feature.shift(2), "feature_delay_3": X_answer.feature.shift(3), "feature_delay_4": X_answer.feature.shift(4), "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), } ) if not delay_features: all_delays = all_delays.drop( columns=[c for c in all_delays.columns if "feature_" in c] ) if not delay_target: all_delays = all_delays.drop( columns=[c for c in all_delays.columns if "target" in c] ) transformer = DelayedFeatureTransformer( max_delay=3, forecast_horizon=1, delay_features=delay_features, delay_target=delay_target, ) assert_frame_equal(all_delays, transformer.fit_transform(X, y)) @pytest.mark.parametrize( "delay_features,delay_target", [(False, True), (True, False), (False, False)] ) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_lagged_feature_extractor_delay_target( encode_y_as_str, encode_X_as_str, delay_features, delay_target, delayed_features_data, ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) answer = pd.DataFrame() if delay_target: answer = pd.DataFrame( { "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), } ) transformer = DelayedFeatureTransformer( max_delay=3, forecast_horizon=1, delay_features=delay_features, delay_target=delay_target, ) assert_frame_equal(answer, transformer.fit_transform(None, y)) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) @pytest.mark.parametrize("data_type", ["ww", "pd"]) def test_delay_feature_transformer_supports_custom_index( encode_X_as_str, encode_y_as_str, data_type, make_data_type, delayed_features_data ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) X.index = pd.RangeIndex(50, 81) X_answer.index = pd.RangeIndex(50, 81) y.index = pd.RangeIndex(50, 81) y_answer.index = pd.RangeIndex(50, 81) answer = pd.DataFrame( { "feature_delay_7": X_answer.feature.shift(7), "feature_delay_8": X_answer.feature.shift(8), "feature_delay_9": X_answer.feature.shift(9), "feature_delay_10": X_answer.feature.shift(10), "target_delay_7": y_answer.shift(7), "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), }, index=pd.RangeIndex(50, 81), ) X = make_data_type(data_type, X) y = make_data_type(data_type, y) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7).fit_transform(X, y), ) answer_only_y = pd.DataFrame( { "target_delay_7": y_answer.shift(7), "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), }, index=
pd.RangeIndex(50, 81)
pandas.RangeIndex
# coding: utf-8 """ Classifiers. Based on sklearn doc: "http://scikit-learn.org/dev/developers/contributing.html\ #rolling-your-own-estimator" """ from itertools import product import numpy as np import pandas as pd from scipy.optimize import LinearConstraint, minimize from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_is_fitted from .methods import KernelMethod def multiclass2one_vs_all(labels, first_class=1): """Transform multiclas label to 2 class labels Params: labels (array-like): list of labels first_class: label considered as not the rest Returns: (list) list of labels containing only 1/-1 """ if first_class not in labels: first_class = labels[0] return [1 if elt == first_class else -1 for elt in labels] class SVDD(BaseEstimator, ClassifierMixin, KernelMethod): """Implement Support Vector DataDescription .. math:: \\begin{cases} min_{r, c} & r^2 - C \\sum_t \\xi_t \\\\ s.t & y_i \\| \\phi(x_i) -c \\| < r^2 + xi_i \\forall i \\\\ & \\xi_i > 0 \\forall i \\\\ \\end{cases} """ def __init__(self, kernel_matrix=None, kernel=None, C=1): """Initialize some parameters. Those parameters may be overwritten by the fit() method. """ self.kernel_matrix = kernel_matrix # kernel matrix used for training if kernel is None: self.kernel = np.dot else: self.kernel = kernel self.C = C self.string_labels = False # are labels strings or int? self.hypersphere_nb = 1 self.trained_on_sample = True # use directly kernel matrix or sample? def fit(self, X, y=None, C=None, kernel=None, is_kernel_matrix=False): """Fit the classifier. Args: X: training samples. y: training labels. If None, consider all samples belongs to the same class (labeled "1"). C (numeric): contraint in the soft margin case. If None or zero, then fall back to hard margin case. kernel (fun): kernel method to use. (default: linear) is_kernel_matrix (bool): if True, the input is treated as a kernel matrix. """ # X, y = check_X_y(X, y) # TODO: add check method for X self._classifier_checks(X, y, C, kernel, is_kernel_matrix) if len(self.classes_) > 2 or ( len(self.classes_) == 2 and self.string_labels ): # each class has its own hypersphere (one class vs rest) self.hypersphere_nb = len(self.classes_) self.individual_svdd = {} for cl in self.classes_: # TODO: multithread/asyncio cl_svdd = SVDD( kernel_matrix=self.kernel_matrix, kernel=self.kernel, C=self.C, ) cl_y = [1 if elt == cl else -1 for elt in y] cl_svdd.fit(X, cl_y, C, kernel, is_kernel_matrix) self.individual_svdd[cl] = cl_svdd self.y_ = y self.alphas_ = np.array([0]) self.radius_ = 0 else: # one hypersphere self.y_ = np.sign(y) self.radius_, self.alphas_ = self._fit_one_hypersphere() return self def predict(self, X, decision_radius=1): """Predict classes Args: X (array like): list of test samples. decision_radius (numeric): modification of decision radius. The frontier between classes will be the computed hypersphere whose radius is multiply by this factor. """ check_is_fitted(self, ["X_", "alphas_"]) # X = check_array(X) if self.hypersphere_nb == 1: return self._predict_one_hypersphere(X, decision_radius) else: # check class dist_classes = self.relative_dist_all_centers(X) return np.array(dist_classes.idxmin(axis=1)) def fit_predict(self, X, y, C=None, kernel=None, is_kernel_matrix=False): """Fit as the fit() methods. Returns: (array) : class for each training sample. """ self.fit(X, y, C, kernel, is_kernel_matrix) self.predict(X) def _predict_one_hypersphere(self, X=None, decision_radius=1): """Compute results for one hypersphere Args: decision_radius (numeric): modification of decision radius. The frontier between classes will be the computed hypersphere whose radius is multiply by this factor. Returns: (np.array) """ pred = self._dist_center(X) * decision_radius / self.radius_ - 1 ret = np.sign(pred).reshape(-1) return list(map(lambda x: 1 if x == 0 else x, ret)) def decision_function(self, X): """Generic decision value. Args: X (array-like): list of sample """ return self._dist_center(X) / self.radius_ def _dist_center(self, X=None): """Compute ditance to class center. Args: X (array-like): list of input vectors. If None, use the train set. Distance to center: .. math:: \\| z - c \\|^2 = \\|z\\|^2 - 2 K(z, c) + \\|c\\|^2 c = \\sum_t \\alpha_t \\phi(X_t) """ if not self.hypersphere_nb == 1: raise RuntimeWarning("Not available for multiclass SVDD") check_is_fitted(self, ["X_", "alphas_"]) dim = len(self.alphas_) if X is None: # return distances for training set square_dists = [ self.kernel_matrix[i, i] - 2 * sum( self.alphas_[t] * self.kernel_matrix[i, t] for t in range(dim) ) + sum( self.alphas_[t] * self.alphas_[s] * self.kernel_matrix[s, t] for s in range(dim) for t in range(dim) ) for i in range(dim) ] else: # return distances for vector X square_dists = [ self.kernel(z, z) - 2 * sum( self.alphas_[t] * self.kernel(self.X_[t], z) for t in range(dim) ) + sum( self.alphas_[s] * self.alphas_[t] * self.kernel(self.X_[t], self.X_[s]) for s in range(dim) for t in range(dim) ) for z in X ] return np.sqrt(square_dists) def _fit_one_hypersphere(self, y=None, class1=1, class2=-1): """Perform actual fit process * compute alphas * compute support vectors * recompute minimal kernel matrix """ if y is None: y = self.y_ dim = len(self.X_) alphas = [1 / dim] * dim C = self.C upper = C * np.ones(dim) one = np.array([1]) # TODO: test other solver # https://pypi.org/project/quadprog/ # http://cvxopt.org/r def ell_d(al): """Dual function to minimize. function to maximize: .. maths:: L_D = \\alpha diag(K)^T - \\alpha K \\alpha^T L_D = \\sum_s \\alpha_s K<x_s, x_s> - \\sum_s \\sum_t \\alpha_s \\alpha_t K(x_s, x_t) """ ay = al * y return -( np.mat(ay).dot(np.diag(self.kernel_matrix)) - np.mat(ay).dot(self.kernel_matrix).dot(np.mat(ay).T) ) cons = [ # \forall i 0 \leq \alpha[i] \leq C LinearConstraint(A=np.identity(dim), lb=np.zeros(dim), ub=upper), # \sum_i \alpha[i] = 1 LinearConstraint(A=np.ones(dim), lb=one, ub=one), ] # TODO: asyncio predicted_alphas = minimize( ell_d, alphas, constraints=cons, options={"maxiter": 10000} ) if not predicted_alphas.success: raise RuntimeError(predicted_alphas.message) alphas = predicted_alphas.x # nullify almost null alphas: alphas = list(map(lambda x: 0 if np.isclose(x, 0) else x, alphas)) # support vectors: 0 < alphas <= C support_vectors = set.intersection( set(np.where(np.less_equal(alphas, C))[0]), set(np.nonzero(alphas)[0]), ) self.support_vectors_ = self.support_vectors_.union(support_vectors) if len(self.support_vectors_) < 2: radius = np.min( self.distance_matrix() + np.diag([C for _ in range(dim)]) ) else: # mean distance to support vectors radius = np.mean( [ self.dist_center_training_sample(r, alphas) for r in self.support_vectors_ ] ) return radius, np.array(alphas) def dist_all_centers(self, X=None): """Return distance to each class center. """ if self.hypersphere_nb > 1: dist_classes = { cl: svdd._dist_center(X) for cl, svdd in self.individual_svdd.items() } else: dist_classes = {1: self._dist_center(X)} return pd.DataFrame(dist_classes) def relative_dist_all_centers(self, X=None): """Distane to all centers divided by class radius. """ if self.hypersphere_nb > 1: dist_classes = { cl: svdd._dist_center(X) / svdd.radius_ for cl, svdd in self.individual_svdd.items() } else: dist_classes = {1: self._dist_center(X) / self.radius_} return
pd.DataFrame(dist_classes)
pandas.DataFrame
import pandas as pd import numpy as np import networkx as nx import matplotlib.pyplot as plt import warnings import itertools import datetime import os from math import sqrt #import seaborn as sns class ContagionAnalysis(): def __init__(self, world): self.world = world # time as lable to write files now = datetime.datetime.now() self.now = now.strftime("%Y-%m-%d_%H:%M") def run_contaigon_analysis(self, opinion_type, analysis="expo_frac", n_bins = 20, binning = True, save_plots = False, show_plot=True, write_data = True, output_folder = ""): ''' Makes a full contagion analysis Parameters: opinion_type: (str) name of trait analysis: (str) name of analysis type (expo_frac, expo_nmb) n_bins: (int) number of bins binning: (bool) if to do binning save_plots: (bool) if to save plot on hd write_data: (bool) if to write data on hd ouput_folder: (str) folder to save data + plots ''' # name to lable files name = self.world.name + \ "_" + analysis + \ "_" + self.now self.output_folder = output_folder print("Write into: " + self.TEMP_DIR + output_folder) if not os.path.exists(self.TEMP_DIR + output_folder): os.makedirs(self.TEMP_DIR + output_folder) # calc exposure exposure = self.calc_exposure(analysis, opinion_type) #write data if write_data: exposure.to_pickle(self.TEMP_DIR + output_folder + "exposure_" + name + ".pkl") # calc trait change data, expo_agg = self.opinion_change_per_exposure(exposure, opinion_type) #write data if write_data: data.to_pickle(self.TEMP_DIR + output_folder + "data_" + name + ".pkl") # plot plot_data = self.plot_opinion_change_per_exposure_number(data, analysis, binning, n_bins, \ save_plots, show_plot) return [data, plot_data] def _get_neighbors(self,g,i): ''' returns neighbors of node i in graph g ''' try: return [n for n in g[i]] except KeyError: return [] def _calc_expo_frac(self, node_id, opinion_type, t, op_nodes, graph, all_opinions): ''' Calculate exposure as fraction of encounters to people with other opinion ''' neighbors = self._get_neighbors(graph, node_id) opinions = op_nodes.loc[neighbors] nmb_1 = opinions.loc[opinions[opinion_type] == True, opinion_type].count() nmb_2 = opinions.loc[opinions[opinion_type] == False, opinion_type].count() exposure = pd.DataFrame({ opinion_type: [True, False],\ 'n_influencer': [nmb_1, nmb_2],\ 'frac_influencer': [nmb_1, nmb_2] }) if (len(neighbors) <= 2) & (self.world.type == "SYN"): if self.world.cc == True: exposure *= 0 # normalize exposure if len(neighbors) > 0: exposure.frac_influencer /= len(neighbors) exposure['n_nbs'] = len(neighbors) exposure['node_id'] = node_id exposure['time'] = t return exposure def calc_exposure(self, analysis, opinion_type, exposure_time = 7): ''' Calculate exposure for opinion type, distinguish between different analysis types ''' print("INFO: Calc exposure...") # prepare some varibales for late use all_opinions = pd.DataFrame( self.world.op_nodes[opinion_type].unique(), \ columns=[opinion_type]) nodes = self.world.op_nodes.node_id.unique() self.world.op_nodes.time =
pd.to_datetime(self.world.op_nodes.time)
pandas.to_datetime
#!/usr/bin/env python """Integration testing.""" # System import os import logging import time import traceback import sys from uuid import uuid4 as uuid from concurrent import futures from concurrent.futures import ThreadPoolExecutor # Third Party import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier # from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier # , AdaBoostClassifier, GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from xgboost.sklearn import XGBClassifier # needed for module level import sys.path.insert(0, os.path.dirname(os.path.dirname(sys.argv[0]))) from tests.testing_api import NumerAPI # the methods we're testing from submission_criteria.concordance import get_sorted_split from submission_criteria.concordance import has_concordance from submission_criteria.concordance import get_competition_variables_from_df DATA_SET_PATH = 'tests/numerai_datasets' DATA_SET_FILE = 'numerai_dataset' TRAIN_FILE = 'numerai_training_data.csv' TOURN_FILE = 'numerai_tournament_data.csv' test_csv = "tests/test_csv" clf_n_jobs = 2 logging.basicConfig( level=logging.DEBUG, format="%(asctime)s %(levelname)s %(name)s: %(message)s") logger = logging.getLogger('integration_test') upload_executor = ThreadPoolExecutor(max_workers=10) clf_executor = ThreadPoolExecutor(max_workers=clf_n_jobs) submission_executor = ThreadPoolExecutor(max_workers=2) class NumeraiApiWrapper(NumerAPI): """ Skips uploading to server to check concordance; not an actual integration test if this wrapper is used, but the relevant parts are tested. Use the normal NumerAPI instead of NumerApiWrapper and this test will be an integration test behaving in the same way, but since there's not dedicated test token that can be used, and no zip support on upload, and there's roughly 500 MB currently needing to be uploaded every time this test is run, it's not always practical. Probably we should mock submission-criteria with an in-memory postgresql db, and try to call the relevant methods from this wrapper to avoid trying to mock http requests (we're not testing the NumerAPI after all). """ def __init__(self, public_id=None, secret_key=None, verbosity="INFO"): super(NumeraiApiWrapper, self).__init__(public_id, secret_key, verbosity) self.checked = set() self.cluster_ids = dict() self.clusters = dict() self.futures = dict() def set_data(self, tournament_data, training_data): self.cluster_ids = { 'test': tournament_data[tournament_data.data_type == 'test'].id.copy().values.ravel(), 'valid': tournament_data[tournament_data.data_type == 'validation'].id.copy().values.ravel(), 'live': tournament_data[tournament_data.data_type == 'live'].id.copy(). values.ravel(), } self.clusters = get_competition_variables_from_df( '1', training_data, tournament_data, self.cluster_ids['valid'], self.cluster_ids['test'], self.cluster_ids['live']) def upload_predictions(self, file_path): sub_id = str(uuid()) self.futures[sub_id] = submission_executor.submit( self.check_concordance, file_path) return sub_id def check_concordance(self, submission_file_path): submission = pd.read_csv(submission_file_path) ids_valid, ids_test, ids_live = self.cluster_ids[ 'valid'], self.cluster_ids['test'], self.cluster_ids['live'] p1, p2, p3 = get_sorted_split(submission, ids_valid, ids_test, ids_live) c1, c2, c3 = self.clusters['cluster_1'], self.clusters[ 'cluster_2'], self.clusters['cluster_3'] has_it = has_concordance(p1, p2, p3, c1, c2, c3) # logger.info('submission %s has concordance? %s' % (submission_file_path, str(has_it))) return has_it def submission_status(self, submission_id=None): if submission_id not in self.futures: raise ValueError('unknown submission id %s' % submission_id) f = self.futures.get(submission_id) if not f.done(): pending = True value = False else: pending = False value = f.result() return { 'concordance': { 'pending': pending, 'value': value } } def main(): # when running on circleci, set the vars in the project settings public_id = os.environ.get('NUMERAPI_PUBLIC_ID', '') secret_key = os.environ.get('NUMERAPI_SECRET_KEY', '') if not os.path.exists(test_csv): os.makedirs(test_csv) napi = NumeraiApiWrapper(public_id=public_id, secret_key=secret_key) if not os.path.exists(DATA_SET_PATH): logger.info("Downloading the current dataset...") os.makedirs(DATA_SET_PATH) napi.download_current_dataset( dest_path=DATA_SET_PATH, dest_filename=DATA_SET_FILE + '.zip', unzip=True) import shutil shutil.move( os.path.join(DATA_SET_PATH, DATA_SET_FILE, TRAIN_FILE), os.path.join(DATA_SET_PATH, TRAIN_FILE)) shutil.move( os.path.join(DATA_SET_PATH, DATA_SET_FILE, TOURN_FILE), os.path.join(DATA_SET_PATH, TOURN_FILE)) else: logger.info("Found old data to use.") training_data = pd.read_csv( '%s/%s' % (DATA_SET_PATH, TRAIN_FILE), header=0) tournament_data = pd.read_csv( '%s/%s' % (DATA_SET_PATH, TOURN_FILE), header=0) napi.set_data(tournament_data, training_data) features = [f for f in list(training_data) if "feature" in f] features = features[:len(features) // 2] # just use half, speed things up a bit X, Y = training_data[features], training_data[ "target_bernie"] # hardcode to target bernie for now x_prediction = tournament_data[features] ids = tournament_data["id"] clfs = [ RandomForestClassifier( n_estimators=15, max_features=1, max_depth=2, n_jobs=1, criterion='entropy', random_state=42), XGBClassifier( learning_rate=0.1, subsample=0.4, max_depth=2, n_estimators=20, nthread=1, seed=42), DecisionTreeClassifier(max_depth=5, random_state=42), MLPClassifier(alpha=1, hidden_layer_sizes=(25, 25), random_state=42), GaussianNB(), QuadraticDiscriminantAnalysis(tol=1.0e-3), # last item can have multiple jobs since it may be the last to be processed so we have an extra core LogisticRegression( n_jobs=2, solver='sag', C=1, tol=1e-2, random_state=42, max_iter=50) ] before = time.time() fit_all(clfs, X, Y) logger.info('all clfs fit() took %.2fs' % (time.time() - before)) before = time.time() uploads_wait_for_legit = predict_and_upload_legit(napi, clfs, x_prediction, ids) logger.info( 'all legit clfs predict_proba() took %.2fs' % (time.time() - before)) before = time.time() uploads_wait_for_mix = predict_and_upload_mix(napi, clfs, tournament_data, x_prediction, ids) logger.info( 'all mix clfs predict_proba() took %.2fs' % (time.time() - before)) legit_submission_ids = list() mix_submission_ids = list() before = time.time() for f in futures.as_completed(uploads_wait_for_legit): legit_submission_ids.append(f.result()) logger.info('await legit uploads took %.2fs' % (time.time() - before)) before = time.time() for f in futures.as_completed(uploads_wait_for_mix): mix_submission_ids.append(f.result()) logger.info('await mix uploads took %.2fs' % (time.time() - before)) n_passed_concordance = get_concordance( napi, legit_submission_ids) if len(n_passed_concordance) != len(clfs): logger.error('legit passed concordance %s/%s' % (len(n_passed_concordance), len(clfs))) sys.exit(1) else: logger.info('all legit tests passed!') n_passed_concordance = get_concordance( napi, mix_submission_ids) if len(n_passed_concordance) > 0: logger.error('mix passed concordance %s/%s' % (len(n_passed_concordance), len(clfs))) sys.exit(1) else: logger.info('all mix tests passed!') sys.exit(0) def get_concordance(napi, _submission_ids): submission_ids = _submission_ids.copy() n_passed_concordance = set() while True: statuses = list() for submission_id in submission_ids: statuses.append( upload_executor.submit(check_status, napi, submission_id)) check_later = list() for f in futures.as_completed(statuses): submission_id = f.result()['id'] concordance = f.result()['result']['concordance'] if concordance['pending']: check_later.append(f.result()['id']) if concordance['value']: n_passed_concordance.add(submission_id) if len(check_later) == 0: break submission_ids.clear() submission_ids = check_later.copy() return n_passed_concordance def check_status(napi, submission_id): try: return { 'id': submission_id, 'result': napi.submission_status(submission_id) } except Exception as e: logger.exception(traceback.format_exc()) logger.error('could not check submission status: %s' % str(e)) sys.exit(1) def fit_all(clfs: list, X, Y): wait_for = list() for clf in clfs: wait_for.append(clf_executor.submit(fit_clf, X, Y, clf)) before = time.time() for _ in futures.as_completed(wait_for): pass logger.info('await fitting took %.2fs' % (time.time() - before)) def fit_clf(X, Y, clf): before = time.time() clf_str = str(clf).split("(")[0] clf.fit(X, Y) time_taken = '%.2fs' % (time.time() - before) logger.info('fit() took %s%s (%s)' % (time_taken, ' ' * (9 - len(time_taken)), clf_str)) return clf_str def predict_and_upload_legit(napi, clfs: list, x_prediction, ids): wait_for = list() upload_wait_for = list() for clf in clfs: wait_for.append( clf_executor.submit(predict_and_upload_one_legit, upload_wait_for, napi, clf, x_prediction, ids)) before = time.time() for _ in futures.as_completed(wait_for): pass logger.info('await legit predictions took %.2fs' % (time.time() - before)) return upload_wait_for def predict_and_upload_one_legit(upload_wait_for: list, napi, clf, x_prediction, ids): clf_str = str(clf).split("(")[0] before = time.time() y_prediction = clf.predict_proba(x_prediction) after = time.time() out = os.path.join(test_csv, "{}-legit.csv".format(clf_str)) time_taken = '%.2fs' % (after - before) logger.info('predict_proba() took %s%s (%s)' % (time_taken, ' ' * (9 - len(time_taken)), out)) upload_wait_for.append( upload_executor.submit(upload_one_legit, y_prediction, ids, out, napi)) def upload_one_legit(y_prediction, ids, out: str, napi): try: results = y_prediction[:, 1] results_df =
