prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# Originally created: 02nd October, 2021 # <NAME> # Last amended: 09th Oct, 2021 # Myfolder: 1/home/ashok/Documents/churnapp # VM: lubuntu_healthcare # Ref: https://builtin.com/machine-learning/streamlit-tutorial # # Objective: # Deploy an ML model on web # ######################## # Notes: # 1, Run this app in its folder, as: # cd /home/ashok/Documents/churnapp # streamlit run churn-app.py # 2. Accomanying file to experiment is # expt.py ######################## # 1.0 Call libraries # Install as: pip install streamlit # Better create a separate conda environment for it import streamlit as st import pandas as pd import numpy as np import pickle import base64 #import seaborn as sns #import matplotlib.pyplot as plt # 1.1 Set pandas options. None means no truncation pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # Write some body-text on the Web-Page: st.write(""" # Churn Prediction App Customer churn is defined as the loss of customers after a certain period of time. Companies are interested in targeting customers who are likely to churn. They can target these customers with special deals and promotions to influence them to stay with the company. This app predicts the probability of a customer churning using Telco Customer data. Here customer churn means the customer does not make another purchase after a period of time. """) # 2.0 Read data from current folder # Default folder is where streamlit # is being run. So this file # should be in /home/ashok/Documents/churnapp # Else, home folder is the default. df_selected = pd.read_csv("telco_churn.csv") # 2.1 We will select only a few columns # for our model: cols = ['gender', 'Partner', 'Dependents', 'PhoneService', 'tenure', 'MonthlyCharges', 'Churn'] df_selected_all = df_selected[cols].copy() # 3.0 We will create a file download link # in our webapp # What is base64? # See: https://levelup.gitconnected.com/what-is-base64-encoding-4b5ed1eb58a4 def filedownload(df): csv = df.to_csv(index=False) # csv is now a string csv = csv.encode() # csv is b' string or bytes b64 = base64.b64encode(csv) # b64 is base64 encoded binary b64 = b64.decode() # b64 is decoded to one of 64 characters # 3.1 Create an html link to download datafile # See here: https://stackoverflow.com/a/14011075 href = f'<a href="data:file/csv;base64,{b64}" download="churn_data.csv">Download CSV File</a>' # 3.2 Return href object return href #st.set_option('deprecation.showPyplotGlobalUse', False) # 3.3 Finally display the href link href = filedownload(df_selected_all) st.markdown(href, unsafe_allow_html=True) # 4.0 Create a component to upload data file in the sidebar. # 'uploaded_file' is a pandas dataframe uploaded_file = st.sidebar.file_uploader( "Upload your input CSV file", type=["csv"] ) # 4.1 Read data from file. Else, read from widgets if uploaded_file is not None: # 4.2 Read the uploaded file input_df = pd.read_csv(uploaded_file) else: # 4.3 Define a function to create data from widgets def user_input_features(): # 4.4 Create four widgets gender = st.sidebar.selectbox('gender',('Male','Female')) PaymentMethod = st.sidebar.selectbox('PaymentMethod',('Bank transfer (automatic)', 'Credit card (automatic)', 'Mailed check', 'Electronic check')) MonthlyCharges = st.sidebar.slider('Monthly Charges', 18.0,118.0, 18.0) tenure = st.sidebar.slider('tenure', 0.0,72.0, 0.0) # 4.5 Collect widget output in a dictionary data = { 'gender': [gender], # Should be a list data structure 'PaymentMethod': [PaymentMethod], 'MonthlyCharges':[MonthlyCharges], 'tenure': [tenure] } # 4,6 Transform data to DataFrame features =
pd.DataFrame(data)
pandas.DataFrame
import os import re import sys import math import json import bokeh import geopandas import numpy as np import pandas as pd from scipy.interpolate import interp1d from bokeh.io.doc import curdoc from bokeh.layouts import layout from bokeh.plotting import figure from bokeh.models.glyphs import Text from bokeh.application import Application from bokeh.models.callbacks import CustomJS from bokeh.plotting import show as plt_show from bokeh.palettes import brewer,OrRd,YlGn from bokeh.models.widgets import Button,Select from bokeh.tile_providers import Vendors,get_provider from bokeh.io import output_notebook,show,output_file from bokeh.application.handlers import FunctionHandler from bokeh.layouts import widgetbox,row,column,gridplot from bokeh.models import ColumnDataSource,Slider,HoverTool,Select,Div,Range1d,WMTSTileSource,BoxZoomTool,TapTool,Panel,Tabs from bokeh.models import GeoJSONDataSource,LinearColorMapper,ColorBar,NumeralTickFormatter,LinearAxis,Grid,Label,Band,Legend,LegendItem verbose=False enable_GeoJSON_saving=False DATA_UPDATE_DATE='20-October-2021' FORECASTS_UPDATE_DATE='19-October-2021' def apply_corrections(input_df): for state in list(input_df['state'].values): input_df.loc[input_df['state']==state,'state']=re.sub('[^A-Za-z ]+', '',str(state)) input_df.loc[input_df['state']=='Karanataka','state']='Karnataka' input_df.loc[input_df['state']=='Himanchal Pradesh','state']='Himachal Pradesh' input_df.loc[input_df['state']=='Telengana','state']='Telangana' input_df.loc[input_df['state']=='Dadra and Nagar Haveli','state']='Dadra and Nagar Haveli and Daman and Diu' input_df.loc[input_df['state']=='Dadar Nagar Haveli','state']='Dadra and Nagar Haveli and Daman and Diu' input_df.loc[input_df['state']=='Dadra Nagar Haveli','state']='Dadra and Nagar Haveli and Daman and Diu' input_df.loc[input_df['state']=='Daman & Diu','state']='Dadra and Nagar Haveli and Daman and Diu' input_df.loc[input_df['state']=='Daman and Diu','state']='Dadra and Nagar Haveli and Daman and Diu' return input_df def os_style_formatter(input_str): try: os_env=os.environ['OS'] except: os_env='unknown' return str(input_str).replace('/', "\\") if os_env=='Windows_NT' else str(input_str) try: India_statewise=geopandas.read_file('https://raw.githubusercontent.com/MoadComputer/covid19-visualization/main/data/GeoJSON_assets/India_statewise_minified.geojson') India_stats=pd.read_csv('https://raw.githubusercontent.com/MoadComputer/covid19-visualization/main/data/Coronavirus_stats/India/Population_stats_India_statewise.csv') covid19_data=pd.read_csv('https://raw.githubusercontent.com/MoadComputer/covid19-visualization/main/data/Coronavirus_stats/India/COVID19_India_statewise.csv') preds_df=pd.read_csv('https://raw.githubusercontent.com/MoadComputer/covid19-visualization/main/data/Coronavirus_stats/India/experimental/output_preds.csv') except: India_GeoJSON_repoFile=os_style_formatter( './GitHub/MoadComputer/covid19-visualization/data/GeoJSON_assets/India_statewise_minified.geojson') covid19_statewise_repoFile=os_style_formatter( './GitHub/MoadComputer/covid19-visualization/data/Coronavirus_stats/India/COVID19_India_statewise.csv') India_statewise_statsFile=os_style_formatter( './GitHub/MoadComputer/covid19-visualization/data/Coronavirus_stats/India/Population_stats_India_statewise.csv') saved_predsFile=os_style_formatter( './GitHub/MoadComputer/covid19-visualization/data/Coronavirus_stats/India/experimental/output_preds.csv') if os.path.exists(India_GeoJSON_repoFile): India_statewise=geopandas.read_file(India_GeoJSON_repoFile) print('Reading India GeoJSON file from saved repo ...') else: sys.exit('Failed to read GeoJSON file for India ...') if os.path.exists(covid19_statewise_repoFile): covid19_data=pd.read_csv(covid19_statewise_repoFile) print('Reading India COVID19 file from saved repo ...') else: sys.exit('Failed to read India COVID19 file ...') if os.path.exists(India_statewise_statsFile): India_stats=
pd.read_csv(India_statewise_statsFile)
pandas.read_csv
## FROM KAGGLE KERNEL: import os import random import gc import tqdm import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # import matplotlib.pyplot as plt # import seaborn as sns # # from sklearn import preprocessing # from sklearn.model_selection import KFold # import lightgbm as lgb # import xgboost as xgb # import catboost as cb # %% {"_kg_hide-input": true} # Copy from https://www.kaggle.com/gemartin/load-data-reduce-memory-usage by @gemartin # Modified to support timestamp type # Modified to add option to use float16 or not. feather format does not support float16. from pandas.api.types import is_datetime64_any_dtype as is_datetime def reduce_mem_usage(df, use_float16=False): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024 ** 2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: if is_datetime(df[col]): # skip datetime type continue col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if use_float16 and c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024 ** 2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df def import_data(file): """create a dataframe and optimize its memory usage""" df = pd.read_csv(file, parse_dates=True, keep_date_col=True) df = reduce_mem_usage(df) return df #%% # %% from pathlib import Path import zipfile DATA_PATH = '~/ashrae/data/raw' DATA_PATH = Path(DATA_PATH) DATA_PATH = DATA_PATH.expanduser() assert DATA_PATH.exists(), DATA_PATH DATA_FEATHER_PATH ='~/ashrae/data/feather' DATA_FEATHER_PATH = Path(DATA_FEATHER_PATH) DATA_FEATHER_PATH = DATA_FEATHER_PATH.expanduser() assert DATA_FEATHER_PATH.exists() # zipfile.ZipFile(DATA_PATH).infolist() #%% ZIPPED = False # %%time if ZIPPED: with zipfile.ZipFile(DATA_PATH) as zf: with zf.open('train.csv') as zcsv: train_df = pd.read_csv(zcsv) with zf.open('test.csv') as zcsv: test_df = pd.read_csv(zcsv) with zf.open('weather_train.csv') as zcsv: weather_train_df = pd.read_csv(zcsv) with zf.open('weather_test.csv') as zcsv: weather_test_df = pd.read_csv(zcsv) with zf.open('building_metadata.csv') as zcsv: building_meta_df = pd.read_csv(zcsv) with zf.open('sample_submission.csv') as zcsv: sample_submission = pd.read_csv(zcsv) #%% train_df = pd.read_csv(DATA_PATH / 'train.zip') test_df =
pd.read_csv(DATA_PATH / 'test.zip')
pandas.read_csv
import os from src.utils.common.common_helper import read_config from loguru import logger from flask import session from src.utils.databases.mysql_helper import MySqlHelper from from_root import from_root import pandas as pd path = os.path.join(from_root(), 'config.yaml') config_args = read_config(path) log_path = os.path.join(from_root(), config_args['logs']['logger'], config_args['logs']['generallogs_file']) logger.add(sink=log_path, format="[{time:YYYY-MM-DD HH:mm:ss.SSS} - {level} - {module} ] - {message}", level="INFO") class ProjectReports: projectStatus = [{'key': 1, 'value': 'Initialized'}, {'key': 2, 'value': 'EDA'}, {'key': 3, 'value': 'Data Processing'}, {'key': 4, 'value': 'Feature Engineering'}, {'key': 5, 'value': 'Model Training'}] @staticmethod def insert_record_eda(actionName, input='', output='', isSuccessed=1, errorMessage=''): try: mysql = MySqlHelper.get_connection_obj() query = f"""INSERT INTO tblProjectReports(`Projectid`, `ModuleId`, `ActionName`, `Input`, `IsSuccessed`, `Output`, `ErrorMessage`) VALUES ('{session.get('pid')}','2','{actionName}','{input}', {isSuccessed},'{output}','{errorMessage}')""" logger.info(f"{session.get('id')} details uploaded successfully for EDA!") rowcount = mysql.insert_record(query) except Exception as e: logger.error(f"{session.get('pid')} details upload failed for EDA!") @staticmethod def insert_record_dp(actionName, input='', output='', isSuccessed=1, errorMessage=''): try: mysql = MySqlHelper.get_connection_obj() query = f"""INSERT INTO tblProjectReports(`Projectid`, `ModuleId`, `ActionName`, `Input`, `IsSuccessed`, `Output`, `ErrorMessage`) VALUES ('{session.get('pid')}','3','{actionName}','{input}',{isSuccessed},'{output}','{errorMessage}')""" logger.info(f"{session.get('pid')} details uploaded successfully for Data Preprocessing!") rowcount = mysql.insert_record(query) except Exception as e: logger.error(f"{session.get('pid')} details upload failed for Data Preprocessing!") @staticmethod def insert_record_fe(actionName, input='', output='', isSuccessed=1, errorMessage=''): try: mysql = MySqlHelper.get_connection_obj() query = f"""INSERT INTO tblProjectReports(`Projectid`, `ModuleId`, `ActionName`, `Input`, `IsSuccessed`, `Output`, `ErrorMessage`) VALUES ('{session.get('pid')}','4','{actionName}','{input}',{isSuccessed},'{output}','{errorMessage}')""" logger.info(f"{session.get('pid')} details uploaded successfully for Feature Engineering!") rowcount = mysql.insert_record(query) except Exception as e: logger.error(f"{session.get('pid')} details upload failed for Feature Engineering!") @staticmethod def insert_record_ml(actionName, input='', output='', isSuccessed=1, errorMessage=''): try: mysql = MySqlHelper.get_connection_obj() query = f"""INSERT INTO tblProjectReports(`Projectid`, `ModuleId`, `ActionName`, `Input`, `IsSuccessed`, `Output`, `ErrorMessage`) VALUES ('{session.get('pid')}','5','{actionName}','{input}',{isSuccessed},'{output}','{errorMessage}')""" logger.info(f"{session.get('pid')} details uploaded successfully for Machine Learning!") rowcount = mysql.insert_record(query) except Exception as e: logger.error(f"{session.get('pid')} details upload failed for Machine Learning!") """[summary] Method To Add Project Actions Report """ @staticmethod def insert_project_action_report(projectActionId, input='', output=''): try: mysql = MySqlHelper.get_connection_obj() query = f"""INSERT INTO tblProject_Actions_Reports(ProjectId, ProjectActionId, Input, Output) VALUES ({session.get('pid')},{projectActionId},"{input}",'{output}')""" rowcount = mysql.insert_record(query) return rowcount except Exception as e: print(e) @staticmethod def add_active_module(moduleId): # if 'mysql' not in st.session_state: # ProjectReports.make_mysql_connection() # print("called") # mysql=st.session_state['mysql'] # query=f"""Update tblProjects SET Status={moduleId} Where Id={session.get('id')}""" # rowcount = mysql.insert_record(query) pass @staticmethod def get_record_by_pid(pid, moduleId): try: mysql = MySqlHelper.get_connection_obj() query = f"""SHOW COLUMNS FROM tblProjectReports""" columns = mysql.fetch_all(query) columns = pd.DataFrame(columns)[0].tolist() columns.insert(3, 'Module Name') columns = columns[3:] # query = f"""select tblProjectStatus.Name, tblProjectReports.ActionName, tblProjectReports.Input, tblProjectReports.IsSuccessed, tblProjectReports.Output, tblProjectReports.ErrorMessage, tblProjectReports.CreateDate from tblProjectReports join tblProjectStatus on (tblProjectReports.ModuleId=tblProjectStatus.Id) where tblProjectReports.Projectid = {pid}""" # if moduleId != 0: # query = query + f""" and tblProjectReports.ModuleId = {moduleId}""" query = f'''select tblProjectStatus.Name, tblProjectReports.ActionName, tblProjectReports.Input, tblProjectReports.IsSuccessed, tblProjectReports.Output, tblProjectReports.ErrorMessage, tblProjectReports.CreateDate from tblProjectReports join tblProjectStatus on (tblProjectReports.ModuleId=tblProjectStatus.Id) join tblProjects on (tblProjectReports.Projectid=tblProjects.Id) where tblProjects.Pid = '{pid}' ''' if moduleId is not None: query+=" and tblProjectReports.ModuleId ={moduleId}" records = mysql.fetch_all(query) records =
pd.DataFrame(records, columns=columns)
pandas.DataFrame
# -*- coding: utf-8 -*- import random from pandasqt.compat import Qt, QtCore, QtGui import pytest import pytestqt import decimal import numpy import pandas from pandasqt.models.DataFrameModel import DataFrameModel, DATAFRAME_ROLE from pandasqt.models.DataSearch import DataSearch from pandasqt.models.SupportedDtypes import SupportedDtypes def test_initDataFrame(): model = DataFrameModel() assert model.dataFrame().empty def test_initDataFrameWithDataFrame(): dataFrame = pandas.DataFrame([0], columns=['A']) model = DataFrameModel(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame def test_setDataFrame(): dataFrame = pandas.DataFrame([0], columns=['A']) model = DataFrameModel() model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame with pytest.raises(TypeError) as excinfo: model.setDataFrame(None) assert "pandas.core.frame.DataFrame" in unicode(excinfo.value) @pytest.mark.parametrize( "copy, operator", [ (True, numpy.not_equal), (False, numpy.equal) ] ) def test_copyDataFrame(copy, operator): dataFrame = pandas.DataFrame([0], columns=['A']) model = DataFrameModel(dataFrame, copyDataFrame=copy) assert operator(id(model.dataFrame()), id(dataFrame)) model.setDataFrame(dataFrame, copyDataFrame=copy) assert operator(id(model.dataFrame()), id(dataFrame)) def test_TimestampFormat(): model = DataFrameModel() assert model.timestampFormat == Qt.ISODate newFormat = u"yy-MM-dd hh:mm" model.timestampFormat = newFormat assert model.timestampFormat == newFormat with pytest.raises(TypeError) as excinfo: model.timestampFormat = "yy-MM-dd hh:mm" assert "unicode" in unicode(excinfo.value) #def test_signalUpdate(qtbot): #model = DataFrameModel() #with qtbot.waitSignal(model.layoutAboutToBeChanged) as layoutAboutToBeChanged: #model.signalUpdate() #assert layoutAboutToBeChanged.signal_triggered #with qtbot.waitSignal(model.layoutChanged) as blocker: #model.signalUpdate() #assert blocker.signal_triggered @pytest.mark.parametrize( "orientation, role, index, expectedHeader", [ (Qt.Horizontal, Qt.EditRole, 0, None), (Qt.Vertical, Qt.EditRole, 0, None), (Qt.Horizontal, Qt.DisplayRole, 0, 'A'), (Qt.Horizontal, Qt.DisplayRole, 1, None), # run into IndexError (Qt.Vertical, Qt.DisplayRole, 0, 0), (Qt.Vertical, Qt.DisplayRole, 1, 1) ] ) def test_headerData(orientation, role, index, expectedHeader): model = DataFrameModel(pandas.DataFrame([0], columns=['A'])) assert model.headerData(index, orientation, role) == expectedHeader def test_flags(): model = DataFrameModel(pandas.DataFrame([0], columns=['A'])) index = model.index(0, 0) assert index.isValid() assert model.flags(index) == Qt.ItemIsSelectable | Qt.ItemIsEnabled model.enableEditing(True) assert model.flags(index) == Qt.ItemIsSelectable | Qt.ItemIsEnabled | Qt.ItemIsEditable model.setDataFrame(pandas.DataFrame([True], columns=['A'])) index = model.index(0, 0) model.enableEditing(True) assert model.flags(index) != Qt.ItemIsSelectable | Qt.ItemIsEnabled | Qt.ItemIsEditable assert model.flags(index) == Qt.ItemIsSelectable | Qt.ItemIsEnabled | Qt.ItemIsUserCheckable def test_rowCount(): model = DataFrameModel(pandas.DataFrame([0], columns=['A'])) assert model.rowCount() == 1 model = DataFrameModel(pandas.DataFrame(numpy.arange(100), columns=['A'])) assert model.rowCount() == 100 def test_columnCount(): model = DataFrameModel(pandas.DataFrame([0], columns=['A'])) assert model.columnCount() == 1 model = DataFrameModel( pandas.DataFrame(numpy.arange(100).reshape(1, 100), columns=numpy.arange(100)) ) assert model.columnCount() == 100 class TestSort(object): @pytest.fixture def dataFrame(self): return pandas.DataFrame(numpy.random.rand(10), columns=['A']) @pytest.fixture def model(self, dataFrame): return DataFrameModel(dataFrame) @pytest.mark.parametrize( "signal", [ "layoutAboutToBeChanged", "layoutChanged", "sortingAboutToStart", "sortingFinished", ] ) def test_signals(self, model, qtbot, signal): with qtbot.waitSignal(getattr(model, signal)) as blocker: model.sort(0) assert blocker.signal_triggered def test_returnValues(self, model): model.sort(0) @pytest.mark.parametrize( "testAscending, modelAscending, isIdentic", [ (True, Qt.AscendingOrder, True), (False, Qt.DescendingOrder, True), (True, Qt.DescendingOrder, False), ] ) def test_sort(self, model, dataFrame, testAscending, modelAscending, isIdentic): temp = dataFrame.sort('A', ascending=testAscending) model.sort(0, order=modelAscending) assert (dataFrame['A'] == temp['A']).all() == isIdentic class TestData(object): @pytest.fixture def dataFrame(self): return pandas.DataFrame(numpy.random.rand(10), columns=['A']) @pytest.fixture def model(self, dataFrame): return DataFrameModel(dataFrame) @pytest.fixture def index(self, model): index = model.index(0, 0) assert index.isValid() return index def test_invalidIndex(self, model): assert model.data(QtCore.QModelIndex()) is None def test_unknownRole(self, model, index): assert index.isValid() assert model.data(index, role="unknownRole") == None def test_unhandledDtype(self, model, index): dataFrame = pandas.DataFrame([92.289+151.96j], columns=['A']) dataFrame['A'] = dataFrame['A'].astype(numpy.complex64) model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame assert index.isValid() assert model.data(index) == None # with pytest.raises(TypeError) as excinfo: # model.data(index) # assert "unhandled data type" in unicode(excinfo.value) @pytest.mark.parametrize( "value, dtype", [ ("test", object), (u"äöü", object), ] ) def test_strAndUnicode(self, model, index, value, dtype): dataFrame = pandas.DataFrame([value], columns=['A']) dataFrame['A'] = dataFrame['A'].astype(dtype) model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame assert index.isValid() assert model.data(index) == value assert model.data(index, role=Qt.DisplayRole) == value assert model.data(index, role=Qt.EditRole) == value assert model.data(index, role=Qt.CheckStateRole) == None assert isinstance(model.data(index, role=DATAFRAME_ROLE), dtype) @pytest.mark.parametrize( "value, dtype, precision", [ (1, numpy.int8, None), (1, numpy.int16, None), (1, numpy.int32, None), (1, numpy.int64, None), (1, numpy.uint8, None), (1, numpy.uint16, None), (1, numpy.uint32, None), (1, numpy.uint64, None), (1.11111, numpy.float16, DataFrameModel._float_precisions[str('float16')]), (1.11111111, numpy.float32, DataFrameModel._float_precisions[str('float32')]), (1.1111111111111111, numpy.float64, DataFrameModel._float_precisions[str('float64')]) ] ) def test_numericalValues(self, model, index, value, dtype, precision): dataFrame = pandas.DataFrame([value], columns=['A']) dataFrame['A'] = dataFrame['A'].astype(dtype) model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame assert index.isValid() if precision: modelValue = model.data(index, role=Qt.DisplayRole) assert model.data(index) == round(value, precision) assert model.data(index, role=Qt.DisplayRole) == round(value, precision) assert model.data(index, role=Qt.EditRole) == round(value, precision) else: assert model.data(index) == value assert model.data(index, role=Qt.DisplayRole) == value assert model.data(index, role=Qt.EditRole) == value assert model.data(index, role=Qt.CheckStateRole) == None assert isinstance(model.data(index, role=DATAFRAME_ROLE), dtype) assert model.data(index, role=DATAFRAME_ROLE).dtype == dtype #@<EMAIL>.parametrize( #"border1, modifier, border2, dtype", [ #("min", -1, "max", numpy.uint8), #("max", +1, "min", numpy.uint8), #("min", -1, "max", numpy.uint16), #("max", +1, "min", numpy.uint16), #("min", -1, "max", numpy.uint32), #("max", +1, "min", numpy.uint32), #("min", -1, "max", numpy.uint64), ##("max", +1, "min", numpy.uint64), # will raise OverFlowError caused by astype function, ## uneffects models data method #("min", -1, "max", numpy.int8), #("max", +1, "min", numpy.int8), #("min", -1, "max", numpy.int16), #("max", +1, "min", numpy.int16), #("min", -1, "max", numpy.int32), #("max", +1, "min", numpy.int32), ##("min", -1, "max", numpy.int64), # will raise OverFlowError caused by astype function ## uneffects models data method ##("max", +1, "min", numpy.int64), # will raise OverFlowError caused by astype function ## uneffects models data method #] #) #def test_integerBorderValues(self, model, index, border1, modifier, border2, dtype): #ii = numpy.iinfo(dtype) #dataFrame = pandas.DataFrame([getattr(ii, border1) + modifier], columns=['A']) #dataFrame['A'] = dataFrame['A'].astype(dtype) #model.setDataFrame(dataFrame) #assert not model.dataFrame().empty #assert model.dataFrame() is dataFrame #assert index.isValid() #assert model.data(index) == getattr(ii, border2) @pytest.mark.parametrize( "value, qtbool", [ (True, Qt.Checked), (False, Qt.Unchecked) ] ) def test_bool(self, model, index, value, qtbool): dataFrame = pandas.DataFrame([value], columns=['A']) dataFrame['A'] = dataFrame['A'].astype(numpy.bool_) model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame assert index.isValid() assert model.data(index, role=Qt.DisplayRole) == value assert model.data(index, role=Qt.EditRole) == value assert model.data(index, role=Qt.CheckStateRole) == qtbool assert model.data(index, role=DATAFRAME_ROLE) == value assert isinstance(model.data(index, role=DATAFRAME_ROLE), numpy.bool_) def test_date(self, model, index): pandasDate = pandas.Timestamp("1990-10-08T10:15:45") qDate = QtCore.QDateTime.fromString(str(pandasDate), Qt.ISODate) dataFrame = pandas.DataFrame([pandasDate], columns=['A']) model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame assert index.isValid() assert model.data(index, role=Qt.DisplayRole) == qDate assert model.data(index, role=Qt.EditRole) == qDate assert model.data(index, role=Qt.CheckStateRole) == None assert model.data(index, role=DATAFRAME_ROLE) == pandasDate assert isinstance(model.data(index, role=DATAFRAME_ROLE), pandas.Timestamp) class TestSetData(object): @pytest.fixture def dataFrame(self): return pandas.DataFrame([10], columns=['A']) @pytest.fixture def model(self, dataFrame): return DataFrameModel(dataFrame) @pytest.fixture def index(self, model): return model.index(0, 0) def test_invalidIndex(self, model): assert model.setData(QtCore.QModelIndex(), None) == False def test_nothingHasChanged(self, model, index): assert model.setData(index, 10) == False def test_unhandledDtype(self, model, index): dataFrame = pandas.DataFrame([92.289+151.96j], columns=['A']) dataFrame['A'] = dataFrame['A'].astype(numpy.complex64) model.setDataFrame(dataFrame) assert not model.dataFrame().empty assert model.dataFrame() is dataFrame assert index.isValid() model.enableEditing(True) with pytest.raises(TypeError) as excinfo: model.setData(index, numpy.complex64(92+151j)) assert "unhandled data type" in unicode(excinfo.value) @pytest.mark.parametrize( "value, dtype", [ ("test", object), (u"äöü", object), ] ) def test_strAndUnicode(self, model, index, value, dtype): dataFrame =
pandas.DataFrame([value], columns=['A'])
pandas.DataFrame
import pandas as pd import numpy as np from scipy.stats import norm from data_unprocessed import X, y, mean_team_stats from train import rf, xgb, et, sv, gb from calibration import rf_isotonic, xgb_sigmoid, gb_sigmoid, sv_sigmoid, et_isotonic from schedule import games, num_of_games import warnings warnings.filterwarnings("ignore") today_df = pd.DataFrame() # Similar code as predict.py but this is used to compare uncalibrated probabilities vs. calibrated probabilities for game in games: road_team, home_team = game[0],game[1] team_a = mean_team_stats.loc[mean_team_stats['TEAM_NAME'] == road_team] team_a.drop(['TEAM_ID','TEAM_NAME'],axis=1,inplace=True) team_b = mean_team_stats.loc[mean_team_stats['TEAM_NAME'] == home_team] team_b.drop(['TEAM_ID','TEAM_NAME'],axis=1,inplace=True) cols_a = [col + 'A' for col in team_a.columns] cols_b = [col + 'B' for col in team_b.columns] team_a.columns = cols_a team_a.reset_index(drop=True,inplace=True) team_b.columns = cols_b team_b.reset_index(drop=True,inplace=True) game = pd.concat([team_a,team_b],axis=1) today_df = today_df.append(game) today_df.reset_index(drop=True,inplace=True) # Add home court adv. columns today_df['TEAMA_HCA'] = pd.Series([0]*num_of_games, index=today_df.index) today_df['TEAMB_HCA'] = pd.Series([1]*num_of_games, index=today_df.index) today_df = today_df.reindex_axis(sorted(today_df.columns), axis=1) # Model prediction rf_prob = rf.predict_proba(today_df) rf_prob = rf_prob[:,1] xgb_prob = xgb.predict_proba(today_df) xgb_prob = xgb_prob[:,1] gb_prob = gb.predict_proba(today_df) gb_prob = gb_prob[:,1] et_prob = et.predict_proba(today_df) et_prob = et_prob[:,1] sv_prob = sv.predict_proba(today_df) sv_prob = sv_prob[:,1] # Process predictions for neat display in dataframe games_data = np.empty((len(games),10)) games_data[:,0] = np.around(rf_prob*100,2) games_data[:,1] = np.around(norm(0,10.5).ppf(rf_prob),1) # Convert win probability into point spread games_data[:,2] = np.around(xgb_prob*100,2) games_data[:,3] = np.around(norm(0,10.5).ppf(xgb_prob),1) games_data[:,4] = np.around(gb_prob*100,2) games_data[:,5] = np.around(norm(0,10.5).ppf(gb_prob),1) games_data[:,6] = np.around(sv_prob*100,2) games_data[:,7] = np.around(norm(0,10.5).ppf(sv_prob),1) games_data[:,8] = np.around(et_prob*100,2) games_data[:,9] = np.around(norm(0,10.5).ppf(et_prob),1) games_str = [] for game in games: t1 = game[0] t2 = game[1] teams = t1 + ' at ' + t2 games_str.append(teams) # Before calibration: print("*******************BEFORE CALIBRATION*******************") games_df =
pd.DataFrame(data=games_data,index=games_str,columns=['RF Road Team Win Prob','RF Road Team Point Spread','XGB Road Team Win Prob','XGB Road Team Point Spread','GB Road Team Win Prob','GB Road Team Point Spread','SV Road Team Win Prob','SV Road Team Point Spread','ET Road Team Win Prob','ET Road Team Point Spread']) print(games_df)
pandas.DataFrame
""" vocmaxlib This python package calculates the maximum sting size for a photovoltaic installation. The method is consistent with the NEC 2017 690.7 standard. toddkarin """ import numpy as np import pvlib import pvlib.bifacial # import nsrdbtools # import socket # import matplotlib # matplotlib.use('TkAgg') # import matplotlib.pyplot as plt import pandas as pd import datetime import glob import pytz from vocmax import nsrdb import tqdm import os import urllib import pytz import sys import os import warnings from pvlib.iotools import get_psm3 if sys.version_info[0] < 3: from StringIO import StringIO else: from io import StringIO from vocmax.bifacial import pvfactors_timeseries import glob import vocmax # from pvlib.bifacial import PVFactorsReportBuilder as PVFactorsReportBuilder # Parameters entering into Voc calculation: cec_modules = pvlib.pvsystem.retrieve_sam('CeCMod') # Descriptions of hte various parameters used in the calculation. explain = { 'Voco': 'Open circuit voltage at reference conditions, in V', 'Bvoco': 'Temperature dependence of open circuit voltage, in V/C', 'Mbvoc': """Coefficient providing the irradiance dependence of the temperature coefficient of open circuit voltage, typically assumed to be zero, in V/C """, 'n_diode': 'Diode ideality factor, unitless', 'cells_in_series': 'Number of cells in series in each module, dimensionless', 'FD': """Fraction of diffuse irradiance arriving at the cell, typically assumed to be 1, dimensionless """, 'alpha_sc': """The short-circuit current temperature coefficient of the module, in A/C """, 'a_ref': """The product of the usual diode ideality factor (n_diode, unitless), number of cells in series (cells_in_series), and cell thermal voltage at reference conditions, in units of V. """, 'I_L_ref': """The light-generated current (or photocurrent) at reference conditions, in amperes. """, 'I_o_ref': """The dark or diode reverse saturation current at reference conditions, in amperes. """, 'R_sh_ref': """The shunt resistance at reference conditions, in ohms.""", 'R_s': """The series resistance at reference conditions, in ohms.""", 'Isco': """Short circuit current at reference conditions, in amperes.""", 'Impo': """Maximum-power current at reference conditions, in amperes.""", 'Vmpo': """Maximum-power voltage at reference conditions, in volts.""", 'Pmpo': """Maximum-power power at reference conditions, in watts.""", 'Bisco': """Temperature coefficient of short circuit current, in A/C""" } def get_weather_data(lat, lon, api_key, cache_directory='cached_weather_data', attributes='ghi,dhi,dni,wind_speed,air_temperature', force_download=False, full_name='<NAME>', email='<EMAIL>', affiliation='vocmax', years=np.arange(1998, 2018.5), interval=30, ): """ Retrieve weather data from the national solar radiation database (NSRDB). Description ----------- df, info = get_weather_data(lat,lon,api_key) gets weather data from the NSRDB using the NSRDB api. Data download for a single location takes around 3 minutes. Once weather data is downloaded, it is stored in a local cache so it can be retrieved quickly. One sample point (lat=37.876, lon=-122.247) is provided with the function so sample data can be easily loaded without an api key. Api keys are available free of charge at https://developer.nrel.gov/signup/ Note can only donwload data from NSRDB sequentially (not possible to download data using multiple scripts in parallel). Examples -------- lat, lon = 37.876, -122.247 # Note: Replace with your api key api_key = '<KEY>' df, info = vocmax.get_weather_data(lat,lon,api_key) Parameters ---------- lat : float or int latitude in decimal degrees, between -90 and 90, north is positive lon : float or int longitude in decimal degrees, between -180 and 180, east is positive api_key : str NREL Developer Network API key email : str NREL API uses this to automatically communicate messages back to the user only if necessary names : str, default 'tmy' PSM3 API parameter specifing year or TMY variant to download, see notes below for options interval : int, default 60 interval size in minutes, can only be either 30 or 60. Only used for single-year requests (i.e., it is ignored for tmy/tgy/tdy requests). leap_day : boolean, default False include leap day in the results. Only used for single-year requests (i.e., it is ignored for tmy/tgy/tdy requests). full_name : str, default 'pvlib python' optional affiliation : str, default 'pvlib python' optional timeout : int, default 30 time in seconds to wait for server response before timeout force_download : bool If true, force downloading of weather data regardless of weather that particular location has already been downloaded. Default is false. tz_localize : bool Weather to localize the time zone. Returns ------- df : pandas dataframe Dataframe containing weather data with fields 'year' - year of row. 'month', 'day', 'hour', 'minute', 'dni', 'ghi', 'dhi', 'temp_air', 'wind_speed'. info : dictionary Dictionary containting information on the weather dataset. """ # First check if data exists in cahce directory. if not force_download: search_str = os.path.join(cache_directory, '*_{:3.3f}_{:3.3f}.npz'.format(lat, lon)) print(search_str) # One sample data point is provided with the package so that users don't # have to get an api key to try it out. if '{:3.3f}_{:3.3f}'.format(lat, lon) == '37.876_-122.247': print('getting sample data point') dir_path = os.path.dirname(os.path.realpath(__file__)) df, info = nsrdb.get_local_weather_data( os.path.join(dir_path, '123796_37.89_-122.26_search-point_37.876_-122.247.npz') ) return df, info # Otherwise search the cache for a weather data file that has already # been downloaded. filename = glob.glob(search_str) if len(filename) > 0: # Cached weather data found, load it df, info = nsrdb.get_local_weather_data(filename[0]) # TODO: Add checks that the loaded file has the same options as in the function call. return df, info else: # No cached weather data found. pass # Pull data from NSRDB because either force_download=True or no cached datafile found. print('Downloading weather data and saving to "cached_weather_data" ...') for j in tqdm.tqdm(range(len(years))): year = '{:.0f}'.format(years[j]) info_iter, df_iter = get_psm3( latitude=lat, longitude=lon, api_key=api_key, email=email, names=year, interval=30, leap_day=False, full_name=full_name, affiliation=affiliation, timeout=30) # # # Declare url string # url = 'http://developer.nrel.gov/api/solar/nsrdb_psm3_download.csv?wkt=POINT({lon}%20{lat})&names={year}&leap_day={leap}&interval={interval}&utc={utc}&full_name={name}&email={email}&affiliation={affiliation}&mailing_list={mailing_list}&reason={reason}&api_key={api}&attributes={attr}'.format( # year = year, lat = lat, lon = lon, leap = leap_year, interval = interval, # utc = utc, name = your_name, email = your_email, # mailing_list = mailing_list, affiliation = your_affiliation, # reason = reason_for_use, api = api_key, attr = attributes) # # # file_name, urllib.request.urlretrieve(url, "testfile.txt") # with urllib.request.urlopen(url) as f: # # Get the data as a string. # response = f.read().decode('utf-8') # # # Read the first few lines to get info on datafile # info_df = pd.read_csv(StringIO(response), nrows=1) # # # Create a dictionary for the info file. # info_iter = {} # for p in info_df: # info_iter[p] = info_df[p].iloc[0] # # df_iter = pd.read_csv(StringIO(response), skiprows=2) # # if np.diff(df_iter[0:2].Minute) == 30: # interval = '30' # info_iter['interval_in_hours'] = 0.5 # elif np.diff(df_iter[0:2].Minute) == 0: # interval = '60' # info_iter['interval_in_hours'] = 1 # else: # print('Interval not understood!') info_iter['interval_in_hours'] = interval / 60 # Set the time index in the pandas dataframe: year_iter = str(df_iter['Year'][0]) df_iter = df_iter.set_index( pd.date_range('1/1/{yr}'.format(yr=year_iter), freq='{}Min'.format(interval), periods=len(df_iter))) df_iter.index = df_iter.index.tz_localize( pytz.FixedOffset(float(info_iter['Time Zone'] * 60))) if j == 0: info = info_iter df = df_iter else: df = df.append(df_iter) # Process/compress the downloaded dfs. info['timedelta_in_years'] = (df.index[-1] - df.index[0]).days / 365 # Convert to int for lowering file size. dni = np.array(df['DNI'].astype(np.int16)) dhi = np.array(df['DHI'].astype(np.int16)) ghi = np.array(df['GHI'].astype(np.int16)) temp_air = np.array(df['Temperature'].astype(np.float32)) wind_speed = np.array(df['Wind Speed'].astype(np.float16)) year = np.array(df['Year'].astype(np.int16)) month = np.array(df['Month'].astype(np.int8)) day = np.array(df['Day'].astype(np.int8)) hour = np.array(df['Hour'].astype(np.int8)) minute = np.array(df['Minute'].astype(np.int8)) cache_directory = 'cached_weather_data' if not os.path.exists(cache_directory): print('Creating cache directory') os.mkdir(cache_directory) save_filename = os.path.join(cache_directory, '{}_{:3.2f}_{:3.2f}_search-point_{:3.3f}_{:3.3f}.npz'.format( info['Location ID'], info['Latitude'], info['Longitude'], lat, lon) ) # Write to file. np.savez_compressed(save_filename, Source=info['Source'], Location_ID=info['Location ID'], Latitude=info['Latitude'], Longitude=info['Longitude'], Elevation=info['Elevation'], local_time_zone=info['Local Time Zone'], interval_in_hours=info['interval_in_hours'], timedelta_in_years=info['timedelta_in_years'], Version=info['Version'], dni=dni, dhi=dhi, ghi=ghi, temp_air=temp_air, wind_speed=wind_speed, year=year, month=month, day=day, hour=hour, minute=minute) # Reload from file. df, info = nsrdb.get_local_weather_data(save_filename) return df, info # def ashrae_get_data(): # dir_path = os.path.dirname(os.path.realpath(__file__)) # # # Load temperature difference data. # ashrae = pd.read_csv( # os.path.join(dir_path, 'ASHRAE2017_temperature_data.csv') # ) # return ashrae def ashrae_get_design_conditions_at_loc(lat, lon, ashrae): """ Get the ASHRAE design conditions data closest to the lat/lon of interest. Parameters ---------- lat lon ashrae : dataframe Returns ------- dataframe fields are 'Latitude' 'Longitude' 'Extreme Annual Mean Minimum Dry Bulb Temperature' - ASHRAE extreme minimum dry bulb temperature, in C """ # df = ashrae_get_design_conditions() # Calculate distance to search point. distance = nsrdb.haversine_distance(lat, lon, ashrae['Lat'], ashrae['Lon']) closest_idx = distance.idxmin() return ashrae.iloc[closest_idx] def nec_correction_factor(temperature): """ NEC 690.7(A)(2) correction factor from NEC2017. Parameters ---------- temperature : numeric Temperature in C. Returns ------- correction_factor : flat """ is_array = isinstance(temperature, np.ndarray) temperature = np.array([temperature]) f = np.zeros_like(temperature, dtype='float') + 1 f[temperature < 25] = 1.02 f[temperature < 20] = 1.04 f[temperature < 15] = 1.06 f[temperature < 10] = 1.08 f[temperature < 5] = 1.10 f[temperature < 0] = 1.12 f[temperature < -5] = 1.14 f[temperature < -10] = 1.16 f[temperature < -15] = 1.18 f[temperature < -20] = 1.20 f[temperature < -25] = 1.21 f[temperature < -30] = 1.23 f[temperature < -35] = 1.25 f[np.isnan(temperature)] = np.nan if not is_array: f = f[0] return f def get_nsrdb_temperature_error(lat, lon, number_of_closest_points=5): """ Find the temperature error for a particular location. The NSRDB database provides temeprature data for many locations. However, these data are taken from the MERRA-2 dataset, and have some error compared to ground measurements. The temperature error depends on location. As a comparison, we calculated the mean minimum extreme minimum dry bulb temperature using NSRDB data and compared to ASHRAE data. The temperature difference determines the safety factor necessary for string length calculations. This function finds the closest points to a particular lat,lon coordinate in the ASHRAE dataset and returns the maximum temperature difference ( NSRDB - ASHRAE) for these locations. A higher temperature difference means that the NSRDB is overestimating the true temperature that is measured at a ground station. Higher positive temperature differences mean that a larger safety factor should be used when calculating string length. The Safety factor can be calculated Examples -------- temperature_difference = vocmax.get_nsrdb_temperature_error(lat,lon) Parameters ---------- lat : float latitude of search point in fractional degrees lon : float longitude of search point in fractional degrees number_of_closest_points : int The number of closest datapoints to find. Default is 5. Returns ------- temperature_difference : float max temperature difference between NSRDB point and closest ASHRAE points. A positive number means that the NSRDB design temperature is higher than the ASHRAE design temperature. If a positive temperature difference is found, then an additional safety factor is suggested to account for this error in the NSRDB dataset. """ dir_path = os.path.dirname(os.path.realpath(__file__)) # Load temperature difference data. df = pd.read_pickle( os.path.join(dir_path, 'nsrdb_ashrae_comparison.pkl') ) # Calculate distance to search point. distance = vocmax.nsrdb.haversine_distance(lat, lon, df['lat'], df['lon']) # Find the closest locations. distance_sort = distance.sort_values() closest_idx = distance_sort.index[:number_of_closest_points] # Calculate temperature difference temperature_difference = df['nsrdb-ashrae Extreme_Annual_Mean_Min_DB'].loc[ closest_idx] return temperature_difference.max() def ashrae_import_design_conditions(filename='2017DesignConditions_s.xlsx'): """ Load the ASHRAE 2017 design conditions excel file. This file is NOT provided in vocmax, it must be purchased directly from ASHRAE and added to the current directory. The filename is '2017DesignConditions_s.xlsx'. The '_s' at the end of the filename stands for 'SI'. There is also another file '2017DesignConditions_p.xlsx' that contains measurements in imperial units, do not use this file. In order to use this function, purchase the weather data viewer DVD, version 6.0, available at: https://www.techstreet.com/ashrae/standards/weather-data-viewer-dvd-version-6-0?ashrae_auth_token=<PASSWORD>89-8065208f2e36&product_id=1949790 Importing the excel file takes around 1 minute, the data is then saved as a csv file with name filename + '.csv' in the current directory. This makes loading quick the second time. Parameters ---------- filename : string Filename to import. Returns ------- df : dataframe Pandas dataframe containing certain fields of the weather data file. """ # filename = '2017DesignConditions_s.xlsx' df = pd.read_excel(filename, skiprows=0, sheet_name=0, header=[1, 2, 3], verbose=False) filename_out = filename + '.csv' df_out = pd.DataFrame( {'Lat': np.array(df['Lat']).flatten(), 'Lon': np.array(df['Lon']).flatten(), 'Country': np.array(df['Country']).flatten(), 'Station Name': np.array(df['Station Name']).flatten(), 'Extreme_Annual_Mean_Min_DB': np.array( df['Extreme Annual DB']['Mean']['Min']).flatten(), 'Extreme_Annual_Standard Deviation_Min_DB': np.array( df['Extreme Annual DB']['Standard Deviation']['Min']).flatten(), '20-Year Return Period Extreme Min DB': np.array( df['n-Year Return Period Values of Extreme DB']['n=20 years'][ 'Min']).flatten(), } ) df_out.to_csv(filename_out, index=False) return df_out def ashrae_is_design_conditions_available( filename='2017DesignConditions_s.xlsx'): return os.path.exists(filename) def ashrae_get_design_conditions(filename='2017DesignConditions_s.xlsx'): """ Get the ASHRAE design conditions data. Parameters ---------- filename Returns ------- df : dataframe Pandas dataframe containing certain fields of the ASHARE design conditions file """ if os.path.exists(filename + '.csv'): df = pd.read_csv(filename + '.csv') elif os.path.exists(filename): print( """Importing and compressing ASHRAE design conditions excel file. Future calls will quickly call csv version. """) print('Found file: {}'.format(filename)) print('Expected loading time: 1.0 minute') df = ashrae_import_design_conditions(filename) else: raise Exception( "Design conditions file '{}' not found. File must be purchased from ASHRAE and placed in current directory.".format( filename)) return df def simulate_system(weather, info, module_parameters, racking_parameters, thermal_model, irrad_model='perez', nighttime_irradiance_addition=0 ): """ Use the PVLIB SAPM model to calculate maximum Voc. Parameters ---------- weather : Dataframe Weather data dataframe containing the columns: 'dni': Direct Normal Irradiance (W/m^2) 'dhi': Diffuse Horizontal Irradiance (W/m^2) 'ghi' Global Horizontal Irradiance (W/m^2) 'temp_air': air temperature (C) 'wind_speed': 10 m wind speed in (m/s) info : dict Dictionary containing location information with fields: 'Latitude': float latitude in degrees 'Longitude': float longitude in degrees. Other fields may be included in info as well and will not interfere with operation. module_parameters : dict Dict or Series containing the below fields describing the module 'Voco' : float Open circuit voltage at reference conditions. 'Bvoco' : float Temperature coefficient of open circuit voltage, in Volts/C. 'cells_in_series' : int Number of cells in series in the module. 'n_diode' : float Diode ideality factor 'Mbvoc' : float Irradiance dependence of the temperature coefficient of open-circuit voltage, typically assumed to be zero. 'FD' : float Fraction of diffuse irradiance used by the module. 'efficiency' : float Module fractional efficiency. 'iv_model' : string Model for calculating Voc. Can be 'sapm', 'cec' or 'desoto'. TODO: Describe better. 'aoi_model' : string Model for calculating the angle-of-incidence loss function. Can be 'no_loss' or 'ashrae'. The 'no_loss' method assumes that no extra reflection losses are accrued at non-normal angles of incidence. The 'ashrae' option uses the model in pvlib.pvsystem.ashraeiam 'is_bifacial' : bool True if module is bifacial. Using False will force the use of monofacial models even if 'bifacial_model' in the racking_parameters input dict is set to a value. bifaciality_factor : float Number describing the efficiency of the backside of the module relative to the frontside. A typical values is 0.7. racking_parameters : dict dictionary describing the racking setup. Contains fields: 'racking_type' : str Can be 'fixed_tilt' for a stationary PV system or 'single_axis' for a single axis tracker. 'surface_tilt' : float If racking_type is 'fixed_tilt', specify the surface tilt in degrees from horizontal. 'surface_azimuth' : float If racking type is 'surface_azimuth', specify the racking azimuth in degrees. A value of 180 degrees has the module face oriented due South. 'axis_tilt' : float If racking_type is 'single_axis', specify the the tilt of the axis of rotation (i.e, the y-axis defined by axis_azimuth) with respect to horizontal, in decimal degrees. Standard value is 0. 'axis_azimuth' : float If racking_type is 'single_axis', specify a value denoting the compass direction along which the axis of rotation lies. Measured in decimal degrees East of North. Standard value is 0. 'backtrack' : bool Controls whether the tracker has the capability to ''backtrack'' to avoid row-to-row shading. False denotes no backtrack capability. True denotes backtrack capability. 'gcr' : float A value denoting the ground coverage ratio of a tracker system which utilizes backtracking; i.e. the ratio between the PV array surface area to total ground area. A tracker system with modules 2 meters wide, centered on the tracking axis, with 6 meters between the tracking axes has a gcr of 2/6=0.333. If gcr is not provided, a gcr of 2/7 is default. gcr must be <=1 bifacial_model : string Can be 'proportional' or 'pvfactors'. The 'proportional' bifacial modeling method calculates the effective irradiance on the frontside of the module and then assumes that the backside irradiance is equal to the frontside irradiance times the backside_irradiance_fraction times the bifaciality_factor. The 'pvfactors' method uses bifacial modeling found in the pvfactors package. backside_irradiance_fraction : float For simple bifacial modeling, the backside irradiance is assumed to be equal to the frontside irradiance times the backside_irradiance_fraction. Required if using bifacial_model 'proportional'. Typical value is 0.3. pvrow_height : float. Height of the pv rows, measured at their center (m). Required if using bifacial_model 'pvfactors'. pvrow_width : float Width of the pv rows in the considered 2D plane (m). Required if using bifacial_model 'pvfactors'. albedo: float Ground albedo. Required if using bifacial_model 'pvfactors'. n_pvrows: int, default 3 Number of PV rows to consider in the PV array. Required if using bifacial_model 'pvfactors'. index_observed_pvrow: int, default 1 Index of the PV row whose incident irradiance will be returned. Indices of PV rows go from 0 to n_pvrows-1. Required if using bifacial_model 'pvfactors'. rho_front_pvrow: float, default 0.03 Front surface reflectivity of PV rows. Required if using bifacial_model 'pvfactors'. rho_back_pvrow: float, default 0.05 Back surface reflectivity of PV rows. Required if using bifacial_model 'pvfactors'. horizon_band_angle: float, default 15 Elevation angle of the sky dome's diffuse horizon band (deg). Required if using bifacial_model 'pvfactors'. thermal_model : dict named_model : string If named_model is 'explicit', then use SAPM parameters defined by a, b, and deltaT. Otherwise named_model can be one of the following strings: ‘open_rack_cell_glassback’ (default) ‘roof_mount_cell_glassback’ ‘open_rack_cell_polymerback’ ‘insulated_back_polymerback’ ‘open_rack_polymer_thinfilm_steel’ ‘22x_concentrator_tracker’ a: float SAPM module parameter for establishing the upper limit for module temperature at low wind speeds and high solar irradiance. b :float SAPM module parameter for establishing the rate at which the module temperature drops as wind speed increases (see SAPM eqn. 11). deltaT :float SAPM module parameter giving the temperature difference between the cell and module back surface at the reference irradiance, E0. open_circuit_rise : bool The SAPM parameters are measured for modules at maximum power point. At open-circuit voltage the module is warmer because less energy is exported as electricity. If open_circuit_rise is True then this temperature rise is taken into account, if False then it is not. thermal_mass : bool Weather to take into account the thermal mass of the modules when calculating temperature. Thermal mass is performed using an exponentially weighted moving average [Bosco2016] thermal_time_constant : float Thermal time constant of the modules, in minutes. irrad_model : str Irradiance model for determining in-plane sky diffuse irradiance component using the specified sky diffuse irradiance model. Default is 'perez' Sky diffuse models include: * isotropic (default) * klucher * haydavies * reindl * king * perez Returns ------- dataframe containing simulation results. Includes the fields present in input 'weather' in addtion to: 'v_oc': open circuit voltage in Volts 'aoi': angle of incidence in degrees. 'temp_cell': cell temeprature in C. References ---------- [Bosco2016] <NAME>, et al., Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints, Microelectronics Reliability (2016), http://dx.doi.org/10.1016/j.microrel.2016.03.024 """ # Rename the weather data for input to PVLIB. if np.all([c in weather.columns for c in ['dni', 'dhi', 'ghi', 'temp_air', 'wind_speed', 'year', 'month', 'day', 'hour', 'minute']]): # All colmuns are propoerly labeled, skip any relabeling. pass else: # Try renaming from NSRDB default values. weather = weather.rename( columns={'DNI': 'dni', 'DHI': 'dhi', 'GHI': 'ghi', 'Temperature': 'temp_air', 'Wind Speed': 'wind_speed', 'Year': 'year', 'Month': 'month', 'Day': 'day', 'Hour': 'hour', 'Minute': 'minute'}) df = weather.copy() # Set location location = pvlib.location.Location(latitude=info['Latitude'], longitude=info['Longitude']) # Add module parameters if some aren't specified. module_parameters = add_default_module_params(module_parameters) # # # start_time = time.time() # # This is the most time consuming step # solar_position = location.get_solarposition(weather.index, method='nrel_numpy') # print( time.time()-start_time) # # Ephemeris method is faster and gives very similar results. solar_position = location.get_solarposition(weather.index, method='ephemeris') # Get surface tilt and azimuth if racking_parameters['racking_type'] == 'fixed_tilt': surface_tilt = racking_parameters['surface_tilt'] surface_azimuth = racking_parameters['surface_azimuth'] # idealized assumption elif racking_parameters['racking_type'] == 'single_axis': # Avoid nan warnings by presetting unphysical zenith angles. solar_position['apparent_zenith'][ solar_position['apparent_zenith'] > 90] = 90 # Todo: Check appraent_zenith vs. zenith. single_axis_vals = pvlib.tracking.singleaxis( solar_position['apparent_zenith'], solar_position['azimuth'], axis_tilt=racking_parameters['axis_tilt'], axis_azimuth=racking_parameters['axis_azimuth'], max_angle=racking_parameters['max_angle'], backtrack=racking_parameters['backtrack'], gcr=racking_parameters['gcr'] ) surface_tilt = single_axis_vals['surface_tilt'] surface_azimuth = single_axis_vals['surface_azimuth'] else: raise Exception('Racking system not recognized') # Extraterrestrial radiation dni_extra = pvlib.irradiance.get_extra_radiation(solar_position.index) airmass = location.get_airmass(solar_position=solar_position) # Perez is a good diffuse sky model total_irrad = pvlib.irradiance.get_total_irradiance( surface_tilt, surface_azimuth, solar_position['zenith'], solar_position['azimuth'], weather['dni'].astype('float'), weather['ghi'].astype('float'), weather['dhi'].astype('float'), model='perez', dni_extra=dni_extra, airmass=airmass['airmass_relative'], albedo=racking_parameters['albedo']) # Add a small irradiance during night time for k in total_irrad.keys(): total_irrad[k][np.isnan(total_irrad[k])] = 0 total_irrad[k] = total_irrad[k] + nighttime_irradiance_addition if racking_parameters['racking_type'] == 'fixed_tilt': aoi = pvlib.irradiance.aoi(surface_tilt, surface_azimuth, solar_position['zenith'], solar_position['azimuth']) elif racking_parameters['racking_type'] == 'single_axis': aoi = single_axis_vals['aoi'] else: raise Exception('Racking type not understood') # aoi = single_axis_vals['aoi'] if (not 'named_model' in thermal_model) or thermal_model[ 'named_model'] == 'explicit': thermal_model_params = {k: thermal_model[k] for k in ['a', 'b', 'deltaT']} else: temperature_model_parameters = \ pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'] thermal_model_params = temperature_model_parameters[ thermal_model['named_model']] temperature_cell = pvlib.temperature.sapm_cell( poa_global=total_irrad['poa_global'], temp_air=weather['temp_air'], wind_speed=weather['wind_speed'], a=thermal_model_params['a'], b=thermal_model_params['b'], deltaT=thermal_model_params['deltaT']) # temps = pvlib.temperature.sapm_cell(total_irrad['poa_global'], # weather['wind_speed'], # weather['temp_air'], # thermal_model_params) # if thermal_model['thermal_mass']: # thermal_alpha = np.exp(-(info['interval_in_hours'] * 60) / 270) # if thermal_model['open_circuit_rise']: temperature_cell = weather['temp_air'] + \ (temperature_cell - weather['temp_air']) / ( 1 - module_parameters['efficiency']) # Spectral loss is typically very small on order of a few percent, assume no # spectral loss for simplicity spectral_loss = 1 if not 'aoi_model' in module_parameters: module_parameters['aoi_model'] = 'no_loss' if not 'FD' in module_parameters: module_parameters['FD'] = 1 # AOI loss: if module_parameters['aoi_model'] == 'no_loss': aoi_loss = 1 elif module_parameters['aoi_model'] == 'ashrae': aoi_loss = pvlib.iam.ashrae(aoi, b=module_parameters['ashrae_iam_param']) else: raise Exception('aoi_model must be ashrae or no_loss') # Calculate effective irradiance. if ('is_bifacial' in module_parameters) and \ (module_parameters['is_bifacial'] == True): if not 'bifacial_model' in racking_parameters: warnings.warn("""'bifacial_model' in racking_parameters is not specified, can be 'simple' or 'pvfactors'. Defaulting to 'simple'.""") racking_parameters['bifacial_model'] = 'proportional' if racking_parameters['bifacial_model'] == 'proportional': effective_irradiance_front = calculate_effective_irradiance( total_irrad['poa_direct'], total_irrad['poa_diffuse'], aoi_loss=aoi_loss, FD=module_parameters['FD'] ) if not 'backside_irradiance_fraction' in racking_parameters: raise Exception("""Must specify 'backside_irradiance_fraction' in racking_parameters for bifacial modeling. """ ) effective_irradiance_back = effective_irradiance_front * \ racking_parameters[ 'backside_irradiance_fraction'] * \ module_parameters['bifaciality_factor'] effective_irradiance = effective_irradiance_front + effective_irradiance_back df['effective_irradiance_front'] = effective_irradiance_front df['effective_irradiance_back'] = effective_irradiance_back elif racking_parameters['bifacial_model'] == 'pvfactors': total_inc_front, total_inc_back, poa_front_absorbed, poa_back_absorbed = pvfactors_timeseries( solar_position['azimuth'], solar_position['zenith'], surface_azimuth, surface_tilt, racking_parameters['axis_azimuth'], weather.index, weather['dni'], weather['dhi'], racking_parameters['gcr'], racking_parameters['pvrow_height'], racking_parameters['pvrow_width'], racking_parameters['albedo'], n_pvrows=racking_parameters['n_pvrows'], # fast_mode_pvrow_index=racking_parameters['fast_mode_pvrow_index'], index_observed_pvrow=racking_parameters['index_observed_pvrow'], rho_front_pvrow=racking_parameters['rho_front_pvrow'], rho_back_pvrow=racking_parameters['rho_back_pvrow'], horizon_band_angle=racking_parameters['horizon_band_angle'], # run_parallel_calculations=racking_parameters['run_parallel_calculations'], # n_workers_for_parallel_calcs=racking_parameters['n_workers_for_parallel_calcs'] ) effective_irradiance_front = np.nan_to_num(poa_front_absorbed) effective_irradiance_back = np.nan_to_num(poa_back_absorbed) effective_irradiance = effective_irradiance_front + effective_irradiance_back df['effective_irradiance_front'] = effective_irradiance_front df['effective_irradiance_back'] = effective_irradiance_back else: raise Exception( "racking_parameters['bifacial_model'] must be either 'proportional' or 'pvfactors'. ") else: # Not bifacial, i.e. monofacial module. effective_irradiance = calculate_effective_irradiance( total_irrad['poa_direct'], total_irrad['poa_diffuse'], aoi_loss=aoi_loss, FD=module_parameters['FD'] ) v_oc = sapm_voc(effective_irradiance, temperature_cell, module_parameters) df['aoi'] = aoi # df['aoi_loss'] = aoi_loss df['temp_cell'] = temperature_cell df['temp_air'] = weather['temp_air'] df['effective_irradiance'] = effective_irradiance df['v_oc'] = v_oc df['surface_tilt'] = surface_tilt df['surface_azimuth'] = surface_azimuth df['solar_zenith'] = solar_position['apparent_zenith'] df['solar_azimuth'] = solar_position['azimuth'] df['poa_direct'] = total_irrad['poa_direct'] df['poa_diffuse'] = total_irrad['poa_diffuse'] return df # # def pvfactors_timeseries( # solar_azimuth, solar_zenith, surface_azimuth, surface_tilt, # axis_azimuth, # timestamps, dni, dhi, gcr, pvrow_height, pvrow_width, albedo, # n_pvrows=3,fast_mode_pvrow_index=2,index_observed_pvrow=1, # rho_front_pvrow=0.03, rho_back_pvrow=0.05, # horizon_band_angle=15., # run_parallel_calculations=True, n_workers_for_parallel_calcs=2): # """ # Calculate front and back surface plane-of-array irradiance on # a fixed tilt or single-axis tracker PV array configuration, and using # the open-source "pvfactors" package. # Please refer to pvfactors online documentation for more details: # https://sunpower.github.io/pvfactors/ # # Parameters # ---------- # solar_azimuth: numeric # Sun's azimuth angles using pvlib's azimuth convention (deg) # solar_zenith: numeric # Sun's zenith angles (deg) # surface_azimuth: numeric # Azimuth angle of the front surface of the PV modules, using pvlib's # convention (deg) # surface_tilt: numeric # Tilt angle of the PV modules, going from 0 to 180 (deg) # axis_azimuth: float # Azimuth angle of the rotation axis of the PV modules, using pvlib's # convention (deg). This is supposed to be fixed for all timestamps. # timestamps: datetime or DatetimeIndex # List of simulation timestamps # dni: numeric # Direct normal irradiance (W/m2) # dhi: numeric # Diffuse horizontal irradiance (W/m2) # gcr: float # Ground coverage ratio of the pv array # pvrow_height: float # Height of the pv rows, measured at their center (m) # pvrow_width: float # Width of the pv rows in the considered 2D plane (m) # albedo: float # Ground albedo # n_pvrows: int, default 3 # Number of PV rows to consider in the PV array # fast_mode_pvrow_index: int # In fast mode, the user will be able to calculate rapidly (but with # additional approximations) the incident irradiance on the back side # of one PV row in the PV array, and the index of that PV row needs to # be passed as a keyword argument to fast_mode_pvrow_index # index_observed_pvrow: int, default 1 # Index of the PV row whose incident irradiance will be returned. Indices # of PV rows go from 0 to n_pvrows-1. # rho_front_pvrow: float, default 0.03 # Front surface reflectivity of PV rows # rho_back_pvrow: float, default 0.05 # Back surface reflectivity of PV rows # horizon_band_angle: float, default 15 # Elevation angle of the sky dome's diffuse horizon band (deg) # run_parallel_calculations: bool, default True # pvfactors is capable of using multiprocessing. Use this flag to decide # to run calculations in parallel (recommended) or not. # n_workers_for_parallel_calcs: int, default 2 # Number of workers to use in the case of parallel calculations. The # '-1' value will lead to using a value equal to the number # of CPU's on the machine running the model. # # Returns # ------- # front_poa_irradiance: numeric # Calculated incident irradiance on the front surface of the PV modules # (W/m2) # back_poa_irradiance: numeric # Calculated incident irradiance on the back surface of the PV modules # (W/m2) # df_registries: pandas DataFrame # DataFrame containing detailed outputs of the simulation; for # instance the shapely geometries, the irradiance components incident on # all surfaces of the PV array (for all timestamps), etc. # In the pvfactors documentation, this is refered to as the "surface # registry". # # References # ---------- # .. [1] Anoma, <NAME>, et al. "View Factor Model and Validation for # Bifacial PV and Diffuse Shade on Single-Axis Trackers." 44th IEEE # Photovoltaic Specialist Conference. 2017. # """ # # # Convert pandas Series inputs (and some lists) to numpy arrays # if isinstance(solar_azimuth, pd.Series): # solar_azimuth = solar_azimuth.values # elif isinstance(solar_azimuth, list): # solar_azimuth = np.array(solar_azimuth) # if isinstance(solar_zenith, pd.Series): # solar_zenith = solar_zenith.values # if isinstance(surface_azimuth, pd.Series): # surface_azimuth = surface_azimuth.values # elif isinstance(surface_azimuth, list): # surface_azimuth = np.array(surface_azimuth) # if isinstance(surface_tilt, pd.Series): # surface_tilt = surface_tilt.values # if isinstance(dni, pd.Series): # dni = dni.values # if isinstance(dhi, pd.Series): # dhi = dhi.values # if isinstance(solar_azimuth, list): # solar_azimuth = np.array(solar_azimuth) # # # Import pvfactors functions for timeseries calculations. # from pvfactors.run import (run_timeseries_engine, # run_parallel_engine) # # # Build up pv array configuration parameters # pvarray_parameters = { # 'n_pvrows': n_pvrows, # 'axis_azimuth': axis_azimuth, # 'pvrow_height': pvrow_height, # 'pvrow_width': pvrow_width, # 'gcr': gcr, # 'rho_front_pvrow': rho_front_pvrow, # 'rho_back_pvrow': rho_back_pvrow, # 'horizon_band_angle': horizon_band_angle # } # # # Run pvfactors calculations: either in parallel or serially # if run_parallel_calculations: # # # report_builder = ReportBuilder(fast_mode_pvrow_index) # # report = run_parallel_engine( # ReportBuilder(fast_mode_pvrow_index), pvarray_parameters, # timestamps, dni, dhi, # solar_zenith, solar_azimuth, # surface_tilt, surface_azimuth, # albedo, n_processes=n_workers_for_parallel_calcs, # fast_mode_pvrow_index=fast_mode_pvrow_index # ) # else: # report = run_timeseries_engine( # PVFactorsReportBuilder.build, pvarray_parameters, # timestamps, dni, dhi, # solar_zenith, solar_azimuth, # surface_tilt, surface_azimuth, # albedo) # # print(report) # # Turn report into dataframe # df_report = pd.DataFrame(report, index=timestamps) # # return df_report.total_inc_front, df_report.total_inc_back # # # class ReportBuilder(object): # """A class is required to build reports when running calculations with # multiprocessing because of python constraints""" # # def __init__(self, fast_mode_pvrow_index): # """Create report builder object for fast mode simulation. # # Parameters # ---------- # fast_mode_pvrow_index : int # Index of PV row whose back side irradiance we want to report # """ # self.fast_mode_pvrow_index = fast_mode_pvrow_index # # def build(self, report, pvarray): # # Initialize the report as a dictionary # if report is None: # report = {'total_inc_back': []} # # Add elements to the report # if pvarray is not None: # pvrow = pvarray.pvrows[self.fast_mode_pvrow_index] # report['total_inc_back'].append( # pvrow.back.get_param_weighted('qinc')) # else: # # No calculation was performed, because sun was down # report['total_inc_back'].append(np.nan) # # return report # # @staticmethod # def merge(reports): # """Works for dictionary reports""" # report = reports[0] # # Merge other reports # keys_report = list(reports[0].keys()) # for other_report in reports[1:]: # for key in keys_report: # report[key] += other_report[key] # return report # # class PVFactorsReportBuilder(object): # """In pvfactors, a class is required to build reports when running # calculations with multiprocessing because of python constraints""" # # def __init__(self, fast_mode_pvrow_index): # """Create report builder object for fast mode simulation. # # Parameters # ---------- # fast_mode_pvrow_index : int # Index of PV row whose back side irradiance we want to report # """ # self.fast_mode_pvrow_index = fast_mode_pvrow_index # # # @staticmethod # def build(self,report, pvarray): # """Reports will have total incident irradiance on front and # back surface of center pvrow (index=1)""" # # Initialize the report as a dictionary # if report is None: # list_keys = ['total_inc_back', 'total_inc_front'] # report = {key: [] for key in list_keys} # # Add elements to the report # if pvarray is not None: # # pvrow = pvarray.pvrows[1] # use center pvrow # pvrow = pvarray.pvrows[self.fast_mode_pvrow_index] # print(pvrow.front) # report['total_inc_back'].append( # pvrow.back.get_param_weighted('qinc')) # report['total_inc_front'].append( # pvrow.front.get_param_weighted('qinc')) # else: # # No calculation is performed when the sun is down # report['total_inc_back'].append(np.nan) # report['total_inc_front'].append(np.nan) # # return report # # @staticmethod # def merge(reports): # """Works for dictionary reports""" # report = reports[0] # # Merge only if more than 1 report # if len(reports) > 1: # keys_report = list(reports[0].keys()) # for other_report in reports[1:]: # if other_report is not None: # for key in keys_report: # report[key] += other_report[key] # return report # def add_default_module_params(module_parameters): """ Adds default fields to the module_parameters dictionary. Parameters ---------- module_parameters : dict Examples -------- >> module = add_default_module_params(module) Returns ------- module_parameters : dict Same as input, except default values are added for the following fields: 'Mbvoc' : 0 'FD' : 1 'iv_model' : 'sapm' 'aoi_model' : 'no_loss' """ if not 'Mbvoc' in module_parameters: module_parameters['Mbvoc'] = 0 if not 'FD' in module_parameters: module_parameters['FD'] = 1 if not 'iv_model' in module_parameters: module_parameters['iv_model'] = 'sapm' if not 'aoi_model' in module_parameters: module_parameters['aoi_model'] = 'no_loss' return module_parameters def make_voc_summary(df, info, module_parameters, string_design_voltage=1500, safety_factor=0.023, ashrae='local_load'): """ Calculate maximum Voc expected using four relevant standards. See documentation for a description of the standards. Parameters ---------- df : dataframe Dataframe containing fields: 'v_oc', 'ghi', 'temp_air' info : dict Dictionary containing fields 'lat' and 'lon'. These are used to calculate the ASHRAE standards. module_parameters : dict Dictionary containing module parameters. The module paramaters are used in a direct call to the function calculate_voc. string_design_voltage : float Maximum allowable string voltage for the design, in V. Typically 600 V, 1200 V or 1500 V safety_factor : float safety factor for calculating string length as a fraction of max Voc. An example value wuold be 0.023, corresponding to a safety factor of 2.3%. Safety factors are only used for 690.7(A)(1) standards. Returns ------- voc_summary : dataframe Dataframe containing fields: 'max_module_voltage' - the maximum module voltage (not including safety factor). 'string_design_voltage' - Maximum allowable string voltage for the design, in V. Typically 600 V, 1200 V or 1500 V 'safety_factor' - safety factor for calculating string length as a fraction of max Voc. An example value wuold be 0.023, corresponding to a safety factor of 2.3%. Safety factors are only used for 690.7(A)(1) standards. 'string_length' - Longest acceptable string length. 'Cell Temperature' - Temperature """ voc_summary = pd.DataFrame( columns=['Conditions', 'max_module_voltage', 'string_design_voltage', 'safety_factor', 'string_length', 'Cell Temperature', 'POA Irradiance', 'long_note'], index=['690.7(A)(3)-P99.5', '690.7(A)(3)-P100', '690.7(A)(1)-DAY', '690.7(A)(1)-NSRDB', '690.7(A)(1)-ASHRAE', '690.7(A)(2)-ASHRAE']) mean_yearly_min_temp = calculate_mean_yearly_min_temp(df.index, df['temp_air']) if type(ashrae) == type(pd.DataFrame()): ashrae_loc = vocmax.ashrae_get_design_conditions_at_loc( info['Latitude'], info['Longitude'], ashrae) lowest_expected_temperature_ashrae = ashrae_loc[ 'Extreme_Annual_Mean_Min_DB'] else: ashrae_available = ashrae_is_design_conditions_available() if ashrae_available: ashrae = ashrae_get_design_conditions() ashrae_loc = vocmax.ashrae_get_design_conditions_at_loc( info['Latitude'], info['Longitude'], ashrae) lowest_expected_temperature_ashrae = ashrae_loc[ 'Extreme_Annual_Mean_Min_DB'] else: lowest_expected_temperature_ashrae = np.nan # mean_yearly_min_temp_ashrae = mean_yearly_min_day_temp = calculate_mean_yearly_min_temp( df.index[df['ghi'] > 150], df['temp_air'][df['ghi'] > 150]) voc_summary['safety_factor'] = 0 for f in ['690.7(A)(3)-P99.5', '690.7(A)(3)-P100']: voc_summary.loc[f, 'safety_factor'] = safety_factor # Calculate some standard voc values. voc_values = { '690.7(A)(3)-P99.5': np.percentile(np.array(df['v_oc']), 99.5), '690.7(A)(3)-P100': df['v_oc'].max(), '690.7(A)(1)-DAY': calculate_voc(1000, mean_yearly_min_day_temp, module_parameters), '690.7(A)(1)-ASHRAE': calculate_voc(1000, lowest_expected_temperature_ashrae, module_parameters), '690.7(A)(1)-NSRDB': calculate_voc(1000, mean_yearly_min_temp, module_parameters), '690.7(A)(2)-ASHRAE': module_parameters['Voco'] * nec_correction_factor( lowest_expected_temperature_ashrae), } conditions = { '690.7(A)(3)-P99.5': 'P99.5 Voc', '690.7(A)(3)-P100': 'Historical Maximum Voc', '690.7(A)(1)-NSRDB': 'Voc at 1 sun and mean yearly min ambient temperature from NSRDB', '690.7(A)(1)-ASHRAE': 'Voc at 1 sun and mean yearly min ambient temperature from ASHRAE', '690.7(A)(2)-ASHRAE': 'NEC 690.7a2 Voc, corrected by correction factor', '690.7(A)(1)-DAY': 'Voc at 1 sun and mean yearly minimum daytime (GHI>150 W/m2) temperature', # 'Norm_P99.5': 'P99.5 Voc assuming module normal to sun', } s_p99p5 = get_temp_irradiance_for_voc_percentile(df, percentile=99.5) s_p100 = get_temp_irradiance_for_voc_percentile(df, percentile=100, cushion=0.0001) cell_temp = { '690.7(A)(3)-P99.5': s_p99p5['temp_cell'], '690.7(A)(3)-P100': s_p100['temp_cell'], '690.7(A)(1)-DAY': mean_yearly_min_day_temp, '690.7(A)(1)-NSRDB': mean_yearly_min_temp, '690.7(A)(1)-ASHRAE': lowest_expected_temperature_ashrae, '690.7(A)(2)-ASHRAE': lowest_expected_temperature_ashrae, } poa_irradiance = { '690.7(A)(3)-P99.5': s_p99p5['effective_irradiance'], '690.7(A)(3)-P100': s_p100['effective_irradiance'], '690.7(A)(1)-DAY': 1000, '690.7(A)(1)-NSRDB': 1000, '690.7(A)(1)-ASHRAE': 1000, '690.7(A)(2)-ASHRAE': 1000, } voc_summary['max_module_voltage'] = voc_summary.index.map(voc_values) voc_summary['Conditions'] = voc_summary.index.map(conditions) voc_summary['string_design_voltage'] = string_design_voltage voc_summary['POA Irradiance'] = voc_summary.index.map(poa_irradiance) voc_summary['Cell Temperature'] = voc_summary.index.map(cell_temp) voc_summary['string_length'] = voc_summary['max_module_voltage'].map( lambda x: voc_to_string_length(x, string_design_voltage, safety_factor)) max_module_voltage_with_safety_factor = voc_summary[ 'max_module_voltage'] * ( 1 + voc_summary[ 'safety_factor']) mean_yearly_min_temp = calculate_mean_yearly_min_temp(df.index, df['temp_air']) long_note = { '690.7(A)(3)-P99.5': "99.5 Percentile Voc<br>" + \ "690.7(A)(3)-P99.5: {:.3f} V<br>".format( voc_values['690.7(A)(3)-P99.5']) + \ "690.7(A)(3)-P99.5 + {:1.1%} SF: {:.3f} V<br>".format( voc_summary['safety_factor'][ '690.7(A)(3)-P99.5'], max_module_voltage_with_safety_factor[ '690.7(A)(3)-P99.5']) + \ "Maximum String Length: {:.0f}<br>".format( voc_summary['string_length'][ '690.7(A)(3)-P99.5']) + \ "Recommended 690.7(A)(3) value for string length.", '690.7(A)(3)-P100': 'Historical maximum Voc from {:.0f}-{:.0f}<br>'.format( df['year'][0], df['year'][-1]) + \ '690.7(A)(3)-P100: {:.3f}<br>'.format( voc_values['690.7(A)(3)-P100']) + \ "690.7(A)(3)-P100 + {:1.1%} SF: {:.3f} V<br>".format( voc_summary['safety_factor'][ '690.7(A)(3)-P100'], max_module_voltage_with_safety_factor[ '690.7(A)(3)-P100']) + \ 'Maximum String Length: {:.0f}<br>'.format( voc_summary['string_length'][ '690.7(A)(3)-P100']) + \ 'Conservative 690.7(A)(3) value for string length.', '690.7(A)(1)-DAY': 'Traditional daytime Voc, using 1 sun irradiance and<br>' + \ 'mean yearly minimum daytime (GHI>150 W/m^2) dry bulb temperature of {:.1f} C.<br>'.format( mean_yearly_min_day_temp) + \ 'Day Voc: {:.3f} V<br>'.format( voc_values['690.7(A)(1)-DAY']) + \ 'Maximum String Length:{:.0f}<br>'.format( voc_summary['string_length'][ '690.7(A)(1)-DAY']) + \ 'Recommended 690.7(A)(1) Value', '690.7(A)(1)-NSRDB': 'Traditional 690.7(A)(1) value, using 1 sun irradiance and<br>' + \ 'mean yearly minimum dry bulb temperature of {:.1f} C.<br>'.format( mean_yearly_min_temp) + \ '690.7(A)(1)-NSRDB: {:.3f}<br>'.format( voc_values['690.7(A)(1)-NSRDB']) + \ 'Maximum String Length: {:.0f}'.format( voc_summary['string_length'][ '690.7(A)(1)-NSRDB']), '690.7(A)(1)-ASHRAE': 'Traditional 690.7(A)(1) value<br>' + \ 'using 1 sun irradiance and<br>' + \ 'mean yearly minimum dry bulb temperature of {:.1f} C.<br>'.format( lowest_expected_temperature_ashrae) + \ 'Trad-ASHRAE-690.7a1 Voc: {:.3f}<br>'.format( voc_values['690.7(A)(1)-ASHRAE']) + \ 'Maximum String Length: {:.0f}'.format( voc_summary['string_length'][ '690.7(A)(1)-ASHRAE']), '690.7(A)(2)-ASHRAE': 'Traditional 690.7(A)(2) value<br>' + \ 'using NEC derating table and<br>' + \ 'mean yearly minimum dry bulb temperature of {:.1f} C.<br>'.format( lowest_expected_temperature_ashrae) + \ 'Trad-ASHRAE-690.7(A)(2) Voc: {:.3f}<br>'.format( voc_values['690.7(A)(2)-ASHRAE']) + \ 'Maximum String Length: {:.0f}'.format( voc_summary['string_length'][ '690.7(A)(2)-ASHRAE']), # 'Norm_P99.5': "Normal Voc, 99.5 percentile Voc value<br>".format(voc_values['Norm_P99.5']) +\ # "assuming array always oriented normal to sun.<br>" +\ # "Norm_P99.5 Voc: {:.3f}<br>".format(voc_values['Norm_P99.5']) +\ # "Maximum String Length: {:.0f}".format(voc_summary['string_length']['Norm_P99.5']) } short_note = { '690.7(A)(3)-P99.5': "Recommended 690.7(A)(3) value for string length.", '690.7(A)(3)-P100': 'Conservative 690.7(A)(3) value for string length.', '690.7(A)(1)-DAY': 'Traditional design using daytime temp (GHI>150 W/m^2)', '690.7(A)(1)-ASHRAE': 'Traditional design using ASHRAE and temperature coefficient', '690.7(A)(1)-NSRDB': 'Traditional design using NSRDB and temperature coefficient', '690.7(A)(2)-ASHRAE': 'Traditional design using ASHRAE and standard derating.', # 'Norm_P99.5': "" } voc_summary['long_note'] = voc_summary.index.map(long_note) voc_summary['short_note'] = voc_summary.index.map(short_note) return voc_summary def get_s3_csv(filename): """ """ import boto3 # filename = '2017DesignConditions_s.xlsx.csv' bucket = 'pvtools-nsrdb-pickle' # connect to AWS S3 s3 = boto3.resource('s3') obj = s3.Object(bucket, filename) df = pd.read_csv(obj.get()['Body']) return df def scale_to_hours_per_year(y, info): return y / info['timedelta_in_years'] * info['interval_in_hours'] def make_voc_histogram(df, info, number_bins=400): # Voc histogram voc_hist_y_raw, voc_hist_x_raw = np.histogram(df['v_oc'], bins=np.linspace( df['v_oc'].max() * 0.6, df['v_oc'].max() + 1, number_bins)) voc_hist_y = scale_to_hours_per_year(voc_hist_y_raw, info)[1:] voc_hist_x = voc_hist_x_raw[1:-1] return voc_hist_x, voc_hist_y def make_simulation_summary(df, info, module_parameters, racking_parameters, thermal_model, string_design_voltage, safety_factor, ashrae='local_load'): """ Makes a text summary of the simulation. Parameters ---------- info module_parameters racking_parameters max_string_voltage Returns ------- """ voc_summary = make_voc_summary(df, info, module_parameters, string_design_voltage=string_design_voltage, safety_factor=safety_factor, ashrae=ashrae) if type(thermal_model) == type(''): thermal_model = {'Model parameters': thermal_model} if 'Location ID' in info: info['Location_ID'] = info['Location ID'] if 'Time Zone' in info: info['local_time_zone'] = info['Time Zone'] # extra_parameters = calculate_extra_module_parameters(module_parameters) voc_hist_x, voc_hist_y = make_voc_histogram(df, info, number_bins=200) pd.DataFrame({'Voc': voc_hist_x, 'hours per year': voc_hist_y}).to_csv( index=False) summary = \ 'Simulation Run Date,' + str(datetime.datetime.now()) + '\n\n' + \ 'Weather data,\n' + \ pd.Series(info)[ ['Source', 'Latitude', 'Longitude', 'Location_ID', 'local_time_zone', 'Elevation', 'Version', 'interval_in_hours', 'timedelta_in_years']].to_csv(header=False) + '\n' + \ 'Module Parameters\n' + \ pd.Series(module_parameters).to_csv(header=False) + '\n' + \ 'Racking Parameters\n' + \ pd.Series(racking_parameters).to_csv(header=False) + '\n' + \ 'Thermal model\n' + \ 'model type, Sandia\n' + \ pd.Series(thermal_model).to_csv(header=False) + '\n' + \ 'String Design Voltage,' + str(string_design_voltage) + '\n' + \ 'vocmaxlib Version,' + vocmax.__version__ + '\n' + \ '\nKey Voc Values\n' + \ voc_summary.to_csv() + \ '\nVoc Histogram\n' + \ pd.DataFrame( {'Voc': voc_hist_x, 'hours per year': voc_hist_y} ).to_csv(index=False) return summary def calculate_normal_voc(poa_direct, poa_diffuse, temp_cell, module_parameters, spectral_loss=1, aoi_loss=1, FD=1): """ Parameters ---------- poa_direct poa_diffuse temp_cell module_parameters spectral_loss aoi_loss FD Returns ------- """ effective_irradiance = calculate_effective_irradiance( poa_direct, poa_diffuse, spectral_loss=spectral_loss, aoi_loss=aoi_loss, FD=FD ) v_oc = calculate_voc(effective_irradiance, temp_cell, module_parameters) return v_oc # def calculate_effective_irradiance_bifacial(poa_direct_front, # poa_diffuse_front, # poa_direct_back, # spectral_loss_front=1, # spectral_loss_back=1, # aoi_loss_front=1, # FD_front=1): # """ # # Parameters # ---------- # poa_direct # poa_diffuse # spectral_loss # aoi_loss # FD # # Returns # ------- # effective_irradiance in W/m^2 # # """ # # See pvlib.pvsystem.sapm_effective_irradiance for source of this line: # effective_irradiance = spectral_loss_front * ( # poa_direct_front * aoi_loss_front + FD_front * poa_diffuse_front) + \ # spectral_loss_back*poa_back # # return effective_irradiance def calculate_effective_irradiance(poa_direct, poa_diffuse, spectral_loss=1, aoi_loss=1, FD=1): """ Parameters ---------- poa_direct poa_diffuse spectral_loss aoi_loss FD Returns ------- effective_irradiance in W/m^2 """ # See pvlib.pvsystem.sapm_effective_irradiance for source of this line: effective_irradiance = spectral_loss * ( poa_direct * aoi_loss + FD * poa_diffuse) return effective_irradiance def calculate_voc(effective_irradiance, temp_cell, module, reference_temperature=25, reference_irradiance=1000): """ Standard reference conditions are 1000 W/m2 and 25 C. Parameters ---------- effective_irradiance Irradiance in W/m^2 temperature module_parameters Dict or Series containing the fields: 'alpha_sc': The short-circuit current temperature coefficient of the module in units of A/C. 'a_ref': The product of the usual diode ideality factor (n, unitless), number of cells in series (Ns), and cell thermal voltage at reference conditions, in units of V 'I_L_ref': The light-generated current (or photocurrent) at reference conditions, in amperes. 'I_o_ref': The dark or diode reverse saturation current at reference conditions, in amperes. 'R_sh_ref': The shunt resistance at reference conditions, in ohms. 'R_s': The series resistance at reference conditions, in ohms. 'Adjust': The adjustment to the temperature coefficient for short circuit current, in percent. model : str Model to use, can be 'cec' or 'desoto' XX Returns ------- References ---------- [1] <NAME>, “An Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model”, Journal of Solar Energy Engineering, vol 134, 2012. """ if (not 'iv_model' in module) or module['iv_model'] == 'sapm': v_oc = sapm_voc(effective_irradiance, temp_cell, module, reference_temperature=reference_temperature, reference_irradiance=reference_irradiance) elif module['iv_model'] in ['cec', 'desoto']: photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth = \ calcparams_singlediode(effective_irradiance, temp_cell, module) # out = pvlib.pvsystem.singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, # method='newton') v_oc = pvlib.singlediode.bishop88_v_from_i(0, photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, method='newton') else: raise Exception('iv_model not recognized') return v_oc def singlediode_voc(effective_irradiance, temp_cell, module_parameters): """ Calculate voc using the singlediode model. Parameters ---------- effective_irradiance temp_cell module_parameters Returns ------- """ photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth = \ calcparams_singlediode(effective_irradiance, temp_cell, module_parameters) # out = pvlib.pvsystem.singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, # method='newton') v_oc = pvlib.singlediode.bishop88_v_from_i(0, photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, method='newton') return v_oc def sapm_voc(effective_irradiance, temp_cell, module, reference_temperature=25, reference_irradiance=1000): """ This function differs from the PVLIB version in that the effective irradiance is in W/m2. Parameters ---------- effective_irradiance : numeric Effective irradiance in W/m^2 temp_cell : numeric module : dict parameters are: 'Voco' 'cells_in_series' 'Bvoco' 'Mbvoc' reference_temperature : float reference_irradiance : float Returns ------- """ T0 = reference_temperature q = 1.60218e-19 # Elementary charge in units of coulombs kb = 1.38066e-23 # Boltzmann's constant in units of J/K # avoid problem with integer input Ee = np.array(effective_irradiance, dtype='float64') # set up masking for 0, positive, and nan inputs Ee_gt_0 = np.full_like(Ee, False, dtype='bool') Ee_eq_0 = np.full_like(Ee, False, dtype='bool') notnan = ~np.isnan(Ee) np.greater(Ee, 0, where=notnan, out=Ee_gt_0) np.equal(Ee, 0, where=notnan, out=Ee_eq_0) # Bvmpo = module['Bvmpo'] + module['Mbvmp'] * (1 - Ee) if 'Mbvoc' in module: Bvoco = module['Bvoco'] + module['Mbvoc'] * (1 - Ee) else: Bvoco = module['Bvoco'] delta = module['n_diode'] * kb * (temp_cell + 273.15) / q # avoid repeated computation logEe = np.full_like(Ee, np.nan) np.log(Ee / reference_irradiance, where=Ee_gt_0, out=logEe) logEe = np.where(Ee_eq_0, -np.inf, logEe) # avoid repeated __getitem__ cells_in_series = module['cells_in_series'] v_oc = np.maximum(0, ( module['Voco'] + cells_in_series * delta * logEe + Bvoco * (temp_cell - T0))) return v_oc def sapm_temperature_to_get_voc(effective_irradiance, Voc, Voco, Bvoco, diode_factor, cells_in_series, Mbvoc=0, reference_temperature=25, reference_irradiance=1000 ): """ Calculate the cell temperature to achieve a certain Voc at a value of effective irradiance. Parameters ---------- effective_irradiance Voc Voco Bvoco diode_factor cells_in_series Mbvoc reference_temperature reference_irradiance Returns ------- """ T0 = reference_temperature q = 1.60218e-19 # Elementary charge in units of coulombs kb = 1.38066e-23 # Boltzmann's constant in units of J/K # avoid problem with integer input Ee = np.array(effective_irradiance, dtype='float64') # set up masking for 0, positive, and nan inputs Ee_gt_0 = np.full_like(Ee, False, dtype='bool') Ee_eq_0 = np.full_like(Ee, False, dtype='bool') notnan = ~np.isnan(Ee) np.greater(Ee, 0, where=notnan, out=Ee_gt_0) np.equal(Ee, 0, where=notnan, out=Ee_eq_0) # avoid repeated computation logEe = np.full_like(Ee, np.nan) np.log(Ee / reference_irradiance, where=Ee_gt_0, out=logEe) logEe = np.where(Ee_eq_0, -np.inf, logEe) Bvoco = Bvoco + Mbvoc * (1 - Ee) delta_ref = diode_factor * kb * (reference_temperature + 273.15) / q delta_prime = diode_factor * kb / q temperature_cell = reference_temperature + ( Voc - Voco - cells_in_series * delta_ref * logEe) / ( cells_in_series * delta_prime * logEe + Bvoco) return temperature_cell def sapm_mpp(effective_irradiance, temperature, module_parameters): photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth = \ calcparams_singlediode(effective_irradiance, temperature, module_parameters) i_mp, v_mp, p_mp = pvlib.singlediode.bishop88_mpp(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, method='newton') return i_mp, v_mp, p_mp def calcparams_singlediode(effective_irradiance, temperature, module_parameters): # Default to desoto model. if not 'iv_model' in module_parameters.keys(): module_parameters['iv_model'] = 'desoto' if module_parameters['iv_model'] == 'sapm': module_parameters['iv_model'] = 'desoto' if module_parameters['iv_model'] == 'desoto': photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth = \ pvlib.pvsystem.calcparams_desoto(effective_irradiance, temperature, module_parameters['alpha_sc'], module_parameters['a_ref'], module_parameters['I_L_ref'], module_parameters['I_o_ref'], module_parameters['R_sh_ref'], module_parameters['R_s'] ) elif module_parameters['iv_model'] == 'cec': photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth = \ pvlib.pvsystem.calcparams_cec(effective_irradiance, temperature, module_parameters['alpha_sc'], module_parameters['a_ref'], module_parameters['I_L_ref'], module_parameters['I_o_ref'], module_parameters['R_sh_ref'], module_parameters['R_s'], module_parameters['Adjust'], ) else: raise Exception( "module_parameters['iv_model'] must be 'cec' or 'desoto'") return photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth def calculate_iv_curve(effective_irradiance, temperature, module_parameters, ivcurve_pnts=200): """ :param effective_irradiance: :param temperature: :param module_parameters: :param ivcurve_pnts: :return: """ photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth = \ calcparams_singlediode(effective_irradiance, temperature, module_parameters) iv_curve = pvlib.pvsystem.singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts=ivcurve_pnts, method='lambertw') return iv_curve def calculate_sapm_module_parameters(module_parameters, reference_irradiance=1000, reference_temperature=25): """ Calculate standard parameters of modules from the single diode model. module_parameters: dict Returns Dict of parameters including: 'Voco' - open circuit voltage at STC. 'Bvoco' - temperature coefficient of Voc near STC, in V/C Isco - short circuit current at STC alpha_sc - temperature coefficient of Isc near STC, in A/C Vmpo - voltage at maximum power point at STC, in V Pmpo - power at maximum power point at STC, in W Impo - current at maximum power point at STC, in A Bpmpo - temperature coefficient of maximum power near STC, in W/C """ param = {} param['cells_in_series'] = module_parameters['N_s'] kB = 1.381e-23 q = 1.602e-19 Vthref = kB * (273.15 + 25) / q param['n_diode'] = module_parameters['a_ref'] / ( module_parameters['N_s'] * Vthref) # Calculate Voc vs. temperature for finding coefficients temp_cell_smooth = np.linspace(reference_temperature - 5, reference_temperature + 5, 5) photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth = \ calcparams_singlediode(effective_irradiance=reference_irradiance, temperature=temp_cell_smooth, module_parameters=module_parameters) iv_points = pvlib.pvsystem.singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth) photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth = \ calcparams_singlediode( effective_irradiance=reference_irradiance, temperature=reference_temperature, module_parameters=module_parameters) iv_points_0 = pvlib.pvsystem.singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth) param['Voco'] = iv_points_0['v_oc'] # param['Voco'] = module_parameters['V_oc_ref'] param['Isco'] = iv_points_0['i_sc'] # param['Isco'] = module_parameters['I_sc_ref'] param['Impo'] = iv_points_0['i_mp'] param['Vmpo'] = iv_points_0['v_mp'] param['Pmpo'] = iv_points_0['p_mp'] # param['Ixo'] = iv_points_0['i_x'] # param['Ixxo'] = iv_points_0['i_xx'] voc_fit_coeff = np.polyfit(temp_cell_smooth, iv_points['v_oc'], 1) param['Bvoco'] = voc_fit_coeff[0] pmp_fit_coeff = np.polyfit(temp_cell_smooth, iv_points['p_mp'], 1) param['Bpmpo'] = pmp_fit_coeff[0] isc_fit_coeff = np.polyfit(temp_cell_smooth, iv_points['i_sc'], 1) param['alpha_sc'] = isc_fit_coeff[0] param['Mbvoc'] = 0 param['FD'] = 1 param['iv_model'] = 'sapm' # description = { # 'Voco':'Open circuit voltage at STC (V)', # 'Isco':'Short circuit current at STC (A)', # 'Impo':'Max power current at STC (A)', # 'Vmpo':'Max power voltage at STC (V)', # 'Pmpo':'Max power power at STC (W)', # 'Bvoco':'Temperature coeff. of open circuit voltage near STC (V/C)', # 'Bpmpo':'Temperature coeff. of max power near STC (W/C)', # 'Bisco':'Tempearture coeff. of short circuit current near STC (A/C)', # 'cells_in_series': 'Number of cells in series', # 'n_diode': 'diode ideality factor', # # } # # sapm_module = pd.DataFrame( # index= list(param.keys()), # columns=['Parameter','Value','Description']) # # sapm_module['Parameter'] = sapm_module.index # sapm_module['Value'] = sapm_module.index.map(param) # sapm_module['Description'] = sapm_module.index.map(description) # return param def cec_to_sapm(module, reference_irradiance=1000, reference_temperature=25): """ Parameters ---------- module : dict or series CEC module parameters. 'alpha_sc': temperature coefficient of short-circuit current near reference conditions, in A/C. reference_irradiance reference_temperature Returns ------- sapm : dict or series 'alpha_sc': temperature coefficient of short-circuit current near reference conditions, in A/C """ # Calculate sapm parameters. sapm = calculate_sapm_module_parameters(module, reference_irradiance=reference_irradiance, reference_temperature=reference_temperature) # Replace certain parameters with those explicitly specified. if np.abs((sapm['Bvoco'] - module['beta_oc']) / sapm['Bvoco']) > 0.25: warnings.warn( 'Inconsistency found in Bvoco, suggest to check datasheet. ') sapm['Bvoco'] = module['beta_oc'] sapm['Voco'] = module['V_oc_ref'] sapm['Isco'] = module['I_sc_ref'] sapm['Impo'] = module['I_mp_ref'] sapm['Vmpo'] = module['V_mp_ref'] # Note that alpha_sc_Amp_per_C = module['alpha_sc'] if np.abs( (sapm['alpha_sc'] - alpha_sc_Amp_per_C) / sapm['alpha_sc']) > 0.25: warnings.warn( "From Desoto model, find alpha_sc = {:1.3f} A/C, but value in CEC database is {:1.3f} A/C".format( sapm['alpha_sc'], alpha_sc_Amp_per_C)) sapm['alpha_sc'] = alpha_sc_Amp_per_C sapm['Pmpo'] = module['I_mp_ref'] * module['V_mp_ref'] sapm['efficiency'] = module['I_mp_ref'] * \ module['V_mp_ref'] / \ module['A_c'] / 1000 return sapm # raise Warning('Inconsistency found in Bvoco, suggest to check datasheet. ') # # # def calculate_sapm_module_parameters_df(module_parameters,reference_irradiance=1000, # reference_temperature=25): # """ # # Calculate standard parameters of modules from the single diode model. # # module_parameters: dict # # Returns # # Dict of parameters including: # # 'Voco' - open circuit voltage at STC. # # 'Bvoco' - temperature coefficient of Voc near STC, in V/C # # Isco - short circuit current at STC # # Bisco - temperature coefficient of Isc near STC, in A/C # # Vmpo - voltage at maximum power point at STC, in V # # Pmpo - power at maximum power point at STC, in W # # Impo - current at maximum power point at STC, in A # # Bpmpo - temperature coefficient of maximum power near STC, in W/C # # # """ # # param = calculate_sapm_module_parameters(module_parameters, # reference_irradiance=reference_irradiance, # reference_temperature=reference_temperature) # # description = { # 'Voco':'Open circuit voltage at STC (V)', # 'Isco':'Short circuit current at STC (A)', # 'Impo':'Max power current at STC (A)', # 'Vmpo':'Max power voltage at STC (V)', # 'Pmpo':'Max power power at STC (W)', # 'Bvoco':'Temperature coeff. of open circuit voltage near STC (V/C)', # 'Bpmpo':'Temperature coeff. of max power near STC (W/C)', # 'Bisco':'Tempearture coeff. of short circuit current near STC (A/C)' # } # # extra_parameters = pd.DataFrame( # index= list(param.keys()), # columns=['Parameter','Value','Description']) # # extra_parameters['Parameter'] = extra_parameters.index # extra_parameters['Value'] = extra_parameters.index.map(param) # extra_parameters['Description'] = extra_parameters.index.map(description) # # # return extra_parameters def calculate_mean_yearly_min_temp(datetimevec, temperature): """ Calculate the mean of the yearly minimum temperatures. Parameters ---------- datetimevec datetime series giving times corresponding to the temperatures temperature series of temperatures Returns ------- mean of yearly minimum temperatures. """ years = list(set(datetimevec.year)) yearly_min_temp = [] for j in years: yearly_min_temp.append( temperature[datetimevec.year == j].min() ) return np.mean(yearly_min_temp) def get_temp_irradiance_for_voc_percentile(df, percentile=99.5, cushion=0.0025): """ Find the lowest temperature and associated irradiance that produces the percentile value of Voc. Parameters ---------- df : dataframe Dataframe containing 'v_oc' percentile cushion : numeric Returns ------- Series Lowest """ Pvoc = np.nanpercentile(np.array(df['v_oc']), percentile, interpolation='nearest') df_close = df[df['v_oc'] > Pvoc * (1 - cushion)] df_close = df_close[df_close['v_oc'] < Pvoc * (1 + cushion)] if len(df_close['temp_air']) > 0: i_near = df_close['temp_air'].idxmin() else: i_near = abs(df['v_oc'] - Pvoc).idxmin() return df.iloc[df.index.get_loc(i_near)] def voc_to_string_length(voc, max_string_voltage, safety_factor): """ Returns the maximum number N modules with open circuit voltage voc that do not exceed max_string_voltage when connected in series. Parameters ---------- voc : float Open circuit voltage max_string_voltage : float Maximum string voltage safety_factor : float safety factor for string length. Returns ------- N : float Maximum string length """ if voc == 0: string_length = np.nan else: string_length = np.round( np.floor(max_string_voltage * (1 - safety_factor) / voc)) return string_length def simulate_system_sandia(weather, info, module_parameters=None, system_parameters=None): """ Use the PVLIB Sandia model to calculate max voc. :param weather: :param info: :param module_parameters: :param system_parameters: :return: """ cec_inverters = pvlib.pvsystem.retrieve_sam('cecinverter') inverter_parameters = cec_inverters[ 'Power_Electronics__FS1700CU15__690V__690V__CEC_2018_'] # Set location location = pvlib.location.Location(latitude=info['Latitude'][0], longitude=info['Longitude'][0]) # Weather must have field dni, dhi, ghi, temp_air, and wind_speed. # Make pvsystem if system_parameters['mount_type'].lower() == 'fixed_tilt': system = pvlib.pvsystem.PVSystem( module_parameters=module_parameters, inverter_parameters=inverter_parameters, surface_tilt=system_parameters['surface_tilt'], surface_azimuth=system_parameters['surface_azimuth'], ) elif system_parameters['mount_type'].lower() == 'single_axis_tracker': system = pvlib.tracking.SingleAxisTracker( module_parameters=module_parameters, inverter_parameters=inverter_parameters, axis_tilt=system_parameters['axis_tilt'], axis_azimuth=system_parameters['axis_azimuth'], max_angle=system_parameters['max_angle'], backtrack=system_parameters['backtrack'], gcr=system_parameters['ground_coverage_ratio'] ) # print(system_parameters['surface_tilt']) mc = pvlib.modelchain.ModelChain(system, location) mc.system.racking_model = system_parameters['racking_model'] # mc.complete_irradiance(times=weather.index, weather=weather) mc.run_model(times=weather.index, weather=weather) df = weather df['v_oc'] = mc.dc.v_oc df['temp_cell'] = mc.temps['temp_cell'] return (df, mc) def import_nsrdb_csv(filename): """Import an NSRDB csv file. The function (df,info) = import_csv(filename) imports an NSRDB formatted csv file Parameters ---------- filename Returns ------- df pandas dataframe of data info pandas dataframe of header data. """ # filename = '1ad06643cad4eeb947f3de02e9a0d6d7/128364_38.29_-122.14_1998.csv' info_df = pd.read_csv(filename, nrows=1) info = {} for p in info_df: info[p] = info_df[p].iloc[0] # See metadata for specified properties, e.g., timezone and elevation # timezone, elevation = info['Local Time Zone'], info['Elevation'] # Return all but first 2 lines of csv to get data: df = pd.read_csv(filename, skiprows=2) # Set the time index in the pandas dataframe: year = str(df['Year'][0]) if np.diff(df[0:2].Minute) == 30: interval = '30' info['interval_in_hours'] = 0.5 df = df.set_index( pd.date_range('1/1/{yr}'.format(yr=year), freq=interval + 'Min', periods=60 * 24 * 365 / int(interval))) elif df['Minute'][1] - df['Minute'][0] == 0: interval = '60' info['interval_in_hours'] = 1 df = df.set_index( pd.date_range('1/1/{yr}'.format(yr=year), freq=interval + 'Min', periods=60 * 24 * 365 / int(interval))) else: print('Interval not understood!') df.index = df.index.tz_localize( pytz.FixedOffset(float(info['Time Zone'] * 60))) return (df, info) # df, info = import_csv('nsrdb_1degree_uv/104_30.97_-83.22_tmy.csv') def import_nsrdb_sequence(folder): """Import and append NSRDB files in a folder Import a sequence of NSRDB files, data is appended to a pandas dataframe. This is useful for importing all years of data from one folder. Parameters ---------- folder directory containing files to import. Returns ------- df pandas dataframe of data info pandas dataframe of header data for last file imported. """ # Get all files. files = glob.glob(os.path.join(folder, '*.csv')) if len(files) == 0: raise ValueError('No input files found in directory') files.sort() df =
pd.DataFrame()
pandas.DataFrame
"""Tests for Table Schema integration.""" import json from collections import OrderedDict import numpy as np import pandas as pd import pytest from pandas import DataFrame from pandas.core.dtypes.dtypes import ( PeriodDtype, CategoricalDtype, DatetimeTZDtype) from pandas.io.json.table_schema import ( as_json_table_type, build_table_schema, make_field, set_default_names) class TestBuildSchema(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), }, index=pd.Index(range(4), name='idx')) def test_build_table_schema(self): result = build_table_schema(self.df, version=False) expected = { 'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['idx'] } assert result == expected result = build_table_schema(self.df) assert "pandas_version" in result def test_series(self): s = pd.Series([1, 2, 3], name='foo') result = build_table_schema(s, version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'foo', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected result = build_table_schema(s) assert 'pandas_version' in result def test_series_unnamed(self): result = build_table_schema(pd.Series([1, 2, 3]), version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected def test_multiindex(self): df = self.df.copy() idx = pd.MultiIndex.from_product([('a', 'b'), (1, 2)]) df.index = idx result = build_table_schema(df, version=False) expected = { 'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['level_0', 'level_1'] } assert result == expected df.index.names = ['idx0', None] expected['fields'][0]['name'] = 'idx0' expected['primaryKey'] = ['idx0', 'level_1'] result = build_table_schema(df, version=False) assert result == expected class TestTableSchemaType(object): def test_as_json_table_type_int_data(self): int_data = [1, 2, 3] int_types = [np.int, np.int16, np.int32, np.int64] for t in int_types: assert as_json_table_type(np.array( int_data, dtype=t)) == 'integer' def test_as_json_table_type_float_data(self): float_data = [1., 2., 3.] float_types = [np.float, np.float16, np.float32, np.float64] for t in float_types: assert as_json_table_type(np.array( float_data, dtype=t)) == 'number' def test_as_json_table_type_bool_data(self): bool_data = [True, False] bool_types = [bool, np.bool] for t in bool_types: assert as_json_table_type(np.array( bool_data, dtype=t)) == 'boolean' def test_as_json_table_type_date_data(self): date_data = [pd.to_datetime(['2016']), pd.to_datetime(['2016'], utc=True), pd.Series(pd.to_datetime(['2016'])), pd.Series(pd.to_datetime(['2016'], utc=True)), pd.period_range('2016', freq='A', periods=3)] for arr in date_data: assert as_json_table_type(arr) == 'datetime' def test_as_json_table_type_string_data(self): strings = [pd.Series(['a', 'b']), pd.Index(['a', 'b'])] for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_data(self): assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' assert as_json_table_type(pd.Series(pd.Categorical([1]))) == 'any' assert as_json_table_type(pd.CategoricalIndex([1])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' # ------ # dtypes # ------ def test_as_json_table_type_int_dtypes(self): integers = [np.int, np.int16, np.int32, np.int64] for t in integers: assert as_json_table_type(t) == 'integer' def test_as_json_table_type_float_dtypes(self): floats = [np.float, np.float16, np.float32, np.float64] for t in floats: assert as_json_table_type(t) == 'number' def test_as_json_table_type_bool_dtypes(self): bools = [bool, np.bool] for t in bools: assert as_json_table_type(t) == 'boolean' def test_as_json_table_type_date_dtypes(self): # TODO: datedate.date? datetime.time? dates = [np.datetime64, np.dtype("<M8[ns]"), PeriodDtype(), DatetimeTZDtype('ns', 'US/Central')] for t in dates: assert as_json_table_type(t) == 'datetime' def test_as_json_table_type_timedelta_dtypes(self): durations = [np.timedelta64, np.dtype("<m8[ns]")] for t in durations: assert
as_json_table_type(t)
pandas.io.json.table_schema.as_json_table_type
import matplotlib.pyplot as plt import math from modules.Simpson_BTK import BTK_Diff import pandas as pd def Dataplot(parameter,T,df2,my_xaxis,my_yaxis,plot_name): print("Using btk!") V = df2['Vdc'].values G= BTK_Diff(parameter,df2[my_xaxis],T) G_min = min(min(G),min(df2[my_yaxis])) G_max = max(max(G),max(df2[my_yaxis])) Internal = (G_max - G_min)/10 X_Position = max(df2[my_xaxis])/4 plt.plot(df2[my_xaxis],df2[my_yaxis],label = 'Exp') plt.plot(df2[my_xaxis],G,label = 'G/GN Theory') plt.text(X_Position, G_min + 4*Internal, 'Temperature:'+str(round(T,4)), fontsize=13) plt.text(X_Position, G_min + 3*Internal, 'Delta:'+str(round(parameter[0],4)), fontsize=13) plt.text(X_Position, G_min + 2*Internal, 'Gama:'+str(round(parameter[1],4)), fontsize=13) plt.text(X_Position, G_min + 1*Internal, 'Barrier Height:'+str(round(parameter[2],4)), fontsize=13) plt.text(X_Position, G_min + 0*Internal, 'Spin Polarization:'+str(round(parameter[3],4)), fontsize=13) plt.legend(loc = 1) plt.axis('tight') plt.xlabel(my_xaxis) plt.ylabel(my_yaxis) #Change Name plot_name = plot_name[:-4] plt.title(plot_name) # Savefig plt.savefig(plot_name + '.png') # Save Data data = {'V': V, 'G/GN': G} data_df =
pd.DataFrame(data)
pandas.DataFrame
import os import copy import pytest import numpy as np import pandas as pd import pyarrow as pa from pyarrow import feather as pf from pyarrow import parquet as pq from time_series_transform.io.base import io_base from time_series_transform.io.numpy import ( from_numpy, to_numpy ) from time_series_transform.io.pandas import ( from_pandas, to_pandas ) from time_series_transform.io.arrow import ( from_arrow_record_batch, from_arrow_table, to_arrow_record_batch, to_arrow_table ) from time_series_transform.transform_core_api.base import ( Time_Series_Data, Time_Series_Data_Collection ) from time_series_transform.io.parquet import ( from_parquet, to_parquet ) from time_series_transform.io.feather import ( from_feather, to_feather ) @pytest.fixture(scope = 'class') def dictList_single(): return { 'time': [1, 2], 'data': [1, 2] } @pytest.fixture(scope = 'class') def dictList_collection(): return { 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_single_expandTime(): return { 'data_1':[1], 'data_2':[2] } @pytest.fixture(scope = 'class') def expect_single_seperateLabel(): return [{ 'time': [1, 2], 'data': [1, 2] }, { 'data_label': [1, 2] }] @pytest.fixture(scope = 'class') def expect_collection_seperateLabel(): return [{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, { 'data_label':[1,2,1,2] } ] @pytest.fixture(scope = 'class') def expect_collection_expandTime(): return { 'pad': { 'data_1':[1,1], 'data_2':[2,np.nan], 'data_3':[np.nan,2], 'category':[1,2] }, 'remove': { 'data_1':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def expect_collection_expandCategory(): return { 'pad': { 'time':[1,2,3], 'data_1':[1,2,np.nan], 'data_2':[1,np.nan,2] }, 'remove': { 'time':[1], 'data_1':[1], 'data_2':[1] } } @pytest.fixture(scope = 'class') def expect_collection_expandFull(): return { 'pad': { 'data_1_1':[1], 'data_2_1':[1], 'data_1_2':[2], 'data_2_2':[np.nan], 'data_1_3':[np.nan], 'data_2_3':[2] }, 'remove': { 'data_1_1':[1], 'data_2_1':[1], } } @pytest.fixture(scope = 'class') def expect_collection_noExpand(): return { 'ignore':{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, 'pad': { 'time': [1,2,3,1,2,3], 'data':[1,2,np.nan,1,np.nan,2], 'category':[1,1,1,2,2,2] }, 'remove': { 'time': [1,1], 'data':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def seq_single(): return { 'time':[1,2,3], 'data':[[1,2,3],[11,12,13],[21,22,23]] } @pytest.fixture(scope = 'class') def seq_collection(): return { 'time':[1,2,1,2], 'data':[[1,2],[1,2],[2,2],[2,2]], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_seq_collection(): return { 'data_1_1':[[1,2]], 'data_2_1':[[2,2]], 'data_1_2':[[1,2]], 'data_2_2':[[2,2]] } class Test_base_io: def test_base_io_from_single(self, dictList_single,expect_single_expandTime): ExpandTimeAns = expect_single_expandTime data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(ts, 'time', None) timeSeries = io.from_single(False) for i in timeSeries: assert timeSeries[i].tolist() == data[i] timeSeries = io.from_single(True) for i in timeSeries: assert timeSeries[i] == ExpandTimeAns[i] def test_base_io_to_single(self, dictList_single): data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(data, 'time', None) assert io.to_single() == ts def test_base_io_from_collection_expandTime(self, dictList_collection,expect_collection_expandTime): noChange = dictList_collection expand = expect_collection_expandTime fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(False,True,'ignore') timeSeries = io.from_collection(False,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandCategory(self, dictList_collection,expect_collection_expandCategory): noChange = dictList_collection expand = expect_collection_expandCategory fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(True,False,'ignore') timeSeries = io.from_collection(True,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandFull(self, dictList_collection,expect_collection_expandFull): noChange = dictList_collection expand = expect_collection_expandFull fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(True,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_to_collection(self, dictList_collection): dataList = dictList_collection io = io_base(dataList, 'time', 'category') testData = io.to_collection() tsd = Time_Series_Data(dataList,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') assert testData== tsc def test_base_io_from_collection_no_expand(self,dictList_collection,expect_collection_noExpand): noChange = dictList_collection expand = expect_collection_noExpand data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(False,False,'ignore') for i in timeSeries: np.testing.assert_array_equal(timeSeries[i],expand['ignore'][i]) timeSeries = io.from_collection(False,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) class Test_Pandas_IO: def test_from_pandas_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) tsd = Time_Series_Data(data,'time') testData = from_pandas(df,'time',None) assert tsd == testData def test_from_pandas_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = from_pandas(df,'time','category') assert tsc == testData def test_to_pandas_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_pandas( tsd, expandCategory= None, expandTime=False, preprocessType= None ) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_pandas( tsd, expandCategory= None, expandTime=True, preprocessType= None ) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_pandas_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_pandas_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_pandas_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_pandas_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ) pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_pandas_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_pandas(tsd,False,False,'ignore',True) print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_pandas_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_pandas(tsc,False,False,'ignore',True) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_pandas_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') test = to_pandas(tsd,False,False,'ignore',False) pd.testing.assert_frame_equal(test,df,False) def test_to_pandas_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_pandas(tsc,False,False,'ignore') pd.testing.assert_frame_equal(df,test,False) test = to_pandas(tsc,True,True,'ignore') full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) class Test_Numpy_IO: def test_from_numpy_single(self,dictList_single): data = dictList_single tsd = Time_Series_Data() tsd.set_time_index(data['time'],0) tsd.set_data(data['data'],1) numpydata = pd.DataFrame(dictList_single).values testData = from_numpy(numpydata,0,None) assert tsd == testData def test_from_numpy_collection(self,dictList_collection): data = dictList_collection numpyData = pd.DataFrame(data).values numpyDataDict = pd.DataFrame(pd.DataFrame(data).values).to_dict('list') testData = from_numpy(numpyData,0,2) tsd = Time_Series_Data(numpyDataDict,0) assert testData == Time_Series_Data_Collection(tsd,0,2) def test_to_numpy_single(self,dictList_single,expect_single_expandTime): data = dictList_single numpyData = pd.DataFrame(data).values expandTime = pd.DataFrame(expect_single_expandTime).values tsd = Time_Series_Data() tsd.set_time_index(data['time'],0) tsd.set_data(data['data'],1) testData = to_numpy( tsd, expandCategory= None, expandTime=False, preprocessType= None ) np.testing.assert_equal(testData,numpyData) testData = to_numpy( tsd, expandCategory= None, expandTime=True, preprocessType= None ) np.testing.assert_equal(testData,expandTime) def test_to_numpy_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection results = expect_collection_expandTime numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = False, expandTime = True, preprocessType='pad' ) remove_numpy = to_numpy( tsc, expandCategory = False, expandTime = True, preprocessType='remove' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) with pytest.raises(ValueError): timeSeries = to_numpy(tsc,False,True,'ignore') def test_to_numpy_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection results = expect_collection_expandCategory numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = True, expandTime = False, preprocessType='pad' ) remove_numpy = to_numpy( tsc, expandCategory = True, expandTime = False, preprocessType='remove' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) with pytest.raises(ValueError): timeSeries = to_numpy(tsc,False,True,'ignore') def test_to_numpy_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection results = expect_collection_expandFull numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = True, expandTime = True, preprocessType='pad' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) remove_numpy = to_numpy( tsc, expandCategory = True, expandTime = True, preprocessType='remove' ) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) def test_to_numpy_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection results = expect_collection_noExpand numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='pad' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) remove_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='remove' ) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) ignore_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='ignore' ) np.testing.assert_equal(ignore_numpy,pd.DataFrame(results['ignore']).values) def test_to_numpy_seperateLabel_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX).values expectedY = pd.DataFrame(expectedY).values tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_numpy(tsd,False,False,'ignore',True) print(x) print(y) np.testing.assert_equal(x,expectedX) np.testing.assert_equal(y,expectedY) def test_to_numpy_seperateLabel_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX).values expectedY = pd.DataFrame(expectedY).values tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_numpy(tsc,False,False,'ignore',True) np.testing.assert_equal(x,expectedX) np.testing.assert_equal(y,expectedY) def test_to_numpy_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') test = to_numpy(tsd,False,False,'ignore',False) np.testing.assert_equal(df,test) def test_to_numpy_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_numpy(tsc,False,False,'ignore') for i in range(len(test)): if isinstance(test[i][1],np.ndarray): test[i][1] = test[i][1].tolist() np.testing.assert_equal(df,test) test = to_numpy(tsc,True,True,'ignore') full = pd.DataFrame(expect_seq_collection).values for i in range(len(test[0])): if isinstance(test[0][i],np.ndarray): test[0][i] = test[0][i].tolist() np.testing.assert_equal(full,test) class Test_Arrow_IO: def test_from_arrow_table_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) testData = from_arrow_table(table,'time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData def test_from_arrow_table_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.Table.from_pandas(df) testData = from_arrow_table(table,'time','category') assert tsc == testData def test_from_arrow_batch_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.RecordBatch.from_pandas(df,preserve_index = False) testData = from_arrow_record_batch(table,'time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData def test_from_arrow_batch_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.RecordBatch.from_pandas(df,preserve_index = False) testData = from_arrow_record_batch(table,'time','category') assert tsc == testData def test_to_arrow_table_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_arrow_table( tsd, expandCategory= None, expandTime=False, preprocessType= None ).to_pandas() pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_arrow_table( tsd, expandCategory= None, expandTime=True, preprocessType= None ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_arrow_table_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): tsc = Time_Series_Data_Collection(tsd,'time','category') timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_arrow_table_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_arrow_table_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_arrow_table_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_arrow_table_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_arrow_table(tsd,False,False,'ignore',True) x = x.to_pandas() y = y.to_pandas() print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_arrow_table(tsc,False,False,'ignore',True) x = x.to_pandas() y = y.to_pandas() print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') test = to_arrow_table(tsd,False,False,'ignore',False).to_pandas() pd.testing.assert_frame_equal(test,df,False) def test_to_arrow_table_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_arrow_table(tsc,False,False,'ignore').to_pandas() pd.testing.assert_frame_equal(df,test,False) test = to_arrow_table(tsc,True,True,'ignore').to_pandas() full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) ### def record_batch_to_pandas(self,batchList): df = None for i in batchList: if df is None: df = i.to_pandas() continue df = df.append(i.to_pandas(),ignore_index = True) return df def test_to_arrow_batch_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_arrow_record_batch( tsd, expandCategory= None, expandTime=False, preprocessType= None, max_chunksize = 1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_arrow_record_batch( tsd, expandCategory= None, expandTime=True, preprocessType= None, max_chunksize = 1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_arrow_batch_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_arrow_batch_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_arrow_batch_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_arrow_batch_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_arrow_batch_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_arrow_record_batch(tsd,1,False,False,'ignore',True) x = self.record_batch_to_pandas(x) y = self.record_batch_to_pandas(y) print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_arrow_record_batch(tsc,1,False,False,'ignore',True) x = self.record_batch_to_pandas(x) y = self.record_batch_to_pandas(y) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) class Test_Parquet_IO: def test_from_parquet_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) pq.write_table(table,'test.parquet') testData = from_parquet('test.parquet','time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData os.remove('test.parquet') def test_from_parquet_collection(self,dictList_collection): data = dictList_collection df =
pd.DataFrame(dictList_collection)
pandas.DataFrame
# Copyright (c) 2017 Civic Knowledge. This file is licensed under the terms of the # MIT License, included in this distribution as LICENSE.txt """ """ import sys from rowgenerators.exceptions import SourceError, RowGeneratorError from rowgenerators.source import Source from rowgenerators.appurl import parse_app_url import pandas as pd import numpy as np def iterate_pandas(df): if len(df.index.names) == 1 and df.index.names[0] is None and df.index.dtype != np.dtype('O'): # For an unnamed, single index, assume that it is just a row number # and we don't really need it yield list(df.columns) for index, row in df.iterrows(): yield list(row) else: # Otherwise, either there are more than index_names = [n if n else "index{}".format(i) for i, n in enumerate(df.index.names)] yield index_names + list(df.columns) if len(df.index.names) == 1: idx_list = lambda x: [x] else: idx_list = lambda x: list(x) for index, row in df.iterrows(): yield idx_list(index) + list(row) def to_codes(df): """Return a dataframe with all of the categoricals represented as codes""" df = df.copy() cat_cols = df.select_dtypes(['category']).columns df[cat_cols] = df[cat_cols].apply(lambda x: x.cat.codes) return df def make_cat_map(df, column): """Extract the mapping between category names and codes from the dataset. There should be an interface on the categorical index type for this map, but I could not find it. """ t = pd.DataFrame( {'codes': df[column].cat.codes, 'values': df[column]} ).drop_duplicates().sort_values('codes') return { e.codes:e.values for e in list(t.itertuples())} def extract_categories(fspath): """ Create a Metatab doc with the schema for a CHIS file, including the categorical values. :param fspath: Path to the stata file. :return: """ dfs =
pd.read_stata(fspath)
pandas.read_stata
import streamlit as st # Make Frontend import pymongo # Database connection from pymongo import MongoClient # Access database url import pandas as pd # Basic dataframe operations import pdfplumber # Plumb pdf for visual debugging and data extraction including table data import PyPDF2 # To scan pdf documents from rake_nltk import Rake # Simple Key extraction import string # String operations import io # Convert a binary resume file to decoded file readable by python import re # Regular expression import nltk # Natural Language toolkit nltk.download('stopwords') nltk.download('punkt') import lxml # most feature-rich and easy-to-use library for processing XML and HTML country = st.sidebar.text_input('Country') # Each element that's passed to st.sidebar is pinned to the left. # text_input display a single-line text input widget. uploaded_file = st.file_uploader('Upload your resume') # file_uploader uploades files are limited to 200MB. file_text = '' # To save file data phrases = [] # takes phrases # keyphrases function def keyphrases(file, min_word, max_word, num_phrases): text = file text = text.lower() # lowercase text inputted text = ''.join(s for s in text if ord(s) > 31 and ord(s) < 126) # ord(s) = 31 is Space # ord(s) = 125 is right curly brace # using join() function to join text text = text text = re.sub(' +', ' ', text) # Replace multiple space with single space text = text.translate(str.maketrans('', '', string.punctuation)) # maketrans-specify the list of characters that need to be replaced in the whole string # translate() method in Python for making many character replacements in strings. text = ''.join([i for i in text if not i.isdigit()]) # join if not a digit r = Rake(min_length=min_word, max_length=max_word) # extract keywords of size entered to the function r.extract_keywords_from_text(text) # Extraction given the text. phrases = r.get_ranked_phrases() # To get keyword phrases ranked highest to lowest. if num_phrases < len(phrases): phrases = phrases[0:num_phrases] # only keep phrases of length specified earlier return phrases # returns key phrases # check if file has any data if uploaded_file is not None: uploaded_file.seek(0) # Top of pdf file file = uploaded_file.read() # Read the file data pdf = PyPDF2.PdfFileReader(io.BytesIO(file)) # Convert it into python readable format from binary form for page in range(pdf.getNumPages()): # getNumPages for calculating the number of pages in this PDF file. file_text += (pdf.getPage(page).extractText()) # getPage for retrieving a page by number from this PDF file. # extractText for extracting text phrases.extend(keyphrases(file_text, 2, 4, 10)) # Extend add return value in phrases after function is run if len(phrases) > 0: q_terms = st.multiselect('Select key phrases',options=phrases,default=phrases) #display keywords #mongo-connection client = pymongo.MongoClient("mongodb+srv://deepm12:<EMAIL>/Job_Recommender?retryWrites=true&w=majority") def query(country,keywords): result = client['JobRecommender']['Companies'].aggregate([ { '$search': { 'text': { 'path': [ 'industry' ], 'query': [ ' %s' % (keywords) ], 'fuzzy': { 'maxEdits': 2, 'prefixLength': 2 } } } }, { '$project': { 'Name': '$name', 'Industry': '$industry', 'City': '$locality', 'Country': '$country', 'score': { '$meta': 'searchScore' } } }, { '$match': { 'Country': '%s' % (country) } }, { '$limit': 10 } ]) df =
pd.DataFrame(result)
pandas.DataFrame
import pickle import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from gensim.models.ldamulticore import LdaMulticore # load the model from disk filename = 'models/trained_lda.sav' ldamodel = LdaMulticore.load(filename) filename = 'models/trained_lda_corpus.sav' corpus = pickle.load(open(filename, 'rb')) #load the files data_files = ["data/pubmed_articles_cancer_01_smaller.csv", "data/pubmed_articles_cancer_02_smaller.csv", "data/pubmed_articles_cancer_03_smaller.csv","data/pubmed_articles_cancer_04_smaller.csv"] input_data = pd.DataFrame() print("load the files") for file in data_files: df_load = pd.read_csv(file,skip_blank_lines=True) input_data = input_data.append(df_load) input_data.abstract = input_data.abstract.astype('str') dates_df = input_data.copy() dates_df = dates_df[["pubmed_id", "created_date"]] #dates_df.to_csv("dates.csv", index=False) # print("get weights") # https://stackoverflow.com/questions/62174945/gensim-extract-100-most-representative-documents-for-each-topic topic_probs = ldamodel.get_document_topics(corpus) #get the list of topic probabilities by doc topic_dict = [dict(x) for x in topic_probs] #convert to dictionary to convert to data frame df = pd.DataFrame(topic_dict).fillna(0) #convert to data frame, fill topics < 0.01 as 0 df = df.reindex(sorted(df.columns), axis=1) columns_names = ["infection risk", "thyroid cancer", "safety and efficacy", "leukemia chemotherapy", "surgical intervention", "lymph nodes detection", "pain management", "cervical cancer", "bladder cancer", "risk prediction", "adjuvant therapy", "healthy habits", "hematologic toxicity", "surgical complications", "tumor angiogenesis", "Intraoperative Radiation Therapy", "radiotherapy", "stem cell transplantation", "glioma", "behavioral intervention", "prostate cancer"] df.columns = columns_names df.to_csv("temp.csv", index=False) #df = pd.read_csv("temp.csv") df.reset_index(inplace=True) dates_df.reset_index(inplace=True) transformed_df = dates_df.join(df) #EDA: Very little data before 1975 transformed_df['created_date'] =
pd.to_datetime(dates_df['created_date'], format="%m/%d/%Y %H:%M")
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Wed May 11 08:08:52 2016 @author: tkc """ import re from collections import defaultdict import pandas as pd import numpy as np from scipy import optimize from math import factorial # used by Savgol matrix from scipy.optimize import curve_fit import os #%% def compareavg_subs(Integcomp, Integcompsubs): ''' Compare compositions for integral method on same samples derived from avg-combined files named 173175 and the sub-spe files 173,174,175, single line for each''' combofiles=Integcomp[Integcomp['Filenumber']>3000] # this is core of returned df tempcols=np.ndarray.tolist(combofiles.columns.unique()) elemlist=[col for col in tempcols if '%' in col] elemlist=[col for col in tempcols if '%' in col and 'err' not in col] elemlist=[el.replace('%','') for el in elemlist] # regenerate element list # make merge1, merge2 and merge3 cols for pd.merge # Create copies of Integcompsubs and rename Filenumber to merge1,2,3 # This allows pd merge on merge col, areanumber (since sample might not be unique) # determine # of underlying sub spe files (assumed same for all in combofiles) filestr=str(int((combofiles.iloc[0]['Filenumber']))) firstnum=int(filestr[0:int((len(filestr)/2))]) lastnum=int(filestr[int((len(filestr)/2)):]) for i in range(1,(lastnum-firstnum+2)): nummerges=lastnum-firstnum+1 colname='Merge'+str(i) combofiles[colname]='' # add correct number of merge columns for index, row in combofiles.iterrows(): filestr=str(int((combofiles.loc[index]['Filenumber']))) firstnum=int(filestr[0:int((len(filestr)/2))]) lastnum=int(filestr[int((len(filestr)/2)):]) # maybe need to associate file append string to source file filerange=[] filerange.extend(range(firstnum,lastnum+1)) # deal with possible irregular combo file structure (assumes same number of averaged sub spe files) if len(filerange)!=nummerges: print('Different number of average sub spefiles for ', filestr) if len(filerange)!=nummerges: # truncate if too long to avoid error filerange=filerange[0:nummerges+1] # Now assign correct filenumber for each merge for i, val in enumerate(filerange): colname='Merge'+str(i+1) combofiles=combofiles.set_value(index, colname, val) # assign correct filenumber to each merge (cols already created) # now read for n merges with compositional data from # prepare compsubs for merge dropcols=['Project', 'Filename', 'FilePath', 'Sample', 'Comments'] dropcollist=[s for s in Integcompsubs.dtypes.index if s in dropcols] # ensure the drop col is actually present Integcompsubs=Integcompsubs.drop(dropcollist, axis=1) for i in range(1,nummerges+1): colname='Merge'+str(i) tempdf=Integcompsubs tempdf=tempdf.rename(columns={'Filenumber':colname}) combofiles=pd.merge(combofiles,tempdf, how='left', on=[colname,'Areanumber'], suffixes=('',str(i))) # create and return a subset of compositional comparison mycols=['Filenumber', 'Areanumber', 'Sample','Filename','AESbasis'] # now make average and stdev from composition of sub spes for comparison with average # Now compute avg and stdev of elemental bases and at. % compositions # For integquant elem is counts modified by kfactors (fundamental quantity) for i, elem in enumerate(elemlist): mycols.extend([elem,'%'+elem]) # add to truncated output numrange=[str(i) for i in range(1,nummerges+1)] collist=[elem+val for val in numrange] # average amplitudes for each element newcol=elem+'avg' mycols.extend([newcol]) combofiles[newcol]=combofiles[collist].mean(axis=1) # e.g. averages S1, S2, S3 into Savg newcol=elem+'stdev' mycols.extend([newcol]) combofiles[newcol]=combofiles[collist].std(axis=1) # now compute average at.% for each element collist=['%'+elem+val for val in numrange] newcol='%'+elem+'avg' mycols.extend([newcol]) combofiles[newcol]=combofiles[collist].mean(axis=1) # avg of at. % newcol='%'+elem+'stdev' mycols.extend([newcol]) combofiles[newcol]=combofiles[collist].std(axis=1) # avg for stdev # Output a smaller subset of compslice=combofiles[mycols] return compslice,combofiles def parseelemlist(elemlist): '''Find and separate multielement peaks to be averaged (e.g. Fe2 & Fe) from longer string of element peaks e.g. splits "Mg Fe Fe2 Si" into "Mg Si" and "{Fe,[Fe,Fe2]} dictionary''' # Strip numbers from strings within list newlist=[re.match('\D+',i).group(0) for i in elemlist] # find duplicated peaks (multiple peaks per element) Multielem = defaultdict(list) for i, item in enumerate(newlist): Multielem[item].append(i) Multielem = {k:v for k,v in Multielem.items() if len(v)>1} # dictionary with duplicated item and list with indices duplist=list(Multielem.values()) # get list duplist=[item for sublist in duplist for item in sublist] # single list with positions of duplicated elements # now alter multipeak elements list to give dict with element and then list of peak for that element for key,value in Multielem.items(): templist=value # dictionary value is list of elem peak index positions peaklist=[] for i, index in enumerate(templist): # create new list with original elem peak from index positions peaklist.append(elemlist[index]) # now replace list of index positions with elempeak names Multielem.update({key:peaklist}) # key will be multipeak element string i.e. "Fe" # finally construct new single elements list with multipeak ones removed (handle each separately) newelemlist=[] for i in range(0,len(elemlist)): if i not in duplist: newelemlist.append(elemlist[i]) return newelemlist, Multielem def parseelem2(elemlist, Multielem): ''' After multielement peaks removed, also move secondary peaks used as primary to dict (handle separately) e.g. splits "S Mg Fe2 Si" into "S Mg Si" and "{Fe,[Fe2]} dictionary; same structure and df output for averaging of Fe, Fe2, or straight Fe2 or straight Fe''' # starting elemlist will only have single entries (i.e Ti2 but not Ti & Ti2) newelemlist=[] for i, elem in enumerate(elemlist): if re.search(r'\d',elem): # has number match=re.search(r'\d',elem) newkey=elem[0:match.start()] # store alt quant (i.e. on Ti2) with same structure as multiple quant (Ti & Ti2) # Another entry in multielement list... makes things easier for later quant comparisons templist=[] # peakIDs added as list (of length 1) templist.append(elem) # list containing single string (keeps identical data structure) Multielem.update({newkey:templist}) # add to existing dictionary for separate handling else: newelemlist.append(elemlist[i]) # just copy over return newelemlist, Multielem # return altered element list and multielem dictionary def getelemthresholds(elemlist, AESquantparams): '''get element-dependent significance thresholds for each peak from AESquantparams return dictionary with element and associated significance level''' thresholds={} # returns list of element dependent thresholds for this element set for i, elem in enumerate(elemlist): # find row in AESquantparams for this element thiselemdata=AESquantparams[(AESquantparams['element']==elem)] thiselemdata=thiselemdata.squeeze() # series with this elements params thresholds.update({elem:thiselemdata.siglevel}) return thresholds def cloneparamrows(df): ''' Make param log entry for for each areanum - used by calccomposition to correctly process spe files with multiple spatial areas passed df is usually list of spe files this solves problem that AugerParamLog only has one entry (despite possibly having multiple distinct areas with different spectra''' df['Areanumber']=1 # set existing entries as area 1 mycols=df.dtypes.index newrows=pd.DataFrame(columns=mycols) # blank df for new entries for index, row in df.iterrows(): numareas=int(df.loc[index]['Areas']) for i in range(2,numareas+1): newrow=df.loc[index] # clone this row as series newrow=newrow.set_value('Areanumber',i) newrows=newrows.append(newrow) df=pd.concat([df,newrows], ignore_index=True) # merge new rows with existing ones df=df.sort_values(['Filenumber','Areanumber']) return df def calccomp(df, Integquantlog, elemlist, AESquantparams): '''Calculate elemental composition of given files based on input element list threshold - ratio of element peak to noise peak (0 means no threshold applied load element-dependent significance level from AESquantparams''' thresholds=getelemthresholds(elemlist, AESquantparams) # Get list of sigma levels for significance/inclusion # thresholds for both single and multipeak elemlist, multipeaklist = parseelemlist(elemlist) # list of single peak elements and dict with multipeaks # check if any of the single peaks are secondary (i.e. quant on Fe2 not main Fe) elemlist, multipeaklist= parseelem2(elemlist, multipeaklist) # two element lists needed (elements with one peak and elements with compositions averaged from two peaks i.e. Fe2, Fe3) # to process compositions from multiple areas, clone rows from spe log (one for each areanum) df=cloneparamrows(df) # splits single entry for 5 spatial area spe into 5 rows with Areanumber 1-5 df=df.reset_index(drop=True) df['AESbasis']=0.0 # resets to zero if already present from calcamplitude mycols=['Filenumber', 'Project', 'Filename', 'FilePath', 'Sample', 'Comments','AESbasis','Areanumber'] for i, elem in enumerate(elemlist): # add columns for basis df[elem]=0.0 # add col for each element to spelist df[elem+'cnts']=0.0 # also keep integrated counts df['sig'+elem]=0.0 # copy peak significance (ratio of integrated counts over 1 sigma of background) df['err'+elem]=0.0 # another for total error in adjusted counts basis mycols.append(elem) mycols.append(elem+'cnts') mycols.append('sig'+elem) mycols.append('err'+elem) for i,elem in enumerate(list(multipeaklist.keys())): # get elements (keys) from dict df[elem]=0.0 df[elem+'cnts']=0.0 df['sig'+elem]=0.0 df['err'+elem]=0.0 mycols.append(elem) mycols.append(elem+'cnts') mycols.append('sig'+elem) mycols.append('err'+elem) for i, elem in enumerate(elemlist): # now add at.% columns (e.g. %S, %Mg) colname='%'+elem # at % columns named %S, %Mg, etc. errname='err%'+elem mycols.append(colname) # add to column list template mycols.append(errname) df[colname]=0.0 df[errname]=0.0 for i,elem in enumerate(list(multipeaklist.keys())): # add multipeak elements colname='%'+elem # at % columns named %S, %Mg, etc. errname='err%'+elem mycols.append(colname) # add to column list template mycols.append(errname) df[colname]=0.0 df[errname]=0.0 for i in range(0,len(df)): # loop through all desired spectrum (multiarea ones already have duplicated rows) filename=df.iloc[i]['Filename'] # more flexible than filenumber (which can be duplicated) areanum=df.iloc[i]['Areanumber'] match=Integquantlog[Integquantlog['Filename']==filename] # find integ data for this filenumber match=match[match['Areanumber']==areanum] basis=0.0 # for j, elem in enumerate(elemlist): # handle the single peak elements temp=match[match['Element']==elem] # finds entry for this element if len(temp)==1: # thresholds is dict with required significance level for each element thisthresh=thresholds.get(elem) # sig level for this element df=df.set_value(i, 'sig'+elem, temp.iloc[0]['Significance']) # always copy peak significance level df=df.set_value(i, elem+'cnts', temp.iloc[0]['Integcounts']) # copy integrated counts if temp.iloc[0]['Significance']>thisthresh: # if above set threshold then calculate elem's value and add to basis df=df.set_value(i, elem, temp.iloc[0]['Adjcnts']) # copy adjusted counts of this element df=df.set_value(i, 'err'+elem, temp.iloc[0]['Erradjcnts']) basis+=temp.iloc[0]['Adjcnts'] # add this element's value to AES basis # now handle the multipeak elements (get average value from both peaks) for key, value in multipeaklist.items(): # key is element (aka colname in df), value is list of peaks in Smdifpeakslog templist=value # dictionary value is list of elem peak index positions numlines=len(templist) # this is number of lines that are average (i.e. 2 for Fe&Fe2) avgval=0.0 # working value for averaged adjamplitude erravgval=0.0 # combined error from erradjcnts of each line for k, peak in enumerate(templist): # create new list with original elem peak from index positions temp=match[match['Element']==peak] # finds integquantlog entry for this peak (match already trimmed to filenum and area) if len(temp)==1: thisthresh=thresholds.get(peak) # sig level for this element/peak df=df.set_value(i, 'sig'+elem, temp.iloc[0]['Significance']) # copy peak significance level df=df.set_value(i, elem+'cnts', temp.iloc[0]['Integcounts']) # copy integrated counts if temp.iloc[0]['Significance']>thisthresh: avgval+=temp.iloc[0]['Adjcnts'] thiserrperc=temp.iloc[0]['Erradjcnts']/temp.iloc[0]['Adjcnts']**2 erravgval+=thiserrperc # sum of square of relative error else: numlines=numlines-1 # if peak is zeroed out and not added, this reduces # peaks in average if numlines>0: # avoid divbyzero if peak is too small avgval=avgval/numlines # this is now average basis for given element erravgval=np.sqrt(erravgval) # sqrt of sum of squares is relative error df=df.set_value(i, key, avgval) # copy adjusted amplitude of this element df=df.set_value(i, key+'err', avgval*erravgval) # combined actual error of this elem (as detemined from mulitple lines) # add value from this element to AESbasis basis+=avgval # end of multipeak elements loop df=df.set_value(i, 'AESbasis', basis) # write total basis value to df # Now compute at.% for each listed element (incl errors) for j, elem in enumerate(elemlist): colname='%'+elem ratio=df.iloc[i][elem]/df.iloc[i]['AESbasis'] # initialized to zero in cases where peak is below significance threshold df.set_value(i, colname, ratio) temp=match[match['Element']==elem] # again find peak entry and get finds entry for this peak # TODO maybe check threshold again (although element's value will be zero) if len(temp)==1: thiserr=temp.iloc[0]['Erradjcnts'] atpercerr=thiserr/df.iloc[i]['AESbasis'] errname='err%'+elem # error column df.set_value(i, errname, atpercerr) # Writes absolute error in at% # Also calculate for elements w/ multiple peaks (if present) for key, value in multipeaklist.items(): templist=value # dictionary value is list of elem peak index positions numlines=len(templist) # this is number of lines that are average (i.e. 2 for Fe&Fe2) colname='%'+key ratio=df.iloc[i][key]/df.iloc[i]['AESbasis'] df.set_value(i, colname, ratio) # TODO need to propagate errors through Fe & Fe2 errlist=[] # list of errors in % (usually max of two) for k, peak in enumerate(templist): # create new list with original elem peak from index positions temp=match[match['Element']==peak] # finds entry for this peak if len(temp)==1: if temp.iloc[0]['Adjcnts']>0: # skip negative values err=temp.iloc[0]['Erradjcnts']/temp.iloc[0]['Adjcnts'] errlist.append(err) # add this to list # combine errors in quadrature totalerr=0.0 for j, err in enumerate(errlist): totalerr+=err**2 totalerr=np.sqrt(totalerr) # percent error in at % # now get actual error thisval=df.iloc[i][key] # this is averaged value computed above (possibly zero if below thresholds ) thiserr=thisval*totalerr # error (in Fe) as actual value based on average of multiple peaks atpercerr=thiserr/df.iloc[i]['AESbasis'] errname='err%'+ key # error column df.set_value(i, errname, atpercerr) # Writes absolute error in at% # end of loop calculation for each spectrum # organize data based on mycols template dropcollist=[s for s in df.dtypes.index if s not in mycols] df.drop(dropcollist, axis=1, inplace=True) # drops extraneous columns df=df[mycols] # put in correct order return df def calcadjcounts(df, AESquantparams, sig=2, kerrors=True): '''For each elemental peak in interquantlog, calculate or recalcuated adjusted counts using k-factor2 and mass result stored in adjcnts column and used for subsequent compositional determinations can change AESquantresults and recalc at any time; sig (aka 2 sigma errors) is default setting kerrors -- include error associated with kfactor (along with Poisson errors)''' if 'Adjcnts' not in df: df['Adjcnts']=0.0 # new column for adjusted amplitude (if not already present) if 'Erradjcnts' not in df: df['Erradjcnts']=0.0 # new column for associated error if 'err%cnts' not in df: df['err%cnts']=0.0 # percentage error only from counting statistics (not including kfactor err) if 'err%total' not in df: df['err%total']=0.0 # percentage error only from counting statistics (not including kfactor err) # loop for each element, mask df, get appropriate k-factor & mass df=df.reset_index(drop=True) # go ahead and reset index elemlist=np.ndarray.tolist(df.Element.unique()) # list of unique elements from df for i,elem in enumerate(elemlist): match=AESquantparams[(AESquantparams['element']==elem)] match=match.reset_index(drop=True) kfactor2=match.iloc[0]['kfactor2'] # kfactor and mass for this element/peak errkf2=match.iloc[0]['errkf2'] # percent error in above for integ method mass=match.iloc[0]['mass'] elemmask=(df['Element']==elem) # mask for this element in loop for j in range(0,len(df)): # loop and set adjamplitude to amp*kfact/mass if elemmask[j]==True: # row has this element newval=df.iloc[j]['Integcounts']*kfactor2/mass percerr=sig/np.sqrt(df.iloc[j]['Integcounts']) # 2/sqrt(N) is percent error totalerr=np.sqrt(errkf2**2+percerr**2) # combine in quadrature err=newval*totalerr # error value is adjusted counts * 2 sig error percentage df=df.set_value(j,'Adjcnts',newval) df=df.set_value(j,'err%cnts',percerr) df=df.set_value(j,'err%total',totalerr) df=df.set_value(j,'Erradjcnts',err) return df ''' TESTING df=lowerfitpeak ''' def makelinebackground(df, areanum, fitparams): '''Create linear background under peak region passed small slice of Augerfile df just peak region and small adjacent background ''' if fitparams[0]=='n/a': # prior linregresss problem return df # return unmodified file slope=fitparams[0] intercept=fitparams[1] backfitname='Backfit'+str(areanum) for index,row in df.iterrows(): # blend between lower line and upper line xval=df.loc[index]['Energy'] yval=slope*xval+intercept df=df.set_value(index,backfitname,yval) return df # return same df with interpolated background region added def makeinterplinebackground(df, areanum, fitbounds, lowfitparams, upperfitparams): '''Create interpolated background from lower and upper peak fits passed small slice of Augerfile df just peak region and small adjacent background fitparams are 1)slope, 2) intercept 3) stdev of slope 4) stdev of intercept 5) rvalue''' # check for n/a values if lowfitparams[0]=='n/a' or upperfitparams[0]=='n/a': # prior linregresss problem return df # return unmodified file lowslope=lowfitparams[0] lowintercept=lowfitparams[1] upslope=upperfitparams[0] upintercept=upperfitparams[1] backfitname='Backfit'+str(areanum) for i in range(fitbounds[0],fitbounds[1]+1): xval=df.loc[i]['Energy'] df=df.set_value(i,backfitname,xval*lowslope+lowintercept) # set linear values below peak (lower linear fit) for i in range(fitbounds[2],fitbounds[3]+1): xval=df.loc[i]['Energy'] df=df.set_value(i,backfitname,xval*upslope+upintercept) # set linear values above peak (upper linear fit) # find length of gap region evstep=1/(fitbounds[2]-fitbounds[1]-1) # Length of intermediate region (between lower and upper regions) startrow=fitbounds[1]+1 for i in range(fitbounds[1]+1,fitbounds[2]): # now do region in between xval=df.loc[i]['Energy'] yval=(1-evstep*(i-startrow))*(lowslope*xval+lowintercept)+evstep*(i-startrow)*(upslope*xval+upintercept) df=df.set_value(i,backfitname,yval) return df # return same df with interpolated background region added def fitCapeak(df, areanum, elem, AugerFileName): '''Pass appropriate chunk from Auger spectral dataframe, perform linear fit return chunk with backfit column added ''' if 'Smcounts'+str(areanum) in df: # some dfs may lack smoothed counts colname='Smcounts'+str(areanum) else: colname='Counts'+str(areanum) # probably no critical difference between either backfitname='Backfit'+str(areanum) xcol=df['Energy'] ycol=df[colname] # Counts1, Counts2 or whatever # find relative minimum try: parabfunc=lambda x, a, b, c: a*x**2 + b*x + c # lambda definition of cubic poly fitparams, cov =curve_fit(parabfunc, xcol, ycol) # scipy optimize ss_res=np.dot((ycol-parabfunc(xcol,*fitparams)), (ycol-parabfunc(xcol,*fitparams))) # dot product of diff between data and function ymean=np.mean(ycol) # mean of dataset ss_tot=np.dot((ycol-ymean),(ycol-ymean)) R2=1-(ss_res/ss_tot) # coeff of determination # diagonal of covariance matrix contains variances for fit params except: # deal with common problems with linregress print('Fitting error for', elem, ' in file ', AugerFileName) fitparams=('n/a','n/a','n/a') # return all n/a R2='n/a' return df, fitparams, R2 for index,row in df.iterrows(): xval=df.loc[index]['Energy'] yval= fitparams[0] * xval**2+ fitparams[1] * xval + fitparams[2] df=df.set_value(index, backfitname, yval) return df, fitparams, R2 def makeCabackground(df, areanum, fitparams): ''' Fill background col of auger spe file with values derived from 2nd order poly fit (pass region under peak not fitted by fit Ca peak (which only grabs adjacent background)''' backfitname='Backfit'+str(areanum) if len(fitparams)!=3: # prior fitting error already reported via print return df A=fitparams[0] B=fitparams[1] C=fitparams[2] for index,row in df.iterrows(): # blend between lower line and upper line xval=df.loc[index]['Energy'] yval=A*xval**2+ B* xval +C df=df.set_value(index,backfitname,yval) return df ''' For background fit testing Augerfile=pd.read_csv('C2010W_18Nov15_12231225.csv') areanum=1 elem=Elemdata[0][0] fittype=Elemdata[0][1] integpeak=Elemdata[0][2] lower1=Elemdata[0][3] lower2=Elemdata[0][4] upper1=Elemdata[0][5] upper2=Elemdata[0][6] df=fitregion Augerfile.to_csv('C2010W_18Nov15_12231225.csv', index=False) ''' ''' TESTING OF BELOW FITS plt.plot(xcol,ycol,'b-') # actual data in blue plt.plot(xcol,gaussian(fitparams, xcol),'r-') # Gaussian fit in red ''' def fitgauss(df, areanum, width, elem, AugerFileName, addgauss=True): ''' Gaussian fit of direct peaks (pass Augerfile just around peaks region no need to save Gaussian fit, just return width and other params integwidth pass from AESquantparams value''' peakname='Peaks'+str(areanum) # Remove nan values from peak region df=df.dropna(subset=[peakname]) # remove nan entries from peak # estimate initial Gaussian parameters from data if df.empty: # deal with prior failed background fits (no data in this region after dropna print('Gaussian fitting error for', elem, ' peak in file ', AugerFileName) fitparams=('n/a','n/a','n/a','n/a') # return all n/a rsquared='n/a' ier='n/a' return df, fitparams, rsquared, ier xc=df[peakname].idxmax() # estimate center based on peak max index xc=df.loc[xc]['Energy'] # associated energy value near center peakarea=df[peakname].sum() # decent area estimate y0=0 # params0=[xc,width,peakarea,y0] # initial params list (first guess at gaussian params) xcol=df['Energy'] ycol=df[peakname] # Counts1, Counts2 or whatever xcol=xcol.as_matrix() # convert both to numpy matrices ycol=ycol.as_matrix() # define standard gaussian funct (xc, width, area and yoffset are init params) gaussian=lambda params, x: params[3]+params[2]/(params[1]*np.sqrt(2*np.pi))*np.exp(-((x-params[0])**2/(2*params[1]**2))) # thisgauss= gaussian(params0,xcol) errfunc=lambda p, xcol, ycol: ycol- gaussian(p,xcol) # lambda error funct definition # sigma2FWHM = lambda sigma: sigma * sqrt(2 * log(2)) * 2 / sqrt(2) # convert Gaussian widths to FWHM? try: fitparams, cov, infodict, mesg, ier =optimize.leastsq(errfunc,params0,args=(xcol,ycol),full_output=True) ss_err=(infodict['fvec']**2).sum() ss_tot=((ycol-ycol.mean())**2).sum() rsquared=1-(ss_err/ss_tot) except: # fitting problem print('Gaussian fitting error for', elem, ' peak in file ', AugerFileName) fitparams=('n/a','n/a','n/a','n/a') # return all n/a rsquared='n/a' ier='n/a' return df, fitparams, rsquared, ier if addgauss==True: gaussname="Gauss"+str(areanum) df[gaussname]='' # add col for gaussian fit for index,row in df.iterrows(): xval=df.loc[index]['Energy'] yval=fitparams[3]+fitparams[2]/(fitparams[1]*np.sqrt(2*np.pi))*np.exp(-((xval-fitparams[0])**2/(2*fitparams[1]**2))) df.set_value(index,gaussname,yval) return df, fitparams, rsquared, ier ''' TESTING For background fit testing df=fitregion Augerfile=pd.read_csv('C2010W_18Nov15_12231225.csv') areanum=1 elem=Elemdata[1][0] fittype=Elemdata[1][1] integpeak=Elemdata[1][2] lower1=Elemdata[1][3] lower2=Elemdata[1][4] upper1=Elemdata[1][5] upper2=Elemdata[1][6] integwidth=Elemdata[0][8] if ier in [1,2,3,4]: print ('true') ''' def findintegparams(Augerfile, Elements, AESquantparams, Shifts): '''Grab integration width and expected counts peak position (also incorporates shift from deriv method)''' halfwidths=[] peakcenters=[] Energyvals = Augerfile.Energy # for finding index #s corresponding to energy vals for this spectrum for i, elem in enumerate(Elements): thiselem=AESquantparams[AESquantparams['element']==elem] if len(thiselem)!