pd.DataFrame(data={'probability': results})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Connectome-informed reservoir - Echo-State Network ================================================= This example demonstrates how to use the conn2res toolbox to perform a memory task using a human connectomed-informed Echo-State network while playing with the dynamics of the reservoir (Jaeger, 2000). """ ############################################################################### # First let's import the connectivity matrix we are going to use to define the # connections of the reservoir. For this we will be using the human connectome # parcellated into 1015 brain regions following the Desikan Killiany atlas # (Desikan, et al., 2006). import os import numpy as np PROJ_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DATA_DIR = os.path.join(PROJ_DIR, 'examples', 'data') # load connectivity data conn = np.load(os.path.join(DATA_DIR, 'connectivity.npy')) # select one subject subj_id = 0 conn = conn[:,:,subj_id] n_reservoir_nodes = len(conn) # scale conenctivity weights between [0,1] conn = (conn-conn.min())/(conn.max()-conn.min()) # normalize connectivity matrix by the spectral radius. from scipy.linalg import eigh ew, _ = eigh(conn) conn = conn/np.max(ew) ############################################################################### # Second let's get the data to perform the task. We first generate the data and # then we split it into training and test sets. 'x' corresponds to the input # signals and 'y' corresponds to the output labels. from conn2res import iodata from conn2res import reservoir, coding import pandas as pd import matplotlib.pyplot as plt import seaborn as sns tasks = iodata.get_available_tasks() for task in tasks[:]: x, y = iodata.fetch_dataset(task) # y = iodata.encode_labels(y) n_samples = x.shape[0] print(f'n_observations = {n_samples}') n_features = x.shape[1] print(f'n_features = {n_features}') try: n_labels = y.shape[1] except: n_labels = 1 print(f'n_labels = {n_labels}') fig, axs = plt.subplots(2,1, figsize=(10,10), sharex=True) axs = axs.ravel() axs[0].plot(x) axs[0].set_ylabel('Inputs') axs[1].plot(y) axs[1].set_ylabel('Outputs') plt.suptitle(task) plt.show() plt.close() # split data into training and test sets x_train, x_test = iodata.split_dataset(x) y_train, y_test = iodata.split_dataset(y) ############################################################################### # Third we will simulate the dynamics of the reservoir using the previously # generated input signal x (x_train and x_test). # define set of input nodes ctx = np.load(os.path.join(DATA_DIR, 'cortical.npy')) subctx_nodes = np.where(ctx == 0)[0] # we use subcortical regions as input nodes input_nodes = np.random.choice(subctx_nodes, n_features) # we select a randon set of input nodes output_nodes = np.where(ctx == 1)[0] # we use cortical regions as output nodes # create input connectivity matrix, which defines the connec- # tions between the input layer (source nodes where the input signal is # coming from) and the input nodes of the reservoir. w_in = np.zeros((n_features, n_reservoir_nodes)) w_in[np.ix_(np.arange(n_features), input_nodes)] = 0.1 # factor that modulates the activation state of the reservoir # We will use resting-state networks as readout modules. These intrinsic networks # define different sets of output nodes rsn_mapping = np.load(os.path.join(DATA_DIR, 'rsn_mapping.npy')) rsn_mapping = rsn_mapping[output_nodes] # we select the mapping only for output nodes # evaluate network performance across various dynamical regimes # we do so by varying the value of alpha alphas = np.linspace(0,2,11) #np.linspace(0,2,41) df_subj = [] for alpha in alphas[1:]: print(f'\n----------------------- alpha = {alpha} -----------------------') # instantiate an Echo State Network object ESN = reservoir.EchoStateNetwork(w_ih=w_in, w_hh=alpha*conn.copy(), activation_function='tanh', ) # simulate reservoir states; select only output nodes. rs_train = ESN.simulate(ext_input=x_train)[:,output_nodes] rs_test = ESN.simulate(ext_input=x_test)[:,output_nodes] # perform task df = coding.encoder(reservoir_states=(rs_train, rs_test), target=(y_train, y_test), readout_modules=rsn_mapping, # pttn_lens=() ) df['alpha'] = np.round(alpha, 3) # reorganize the columns if 'module' in df.columns: df_subj.append(df[['module', 'n_nodes', 'alpha', 'score']]) else: df_subj.append(df[['alpha', 'score']]) df_subj =
pd.concat(df_subj, ignore_index=True)
pandas.concat
import warnings import pandas as pd import numpy as np from bokeh.plotting import figure from bokeh.models import ColumnDataSource from bokeh.models.widgets import Button from bokeh.models.callbacks import CustomJS from bokeh.models.layouts import Column from bokeh.io import output_file, show from astropy import units as u from astropy.utils.exceptions import AstropyDeprecationWarning from astropy.coordinates import SkyCoord, Distance from dustmaps.bayestar import BayestarWebQuery from gaia.gaia import calculate_distance_from_parallax from opencluster import PACKAGEDIR def interactive_CMD(specs,cid1='g_SDSS',cid2='i_SDSS'): ''' Simplistic tool to create an interactive bokeh plot where outliers can be marked and saved in '/home/ekaterina/Documents/appaloosa/stars_shortlist/share/temp' ''' # Create some random data and put it into a ColumnDataSource s = specs.set_index('EPIC') s = s[[cid1, cid2, 'e_'+cid1,'e_'+cid2]].dropna(how='any') x = list(s[cid1]-s[cid2]) y = list(s[cid2]) size = list(np.sqrt(s['e_'+cid1]**2+s['e_'+cid2]**2)*100.) z = list(s.index.values) source_data = ColumnDataSource(data=dict(x=x, y=y,desc=z)) # Create a button that saves the coordinates of selected data points to a file savebutton = Button(label="Save", button_type="success") savebutton.callback = CustomJS(args=dict(source_data=source_data), code=""" var inds = source_data.selected['1d'].indices; var data = source_data.data; var out = ""; for (i = 0; i < inds.length; i++) { out += data['desc'][inds[i]] + " "; } var file = new Blob([out], {type: 'text/plain'}); var elem = window.document.createElement('a'); elem.href = window.URL.createObjectURL(file); elem.download = 'selected-data.txt'; document.body.appendChild(elem); elem.click(); document.body.removeChild(elem); """) # Plot the data and save the html file p = figure(plot_width=800, plot_height=400, #y_range=(20,7), tools="lasso_select, reset, hover",) p.circle(x='x', y='y', source=source_data, fill_alpha=0.8)#add size='desc' to visualize uncertainties on mag p.xaxis.axis_label = '{}-{}'.format(cid1,cid2) p.yaxis.axis_label = cid1 plot = Column(p, savebutton) output_file("test.html") show(plot) return def correct_for_extinction(df, dustmap='bayestar2019', thresh=10): '''Correct for dust extinction using 3D dustmaps. Parameters: -------------- df : DataFrame stellar attributes including Gaia, 2MASS, PS1 dustmap : str Which dustmap to use. Check dustmap doc for more dustmaps. Default: Bayestar2019 ''' dft = df.loc[:,df.columns.str.contains("Gaia")].rename(columns = lambda x : str(x)[:-5]) dft = calculate_distance_from_parallax(dft, check_GoF=False) # Fill in the median cluster distance for targets without Gaia parallax: dft.loc[dft['distance'].isnull(),"distance"] = dft['distance'].median() d = np.abs(dft["distance"].values) * u.pc ra = dft.ra.values * u.deg dec = dft.dec.values * u.deg # validate distance, RA, and Dec assert len(d) == dft.shape[0] assert len(ra) == dft.shape[0] assert len(dec) == dft.shape[0] ext, ext_err, flags = query_dustmap_w_percentiles(d, ra, dec, dustmap=dustmap) # Add results from dustmap query to stars: df['{}_ext'.format(dustmap)] = ext df['{}_ext_err'.format(dustmap)] = ext_err df['{}_flags'.format(dustmap)] = flags #print(list(zip(df['{}_flags'.format(dustmap)].tolist(),d))) # Apply flags df.loc[df['{}_flags'.format(dustmap)] > thresh, #i.e. star too close or too far, or algorithm did not converge ['{}_ext_err'.format(dustmap), '{}_ext'.format(dustmap)] ] = np.nan # Convert to ext values for 2MASS and PanSTARRS # This table is Table 1 in http://argonaut.skymaps.info/usage conversion = dict(zip(['g_PS1', 'r_PS1', 'i_PS1', 'z_PS1', 'y_PS1', 'J_2MASS', 'H_2MASS', 'K_2MASS'], [3.518, 2.617, 1.971, 1.549, 1.263, 0.7927, 0.4690, 0.3026])) for key in conversion: # This nans everything that does not have extinction values given: # m_band_intrinsic = m_band_observed - extinction_value * conversion_factor df[key] -= (conversion[key] * df['{}_ext'.format(dustmap)]) # Propagate uncertainty in quadrature on extinction value to photometry: df['e_{}'.format(key)] = np.sqrt(df['e_{}'.format(key)]**2 + (conversion[key] * df['{}_ext_err'.format(dustmap)])**2) return df def query_dustmap_w_percentiles(d, ra, dec, dustmap='bayestar2019'): '''Query 3D dustmaps. Cite Green (2018) if you use them. This func queries the Bayestar2019 dust map remotely in default mode. (The web interface takes the same arguments as the local interface.) Parameters: ----------- d : 1d array with astropy units distance along the line of sight ra : 1d array with astropy units RA in ICRS dec: 1d array with astropy units Declination ICRS Return: --------- ext : 1-d array of floats Extinction value from given dustmap ext_err : 1-d array of floats uncertainty on ext flags : 1-d array of ints 0 : no extinction given 1 : uncertainties are symmetric below 0.05 2 : uncertainties are symmetric below 0.10 ''' with warnings.catch_warnings(): # silence warnings from astropy warnings.filterwarnings('ignore', category=RuntimeWarning, append=True) warnings.filterwarnings('ignore', category=AstropyDeprecationWarning, append=True) # Query dustmaps frm Bayestar2019: coords = SkyCoord(ra, dec, distance=d, frame='icrs') q = BayestarWebQuery(version=dustmap) E, quality = q(coords, mode='percentile', pct=[36,50,84], return_flags=True) # Make output numpy-ish E = np.array(E) Efl = np.nan_to_num(E) #print(quality) # Flag outputs that either have asymmetric uncertainties, or are NaNs; flags = (np.abs(2 * Efl[:,1]-Efl[:,0]-Efl[:,2]) < 0.1).astype(int) * 1 #acceptable uncertainty flags = (np.abs(2 * Efl[:,1]-Efl[:,0]-Efl[:,2]) < 0.05).astype(int) * 2 #low uncertainty flags[np.isnan(E[:,1])] += 4 #flags 1 and 2 failed to compute anything flags[~quality["reliable_dist"]] += 8 #too close or too far target flags[~quality["converged"]] += 16 #Algorithm did not converge # define extinction value and uncertainty as mean of percentiles: ext = E[:,1] ext_err = (E[:,2]-E[:,0]) / 2. return ext, ext_err, flags def K_2MASS_to_KBB(K_2MASS, J_K_BB, e_K_2MASS=0., e_J_K_BB=0.): ''' Kwargs are not yet tested! Parameters: ----------- K_2_MASS: Series of floats K_s 2MASS magnitude J_K_BB : Series of floats J-K Bessel and Brett e_K_2MASS : float uncertainty on K_s 2MASS magnitude e_JKBB : float uncertainty on J-K Bessel and Brett color Return: -------- K_BB : K in Bessel and Brett system e_K_BB : uncertainty on K_BB ''' e_K_BB = e_K_2MASS**2 + 0.007**2 + J_K_BB**2 * 0.005**2 + 0.001**2 * e_J_K_BB**2 K_BB = K_2MASS + 0.039 - 0.001 * J_K_BB return K_BB, e_K_BB def color_2MASS_to_BB(df): ''' Convert 2MASS J-K, H-K, and J-H to Bessel and Brett 1988 J-K, H-K, J-H, and K using relations from Carpenter2001. ''' def e_A_B(row, A, B, e_A, e_B): '''Calculate uncertainty on BB color.''' e_AB = np.sqrt(e_A**2 + e_B**2) return np.sqrt(e_AB**2 + ((A-B) * row.a1_sigma / row.a1)**2 + row.a0_sigma**2) / row.a1 conv = pd.read_csv('{}/static/BB_to_TWOMASS.csv'.format(PACKAGEDIR)) for index, row in conv.iterrows(): b1, b2 = list(row.color) dfb1, dfb2 = b1 + '_2MASS', b2 + '_2MASS' e_dfb1, e_dfb2 = 'e_' + b1 + '_2MASS', 'e_' + b2 + '_2MASS' f = lambda x: (x - row.a0) / row.a1 df['{}_{}_BB'.format(b1,b2)] = (df[dfb1] - df[dfb2]).apply(f) df['e_{}_{}_BB'.format(b1,b2)] = e_A_B(row, df[dfb1], df[dfb2], df[e_dfb1], df[e_dfb2]) df['K_BB'], df['e_K_BB'] = K_2MASS_to_KBB(df.K_2MASS, df.J_K_BB) return df def color_BB_to_Johnson(df): ''' Convert Bessel/Brett J-K, H-K, and J-H to Johnson J-K, H-K, J-H, and K using relations from Bessel and Brett 1988. ''' conv = pd.read_csv('{}/static/BB_to_Johnson.csv'.format(PACKAGEDIR)) for index, row in conv.iterrows(): b1, b2 = list(row.color) # "JH" -> ["J", "H"] bbcol = '{}_{}_BB'.format(b1,b2) e_bbcol = 'e_{}_{}_BB'.format(b1,b2) f = lambda x: row.a1 * x + row.a0 df['{}_{}_Johnson'.format(b1,b2)] = df[bbcol].apply(f) e_f = lambda e_x: row.a1 * e_x df['e_{}_{}_Johnson'.format(b1,b2)] = df[e_bbcol].apply(e_f) df['K_Johnson'] = df['K_BB'] df['e_K_Johnson'] = df['e_K_BB'] df['J_Johnson'] = df.J_K_Johnson+df.K_Johnson df['H_Johnson'] = df.H_K_Johnson+df.K_Johnson df['e_J_Johnson'] = np.sqrt(df.e_J_K_Johnson**2 + df.e_K_Johnson**2) df['e_H_Johnson'] = np.sqrt(df.e_H_K_Johnson**2 + df.e_K_Johnson**2) return df def color_2MASS_to_Johnson(df): ''' Wrap up the full conversion needed to use color-temperature relations in Boyajian+2013. Individual functions are tested. ''' df = color_2MASS_to_BB(df) df = color_BB_to_Johnson(df) return df def Teff_Boyajian(df): ''' Apply color-temperature relations from Boyajian et al. (2013). Drop values if the fall out of range. ''' df = color_2MASS_to_Johnson(df) colorcols = dict(zip(list('JHKgrizyBV'), ['J_Johnson','H_Johnson','K_Johnson', 'g_SDSS','r_SDSS','i_SDSS', 'z_SDSS','y_SDSS','B_K2','V_K2'])) bm = pd.read_csv('{}/static/boyajian13_optimized_for_Teff_calculation.csv'.format(PACKAGEDIR), skiprows=15) for index, row in bm.iterrows(): b1, b2 = list(row.color) dfb1, dfb2 = colorcols[b1], colorcols[b2] x = df[dfb1] - df[dfb2] feh = df['FeH'] x_err = np.sqrt(df["e_" + dfb1]**2 + df["e_" + dfb2]**2) #apply range for each CTR: x[((x < row.mag_min) | (x > row.mag_max))] = np.nan # apply [Fe/H] range # Boyajian's values are centered on solar with a spread about (-0.25; 0.25) x[((feh < -.25) | (feh > .25))] = np.nan teff = row.a0 + row.a1 * x + row.a2 * x**2 + row.a3 * x**3 Teffdes = 'Teff_{}_{}_Boy'.format(b1, b2) df[Teffdes] = teff df['e_' + Teffdes] = np.sqrt((row.a1 + row.a2 * 2 * x + row.a3 * 3 * x**2)**2 * x_err**2 + (row.sigma_percent / 100. * teff)**2) print("Number of {} ".format(Teffdes), df[Teffdes].count()) return df def Teff_Apsis(df, av_uncertainty=175., trange=(4099,6750)): """Use Apsis (Andrae et al. 2018) Teff values using the median uncertainty in a region with reliable estimates according to the paper. Parameters: ------------ df : DataFrame Return: ------ DataFrame """ # use Teffs from Apsis catalog cols = ["Teff_Apsis", "e_Teff_Apsis"] df[cols[0]] = df["teff_val_Gaia"] df[cols[1]] = av_uncertainty # remove all value that fall outside of reliabel regions condition = (df[cols[0]] > trange[0]) & (df[cols[0]] < trange[1]) & (df.BPRP_Gaia < 2.) df.loc[~condition, cols] = np.nan return df def mann_formula(x, p): ''' Parameters: ------------ x : 4-tuple of arrays of floats 0: colors, 1: J-H or Fe/H optional, 2: uncertainty on colors, 3: uncertainty on J-H or Fe/H p : Series coefficients from Mann+2015 Table 2 ''' sig_phot_squared = (p.b + 2 * x[0] * p.c + 3 * x[0]**2 * p.d + 4 * x[0]**3 * p.e)**2 * x[2]**2 * p.Teff_factor**2 if p.formula == 4: teff = p.a + x[0]*p.b + x[0]**2 * p.c + x[0]**3 * p.d + x[0]**4 * p.e elif p.formula == 6: teff = p.a + x[0]*p.b + x[0]**2 * p.c + x[0]**3 * p.d + x[0]**4 * p.e + x[1]*p.JH_FeH sig_phot_squared += p.JH_FeH**2 * x[3]**2 * p.Teff_factor**2 elif p.formula == 7: teff = p.a + x[0]*p.b + x[0]**2 * p.c + x[0]**3 * p.d + x[0]**4 * p.e + x[1]*p.JH_FeH + x[1]**2 * p.JH2 sig_phot_squared += (p.JH_FeH + p.JH2 * 2)**2 * x[3]**2 * p.Teff_factor**2 # if no uncertainties on colors are given, use 500 K to blow up uncertainties sig_phot_squared[np.isnan(sig_phot_squared)] = 250000 sig_teff = np.sqrt(sig_phot_squared + p.add_in_quadrature_K**2 + p.sigma**2) return teff * p.Teff_factor, sig_teff def Teff_Mann(df): ''' Apply color-temperature relations from the Erratum to Mann+2015. Gaia uncertainties on extinction NOT included. ''' mm = pd.read_csv('{}/static/mann15_optimized_for_Teff_calculation.csv'.format(PACKAGEDIR)) colorcols = dict(zip(['r','z','J','BP','RP', 'E_BP_RP'], ['r_SDSS','z_SDSS', 'J_2MASS', 'BP_Gaia','RP_Gaia','e_bp_min_rp_val_Gaia'])) # the last one is for extinction for index, row in mm.iterrows(): #if Gaia apply corrected BP-RP if row.c1=="BP": color = df["BPRP_Gaia_corr"] err = df["e_BPRP_Gaia_corr"] else: color = df[colorcols[row.c1]] - df[colorcols[row.c2]] err = np.sqrt(df["e_" + colorcols[row.c1]]**2 + df["e_" + colorcols[row.c2]]**2) if row.extra == 'isJH': extra = df.J_2MASS - df.H_2MASS extra_err = np.sqrt(df.e_J_2MASS**2 + df.e_H_2MASS**2) elif row.extra == 'FeH': extra = df.FeH extra_err = df.e_FeH else: extra =
pd.Series()
pandas.Series