=1: print('WARNING ... AES quant parameters not found for ', elem) halfwidths.append(4) # default integration width peakcenters.append('n/a') # return halfwidths, peakcenters halfwidths.append(int((thiselem.iloc[0]['integwidth']-1)/2)) # integration uses half-width on either side of center integpeakeV=thiselem.iloc[0]['negpeak']-thiselem.iloc[0]['integpeak']+Shifts[i] # shift of direct peak (defined relative to deriv peak) temptuple=min(enumerate(Energyvals), key=lambda x: abs(x[1]-integpeakeV)) # tuple with index of closest and closest value peakcenters.append(temptuple[0]) # first of tuple is closest index # return halfwidths, peakcenters def integpeaks(Augerfile, Backfitparams, areanum, Elements, Shifts, logmatch, AESquantparams): ''' Background fit for each direct peak, shift is list of energy shifts of negpeak (same order as Eledata (opens source spectrum as Augerfile, fits peak backgrounds above and below using Elemdata, saves background to source csv (overwrites existing fits), also saves linear fit params to logdataframe with position/amplitude/etc; desired elements out of data range are skipped (in prior findindices function) backfitparams is all elements but only this Augerfile ''' #create Smdifpeaks dataframe for temp storage of each peak's params Backfitparams=Backfitparams.dropna(subset=['Rval1']) # skip integration/Gaussian fit if background fit failed AugerFileName=logmatch.Filename # # Create temp df to hold and pass linear fit data mycols=['Filenumber', 'Filename', 'Filepath', 'Sample', 'Comments', 'Areanumber', 'Element', 'Integcounts', 'Backcounts', 'Significance', 'Xc', 'Width', 'Peakarea', 'Y0','Rsquared','Numchannels'] Integresults=pd.DataFrame(columns=mycols) # empty df for all integ results for elems in this spe file peakname='Peaks'+str(areanum) # this is counts - background (but only calculated in vicinity of known elemental peaks) backfitname='Backfit'+str(areanum) # global shifts from smdifpeaks and local shift based on smoothed 2nd derivative halfwidths, peakcenters=findintegparams(Augerfile, Elements, AESquantparams, Shifts) # loop through and fit all peaks for each element in this spatial area for i, elem in enumerate(Elements): if i not in Backfitparams.index: # skips integ calc if backfit is n/a continue # problem here ...why are all indices zero for Backfitparams? thisbackfit=Backfitparams[Backfitparams['Element']==elem] if len(thisbackfit)!=1: print('Problem retrieving fit boundaries for ',elem, ' in ', AugerFileName) continue lower1=thisbackfit.iloc[0]['Lower1'] upper2=thisbackfit.iloc[0]['Upper2'] fitregion=Augerfile[lower1:upper2+1] if fitregion.empty==True: # skip if no data present (already should be skipped in Elemdata) print('No data present for ', elem, ' in ', AugerFileName) continue # also need accurate lower/upper bounds ... available from backfitparams Integresult=pd.DataFrame(index=np.arange(0,1),columns=mycols) # blank df row for this element # get integpeak, kfact, integwidth, siglevel # addgauss if save of gaussian peak fit in Augerfile is desired # Probably could skip Gaussian fitting entirely if peak is weak (check smdiff) fitregion, fitparams, rsquared, ier = fitgauss(fitregion, areanum, halfwidths[i], elem, AugerFileName, addgauss=True) addgauss=True # maybe pass this arg from elsewhere if addgauss==True and ier in [1,2,3,4]: # copy gaussian fit over to csv file if successful gaussname="Gauss"+str(areanum) if gaussname not in Augerfile.dtypes.index: # add col if not already present Augerfile[gaussname]='' # add col for gaussian fit # Copy gaussian fit to Augerfile... fitregion only modified in new Gauss peak fit column Augerfile.loc[fitregion.index,fitregion.columns]=fitregion # if gaussian fit is successful set center integration channel to index nearest xc # ier flag of 1,2,3,4 if fit succeeds but rsquared threshold is better if rsquared!='n/a': # skip integcounts calc but do put 'n/a' entries in df if rsquared>0.4: xc=fitparams[0] # center of gaussian fit center=int(round(xc,0)) tempdf=fitregion[fitregion['Energy']==center] try: centerindex=tempdf[peakname].idxmax() # corresponding index # of peak maximum except: print('Gaussian fit center out of data range for ', elem, ' in ', AugerFileName) # use center based on deriv shift and relative offset (index corresponding to integpeakeV) centerindex=peakcenters[i] # backup method of finding center of integration region else: # indication of poor Gaussian fit R2<0.4 (use prior knowledge of peak position) print('Failed gaussian fit for ', elem, ' in ', AugerFileName) # set center integration channel to value passed by integpeak # this is ideal energy value but adjusted by shift found using smooth-diff quant method centerindex=peakcenters[i] # already stores index number of central peak (ideal - sm-diff shift value) # Still do the counts integration for poor gaussian fits # perform integration over peak center channel + integwidth on either side Augerpeak=Augerfile[centerindex-halfwidths[i]:centerindex+halfwidths[i]+1] integcounts=Augerpeak[peakname].sum() # get counts sum backgroundcnts=Augerpeak[backfitname].sum() # sum counts over identical width in background fit # Used for peak significance i.e. typically 2 sigma of background integration over identical width # full integ width is 1.2*FWHM but integwidth here is closest integer half-width # Write fit params from tuple over to Integresult df Integresult.iloc[0]['Integcounts']=integcounts Integresult.iloc[0]['Backcounts']=backgroundcnts Integresult.iloc[0]['Significance']=round(integcounts/(np.sqrt(backgroundcnts)),3) # TODO add 2/sqrt(n) calc of associated percent error (also can calculate later) Integresult.iloc[0]['Numchannels']=halfwidths[i]*2+1 Integresult.iloc[0]['Rsquared']=rsquared Integresult.iloc[0]['Element']=elem # These will be n/a if fit fails Integresult.iloc[0]['Xc']=fitparams[0] Integresult.iloc[0]['Width']=fitparams[1] Integresult.iloc[0]['Peakarea']=fitparams[2] Integresult.iloc[0]['Y0']=fitparams[3] Integresults=Integresults.append(Integresult, ignore_index=True) # add row to list with valid # end of loop through each element # assign params that are common to all areas/all peaks into rows of df (copied from original log) for index,row in Integresults.iterrows(): Integresults.loc[index]['Filenumber']=logmatch.Filenumber Integresults.iloc[index]['Filename']=logmatch.Filename Integresults.iloc[index]['Filepath']=logmatch.FilePath Integresults.iloc[index]['Sample']=logmatch.Sample Integresults.iloc[index]['Comments']=logmatch.Comments Integresults.loc[index]['Areanumber']=areanum Integresults=Integresults[mycols] # put back in original order return Augerfile, Integresults # df with direct peak fitting info for all areas/ all elements ''' TESTING BACKGROUNDS elem, fittype, integpeak, lower1, lower2, upper1, upper2, kfact, integwidth, siglevel=Elemdata[5] ''' def fitcubic(df, areanum, elem, AugerFileName): '''Pass appropriate chunk from Auger spectral dataframe, perform cubic fit return chunk with backfit column added ''' if 'Smcounts'+str(areanum) in df: colname='Smcounts'+str(areanum) # use smoothed data for background fits else: colname='Counts'+str(areanum) backfitname='Backfit'+str(areanum) xcol=df['Energy'] ycol=df[colname] # Counts1, Counts2 or whatever # find relative minimum try: cubicfunc=lambda x, a, b, c, d: a*x**3 + b*x**2 + c*x + d # lambda definition of cubic poly fitparams, cov =curve_fit(cubicfunc, xcol, ycol) # scipy optimize ss_res=np.dot((ycol-cubicfunc(xcol,*fitparams)), (ycol-cubicfunc(xcol,*fitparams))) # dot product of diff between data and function ymean=np.mean(ycol) # mean of dataset ss_tot=np.dot((ycol-ymean),(ycol-ymean)) R2=1-(ss_res/ss_tot) # coeff of determination # TODO insert special handling for failed fits (some R2 threshold) # Maybe restrictions on curvature except: # deal with failed fit print('Fitting error for', elem, ' in file ', AugerFileName) fitparams=('n/a','n/a','n/a','n/a') # return all n/a return df, fitparams for index,row in df.iterrows(): xval=df.loc[index]['Energy'] yval= fitparams[0] * xval**3+ fitparams[1] * xval**2 + fitparams[2] * xval + fitparams[3] df=df.set_value(index, backfitname, yval) return df, fitparams, R2 def makecubicbackground(df, areanum, fitparams): ''' Fill background col of auger spe file with values derived from 2nd order poly fit (pass region under peak not fitted by fit Ca peak (which only grabs adjacent background)''' backfitname='Backfit'+str(areanum) if len(fitparams)!=4: # prior fitting error already reported via print return df A=fitparams[0] B=fitparams[1] C=fitparams[2] D=fitparams[3] for index,row in df.iterrows(): # blend between lower line and upper line xval=df.loc[index]['Energy'] yval= A * xval**3+ B * xval**2 + C * xval + D df=df.set_value(index,backfitname,yval) return df def makesavgol(df, areanum, evbreaks): '''Perform python smooth-diff used to guide selection of background regions perform this in chunks between evbreaks (list), works for survey or multiplex, adds col to Augerfile and returns evbreaks is list of index #s ''' countsname='Counts'+str(areanum) # add savgol column (only called if not present) savgolname='Savgol'+str(areanum) df[savgolname]=0.0 # add/initialize col for 2nd deriv Sav-gol # Add 1 to last region boundary to avoid data truncation problem evbreaks[-1]=evbreaks[-1]+1 for i in range(1,len(evbreaks)): # region 1 to nth region thisreg=df.loc[evbreaks[i-1]:evbreaks[i]-1] # slice into separate multiplex regions and process separately thisreg=thisreg[countsname] # convert to Series (keep these index) myarr=np.asarray(thisreg) # convert to numpy array window_size=11 deriv=2 order=2 # order of savgol fit rate=1 order_range = range(order+1) # range object half_window = (window_size -1) // 2 # type int # precompute coefficients b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)]) # b is matrix 3 by window size m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv) # series as long as array # linalg.pinv gets pseudo-inverse of a matrix (window-sized series) # .A of any matrix returns it as ndarray object # Pad the signal at the extremes with values taken from the signal itself firstvals = myarr[0] - np.abs(myarr[1:half_window+1][::-1] - myarr[0] ) lastvals = myarr[-1] + np.abs(myarr[-half_window-1:-1][::-1] - myarr[-1]) myarr= np.concatenate((firstvals, myarr, lastvals)) # Now convolve input signal and sav-gol processing 1D array .. thisreg is numpy array w/ savgol results myarr=np.convolve( myarr, m[::-1], mode='valid') thisreg.loc[evbreaks[i-1]:evbreaks[i]-1]=myarr # copies numpy array but keeps same indices # for loop endpoint is 1 off from df indexing (due to different inclusion rules for last point of range) for index in range(evbreaks[i-1],evbreaks[i]): df.set_value(index,savgolname,thisreg.loc[index]) # copy vals from series into entire spe df return df # returns savitsky-golay smooth diff over same full region def fitsingleline(Augerfile, areanum, fitbounds): '''Perform linear fit over entire background region (lower and upper) when both separately fitted give similar results fitbounds is length 4 list of lower and upper index # boundaries ... fitparams not returned (since these shouldn't be significantly different from those already stored, returns Augerfile with background fit added ''' # linear fit over both background regions cntname='Counts'+str(areanum) # use counts itself (not any smoothed counts) backfitname='Backfit'+str(areanum) indexrange=[i for i in range(fitbounds[0],fitbounds[1]+1)] indexrange.extend([i for i in range(fitbounds[2],fitbounds[3]+1)]) fitregion=Augerfile[Augerfile.index.isin(indexrange)] xdata=fitregion['Energy'] ydata=fitregion[cntname] slope,intercept=np.polyfit(xdata, ydata, 1) # single linear fit over this region for i in range(fitbounds[0],fitbounds[3]+1): xval=Augerfile.loc[i]['Energy'] Augerfile=Augerfile.set_value(i,backfitname,xval*slope+intercept) # set linear values below peak (lower linear fit) return Augerfile def comparelinfits(lowfitparams,upperfitparams, thresh=2): ''' See if linear fits above and below peak are significantly different (ie. do slopes and intercepts agree within 2 stdevs (or other chosen threshold)''' # fitparams are: 1) slope, 2) intercept 3) stdev of slope 4) stdev of intercept 5) R-val slope1, intercept1, errslope1, errintercept1, rval1 =lowfitparams slope2, intercept2, errslope2, errintercept2, rval2 =upperfitparams if slope1>slope2: if slope1-thresh*errslope1 < slope2+thresh*errslope2: # no sig diff in slope slopediff=False else: slopediff=True else: if slope2-thresh*errslope2 < slope1+thresh*errslope1: # no sig diff in slope slopediff=False else: slopediff=True # same comparison for intercepts if intercept1>intercept2: if intercept1-thresh*errintercept1 < intercept2+thresh*errintercept2: # no sig diff in intercept interceptdiff=False else: interceptdiff=True else: if intercept2-thresh*errintercept2 < intercept1+thresh*errintercept1: # no sig diff in intercept interceptdiff=False else: interceptdiff=True if not slopediff and not interceptdiff: diff=False else: diff=True return diff def refineboundfit(xdata,ydata, maxshift, fitbounds, AugerFileName, elem): '''Perform linear fit over region, compute residuals, and adjust fit boundary to remove edges of peak regions that may appear fitbounds is length 2 list of index # boundaries, returns [slope,intercept,rval,pval,stderr] and altered fit boundaries ''' #TODO consider Ramer-Douglas-Peucker algorithm as next step # linear fit over both background regions lowbound=fitbounds[0] upbound=fitbounds[1] slope,intercept=np.polyfit(xdata, ydata, 1) # manually calculate residuals yfit=slope*xdata+intercept resid=np.subtract(ydata,yfit) thresh=1.5*resid.std() # set threshold above which point is removed for having high residual # refit fit boundaries based on above start=0 end=len(xdata)-1 # adjust for zero based indexing try: for i in range(0,maxshift): if resid[i]>thresh: start=start+1 lowbound=lowbound+1 # adjust index # boundary else: break for i in range(len(resid)-1,len(resid)-maxshift-1,-1): if resid[i]>thresh: end=end-1 upbound=upbound-1 # adjust index # boundary else: break except: print('Background fit range adjustment failed for ',AugerFileName,'. Range for ', elem, 'is', str(lowbound),'-', str(upbound)) # Truncate xdata, ydata based on excluded points xdata=xdata[start:end+1] # energy values ydata=ydata[start:end+1] minenergy=xdata[start] maxenergy=xdata[-1] # last element will be max evrange=str(minenergy)+'-'+str(maxenergy) # refit line using optimum fit boundaries (returns slope,intercept, r_value, p_value, std_err) (slope,intercept), cov = np.polyfit(xdata, ydata, 1, cov=True) sd_slope=np.sqrt(cov[0,0]) # variance of slope is element 0,0 in covariance matrix sd_intercept=np.sqrt(cov[1,1]) # same for standard deviation of intercept (sqrt of variance) # Rvalue calculation from np.polyfit p = np.poly1d((slope,intercept)) # polynomial funct w/ these params # fit values, and mean yhat = p(xdata) # or [p(z) for z in x] ybar = np.sum(ydata)/len(ydata) # or sum(y)/len(y) ssreg = np.sum((yhat-ybar)**2) # or sum([ (yihat - ybar)**2 for yihat in yhat]) sstot = np.sum((ydata - ybar)**2) # or sum([ (yi - ybar)**2 for yi in y]) # sum of squares of functional fit (minus average value) over sum of squares of dataminus average value r_value = ssreg / sstot linfitparams = [slope, intercept, sd_slope, sd_intercept, r_value] # skip pvalue and std err (already have error for slope and intercept separately ) return linfitparams, lowbound, upbound, evrange def fitpeakbackground(Augerfile, fitbounds, areanum, maxshift, elem, AugerFileName): '''Simultaneously deal with linear fits below and above peak of interest use residual/outlier detection to trim boundaries of linear fit regions (more robust than deriv threshold style return lower and upper slopes/intercepts background is either single linear fit or interpolated between the two fitbounds (length 4 list) has index #s of lower and upper bounds of fit below peak and fit above peak ''' cntname='Counts'+str(areanum) # can use Counts or Smcounts ... probably smcounts is better for background fitting energybounds=[] # two strings with fitted energy ranges # refine fit boundaries for lower region lowfitreg=Augerfile[fitbounds[0]:fitbounds[1]+1] # already tested for out-of-range in definefitreg xdata=lowfitreg['Energy'].as_matrix() # numpy arrays ydata=lowfitreg[cntname].as_matrix() lowfitparams, fitbounds[0],fitbounds[1], evrange=refineboundfit(xdata,ydata, maxshift, fitbounds[0:2], AugerFileName, elem) # fitparams are: 1) slope, 2) intercept 3) stdev of slope 4) stdev of intercept 5) R-val of fit energybounds.append(evrange) # string with energy range of lower fit # refine fit boundaries for upper region upfitreg=Augerfile[fitbounds[2]:fitbounds[3]+1] # already tested for out-of-range in definefitreg xdata=upfitreg['Energy'].as_matrix() ydata=upfitreg[cntname].as_matrix() # returns best linear fit of region above peak and optimum fit boundaries upperfitparams, fitbounds[2],fitbounds[3], evrange=refineboundfit(xdata,ydata, maxshift, fitbounds[2:], AugerFileName, elem) energybounds.append(evrange) # energy range of upper fit # if slopes/intercepts are in rough agreement, make single linear fit over entire backfit region (use ) mybool=comparelinfits(lowfitparams,upperfitparams, thresh=3) # if linear fit results above and below peak differ significantly if mybool: Augerfile = makeinterplinebackground(Augerfile, areanum, fitbounds, lowfitparams, upperfitparams) else: Augerfile=fitsingleline(Augerfile, areanum, fitbounds) # single linear fit over lower and upper simultaneous # TODO should saved fitparams be altered to make clear that a single linear fit was used return Augerfile, lowfitparams, upperfitparams, fitbounds, energybounds def definefitreg(bound1, bound2, maxshift, Augerfile, evbreaks): ''' Widen fit region from standard size (based on allowed maxshift) and ensure that multiplex evbreaks are not included in the region also make sure one doesn't go into region with no data; both fitbounds and evbreaks are index # for this file (not energy values) ''' lowbound=bound1 for i in range(bound1, bound1-maxshift-1, -1): # lower by allowed shift but ensure not at data boundary if i not in evbreaks and i in Augerfile.index: # also ensure we don't exit boundaries of dataset here lowbound=i else: break upbound=bound2 for i in range(bound2, bound2+maxshift+1): # lower by allowed shift but ensure not at data boundary if i not in evbreaks and i in Augerfile.index: upbound=i else: break return lowbound, upbound # this is range of Auger slice that'll be used def fitbackgrounds(Augerfile, areanum, Elements, Shifts, AESquantparams, logmatch): ''' takes element strings and element list and returns tuple for each elem symbol containing all params necessary to find each Auger peak from given spe file tuple for integ peak is symbol, ideal peak index #, and integ kfactor''' # integpeak is position of direct peak relative to ideal negative peak in smooth-diff S7D7 # lower1,lower2 and upper1,upper2 are boundaries of lower and higher energy linear backgroundfit (again energies relative to negpeak) # Incorporate shifting of background fit regions into this section from ideal position based on savgol deriv Energyvals = Augerfile.Energy # evbreaks=logmatch.Evbreaks # needed to ensure fit boundaries don't cross into adjacent element if type(evbreaks)!=list: # if reloaded after save, needs conversion to list tempstring=evbreaks.split('[')[1] # remove brackets from list tempstring=tempstring.split(']')[0] evbreaks=[int(s) for s in tempstring.split(',')] # convert string to list of break index values AugerFileName=logmatch.Filename # mycols=['Filenumber', 'Filename', 'Filepath', 'Sample', 'Comments', 'Date', 'Areanumber', 'Element', 'Lower1', 'Lower2', 'Upper1', 'Upper2', 'Lowrange','Highrange','Peakshift', 'Fittype', 'P1','P1stdev','P2','P2stdev','Rval1','P3','P3stdev','P4','P4stdev','Rval2'] Backfitparams=pd.DataFrame(columns=mycols) # empty df for i, elem in enumerate(Elements): # find row in AESquantparams for this element thiselemdata=AESquantparams[(AESquantparams['element']==elem)] thiselemdata=thiselemdata.squeeze() # series with this elements params thisshift=Shifts[i] # shift in eV/index # corresponding to this peak from prior smdif quant if thisshift=='n/a': # peak not in smdifpeakslog ... usually data out of range thisshift=0 # just set shift to zero to avoid problems # integ peak position value is relative to negpeak in smooth-diff (i.e. -5 is 5 eV below ideal negpeak) integpeakev=thiselemdata.negpeak + thiselemdata.integpeak # ideal energy value of negative Auger peak in smooth-diff spectrum lower1ev=thiselemdata.negpeak + thiselemdata.lower1 + thisshift # lower bound of lower energy fit region lower2ev=thiselemdata.negpeak + thiselemdata.lower2 + thisshift # upper bound of lower energy fit region upper1ev=thiselemdata.negpeak + thiselemdata.upper1 + thisshift # lower bound of higher energy fit region upper2ev=thiselemdata.negpeak + thiselemdata.upper2 + thisshift # upper bound of higher energy fit region # width=int(thiselemdata.searchwidth) # search width used to find actual peak in real data # find index # for ideal neg and pos peaks... use lambda funct. # min(Energyvals, key=lambda x:abs(x-negpeakev)) gives value but not index # # convert each energy value into index # (global shift already applied) temptuple=min(enumerate(Energyvals), key=lambda x: abs(x[1]-integpeakev)) # tuple with index of closest and closest value integpeak=temptuple[0] # first of tuple is index # peakinrange=temptuple[1]-integpeakev # should be ~0 if desired peak is in data range if abs(peakinrange)>0.5: # Must skip entire desired element here if it's out of range of the data in this particular spe print(elem,' is out of data range for ', AugerFileName) continue fitbounds=[] temptuple=min(enumerate(Energyvals), key=lambda x: abs(x[1]-lower1ev)) # tuple with index of closest and closest value fitbounds.append(temptuple[0]) # first of tuple is index # temptuple=min(enumerate(Energyvals), key=lambda x: abs(x[1]-lower2ev)) # tuple with index of closest and closest value fitbounds.append(temptuple[0]) # first of tuple is index # temptuple=min(enumerate(Energyvals), key=lambda x: abs(x[1]-upper1ev)) # tuple with index of closest and closest value fitbounds.append(temptuple[0]) # first of tuple is index # temptuple=min(enumerate(Energyvals), key=lambda x: abs(x[1]-upper2ev)) # tuple with index of closest and closest value fitbounds.append(temptuple[0]) # first of tuple is index # maxshift=int(thiselemdata.windowshift) # get allowed max energy shift in channels (normally 1eV/chan)... used to expand background fit window fittype=thiselemdata.fittype # default type of peak fit for given element if fittype=='line': fitbounds[0], fitbounds[1]= definefitreg(fitbounds[0], fitbounds[1], maxshift, Augerfile, evbreaks) # bounds for lower fit region fitbounds[2], fitbounds[3]= definefitreg(fitbounds[2], fitbounds[3], maxshift, Augerfile, evbreaks) # bounds for upper fit region # return fitpeakdf (new background fits), fitparams (slope,intercept, point fit range), R2 val (for tossing vals) # Since linear fit may span both, pass both regions and deal with them simultaneously Augerfile, lowfitparams, upperfitparams, fitbounds, energybounds=fitpeakbackground(Augerfile, fitbounds, areanum, maxshift, elem, AugerFileName) elif fittype=='Ca': # special treatment # find relative minimum if present between C falling edge and Ca peak if 'Smcounts'+str(areanum) in Augerfile: countname='Smcounts'+str(areanum) else: countname='Counts'+str(areanum) minindex=Augerfile[fitbounds[0]:fitbounds[0]+10][countname].idxmin() # index value of min left of Ca peak (counts or smoothed counts) # minval=Augerfile[lower1:lower1+10][countname].min() # maxindex=Augerfile[integpeak-5:integpeak+5][countname].idxmax() # Ca peak index if present # maxval=Augerfile[integpeak-5:integpeak+5][countname].max() # polynomial fit over two pts at relative min left of peak and small region right of peak fitbounds[0]=minindex-1 fitbounds[1]=minindex # Now refine boundaries/ find linear region above Ca (and C) peaks # Expands region of fit if no peaks are encountered fitbounds[2], fitbounds[3]= definefitreg(fitbounds[2], fitbounds[3], maxshift, Augerfile, evbreaks) thispeak=pd.concat([Augerfile[minindex-1:minindex+1],Augerfile[fitbounds[2]:fitbounds[3]]]) # Get energy range string from fit region on low energy size lowevrange=str(round(Augerfile[minindex-1:minindex+1]['Energy'].min(),0))+'-'+ str(round(Augerfile[minindex-1:minindex+1]['Energy'].max(),0)) # Get a few more at upper energy end upperevrange=str(round(Augerfile[fitbounds[2]:fitbounds[3]]['Energy'].min(),0))+'-'+ str(round(Augerfile[fitbounds[2]:fitbounds[3]]['Energy'].max(),0)) thispeak, fitparams, R2 =fitCapeak(thispeak, areanum, elem, AugerFileName) # polynomial fit if R2!='n/a': # only copy successful fits (skip n/a) Augerfile.loc[thispeak.index,thispeak.columns]=thispeak # copy over to full spe file thispeak=Augerfile[minindex+1:integpeak+11] # actual peak region thispeak = makeCabackground(thispeak, areanum, fitparams) # now fill peak region with 2nd order poly background Augerfile.loc[thispeak.index,thispeak.columns]=thispeak # copy peak region to source data file # Make subtracted peak countname='Counts'+str(areanum) peakname='Peaks'+str(areanum) backfitname='Backfit'+str(areanum) for index in range(fitbounds[1],fitbounds[2]): Augerfile.set_value(index, peakname, Augerfile.loc[index][countname]-Augerfile.loc[index][backfitname]) else: print('Need to write fitting functions for fittype', fittype,' for ', elem) continue # next in loop to avoid errors below # Make subtracted peak column (TODO maybe make this optional?) countname='Counts'+str(areanum) peakname='Peaks'+str(areanum) backfitname='Backfit'+str(areanum) for index in range(fitbounds[1],fitbounds[2]): Augerfile.set_value(index, peakname, Augerfile.loc[index][countname]-Augerfile.loc[index][backfitname]) # TODO Integration # create single-rowed dataframe for backfitparams of this element (out-of-range data already skipped) Backfitparamrow=pd.DataFrame(index=np.arange(0,1),columns=mycols) # transfer common parameters Backfitparamrow.iloc[0]['Areanumber']=areanum Backfitparamrow.iloc[0]['Element']=elem Backfitparamrow.iloc[0]['Peakshift']=Shifts[i] # shift of this elem's peak based on derivative method Backfitparamrow.iloc[0]['Filenumber']=logmatch.Filenumber Backfitparamrow.iloc[0]['Filename']=logmatch.Filename Backfitparamrow.iloc[0]['Filepath']=logmatch.FilePath Backfitparamrow.iloc[0]['Sample']=logmatch.Sample Backfitparamrow.iloc[0]['Comments']=logmatch.Comments Backfitparamrow.iloc[0]['Date']=logmatch.Date Backfitparamrow.iloc[0]['Fittype']=fittype # string with type of background fit to attempt if fittype=='line': Backfitparamrow.iloc[0]['Lower1']=fitbounds[0] # save boundaries of fit regions Backfitparamrow.iloc[0]['Lower2']=fitbounds[1] Backfitparamrow.iloc[0]['Upper1']=fitbounds[2] Backfitparamrow.iloc[0]['Upper2']=fitbounds[3] Backfitparamrow.iloc[0]['Lowrange']=str(energybounds[0]) # string with lower fitted eV range Backfitparamrow.iloc[0]['Highrange']=str(energybounds[1])# string with upper fitted eV range Backfitparamrow.iloc[0]['P1']=lowfitparams[0] # slope for lower fit Backfitparamrow.iloc[0]['P2']=lowfitparams[1] # intercept for single fit Backfitparamrow.iloc[0]['P1stdev']=lowfitparams[2] # stdev of slope Backfitparamrow.iloc[0]['P2stdev']=lowfitparams[3] # stdev of intercept Backfitparamrow.iloc[0]['Rval1']=lowfitparams[4] # R-value of fit Backfitparamrow.iloc[0]['P3']=upperfitparams[0] # slope for upper fit Backfitparamrow.iloc[0]['P4']=upperfitparams[1] # intercept for upper fit Backfitparamrow.iloc[0]['P3stdev']=upperfitparams[2] # stdev of slope Backfitparamrow.iloc[0]['P4stdev']=upperfitparams[3] # stdev of intercept Backfitparamrow.iloc[0]['Rval2']=upperfitparams[4] # R-value of fit if fittype=='Ca': # copy from lowerfitparams to log df Backfitparamrow.iloc[0]['Lower1']=fitbounds[0] # save boundaries of fit regions Backfitparamrow.iloc[0]['Lower2']=fitbounds[1] Backfitparamrow.iloc[0]['Upper1']=fitbounds[2] Backfitparamrow.iloc[0]['Upper2']=fitbounds[3] Backfitparamrow.iloc[0]['Lowrange']=lowevrange Backfitparamrow.iloc[0]['Highrange']=upperevrange Backfitparamrow.iloc[0]['P1']=fitparams[0] # A*x2 coeff Backfitparamrow.iloc[0]['P2']=fitparams[1] # B*x coeff Backfitparamrow.iloc[0]['P3']=fitparams[2] # C coeff Backfitparamrow.iloc[0]['Rval1']=R2 Backfitparams=Backfitparams.append(Backfitparamrow) Backfitparams=Backfitparams[mycols] Backfitparams=Backfitparams.reset_index(drop=True) # removes duplicate indices which can cause later problems return Augerfile, Backfitparams def findpeakshifts(Augerfile, AESquantparams, logmatch, areanum, Smdifpeakslog, Elements): ''' Find shifts of negpeak positions for each element in list for single spe file (using smdiff data), also finds direct peak return as list of floats pass series with filename and given area ''' # TODO problem if len(Elements)!=len(Shifts) due to couldn't find peak error Shiftdiffs=pd.DataFrame(columns=['Filename','Areanumber','Element','Avgshift','Intshift','Diffshift','Amplitude']) filename=logmatch.Filename # get number from Series thispeakslog= Smdifpeakslog[(Smdifpeakslog['Filename']==filename)&(Smdifpeakslog['Areanumber']==areanum)] # need to match area number and file number for finding unique shift for this elem Shifts=[] # shift in peak position suggested by smdiff quant method for i, elem in enumerate(Elements): # find peak location based on smooth-diff negative peak smdifval= thispeakslog[(thispeakslog['PeakID']==elem)] if len(smdifval)!=1: # peaks not present should have already been removed print ("Couldn't find ", elem, " peak for area", str(areanum),"of spectrum ", filename) diffshift='n/a' ampl='n/a' if len(smdifval)==1: # should be match for all peaks that are present diffshift=smdifval.iloc[0]['Shift'] ampl=smdifval.iloc[0]['Amplitude'] # find direct counts peak maximum thiselem= AESquantparams[(AESquantparams['element']==elem)] if len(thiselem)!=1: print("Couldn't find ", elem, " in AESquantparams.") else: # extract range center=thiselem.iloc[0]['negpeak']+thiselem.iloc[0]['integpeak'] thismin=center-thiselem.iloc[0]['searchwidth'] thismax=center+thiselem.iloc[0]['searchwidth'] Augerslice=Augerfile[ (Augerfile['Energy']>=thismin) & (Augerfile['Energy']<=thismax)] # x energy value of true counts max (use smoothed rather than raw counts) intshift=int(Augerslice.loc[Augerslice['Smcounts'+str(areanum)].idxmax()]['Energy']-center) # Reconcile differences avgshift=int((diffshift+intshift)/2) thisrow=
pd.Series([filename, areanum, elem, avgshift, intshift, diffshift, ampl], index=['Filename','Areanumber', 'Element','Avgshift','Intshift','Diffshift','Amplitude'])
pandas.Series
# coding: utf-8 # ## Creating and Combining DataFrame # <b>class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)</b> # # Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. # # <b>class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)</b> # One-dimensional ndarray with axis labels (including time series). # # Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). # # ### Here are the main steps we will go through # * How to create dataframe using pandas? # * How to combine two data set using pandas? # # This is Just a little illustration. # # <img style="float: left;" src="https://www.tutorialspoint.com/python_pandas/images/structure_table.jpg"></img> # In[5]: import pandas as pd import numpy as np # #### How to create dataframe using pandas? # In[16]: # working with series #create a series s = pd.Series(np.random.randn(5)) #create a dataframe column df = pd.DataFrame(s, columns=['Column_1']) df # In[8]: #sorting df.sort_values(by='Column_1') # In[10]: #boolean indexing #It returns all rows in column_name, #that are less than 10 df[df['Column_1'] <= 1] # In[230]: # creating simple series obj2 = pd.Series(np.random.randn(5), index=['d', 'b', 'a', 'c', 'e']) obj2 # In[20]: obj2.index # In[229]: # returns the value in e obj2['e'] # In[26]: # returns all values that are greater than -2 obj2[obj2 > -2] # In[27]: # we can do multiplication on dataframe obj2 * 2 # In[28]: # we can do boolean expression 'b' in obj2 # In[228]: # returns false, because 'g' is not defined in our data 'g' in obj2 # In[39]: #Let's see we have this data sdata = {'Cat': 24, 'Dog': 11, 'Fox': 18, 'Horse': 1000} obj3 = pd.Series(sdata) obj3 # In[227]: # defined list, and assign series to it sindex = ['Lion', 'Dog', 'Cat', 'Horse'] obj4 = pd.Series(sdata, index=sindex) obj4 # In[226]: # checking if our data contains null obj4.isnull() # In[44]: #we can add two dataframe together obj3 + obj4 # In[224]: # we can create series calling Series function on pandas programming =
pd.Series([89,78,90,100,98])
pandas.Series
import datetime # from directory import BASE_DIR import pandas as pd import openpyxl import os import datetime import numpy as np BASE_DIR = os.getcwd() file_name = 'record.csv' file_dir = os.path.join(BASE_DIR,'data',file_name) columns = ['Start', ' End', 'Pomo', 'Task'] class Record: def __init__(self): if not os.path.exists(file_dir): print("file does not exists. create one.") self.create_csv() self.pomo = np.nan self.task = "" self.duration = np.nan self.recording = False def start_record(self, pomo): if pomo == 1: pomo = 'focus' print(pomo, 'starts recording') start = pd.to_datetime('today').replace(microsecond=0) self.row = [start, np.nan, pomo, np.nan] self.recording = True elif pomo == 2: pomo = 'rest' def end_record(self, subtract_sec = 0): if self.recording == True: print('stops recording') end = pd.to_datetime('today').replace(microsecond=0) #subtract seconds end = end - datetime.timedelta(seconds = subtract_sec) self.row[1] = end self.row[3] = self.task self.recording = False self._save_record() def _save_record(self): self.df = pd.read_csv(file_dir) row =
pd.DataFrame([self.row],columns=columns)
pandas.DataFrame
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import pandas as pd # File called _pytest for PyCharm compatibility import pytest from pandas.testing import assert_frame_equal, assert_series_equal from tests.common import TestData, assert_almost_equal class TestDataFrameMetrics(TestData): funcs = ["max", "min", "mean", "sum"] extended_funcs = ["median", "mad", "var", "std"] filter_data = [ "AvgTicketPrice", "Cancelled", "dayOfWeek", "timestamp", "DestCountry", ] @pytest.mark.parametrize("numeric_only", [False, None]) def test_flights_metrics(self, numeric_only): pd_flights = self.pd_flights() ed_flights = self.ed_flights() for func in self.funcs: # Pandas v1.0 doesn't support mean() on datetime # Pandas and Eland don't support sum() on datetime if not numeric_only: dtype_include = ( [np.number, np.datetime64] if func not in ("mean", "sum") else [np.number] ) pd_flights = pd_flights.select_dtypes(include=dtype_include) ed_flights = ed_flights.select_dtypes(include=dtype_include) pd_metric = getattr(pd_flights, func)(numeric_only=numeric_only) ed_metric = getattr(ed_flights, func)(numeric_only=numeric_only) assert_series_equal(pd_metric, ed_metric, check_dtype=False) def test_flights_extended_metrics(self): pd_flights = self.pd_flights() ed_flights = self.ed_flights() # Test on reduced set of data for more consistent # median behaviour + better var, std test for sample vs population pd_flights = pd_flights[["AvgTicketPrice"]] ed_flights = ed_flights[["AvgTicketPrice"]] import logging logger = logging.getLogger("elasticsearch") logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.DEBUG) for func in self.extended_funcs: pd_metric = getattr(pd_flights, func)( **({"numeric_only": True} if func != "mad" else {}) ) ed_metric = getattr(ed_flights, func)(numeric_only=True) pd_value = pd_metric["AvgTicketPrice"] ed_value = ed_metric["AvgTicketPrice"] assert (ed_value * 0.9) <= pd_value <= (ed_value * 1.1) # +/-10% def test_flights_extended_metrics_nan(self): pd_flights = self.pd_flights() ed_flights = self.ed_flights() # Test on single row to test NaN behaviour of sample std/variance pd_flights_1 = pd_flights[pd_flights.FlightNum == "9HY9SWR"][["AvgTicketPrice"]] ed_flights_1 = ed_flights[ed_flights.FlightNum == "9HY9SWR"][["AvgTicketPrice"]] for func in self.extended_funcs: pd_metric = getattr(pd_flights_1, func)() ed_metric = getattr(ed_flights_1, func)(numeric_only=False) assert_series_equal(pd_metric, ed_metric, check_exact=False) # Test on zero rows to test NaN behaviour of sample std/variance pd_flights_0 = pd_flights[pd_flights.FlightNum == "XXX"][["AvgTicketPrice"]] ed_flights_0 = ed_flights[ed_flights.FlightNum == "XXX"][["AvgTicketPrice"]] for func in self.extended_funcs: pd_metric = getattr(pd_flights_0, func)() ed_metric = getattr(ed_flights_0, func)(numeric_only=False)
assert_series_equal(pd_metric, ed_metric, check_exact=False)
pandas.testing.assert_series_equal
#!/home/cab22/miniconda3/bin/python #SBATCH --account=commons #SBATCH --export=All #SBATCH --partition=commons #SBATCH --time=24:00:00 #SBATCH --ntasks=1 #SBATCH --threads-per-core=1 #SBATCH --cpus-per-task=2 #SBATCH --gres=gpu:1 #SBATCH --time=24:00:00 #SBATCH --export=ALL #SBATCH --array=0-15 #SBATCH --mem=16G import os import subprocess import itertools import numpy as np import warnings import pandas import time import argparse class SlurmJobArray(): """ Selects a single condition from an array of parameters using the SLURM_ARRAY_TASK_ID environment variable. The parameters need to be supplied as a dictionary. if the task is not in a slurm environment, the test parameters will supersede the parameters, and the job_id would be taken as 0. Example: parameters={"epsilon":[100], "aligned":[True,False], "actinLen":[20,40,60,80,100,120,140,160,180,200,220,240,260,280,300], "repetition":range(5), "temperature":[300], "system2D":[False], "simulation_platform":["OpenCL"]} test_parameters={"simulation_platform":"CPU"} sjob=SlurmJobArray("ActinSimv6", parameters, test_parameters) :var test_run: Boolean: This simulation is a test :var job_id: SLURM_ARRAY_TASK_ID :var all_parameters: Parameters used to initialize the job :var parameters: Parameters for this particular job :var name: The name (and relative path) of the output """ def __init__(self, name, parameters, test_parameters={},test_id=0): """ Args: name: parameters: Returns: name: parameters: """ self.all_parameters=parameters self.test_parameters=test_parameters #Parse the slurm variables self.slurm_variables={} for key in os.environ: if len(key.split("_"))>1 and key.split("_")[0]=='SLURM': self.slurm_variables.update({key:os.environ[key]}) #Check if there is a job id self.test_run=False try: self.job_id=int(self.slurm_variables["SLURM_ARRAY_TASK_ID"]) except KeyError: self.test_run=True warnings.warn("Test Run: SLURM_ARRAY_TASK_ID not in environment variables") self.job_id=test_id keys=parameters.keys() self.all_conditions=list(itertools.product(*[parameters[k] for k in keys])) self.parameter=dict(zip(keys,self.all_conditions[self.job_id])) #The name only includes enough information to differentiate the simulations. self.name=f"{name}_{self.job_id:03d}_" + '_'.join([f"{a[0]}_{self[a]}" for a in self.parameter if len(self.all_parameters[a])>1]) def __getitem__(self, name): if self.test_run: try: return self.test_parameters[name] except KeyError: return self.parameter[name] else: return self.parameter[name] def __getattr__(self, name: str): """ The keys of the parameters can be called as attributes """ if name in self.__dict__: return object.__getattribute__(self, name) elif name in self.parameter: return self[name] else: return object.__getattribute__(self, name) def __repr__(self): return str(self.parameter) def keys(self): return str(self.parameters.keys()) def print_parameters(self): print(f"Number of conditions: {len(self.all_conditions)}") print("Running Conditions") for k in self.parameter.keys(): print(f"{k} :", f"{self[k]}") print() def print_slurm_variables(self): print("Slurm Variables") for key in self.slurm_variables: print (key,":",self.slurm_variables[key]) print() def write_csv(self, out=""): s=pandas.concat([pandas.Series(self.parameter), pandas.Series(self.slurm_variables)]) s['test_run']=self.test_run s['date']=time.strftime("%Y_%m_%d") s['name']=self.name s['job_id']=self.job_id if out=='': s.to_csv(self.name+'.param') else: s.to_csv(out) ################ # Coarse Actin # ################ #!/usr/bin/python3 """ Coarse Actin simulations using a custom """ import openmm import openmm.app from simtk import unit import numpy as np import pandas import sklearn.decomposition import configparser import prody import scipy.spatial.distance as sdist import os import sys __author__ = '<NAME>' __version__ = '0.2' #__location__ = os.path.realpath( # os.path.join(os.getcwd(), os.path.dirname(__file__))) #__location__="/scratch/cab22/Bundling/Persistence_length/Persistence_length" __location__='.' _ef = 1 * unit.kilocalorie / unit.kilojoule # energy scaling factor _df = 1 * unit.angstrom / unit.nanometer # distance scaling factor _af = 1 * unit.degree / unit.radian # angle scaling factor def parseConfigTable(config_section): """Parses a section of the configuration file as a table""" def readData(config_section, a): """Filters comments and returns values as a list""" temp = config_section.get(a).split('#')[0].split() l = [] for val in temp: val = val.strip() try: x = int(val) l += [x] except ValueError: try: y = float(val) l += [y] except ValueError: l += [val] return l data = [] for a in config_section: if a == 'name': columns = readData(config_section, a) elif len(a) > 3 and a[:3] == 'row': data += [readData(config_section, a)] else: print(f'Unexpected row {readData(config_section, a)}') return pandas.DataFrame(data, columns=columns) # Random rotation matrix def random_rotation(): """Generate a 3D random rotation matrix. Returns: np.matrix: A 3D rotation matrix. """ x1, x2, x3 = np.random.rand(3) R = np.matrix([[np.cos(2 * np.pi * x1), np.sin(2 * np.pi * x1), 0], [-np.sin(2 * np.pi * x1), np.cos(2 * np.pi * x1), 0], [0, 0, 1]]) v = np.matrix([[np.cos(2 * np.pi * x2) * np.sqrt(x3)], [np.sin(2 * np.pi * x2) * np.sqrt(x3)], [np.sqrt(1 - x3)]]) H = np.eye(3) - 2 * v * v.T M = -H * R return M # Optimal rotation matrix # The longest coordinate is X, then Y, then Z. def optimal_rotation(coords): c = coords.copy() c -= c.mean(axis=0) pca = sklearn.decomposition.PCA() pca.fit(c) # Change rotoinversion matrices to rotation matrices rot = pca.components_[[0, 1, 2]] if np.linalg.det(rot) < 0: rot = -rot #print(rot, np.linalg.det(rot)) return rot class SystemData: def __init__(self, atoms, bonds=None, angles=None, dihedrals=None, impropers=None): self.atoms = atoms self.atoms.index = np.arange(1, len(self.atoms) + 1) self.masses = atoms[['type', 'mass']].drop_duplicates() self.masses.index = np.arange(1, len(self.masses) + 1) self.n_atoms = len(self.atoms) self.n_atomtypes = len(self.masses) if bonds is not None: self.bonds = bonds self.bonds.index = np.arange(1, len(self.bonds) + 1) self.bondtypes = bonds[['type', 'x0', 'k']].drop_duplicates() self.bondtypes.index = np.arange(1, len(self.bondtypes) + 1) self.n_bonds = len(self.bonds) self.n_bondtypes = len(self.bondtypes) else: self.bonds = pandas.DataFrame() self.bondtypes = pandas.DataFrame() self.n_bonds = 0 self.n_bondtypes = 0 if angles is not None: self.angles = angles self.angles.index = np.arange(1, len(self.angles) + 1) self.angletypes = angles[['type', 'x0', 'k']].drop_duplicates() self.angletypes.index = np.arange(1, len(self.angletypes) + 1) self.n_angles = len(self.angles) self.n_angletypes = len(self.angletypes) else: self.angles = pandas.DataFrame() self.angletypes = pandas.DataFrame() self.n_angles = 0 self.n_angletypes = 0 if dihedrals is not None: self.dihedrals = dihedrals self.dihedrals.index = np.arange(1, len(self.dihedrals) + 1) self.dihedraltypes = dihedrals[['type', 'x0', 'k']].drop_duplicates() self.dihedraltypes.index = np.arange(1, len(self.dihedraltypes) + 1) self.n_dihedrals = len(self.dihedrals) self.n_dihedraltypes = len(self.dihedraltypes) else: self.dihedrals = pandas.DataFrame() self.dihedraltypes = pandas.DataFrame() self.n_dihedrals = 0 self.n_dihedraltypes = 0 if impropers is not None: self.impropers = impropers self.impropers.index = np.arange(1, len(self.impropers) + 1) self.impropertypes = impropers[['type', 'x0', 'k']].drop_duplicates() self.impropertypes.index = np.arange(1, len(self.impropertypes) + 1) self.n_impropers = len(self.impropers) self.n_impropertypes = len(self.impropertypes) else: self.impropers = pandas.DataFrame() self.impropertypes = pandas.DataFrame() self.n_impropers = 0 self.n_impropertypes = 0 # self.n_bonds=len(self.bonds) # self.n_bondtypes=len(self.bondtypes) # self.xmin,self.xmax=atoms['x'].min(),atoms['x'].max() # self.ymin,self.ymax=atoms['y'].min(),atoms['y'].max() # self.zmin,self.zmax=atoms['z'].min(),atoms['z'].max() def write_data(self, file_name='actin.data', box_size=1000): self.xmin, self.xmax = 0, box_size self.ymin, self.ymax = 0, box_size self.zmin, self.zmax = 0, box_size with open(file_name, 'w+') as f: f.write('LAMMPS data file generated with python\n\n') f.write('\t%i atoms\n' % self.n_atoms) f.write('\t%i bonds\n' % self.n_bonds) f.write('\t%i angles\n' % self.n_angles) f.write('\t%i dihedrals\n' % self.n_dihedrals) f.write('\t%i impropers\n' % self.n_impropers) f.write('\n') f.write('\t%i atom types\n' % self.n_atomtypes) f.write('\t%i bond types\n' % self.n_bondtypes) f.write('\t%i angle types\n' % self.n_angletypes) f.write('\t%i dihedral types\n' % self.n_dihedraltypes) f.write('\t%i improper types\n' % self.n_impropertypes) f.write('\n') f.write('\t %f %f xlo xhi\n' % (self.xmin, self.xmax)) f.write('\t %f %f ylo yhi\n' % (self.ymin, self.ymax)) f.write('\t %f %f zlo zhi\n' % (self.zmin, self.zmax)) f.write('\n') f.write('Masses\n\n') for i, m in self.masses.iterrows(): f.write('\t%i\t%f\n' % (i, m.mass)) f.write('\n') f.write('Atoms\n\n') for i, a in self.atoms.iterrows(): f.write('\t%i\t%i\t%i\t%f\t%f\t%f\t%f\n' % (i, a.molecule, a.type, a.q, a.x, a.y, a.z)) f.write('\n') if self.n_bonds > 0: f.write('Bonds\n\n') for i, b in self.bonds.iterrows(): f.write('\t%i\t%i\t%i\t%i\n' % (i, b.type, b.i, b.j)) f.write('\n') if self.n_angles > 0: f.write('Angles\n\n') for i, b in self.angles.iterrows(): f.write('\t%i\t%i\t%i\t%i\t%i\n' % (i, b.type, b.i, b.j, b.l)) f.write('\n') if self.n_dihedrals > 0: f.write('Dihedrals\n\n') for i, b in self.dihedrals.iterrows(): f.write('\t%i\t%i\t%i\t%i\t%i\t%i\n' % (i, b.type, b.i, b.j, b.l, b.m)) f.write('\n') if self.n_impropers > 0: f.write('Impropers\n\n') for i, b in self.impropers.iterrows(): f.write('\t%i\t%i\t%i\t%i\t%i\t%i\n' % (i, b.type, b.i, b.j, b.l, b.m)) f.write('\n') def write_pdb(self, file_name='actin.pdb'): import string cc = (string.ascii_uppercase.replace('X','') + string.ascii_lowercase + '1234567890'+'X')*1000 cc_d = dict(zip(range(1, len(cc) + 1), cc)) pdb_line = '%-6s%5i %-4s%1s%3s %1s%4i%1s %8s%8s%8s%6.2f%6.2f %2s%2s\n' pdb_atoms = self.atoms.copy() pdb_atoms['serial'] = np.arange(1, len(self.atoms) + 1) # pdb_atoms['name'] = self.atoms['type'].replace({1:'A1',2:'A2',3:'A3',4:'A4',5:'A5',6:'C1',7:'C2'}) pdb_atoms['altLoc'] = '' # pdb_atoms['resName'] = self.atoms['molecule_name'].replace({'actin':'ACT','camkii':'CAM'}) pdb_atoms['resName'] = self.atoms['resname'] #pdb_atoms['chainID'] = self.atoms['molecule'].replace(cc_d) pdb_atoms['chainID'] = self.atoms['chainID'] # assert False # pdb_atoms['resSeq'] = 0 pdb_atoms['iCode'] = '' # pdb_atoms['x'] = # pdb_atoms['y'] = # pdb_atoms['z'] = pdb_atoms['occupancy'] = 0 pdb_atoms['tempFactor'] = 0 pdb_atoms['element'] = self.atoms['type'].replace( {1: 'C', 2: 'O', 3: 'N', 4: 'P', 5: 'H', 6: 'H', 7: 'H', 8: 'Mg', 9: 'Fe', 10: 'C'}) pdb_atoms['charge'] = 0 # self.atoms['q'].astype(int) with open(file_name, 'w+') as f: chain = 'NoChain' resSeq = 0 for i, a in pdb_atoms.iterrows(): if a['chainID'] != chain: resSeq = 1 chain = a['chainID'] else: resSeq += 1 f.write(pdb_line % ('ATOM', int(a['serial']), a['name'].center(4), a['altLoc'], a['resName'], a['chainID'], a['resid'], a['iCode'], ('%8.3f' % (a['x'] / 10))[:8], ('%8.3f' % (a['y'] / 10))[:8], ('%8.3f' % (a['z'] / 10))[:8], a['occupancy'], a['tempFactor'], a['element'], a['charge'])) def write_psf(self, file_name='actin.psf'): pass def write_gro(self, file_name='actin.gro', box_size=1000): gro_line = "%5d%-5s%5s%5d%8s%8s%8s%8s%8s%8s\n" pdb_atoms = self.atoms.copy() pdb_atoms['resName'] = self.atoms[ 'resname'] # self.atoms['molecule_name'].replace({'actin':'ACT','camkii':'CAM'}) # pdb_atoms['name'] = self.atoms['type'].replace({1:'Aa',2:'Ab',3:'Ca',4:'Cb',5:'Da',6:'Db'}) pdb_atoms['serial'] = np.arange(1, len(self.atoms) + 1) pdb_atoms['chainID'] = self.atoms['molecule'] self.xmin, self.xmax = 0, box_size self.ymin, self.ymax = 0, box_size self.zmin, self.zmax = 0, box_size resSeq = 0 with open(file_name, 'w+') as f: f.write('Generated Model\n') f.write('%5i\n' % len(pdb_atoms)) chain = 'NoChain' resSeq = 0 for i, a in pdb_atoms.iterrows(): if a['molecule'] != chain: resSeq = 1 chain = a['molecule'] else: resSeq += 1 f.write(gro_line % (a['molecule'], a['resName'], a['name'], int(a['serial']), ('%8.3f' % (a['x'] / 10))[:8], ('%8.3f' % (a['y'] / 10))[:8], ('%8.3f' % (a['z'] / 10))[:8], '', '', '')) f.write((' ' + ' '.join(['%8.3f'] * 3) + '\n') % (self.xmax, self.ymax, self.zmax)) def print_coeff(self): if self.n_bonds > 0: self.bondtypes = self.bondtypes.sort_values('type') for i, b in self.bondtypes.iterrows(): print('bond_coeff', int(b.type), b.k, '%.4f' % b['x0']) if self.n_angles > 0: for i, b in self.angletypes.iterrows(): print('angle_coeff', int(b.type), b.k, '%.4f' % b['x0']) if self.n_dihedrals > 0: for i, b in self.dihedraltypes.iterrows(): print('dihedral_coeff', int(b.type), b.k, '%.4f' % b['x0']) if self.n_impropers > 0: for i, b in self.impropertypes.iterrows(): print('improper_coeff', int(b.type), b.k, '%.4f' % b['x0']) class CoarseActin: @classmethod def from_parameters(cls, box_size=10000, n_actins=10, n_camkiis=200, min_dist=200, align_actins=False, bundle=False, system2D=False, model='Binding-Qian2', sname='actin', actinLenMin=50, actinLenMax=100): self = cls() # Get actin coordinates actin pdb = prody.parsePDB(f'{__location__}/3j8i.pdb') mean = np.array([]) for chain in 'DEF': selection = pdb.select('chain %s' % chain) D1 = pdb.select('chain %s and (resid 1 to 32 or resid 70 to 144 or resid 338 to 375)' % chain) D2 = pdb.select('chain %s and (resid 33 to 69)' % chain) D3 = pdb.select('chain %s and (resid 145 to 180 or resid 270 to 337)' % chain) D4 = pdb.select('chain %s and (resid 181 to 269)' % chain) m1 = D1.getCoords().mean(axis=0) m2 = D2.getCoords().mean(axis=0) m3 = D3.getCoords().mean(axis=0) m4 = D4.getCoords().mean(axis=0) mean = np.concatenate([mean, m1, m2, m3, m4], axis=0) mean = mean.reshape(-1, 3) actin = pandas.DataFrame(mean, columns=['x', 'y', 'z']) name = ['A1', 'A2', 'A3', 'A4'] * 3 resid = [i for j in range(3) for i in [j] * 4] actin.index = zip(resid, name) # Build virtual sites vs = self.virtual_sites_definition for j in [2]: for i, s in vs[vs['molecule'] == model].iterrows(): w12 = s['w12'] w13 = s['w13'] wcross = s['wcross'] a = actin.loc[[(j, s['p1'])]].squeeze() / 10 b = actin.loc[[(j, s['p2'])]].squeeze() / 10 c = actin.loc[[(j, s['p3'])]].squeeze() / 10 r12 = b - a r13 = c - a rcross = np.cross(r12, r13) r = (a + w12 * r12 + w13 * r13 + wcross * rcross) * 10 r.name = (j, s['site']) actin = actin.append(r) actin_reference = actin.sort_index() # Build individual actins factin = [] for i in range(n_actins): # Set actin length nactins = actinLenMin + int((actinLenMax-actinLenMin) * np.random.random()) names = ['A1', 'A2', 'A3', 'A4'] * 2 + ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7'] * (nactins - 2) resnames = ['ACD'] * (4 * 2) + ['ACT'] * (7 * (nactins - 2)) resids = [1] * 4 + [2] * 4 + [i + 3 for j in range(nactins - 2) for i in [j] * 7] # actin_mass=41.74*1E3 Factin = prody.AtomGroup() Factina = prody.AtomGroup() Factinb = prody.AtomGroup() Factin.setCoords(actin_reference) Factina.setCoords(actin_reference[4:-3]) Factinb.setCoords(actin_reference[:-4 - 3]) for i in range(nactins - 3): a, t = prody.superpose(Factina, Factinb) temp0 = Factin.getCoords() test = prody.applyTransformation(t, Factin) temp = np.concatenate([test.getCoords(), temp0[-4 - 3:]]) # print(len(temp)) Factin = prody.AtomGroup() Factina = prody.AtomGroup() Factinb = prody.AtomGroup() Factin.setCoords(temp) Factina.setCoords(temp[4:12]) Factinb.setCoords(temp[0:8]) Factin = prody.AtomGroup() Factin.setCoords(temp[:]) n = len(Factin) Factin.setNames(names) Factin.setResnames(resnames) Factin.setResnums(resids) # Factin.setNames(['ALA' for i in range(n)]) prody.writePDB('Factin.pdb', Factin) print(nactins, (n - 8) / 7. + 2) atoms = pandas.DataFrame(Factin.getCoords(), columns=['x', 'y', 'z']) atoms['q'] = -11 atoms['molecule'] = 1 atoms['type'] = [1, 2, 3, 4] * 2 + [1, 2, 3, 4, 5, 6, 7] * (nactins - 2) atoms['name'] = names # atoms['mass']=[D1_mass,D2_mass,D3_mass,D4_mass]*2+([D1_mass,D2_mass,D3_mass,D4_mass,0,0,0])*(nactins-2) atoms['resid'] = resids atoms['resname'] = resnames atoms.head() factin += [atoms.copy()] # Read camkii camkii = self.template # Build box actins = [] camkiis = [] for i in range(n_actins): d = 0 while d < min_dist: f = factin[i][['x', 'y', 'z']].copy() f = f - f.mean() if align_actins: rot = optimal_rotation(f) else: rot = random_rotation() f = pandas.DataFrame(np.dot(rot, f[['x', 'y', 'z']].T).T, columns=f.columns) f = f - f.mean() f += [box_size / 2. for j in range(3)] a, b, c = [box_size * np.random.random() for j in range(3)] if bundle: a = 0 if system2D: c = 0 f += [a, b, c] f -= (f.mean() > box_size) * box_size f2 = factin[i].copy() f2[['x', 'y', 'z']] = f[['x', 'y', 'z']] # f+=[box_size/2. for i in range(3)] f2['molecule'] = i + 1 f2['molecule_name'] = 'actin' f2['resname'] = factin[i]['resname'] try: d = sdist.cdist(f2[['x', 'y', 'z']], s[s['name'].isin(['A2', 'Cc'])][['x', 'y', 'z']]).min() except KeyError: d = min_dist + 100 actins += [f2] s = pandas.concat(actins) print("Actins in system") print(f"Total number of particles: {len(s)}") for i in range(n_camkiis): d = 0 while d < min_dist: f = camkii[['x', 'y', 'z']].copy() f = f - f.mean() f = pandas.DataFrame(np.dot(random_rotation(), f[['x', 'y', 'z']].T).T, columns=f.columns) f = f - f.mean() f += [box_size / 2. for j in range(3)] a, b, c = [box_size * np.random.random() for j in range(3)] if system2D: c = box_size/10 * np.random.random() f += [a, b, c] f -= (f.mean() > box_size) * box_size f2 = camkii.copy() f2[['x', 'y', 'z']] = f[['x', 'y', 'z']] # f+=[box_size/2. for i in range(3)] f2['molecule'] = n_actins + i + 1 f2['molecule_name'] = 'camkii' f2['resid'] = i + 1 f2['resname'] = 'CAM' # f2['mass']/=100 # rr=np.random.randint(2) # if rr==1: # f2['type']+=2 d = sdist.cdist(f2[['x', 'y', 'z']], s[s['name'].isin(['A2', 'Cc'])][['x', 'y', 'z']]).min() camkiis += [f2] s = pandas.concat(actins + camkiis,sort=True) print(f"CAMKII {i}") print("CAMKIIs in system") print(f"Total number of particles: {len(s)}") s.index = np.arange(1, len(s) + 1) s['mass']=np.nan # Write system ss = SystemData(s.sort_values(['molecule', 'resid', 'name'])) #ss.write_data(f'{sname}.data') ss.write_pdb(f'{sname}.pdb') ss.write_gro(f'{sname}.gro') ss.print_coeff() return self.from_topology(topology_file=f'{sname}.pdb', PlaneConstraint=system2D, periodic_box=box_size) @classmethod def from_topology(cls, topology_file='actin.pdb', periodic_box=10000, PlaneConstraint=False): self = cls() self.periodic_box = [periodic_box * 0.1] * 3 self.forcefield = openmm.app.ForceField(f'{__location__}/ff.xml') self.top = openmm.app.PDBFile(topology_file) self.system = self.forcefield.createSystem(self.top.topology) self.system.setDefaultPeriodicBoxVectors(*np.diag(self.periodic_box)) self.atom_list = self.parseTop() self.BuildVirtualSites() self.ComputeTopology() self.setForces(PlaneConstraint=PlaneConstraint) return self # Parse topology data def parseConfigurationFile(self, configuration_file=f'{__location__}/actinff.conf'): """Reads the configuration file for the forcefield""" self.configuration_file = configuration_file print(configuration_file) config = configparser.ConfigParser() config.read(configuration_file) self.template = parseConfigTable(config['Template']) self.bond_definition = parseConfigTable(config['Bonds']) self.bond_definition['type'] = '1' + self.bond_definition['i'].astype(str) + '-' + \ (1 + self.bond_definition['s']).astype(str) + \ self.bond_definition['j'].astype(str) self.angle_definition = parseConfigTable(config['Angles']) self.dihedral_definition = parseConfigTable(config['Dihedrals']) self.repulsion_definition = parseConfigTable(config['Repulsion']) self.virtual_sites_definition = parseConfigTable(config['Virtual sites']) self.bond_definition = self.bond_definition[self.bond_definition.molecule.isin(['Actin-ADP', 'CaMKII'])] self.angle_definition = self.angle_definition[self.angle_definition.molecule.isin(['Actin-ADP', 'CaMKII'])] self.dihedral_definition = self.dihedral_definition[ self.dihedral_definition.molecule.isin(['Actin-ADP', 'CaMKII'])] # self.virtual_sites_definition = self.virtual_sites_definition[self.virtual_sites_definition.molecule.isin(['Actin-ADP', 'CaMKII','Binding-Qian2'])] def __init__(self): self.parseConfigurationFile() # self.forcefield = openmm.app.ForceField(f'{__location__}/ff.xml') # self.top = top # self.system = self.forcefield.createSystem(top.topology) # self.system.setDefaultPeriodicBoxVectors(*np.diag(periodic_box)) # self.atom_list = self.parseTop() # self.BuildVirtualSites() # self.ComputeTopology() # self.setForces() # Parse topology data def parseTop(self): """ Converts the information from the topology to a table""" cols = ['atom_index', 'atom_id', 'atom_name', 'residue_index', 'residue_id', 'residue_name', 'chain_index', 'chain_id'] data = [] for residue in self.top.topology.residues(): for atom in residue.atoms(): data += [[atom.index, atom.id, atom.name, residue.index, residue.id, residue.name, residue.chain.index, residue.chain.id]] atom_list = pandas.DataFrame(data, columns=cols) atom_list.index = atom_list['atom_index'] return atom_list def BuildVirtualSites(self): """ Sets the parameters for the virtual sites""" virtual_sites_definition = self.virtual_sites_definition.copy() virtual_sites_definition.index = [tuple(b) for a, b in virtual_sites_definition[['molecule', 'site']].iterrows()] # Actin binding sites parameters w1 = np.array(virtual_sites_definition.loc[[('Voth-Qian2020', 'A5')], ['w12', 'w13', 'wcross']].squeeze()) w2 = np.array(virtual_sites_definition.loc[[('Voth-Qian2020', 'A6')], ['w12', 'w13', 'wcross']].squeeze()) w3 = np.array(virtual_sites_definition.loc[[('Voth-Qian2020', 'A7')], ['w12', 'w13', 'wcross']].squeeze()) # CAMKII virtual sites cw1 = np.array(virtual_sites_definition.loc[[('CaMKII', 'C1')], ['w12', 'w13', 'wcross']].squeeze()) cw2 = np.array(virtual_sites_definition.loc[[('CaMKII', 'C2')], ['w12', 'w13', 'wcross']].squeeze()) cw3 = np.array(virtual_sites_definition.loc[[('CaMKII', 'C6')], ['w12', 'w13', 'wcross']].squeeze()) cw4 = np.array(virtual_sites_definition.loc[[('CaMKII', 'C7')], ['w12', 'w13', 'wcross']].squeeze()) # Virtual sites for _, res in self.atom_list.groupby(['chain_index', 'residue_id']): assert len(res['residue_name'].unique()) == 1,print(len(res['residue_name'].unique()),_,res['residue_name'].unique()) resname = res['residue_name'].unique()[0] ix = dict(list(zip(res['atom_name'], res['atom_index']))) if resname == 'ACT': # Virtual site positions a5 = openmm.OutOfPlaneSite(ix['A2'], ix['A1'], ix['A3'], w1[0], w1[1], w1[2]) a6 = openmm.OutOfPlaneSite(ix['A2'], ix['A1'], ix['A3'], w2[0], w2[1], w2[2]) a7 = openmm.OutOfPlaneSite(ix['A2'], ix['A1'], ix['A3'], w3[0], w3[1], w3[2]) # Set up virtual sites self.system.setVirtualSite(ix['A5'], a5) self.system.setVirtualSite(ix['A6'], a6) self.system.setVirtualSite(ix['A7'], a7) if resname == 'CAM': # Parent sites c1 = ix['Cx1'] c2 = ix['Cx2'] c3 = ix['Cx3'] # Virtual site positions c01 = openmm.OutOfPlaneSite(c1, c2, c3, cw1[0], cw1[1], cw1[2]) c02 = openmm.OutOfPlaneSite(c1, c2, c3, cw2[0], cw2[1], cw2[2]) c03 = openmm.OutOfPlaneSite(c2, c3, c1, cw1[0], cw1[1], cw1[2]) c04 = openmm.OutOfPlaneSite(c2, c3, c1, cw2[0], cw2[1], cw2[2]) c05 = openmm.OutOfPlaneSite(c3, c1, c2, cw1[0], cw1[1], cw1[2]) c06 = openmm.OutOfPlaneSite(c3, c1, c2, cw2[0], cw2[1], cw2[2]) c07 = openmm.OutOfPlaneSite(c1, c2, c3, cw3[0], cw3[1], cw3[2]) c08 = openmm.OutOfPlaneSite(c1, c2, c3, cw4[0], cw4[1], cw4[2]) c09 = openmm.OutOfPlaneSite(c2, c3, c1, cw3[0], cw3[1], cw3[2]) c10 = openmm.OutOfPlaneSite(c2, c3, c1, cw4[0], cw4[1], cw4[2]) c11 = openmm.OutOfPlaneSite(c3, c1, c2, cw3[0], cw3[1], cw3[2]) c12 = openmm.OutOfPlaneSite(c3, c1, c2, cw4[0], cw4[1], cw4[2]) cc = openmm.ThreeParticleAverageSite(c1, c2, c3, 1 / 3., 1 / 3., 1 / 3.) # Set up virtual positions self.system.setVirtualSite(ix['C01'], c01) self.system.setVirtualSite(ix['C02'], c02) self.system.setVirtualSite(ix['C03'], c03) self.system.setVirtualSite(ix['C04'], c04) self.system.setVirtualSite(ix['C05'], c05) self.system.setVirtualSite(ix['C06'], c06) self.system.setVirtualSite(ix['C07'], c07) self.system.setVirtualSite(ix['C08'], c08) self.system.setVirtualSite(ix['C09'], c09) self.system.setVirtualSite(ix['C10'], c10) self.system.setVirtualSite(ix['C11'], c11) self.system.setVirtualSite(ix['C12'], c12) self.system.setVirtualSite(ix['Cc'], cc) self.atom_list['Virtual'] = [self.system.isVirtualSite(a) for a in range(len(self.atom_list))] def ComputeTopology(self): # print(bonds) # Bonds, angles and dihedrals bonds = [] angles = [] dihedrals = [] for _, c in self.atom_list.groupby('chain_index'): ix = {} for name, aa in c.groupby('atom_name'): ix.update({name: list(aa.index)}) for SB, B in zip([bonds, angles, dihedrals], [self.bond_definition, self.angle_definition, self.dihedral_definition]): for _, b in B.iterrows(): temp = pandas.DataFrame(columns=B.columns) if 's' not in b: b['s'] = 0 if b['i'] not in ix.keys(): continue i1 = ix[b['i']][b['s']:] i2 = ix[b['j']][:-b['s']] if b['s'] != 0 else ix[b['j']] assert (len(i1) == len(i2)) temp['i'] = i1 temp['j'] = i2 if 'k' in b: i3 = ix[b['k']] assert (len(i1) == len(i3)) temp['k'] = i3 if 'l' in b: i4 = ix[b['l']] assert (len(i1) == len(i4)) temp['l'] = i4 for col in temp: if col not in ['i', 'j', 'k', 'l']: temp[col] = b[col] SB += [temp] bonds = pandas.concat(bonds, sort=False) bonds.sort_values(['i', 'j'], inplace=True) angles =
pandas.concat(angles, sort=False)
pandas.concat
""" Arthur: <NAME> Purpose: This module is used to reperesent the models defined in the dissertation. In addition, simulations of those models Date: 09/02/21 """ from itertools import product import numpy as np from scipy.integrate import odeint import pandas as pd def newtons_cooling_law(delta, simulations, save, initial_paras = None): """ newtons_cooling_law: This is used for reperesenting the newtons cooling law in our data """ def f(state, t): temp = state dtempdtime = -0.015*(temp - 22) return dtempdtime initial_temp = [i for i in range(1, 61)] initial_temp = range(1, 61, 1) # we want initial parameters to be x1, x2, x2 ... x9 (0.99, 1.01) try: if (initial_paras != None).any(): initial_temp = initial_paras except AttributeError: pass newton = [] time = np.arange(0, simulations, delta) for t_0 in initial_temp: states_0 = [t_0] state = odeint(f, states_0, time) df = pd.DataFrame(data={'time' : time, 'temp' : state[:, 0]}) df['initial_temp'] = t_0 newton.append(df) newton = pd.concat(newton) if save: newton.to_csv("data/train/newtons_cooling_law.csv", index = False) return newton def van_der_pol_oscillator(delta, simulations, save, initial_paras = None): """ van der pol oscillator: This is used for running a simulation of the van der pol oscillator model """ MU = 0.5 def f(state, t): x, y = state dxdt = y dydt = MU*(1 - x * x) * y - x return dxdt, dydt van_df = [] #100.1 time = np.arange(0, simulations, delta) ranges = range(1,5) try: if (initial_paras != None).any(): ranges = initial_paras except AttributeError: pass for init_x in ranges: for init_y in ranges: states_0 = [init_x, init_y] state = odeint(f, states_0, time) df = pd.DataFrame(data={'time' : time, 'x' : state[:, 0], 'y' : state[:, 1]}) df['initial_x'] = init_x df['initial_y'] = init_y van_df.append(df) van_df = pd.concat(van_df) if save: van_df.to_csv("data/train/van.csv", index = False) return van_df def laub_loomis(delta, simulations, save, initial_paras = None): """ laub_loomis: This is used for reperesenting the laun loomis be """ def f(state, t): x,y,z,w,p,q,m = state func_1 = 1.4 * z - 0.9 * x func_2 = 2.5 * p - 1.5 * y func_3 = 0.6 * m - 0.8 * y * z func_4 = 2 - 1.3 * z * w func_5 = 0.7 * x - w * p func_6 = 0.3 * x - 3.1 * q func_7 = 1.8 * q - 1.5 * y * m return func_1, func_2, func_3, func_4, func_5, func_6, func_7 MIN = 1 MAX = 3 STEP = 1 ranges = range(MIN,MAX,STEP) try: if (initial_paras != None).any(): ranges = initial_paras except AttributeError: pass laub_loomis = [] time = np.arange(0, simulations, delta) # 0 , 500 for x, y, z, w, p, q, m in product(ranges, ranges, ranges, ranges, ranges, ranges, ranges): states_0 = [x, y, z, w, p, q, m] state = odeint(f, states_0, time) data = {'time' : time, 'x' : state[:, 0], 'y' : state[:, 1], 'z' : state[:, 2], 'w' : state[:, 3], 'p' : state[:, 4], 'q' : state[:, 5], 'm' : state[:, 6]} df = pd.DataFrame(data=data) df['initial_x'] = x df['initial_y'] = y df['initial_z'] = z df['initial_w'] = w df['initial_p'] = q df['initial_q'] = p df['initial_m'] = m laub_loomis.append(df) laub_loomis = pd.concat(laub_loomis) if save: laub_loomis.to_csv("data/train/laub.csv", index = False) return laub_loomis def biological_model(delta, simulations, save, initial_paras = None): """ This repersents a biological model """ def f(state, t): x1, x2, x3, x4, x5, x6, x7, x8, x9 = state dx1dt = 3 * x3 - x1 * x6 dx2dt = x4 - x2 * x6 dx3dt = x1 * x6 - 3 * x3 dx4dt = x2 * x6 - x4 dx5dt = 3 * x3 + 5 * x1 - x5 dx6dt = 5 * x5 + 3 * x3 + x4 - x6 * (x1 + x2 + 2 * x8 + 1) dx7dt = 5 * x4 + x2 - 0.5 * x7 dx8dt = 5 * x7 - 2 * x6 * x8 + x9 - 0.2 * x8 dx9dt = 2 * x6 * x8 - x9 return dx1dt, dx2dt, dx3dt, dx4dt, dx5dt, dx6dt, dx7dt, dx8dt, dx9dt time = np.arange(0, simulations, delta) biological_model = [] filename = 'data/train/biological_model.csv' ranges = np.arange(0.99, 1.01, 0.02) # we want initial parameters to be x1, x2, x2 ... x9 (0.99, 1.01) try: if (initial_paras != None).any(): ranges = initial_paras except AttributeError: pass for init_x1, init_x2, init_x3, init_x4, init_x5, init_x6, init_x7, init_x8, init_x9 in product(ranges, ranges, ranges, ranges, ranges, ranges, ranges, ranges, ranges): states_0 = [init_x1, init_x2, init_x3, init_x4, init_x5, init_x6, init_x7, init_x8, init_x9] state = odeint(f, states_0, time) data = {'time' : time, 'x1' : state[:, 0], 'x2' : state[:, 1], 'x3' : state[:, 2], 'x4' : state[:, 3], 'x5' : state[:, 4], 'x6' : state[:, 5], 'x7' : state[:, 6], 'x8' : state[:, 7], 'x9' : state[:, 8],} df =
pd.DataFrame(data=data)
pandas.DataFrame
import datetime import pandas as pd import re from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait from urllib.parse import urlencode def start_from_home_page(driver): # go to home page HOME_PAGE_URL = "https://esales.hdb.gov.sg/bp25/launch/19sep/bto/19SEPBTO_page_2671/about0.html#" # noqa driver.get(HOME_PAGE_URL) # hover over Punggol's dropdown menu and click the availability button punggol_dropdown = driver.find_element_by_xpath( '//*[@id="bto-icon-nav"]/section/ul/li[1]' ) availability_redirect = driver.find_element_by_xpath( '//*[@id="bto-icon-nav"]/section/ul/li[1]/ul/li[11]/a' ) hover_action = ( ActionChains(driver) .move_to_element(punggol_dropdown) .move_to_element(availability_redirect) ) hover_action.click().perform() # this will open up a new tab, switch to that new tab driver.switch_to_window(driver.window_handles[1]) # wait for the new tab to load completely WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, "searchButtonId")) ) # select 5-room driver.find_element_by_xpath('//*[@id="Flat"]/option[4]').click() driver.find_element_by_xpath('//*[@id="searchButtonId"]').click() return driver def start_from_5room_URL(driver): # Construct URL FIVE_ROOM_URL_PARAMS = ( ("Town", "PUNGGOL"), ("Flat_Type", "BTO"), ("DesType", "A"), ("ethnic", "Y"), ("Flat", "5-Room"), ("ViewOption", "A"), ("dteBallot", "201909"), ("projName", "A"), ("brochure", "true"), ) FIVE_ROOM_URL = "https://services2.hdb.gov.sg/webapp/BP13AWFlatAvail/BP13EBSFlatSearch?" # noqa FIVE_ROOM_URL = FIVE_ROOM_URL + urlencode(FIVE_ROOM_URL_PARAMS) driver.get(FIVE_ROOM_URL) return driver def get_all_block_details(driver): table = driver.find_element_by_xpath( '//*[@id="blockDetails"]/div[1]/table/tbody' ) blocks_row_and_col = [] for row_number, row in enumerate(table.find_elements_by_xpath(".//tr")): for col_number, col in enumerate(row.find_elements_by_xpath(".//td")): blocks_row_and_col.append((row_number + 1, col_number + 1)) all_details = [] for row, col in blocks_row_and_col: block = driver.find_element_by_xpath( '//*[@id="blockDetails"]/div[1]/table/tbody/' f'tr[{row}]/td[{col}]/div/font/a/font' ) block_number = block.text block.click() all_details.extend(get_block_details(block_number, driver.page_source)) return all_details def get_block_details(block_number, page_source): soup = BeautifulSoup(page_source, 'html.parser') units = ( soup.find("div", {"id": "blockDetails"}) .find_all("table")[1] .find("tbody") .find_all("td") ) price_regex = r"^(\$\d+,\d+)<br>_*<br>(\d+)" units_details = [] for unit in units: detail = unit.find("font").attrs print(detail) if detail.get("color") == "#cc0000": _id = unit.find("font").text.strip() floor, unit_number = _id.split("-") units_details.append({ "block_number": block_number, "floor": floor, "unit_number": unit_number, "unit_available": False }) else: # get floor unit number _id = detail["id"] floor, unit_number = _id.split("-") # get price and area price_area_info = soup.find("span", {"data-selector": _id}).attrs price, area = re.findall(price_regex, price_area_info["title"])[0] units_details.append({ "block_number": block_number, "floor": floor, "unit_number": unit_number, "price": price, "area": area, "unit_available": True }) return units_details if __name__ == '__main__': options = webdriver.ChromeOptions() options.add_argument('--ignore-certificate-errors') driver = webdriver.Chrome( "/usr/local/bin/chromedriver", options=options ) driver = start_from_5room_URL(driver) # driver = start_from_home_page(driver) all_details = get_all_block_details(driver) df =
pd.DataFrame(all_details)
pandas.DataFrame
import pandas as pd import numpy as np # import lightgbm as lgb import loadsave as ls from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn import metrics from keras import backend as K from sklearn import preprocessing from sklearn.utils import class_weight from collections import Counter # import tensorflow as tf # from keras.backend.tensorflow_backend import set_session # config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.5 # config.gpu_options.visible_device_list = "0" # set_session(tf.Session(config=config)) def setDayTime(row): row['isWeekend'] = np.where(((row['tweekday'] == 5) | (row['tweekday'] == 6)),1,0) row['isLateNight'] = np.where(((row['thour'] <= 7) | (row['thour'] >= 22)),1,0) row['isNight'] = np.where(((row['thour'] <= 3) | (row['thour'] >= 19)),1,0) row['isEarlyMorn'] = np.where(((row['thour'] >= 7) & (row['thour'] <= 12)),1,0) row['isDay'] = np.where(((row['thour'] >= 10) & (row['thour'] <= 17)),1,0) row['isNoon'] = np.where(((row['thour'] >= 15) & (row['thour'] <= 21)),1,0) def isWeekend(row): if row['tweekday'] == 5 or row['tweekday'] == 6: return 1 else: return 0 def isLateNight(row): if row['thour'] <= 7 or row['thour'] >= 22: return 1 else: return 0 def isNight(row): if row['thour'] <= 3 or row['thour'] >= 19: return 1 else: return 0 def isEarlyMorn(row): if row['thour'] >= 7 and row['thour'] <= 12: return 1 else: return 0 def printConfMat(y_true, y_pred): confMat=(metrics.confusion_matrix(y_true, y_pred)) print(" ") print(confMat) print(0,confMat[0][0]/(confMat[0][0]+confMat[0][1])) print(1,confMat[1][1]/(confMat[1][1]+confMat[1][0])) def isDay(row): if row['thour'] >= 10 and row['thour'] <= 17: return 1 else: return 0 def isNoon(row): if row['thour'] >= 15 and row['thour'] <= 21: return 1 else: return 0 isPreprocess= False if (isPreprocess): print("Reading data.....") train =
pd.read_csv("input/train.csv")
pandas.read_csv