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/04_Create_Acs_Indicators.ipynb (unless otherwise specified). __all__ = ['getColName', 'getColByName', 'addKey', 'nullIfEqual', 'sumInts', 'age5', 'age18', 'age24', 'age64', 'age65', 'bahigher', 'carpool', 'drvalone', 'elheat', 'empl', 'fam', 'female', 'femhhs', 'heatgas', 'hisp', 'hh25inc', 'hh40inc', 'hh60inc', 'hh75inc', 'hhchpov', 'hhm75', 'hhs', 'hsdipl', 'lesshs', 'male', 'mhhi', 'drvalone', 'novhcl', 'nohhint', 'othercom', 'paa', 'p2more', 'pasi', 'pubtran', 'pwhite', 'sclemp', 'tpop', 'trav14', 'trav14', 'trav45', 'trav44', 'unempr', 'unempr', 'walked', 'createAcsIndicator'] # Cell #@title Run This Cell: Misc Function Declarations # These functions right here are used in the calculations below. # Finds a column matchings a substring def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] # Pulls a column from one dataset into a new dataset. # This is not a crosswalk. calls getColByName() def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi # Return 0 if two specified columns are equal. def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) # I'm thinking this doesnt need to be a function.. def sumInts(df): return df.sum(numeric_only=True) # Cell #@title Run This Cell: Create age5 #File: age5.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age5( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_027E_Total_Female_Under_5_years', 'B01001_003E_Total_Male_Under_5_years', 'B01001_001E_Total' , 'tract'] columns.extend(columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df[ 'B01001_003E_Total_Male_Under_5_years' ] + df[ 'B01001_027E_Total_Female_Under_5_years' ] ) / df['B01001_001E_Total'] * 100 return fi # Cell #@title Run This Cell: age18 #File: age18.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age18( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_001E_Total', 'B01001_004E_Total_Male_5_to_9_years', 'B01001_005E_Total_Male_10_to_14_years' , 'B01001_006E_Total_Male_15_to_17_years', 'B01001_028E_Total_Female_5_to_9_years', 'B01001_029E_Total_Female_10_to_14_years' , 'B01001_030E_Total_Female_15_to_17_years'] columns = df.filter(regex='001E|004E|005E|006E|028E|029E|030E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='004E|005E|006E|028E|029E|030E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: Create age24 #File: age24.py #Author: <NAME> #Date: 9/8/21 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age24( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_007E_Total_Male_18_and_19_years', 'B01001_008E_Total_Male_20_years', 'B01001_009E_Total_Male_21_years' , 'B01001_010E_Total_Male_22_to_24_years' , 'B01001_031E_Total_Female_18_and_19_years' , 'B01001_032E_Total_Female_20_years' , 'B01001_033E_Total_Female_21_years' , 'B01001_034E_Total_Female_22_to_24_years', 'tract'] columns.extend(columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df[ 'B01001_007E_Total_Male_18_and_19_years' ] + df[ 'B01001_008E_Total_Male_20_years' ] + df[ 'B01001_009E_Total_Male_21_years' ] + df[ 'B01001_010E_Total_Male_22_to_24_years' ] + df[ 'B01001_031E_Total_Female_18_and_19_years' ] + df[ 'B01001_032E_Total_Female_20_years' ] + df[ 'B01001_033E_Total_Female_21_years' ] + df[ 'B01001_034E_Total_Female_22_to_24_years' ] ) / df['B01001_001E_Total'] * 100 return fi # Cell #@title Run This Cell: age64 import pandas as pd import glob def age64( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='012E|013E|014E|015E|016E|017E|018E|019E|036E|037E|038E|039E|040E|041E|042E|043E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='012E|013E|014E|015E|016E|017E|018E|019E|036E|037E|038E|039E|040E|041E|042E|043E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: age65 import pandas as pd import glob def age65( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|020E|021E|022E|023E|024E|025E|044E|045E|046E|047E|048E|049E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='020E|021E|022E|023E|024E|025E|044E|045E|046E|047E|048E|049E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: bahigher import pandas as pd import glob def bahigher( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='005E|006E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='005E|006E').sum(axis=1) ) / df['B06009_001E'] * 100 return fi # Cell #@title Run This Cell: - carpool import pandas as pd import glob def carpool( df, columnsToInclude ): # Final Dataframe fi = pd.DataFrame() columns = df.filter(regex='001E|049E|017E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_017E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: - drvalone import pandas as pd import glob def drvalone( df, columnsToInclude ): # Final Dataframe fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -elheat import pandas as pd import glob def elheat( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='B25040_004E|B25040_001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B25040_004E').sum(axis=1) ) / ( df.filter(regex='B25040_001E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -empl import pandas as pd import glob def empl( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -fam import pandas as pd import glob def fam( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -female import pandas as pd import glob def female( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['female'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -femhhs import pandas as pd import glob def femhhs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['femhhs'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -heatgas import pandas as pd import glob def heatgas( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: hisp import pandas as pd import glob def hisp( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B03002_001E_Total', 'B03002_012E_Total_Hispanic_or_Latino'] columns = df.filter(regex='001E|012E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) print(' ') fi['final'] = ( df.filter(regex='012E').sum(axis=1) ) / df['B03002_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: hh25inc import pandas as pd import glob def hh25inc( df, columnsToInclude ): df.columns = df.columns.str.replace(r"[$]", "") fi = pd.DataFrame() columns = ['B19001_001E_Total', "B19001_002E_Total_Less_than_10,000", "B19001_003E_Total_10,000_to_14,999", "B19001_004E_Total_15,000_to_19,999", "B19001_005E_Total_20,000_to_24,999"] columns = df.filter(regex='002E|003E|004E|005E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey col: ', col, df.columns) fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='002E|003E|004E|005E').sum(axis=1) ) / df['B19001_001E_Total:'] * 100 return fi # Cell #@ title Run This Cell: -hh40inc import pandas as pd import glob def hh40inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hh60inc import pandas as pd import glob def hh60inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hh75inc import pandas as pd import glob def hh75inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhchpov import pandas as pd import glob def hhchpov( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhm75 import pandas as pd import glob def hhm75( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhs import pandas as pd import glob def hhs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hsdipl import pandas as pd import glob def hsdipl( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -lesshs import pandas as pd import glob def lesshs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -male import pandas as pd import glob def male( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell # @title Run This Cell : Create MHHI #File: mhhi.py #Author: <NAME> #Date: 1/24/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2016 INFLATION-ADJUSTED DOLLARS) # Universe: Households # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Sustainability - Percent of Population that Walks to Work Indicator #input: #output: import pandas as pd import glob def mhhi( df, columnsToInclude = [] ): info = pd.DataFrame( [ ['B19001_002E', 0, 10000], ['B19001_003E', 10000, 4999 ], ['B19001_004E', 15000, 4999 ], ['B19001_005E', 20000, 4999 ], ['B19001_006E', 25000, 4999 ], ['B19001_007E', 30000, 4999], ['B19001_008E', 35000, 4999 ], ['B19001_009E', 40000, 4999 ], ['B19001_010E', 45000, 4999 ], ['B19001_011E', 50000, 9999 ], ['B19001_012E', 60000, 14999], ['B19001_013E', 75000, 24999 ], ['B19001_014E', 100000, 24999 ], ['B19001_015E', 125000, 24999 ], ['B19001_016E', 150000, 49000 ], ['B19001_017E', 200000, 1000000000000000000000000 ], ], columns=['variable', 'lower', 'range'] ) # Final Dataframe data_table = pd.DataFrame() for index, row in info.iterrows(): data_table = addKey(df, data_table, row['variable']) # Accumulate totals accross the columns. # Midpoint: Divide column index 16 (the last column) of the cumulative totals temp_table = data_table.cumsum(axis=1) temp_table['midpoint'] = (temp_table.iloc[ : , -1 :] /2) # V3 temp_table['midpoint_index'] = False temp_table['midpoint_index_value'] = False # Z3 temp_table['midpoint_index_lower'] = False # W3 temp_table['midpoint_index_range'] = False # X3 temp_table['midpoint_index_minus_one_cumulative_sum'] = False #Y3 # step 3 - csa_agg3: get the midpoint index by "when midpoint > agg[1] and midpoint <= agg[2] then 2" # Get CSA Midpoint Index using the breakpoints in our info table. for index, row in temp_table.iterrows(): # Get the index of the first column where our midpoint is greater than the columns value. midpoint = row['midpoint'] midpoint_index = 0 # For each column (except the 6 columns we just created) # The tracts midpoint was < than the first tracts value at column 'B19001_002E_Total_Less_than_$10,000' if( midpoint < int(row[0]) or row[-6] == False ): temp_table.loc[ index, 'midpoint_index' ] = 0 else: for column in row.iloc[:-6]: # set midpoint index to the column with the highest value possible that is under midpoint if( midpoint >= int(column) ): if midpoint==False: print (str(column) + ' - ' + str(midpoint)) temp_table.loc[ index, 'midpoint_index' ] = midpoint_index +1 midpoint_index += 1 # temp_table = temp_table.drop('Unassigned--Jail') for index, row in temp_table.iterrows(): temp_table.loc[ index, 'midpoint_index_value' ] = data_table.loc[ index, data_table.columns[row['midpoint_index']] ] temp_table.loc[ index, 'midpoint_index_lower' ] = info.loc[ row['midpoint_index'] ]['lower'] temp_table.loc[ index, 'midpoint_index_range' ] = info.loc[ row['midpoint_index'] ]['range'] temp_table.loc[ index, 'midpoint_index_minus_one_cumulative_sum'] = row[ row['midpoint_index']-1 ] # This is our denominator, which cant be negative. for index, row in temp_table.iterrows(): if row['midpoint_index_value']==False: temp_table.at[index, 'midpoint_index_value']=1; #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # Calculation = (midpoint_lower::numeric + (midpoint_range::numeric * ( (midpoint - midpoint_upto_agg) / nullif(midpoint_total,0) # Calculation = W3+X3*((V3-Y3)/Z3) # v3 -> 1 - midpoint of households == sum / 2 # w3 -> 2 - lower limit of the income range containing the midpoint of the housing total == row[lower] # x3 -> width of the interval containing the medium == row[range] # z3 -> number of hhs within the interval containing the median == row[total] # y3 -> 4 - cumulative frequency up to, but no==NOT including the median interval #~~~~~~~~~~~~~~~ def finalCalc(x): return ( x['midpoint_index_lower']+ x['midpoint_index_range']*( ( x['midpoint']-x['midpoint_index_minus_one_cumulative_sum'])/ x['midpoint_index_value'] ) ) temp_table['final'] = temp_table.apply(lambda x: finalCalc(x), axis=1) temp_table[columnsToInclude] = df[columnsToInclude] return temp_table # Cell #@ title Run This Cell: -nilf import pandas as pd import glob def drvalone( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: novhcl import pandas as pd import glob def novhcl( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B08201_002E_Total_No_vehicle_available','B08201_001E_Total'] columns = df.filter(regex='002E|003E|004E|005E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='002E').sum(axis=1) ) / df['B08201_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: nohhint import pandas as pd import glob def nohhint( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B28011_001E_Total', 'B28011_002E_Total_With_an_Internet_subscription', 'B28011_003E_Total_With_an_Internet_subscription_Dial-up_alone', 'B28011_004E_Total_With_an_Internet_subscription_Broadband_such_as_cable,_fiber_optic,_or_DSL', 'B28011_005E_Total_With_an_Internet_subscription_Satellite_Internet_service', 'B28011_006E_Total_With_an_Internet_subscription_Other_service', 'B28011_007E_Total_Internet_access_without_a_subscription', 'B28011_008E_Total_No_Internet_access'] columns = df.filter(regex='008E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'col: ', col) fi = addKey(df, fi, col) print(' ') # Calculate fi['nohhint'] = ( df.filter(regex='008E').sum(axis=1) ) / df['B28011_001E_Total:'] * 100 return fi # Cell #@ title Run This Cell: -othercom import pandas as pd import glob def othercom( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['othercom'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: paa import pandas as pd import glob def paa( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B03002_001E_Total:', 'B03002_004E_Total_Not_Hispanic_or_Latino_Black_or_African_American_alone'] columns = df.filter(regex='001E|004E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) fi['paa'] = ( df.filter(regex='004E').sum(axis=1) ) / df['B03002_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: -p2more import pandas as pd import glob def p2more( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: -pasi *** import pandas as pd import glob def pasi( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='006E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: -pubtran import pandas as pd import glob def pubtran( df, columnsToInclude ): fi =
pd.DataFrame()
pandas.DataFrame
from copy import deepcopy from typing import List from typing import Tuple import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from etna.datasets import generate_ar_df from etna.datasets.tsdataset import TSDataset from etna.transforms import AddConstTransform from etna.transforms import FilterFeaturesTransform from etna.transforms import LagTransform from etna.transforms import MaxAbsScalerTransform from etna.transforms import OneHotEncoderTransform from etna.transforms import SegmentEncoderTransform from etna.transforms import TimeSeriesImputerTransform @pytest.fixture() def tsdf_with_exog(random_seed) -> TSDataset: df_1 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-02-01", "2021-07-01", freq="1d")}) df_2 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-02-01", "2021-07-01", freq="1d")}) df_1["segment"] = "Moscow" df_1["target"] = [x ** 2 + np.random.uniform(-2, 2) for x in list(range(len(df_1)))] df_2["segment"] = "Omsk" df_2["target"] = [x ** 0.5 + np.random.uniform(-2, 2) for x in list(range(len(df_2)))] classic_df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(classic_df) classic_df_exog = generate_ar_df(start_time="2021-01-01", periods=600, n_segments=2) classic_df_exog.rename(columns={"target": "exog"}, inplace=True) df_exog = TSDataset.to_dataset(classic_df_exog) ts = TSDataset(df=df, df_exog=df_exog, freq="1D") return ts @pytest.fixture() def df_and_regressors() -> Tuple[pd.DataFrame, pd.DataFrame, List[str]]: timestamp = pd.date_range("2021-01-01", "2021-02-01") df_1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp[5:], "target": 12, "segment": "2"}) df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(df) timestamp = pd.date_range("2020-12-01", "2021-02-11") df_1 = pd.DataFrame({"timestamp": timestamp, "regressor_1": 1, "regressor_2": 2, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp[5:], "regressor_1": 3, "regressor_2": 4, "segment": "2"}) df_exog = pd.concat([df_1, df_2], ignore_index=True) df_exog = TSDataset.to_dataset(df_exog) return df, df_exog, ["regressor_1", "regressor_2"] @pytest.fixture() def df_and_regressors_flat() -> Tuple[pd.DataFrame, pd.DataFrame]: """Return flat versions of df and df_exog.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df_1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp[5:], "target": 12, "segment": "2"}) df = pd.concat([df_1, df_2], ignore_index=True) timestamp = pd.date_range("2020-12-01", "2021-02-11") df_1 = pd.DataFrame( {"timestamp": timestamp, "regressor_1": 1, "regressor_2": "3", "regressor_3": 5, "segment": "1"} ) df_2 = pd.DataFrame( {"timestamp": timestamp[5:], "regressor_1": 2, "regressor_2": "4", "regressor_3": 6, "segment": "2"} ) df_exog = pd.concat([df_1, df_2], ignore_index=True) df_exog["regressor_2"] = df_exog["regressor_2"].astype("category") df_exog["regressor_3"] = df_exog["regressor_3"].astype("category") return df, df_exog @pytest.fixture def ts_with_categoricals(): timestamp = pd.date_range("2021-01-01", "2021-01-05") df_1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp, "target": 12, "segment": "2"}) df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(df) timestamp = pd.date_range("2021-01-01", "2021-01-06") categorical_values = ["1", "2", "1", "2", "1", "2"] df_1 = pd.DataFrame( {"timestamp": timestamp, "regressor": categorical_values, "not_regressor": categorical_values, "segment": "1"} ) df_2 = pd.DataFrame( {"timestamp": timestamp, "regressor": categorical_values, "not_regressor": categorical_values, "segment": "2"} ) df_exog = pd.concat([df_1, df_2], ignore_index=True) df_exog = TSDataset.to_dataset(df_exog) ts = TSDataset(df=df, freq="D", df_exog=df_exog, known_future=["regressor"]) return ts @pytest.fixture() def ts_future(example_reg_tsds): future = example_reg_tsds.make_future(10) return future @pytest.fixture def df_segments_int(): """DataFrame with integer segments.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df1 = pd.DataFrame({"timestamp": timestamp, "target": 3, "segment": 1}) df2 = pd.DataFrame({"timestamp": timestamp, "target": 4, "segment": 2}) df = pd.concat([df1, df2], ignore_index=True) return df def test_check_endings_error(): """Check that _check_endings method raises exception if some segments end with nan.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df2 = pd.DataFrame({"timestamp": timestamp[:-5], "target": 12, "segment": "2"}) df = pd.concat([df1, df2], ignore_index=True) df = TSDataset.to_dataset(df) ts = TSDataset(df=df, freq="D") with pytest.raises(ValueError): ts._check_endings() def test_check_endings_pass(): """Check that _check_endings method passes if there is no nans at the end of all segments.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df2 =
pd.DataFrame({"timestamp": timestamp, "target": 12, "segment": "2"})
pandas.DataFrame
import sys import pandas as pd from rich import print from rich.table import Table from rich.box import MINIMAL import bgheatmaps as bgh from pathlib import Path import brainrender from myterial import blue_light, blue_lighter sys.path.append("./") from data.dbase import db_tables brainrender.settings.BACKGROUND_COLOR = "white" save_fld = Path(r"D:\Dropbox (UCL)\Rotation_vte\Locomotion\analysis\ephys") """ Gets the total number of units for each brain region across all recordings. It prints the count in a nicely formatted table + creates a heatmap to display the numbers. """ # ---------------------------------------------------------------------------- # # get/count units # # ---------------------------------------------------------------------------- # recordings = (db_tables.Recording).fetch(as_dict=True) all_units = [] for recording in recordings: cf = recording["recording_probe_configuration"] units = db_tables.Unit.get_session_units( recording["name"], cf, spikes=True, firing_rate=False, frate_window=100, ) units["probe_configuration"] = [cf] * len(units) units["recording"] = [recording["mouse_id"]] * len(units) units_regions = [] for i, unit in units.iterrows(): if "RSP" in unit.brain_region: units_regions.append("RSP") elif "VISp" in unit.brain_region: units_regions.append("VISp") else: units_regions.append(unit.brain_region) units["brain_region"] = units_regions # rsites = pd.DataFrame( # ( # db_tables.Probe.RecordingSite # & recording # & f'probe_configuration="{cf}"' # ).fetch() # ) if not len(units): continue all_units.append(units) all_units =
pd.concat(all_units)
pandas.concat