import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import dash_bootstrap_components as dbc import pandas as pandas import plotly.graph_objects as go from apps import commonmodules from app import app from scipy.stats import multinomial, uniform, expon import numpy as np import os from os import path import re, ast import pickle # suppress sklearn warnings def warn(*args, **kwargs): pass import warnings warnings.warn = warn # saves last status of prediction result (ok / rework / scrap) global_index_spanen = [0] # tab styles tabs_styles = { 'height': '54px', 'font-size': '120%', 'text-align':"center", 'display': 'inline-block', } tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'fontWeight': 'bold', 'text-align': "center", 'display': 'inline-block', } tab_selected_style = { 'borderTop': '1px solid #d6d6d6', 'borderBottom': '1px solid #d6d6d6', 'backgroundColor': '#119DFF', 'color': 'white', 'padding': '6px', 'fontWeight': 'bold', 'text-align':"center", 'display': 'inline-block', } config = dict({'scrollZoom': True}) # page content of page 'spanen' layout = html.Div([ commonmodules.get_header(), html.Br(), html.H4('Station Spanen', style={'font-weight': 'bold', 'text-decoration': 'underline'}), html.Hr(), html.H4('Klassifizierungsergebnisse', style={'font-weight': 'bold'}), html.Br(), html.Div([ dbc.Row([ dbc.Col([ # bar plot of process parameters, updated by callbacks html.Div([ dbc.Row([ html.Div([ dcc.Graph(id='fig1_kraft_spanen'), ], style={'textAlign': 'center', 'width': '100%'}), ]), dbc.Row([ html.Div( [ dcc.Graph(id='fig2_leistung_spanen'), ], style={'textAlign': 'center', 'width': '100%'}), ]), ], className = "pretty_container",), # containers with evaluation (ok / rework / scrap) and accuracy measures (accuracy, f1score, precision, sensitivity) dbc.Row( [ html.Div( [ html.Div( id="category", className="pretty_container", ), html.Div( id="accuracy", className="pretty_container" ), html.Div( id="f1score", className="pretty_container" ), html.Div( id="precision", className="pretty_container" ), html.Div( id="sensitivity", className="pretty_container" ), ], id="fiveContainer", ) ], id="infoContainer", ), ], width=6), # plot with test data and newly generated data points # slider for increasing / decreasing training data dbc.Col([ html.Div([ html.H5("Gelernte Entscheidungsgrenzen", style={"text-align": "center",'font-weight': 'bold'}), html.Br(), html.Div([ dcc.Graph(id='fig3_classification_spanen'), html.H6("Anzahl an Datenpunkten (Training + Test):", style={"text-align": "center",'font-weight': 'bold'}), dcc.Slider( id='dataset-slider_spanen', min=1000, max=3000, value=1000, marks={ 1000: '# data: 1000 ', 2000: '2000', 3000: '3000', }, step=1000, ) ], style={'textAlign': 'center', 'width': '100%'}), ], className = "pretty_container",), ], width=6), ], align="center", ), ], className="flex-hd-row, flex-column align-items-center p-3 px-md-4 mb-3 bg-white border-bottom shadow-sm"), html.Hr(style={'height': '30px', 'font-weight': 'bold'}), # recommendation: either OK and go on to station 'lackieren' OR rework at station 'spanen' OR scrap and go to 'anmeldung' # updated in callbacks html.H5('Handlungsempfehlung', style={'font-weight': 'bold'}), html.Br(), # Buttons for folding/unfolding options: go on to station 'lackieren', rework at station 'spanen', scrap and go to 'anmeldung' html.Div( className="flex-hd-row, flex-column p-3 px-md-4 mb-3 bg-white border-bottom shadow-sm", id="recommendation_spanen"), html.Br(), html.Div( [ dbc.Button( "Weitere Handlungsoptionen", id="collapse-button-options_spanen", className="mb-3", color="primary", style={'font-size': '100%'}, ), dbc.Collapse( html.Div([ html.Div( [ dbc.Alert( [ "Weiter zur Station ", html.A("Lackieren", href="/lackieren", className="alert-link"), ], color="success", style={'font-size': '130%'}, ), dbc.Alert( [ "Nachbearbeitung an Station ", html.A("Spanen", href="/spanen", className="alert-link"), ], color="warning", style={'font-size': '130%'}, ), dbc.Alert( [ "Klassifiziere Bauteil als ", html.A("Ausschuss", href="/", className="alert-link"), ], color="danger", style={'font-size': '130%'}, ), ] ), ], className="flex-hd-row, flex-column p-3 px-md-4 mb-3 bg-white border-bottom shadow-sm"), # d-flex id="collapse-options_spanen", ), ], ), html.Hr(), # button for unfolding detailed information html.H5('Detailinformationen', style={'font-weight': 'bold'}), html.Br(), html.Div( [ dbc.Button( "Details ein-/ausblenden", id="collapse-button-details", className="mb-3", color="primary", style={'font-size': '100%'}, ), dbc.Collapse( html.Div([ dcc.Tabs(id='tabs-spanen', value='tab-1', children=[ dcc.Tab(label='Konfusionsmatrix', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([ dbc.Row([ dbc.Col( html.Div([ ], style = {'width': '100 %', "text-align": "center"}, id='spanen_confusion_absolute', # 'display': "flex" ), ), dbc.Col( html.Div([ ], style={'width': '100 %', "text-align": "center"}, id ='spanen_confusion_normalised', # 'display': "flex" ), ), ], align="center",) ], className="flex-hd-row flex-column p-3 px-md-4 mb-3 bg-white border-bottom shadow-sm"), # d-flex ]), dcc.Tab(label='Wirtschaftliche Bewertung', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([ html.H6("Kostensenkung durch Eliminierung der Qualitätskontrolle: "), html.Ul( html.Li("Ø 5 Arbeitsstunden mit Personalkostensatz von 50 €/h = 250€"), ), html.H6(id='increase_in_costs_spanen'), html.Ul( [ ], id='cost_misclassification_spanen', ), html.H6(id='savings_spanen') ], className="flex-hd-row flex-column p-3 px-md-4 mb-3 bg-white border-bottom shadow-sm"), #style={'width': '100 %', "text-align": "center"} ]), ], style=tabs_styles), ], className="flex-column, flex-hd-row p-3 px-md-4 mb-3 bg-white border-bottom shadow-sm"), # d-flex id="collapse-details", ), ], ), html.Hr(), html.Div(id='hidden-div-spanen', style={'display':'none'}) ]) # reset slider status in temp .csv file on page reload @app.callback([ Output('hidden-div-spanen','value') ],[ Input('url','pathname'), ]) def reset_slider_status(pathname): if pathname == '/spanen': file = open("temp/temp_spanen_slider.csv", "w") file.write(str(1000) + "\n") file.close() return [None] # button for collapsing options @app.callback( Output("collapse-options_spanen", "is_open"), [Input("collapse-button-options_spanen", "n_clicks")], [State("collapse-options_spanen", "is_open")], ) def toggle_collapse_options(n, is_open): if n: return not is_open return is_open # callback for collapsing detailed information (confusion matrix, economic evaluation) @app.callback( Output("collapse-details", "is_open"), [Input("collapse-button-details", "n_clicks")], [State("collapse-details", "is_open")], ) def toggle_collapse_options(n, is_open): if n: return not is_open return is_open # update bar graphs, update classification plot, update accuracy metrics, update recommendation @app.callback([ # bar graphs Output('fig1_kraft_spanen', 'figure'), Output('fig2_leistung_spanen', 'figure'), # classification plot Output('fig3_classification_spanen', 'figure'), # update category container (colored in red / green / orange) Output('category', 'children'), Output('category', 'style'), # update recommendation for user Output('recommendation_spanen', 'children'), # update accuracy metrics (based on number on training points) Output('accuracy', 'children'), Output('f1score', 'children'), Output('precision', 'children'), Output('sensitivity', 'children'), # update confusion matrix (based on number of training points) Output('spanen_confusion_absolute', 'children'), Output('spanen_confusion_normalised', 'children'), ],[ # input url Input('url','pathname'), # input data slider status Input('dataset-slider_spanen','value'), ]) def update_inputs(pathname, slider_status): # save number of training data from status of slider n_train = slider_status # load old slider status from file if path.exists("temp/temp_spanen_slider.csv"): f = open("temp/temp_spanen_slider.csv", "r") old_slider_status = int(f.read()) f.close() else: old_slider_status= None # write new slider status to file file = open("temp/temp_spanen_slider.csv", "w") file.write(str(slider_status) + "\n") file.close() if pathname == '/spanen': # load training, test data and accuracy metrics with open("assets/spanen/spanen_knn_data_" + str(n_train) + ".csv") as mycsv: count = 0 for line in mycsv: if count == 0: prediction_test_load = line if count == 1: testdata_load = line if count == 2: xx_decision_line = line if count == 3: yy_decision_line = line if count == 4: color_decision_line = line if count == 5: prediction_train_load = line if count == 6: traindata_load = line if count == 7: classification_report = line if count == 8: break count += 1 # transform strings to numpy lists, while conserving np.array dimensions prediction_test_load = re.sub('\s+', '', prediction_test_load) prediction_test_scatter = ast.literal_eval(prediction_test_load) prediction_train_load = re.sub('\s+', '', prediction_train_load) prediction_train_scatter = ast.literal_eval(prediction_train_load) testdata_load = re.sub('\s+', '', testdata_load) testdata_load = np.asarray(ast.literal_eval(testdata_load)) x_test_scatter = np.round(testdata_load[:, 0], 2).tolist() y_test_scatter = np.round(testdata_load[:, 1], 2).tolist() traindata_load = re.sub('\s+', '', traindata_load) traindata_load = np.asarray(ast.literal_eval(traindata_load)) x_train_scatter = np.round(traindata_load[:, 0], 2).tolist() y_train_scatter = np.round(traindata_load[:, 1], 2).tolist() xx_decision_line = re.sub('\s+', '', xx_decision_line) x_cont = ast.literal_eval(xx_decision_line) yy_decision_line = re.sub('\s+', '', yy_decision_line) y_cont = ast.literal_eval(yy_decision_line) color_decision_line = re.sub('\s+', '', color_decision_line) z_cont = np.asarray(ast.literal_eval(color_decision_line)) classification_report = re.sub('\s+', '', classification_report) classification_report = ast.literal_eval(classification_report) # get accuracy metrics from classification_report accuracy = np.round(classification_report['accuracy'], 2) f1_score = np.round(classification_report['macroavg']['f1-score'], 2) precision_gutteil = np.round(classification_report['0.0']['precision'], 2) sensitivity_gutteil = np.round(classification_report['0.0']['recall'], 2) precision_nachbearbeiten = np.round(classification_report['1.0']['precision'], 2) sensitivity_nachbearbeiten = np.round(classification_report['1.0']['recall'], 2) precision_ausschuss = np.round(classification_report['2.0']['precision'], 2) sensitivity_ausschuss = np.round(classification_report['2.0']['recall'], 2) # load old process parameters from file if path.exists("temp/temp_process_params_spanen.csv"): f = open("temp/temp_process_params_spanen.csv", "r") process_params_load1 = f.read() f.close() process_params_load2 = re.sub('\s+', '', process_params_load1) process_params = ast.literal_eval(process_params_load2) # only simulate a new data point on page refresh if slider_status == old_slider_status or path.exists("temp/temp_process_params_spanen.csv") == False: index = global_index_spanen[-1] while global_index_spanen[-1] == index: # create randomized process parameters from multivariate gaussian p1 = 0.4 # probability for component OK p2 = 0.3 # probability for component needs rework p3 = 0.3 # probability for component is scrap part draw = multinomial.rvs(1, [p1, p2, p3]) index = int(np.where(draw == 1)[0]) global_index_spanen.append(index) # create data point which will be classfied as okay if index == 0: mean = [2.5, 1.5] cov = [[1.4, 1], [1.2, 0.5]] bool = True while bool: F, P = np.random.multivariate_normal(mean, cov, 1).T if F > 0.5 and F < 5 and P > 0 and P < 3: bool = False # create data point which will be classified as rework elif index == 1: draw2 = multinomial.rvs(1, [0.5, 0.5]) index2 = np.where(draw2 == 1) # power too high if index2[0] == 0: P = expon.rvs(3.5, 0.3, size=1) F = uniform.rvs(3.5, 1.5, size=1) # force too low or too high elif index2[0] == 1: draw3 = multinomial.rvs(1, [0.5, 0.5]) index3 = np.where(draw3 == 1) # force too low if index3[0] == 0: P = uniform.rvs(0.5, 1, size=1) F = uniform.rvs(0, 0.25, size=1) # force too high elif index3[0] == 1: P = uniform.rvs(2, 0.5, size=1) F = expon.rvs(5.5, 0.2, size=1) # create data point which will be classified as scrap: power and force too high elif index == 2: P = expon.rvs(3.5, 0.3, size=1) # loc, scale, size F = expon.rvs(5.5, 0.2, size=1) process_params = [P.tolist(), F.tolist()] # save process_params to temp file file = open("temp/temp_process_params_spanen.csv", "w") file.write(str(process_params) + "\n") file.close() # load confusion matrix spanen_confusion_absolute_callback = html.Div([ html.Img(src=app.get_asset_url('spanen/spanen_confusion_absolute_' + str(n_train) + '.png')) ],) spanen_confusion_normalised_callback = html.Div([ html.Img(src=app.get_asset_url('spanen/spanen_confusion_normalised_' + str(n_train) + '.png')) ],) # plot bar graph of force fig1_callback = go.Figure() fig1_callback.add_trace(go.Indicator( mode="number+gauge", value=process_params[1][0], number={'font': {'size': 30}}, domain={'x': [0.25, 1], 'y': [0.3, 0.7]}, title={'text': "Kraft in kN", 'font': {'size': 20}}, gauge={ 'shape': "bullet", 'axis': {'range': [0, 8]}, 'threshold': { 'line': {'color': 'black', 'width': 5}, 'thickness': 0.75, 'value': 5}, 'steps': [ {'range': [0, 0.5], 'color': "lightgray"}, {'range': [0.5, 5], 'color': "green"}, {'range': [5, 8], 'color': "lightgray"}], 'bar': { 'color': 'black'} }, ), ) fig1_callback.update_layout(autosize=True, height=150, margin={'t': 0, 'b': 0, 'l': 0, 'r': 0}, paper_bgcolor="#f9f9f9", ) # plot bar graph of power fig2_callback = go.Figure() fig2_callback.add_trace(go.Indicator( mode="number+gauge", value=process_params[0][0], number={'font': {'size': 30}}, # delta = {'reference': 200}, domain={'x': [0.25, 1], 'y': [0.3, 0.7]}, title={'text': "Leistung in kW", 'font': {'size': 20}}, gauge={ 'shape': "bullet", 'axis': {'range': [0, 6]}, 'threshold': { 'line': {'color': 'black', 'width': 5}, 'thickness': 0.75, 'value': 3}, 'steps': [ {'range': [0, 3], 'color': "green"}, {'range': [3, 6], 'color': "lightgray"}], 'bar': {'color': 'black'}, }, ) ) fig2_callback.update_layout(autosize=True, height=150, margin={'t': 0, 'b': 0, 'l': 0, 'r': 0}, paper_bgcolor="#f9f9f9", ) # update info boxes with accuracy metrics accuracy_callback = html.Div( [ html.H6("Genauigkeit", style={"text-align": "center", 'font-weight': 'bold'}), html.Br(), html.H4(str(accuracy), style={"text-align": "center", 'font-weight': 'bold'}, ), html.Br(), ], ), f1_score_callback = html.Div( [ html.H6("F1-Score", style={"text-align": "center", 'font-weight': 'bold'}), html.Br(), html.H4(str(f1_score), style={"text-align": "center", 'font-weight': 'bold'}, ), html.Br(), ], ), precision_callback = html.Div( [ html.H6("Präzision", style={"text-align": "center", 'font-weight': 'bold'}), html.Br(), html.P("Gutteil: " + str(precision_gutteil), style={"text-align": "center"}, ), html.P("Nachbearb.: " + str(precision_nachbearbeiten), style={"text-align": "center"}, ), html.P("Ausschuss: " + str(precision_ausschuss), style={"text-align": "center"}, ), ], ), sensitivity_callback = html.Div( [ html.H6("Sensitivität", style={"text-align": "center", 'font-weight': 'bold'}), html.Br(), html.P("Gutteil: " + str(sensitivity_gutteil), style={"text-align": "center"}, ), html.P("Nachbearb.: " + str(sensitivity_nachbearbeiten), style={"text-align": "center"}, ), html.P("Ausschuss: " + str(sensitivity_ausschuss), style={"text-align": "center"}, ), ], ), # create dataframe for scattered training and test data df_test =
pandas.DataFrame({'x_test_scatter': x_test_scatter, 'y_test_scatter': y_test_scatter, 'prediction_test_scatter': prediction_test_scatter})
pandas.DataFrame
import os import pandas as pd import geopandas as gpd import numpy as np def integrate_data(data, sheet_name, category, dff_dict, demand_links, init_year, end_year, var_name='links', target='point'): df = data.parse(sheet_name, skiprows=3) df.rename(columns={'Unnamed: 0': 'Date'}, inplace=True) df.columns = df.columns.str.replace('"', '').str.strip() df.columns = df.columns.str.replace('Groundwater','GW') df.columns = df.columns.str.replace('Grounwater','GW') df.columns = df.columns.str.replace('GW of ','') df.columns = df.columns.str.replace('GW ','') df.columns = df.columns.str.replace('I_TRSPD','I_Traditional Rehabilite du Souss Perimetre Diffus') # df.columns = df.columns.str.replace('I_Traditional Rehabilite I','I_Traditional Rehabilite Issen') for link in demand_links.links: if np.array(df.columns[df.columns.str.contains(link)]).size > 0: df.rename(columns={df.columns[df.columns.str.contains(link)][0]: link}, inplace=True) df = df.loc[df.Date!='Sum'] df.Date = pd.to_datetime(df.Date) df['Year'] = df.Date.dt.year df['Month'] = df.Date.dt.month drop_columns = [] if 'Sum' in df.columns: drop_columns.append('Sum') df.drop(columns=drop_columns, inplace=True) df = df.loc[(df.Year >= init_year) & (df.Year <= end_year)] df = df.melt(id_vars=['Date', 'Year', 'Month']) for name, dff in dff_dict.items(): df_temp = dff.set_index(var_name) if var_name!=target: df[name] = df.variable.map(df_temp[target]) df['type'] = category df.rename(columns={'variable': var_name}, inplace=True) if df.loc[~df[var_name].isin(df.dropna()[var_name].unique()),var_name].unique().size > 0: print("The following links were not found:") print(df.loc[~df[var_name].isin(df.dropna()[var_name].unique()),var_name].unique()) return df def data_merging(demand_points, supply_points, pipelines): df1 = demand_points.groupby('point').agg({'type': 'first', 'geometry': 'first'}).reset_index() df2 = supply_points.groupby('point').agg({'type': 'first', 'geometry': 'first'}).reset_index() df_pipelines = pipelines.groupby('diversion').agg({'geometry': 'first'}).reset_index() df = df1.append(df2, ignore_index=True) df['lon'] = [point.xy[0][0] for point in df.geometry] df['lat'] = [point.xy[1][0] for point in df.geometry] pipe_coords =
pd.DataFrame({'lon': [], 'lat': []})
pandas.DataFrame
import json import logging import pathlib from typing import Union, Optional import pandas from arclus.utils import is_blank class DatasetReader: """General class for reading datasets.""" #: The root directory. root: pathlib.Path def __init__( self, root: Union[pathlib.Path, str], claim_id: int = 0, premise_id: int = 0, ): if not isinstance(root, pathlib.Path): root = pathlib.Path(root) self.root = root self.offset_claim_id = claim_id self.offset_premise_id = premise_id self._claims = [] self._premises = [] self._claim_premises = [] self._read() def _add_claim(self, text: str) -> Optional[int]: """ Add a claim to the dataset. :param text: The claim text. :return: The claim ID. """ if is_blank(text=text): return None claim_id = len(self._claims) + self.offset_claim_id self._claims.append(dict( claim_text=text, claim_id=claim_id, source=self.name, )) return claim_id def _add_premise(self, text: str, stance: str) -> Optional[int]: """ Add a premise to the dataset. :param text: The premise text. :return: The premise ID. """ if is_blank(text=text): return None premise_id = len(self._premises) + self.offset_premise_id self._premises.append(dict( premise_text=text, premise_id=premise_id, stance=stance, source=self.name, )) return premise_id def _add_claim_premise(self, premise_id: Optional[int], claim_id: Optional[int]) -> None: """ Add a link between premise_id and claim_id. If any of the IDs is None, no link is added. """ if None not in {claim_id, premise_id}: self._claim_premises.append(dict( premise_id=premise_id, claim_id=claim_id, )) def __str__(self): return f'Dataset(name={self.name}, num_claims={len(self._claims)}, num_premises={len(self._premises)})' @property def max_claim_id(self) -> int: return self.offset_claim_id + len(self._claims) @property def max_premise_id(self) -> int: return self.offset_premise_id + len(self._premises) @property def premises(self) -> pandas.DataFrame: return pandas.DataFrame(self._premises) @property def claims(self) -> pandas.DataFrame: return pandas.DataFrame(self._claims) @property def claims_premises(self) -> pandas.DataFrame: return pandas.DataFrame(self._claim_premises) @property def name(self) -> str: """The name of the dataset.""" raise NotImplementedError def _read(self): """Read the dataset.""" raise NotImplementedError class DebatePediaOrgReader(DatasetReader): """DebatePediaOrg dataset.""" @property def name(self) -> str: return 'DebatePediaOrg' def _read(self): for index, file_path in enumerate(self.root.iterdir()): with file_path.open(mode='r', errors='ignore') as json_data: data = json.load(json_data) for claim_data in data: if len(claim_data['pros']) + len(claim_data['cons']) == 0: logging.warning('Skipping empty file') continue claim_text = claim_data['claimText'] claim_id = self._add_claim(text=claim_text) for premise_data, stance in [(claim, stance) for stance in ('Pro', 'Con') for claim in claim_data[stance.lower() + 's']]: premise_text = premise_data['premiseText'] premise_id = self._add_premise(text=premise_text, stance=stance) self._add_claim_premise(premise_id=premise_id, claim_id=claim_id) class DebateOrgReader(DatasetReader): """DebateOrg dataset.""" @property def name(self) -> str: return 'DebateOrg' def _read(self): with self.root.open(mode='r', errors='ignore') as json_data: data = json.load(json_data) for claim_data in data: if len(claim_data['pros']) + len(claim_data['cons']) == 0: logging.warning('Skipping empty file') continue claim_text = claim_data['title'] claim_id = self._add_claim(claim_text) for premise_data, stance in [(claim, stance) for stance in ('Pro', 'Con') for claim in claim_data[stance.lower() + 's']]: premise_text = premise_data['text'] premise_id = self._add_premise(text=premise_text, stance=stance) self._add_claim_premise(premise_id=premise_id, claim_id=claim_id) class DebateWiseReader(DatasetReader): """DebateWise dataset.""" @property def name(self) -> str: return 'debatewise' def _read(self): for index, file_path in enumerate(self.root.iterdir()): with file_path.open(mode='r', errors='ignore') as json_data: data = json.load(json_data) if len(data['ArgumentList']) == 0: logging.warning('Skipping empty file') continue claim_text = data['MetaData']['Title'] claim_id = self._add_claim(text=claim_text) for premise_data in data['ArgumentList']: premise_text = premise_data['Argument']['Premise'][0] premise_id = self._add_premise(text=premise_text, stance=premise_data['Argument']['PremiseStance'][0]) self._add_claim_premise(premise_id=premise_id, claim_id=claim_id) class IDebateOrgReader(DatasetReader): """iDebateOrg dataset.""" @property def name(self) -> str: return 'iDebateOrg' def _read(self): for index, file_path in enumerate(self.root.iterdir()): with file_path.open(mode='r', errors='ignore') as json_data: data = json.load(json_data) if len(data['pros']) + len(data['cons']) == 0: logging.warning('Skipping empty file') continue claim_text = data['title'] claim_id = self._add_claim(claim_text) for premise_data_pro in (data['pros']): premise_text = premise_data_pro['text point pro claim'] premise_id = self._add_premise(text=premise_text, stance="Pro") self._add_claim_premise(premise_id=premise_id, claim_id=claim_id) for premise_data_con in (data['cons']): premise_text = premise_data_con['text point con claim'] premise_id = self._add_premise(text=premise_text, stance="Con") self._add_claim_premise(premise_id=premise_id, claim_id=claim_id) def remove_duplicates( premises: pandas.DataFrame, claims: pandas.DataFrame, assignments: pandas.DataFrame ) -> [pandas.DataFrame, pandas.DataFrame, pandas.DataFrame]: """ Remove duplicate premises and claims (w.r.t. text). Update assignments: - ids that belong to a duplicate have to be updated to the remaining id. - then, duplicate assignments are removed :param premises: The premises. :param claims: The claims. :param assignments: The assignments. :return: The unique premises, claims and assignments. """ # extend assignments to have the premise and the claim text in df ass_extended = pandas.merge(assignments, premises, how='inner', on="premise_id") ass_extended = pandas.merge(ass_extended, claims, how='inner', on="claim_id") # drop duplicates in claims and premises (first occurence is kept) claims_df = claims.drop_duplicates(subset=["claim_text"]) premises_df = premises.drop_duplicates(subset=["premise_text"]) # extend assignments again by the now unique claim and premise text ass_extended = pandas.merge(ass_extended, claims_df, how='inner', on="claim_text") ass_extended =
pandas.merge(ass_extended, premises_df, how='inner', on="premise_text")
pandas.merge
#!/usr/bin/env python # coding: utf-8 # Import libraries import pandas as pd import numpy as np import math from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error import xgboost as xgb import datetime import pickle import warnings warnings.filterwarnings("ignore") # Load data to dataframe datafile = 'london_merged.csv' df = pd.read_csv(datafile) # Convert dtypes to save memory df['weather_code'] = df['weather_code'].astype('uint8') df['is_holiday'] = df['is_holiday'].astype('uint8') df['is_weekend'] = df['is_weekend'].astype('uint8') df['season'] = df['season'].astype('uint8') df['t1'] = df['t1'].astype('float16') df['t2'] = df['t2'].astype('float16') df['hum'] = df['hum'].astype('float16') df['wind_speed'] = df['wind_speed'].astype('float16') # Sort data according to timestamp df['timestamp'] = pd.to_datetime(df['timestamp']) df = df.sort_values(by=['timestamp'],ascending=True) df.reset_index(drop=True,inplace=True) # Splitting data as Full train (80%), Test (20%) df_full_train, df_test = train_test_split(df,test_size=0.2,shuffle=False,random_state=1) # Set target and delete it from dataframe y_full_train = df_full_train['cnt'] y_test = df_test['cnt'] del df_full_train['cnt'] del df_test['cnt'] # Function to train the model and predict on validation data def train_predict(df_full_train,df_test,y_full_train,model): X_full_train = df_full_train.values model.fit(X_full_train, y_full_train) X_test = df_test.values y_pred = model.predict(X_test) y_train_pred = model.predict(X_full_train) return y_pred, y_train_pred, model # Function to evaluate various metrics/scores on predictions on validation and training def evaluate_scores(y_test_eval, y_pred_eval, y_full_train_eval, y_pred_full_train_eval): scores = {} scores['val_r2'] = r2_score(y_test_eval, y_pred_eval) scores['val_mse'] = mean_squared_error(y_test_eval, y_pred_eval,squared=True) scores['val_rmse'] = mean_squared_error(y_test_eval, y_pred_eval,squared=False) scores['val_mae'] = mean_absolute_error(y_test_eval, y_pred_eval) scores['train_r2'] = r2_score(y_full_train_eval, y_pred_full_train_eval) scores['train_mse'] = mean_squared_error(y_full_train_eval, y_pred_full_train_eval,squared=True) scores['train_rmse'] = mean_squared_error(y_full_train_eval, y_pred_full_train_eval,squared=False) scores['train_mae'] = mean_absolute_error(y_full_train_eval, y_pred_full_train_eval) rnd_digits = 5 #round upto how many digits for metric, value in scores.items(): scores[metric] = round(scores[metric],rnd_digits) return scores # Function to perform pre processing on data before training # Combining all the step by step processing done above into a function # Function to now create different features from timestamp def pre_process_new_ft(df_to_process): df_to_process['year'] = df_to_process['timestamp'].dt.year df_to_process['month'] = df_to_process['timestamp'].dt.month df_to_process['day'] = df_to_process['timestamp'].dt.day df_to_process['hour'] = df_to_process['timestamp'].dt.hour df_to_process['day-of-week'] = pd.to_datetime(df_to_process['timestamp']).dt.dayofweek.values df_to_process['week-of-year'] = pd.to_datetime(df_to_process['timestamp']).dt.isocalendar().week.values df_to_process['day-of-year'] =
pd.to_datetime(df_to_process['timestamp'])
pandas.to_datetime
import pandas as pd from pandas._testing import assert_frame_equal from nempy import unit_constraints def test_create_constraints(): unit_limit = pd.DataFrame({ 'unit': ['A', 'B'], 'upper': [16.0, 23.0] }) next_constraint_id = 4 rhs_col = 'upper' direction = '<=' output_rhs, output_variable_map = unit_constraints.create_constraints(unit_limit, next_constraint_id, rhs_col, direction) expected_rhs = pd.DataFrame({ 'unit': ['A', 'B'], 'service': ['energy', 'energy'], 'constraint_id': [4, 5], 'type': ['<=', '<='], 'rhs': [16.0, 23.0] }) expected_variable_map = pd.DataFrame({ 'constraint_id': [4, 5], 'unit': ['A', 'B'], 'service': ['energy', 'energy'], 'coefficient': [1.0, 1.0] }) assert_frame_equal(output_rhs, expected_rhs) assert_frame_equal(output_variable_map, expected_variable_map) def test_one_unit_create_constraints(): unit_limit = pd.DataFrame({ 'unit': ['A'], 'upper': [16.0] }) next_constraint_id = 4 rhs_col = 'upper' direction = '<=' output_rhs, output_variable_map = unit_constraints.create_constraints(unit_limit, next_constraint_id, rhs_col, direction) expected_rhs = pd.DataFrame({ 'unit': ['A'], 'service': ['energy'], 'constraint_id': [4], 'type': ['<='], 'rhs': [16.0], }) expected_variable_map = pd.DataFrame({ 'constraint_id': [4], 'unit': ['A'], 'service': ['energy'], 'coefficient': [1.0], }) assert_frame_equal(output_rhs, expected_rhs)
assert_frame_equal(output_variable_map, expected_variable_map)
pandas._testing.assert_frame_equal
## Machine learning testing script import matplotlib.pyplot as plt import numpy as np import pandas as pd import math import posanal as usrpos import random plot_ML = True data_init = pd.read_csv('results_exp1-5.csv') # ---- Data Pre-processing ---- # dataset = data_init X = dataset.iloc[:, :-1].values y = dataset.iloc[:,6].values #print dataset #print '\nX = ' #print X #print '\nY = ' #print y # ---- Split into training and testing ---- # results_RF = pd.DataFrame() results_SLR = pd.DataFrame() test_size = np.arange(0.05,1,0.05) print(test_size) for i in range(19): ts=float(i+1)/20 from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = ts, random_state = 10) # ---- Regression Model ---- # from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression regressor = RandomForestRegressor() regressor.fit(X_train, y_train) regressor2 = LinearRegression() regressor2.fit(X_train, y_train) y_pred = regressor.predict(X_test) y_pred2 = regressor2.predict(X_test) # print 'y_pred = \n', y_pred # print '\ny_test = \n', y_test # ---- Plot this test ---- # if plot_ML == True: fig = plt.figure() ax = fig.gca() ax.plot(y_test, y_test, 'k--', label = 'Test Data') ax.scatter(y_test, y_pred, c='blue', label = 'Random Forest Prediction', s=10) ax.scatter(y_test, y_pred2, c='red', label = 'Linear Regression Prediction',s=10) ax.set_xlabel('$R_g$ (test)',size='large') ax.set_ylabel('$R_g$ (test, predicted)',size='large') ax.legend() ax.set_title('Test Size = {}'.format(ts)) fname = str('prediction_{}.png'.format(ts)) plt.savefig(fname) # ---- Evaluate results ---- # def error(pred, test): N = len(test) err_df = np.ndarray([N,1]) for i in range(N): err_df[i][0] = abs((pred[i]-test[i]))/test[i] err_df=pd.DataFrame(err_df) mean_err = err_df.mean(axis=0) std_err = err_df.std(axis=0) errors = np.array([mean_err,std_err]) #print ts, errors, '\n' return errors err = 100*error(y_pred, y_test).transpose() err2 = 100*error(y_pred2, y_test).transpose() temp_RF = pd.DataFrame(err) temp_SLR =
pd.DataFrame(err2)
pandas.DataFrame
# Verified and checked shipments of samples, as of May 2019. import pandas as pd import os os.chdir("/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/") # Helper functions for cleanup... import helpers cols2save = ['patientID', 'country', 'source'] # [clean pbmc] ---------------------------------------------------------------------------------------------------- file1 = "/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/input_data/sample_rosters/CViSB PBMC Samples_MP.xlsx" pbmc = pd.read_excel(file1) pbmc['source'] = "PBMCSamples_May2019" pbmc['country'] = "Sierra Leone" pbmc['patientID'] = pbmc.privatePatientID.apply(helpers.interpretID) pbmc = pbmc[cols2save] pbmc.shape # [clean pbmc-dna] ---------------------------------------------------------------------------------------------------- file2 = "/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/input_data/sample_rosters/CViSB PBMC-DNA Samples_MP.xlsx" pbmcdna = pd.read_excel(file2) pbmcdna['source'] = "PBMC-DNASamples_May2019" pbmcdna['country'] = "Sierra Leone" pbmcdna['patientID'] = pbmcdna.privatePatientID.apply(helpers.interpretID) pbmcdna = pbmcdna[cols2save] pbmcdna.shape # [clean pbmc-rna] ---------------------------------------------------------------------------------------------------- file3 = "/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/input_data/sample_rosters/CViSB PCMC-RNA Samples_MP.xlsx" pbmcrna = pd.read_excel(file3) pbmcrna['source'] = "PBMC-RNASamples_May2019" pbmcrna['country'] = "Sierra Leone" pbmcrna['patientID'] = pbmcrna.privatePatientID.apply(helpers.interpretID) pbmcrna = pbmcrna[cols2save] pbmcrna.shape # [clean plasma] ---------------------------------------------------------------------------------------------------- file4 = "/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/input_data/sample_rosters/CViSB Plasma Samples_MP.xlsx" plasma =
pd.read_excel(file4)
pandas.read_excel
from collections import deque from datetime import datetime import operator import re import numpy as np import pytest import pytz import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm import pandas.core.common as com from pandas.core.computation.expressions import _MIN_ELEMENTS, _NUMEXPR_INSTALLED from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) msgs = [ r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", "invalid type promotion", ( # npdev 1.20.0 r"The DTypes <class 'numpy.dtype\[.*\]'> and " r"<class 'numpy.dtype\[.*\]'> do not have a common DType." ), ] msg = "|".join(msgs) with pytest.raises(TypeError, match=msg): x >= y with pytest.raises(TypeError, match=msg): x > y with pytest.raises(TypeError, match=msg): x < y with pytest.raises(TypeError, match=msg): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: msg = ( "'(<|>)=?' not supported between " "instances of 'numpy.ndarray' and 'Timestamp'" ) with pytest.raises(TypeError, match=msg): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError, match=msg): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): ii = pd.IntervalIndex.from_breaks([1, 2, 3]) df = pd.DataFrame({"A": ii, "B": ii}) ser = pd.Series([0, 0]) res = df.eq(ser, axis=0) expected = pd.DataFrame({"A": [False, False], "B": [False, False]}) tm.assert_frame_equal(res, expected) ser2 = pd.Series([1, 2], index=["A", "B"]) res2 = df.eq(ser2, axis=1) tm.assert_frame_equal(res2, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.skipif(not _NUMEXPR_INSTALLED, reason="numexpr not installed") @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100 df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = pd.DataFrame({"A": dti, "B": ser}) other = pd.DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( { "A": pd.Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = dict(B="uint64", C=None) elif op in ["__add__", "__mul__"]: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([], dtype=object) df_len0 = pd.DataFrame(columns=["A", "B"]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) def test_flex_add_scalar_fill_value(self): # GH#12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float") df = pd.DataFrame({"foo": dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) tm.assert_frame_equal(res, exp) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = pd.Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = pd.DataFrame([[1, 2], [3, 4]]) result = df * ser expected = pd.DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = { True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze()), } dtype = None if opname in ["__rmod__", "__rfloordiv__"]: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = pd.DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = pd.DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() def test_arith_mixed(self): left = pd.DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) result = left + left expected = pd.DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = pd.DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize( "values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])] ) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = pd.DataFrame({"A": [1, 1], "B": [1, 1]}) expected = pd.DataFrame({"A": [2, 2], "B": [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = pd.DataFrame( np.arange(1, 10, dtype="f8").reshape(3, 3), columns=["one", "two", "three"], index=["a", "b", "c"], ) val1 = df.xs("a").values added = pd.DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added = pd.DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df["two"]) added = pd.DataFrame(df.values + val2, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val2, added) added = pd.DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val2, axis="index"), added) val3 = np.random.rand(*df.shape) added = pd.DataFrame(df.values + val3, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val3), added) def test_operations_with_interval_categories_index(self, all_arithmetic_operators): # GH#27415 op = all_arithmetic_operators ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0)) data = [1, 2] df = pd.DataFrame([data], columns=ind) num = 10 result = getattr(df, op)(num) expected = pd.DataFrame([[getattr(n, op)(num) for n in data]], columns=ind) tm.assert_frame_equal(result, expected) def test_frame_with_frame_reindex(self): # GH#31623 df = pd.DataFrame( { "foo": [pd.Timestamp("2019"), pd.Timestamp("2020")], "bar": [pd.Timestamp("2018"), pd.Timestamp("2021")], }, columns=["foo", "bar"], ) df2 = df[["foo"]] result = df - df2 expected = pd.DataFrame( {"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]}, columns=["bar", "foo"], ) tm.assert_frame_equal(result, expected) def test_frame_with_zero_len_series_corner_cases(): # GH#28600 # easy all-float case df = pd.DataFrame(np.random.randn(6).reshape(3, 2), columns=["A", "B"]) ser = pd.Series(dtype=np.float64) result = df + ser expected = pd.DataFrame(df.values * np.nan, columns=df.columns) tm.assert_frame_equal(result, expected) result = df == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # non-float case should not raise on comparison df2 = pd.DataFrame(df.values.view("M8[ns]"), columns=df.columns) result = df2 == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_zero_len_frame_with_series_corner_cases(): # GH#28600 df = pd.DataFrame(columns=["A", "B"], dtype=np.float64) ser = pd.Series([1, 2], index=["A", "B"]) result = df + ser expected = df tm.assert_frame_equal(result, expected) def test_frame_single_columns_object_sum_axis_1(): # GH 13758 data = { "One": pd.Series(["A", 1.2, np.nan]), } df = pd.DataFrame(data) result = df.sum(axis=1) expected = pd.Series(["A", 1.2, 0]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------- # Unsorted # These arithmetic tests were previously in other files, eventually # should be parametrized and put into tests.arithmetic class TestFrameArithmeticUnsorted: def test_frame_add_tz_mismatch_converts_to_utc(self): rng = pd.date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern") df = pd.DataFrame(np.random.randn(len(rng)), index=rng, columns=["a"]) df_moscow = df.tz_convert("Europe/Moscow") result = df + df_moscow assert result.index.tz is pytz.utc result = df_moscow + df assert result.index.tz is pytz.utc def test_align_frame(self): rng = pd.period_range("1/1/2000", "1/1/2010", freq="A") ts = pd.DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts + ts[::2] expected = ts + ts expected.values[1::2] = np.nan tm.assert_frame_equal(result, expected) half = ts[::2] result = ts + half.take(np.random.permutation(len(half))) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "op", [operator.add, operator.sub, operator.mul, operator.truediv] ) def test_operators_none_as_na(self, op): df = DataFrame( {"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object ) # since filling converts dtypes from object, changed expected to be # object filled = df.fillna(np.nan) result = op(df, 3) expected = op(filled, 3).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df) expected = op(filled, filled).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df.fillna(7)) tm.assert_frame_equal(result, expected) result = op(df.fillna(7), df) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("op,res", [("__eq__", False), ("__ne__", True)]) # TODO: not sure what's correct here. @pytest.mark.filterwarnings("ignore:elementwise:FutureWarning") def test_logical_typeerror_with_non_valid(self, op, res, float_frame): # we are comparing floats vs a string result = getattr(float_frame, op)("foo") assert bool(result.all().all()) is res def test_binary_ops_align(self): # test aligning binary ops # GH 6681 index = MultiIndex.from_product( [list("abc"), ["one", "two", "three"], [1, 2, 3]], names=["first", "second", "third"], ) df = DataFrame( np.arange(27 * 3).reshape(27, 3), index=index, columns=["value1", "value2", "value3"], ).sort_index() idx = pd.IndexSlice for op in ["add", "sub", "mul", "div", "truediv"]: opa = getattr(operator, op, None) if opa is None: continue x = Series([1.0, 10.0, 100.0], [1, 2, 3]) result = getattr(df, op)(x, level="third", axis=0) expected = pd.concat( [opa(df.loc[idx[:, :, i], :], v) for i, v in x.items()] ).sort_index() tm.assert_frame_equal(result, expected) x = Series([1.0, 10.0], ["two", "three"]) result = getattr(df, op)(x, level="second", axis=0) expected = ( pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.items()]) .reindex_like(df) .sort_index() ) tm.assert_frame_equal(result, expected) # GH9463 (alignment level of dataframe with series) midx = MultiIndex.from_product([["A", "B"], ["a", "b"]]) df = DataFrame(np.ones((2, 4), dtype="int64"), columns=midx) s = pd.Series({"a": 1, "b": 2}) df2 = df.copy() df2.columns.names = ["lvl0", "lvl1"] s2 = s.copy() s2.index.name = "lvl1" # different cases of integer/string level names: res1 = df.mul(s, axis=1, level=1) res2 = df.mul(s2, axis=1, level=1) res3 = df2.mul(s, axis=1, level=1) res4 = df2.mul(s2, axis=1, level=1) res5 = df2.mul(s, axis=1, level="lvl1") res6 = df2.mul(s2, axis=1, level="lvl1") exp = DataFrame( np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype="int64"), columns=midx ) for res in [res1, res2]: tm.assert_frame_equal(res, exp) exp.columns.names = ["lvl0", "lvl1"] for res in [res3, res4, res5, res6]: tm.assert_frame_equal(res, exp) def test_add_with_dti_mismatched_tzs(self): base = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz="UTC") idx1 = base.tz_convert("Asia/Tokyo")[:2] idx2 = base.tz_convert("US/Eastern")[1:] df1 = DataFrame({"A": [1, 2]}, index=idx1) df2 = DataFrame({"A": [1, 1]}, index=idx2) exp = DataFrame({"A": [np.nan, 3, np.nan]}, index=base) tm.assert_frame_equal(df1 + df2, exp) def test_combineFrame(self, float_frame, mixed_float_frame, mixed_int_frame): frame_copy = float_frame.reindex(float_frame.index[::2]) del frame_copy["D"] frame_copy["C"][:5] = np.nan added = float_frame + frame_copy indexer = added["A"].dropna().index exp = (float_frame["A"] * 2).copy() tm.assert_series_equal(added["A"].dropna(), exp.loc[indexer]) exp.loc[~exp.index.isin(indexer)] = np.nan tm.assert_series_equal(added["A"], exp.loc[added["A"].index]) assert np.isnan(added["C"].reindex(frame_copy.index)[:5]).all() # assert(False) assert np.isnan(added["D"]).all() self_added = float_frame + float_frame tm.assert_index_equal(self_added.index, float_frame.index) added_rev = frame_copy + float_frame assert np.isnan(added["D"]).all() assert np.isnan(added_rev["D"]).all() # corner cases # empty plus_empty = float_frame + DataFrame() assert np.isnan(plus_empty.values).all() empty_plus = DataFrame() + float_frame assert np.isnan(empty_plus.values).all() empty_empty = DataFrame() + DataFrame() assert empty_empty.empty # out of order reverse = float_frame.reindex(columns=float_frame.columns[::-1]) tm.assert_frame_equal(reverse + float_frame, float_frame * 2) # mix vs float64, upcast added = float_frame + mixed_float_frame _check_mixed_float(added, dtype="float64") added = mixed_float_frame + float_frame _check_mixed_float(added, dtype="float64") # mix vs mix added = mixed_float_frame + mixed_float_frame _check_mixed_float(added, dtype=dict(C=None)) # with int added = float_frame + mixed_int_frame _check_mixed_float(added, dtype="float64") def test_combine_series( self, float_frame, mixed_float_frame, mixed_int_frame, datetime_frame ): # Series series = float_frame.xs(float_frame.index[0]) added = float_frame + series for key, s in added.items(): tm.assert_series_equal(s, float_frame[key] + series[key]) larger_series = series.to_dict() larger_series["E"] = 1 larger_series = Series(larger_series) larger_added = float_frame + larger_series for key, s in float_frame.items(): tm.assert_series_equal(larger_added[key], s + series[key]) assert "E" in larger_added assert np.isnan(larger_added["E"]).all() # no upcast needed added = mixed_float_frame + series assert np.all(added.dtypes == series.dtype) # vs mix (upcast) as needed added = mixed_float_frame + series.astype("float32") _check_mixed_float(added, dtype=dict(C=None)) added = mixed_float_frame + series.astype("float16") _check_mixed_float(added, dtype=dict(C=None)) # FIXME: don't leave commented-out # these raise with numexpr.....as we are adding an int64 to an # uint64....weird vs int # added = mixed_int_frame + (100*series).astype('int64') # _check_mixed_int(added, dtype = dict(A = 'int64', B = 'float64', C = # 'int64', D = 'int64')) # added = mixed_int_frame + (100*series).astype('int32') # _check_mixed_int(added, dtype = dict(A = 'int32', B = 'float64', C = # 'int32', D = 'int64')) # TimeSeries ts = datetime_frame["A"] # 10890 # we no longer allow auto timeseries broadcasting # and require explicit broadcasting added = datetime_frame.add(ts, axis="index") for key, col in datetime_frame.items(): result = col + ts tm.assert_series_equal(added[key], result, check_names=False) assert added[key].name == key if col.name == ts.name: assert result.name == "A" else: assert result.name is None smaller_frame = datetime_frame[:-5] smaller_added = smaller_frame.add(ts, axis="index") tm.assert_index_equal(smaller_added.index, datetime_frame.index) smaller_ts = ts[:-5] smaller_added2 = datetime_frame.add(smaller_ts, axis="index") tm.assert_frame_equal(smaller_added, smaller_added2) # length 0, result is all-nan result = datetime_frame.add(ts[:0], axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # Frame is all-nan result = datetime_frame[:0].add(ts, axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # empty but with non-empty index frame = datetime_frame[:1].reindex(columns=[]) result = frame.mul(ts, axis="index") assert len(result) == len(ts) def test_combineFunc(self, float_frame, mixed_float_frame): result = float_frame * 2 tm.assert_numpy_array_equal(result.values, float_frame.values * 2) # vs mix result = mixed_float_frame * 2 for c, s in result.items(): tm.assert_numpy_array_equal(s.values, mixed_float_frame[c].values * 2) _check_mixed_float(result, dtype=dict(C=None)) result = DataFrame() * 2 assert result.index.equals(DataFrame().index) assert len(result.columns) == 0 def test_comparisons(self, simple_frame, float_frame): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() row = simple_frame.xs("a") ndim_5 = np.ones(df1.shape + (1, 1, 1)) def test_comp(func): result = func(df1, df2) tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values)) msg = ( "Unable to coerce to Series/DataFrame, " "dimension must be <= 2: (30, 4, 1, 1, 1)" ) with pytest.raises(ValueError, match=re.escape(msg)): func(df1, ndim_5) result2 = func(simple_frame, row) tm.assert_numpy_array_equal( result2.values, func(simple_frame.values, row.values) ) result3 = func(float_frame, 0) tm.assert_numpy_array_equal(result3.values, func(float_frame.values, 0)) msg = "Can only compare identically-labeled DataFrame" with pytest.raises(ValueError, match=msg): func(simple_frame, simple_frame[:2]) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_strings_to_numbers_comparisons_raises(self, compare_operators_no_eq_ne): # GH 11565 df = DataFrame( {x: {"x": "foo", "y": "bar", "z": "baz"} for x in ["a", "b", "c"]} ) f = getattr(operator, compare_operators_no_eq_ne) msg = "'[<>]=?' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): f(df, 0) def test_comparison_protected_from_errstate(self): missing_df = tm.makeDataFrame() missing_df.iloc[0]["A"] = np.nan with np.errstate(invalid="ignore"): expected = missing_df.values < 0 with np.errstate(invalid="raise"): result = (missing_df < 0).values tm.assert_numpy_array_equal(result, expected) def test_boolean_comparison(self): # GH 4576 # boolean comparisons with a tuple/list give unexpected results df = DataFrame(np.arange(6).reshape((3, 2))) b = np.array([2, 2]) b_r = np.atleast_2d([2, 2]) b_c = b_r.T lst = [2, 2, 2] tup = tuple(lst) # gt expected = DataFrame([[False, False], [False, True], [True, True]]) result = df > b tm.assert_frame_equal(result, expected) result = df.values > b tm.assert_numpy_array_equal(result, expected.values) msg1d = "Unable to coerce to Series, length must be 2: given 3" msg2d = "Unable to coerce to DataFrame, shape must be" msg2db = "operands could not be broadcast together with shapes" with pytest.raises(ValueError, match=msg1d): # wrong shape df > lst with pytest.raises(ValueError, match=msg1d): # wrong shape result = df > tup # broadcasts like ndarray (GH#23000) result = df > b_r tm.assert_frame_equal(result, expected) result = df.values > b_r tm.assert_numpy_array_equal(result, expected.values) with pytest.raises(ValueError, match=msg2d): df > b_c with pytest.raises(ValueError, match=msg2db): df.values > b_c # == expected = DataFrame([[False, False], [True, False], [False, False]]) result = df == b tm.assert_frame_equal(result, expected) with pytest.raises(ValueError, match=msg1d): result = df == lst with pytest.raises(ValueError, match=msg1d): result = df == tup # broadcasts like ndarray (GH#23000) result = df == b_r tm.assert_frame_equal(result, expected) result = df.values == b_r tm.assert_numpy_array_equal(result, expected.values) with pytest.raises(ValueError, match=msg2d): df == b_c assert df.values.shape != b_c.shape # with alignment df = DataFrame( np.arange(6).reshape((3, 2)), columns=list("AB"), index=list("abc") ) expected.index = df.index expected.columns = df.columns with pytest.raises(ValueError, match=msg1d): result = df == lst with pytest.raises(ValueError, match=msg1d): result = df == tup def test_inplace_ops_alignment(self): # inplace ops / ops alignment # GH 8511 columns = list("abcdefg") X_orig = DataFrame( np.arange(10 * len(columns)).reshape(-1, len(columns)), columns=columns, index=range(10), ) Z = 100 * X_orig.iloc[:, 1:-1].copy() block1 = list("bedcf") subs = list("bcdef") # add X = X_orig.copy() result1 = (X[block1] + Z).reindex(columns=subs) X[block1] += Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] + Z[block1]).reindex(columns=subs) X[block1] += Z[block1] result4 = X.reindex(columns=subs) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result1, result3) tm.assert_frame_equal(result1, result4) # sub X = X_orig.copy() result1 = (X[block1] - Z).reindex(columns=subs) X[block1] -= Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] - Z[block1]).reindex(columns=subs) X[block1] -= Z[block1] result4 = X.reindex(columns=subs) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result1, result3) tm.assert_frame_equal(result1, result4) def test_inplace_ops_identity(self): # GH 5104 # make sure that we are actually changing the object s_orig = Series([1, 2, 3]) df_orig = DataFrame(np.random.randint(0, 5, size=10).reshape(-1, 5)) # no dtype change s = s_orig.copy() s2 = s s += 1 tm.assert_series_equal(s, s2) tm.assert_series_equal(s_orig + 1, s) assert s is s2 assert s._mgr is s2._mgr df = df_orig.copy() df2 = df df += 1 tm.assert_frame_equal(df, df2) tm.assert_frame_equal(df_orig + 1, df) assert df is df2 assert df._mgr is df2._mgr # dtype change s = s_orig.copy() s2 = s s += 1.5 tm.assert_series_equal(s, s2) tm.assert_series_equal(s_orig + 1.5, s) df = df_orig.copy() df2 = df df += 1.5 tm.assert_frame_equal(df, df2) tm.assert_frame_equal(df_orig + 1.5, df) assert df is df2 assert df._mgr is df2._mgr # mixed dtype arr = np.random.randint(0, 10, size=5) df_orig = DataFrame({"A": arr.copy(), "B": "foo"}) df = df_orig.copy() df2 = df df["A"] += 1 expected = DataFrame({"A": arr.copy() + 1, "B": "foo"}) tm.assert_frame_equal(df, expected) tm.assert_frame_equal(df2, expected) assert df._mgr is df2._mgr df = df_orig.copy() df2 = df df["A"] += 1.5 expected = DataFrame({"A": arr.copy() + 1.5, "B": "foo"}) tm.assert_frame_equal(df, expected) tm.assert_frame_equal(df2, expected) assert df._mgr is df2._mgr @pytest.mark.parametrize( "op", [ "add", "and", "div", "floordiv", "mod", "mul", "or", "pow", "sub", "truediv", "xor", ], ) def test_inplace_ops_identity2(self, op): if op == "div": return df = DataFrame({"a": [1.0, 2.0, 3.0], "b": [1, 2, 3]}) operand = 2 if op in ("and", "or", "xor"): # cannot use floats for boolean ops df["a"] = [True, False, True] df_copy = df.copy() iop = f"__i{op}__" op = f"__{op}__" # no id change and value is correct getattr(df, iop)(operand) expected = getattr(df_copy, op)(operand) tm.assert_frame_equal(df, expected) expected = id(df) assert id(df) == expected def test_alignment_non_pandas(self): index = ["A", "B", "C"] columns = ["X", "Y", "Z"] df = pd.DataFrame(np.random.randn(3, 3), index=index, columns=columns) align = pd.core.ops._align_method_FRAME for val in [ [1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype=np.int64), range(1, 4), ]: expected = DataFrame({"X": val, "Y": val, "Z": val}, index=df.index) tm.assert_frame_equal(align(df, val, "index")[1], expected) expected = DataFrame( {"X": [1, 1, 1], "Y": [2, 2, 2], "Z": [3, 3, 3]}, index=df.index ) tm.assert_frame_equal(align(df, val, "columns")[1], expected) # length mismatch msg = "Unable to coerce to Series, length must be 3: given 2" for val in [[1, 2], (1, 2), np.array([1, 2]), range(1, 3)]: with pytest.raises(ValueError, match=msg): align(df, val, "index") with pytest.raises(ValueError, match=msg): align(df, val, "columns") val = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) tm.assert_frame_equal( align(df, val, "index")[1], DataFrame(val, index=df.index, columns=df.columns), ) tm.assert_frame_equal( align(df, val, "columns")[1], DataFrame(val, index=df.index, columns=df.columns), ) # shape mismatch msg = "Unable to coerce to DataFrame, shape must be" val = np.array([[1, 2, 3], [4, 5, 6]]) with pytest.raises(ValueError, match=msg): align(df, val, "index") with pytest.raises(ValueError, match=msg): align(df, val, "columns") val = np.zeros((3, 3, 3)) msg = re.escape( "Unable to coerce to Series/DataFrame, dimension must be <= 2: (3, 3, 3)" ) with pytest.raises(ValueError, match=msg): align(df, val, "index") with pytest.raises(ValueError, match=msg): align(df, val, "columns") def test_no_warning(self, all_arithmetic_operators): df = pd.DataFrame({"A": [0.0, 0.0], "B": [0.0, None]}) b = df["B"] with tm.assert_produces_warning(None): getattr(df, all_arithmetic_operators)(b, 0) def test_pow_with_realignment(): # GH#32685 pow has special semantics for operating with null values left = pd.DataFrame({"A": [0, 1, 2]}) right = pd.DataFrame(index=[0, 1, 2]) result = left ** right expected = pd.DataFrame({"A": [np.nan, 1.0, np.nan]}) tm.assert_frame_equal(result, expected) # TODO: move to tests.arithmetic and parametrize def test_pow_nan_with_zero(): left = pd.DataFrame({"A": [np.nan, np.nan, np.nan]}) right = pd.DataFrame({"A": [0, 0, 0]}) expected = pd.DataFrame({"A": [1.0, 1.0, 1.0]}) result = left ** right tm.assert_frame_equal(result, expected) result = left["A"] ** right["A"] tm.assert_series_equal(result, expected["A"]) def test_dataframe_series_extension_dtypes(): # https://github.com/pandas-dev/pandas/issues/34311 df = pd.DataFrame(np.random.randint(0, 100, (10, 3)), columns=["a", "b", "c"]) ser = pd.Series([1, 2, 3], index=["a", "b", "c"]) expected = df.to_numpy("int64") + ser.to_numpy("int64").reshape(-1, 3) expected = pd.DataFrame(expected, columns=df.columns, dtype="Int64") df_ea = df.astype("Int64") result = df_ea + ser tm.assert_frame_equal(result, expected) result = df_ea + ser.astype("Int64") tm.assert_frame_equal(result, expected) def test_dataframe_blockwise_slicelike(): # GH#34367 arr = np.random.randint(0, 1000, (100, 10)) df1 = pd.DataFrame(arr) df2 = df1.copy() df2.iloc[0, [1, 3, 7]] = np.nan df3 = df1.copy() df3.iloc[0, [5]] = np.nan df4 = df1.copy() df4.iloc[0, np.arange(2, 5)] = np.nan df5 = df1.copy() df5.iloc[0, np.arange(4, 7)] = np.nan for left, right in [(df1, df2), (df2, df3), (df4, df5)]: res = left + right expected = pd.DataFrame({i: left[i] + right[i] for i in left.columns}) tm.assert_frame_equal(res, expected) @pytest.mark.parametrize( "df, col_dtype", [ (pd.DataFrame([[1.0, 2.0], [4.0, 5.0]], columns=list("ab")), "float64"), (pd.DataFrame([[1.0, "b"], [4.0, "b"]], columns=list("ab")), "object"), ], ) def test_dataframe_operation_with_non_numeric_types(df, col_dtype): # GH #22663 expected = pd.DataFrame([[0.0, np.nan], [3.0, np.nan]], columns=list("ab")) expected = expected.astype({"b": col_dtype}) result = df + pd.Series([-1.0], index=list("a"))
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import os import importlib from datetime import datetime from pathlib import Path from bs4 import BeautifulSoup from joblib import Parallel, delayed if importlib.util.find_spec("pandas") is not None: import pandas as pd from xbrr.base.reader.base_reader import BaseReader from xbrr.edinet.reader.directory import Directory from xbrr.edinet.reader.taxonomy import Taxonomy from xbrr.edinet.reader.element import Element from xbrr.edinet.reader.element_schema import ElementSchema class Reader(BaseReader): def __init__(self, xbrl_dir_or_file="", taxonomy=None): super().__init__("edinet") self.__xbrl_dir_or_file = xbrl_dir_or_file self._cache = {} if os.path.isdir(xbrl_dir_or_file): self.xbrl_dir = Directory(xbrl_dir_or_file) self.xbrl_file = self.xbrl_dir._find_file("xbrl", as_xml=False) elif os.path.isfile(xbrl_dir_or_file): self.xbrl_file = xbrl_dir_or_file self.xbrl_dir = None else: raise Exception( f"File or directory {xbrl_dir_or_file} does not Exsit.") if isinstance(taxonomy, Taxonomy): self.taxonomy = taxonomy else: if self.xbrl_dir: root = Path(self.xbrl_dir.root).parent else: root = Path(self.xbrl_file).parent if root.name == "raw": # Cookiecutter data science structure root = root.parent root = root.joinpath("external") self.taxonomy = Taxonomy(root) self.taxonomy_year = "" self.__set_taxonomy_year() def set_cache(self, cache): self._cache = cache return self def __reduce_ex__(self, proto): return type(self), (self.__xbrl_dir_or_file, self.taxonomy) def __set_taxonomy_year(self): self.taxonomy_year = "" date = self.xbrl.find("jpdei_cor:CurrentFiscalYearEndDateDEI").text kind = self.xbrl.find("jpdei_cor:TypeOfCurrentPeriodDEI").text date = datetime.strptime(date, "%Y-%m-%d") for y in sorted(list(self.taxonomy.TAXONOMIES.keys()), reverse=True): boarder_date = datetime(int(y[:4]), 3, 31) if kind[0] in ("Q", "H") and date > boarder_date: self.taxonomy_year = y elif date >= boarder_date: if y == 2019: self.taxonomy_year = "2019_cg_ifrs" else: self.taxonomy_year = y if self.taxonomy_year: break @property def roles(self): role_refs = self.find_all("link:roleRef") roles = {} for e in role_refs: element = e.element link = element["xlink:href"] roles[element["roleURI"]] = { "link": element["xlink:href"], "name": self.read_by_link(link).element.find("link:definition").text } return roles @property def taxonomy_path(self): return self.taxonomy.root.joinpath("taxonomy", str(self.taxonomy_year)) @property def namespaces(self): schema = self.xbrl.find("xbrli:xbrl") namespaces = {} for a in schema.attrs: if a.startswith("xmlns:"): namespaces[a.replace("xmlns:", "")] = schema.attrs[a] return namespaces @property def xbrl(self): if self.xbrl_dir: path = self.xbrl_dir._find_file("xbrl", as_xml=False) else: path = self.xbrl_file return self._read_from_cache(path) def _read_from_cache(self, path): xml = None if path in self._cache: xml = self._cache[path] else: with open(path, encoding="utf-8-sig") as f: xml = BeautifulSoup(f, "lxml-xml") self._cache[path] = xml return self._cache[path] def link_to_path(self, link): path = link element = "" if "#" in link: path, element = link.split("#") if self.taxonomy and path.startswith(self.taxonomy.prefix): path = path.replace(self.taxonomy.prefix, "") path = os.path.join(self.taxonomy_path, path) if not os.path.exists(path): _path = Path(path) xbrl_date = _path.parent.name # check namespace directory taxonomy_date = "" if _path.parent.parent.exists(): for d in _path.parent.parent.iterdir(): if d.is_dir(): taxonomy_date = d.name break if taxonomy_date and taxonomy_date != xbrl_date: path = path.replace(xbrl_date, taxonomy_date) if os.path.isdir(path): _path = Path(path) xbrl_date = _path.name # element should exist if name does not exist. namespace = "_".join(element.split("_")[:-1]) path = _path.joinpath(f"{namespace}_{xbrl_date}.xsd") elif self.xbrl_dir: path = self.xbrl_dir._find_file("xsd", as_xml=False) else: path = os.path.dirname(self.xbrl_file) return path def read_by_link(self, link): if link.startswith(self.taxonomy.prefix): self.taxonomy.download(self.taxonomy_year) element = "" if "#" in link: element = link.split("#")[-1] path = self.link_to_path(link) xml = self._read_from_cache(path) if element: xml = xml.select(f"#{element}") # xml = xml.find("element", {"id": element}) if len(xml) > 0: xml = xml[0] xml = Element(element, xml, link, self) return xml def has_role_in_link(self, role_link, link_type): if link_type == "presentation": doc = self.xbrl_dir.pre elif link_type == "calculation": doc = self.xbrl_dir.cal else: return False role = doc.find("link:roleRef", {"roleURI": role_link}) if role is not None: return True else: return False def read_schema_by_role(self, role_link, link_type="presentation", label_kind="", label_verbose=False): if self.xbrl_dir is None: raise Exception("XBRL directory is required.") doc = None link_node = "" arc_node = "" if link_type == "presentation": doc = self.xbrl_dir.pre link_node = "link:presentationLink" arc_node = "link:presentationArc" elif link_type == "calculation": doc = self.xbrl_dir.cal link_node = "link:calculationLink" arc_node = "link:calculationArc" else: raise Exception(f"Does not support {link_type}.") schemas = [] role = doc.find(link_node, {"xlink:role": role_link}) if role is None: return schemas def get_name(loc): return loc["xlink:href"].split("#")[-1] def create(reader, reference): return ElementSchema.create_from_reference( reader, reference, label_kind, label_verbose) nodes = {} arc_role = "" if link_type == "calculation": arc_role = "summation-item" else: arc_role = "parent-child" locs = {} for loc in role.find_all("link:loc"): locs[loc["xlink:label"]] = loc for i, arc in enumerate(role.find_all(arc_node)): if not arc["xlink:arcrole"].endswith(arc_role): print("Unexpected arctype.") continue parent = locs[arc["xlink:from"]] child = locs[arc["xlink:to"]] if get_name(child) not in nodes: c = create(self, child["xlink:href"]).set_alias(child["xlink:label"]) nodes[get_name(child)] = Node(c, arc["order"]) else: nodes[get_name(child)].order = arc["order"] if get_name(parent) not in nodes: p = create(self, parent["xlink:href"]).set_alias(parent["xlink:label"]) nodes[get_name(parent)] = Node(p, i) nodes[get_name(child)].add_parent(nodes[get_name(parent)]) parent_depth = -1 for name in nodes: if parent_depth < nodes[name].depth: parent_depth = nodes[name].depth for name in nodes: n = nodes[name] item = {} parents = n.get_parents() parents = parents + ([""] * (parent_depth - len(parents))) for i, p in zip(reversed(range(parent_depth)), parents): name = p if isinstance(p, str) else p.name order = "0" if isinstance(p, str) else p.order item[f"parent_{i}"] = name item[f"parent_{i}_label"] = "" item[f"parent_{i}_order"] = order item["order"] = n.order item["depth"] = n.depth item.update(n.element.to_dict()) schemas.append(item) schemas =
pd.DataFrame(schemas)
pandas.DataFrame
#-*- coding: utf-8 -*- import re import os from wxpy import * import jieba import numpy import pandas as pd import matplotlib.pyplot as plt from scipy.misc import imread from wordcloud import WordCloud, ImageColorGenerator def remove_txt_file(path): ''' 写入txt文本 ''' if os.path.exists(path): os.remove(path) def write_txt_file(path, txt): ''' 写入txt文本 ''' with open(path, 'a', encoding='utf8') as f: f.write(txt) def read_txt_file(path): ''' 读取txt文本 ''' with open(path, 'r', encoding='utf8') as f: return f.read() def login(): # 初始化机器人,扫码登陆 bot = Bot() # 获取所有好友 my_friends = bot.friends() write_txt_file('data.js', 'var name = "') write_txt_file('data.js', str(bot.self.name)) write_txt_file('data.js', '";\n') return my_friends def show_sex_ratio(friends): # 使用一个字典统计好友男性和女性的数量 sex_dict = {'male': 0, 'female': 0, 'other':0} for friend in friends: # 统计性别 if friend.sex == 1: sex_dict['male'] += 1 elif friend.sex == 2: sex_dict['female'] += 1 else: sex_dict['other'] += 1 # 为了方便数据的呈现,生成JSON Array格式数据 data = [] for key, value in sex_dict.items(): data.append({'name': key, 'value': value}) write_txt_file('data.js', 'var sex_data = ') write_txt_file('data.js', str(data)) write_txt_file('data.js', ';\n') print(sex_dict) def show_area_distribution(friends): # 使用一个字典统计各省好友数量 province_dict = {'北京': 0, '上海': 0, '天津': 0, '重庆': 0, '河北': 0, '山西': 0, '吉林': 0, '辽宁': 0, '黑龙江': 0, '陕西': 0, '甘肃': 0, '青海': 0, '山东': 0, '福建': 0, '浙江': 0, '台湾': 0, '河南': 0, '湖北': 0, '湖南': 0, '江西': 0, '江苏': 0, '安徽': 0, '广东': 0, '海南': 0, '四川': 0, '贵州': 0, '云南': 0, '内蒙古': 0, '新疆': 0, '宁夏': 0, '广西': 0, '西藏': 0, '香港': 0, '澳门': 0, '其他': 0} # 统计省份 for friend in friends: if friend.province in province_dict.keys(): province_dict[friend.province] += 1 else: province_dict['其他'] += 1 # 为了方便数据的呈现,生成JSON Array格式数据 data = [] for key, value in province_dict.items(): data.append({'name': key, 'value': value}) write_txt_file('data.js', "var provice_data = ") write_txt_file('data.js', str(data)) write_txt_file('data.js', ';') print(data) def get_signature(friends): if os.path.exists('signatures'): os.remove('signatures') # 统计签名 for friend in friends: # 对数据进行清洗,将标点符号等对词频统计造成影响的因素剔除 pattern = re.compile(r'[一-龥]+') filterdata = re.findall(pattern, friend.signature) write_txt_file('signatures', ''.join(filterdata)) def show_signature(friends): # 读取文件 content = read_txt_file('signatures') segment = jieba.lcut(content) words_df =
pd.DataFrame({'segment':segment})
pandas.DataFrame
# coding: utf-8 import pandas as pd import numpy as np from bokeh.plotting import figure from bokeh.models import ColumnDataSource from bokeh.models import HoverTool, PanTool, WheelZoomTool, BoxSelectTool, TapTool, OpenURL from bokeh.models import GMapPlot, GMapOptions, Circle, DataRange1d, Range1d from bokeh.io import curdoc from bokeh.layouts import row, column, widgetbox, gridplot from bokeh.models.widgets import Select, Slider, TextInput, DataTable, TableColumn, Div, Select import itertools import os import logging logger = logging.getLogger(__name__) # data file locations MAP_DATA_FILE = 'proteomz_stns.csv' PROTEOMZ_DATA_FILE = 'ExampleDataset.csv' TAXA_KEYS_DATA_FILE = 'Taxa_keys.csv' # plot tools TOOLS = "box_zoom, pan, xwheel_zoom, reset" # global visual parameters TITLE_TEXT_SIZE = '20px' # introduction text INTRODUCTION_HTML = """<b>Ocean Proteomics data from <i>Falkor ProteOMZ Expedition</i> in January-February of 2016. The prototype interactive display can explore millions of protein values from over a hundred 300 liter samples collected in the Central Pacific Oxygen Minimum Zone to depths greater than 1 kilometer. Use the sliders and menus to enable scientific discovery within this novel dataset. <u>*NOTE: This is an example dataset containing <i>shuffled protein annotations.</i> Public release of this dataset coming soon. </u> """ INTRODUCTION_WIDTH = 380 INTRODUCTION_HEIGHT = 130 # map visual parameters MAP_WIDTH = 400 MAP_HEIGHT = 750 MAP_TITLE = 'ProteOMZ EXPEDITION FALKOR 2015' MAP_LAT = 7.29 MAP_LON = -145.73 MAP_ZOOM = 4 # For map to work, uncomment this line and put your own google API key (https://developers.google.com/maps/documentation/javascript/get-api-key) # MAP_API_KEY = MAP_TYPE = 'hybrid' DESELECTED_STATION_COLOR = 'white' SELECTED_STATION_COLOR = 'red' # profile visual parameters PROFILE_TITLE = 'The Vertical Distribution of Microbial Proteins' PROFILE_X_LABEL = 'Relative Abundance (Spectral Counts)' PROFILE_Y_LABEL = 'Depth in the Ocean (meters)' PROFILE_LINE_COLOR = 'red' MAX_PROFILES = 1200 PROFILE_WIDTH = 600 PROFILE_HEIGHT = 1100 # histogram visual parameters HISTOGRAM_TITLE = 'All Spectra/IDs' HISTOGRAM_X_LABEL = 'Sum of Proteins/Spectra' HISTOGRAM_WIDTH = 400 HISTOGRAM_HEIGHT = 1100 # bar chart visual parameters TAXA_BAR_TITLE = 'The Diversity of Microbial Proteins' TAXA_BAR_WIDTH = 600 TAXA_BAR_HEIGHT = 350 TAXA_BAR_COLORS = ["#e6ab02", "#1f78b4", "#b2182b", "#7570b3", "#e7298a", "#66a61e", "#d95f02", "#666666"] #, "#1b9e77"] #table settings TAXON_TABLE_WIDTH=600 TAXON_TABLE_HEIGHT=750 # initial selections ALL = 'ALL' INIT_TAXA_GROUP = ALL INIT_EC_GROUP = ALL INIT_PCTILE = 95 INIT_NUT = 'N+N' INIT_PROT = 'P1' ST_SELECT_TITLE = 'Station' NUT_SELECT_TITLE = 'Select Hydrographic Parameter for Correlation' TN_SELECT_TITLE = 'Select Microbial Taxon' EC_SELECT_TITLE = 'Major Enzyme Classes' PERCENTILE_SLIDER_TITLE = 'Percentile (Note: be patient below 90%)' EC_GROUPS = ['Oxidoreductases','Transferases', 'Hydrolases', 'Lyases', 'Isomerases', 'Ligases'] # computing axis ranges def compute_profile_axis_ranges(z, station_counts): # compute plot axis ranges for profile plot max_z, min_z = z.max(), z.min() min_c, max_c = 0, station_counts.max().max() return (max_z, min_z), (min_c, max_c) def compute_histogram_axis_ranges(histogram_datasource): # compute plot axis ranges for histogram min_h = 0 max_h = max(histogram_datasource.data['prot_cts']) * 1.5 return (min_h, max_h) # main container class Visualization(object): def __init__(self): """read data and construct plot elements in their initial state""" self.read_data() z, station_counts, hydrography_counts, all_counts, selected_nut = self.select_initial_data(self.stations[0]) self.construct_datasources(z, station_counts, hydrography_counts, all_counts, selected_nut) # create plots and widgets self.make_plots(z, station_counts, hydrography_counts, selected_nut) self.make_widgets() def read_data(self): """read data and transform into dataframes""" self._read_map_data() self._read_proteomz_with_metadata() def _read_map_data(self): # second column data source for map stn/lat/long only, single point per stn self.stn_coor = pd.read_csv(MAP_DATA_FILE, index_col=None) def _read_proteomz_with_metadata(self): """read the large spreadsheet CSV, extract sections, and reorganize into meaningful dataframes""" df = pd.read_csv(PROTEOMZ_DATA_FILE, low_memory=False) # extract metadata section of spreadsheet containing station and depth information self.cruise_metadata = df[df.columns[:11]][:103] # stations are in that column of cruise_metadata self.stations = self.cruise_metadata.Station.unique().astype(int) # extract counts section of spreadsheet all_counts = df[df.columns[21:]][:103].transpose() self.all_counts = all_counts.dropna().astype(float) #extract hydrographic data hydrography = df[df.columns[4:17]][:103].transpose() self.hydrography = hydrography.dropna().astype(float) # extract metadata section of spreadsheet containing prot id information data = df[103:] data.index=data.pop('ID') for col in data.columns[:10]: data.pop(col) prot_metadata = data.transpose() ### For taxonomy information we read a different file taxa_df = pd.read_csv(TAXA_KEYS_DATA_FILE) prot_metadata.best_hit_taxon_id = pd.to_numeric(prot_metadata['best_hit_taxon_id'], errors='coerce') taxa_df.best_hit_taxon_id = pd.to_numeric(taxa_df['best_hit_taxon_id'], errors='coerce') prot_metadata_taxa =
pd.merge(prot_metadata, taxa_df, how='left')
pandas.merge
from operantanalysis import concat_lickometer_files import numpy as np import pandas as pd import math days = int(input("How many days would you like to analyze?")) df = pd.DataFrame() for i in range(days): lick_df = concat_lickometer_files() df2 = pd.DataFrame() df3 = pd.DataFrame() df4means = pd.DataFrame() for colname, col in lick_df.iteritems(): bout_list = [] rate_list = [] bout = 0 lick_count = 0 x2 = 0 nan = 0 totaltime = -col[0] lick_count_2 = 0 for x in col: x2 += 1 if x <= 1000: bout += x lick_count += 1 if x2 == len(col): bout_list += [bout] if bout > 0: rate_list += [lick_count / bout] bout = 0 elif x > 1000: bout_list += [bout] if bout > 0: rate_list += [lick_count / bout] bout = 0 lick_count = 1 elif math.isnan(x) and nan < 1: nan += 1 bout_list += [bout] if bout > 0: rate_list += [lick_count / bout] bout = 0 totaltime += x if totaltime <= 120000: lick_count_2 += 1 if len(rate_list) == 0: mean_bout_l = 0 mean_rate = 0 else: mean_bout_l = sum(bout_list)/len(rate_list) mean_rate = sum(rate_list)/len(rate_list) lick_rate_2min = lick_count_2 / 120000 dftemp = pd.DataFrame(np.array(bout_list)) df2 = pd.concat([df2, dftemp], ignore_index=True, axis=1) dftemp2 = pd.DataFrame(np.array(rate_list)) df3 = pd.concat([df3, dftemp2], ignore_index=True, axis=1) dftempmeans = pd.DataFrame(np.array([np.count_nonzero(~np.isnan(col)), len(rate_list), mean_bout_l, mean_rate, lick_rate_2min])) df4means =
pd.concat([df4means, dftempmeans], ignore_index=True, axis=1)
pandas.concat
# product-demand-xgbr_ho ''' The dataset is from Kaggle: Forcasts for Product Demand. https://www.kaggle.com/felixzhao/productdemandforecasting The code cleans, scales, trains, fits, and predicts using the XGBoost Regressor with hyperparameters tuned with Bayesian Optimization ''' import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import datetime, time, re, pickle from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import xgboost as xgb from xgboost import XGBRegressor from xgboost import plot_importance from bayes_opt import BayesianOptimization from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import r2_score from scipy.stats import kendalltau, spearmanr def bracket(row): ''' This function converts [negative] string values in bracket form to standard integers. ''' if re.search('\(', row): return int('-' + row[1:-1]) else: return int(row) def code_split(code): ''' Splits the product codes and return numerical component of the product code. ''' z = code.split('_') return int(z[1]) def plot_features(booster, figsize): fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=120) return plot_importance(booster=booster, ax=ax) def xgb_evaluate(learning_rate, max_depth, subsample, eta, gamma, colsample_bytree): params = { 'silent': True, 'eval_metric': 'rmse', 'learning_rate': learning_rate, 'max_depth': int(max_depth), 'subsample': subsample, 'eta': eta, 'gamma': gamma, 'colsample_bytree': colsample_bytree } # Used 1000 boosting rounds in the full model; computationally expensive cv_result = xgb.cv(params, dtrain, num_boost_round=200, nfold=5) # Bayesian optimization only knows how to maximize, not minimize, so return the negative RMSE return -1.0 * cv_result['test-rmse-mean'].iloc[-1] if __name__ == '__main__': df = pd.read_csv('Historical Product Demand.csv') print('\nCleaning the data. Please wait...\n') df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
__author__ = 'Yan' import pandas import statistics import numpy as np import matplotlib.pylab as plt from sklearn.cross_validation import train_test_split from sklearn.linear_model import LassoLarsCV from sklearn import preprocessing # bug fix for display formats to avoid run time errors
pandas.set_option('display.float_format', lambda x:'%.2f'%x)
pandas.set_option