# Series of helper classes and functions specific to this project. from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import os import pandas as pd #---------- Classes ---------- # class DroneAttributes(object): """Drone attributes as a function of time, derived from log file data.""" def __init__(self, log_file_name): self._log_file_dict = None self._load_log(log_file_name) @property def log_file_dict(self): return self._log_file_dict @property def airspeed(self): array_t = np.array(self.local_velocity.index) array_airspeed_mag = np.linalg.norm(self.local_velocity, axis=1) df = pd.DataFrame(array_airspeed_mag, index=array_t, columns=["mag"]) df.index.name = "t" return df @property def airspeed_rate(self): df = self.airspeed # Keep only 1 row out of each 100 rows. # This reduces problems of divenging derivatives if dividing by a very small time step. df = df.iloc[::100,:] t0 = df.index[:-1].values # All values, excluding the last one. t1 = df.index[1:].values # All values, excluding the first one. delta_t = t1-t0 airspeed_t0 = df.mag.iloc[0:-1].values # All values, excluding the last one. airspeed_t1 = df.mag.iloc[1:].values # All values, excluding the first one. delta_airspeed = airspeed_t1 - airspeed_t0 data = np.array([delta_t, delta_airspeed]).T df = pd.DataFrame(data, index=t1, columns=["delta_t", "delta_airspeed"]) df.index.name = "t" df = df[df.delta_t != 0] # Drop all lines where delta_t equals 0 (would cause NaN or Inf values) df["mag"] = df["delta_airspeed"] / df["delta_t"] df = df.drop(columns=["delta_t", "delta_airspeed"]) return df @property def global_position(self): l = self._log_file_dict["GLOBAL_POSITION"] df =
pd.DataFrame(l, columns=["t","lat","lon","alt"], dtype=np.float32)
pandas.DataFrame
# -*- coding: utf-8 -*- """<EMAIL>. 功能描述:one hot encoding for manifacture name """ import os from pyspark.sql import SparkSession from dataparepare import * from interfere import * from pdu_feature import * from pyspark.sql.types import * from pyspark.sql.functions import pandas_udf, PandasUDFType from pyspark.sql.functions import monotonically_increasing_id from pyspark.sql.functions import regexp_replace from pyspark.sql.functions import concat from pyspark.sql.functions import broadcast from pyspark.sql.functions import isnull import pandas as pd import numpy from pyspark.sql import Window from pyspark.sql.functions import rank def prepare(): os.environ["PYSPARK_PYTHON"] = "python3" # 读取s3桶中的数据 spark = SparkSession.builder \ .master("yarn") \ .appName("CPA&GYC match refactor") \ .config("spark.driver.memory", "2g") \ .config("spark.executor.cores", "2") \ .config("spark.executor.instances", "2") \ .config("spark.executor.memory", "2g") \ .config('spark.sql.codegen.wholeStage', False) \ .config("spark.sql.execution.arrow.enabled", "true") \ .getOrCreate() access_key = os.getenv("AWS_ACCESS_KEY_ID") secret_key = os.getenv("AWS_SECRET_ACCESS_KEY") if access_key is not None: spark._jsc.hadoopConfiguration().set("fs.s3a.access.key", access_key) spark._jsc.hadoopConfiguration().set("fs.s3a.secret.key", secret_key) spark._jsc.hadoopConfiguration().set("fs.s3a.impl","org.apache.hadoop.fs.s3a.S3AFileSystem") spark._jsc.hadoopConfiguration().set("com.amazonaws.services.s3.enableV4", "true") # spark._jsc.hadoopConfiguration().set("fs.s3a.aws.credentials.provider","org.apache.hadoop.fs.s3a.BasicAWSCredentialsProvider") spark._jsc.hadoopConfiguration().set("fs.s3a.endpoint", "s3.cn-northwest-1.amazonaws.com.cn") return spark @pandas_udf(DoubleType(), PandasUDFType.SCALAR) def efftiveness_with_jaro_winkler_similarity_in_hc_mapping(cn, sn): def jaro_similarity(s1, s2): # First, store the length of the strings # because they will be re-used several times. # len_s1 = 0 if s1 is None else len(s1) # len_s2 = 0 if s2 is None else len(s2) len_s1, len_s2 = len(s1), len(s2) # The upper bound of the distance for being a matched character. match_bound = max(len_s1, len_s2) // 2 - 1 # Initialize the counts for matches and transpositions. matches = 0 # no.of matched characters in s1 and s2 transpositions = 0 # no. of transpositions between s1 and s2 flagged_1 = [] # positions in s1 which are matches to some character in s2 flagged_2 = [] # positions in s2 which are matches to some character in s1 # Iterate through sequences, check for matches and compute transpositions. for i in range(len_s1): # Iterate through each character. upperbound = min(i + match_bound, len_s2 - 1) lowerbound = max(0, i - match_bound) for j in range(lowerbound, upperbound + 1): if s1[i] == s2[j] and j not in flagged_2: matches += 1 flagged_1.append(i) flagged_2.append(j) break flagged_2.sort() for i, j in zip(flagged_1, flagged_2): if s1[i] != s2[j]: transpositions += 1 if matches == 0: return 0 else: return ( 1 / 3 * ( matches / len_s1 + matches / len_s2 + (matches - transpositions // 2) / matches ) ) def jaro_winkler_similarity(s1, s2, p=0.1, max_l=4): if not 0 <= max_l * p <= 1: print("The product `max_l * p` might not fall between [0,1].Jaro-Winkler similarity might not be between 0 and 1.") # Compute the Jaro similarity jaro_sim = jaro_similarity(s1, s2) # Initialize the upper bound for the no. of prefixes. # if user did not pre-define the upperbound, # use shorter length between s1 and s2 # Compute the prefix matches. l = 0 # zip() will automatically loop until the end of shorter string. for s1_i, s2_i in zip(s1, s2): if s1_i == s2_i: l += 1 else: break if l == max_l: break # Return the similarity value as described in docstring. return jaro_sim + (l * p * (1 - jaro_sim)) frame = { "NAME": cn, "STANDARD_NAME": sn, } df =
pd.DataFrame(frame)
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import tempfile import typing as tp from pathlib import Path from unittest.mock import patch import pandas as pd import numpy as np from ...common import testing from . import datasets def test_get_dataset_filepath() -> None: name = "__ Test Dataset __" assert name not in datasets._NAMED_URLS datasets._NAMED_URLS[name] = "file://{}".format(Path(__file__).absolute()) with patch("requests.get") as req: req.return_value.content = b"blublu" filepath = datasets.get_dataset_filepath(name) assert filepath.exists() with filepath.open("r") as f: text = f.read() try: assert "blublu" in text, f"Found text:\n{text}" # this is my file :) except AssertionError as e: raise e finally: filepath.unlink() np.testing.assert_raises(ValueError, datasets.get_dataset_filepath, "Bidule") del datasets._NAMED_URLS[name] assert not filepath.exists() assert name not in datasets._NAMED_URLS # make sure it is clean @testing.parametrized( german_towns=( "German towns", """# Hey, this is a comment # 320.9 13024 346.5 320.9 13024 346.5 """, [[320.9, 13024, 346.5], [320.9, 13024, 346.5]], ), ruspini=( "Ruspini", """ 5 74 11 59""", [[5, 74], [11, 59]], ), ) def test_get_data(name: str, text: str, expected: tp.List[tp.List[float]]) -> None: with tempfile.TemporaryDirectory() as tmp: # create an example file filepath = Path(tmp) / "example.txt" with filepath.open("w") as f: f.write(text) # get the output with patch("nevergrad.functions.mlda.datasets.get_dataset_filepath") as path_getter: path_getter.return_value = filepath output = datasets.get_data(name) np.testing.assert_array_equal(output, expected) @testing.parametrized(**{name: (name,) for name in datasets._NAMED_URLS}) def test_mocked_data(name: str) -> None: with datasets.mocked_data(): # this test makes sure we are able to mock all data, so that xp tests can run data = datasets.get_data(name) assert isinstance(data, (np.ndarray, pd.DataFrame)) def test_make_perceptron_data() -> None: for name, value in [("quadratic", 0.02028), ("sine", 0.14191), ("abs", 0.1424), ("heaviside", 1)]: data = datasets.make_perceptron_data(name) np.testing.assert_equal(data.shape, (50, 2)) np.testing.assert_almost_equal(data[28, 0], 0.1424) np.testing.assert_almost_equal(data[28, 1], value, decimal=5, err_msg=f"Wrong value for {name}") def test_xls_get_data() -> None: with tempfile.TemporaryDirectory() as tmp: # create an example file filepath = Path(tmp) / "example.xls" df =
pd.DataFrame(columns=["a", "b"], data=[[1, 2], [3, 4]])
pandas.DataFrame
import datetime as dt import matplotlib.pyplot as plt import lifetimes import numpy as np import os import pandas as pd import seaborn as sns def numcard(x): return x.nunique(), len(x) def todateclean(x): return pd.to_datetime(x, errors='coerce').dt.date.astype('datetime64') """ - info, shape, dtypes - df.isnull().sum() #Check for null counts/ value_counts() - Check for supposed imputed values (are there suspicious values of 0, like for Age. ) - change zeros to nans where appropriate - Imputation of missing values - handle stringified json - df.dtypes # in case obj to (df.colname = df.colname.astype("category")) - df['colname'] = pd.to_datetime(df['colname']).dt.date - df.drop("colname", axis=1) # drop columns - How balanced are the outcomes? X = df.drop("diagnosis", axis=1) # just saying which axis again Y = df["diagnosis"] # this is just a series now col = X.columns # if we do type(col), it's an Index X.isnull().sum() # this covers every column in the df. def rangenorm(x): return (x - x.mean())/(x.max() - x.min()) le = LabelEncoder() le.fit(Y_norm) """ df = pd.read_csv("./ignoreland/onlineretail.csv") df.info() df.apply(lambda x: numcard(x)) datecols = ['InvoiceDate'] df.loc[:, datecols] = df.loc[:,datecols].apply(lambda x: todateclean(x)) dfnew = df[(df.Quantity>0) & (df.CustomerID.isnull()==False)] dfnew['amt'] = dfnew['Quantity'] * dfnew['UnitPrice'] dfnew.describe() from lifetimes.plotting import * from lifetimes.utils import * observation_period_end = '2011-12-09' monetary_value_col = 'amt' modeldata = summary_data_from_transaction_data(dfnew, 'CustomerID', 'InvoiceDate', monetary_value_col=monetary_value_col, observation_period_end=observation_period_end) modeldata.head() modeldata.info() # 4 floats. # Eyeball distribution of frequency (calculated) modeldata['frequency'].plot(kind='hist', bins=50) print(modeldata['frequency'].describe()) print(modeldata['recency'].describe()) print(sum(modeldata['frequency'] == 0)/float(len(modeldata))) ##### Lec21 from lifetimes import BetaGeoFitter # similar to lifelines bgf = BetaGeoFitter(penalizer_coef=0.0) # no regularization param. bgf.fit(modeldata['frequency'], modeldata['recency'], modeldata['T']) print(bgf) # See https://www.youtube.com/watch?v=guj2gVEEx4s and # https://www.youtube.com/watch?v=gx6oHqpRgpY ## residual lifetime value is more useful construct from lifetimes.plotting import plot_frequency_recency_matrix plot_frequency_recency_matrix(bgf) from lifetimes.plotting import plot_probability_alive_matrix plot_probability_alive_matrix(bgf) # lec 24: # set an outer time boundary and predict cumulative purchases by that time t = 10 # from now until now+t periods modeldata['predicted_purchases'] = \ bgf.conditional_expected_number_of_purchases_up_to_time(t, modeldata['frequency'], modeldata['recency'], modeldata['T']) modeldata.sort_values(by='predicted_purchases').tail(5) modeldata.sort_values(by='predicted_purchases').head(5) # lec 25: validation of model from lifetimes.plotting import plot_period_transactions plot_period_transactions(bgf) # this plot shows very clearly the model performance # in terms of transaction volume fit # Lec 26: splitting into train and test (by time period) summary_cal_holdout = calibration_and_holdout_data(df, 'CustomerID', 'InvoiceDate', calibration_period_end='2011-06-08', observation_period_end='2011-12-09') summary_cal_holdout.head() bgf.fit(summary_cal_holdout['frequency_cal'], summary_cal_holdout['recency_cal'], summary_cal_holdout['T_cal']) from lifetimes.plotting import plot_calibration_purchases_vs_holdout_purchases plot_calibration_purchases_vs_holdout_purchases(bgf, summary_cal_holdout) from lifetimes.plotting import plot_history_alive days_since_birth = 365 fig = plt.figure(figsize=(12,8)) id = 14621 # choose a customer id sp_trans = df.loc[df['CustomerID'] == id] # specific customer's covariates plot_history_alive(bgf, days_since_birth, sp_trans, 'InvoiceDate') # Lec28: Subsetting to customers who repurchase. returning_customers_summary = modeldata[modeldata['frequency']>0] returning_customers_summary.head() returning_customers_summary.shape # Lec 29: gamma-gamma model for LTV # Note: good practice to confirm small/no apparent corr for frequency and mean trxn value # Rev per trxn: predict total monetary value. # The Beta param for the gamma model of total spend is itself assumed gamma distributed # that is where the name comes from. # teh expectation of total spend for person i is calculated in empirical-bayes fashion, as a weighted # mean of population average and the sample mean for person i. # eq 5 in http://www.brucehardie.com/notes/025/gamma_gamma.pdf shows the arithmetic # https://antonsruberts.github.io/lifetimes-CLV/ also great additional code. # derivation here: http://www.brucehardie.com/notes/025/gamma_gamma.pdf # Output of ggf fitter: # p = the 'alpha' param in the gamma dist: E(Z|p, v) = p/v. Alpha adds upon convolution. # q = the alpha param in the gamma dist of v -- v is gamma(q, gam) in the pop # v = the 'beta' param in gamma dist. constant upon convolution. # -- Note that v varies among customers (ie, is gamma distributed) from lifetimes import GammaGammaFitter ggf = GammaGammaFitter(penalizer_coef=0.0) ggf.fit(returning_customers_summary['frequency'], returning_customers_summary['monetary_value']) ggf.summary ggf.conditional_expected_average_profit(modeldata['frequency'], modeldata['monetary_value']) # cond_exp_avg_profit => gives prediction of mean trxn value. a0 = returning_customers_summary['monetary_value'].shape[0] # 2790 customers # Total spend: a1 = returning_customers_summary['monetary_value'].sum() # Total time units (here, days) with purchase: a2 = returning_customers_summary['frequency'].sum() # Mean monetary value (over all purchase days), roughly equal to estimated v returning_customers_summary['monetary_value'].mean() ggf.summary p_here = ggf.summary.iloc[0,0] q_here = ggf.summary.iloc[1,0] v_here = ggf.summary.iloc[2,0] # model says 486; empirical average is 477. money_per_customer = a1/a0 ############### # review, per documentation: bgf.summary # r, alpha = shape, scale for gamma dist that represents sum (convolution) of purchase rates # a = alpha param for beta dist of churn # b = beta param for beta dist of churn x = np.random.gamma(.784, 49.28,10000) # r, alpha, n bgf.summary.loc["a",:][0]/ (bgf.summary.loc["b",:][0] + bgf.summary.loc["a",:][0]) ################################### # lec31: other models dfnew.dtypes dfnew_train = dfnew[dfnew.InvoiceDate < '2011-11-09'] dfnew_test = dfnew[dfnew.InvoiceDate >= '2011-11-09'] dfnew_test.shape dfnew_train.shape maxdate = dfnew_train.InvoiceDate.max() mindate = dfnew_train.InvoiceDate.min() dfnew_train['duration'] = (maxdate - dfnew_train.InvoiceDate)/np.timedelta64(1,'D') dfsum1 = dfnew_train.groupby(['CustomerID'])['duration'].min().reset_index() dfsum1.rename(columns = {'duration':'lasttime'}, inplace=True) # time from lasttime to now dfsum2 = dfnew_train.groupby(['CustomerID'])['duration'].max().reset_index() dfsum2.rename(columns = {'duration':'firsttime'}, inplace=True) # time from firsttime to now dfnew_train['freq'] = 1 dfsum3 = dfnew_train.groupby(['CustomerID'])['freq'].sum().reset_index() # count of transactions by customer dfnew_train['freq3m'] = 1 dfsum4 = dfnew_train[dfnew_train['duration'] < 91].groupby(['CustomerID'])['freq3m'].sum().reset_index() # now let's merge the 3 customer-level datasets together. # pd.concat uses indexes as the join keys, from functools import reduce dfs = [dfsum1, dfsum2, dfsum3, dfsum4] dfsum = reduce(lambda left, right: pd.merge(left, right, on=['CustomerID'], how='outer'), dfs) dfsum.shape [_ for _ in map(lambda x: x.shape, dfs)] dfsum.head() ################### other_data = pd.read_csv("./ignoreland/oth.csv") other_data.head() dfsum =
pd.merge(dfsum, other_data, on=['CustomerID'], how='left')
pandas.merge
import re import numpy as np import pytest from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike import pandas as pd from pandas import IntervalIndex, MultiIndex, RangeIndex import pandas.util.testing as tm def test_labels_dtypes(): # GH 8456 i = MultiIndex.from_tuples([("A", 1), ("A", 2)]) assert i.codes[0].dtype == "int8" assert i.codes[1].dtype == "int8" i = MultiIndex.from_product([["a"], range(40)]) assert i.codes[1].dtype == "int8" i = MultiIndex.from_product([["a"], range(400)]) assert i.codes[1].dtype == "int16" i = MultiIndex.from_product([["a"], range(40000)]) assert i.codes[1].dtype == "int32" i = pd.MultiIndex.from_product([["a"], range(1000)]) assert (i.codes[0] >= 0).all() assert (i.codes[1] >= 0).all() def test_values_boxed(): tuples = [ (1, pd.Timestamp("2000-01-01")), (2, pd.NaT), (3, pd.Timestamp("2000-01-03")), (1, pd.Timestamp("2000-01-04")), (2, pd.Timestamp("2000-01-02")), (3, pd.Timestamp("2000-01-03")), ] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) # TODO(GH-24559): Remove the FutureWarning with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): aware = pd.DatetimeIndex(ints, tz="US/Central") idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq="D") idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_consistency(): # need to construct an overflow major_axis = list(range(70000)) minor_axis = list(range(10)) major_codes = np.arange(70000) minor_codes = np.repeat(range(10), 7000) # the fact that is works means it's consistent index = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes] ) # inconsistent major_codes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_codes = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes] ) assert index.is_unique is False def test_hash_collisions(): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product( [np.arange(1000), np.arange(1000)], names=["one", "two"] ) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange(len(index), dtype="intp")) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_dims(): pass def take_invalid_kwargs(): vals = [["A", "B"], [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]] idx = pd.MultiIndex.from_product(vals, names=["str", "dt"]) indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" with pytest.raises(TypeError, match=msg): idx.take(indices, foo=2) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, out=indices) msg = "the 'mode' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, mode="clip") def test_isna_behavior(idx): # should not segfault GH5123 # NOTE: if MI representation changes, may make sense to allow # isna(MI) msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): pd.isna(idx) def test_large_multiindex_error(): # GH12527 df_below_1000000 = pd.DataFrame( 1, index=pd.MultiIndex.from_product([[1, 2], range(499999)]), columns=["dest"] ) with pytest.raises(KeyError, match=r"^\(-1, 0\)$"): df_below_1000000.loc[(-1, 0), "dest"] with pytest.raises(KeyError, match=r"^\(3, 0\)$"): df_below_1000000.loc[(3, 0), "dest"] df_above_1000000 = pd.DataFrame( 1, index=pd.MultiIndex.from_product([[1, 2], range(500001)]), columns=["dest"] ) with pytest.raises(KeyError, match=r"^\(-1, 0\)$"): df_above_1000000.loc[(-1, 0), "dest"] with pytest.raises(KeyError, match=r"^\(3, 0\)$"): df_above_1000000.loc[(3, 0), "dest"] def test_million_record_attribute_error(): # GH 18165 r = list(range(1000000)) df = pd.DataFrame( {"a": r, "b": r}, index=pd.MultiIndex.from_tuples([(x, x) for x in r]) ) msg = "'Series' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): df["a"].foo() def test_can_hold_identifiers(idx): key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_metadata_immutable(idx): levels, codes = idx.levels, idx.codes # shouldn't be able to set at either the top level or base level mutable_regex = re.compile("does not support mutable operations") with pytest.raises(TypeError, match=mutable_regex): levels[0] = levels[0] with pytest.raises(TypeError, match=mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with pytest.raises(TypeError, match=mutable_regex): codes[0] = codes[0] with pytest.raises(ValueError, match="assignment destination is read-only"): codes[0][0] = codes[0][0] # and for names names = idx.names with pytest.raises(TypeError, match=mutable_regex): names[0] = names[0] def test_level_setting_resets_attributes(): ind = pd.MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]]) assert ind.is_monotonic ind.set_levels([["A", "B"], [1, 3, 2]], inplace=True) # if this fails, probably didn't reset the cache correctly. assert not ind.is_monotonic def test_rangeindex_fallback_coercion_bug(): # GH 12893 foo = pd.DataFrame(np.arange(100).reshape((10, 10))) bar = pd.DataFrame(np.arange(100).reshape((10, 10))) df = pd.concat({"foo": foo.stack(), "bar": bar.stack()}, axis=1) df.index.names = ["fizz", "buzz"] str(df) expected = pd.DataFrame( {"bar": np.arange(100), "foo": np.arange(100)}, index=pd.MultiIndex.from_product( [range(10), range(10)], names=["fizz", "buzz"] ), ) tm.assert_frame_equal(df, expected, check_like=True) result = df.index.get_level_values("fizz") expected = pd.Int64Index(np.arange(10), name="fizz").repeat(10)
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import integrate, optimize from scipy.signal import savgol_filter from dane import population as popu dias_restar = 4 # Los últimos días de información que no se tienen en cuenta dias_pred = 31 # Días sobre los cuáles se hará la predicción a corto plazo media_movil = 4 # Días que se promediaran en las series para mitigar errores en los datos Ciudades_dicc = {'Bog': 'Bogotá D.C.', 'Mde': 'Medellín', 'Cal': 'Cali', 'Brr': 'Barranquilla', 'Ctg': 'Cartagena de Indias'} Ciudades = ['Bog','Mde','Cal', 'Brr', 'Ctg'] Covid_Col = pd.read_csv("https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD", sep=',', encoding='utf-8', low_memory=False) def limpieza_datos(): # Covid_Col=pd.read_csv("C:\Users\danie\DS\vagrant4docker-master\laboratorios\covid-19-guaya-kilera\Casos_positivos_de_COVID-19_en_Colombia.csv", sep=',', encoding='utf-8', low_memory=False) Covid_Col.drop(['ID de caso', 'Código DIVIPOLA', 'Departamento o Distrito ', 'País de procedencia', 'Tipo', 'Codigo departamento', 'Codigo pais', 'Tipo recuperación', 'Pertenencia etnica', 'Nombre grupo etnico', 'atención'], axis=1, inplace=True) Covid_Col['FIS'] = Covid_Col['FIS'].replace('Asintomático', np.nan) Covid_Col['FIS'] =
pd.to_datetime(Covid_Col['FIS'].str[:10])
pandas.to_datetime
""" Test file for analysis of pNEUMA data """ from pneumapackage.settings import * import pneumapackage.compute as cp from pneumapackage.__init__ import read_pickle, write_pickle, path_data, path_results import pneumapackage.iodata as rd import test_network as tn import test_data as td import numpy as np import pandas as pd import leuvenmapmatching.util.dist_euclidean as distxy import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from tqdm.contrib import tenumerate from tqdm import tqdm import os """ Up until now we have list of dataframes, trajectories, with a column with the matched edge in the extracted OSM network The line trajectories can be used to count vehicles crossing specific locations in the network, keeping the individual information for more specific aggregations afterwards (augmented loop detector data) Place detectors on the edges in the used network and select specific edges --> using Qgis to select manually the needed edge ids Input parameters: - 20 m = width of detector edges, make sure they span the whole road - 10 m = distance from intersection - True = place double virtual loops - 1 m = loop distance - 2 = number of detectors on every link """ def test_crossings(line_traj, df_det, **kwargs): df_crossings = cp.vehicle_crossings(line_traj, df_det, **kwargs) return df_crossings def get_traj_crossings(track, df_crossings): df_crossings = df_crossings[~df_crossings[track].isna()][track] return df_crossings def get_vehicle_types(group_id): pid, _, _ = td.get_hdf_names(group_id) hdf_path = rd.get_hdf_path() vehicle_types = rd.get_from_hdf(hdf_path, key_id=pid, result='ids') vehicle_types = vehicle_types.loc[:, ['track_id', 'type']] return vehicle_types def case_configuration(group_id, det_obj, edges): """ Get all the needed information of the detectors for the chosen edges, as well as only those trajectories that map onto one of the edges. Parameters ---------- group_id det_obj edges Returns ------- """ ds = det_obj.detector_selection(edges) id_ft_pan = list(set(det_obj.features.index.get_level_values(0)) & set(edges)) id_ft_pan.sort() ds_ft = det_obj.features.loc[(id_ft_pan,)] ds_ft.attrs = det_obj.features.attrs lt = td.get_lt(group_id=group_id, edges=edges, gdf=True) return ds, ds_ft, lt def edges_crossings(group_id, crossing_edges, case_number=1, det_obj=None, bearing_difference=90, strict_match=True, folder=path_results): dataset_name = rd.get_path_dict()['groups'][group_id].replace('/', '_') try: df_ft = read_pickle(f'features_crossing_{dataset_name}_bd{bearing_difference}_case{case_number}', os.path.join(folder, 'crossings')) df_det = read_pickle(f'detectors_crossing_{dataset_name}_bd{bearing_difference}_case{case_number}', os.path.join(folder, 'crossings')) except FileNotFoundError: if det_obj is None: det_obj = tn.test_detectors(tn.test_network(), path_data) ds, ds_ft, lt = case_configuration(group_id, det_obj, edges=crossing_edges) # Determine crossings df_ft = cp.vehicle_crossings(lt, ds_ft, bearing_difference=bearing_difference, strict_match=strict_match) df_det = cp.vehicle_crossings(lt, ds, bearing_difference=bearing_difference, strict_match=strict_match) write_pickle(df_ft, f'features_crossing_{dataset_name}_bd{bearing_difference}_case{case_number}', os.path.join(folder, 'crossings')) write_pickle(df_det, f'detectors_crossing_{dataset_name}_bd{bearing_difference}_case{case_number}', os.path.join(folder, 'crossings')) return df_ft, df_det, dataset_name def signal_timings(df_crossings, time_rows=('t1', 't2'), time_step=1000): df_det = df_crossings.sort_index() df_det = df_det.reset_index() df_sel = df_det.loc[df_det['detector'].isin(list(time_rows))] df_sel.set_index(['edge', 'detector'], inplace=True) df_sel = df_sel.transpose() max_time = int(max(df_sel.max()) + time_step) df_cycle = {'time_step': [], 'passing': []} for t in tqdm(range(time_step, max_time, time_step)): df = df_sel[(df_sel >= (t - time_step)) & (df_sel < t)] df_cycle['time_step'].append(t), df_cycle['passing'].append(df.count().values) df_cycle = pd.DataFrame(df_cycle['passing'], index=df_cycle['time_step'], columns=df_sel.columns) df_cycle.index.name = 'time_step' # df_cycle = df_st.mask(df_st > 0, 1) # df_cum = df_st.cumsum() return df_cycle def cycle_times(df_cycle, edge, column=None, thresh_filter=10000, filter_step=3, thresh=5000): if column is None: column = 't2' tmp = df_cycle.loc[:, edge].copy() tmp.loc[:, 'green'] = 0 tmp.loc[:, 'edge'] = edge step = list(set(np.diff(tmp.index)))[0] tmp2 = tmp.loc[list(set(np.r_[tmp[tmp[column] > 0].index, tmp.index[0], tmp.index[-1]]))].copy() tmp2.sort_index(inplace=True) tmp2.reset_index(inplace=True) tmp2.loc[:, 'filter_b'] = tmp2.loc[:, 'time_step'].diff(filter_step) tmp2.loc[:, 'filter_a'] = abs(tmp2.loc[:, 'time_step'].diff(-filter_step)) filter_index = tmp2.loc[(tmp2.filter_b > thresh_filter) & (tmp2.filter_a > thresh_filter)].index tmp2.loc[filter_index, 'filter_b'] = 0 tmp2.loc[filter_index, 'filter_a'] = 0 tmp2 = tmp2[~tmp2.index.isin(tmp2[(tmp2.filter_a == 0) & (tmp2.filter_b == 0)].index)] tmp2.loc[:, 'before'] = tmp2.loc[:, 'time_step'].diff(1) tmp2.loc[:, 'after'] = abs(tmp2.loc[:, 'time_step'].diff(-1)) tmp2.loc[tmp2.before <= thresh, 'before'] = 0 tmp2.loc[tmp2.after <= thresh, 'after'] = 0 tmp2 = tmp2.loc[tmp2[column] > 0] tmp2.loc[:, 'green_start'] = 0 tmp2.loc[:, 'green_end'] = 0 tmp2.loc[tmp2.before > 0, 'green_start'] = 1 tmp2.loc[tmp2.after > 0, 'green_end'] = 1 tmp2 = tmp2[tmp2.index.isin(tmp2[(tmp2.green_start > 0) | (tmp2.green_end > 0)].index)] if len(tmp2.loc[(tmp2.green_start > 0) & (tmp2.green_end > 0)]): print('Adjust filters') raise ValueError('Invalid instances detected') tmp2 = tmp2[~tmp2.index.isin(tmp2[(tmp2.green_start > 0) & (tmp2.green_end > 0)].index)] tmp2.set_index('time_step', inplace=True) tmp2.loc[:, 'green_time'] = 0 tmp2.loc[:, 'red_time'] = tmp2.before index_greens = [] ls_tmp = [] row = 0 for i, j in tmp2.iterrows(): if row == 0: if j['green_end'] > 0: index_greens.extend(np.arange(tmp.index[0], i + step, step).tolist()) tmp2.loc[i, 'green_time'] = i - tmp.index[0] - step else: ls_tmp.append(i) row += 1 elif row == len(tmp2) - 1: if j['green_start'] > 0: index_greens.extend(np.arange(i, tmp.index[-1] + step, step).tolist()) tmp2.loc[i, 'green_time'] = tmp.index[-1] - i else: ls_tmp.append(i) index_greens.extend(np.arange(ls_tmp[0], ls_tmp[1] + step, step).tolist()) tmp2.loc[i, 'green_time'] = ls_tmp[1] - ls_tmp[0] ls_tmp = [] else: if j['green_end'] > 0: ls_tmp.append(i) index_greens.extend(np.arange(ls_tmp[0], ls_tmp[1] + step, step).tolist()) tmp2.loc[i, 'green_time'] = ls_tmp[1] - ls_tmp[0] ls_tmp = [] else: ls_tmp.append(i) row += 1 tmp.loc[index_greens, 'green'] = 1 return tmp2, tmp def create_cumulative(tuple_crossings, edge_selection, turn='other', time_step=1000, plot=False, statistics=False): assert turn in ['incoming', 'outgoing', 'turn_right', 'turn_left', 'straight', 'other'] df_det = tuple_crossings[1] data_title = tuple_crossings[2] df_det = df_det.sort_index() df_sel = df_det.loc[edge_selection, :] df = df_sel.dropna(axis=1) df = df.transpose() max_time = int(max(df.max()) + time_step) df_st = {'time_step': [], 'count': []} df_tt = df.astype('float64') df_tt = df_tt.assign(travel_time=df_tt[edge_selection[-1]] - df_tt[edge_selection[0]]) for t in range(time_step, max_time, time_step): tmp = df[(df >= (t - time_step)) & (df < t)] df_st['time_step'].append(t), df_st['count'].append(tmp.count().values) df_st = pd.DataFrame(df_st['count'], index=df_st['time_step'], columns=[f'count_{i[0]}_{i[1]}' for i in edge_selection]) df_st = df_st.assign(veh_diff=df_st[f'count_{edge_selection[0][0]}_{edge_selection[0][1]}'] - df_st[f'count_{edge_selection[-1][0]}_{edge_selection[-1][1]}']) for i in edge_selection: df_st.loc[:, f'cumulative_{i[0]}_{i[1]}'] = df_st[f'count_{i[0]}_{i[1]}'].cumsum() df_tt = df_tt.assign(travel_time_sec=df_tt.travel_time / 1000) if statistics: print(f'Basic statistics of travel time from {edge_selection[0]} to {edge_selection[-1]}: ' f'{df_tt.travel_time_sec.describe()}') if plot: fig, ax = plt.subplots(figsize=(10, 8)) ind_link = 0 for i in edge_selection: ax.plot(df_st.index / 1000, df_st[f'count_{i[0]}_{i[1]}'], color=qual_colorlist[ind_link], label=f'{i[0]}_{i[1]}') ind_link += 1 ax.grid(True) ax.legend() ax.set_xlabel('Time [s]') ax.set_ylabel('Vehicles passing [veh]') plt.close() fig, ax = plt.subplots() ind_link = 0 for i in edge_selection: ax.plot(df_st.index / 1000, df_st[f'count_{i[0]}_{i[1]}'].cumsum(), color=qual_colorlist[ind_link], label=f'{i[0]}_{i[1]}') ind_link += 1 ax.grid(True) ax.legend() ax.set_xlabel('Time [s]') ax.set_ylabel('Cumulative count [veh]') ax.set_title(f'{data_title}_{turn}') fig.savefig(f'{data_title}_{edge_selection[0][0]}_{edge_selection[-1][0]}_{turn}') fig, ax = plt.subplots() ax.plot(df_st.index / 1000, df_st['veh_diff'].cumsum(), label='vehicle accumulation', color=qual_colorlist[0]) ax.plot(df_st.index / 1000, df_st[f'count_{edge_selection[-1][0]}_{edge_selection[-1][1]}'], label='vehicles passing downstream', color=qual_colorlist[5]) ax.grid(True) ax.legend() ax.set_xlabel('Time [s]') ax.set_ylabel('Vehicles [veh]') ax.set_title(f'{data_title} {turn} accumulation') fig.savefig(f'{data_title}_{edge_selection[0][0]}_{edge_selection[-1][0]}_accumulation') return df_st, df_tt def test_cycle_times(group_id, crossing_edges, **kwargs): _, df_crossings, _ = edges_crossings(group_id, crossing_edges, **kwargs) df_cycle = signal_timings(df_crossings) return df_cycle def test_cumulative(group_id, crossing_edges, edge_selection, **kwargs): tuple_crossings = edges_crossings(group_id, crossing_edges, **kwargs) df_st, df_tt = create_cumulative(tuple_crossings, edge_selection) return df_st, df_tt def create_output_table(df_crossing_sel, group_id, save_csv=False, filename=None): hdf_path = rd.get_hdf_path() group_path = rd.get_group(group_id) df_dict = {'track_id': [], 'from': [], 'to': [], 't_from': [], 't_to': [], 'delta_t': []} for i in df_crossing_sel: df = df_crossing_sel[i][df_crossing_sel[i].notna()] if len(df) % 2 == 0: nr = int(len(df) / 2) df = df.sort_values() df_idx = df.index.get_level_values(0).to_list() df_val = df.values df_dict['track_id'].extend([i] * nr) df_dict['from'].extend(df_idx[::2]) df_dict['t_from'].extend(df_val[::2]) df_dict['to'].extend(df_idx[1::2]) df_dict['t_to'].extend(df_val[1::2]) df_dict['delta_t'].extend(df_val[1::2] - df_val[::2]) else: continue df = pd.DataFrame(df_dict) tr_id = rd.get_from_hdf(hdf_path, key_id=group_path + '/all_id', result='ids') df = df.merge(tr_id[['track_id', 'type']], how='left', on='track_id') if save_csv: fn = filename if filename is None: fn = 'traj_data.csv' df.to_csv(path_data + fn) return df def create_xt(edge, group_id, network_df, crossing_edges, show_det=None, plot=False, colormap='gist_rainbow', lines=False, veh_type=None, psize=1, bearing_difference=90, strict_match=True, folder=path_results, **kwargs): edge_length = network_df.loc[network_df['_id'] == edge, 'length'].values[0] vt_str = "all" _, df_det, data_title = edges_crossings(group_id, crossing_edges, bearing_difference=bearing_difference, strict_match=strict_match) df_sel = df_det.loc[edge] df_sel = df_sel.dropna(axis=1, how='any') lt = td.get_lt_from_id(df_sel.columns.to_list(), group_id=group_id, gdf=False, **kwargs) df_xt = pd.DataFrame() s = {'pos_start': [], 'pos_end': [], 'track_id': []} e1 = (network_df.loc[network_df['_id'] == edge, ['x1', 'y1']].values[0]) e2 = (network_df.loc[network_df['_id'] == edge, ['x2', 'y2']].values[0]) df_transpose = df_sel.transpose() c1 = [(xy) for xy in zip(df_transpose.loc[:, 'cross_x1'], df_transpose.loc[:, 'cross_y1'])] c2 = [(xy) for xy in zip(df_transpose.loc[:, 'cross_x2'], df_transpose.loc[:, 'cross_y2'])] for ind, el in enumerate(lt.index.get_level_values(0).unique()): tmp = lt.loc[(el, slice(df_sel.loc['rid1', el], int(df_sel.loc['rid2', el] + 1))), :].copy() tmp2 = tmp.apply(help_proj, e1=e1, e2=e2, axis=1) _, t1 = distxy.project(e1, e2, c1[ind]) _, t2 = distxy.project(e1, e2, c2[ind]) s['pos_start'].append(t1), s['pos_end'].append(t2), s['track_id'].append(el) # tmp['proj'] = tmp2 tmp_dist, _, tmp_proj = zip(*tmp2) tmp['lateral_dist'] = tmp_dist tmp['proj'] = tmp_proj tmp['avg_speed'] = tmp['line_length_yx'] * 3.6 df_xt =
pd.concat([df_xt, tmp], axis=0)
pandas.concat
# -*- coding: utf-8 -*- import operator import pytest import numpy as np from pandas.compat import range import pandas as pd import pandas.util.testing as tm from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons(object): def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True def test_mixed_comparison(self): # GH 13128, GH 22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before #22163, not sure when) df = pd.DataFrame([['1989-08-01', 1], ['1989-08-01', 2]]) other = pd.DataFrame([['a', 'b'], ['c', 'd']]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame(np.random.randn(8, 3), index=range(8), columns=['A', 'B', 'C']) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 result = getattr(df, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df =
pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]})
pandas.DataFrame
import pandas as pd ## convert to time df['date'] =
pd.to_datetime(df['ts'],unit='ms')
pandas.to_datetime
import sys from Bio import SeqIO import pandas as pd ########################################################################## sys.stderr = sys.stdout = open(snakemake.log[0], "w") ########################################################################## tsv_missing = snakemake.input.tsv_missing faa_missing = snakemake.input.faa_missing tsv_virsorter = snakemake.input.tsv_virsorter faa_virsorter = snakemake.input.faa_virsorter transl_table = snakemake.input.translation_table transl_dict =
pd.read_table(transl_table, index_col=0)
pandas.read_table
from unittest import TestCase from unittest.mock import Mock, patch import copulas import numpy as np import pandas as pd import pytest from copulas import univariate from rdt.transformers.null import NullTransformer from rdt.transformers.numerical import ( BayesGMMTransformer, GaussianCopulaTransformer, NumericalBoundedTransformer, NumericalRoundedBoundedTransformer, NumericalRoundedTransformer, NumericalTransformer) class TestNumericalTransformer(TestCase): def test___init__super_attrs(self): """super() arguments are properly passed and set as attributes.""" nt = NumericalTransformer(dtype='int', nan='mode', null_column=False) assert nt.dtype == 'int' assert nt.nan == 'mode' assert nt.null_column is False def test_get_output_types(self): """Test the ``get_output_types`` method when a null column is created. When a null column is created, this method should apply the ``_add_prefix`` method to the following dictionary of output types: output_types = { 'value': 'float', 'is_null': 'float' } Setup: - initialize a ``NumericalTransformer`` transformer which: - sets ``self.null_transformer`` to a ``NullTransformer`` where ``self.null_column`` is True. - sets ``self.column_prefix`` to a string. Output: - the ``output_types`` dictionary, but with the ``self.column_prefix`` added to the beginning of the keys. """ # Setup transformer = NumericalTransformer() transformer.null_transformer = NullTransformer(fill_value='fill') transformer.null_transformer._null_column = True transformer.column_prefix = 'a#b' # Run output = transformer.get_output_types() # Assert expected = { 'a#b.value': 'float', 'a#b.is_null': 'float' } assert output == expected def test_is_composition_identity_null_transformer_true(self): """Test the ``is_composition_identity`` method with a ``null_transformer``. When the attribute ``null_transformer`` is not None and a null column is not created, this method should simply return False. Setup: - initialize a ``NumericalTransformer`` transformer which sets ``self.null_transformer`` to a ``NullTransformer`` where ``self.null_column`` is False. Output: - False """ # Setup transformer = NumericalTransformer() transformer.null_transformer = NullTransformer(fill_value='fill') # Run output = transformer.is_composition_identity() # Assert assert output is False def test_is_composition_identity_null_transformer_false(self): """Test the ``is_composition_identity`` method without a ``null_transformer``. When the attribute ``null_transformer`` is None, this method should return the value stored in the ``COMPOSITION_IS_IDENTITY`` attribute. Setup: - initialize a ``NumericalTransformer`` transformer which sets ``self.null_transformer`` to None. Output: - the value stored in ``self.COMPOSITION_IS_IDENTITY``. """ # Setup transformer = NumericalTransformer() transformer.null_transformer = None # Run output = transformer.is_composition_identity() # Assert assert output is True def test__learn_rounding_digits_more_than_15_decimals(self): """Test the _learn_rounding_digits method with more than 15 decimals. If the data has more than 15 decimals, None should be returned. Input: - An array that contains floats with more than 15 decimals. Output: - None """ data = np.random.random(size=10).round(20) output = NumericalTransformer._learn_rounding_digits(data) assert output is None def test__learn_rounding_digits_less_than_15_decimals(self): """Test the _learn_rounding_digits method with less than 15 decimals. If