import rdflib from datetime import datetime from nanopub import Nanopublication import logging import sys import pandas as pd import configparser import hashlib from .autonomic.update_change_service import UpdateChangeService from whyis.namespace import whyis, prov, sio class Interpreter(UpdateChangeService): kb = ":" cb_fn = None timeline_fn = None data_fn = None prefix_fn = "prefixes.txt" prefixes = {} studyRef = None unit_code_list = [] unit_uri_list = [] unit_label_list = [] explicit_entry_list = [] virtual_entry_list = [] explicit_entry_tuples = [] virtual_entry_tuples = [] cb_tuple = {} timeline_tuple = {} config = configparser.ConfigParser() def __init__(self, config_fn=None): # prefixes should be if config_fn is not None: try: self.config.read(config_fn) except Exception as e: logging.exception("Error: Unable to open configuration file: ") if hasattr(e, 'message'): logging.exception(e.message) else: logging.exception(e) sys.exit(1) if self.config.has_option('Prefixes', 'prefixes'): self.prefix_fn = self.config.get('Prefixes', 'prefixes') # prefix_file = open(self.prefix_fn,"r") # self.prefixes = prefix_file.readlines() prefix_file = pd.read_csv(self.prefix_fn, dtype=object) try: for row in prefix_file.itertuples(): self.prefixes[row.prefix] = row.url except Exception as e: logging.exception("Error: Something went wrong when trying to read the Prefix File: ") if hasattr(e, 'message'): logging.exception(e.message) else: logging.exception(e) sys.exit(1) if self.config.has_option('Prefixes', 'base_uri'): self.kb = self.config.get('Prefixes', 'base_uri') if self.config.has_option('Source Files', 'dictionary'): dm_fn = self.config.get('Source Files', 'dictionary') try: dm_file = pd.read_csv(dm_fn, dtype=object) try: # Populate virtual and explicit entry lists for row in dm_file.itertuples(): if pd.isnull(row.Column): logging.exception("Error: The SDD must have a column named 'Column'") sys.exit(1) if row.Column.startswith("??"): self.virtual_entry_list.append(row) else: self.explicit_entry_list.append(row) except Exception as e: logging.exception( "Error: Something went wrong when trying to read the Dictionary Mapping File: ") if hasattr(e, 'message'): logging.exception(e.message) else: logging.exception(e) sys.exit(1) except Exception as e: logging.exception("Error: The specified Dictionary Mapping file does not exist: ") if hasattr(e, 'message'): logging.exception(e.message) else: logging.exception(e) sys.exit(1) if self.config.has_option('Source Files', 'codebook'): self.cb_fn = self.config.get('Source Files', 'codebook') if self.cb_fn is not None: try: cb_file = pd.read_csv(self.cb_fn, dtype=object) try: inner_tuple_list = [] for row in cb_file.itertuples(): if (pd.notnull(row.Column) and row.Column not in self.cb_tuple): inner_tuple_list = [] inner_tuple = {} inner_tuple["Code"] = row.Code if pd.notnull(row.Label): inner_tuple["Label"] = row.Label if pd.notnull(row.Class): inner_tuple["Class"] = row.Class if "Resource" in row and pd.notnull(row.Resource): inner_tuple["Resource"] = row.Resource inner_tuple_list.append(inner_tuple) self.cb_tuple[row.Column] = inner_tuple_list except Exception as e: logging.warning("Warning: Unable to process Codebook file: ") if hasattr(e, 'message'): logging.warning(e.message) else: logging.warning(e) except Exception as e: logging.exception("Error: The specified Codebook file does not exist: ") if hasattr(e, 'message'): logging.exception(e.message) else: logging.exception(e) sys.exit(1) if self.config.has_option('Source Files', 'timeline'): self.timeline_fn = self.config.get('Source Files', 'timeline') if self.timeline_fn is not None: try: timeline_file = pd.read_csv(self.timeline_fn, dtype=object) try: inner_tuple_list = [] for row in timeline_file.itertuples(): if pd.notnull(row.Name) and row.Name not in self.timeline_tuple: inner_tuple_list = [] inner_tuple = {} inner_tuple["Type"] = row.Type if pd.notnull(row.Label): inner_tuple["Label"] = row.Label if pd.notnull(row.Start): inner_tuple["Start"] = row.Start if pd.notnull(row.End): inner_tuple["End"] = row.End if pd.notnull(row.Unit): inner_tuple["Unit"] = row.Unit if pd.notnull(row.inRelationTo): inner_tuple["inRelationTo"] = row.inRelationTo inner_tuple_list.append(inner_tuple) self.timeline_tuple[row.Name] = inner_tuple_list except Exception as e: logging.warning("Warning: Unable to process Timeline file: ") if hasattr(e, 'message'): logging.warning(e.message) else: logging.warning(e) except Exception as e: logging.exception("Error: The specified Timeline file does not exist: ") if hasattr(e, 'message'): logging.exception(e.message) else: logging.exception(e) sys.exit(1) if self.config.has_option('Source Files', 'code_mappings'): cmap_fn = self.config.get('Source Files', 'code_mappings') code_mappings_reader = pd.read_csv(cmap_fn) for code_row in code_mappings_reader.itertuples(): if pd.notnull(code_row.code): self.unit_code_list.append(code_row.code) if pd.notnull(code_row.uri): self.unit_uri_list.append(code_row.uri) if pd.notnull(code_row.label): self.unit_label_list.append(code_row.label) if self.config.has_option('Source Files', 'data_file'): self.data_fn = self.config.get('Source Files', 'data_file') def getInputClass(self): return whyis.SemanticDataDictionary def getOutputClass(self): return whyis.SemanticDataDictionaryInterpretation def get_query(self): return '''SELECT ?s WHERE { ?s ?p ?o .} LIMIT 1\n''' def process(self, i, o): print("Processing SDD...") self.app.db.store.nsBindings = {} npub = Nanopublication(store=o.graph.store) # prefixes={} # prefixes.update(self.prefixes) # prefixes.update(self.app.NS.prefixes) self.writeVirtualEntryNano(npub) self.writeExplicitEntryNano(npub) self.interpretData(npub) def parseString(self, input_string, delim): my_list = input_string.split(delim) my_list = [element.strip() for element in my_list] return my_list def rdflibConverter(self, input_word): if "http" in input_word: return rdflib.term.URIRef(input_word) if ':' in input_word: word_list = input_word.split(":") term = self.prefixes[word_list[0]] + word_list[1] return rdflib.term.URIRef(term) return rdflib.Literal(input_word, datatype=rdflib.XSD.string) def codeMapper(self, input_word): unitVal = input_word for unit_label in self.unit_label_list: if unit_label == input_word: unit_index = self.unit_label_list.index(unit_label) unitVal = self.unit_uri_list[unit_index] for unit_code in self.unit_code_list: if unit_code == input_word: unit_index = self.unit_code_list.index(unit_code) unitVal = self.unit_uri_list[unit_index] return unitVal def convertVirtualToKGEntry(self, *args): if args[0][:2] == "??": if self.studyRef is not None: if args[0] == self.studyRef: return self.prefixes[self.kb] + args[0][2:] if len(args) == 2: return self.prefixes[self.kb] + args[0][2:] + "-" + args[1] return self.prefixes[self.kb] + args[0][2:] if ':' not in args[0]: # Check for entry in column list for item in self.explicit_entry_list: if args[0] == item.Column: if len(args) == 2: return self.prefixes[self.kb] + args[0].replace(" ", "_").replace(",", "").replace("(", "").replace( ")", "").replace("/", "-").replace("\\", "-") + "-" + args[1] return self.prefixes[self.kb] + args[0].replace(" ", "_").replace(",", "").replace("(", "").replace( ")", "").replace("/", "-").replace("\\", "-") return '"' + args[0] + "\"^^xsd:string" return args[0] def checkVirtual(self, input_word): try: if input_word[:2] == "??": return True return False except Exception as e: logging.exception("Something went wrong in Interpreter.checkVirtual(): ") if hasattr(e, 'message'): logging.exception(e.message) else: logging.exception(e) sys.exit(1) def isfloat(self, value): try: float(value) return True except ValueError: return False def writeVirtualEntryNano(self, nanopub): for item in self.virtual_entry_list: virtual_tuple = {} term = rdflib.term.URIRef(self.prefixes[self.kb] + str(item.Column[2:])) nanopub.assertion.add((term, rdflib.RDF.type, rdflib.OWL.Class)) nanopub.assertion.add( (term, rdflib.RDFS.label, rdflib.Literal(str(item.Column[2:]), datatype=rdflib.XSD.string))) # Set the rdf:type of the virtual row to either the Attribute or Entity value (or else owl:Individual) if (pd.notnull(item.Entity)) and (pd.isnull(item.Attribute)): if ',' in item.Entity: entities = self.parseString(item.Entity, ',') for entity in entities: nanopub.assertion.add( (term, rdflib.RDFS.subClassOf, self.rdflibConverter(self.codeMapper(entity)))) else: nanopub.assertion.add( (term, rdflib.RDFS.subClassOf, self.rdflibConverter(self.codeMapper(item.Entity)))) virtual_tuple["Column"] = item.Column virtual_tuple["Entity"] = self.codeMapper(item.Entity) if virtual_tuple["Entity"] == "hasco:Study": self.studyRef = item.Column virtual_tuple["Study"] = item.Column elif (pd.isnull(item.Entity)) and (pd.notnull(item.Attribute)): if ',' in item.Attribute: attributes = self.parseString(item.Attribute, ',') for attribute in attributes: nanopub.assertion.add( (term, rdflib.RDFS.subClassOf, self.rdflibConverter(self.codeMapper(attribute)))) else: nanopub.assertion.add( (term, rdflib.RDFS.subClassOf, self.rdflibConverter(self.codeMapper(item.Attribute)))) virtual_tuple["Column"] = item.Column virtual_tuple["Attribute"] = self.codeMapper(item.Attribute) else: logging.warning( "Warning: Virtual entry not assigned an Entity or Attribute value, or was assigned both.") virtual_tuple["Column"] = item.Column # If there is a value in the inRelationTo column ... if pd.notnull(item.inRelationTo): virtual_tuple["inRelationTo"] = item.inRelationTo # If there is a value in the Relation column but not the Role column ... if (pd.notnull(item.Relation)) and (pd.isnull(item.Role)): nanopub.assertion.add((term, self.rdflibConverter(item.Relation), self.rdflibConverter(self.convertVirtualToKGEntry(item.inRelationTo)))) virtual_tuple["Relation"] = item.Relation # If there is a value in the Role column but not the Relation column ... elif (pd.isnull(item.Relation)) and (pd.notnull(item.Role)): role = rdflib.BNode() nanopub.assertion.add( (role, rdflib.RDF.type, self.rdflibConverter(self.convertVirtualToKGEntry(item.Role)))) nanopub.assertion.add( (role, sio.inRelationTo, self.rdflibConverter(self.convertVirtualToKGEntry(item.inRelationTo)))) nanopub.assertion.add((term, sio.hasRole, role)) virtual_tuple["Role"] = item.Role # If there is a value in the Role and Relation columns ... elif (pd.notnull(item.Relation)) and (pd.notnull(item.Role)): virtual_tuple["Relation"] = item.Relation virtual_tuple["Role"] = item.Role nanopub.assertion.add( (term, sio.hasRole, self.rdflibConverter(self.convertVirtualToKGEntry(item.Role)))) nanopub.assertion.add((term, self.rdflibConverter(item.Relation), self.rdflibConverter(self.convertVirtualToKGEntry(item.inRelationTo)))) nanopub.provenance.add((term, prov.generatedAtTime, rdflib.Literal( "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year, datetime.utcnow().month, datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format( datetime.utcnow().hour, datetime.utcnow().minute, datetime.utcnow().second) + "Z", datatype=rdflib.XSD.dateTime))) if pd.notnull(item.wasDerivedFrom): if ',' in item.wasDerivedFrom: derivedFromTerms = self.parseString(item.wasDerivedFrom, ',') for derivedFromTerm in derivedFromTerms: nanopub.provenance.add((term, prov.wasDerivedFrom, self.rdflibConverter(self.convertVirtualToKGEntry(derivedFromTerm)))) else: nanopub.provenance.add((term, prov.wasDerivedFrom, self.rdflibConverter(self.convertVirtualToKGEntry(item.wasDerivedFrom)))) virtual_tuple["wasDerivedFrom"] = item.wasDerivedFrom if pd.notnull(item.wasGeneratedBy): if ',' in item.wasGeneratedBy: generatedByTerms = self.parseString(item.wasGeneratedBy, ',') for generatedByTerm in generatedByTerms: nanopub.provenance.add((term, prov.wasGeneratedBy, self.rdflibConverter(self.convertVirtualToKGEntry(generatedByTerm)))) else: nanopub.provenance.add((term, prov.wasGeneratedBy, self.rdflibConverter(self.convertVirtualToKGEntry(item.wasGeneratedBy)))) virtual_tuple["wasGeneratedBy"] = item.wasGeneratedBy self.virtual_entry_tuples.append(virtual_tuple) if self.timeline_fn is not None: for key in self.timeline_tuple: tl_term = self.rdflibConverter(self.convertVirtualToKGEntry(key)) nanopub.assertion.add((tl_term, rdflib.RDF.type, rdflib.OWL.Class)) for timeEntry in self.timeline_tuple[key]: if 'Type' in timeEntry: nanopub.assertion.add( (tl_term, rdflib.RDFS.subClassOf, self.rdflibConverter(timeEntry['Type']))) if 'Label' in timeEntry: nanopub.assertion.add((tl_term, rdflib.RDFS.label, rdflib.Literal(str(timeEntry['Label']), datatype=rdflib.XSD.string))) if 'Start' in timeEntry and 'End' in timeEntry and timeEntry['Start'] == timeEntry['End']: nanopub.assertion.add((tl_term, sio.hasValue, self.rdflibConverter(str(timeEntry['Start'])))) if 'Start' in timeEntry: start_time = rdflib.BNode() nanopub.assertion.add((start_time, sio.hasValue, self.rdflibConverter(str(timeEntry['Start'])))) nanopub.assertion.add((tl_term, sio.hasStartTime, start_time)) if 'End' in timeEntry: end_time = rdflib.BNode() nanopub.assertion.add((end_time, sio.hasValue, self.rdflibConverter(str(timeEntry['End'])))) nanopub.assertion.add((tl_term, sio.hasEndTime, end_time)) if 'Unit' in timeEntry: nanopub.assertion.add( (tl_term, sio.hasUnit, self.rdflibConverter(self.codeMapper(timeEntry['Unit'])))) if 'inRelationTo' in timeEntry: nanopub.assertion.add((tl_term, sio.inRelationTo, self.rdflibConverter( self.convertVirtualToKGEntry(timeEntry['inRelationTo'])))) nanopub.provenance.add((tl_term, prov.generatedAtTime, rdflib.Literal( "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year, datetime.utcnow().month, datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format( datetime.utcnow().hour, datetime.utcnow().minute, datetime.utcnow().second) + "Z", datatype=rdflib.XSD.dateTime))) def writeExplicitEntryNano(self, nanopub): for item in self.explicit_entry_list: explicit_entry_tuple = {} term = rdflib.term.URIRef(self.prefixes[self.kb] + str( item.Column.replace(" ", "_").replace(",", "").replace("(", "").replace(")", "").replace("/", "-").replace( "\\", "-"))) nanopub.assertion.add((term, rdflib.RDF.type, rdflib.OWL.Class)) if pd.notnull(item.Attribute): if ',' in item.Attribute: attributes = self.parseString(item.Attribute, ',') for attribute in attributes: nanopub.assertion.add( (term, rdflib.RDFS.subClassOf, self.rdflibConverter(self.codeMapper(attribute)))) else: nanopub.assertion.add( (term, rdflib.RDFS.subClassOf, self.rdflibConverter(self.codeMapper(item.Attribute)))) explicit_entry_tuple["Column"] = item.Column explicit_entry_tuple["Attribute"] = self.codeMapper(item.Attribute) elif pd.notnull(item.Entity): if ',' in item.Entity: entities = self.parseString(item.Entity, ',') for entity in entities: nanopub.assertion.add( (term, rdflib.RDFS.subClassOf, self.rdflibConverter(self.codeMapper(entity)))) else: nanopub.assertion.add( (term, rdflib.RDFS.subClassOf, self.rdflibConverter(self.codeMapper(item.Entity)))) explicit_entry_tuple["Column"] = item.Column explicit_entry_tuple["Entity"] = self.codeMapper(item.Entity) else: nanopub.assertion.add((term, rdflib.RDFS.subClassOf, sio.Attribute)) explicit_entry_tuple["Column"] = item.Column explicit_entry_tuple["Attribute"] = self.codeMapper("sio:Attribute") logging.warning("Warning: Explicit entry not assigned an Attribute or Entity value.") if pd.notnull(item.attributeOf): nanopub.assertion.add( (term, sio.isAttributeOf, self.rdflibConverter(self.convertVirtualToKGEntry(item.attributeOf)))) explicit_entry_tuple["isAttributeOf"] = self.convertVirtualToKGEntry(item.attributeOf) else: logging.warning("Warning: Explicit entry not assigned an isAttributeOf value.") if pd.notnull(item.Unit): nanopub.assertion.add( (term, sio.hasUnit, self.rdflibConverter(self.convertVirtualToKGEntry(self.codeMapper(item.Unit))))) explicit_entry_tuple["Unit"] = self.convertVirtualToKGEntry(self.codeMapper(item.Unit)) if pd.notnull(item.Time): nanopub.assertion.add( (term, sio.existsAt, self.rdflibConverter(self.convertVirtualToKGEntry(item.Time)))) explicit_entry_tuple["Time"] = item.Time if pd.notnull(item.inRelationTo): explicit_entry_tuple["inRelationTo"] = item.inRelationTo # If there is a value in the Relation column but not the Role column ... if (pd.notnull(item.Relation)) and (
pd.isnull(item.Role)
pandas.isnull
import pandas as pd # create df use dict, key == col-key , value == col-value data = {'state': ['Beijing', 'Shanghai', 'HeBei', 'ShanDong'], 'year': [2001, 2002, 2003, 2004], 'pop': [1.5, 1.7, 3.6, 2.4]} df1 = pd.DataFrame(data) print("df1:{}".format(df1)) print("head:\n{}".format(df1.head())) print("tail:\n{}".format(df1.tail())) # 指定列的顺序 df2 = pd.DataFrame(data, columns=['year', 'pop', 'state']) print("==============\ndf2:\n{}".format(df2)) # 列不存在 df3 = pd.DataFrame(data, columns=['year', 'state', 'size']) print("=============\ndf3:\n{}".format(df3)) print("isnull:{}".format(pd.isnull(df3))) # 指定列的顺序, with index idxs = ['one', 'tow', 'tree', 'four'] df4 = pd.DataFrame(data, columns=['state', 'pop', 'year'], index=idxs) print("===============\ndf4_with_index:\n{}".format(df4)) print("df4.columns:{}".format(df4.columns)) # 获取行: 使用loc && iloc获取行, # 获取列: 使用[index] && ['table'] # 获取dataframe中一行 print("df4.loc['one']:{}".format(df4.loc['one'])) # 获取dataframe中的一列 print("df4.['state']:{}".format(df4['state'])) # 修改一列的值 df4['state'] = 'new-state' print("df4.['state']:{}".format(df4['state'])) # 修改一行的值 df4.loc['one'] = 'new-row' print("df4.loc['one']:{}".format(df4.loc['one'])) # 1.1 修改矩阵中某个元素[x,y]的值 df4.loc['tow']['state'] = 'state-xxxx' print("df4:{}".format(df4)) # 1.2 修改矩阵中某个元素[x,y]的值 df4['state'].loc['one'] = 'state-yyyy' print("df4:{}".format(df4)) # add new-col(Series) to DataFrame df5 = pd.DataFrame(data, index=['one', 'tow', 'tree', 'four']) print('df5:{}'.format(df5)) s1 = pd.Series([1, 2, 3], index=['one', 'tow', 'tree']) print("s1:{}".format(s1)) df5['new col'] = s1 print("df5:{}".format(df5)) # del col del df5['new col'] print("del df5['new col']:{}".format(df5)) # TODO: add new row to DataFrame: dataframe是按列组织数据的, # 每一列是一个series, 添加一行相当于给每一列(series)添加一个新元素 # dataframe - 字典嵌套 # 如果嵌套字典被赋值给DataFrame, pandas会将字典的键作为列,将内部字典的键作为行索引: pop = {'Nevada': {2001: 2.4, 2002: 2.9}, 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}} df6 = pd.DataFrame(pop) print(f"===================\ndf6:\n{df6}") # 行列转换 print(f"===================\ndf6.T\n:{df6.T}") # 如果已经显式指明索引的话,内部字典的键将不会被排序: df7 = df6.copy() df7.index = [11, 22, 33] print(f"===================\ndf7:\n{df7}") # 使用包含series的字典构造dataframe print("df6:{}".format(df6)) series1 = df6['Ohio'][:-1] # -1: 倒数第二个 series2 = df6['Nevada'][:2] print("====================\nseries1:{}".format(series1)) print("====================\nseries2:{}".format(series2)) pdata = { 'Ohio' : series1, 'Nevada': series2 } df8 =
pd.DataFrame(pdata)
pandas.DataFrame
# -*- coding: utf-8 -*- #from pyramid.arima import auto_arima import numpy as np import logging import sys from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt from statsmodels.tsa.arima_model import ARIMA import statsmodels.api as sm import matplotlib.pyplot as plt from statsmodels.tsa.stattools import acf import matplotlib.pylab as plt #from fbprophet import Prophet #from tbats import BATS, TBATS from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta import pandas as pd def getClosest_DateCode(ref_data_seg, current_dateCode, last_year_date): """ This function returns the closest day with the same code according to last year reference data :param current_date: this is the current date. The starting point to make forecast :param current_dateCode: code into forecast date :param last_year_date: last year date (reference data) :return: day (date): closest day """ i = 0 first = True code1 = 0 code2 = 0 day_plus = None day_minus = None if last_year_date.year == ref_data_seg['FECHA'].iloc[0].year: while((code1!=current_dateCode) & (code2 != current_dateCode)): if first: # TODO: refractor this part of code and put at the begining of the function code1 = ref_data_seg.loc[
pd.to_datetime(ref_data_seg['FECHA'])
pandas.to_datetime
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals import pandas as pd import numpy as np import xgboost as xgb from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split import config import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) def main(): origincol = ["id", "s1", "s2", "label"] copycol2 = ['f_1dis', 'f_2word_dis', 'f_2char_dis', 'f_3word_dis', 'f_3char_dis', 'f_1dis2', 'f_2word_dis2', 'f_2char_dis2', 'f_3word_dis2', 'f_3char_dis2', 'f_1dis3', 'f_2word_dis3', 'f_2char_dis3', 'f_3word_dis3', 'f_3char_dis3', 'f_1dis4', 'f_2word_dis4', 'f_2char_dis4', 'f_3word_dis4', 'f_3char_dis4'] copycol12 = ['z3_cosine', 'z3_manhatton', 'z3_euclidean', 'z3_pearson', 'z3_spearman', 'z3_kendall'] copycol13 = ['f_total_unique_words', 'f_wc_diff', 'f_wc_ratio', 'f_wc_diff_unique', 'f_wc_ratio_unique', 'f_char_diff', 'f_char_ratio'] copycol18 = ["d_nlevenshtein_1", "d_nlevenshtein_2", "d_jaro_winkler", "d_jaccard"] copycol19 = ["z_tfidf_cos_sim", "z_w2v_bow_dis_cosine", "z_w2v_bow_dis_euclidean", "z_w2v_bow_dis_minkowski", "z_w2v_bow_dis_cityblock", "z_w2v_bow_dis_canberra", "z_w2v_tfidf_dis_cosine", "z_w2v_tfidf_dis_euclidean", "z_w2v_tfidf_dis_minkowski", "z_w2v_tfidf_dis_cityblock", "z_w2v_tfidf_dis_canberra", "z_glove_bow_dis_cosine", "z_glove_bow_dis_euclidean", "z_glove_bow_dis_minkowski", "z_glove_bow_dis_cityblock", "z_glove_bow_dis_canberra", "z_glove_tfidf_dis_cosine", "z_glove_tfidf_dis_euclidean", "z_glove_tfidf_dis_minkowski", "z_glove_tfidf_dis_cityblock", "z_glove_tfidf_dis_canberra"] train_raw =
pd.read_csv(config.path_train_raw, sep="\t", names=origincol, encoding="utf-8")
pandas.read_csv
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from meterstick import metrics from meterstick import operations from meterstick import utils import mock import numpy as np import pandas as pd from pandas import testing from scipy import stats import unittest class DistributionTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'] }) sum_x = metrics.Sum('X') distribution = operations.Distribution('grp', sum_x) def test_distribution(self): output = self.distribution.compute_on(self.df) expected = pd.DataFrame({'Distribution of sum(X)': [0.25, 0.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_normalize(self): output = operations.Normalize('grp', self.sum_x).compute_on(self.df) expected = pd.DataFrame({'Distribution of sum(X)': [0.25, 0.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_distribution_over_multiple_columns(self): df = pd.DataFrame({ 'X': [2, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'], 'platform': ['desktop', 'mobile', 'desktop', 'mobile'] }) sum_x = metrics.Sum('X') dist = operations.Distribution(['grp', 'platform'], sum_x) output = dist.compute_on(df, 'country') expected = pd.DataFrame({ 'Distribution of sum(X)': [1., 0.5, 0.25, 0.25], 'country': ['EU', 'US', 'US', 'US'], 'grp': ['B', 'A', 'A', 'B'], 'platform': ['mobile', 'desktop', 'mobile', 'desktop'] }) expected.set_index(['country', 'grp', 'platform'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_melted(self): output = self.distribution.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [0.25, 0.75], 'grp': ['A', 'B'], 'Metric': ['Distribution of sum(X)', 'Distribution of sum(X)'] }) expected.set_index(['Metric', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby(self): output = self.distribution.compute_on(self.df, 'country') expected = pd.DataFrame({ 'Distribution of sum(X)': [1., 2. / 3, 1. / 3], 'grp': ['B', 'A', 'B'], 'country': ['EU', 'US', 'US'] }) expected.set_index(['country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby_melted(self): output = self.distribution.compute_on(self.df, 'country', melted=True) expected = pd.DataFrame({ 'Value': [1., 2. / 3, 1. / 3], 'grp': ['B', 'A', 'B'], 'Metric': ['Distribution of sum(X)'] * 3, 'country': ['EU', 'US', 'US'] }) expected.set_index(['Metric', 'country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby_multiple(self): df = pd.DataFrame({ 'X': [1, 1, 1, 5, 0, 1, 2, 3.5], 'grp': ['A', 'A', 'B', 'B'] * 2, 'country': ['US', 'US', 'US', 'EU'] * 2, 'grp0': ['foo'] * 4 + ['bar'] * 4 }) output = self.distribution.compute_on(df, ['grp0', 'country']) bar = self.distribution.compute_on(df[df.grp0 == 'bar'], 'country') foo = self.distribution.compute_on(df[df.grp0 == 'foo'], 'country') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0']) testing.assert_frame_equal(output, expected) def test_distribution_multiple_metrics(self): metric = metrics.MetricList((self.sum_x, metrics.Count('X'))) metric = operations.Distribution('grp', metric) output = metric.compute_on(self.df) expected = pd.DataFrame( { 'Distribution of sum(X)': [0.25, 0.75], 'Distribution of count(X)': [0.5, 0.5] }, index=['A', 'B'], columns=['Distribution of sum(X)', 'Distribution of count(X)']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_distribution_where(self): metric = operations.Distribution('grp', self.sum_x, where='country == "US"') metric_no_filter = operations.Distribution('grp', self.sum_x) output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.country == 'US']) testing.assert_frame_equal(output, expected) def test_distribution_pipeline(self): output = self.sum_x | operations.Distribution('grp') | metrics.compute_on( self.df) expected = pd.DataFrame({'Distribution of sum(X)': [0.25, 0.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_distribution_cache_key(self): sum_x = metrics.Sum('X', 'X') metric = operations.Distribution('grp', sum_x) metric.compute_on(self.df, cache_key=42) testing.assert_series_equal( self.df.groupby('grp').X.sum(), sum_x.get_cached(42, 'grp')) self.assertTrue(metric.in_cache(42)) def test_distribution_internal_caching_cleaned_up(self): sum_x = metrics.Sum('X') m = operations.Distribution('grp', sum_x) m.compute_on(self.df) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(sum_x.cache_key) self.assertIsNone(m.cache_key) def test_distribution_with_jackknife_internal_caching_cleaned_up(self): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'], 'cookie': [1, 2, 1, 2] }) sum_x = metrics.Sum('X') m = operations.Distribution('grp', sum_x) jk = operations.Jackknife('cookie', m) jk.compute_on(df) self.assertEqual(jk.cache, {}) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(jk.cache_key) self.assertIsNone(m.cache_key) self.assertIsNone(sum_x.cache_key) class CumulativeDistributionTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['B', 'B', 'A', 'A'], 'country': ['US', 'US', 'US', 'EU'] }) sum_x = metrics.Sum('X') metric = operations.CumulativeDistribution('grp', sum_x) def test_cumulative_distribution(self): output = self.metric.compute_on(self.df) expected = pd.DataFrame({'Cumulative Distribution of sum(X)': [0.75, 1.]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_over_multiple_columns(self): df = pd.DataFrame({ 'X': [2, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'], 'platform': ['desktop', 'mobile', 'desktop', 'mobile'] }) sum_x = metrics.Sum('X') cum_dict = operations.CumulativeDistribution(['grp', 'platform'], sum_x) output = cum_dict.compute_on(df, 'country') expected = pd.DataFrame({ 'Cumulative Distribution of sum(X)': [1., 0.5, 0.75, 1], 'country': ['EU', 'US', 'US', 'US'], 'grp': ['B', 'A', 'A', 'B'], 'platform': ['mobile', 'desktop', 'mobile', 'desktop'] }) expected.set_index(['country', 'grp', 'platform'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_melted(self): output = self.metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [0.75, 1.], 'grp': ['A', 'B'], 'Metric': ['Cumulative Distribution of sum(X)'] * 2 }) expected.set_index(['Metric', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_splitby(self): output = self.metric.compute_on(self.df, 'country') expected = pd.DataFrame({ 'Cumulative Distribution of sum(X)': [1., 1. / 3, 1.], 'grp': ['A', 'A', 'B'], 'country': ['EU', 'US', 'US'] }) expected.set_index(['country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_splitby_melted(self): output = self.metric.compute_on(self.df, 'country', melted=True) expected = pd.DataFrame({ 'Value': [1., 1. / 3, 1.], 'grp': ['A', 'A', 'B'], 'Metric': ['Cumulative Distribution of sum(X)'] * 3, 'country': ['EU', 'US', 'US'] }) expected.set_index(['Metric', 'country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_splitby_multiple(self): df = pd.DataFrame({ 'X': [1, 1, 1, 5, 0, 2, 1.5, 3], 'grp': ['B', 'B', 'A', 'A'] * 2, 'country': ['US', 'US', 'US', 'EU'] * 2, 'grp0': ['foo'] * 4 + ['bar'] * 4 }) output = self.metric.compute_on(df, ['grp0', 'country']) output.sort_index(level=['grp0', 'grp', 'country'], inplace=True) bar = self.metric.compute_on(df[df.grp0 == 'bar'], 'country') foo = self.metric.compute_on(df[df.grp0 == 'foo'], 'country') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0']) expected = expected.sort_index(level=['grp0', 'grp', 'country']) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_order(self): metric = operations.CumulativeDistribution('grp', self.sum_x, ('B', 'A')) output = metric.compute_on(self.df) expected = pd.DataFrame({'Cumulative Distribution of sum(X)': [0.25, 1.]}, index=['B', 'A']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_ascending(self): metric = operations.CumulativeDistribution( 'grp', self.sum_x, ascending=False) output = metric.compute_on(self.df) expected = pd.DataFrame({'Cumulative Distribution of sum(X)': [0.25, 1.]}, index=['B', 'A']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_order_splitby(self): metric = operations.CumulativeDistribution('grp', self.sum_x, ('B', 'A')) output = metric.compute_on(self.df, 'country') expected = pd.DataFrame({ 'Cumulative Distribution of sum(X)': [1., 2. / 3, 1.], 'grp': ['A', 'B', 'A'], 'country': ['EU', 'US', 'US'] }) expected.set_index(['country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_multiple_metrics(self): metric = metrics.MetricList((self.sum_x, metrics.Count('X'))) metric = operations.CumulativeDistribution('grp', metric) output = metric.compute_on(self.df) expected = pd.DataFrame( { 'Cumulative Distribution of sum(X)': [0.75, 1.], 'Cumulative Distribution of count(X)': [0.5, 1.] }, index=['A', 'B'], columns=[ 'Cumulative Distribution of sum(X)', 'Cumulative Distribution of count(X)' ]) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_where(self): metric = operations.CumulativeDistribution( 'grp', metrics.Count('X'), where='country == "US"') metric_no_filter = operations.CumulativeDistribution( 'grp', metrics.Count('X')) output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.country == 'US']) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_pipeline(self): output = self.sum_x | operations.CumulativeDistribution( 'grp') | metrics.compute_on(self.df) expected = pd.DataFrame({'Cumulative Distribution of sum(X)': [0.75, 1.]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_cache_key(self): sum_x = metrics.Sum('X', 'X') metric = operations.CumulativeDistribution('grp', sum_x) metric.compute_on(self.df, cache_key=42) testing.assert_series_equal( self.df.groupby('grp').X.sum(), sum_x.get_cached(42, 'grp')) self.assertTrue(metric.in_cache(42)) def test_cumulative_distribution_internal_caching_cleaned_up(self): sum_x = metrics.Sum('X') m = operations.CumulativeDistribution('grp', sum_x) m.compute_on(self.df) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(sum_x.cache_key) self.assertIsNone(m.cache_key) def test_cumulative_distribution_with_jackknife_internal_caching_cleaned_up( self): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['B', 'B', 'A', 'A'], 'country': ['US', 'US', 'US', 'EU'], 'cookie': [1, 2, 1, 2] }) sum_x = metrics.Sum('X') m = operations.CumulativeDistribution('grp', sum_x) jk = operations.Jackknife('cookie', m) jk.compute_on(df) self.assertEqual(jk.cache, {}) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(jk.cache_key) self.assertIsNone(m.cache_key) self.assertIsNone(sum_x.cache_key) class PercentChangeTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] }) metric_lst = metrics.MetricList((metrics.Sum('X'), metrics.Count('X'))) def test_percent_change(self): metric = operations.PercentChange('Condition', 0, self.metric_lst) output = metric.compute_on(self.df) expected = pd.DataFrame( [[150., 0.]], columns=['sum(X) Percent Change', 'count(X) Percent Change'], index=[1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_percent_change_include_baseline(self): metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df) expected = pd.DataFrame( [[0., 0.], [150., 0.]], columns=['sum(X) Percent Change', 'count(X) Percent Change'], index=[0, 1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_percent_change_melted(self): metric = operations.PercentChange('Condition', 0, self.metric_lst) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [150., 0.], 'Metric': ['sum(X) Percent Change', 'count(X) Percent Change'], 'Condition': [1, 1] }) expected.set_index(['Metric', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_melted_include_baseline(self): metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [0., 150., 0., 0.], 'Metric': [ 'sum(X) Percent Change', 'sum(X) Percent Change', 'count(X) Percent Change', 'count(X) Percent Change' ], 'Condition': [0, 1, 0, 1] }) expected.set_index(['Metric', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_splitby(self): metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame( { 'sum(X) Percent Change': [0., 100. / 3, 0., 200. / 3, np.nan], 'count(X) Percent Change': [0., -50., 0., 0., np.nan], 'Condition': [0, 1, 0, 1, 1], 'grp': ['A', 'A', 'B', 'B', 'C'] }, columns=[ 'sum(X) Percent Change', 'count(X) Percent Change', 'Condition', 'grp' ]) expected.set_index(['grp', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_splitby_melted(self): metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [0., 100. / 3, 0., 200. / 3, np.nan, 0., -50., 0., 0., np.nan], 'Metric': ['sum(X) Percent Change'] * 5 + ['count(X) Percent Change'] * 5, 'Condition': [0, 1, 0, 1, 1] * 2, 'grp': ['A', 'A', 'B', 'B', 'C'] * 2 }) expected.set_index(['Metric', 'grp', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_splitby_multiple(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6, 1.2, 2.2, 3.2, 4.2, 5.2, 6.5], 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] * 2, 'grp0': ['foo'] * 6 + ['bar'] * 6 }) metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(df, ['grp0', 'grp']) bar = metric.compute_on(df[df.grp0 == 'bar'], 'grp') foo = metric.compute_on(df[df.grp0 == 'foo'], 'grp') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0']) expected.sort_index(level=['grp0', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_multiple_condition_columns(self): df = self.df.copy() metric = operations.PercentChange(['Condition', 'grp'], (0, 'A'), self.metric_lst) output = metric.compute_on(df) df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.PercentChange('Condition_and_grp', (0, 'A'), self.metric_lst) expected = expected_metric.compute_on(df) expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_percent_change_multiple_condition_columns_include_baseline(self): df = self.df.copy() metric = operations.PercentChange(['Condition', 'grp'], (0, 'A'), self.metric_lst, True) output = metric.compute_on(df) df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.PercentChange('Condition_and_grp', (0, 'A'), self.metric_lst, True) expected = expected_metric.compute_on(df) expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_percent_change_multiple_condition_columns_splitby(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'B'], 'grp2': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar'] }) metric = operations.PercentChange(['Condition', 'grp'], (0, 'A'), self.metric_lst) output = metric.compute_on(df, 'grp2') df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.PercentChange('Condition_and_grp', (0, 'A'), self.metric_lst) expected = expected_metric.compute_on(df, 'grp2') expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_percent_change_multiple_condition_columns_include_baseline_splitby( self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'B'], 'grp2': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar'] }) metric = operations.PercentChange(['Condition', 'grp'], (0, 'A'), self.metric_lst, True) output = metric.compute_on(df, 'grp2') df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.PercentChange('Condition_and_grp', (0, 'A'), self.metric_lst, True) expected = expected_metric.compute_on(df, 'grp2') expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_percent_change_where(self): metric = operations.PercentChange( 'Condition', 0, metrics.Sum('X'), where='grp == "A"') metric_no_filter = operations.PercentChange('Condition', 0, metrics.Sum('X')) output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.grp == 'A']) testing.assert_frame_equal(output, expected) def test_percent_change_pipeline(self): metric = operations.PercentChange('Condition', 0) output = self.metric_lst | metric | metrics.compute_on(self.df) expected = pd.DataFrame( [[150., 0.]], columns=['sum(X) Percent Change', 'count(X) Percent Change'], index=[1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_percent_change_cache_key(self): sum_x = metrics.Sum('X', 'X') metric = operations.PercentChange('Condition', 0, sum_x) metric.compute_on(self.df, cache_key=42) testing.assert_series_equal( self.df.groupby('Condition').X.sum(), sum_x.get_cached(42, 'Condition')) self.assertTrue(metric.in_cache(42)) def test_percent_change_internal_caching_cleaned_up(self): sum_x = metrics.Sum('X') m = operations.PercentChange('Condition', 0, sum_x) m.compute_on(self.df) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(sum_x.cache_key) self.assertIsNone(m.cache_key) def test_percent_change_with_jackknife_internal_caching_cleaned_up(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'], 'cookie': [1, 2, 3] * 2 }) sum_x = metrics.Sum('X') m = operations.PercentChange('Condition', 0, sum_x) jk = operations.Jackknife('cookie', m) jk.compute_on(df) self.assertEqual(jk.cache, {}) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(jk.cache_key) self.assertIsNone(m.cache_key) self.assertIsNone(sum_x.cache_key) class AbsoluteChangeTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] }) metric_lst = metrics.MetricList((metrics.Sum('X'), metrics.Count('X'))) def test_absolute_change(self): metric = operations.AbsoluteChange('Condition', 0, self.metric_lst) output = metric.compute_on(self.df) expected = pd.DataFrame( [[9, 0]], columns=['sum(X) Absolute Change', 'count(X) Absolute Change'], index=[1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_absolute_change_include_baseline(self): metric = operations.AbsoluteChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df) expected = pd.DataFrame( [[0, 0], [9, 0]], columns=['sum(X) Absolute Change', 'count(X) Absolute Change'], index=[0, 1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_absolute_change_melted(self): metric = operations.AbsoluteChange('Condition', 0, self.metric_lst) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [9, 0], 'Metric': ['sum(X) Absolute Change', 'count(X) Absolute Change'], 'Condition': [1, 1] }) expected.set_index(['Metric', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_absolute_change_melted_include_baseline(self): metric = operations.AbsoluteChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [0, 9, 0, 0], 'Metric': [ 'sum(X) Absolute Change', 'sum(X) Absolute Change', 'count(X) Absolute Change', 'count(X) Absolute Change' ], 'Condition': [0, 1, 0, 1] }) expected.set_index(['Metric', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_absolute_change_splitby(self): metric = operations.AbsoluteChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame( { 'sum(X) Absolute Change': [0., 1., 0., 2., np.nan], 'count(X) Absolute Change': [0., -1., 0., 0., np.nan], 'Condition': [0, 1, 0, 1, 1], 'grp': ['A', 'A', 'B', 'B', 'C'] }, columns=[ 'sum(X) Absolute Change', 'count(X) Absolute Change', 'Condition', 'grp' ]) expected.set_index(['grp', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_absolute_change_splitby_melted(self): metric = operations.AbsoluteChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [0., 1., 0., 2., np.nan, 0., -1., 0., 0., np.nan], 'Metric': ['sum(X) Absolute Change'] * 5 + ['count(X) Absolute Change'] * 5, 'Condition': [0, 1, 0, 1, 1] * 2, 'grp': ['A', 'A', 'B', 'B', 'C'] * 2 }) expected.set_index(['Metric', 'grp', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_absolute_change_splitby_multiple(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6, 1.2, 2.2, 3.2, 4.2, 5.2, 6.5], 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] * 2, 'grp0': ['foo'] * 6 + ['bar'] * 6 }) metric = operations.AbsoluteChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(df, ['grp0', 'grp']) bar = metric.compute_on(df[df.grp0 == 'bar'], 'grp') foo = metric.compute_on(df[df.grp0 == 'foo'], 'grp') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0']) expected.sort_index(level=['grp0', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_absolute_change_multiple_condition_columns(self): df = self.df.copy() metric = operations.AbsoluteChange(['Condition', 'grp'], (0, 'A'), self.metric_lst) output = metric.compute_on(df) df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.AbsoluteChange('Condition_and_grp', (0, 'A'), self.metric_lst) expected = expected_metric.compute_on(df) expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_absolute_change_multiple_condition_columns_include_baseline(self): df = self.df.copy() metric = operations.AbsoluteChange(['Condition', 'grp'], (0, 'A'), self.metric_lst, True) output = metric.compute_on(df) df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.AbsoluteChange('Condition_and_grp', (0, 'A'), self.metric_lst, True) expected = expected_metric.compute_on(df) expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_absolute_change_multiple_condition_columns_splitby(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'B'], 'grp2': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar'] }) metric = operations.AbsoluteChange(['Condition', 'grp'], (0, 'A'), self.metric_lst) output = metric.compute_on(df, 'grp2') df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.AbsoluteChange('Condition_and_grp', (0, 'A'), self.metric_lst) expected = expected_metric.compute_on(df, 'grp2') expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_absolute_change_multiple_condition_columns_include_baseline_splitby( self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'B'], 'grp2': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar'] }) metric = operations.AbsoluteChange(['Condition', 'grp'], (0, 'A'), self.metric_lst, True) output = metric.compute_on(df, 'grp2') df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.AbsoluteChange('Condition_and_grp', (0, 'A'), self.metric_lst, True) expected = expected_metric.compute_on(df, 'grp2') expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_absolute_change_where(self): metric = operations.AbsoluteChange( 'Condition', 0, metrics.Sum('X'), where='grp == "A"') metric_no_filter = operations.AbsoluteChange('Condition', 0, metrics.Sum('X')) output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.grp == 'A']) testing.assert_frame_equal(output, expected) def test_absolute_change_pipeline(self): metric = operations.AbsoluteChange('Condition', 0) output = self.metric_lst | metric | metrics.compute_on(self.df) expected = pd.DataFrame( [[9, 0]], columns=['sum(X) Absolute Change', 'count(X) Absolute Change'], index=[1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_absolute_change_internal_caching(self): sum_x = metrics.Sum('X') pct = operations.PercentChange('Condition', 0, sum_x) ab = operations.AbsoluteChange('Condition', 0, sum_x) metric = metrics.MetricList((pct, ab)) with mock.patch.object( sum_x, 'compute_through', wraps=sum_x.compute_through) as mock_fn: metric.compute_on(self.df) mock_fn.assert_called_once() def test_absolute_change_cache_key(self): sum_x = metrics.Sum('X', 'X') metric = operations.AbsoluteChange('Condition', 0, sum_x) metric.compute_on(self.df, cache_key=42) testing.assert_series_equal( self.df.groupby('Condition').X.sum(), sum_x.get_cached(42, 'Condition')) self.assertTrue(metric.in_cache(42)) def test_absolute_change_internal_caching_cleaned_up(self): sum_x = metrics.Sum('X') m = operations.AbsoluteChange('Condition', 0, sum_x) m.compute_on(self.df) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(sum_x.cache_key) self.assertIsNone(m.cache_key) def test_absolute_change_with_jackknife_internal_caching_cleaned_up(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'], 'cookie': [1, 2, 3] * 2 }) sum_x = metrics.Sum('X') m = operations.AbsoluteChange('Condition', 0, sum_x) jk = operations.Jackknife('cookie', m) jk.compute_on(df) self.assertEqual(jk.cache, {}) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(jk.cache_key) self.assertIsNone(m.cache_key) self.assertIsNone(sum_x.cache_key) class MHTests(unittest.TestCase): df = pd.DataFrame({ 'clicks': [1, 3, 2, 3, 1, 2], 'conversions': [1, 0, 1, 2, 1, 1], 'Id': [1, 2, 3, 1, 2, 3], 'Condition': [0, 0, 0, 1, 1, 1] }) sum_click = metrics.Sum('clicks') sum_conv = metrics.Sum('conversions') cvr = metrics.Ratio('conversions', 'clicks', 'cvr') metric_lst = metrics.MetricList((sum_conv / sum_click, cvr)) def test_mh(self): metric = operations.MH('Condition', 0, 'Id', self.cvr) output = metric.compute_on(self.df) expected = pd.DataFrame([[40.]], columns=['cvr MH Ratio'], index=[1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_mh_include_baseline(self): metric = operations.MH('Condition', 0, 'Id', self.metric_lst, True) output = metric.compute_on(self.df) expected = pd.DataFrame( [[0., 0.], [40., 40.]], columns=['sum(conversions) / sum(clicks) MH Ratio', 'cvr MH Ratio'], index=[0, 1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_mh_melted(self): metric = operations.MH('Condition', 0, 'Id', self.metric_lst) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [40., 40.], 'Metric': ['sum(conversions) / sum(clicks) MH Ratio', 'cvr MH Ratio'], 'Condition': [1, 1] }) expected.set_index(['Metric', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_mh_melted_include_baseline(self): metric = operations.MH('Condition', 0, 'Id', self.metric_lst, True) output = metric.compute_on(self.df, melted=True) expected = expected = pd.DataFrame({ 'Value': [0., 40., 0., 40.], 'Metric': [ 'sum(conversions) / sum(clicks) MH Ratio', 'sum(conversions) / sum(clicks) MH Ratio', 'cvr MH Ratio', 'cvr MH Ratio' ], 'Condition': [0, 1, 0, 1] }) expected.set_index(['Metric', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_mh_splitby(self): df = pd.DataFrame({ 'clicks': [1, 3, 2, 3, 1, 2] * 2, 'conversions': [1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 2], 'Id': [1, 2, 3, 1, 2, 3] * 2, 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A'] * 6 + ['B'] * 6 }) metric = operations.MH('Condition', 0, 'Id', self.metric_lst) output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame([['A', 1, 40., 40.], ['B', 1, 80., 80.]], columns=[ 'grp', 'Condition', 'sum(conversions) / sum(clicks) MH Ratio', 'cvr MH Ratio' ]) expected.set_index(['grp', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_mh_splitby_melted(self): df = pd.DataFrame({ 'clicks': [1, 3, 2, 3, 1, 2] * 2, 'conversions': [1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 2], 'Id': [1, 2, 3, 1, 2, 3] * 2, 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A'] * 6 + ['B'] * 6 }) metric = operations.MH('Condition', 0, 'Id', self.metric_lst, True) output = metric.compute_on(df, 'grp', melted=True) output.sort_index( level=['Metric', 'grp'], ascending=[False, True], inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [0., 40., 0., 80., 0., 40., 0., 80.], 'Metric': ['sum(conversions) / sum(clicks) MH Ratio'] * 4 + ['cvr MH Ratio'] * 4, 'Condition': [0, 1] * 4, 'grp': ['A', 'A', 'B', 'B'] * 2 }) expected.set_index(['Metric', 'grp', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_mh_multiple_condition_columns(self): df = pd.DataFrame({ 'clicks': [1, 3, 2, 3, 1, 2] * 2, 'conversions': [1, 0, 1, 2, 1, 1] * 2, 'Id': [1, 2, 3, 1, 2, 3] * 2, 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A', 'B'] * 6, }) metric = operations.MH(['Condition', 'grp'], (0, 'A'), 'Id', self.metric_lst) output = metric.compute_on(df) df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.MH('Condition_and_grp', (0, 'A'), 'Id', self.metric_lst) expected = expected_metric.compute_on(df) expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_mh_multiple_condition_columns_include_baseline(self): df = pd.DataFrame({ 'clicks': [1, 3, 2, 3, 1, 2] * 2, 'conversions': [1, 0, 1, 2, 1, 1] * 2, 'Id': [1, 2, 3, 1, 2, 3] * 2, 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A', 'B'] * 6, }) metric = operations.MH(['Condition', 'grp'], (0, 'A'), 'Id', self.metric_lst, True) output = metric.compute_on(df) df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.MH('Condition_and_grp', (0, 'A'), 'Id', self.metric_lst, True) expected = expected_metric.compute_on(df) expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_mh_multiple_condition_columns_splitby(self): df = pd.DataFrame({ 'clicks': [1, 3, 2, 3, 1, 2] * 2, 'conversions': [1, 0, 1, 2, 1, 1] * 2, 'Id': [1, 2, 3, 1, 2, 3] * 2, 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A', 'B'] * 6, 'grp2': ['foo', 'foo', 'bar'] * 4, }) sum_click = metrics.Sum('clicks') sum_conv = metrics.Sum('conversions') self.metric_lst = metrics.MetricList( (sum_conv / sum_click, metrics.Ratio('conversions', 'clicks', 'cvr'))) metric = operations.MH(['Condition', 'grp'], (0, 'A'), 'Id', self.metric_lst) output = metric.compute_on(df, 'grp2') df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.MH('Condition_and_grp', (0, 'A'), 'Id', self.metric_lst) expected = expected_metric.compute_on(df, 'grp2') expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_mh_where(self): metric = operations.MH( 'Condition', 0, 'Id', self.metric_lst, True, where='Id != 3') metric_no_filter = operations.MH('Condition', 0, 'Id', self.metric_lst, True) output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.Id != 3]) testing.assert_frame_equal(output, expected) def test_mh_splitby_multiple(self): df = pd.DataFrame({ 'clicks': np.random.random(24), 'conversions': np.random.random(24), 'Id': [1, 2, 3, 1, 2, 3] * 4, 'Condition': [0, 0, 0, 1, 1, 1] * 4, 'grp': (['A'] * 6 + ['B'] * 6) * 2, 'grp0': ['foo'] * 12 + ['bar'] * 12 }) metric = operations.MH('Condition', 0, 'Id', self.metric_lst) output = metric.compute_on(df, ['grp0', 'grp']) output.sort_index(level=['grp0', 'grp'], inplace=True) # For Py2 bar = metric.compute_on(df[df.grp0 == 'bar'], 'grp') foo = metric.compute_on(df[df.grp0 == 'foo'], 'grp') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0']) expected.sort_index(level=['grp0', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_mh_stratified_by_multiple(self): df = pd.DataFrame({ 'clicks': [1, 3, 2, 3, 1, 2, 12, 31, 22, 30, 15, 23], 'conversions': [1, 0, 1, 2, 1, 1, 3, 2, 4, 6, 7, 1], 'Id': [1, 2, 3, 1, 2, 3] * 2, 'platform': ['Desktop'] * 6 + ['Mobile'] * 6, 'Condition': [0, 0, 0, 1, 1, 1] * 2 }) df['id_platform'] = df[['Id', 'platform']].apply(tuple, axis=1) cvr = metrics.Ratio('conversions', 'clicks', 'cvr') metric = operations.MH('Condition', 0, ['Id', 'platform'], cvr) output = metric.compute_on(df) expected = operations.MH('Condition', 0, 'id_platform', cvr).compute_on(df) testing.assert_frame_equal(output, expected) def test_mh_on_operations(self): df = pd.DataFrame({ 'clicks': np.random.random(24), 'conversions': np.random.random(24), 'Id': [1, 2, 1, 2] * 6, 'Condition': [0, 0, 0, 1, 1, 1] * 4, 'grp': list('AABBCCBC') * 3, }) sum_clicks = metrics.Sum('clicks') ab = operations.AbsoluteChange('grp', 'A', sum_clicks) pct = operations.PercentChange('grp', 'A', sum_clicks) metric = operations.MH('Condition', 0, 'Id', ab / pct) output = metric.compute_on(df) d = (metrics.MetricList( (ab, pct))).compute_on(df, ['Condition', 'Id']).reset_index() m = metric(metrics.Sum(ab.name) / metrics.Sum(pct.name)) expected = m.compute_on(d, 'grp') expected.columns = output.columns expected = expected.reorder_levels(output.index.names) testing.assert_frame_equal(output, expected) def test_mh_fail_on_nonratio_metric(self): with self.assertRaisesRegex(ValueError, 'MH only makes sense on ratio Metrics.'): operations.MH('Condition', 0, 'Id', self.sum_click).compute_on(self.df) def test_mh_pipeline(self): metric = operations.MH('Condition', 0, 'Id') output = self.metric_lst | metric | metrics.compute_on(self.df) expected = pd.DataFrame( [[40., 40.]], columns=['sum(conversions) / sum(clicks) MH Ratio', 'cvr MH Ratio'], index=[1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_internal_caching(self): sum_click = metrics.Sum('clicks') sum_conv = metrics.Sum('conversions') m = metrics.MetricList((sum_conv / sum_click, sum_conv / sum_conv)) with mock.patch.object( sum_conv, 'compute_through', return_value=1, autospec=True) as mock_fn: m.compute_on(self.df, return_dataframe=False) mock_fn.assert_called_once() def test_cache_key(self): sum_click = metrics.Sum('clicks') sum_conv = metrics.Sum('conversions') metric_lst = metrics.MetricList([sum_conv / sum_click]) metric = operations.MH('Condition', 0, 'Id', metric_lst) metric.compute_on(self.df, cache_key=42) testing.assert_series_equal( self.df.groupby(['Condition', 'Id']).clicks.sum(), sum_click.get_cached(42, ['Condition', 'Id'])) testing.assert_series_equal( self.df.groupby(['Condition', 'Id']).conversions.sum(), sum_conv.get_cached(42, ['Condition', 'Id'])) self.assertTrue(metric.in_cache(42)) def test_internal_caching_cleaned_up(self): sum_click = metrics.Sum('clicks') sum_conv = metrics.Sum('conversions') metric_lst = metrics.MetricList([sum_conv / sum_click]) m = operations.MH('Condition', 0, 'Id', metric_lst) m.compute_on(self.df) self.assertEqual(m.cache, {}) self.assertEqual(metric_lst.cache, {}) self.assertEqual(sum_click.cache, {}) self.assertEqual(sum_conv.cache, {}) self.assertIsNone(m.cache_key) self.assertIsNone(metric_lst.cache_key) self.assertIsNone(sum_click.cache_key) self.assertIsNone(sum_conv.cache_key) def test_with_jackknife_internal_caching_cleaned_up(self): df = pd.DataFrame({ 'clicks': [1, 3, 2, 3, 1, 2], 'conversions': [1, 0, 1, 2, 1, 1], 'Id': [1, 2, 3, 1, 2, 3], 'Condition': [0, 0, 0, 1, 1, 1], 'cookie': [1, 2, 3] * 2 }) sum_click = metrics.Sum('clicks') sum_conv = metrics.Sum('conversions') metric_lst = metrics.MetricList([sum_conv / sum_click]) m = operations.MH('Condition', 0, 'Id', metric_lst) jk = operations.Jackknife('cookie', m) jk.compute_on(df) self.assertEqual(jk.cache, {}) self.assertEqual(m.cache, {}) self.assertEqual(metric_lst.cache, {}) self.assertEqual(sum_click.cache, {}) self.assertEqual(sum_conv.cache, {}) self.assertIsNone(jk.cache_key) self.assertIsNone(m.cache_key) self.assertIsNone(metric_lst.cache_key) self.assertIsNone(sum_click.cache_key) self.assertIsNone(sum_conv.cache_key) class JackknifeTests(unittest.TestCase): count_x0 = metrics.Sum('X') / metrics.Mean('X') count_x1 = metrics.Count('X') count_x2 = metrics.Metric('count_ground_truth', compute=lambda x: x.X.count()) dot1 = metrics.Dot('X', 'X') dot2 = metrics.Dot('X', 'X', True) metric = metrics.MetricList((count_x0, count_x1, count_x2, dot1, dot2)) change = operations.AbsoluteChange('condition', 'foo', metric) jk = operations.Jackknife('cookie', metric) jk_change = operations.Jackknife('cookie', change) def test_jackknife(self): df = pd.DataFrame({'X': np.arange(0, 3, 0.5), 'cookie': [1, 2, 2, 1, 2, 2]}) unmelted = self.jk.compute_on(df) expected = pd.DataFrame( [[6., 1.] * 3 + [(df.X**2).sum(), 4.625, (df.X**2).mean(), 0.875]], columns=pd.MultiIndex.from_product([[ 'sum(X) / mean(X)', 'count(X)', 'count_ground_truth', 'sum(X * X)', 'mean(X * X)' ], ['Value', 'Jackknife SE']], names=['Metric', None])) testing.assert_frame_equal(unmelted, expected) melted = self.jk.compute_on(df, melted=True) expected = pd.DataFrame( data={ 'Value': [6.] * 3 + [(df.X**2).sum(), (df.X**2).mean()], 'Jackknife SE': [1, 1, 1, 4.625, 0.875] }, columns=['Value', 'Jackknife SE'], index=[ 'sum(X) / mean(X)', 'count(X)', 'count_ground_truth', 'sum(X * X)', 'mean(X * X)' ]) expected.index.name = 'Metric' testing.assert_frame_equal(melted, expected) def test_jackknife_with_weighted_mean(self): df = pd.DataFrame({'X': [1, 2, 2], 'W': [1, 2, 2], 'cookie': [1, 2, 2]}) mean = metrics.Mean('X', 'W') jk = operations.Jackknife('cookie', mean) output = jk.compute_on(df) expected = pd.DataFrame( [[1.8, 0.5]], columns=pd.MultiIndex.from_product( [['W-weighted mean(X)'], ['Value', 'Jackknife SE']], names=['Metric', None])) testing.assert_frame_equal(output, expected) def test_jackknife_too_few_buckets(self): df = pd.DataFrame({'X': range(2), 'cookie': [1, 1]}) with self.assertRaises(ValueError) as cm: self.jk.compute_on(df) self.assertEqual(str(cm.exception), 'Too few cookie to jackknife.') def test_jackknife_one_metric_fail_on_one_unit(self): df = pd.DataFrame({ 'X': range(1, 7), 'cookie': [1, 2, 2, 1, 2, 3], 'grp': ['B'] * 3 + ['A'] * 3 }) sum1 = metrics.Sum('X', where='X > 2') sum2 = metrics.Sum('X', 'foo', where='X > 4') ms = metrics.MetricList((sum1, sum2)) m = operations.Jackknife('cookie', ms) output = m.compute_on(df) expected = pd.concat((m(sum1).compute_on(df), m(sum2).compute_on(df)), 1) testing.assert_frame_equal(output, expected) def test_jackknife_splitby_partial_overlap(self): df = pd.DataFrame({ 'X': range(1, 7), 'cookie': [1, 2, 2, 1, 2, 3], 'grp': ['B'] * 3 + ['A'] * 3 }) unmelted = self.jk.compute_on(df, 'grp') expected = [] for g in ['A', 'B']: expected.append(self.jk.compute_on(df[df.grp == g])) expected =
pd.concat(expected, keys=['A', 'B'], names=['grp'])
pandas.concat
import requests import bs4 import pandas as pd import numpy as np import datetime import os import time def getSoup(baseUrl): url = baseUrl while (True): page = requests.get(url) if (page.status_code == 200): return bs4.BeautifulSoup(page.content, 'lxml') time.sleep(5) print('slept') def getTable(soup): table = soup.find(name='div', attrs={'id': 'cpm'}).find(name='table') if (table is not None): return table.find_all('tr') return None def getIndexesToSplit(table): indexes = [] for tr in table: if (tr.find('th') is not None): indexes.append(table.index(tr)) return indexes def splitTables(table, indexes): tables = [] for i in range(0, len(indexes)): if (i < len(indexes) - 1): tables.append(table[indexes[i]:indexes[i + 1]]) else: tables.append(table[indexes[i]:]) return tables def getData(table): df = pd.DataFrame([[td.text for td in row.findAll('td')] for row in table], columns=['A', 'B', 'C', 'Home Team', 'Score', 'Away Team', 'D']) df.drop(['A', 'B', 'C', 'D'], axis=1, inplace=True) return df def transformData(df, date, leagueName): df.loc[df['Score'] == 'v', 'Score'] = '-' df['Home Goals'] = df['Score'].str.split('-').str.get(0).str.strip() df['Away Goals'] = df['Score'].str.split('-').str.get(1).str.strip() df.drop(['Score'], axis=1, inplace=True) df['Date'] = date if (leagueName == 'Premiership' or leagueName == 'English Div 1 (old)'): df['Tier'] = '1' elif (leagueName == 'Football League Div 1' or leagueName == 'English Div 2 (old)'): df['Tier'] = '2' elif (leagueName == 'Football League Div 2' or leagueName == 'English Div 3 (old)'): df['Tier'] = '3' elif (leagueName == 'English Div 3 (north)'): df['Tier'] = '3N' elif (leagueName == 'English Div 3 (south)'): df['Tier'] = '3S' elif (leagueName == 'Football League Div 3' or leagueName == 'English Division 4'): df['Tier'] = '4' else: df['Tier'] = np.NaN df.drop(df[
pd.isnull(df.Tier)
pandas.isnull
import numpy as np import pandas as pd import fasttext from sklearn.preprocessing import MultiLabelBinarizer from skmultilearn.model_selection import IterativeStratification, \ iterative_train_test_split from functools import reduce CIP_TAGS = list(map(lambda x: x.strip(), "gratis, mat, musik, kurs, casino, dans, musuem, inlines, " "båt, barn, film, språk, hockey, bowling, fika, sport, " "biljard, bingo, bio, opera, kultur, grilla, kubb, " "festival, cykel, brännboll, picknick, konsert, pub, " "frisbeegolf, mc, gokart, svamp, bangolf, teater, " "afterwork, promenad, humor, utmaning, fest, shopping, " "resa, sällskapsspel, träna, pubquiz, poker, bok, foto, " "hund, skridskor, karaoke, dart, bada, diskussion, " "badminton, pyssel, golf, klättring, loppis, boule, mässa, " "flytthjälp, yoga, innebandy, pingis, handboll, jogga, " "tennis, högtid, astronomi, fiske, beachvolleyboll, " "friluftsliv, volleyboll, geocaching, vindsurfing, " "shuffleboard, SUP, standup, paddel".split(','))) def load_raw_normalized_dataset(path, drop_missing): """Load raw CiP dataset. Args: path: Path to raw CSV file drop_missing: If true, drop events with missing titles or descriptions Returns: events_df, tags_df: Event and tag dataframes as tuple """ # FIXME: Import 'id' as integer cip_df = pd.read_csv(path, header=None, names=['id', 'weekday', 'time', 'title', 'description', 'tag_status', 'tag'], na_values=['-01:00:00']) # Drop any events with missing titles or descriptions cip_df.dropna(subset=['title', 'description'], inplace=True) # Convert time strings to actual times cip_df['time'] = pd.to_datetime(cip_df['time']).dt.time events_df = cip_df.groupby('id').first().drop( columns=['tag_status', 'tag']).reset_index() tags_df = pd.DataFrame({ 'id': cip_df['id'], 'tag': cip_df['tag'], 'verified': cip_df['tag_status'] == 1, 'removed': cip_df['tag_status'] == 2 }) # Ignore verified and remove 'removed' tags tags_df = tags_df[~tags_df['removed']] tags_df.drop(columns=['verified', 'removed'], inplace=True) return events_df, tags_df def calculate_top_tags(tags_df, n_tags, use_cip_tags=True): """Calculate top tags from tags dataset Args: tags_df: Dataset to extract top tags from n_tags: Number of topmost tags to get if generating use_cip_tags: Use pre-defined tags from CiP (ignores `n_tags`) Returns: List of topmost tags """ tag_counts = tags_df['tag'].value_counts() if use_cip_tags: # Not all CiP tags are necessarily present in the dataset # and not necessarily in sufficient amounts present_tags = set(tag_counts[tag_counts > 5].index) return list(filter(lambda t: t in present_tags, CIP_TAGS)) else: return tag_counts.index[:n_tags] def tags_to_matrix(events_df, tags_df, top_tags): """Converts tags to feature matrix Args: events_df: Events dataset tags_df: Tags dataset top_tags: Tags to include Returns: Feature matrix for tags """ # Combine tags into lists tags = tags_df.groupby('id')['tag'].agg(lambda x: list(x)).reset_index() # Handle events with no top tags # TODO: Kludge, write nicer missing_tags = pd.DataFrame({ 'id': events_df[~events_df['id'].isin(tags['id'])]['id'].unique() }) missing_tags['tag'] = [[] for _ in range(len(missing_tags))] tags = pd.concat([tags, missing_tags]) # Align tags with events aligned_tags = events_df.merge(tags, on='id') # Convert aligned tags to matrix mlb = MultiLabelBinarizer(classes=top_tags) return mlb.fit_transform(aligned_tags['tag']) def matrix_to_tags(tags, top_tags): top_array = np.array(top_tags) joined_tags = [] for row in tags: joined_tags.append(reduce(lambda a, b: a + "," + b, top_array[row > 0])) return np.array(joined_tags) def load_datasets(path, drop_missing=True, n_tags=72, test_size=0.2, random_state=42): """Load and split dataset from raw CiP data. Args: path: Path to raw CiP dataset drop_missing: Drop events with no description or title n_tags: Number of top tags to use (ignored) test_size: Fraction of events to include in test set random_state: Random state for the split Returns: (events_train, tags_train, events_test, tags_test, top_tags, tags_train_stats) """ events_df, tags_df = load_raw_normalized_dataset(path, drop_missing=drop_missing) top_tags = calculate_top_tags(tags_df, n_tags=n_tags) # Only keep top tags tags_df = tags_df[tags_df['tag'].isin(top_tags)] tag_matrix = tags_to_matrix(events_df, tags_df, top_tags) # Split data into public training set and private test set stratifier = IterativeStratification( n_splits=2, order=2, sample_distribution_per_fold=[test_size, 1.0 - test_size], random_state=random_state) train_indices, test_indices = next(stratifier.split(events_df, tag_matrix)) events_train, tags_train = events_df.iloc[train_indices], \ tag_matrix[train_indices, :] events_test, tags_test = events_df.iloc[test_indices], \ tag_matrix[test_indices, :] tags_train_stats = pd.DataFrame({ 'tag': top_tags, 'count': tags_train.sum(axis=0) }).sort_values('count', ascending=False) return (events_train, tags_train, events_test, tags_test, top_tags, tags_train_stats) def extract_corpus(events_df): """Extract text corpus from event descriptions. Args: events_df: Event dataset Returns: List of event descriptions as raw text """ from tagger._preprocessing.html import HTMLToText from tagger._preprocessing.characterset import CharacterSet from tagger._preprocessing.lowercase import Lowercase from sklearn.pipeline import Pipeline cleaning_pipeline = Pipeline([ ('html', HTMLToText()), ('cset', CharacterSet(punctuation=False)), ('lcase', Lowercase()) ]) return list(cleaning_pipeline.fit_transform(events_df['description'])) def fasttext_wordvectors(corpus_path, model_path): """Compute word vectors using FastText. Args: corpus_path: Path to corpus model_path: Path for storing FastText model Returns: FastText model """ model = fasttext.train_unsupervised(corpus_path) model.save_model(model_path) return model def save_corpus(events_df, path): """Extract and store corpus for events. Args: events_df: Events dataset path: Path for storing corpus """ corpus = extract_corpus(events_df) with open(path, 'w') as f: for doc in corpus: f.write(doc + '\n') if __name__ == '__main__': # Generate static datasets and wordvectors for local dev import os print("Current working directory:", os.getcwd()) # Compute word vectors events_df, tags_df = load_raw_normalized_dataset( "../../../data/raw/citypolarna_public_events_out.csv", drop_missing=True) CORPUS_PATH = "../../../data/corpus.txt" MODEL_PATH = "../../../data/wordvectors.bin" save_corpus(events_df, CORPUS_PATH) model = fasttext_wordvectors(CORPUS_PATH, MODEL_PATH) # Split datasets events_train, tags_train, events_test, tags_test, top_tags, tags_train_stats = load_datasets( "../../../data/raw/citypolarna_public_events_out.csv" ) print(f"Number of train events: {len(events_train)}") print(f"Number of test events: {len(events_test)}") # TODO: Proper path handling DATA_PATH = "../../../data/" events_train.to_csv(DATA_PATH + "events_train.csv", index=False) events_test.to_csv(DATA_PATH + "events_test.csv", index=False) # A kludge, but convenient — pandas can load from URL:s pd.DataFrame(tags_train).to_csv(DATA_PATH + "tags_train.csv", index=False)
pd.DataFrame(tags_test)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on 2017-9-5 @author: cheng.li """ import math import pandas as pd import numpy as np from PyFin.api import * from alphamind.api import * factor = 'ROE' universe = Universe('custom', ['zz800']) start_date = '2010-01-01' end_date = '2018-04-26' freq = '10b' category = 'sw_adj' level = 1 horizon = map_freq(freq) ref_dates = makeSchedule(start_date, end_date, freq, 'china.sse') def factor_analysis(factor): engine = SqlEngine() factors = { 'f1': CSQuantiles(factor), 'f2': CSQuantiles(factor, groups='sw1_adj'), 'f3': LAST(factor) } total_factor = engine.fetch_factor_range(universe, factors, dates=ref_dates) _, risk_exp = engine.fetch_risk_model_range(universe, dates=ref_dates) industry = engine.fetch_industry_range(universe, dates=ref_dates, category=category, level=level) rets = engine.fetch_dx_return_range(universe, horizon=horizon, offset=1, dates=ref_dates) total_factor = pd.merge(total_factor, industry[['trade_date', 'code', 'industry']], on=['trade_date', 'code']) total_factor = pd.merge(total_factor, risk_exp, on=['trade_date', 'code']) total_factor = pd.merge(total_factor, rets, on=['trade_date', 'code']).dropna() df_ret = pd.DataFrame(columns=['f1', 'f2', 'f3']) df_ic = pd.DataFrame(columns=['f1', 'f2', 'f3']) total_factor_groups = total_factor.groupby('trade_date') for date, this_factors in total_factor_groups: raw_factors = this_factors['f3'].values industry_exp = this_factors[industry_styles + ['COUNTRY']].values.astype(float) processed_values = factor_processing(raw_factors, pre_process=[], risk_factors=industry_exp, post_process=[percentile]) this_factors['f3'] = processed_values factor_values = this_factors[['f1', 'f2', 'f3']].values positions = (factor_values >= 0.8) * 1. positions[factor_values <= 0.2] = -1 positions /= np.abs(positions).sum(axis=0) ret_values = this_factors.dx.values @ positions df_ret.loc[date] = ret_values ic_values = this_factors[['dx', 'f1', 'f2', 'f3']].corr().values[0, 1:] df_ic.loc[date] = ic_values print(f"{factor} is finished") return {'ic': (df_ic.mean(axis=0), df_ic.std(axis=0) / math.sqrt(len(df_ic))), 'ret': (df_ret.mean(axis=0), df_ret.std(axis=0) / math.sqrt(len(df_ic))), 'factor': factor} if __name__ == '__main__': from dask.distributed import Client try: client = Client("10.63.6.176:8786") cols =
pd.MultiIndex.from_product([['mean', 'std'], ['raw', 'peer', 'neutralized']])
pandas.MultiIndex.from_product
# Author: <NAME> # Email: <EMAIL> # License: MIT License import time import random import numpy as np import pandas as pd from .init_positions import Initializer from .progress_bar import ProgressBarLVL0, ProgressBarLVL1 from .times_tracker import TimesTracker from .memory import Memory from .print_info import print_info def time_exceeded(start_time, max_time): run_time = time.time() - start_time return max_time and run_time > max_time def score_exceeded(score_best, max_score): return max_score and score_best >= max_score def set_random_seed(nth_process, random_state): """ Sets the random seed separately for each thread (to avoid getting the same results in each thread) """ if nth_process is None: nth_process = 0 if random_state is None: random_state = np.random.randint(0, high=2 ** 32 - 2) random.seed(random_state + nth_process) np.random.seed(random_state + nth_process) class Search(TimesTracker): def __init__(self): super().__init__() self.optimizers = [] self.new_results_list = [] self.all_results_list = [] @TimesTracker.eval_time def _score(self, pos): return self.score(pos) @TimesTracker.iter_time def _initialization(self, init_pos, nth_iter): self.init_pos(init_pos) score_new = self._score(init_pos) self.evaluate(score_new) self.p_bar.update(score_new, init_pos, nth_iter) @TimesTracker.iter_time def _iteration(self, nth_iter): pos_new = self.iterate() score_new = self._score(pos_new) self.evaluate(score_new) self.p_bar.update(score_new, pos_new, nth_iter) def _init_search(self): if "progress_bar" in self.verbosity: self.p_bar = ProgressBarLVL1( self.nth_process, self.n_iter, self.objective_function ) else: self.p_bar = ProgressBarLVL0( self.nth_process, self.n_iter, self.objective_function ) set_random_seed(self.nth_process, self.random_state) # get init positions init = Initializer(self.conv) init_positions = init.set_pos(self.initialize) return init_positions def _early_stop(self): if time_exceeded(self.start_time, self.max_time): return True elif score_exceeded(self.p_bar.score_best, self.max_score): return True else: return False def print_info(self, *args): print_info(*args) def search( self, objective_function, n_iter, max_time=None, max_score=None, memory=True, memory_warm_start=None, verbosity=["progress_bar", "print_results", "print_times"], random_state=None, nth_process=None, ): self.start_time = time.time() if verbosity is False: verbosity = [] self.objective_function = objective_function self.n_iter = n_iter self.max_time = max_time self.max_score = max_score self.memory = memory self.memory_warm_start = memory_warm_start self.verbosity = verbosity self.random_state = random_state self.nth_process = nth_process init_positions = self._init_search() if memory is True: mem = Memory(memory_warm_start, self.conv) self.score = self.results_mang.score(mem.memory(objective_function)) else: self.score = self.results_mang.score(objective_function) # loop to initialize N positions for init_pos, nth_iter in zip(init_positions, range(n_iter)): if self._early_stop(): break self._initialization(init_pos, nth_iter) # loop to do the iterations for nth_iter in range(len(init_positions), n_iter): if self._early_stop(): break self._iteration(nth_iter) self.results =
pd.DataFrame(self.results_mang.results_list)
pandas.DataFrame