the data has less than 15 decimals, the maximum number of decimals should be returned. Input: - An array that contains floats with a maximum of 3 decimals and a NaN. Output: - 3 """ data = np.array([10, 0., 0.1, 0.12, 0.123, np.nan]) output = NumericalTransformer._learn_rounding_digits(data) assert output == 3 def test__learn_rounding_digits_negative_decimals_float(self): """Test the _learn_rounding_digits method with floats multiples of powers of 10. If the data has all multiples of 10, 100, or any other higher power of 10, the output is the negative number of decimals representing the corresponding power of 10. Input: - An array that contains floats that are multiples of powers of 10, 100 and 1000 and a NaN. Output: - -1 """ data = np.array([1230., 12300., 123000., np.nan]) output = NumericalTransformer._learn_rounding_digits(data) assert output == -1 def test__learn_rounding_digits_negative_decimals_integer(self): """Test the _learn_rounding_digits method with integers multiples of powers of 10. If the data has all multiples of 10, 100, or any other higher power of 10, the output is the negative number of decimals representing the corresponding power of 10. Input: - An array that contains integers that are multiples of powers of 10, 100 and 1000 and a NaN. Output: - -1 """ data = np.array([1230, 12300, 123000, np.nan]) output = NumericalTransformer._learn_rounding_digits(data) assert output == -1 def test__learn_rounding_digits_all_nans(self): """Test the _learn_rounding_digits method with data that is all NaNs. If the data is all NaNs, expect that the output is None. Input: - An array of NaNs. Output: - None """ data = np.array([np.nan, np.nan, np.nan, np.nan]) output = NumericalTransformer._learn_rounding_digits(data) assert output is None def test__fit(self): """Test the ``_fit`` method with numpy.array. Validate that the ``_dtype`` and ``.null_transformer.fill_value`` attributes are set correctly. Setup: - initialize a ``NumericalTransformer`` with the ``nan` parameter set to ``'nan'``. Input: - a pandas dataframe containing a None. Side effect: - it sets the ``null_transformer.fill_value``. - it sets the ``_dtype``. """ # Setup data = pd.DataFrame([1.5, None, 2.5], columns=['a']) transformer = NumericalTransformer(dtype=float, nan='nan') # Run transformer._fit(data) # Asserts expect_fill_value = 'nan' assert transformer.null_transformer.fill_value == expect_fill_value expect_dtype = float assert transformer._dtype == expect_dtype def test__fit_rounding_none(self): """Test _fit rounding parameter with ``None`` If the rounding parameter is set to ``None``, the ``_fit`` method should not set its ``rounding`` or ``_rounding_digits`` instance variables. Input: - An array with floats rounded to one decimal and a None value Side Effect: - ``rounding`` and ``_rounding_digits`` continue to be ``None`` """ # Setup data = pd.DataFrame([1.5, None, 2.5], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', rounding=None) transformer._fit(data) # Asserts assert transformer.rounding is None assert transformer._rounding_digits is None def test__fit_rounding_int(self): """Test _fit rounding parameter with int If the rounding parameter is set to ``None``, the ``_fit`` method should not set its ``rounding`` or ``_rounding_digits`` instance variables. Input: - An array with floats rounded to one decimal and a None value Side Effect: - ``rounding`` and ``_rounding_digits`` are the provided int """ # Setup data = pd.DataFrame([1.5, None, 2.5], columns=['a']) expected_digits = 3 # Run transformer = NumericalTransformer(dtype=float, nan='nan', rounding=expected_digits) transformer._fit(data) # Asserts assert transformer.rounding == expected_digits assert transformer._rounding_digits == expected_digits def test__fit_rounding_auto(self): """Test _fit rounding parameter with ``'auto'`` If the ``rounding`` parameter is set to ``'auto'``, ``_fit`` should learn the ``_rounding_digits`` to be the max number of decimal places seen in the data. Input: - Array of floats with up to 4 decimals Side Effect: - ``_rounding_digits`` is set to 4 """ # Setup data = pd.DataFrame([1, 2.1, 3.12, 4.123, 5.1234, 6.123, 7.12, 8.1, 9], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', rounding='auto') transformer._fit(data) # Asserts assert transformer._rounding_digits == 4 def test__fit_rounding_auto_large_numbers(self): """Test _fit rounding parameter with ``'auto'`` If the ``rounding`` parameter is set to ``'auto'`` and the data is very large, ``_fit`` should learn ``_rounding_digits`` to be the biggest number of 0s to round to that keeps the data the same. Input: - Array of data with numbers between 10^10 and 10^20 Side Effect: - ``_rounding_digits`` is set to the minimum exponent seen in the data """ # Setup exponents = [np.random.randint(10, 20) for i in range(10)] big_numbers = [10**exponents[i] for i in range(10)] data = pd.DataFrame(big_numbers, columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', rounding='auto') transformer._fit(data) # Asserts assert transformer._rounding_digits == -min(exponents) def test__fit_rounding_auto_max_decimals(self): """Test _fit rounding parameter with ``'auto'`` If the ``rounding`` parameter is set to ``'auto'``, ``_fit`` should learn the ``_rounding_digits`` to be the max number of decimal places seen in the data. The max amount of decimals that floats can be accurately compared with is 15. If the input data has values with more than 14 decimals, we will not be able to accurately learn the number of decimal places required, so we do not round. Input: - Array with a value that has 15 decimals Side Effect: - ``_rounding_digits`` is set to ``None`` """ # Setup data = pd.DataFrame([0.000000000000001], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', rounding='auto') transformer._fit(data) # Asserts assert transformer._rounding_digits is None def test__fit_rounding_auto_max_inf(self): """Test _fit rounding parameter with ``'auto'`` If the ``rounding`` parameter is set to ``'auto'``, and the data contains infinite values, ``_fit`` should learn the ``_rounding_digits`` to be the min number of decimal places seen in the data with the infinite values filtered out. Input: - Array with ``np.inf`` as a value Side Effect: - ``_rounding_digits`` is set to max seen in rest of data """ # Setup data = pd.DataFrame([15000, 4000, 60000, np.inf], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', rounding='auto') transformer._fit(data) # Asserts assert transformer._rounding_digits == -3 def test__fit_rounding_auto_max_zero(self): """Test _fit rounding parameter with ``'auto'`` If the ``rounding`` parameter is set to ``'auto'``, and the max in the data is 0, ``_fit`` should learn the ``_rounding_digits`` to be 0. Input: - Array with 0 as max value Side Effect: - ``_rounding_digits`` is set to 0 """ # Setup data = pd.DataFrame([0, 0, 0], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', rounding='auto') transformer._fit(data) # Asserts assert transformer._rounding_digits == 0 def test__fit_rounding_auto_max_negative(self): """Test _fit rounding parameter with ``'auto'`` If the ``rounding`` parameter is set to ``'auto'``, and the max in the data is negative, the ``_fit`` method should learn ``_rounding_digits`` to be the min number of digits seen in those negative values. Input: - Array with negative max value Side Effect: - ``_rounding_digits`` is set to min number of digits in array """ # Setup data = pd.DataFrame([-500, -220, -10], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', rounding='auto') transformer._fit(data) # Asserts assert transformer._rounding_digits == -1 def test__fit_min_max_none(self): """Test _fit min and max parameters with ``None`` If the min and max parameters are set to ``None``, the ``_fit`` method should not set its ``min`` or ``max`` instance variables. Input: - Array of floats and null values Side Effect: - ``_min_value`` and ``_max_value`` stay ``None`` """ # Setup data = pd.DataFrame([1.5, None, 2.5], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', min_value=None, max_value=None) transformer._fit(data) # Asserts assert transformer._min_value is None assert transformer._max_value is None def test__fit_min_max_int(self): """Test _fit min and max parameters with int values If the min and max parameters are set to an int, the ``_fit`` method should not change them. Input: - Array of floats and null values Side Effect: - ``_min_value`` and ``_max_value`` remain unchanged """ # Setup data = pd.DataFrame([1.5, None, 2.5], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', min_value=1, max_value=10) transformer._fit(data) # Asserts assert transformer._min_value == 1 assert transformer._max_value == 10 def test__fit_min_max_auto(self): """Test _fit min and max parameters with ``'auto'`` If the min or max parameters are set to ``'auto'`` the ``_fit`` method should learn them from the _fitted data. Input: - Array of floats and null values Side Effect: - ``_min_value`` and ``_max_value`` are learned """ # Setup data = pd.DataFrame([-100, -5000, 0, None, 100, 4000], columns=['a']) # Run transformer = NumericalTransformer(dtype=float, nan='nan', min_value='auto', max_value='auto') transformer._fit(data) # Asserts assert transformer._min_value['a'] == -5000 assert transformer._max_value['a'] == 4000 def test__transform(self): """Test the ``_transform`` method. Validate that this method calls the ``self.null_transformer.transform`` method once. Setup: - create an instance of a ``NumericalTransformer`` and set ``self.null_transformer`` to a ``NullTransformer``. Input: - a pandas series. Output: - the transformed numpy array. """ # Setup data = pd.Series([1, 2, 3]) transformer = NumericalTransformer() transformer.null_transformer = Mock() # Run transformer._transform(data) # Assert assert transformer.null_transformer.transform.call_count == 1 def test__reverse_transform_rounding_none(self): """Test ``_reverse_transform`` when ``rounding`` is ``None`` The data should not be rounded at all. Input: - Random array of floats between 0 and 1 Output: - Input array """ # Setup data = np.random.random(10) # Run transformer = NumericalTransformer(dtype=float, nan=None) transformer._rounding_digits = None result = transformer._reverse_transform(data) # Assert np.testing.assert_array_equal(result, data) def test__reverse_transform_rounding_none_integer(self): """Test ``_reverse_transform`` when ``rounding`` is ``None`` and the dtype is integer. The data should be rounded to 0 decimals and returned as integer values. Input: - Array of multiple float values with decimals. Output: - Input array rounded an converted to integers. """ # Setup data = np.array([0., 1.2, 3.45, 6.789]) # Run transformer = NumericalTransformer(dtype=np.int64, nan=None) transformer._rounding_digits = None transformer._dtype = np.int64 result = transformer._reverse_transform(data) # Assert expected = np.array([0, 1, 3, 7]) np.testing.assert_array_equal(result, expected) def test__reverse_transform_rounding_none_with_nulls(self): """Test ``_reverse_transform`` when ``rounding`` is ``None`` and there are nulls. The data should not be rounded at all. Input: - 2d Array of multiple float values with decimals and a column setting at least 1 null. Output: - First column of the input array as entered, replacing the indicated value with a Nan. """ # Setup data = [ [0., 0.], [1.2, 0.], [3.45, 1.], [6.789, 0.], ] data = pd.DataFrame(data, columns=['a', 'b']) # Run transformer = NumericalTransformer() null_transformer = Mock() null_transformer.reverse_transform.return_value = np.array([0., 1.2, np.nan, 6.789]) transformer.null_transformer = null_transformer transformer._rounding_digits = None transformer._dtype = float result = transformer._reverse_transform(data) # Assert expected = np.array([0., 1.2, np.nan, 6.789]) np.testing.assert_array_equal(result, expected) def test__reverse_transform_rounding_none_with_nulls_dtype_int(self): """Test ``_reverse_transform`` when rounding is None, dtype is int and there are nulls. The data should be rounded to 0 decimals and returned as float values with nulls in the right place. Input: - 2d Array of multiple float values with decimals and a column setting at least 1 null. Output: - First column of the input array rounded, replacing the indicated value with a Nan, and kept as float values. """ # Setup data = np.array([ [0., 0.], [1.2, 0.], [3.45, 1.], [6.789, 0.], ]) # Run transformer = NumericalTransformer() null_transformer = Mock() null_transformer.reverse_transform.return_value = np.array([0., 1.2, np.nan, 6.789]) transformer.null_transformer = null_transformer transformer._rounding_digits = None transformer._dtype = int result = transformer._reverse_transform(data) # Assert expected = np.array([0., 1., np.nan, 7.]) np.testing.assert_array_equal(result, expected) def test__reverse_transform_rounding_positive_rounding(self): """Test ``_reverse_transform`` when ``rounding`` is a positive int The data should round to the maximum number of decimal places set in the ``_rounding_digits`` value. Input: - Array with decimals Output: - Same array rounded to the provided number of decimal places """ # Setup data = np.array([1.1111, 2.2222, 3.3333, 4.44444, 5.555555]) # Run transformer = NumericalTransformer(dtype=float, nan=None) transformer._rounding_digits = 2 result = transformer._reverse_transform(data) # Assert expected_data = np.array([1.11, 2.22, 3.33, 4.44, 5.56]) np.testing.assert_array_equal(result, expected_data) def test__reverse_transform_rounding_negative_rounding_int(self): """Test ``_reverse_transform`` when ``rounding`` is a negative int The data should round to the number set in the ``_rounding_digits`` attribute and remain ints. Input: - Array with with floats above 100 Output: - Same array rounded to the provided number of 0s - Array should be of type int """ # Setup data = np.array([2000.0, 120.0, 3100.0, 40100.0]) # Run transformer = NumericalTransformer(dtype=int, nan=None) transformer._dtype = int transformer._rounding_digits = -3 result = transformer._reverse_transform(data) # Assert expected_data = np.array([2000, 0, 3000, 40000]) np.testing.assert_array_equal(result, expected_data) assert result.dtype == int def test__reverse_transform_rounding_negative_rounding_float(self): """Test ``_reverse_transform`` when ``rounding`` is a negative int The data should round to the number set in the ``_rounding_digits`` attribute and remain floats. Input: - Array with with larger numbers Output: - Same array rounded to the provided number of 0s - Array should be of type float """ # Setup data = np.array([2000.0, 120.0, 3100.0, 40100.0]) # Run transformer = NumericalTransformer(dtype=float, nan=None) transformer._rounding_digits = -3 result = transformer._reverse_transform(data) # Assert expected_data = np.array([2000.0, 0.0, 3000.0, 40000.0]) np.testing.assert_array_equal(result, expected_data) assert result.dtype == float def test__reverse_transform_rounding_zero(self): """Test ``_reverse_transform`` when ``rounding`` is a negative int The data should round to the number set in the ``_rounding_digits`` attribute. Input: - Array with with larger numbers Output: - Same array rounded to the provided number of 0s """ # Setup data = np.array([2000.554, 120.2, 3101, 4010]) # Run transformer = NumericalTransformer(dtype=float, nan=None) transformer._rounding_digits = 0 result = transformer._reverse_transform(data) # Assert expected_data = np.array([2001, 120, 3101, 4010]) np.testing.assert_array_equal(result, expected_data) def test__reverse_transform_min_no_max(self): """Test _reverse_transform with ``min_value`` set The ``_reverse_transform`` method should clip any values below the ``min_value`` if it is set. Input: - Array with values below the min and infinitely high values Output: - Array with low values clipped to min """ # Setup data = np.array([-np.inf, -5000, -301, -250, 0, 125, 400, np.inf]) # Run transformer = NumericalTransformer(dtype=float, nan=None) transformer._min_value = -300 result = transformer._reverse_transform(data) # Asserts expected_data = np.array([-300, -300, -300, -250, 0, 125, 400, np.inf]) np.testing.assert_array_equal(result, expected_data) def test__reverse_transform_max_no_min(self): """Test _reverse_transform with ``max_value`` set The ``_reverse_transform`` method should clip any values above the ``max_value`` if it is set. Input: - Array with values above the max and infinitely low values Output: - Array with values clipped to max """ # Setup data = np.array([-np.inf, -5000, -301, -250, 0, 125, 401, np.inf]) # Run transformer = NumericalTransformer(dtype=float, nan=None) transformer._max_value = 400 result = transformer._reverse_transform(data) # Asserts expected_data = np.array([-np.inf, -5000, -301, -250, 0, 125, 400, 400]) np.testing.assert_array_equal(result, expected_data) def test__reverse_transform_min_and_max(self): """Test _reverse_transform with ``min_value`` and ``max_value`` set The ``_reverse_transform`` method should clip any values above the ``max_value`` and any values below the ``min_value``. Input: - Array with values above the max and below the min Output: - Array with out of bound values clipped to min and max """ # Setup data = np.array([-np.inf, -5000, -301, -250, 0, 125, 401, np.inf]) # Run transformer = NumericalTransformer(dtype=float, nan=None) transformer._max_value = 400 transformer._min_value = -300 result = transformer._reverse_transform(data) # Asserts np.testing.assert_array_equal(result, np.array([-300, -300, -300, -250, 0, 125, 400, 400])) def test__reverse_transform_min_an_max_with_nulls(self): """Test _reverse_transform with nulls and ``min_value`` and ``max_value`` set The ``_reverse_transform`` method should clip any values above the ``max_value`` and any values below the ``min_value``. Null values should be replaced with ``np.nan``. Input: - 2d array where second column has some values over 0.5 representing null values Output: - Array with out of bounds values clipped and null values injected """ # Setup data = np.array([ [-np.inf, 0], [-5000, 0.1], [-301, 0.8], [-250, 0.4], [0, 0], [125, 1], [401, 0.2], [np.inf, 0.5] ]) clipped_data = np.array([ [-300, 0], [-300, 0.1], [-300, 0.8], [-250, 0.4], [0, 0], [125, 1], [400, 0.2], [400, 0.5] ]) expected_data = np.array([-300, -300, np.nan, -250, 0, np.nan, 400, 400]) # Run transformer = NumericalTransformer(dtype=float, nan='nan') transformer._max_value = 400 transformer._min_value = -300 transformer.null_transformer = Mock() transformer.null_transformer.reverse_transform.return_value = expected_data result = transformer._reverse_transform(data) # Asserts null_transformer_calls = transformer.null_transformer.reverse_transform.mock_calls np.testing.assert_array_equal(null_transformer_calls[0][1][0], clipped_data) np.testing.assert_array_equal(result, expected_data) class TestNumericalBoundedTransformer(TestCase): def test___init__(self): """super() arguments are properly passed and set as attributes.""" # Run nt = NumericalBoundedTransformer(dtype='int', null_column=False) # Assert assert nt.dtype == 'int' assert nt.nan == 'mean' assert nt.null_column is False assert nt.min_value == 'auto' assert nt.max_value == 'auto' assert nt.rounding is None class TestNumericalRoundedTransformer(TestCase): def test___init__(self): """super() arguments are properly passed and set as attributes.""" # Run nt = NumericalRoundedTransformer(dtype='int', null_column=False) # Assert assert nt.dtype == 'int' assert nt.nan == 'mean' assert nt.null_column is False assert nt.min_value is None assert nt.max_value is None assert nt.rounding == 'auto' class TestNumericalRoundedBoundedTransformer(TestCase): def test___init__(self): """super() arguments are properly passed and set as attributes.""" # Run nt = NumericalRoundedBoundedTransformer(dtype='int', null_column=False) # Assert assert nt.dtype == 'int' assert nt.nan == 'mean' assert nt.null_column is False assert nt.min_value == 'auto' assert nt.max_value == 'auto' assert nt.rounding == 'auto' class TestGaussianCopulaTransformer: def test___init__super_attrs(self): """super() arguments are properly passed and set as attributes.""" ct = GaussianCopulaTransformer(dtype='int', nan='mode', null_column=False) assert ct.dtype == 'int' assert ct.nan == 'mode' assert ct.null_column is False def test___init__str_distr(self): """If distribution is an str, it is resolved using the _DISTRIBUTIONS dict.""" ct = GaussianCopulaTransformer(distribution='univariate') assert ct._distribution is copulas.univariate.Univariate def test___init__non_distr(self): """If distribution is not an str, it is store as given.""" univariate = copulas.univariate.Univariate() ct = GaussianCopulaTransformer(distribution=univariate) assert ct._distribution is univariate def test__get_distributions_copulas_not_installed(self): """Test the ``_get_distributions`` method when copulas is not installed. Validate that this method raises the appropriate error message when copulas is not installed. Raise: - ImportError('\n\nIt seems like `copulas` is not installed.\n' 'Please install it using:\n\n pip install rdt[copulas]') """ __py_import__ = __import__ def custom_import(name, *args): if name == 'copulas': raise ImportError('Simulate copulas not being importable.') return __py_import__(name, *args) with patch('builtins.__import__', side_effect=custom_import): with pytest.raises(ImportError, match=r'pip install rdt\[copulas\]'): GaussianCopulaTransformer._get_distributions() def test__get_distributions(self): """Test the ``_get_distributions`` method. Validate that this method returns the correct dictionary of distributions. Setup: - instantiate a ``GaussianCopulaTransformer``. """ # Setup transformer = GaussianCopulaTransformer() # Run distributions = transformer._get_distributions() # Assert expected = { 'univariate': univariate.Univariate, 'parametric': ( univariate.Univariate, { 'parametric': univariate.ParametricType.PARAMETRIC, }, ), 'bounded': ( univariate.Univariate, { 'bounded': univariate.BoundedType.BOUNDED, }, ), 'semi_bounded': ( univariate.Univariate, { 'bounded': univariate.BoundedType.SEMI_BOUNDED, }, ), 'parametric_bounded': ( univariate.Univariate, { 'parametric': univariate.ParametricType.PARAMETRIC, 'bounded': univariate.BoundedType.BOUNDED, }, ), 'parametric_semi_bounded': ( univariate.Univariate, { 'parametric': univariate.ParametricType.PARAMETRIC, 'bounded': univariate.BoundedType.SEMI_BOUNDED, }, ), 'gaussian': univariate.GaussianUnivariate, 'gamma': univariate.GammaUnivariate, 'beta': univariate.BetaUnivariate, 'student_t': univariate.StudentTUnivariate, 'gaussian_kde': univariate.GaussianKDE, 'truncated_gaussian': univariate.TruncatedGaussian, } assert distributions == expected def test__get_univariate_instance(self): """Test the ``_get_univariate`` method when the distribution is univariate. Validate that a deepcopy of the distribution stored in ``self._distribution`` is returned. Setup: - create an instance of a ``GaussianCopulaTransformer`` with ``distribution`` set to ``univariate.Univariate``. Output: - a copy of the value stored in ``self._distribution``. """ # Setup distribution = copulas.univariate.Univariate() ct = GaussianCopulaTransformer(distribution=distribution) # Run univariate = ct._get_univariate() # Assert assert univariate is not distribution assert isinstance(univariate, copulas.univariate.Univariate) assert dir(univariate) == dir(distribution) def test__get_univariate_tuple(self): """Test the ``_get_univariate`` method when the distribution is a tuple. When the distribution is passed as a tuple, it should return an instance with the passed arguments. Setup: - create an instance of a ``GaussianCopulaTransformer`` and set ``distribution`` to a tuple. Output: - an instance of ``copulas.univariate.Univariate`` with the passed arguments. """ # Setup distribution = ( copulas.univariate.Univariate, {'candidates': 'a_candidates_list'} ) ct = GaussianCopulaTransformer(distribution=distribution) # Run univariate = ct._get_univariate() # Assert assert isinstance(univariate, copulas.univariate.Univariate) assert univariate.candidates == 'a_candidates_list' def test__get_univariate_class(self): """Test the ``_get_univariate`` method when the distribution is a class. When ``distribution`` is passed as a class, it should return an instance without passing arguments. Setup: - create an instance of a ``GaussianCopulaTransformer`` and set ``distribution`` to ``univariate.Univariate``. Output: - an instance of ``copulas.univariate.Univariate`` without any arguments. """ # Setup distribution = copulas.univariate.Univariate ct = GaussianCopulaTransformer(distribution=distribution) # Run univariate = ct._get_univariate() # Assert assert isinstance(univariate, copulas.univariate.Univariate) def test__get_univariate_error(self): """Test the ``_get_univariate`` method when ``distribution`` is invalid. Validate that it raises an error if an invalid distribution is stored in ``distribution``. Setup: - create an instance of a ``GaussianCopulaTransformer`` and set ``self._distribution`` improperly. Raise: - TypeError(f'Invalid distribution: {distribution}') """ # Setup distribution = 123 ct = GaussianCopulaTransformer(distribution=distribution) # Run / Assert with pytest.raises(TypeError): ct._get_univariate() def test__fit(self): """Test the ``_fit`` method. Validate that ``_fit`` calls ``_get_univariate``. Setup: - create an instance of the ``GaussianCopulaTransformer``. - mock the ``_get_univariate`` method. Input: - a pandas series of float values. Side effect: - call the `_get_univariate`` method. """ # Setup data =
pd.Series([0.0, np.nan, 1.0])
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import ahocorasick import math import os import re import sys import shutil import glob import xlsxwriter import subprocess from functools import partial from itertools import product, combinations from subprocess import DEVNULL from multiprocessing import Pool from threading import Timer import random import pandas as pd import tqdm import primer3 from Bio import SeqIO, Seq from Bio.Alphabet import IUPAC from Bio.SeqRecord import SeqRecord __author__ = "<NAME>" __copyright__ = "Copyright 2019, <NAME>" __license__ = "MIT" __maintainer__ = "<NAME>" __version__ = "1.0" __email__ = "<EMAIL>" __status__ = "Production" class PRIMeval: def __init__(self, run_id, max_primer_mismatches, max_probe_mismatches, max_product_size, cross_check, probes_only, method, dimer_check, primerMonovalentCations, primerDivalentCations, primerDNTPs, primerConcentration, primerAnnealingTemp, probeMonovalentCations, probeDivalentCations, probeDNTPs, probeConcentration, probeAnnealingTemp, prebuilt = ""): # parameters self.run_id = run_id self.max_primer_mismatches = int(max_primer_mismatches) self.max_probe_mismatches = int(max_probe_mismatches) self.max_product_size = int(max_product_size) self.max_mismatches = max(max_primer_mismatches, max_probe_mismatches) if self.max_mismatches == 0: self.l, self.e, self.qcov, self.perciden = 5, 10, 100, 100 elif self.max_mismatches == 1: self.l, self.e, self.qcov, self.perciden = 5, 40, 90, 90 elif self.max_mismatches == 2: self.l, self.e, self.qcov, self.perciden = 5, 70, 85, 85 else: self.l, self.e, self.qcov, self.perciden = 5, 100, 80, 80 self.prebuilt = str(prebuilt) self.bowtie_dbs = ["list_of_prebuilt_dbs_in_prebuilt_folder"] self.bowtie_runs = [] self.blast_db_name = "user_db" self.bowtie_index_name = "bindex" self.num_threads = 48 self.method = method if dimer_check == "True": self.dimer_check = True else: self.dimer_check = False if cross_check == "True": self.same_package = False else: self.same_package = True if probes_only == "True": self.probes_only = True else: self.probes_only = False # Cross dimer check self.primer_monovalent_cations = str(primerMonovalentCations) self.primer_divalent_cations = str(primerDivalentCations) self.primer_dntps = str(primerDNTPs) self.primer_annealing_oligo = str(primerConcentration) self.primer_annealing_temp = str(primerAnnealingTemp) self.probe_monovalent_cations = str(probeMonovalentCations) self.probe_divalent_cations = str(probeDivalentCations) self.probe_dntps = str(probeDNTPs) self.probe_annealing_oligo = str(probeConcentration) self.probe_annealing_temp = str(probeAnnealingTemp) self.cross_dimer_dfs = [] self.cross_dimer_dfs_dg = [] self.hairpin_dfs = [] # Aho-Corasick Automaton self.aho = ahocorasick.Automaton() # folders self.base_folder = os.getcwd() + "/" self.run_folder = self.base_folder + "runs/" + str(self.run_id) + "/" self.input_folder = self.run_folder + "input/" self.output_folder = self.run_folder + "output/" self.tmp_folder = self.run_folder + "tmp/" self.input_contigs = self.run_folder + "input/contigs/" self.primer_input_folder = self.run_folder + "input/primers/" self.probes_input_folder = self.run_folder + "input/probes/" self.blast_db_folder = self.run_folder + "tmp/blastdb/" self.prebuilt_genomes = self.base_folder + "prebuilt/genomes/" self.prebuilt_bowtie = self.base_folder + "prebuilt/bowtie/" # files self.output_contigs = self.run_folder + "tmp/merged_contigs.fasta" self.blast_output_tmp_file = self.run_folder + "tmp/blast_tmp_results.txt" self.blast_output_file = self.run_folder + "tmp/blast_results.txt" self.bowtie_output_tmp_file = self.run_folder + "tmp/bowtie_tmp_results.txt" self.bowtie_output_file = self.run_folder + "tmp/bowtie_results.txt" self.bowtie_index_folder = self.run_folder + "tmp/bowtie_index_folder/" self.oligo_file = self.run_folder + "output/oligos.fasta" self.results_all = self.run_folder + "output/results.csv" self.results_wob = self.run_folder + "output/results_wobbled.csv" self.results_dimers = self.run_folder + "output/results_dimers.xlsx" # settings self.blastdb_cmd = "/path/to/makeblastdb" self.bowtie_build_cmd = "/path/to/bowtie-build" self.blast_cmd = "/path/to/blastn" self.bowtie_cmd = "/path/to/bowtie" self.faidx_cmd = "/path/to/samtools faidx " self.pd_col_hits = ["Sequence", "Type", "Name", "Package", "StartPos", "EndPos", "MismatchesTotal", "Strand", "HitSequence", "Tm", "dG"] self.pd_col_results = ["Sequence", "Contig", "Primer1", "Primer2", "Probe", "Primer1Package", "Primer2Package", "ProbePackage", "StartPos1", "EndPos1", "StartPos2", "EndPos2", "StartPos3", "EndPos3", "Primer1Tm", "Primer2Tm", "ProbeTm", "Primer1dG", "Primer2dG", "ProbedG", "ProductSize", "ProductTm", "NoMismatchesLeft", "NoMismatchesRight", "NoMismatchesProbe", "MismatchesLeft", "MismatchesRight", "MismatchesProbe", "Comment", "Product"] self.blast_txt_params = "\"6 qseqid sseqid nident qlen length mismatch qstart qend sstart sseq sstrand " \ "send\"" self.blast_txt_fields = ["qseqid", "sseqid", "nident", "qlen", "length", "mismatch", "qstart", "qend", "sstart", "sseq", "sstrand", "send"] # return list of all possible sequences given an ambiguous DNA input def _extend_ambiguous_dna(self, seq): d = Seq.IUPAC.IUPACData.ambiguous_dna_values return list(map("".join, product(*map(d.get, seq)))) def _get_sequence(self, contig_file, wanted_contig, start, end, strand=1): try: command = self.faidx_cmd + contig_file + " '" + wanted_contig + ":" + str(start) + "-" + str(end) + "'" call = subprocess.check_output(command, shell=True, stderr=subprocess.DEVNULL).decode().split("\n", 1)[1] except: try: contig_file = self.prebuilt_genomes + wanted_contig.split("__contigname__", 1)[0] + ".fasta" command = self.faidx_cmd + contig_file + " '" + wanted_contig + ":" + str(start) + "-" + str(end) + "'" call = subprocess.check_output(command, shell=True, stderr=subprocess.DEVNULL).decode().split("\n", 1)[1] except: sys.exit("Failed retrieving: " + command) call = re.sub("\n|\r", "", call) sequence = Seq.Seq(call) if strand == 1: return sequence.upper() else: return sequence.reverse_complement().upper() # Get a visual representation of mismatches between two sequences def _mismatch_visualization(self, seq_a, seq_b): seq_a, seq_b = seq_a.upper(), seq_b.upper() mismatches = "" if (len(seq_a) - len(seq_b) != 0): return "Error" for pos in range(0, len(seq_a)): if seq_a[pos] != seq_b[pos]: mismatches += "(" + seq_a[pos] + "/" + seq_b[pos] + ")" else: mismatches += "=" return mismatches def _prepare_folders(self): if os.path.exists(self.output_folder): shutil.rmtree(self.output_folder) if os.path.exists(self.tmp_folder): shutil.rmtree(self.tmp_folder) # Create output and tmp folders if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) if not os.path.exists(self.tmp_folder): os.makedirs(self.tmp_folder) if not os.path.exists(self.bowtie_index_folder): os.makedirs(self.bowtie_index_folder) def _clean_up_folders(self): # if os.path.exists(self.input_folder): # shutil.rmtree(self.input_folder) if os.path.exists(self.tmp_folder): shutil.rmtree(self.tmp_folder) # Rename primer and probes, create new sequences without IUPAC codes and save in file # Used for dimer check: self.packages, packages, package, oligo_name def _import_oligos(self, folder, oligotype): packages = {} primer_records = [] allowed_chars = "[^0-9a-zA-Z()'_\+-]+" for file in os.listdir(folder): if file.endswith(".fasta"): package = file.rsplit(".fasta", 1)[0] packages[package] = {} sequences = SeqIO.parse(open(folder + file), "fasta") for fasta in sequences: m = re.search("[M,R,W,S,Y,K,V,H,D,B,N]", str(fasta.seq)) if m: sequence_mutations = self._extend_ambiguous_dna(str(fasta.seq)) mutation_count = 0 for mutation in sequence_mutations: mutation_count += 1 oligo_name = re.sub(allowed_chars, "_", fasta.description) + "_mut" + str(mutation_count) packages[package][oligo_name] = str(mutation) if oligotype == "probe": rec = SeqRecord(Seq.Seq(mutation, IUPAC), id=package + "^" + re.sub(allowed_chars, "_", fasta.description) + "_mut" + str( mutation_count) + "_probe", description="") else: rec = SeqRecord(Seq.Seq(mutation, IUPAC), id=package + "^" + re.sub(allowed_chars, "_", fasta.description) + "_mut" + str( mutation_count), description="") primer_records.append(rec) else: oligo_name = re.sub(allowed_chars, "_", fasta.description) packages[package][oligo_name] = str(fasta.seq) if oligotype == "probe": rec = SeqRecord(fasta.seq, id=package + "^" + re.sub(allowed_chars, "_", fasta.description) + "_probe", description="") else: rec = SeqRecord(fasta.seq, id=package + "^" + re.sub(allowed_chars, "_", fasta.description), description="") primer_records.append(rec) output_handle = open(self.oligo_file, "a") SeqIO.write(primer_records, output_handle, "fasta") output_handle.close() if oligotype == "primer": self.primer_packages = packages else: self.probe_packages = packages # Rename and merge contigs def _import_contigs(self): seq_records = [] for file in os.listdir(self.input_contigs): # CHANGE: other file endings should also be possible (see with Django upload permitted filenames) if file.endswith(".fasta"): base_contig_name = file.replace(".fasta", "") for entry in SeqIO.parse(self.input_contigs + file, "fasta"): my_new_id = base_contig_name + "__contigname__" + entry.id seq_records.append(SeqRecord(entry.seq, id=my_new_id, description="")) output_handle = open(self.output_contigs, "w") SeqIO.write(seq_records, output_handle, "fasta") output_handle.close() command = self.faidx_cmd + self.output_contigs subprocess.call(command, shell=True) def _import_sequences(self): if self.probes_only == False: self._import_oligos(self.primer_input_folder, "primer") self._import_oligos(self.probes_input_folder, "probe") self._import_contigs() def _create_blast_db(self): command = self.blastdb_cmd + " -in " + self.output_contigs + " -dbtype nucl -out " + self.blast_db_folder + self.blast_db_name subprocess.call(command, shell=True) def _create_bowtie_index(self): command = self.bowtie_build_cmd + " --threads " + str( self.num_threads) + " -f " + self.output_contigs + " " + self.bowtie_index_folder + self.bowtie_index_name subprocess.call(command, shell=True) def _blast_call(self): command = self.blast_cmd + " -db " + self.blast_db_folder + self.blast_db_name + " -query " + self.oligo_file + " -out " + \ self.blast_output_tmp_file + " -outfmt " + self.blast_txt_params + " -num_threads " + str( self.num_threads) + " -evalue 200000 " \ "-qcov_hsp_perc " + str(self.qcov) + " -perc_identity " + str(self.perciden) + " -max_target_seqs 2000000 -word_size 4 -ungapped" subprocess.call(command, shell=True) with open(self.blast_output_file, "a") as out_file: with open(self.blast_output_tmp_file) as in_file: out_file.write(in_file.read()) def _bowtie_call(self, index_folder = "", index_name = ""): mismatches = self.max_primer_mismatches if self.max_primer_mismatches >= self.max_probe_mismatches else self.max_probe_mismatches if index_folder == "" and index_name == "": if os.path.getsize(self.output_contigs) == 0: return index_folder = self.bowtie_index_folder index_name = self.bowtie_index_name command = self.bowtie_cmd + " -f -a -p " + str(self.num_threads) + " -n " + str( mismatches) + " -l " + str(self.l) + " -e " + str(self.e) + " " + index_folder + index_name + " " + self.oligo_file + " " + self.bowtie_output_tmp_file subprocess.call(command, shell=True) with open(self.bowtie_output_file, "a") as out_file: with open(self.bowtie_output_tmp_file) as in_file: out_file.write(in_file.read()) def _specificity_calls(self): for db in self.bowtie_runs: self._bowtie_call(self.prebuilt_bowtie, db) def _multiprocess_convert_bowtie_to_blast(self): # in case no hits are returned try: df = pd.read_csv(self.bowtie_output_file, sep="\t", header=None) except pd.errors.EmptyDataError: df = pd.DataFrame(columns = ["", "", "", "", "", "", "", "", "", "", "", ""]) split_df = self.splitDataFrameIntoChunks(df) func = partial(self._convert_bowtie_to_blast) with Pool(self.num_threads) as p: multiprocessing_results = list(tqdm.tqdm(p.imap(func, split_df), total=len(split_df))) self.df_bowtie = pd.DataFrame( columns=["qseqid", "sseqid", "nident", "qlen", "length", "mismatch", "qstart", "qend", "sstart", "sseq", "sstrand", "send"]) self.df_bowtie = pd.concat(multiprocessing_results, ignore_index=True) def _convert_bowtie_to_blast(self, df): df_bowtie = pd.DataFrame( columns=["qseqid", "sseqid", "nident", "qlen", "length", "mismatch", "qstart", "qend", "sstart", "sseq", "sstrand", "send"]) for index, line in df.iterrows(): mismatch = str(line[7]).count(":") if line[0].endswith("_probe") and mismatch > self.max_probe_mismatches: continue if not line[0].endswith("_probe") and mismatch > self.max_primer_mismatches: continue sstrand = "plus" if line[1] == "+" else "minus" qseqid = line[0] sseqid = line[2] qlen = len(line[4]) length = qlen qstart = 1 qend = qlen sstart = int(line[3]) + 1 send = sstart + qlen - 1 nident = qlen - mismatch if sstrand == "minus": temp_swap = sstart sstart = send send = temp_swap if mismatch == 0: sseq = str(Seq.Seq(line[4]).reverse_complement()) else: sseq = self._resolve_bowtie_mismtches(line[4], line[7], -1) else: if mismatch == 0: sseq = line[4] else: sseq = self._resolve_bowtie_mismtches(line[4], line[7], 1) df_bowtie.loc[len(df_bowtie)] = [str(qseqid), str(sseqid), str(nident), str(qlen), str(length), str(mismatch), str(qstart), str(qend), str(sstart), str(sseq), str(sstrand), str(send)] return df_bowtie def _resolve_bowtie_mismtches(self, sequence, mismatches, strand): sequence = Seq.Seq(sequence) if strand == 1 else Seq.Seq(sequence).reverse_complement() mismatches = mismatches.split(",") for mismatch in mismatches: position, base = mismatch.split(":", 1) position = int(position) base = base[0] if strand == 1 else Seq.Seq(base[0]).reverse_complement() sequence = sequence[:position] + base + sequence[position+1:] return str(sequence) def _split_output(self): if self.method == "blast": # in case no