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import tempfile import time from collections import OrderedDict from datetime import datetime from string import printable import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None try: import fastparquet except ImportError: # pragma: no cover fastparquet = None try: import sqlalchemy except ImportError: # pragma: no cover sqlalchemy = None from .... import tensor as mt from .... import dataframe as md from ....config import option_context from ....tests.core import require_cudf, require_ray from ....utils import arrow_array_to_objects, lazy_import, pd_release_version from ..dataframe import from_pandas as from_pandas_df from ..series import from_pandas as from_pandas_series from ..index import from_pandas as from_pandas_index, from_tileable from ..from_tensor import dataframe_from_tensor, dataframe_from_1d_tileables from ..from_records import from_records ray = lazy_import("ray") _date_range_use_inclusive = pd_release_version[:2] >= (1, 4) def test_from_pandas_dataframe_execution(setup): # test empty DataFrame pdf = pd.DataFrame() df = from_pandas_df(pdf) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) pdf = pd.DataFrame(columns=list("ab")) df = from_pandas_df(pdf) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) pdf = pd.DataFrame( np.random.rand(20, 30), index=[np.arange(20), np.arange(20, 0, -1)] ) df = from_pandas_df(pdf, chunk_size=(13, 21)) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) def test_from_pandas_series_execution(setup): # test empty Series ps = pd.Series(name="a") series = from_pandas_series(ps, chunk_size=13) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) series = from_pandas_series(ps) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) ps = pd.Series( np.random.rand(20), index=[np.arange(20), np.arange(20, 0, -1)], name="a" ) series = from_pandas_series(ps, chunk_size=13) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) def test_from_pandas_index_execution(setup): pd_index = pd.timedelta_range("1 days", periods=10) index = from_pandas_index(pd_index, chunk_size=7) result = index.execute().fetch() pd.testing.assert_index_equal(pd_index, result) def test_index_execution(setup): rs = np.random.RandomState(0) pdf = pd.DataFrame( rs.rand(20, 10), index=np.arange(20, 0, -1), columns=["a" + str(i) for i in range(10)], ) df = from_pandas_df(pdf, chunk_size=13) # test df.index result = df.index.execute().fetch() pd.testing.assert_index_equal(result, pdf.index) result = df.columns.execute().fetch() pd.testing.assert_index_equal(result, pdf.columns) # df has unknown chunk shape on axis 0 df = df[df.a1 < 0.5] # test df.index result = df.index.execute().fetch() pd.testing.assert_index_equal(result, pdf[pdf.a1 < 0.5].index) s = pd.Series(pdf["a1"], index=pd.RangeIndex(20)) series = from_pandas_series(s, chunk_size=13) # test series.index which has value result = series.index.execute().fetch() pd.testing.assert_index_equal(result, s.index) s = pdf["a2"] series = from_pandas_series(s, chunk_size=13) # test series.index result = series.index.execute().fetch() pd.testing.assert_index_equal(result, s.index) # test tensor raw = rs.random(20) t = mt.tensor(raw, chunk_size=13) result = from_tileable(t).execute().fetch() pd.testing.assert_index_equal(result, pd.Index(raw)) def test_initializer_execution(setup): arr = np.random.rand(20, 30) pdf = pd.DataFrame(arr, index=[np.arange(20), np.arange(20, 0, -1)]) df = md.DataFrame(pdf, chunk_size=(15, 10)) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) df = md.DataFrame(arr, index=md.date_range("2020-1-1", periods=20)) result = df.execute().fetch() pd.testing.assert_frame_equal( result, pd.DataFrame(arr, index=pd.date_range("2020-1-1", periods=20)) ) df = md.DataFrame( {"prices": [100, 101, np.nan, 100, 89, 88]}, index=md.date_range("1/1/2010", periods=6, freq="D"), ) result = df.execute().fetch() pd.testing.assert_frame_equal( result, pd.DataFrame( {"prices": [100, 101, np.nan, 100, 89, 88]}, index=pd.date_range("1/1/2010", periods=6, freq="D"), ), ) s = np.random.rand(20) ps = pd.Series(s, index=[np.arange(20), np.arange(20, 0, -1)], name="a") series = md.Series(ps, chunk_size=7) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) series = md.Series(s, index=md.date_range("2020-1-1", periods=20)) result = series.execute().fetch() pd.testing.assert_series_equal( result, pd.Series(s, index=pd.date_range("2020-1-1", periods=20)) ) pi = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) index = md.Index(md.Index(pi)) result = index.execute().fetch() pd.testing.assert_index_equal(pi, result) def test_index_only(setup): df = md.DataFrame(index=[1, 2, 3]) pd.testing.assert_frame_equal(df.execute().fetch(), pd.DataFrame(index=[1, 2, 3])) s = md.Series(index=[1, 2, 3]) pd.testing.assert_series_equal(s.execute().fetch(), pd.Series(index=[1, 2, 3])) df = md.DataFrame(index=md.Index([1, 2, 3])) pd.testing.assert_frame_equal(df.execute().fetch(), pd.DataFrame(index=[1, 2, 3])) s = md.Series(index=md.Index([1, 2, 3]), dtype=object) pd.testing.assert_series_equal( s.execute().fetch(), pd.Series(index=[1, 2, 3], dtype=object) ) def test_series_from_tensor(setup): data = np.random.rand(10) series = md.Series(mt.tensor(data), name="a") pd.testing.assert_series_equal(series.execute().fetch(), pd.Series(data, name="a")) series = md.Series(mt.tensor(data, chunk_size=3)) pd.testing.assert_series_equal(series.execute().fetch(), pd.Series(data)) series = md.Series(mt.ones((10,), chunk_size=4)) pd.testing.assert_series_equal( series.execute().fetch(), pd.Series(np.ones(10)), ) index_data = np.random.rand(10) series = md.Series( mt.tensor(data, chunk_size=3), name="a", index=mt.tensor(index_data, chunk_size=4), ) pd.testing.assert_series_equal( series.execute().fetch(), pd.Series(data, name="a", index=index_data) ) series = md.Series( mt.tensor(data, chunk_size=3), name="a", index=md.date_range("2020-1-1", periods=10), ) pd.testing.assert_series_equal( series.execute().fetch(), pd.Series(data, name="a", index=pd.date_range("2020-1-1", periods=10)), ) def test_from_tensor_execution(setup): tensor = mt.random.rand(10, 10, chunk_size=5) df = dataframe_from_tensor(tensor) tensor_res = tensor.execute().fetch() pdf_expected = pd.DataFrame(tensor_res) df_result = df.execute().fetch() pd.testing.assert_index_equal(df_result.index, pd.RangeIndex(0, 10)) pd.testing.assert_index_equal(df_result.columns, pd.RangeIndex(0, 10)) pd.testing.assert_frame_equal(df_result, pdf_expected) # test from tensor with unknown shape tensor2 = tensor[tensor[:, 0] < 0.9] df = dataframe_from_tensor(tensor2) df_result = df.execute().fetch() tensor_res = tensor2.execute().fetch() pdf_expected = pd.DataFrame(tensor_res) pd.testing.assert_frame_equal(df_result.reset_index(drop=True), pdf_expected) # test converted with specified index_value and columns tensor2 = mt.random.rand(2, 2, chunk_size=1) df2 = dataframe_from_tensor( tensor2, index=pd.Index(["a", "b"]), columns=pd.Index([3, 4]) ) df_result = df2.execute().fetch() pd.testing.assert_index_equal(df_result.index, pd.Index(["a", "b"])) pd.testing.assert_index_equal(df_result.columns, pd.Index([3, 4])) # test converted from 1-d tensor tensor3 = mt.array([1, 2, 3]) df3 = dataframe_from_tensor(tensor3) result3 = df3.execute().fetch() pdf_expected = pd.DataFrame(np.array([1, 2, 3])) pd.testing.assert_frame_equal(pdf_expected, result3) # test converted from identical chunks tensor4 = mt.ones((10, 10), chunk_size=3) df4 = dataframe_from_tensor(tensor4) result4 = df4.execute().fetch() pdf_expected = pd.DataFrame(tensor4.execute().fetch()) pd.testing.assert_frame_equal(pdf_expected, result4) # from tensor with given index tensor5 = mt.ones((10, 10), chunk_size=3) df5 = dataframe_from_tensor(tensor5, index=np.arange(0, 20, 2)) result5 = df5.execute().fetch() pdf_expected = pd.DataFrame(tensor5.execute().fetch(), index=np.arange(0, 20, 2)) pd.testing.assert_frame_equal(pdf_expected, result5) # from tensor with given index that is a tensor raw7 = np.random.rand(10, 10) tensor7 = mt.tensor(raw7, chunk_size=3) index_raw7 = np.random.rand(10) index7 = mt.tensor(index_raw7, chunk_size=4) df7 = dataframe_from_tensor(tensor7, index=index7) result7 = df7.execute().fetch() pdf_expected = pd.DataFrame(raw7, index=index_raw7) pd.testing.assert_frame_equal(pdf_expected, result7) # from tensor with given index is a md.Index raw10 = np.random.rand(10, 10) tensor10 = mt.tensor(raw10, chunk_size=3) index10 = md.date_range("2020-1-1", periods=10, chunk_size=3) df10 = dataframe_from_tensor(tensor10, index=index10) result10 = df10.execute().fetch() pdf_expected = pd.DataFrame(raw10, index=
pd.date_range("2020-1-1", periods=10)
pandas.date_range
from sklearn.datasets import make_blobs from sklearn import tree from dtreeviz.trees import * import pandas as pd X, y = make_blobs(n_samples=300, centers=4, random_state=0, cluster_std=1.0) X = pd.DataFrame(X) X.columns = ['x_1', 'x_2'] y =
pd.DataFrame(y)
pandas.DataFrame
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(Categorical(b))]) expected = Categorical(combined) tm.assert_categorical_equal(result, expected, check_category_order=True) # new categories ordered by appearance s = Categorical(['x', 'y', 'z']) s2 = Categorical(['a', 'b', 'c']) result = union_categoricals([s, s2]) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) s = Categorical([0, 1.2, 2], ordered=True) s2 = Categorical([0, 1.2, 2], ordered=True) result = union_categoricals([s, s2]) expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True) tm.assert_categorical_equal(result, expected) # must exactly match types s = Categorical([0, 1.2, 2]) s2 = Categorical([2, 3, 4]) msg = 'dtype of categories must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([s, s2]) msg = 'No Categoricals to union' with tm.assert_raises_regex(ValueError, msg): union_categoricals([]) def test_union_categoricals_nan(self): # GH 13759 res = union_categoricals([pd.Categorical([1, 2, np.nan]), pd.Categorical([3, 2, np.nan])]) exp = Categorical([1, 2, np.nan, 3, 2, np.nan]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical(['A', 'B']), pd.Categorical(['B', 'B', np.nan])]) exp = Categorical(['A', 'B', 'B', 'B', np.nan]) tm.assert_categorical_equal(res, exp) val1 = [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.NaT] val2 = [pd.NaT, pd.Timestamp('2011-01-01'), pd.Timestamp('2011-02-01')] res = union_categoricals([pd.Categorical(val1), pd.Categorical(val2)]) exp = Categorical(val1 + val2, categories=[pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.Timestamp('2011-02-01')]) tm.assert_categorical_equal(res, exp) # all NaN res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical(['X'])]) exp = Categorical([np.nan, np.nan, 'X']) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical([np.nan, np.nan])]) exp = Categorical([np.nan, np.nan, np.nan, np.nan]) tm.assert_categorical_equal(res, exp) def test_union_categoricals_empty(self): # GH 13759 res = union_categoricals([pd.Categorical([]), pd.Categorical([])]) exp = Categorical([]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([]), pd.Categorical([1.0])]) exp = Categorical([1.0]) tm.assert_categorical_equal(res, exp) # to make dtype equal nanc = pd.Categorical(np.array([np.nan], dtype=np.float64)) res = union_categoricals([nanc, pd.Categorical([])]) tm.assert_categorical_equal(res, nanc) def test_union_categorical_same_category(self): # check fastpath c1 = Categorical([1, 2, 3, 4], categories=[1, 2, 3, 4]) c2 = Categorical([3, 2, 1, np.nan], categories=[1, 2, 3, 4]) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, 4, 3, 2, 1, np.nan], categories=[1, 2, 3, 4]) tm.assert_categorical_equal(res, exp) c1 = Categorical(['z', 'z', 'z'], categories=['x', 'y', 'z']) c2 = Categorical(['x', 'x', 'x'], categories=['x', 'y', 'z']) res = union_categoricals([c1, c2]) exp = Categorical(['z', 'z', 'z', 'x', 'x', 'x'], categories=['x', 'y', 'z']) tm.assert_categorical_equal(res, exp) def test_union_categoricals_ordered(self): c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) res = union_categoricals([c1, c1]) exp = Categorical([1, 2, 3, 1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, np.nan, 3, 2], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_ignore_order(self): # GH 15219 c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) res = union_categoricals([c1, c1], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c1, c1], ignore_order=False) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, np.nan, 3, 2]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c2, c1], ignore_order=True, sort_categories=True) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([4, 5, 6], ordered=True) result = union_categoricals([c1, c2], ignore_order=True) expected = Categorical([1, 2, 3, 4, 5, 6]) tm.assert_categorical_equal(result, expected) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_sort(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['a', 'b', 'c', 'x', 'y', 'z']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['a', 'b'], categories=['c', 'a', 'b']) c2 = Categorical(['b', 'c'], categories=['c', 'a', 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) # fastpath - skip resort c1 =
Categorical(['a', 'b'], categories=['a', 'b', 'c'])
pandas.Categorical
''' 事前にpostgreSQLでpandas_db 内に pandas_table を作成し、fkubotaに権限を与えた。 psycopg2 だと上書きできないらしい。 ''' import pandas as pd # import psycopg2 from sqlalchemy import create_engine # データベースの接続情報 connection_config = { 'user': 'fkubota', 'password': '<PASSWORD>', 'host': 'localhost', 'port': '5432', 'database': 'pandas_db' } # PostgreSQLに接続する engine = create_engine('postgresql://{user}: \ {password}@{host}: \ {port}/{database}'.format(**connection_config)) # pandas df = pd.read_sql(sql='SELECT * FROM pandas_table;', con=engine) name = 'jiro' age = 9 df_2 =
pd.DataFrame([[name, age]], columns=['name', 'age'])
pandas.DataFrame
import unittest import pandas as pd from mavedbconvert import validators, constants, exceptions class TestHGVSPatternsBackend(unittest.TestCase): def setUp(self): self.backend = validators.HGVSPatternsBackend() def test_validate_hgvs_raise_HGVSValidationError(self): with self.assertRaises(exceptions.HGVSValidationError): self.backend.validate("p.1102A>G") with self.assertRaises(exceptions.HGVSValidationError): self.backend.validate("x.102A>G") def test_validate_passes_on_special(self): self.backend.validate(constants.enrich2_wildtype) self.backend.validate(constants.enrich2_synonymous) def test_returns_str_variant(self): self.assertIsInstance(self.backend.validate("c.1A>G"), str) class TestValidateHGVS(unittest.TestCase): def test_uses_patterns_backend_as_default(self): result = validators.validate_variants(["c.[1A>G;2A>G]"], n_jobs=2, verbose=0) self.assertIsInstance(result[0], str) def test_can_specify_backend(self): backend = validators.HGVSPatternsBackend() result = validators.validate_variants( ["c.[1A>G;2A>G]"], n_jobs=2, verbose=0, validation_backend=backend ) self.assertIsInstance(result[0], str) class TestDfValidators(unittest.TestCase): def test_validate_column_raise_keyerror_column_not_exist(self): df = pd.DataFrame({"a": [1]}) with self.assertRaises(KeyError): validators.validate_has_column(df, "b") def test_validate_column_passes_when_column_exists(self): df = pd.DataFrame({"a": [1]}) validators.validate_has_column(df, "a") def test_error_some_values_non_numeric(self): df =
pd.DataFrame({"A": ["a", 1, 2]})
pandas.DataFrame
#predictTNA.py #AUTHOR: <NAME>, 1425458 import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import preprocessing as pp import pandas as pd from sklearn.linear_model import Lasso #importing the data probeA = pd.read_csv("../probeA.csv",header=0) probeB = pd.read_csv("../probeB.csv",header=0) #utility functions needed for preprocessing phase # some values are "swapped" betweens columns, so we need to reorder: def reorder(df): # From the initial data exploration it was clear that ther was some corruption in the form of a pemutation #for each of the 4 proteins. This code reorders it. copydf=df.copy() for letter in ["c","m","n","p"]: old_c = copydf[[letter+"1",letter+"2",letter+"3"]] c = old_c.values c.sort(axis=1) c_df = pd.DataFrame(c,columns=old_c.columns) copydf[old_c.columns] = c_df return copydf #scale data in standard way def scale_data(dataFrame): df = dataFrame.copy() for var in df: mean = df[var].mean() std = df[var].std() assert(std != 0) df[var] = (df[var]-mean)/std return df #reorder data probeA = reorder(probeA) probeB = reorder(probeB) #we define probeA_data to be the data of probeA with class and tna removed probeA_data =probeA.drop('tna',1).drop('class',1) #standardisation probeA_data_std = scale_data(probeA_data) #we define probeB_data to be the data of probeB with class and tna removed probeB_data =probeB #standardisation probeB_data_std = scale_data(probeB_data) tna_target = probeA['tna'] class_target = probeA['class'] #feature expansion def polynomial_feature_ord(X,n): poly = pp.PolynomialFeatures(n) out = poly.fit_transform(X) feature_names = poly.get_feature_names(X.columns) X_new = pd.DataFrame(out,columns =feature_names) return X_new #we save variouse polynomial expansions in case useful data_ord_2 = polynomial_feature_ord(probeA_data_std,2) data_ord_3 = polynomial_feature_ord(probeA_data_std,3) data_ord_4 = polynomial_feature_ord(probeA_data_std,4) data_ord_2_B = polynomial_feature_ord(probeB_data_std,2) data_ord_3_B = polynomial_feature_ord(probeB_data_std,3) data_ord_4_B = polynomial_feature_ord(probeB_data_std,4) #feature selection (these were found by extensive search) features =[u'c3', u'm1 n3', u'm3 n3', u'n1 n3', u'p1^2'] data = data_ord_2[features] #model selection (hyperparmeters fine-tuned by extensive search) m = Lasso(alpha=0.0043) fitted = m.fit(data,tna_target) predict = m.predict(data_ord_2_B[features]) #saves prediction df =
pd.DataFrame(predict)
pandas.DataFrame
import nose import unittest import os import sys import warnings from datetime import datetime import numpy as np from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, Index) from pandas.io.pytables import HDFStore, get_store, Term, IncompatibilityWarning import pandas.util.testing as tm from pandas.tests.test_series import assert_series_equal from pandas.tests.test_frame import assert_frame_equal from pandas import concat, Timestamp try: import tables except ImportError: raise nose.SkipTest('no pytables') from distutils.version import LooseVersion _default_compressor = LooseVersion(tables.__version__) >= '2.2' \ and 'blosc' or 'zlib' _multiprocess_can_split_ = False class TestHDFStore(unittest.TestCase): path = '__test__.h5' scratchpath = '__scratch__.h5' def setUp(self): self.store = HDFStore(self.path) def tearDown(self): self.store.close() os.remove(self.path) def test_factory_fun(self): try: with get_store(self.scratchpath) as tbl: raise ValueError('blah') except ValueError: pass with get_store(self.scratchpath) as tbl: tbl['a'] = tm.makeDataFrame() with get_store(self.scratchpath) as tbl: self.assertEquals(len(tbl), 1) self.assertEquals(type(tbl['a']), DataFrame) os.remove(self.scratchpath) def test_keys(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.assertEquals(len(self.store), 5) self.assert_(set(self.store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar'])) def test_repr(self): repr(self.store) self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.store.append('e', tm.makePanel()) repr(self.store) str(self.store) def test_contains(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() self.store['foo/bar'] = tm.makeDataFrame() self.assert_('a' in self.store) self.assert_('b' in self.store) self.assert_('c' not in self.store) self.assert_('foo/bar' in self.store) self.assert_('/foo/bar' in self.store) self.assert_('/foo/b' not in self.store) self.assert_('bar' not in self.store) def test_versioning(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) self.assert_(self.store.root.a._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.b._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.df1._v_attrs.pandas_version == '0.10') # write a file and wipe its versioning self.store.remove('df2') self.store.append('df2', df) self.store.get_node('df2')._v_attrs.pandas_version = None self.store.select('df2') self.store.select('df2', [ Term('index','>',df.index[2]) ]) def test_meta(self): raise nose.SkipTest('no meta') meta = { 'foo' : [ 'I love pandas ' ] } s = tm.makeTimeSeries() s.meta = meta self.store['a'] = s self.assert_(self.store['a'].meta == meta) df = tm.makeDataFrame() df.meta = meta self.store['b'] = df self.assert_(self.store['b'].meta == meta) # this should work, but because slicing doesn't propgate meta it doesn self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) results = self.store['df1'] #self.assert_(getattr(results,'meta',None) == meta) # no meta df = tm.makeDataFrame() self.store['b'] = df self.assert_(hasattr(self.store['b'],'meta') == False) def test_reopen_handle(self): self.store['a'] = tm.makeTimeSeries() self.store.open('w', warn=False) self.assert_(self.store.handle.isopen) self.assertEquals(len(self.store), 0) def test_flush(self): self.store['a'] = tm.makeTimeSeries() self.store.flush() def test_get(self): self.store['a'] = tm.makeTimeSeries() left = self.store.get('a') right = self.store['a'] tm.assert_series_equal(left, right) left = self.store.get('/a') right = self.store['/a'] tm.assert_series_equal(left, right) self.assertRaises(KeyError, self.store.get, 'b') def test_put(self): ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() self.store['a'] = ts self.store['b'] = df[:10] self.store['foo/bar/bah'] = df[:10] self.store['foo'] = df[:10] self.store['/foo'] = df[:10] self.store.put('c', df[:10], table=True) # not OK, not a table self.assertRaises(ValueError, self.store.put, 'b', df[10:], append=True) # node does not currently exist, test _is_table_type returns False in # this case self.assertRaises(ValueError, self.store.put, 'f', df[10:], append=True) # OK self.store.put('c', df[10:], append=True) # overwrite table self.store.put('c', df[:10], table=True, append=False) tm.assert_frame_equal(df[:10], self.store['c']) def test_put_string_index(self): index = Index([ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(20), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) # mixed length index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] + [ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(21), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) def test_put_compression(self): df = tm.makeTimeDataFrame() self.store.put('c', df, table=True, compression='zlib') tm.assert_frame_equal(self.store['c'], df) # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='zlib') def test_put_compression_blosc(self): tm.skip_if_no_package('tables', '2.2', app='blosc support') df = tm.makeTimeDataFrame() # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='blosc') self.store.put('c', df, table=True, compression='blosc') tm.assert_frame_equal(self.store['c'], df) def test_put_integer(self): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal) def test_append(self): df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) tm.assert_frame_equal(self.store['df1'], df) self.store.remove('df2') self.store.put('df2', df[:10], table=True) self.store.append('df2', df[10:]) tm.assert_frame_equal(self.store['df2'], df) self.store.remove('df3') self.store.append('/df3', df[:10]) self.store.append('/df3', df[10:]) tm.assert_frame_equal(self.store['df3'], df) # this is allowed by almost always don't want to do it warnings.filterwarnings('ignore', category=tables.NaturalNameWarning) self.store.remove('/df3 foo') self.store.append('/df3 foo', df[:10]) self.store.append('/df3 foo', df[10:]) tm.assert_frame_equal(self.store['df3 foo'], df) warnings.filterwarnings('always', category=tables.NaturalNameWarning) # panel wp = tm.makePanel() self.store.remove('wp1') self.store.append('wp1', wp.ix[:,:10,:]) self.store.append('wp1', wp.ix[:,10:,:]) tm.assert_panel_equal(self.store['wp1'], wp) # ndim p4d = tm.makePanel4D() self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:]) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using axis labels self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=['items','major_axis','minor_axis']) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using differnt number of items on each axis p4d2 = p4d.copy() p4d2['l4'] = p4d['l1'] p4d2['l5'] = p4d['l1'] self.store.remove('p4d2') self.store.append('p4d2', p4d2, axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d2'], p4d2) # test using differt order of items on the non-index axes self.store.remove('wp1') wp_append1 = wp.ix[:,:10,:] self.store.append('wp1', wp_append1) wp_append2 = wp.ix[:,10:,:].reindex(items = wp.items[::-1]) self.store.append('wp1', wp_append2) tm.assert_panel_equal(self.store['wp1'], wp) def test_append_frame_column_oriented(self): # column oriented df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df.ix[:,:2], axes = ['columns']) self.store.append('df1', df.ix[:,2:]) tm.assert_frame_equal(self.store['df1'], df) result = self.store.select('df1', 'columns=A') expected = df.reindex(columns=['A']) tm.assert_frame_equal(expected, result) # this isn't supported self.assertRaises(Exception, self.store.select, 'df1', ('columns=A', Term('index','>',df.index[4]))) # selection on the non-indexable result = self.store.select('df1', ('columns=A', Term('index','=',df.index[0:4]))) expected = df.reindex(columns=['A'],index=df.index[0:4]) tm.assert_frame_equal(expected, result) def test_ndim_indexables(self): """ test using ndim tables in new ways""" p4d = tm.makePanel4D() def check_indexers(key, indexers): for i,idx in enumerate(indexers): self.assert_(getattr(getattr(self.store.root,key).table.description,idx)._v_pos == i) # append then change (will take existing schema) indexers = ['items','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # same as above, but try to append with differnt axes self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['labels','items','major_axis']) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # pass incorrect number of axes self.store.remove('p4d') self.assertRaises(Exception, self.store.append, 'p4d', p4d.ix[:,:,:10,:], axes=['major_axis','minor_axis']) # different than default indexables #1 indexers = ['labels','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # different than default indexables #2 indexers = ['major_axis','labels','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # partial selection result = self.store.select('p4d',['labels=l1']) expected = p4d.reindex(labels = ['l1']) tm.assert_panel4d_equal(result, expected) # partial selection2 result = self.store.select('p4d',[Term('labels=l1'), Term('items=ItemA'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = ['ItemA'], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) # non-existant partial selection result = self.store.select('p4d',[Term('labels=l1'), Term('items=Item1'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = [], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) def test_append_with_strings(self): wp = tm.makePanel() wp2 = wp.rename_axis(dict([ (x,"%s_extra" % x) for x in wp.minor_axis ]), axis = 2) self.store.append('s1', wp, min_itemsize = 20) self.store.append('s1', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s1'], expected) # test dict format self.store.append('s2', wp, min_itemsize = { 'minor_axis' : 20 }) self.store.append('s2', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s2'], expected) # apply the wrong field (similar to #1) self.store.append('s3', wp, min_itemsize = { 'major_axis' : 20 }) self.assertRaises(Exception, self.store.append, 's3') # test truncation of bigger strings self.store.append('s4', wp) self.assertRaises(Exception, self.store.append, 's4', wp2) # avoid truncation on elements df = DataFrame([[123,'asdqwerty'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big',df, min_itemsize = { 'values' : 1024 }) tm.assert_frame_equal(self.store.select('df_big'), df) # appending smaller string ok df2 = DataFrame([[124,'asdqy'], [346,'dggnhefbdfb']]) self.store.append('df_big',df2) expected = concat([ df, df2 ]) tm.assert_frame_equal(self.store.select('df_big'), expected) # avoid truncation on elements df = DataFrame([[123,'as<PASSWORD>'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big2',df, min_itemsize = { 'values' : 10 }) tm.assert_frame_equal(self.store.select('df_big2'), df) # bigger string on next append self.store.append('df_new',df, min_itemsize = { 'values' : 16 }) df_new = DataFrame([[124,'abcdefqhij'], [346, 'abcdefghijklmnopqrtsuvwxyz']]) self.assertRaises(Exception, self.store.append, 'df_new',df_new) def test_create_table_index(self): wp = tm.makePanel() self.store.append('p5', wp) self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.is_indexed == True) assert(self.store.handle.root.p5.table.cols.minor_axis.is_indexed == False) # default optlevels assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') # let's change the indexing scheme self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', optlevel=9) assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', kind='full') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'full') self.store.create_table_index('p5', optlevel=1, kind='light') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 1) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'light') df = tm.makeTimeDataFrame() self.store.append('f', df[:10]) self.store.append('f', df[10:]) self.store.create_table_index('f') # try to index a non-table self.store.put('f2', df) self.assertRaises(Exception, self.store.create_table_index, 'f2') # try to change the version supports flag from pandas.io import pytables pytables._table_supports_index = False self.assertRaises(Exception, self.store.create_table_index, 'f') # test out some versions original = tables.__version__ for v in ['2.2','2.2b']: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.assertRaises(Exception, self.store.create_table_index, 'f') for v in ['2.3.1','2.3.1b','2.4dev','2.4',original]: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.store.create_table_index('f') pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = original def test_big_table(self): raise nose.SkipTest('no big table') # create and write a big table wp = Panel(np.random.randn(20, 1000, 1000), items= [ 'Item%s' % i for i in xrange(20) ], major_axis=date_range('1/1/2000', periods=1000), minor_axis = [ 'E%s' % i for i in xrange(1000) ]) wp.ix[:,100:200,300:400] = np.nan try: store = HDFStore(self.scratchpath) store._debug_memory = True store.append('wp',wp) recons = store.select('wp') finally: store.close() os.remove(self.scratchpath) def test_append_diff_item_order(self): raise nose.SkipTest('append diff item order') wp = tm.makePanel() wp1 = wp.ix[:, :10, :] wp2 = wp.ix[['ItemC', 'ItemB', 'ItemA'], 10:, :] self.store.put('panel', wp1, table=True) self.assertRaises(Exception, self.store.put, 'panel', wp2, append=True) def test_table_index_incompatible_dtypes(self): df1 = DataFrame({'a': [1, 2, 3]}) df2 = DataFrame({'a': [4, 5, 6]}, index=date_range('1/1/2000', periods=3)) self.store.put('frame', df1, table=True) self.assertRaises(Exception, self.store.put, 'frame', df2, table=True, append=True) def test_table_values_dtypes_roundtrip(self): df1 = DataFrame({'a': [1, 2, 3]}, dtype = 'f8') self.store.append('df1', df1) assert df1.dtypes == self.store['df1'].dtypes df2 = DataFrame({'a': [1, 2, 3]}, dtype = 'i8') self.store.append('df2', df2) assert df2.dtypes == self.store['df2'].dtypes # incompatible dtype self.assertRaises(Exception, self.store.append, 'df2', df1) def test_table_mixed_dtypes(self): # frame def _make_one_df(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 return df.consolidate() df1 = _make_one_df() self.store.append('df1_mixed', df1) tm.assert_frame_equal(self.store.select('df1_mixed'), df1) # panel def _make_one_panel(): wp = tm.makePanel() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['ItemA'] > 0 wp['bool2'] = wp['ItemB'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p1 = _make_one_panel() self.store.append('p1_mixed', p1) tm.assert_panel_equal(self.store.select('p1_mixed'), p1) # ndim def _make_one_p4d(): wp = tm.makePanel4D() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['l1'] > 0 wp['bool2'] = wp['l2'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p4d = _make_one_p4d() self.store.append('p4d_mixed', p4d) tm.assert_panel4d_equal(self.store.select('p4d_mixed'), p4d) def test_remove(self): ts = tm.makeTimeSeries() df = tm.makeDataFrame() self.store['a'] = ts self.store['b'] = df self.store.remove('a') self.assertEquals(len(self.store), 1) tm.assert_frame_equal(df, self.store['b']) self.store.remove('b') self.assertEquals(len(self.store), 0) # pathing self.store['a'] = ts self.store['b/foo'] = df self.store.remove('foo') self.store.remove('b/foo') self.assertEquals(len(self.store), 1) self.store['a'] = ts self.store['b/foo'] = df self.store.remove('b') self.assertEquals(len(self.store), 1) # __delitem__ self.store['a'] = ts self.store['b'] = df del self.store['a'] del self.store['b'] self.assertEquals(len(self.store), 0) def test_remove_where(self): # non-existance crit1 = Term('index','>','foo') self.store.remove('a', where=[crit1]) # try to remove non-table (with crit) # non-table ok (where = None) wp = tm.makePanel() self.store.put('wp', wp, table=True) self.store.remove('wp', [('minor_axis', ['A', 'D'])]) rs = self.store.select('wp') expected = wp.reindex(minor_axis = ['B','C']) tm.assert_panel_equal(rs,expected) # empty where self.store.remove('wp') self.store.put('wp', wp, table=True) # deleted number (entire table) n = self.store.remove('wp', []) assert(n == 120) # non - empty where self.store.remove('wp') self.store.put('wp', wp, table=True) self.assertRaises(Exception, self.store.remove, 'wp', ['foo']) # selectin non-table with a where #self.store.put('wp2', wp, table=False) #self.assertRaises(Exception, self.store.remove, # 'wp2', [('column', ['A', 'D'])]) def test_remove_crit(self): wp = tm.makePanel() # group row removal date4 = wp.major_axis.take([ 0,1,2,4,5,6,8,9,10 ]) crit4 = Term('major_axis',date4) self.store.put('wp3', wp, table=True) n = self.store.remove('wp3', where=[crit4]) assert(n == 36) result = self.store.select('wp3') expected = wp.reindex(major_axis = wp.major_axis-date4) tm.assert_panel_equal(result, expected) # upper half self.store.put('wp', wp, table=True) date = wp.major_axis[len(wp.major_axis) // 2] crit1 = Term('major_axis','>',date) crit2 = Term('minor_axis',['A', 'D']) n = self.store.remove('wp', where=[crit1]) assert(n == 56) n = self.store.remove('wp', where=[crit2]) assert(n == 32) result = self.store['wp'] expected = wp.truncate(after=date).reindex(minor=['B', 'C']) tm.assert_panel_equal(result, expected) # individual row elements self.store.put('wp2', wp, table=True) date1 = wp.major_axis[1:3] crit1 = Term('major_axis',date1) self.store.remove('wp2', where=[crit1]) result = self.store.select('wp2') expected = wp.reindex(major_axis=wp.major_axis-date1) tm.assert_panel_equal(result, expected) date2 = wp.major_axis[5] crit2 = Term('major_axis',date2) self.store.remove('wp2', where=[crit2]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])) tm.assert_panel_equal(result, expected) date3 = [wp.major_axis[7],wp.major_axis[9]] crit3 = Term('major_axis',date3) self.store.remove('wp2', where=[crit3]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])-
Index(date3)
pandas.Index
from unittest import TestCase import numpy as np import pandas as pd import pandas.util.testing as tm import ts_charting.formatter as formatter plot_index = pd.date_range(start="2000-1-1", freq="B", periods=10000) class TestTimestampLocator(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) def runTest(self): pass def setUp(self): pass def test_inferred_freq(self): """ inferred freqs are based off of min_ticks """ plot_index = pd.date_range(start="2000-1-1", freq="B", periods=10000) tl = formatter.TimestampLocator(plot_index) # showing only the first 10 should give us days xticks = tl._process(1, 10) assert tl.gen_freq == 'D' # showing only the first 70 should give us weeks xticks = tl._process(1, 6 * 7 + 1) assert tl.gen_freq == 'W' # months should trigger at around 6 * 31 xticks = tl._process(1, 6 * 31 ) assert tl.gen_freq == 'MS' # year should trigger at around 6 *366 xticks = tl._process(1, 6 * 366 + 1) assert tl.gen_freq == 'AS' def test_fixed_freq(self): """ Test passing in a fixed freq. This will allow len(xticks) less than min_ticks """ plot_index = pd.date_range(start="2000-1-1", freq="D", periods=10000) tl = formatter.TimestampLocator(plot_index, 'MS') xticks = tl._process(0, 30*3) assert len(xticks) == 3 tl = formatter.TimestampLocator(plot_index, 'MS') xticks = tl._process(0, 30*6) assert len(xticks) == 6 tl = formatter.TimestampLocator(plot_index, 'W') xticks = tl._process(0, 10*7) assert len(xticks) == 10 tl = formatter.TimestampLocator(plot_index, 'AS') xticks = tl._process(0, 10 * 365) assert len(xticks) == 10 def test_bool_xticks(self): """ ability to set ticks with a bool series where True == tick """ plot_index = pd.date_range(start="2000-1-1", freq="D", periods=10000) freq = 'M' ds = pd.Series(1, index=plot_index) # True when freq market is hit bool_ticks = ds.resample(freq).reindex(plot_index).fillna(0).astype(bool) tl = formatter.TimestampLocator(plot_index, xticks=bool_ticks) xticks = tl._process(0, 90) tl = formatter.TimestampLocator(plot_index, freq=freq) correct = tl._process(0, 90) tm.assert_almost_equal(xticks, correct) freq = 'MS' ds = pd.Series(1, index=plot_index) # True when freq market is hit bool_ticks = ds.resample(freq).reindex(plot_index).fillna(0).astype(bool) tl = formatter.TimestampLocator(plot_index, xticks=bool_ticks) xticks = tl._process(3, 94) tl = formatter.TimestampLocator(plot_index, freq=freq) correct = tl._process(3, 94) tm.assert_almost_equal(xticks, correct) freq = 'W' ds = pd.Series(1, index=plot_index) # True when freq market is hit bool_ticks = ds.resample(freq).reindex(plot_index).fillna(0).astype(bool) tl = formatter.TimestampLocator(plot_index, xticks=bool_ticks) xticks = tl._process(3, 94) tl = formatter.TimestampLocator(plot_index, freq=freq) correct = tl._process(3, 94) tm.assert_almost_equal(xticks, correct) def test_list_of_datetimes(self): """ The other xticks option is sending in a DatetimeIndex of the dates you want """ plot_index = pd.date_range(start="2000-1-1", freq="D", periods=10000) freq = 'M' dates = pd.Series(1, index=plot_index).resample(freq).index tl = formatter.TimestampLocator(plot_index, xticks=dates) test = tl._process(3, 900) tl = formatter.TimestampLocator(plot_index, freq=freq) correct = tl._process(3, 900) tm.assert_almost_equal(test, correct) freq = 'MS' dates = pd.Series(1, index=plot_index).resample(freq).index tl = formatter.TimestampLocator(plot_index, xticks=dates) test = tl._process(3, 900) tl = formatter.TimestampLocator(plot_index, freq=freq) correct = tl._process(3, 900)
tm.assert_almost_equal(test, correct)
pandas.util.testing.assert_almost_equal
import numpy as np import json import sys import os import argparse from scipy.io import netcdf from ipdb import set_trace as stop import keras.backend as K import tensorflow as tf from keras.callbacks import CSVLogger, LearningRateScheduler, ModelCheckpoint from keras.layers import Input, Lambda, Dense, Flatten, BatchNormalization, Activation, Conv1D, add, concatenate, GaussianNoise from keras.models import Model, load_model from keras.layers.advanced_activations import PReLU from keras.optimizers import Adam from keras.utils import plot_model from sklearn.cluster import KMeans, AgglomerativeClustering import pandas as pd from contextlib import redirect_stdout os.environ["CUDA_VISIBLE_DEVICES"] = "0" def flush_file(f): f.flush() os.fsync(f.fileno()) def residual(inputs, n_filters, activation, strides): x0 = Conv1D(n_filters, 1, padding='same', kernel_initializer='he_normal', strides=strides)(inputs) x = Conv1D(n_filters, 3, padding='same', kernel_initializer='he_normal', strides=strides)(inputs) x = BatchNormalization()(x) if (activation == 'prelu'): x = PReLU()(x) else: x = Activation(activation)(x) x = Conv1D(n_filters, 3, padding='same', kernel_initializer='he_normal')(x) x = BatchNormalization()(x) x = add([x0, x]) return x def sample_center_points(y, method='all', k=100, keep_edges=False): """ function to define kernel centers with various downsampling alternatives """ # make sure y is 1D y = y.ravel() # keep all points as kernel centers if method is 'all': return y # retain outer points to ensure expressiveness at the target borders if keep_edges: y = np.sort(y) centers = np.array([y[0], y[-1]]) y = y[1:-1] # adjust k such that the final output has size k k -= 2 else: centers = np.empty(0) if method is 'random': cluster_centers = np.random.choice(y, k, replace=False) # iteratively remove part of pairs that are closest together until everything is at least 'd' apart elif method is 'distance': raise NotImplementedError # use 1-D k-means clustering elif method is 'k_means': model = KMeans(n_clusters=k, n_jobs=-2) model.fit(y.reshape(-1, 1)) cluster_centers = model.cluster_centers_ # use agglomerative clustering elif method is 'agglomerative': model = AgglomerativeClustering(n_clusters=k, linkage='complete') model.fit(y.reshape(-1, 1)) labels = pd.Series(model.labels_, name='label') y_s = pd.Series(y, name='y') df =
pd.concat([y_s, labels], axis=1)
pandas.concat
from typing import List import numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequencies import to_offset class TimeFeature: def __init__(self): pass def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: pass def __repr__(self): return self.__class__.__name__ + "()" class SecondOfMinute(TimeFeature): """Minute of hour encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.second / 59.0 - 0.5 class MinuteOfHour(TimeFeature): """Minute of hour encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.minute / 59.0 - 0.5 class HourOfDay(TimeFeature): """Hour of day encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.hour / 23.0 - 0.5 class DayOfWeek(TimeFeature): """Hour of day encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.dayofweek / 6.0 - 0.5 class DayOfMonth(TimeFeature): """Day of month encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.day - 1) / 30.0 - 0.5 class DayOfYear(TimeFeature): """Day of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.dayofyear - 1) / 365.0 - 0.5 class MonthOfYear(TimeFeature): """Month of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.month - 1) / 11.0 - 0.5 class WeekOfYear(TimeFeature): """Week of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.isocalendar().week - 1) / 52.0 - 0.5 def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]: """ Returns a list of time features that will be appropriate for the given frequency string. Parameters ---------- freq_str Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc. """ features_by_offsets = { offsets.YearEnd: [], offsets.QuarterEnd: [MonthOfYear], offsets.MonthEnd: [MonthOfYear], offsets.Week: [DayOfMonth, WeekOfYear], offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear], offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear], offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear], offsets.Minute: [ MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, DayOfYear, ], offsets.Second: [ SecondOfMinute, MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, DayOfYear, ], } offset =
to_offset(freq_str)
pandas.tseries.frequencies.to_offset
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), True), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, True), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), True), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), True), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), # TODO: Currently creating an empty Series of list type ignores the # provided type and instead makes a float64 Series. (cudf.Series([[1, 2], [3, 4, 5]]), False), # TODO: Currently creating an empty Series of struct type fails because # it uses a numpy utility that doesn't understand StructDtype. (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_categorical_dtype(obj, expect): assert types.is_categorical_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, True), (int, True), (float, True), (complex, True), (str, False), (object, False), # NumPy types. (np.bool_, True), (np.int_, True), (np.float64, True), (np.complex128, True), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), True), (np.int_(), True), (np.float64(), True), (np.complex128(), True), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), True), (np.dtype("int"), True), (np.dtype("float"), True), (np.dtype("complex"), True), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), True), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), True), (np.array([], dtype=np.complex128), True), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), True), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), True), (pd.Series(dtype="complex"), True), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), True), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), True), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_numeric_dtype(obj, expect): assert types.is_numeric_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, True), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, True), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), True), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer_dtype(obj, expect): assert types.is_integer_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), True), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer(obj, expect): assert types.is_integer(obj) == expect # TODO: Temporarily ignoring all cases of "object" until we decide what to do. @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, True), # (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, True), (np.unicode_, True), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), True), (np.unicode_(), True), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), True), (np.dtype("unicode"), True), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), # (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), True), (np.array([], dtype=np.unicode_), True), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), # (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), True), (pd.Series(dtype="unicode"), True), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), # (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), True), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_string_dtype(obj, expect): assert types.is_string_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, True), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), True), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), True), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), True), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), True), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), True), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_datetime_dtype(obj, expect): assert types.is_datetime_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, True), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), True), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), True), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_list_dtype(obj, expect): assert types.is_list_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (
pd.Series(dtype="object")
pandas.Series
# Debit card data compilation import pandas as pd cols_list = ['UNI_PT_KEY', 'CIF', 'CARD_CLASS_CODE', 'CARD_NUM', 'PRODUCT', 'PRIMARY_ACCOUNT', 'CARD_SEGMENT', 'CARD_BIN', 'CARD_RANGE', 'EMBLEM_ID', 'ACCOUNT_OPEN_DATE', 'CARD_ISSUE_DATE', 'CARD_EXPIRY_DATE', 'CARD_ACTIVATION_DATE', 'FIRST_TRN_DATE', 'CARD_ACT_FLAG','IS_CARD_WITH_TOKEN'] debit = pd.read_csv("debitcards.csv", usecols=cols_list, dtype=str, sep=";", error_bad_lines=False, low_memory=False) a = debit["CARD_NUM"].nunique() b = debit["UNI_PT_KEY"].nunique() c = debit["CIF"].nunique() print("# of UNI_PT_KEY = " +str(b)) print("# of CARD_NUM = " + str(a)) print("# of CIF = " + str(c)) #other products other_products = pd.read_csv("other_metrics.csv", sep=";", dtype=str) other_products["OTHER_PRODUCTS"] = 1 dc_other_products = debit.merge(other_products, how="left", on="UNI_PT_KEY") dc_other_products["OTHER_PRODUCTS"] = dc_other_products["OTHER_PRODUCTS"].fillna(0).astype(int).astype(str) print("matched records = " + str(dc_other_products["OTHER_PRODUCTS"].astype(int).sum())) #mobile banking mobile_banking = pd.read_csv("mobile_banking.csv", sep=";", dtype=str) mobile_banking["MOBILE_BANKING"] = 1 mobile_banking = pd.DataFrame(mobile_banking) dc_mobile_banking = dc_other_products.merge(mobile_banking, how="left", on="UNI_PT_KEY") dc_mobile_banking["MOBILE_BANKING"] = dc_mobile_banking["MOBILE_BANKING"].fillna(0).astype(int).astype(str) print("matched records = " + str(dc_mobile_banking["MOBILE_BANKING"].astype(int).sum())) #internet banking internet_banking = pd.read_csv("internet_banking.csv", sep=";", dtype=str) internet_banking["INTERNET_BANKING"] = 1 dc_internet_banking = dc_mobile_banking.merge(internet_banking, how="left", on="UNI_PT_KEY") dc_internet_banking["INTERNET_BANKING"] = dc_internet_banking["INTERNET_BANKING"].fillna(0).astype(int).astype(str) print("matched records = " + str(dc_internet_banking["INTERNET_BANKING"].astype(int).sum())) #branch delivery branch_delivery = pd.read_csv("branch_delivery.csv", sep=";", dtype=str) branch_delivery["BRANCH_DELIVERY"] = 1 dc_branch_delivery = dc_internet_banking.merge(branch_delivery, how="left", on="CARD_NUM") dc_branch_delivery["BRANCH_DELIVERY"] = dc_branch_delivery["BRANCH_DELIVERY"].fillna(0).astype(int).astype(str) print("matched records = " + str(dc_branch_delivery["BRANCH_DELIVERY"].astype(int).sum())) #staff staff = pd.read_csv("staff_flag.csv", sep=";", dtype=str) staff["STAFF_FLAG"] = 1 dc_staff_flag = dc_branch_delivery.merge(staff, how="left", on="UNI_PT_KEY") dc_staff_flag["STAFF_FLAG"] = dc_staff_flag["STAFF_FLAG"].fillna(0).astype(int).astype(str) print("matched records = " + str(dc_staff_flag["STAFF_FLAG"].astype(int).sum())) #email phone email_phone = pd.read_csv("contact_email_phone.csv", sep=";", dtype=str, error_bad_lines=False, low_memory=False) dc_email_phone = dc_staff_flag.merge(email_phone, how="left", on ="UNI_PT_KEY") #contact address contact_address = pd.read_csv("customer_address.csv", sep=";", dtype=str) dc_contact_address = dc_email_phone.merge(contact_address, how="left", on="CARD_NUM") # owner vs holder owner_vs_holder =
pd.read_csv("card_ownervsholder_dc.csv", sep=";")
pandas.read_csv
import numpy as np import pandas as pd import joblib, os, logging from joblib import Parallel, delayed from workalendar.europe import Greece from scipy.interpolate import interp2d def rescale(arr, nrows, ncol): W, H = arr.shape new_W, new_H = (nrows, ncol) xrange = lambda x: np.linspace(0, 1, x) f = interp2d(xrange(H), xrange(W), arr, kind="linear") new_arr = f(xrange(new_H), xrange(new_W)) return new_arr def stack_2d(X, sample, compress): if compress: sample = rescale(sample, 8, 8) if len(sample.shape) == 3: if X.shape[0] == 0: X = sample elif len(X.shape) == 3: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :, :])) elif len(sample.shape) == 2: if X.shape[0] == 0: X = sample elif len(X.shape) == 2: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :])) return X def stack_3d(X, sample): if X.shape[0] == 0: X = sample elif len(sample.shape)!=len(X.shape): X = np.vstack((X, sample[np.newaxis])) else: X = np.vstack((X, sample)) return X class dataset_creator_LV(): def __init__(self, projects_group, projects, data, path_nwp, nwp_model, nwp_resolution, data_variables, njobs=1, test=False): self.projects = projects self.isfortest = test self.projects_group = projects_group self.data = data self.path_nwp = path_nwp self.create_logger() self.check_dates() self.nwp_model = nwp_model self.nwp_resolution = nwp_resolution if self.nwp_resolution == 0.05: self.compress = True else: self.compress = False self.njobs = njobs self.variables = data_variables def create_logger(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(os.path.dirname(self.path_nwp), 'log_' + self.projects_group + '.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger self.logger.addHandler(handler) def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates is checked. Number of time samples %s', str(len(dates))) self.dates = pd.DatetimeIndex(dates) def check_empty_nwp(self, nwp, variables): flag = True for var in variables: if nwp[var].shape[0] == 0: flag = False break return flag def stack_daily_nwps(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables, compress): X = dict() fname = os.path.join(path_nwp, nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H').strftime( '%d%m%y%H%M') for project in projects: X[project['_id']] = pd.DataFrame() areas = project['static_data']['areas'] x =
pd.DataFrame()
pandas.DataFrame
import gc import eli5 import lightgbm as lgb import numpy as np import pandas as pd import xgboost as xgb from catboost import CatBoost, Pool from IPython.display import display from sklearn import metrics from sklearn.metrics import ( make_scorer, roc_auc_score, mean_squared_error, f1_score, ) import src.common.com_util as util __all__ = [ "cat_train_validate_on_holdout", "xgb_train_validate_on_holdout", "lgb_train_validate_on_holdout", "xgb_train_validate_on_cv", "lgb_train_validate_on_cv", "cat_train_validate_on_cv", "sklearn_train_validate_on_cv", "lgb_train_perm_importance_on_cv", "evaluate_macroF1_xgb", "evaluate_macroF1_lgb", "_calculate_perf_metric", "f1_score_weighted", "evaluate_macroF1_lgb_sklearn_api", "_get_X_Y_from_CV", "lgb_train_validate_on_cv_mean_encoding", ] def evaluate_macroF1_lgb(y_hat, data): """ Custom F1 Score to be used for multiclass classification using lightgbm. This function should be passed as a value to the parameter feval. weighted average takes care of imbalance https://stackoverflow.com/questions/57222667/light-gbm-early-stopping-does-not-work-for-custom-metric https://stackoverflow.com/questions/52420409/lightgbm-manual-scoring-function-f1-score https://stackoverflow.com/questions/51139150/how-to-write-custom-f1-score-metric-in-light-gbm-python-in-multiclass-classifica """ y = data.get_label() y_hat = y_hat.reshape(-1, len(np.unique(y))).argmax(axis=1) f1 = f1_score(y_true=y, y_pred=y_hat, average="weighted") return ("weightedF1", f1, True) def evaluate_macroF1_lgb_sklearn_api(y, y_hat): """ Custom F1 Score to be used for multiclass classification using lightgbm. This function should be passed as a value to the parameter eval_metric for the LGBM sklearn API. weighted average takes care of imbalance https://github.com/Microsoft/LightGBM/issues/1453 """ y_hat = y_hat.reshape(-1, len(np.unique(y))).argmax(axis=1) f1 = f1_score(y_true=y, y_pred=y_hat, average="weighted") return ("weightedF1", f1, True) def evaluate_macroF1_xgb(y_hat, data): """ Custom F1 Score to be used for multiclass classification using xgboost. This function should be passed as a value to the parameter feval. weighted average takes care of imbalance https://stackoverflow.com/questions/51587535/custom-evaluation-function-based-on-f1-for-use-in-xgboost-python-api https://www.kaggle.com/c/expedia-hotel-recommendations/discussion/21439 """ y = data.get_label() y_hat = y_hat.reshape(-1, len(np.unique(y))).argmax(axis=1) f1 = f1_score(y_true=y, y_pred=y_hat, average="weighted") return ("weightedF1", f1) def f1_score_weighted(y, y_hat): """ It's assumed that y_hat consists of a two dimensional array. Each array in the first dimension has probabilities for all the classes, i.e. if there are 43 classes and 1000 rows of data, the y_hat has a dimension (1000, 43) """ y_hat = y_hat.reshape(-1, len(np.unique(y))).argmax(axis=1) return f1_score(y_true=y, y_pred=y_hat, average="weighted") def roc_auc(y, y_hat): return roc_auc_score(y, y_hat) def log_loss(y, y_hat): return metrics.log_loss(y_true=y, y_pred=y_hat) def rmse(y, y_hat): return np.sqrt(mean_squared_error(y, y_hat)) def rmsle(y, y_hat): return np.sqrt(np.mean(np.power(np.log1p(y_hat) - np.log1p(y), 2))) def precision_weighted(y, y_hat): return metrics.precision_score(y_true=y, y_pred=y_hat, average="weighted") def recall_weighted(y, y_hat): return metrics.recall_score(y_true=y, y_pred=y_hat, average="weighted") def _calculate_perf_metric(metric_name, y, y_hat): """Returns the performance metrics Args: y: Real value y_hat: predicted value Returns: Metrics computed """ if metric_name == "rmse": return rmse(y, y_hat) elif metric_name == "rmsle": return rmsle(y, y_hat) elif metric_name == "roc_auc": return roc_auc(y, y_hat) elif metric_name == "log_loss": return log_loss(y, y_hat) elif metric_name == "f1_score_weighted": return f1_score_weighted(y, y_hat) elif metric_name == "precision_weighted": return precision_weighted(y, y_hat) elif metric_name == "recall_weighted": return recall_weighted(y, y_hat) else: raise ValueError( "Invalid value for metric_name. Only rmse, rmsle, roc_auc, log_loss allowed" ) def _get_scorer(metric_name): if metric_name == "roc_auc": return metrics.roc_auc_score elif metric_name == "log_loss": return metrics.log_loss else: raise ValueError( "Invalid value for metric_name. Only rmse, rmsle, roc_auc, log_loss allowed" ) def _get_random_seeds(i): """ returns 10 seeds """ seed_list = [42, 103, 13, 31, 17, 23, 46, 57, 83, 93] return seed_list[i - 1] def _get_x_y_from_data(logger, df, predictors, target): """Returns X & Y from a DataFrame""" if df is not None: df_X = df[predictors] df_Y = df[target] return df_X, df_Y def _get_x_y_from_training_validation(logger, training, validation, predictors, target): """Returns X & Y for training & validation data""" if training is not None: training_X, training_Y = _get_x_y_from_data( logger, training, predictors, target ) if validation is not None: validation_X, validation_Y = _get_x_y_from_data( logger, validation, predictors, target ) return training_X, training_Y, validation_X, validation_Y def cat_train_validate_on_holdout( logger, run_id, training, validation, predictors, target, cat_features, params, test_X=None, label_name="", log_target=False, ): """Train a CatBoost model, validate on holdout data. If `test_X` has a valid value, creates a new model with number of best iteration found during holdout phase using training as well as validation data. Args: logger: Logger to be used training: Training DataFrame validation: Validation DataFrame predictors: List of names of features target: Name of target variable params: Parameters for CatBoost test_X: Test DataFrame Returns: bst: CatBoost model valid_score: Best validation score best_iteration: Value of best iteration prediction: Prediction generated on `test_X` """ result_dict = {} logger.info("Training using CatBoost and validating on holdout") train_X, train_Y, validation_X, validation_Y = _get_x_y_from_training_validation( logger, training, validation, predictors, target ) logger.info( ( f"Shape of train_X, train_Y, validation_X, validation_Y: " f"{train_X.shape}, {train_Y.shape}, {validation_X.shape}, {validation_Y.shape}" ) ) if log_target: train_pool = Pool( data=train_X, label=np.log1p(train_Y), feature_names=predictors, cat_features=cat_features, ) valid_pool = Pool( data=validation_X, label=np.log1p(validation_Y), feature_names=predictors, cat_features=cat_features, ) else: train_pool = Pool( data=train_X, label=train_Y, feature_names=predictors, cat_features=cat_features, ) valid_pool = Pool( data=validation_X, label=validation_Y, feature_names=predictors, cat_features=cat_features, ) model = CatBoost(params=params) # List of categorical features have already been passed as a part of Pool # above. No need to pass via the argument of fit() model.fit(X=train_pool, eval_set=[train_pool, valid_pool], use_best_model=True) best_iteration = model.get_best_iteration() if log_target: valid_prediction = np.expm1(model.predict(valid_pool)) else: valid_prediction = model.predict(valid_pool) valid_score = _calculate_perf_metric(validation_Y, valid_prediction) logger.info(f"Validation Score {valid_score}") logger.info(f"Best Iteration {best_iteration}") del train_pool, valid_pool, train_X, train_Y, validation_X, validation_Y gc.collect() if test_X is not None: logger.info("Retraining on the entire data including validation") training = pd.concat([training, validation]) train_X, train_Y = _get_x_y_from_data(logger, training, predictors, target) logger.info( (f"Shape of train_X, train_Y: " f"{train_X.shape}, {train_Y.shape}") ) if log_target: train_pool = Pool( data=train_X, label=np.log1p(train_Y), feature_names=predictors, cat_features=cat_features, ) else: train_pool = Pool( data=train_X, label=train_Y, feature_names=predictors, cat_features=cat_features, ) test_pool = Pool( data=test_X, feature_names=predictors, cat_features=cat_features ) # Why? params.pop("eval_metric") params.pop("early_stopping_rounds") params.pop("use_best_model") params["n_estimators"] = best_iteration logger.info(f"Modified parameters for final model training.. {params}") model = CatBoost(params=params) model.fit(X=train_pool) logger.info(f"Predicting on test data: {test_X.shape}") if log_target: prediction = np.expm1(model.predict(test_pool)) else: prediction = model.predict(test_pool) result_dict = _evaluate_and_log_for_holdout( logger=logger, run_id=run_id, valid_prediction=valid_prediction, valid_score=valid_score, y_predicted=prediction, result_dict=result_dict, best_iteration=best_iteration, label_name=label_name, ) feature_importance = model.get_feature_importance() result_dict = _capture_feature_importance_for_holdout( feature_importance=feature_importance, features=predictors, result_dict=result_dict, ) logger.info("Training/Prediction completed!") return result_dict def xgb_train_validate_on_holdout( logger, run_id, training, validation, predictors, target, params, test_X=None, n_estimators=10000, early_stopping_rounds=100, verbose_eval=100, label_name="", log_target=False, ): """Train a XGBoost model, validate on holdout data. If `test_X` has a valid value, creates a new model with number of best iteration found during holdout phase using training as well as validation data. Args: logger: Logger to be used training: Training DataFrame validation: Validation DataFrame predictors: List of names of features target: Name of target variable params: Parameters for XGBoost test_X: Test DataFrame Returns: bst: XGB Booster object valid_score: Best validation score best_iteration: Value of best iteration prediction: Prediction generated on `test_X` """ result_dict = {} logger.info("Training using XGBoost and validating on holdout") train_X, train_Y, validation_X, validation_Y = _get_x_y_from_training_validation( logger, training, validation, predictors, target ) logger.info( ( f"Shape of train_X, train_Y, validation_X, validation_Y: " f"{train_X.shape}, {train_Y.shape}, {validation_X.shape}, {validation_Y.shape}" ) ) if log_target: dtrain = xgb.DMatrix( data=train_X, label=np.log1p(train_Y), feature_names=predictors ) dvalid = xgb.DMatrix( data=validation_X, label=np.log1p(validation_Y), feature_names=predictors ) else: dtrain = xgb.DMatrix(data=train_X, label=train_Y, feature_names=predictors) dvalid = xgb.DMatrix( data=validation_X, label=validation_Y, feature_names=predictors ) watchlist = [(dtrain, "train"), (dvalid, "valid_data")] bst = xgb.train( dtrain=dtrain, num_boost_round=n_estimators, evals=watchlist, early_stopping_rounds=early_stopping_rounds, params=params, verbose_eval=verbose_eval, ) if log_target: valid_prediction = np.expm1( bst.predict( xgb.DMatrix(validation_X, feature_names=predictors), ntree_limit=bst.best_ntree_limit, ) ) else: valid_prediction = bst.predict( xgb.DMatrix(validation_X, feature_names=predictors), ntree_limit=bst.best_ntree_limit, ) # Get best iteration best_iteration = bst.best_ntree_limit valid_score = _calculate_perf_metric(validation_Y, valid_prediction) logger.info(f"Validation Score {valid_score}") logger.info(f"Best Iteration {best_iteration}") del watchlist, dtrain, dvalid, train_X, train_Y, validation_X, validation_Y gc.collect() if test_X is not None: logger.info("Retraining on the entire data including validation") training = pd.concat([training, validation]) train_X, train_Y = _get_x_y_from_data(logger, training, predictors, target) logger.info( (f"Shape of train_X, train_Y: " f"{train_X.shape}, {train_Y.shape}") ) if log_target: dtrain = xgb.DMatrix( data=train_X, label=np.log1p(train_Y), feature_names=predictors ) dtest = xgb.DMatrix(data=test_X, feature_names=predictors) else: dtrain = xgb.DMatrix(data=train_X, label=train_Y, feature_names=predictors) dtest = xgb.DMatrix(data=test_X, feature_names=predictors) bst = xgb.train( dtrain=dtrain, num_boost_round=best_iteration, params=params, verbose_eval=verbose_eval, ) logger.info(f"Predicting on test data: {test_X.shape}") if log_target: prediction = np.expm1(bst.predict(dtest, ntree_limit=best_iteration)) else: prediction = bst.predict(dtest, ntree_limit=best_iteration) result_dict = _evaluate_and_log_for_holdout( logger=logger, run_id=run_id, valid_prediction=valid_prediction, valid_score=valid_score, y_predicted=prediction, result_dict=result_dict, best_iteration=best_iteration, label_name=label_name, ) # XGB may not use all the features while building the # model. Consider only the useful features feature_importance_values = bst.get_score().values() feature_importance_features = bst.get_score().keys() result_dict = _capture_feature_importance_for_holdout( feature_importance=feature_importance_values, features=feature_importance_features, result_dict=result_dict, ) logger.info("Training/Prediction completed!") return result_dict def lgb_train_validate_on_holdout( logger, run_id, training, validation, test_X, predictors, target, params, n_estimators=10000, early_stopping_rounds=100, cat_features="auto", verbose_eval=100, label_name="", log_target=False, ): """Train a LGB model and validate on holdout data. Args: logger: Logger to be used training: Training DataFrame validation: Validation DataFrame predictors: List of names of features target: Name of target variable params: Parameters for LGBM test_X: Test DataFrame Returns: bst: LGB Booster object valid_score: Best validation score best_iteration: Value of best iteration prediction: Prediction generated on `test_X` """ result_dict = {} logger.info("Training using LGB and validating on holdout") train_X, train_Y, validation_X, validation_Y = _get_x_y_from_training_validation( logger, training, validation, predictors, target ) logger.info( ( f"Shape of train_X, train_Y, validation_X, validation_Y: " f"{train_X.shape}, {train_Y.shape}, {validation_X.shape}, {validation_Y.shape}" ) ) if log_target: dtrain = lgb.Dataset(train_X, label=np.log1p(train_Y)) dvalid = lgb.Dataset(validation_X, np.log1p(validation_Y)) else: dtrain = lgb.Dataset(train_X, label=train_Y) dvalid = lgb.Dataset(validation_X, validation_Y) bst = lgb.train( params, dtrain, valid_sets=[dtrain, dvalid], verbose_eval=verbose_eval, num_boost_round=n_estimators, early_stopping_rounds=early_stopping_rounds, feature_name=predictors, categorical_feature=cat_features, ) best_iteration = bst.best_iteration if log_target: valid_prediction = np.expm1( bst.predict(validation_X, num_iteration=best_iteration) ) else: valid_prediction = bst.predict(validation_X, num_iteration=best_iteration) valid_score = _calculate_perf_metric(validation_Y, valid_prediction) logger.info(f"Validation Score {valid_score}") logger.info(f"Best Iteration {best_iteration}") del dtrain, dvalid, train_X, train_Y, validation_X, validation_Y gc.collect() if test_X is not None: logger.info("Retraining on the entire data including validation") training =
pd.concat([training, validation])
pandas.concat
print("Importing libraries...") # import libraries from bs4 import BeautifulSoup import urllib.request import pickle import pandas as pd print("Done importing.") # scrap from sinonimkata.com with open('pickle/words.pkl', 'rb') as f: words = pickle.load(f) print("Generating thesaurus..") thesaurus = {} words = list(set(words)) for x in words: name = x data = { "q": name } encoded_data = urllib.parse.urlencode(data).encode("utf-8") content = urllib.request.urlopen("http://www.sinonimkata.com/search.php", encoded_data) soup = BeautifulSoup(content, 'html.parser') try: synonym = soup.find('td', attrs={'width': '90%'}).find_all('a') synonym = [x.getText() for x in synonym] thesaurus[x] = [x] + synonym except: thesaurus[x] = [name] print("Thesaurus for '" +x+ "' done.") print("Done generating.") # save results to 'corpus/thesaurus.xlsx' thesaurus_list = [[x, thesaurus[x]] for x in thesaurus] print("Saving data to corpus/thesaurus.xlsx..") df =
pd.DataFrame(thesaurus_list)
pandas.DataFrame
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division import typing import unittest import pandas as pd from past.builtins import unicode import apache_beam as beam from apache_beam import coders from apache_beam.dataframe import convert from apache_beam.dataframe import expressions from apache_beam.dataframe import frame_base from apache_beam.dataframe import transforms from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to def sort_by_value_and_drop_index(df): if isinstance(df, pd.DataFrame): sorted_df = df.sort_values(by=list(df.columns)) else: sorted_df = df.sort_values() return sorted_df.reset_index(drop=True) def check_correct(expected, actual, check_index=False): if actual is None: raise AssertionError('Empty frame but expected: \n\n%s' % (expected)) if isinstance(expected, pd.core.generic.NDFrame): sorted_actual = sort_by_value_and_drop_index(actual) sorted_expected = sort_by_value_and_drop_index(expected) if not sorted_actual.equals(sorted_expected): raise AssertionError( 'Dataframes not equal: \n\n%s\n\n%s' % (sorted_actual, sorted_expected)) else: if actual != expected: raise AssertionError('Scalars not equal: %s != %s' % (actual, expected)) def concat(parts): if len(parts) > 1: return
pd.concat(parts)
pandas.concat
import glob import math import brewer2mpl import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.lines import Line2D from matplotlib.ticker import MultipleLocator SPINE_COLOR = 'gray' ##################################################### # Process average from files # ##################################################### def process_average(folder, scenarios, labels, header): columns = ['property'] dfs1 = [] for scenario in scenarios: file = glob.glob(folder + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=header, names=columns)['property'] df.name = labels[scenarios.index(scenario)] dfs1 += [df] result = pd.concat(dfs1, axis=1) return result class Plotter(): ##################################################### # Latexify # ##################################################### @staticmethod def latexify(fig_width=None, fig_height=None, columns=1, fullwidth=False): """Set up matplotlib's RC params for LaTeX plotting. Call this before plotting a figure. Parameters ---------- fig_width : float, optional, inches fig_height : float, optional, inches columns : {1, 2} """ # code adapted from http://www.scipy.org/Cookbook/Matplotlib/LaTeX_Examples # Width and max height in inches for IEEE journals taken from # computer.org/cms/Computer.org/Journal%20templates/transactions_art_guide.pdf assert(columns in [1,2]) if fig_width is None: if fullwidth: fig_width = 3.39*2 if columns==1 else 6.9 # width in inches else: fig_width = 3.39 if columns==1 else 6.9 # width in inches if fig_height is None: golden_mean = (math.sqrt(5)-1.0)/2.0 # Aesthetic ratio if fullwidth: fig_height = fig_width*golden_mean/2.0 # height in inches else: fig_height = fig_width*golden_mean # height in inches MAX_HEIGHT_INCHES = 8.0 if fig_height > MAX_HEIGHT_INCHES: print("WARNING: fig_height too large:" + fig_height + "so will reduce to" + MAX_HEIGHT_INCHES + "inches.") fig_height = MAX_HEIGHT_INCHES params = { 'backend': 'ps', 'text.latex.preamble': ['\\usepackage{amssymb}'], 'axes.labelsize': 5, # fontsize for x and y labels (was 10) 'axes.titlesize': 5, 'lines.markersize' : 3, 'lines.markeredgewidth': 0.3, 'legend.fontsize': 4, # was 10 'text.usetex': True, 'legend.edgecolor': 'w', 'figure.figsize': [fig_width, fig_height], 'font.family': 'serif', 'grid.linestyle': 'dashed', 'grid.color': 'grey', 'lines.dashed_pattern' : [150, 150], 'xtick.color': 'k', 'ytick.color': 'k', 'xtick.direction': 'in', 'ytick.direction': 'in', 'xtick.minor.width': 0.05, 'ytick.minor.width': 0.05, 'xtick.major.width': 0.1, 'ytick.major.width': 0.1, 'xtick.labelsize': 4, 'ytick.labelsize': 4, 'lines.linewidth' : 0.2, 'grid.linewidth': 0.01, 'axes.linewidth': 0.2, 'errorbar.capsize' : 1, 'xtick.minor.visible': False, # visibility of minor ticks on x-axis # 'ytick.minor.visible': False, # visibility of minor ticks on x-axis 'boxplot.notch': False, 'boxplot.vertical': True, 'boxplot.whiskers': 1.5, 'boxplot.bootstrap': None, 'boxplot.patchartist': False, 'boxplot.showmeans': False, 'boxplot.showcaps': True, 'boxplot.showbox': True, 'boxplot.showfliers': True, 'boxplot.meanline': False, 'boxplot.flierprops.color': 'lightgrey', 'boxplot.flierprops.marker': 'o', 'boxplot.flierprops.markerfacecolor': 'none', 'boxplot.flierprops.markeredgecolor': 'lightgrey', 'boxplot.flierprops.markersize': 1, 'boxplot.flierprops.linestyle': 'none', 'boxplot.flierprops.linewidth': 0.1, 'boxplot.boxprops.color': 'C2', 'boxplot.boxprops.linewidth': 0.2, 'boxplot.boxprops.linestyle': '-', 'boxplot.whiskerprops.color': 'C2', 'boxplot.whiskerprops.linewidth': 0.2, 'boxplot.whiskerprops.linestyle': '-', 'boxplot.capprops.color': 'C2', 'boxplot.capprops.linewidth': 0.2, 'boxplot.capprops.linestyle': '-', 'boxplot.medianprops.color': 'C2', 'boxplot.medianprops.linewidth': 0.20, 'boxplot.medianprops.linestyle': '-', 'boxplot.meanprops.color': 'C2', 'boxplot.meanprops.marker': '^', 'boxplot.meanprops.markerfacecolor': 'C2', 'boxplot.meanprops.markeredgecolor': 'C2', 'boxplot.meanprops.markersize': 6, 'boxplot.meanprops.linestyle': 'none', 'boxplot.meanprops.linewidth': 0.20, } matplotlib.rcParams.update(params) # for spine in ['top', 'right']: # ax.spines[spine].set_visible(False) # for spine in ['left', 'bottom']: # ax.spines[spine].set_color(SPINE_COLOR) # ax.spines[spine].set_linewidth(0.1) # ax.xaxis.set_ticks_position('bottom') # ax.yaxis.set_ticks_position('left') # # Or if you want different settings for the grids: # ax.grid(which='minor', alpha=0.2) # ax.grid(which='major', alpha=0.5) # for axis in [ax.xaxis, ax.yaxis]: # axis.set_tick_params(direction='out', color=SPINE_COLOR) # return ax ##################################################### # Latency - Mean - 4 methods # ##################################################### @staticmethod def latency_avg_4methods(folder1, folder2, folder3, folder4, scenarios, labels, output, title, ylim, fullwidth=False): plt.figure() Plotter.latexify(fullwidth=fullwidth) columns = ['latency'] dfs1 = [] for scenario in scenarios: file = glob.glob(folder1 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=4, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs1 += [df] result1 = pd.concat(dfs1, axis=1) #print('result1\n', result1.describe()) #print('result1\n', result1.to_string()) std1 = result1.std() ax1 = result1.mean().plot(label="Sourcey", legend = True, yerr=std1, color="red") ax1.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) dfs2 = [] for scenario in scenarios: file = glob.glob(folder2 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs2 += [df] result2 = pd.concat(dfs2, axis=1) #print('result2\n', result2.describe()) #print('result2\n', result2.to_string()) std2 = result2.std() ax2 = result2.mean().plot(label="Sourcey Fabric", legend = True, yerr=std2, color="orange") ax2.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) dfs3 = [] for scenario in scenarios: file = glob.glob(folder3 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs3 += [df] result3 = pd.concat(dfs3, axis=1) #print('result3\n', result3.describe()) #print('result3\n', result3.to_string()) std3 = result3.std() ax3 = result3.mean().plot(label="PolKA", legend = True, yerr=std3, color="blue") ax3.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) dfs4 = [] for scenario in scenarios: file = glob.glob(folder4 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs4 += [df] result4 = pd.concat(dfs4, axis=1) #print('result4\n', result4.describe()) #print('result4\n', result4.to_string()) std4 = result4.std() ax4 = result4.mean().plot(label="PolKA Fabric", legend = True, yerr=std4, color="green") ax4.set_ylim(0, ylim) ax4.tick_params(axis='both', which='major', labelsize=5) ax4.grid(b=True, which='major', linestyle='dashed', axis='x') ax4.grid(b=True, which='major', linestyle='dashed', axis='y') ax4.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) plt.title(title) plt.ylabel('RTT Latency (s)') plt.xlabel('Number of Hops') plt.tight_layout() plt.savefig(output) ##################################################### # Latency - Mean - 4 methods # ##################################################### @staticmethod def latency_avg_4methods_bar(folder1, folder2, folder3, folder4, scenarios, labels, output, title, ylim, fullwidth=False): plt.figure() Plotter.latexify(fullwidth=fullwidth) columns = ['latency'] dfs1 = [] for scenario in scenarios: file = glob.glob(folder1 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=4, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs1 += [df] result1 = pd.concat(dfs1, axis=1) std1 = result1.std() dfs2 = [] for scenario in scenarios: file = glob.glob(folder2 + '/' + scenario + '/a1*') df =
pd.read_csv(file[0], header=None, names=columns)
pandas.read_csv