hits are returned try: df_blast = pd.read_csv(self.blast_output_file, sep="\t", header=None) except pd.errors.EmptyDataError: df_blast = pd.DataFrame(columns = ["", "", "", "", "", "", "", "", "", "", "", ""]) self.df_blast_split = self.splitDataFrameIntoChunks(df_blast) if self.method == "bowtie": self.df_bowtie_split = self.splitDataFrameIntoChunks(self.df_bowtie) if self.method == "aho-corasick": self.df_aho_split = self.splitDataFrameIntoChunks(self.df_aho) def splitDataFrameIntoChunks(self, df): chunkSize = math.ceil(len(df) / self.num_threads) if chunkSize == 0: chunkSize = 1 listOfDf = list() numberChunks = len(df) // chunkSize + 1 for i in range(numberChunks): listOfDf.append(df[i * chunkSize:(i + 1) * chunkSize]) return listOfDf def _multiprocess_split_files(self): if self.method == "blast": input_files = self.df_blast_split if self.method == "bowtie": input_files = self.df_bowtie_split if self.method == "aho-corasick": input_files = self.df_aho_split func = partial(self._parse_blastlike_results_df) with Pool(self.num_threads) as p: multiprocessing_results = list(tqdm.tqdm(p.imap(func, input_files), total=len(input_files))) self.hits = pd.concat(multiprocessing_results, ignore_index=True) hits_output = self.hits.copy() if len(hits_output.index) > 0: hits_output[['Sequence', 'Contig']] = hits_output['Sequence'].str.split("__contigname__", 1, expand=True) hits_output = hits_output[ ['Sequence', 'Contig', 'Type', 'Name', 'Package', 'StartPos', 'EndPos', 'MismatchesTotal', 'Strand', 'HitSequence', 'Tm', 'dG']] tmp = hits_output['Name'].str.rsplit("_probe", 1, expand = True) hits_output['Name'] = tmp[0] hits_output.to_csv(self.output_folder + "all_hits.csv", index=False, sep=";") def _process_probes_only(self): probes_df = self.hits[(self.hits['Type'] == "Probe")] if len(probes_df.index) > 0: oligos_full_sequences = SeqIO.index(self.oligo_file, "fasta") probes_df = probes_df.drop(columns = ['Type', 'Strand']) probes_df = probes_df.rename(columns = {'Name': 'Probe', 'Package': 'ProbePackage', 'MismatchesTotal': 'NoMismatchesProbe'}) probes_df[['Sequence', 'Contig']] = probes_df['Sequence'].str.split("__contigname__", 1, expand = True) probes_df['MismatchesProbe'] = probes_df.apply(lambda x: self._mismatch_visualization(oligos_full_sequences[x['ProbePackage'] + "^" + x['Probe']].seq, x['HitSequence']), axis=1) probes_df = probes_df[['Sequence', 'Contig', 'Probe', 'ProbePackage', 'StartPos', 'EndPos', 'NoMismatchesProbe', 'MismatchesProbe', 'HitSequence', 'Tm' ,'dG']] tmp = probes_df['Probe'].str.rsplit("_probe", 1, expand = True) probes_df['Probe'] = tmp[0] probes_df.to_csv(self.results_all, index=False, sep=";") # parse wobbled primers subset = probes_df[probes_df['Probe'].str.contains("_mut")] subset_r = subset.replace(['_mut([0-9])+'], [''], regex=True) # hits without mutations unique = probes_df.merge(subset, indicator=True, how="outer") unique = unique[unique['_merge'] == 'left_only'] unique = unique.drop("_merge", axis=1) results2 = pd.DataFrame(columns=['Sequence', 'Contig', 'Probe', 'ProbePackage', 'StartPos', 'EndPos', 'NoMismatchesProbe', 'MismatchesProbe', 'HitSequence', 'Tm', 'dG']) for s in subset_r.groupby(['Sequence', 'Contig', 'Probe', 'ProbePackage', 'StartPos', 'EndPos', 'HitSequence']).groups.items(): # Fields to be changed: NoMismatchesProbe, MismatchesProbe sample = subset_r.loc[s[1]] # get one set first_row = sample.iloc[0] if len(sample) < 2: results2.loc[len(results2)] = first_row else: mismatch_min, mismatch_max = min(sample['NoMismatchesProbe']), max(sample['NoMismatchesProbe']) mismatches = mismatch_min if mismatch_min == mismatch_max else str(mismatch_min) + "-" + str(mismatch_max) tm_min, tm_max = min(sample['Tm']), max(sample['Tm']) tm = tm_min if tm_min == tm_max else str(tm_min) + "-" + str(tm_max) dg_min, dg_max = min(sample['dG']), max(sample['dG']) dg = dg_min if dg_min == dg_max else str(dg_min) + "-" + str(dg_max) # Get first row and then replace values of first row (all other fields are identifical) results2.loc[len(results2)] = [first_row['Sequence'], first_row['Contig'], first_row['Probe'], first_row['ProbePackage'], first_row['StartPos'], first_row['EndPos'], mismatches, '', first_row['HitSequence'], tm, dg] wobbled = unique.append(results2) wobbled.to_csv(self.results_wob, index=False, sep=";") def _parse_blastlike_results_df(self, blast_df): oligos_full_sequences = SeqIO.index(self.oligo_file, "fasta") hits = pd.DataFrame(columns=self.pd_col_hits) for index, line in blast_df.iterrows(): if self.method == "aho-corasick": if line[0].endswith("_probe") and int(line[5]) > self.max_probe_mismatches: continue if not line[0].endswith("_probe") and int(line[5]) > self.max_primer_mismatches: continue new_package = line[0].split("^", 1)[0] new_qresult = line[0].split("^", 1)[1] hit_strand = 1 if line[10] == "plus" else -1 mismatches_total = int(line[5]) hit_seq = line[9] type = "Probe" if line[0].endswith("_probe") == True else "Primer" if hit_strand == -1: temp_swap = int(line[8]) sstart = int(line[11]) send = temp_swap else: sstart = int(line[8]) send = int(line[11]) tm, dg = self._calc_thermal_parameters(str(oligos_full_sequences[line[0]].seq.reverse_complement()), hit_seq, type) hits.loc[len(hits)] = [line[1], type, new_qresult, new_package, sstart, send, mismatches_total, hit_strand, hit_seq, tm, dg] else: mismatches_left = int(line[6]) mismatches_right = int(line[3]) - int(line[7]) mismatches_middle = int(line[3]) - int(line[2]) - mismatches_left - mismatches_right mismatches_total = mismatches_left + mismatches_right + mismatches_middle if line[0].endswith("_probe") and mismatches_total > self.max_probe_mismatches: continue if not line[0].endswith("_probe") and mismatches_total > self.max_primer_mismatches: continue new_package = line[0].split("^", 1)[0] new_qresult = line[0].split("^", 1)[1] hit_strand = 1 if line[10] == "plus" else -1 type = "Probe" if line[0].endswith("_probe") == True else "Primer" correct_start = mismatches_left - 1 if hit_strand == 1 else mismatches_right if hit_strand == -1 else 0 correct_end = mismatches_right if hit_strand == 1 else mismatches_left - 1 if hit_strand == -1 else 0 if hit_strand == -1: temp_swap = int(line[8]) sstart = int(line[11]) - correct_start send = temp_swap + correct_end else: sstart = int(line[8]) - correct_start send = int(line[11]) + correct_end if mismatches_left > 0 or mismatches_right > 0: hit_seq = self._get_sequence(self.output_contigs, line[1], sstart, send, hit_strand) else: hit_seq = line[9] tm, dg = self._calc_thermal_parameters(str(oligos_full_sequences[line[0]].seq.reverse_complement()), hit_seq, type) hits.loc[len(hits)] = [line[1], type, new_qresult, new_package, sstart, send, mismatches_total, hit_strand, hit_seq, tm, dg] return hits def _multiprocess_hits(self): objects = [] groups = [] num_groups = math.ceil(len(self.hits[self.hits['Type'] == "Primer"].groupby("Sequence").groups.items()) / self.num_threads) i = 1 for s in self.hits[self.hits['Type'] == "Primer"].groupby("Sequence").groups.items(): if i > num_groups: groups.append(objects) objects = [] i = 1 objects.append(self.hits.loc[s[1]]) i += 1 groups.append(objects) multiprocessing_results = [] func = partial(self._parse_hits) with Pool(self.num_threads) as p: multiprocessing_results = list(tqdm.tqdm(p.imap(func, groups), total=len(groups))) self.results = pd.concat(multiprocessing_results, ignore_index=True) def _parse_hits(self, groups): oligos_full_sequences = SeqIO.index(self.oligo_file, "fasta") results = pd.DataFrame(columns=self.pd_col_results) for df in groups: start = df['StartPos'].values.tolist() end = df['EndPos'].values.tolist() a = [(y - x, (i, j)) for i, x in enumerate(start) for j, y in enumerate(end) if (y - x) > 0 and (y - x) <= self.max_product_size and i != j] if len(a) == 0: continue for product_size, (left, right) in a: if df['Strand'].iloc[left] == df['Strand'].iloc[right] or df['Strand'].iloc[left] == -1: continue if self.same_package == True and df['Package'].iloc[left] != df['Package'].iloc[right]: continue sequence, contig = df['Sequence'].iloc[left].split("__contigname__", 1) product = self._get_sequence(self.output_contigs, df['Sequence'].iloc[left], df['StartPos'].iloc[left], df['EndPos'].iloc[right], 1) tmp_left_name = df["Package"].iloc[left] + "^" + df['Name'].iloc[left] mismatches1 = self._mismatch_visualization(oligos_full_sequences[tmp_left_name].seq, df['HitSequence'].iloc[left]) tmp_right_name = df["Package"].iloc[right] + "^" + df['Name'].iloc[right] mismatches2 = self._mismatch_visualization(oligos_full_sequences[tmp_right_name].seq, df['HitSequence'].iloc[right]) probe_matches = self.hits[(self.hits['Type'] == "Probe") & (self.hits['Sequence'] == df['Sequence'].iloc[left]) & (self.hits['StartPos'] >= df['StartPos'].iloc[left]) & (self.hits['EndPos'] <= df['EndPos'].iloc[right])] if self.same_package == True: probe_package_match = str(df['Package'].iloc[left]) + "_probes" probe_matches = probe_matches[(probe_matches['Package'] == probe_package_match)] no_probe_hits = len(probe_matches.index) product_tm = self._calc_Tm(str(product), "Product") if no_probe_hits == 0: # save matching primers, no matching probe found results.loc[len(results)] = [sequence, contig, df['Name'].iloc[left], df['Name'].iloc[right], "", df['Package'].iloc[left], df['Package'].iloc[right], "", df['StartPos'].iloc[left], df['EndPos'].iloc[left], df['StartPos'].iloc[right], df['EndPos'].iloc[right], "", "", df['Tm'].iloc[left], df['Tm'].iloc[right], "", df['dG'].iloc[left], df['dG'].iloc[right], "", int(product_size+1), product_tm, df['MismatchesTotal'].iloc[left], df['MismatchesTotal'].iloc[right], "", mismatches1, mismatches2, "", "", str(product)] else: for index, row in probe_matches.iterrows(): tmp_probe_name = row['Package'] + "^" + row['Name'] probe_mivi = self._mismatch_visualization(oligos_full_sequences[tmp_probe_name].seq, row['HitSequence']) comment = "More than 1 probe binding to amplicon." if no_probe_hits > 1 else "" # save matching primers and matching probes, multiple probes per primer pair possible results.loc[len(results)] = [sequence, contig, df['Name'].iloc[left], df['Name'].iloc[right], row['Name'], df['Package'].iloc[left], df['Package'].iloc[right], row['Package'], df['StartPos'].iloc[left], df['EndPos'].iloc[left], df['StartPos'].iloc[right], df['EndPos'].iloc[right], row['StartPos'], row['EndPos'], df['Tm'].iloc[left], df['Tm'].iloc[right], row['Tm'], df['dG'].iloc[left], df['dG'].iloc[right], row['dG'], int(product_size+1), product_tm, df['MismatchesTotal'].iloc[left], df['MismatchesTotal'].iloc[right], row['MismatchesTotal'], mismatches1, mismatches2, probe_mivi, comment, str(product)] return results def _parse_results_to_wobbled(self): subset = self.results[ self.results['Primer1'].str.contains("_mut") | self.results['Primer2'].str.contains("_mut")] subset_r = subset.replace(['_mut([0-9])+'], [''], regex=True) # results without mutations unique = self.results.merge(subset, indicator=True, how="outer") unique = unique[unique['_merge'] == 'left_only'] unique = unique.drop("_merge", axis=1) results2 = pd.DataFrame(columns=self.pd_col_results) for s in subset_r.groupby( ['Sequence', 'Contig', 'Primer1', 'Primer2', 'Probe', 'Primer1Package', 'Primer2Package', 'ProbePackage', 'StartPos1', 'EndPos1', 'StartPos2', 'EndPos2', 'StartPos3', 'EndPos3', 'ProductSize', 'Comment', 'Product']).groups.items(): # Fields to be changed: NoMismatchesLeft, NoMismatchesRight, MismatchesLeft, MismatchesRight, NoMismatchesProbe, MismatchesProbe sample = subset_r.loc[s[1]] # get one set first_row = sample.iloc[0] if len(sample) < 2: results2.loc[len(results2)] = first_row else: primer_left_min, primer_left_max = min(sample['NoMismatchesLeft']), max(sample['NoMismatchesLeft']) primer_left = primer_left_min if primer_left_min == primer_left_max else str(primer_left_min) + "-" + str(primer_left_max) primer_right_min, primer_right_max = min(sample['NoMismatchesRight']), max(sample['NoMismatchesRight']) primer_right = primer_right_min if primer_right_min == primer_right_max else str(primer_right_min) + "-" + str(primer_right_max) probe_min, probe_max = min(sample['NoMismatchesProbe']), max(sample['NoMismatchesProbe']) probe = probe_min if probe_min == probe_max else str(probe_min) + "-" + str(probe_max) primer1tm_min, primer1tm_max = min(sample['Primer1Tm']), max(sample['Primer1Tm']) primer1tm = primer1tm_min if primer1tm_min == primer1tm_max else str(primer1tm_min) + "-" + str(primer1tm_max) primer2tm_min, primer2tm_max = min(sample['Primer2Tm']), max(sample['Primer2Tm']) primer2tm = primer2tm_min if primer2tm_min == primer2tm_max else str(primer2tm_min) + "-" + str(primer2tm_max) primer1dg_min, primer1dg_max = min(sample['Primer1dG']), max(sample['Primer1dG']) primer1dg = primer1dg_min if primer1dg_min == primer1dg_max else str(primer1dg_min) + "-" + str(primer1dg_max) primer2dg_min, primer2dg_max = min(sample['Primer2dG']), max(sample['Primer2dG']) primer2dg = primer2dg_min if primer2dg_min == primer2dg_max else str(primer2dg_min) + "-" + str(primer2dg_max) producttm_min, producttm_max = min(sample['ProductTm']), max(sample['ProductTm']) producttm = producttm_min if producttm_min == producttm_max else str(producttm_min) + "-" + str(producttm_max) probetm_min, probetm_max = min(sample['ProbeTm']), max(sample['ProbeTm']) probetm = probetm_min if probetm_min == probetm_max else str(probetm_min) + "-" + str(probetm_max) probedg_min, probedg_max = min(sample['ProbedG']), max(sample['ProbedG']) probedg = probedg_min if probedg_min == probedg_max else str(probedg_min) + "-" + str(probedg_max) # Get first row and then replace values of first row (all other fields are identifical) results2.loc[len(results2)] = [first_row['Sequence'], first_row['Contig'], first_row['Primer1'], first_row['Primer2'], first_row['Probe'], first_row['Primer1Package'], first_row['Primer2Package'], first_row['ProbePackage'], first_row['StartPos1'], first_row['EndPos1'], first_row['StartPos2'], first_row['EndPos2'], first_row['StartPos3'], first_row['EndPos3'], primer1tm, primer2tm, probetm, primer1dg, primer2dg, probedg, first_row['ProductSize'], producttm, primer_left, primer_right, probe, '', '', first_row['MismatchesProbe'], first_row['Comment'], first_row['Product']] self.wobbled = unique.append(results2) def _save_results(self): if len(self.results.index) > 0: tmp = self.results['Probe'].str.rsplit("_probe", 1, expand = True) self.results['Probe'] = tmp[0] self.results.to_csv(self.results_all, index=False, sep=";") def _save_wobbled_results(self): self.wobbled.to_csv(self.results_wob, index=False, sep=";") def _add_oligos_to_automaton(self): sequences = SeqIO.parse(open(self.oligo_file), "fasta") for fasta in sequences: name = str(fasta.id) max_mismatches = self.max_probe_mismatches if name.endswith("_probe") else self.max_primer_mismatches i = 0 while i <= max_mismatches: for count, elem in enumerate(self._generate_primer_mismatches(fasta.seq, i)): self.aho.add_word(elem.upper(), (name + "__" + str(count), elem.upper())) for count, elem in enumerate(self._generate_primer_mismatches(fasta.seq.reverse_complement(), i)): self.aho.add_word(elem.upper(), (name + "__rc__" + str(count), elem.upper())) i += 1 def _generate_primer_mismatches(self, s, d=1): N = len(s) letters = 'ACGT' pool = list(s) for indices in combinations(range(N), d): for replacements in product(letters, repeat=d): skip = False for i, a in zip(indices, replacements): if pool[i] == a: skip = True if skip: continue keys = dict(zip(indices, replacements)) yield ''.join([pool[i] if i not in indices else keys[i] for i in range(N)]) def _multiprocess_string_search(self): objects = [] groups = [] num_seq = sum(1 for x in SeqIO.parse(open(self.output_contigs), "fasta")) num_groups = math.ceil(num_seq / self.num_threads) # dynamic group allocation does not always work # num_groups = 256 i = 1 for fasta in SeqIO.parse(open(self.output_contigs), "fasta"): if i > num_groups: groups.append(objects) objects = [] i = 1 objects.append([str(fasta.seq).upper(), str(fasta.id)]) i += 1 groups.append(objects) multiprocessing_results = [] func = partial(self._string_search_match) with Pool(self.num_threads) as p: multiprocessing_results = list(tqdm.tqdm(p.imap(func, groups), total=len(groups))) self.df_aho = pd.concat(multiprocessing_results, ignore_index=True) self.df_aho = self.df_aho.sort_values(['qseqid', 'mismatch']) def _string_search_match(self, groups): aho = self.aho aho.make_automaton() oligos_full_sequences = SeqIO.index(self.oligo_file, "fasta") df = pd.DataFrame( columns=["qseqid", "sseqid", "nident", "qlen", "length", "mismatch", "qstart", "qend", "sstart", "sseq", "sstrand", "send"]) for object in groups: haystack = object[0] fasta = object[1] for end_pos, (mutated_oligo_name, mutated_oligo_sequence) in aho.iter(haystack): print("mutated oligo sequence: " + str(mutated_oligo_sequence)) start_pos = end_pos - len(mutated_oligo_sequence) length = len(mutated_oligo_sequence) if "__rc__" in mutated_oligo_name: oligo_name = mutated_oligo_name.rsplit("__rc__", 1)[0] oligo_seq = str(oligos_full_sequences[oligo_name].seq).upper() strand = "minus" start = end_pos + 1 end = start_pos + 2 sseq = self._get_sequence(self.output_contigs, str(fasta), end, start, -1) mismatches = self._number_of_mismatches(sseq, oligo_seq) nident = length - mismatches else: oligo_name = mutated_oligo_name.rsplit("__", 1)[0] oligo_seq = str(oligos_full_sequences[oligo_name].seq).upper() strand = "plus" start = start_pos + 2 end = end_pos + 1 sseq = self._get_sequence(self.output_contigs, str(fasta), start, end, 1) mismatches = self._number_of_mismatches(sseq, oligo_seq) nident = length - mismatches df.loc[len(df)] = [str(oligo_name), str(fasta), str(nident), str(length), str(length), str(mismatches), str("1"), str(length), str(start), str(sseq), str(strand), str(end)] return df def _number_of_mismatches(self, s1, s2): return sum(c1 != c2 for c1, c2 in zip(s1, s2)) def _run_cross_dimer_check(self): for package in self.primer_packages: oligo_list = [] for oligo_a in self.primer_packages[package]: oligo_list.append((package, oligo_a, oligo_a, self.primer_packages[package][oligo_a], self.primer_packages[package][oligo_a])) for oligo_a, oligo_b in combinations(self.primer_packages[package], 2): oligo_list.append((package, oligo_a, oligo_b, self.primer_packages[package][oligo_a], self.primer_packages[package][oligo_b])) pool = Pool(self.num_threads) multiprocessing_results = [] func = partial(self._cross_dimer_check) multiprocessing_results = list(tqdm.tqdm(pool.map(func, oligo_list), total=len(oligo_list))) pool.close() pool.join() df =
pd.concat(multiprocessing_results, ignore_index=True)
pandas.concat
import json import numpy as np import pandas as pd from pprint import pprint from preprocessing import AbstractPreprocessor, preproc import os def simpleSplit(text): return text.split() #reads joson form the repo files. Every line is a valid json but the whole doc is not def repo_read_json(filename, lemma = True): with open(filename, "r") as fd: line = fd.readline() while line != "": if line.find("bibo:abstract") != -1: jsonobj = json.loads(line) # print(jsonobj) id = jsonobj["identifier"] pretitle = jsonobj["bibo:shortTitle"] title = preproc(pretitle, to_lemmatize=lemma) abstract = jsonobj["bibo:abstract"] # print(str(id) + "Type of id: " + str(type(id))) # print(title + "Type of title: " + str(type(title))) # print(abstract + "Type of abstract: " + str(type(abstract))) print(id, pretitle, title, abstract, sep="\n") line = fd.readline() class AbstractExtracter(): def __init__(self, filenames=None, preprocessor=simpleSplit): self.filenames = filenames self.preprocessor = preprocessor # self.columns = ["id", "title", "abstract"] # self.df = pd.DataFrame(columns=self.columns) self.df =
pd.DataFrame()
pandas.DataFrame