import numpy as np import pandas as pd def to_bin_lat(y): lat_step = 5. binned_lat = np.floor(y / lat_step) * lat_step return(binned_lat) def to_bin_lon(x): lon_step = 10. binned_lon = np.floor(x / lon_step) * lon_step return(binned_lon) def monthly_mean_map(season_of_cosmic_data): """ Description =========== Find the diurnal mean of the TLS temperatures in each 5x10 degree box Arguments ========= season_of_cosmic_data -------- Pandas dataframe of GPS-RO TLS temperatures after ERA-5 daily mean has been subtracted returns ======= monthly_mean_map ---------------- Diurnal mean for one month of TLS temperature in every 5x10 box """ #Group cosmic data by lats and lons season_of_cosmic_data["latbin"] = season_of_cosmic_data.Lat.map(to_bin_lat) season_of_cosmic_data["lonbin"] = season_of_cosmic_data.Lon.map(to_bin_lon) grid_groups = season_of_cosmic_data.groupby(("latbin", 'lonbin')) # Set lats and lons lats = np.arange(-90, 90., 5.) lons = np.arange(-180, 180., 10.) monthly_mean_map = [] for i in range(0, len(lats)): monthly_mean_lat = [] for j in range(0, len(lons)): try: #Subset monthly data by lat lon and drop NaN values key = (lats[i], lons[j]) cosmic_grid_cell = grid_groups.get_group(key) cosmic_grid_cell.dropna(subset=["Temp"], inplace=True) #Find monthly average temperatures #NOTE: Because we are looking for deviations from daily means # we must carefully remove the true daily average by averaging # over all 8 local time hour bins daily_average_bins = [] for hour_bin in np.linspace(0, 21, 8): hour_bin_1 = cosmic_grid_cell[cosmic_grid_cell['Hour'] == int(hour_bin)] hour_bin_2 = cosmic_grid_cell[cosmic_grid_cell['Hour'] == (int(hour_bin)+1)] hour_bin_3 = cosmic_grid_cell[cosmic_grid_cell['Hour'] == (int(hour_bin)+2)] hour_bin_total = pd.concat([hour_bin_1, hour_bin_2, hour_bin_3]) cosmic_temp_hour_bin = hour_bin_total['Temp'].mean() daily_average_bins.append(cosmic_temp_hour_bin) daily_mean_temp = np.nanmean(daily_average_bins) monthly_mean_map.append([lats[i], lons[j], daily_mean_temp]) except: t_list = [lats[i], lons[j], np.NaN] monthly_mean_map.append(t_list) return monthly_mean_map def mean_map_removal(month_of_data_df, mean_TLS_map): """ Description =========== Radio Occultation data differs from ERA-5 data because of bias inherent to ERA-5 in lower stratosphere. mean_map_removal attempts to remove any bias in the diurnal cycles after the daily ERA-5 mean has been removed so that this error is not aliased into the diurnal cycles. Arguments ========= month_of_data_df -------- Pandas dataframe of GPS-RO TLS temperatures after ERA-5 daily mean has been subtracted mean_TLS_map ------------ a 36x36 map of diurnal means to be removed from month_of_data_df returns ======= era_5_df_new ------------ Pandas dataframe with correctly wrapped longitude """ # Set lats and lons lats = np.arange(-90, 90., 5.) lons = np.arange(-180, 180., 10.) mean_TLS_list = np.reshape(mean_TLS_map, (1296, 3)) # our map is 5degx10deg so 36binsx36bins=1296 globally mean_TLS_df = pd.DataFrame(mean_TLS_list, columns=['Lat', 'Lon', 'Temp']) # Make sure data is properly binned month_of_data_df["latbin"] = month_of_data_df.Lat.map(to_bin_lat) month_of_data_df["lonbin"] = month_of_data_df.Lon.map(to_bin_lon) occultations_mean_removed_roladex = [] for lat_idx in range(0, len(lats)): lat_key = lat_idx*5. - 90. occultations_at_lat = month_of_data_df[month_of_data_df['latbin'] == lat_key] monthly_mean_at_lat = mean_TLS_df[mean_TLS_df['Lat'] == lat_key] for lon_idx in range(0, len(lons)): lon_key = lon_idx*10. - 180. occultations_in_box = occultations_at_lat[occultations_at_lat['lonbin'] == lon_key] monthly_mean_in_box = monthly_mean_at_lat[monthly_mean_at_lat['Lon'] == lon_key] occultations_in_box['Temp'] = occultations_in_box['Temp'] - monthly_mean_in_box['Temp'].iloc[0] occultations_mean_removed_roladex.append(occultations_in_box) mean_removed_df = pd.concat(occultations_mean_removed_roladex) return mean_removed_df def era5_df_switcher(era_5_np): """ Description =========== DJF data was initially processed without recognizing the longitudinal wrapping was off by 180degrees. Instead of reprocessing all data, just realign the data if needed. Arguments ========= era_5_np -------- Numpy array of post processed era 5 data with incorrect longitudinal wrapping. returns ======= era_5_df_new ------------ Pandas dataframe with correctly wrapped longitude """ era_5_df = pd.DataFrame(era_5_np, columns=['Day', 'Hour', 'Year', 'Lat', 'Lon', 'Temp']) era_5_df_pos_lons = era_5_df[era_5_df['Lon'] >= 0] era_5_df_neg_lons = era_5_df[era_5_df['Lon'] < 0] era_5_df_pos_lons['Lon'] = era_5_df_pos_lons['Lon'] - 180. era_5_df_neg_lons['Lon'] = era_5_df_neg_lons['Lon'] + 180 era_5_df_new = pd.concat([era_5_df_pos_lons, era_5_df_neg_lons]) return era_5_df_new def background_and_bias_remover(month_of_occultation_df, month_of_era5_df): """ Description =========== background_and_bias_remover is a function used to remove both high frequency synoptic variability and low frequency bias from GPS-RO data in an effort to create a composite of TLS diurnal cycles. The function returns a pandas DataFrame with processed data to be used for the composite. Arguments ========= month_of_occultation_df ----------------------- month_of_occultation_df is a pandas DataFrame filled with TLS data from GPS-RO occultations for one month, spanning 2006-2020. TLS data has information of year, day, local time hour, latitude, longitude, and the TLS temperature month_of_era5_df ---------------- month_of_era5_df is a dataframe with TLS data derived from interpolated ERA-5 reanalysis data. Like month_of_occultation_df, month_of_era5_df is just data from 2006-2020 for one month. Data has information of year, day, local time hour, latitude, longitude, and the TLS temperature returns ======= TLS temperatures after both the ERA-5 daily mean has been removed, and the monthly mean of the diurnal cycles has been removed """ # Set lats and lons lat_bins = np.arange(-90, 90., 5.) lon_bins = np.arange(-180, 180., 10.) bias_and_ERA5_removed_data = [] #ERA5_removed_data = [] for year in range(2006, 2021): print(year) year_of_occultations = month_of_occultation_df[month_of_occultation_df['Year'] == year] year_of_occultations["latbin"] = year_of_occultations.Lat.map(to_bin_lat) year_of_occultations['lonbin'] = year_of_occultations.Lon.map(to_bin_lon) year_of_era5 = month_of_era5_df[month_of_era5_df['Year'] == str(year)] month_of_daily_era_5_removed = [] if year_of_era5.Temp.size > 0: for day in year_of_occultations['Day'].unique(): day_of_occultations = year_of_occultations[year_of_occultations['Day'] == day] day_of_era5 = year_of_era5[year_of_era5['Day'] == day] for lat in lat_bins: occultations_at_lat = day_of_occultations[day_of_occultations['latbin'] == lat] era5_at_lat = day_of_era5[day_of_era5['Lat'] == lat] for lon in lon_bins: occultations_at_lon = occultations_at_lat[occultations_at_lat['lonbin'] == lon] era5_at_lon = era5_at_lat[era5_at_lat['Lon'] == lon] era5_daily_temps = era5_at_lon.Temp.to_list() daily_mean = np.nanmean(era5_daily_temps) if occultations_at_lon.Temp.size > 0: occultations_at_lon.Temp = occultations_at_lon.Temp - daily_mean month_of_daily_era_5_removed.append(occultations_at_lon) else: continue month_of_daily_era_5_removed_df = pd.concat(month_of_daily_era_5_removed) monthly_mean_bias_by_map = monthly_mean_map(month_of_daily_era_5_removed_df) monthly_mean_bias_removed = mean_map_removal(month_of_daily_era_5_removed_df, monthly_mean_bias_by_map) bias_and_ERA5_removed_data.append(monthly_mean_bias_removed) else: continue bias_and_era_5_removed_df = pd.concat(bias_and_ERA5_removed_data) return(bias_and_era_5_removed_df) def box_mean_remover(season_of_cosmic_data): """ Description =========== removes diurnal mean from each 5x10 degree box after all data processing. Really just a final centering step Arguments ========= season_of_cosmic_data ----------------------- Data after all daily and monthly mean removal processing returns ======= pandas data frame where mean in every 5x10 box is zero """ lats = np.arange(-90, 90., 5) lons = np.arange(-180, 180, 10) hour_map = [] for i in range(0, len(lats)): lat_band_df = [] for j in range(0, len(lons)): lat_band = season_of_cosmic_data[season_of_cosmic_data['latbin'] == lats[i]] lat_lon_box = lat_band[lat_band['lonbin'] == lons[j]] lat_lon_box.dropna(subset = ["Temp"], inplace=True) lat_lon_box['Temp'] = lat_lon_box['Temp'] - lat_lon_box.Temp.mean() lat_band_df.append(lat_lon_box) lat_band_df_concat = pd.concat(lat_band_df) lat_band_df_concat['Temp'] = lat_band_df_concat['Temp'] - lat_band_df_concat.Temp.mean() hour_map.append(lat_band_df_concat) final_hour_map =
pd.concat(hour_map)
pandas.concat
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, date_range import pandas._testing as tm class TestDataFrameUpdate: def test_update_nan(self): # #15593 #15617 # test 1 df1 = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)}) df2 = DataFrame({"A": [None, 2, 3]}) expected = df1.copy() df1.update(df2, overwrite=False) tm.assert_frame_equal(df1, expected) # test 2 df1 = DataFrame({"A": [1.0, None, 3], "B": date_range("2000", periods=3)}) df2 = DataFrame({"A": [None, 2, 3]}) expected = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)}) df1.update(df2, overwrite=False) tm.assert_frame_equal(df1, expected) def test_update(self): df = DataFrame( [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other) expected = DataFrame( [[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]] ) tm.assert_frame_equal(df, expected) def test_update_dtypes(self): # gh 3016 df = DataFrame( [[1.0, 2.0, False, True], [4.0, 5.0, True, False]], columns=["A", "B", "bool1", "bool2"], ) other = DataFrame([[45, 45]], index=[0], columns=["A", "B"]) df.update(other) expected = DataFrame( [[45.0, 45.0, False, True], [4.0, 5.0, True, False]], columns=["A", "B", "bool1", "bool2"], ) tm.assert_frame_equal(df, expected) def test_update_nooverwrite(self): df = DataFrame( [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other, overwrite=False) expected = DataFrame( [[1.5, np.nan, 3], [1.5, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.0]] ) tm.assert_frame_equal(df, expected) def test_update_filtered(self): df = DataFrame( [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other, filter_func=lambda x: x > 2) expected = DataFrame( [[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]] ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "bad_kwarg, exception, msg", [ # errors must be 'ignore' or 'raise' ({"errors": "something"}, ValueError, "The parameter errors must.*"), ({"join": "inner"}, NotImplementedError, "Only left join is supported"), ], ) def test_update_raise_bad_parameter(self, bad_kwarg, exception, msg): df = DataFrame([[1.5, 1, 3.0]]) with pytest.raises(exception, match=msg): df.update(df, **bad_kwarg) def test_update_raise_on_overlap(self): df = DataFrame( [[1.5, 1, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = DataFrame([[2.0, np.nan], [np.nan, 7]], index=[1, 3], columns=[1, 2]) with pytest.raises(ValueError, match="Data overlaps"): df.update(other, errors="raise") def test_update_from_non_df(self): d = {"a": Series([1, 2, 3, 4]), "b": Series([5, 6, 7, 8])} df = DataFrame(d) d["a"] = Series([5, 6, 7, 8]) df.update(d) expected = DataFrame(d) tm.assert_frame_equal(df, expected) d = {"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]} df = DataFrame(d) d["a"] = [5, 6, 7, 8] df.update(d) expected =
DataFrame(d)
pandas.DataFrame
import datetime import re import warnings from os.path import dirname, join import numpy as np import pandas as pd from techminer.core import explode from techminer.core.extract_country_name import extract_country_name from techminer.core.extract_words import extract_words from techminer.core.map import map_ from techminer.core.text import remove_accents from techminer.core.thesaurus import load_file_as_dict warnings.filterwarnings("ignore") from nltk import word_tokenize class ScopusImporter: def __init__( self, input_file="scopus.csv", output_file="techminer.csv", article=True, article_in_press=True, book=True, book_chapter=True, business_article=True, conference_paper=True, conference_review=False, data_paper=True, editorial=False, letter=False, note=False, review=True, short_survey=True, erratum=False, report=False, retracted=False, abstract_report=False, undefined=False, ): self.input_file = input_file self.output_file = output_file self.data = None self.article = article self.article_in_press = article_in_press self.book = book self.book_chapter = book_chapter self.business_article = business_article self.conference_paper = conference_paper self.conference_review = conference_review self.data_paper = data_paper self.editorial = editorial self.letter = letter self.note = note self.review = review self.short_survey = short_survey self.erratum = erratum self.report = report self.retracted = retracted self.abstract_report = abstract_report self.undefined = undefined def run(self): ## ## Load data ## self.data = pd.read_csv(self.input_file) ## ## Remove blank spaces ## self.data = self.data.applymap(lambda w: w.strip() if isinstance(w, str) else w) ## ## Document ID ## self.data["ID"] = range(len(self.data)) ## ## Steps ## self.rename_columns() self.select_documents() self.remove_accents() self.remove_no_author_name_available() self.format_author_names() self.count_number_of_authors_per_document() self.calculate_frac_number_of_documents_per_author() self.remove_no_author_id_available() self.disambiguate_author_names() self.remove_text_in_foreing_languages() self.extract_country_names() self.extract_country_first_author() self.reduce_list_of_countries() self.transform_author_keywords_to_lower_case() self.transform_index_keywords_to_lower_case() self.remove_copyright_mark_from_abstracts() self.transform_global_citations_NA_to_zero() self.format_abb_source_title() self.create_historiograph_id() self.create_local_references() self.transform_abstract_to_lower_case() self.british_to_amerian() self.keywords_in_abstract() #  self.extract_title_keywords() #  self.extract_title_words() #  self.extract_abstract_phrases_and_words() #  self.highlight_author_keywords_in_titles() #  self.highlight_author_keywords_in_abstracts() self.compute_bradford_law_zones() ## ## Replace blanks by pd.NA ## self.data = self.data.applymap( lambda w: pd.NA if isinstance(w, str) and w == "" else w ) self.data = self.data.applymap( lambda w: w.replace(chr(8211), "-") if isinstance(w, str) else w ) ## ## Transformer output ## if self.output_file is None: return self.data self.data.to_csv(self.output_file, index=False) self.logging_info("Finished!!!") def logging_info(self, msg): print( "{} - INFO - {}".format( datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"), msg ) ) # def extract_title_keywords(self): # self.logging_info("Keywords extraction from title ...") # author_keywords = self.data.Author_Keywords.dropna() # author_keywords = author_keywords.map(lambda w: w.lower().split(";")) # author_keywords = author_keywords.explode().tolist() # author_keywords = set(author_keywords) # index_keywords = self.data.Index_Keywords.dropna() # index_keywords = index_keywords.map(lambda w: w.lower().split(";")) # index_keywords = index_keywords.explode().tolist() # index_keywords = set(index_keywords) # keywords = author_keywords | index_keywords # self.data["Title_Keywords"] = self.data.Title.copy() # self.data["Title_Keywords"] = self.data.Title_Keywords.map( # lambda w: word_tokenize(w.lower()), na_action="ignore" # ) # self.data["Title_Keywords"] = self.data.Title_Keywords.map( # lambda w: set(w), na_action="ignore" # ) # self.data["Title_Keywords"] = self.data.Title_Keywords.map( # lambda w: keywords & w, na_action="ignore" # ) # self.data["Title_Keywords"] = self.data.Title_Keywords.map( # lambda w: ";".join(w), na_action="ignore" # ) def select_documents(self): document_types = [] if self.article is True: document_types.append("Article") if self.article_in_press is True: document_types.append("Article-in-Press") if self.book is True: document_types.append("Book") if self.book_chapter is True: document_types.append("Book Chapter") if self.business_article is True: document_types.append("Business Article") if self.conference_paper is True: document_types.append("Conference Paper") if self.conference_review is True: document_types.append("Conference Review") if self.data_paper is True: document_types.append("Data Paper") if self.editorial is True: document_types.append("Editorial") if self.letter is True: document_types.append("Letter") if self.note is True: document_types.append("Note") if self.review is True: document_types.append("Review") if self.short_survey is True: document_types.append("Short Survey") if self.erratum is True: document_types.append("Erratum") if self.report is True: document_types.append("Report") if self.retracted is True: document_types.append("Retracted") if self.abstract_report is True: document_types.append("Abstract Report") if self.undefined is True: document_types.append("Undefined") self.data = self.data[ self.data.Document_Type.map( lambda w: w in document_types, na_action="ignore" ) ] self.data.index = range(len(self.data)) def keywords_in_abstract(self): self.logging_info("Extracting Keywords from abstracts ...") author_keywords = self.data.Author_Keywords.dropna() author_keywords = author_keywords.map(lambda w: w.lower().split(";")) author_keywords = author_keywords.explode().tolist() author_keywords = set(author_keywords) index_keywords = self.data.Index_Keywords.dropna() index_keywords = index_keywords.map(lambda w: w.lower().split(";")) index_keywords = index_keywords.explode().tolist() index_keywords = set(index_keywords) keywords = author_keywords | index_keywords ## ## Prepare compound keywords ## compound_keywords = [w for w in keywords if len(w.split()) > 1] compound_keywords = sorted(compound_keywords, key=len, reverse=True) ## ## Preserves compound keywords in abstrct ## phrases = self.data.Abstract.copy() for k in compound_keywords: pattern = re.compile(re.escape(k), re.IGNORECASE) phrases = phrases.map( lambda w: pattern.sub(k.replace(" ", "_"), w), na_action="ignore" ) ## ## Tokenize words ## phrases = phrases.map( lambda w: set(word_tokenize(w.lower())), na_action="ignore", ) ## ## Restore compund words ## phrases = phrases.map( lambda w: [m.replace("_", " ") for m in w], na_action="ignore", ) ## ## Extracts keywords from text ### self.data["Abstract_Keywords"] = phrases.map( lambda w: ";".join(sorted(keywords & set(w))), na_action="ignore" ) self.data["Abstract_Author_Keywords"] = phrases.map( lambda w: ";".join(sorted(author_keywords & set(w))), na_action="ignore" ) self.data["Abstract_Index_Keywords"] = phrases.map( lambda w: ";".join(sorted(index_keywords & set(w))), na_action="ignore" ) def british_to_amerian(self): self.logging_info("Translate british spelling to american spelling ...") module_path = dirname(__file__) filename = join(module_path, "data/bg2am.data") bg2am = load_file_as_dict(filename) for british_word in bg2am: self.data = self.data.applymap( lambda w: w.replace(british_word, bg2am[british_word][0]) if isinstance(w, str) else w ) def rename_columns(self): for column_to_delete in [ "Abstract HL", #  "Abstract", "Access Type", #  "Affiliations", "Art. No.", #  "Authors_ID", "Authors with affiliations", #  "Bradford_Law_Zone", "CODEN", "Correspondence Address", "DOI", "Editors", "EID", #  "Global_References", #  "ID", "ISBN", "ISSN", "Issue", "Language of Original Document", "Link", #  "Local_References", #  "Num_Authors", "Page count", "Page end", "Page start", "Publication Stage", "Publisher", "PubMed ID", "Source", #  "Global_Citations", #  "Local_Citations", "Title HL", #  "Title", "Volume", #  "Year", ]: if column_to_delete in self.data.columns: self.data.pop(column_to_delete) scopus2tags = { "Abbreviated Source Title": "Abb_Source_Title", "Abstract": "Abstract", "Access Type": "Access_Type", "Affiliations": "Affiliations", "Art. No.": "Art_No", "Author Keywords": "Author_Keywords", "Author(s) ID": "Authors_ID", "Authors with affiliations": "Authors_with_affiliations", "Authors": "Authors", "Cited by": "Global_Citations", "CODEN": "CODEN", "Correspondence Address": "Correspondence_Address", "Document Type": "Document_Type", "DOI": "DOI", "Editors": "Editors", "EID": "EID", "Index Keywords": "Index_Keywords", "ISBN": "ISBN", "ISSN": "ISSN", "Issue": "Issue", "Language of Original Document": "Language_of_Original_Document", "Link": "Link", "Page count": "Page_count", "Page end": "Page_end", "Page start": "Page_start", "Publication Stage": "Publication_Stage", "Publisher": "Publisher", "PubMed ID": "PubMed_ID", "References": "Global_References", "Source title": "Source_title", "Source": "Source", "Title": "Title", "Volume": "Volume", "Year": "Year", } self.logging_info("Renaming and selecting columns ...") self.data = self.data.rename(columns=scopus2tags) def remove_accents(self): self.logging_info("Removing accents ...") self.data = self.data.applymap( lambda w: remove_accents(w) if isinstance(w, str) else w ) def remove_no_author_name_available(self): if "Authors" not in self.data.columns: return self.logging_info('Removing "[No author name available]" ...') self.data["Authors"] = self.data.Authors.map( lambda w: pd.NA if w == "[No author name available]" else w ) def format_author_names(self): if "Authors" not in self.data.columns: return self.logging_info("Formatting author names ...") self.data["Authors"] = self.data.Authors.map( lambda w: w.replace(",", ";").replace(".", "") if pd.isna(w) is False else w ) def count_number_of_authors_per_document(self): if "Authors" not in self.data.columns: return self.logging_info("Counting number of authors per document...") self.data["Num_Authors"] = self.data.Authors.map( lambda w: len(w.split(";")) if not pd.isna(w) else 0 ) def calculate_frac_number_of_documents_per_author(self): if "Authors" not in self.data.columns: return self.logging_info("Counting frac number of documents per author...") self.data["Frac_Num_Documents"] = self.data.Authors.map( lambda w: 1.0 / len(w.split(";")) if not
pd.isna(w)
pandas.isna
from datetime import datetime import numpy as np import pytest import pytz from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( DataFrame, DatetimeIndex, Index, IntervalIndex, Series, Timestamp, cut, date_range, ) import pandas._testing as tm class TestDataFrameAlterAxes: @pytest.fixture def idx_expected(self): idx = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B").tz_localize( "US/Pacific" ) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) assert expected.dtype == idx.dtype return idx, expected def test_to_series_keep_tz_deprecated_true(self, idx_expected): # convert to series while keeping the timezone idx, expected = idx_expected msg = "stop passing 'keep_tz'" with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=True, index=[0, 1]) assert msg in str(m[0].message) tm.assert_series_equal(result, expected) def test_to_series_keep_tz_deprecated_false(self, idx_expected): idx, expected = idx_expected with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) def test_setitem_dt64series(self, idx_expected): # convert to utc idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) df["B"] = idx with tm.assert_produces_warning(FutureWarning) as m: df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) result = df["B"] comp = Series(idx.tz_convert("UTC").tz_localize(None), name="B") tm.assert_series_equal(result, comp) def test_setitem_datetimeindex(self, idx_expected): # setting a DataFrame column with a tzaware DTI retains the dtype idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) def test_setitem_object_array_of_tzaware_datetimes(self, idx_expected): # setting a DataFrame column with a tzaware DTI retains the dtype idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) # object array of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) def test_constructor_from_tzaware_datetimeindex(self, idx_expected): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx, expected = idx_expected # convert index to series result = Series(idx)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import copy import re import warnings import numpy as np import pandas as pd import xarray import scipy.stats as st import numba try: import arviz as az import arviz.plots.plot_utils except: warnings.warn( "Could not import ArviZ. Perhaps it is not installed." " Some functionality in the viz submodule will not be available." ) import scipy.ndimage import matplotlib._contour from matplotlib.pyplot import get_cmap as mpl_get_cmap import bokeh.models import bokeh.palettes import bokeh.plotting import colorcet try: import holoviews as hv import holoviews.operation.datashader hv.extension("bokeh") except ImportError as e: warnings.warn( f"""DataShader import failed with error "{e}". Features requiring DataShader will not work and you will get exceptions.""" ) from . import utils from . import image try: from . import stan except: warnings.warn( "Could not import `stan` submodule. Perhaps pystan or cmdstanpy is not properly installed." ) def confints( summaries, p=None, marker_kwargs={}, line_kwargs={}, palette=None, **kwargs ): """Make a horizontal plot of centers/conf ints with error bars. Parameters ---------- summaries : list of dicts Each entry in `summaries` is a dictionary containing minimally keys 'estimate', 'conf_int', and 'label'. The 'estimate' value is the point estimate, a single scalar. The 'conf_int' value is a two-tuple, two-list, or two-numpy array containing the low and high end of the confidence interval for the estimate. The 'label' value is the name of the variable. This gives the label of the y-ticks. p : bokeh.plotting.Figure instance or None, default None If not None, a figure to be populated with confidence interval plot. If specified, it is important that `p.y_range` be set to contain all of the values in the labels provided in the `summaries` input. If `p` is None, then a new figure is created. marker_kwargs : dict, default {} Kwargs to be passed to p.circle() for plotting estimates. line_kwargs : dict, default {} Kwargs passsed to p.line() to plot the confidence interval. palette : list, str, or None If None, default colors (or those given in `marker_kwargs` and `line_kwargs` are used). If a str, all glyphs are colored accordingly, e.g., 'black'. Otherwise a list of colors is used. kwargs : dict Any additional kwargs are passed to bokeh.plotting.figure(). Returns ------- output : Bokeh figure Plot of error bars. """ n = len(summaries) labels = [summary["label"] for summary in summaries] estimates = [summary["estimate"] for summary in summaries] conf_intervals = [summary["conf_int"] for summary in summaries] if palette is None: use_palette = False else: if ( "color" in marker_kwargs or "line_color" in marker_kwargs or "fill_color" in marker_kwargs or "color" in line_kwargs or "line_color" in line_kwargs ): raise RuntimeError( "`palette` must be None if color is specified in " "`marker_kwargs` or `line_kwargs`" ) if type(palette) == str: marker_kwargs["color"] = palette line_kwargs["color"] = palette use_palette = False elif type(palette) == list or type(palette) == tuple: palette[:n][::-1] use_palette = True line_width = kwargs.pop("line_width", 3) size = marker_kwargs.pop("size", 5) if p is None: if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 50 * n if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 450 toolbar_location = kwargs.pop("toolbar_location", "above") p = bokeh.plotting.figure( y_range=labels[::-1], toolbar_location=toolbar_location, **kwargs ) for i, (estimate, conf, label) in enumerate(zip(estimates, conf_intervals, labels)): if use_palette: marker_kwargs["color"] = palette[i % len(palette)] line_kwargs["color"] = palette[i % len(palette)] p.circle(x=[estimate], y=[label], size=size, **marker_kwargs) p.line(x=conf, y=[label, label], line_width=line_width, **line_kwargs) return p def fill_between( x1=None, y1=None, x2=None, y2=None, show_line=True, patch_kwargs={}, line_kwargs={}, p=None, **kwargs, ): """ Create a filled region between two curves. Parameters ---------- x1 : array_like Array of x-values for first curve y1 : array_like Array of y-values for first curve x2 : array_like Array of x-values for second curve y2 : array_like Array of y-values for second curve show_line : bool, default True If True, show the lines on the edges of the fill. patch_kwargs : dict Any kwargs passed into p.patch(), which generates the fill. line_kwargs : dict Any kwargs passed into p.line() in generating the line around the fill. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. kwargs All other kwargs are passed to bokeh.plotting.figure() in creating the figure. Returns ------- output : bokeh.plotting.Figure instance Plot populated with fill-between. """ if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 350 if p is None: p = bokeh.plotting.figure(**kwargs) line_width = patch_kwargs.pop("line_width", 0) line_alpha = patch_kwargs.pop("line_alpha", 0) p.patch( x=np.concatenate((x1, x2[::-1])), y=np.concatenate((y1, y2[::-1])), line_width=line_width, line_alpha=line_alpha, **patch_kwargs, ) if show_line: line_width = line_kwargs.pop("line_width", 2) p.line(x1, y1, line_width=line_width, **line_kwargs) p.line(x2, y2, line_width=line_width, **line_kwargs) return p def qqplot( samples, data, percentile=95, patch_kwargs={}, line_kwargs={}, diag_kwargs={}, p=None, **kwargs, ): """ Generate a Q-Q plot. Parameters ---------- samples : Numpy array or xarray, shape (n_samples, n) or xarray DataArray A Numpy array containing predictive samples. data : Numpy array, shape (n,) or xarray DataArray One-dimensional data set to use in Q-Q plot. percentile : int or float, default 95 Which percentile to use in displaying the Q-Q plot. patch_kwargs : dict Any kwargs passed into p.patch(), which generates the filled region of the Q-Q plot.. line_kwargs : dict Any kwargs passed into p.line() in generating the line around the fill. diag_kwargs : dict Any kwargs to be passed into p.line() in generating diagonal reference line of Q-Q plot. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. kwargs All other kwargs are passed to bokeh.plotting.figure() in creating the figure. Returns ------- output : bokeh.plotting.Figure instance Plot populated with Q-Q plot. """ if type(samples) != np.ndarray: if type(samples) == xarray.core.dataarray.DataArray: samples = samples.squeeze().values else: raise RuntimeError("`samples` can only be a Numpy array or xarray.") if samples.ndim != 2: raise RuntimeError( "`samples` must be a 2D array, with each row being a sample." ) if len(samples) < 100: warnings.warn( "`samples` has very few samples. Predictive percentiles may be poor." ) if data is not None and len(data) != samples.shape[1]: raise RuntimeError("Mismatch in shape of `data` and `samples`.") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 275 if "fill_alpha" not in patch_kwargs: patch_kwargs["fill_alpha"] = 0.5 x = np.sort(data) samples = np.sort(samples) # Upper and lower bounds low_theor, up_theor = np.percentile( samples, (50 - percentile / 2, 50 + percentile / 2), axis=0 ) x_range = [data.min(), data.max()] if "x_range" not in kwargs: kwargs["x_range"] = x_range if p is None: p = bokeh.plotting.figure(**kwargs) p = fill_between( x, up_theor, x, low_theor, patch_kwargs=patch_kwargs, line_kwargs=line_kwargs, show_line=True, p=p, ) # Plot 45 degree line color = diag_kwargs.pop("color", "black") alpha = diag_kwargs.pop("alpha", 0.5) line_width = diag_kwargs.pop("line_width", 4) p.line(x_range, x_range, line_width=line_width, color=color, alpha=alpha) return p def _ecdf( data=None, p=None, x_axis_label=None, y_axis_label="ECDF", title=None, plot_height=300, plot_width=450, staircase=False, complementary=False, x_axis_type="linear", y_axis_type="linear", **kwargs, ): """ Create a plot of an ECDF. Parameters ---------- data : array_like One-dimensional array of data. Nan's are ignored. conf_int : bool, default False If True, display a confidence interval on the ECDF. ptiles : list, default [2.5, 97.5] The percentiles to use for the confidence interval. Ignored it `conf_int` is False. n_bs_reps : int, default 1000 Number of bootstrap replicates to do to compute confidence interval. Ignored if `conf_int` is False. fill_color : str, default 'lightgray' Color of the confidence interbal. Ignored if `conf_int` is False. fill_alpha : float, default 1 Opacity of confidence interval. Ignored if `conf_int` is False. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. x_axis_label : str, default None Label for the x-axis. Ignored if `p` is not None. y_axis_label : str, default 'ECDF' or 'ECCDF' Label for the y-axis. Ignored if `p` is not None. title : str, default None Title of the plot. Ignored if `p` is not None. plot_height : int, default 300 Height of plot, in pixels. Ignored if `p` is not None. plot_width : int, default 450 Width of plot, in pixels. Ignored if `p` is not None. staircase : bool, default False If True, make a plot of a staircase ECDF (staircase). If False, plot the ECDF as dots. complementary : bool, default False If True, plot the empirical complementary cumulative distribution functon. x_axis_type : str, default 'linear' Either 'linear' or 'log'. y_axis_type : str, default 'linear' Either 'linear' or 'log'. kwargs Any kwargs to be passed to either p.circle or p.line, for `staircase` being False or True, respectively. Returns ------- output : bokeh.plotting.Figure instance Plot populated with ECDF. """ # Check data to make sure legit data = utils._convert_data(data) # Data points on ECDF x, y = _ecdf_vals(data, staircase, complementary) # Instantiate Bokeh plot if not already passed in if p is None: y_axis_label = kwargs.pop("y_axis_label", "ECCDF" if complementary else "ECDF") p = bokeh.plotting.figure( plot_height=plot_height, plot_width=plot_width, x_axis_label=x_axis_label, y_axis_label=y_axis_label, x_axis_type=x_axis_type, y_axis_type=y_axis_type, title=title, ) if staircase: # Line of steps p.line(x, y, **kwargs) # Rays for ends if complementary: p.ray(x=x[0], y=1, length=0, angle=np.pi, **kwargs) p.ray(x=x[-1], y=0, length=0, angle=0, **kwargs) else: p.ray(x=x[0], y=0, length=0, angle=np.pi, **kwargs) p.ray(x=x[-1], y=1, length=0, angle=0, **kwargs) else: p.circle(x, y, **kwargs) return p def _histogram( data=None, bins="freedman-diaconis", p=None, density=False, kind="step", line_kwargs={}, patch_kwargs={}, **kwargs, ): """ Make a plot of a histogram of a data set. Parameters ---------- data : array_like 1D array of data to make a histogram out of bins : int, array_like, or str, default 'freedman-diaconis' If int or array_like, setting for `bins` kwarg to be passed to `np.histogram()`. If 'exact', then each unique value in the data gets its own bin. If 'integer', then integer data is assumed and each integer gets its own bin. If 'sqrt', uses the square root rule to determine number of bins. If `freedman-diaconis`, uses the Freedman-Diaconis rule for number of bins. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. density : bool, default False If True, normalized the histogram. Otherwise, base the histogram on counts. kind : str, default 'step' The kind of histogram to display. Allowed values are 'step' and 'step_filled'. line_kwargs : dict Any kwargs to be passed to p.line() in making the line of the histogram. patch_kwargs : dict Any kwargs to be passed to p.patch() in making the fill of the histogram. kwargs : dict All other kwargs are passed to bokeh.plotting.figure() Returns ------- output : Bokeh figure Figure populated with histogram. """ if data is None: raise RuntimeError("Input `data` must be specified.") # Instantiate Bokeh plot if not already passed in if p is None: y_axis_label = kwargs.pop("y_axis_label", "density" if density else "count") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 400 y_range = kwargs.pop("y_range", bokeh.models.DataRange1d(start=0)) p = bokeh.plotting.figure(y_axis_label=y_axis_label, y_range=y_range, **kwargs) # Compute histogram bins = _bins_to_np(data, bins) e0, f0 = _compute_histogram(data, bins, density) if kind == "step": p.line(e0, f0, **line_kwargs) if kind == "step_filled": x2 = [e0.min(), e0.max()] y2 = [0, 0] p = fill_between(e0, f0, x2, y2, show_line=True, p=p, patch_kwargs=patch_kwargs) return p def _bins_to_np(data, bins): """Compute a Numpy array to pass to np.histogram() as bins.""" if type(bins) == str and bins not in [ "integer", "exact", "sqrt", "freedman-diaconis", ]: raise RuntimeError("Invalid bins specification.") if type(bins) == str and bins == "exact": a = np.unique(data) if len(a) == 1: bins = np.array([a[0] - 0.5, a[0] + 0.5]) else: bins = np.concatenate( ( (a[0] - (a[1] - a[0]) / 2,), (a[1:] + a[:-1]) / 2, (a[-1] + (a[-1] - a[-2]) / 2,), ) ) elif type(bins) == str and bins == "integer": if np.any(data != np.round(data)): raise RuntimeError("'integer' bins chosen, but data are not integer.") bins = np.arange(data.min() - 1, data.max() + 1) + 0.5 elif type(bins) == str and bins == "sqrt": bins = int(np.ceil(np.sqrt(len(data)))) elif type(bins) == str and bins == "freedman-diaconis": h = 2 * (np.percentile(data, 75) - np.percentile(data, 25)) / np.cbrt(len(data)) if h == 0.0: bins = 3 else: bins = int(np.ceil((data.max() - data.min()) / h)) return bins def _compute_histogram(data, bins, density): """Compute values of histogram for plotting.""" f, e = np.histogram(data, bins=bins, density=density) e0 = np.empty(2 * len(e)) f0 = np.empty(2 * len(e)) e0[::2] = e e0[1::2] = e f0[0] = 0 f0[-1] = 0 f0[1:-1:2] = f f0[2:-1:2] = f return e0, f0 def predictive_ecdf( samples, data=None, diff=None, percentiles=(95, 68), color="blue", data_color="orange", data_staircase=True, data_size=2, x=None, discrete=False, p=None, **kwargs, ): """Plot a predictive ECDF from samples. Parameters ---------- samples : Numpy array or xarray, shape (n_samples, n) or xarray DataArray A Numpy array containing predictive samples. data : Numpy array, shape (n,) or xarray DataArray, or None If not None, ECDF of measured data is overlaid with predictive ECDF. diff : 'ecdf', 'iecdf', 'eppf', or None, default None Referring to the variable as x, if `diff` is 'iecdf' or 'eppf', for each value of the ECDF, plot the value of x minus the median x. If 'ecdf', plot the value of the ECDF minus the median ECDF value. If None, just plot the ECDFs. percentiles : list or tuple, default (95, 68) Percentiles for making colored envelopes for confidence intervals for the predictive ECDFs. Maximally four can be specified. color : str, default 'blue' One of ['green', 'blue', 'red', 'gray', 'purple', 'orange']. There are used to make the color scheme of shading of percentiles. data_color : str, default 'orange' String representing the color of the data to be plotted over the confidence interval envelopes. data_staircase : bool, default True If True, plot the ECDF of the data as a staircase. Otherwise plot it as dots. data_size : int, default 2 Size of marker (if `data_line` if False) or thickness of line (if `data_staircase` is True) of plot of data. x : Numpy array, default None Points at which to evaluate the ECDF. If None, points are automatically generated based on the data range. discrete : bool, default False If True, the samples take on discrete values. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. kwargs All other kwargs are passed to bokeh.plotting.figure(). Returns ------- output : Bokeh figure Figure populated with glyphs describing range of values for the ECDF of the samples. The shading goes according to percentiles of samples of the ECDF, with the median ECDF plotted as line in the middle. """ if diff == True: diff = "ecdf" warnings.warn( "`diff` as a Boolean is deprecated. Use 'ecdf', 'iecdf', or None." " Using `diff = 'ecdf'`.", DeprecationWarning, ) elif diff == False: diff = None warnings.warn( "`diff` as a Boolean is deprecated. Use 'ecdf', 'iecdf', or None." " Using `diff = None`.", DeprecationWarning, ) if diff is not None: diff = diff.lower() if diff == "eppf": diff = "iecdf" if type(samples) != np.ndarray: if type(samples) == xarray.core.dataarray.DataArray: samples = samples.squeeze().values else: raise RuntimeError("`samples` can only be a Numpy array or xarray.") if samples.ndim != 2: raise RuntimeError( "`samples` must be a 2D array, with each row being a sample." ) if len(samples) < 100: warnings.warn( "`samples` has very few samples. Predictive percentiles may be poor." ) if data is not None and len(data) != samples.shape[1]: raise RuntimeError("Mismatch in shape of `data` and `samples`.") if len(percentiles) > 4: raise RuntimeError("Can specify maximally four percentiles.") # Build ptiles percentiles = np.sort(percentiles)[::-1] ptiles = [pt for pt in percentiles if pt > 0] ptiles = ( [50 - pt / 2 for pt in percentiles] + [50] + [50 + pt / 2 for pt in percentiles[::-1]] ) ptiles_str = [str(pt) for pt in ptiles] if color not in ["green", "blue", "red", "gray", "purple", "orange", "betancourt"]: raise RuntimeError( "Only allowed colors are 'green', 'blue', 'red', 'gray', 'purple', 'orange'" ) colors = { "blue": ["#9ecae1", "#6baed6", "#4292c6", "#2171b5", "#084594"], "green": ["#a1d99b", "#74c476", "#41ab5d", "#238b45", "#005a32"], "red": ["#fc9272", "#fb6a4a", "#ef3b2c", "#cb181d", "#99000d"], "orange": ["#fdae6b", "#fd8d3c", "#f16913", "#d94801", "#8c2d04"], "purple": ["#bcbddc", "#9e9ac8", "#807dba", "#6a51a3", "#4a1486"], "gray": ["#bdbdbd", "#969696", "#737373", "#525252", "#252525"], "betancourt": [ "#DCBCBC", "#C79999", "#B97C7C", "#A25050", "#8F2727", "#7C0000", ], } samples = np.sort(samples) n = samples.shape[1] if data is not None: data_plot = np.sort(np.array(data)) # y-values for ECDFs y = np.arange(1, n + 1) / n df_ecdf = pd.DataFrame(dict(y=y)) for ptile in ptiles: df_ecdf[str(ptile)] = np.percentile(samples, ptile, axis=0) # Set up plot if p is None: x_axis_label = kwargs.pop( "x_axis_label", "x difference" if diff == "iecdf" else "x" ) y_axis_label = kwargs.pop( "y_axis_label", "ECDF difference" if diff == "ecdf" else "ECDF" ) if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 325 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 400 p = bokeh.plotting.figure( x_axis_label=x_axis_label, y_axis_label=y_axis_label, **kwargs ) # Plot the predictive intervals for i, ptile in enumerate(ptiles_str[: len(ptiles_str) // 2]): if diff == "ecdf": med = df_ecdf["50"].values x1_val = df_ecdf[ptile].values x1_post = med[med > x1_val.max()] x2_val = df_ecdf[ptiles_str[-i - 1]].values x2_pre = med[med < x2_val.min()] x1 = np.concatenate((x1_val, x1_post)) y1 = np.concatenate((y, np.ones_like(x1_post))) y1 -= _ecdf_arbitrary_points(df_ecdf["50"].values, x1) x2 = np.concatenate((x2_pre, x2_val)) y2 = np.concatenate((np.zeros_like(x2_pre), y)) y2 -= _ecdf_arbitrary_points(df_ecdf["50"].values, x2) x1, y1 = cdf_to_staircase(x1, y1) x2, y2 = cdf_to_staircase(x2, y2) else: if diff == "iecdf": df_ecdf[ptile] -= df_ecdf["50"] df_ecdf[ptiles_str[-i - 1]] -= df_ecdf["50"] x1, y1 = cdf_to_staircase(df_ecdf[ptile].values, y) x2, y2 = cdf_to_staircase(df_ecdf[ptiles_str[-i - 1]].values, y) fill_between( x1, y1, x2, y2, p=p, show_line=False, patch_kwargs=dict(color=colors[color][i], alpha=0.5), ) # The median as a solid line if diff == "ecdf": p.ray( x=df_ecdf["50"].min(), y=0.0, length=0, angle=np.pi, line_width=2, color=colors[color][-1], ) p.ray( x=df_ecdf["50"].min(), y=0.0, length=0, angle=0, line_width=2, color=colors[color][-1], ) elif diff == "iecdf": p.line([0.0, 0.0], [0.0, 1.0], line_width=2, color=colors[color][-1]) else: x, y_median = cdf_to_staircase(df_ecdf["50"], y) p.line(x, y_median, line_width=2, color=colors[color][-1]) p.ray( x=x.min(), y=0.0, length=0, angle=np.pi, line_width=2, color=colors[color][-1], ) p.ray( x=x.max(), y=int(diff is None), length=0, angle=0, line_width=2, color=colors[color][-1], ) # Overlay data set if data is not None: if data_staircase: if diff == "iecdf": data_plot -= df_ecdf["50"] x_data, y_data = cdf_to_staircase(data_plot, y) elif diff == "ecdf": med = df_ecdf["50"].values x_data = np.sort(np.unique(np.concatenate((data_plot, med)))) data_ecdf = _ecdf_arbitrary_points(data_plot, x_data) med_ecdf = _ecdf_arbitrary_points(med, x_data) x_data, y_data = cdf_to_staircase(x_data, data_ecdf - med_ecdf) else: x_data, y_data = cdf_to_staircase(data_plot, y) p.line(x_data, y_data, color=data_color, line_width=data_size) # Extend to infinity if diff != "iecdf": p.ray( x=x_data.min(), y=0.0, length=0, angle=np.pi, line_width=data_size, color=data_color, ) p.ray( x=x_data.max(), y=int(diff is None), length=0, angle=0, line_width=data_size, color=data_color, ) else: if diff == "iecdf": p.circle(data_plot - df_ecdf["50"], y, color=data_color, size=data_size) elif diff == "ecdf": p.circle( data_plot, y - _ecdf_arbitrary_points(df_ecdf["50"].values, data_plot), color=data_color, size=data_size, ) else: p.circle(data_plot, y, color=data_color, size=data_size) return p def predictive_regression( samples, samples_x, data=None, diff=False, percentiles=[95, 68], color="blue", data_kwargs={}, p=None, **kwargs, ): """Plot a predictive regression plot from samples. Parameters ---------- samples : Numpy array, shape (n_samples, n_x) or xarray DataArray Numpy array containing predictive samples of y-values. sample_x : Numpy array, shape (n_x,) data : Numpy array, shape (n, 2) or xarray DataArray If not None, the measured data. The first column is the x-data, and the second the y-data. These are plotted as points over the predictive plot. diff : bool, default True If True, the predictive y-values minus the median of the predictive y-values are plotted. percentiles : list, default [95, 68] Percentiles for making colored envelopes for confidence intervals for the predictive ECDFs. Maximally four can be specified. color : str, default 'blue' One of ['green', 'blue', 'red', 'gray', 'purple', 'orange']. There are used to make the color scheme of shading of percentiles. data_kwargs : dict Any kwargs to be passed to p.circle() when plotting the data points. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. kwargs All other kwargs are passed to bokeh.plotting.figure(). Returns ------- output : Bokeh figure Figure populated with glyphs describing range of values for the the samples. The shading goes according to percentiles of samples, with the median plotted as line in the middle. """ if type(samples) != np.ndarray: if type(samples) == xarray.core.dataarray.DataArray: samples = samples.squeeze().values else: raise RuntimeError("Samples can only be Numpy arrays and xarrays.") if type(samples_x) != np.ndarray: if type(samples_x) == xarray.core.dataarray.DataArray: samples_x = samples_x.squeeze().values else: raise RuntimeError("`samples_x` can only be Numpy array or xarray.") if len(percentiles) > 4: raise RuntimeError("Can specify maximally four percentiles.") # Build ptiles percentiles = np.sort(percentiles)[::-1] ptiles = [pt for pt in percentiles if pt > 0] ptiles = ( [50 - pt / 2 for pt in percentiles] + [50] + [50 + pt / 2 for pt in percentiles[::-1]] ) ptiles_str = [str(pt) for pt in ptiles] if color not in ["green", "blue", "red", "gray", "purple", "orange", "betancourt"]: raise RuntimeError( "Only allowed colors are 'green', 'blue', 'red', 'gray', 'purple', 'orange'" ) colors = { "blue": ["#9ecae1", "#6baed6", "#4292c6", "#2171b5", "#084594"], "green": ["#a1d99b", "#74c476", "#41ab5d", "#238b45", "#005a32"], "red": ["#fc9272", "#fb6a4a", "#ef3b2c", "#cb181d", "#99000d"], "orange": ["#fdae6b", "#fd8d3c", "#f16913", "#d94801", "#8c2d04"], "purple": ["#bcbddc", "#9e9ac8", "#807dba", "#6a51a3", "#4a1486"], "gray": ["#bdbdbd", "#969696", "#737373", "#525252", "#252525"], "betancourt": [ "#DCBCBC", "#C79999", "#B97C7C", "#A25050", "#8F2727", "#7C0000", ], } if samples.shape[1] != len(samples_x): raise ValueError( "`samples_x must have the same number of entries as `samples` does columns." ) # It's useful to have data as a data frame if data is not None: if type(data) == tuple and len(data) == 2 and len(data[0]) == len(data[1]): data = np.vstack(data).transpose() df_data = pd.DataFrame(data=data, columns=["__data_x", "__data_y"]) df_data = df_data.sort_values(by="__data_x") # Make sure all entries in x-data in samples_x if diff: if len(samples_x) != len(df_data) or not np.allclose( np.sort(samples_x), df_data["__data_x"].values ): raise ValueError( "If `diff == True`, then samples_x must match the x-values of `data`." ) df_pred = pd.DataFrame( data=np.percentile(samples, ptiles, axis=0).transpose(), columns=[str(ptile) for ptile in ptiles], ) df_pred["__x"] = samples_x df_pred = df_pred.sort_values(by="__x") if p is None: x_axis_label = kwargs.pop("x_axis_label", "x") y_axis_label = kwargs.pop("y_axis_label", "y difference" if diff else "y") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 325 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 400 p = bokeh.plotting.figure( x_axis_label=x_axis_label, y_axis_label=y_axis_label, **kwargs ) for i, ptile in enumerate(ptiles_str[: len(ptiles_str) // 2]): if diff: y1 = df_pred[ptile] - df_pred["50"] y2 = df_pred[ptiles_str[-i - 1]] - df_pred["50"] else: y1 = df_pred[ptile] y2 = df_pred[ptiles_str[-i - 1]] fill_between( x1=df_pred["__x"], x2=df_pred["__x"], y1=y1, y2=y2, p=p, show_line=False, patch_kwargs=dict(fill_color=colors[color][i]), ) # The median as a solid line if diff: p.line( df_pred["__x"], np.zeros_like(samples_x), line_width=2, color=colors[color][-1], ) else: p.line(df_pred["__x"], df_pred["50"], line_width=2, color=colors[color][-1]) # Overlay data set if data is not None: data_color = data_kwargs.pop("color", "orange") data_alpha = data_kwargs.pop("alpha", 1.0) data_size = data_kwargs.pop("size", 2) if diff: p.circle( df_data["__data_x"], df_data["__data_y"] - df_pred["50"], color=data_color, size=data_size, alpha=data_alpha, **data_kwargs, ) else: p.circle( df_data["__data_x"], df_data["__data_y"], color=data_color, size=data_size, alpha=data_alpha, **data_kwargs, ) return p def sbc_rank_ecdf( sbc_output=None, parameters=None, diff=True, ptile=99.0, bootstrap_envelope=False, n_bs_reps=None, show_envelope=True, show_envelope_line=True, color_by_warning_code=False, staircase=False, p=None, marker_kwargs={}, envelope_patch_kwargs={}, envelope_line_kwargs={}, palette=None, show_legend=True, **kwargs, ): """Make a rank ECDF plot from simulation-based calibration. Parameters ---------- sbc_output : DataFrame Output of bebi103.stan.sbc() containing results from an SBC calculation. parameters : list of str, or None (default) List of parameters to include in the SBC rank ECDF plot. If None, use all parameters. For multidimensional parameters, each entry must be given separately, e.g., `['alpha[0]', 'alpha[1]', 'beta[0,1]']`. diff : bool, default True If True, plot the ECDF minus the ECDF of a Uniform distribution. Otherwise, plot the ECDF of the rank statistic from SBC. ptile : float, default 99 Which precentile to use as the envelope in the plot. bootstrap_envelope : bool, default False If True, use bootstrapping on the appropriate Uniform distribution to compute the envelope. Otherwise, use the Gaussian approximation for the envelope. n_bs_reps : bool, default None Number of bootstrap replicates to use when computing the envelope. If None, n_bs_reps is determined from the formula int(max(n, max(L+1, 100/(100-ptile))) * 100), where n is the number of simulations used in the SBC calculation. show_envelope : bool, default True If True, display the envelope encompassing the ptile percent confidence interval for the SBC ECDF. show_envelope_line : bool, default True If True, and `show_envelope` is also True, plot a line around the envelope. color_by_warning_code : bool, default False If True, color glyphs by diagnostics warning code instead of coloring the glyphs by parameter staircase : bool, default False If True, plot the ECDF as a staircase. Otherwise, plot with dots. p : bokeh.plotting.Figure instance, default None Plot to which to add the SBC rank ECDF plot. If None, create a new figure. marker_kwargs : dict, default {} Dictionary of kwargs to pass to `p.circle()` or `p.line()` when plotting the SBC ECDF. envelope_patch_kwargs : dict Any kwargs passed into p.patch(), which generates the fill of the envelope. envelope_line_kwargs : dict Any kwargs passed into p.line() in generating the line around the fill of the envelope. palette : list of strings of hex colors, or single hex string If a list, color palette to use. If a single string representing a hex color, all glyphs are colored with that color. Default is colorcet.b_glasbey_category10 from the colorcet package. show_legend : bool, default True If True, show legend. kwargs : dict Any kwargs passed to `bokeh.plotting.figure()` when creating the plot. Returns ------- output : bokeh.plotting.Figure instance A plot containing the SBC plot. Notes ----- You can see example SBC ECDF plots in Fig. 14 b and c in this paper: https://arxiv.org/abs/1804.06788 """ if sbc_output is None: raise RuntimeError("Argument `sbc_output` must be specified.") # Defaults if palette is None: palette = colorcet.b_glasbey_category10 elif palette not in [list, tuple]: palette = [palette] if "x_axis_label" not in kwargs: kwargs["x_axis_label"] = "rank statistic" if "y_axis_label" not in kwargs: kwargs["y_axis_label"] = "ECDF difference" if diff else "ECDF" if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 450 toolbar_location = kwargs.pop("toolbar_location", "above") if "fill_color" not in envelope_patch_kwargs: envelope_patch_kwargs["fill_color"] = "gray" if "fill_alpha" not in envelope_patch_kwargs: envelope_patch_kwargs["fill_alpha"] = 0.5 if "line_color" not in envelope_line_kwargs: envelope_line_kwargs["line_color"] = "gray" if "color" in "marker_kwargs" and color_by_warning_code: raise RuntimeError( "Cannot specify marker color when `color_by_warning_code` is True." ) if staircase and color_by_warning_code: raise RuntimeError("Cannot color by warning code for staircase ECDFs.") if parameters is None: parameters = list(sbc_output["parameter"].unique()) elif type(parameters) not in [list, tuple]: parameters = [parameters] L = sbc_output["L"].iloc[0] df = sbc_output.loc[ sbc_output["parameter"].isin(parameters), ["parameter", "rank_statistic", "warning_code"], ] n = (df["parameter"] == df["parameter"].unique()[0]).sum() if show_envelope: x, y_low, y_high = _sbc_rank_envelope( L, n, ptile=ptile, diff=diff, bootstrap=bootstrap_envelope, n_bs_reps=n_bs_reps, ) p = fill_between( x1=x, x2=x, y1=y_high, y2=y_low, patch_kwargs=envelope_patch_kwargs, line_kwargs=envelope_line_kwargs, show_line=show_envelope_line, p=p, toolbar_location=toolbar_location, **kwargs, ) else: p = bokeh.plotting.figure(toolbar_location=toolbar_location, **kwargs) if staircase: dfs = [] for param in parameters: if diff: x_data, y_data = _ecdf_diff( df.loc[df["parameter"] == param, "rank_statistic"], L, staircase=True, ) else: x_data, y_data = _ecdf_vals( df.loc[df["parameter"] == param, "rank_statistic"], staircase=True ) dfs.append( pd.DataFrame( data=dict(rank_statistic=x_data, __ECDF=y_data, parameter=param) ) ) df = pd.concat(dfs, ignore_index=True) else: df["__ECDF"] = df.groupby("parameter")["rank_statistic"].transform(_ecdf_y) if diff: df["__ECDF"] -= (df["rank_statistic"] + 1) / L if staircase: color = marker_kwargs.pop("color", palette) if type(color) == str: color = [color] * len(parameters) elif "color" not in marker_kwargs: color = palette else: color = [marker_kwargs.pop("color")] * len(parameters) if color_by_warning_code: if len(color) < len(df["warning_code"].unique()): raise RuntimeError( "Not enough colors in palette to cover all warning codes." ) elif len(color) < len(parameters): raise RuntimeError("Not enough colors in palette to cover all parameters.") if staircase: plot_cmd = p.line else: plot_cmd = p.circle if show_legend: legend_items = [] if color_by_warning_code: for i, (warning_code, g) in enumerate(df.groupby("warning_code")): if show_legend: legend_items.append( ( str(warning_code), [ plot_cmd( source=g, x="rank_statistic", y="__ECDF", color=color[i], **marker_kwargs, ) ], ) ) else: plot_cmd( source=g, x="rank_statistic", y="__ECDF", color=color[i], **marker_kwargs, ) else: for i, (param, g) in enumerate(df.groupby("parameter")): if show_legend: legend_items.append( ( param, [ plot_cmd( source=g, x="rank_statistic", y="__ECDF", color=color[i], **marker_kwargs, ) ], ) ) else: plot_cmd( source=g, x="rank_statistic", y="__ECDF", color=color[i], **marker_kwargs, ) if show_legend: legend = bokeh.models.Legend(items=legend_items) p.add_layout(legend, "right") p.legend.click_policy = "hide" return p def parcoord( samples=None, parameters=None, palette=None, omit=None, include_ppc=False, include_log_lik=False, transformation=None, color_by_chain=False, line_kwargs={}, divergence_kwargs={}, xtick_label_orientation=0.7853981633974483, **kwargs, ): """ Make a parallel coordinate plot of MCMC samples. The x-axis is the parameter name and the y-axis is the value of the parameter, possibly transformed to so the scale of all parameters are similar. Parameters ---------- samples : ArviZ InferenceData instance or xarray Dataset instance Result of MCMC sampling. parameters : list of str, or None (default) Names of parameters to include in the plot. If None, use all parameters. For multidimensional parameters, each entry must be given separately, e.g., `['alpha[0]', 'alpha[1]', 'beta[0,1]']`. If a given entry is a 2-tuple, the first entry is the variable name, and the second entry is the label for the parameter in plots. palette : list of strings of hex colors, or single hex string If a list, color palette to use. If a single string representing a hex color, all glyphs are colored with that color. Default is colorcet.b_glasbey_category10 from the colorcet package. omit : str, re.Pattern, or list or tuple of str and re.Pattern If `parameters` is not provided, all parameters are used in the parallel coordinate plot. We often want to ignore samples of some variables. For each string entry in `omit`, the variable given by the string is omitted. For each entry that is a compiled regular expression patters (`re.Pattern`), any variable name matching the pattern is omitted. include_ppc : bool, default False If True, include variables ending in _ppc, which denotes posterior predictive checks, in the plot. include_log_lik: bool, default False If True, include variables starting with log_lik or loglik. These denote log-likelihood contributions. transformation : function, str, or dict, default None A transformation to apply to each set of samples. The function must take a single array as input and return an array as the same size. If None, nor transformation is done. If a dictionary, each key is the variable name and the corresponding value is a function for the transformation of that variable. Alternatively, if `transformation` is `'minmax'`, the data are scaled to range from zero to one, or if `transformation` is `'rank'`, the rank of the each data is used. color_by_chain : bool, default False If True, color the lines by chain. line_kwargs: dict Dictionary of kwargs to be passed to `p.multi_line()` in making the plot of non-divergent samples. divergence_kwargs: dict Dictionary of kwargs to be passed to `p.multi_line()` in making the plot of divergent samples. xtick_label_orientation : str or float, default π/4. Orientation of x tick labels. In some plots, horizontally labeled ticks will have label clashes, and this can fix that. kwargs Any kwargs to be passed to `bokeh.plotting.figure()` when instantiating the figure. Returns ------- output : Bokeh plot Parallel coordinates plot. """ if parameters is not None and omit is not None: raise RuntimeError("At least one of `parameters` and `omit` must be None.") omit = _parse_omit(omit, include_ppc, include_log_lik) # Default properties if palette is None: palette = colorcet.b_glasbey_category10 line_width = line_kwargs.pop("line_width", 0.5) alpha = line_kwargs.pop("alpha", 0.02) line_join = line_kwargs.pop("line_join", "bevel") if "color" in line_kwargs and color_by_chain: raise RuntimeError( "Cannot specify line color and also color by chain. If coloring by chain, use `palette` kwarg to specify color scheme." ) color = line_kwargs.pop("color", "black") divergence_line_join = divergence_kwargs.pop("line_join", "bevel") divergence_line_width = divergence_kwargs.pop("line_width", 1) divergence_color = divergence_kwargs.pop("color", "orange") divergence_alpha = divergence_kwargs.pop("alpha", 1) if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 175 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 600 toolbar_location = kwargs.pop("toolbar_location", "above") if "x_range" in kwargs: raise RuntimeError("Cannot specify x_range; this is inferred.") if not color_by_chain: palette = [color] * len(palette) if type(samples) != az.data.inference_data.InferenceData: raise RuntimeError("Input must be an ArviZ InferenceData instance.") if not hasattr(samples, "posterior"): raise RuntimeError("Input samples do not have 'posterior' group.") if not ( hasattr(samples, "sample_stats") and hasattr(samples.sample_stats, "diverging") ): warnings.warn("No divergence information available.") parameters, df = stan._samples_parameters_to_df(samples, parameters, omit) parameters, labels = _parse_parameters(parameters) df.rename(columns={param: label for param, label in zip(parameters, labels)}) if transformation == "minmax": transformation = { param: lambda x: (x - x.min()) / (x.max() - x.min()) if x.min() < x.max() else 0.0 for param in labels } elif transformation == "rank": transformation = {param: lambda x: st.rankdata(x) for param in labels} if transformation is None: transformation = {param: lambda x: x for param in labels} if callable(transformation) or transformation is None: transformation = {param: transformation for param in labels} for col, trans in transformation.items(): df[col] = trans(df[col]) df = df.melt(id_vars=["diverging__", "chain__", "draw__"]) p = bokeh.plotting.figure( x_range=bokeh.models.FactorRange(*labels), toolbar_location=toolbar_location, **kwargs, ) # Plots for samples that were not divergent ys = np.array( [ group["value"].values for _, group in df.loc[~df["diverging__"]].groupby(["chain__", "draw__"]) ] ) if len(ys) > 0: ys = [y for y in ys] xs = [list(df["variable"].unique())] * len(ys) p.multi_line( xs, ys, line_width=line_width, alpha=alpha, line_join=line_join, color=[palette[i % len(palette)] for i in range(len(ys))], **line_kwargs, ) # Plots for samples that were divergent ys = np.array( [ group["value"].values for _, group in df.loc[df["diverging__"]].groupby(["chain__", "draw__"]) ] ) if len(ys) > 0: ys = [y for y in ys] xs = [list(df["variable"].unique())] * len(ys) p.multi_line( xs, ys, alpha=divergence_alpha, line_join=line_join, color=divergence_color, line_width=divergence_line_width, **divergence_kwargs, ) p.xaxis.major_label_orientation = xtick_label_orientation return p def trace( samples=None, parameters=None, palette=None, omit=None, include_ppc=False, include_log_lik=False, line_kwargs={}, **kwargs, ): """ Make a trace plot of MCMC samples. Parameters ---------- samples : ArviZ InferenceData instance or xarray Dataset instance Result of MCMC sampling. parameters : list of str, or None (default) Names of parameters to include in the plot. If None, use all parameters. For multidimensional parameters, each entry must be given separately, e.g., `['alpha[0]', 'alpha[1]', 'beta[0,1]']`. If a given entry is a 2-tuple, the first entry is the variable name, and the second entry is the label for the parameter in plots. palette : list of strings of hex colors, or single hex string If a list, color palette to use. If a single string representing a hex color, all glyphs are colored with that color. Default is colorcet.b_glasbey_category10 from the colorcet package. omit : str, re.Pattern, or list or tuple of str and re.Pattern If `parameters` is not provided, all parameters are used in the parallel coordinate plot. We often want to ignore samples of some variables. For each string entry in `omit`, the variable given by the string is omitted. For each entry that is a compiled regular expression patters (`re.Pattern`), any variable name matching the pattern is omitted. include_ppc : bool, default False If True, include variables ending in _ppc, which denotes posterior predictive checks, in the plot. include_log_lik: bool, default False If True, include variables starting with log_lik or loglik. These denote log-likelihood contributions. line_kwargs: dict Dictionary of kwargs to be passed to `p.multi_line()` in making the plot of non-divergent samples. kwargs Any kwargs to be passed to `bokeh.plotting.figure()`. Returns ------- output : Bokeh gridplot Set of chain traces as a Bokeh gridplot. """ if parameters is not None and omit is not None: raise RuntimeError("At least one of `parameters` and `omit` must be None.") omit = _parse_omit(omit, include_ppc, include_log_lik) if type(samples) != az.data.inference_data.InferenceData: raise RuntimeError("Input must be an ArviZ InferenceData instance.") if not hasattr(samples, "posterior"): raise RuntimeError("Input samples do not have 'posterior' group.") parameters, df = stan._samples_parameters_to_df(samples, parameters, omit) parameters, labels = _parse_parameters(parameters) # Default properties if palette is None: palette = colorcet.b_glasbey_category10 line_width = line_kwargs.pop("line_width", 0.5) alpha = line_kwargs.pop("alpha", 0.5) line_join = line_kwargs.pop("line_join", "bevel") if "color" in line_kwargs: raise RuntimeError( "Cannot specify line color. Specify color scheme with `palette` kwarg." ) if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 150 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 600 x_axis_label = kwargs.pop("x_axis_label", "step") if "y_axis_label" in kwargs: raise RuntimeError( "`y_axis_label` cannot be specified; it is inferred from samples." ) if "x_range" not in kwargs: kwargs["x_range"] = [df["draw__"].min(), df["draw__"].max()] plots = [] grouped = df.groupby("chain__") for i, (var, label) in enumerate(zip(parameters, labels)): p = bokeh.plotting.figure( x_axis_label=x_axis_label, y_axis_label=label, **kwargs ) for i, (chain, group) in enumerate(grouped): p.line( group["draw__"], group[var], line_width=line_width, line_join=line_join, color=palette[i], *line_kwargs, ) plots.append(p) if len(plots) == 1: return plots[0] # Link ranges for i, p in enumerate(plots[:-1]): plots[i].x_range = plots[-1].x_range return bokeh.layouts.gridplot(plots, ncols=1) def corner( samples=None, parameters=None, palette=None, omit=None, include_ppc=False, include_log_lik=False, max_plotted=10000, datashade=False, frame_width=None, frame_height=None, plot_ecdf=False, ecdf_staircase=False, cmap="black", color_by_chain=False, divergence_color="orange", alpha=None, single_var_color="black", bins="freedman-diaconis", show_contours=False, contour_color="black", bins_2d=50, levels=None, weights=None, smooth=0.02, extend_contour_domain=False, xtick_label_orientation="horizontal", ): """ Make a corner plot of sampling results. Heavily influenced by the corner package by <NAME>. Parameters ---------- samples : Numpy array, Pandas DataFrame, or ArviZ InferenceData Results of sampling. If a Numpy array or Pandas DataFrame, each row is a sample and each column corresponds to a variable. parameters : list List of variables as strings included in `samples` to construct corner plot. If None, use all parameters. The entries correspond to column headings if `samples` is in a Pandas DataFrame. If the input is a Numpy array, `parameters` is a list of indices of columns to use in the plot. If `samples` is an ArviZ InferenceData instance, `parameters` contains the names of parameters to include in the plot. For multidimensional parameters, each entry must be given separately, e.g., `['alpha[0]', 'alpha[1]', 'beta[0,1]']`. If a given entry is a 2-tuple, the first entry is the variable name, and the second entry is the label for the parameter in plots. palette : list of strings of hex colors, or single hex string If a list, color palette to use. If a single string representing a hex color, all glyphs are colored with that color. Default is the default color cycle employed by Altair. Ignored is `color_by_chain` is False. omit : str, re.Pattern, or list or tuple of str and re.Pattern If `parameters` is not provided, all parameters are used in the parallel coordinate plot. We often want to ignore samples of some variables. For each string entry in `omit`, the variable given by the string is omitted. For each entry that is a compiled regular expression patters (`re.Pattern`), any variable name matching the pattern is omitted. include_ppc : bool, default False If True, include variables ending in _ppc, which denotes posterior predictive checks, in the plot. include_log_lik: bool, default False If True, include variables starting with log_lik or loglik. These denote log-likelihood contributions. max_plotted : int, default 10000 Maximum number of points to be plotted. datashade : bool, default False Whether or not to convert sampled points to a raster image using Datashader. frame_width : int or None, default None Width of each plot in the corner plot in pixels. Default is set based on number of parameters plotted. If None and `frame_height` is specificed, `frame_width` is set to `frame_height`. frame_height : int or None, default None Height of each plot in the corner plot in pixels. Default is set based on number of parameters plotted. If None and `frame_width` is specificed, `frame_height` is set to `frame_width`. plot_ecdf : bool, default False If True, plot ECDFs of samples on the diagonal of the corner plot. If False, histograms are plotted. ecdf_staircase : bool, default False If True, plot the ECDF in "staircase" style. Otherwise, plot as dots. Ignored if `plot_ecdf` is False. cmap : str, default 'black' Valid colormap string for DataShader or for coloring Bokeh glyphs. color_by_chain : bool, default False If True, color the glyphs by chain index. divergence_color : str, default 'orange' Color to use for showing points where the sampler experienced a divergence. alpha : float or None, default None Opacity of glyphs. If None, inferred. single_var_color : str, default 'black' Color of histogram or ECDF lines. bins : int, array_like, or str, default 'freedman-diaconis' If int or array_like, setting for `bins` kwarg to be passed to `np.histogram()`. If 'exact', then each unique value in the data gets its own bin. If 'integer', then integer data is assumed and each integer gets its own bin. If 'sqrt', uses the square root rule to determine number of bins. If `freedman-diaconis`, uses the Freedman-Diaconis rule for number of bins. Ignored if `plot_ecdf` is True. show_contours : bool, default False If True, show contour plot on top of samples. contour_color : str, default 'black' Color of contour lines bins_2d : int, default 50 Number of bins in each direction for binning 2D histograms when computing contours. levels : list of floats, default None Levels to use when constructing contours. By default, these are chosen according to this principle from <NAME>: http://corner.readthedocs.io/en/latest/pages/sigmas.html weights : default None Value to pass as `weights` kwarg to np.histogram2d(), used in constructing contours. smooth : int or None, default 1 Width of smoothing kernel for making contours. extend_contour_domain : bool, default False If True, extend the domain of the contours a little bit beyond the extend of the samples. This is done in the corner package, but I prefer not to do it. xtick_label_orientation : str or float, default 'horizontal'. Orientation of x tick labels. In some plots, horizontally labeled ticks will have label clashes, and this can fix that. A preferred alternative to 'horizontal' is `np.pi/4`. Be aware, though, that non-horizontal tick labels may disrupt alignment of some of the plots in the corner plot. Returns ------- output : Bokeh gridplot Corner plot as a Bokeh gridplot. """ if parameters is not None and omit is not None: raise RuntimeError("At least one of `parameters` and `omit` must be None.") omit = _parse_omit(omit, include_ppc, include_log_lik) # Tools, also allowing linked brushing tools = "pan,box_zoom,wheel_zoom,box_select,lasso_select,save,reset" # Default properties if palette is None: palette = colorcet.b_glasbey_category10 if color_by_chain: if cmap not in ["black", None]: warnings.warn("Ignoring cmap values to color by chain.") if divergence_color is None: divergence_color = cmap if type(samples) == pd.core.frame.DataFrame: df = samples if parameters is None: parameters = [ col for col in df.columns if stan._screen_param(col, omit) and (len(col) < 2 or col[-2:] != "__") ] elif type(samples) == np.ndarray: if parameters is None: parameters = list(range(samples.shape[1])) for param in parameters: if (type(param) in [tuple, list] and type(param[0]) != int) or type( param ) != int: raise RuntimeError( "When `samples` is inputted as a Numpy array, `parameters` must be" " a list of indices." ) new_parameters = [ str(param) if type(param) == int else param[1] for param in parameters ] df = pd.DataFrame(samples[:, parameters], columns=new_parameters) parameters = new_parameters else: parameters, df = stan._samples_parameters_to_df(samples, parameters, omit) parameters, labels = _parse_parameters(parameters) # Set default frame width and height. if frame_height is None: if frame_width is None: default_dim = 25 * (9 - len(parameters)) if len(parameters) < 5 else 100 frame_height = default_dim frame_width = default_dim else: frame_height = frame_width elif frame_width is None: frame_width = frame_height if len(parameters) > 6: raise RuntimeError("For space purposes, can show only six parameters.") if color_by_chain: # Have to convert datatype to string to play nice with Bokeh df["chain__"] = df["chain__"].astype(str) factors = tuple(df["chain__"].unique()) cmap = bokeh.transform.factor_cmap("chain__", palette=palette, factors=factors) # Add dummy divergent column if no divergence information is given if "diverging__" not in df.columns: df = df.copy() df["diverging__"] = 0 # Add dummy chain column if no divergence information is given if "chain__" not in df.columns: df = df.copy() df["chain__"] = 0 for col in parameters: if col not in df.columns: raise RuntimeError("Column " + col + " not in the columns of DataFrame.") if labels is None: labels = parameters elif len(labels) != len(parameters): raise RuntimeError("len(parameters) must equal len(labels)") if plot_ecdf and not ecdf_staircase: for param in parameters: df[f"__ECDF_{param}"] = df[param].rank(method="first") / len(df) n_nondivergent = np.sum(df["diverging__"] == 0) if n_nondivergent > max_plotted: inds = np.random.choice( np.arange(n_nondivergent), replace=False, size=max_plotted ) else: inds = np.arange(np.sum(df["diverging__"] == 0)) if alpha is None: if len(inds) < 100: alpha = 1 elif len(inds) > 10000: alpha = 0.02 else: alpha = np.exp(-(np.log10(len(inds)) - 2) / (-2 / np.log(0.02))) # Set up column data sources to allow linked brushing cds = bokeh.models.ColumnDataSource(df.loc[df["diverging__"] == 0, :].iloc[inds, :]) cds_div = bokeh.models.ColumnDataSource(df.loc[df["diverging__"] == 1, :]) # Set up contour settings contour_lines_kwargs = dict( smooth=smooth, levels=levels, weights=weights, extend_domain=extend_contour_domain, bins=bins_2d, ) # Just make a single plot if only one parameter if len(parameters) == 1: x = parameters[0] if plot_ecdf: p = bokeh.plotting.figure( frame_width=frame_width, frame_height=frame_height, x_axis_label=labels[0], y_axis_label="ECDF", ) if ecdf_staircase: p = _ecdf( df[x].iloc[inds], staircase=True, line_width=2, line_color=single_var_color, p=p, ) else: p.circle(source=cds, x=x, y=f"__ECDF_{x}", color=single_var_color) p.circle(source=cds_div, x=x, y=f"__ECDF_{x}", color=divergence_color) else: p = bokeh.plotting.figure( frame_width=frame_width, frame_height=frame_height, x_axis_label=labels[0], y_axis_label="density", ) p = _histogram( df[x].values, bins=bins, density=True, line_kwargs=dict(line_width=2, line_color=single_var_color), p=p, ) if frame_height < 200: p.toolbar_location = "above" p.xaxis.major_label_orientation = xtick_label_orientation return p plots = [[None for _ in range(len(parameters))] for _ in range(len(parameters))] for i, j in zip(*np.tril_indices(len(parameters))): x = parameters[j] if i != j: y = parameters[i] x_range, y_range = _data_range(df, x, y) scatter_figure_kwargs = dict( x_range=x_range, y_range=y_range, frame_width=frame_width, frame_height=frame_height, ) plots[i][j] = _corner_scatter( cds, cds_div, x, y, datashade, alpha, cmap, show_contours, divergence_color, contour_color, contour_lines_kwargs, scatter_figure_kwargs, ) else: if plot_ecdf: x_range, _ = _data_range(df, x, x) plots[i][i] = bokeh.plotting.figure( x_range=x_range, y_range=[-0.02, 1.02], frame_width=frame_width, frame_height=frame_height, align="end", tools=tools, ) if ecdf_staircase: plots[i][i] = _ecdf( df[x], p=plots[i][i], staircase=True, line_width=2, line_color=single_var_color, ) else: plots[i][i].circle( source=cds, x=x, y=f"__ECDF_{x}", size=2, color=cmap, nonselection_fill_alpha=0, nonselection_line_alpha=0, ) plots[i][i].circle( source=cds_div, x=x, y=f"__ECDF_{x}", size=2, color=divergence_color, nonselection_fill_alpha=0, nonselection_line_alpha=0, ) else: x_range, _ = _data_range(df, x, x) plots[i][i] = bokeh.plotting.figure( x_range=x_range, y_range=bokeh.models.DataRange1d(start=0.0), frame_width=frame_width, frame_height=frame_height, align="end", tools=tools, ) bins_plot = _bins_to_np(df[x].values, bins) e0, f0 = _compute_histogram(df[x].values, bins=bins_plot, density=True) plots[i][i].line(e0, f0, line_width=2, color=single_var_color) plots[i][j].xaxis.major_label_orientation = xtick_label_orientation # Link axis ranges for i in range(1, len(parameters)): for j in range(i): plots[i][j].x_range = plots[j][j].x_range plots[i][j].y_range = plots[i][i].x_range # Label axes for i, label in enumerate(labels): plots[-1][i].xaxis.axis_label = label for i, label in enumerate(labels[1:]): plots[i + 1][0].yaxis.axis_label = label if plot_ecdf: plots[0][0].yaxis.axis_label = "ECDF" # Take off tick labels for i in range(len(parameters) - 1): for j in range(i + 1): plots[i][j].xaxis.major_label_text_font_size = "0pt" if not plot_ecdf: plots[0][0].yaxis.major_label_text_font_size = "0pt" for i in range(1, len(parameters)): for j in range(1, i + 1): plots[i][j].yaxis.major_label_text_font_size = "0pt" grid = bokeh.layouts.gridplot(plots, toolbar_location="left") return grid def contour( X, Y, Z, levels=None, p=None, overlaid=False, cmap=None, overlay_grid=False, fill=False, fill_palette=None, fill_alpha=0.75, line_kwargs={}, **kwargs, ): """ Make a contour plot, possibly overlaid on an image. Parameters ---------- X : 2D Numpy array Array of x-values, as would be produced using np.meshgrid() Y : 2D Numpy array Array of y-values, as would be produced using np.meshgrid() Z : 2D Numpy array Array of z-values. levels : array_like Levels to plot, ranging from 0 to 1. The contour around a given level contains that fraction of the total probability if the contour plot is for a 2D probability density function. By default, the levels are given by the one, two, three, and four sigma levels corresponding to a marginalized distribution from a 2D Gaussian distribution. p : bokeh plotting object, default None If not None, the contour are added to `p`. This option is not allowed if `overlaid` is True. overlaid : bool, default False If True, `Z` is displayed as an image and the contours are overlaid. cmap : str or list of hex colors, default None If `im` is an intensity image, `cmap` is a mapping of intensity to color. If None, default is 256-level Viridis. If `im` is a color image, then `cmap` can either be 'rgb' or 'cmy' (default), for RGB or CMY merge of channels. overlay_grid : bool, default False If True, faintly overlay the grid on top of image. Ignored if overlaid is False. line_kwargs : dict, default {} Keyword arguments passed to `p.multiline()` for rendering the contour. kwargs Any kwargs to be passed to `bokeh.plotting.figure()`. Returns ------- output : Bokeh plotting object Plot populated with contours, possible with an image. """ if len(X.shape) != 2 or Y.shape != X.shape or Z.shape != X.shape: raise RuntimeError("All arrays must be 2D and of same shape.") if overlaid and p is not None: raise RuntimeError("Cannot specify `p` if showing image.") # Set defaults x_axis_label = kwargs.pop("x_axis_label", "x") y_axis_label = kwargs.pop("y_axis_label", "y") if "line_color" not in line_kwargs: if overlaid: line_kwargs["line_color"] = "white" else: line_kwargs["line_color"] = "black" line_width = line_kwargs.pop("line_width", 2) if p is None: if overlaid: frame_height = kwargs.pop("frame_height", 300) frame_width = kwargs.pop("frame_width", 300) title = kwargs.pop("title", None) p = image.imshow( Z, cmap=cmap, frame_height=frame_height, frame_width=frame_width, x_axis_label=x_axis_label, y_axis_label=y_axis_label, x_range=[X.min(), X.max()], y_range=[Y.min(), Y.max()], no_ticks=False, flip=False, return_im=False, ) else: if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 300 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 300 p = bokeh.plotting.figure( x_axis_label=x_axis_label, y_axis_label=y_axis_label, **kwargs ) # Set default levels if levels is None: levels = 1.0 - np.exp(-np.arange(0.5, 2.1, 0.5) ** 2 / 2) # Compute contour lines if fill or line_width: xs, ys = _contour_lines(X, Y, Z, levels) # Make fills. This is currently not supported if fill: raise NotImplementedError("Filled contours are not yet implemented.") if fill_palette is None: if len(levels) <= 6: fill_palette = bokeh.palettes.Greys[len(levels) + 3][1:-1] elif len(levels) <= 10: fill_palette = bokeh.palettes.Viridis[len(levels) + 1] else: raise RuntimeError( "Can only have maximally 10 levels with filled contours" + " unless user specifies `fill_palette`." ) elif len(fill_palette) != len(levels) + 1: raise RuntimeError( "`fill_palette` must have 1 more entry" + " than `levels`" ) p.patch( xs[-1], ys[-1], color=fill_palette[0], alpha=fill_alpha, line_color=None ) for i in range(1, len(levels)): x_p = np.concatenate((xs[-1 - i], xs[-i][::-1])) y_p = np.concatenate((ys[-1 - i], ys[-i][::-1])) p.patch(x_p, y_p, color=fill_palette[i], alpha=fill_alpha, line_color=None) p.background_fill_color = fill_palette[-1] # Populate the plot with contour lines p.multi_line(xs, ys, line_width=line_width, **line_kwargs) if overlay_grid and overlaid: p.grid.level = "overlay" p.grid.grid_line_alpha = 0.2 return p def mpl_cmap_to_color_mapper(cmap): """ Convert a Matplotlib colormap to a bokeh.models.LinearColorMapper instance. Parameters ---------- cmap : str A string giving the name of the color map. Returns ------- output : bokeh.models.LinearColorMapper instance A linear color_mapper with 25 gradations. Notes ----- See https://matplotlib.org/examples/color/colormaps_reference.html for available Matplotlib colormaps. """ cm = mpl_get_cmap(cmap) palette = [rgb_frac_to_hex(cm(i)[:3]) for i in range(256)] return bokeh.models.LinearColorMapper(palette=palette) def _corner_scatter( cds, cds_div, x, y, datashade, alpha, cmap, show_contours, divergence_color, contour_color, contour_lines_kwargs, figure_kwargs, ): """Create scatter plot for non-datashaded corner plot.""" if datashade: cmap_arg = list(cmap) if type(cmap) == tuple else cmap xlim = tuple(figure_kwargs.pop("x_range")) ylim = tuple(figure_kwargs.pop("y_range")) p = hv.render( hv.operation.datashader.dynspread( hv.operation.datashader.datashade( hv.Points(data=cds.data, kdims=[x, y]), cmap=cmap_arg, cnorm="linear", ) ).opts(show_grid=True, align="end", xlim=xlim, ylim=ylim, **figure_kwargs) ) else: p = bokeh.plotting.figure(align="end", **figure_kwargs) p.circle( source=cds, x=x, y=y, size=2, alpha=alpha, color=cmap, nonselection_fill_alpha=0, nonselection_line_alpha=0, ) if divergence_color is not None: p.circle( source=cds_div, x=x, y=y, size=2, color=divergence_color, nonselection_fill_alpha=0, nonselection_line_alpha=0, ) if show_contours: xs, ys = contour_lines_from_samples( cds.data[x], cds.data[y], **contour_lines_kwargs ) p.multi_line(xs, ys, line_color=contour_color, line_width=2) return p def _ecdf_vals(data, staircase=False, complementary=False): """Get x, y, values of an ECDF for plotting. Parameters ---------- data : ndarray One dimensional Numpy array with data. staircase : bool, default False If True, generate x and y values for staircase ECDF (staircase). If False, generate x and y values for ECDF as dots. complementary : bool If True, return values for ECCDF. Returns ------- x : ndarray x-values for plot y : ndarray y-values for plot """ x = np.sort(data) y = np.arange(1, len(data) + 1) / len(data) if staircase: x, y = cdf_to_staircase(x, y) if complementary: y = 1 - y elif complementary: y = 1 - y + 1 / len(y) return x, y @numba.jit(nopython=True) def _ecdf_arbitrary_points(data, x): """Give the value of an ECDF at arbitrary points x.""" y = np.arange(len(data) + 1) / len(data) return y[np.searchsorted(np.sort(data), x, side="right")] def _ecdf_from_samples(df, name, ptiles, x): """Compute ECDFs and percentiles from samples.""" df_ecdf = pd.DataFrame() df_ecdf_vals =
pd.DataFrame()
pandas.DataFrame
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np import random from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_print_temp_data(): target = mock.MagicMock() target.temp={} target.temp['selected'] = ['c1','c2'] target.temp['weights'] = [0.5,0.5] algo = algos.PrintTempData() assert algo( target ) algo = algos.PrintTempData( 'Selected: {selected}') assert algo( target ) def test_print_info(): target = bt.Strategy('s', []) target.temp={} algo = algos.PrintInfo() assert algo( target ) algo = algos.PrintInfo( '{now}: {name}') assert algo( target ) def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_run_if_out_of_bounds(): algo = algos.RunIfOutOfBounds(0.5) dts = pd.date_range('2010-01-01', periods=3) s = bt.Strategy('s') data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.temp['selected'] = ['c1', 'c2'] s.temp['weights'] = {'c1': .5, 'c2':.5} s.update(dts[0]) s.children['c1'] = bt.core.SecurityBase('c1') s.children['c2'] = bt.core.SecurityBase('c2') s.children['c1']._weight = 0.5 s.children['c2']._weight = 0.5 assert not algo(s) s.children['c1']._weight = 0.25 s.children['c2']._weight = 0.75 assert not algo(s) s.children['c1']._weight = 0.24 s.children['c2']._weight = 0.76 assert algo(s) s.children['c1']._weight = 0.75 s.children['c2']._weight = 0.25 assert not algo(s) s.children['c1']._weight = 0.76 s.children['c2']._weight = 0.24 assert algo(s) def test_run_after_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDate('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert algo(target) def test_run_after_days(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDays(3) assert not algo(target) assert not algo(target) assert not algo(target) assert algo(target) def test_set_notional(): algo = algos.SetNotional('notional') s = bt.FixedIncomeStrategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) notional = pd.Series(index=dts[:2], data=[1e6, 5e6]) s.setup( data, notional = notional ) s.update(dts[0]) assert algo(s) assert s.temp['notional_value'] == 1e6 s.update(dts[1]) assert algo(s) assert s.temp['notional_value'] == 5e6 s.update(dts[2]) assert not algo(s) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_rebalance_updatecount(): algo = algos.Rebalance() s = bt.Strategy('s') s.use_integer_positions(False) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4','c5'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) assert s.value == 1000 assert s.capital == 0 # Update is called once when each weighted security is created (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[1]) s.temp['weights'] = {'c1': 0.5, 'c2':0.5} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[2]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (2) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 6 def test_rebalance_fixedincome(): algo = algos.Rebalance() c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') s = bt.FixedIncomeStrategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) coupons = pd.DataFrame(index=dts, columns=['c2'], data=0) s.setup(data, coupons=coupons) s.update(dts[0]) s.temp['notional_value'] = 1000 s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000 c1 = s['c1'] assert c1.value == 1000 assert c1.notional_value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000*100 c2 = s['c2'] assert c1.value == 0 assert c1.notional_value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000*100 assert c2.notional_value == 1000 assert c2.position == 1000 assert c2.weight == 1. def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectAll(include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectAll(include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly_n_none(): algo = algos.SelectRandomly(n=None) # Behaves like SelectAll s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectRandomly(n=None, include_no_data=True) assert algo2(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectRandomly(n=None, include_negative=True) assert algo3(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[0]] = np.nan data['c2'][dts[0]] = 95 data['c3'][dts[0]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectRandomly(n=1) assert algo(s) assert s.temp.pop('selected') == ['c2'] random.seed(1000) algo = algos.SelectRandomly(n=1, include_negative=True) assert algo(s) assert s.temp.pop('selected') == ['c3'] random.seed(1009) algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c1'] random.seed(1009) # If selected already set, it will further filter it s.temp['selected'] = ['c2'] algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c2'] def test_select_these(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected algo = algos.SelectThese( ['c1']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectThese( ['c1', 'c2'], include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectThese(['c1', 'c2'], include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where_all(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) s.setup(data, where = where) s.update(dts[0]) algo = algos.SelectWhere('where') assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectWhere('where', include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectWhere('where', include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere('where') s.setup(data, where=where) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_where_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere(where) s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_regex(): s = bt.Strategy('s') algo = algos.SelectRegex( 'c1' ) s.temp['selected'] = ['a1', 'c1', 'c2', 'c11', 'cc1'] assert algo( s ) assert s.temp['selected'] == ['c1', 'c11', 'cc1'] algo = algos.SelectRegex( '^c1$' ) assert algo( s ) assert s.temp['selected'] == ['c1'] def test_resolve_on_the_run(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'b1'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c2'][dts[2]] = -5 on_the_run = pd.DataFrame(index=dts, columns=['c'], data='c1') on_the_run.loc[dts[2], 'c'] = 'c2' s.setup(data, on_the_run = on_the_run) s.update(dts[0]) s.temp['selected'] = ['c', 'b1'] algo = algos.ResolveOnTheRun( 'on_the_run' ) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # make sure don't keep nan s.update(dts[1]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected # if specify include_no_data then 2 algo2 = algos.ResolveOnTheRun('on_the_run', include_no_data=True) s.temp['selected'] = ['c', 'b1'] assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # behavior on negative prices s.update(dts[2]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected algo3 = algos.ResolveOnTheRun('on_the_run', include_negative=True) s.temp['selected'] = ['c', 'b1'] assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c2' in selected assert 'b1' in selected def test_select_types(): c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') c3 = bt.HedgeSecurity('c3') c4 = bt.CouponPayingHedgeSecurity('c4') c5 = bt.FixedIncomeSecurity('c5') s = bt.Strategy('p', children = [c1, c2, c3, c4, c5]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4', 'c5'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) algo = algos.SelectTypes(include_types=(bt.Security, bt.HedgeSecurity), exclude_types=()) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3']) algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,), exclude_types=(bt.CouponPayingSecurity,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3', 'c5']) s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c2', 'c3']) def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_scale_weights(): s = bt.Strategy('s') algo = algos.ScaleWeights( -0.5 ) s.temp['weights'] = {'c1': 0.5, 'c2': -0.4, 'c3':0 } assert algo( s ) assert s.temp['weights'] == {'c1':-0.25, 'c2':0.2, 'c3':0} def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=10) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected def test_select_has_data_preselected(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 @mock.patch('ffn.calc_erc_weights') def test_weigh_erc(mock_erc): algo = algos.WeighERC(lookback=pd.DateOffset(days=5)) mock_erc.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_erc.called rets = mock_erc.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_target(): algo = algos.WeighTarget('target') s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) target = pd.DataFrame(index=dts[:2], columns=['c1', 'c2'], data=0.5) target['c1'].loc[dts[1]] = 1.0 target['c2'].loc[dts[1]] = 0.0 s.setup( data, target = target ) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.5 assert weights['c2'] == 0.5 s.update(dts[1]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 1.0 assert weights['c2'] == 0.0 s.update(dts[2]) assert not algo(s) def test_weigh_inv_vol(): algo = algos.WeighInvVol(lookback=pd.DateOffset(days=5)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data['c1'].loc[dts[1]] = 105 data['c1'].loc[dts[2]] = 95 data['c1'].loc[dts[3]] = 105 data['c1'].loc[dts[4]] = 95 # low vol c2 data['c2'].loc[dts[1]] = 100.1 data['c2'].loc[dts[2]] = 99.9 data['c2'].loc[dts[3]] = 100.1 data['c2'].loc[dts[4]] = 99.9 s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c2'] > weights['c1'] aae(weights['c1'], 0.020, 3) aae(weights['c2'], 0.980, 3) @mock.patch('ffn.calc_mean_var_weights') def test_weigh_mean_var(mock_mv): algo = algos.WeighMeanVar(lookback=pd.DateOffset(days=5)) mock_mv.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_mv.called rets = mock_mv.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_randomly(): s = bt.Strategy('s') s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.WeighRandomly() assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 assert sum( weights.values() ) == 1. algo = algos.WeighRandomly( (0.3,0.5), 0.95) assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 aae( sum( weights.values() ), 0.95 ) for c in s.temp['selected']: assert weights[c] <= 0.5 assert weights[c] >= 0.3 def test_set_stat(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( 'test_stat' ) s.setup(data, test_stat = stat) s.update(dts[0]) print() print(s.get_data('test_stat')) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_set_stat_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( stat ) s.setup(data) s.update(dts[0]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_stat_total_return(): algo = algos.StatTotalReturn(lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) stat = s.temp['stat'] assert len(stat) == 2 assert stat['c1'] == 105.0 / 100 - 1 assert stat['c2'] == 95.0 / 100 - 1 def test_select_n(): algo = algos.SelectN(n=1, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected algo = algos.SelectN(n=1, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # return 2 we have if all_or_none false algo = algos.SelectN(n=3, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # return 0 we have if all_or_none true algo = algos.SelectN(n=3, sort_descending=False, all_or_none=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 def test_select_n_perc(): algo = algos.SelectN(n=0.5, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected def test_select_momentum(): algo = algos.SelectMomentum(n=1, lookback=
pd.DateOffset(days=3)
pandas.DateOffset
# ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- import array import functools import gzip import operator import os import struct import numpy as np import pandas as pd import requests class DataManager: _train_data_url: str _train_labels_url: str _test_data_url: str _test_labels_url: str _train_data_loc: str _train_labels_loc: str _test_data_loc: str _test_labels_loc: str _data_columns: [] _data_string_labels: [] def __init__(self): self._train_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data" self._test_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test" self._train_data_loc = "systemds/examples/tutorials/adult/train_data.csv" self._test_data_loc = "systemds/examples/tutorials/adult/test_data.csv" self._data_columns = ["age", "workclass", "fnlwgt", "education", "education-num", "marital-status", "occupation", "relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country", "income"] self._classification_features_labels = [{'workclass': ['Private', 'Self-emp-not-inc', 'Self-emp-inc', 'Federal-gov', 'Local-gov', 'State-gov', 'Without-pay', 'Never-worked']}, {'education': ['Bachelors', 'Some-college', '11th', 'HS-grad', 'Prof-school', 'Assoc-acdm', 'Assoc-voc', '9th', '7th-8th', '12th', 'Masters', '1st-4th', '10th', 'Doctorate', '5th-6th', 'Preschool']}, {'marital-status': ['Married-civ-spouse', 'Divorced', 'Never-married', 'Separated', 'Widowed', 'Married-spouse-absent', 'Married-AF-spouse']}, {'occupation': ['Tech-support', 'Craft-repair', 'Other-service', 'Sales', 'Exec-managerial', 'Prof-specialty', 'Handlers-cleaners', 'Machine-op-inspct', 'Adm-clerical', 'Farming-fishing', 'Transport-moving', 'Priv-house-serv', 'Protective-serv', 'Armed-Forces']}, {'relationship': ['Wife', 'Own-child', 'Husband', 'Not-in-family', 'Other-relative', 'Unmarried']}, {'race': ['White', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other', 'Black']}, {'sex': ['Female', 'Male']}, {'native-country': ['United-States', 'Cambodia', 'England', 'Puerto-Rico', 'Canada', 'Germany', 'Outlying-US(Guam-USVI-etc)', 'India', 'Japan', 'Greece', 'South', 'China', 'Cuba', 'Iran', 'Honduras', 'Philippines', 'Italy', 'Poland', 'Jamaica', 'Vietnam', 'Mexico', 'Portugal', 'Ireland', 'France', 'Dominican-Republic', 'Laos', 'Ecuador', 'Taiwan', 'Haiti', 'Columbia', 'Hungary', 'Guatemala', 'Nicaragua', 'Scotland', 'Thailand', 'Yugoslavia', 'El-Salvador', 'Trinadad&Tobago', 'Peru', 'Hong', 'Holand-Netherlands']}, {'income': ['>50K', '<=50K']}] def get_train_data(self) -> np.array: self._get_data(self._train_data_url, self._train_data_loc) return self._parse_data(self._train_data_loc)\ .drop(labels=self._data_columns[len(self._data_columns)-1], axis=1).to_numpy() def get_train_labels(self) -> np.array: self._get_data(self._train_data_url, self._train_data_loc) data_list = self._data_columns.copy() data_list.pop(len(self._data_columns)-1) data = self._parse_data(self._train_data_loc).drop(labels=data_list, axis=1) return data.to_numpy().flatten() def get_test_data(self) -> np.array: self._get_data(self._test_data_url, self._test_data_loc) return self._parse_data(self._test_data_loc)\ .drop(labels=self._data_columns[len(self._data_columns)-1], axis=1).iloc[1:].to_numpy() def get_test_labels(self) -> np.array: self._get_data(self._test_data_url, self._test_data_loc) data_list = self._data_columns.copy() data_list.pop(len(self._data_columns)-1) data = self._parse_data(self._test_data_loc).drop(labels=data_list, axis=1).iloc[1:] data["income"] = data["income"].str.replace('>50K.','>50K', regex=False) data["income"] = data["income"].str.replace('<=50K.','<=50K', regex=False) return data.to_numpy().flatten() def _parse_data(self, loc) -> pd.DataFrame: return pd.read_csv(loc, header=None, names=self._data_columns) def _get_data(self, url, loc): if not os.path.isfile(loc): myfile = requests.get(url) folder = os.path.dirname(loc) if not os.path.isdir(folder): os.makedirs(folder) with open(loc, 'wb') as f: f.write(myfile.content) def get_preprocessed_dataset(self, interpolate=False, standardize=False, dimred=0): train_array = np.concatenate([self.get_train_data(), self.get_train_labels()[...,np.newaxis]], axis=1) train_dataset = pd.DataFrame(train_array, columns=self._data_columns) test_array = np.concatenate([self.get_test_data(), self.get_test_labels()[...,np.newaxis]], axis=1) test_dataset =
pd.DataFrame(test_array, columns=self._data_columns)
pandas.DataFrame
import os import numpy as np import pandas as pd from utils.data import join_tables, load_data, save_data def test_save_data(tmpdir): """test save data to csv""" save_data(tmpdir.join("test.csv"), [["Poprad", "Poprad", "A", "Adam", "Adam"]]) with open(tmpdir.join("test.csv"), mode="r") as file: lines = file.readlines() assert len(lines) == 2, "file have wrong number of lines" assert lines[0] == ";".join(["okres", "katastralne uzemie", "prve pismeno", "priezvisko", f"vlastnik{os.linesep}"]) assert lines[1] == ";".join(["Poprad", "Poprad", "A", "Adam", f"Adam{os.linesep}"]) def test_load_data(tmpdir): """test load data from csv""" save_data(tmpdir.join("test.csv"), [["Poprad", "Poprad", "A", "Adam", "Adam"]]) df = load_data(tmpdir.join("test.csv")) assert df.shape == (1, 5), "loaded data has wrong size" assert df.iloc[0]["okres"] == "Poprad" assert df.iloc[0]["katastralne uzemie"] == "Poprad" assert df.iloc[0]["prve pismeno"] == "A" assert df.iloc[0]["priezvisko"] == "Adam" assert df.iloc[0]["vlastnik"] == "Adam" def test_join_data(): """tsst join data""" df1 = pd.DataFrame({"A": [1, 2, 3], "B": [1, 1, 1]}) df2 =
pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 2]})
pandas.DataFrame
import argparse import datetime import json import os import tqdm import numpy as np import pandas as pd def top_k_logits(logits, k): if k == 0: # no truncation return logits def _top_k(): values, _ = tf.nn.top_k(logits, k=k) min_values = values[:, -1, tf.newaxis] return tf.where( logits < min_values, tf.ones_like(logits, dtype=logits.dtype) * -1e10, logits, ) return tf.cond( tf.equal(k, 0), lambda: logits, lambda: _top_k(), ) def top_p_logits(logits, p): """Nucleus sampling""" batch, _ = logits.shape.as_list() sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1) cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1) indices = tf.stack([ tf.range(0, batch), # number of indices to include tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0), ], axis=-1) min_values = tf.gather_nd(sorted_logits, indices) return tf.where( logits < min_values, tf.ones_like(logits) * -1e10, logits, ) def evaluate(inp_img, transformer, tokenizer, max_length=128): # The first token to the transformer should be the start token output = tf.convert_to_tensor([[tokenizer.token_to_id('<s>')]]) for _ in tqdm.tqdm(range(max_length)): combined_mask = create_target_masks(output) # predictions.shape == (batch_size, seq_len, vocab_size) predictions, attention_weights = transformer(inp_img, output, False, combined_mask, None) # select the last word from the seq_len dimension predictions = predictions[:, -1, :] # (batch_size, vocab_size) # predictions = top_k_logits(predictions, k=6) # predictions = top_p_logits(predictions, p=0.5) predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)[:, tf.newaxis] # predicted_id = tf.random.categorical(predictions, num_samples=1, dtype=tf.int32) # return the result if the predicted_id is equal to the end token if predicted_id == 2: # stop token #tokenizer_en.vocab_size + 1: return tf.squeeze(output, axis=0)[1:], attention_weights # concatentate the predicted_id to the output which is given to the decoder # as its input. output = tf.concat([output, predicted_id], axis=-1) return tf.squeeze(output, axis=0)[1:], attention_weights def main(args, hparams): # Get test dataset test_dataset, tokenizer = get_mimic_dataset(args.csv_root, args.vocab_root, args.mimic_root, batch_size=args.batch_size, mode='test') # Define model target_vocab_size = tokenizer.get_vocab_size() transformer = Transformer(hparams['n_layer'], hparams['d_model'], hparams['n_head'], hparams['dff'], target_vocab_size=target_vocab_size, rate=hparams['dropout_rate'], input_shape=(hparams['img_x'], hparams['img_y'], hparams['img_ch'])) # Restore checkpoint ckpt = tf.train.Checkpoint(transformer=transformer) checkpoint_path = os.path.join('checkpoints', args.model_name) latest_checkpoint = tf.train.latest_checkpoint(checkpoint_path) if latest_checkpoint: print(f'{datetime.datetime.now()}: [*] Restoring Checkpoint: {latest_checkpoint}') ckpt.restore(latest_checkpoint) else: print(f'{datetime.datetime.now()}: [*] No checkpoints found. Exiting.') exit(0) #################### Run inference #################### pred_txt = dict() true_txt = dict() t = tqdm.tqdm(enumerate(test_dataset), total=len(test_dataset)) for (idx, (inp, tar)) in t: true_txt[idx] = tokenizer.decode(np.trim_zeros(tar[0].numpy(), 'b')[1:-1]) result, attention_weights = evaluate(inp, transformer=transformer, tokenizer=tokenizer) pred_txt[idx] = tokenizer.decode(result) pred_txt_df = pd.DataFrame.from_dict(pred_txt, orient='index') true_txt_df =
pd.DataFrame.from_dict(true_txt, orient='index')
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """Data_Analysis.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/106zvCx_5_p0TlKI3zkCcEb0VbnWwdahx """ # -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression from sklearn.linear_model import SGDRegressor import xgboost as xgb from sklearn.metrics import mean_squared_error, r2_score import re from nltk.sentiment.vader import SentimentIntensityAnalyzer from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR """ 1. Preprocessing Functions: """ def calc_change_sentiment(data): change_in_sent = [] change_in_sent.append(data['compound'][0]) for i in range(1,len(data['compound'])): if data['compound'][i] == 0: change_in_sent.append(0) elif data['compound'][i] < 0 or data['compound'][i] > 0: dif = data['compound'][i] - data['compound'][(i-1)] change_in_sent.append(dif) return change_in_sent def remove_pattern(input_txt, pattern): r = re.findall(pattern, input_txt) for i in r: input_txt = re.sub(i, '', input_txt) return input_txt def clean_tweets(tweets): tweets = np.vectorize(remove_pattern)(tweets, "RT @[\w]*:") tweets = np.vectorize(remove_pattern)(tweets, "@[\w]*") tweets = np.vectorize(remove_pattern)(tweets, "https?://[A-Za-z0-9./]*") tweets = np.core.defchararray.replace(tweets, "[^a-zA-Z]", " ") return tweets def classify_news(dataframe): day23, day24, day25, day26, day27, day28, day29, day30, day31, day32, day33, day34, day35, day36, day37, day38 = [],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[] for i in range(len(dataframe['timestamp'])): if dataframe['timestamp'][i].day == 23 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day23.append(i) elif dataframe['timestamp'][i].day == 24 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day24.append(i) elif dataframe['timestamp'][i].day == 25 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day25.append(i) elif dataframe['timestamp'][i].day == 26 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day26.append(i) elif dataframe['timestamp'][i].day == 27 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day27.append(i) elif dataframe['timestamp'][i].day == 28 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day28.append(i) elif dataframe['timestamp'][i].day == 29 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day29.append(i) elif dataframe['timestamp'][i].day == 30 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day30.append(i) elif dataframe['timestamp'][i].day == 1 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day31.append(i) elif dataframe['timestamp'][i].day == 2 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day32.append(i) elif dataframe['timestamp'][i].day == 3 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day33.append(i) elif dataframe['timestamp'][i].day == 4 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day34.append(i) elif dataframe['timestamp'][i].day == 5 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day35.append(i) elif dataframe['timestamp'][i].day == 6 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day36.append(i) elif dataframe['timestamp'][i].day == 7 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day37.append(i) elif dataframe['timestamp'][i].day == 8 and (dataframe['timestamp'][i].hour <= 15 and dataframe['timestamp'][i].hour >= 9): day38.append(i) else: pass news_d23,news_d24,news_d25,news_d26,news_d27,news_d28,news_d29,news_d30,news_d31,news_d32,news_d33,news_d34,news_d35,news_d36,news_d37,news_d38 = dataframe.iloc[day23],dataframe.iloc[day24],dataframe.iloc[day25], dataframe.iloc[day26], dataframe.iloc[day27],dataframe.iloc[day28],dataframe.iloc[day29],dataframe.iloc[day30],dataframe.iloc[day31], dataframe.iloc[day32],dataframe.iloc[day33],dataframe.iloc[day34],dataframe.iloc[day35],dataframe.iloc[day36],dataframe.iloc[day37],dataframe.iloc[day38] return news_d23,news_d24,news_d25,news_d26,news_d27,news_d28,news_d29,news_d30,news_d31,news_d32,news_d33,news_d34,news_d35,news_d36,news_d37,news_d38 def preprocess_headlines(data): data.drop_duplicates(subset='headline',keep=False, inplace=True) data.drop(['ticker','neg','neu','pos'], axis=1, inplace=True) data.rename(columns={'date_time':'timestamp'},inplace=True) data.set_index('timestamp', inplace=True) data_30m = data.resample('30min').median().ffill().reset_index() headline_sma = data_30m['compound'].rolling(3).mean() data_30m['Compound SMA(3) Headlines'] = headline_sma change_in_sent=calc_change_sentiment(data_30m) data_30m['change in sentiment headlines'] = change_in_sent data_30m['change in sentiment headlines (t-1)'] = data_30m['change in sentiment headlines'].shift(1) news_d23,news_d24,news_d25,news_d26,news_d27,news_d28,news_d29,news_d30,news_d31,news_d32,news_d33,news_d34,news_d35,news_d36,news_d37,news_d38 = classify_news(data_30m) news_d23_red,news_d24_red, news_d25_red, news_d28_red,news_d29_red,news_d30_red,news_d31_red,news_d32_red,news_d35_red,news_d36_red,news_d37_red,news_d38_red = news_d23.iloc[4:],news_d24.iloc[1:],news_d25.iloc[1:],news_d28.iloc[1:],news_d29.iloc[1:],news_d30.iloc[1:],news_d31.iloc[1:],news_d32.iloc[1:],news_d35.iloc[1:],news_d36.iloc[1:],news_d37.iloc[1:],news_d38.iloc[1:] frames_news = [news_d23_red,news_d24_red, news_d25_red, news_d28_red,news_d29_red,news_d30_red,news_d31_red,news_d32_red,news_d35_red,news_d36_red,news_d37_red,news_d38_red] processed_headlines = pd.concat(frames_news) return processed_headlines def preprocess_posts(dataframe): dataframe.drop(['neg','neu','pos','followers_count'],axis=1,inplace=True) dataframe['timestamp'] = dataframe['timestamp'].dt.tz_localize('UTC').dt.tz_convert('America/Montreal').dt.tz_localize(None) dataframe.set_index('timestamp', inplace=True) twitter_df_30m = dataframe.resample('30min').median().ffill().reset_index() change_in_sent = calc_change_sentiment(twitter_df_30m) twitter_sma = twitter_df_30m['compound'].rolling(3).mean() twitter_df_30m['Compound SMA(3) Twitter'] = twitter_sma twitter_df_30m['change in sentiment twitter'] = change_in_sent twitter_df_30m['change in sentiment twitter (t-1)'] = twitter_df_30m['change in sentiment twitter'].shift(1) tw_news_d23,tw_news_d24,tw_news_d25,tw_news_d26,tw_news_d27,tw_news_d28,tw_news_d29,tw_news_d30,tw_news_d31,tw_news_d32,tw_news_d33,tw_news_d34,tw_news_d35,tw_news_d36,tw_news_d37,tw_news_d38 = classify_news(twitter_df_30m) tw_news_d23_30m,tw_news_d24_30m,tw_news_d25_30m, tw_news_d28_30m,tw_news_d29_30m,tw_news_d30_30m,tw_news_d31_30m,tw_news_d32_30m,tw_news_d35_30m,tw_news_d36_30m,tw_news_d37_30m,tw_news_d38_30m = tw_news_d23.iloc[4:],tw_news_d24.iloc[1:],tw_news_d25.iloc[1:],tw_news_d28.iloc[1:],tw_news_d29.iloc[1:],tw_news_d30.iloc[1:],tw_news_d31.iloc[1:],tw_news_d32.iloc[1:],tw_news_d35.iloc[1:],tw_news_d36.iloc[1:],tw_news_d37.iloc[1:],tw_news_d38.iloc[1:] frames = [tw_news_d23_30m,tw_news_d24_30m,tw_news_d25_30m,tw_news_d28_30m,tw_news_d29_30m,tw_news_d30_30m,tw_news_d31_30m,tw_news_d32_30m,tw_news_d35_30m,tw_news_d36_30m,tw_news_d37_30m,tw_news_d38_30m] processed_tweets = pd.concat(frames) return processed_tweets """2 Modeling Functions:""" def baseline_model(data): pred = data['SMA(3)'][3:] actu = data['Adj Close'][3:] rmse = np.sqrt(mean_squared_error(actu,pred)) r2_sco = r2_score(actu,pred) return rmse, r2_sco def linear_modeling_no_sentiment(dataframe): x_var = ['Adj Close','Scaled Volume','SMA(3)'] i = len(dataframe['Percent Price Change Within Period (t+1)'])-4 y_train, y_test = dataframe['Percent Price Change Within Period (t+1)'][3:i], dataframe['Percent Price Change Within Period (t+1)'][i:-1] X_train, X_test = dataframe[x_var][3:i], dataframe[x_var][i:-1] lm = LinearRegression() lm.fit(X_train,y_train) predictions = lm.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test,predictions)) r2_sco = r2_score(y_test,predictions) reg = SGDRegressor(random_state=42) reg.fit(X_train, y_train) predictions2 = reg.predict(X_test) rmse2 = np.sqrt(mean_squared_error(y_test,predictions2)) r2_sco2 = r2_score(y_test,predictions2) return rmse,r2_sco,rmse2,r2_sco2 def linear_modeling_headlines(dataframe): x_var = ['Adj Close','Scaled Volume','compound','Compound SMA(3) Headlines','SMA(3)','change in sentiment headlines','change in sentiment headlines (t-1)'] i = len(dataframe['Percent Price Change Within Period (t+1)'])-4 y_train, y_test = dataframe['Percent Price Change Within Period (t+1)'][:i], dataframe['Percent Price Change Within Period (t+1)'][i:-1] X_train, X_test = dataframe[x_var][:i], dataframe[x_var][i:-1] lm = LinearRegression() lm.fit(X_train,y_train) predictions = lm.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test,predictions)) r2_sco = r2_score(y_test,predictions) reg = SGDRegressor(random_state=42) reg.fit(X_train, y_train) predictions2 = reg.predict(X_test) rmse2 = np.sqrt(mean_squared_error(y_test,predictions2)) r2_sco2 = r2_score(y_test,predictions2) xg_reg = xgb.XGBRegressor(colsample_bytree= 0.3, gamma= 0.0, learning_rate= 0.2, max_depth= 5, n_estimators= 20000) # xg_reg = xgb.XGBRegressor(colsample_bytree= 0.4, gamma= 0.4, learning_rate= 0.05, max_depth= 4, n_estimators= 10000) xg_reg.fit(X_train,y_train) preds3 = xg_reg.predict(X_test) rmse3 = np.sqrt(mean_squared_error(y_test, preds3)) r2_sco3 = r2_score(y_test,preds3) svr = SVR(kernel='rbf', C=0.01, epsilon=0.001) svr.fit(X_train,y_train) preds4 = svr.predict(X_test) rmse4 = np.sqrt(mean_squared_error(y_test,preds4)) r2_sco4 = r2_score(y_test,preds4) return rmse,r2_sco,rmse2,r2_sco2,rmse3,r2_sco3,rmse4,r2_sco4 def linear_model_twitter(dataframe): x_var = ['Adj Close','Scaled Volume','compound','Compound SMA(3) Twitter','SMA(3)','change in sentiment twitter','change in sentiment twitter (t-1)'] i = len(dataframe['Percent Price Change Within Period (t+1)'])-4 y_train, y_test = dataframe['Percent Price Change Within Period (t+1)'][:i], dataframe['Percent Price Change Within Period (t+1)'][i:-1] X_train, X_test = dataframe[x_var][:i], dataframe[x_var][i:-1] lm = LinearRegression() lm.fit(X_train,y_train) predictions = lm.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test,predictions)) r2_sco = r2_score(y_test,predictions) reg = SGDRegressor(random_state=42) reg.fit(X_train, y_train) predictions2 = reg.predict(X_test) rmse2 = np.sqrt(mean_squared_error(y_test,predictions2)) r2_sco2 = r2_score(y_test,predictions2) xg_reg = xgb.XGBRegressor(colsample_bytree= 0.3, gamma= 0.0, learning_rate= 0.2, max_depth= 5, n_estimators= 20000) # xg_reg = xgb.XGBRegressor(colsample_bytree= 0.4, gamma= 0.4, learning_rate= 0.05, max_depth= 4, n_estimators= 10000) xg_reg.fit(X_train,y_train) preds3 = xg_reg.predict(X_test) rmse3 = np.sqrt(mean_squared_error(y_test, preds3)) r2_sco3 = r2_score(y_test,preds3) svr = SVR(kernel='rbf', C=0.01, epsilon=0.001) svr.fit(X_train,y_train) preds4 = svr.predict(X_test) rmse4 = np.sqrt(mean_squared_error(y_test,preds4)) r2_sco4 = r2_score(y_test,preds4) return rmse,r2_sco,rmse2,r2_sco2,rmse3,r2_sco3,rmse4,r2_sco4 def multi_model_full(dataframe): x_var = ['Adj Close','Scaled Volume','compound_y','compound_x','Compound SMA(3) Headlines','Compound SMA(3) Twitter','SMA(3)','change in sentiment headlines','change in sentiment headlines (t-1)','change in sentiment twitter','change in sentiment twitter (t-1)'] i = len(dataframe['Percent Price Change Within Period (t+1)'])-4 y_train, y_test = dataframe['Percent Price Change Within Period (t+1)'][:i], dataframe['Percent Price Change Within Period (t+1)'][i:-1] X_train, X_test = dataframe[x_var][:i], dataframe[x_var][i:-1] lm = LinearRegression() lm.fit(X_train,y_train) predictions = lm.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test,predictions)) r2_sco = r2_score(y_test,predictions) reg = SGDRegressor(random_state=42) reg.fit(X_train, y_train) predictions2 = reg.predict(X_test) rmse2 = np.sqrt(mean_squared_error(y_test,predictions2)) r2_sco2 = r2_score(y_test,predictions2) xg_reg = xgb.XGBRegressor(colsample_bytree= 0.3, gamma= 0.0, learning_rate= 0.2, max_depth= 5, n_estimators= 20000) xg_reg.fit(X_train,y_train) preds3 = xg_reg.predict(X_test) rmse3 = np.sqrt(mean_squared_error(y_test, preds3)) r2_sco3 = r2_score(y_test,preds3) rf_regr = RandomForestRegressor(n_estimators=20, max_depth=600, random_state=42) rf_regr.fit(X_train,y_train) preds4 = rf_regr.predict(X_test) rmse4 = np.sqrt(mean_squared_error(y_test, preds4)) r2_sco4 = r2_score(y_test,preds4) svr = SVR(kernel='rbf', C=0.01, epsilon=0.001) svr.fit(X_train,y_train) preds5 = svr.predict(X_test) rmse5 = np.sqrt(mean_squared_error(y_test,preds5)) r2_sco5 = r2_score(y_test,preds5) return rmse,r2_sco,rmse2,r2_sco2,rmse3,r2_sco3,rmse4,r2_sco4,rmse5,r2_sco5 """## 2. Evaluate Model with Individual Stocks:""" def import_data(ticker): # 1. Historical Stock Data: stock_df = pd.read_csv('Dataset/1.Stock_Data/'+ticker+'_data.csv', index_col=0, parse_dates=['Datetime']) stock_df['Percent Price Change Within Period (t+1)'] = stock_df['Percent Price Change Within Period'].shift(-1) # 2. Headline Data: headlines1 = pd.read_csv('Dataset/2.FinViz_Headline_Data/'+ticker+'_2020-09-23_2020-10-07.csv', index_col=0, parse_dates=['date_time']) frames = [headlines1] headlines_df = pd.concat(frames) headlines_df.drop_duplicates(subset='headline',keep='first',inplace=True) # 3. Twitter Data: twitter1 = pd.read_csv('Dataset/3.Twitter_Data/'+ticker+'_2020-09-23_2020-10-07.csv', index_col=0, parse_dates=['timestamp']) # twitter2 = pd.read_csv('3.Twitter_Data/'+ticker+'_2020-10-07.csv',index_col=0, parse_dates=['timestamp']) # twitter3 = pd.read_csv('Dataset/3.Twitter_Data/'+ticker+'_2020-10-07_2.csv',index_col=0, parse_dates=['timestamp']) frames = [twitter1] twitter_df = pd.concat(frames) twitter_df.drop_duplicates(subset='tweet_text',keep='first', inplace=True) twitter_df.sort_values('timestamp',ascending=False,inplace=True) twitter_df.reset_index(drop=True) # twitter_df.to_csv('Dataset/3.Twitter_Data/'+ticker+'_2020-09-23_2020-10-07.csv') return stock_df,headlines_df,twitter_df def evaluate_models(baseline_df, headline_df, twitter_df): #1. Baseline: baseline_rmse, baseline_r2 = baseline_model(baseline_df) baseline_df2 = baseline_df baseline_df2['Percent Price Change Within Period (t+1)'] = baseline_df2['Percent Price Change Within Period'].shift(-1) lm_baseline_rmse, lm_baseline_r2, sgd_baseline_rmse, sgd_baseline_r2 = linear_modeling_no_sentiment(baseline_df2) #2. Headline Final Merge: headlines_final = preprocess_headlines(headline_df) with_headlines_df = stock_df.merge(headlines_final, left_on='Datetime', right_on='timestamp').drop('timestamp',axis=1) with_headlines_df['Percent Price Change Within Period (t+1)'] = with_headlines_df['Percent Price Change Within Period'].shift(-1) #3. Twitter Final Merge: final_twitter = preprocess_posts(twitter_df) with_twitter_df = stock_df.merge(final_twitter, left_on='Datetime', right_on='timestamp').drop('timestamp',axis=1) with_twitter_df['Percent Price Change Within Period (t+1)'] = with_twitter_df['Percent Price Change Within Period'].shift(-1) full_df = with_twitter_df.merge(headlines_final, left_on='Datetime', right_on='timestamp').drop('timestamp',axis=1) full_df['Percent Price Change Within Period (t+1)'] = full_df['Percent Price Change Within Period'].shift(-1) #5. Evaluating Models: lm_headlines_rmse, lm_headlines_r2, sgd_headlines_rmse, sgd_headlines_r2,xgb_headlines_rmse,xgb_headlines_r2,svr_headlines_rmse,svr_headlines_r2 = linear_modeling_headlines(with_headlines_df) lm_twitter_rmse, lm_twitter_r2, sgd_twitter_rmse, sgd_twitter_r2,xgb_twitter_rmse,xgb_twitter_r2,svr_twitter_rmse,svr_twitter_r2 = linear_model_twitter(with_twitter_df) lm_all_rmse, lm_all_r2, sgd_all_rmse, sgd_all_r2, xgb_all_rmse, xgb_all_r2, rf_all_rmse, rf_all_r2,svr_all_rmse,svr_all_r2 = multi_model_full(full_df) result_dict = { 'RMSE - Baseline':baseline_rmse, 'R2 - Baseline':baseline_r2, 'Linear RMSE - Baseline':lm_baseline_rmse, 'SGD RMSE - Baseline':sgd_baseline_rmse, 'Linear RMSE - Only Headlines': lm_headlines_rmse, 'SGD RMSE - Only Headlines':sgd_headlines_rmse, 'XGB RMSE - Only Headlines':xgb_headlines_rmse, 'SVR RMSE - Only Headlines':svr_headlines_rmse, 'Linear RMSE - Only Twitter':lm_twitter_rmse, 'SGD RMSE - Only Twitter':sgd_twitter_rmse, 'XGB RMSE - Only Twitter':xgb_twitter_rmse, 'SVR RMSE - Only Twitter':svr_twitter_rmse, 'Linear RMSE - All':lm_all_rmse, 'SGD RMSE - All':sgd_all_rmse, 'XGB RMSE - All':xgb_all_rmse, 'RF RMSE - All':rf_all_rmse,'SVR RMSE - All':svr_all_rmse } #7. Convert to DataFrame: result_df = pd.DataFrame.from_dict(result_dict, orient='index', columns=['Values']) #result_df.to_csv('~/LighthouseLabs-Final/Report_Analysis/AAPL_complete_analysis.csv') return result_df, full_df stock_df,headlines_df,twitter_df = import_data('AAPL') result_df, full_df = evaluate_models(stock_df,headlines_df,twitter_df) import seaborn as sn from matplotlib.pyplot import figure corrMatrix = full_df.corr() plt.figure(figsize=(20,15)) sn.heatmap(corrMatrix, annot=True) plt.show() i = round(len(full_df['t+1'])*0.6) x_var_base=['Adj Close','Scaled Volume','SMA(3)'] x_var_headlines=['Adj Close','Scaled Volume','compound_y','Compound SMA(3) Headlines','SMA(3)','change in sentiment headlines','change in sentiment headlines (t-1)'] x_var_twitter=['Adj Close','Scaled Volume','compound_x','Compound SMA(3) Twitter','SMA(3)','change in sentiment twitter','change in sentiment twitter (t-1)'] x_var_full=['Adj Close','Scaled Volume','compound_y','compound_x','Compound SMA(3) Headlines','Compound SMA(3) Twitter','SMA(3)','change in sentiment headlines','change in sentiment headlines (t-1)','change in sentiment twitter','change in sentiment twitter (t-1)'] X_train_base,X_test_base=full_df[x_var_base][:i],full_df[x_var_base][i:-1] X_predic_base = full_df[x_var_base][:-1] X_train_headlines,X_test_headlines=full_df[x_var_headlines][:i],full_df[x_var_headlines][i:-1] X_predic_headlines = full_df[x_var_headlines][:-1] X_train_twitter,X_test_twitter=full_df[x_var_twitter][:i],full_df[x_var_twitter][i:-1] X_predic_twitter = full_df[x_var_twitter][:-1] X_train_full, X_test_full = full_df[x_var_full][:i], full_df[x_var_full][i:-1] X_predic_full = full_df[x_var_full][:-1] y_train, y_test = full_df['Percent Price Change Within Period (t+1)'][:i], full_df['t+1'][i:-1] lm = LinearRegression() lm.fit(X_train_base,y_train) preds1 = lm.predict(X_predic_base) preds1 = np.append(preds1,np.NaN) full_df['base price predictions linear'] = ((preds1/100) * full_df['Adj Close']) + full_df['Adj Close'] svr = SVR(kernel='rbf', C=0.2, epsilon=0.0001) svr.fit(X_train_headlines,y_train) preds3 = svr.predict(X_predic_headlines) preds3 = np.append(preds3,np.NaN) full_df['headlines price predictions svr'] = ((preds3/100) * full_df['Adj Close']) + full_df['Adj Close'] svr = SVR(kernel='rbf', C=0.2, epsilon=0.0001) svr.fit(X_train_twitter,y_train) preds4 = svr.predict(X_predic_twitter) preds4 = np.append(preds4,np.NaN) full_df['twitter price predictions svr'] = ((preds4/100) * full_df['Adj Close']) + full_df['Adj Close'] # lm = LinearRegression() # lm.fit(X_train_full,y_train) # preds5 = lm.predict(X_predic_full) svr = SVR(kernel='rbf', C=0.2, epsilon=0.0001) svr.fit(X_train_full,y_train) preds5 = svr.predict(X_predic_full) preds5 = np.append(preds5,np.NaN) full_df['full price predictions linear'] = ((preds5/100) * full_df['Adj Close']) + full_df['Adj Close'] fig = plt.figure(figsize=(20,30)) price_ax = plt.subplot(2,1,1) price_ax.plot(full_df.index[:-1], full_df['Adj Close'][:-1], label='Adj Close') price_ax.plot(full_df.index[:-1], full_df['SMA(3)'][:-1], label='SMA(3)') price_ax.plot(full_df.index[:-1], full_df['base price predictions linear'][:-1], label='Predictions (base)',linewidth=2) # price_ax.plot(full_df.index[:-1], full_df['full price predictions svr'][:-1], label='Full SVR training fit') price_ax.plot(full_df.index[:-1], full_df['full price predictions linear'][:-1], label='Predictions (Full)',linewidth=2) # price_ax.plot(full_df.index[:-1], full_df['headlines price predictions svr'][:-1], label='Headlines SVR training fit') # price_ax.plot(full_df.index[i:-1], full_df['headlines price predictions svr'][i:-1], label='Predictions (Headlines)',linewidth=2) # price_ax.plot(full_df.index[:-1], full_df['twitter price predictions svr'][:-1], label='Twitter SVR training fit') # price_ax.plot(full_df.index[i:-1], full_df['twitter price predictions svr'][i:-1], label='Predictions (Twitter)',linewidth=2) price_ax.set_ylabel('Price ($)') price_ax.grid(which='major', color='k', linestyle='-.', linewidth=0.5) price_ax.minorticks_on() price_ax.grid(which='minor', color='k', linestyle=':', linewidth=0.3) price_ax.legend() roc_ax = plt.subplot(2,1,2, sharex=price_ax) roc_ax.plot(full_df.index, full_df['Compound SMA(3) Headlines'],label='Headline') roc_ax.plot(full_df.index, full_df['Compound SMA(3) Twitter'],label='Twitter') roc_ax.set_xlabel('Time Period (30 minutes)') roc_ax.set_ylabel('Headline Sentiment') roc_ax.grid(which="major", color='k', linestyle='-.', linewidth=0.5) roc_ax.minorticks_on() roc_ax.grid(which='minor', color='k', linestyle=':', linewidth=0.3) roc_ax.legend() fig.subplots_adjust(hspace=0.1) """## 3. Evaluate Model with Multiple Stocks:""" def import_data2(ticker,ticker2,ticker3,ticker4,ticker5,ticker6,ticker7,ticker8,ticker9,ticker10,ticker11,ticker12,ticker13): stock_path = 'Dataset/1.Stock_Data/' headline_path = 'Dataset/2.FinViz_Headline_Data/' twitter_path = '3.Twitter_Data/' latest_headlines='10-07' # 1. Historical Stock Data:------------------------------------------------------------------------------------------ stock_df1 = pd.read_csv(stock_path+ticker+'_data.csv', index_col=0,parse_dates=['Datetime']) stock_df2 = pd.read_csv(stock_path+ticker2+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df3 = pd.read_csv(stock_path+ticker3+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df4 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df5 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df6 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df7 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df8 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df9 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df10 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df11 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df12 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) stock_df13 = pd.read_csv(stock_path+ticker4+'_data.csv',index_col=0, parse_dates=['Datetime']) # 2. Headline Data: ---------------------------------------------------------------------------------------------------- headlines1 = pd.read_csv(headline_path+ticker+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines2 = pd.read_csv(headline_path+ticker2+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines3 = pd.read_csv(headline_path+ticker3+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines4 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines5 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines6 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines7 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines8 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines9 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines10 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines11 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines12 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) headlines13 = pd.read_csv(headline_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0, parse_dates=['date_time']) # 3. Twitter Data:---------------------------------------------------------------------------------------------------- twitter1 = pd.read_csv(twitter_path+ticker+'_2020-09-23_2020-'+latest_headlines+'.csv', index_col=0,parse_dates=['timestamp']) twitter2 = pd.read_csv(twitter_path+ticker2+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter3 = pd.read_csv(twitter_path+ticker3+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter4 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter5 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter6 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter7 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter8 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter9 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter10 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter11 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter12 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) twitter13 = pd.read_csv(twitter_path+ticker4+'_2020-09-23_2020-'+latest_headlines+'.csv',index_col=0, parse_dates=['timestamp']) return stock_df1,headlines1,twitter1, stock_df2,headlines2,twitter2, stock_df3,headlines3,twitter3, stock_df4,headlines4,twitter4, stock_df5,headlines5,twitter5, stock_df6,headlines6,twitter6 , stock_df7,headlines7,twitter7, stock_df8,headlines8,twitter8, stock_df9,headlines9,twitter9, stock_df10,headlines10,twitter10, stock_df11,headlines11,twitter11, stock_df12,headlines12,twitter12, stock_df13,headlines13,twitter13 def cleaning_df(stock_df, headline_df, twitter_df): #2. Headline Final Merge: headlines_final = preprocess_headlines(headline_df) with_headlines_df = stock_df.merge(headlines_final, left_on='Datetime', right_on='timestamp').drop('timestamp',axis=1) with_headlines_df['t+1'] = with_headlines_df['Adj Close'].shift(-1) #3. Twitter Final Merge: final_twitter = preprocess_posts(twitter_df) with_twitter_df = stock_df.merge(final_twitter, left_on='Datetime', right_on='timestamp').drop('timestamp',axis=1) with_twitter_df['t+1'] = with_twitter_df['Adj Close'].shift(-1) #4. Full Merge: full_df = with_twitter_df.merge(headlines_final, left_on='Datetime', right_on='timestamp').drop('timestamp',axis=1) full_df['t+1'] = full_df['Adj Close'].shift(-1) return with_headlines_df,with_twitter_df,full_df stock_df1,headlines1,twitter1, stock_df2,headlines2,twitter2, stock_df3,headlines3,twitter3, stock_df4,headlines4,twitter4, stock_df5,headlines5,twitter5, stock_df6,headlines6,twitter6 , stock_df7,headlines7,twitter7, stock_df8,headlines8,twitter8, stock_df9,headlines9,twitter9, stock_df10,headlines10,twitter10, stock_df11,headlines11,twitter11, stock_df12,headlines12,twitter12, stock_df13,headlines13,twitter13 = import_data2('TSLA','AMZN','AAPL','GOOG', 'FB', 'NFLX', 'CVX','GS','JNJ','NVDA','PFE','NKE','MSFT') stock_df1['Percent Price Change Within Period (t+1)'] = stock_df1['Percent Price Change Within Period'].shift(-1) stock_df2['Percent Price Change Within Period (t+1)'] = stock_df2['Percent Price Change Within Period'].shift(-1) stock_df3['Percent Price Change Within Period (t+1)'] = stock_df3['Percent Price Change Within Period'].shift(-1) stock_df4['Percent Price Change Within Period (t+1)'] = stock_df4['Percent Price Change Within Period'].shift(-1) stock_df5['Percent Price Change Within Period (t+1)'] = stock_df5['Percent Price Change Within Period'].shift(-1) stock_df6['Percent Price Change Within Period (t+1)'] = stock_df6['Percent Price Change Within Period'].shift(-1) stock_df7['Percent Price Change Within Period (t+1)'] = stock_df7['Percent Price Change Within Period'].shift(-1) stock_df8['Percent Price Change Within Period (t+1)'] = stock_df8['Percent Price Change Within Period'].shift(-1) stock_df9['Percent Price Change Within Period (t+1)'] = stock_df9['Percent Price Change Within Period'].shift(-1) stock_df10['Percent Price Change Within Period (t+1)'] = stock_df10['Percent Price Change Within Period'].shift(-1) stock_df11['Percent Price Change Within Period (t+1)'] = stock_df11['Percent Price Change Within Period'].shift(-1) stock_df12['Percent Price Change Within Period (t+1)'] = stock_df12['Percent Price Change Within Period'].shift(-1) stock_df13['Percent Price Change Within Period (t+1)'] = stock_df13['Percent Price Change Within Period'].shift(-1) tsla_headlines_df, tsla_twitter_df, tsla_full_df = cleaning_df(stock_df1, headlines1, twitter1) amzn_headlines_df, amzn_twitter_df, amzn_full_df = cleaning_df(stock_df2, headlines2, twitter2) aapl_headlines_df, aapl_twitter_df, aapl_full_df = cleaning_df(stock_df3, headlines3, twitter3) goog_headlines_df, goog_twitter_df, goog_full_df = cleaning_df(stock_df4, headlines4, twitter4) fb_headlines_df, fb_twitter_df, fb_full_df = cleaning_df(stock_df5, headlines5, twitter5) nflx_headlines_df, nflx_twitter_df, nflx_full_df = cleaning_df(stock_df6, headlines6, twitter6) cvx_headlines_df, cvx_twitter_df, cvx_full_df = cleaning_df(stock_df7, headlines7, twitter7) gs_headlines_df, gs_twitter_df, gs_full_df = cleaning_df(stock_df8, headlines8, twitter8) jnj_headlines_df, jnj_twitter_df, jnj_full_df = cleaning_df(stock_df9, headlines9, twitter9) nvda_headlines_df, nvda_twitter_df, nvda_full_df = cleaning_df(stock_df10, headlines10, twitter10) pfe_headlines_df, pfe_twitter_df, pfe_full_df = cleaning_df(stock_df11, headlines11, twitter11) nke_headlines_df, nke_twitter_df, nke_full_df = cleaning_df(stock_df12, headlines12, twitter12) msft_headlines_df, msft_twitter_df, msft_full_df = cleaning_df(stock_df13, headlines13, twitter13) stock_frames = [stock_df1, stock_df2, stock_df3, stock_df4, stock_df5, stock_df6, stock_df7, stock_df8, stock_df9, stock_df10, stock_df11, stock_df12, stock_df13] full_stocks = pd.concat(stock_frames) headline_frames = [tsla_headlines_df, amzn_headlines_df, aapl_headlines_df, goog_headlines_df,fb_headlines_df,nflx_headlines_df,cvx_headlines_df,gs_headlines_df,jnj_headlines_df,nvda_headlines_df,pfe_headlines_df,nke_headlines_df,msft_headlines_df] full_headlines =
pd.concat(headline_frames)
pandas.concat
#Données extraite d'une : Etude du profil de la méthylation de l'ADN des cellules mononucléées du sang périphérique chez des personnes âgées sédentaires, sportives et des jeunes sédentaires. #Data extracted: Study of the DNA methylation profile of peripheral blood mononuclear cells (PBMC) in sedentary, sporty and sedentary elderly people. #Ouverture du référentiel illumina 450k #Open the 450k illumina repository class Read(): def __init__(self, fichier): self.fichier = fichier def lecture(self): import csv dataa =[] f = open(self.fichier, "r") f_csv = csv.reader(f,delimiter=" ") data = list(f_csv) data = data[38:] for d in data: for d1 in d: r = d1.split("\t") dataa.append(r) return dataa def liste_new (self, regex): dic ={} import re da= self.lecture() for d in da: if d[21] =='': d[21]= d[0] for r in regex: if re.search(r, d[21]) : d[21] = d[21].replace('"','') d[21] = d[21].split(";") d[21]= d[21].pop() d[21]="".join(d[21]) if d[21] in dic: dic[d[21]]+="_"+d[0] else: dic[d[21]]= d[0] for k,v in dic.items(): dic[k]= v.split("_") return dic #Ouverture sélective des dossiers des patients par la 1ère lettre grâce à la fonction glob.glob(). #Selective opening of patients' files by the first letter thanks to the function glob.glob (). class Representation_genetique(): def __init__(self, groupe): self.groupe = groupe import os import glob self.liste_fichier =[] chemin = os.getcwd() for g in self.groupe: liste = glob.glob(chemin+"/"+"["+g+"]"+"*.txt") self.liste_fichier.append(liste) #Transformation des données des patients sélectionnés en dictionnaire en fonction du referentiel illumina. #Transformation of the data of the selected patients into a dictionary according to the illumina referential. def dictionnaire_genetique(self, dico_r): import csv data1 = [] dico ={} for fic in self.liste_fichier: for fichier in fic: f = open(fichier, "r") f_csv = csv.reader(f,delimiter=" ") data = list(f_csv) data = data[4:] for d in data: for d1 in d: r = d1.split("\t") data1.append(r) for k,v in dico_r.items(): for da in data1: if da[0] in dico_r[k]: if k in dico: dico[k]+= "_"+da[1] else: dico[k]= da[1] return dico #Présentation sous forme de tableau #Presentation in tabular form def tableau(self, dictionnaire): import pandas for k, v in dictionnaire.items(): dictionnaire[k]= pandas.Series(v.split("_"), dtype = float ) array =
pandas.DataFrame(dictionnaire)
pandas.DataFrame
import pandas as pd from scipy.io import arff from sklearn.preprocessing import OneHotEncoder, LabelEncoder, OrdinalEncoder, StandardScaler from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split, cross_val_score, KFold, GridSearchCV dataset = pd.read_csv(r'..\..\data\breast-cancer-wisconsin\wdbc.data', header=None) # header=None, usecols=[3,6] # print(dataset[1].value_counts()) dataset.pop(0) y = LabelEncoder().fit_transform(dataset.pop(1).values) si_step = ('si', SimpleImputer(strategy='constant', fill_value='MISSING')) ohe_step = ('ohe', OneHotEncoder(sparse=False, handle_unknown='ignore')) oe_step = ('le', OrdinalEncoder()) num_si_step = ('si', SimpleImputer(strategy='mean')) sc_step = ('sc', StandardScaler()) cat_pipe = Pipeline([si_step, ohe_step]) num_pipe = Pipeline([num_si_step, sc_step]) bin_pipe = Pipeline([oe_step]) transformers = [ # ('cat', cat_pipe, ['DGN', 'PRE6', 'PRE14']), ('num', num_pipe, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]), # ('bin', bin_pipe, ['PRE7', 'PRE8', 'PRE9', 'PRE10', 'PRE11', 'PRE17', 'PRE19', 'PRE25', 'PRE30', 'PRE32']), ] ct = ColumnTransformer(transformers=transformers) # X_transformed = ct.fit_transform(dataset) ml_pipe = Pipeline([ ('X_transform', ct), ('mlp', MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(4, 3))), ]) kf = KFold(n_splits=5, shuffle=True) # cv_score = cross_val_score(ml_pipe, dataset, y, cv=kf).mean() param_grid = { 'X_transform__num__si__strategy': ['mean', 'median'], 'mlp__solver': ['sgd', 'adam', 'lbfgs'], 'mlp__alpha': [1e-1, 1e-3, 1e-5], 'mlp__hidden_layer_sizes': [(5, 2), (4, 3), (4, 4), (5, 5)], 'mlp__activation': ['identity', 'logistic', 'tanh', 'relu'], } knn_pipe = Pipeline([ ('X_transform', ct), ('knn', KNeighborsClassifier(n_neighbors=8)), ]) ml_pipe.fit(dataset, y) print(f'All data score: {ml_pipe.score(dataset, y)}') knn_param_grid = { 'X_transform__num__si__strategy': ['mean', 'median'], 'knn__n_neighbors': range(1, 10), } gs = GridSearchCV(ml_pipe, param_grid, cv=kf) gs.fit(dataset, y) print(gs.best_params_) print(gs.best_score_) print(
pd.DataFrame(gs.cv_results_)
pandas.DataFrame
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import random from datetime import datetime, timedelta import numpy as np import pandas as pd import pytest from modelstore.models.prophet import MODEL_FILE, ProphetManager, save_model from prophet import Prophet from prophet.serialize import model_from_json, model_to_json # pylint: disable=protected-access # pylint: disable=redefined-outer-name @pytest.fixture def time_series_data(): now = datetime.now() rows = [] for i in range(50): rows.append({"ds": now + timedelta(days=i), "y": random.uniform(1, 10)}) return
pd.DataFrame(rows)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- import numpy as np import pandas as pd def getcount(x): return x.count() def getset(x): return len(set(x)) def FeatSection(data,label): 'Feature区间特征' '用户领取优惠券次数及种类' uc_cnt_set = pd.pivot_table(data,index='user_id',values='coupon_id',aggfunc=[getcount,getset]).reset_index() uc_cnt_set.columns = ['user_id','uc_cnt','uc_set'] label = pd.merge(label,uc_cnt_set,on='user_id',how='left') usecp = data[data['date'].isnull() == False] # 核销优惠券的数据 dropcp = data[data['date'].isnull() == True] # 不核销优惠券的数据 '用户核销优惠券次数及种类' uusec_cnt_set = pd.pivot_table(usecp,index='user_id',values='coupon_id',aggfunc=[getcount,getset]).reset_index() uusec_cnt_set.columns = ['user_id','uusec_cnt','uusec_set'] label = pd.merge(label,uusec_cnt_set,on='user_id',how='left') '用户领取商家的种类' um_set = pd.pivot_table(data,index='user_id',values='merchant_id',aggfunc=getset).reset_index() um_set.columns = ['user_id','UM_set'] label = pd.merge(label,um_set,on='user_id',how='left') '用户核销的商家种类' uusem_set = pd.pivot_table(usecp,index='user_id',values='merchant_id',aggfunc=getset).reset_index() uusem_set.columns = ['user_id','uusem_set'] label =
pd.merge(label,uusem_set,on='user_id',how='left')
pandas.merge
from datetime import datetime import warnings import pytest import pandas as pd import pyodbc from mssql_dataframe.connect import connect from mssql_dataframe.core import custom_warnings, conversion, create pd.options.mode.chained_assignment = "raise" class package: def __init__(self, connection): self.connection = connection.connection self.create = create.create(self.connection) self.create_meta = create.create(self.connection, include_metadata_timestamps=True) @pytest.fixture(scope="module") def sql(): db = connect(database="tempdb", server="localhost") yield package(db) db.connection.close() @pytest.fixture(scope="module") def sample(): dataframe = pd.DataFrame( { "_varchar": [None, "b", "c", "4", "e"], "_tinyint": [None, 2, 3, 4, 5], "_smallint": [256, 2, 6, 4, 5], # tinyint max is 255 "_int": [32768, 2, 3, 4, 5], # smallint max is 32,767 "_bigint": [2147483648, 2, 3, None, 5], # int max size is 2,147,483,647 "_float": [1.111111, 2, 3, 4, 5], # any decicmal places "_time": [str(datetime.now().time())] * 5, # string in format HH:MM:SS.ffffff "_datetime": [datetime.now()] * 4 + [pd.NaT], "_empty": [None] * 5, } ) return dataframe def test_table_errors(sql): table_name = "##test_table_column" with pytest.raises(KeyError): columns = {"A": "VARCHAR"} sql.create.table(table_name, columns, primary_key_column="Z") def test_table_column(sql): table_name = "##test_table_column" columns = {"A": "VARCHAR"} sql.create.table(table_name, columns) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 1 assert all(schema.index == "A") assert all(schema["sql_type"] == "varchar") assert all(schema["is_nullable"] == True) assert all(schema["ss_is_identity"] == False) assert all(schema["pk_seq"].isna()) assert all(schema["pk_name"].isna()) assert all(schema["pandas_type"] == "string") assert all(schema["odbc_type"] == pyodbc.SQL_VARCHAR) assert all(schema["odbc_size"] == 0) assert all(schema["odbc_precision"] == 0) def test_table_pk(sql): table_name = "##test_table_pk" columns = {"A": "TINYINT", "B": "VARCHAR(100)", "C": "FLOAT"} primary_key_column = "A" not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, ) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 3 assert all(schema.index == ["A", "B", "C"]) assert all(schema["sql_type"] == ["tinyint", "varchar", "float"]) assert all(schema["is_nullable"] == [False, False, True]) assert all(schema["ss_is_identity"] == False) assert schema["pk_seq"].equals( pd.Series([1, pd.NA, pd.NA], index=["A", "B", "C"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, True, True]) assert all(schema["pandas_type"] == ["UInt8", "string", "float64"]) assert all( schema["odbc_type"] == [pyodbc.SQL_TINYINT, pyodbc.SQL_VARCHAR, pyodbc.SQL_FLOAT] ) assert all(schema["odbc_size"] == [1, 0, 8]) assert all(schema["odbc_precision"] == [0, 0, 53]) def test_table_composite_pk(sql): table_name = "##test_table_composite_pk" columns = {"A": "TINYINT", "B": "VARCHAR(5)", "C": "FLOAT"} primary_key_column = ["A", "B"] not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, ) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 3 assert all(schema.index == ["A", "B", "C"]) assert all(schema["sql_type"] == ["tinyint", "varchar", "float"]) assert all(schema["is_nullable"] == [False, False, True]) assert all(schema["ss_is_identity"] == False) assert schema["pk_seq"].equals( pd.Series([1, 2, pd.NA], index=["A", "B", "C"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, False, True]) assert all(schema["pandas_type"] == ["UInt8", "string", "float64"]) assert all( schema["odbc_type"] == [pyodbc.SQL_TINYINT, pyodbc.SQL_VARCHAR, pyodbc.SQL_FLOAT] ) assert all(schema["odbc_size"] == [1, 0, 8]) assert all(schema["odbc_precision"] == [0, 0, 53]) def test_table_pk_input_error(sql): with pytest.raises(ValueError): table_name = "##test_table_pk_input_error" columns = {"A": "TINYINT", "B": "VARCHAR(100)", "C": "DECIMAL(5,2)"} primary_key_column = "A" not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, sql_primary_key=True, ) def test_table_sqlpk(sql): table_name = "##test_table_sqlpk" columns = {"A": "VARCHAR"} sql.create.table(table_name, columns, sql_primary_key=True) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 2 assert all(schema.index == ["_pk", "A"]) assert all(schema["sql_type"] == ["int identity", "varchar"]) assert all(schema["is_nullable"] == [False, True]) assert all(schema["ss_is_identity"] == [True, False]) assert schema["pk_seq"].equals( pd.Series([1, pd.NA], index=["_pk", "A"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, True]) assert all(schema["pandas_type"] == ["Int32", "string"]) assert all(schema["odbc_type"] == [pyodbc.SQL_INTEGER, pyodbc.SQL_VARCHAR]) assert all(schema["odbc_size"] == [4, 0]) assert all(schema["odbc_precision"] == [0, 0]) def test_table_from_dataframe_simple(sql): table_name = "##test_table_from_dataframe_simple" dataframe = pd.DataFrame({"ColumnA": [1]}) with warnings.catch_warnings(record=True) as warn: dataframe = sql.create.table_from_dataframe(table_name, dataframe) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 1 assert all(schema.index == "ColumnA") assert all(schema["sql_type"] == "tinyint") assert all(schema["is_nullable"] == False) assert all(schema["ss_is_identity"] == False) assert all(schema["pk_seq"].isna()) assert all(schema["pk_name"].isna()) assert all(schema["pandas_type"] == "UInt8") assert all(schema["odbc_type"] == pyodbc.SQL_TINYINT) assert all(schema["odbc_size"] == 1) assert all(schema["odbc_precision"] == 0) result = conversion.read_values(f'SELECT * FROM {table_name}', schema, sql.connection) assert result.equals(dataframe) def test_table_from_dataframe_datestr(sql): table_name = "##test_table_from_dataframe_datestr" dataframe = pd.DataFrame({"ColumnA": ["06/22/2021"]}) with warnings.catch_warnings(record=True) as warn: dataframe = sql.create_meta.table_from_dataframe(table_name, dataframe) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) expected = pd.DataFrame({ 'column_name': pd.Series(['ColumnA','_time_insert']), 'sql_type': pd.Series(['date','datetime2'], dtype='string'), 'is_nullable': pd.Series([False, True]), 'ss_is_identity': pd.Series([False, False]), 'pk_seq': pd.Series([None, None], dtype='Int64'), 'pk_name': pd.Series([None, None], dtype='string'), 'pandas_type': pd.Series(['datetime64[ns]', 'datetime64[ns]'], dtype='string'), 'odbc_type': pd.Series([pyodbc.SQL_TYPE_DATE, pyodbc.SQL_TYPE_TIMESTAMP], dtype='int64'), 'odbc_size': pd.Series([10, 27], dtype='int64'), 'odbc_precision': pd.Series([0, 7], dtype='int64'), }).set_index(keys='column_name') assert schema[expected.columns].equals(expected) result = conversion.read_values(f'SELECT * FROM {table_name}', schema, sql.connection) assert result[dataframe.columns].equals(dataframe) def test_table_from_dataframe_errorpk(sql, sample): with pytest.raises(ValueError): table_name = "##test_table_from_dataframe_nopk" sql.create.table_from_dataframe(table_name, sample, primary_key="ColumnName") def test_table_from_dataframe_nopk(sql, sample): table_name = "##test_table_from_dataframe_nopk" with warnings.catch_warnings(record=True) as warn: dataframe = sql.create.table_from_dataframe( table_name, sample.copy(), primary_key=None ) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) expected = pd.DataFrame( { "column_name": pd.Series( [ "_varchar", "_tinyint", "_smallint", "_int", "_bigint", "_float", "_time", "_datetime", "_empty", ], dtype="string", ), "sql_type": pd.Series( [ "varchar", "tinyint", "smallint", "int", "bigint", "float", "time", "datetime2", "nvarchar", ], dtype="string", ), "is_nullable": pd.Series( [True, True, False, False, True, False, False, True, True], dtype="bool" ), "ss_is_identity": pd.Series([False] * 9, dtype="bool"), "pk_seq": pd.Series([pd.NA] * 9, dtype="Int64"), "pk_name": pd.Series([pd.NA] * 9, dtype="string"), "pandas_type": pd.Series( [ "string", "UInt8", "Int16", "Int32", "Int64", "float64", "timedelta64[ns]", "datetime64[ns]", "string", ], dtype="string", ), "odbc_type": pd.Series( [ pyodbc.SQL_VARCHAR, pyodbc.SQL_TINYINT, pyodbc.SQL_SMALLINT, pyodbc.SQL_INTEGER, pyodbc.SQL_BIGINT, pyodbc.SQL_FLOAT, pyodbc.SQL_SS_TIME2, pyodbc.SQL_TYPE_TIMESTAMP, pyodbc.SQL_WVARCHAR, ], dtype="int64", ), "odbc_size": pd.Series([0, 1, 2, 4, 8, 8, 16, 27, 0], dtype="int64"), "odbc_precision":
pd.Series([0, 0, 0, 0, 0, 53, 7, 7, 0], dtype="int64")
pandas.Series
"""Bootstrapped_agregation * :class:`.BaggingTress` * :class:`.BaggingSVC` """ # data wrangling import numpy as np import pandas as pd from collections import Counter # models from sklearn import svm from sklearn.tree import DecisionTreeClassifier # validation from sklearn.metrics import balanced_accuracy_score, accuracy_score, f1_score, roc_auc_score class BaggingTrees: """ Summary: Expand the subset of features in regards each node split for -------- a more flexible tunning. Parameters: - X_t : Training set features. (np.array) ---------- - Y_t : Training set labels. (np.array) - X_v : Validation set features. (np.array) - p : List of parameters values: -- epochs: generates statiscal inferences as mean and std -- n_trees: number of tress bagged -- criterion: decision-tree sklearn library -- min_samples_leaf: decision-tree sklearn library -- max_depth: decision-tree sklearn library -- min_samples_splits: decision-tree sklearn library -- max_leaf_nodes: decision-tree sklearn library Output: - y_pred: predictions on validation set X_v (array) ------- - unan_rates: rate of majority votes (array) - acc: accuracy on training set Y_t (integer) - f1: f1 score on training set Y_t (integer) Example: model = BaggingTrees(p) -------- model.fit(x_t, y_t) predictions = model.predict(x_v) votes_percentages = model.votes """ def __init__(self, p): # store parameters self.epochs = p[0]; self.n_trees = p[1] self.criterion = p[2]; self.min_samples_leaf = p[3] self.max_depth = p[4]; self.min_samples_splits = p[5] self.max_leaf_nodes = p[6] def fit(self, X_t, Y_t): if isinstance(X_t,np.ndarray): X_t = pd.DataFrame(X_t) elif not isinstance(X_t,pd.core.frame.DataFrame): raise Exception('Wrong type for X_t. Expected np.ndarray or pd.DataFrame') if isinstance(Y_t,np.ndarray): Y_t = pd.DataFrame(Y_t) elif not isinstance(X_v,pd.core.frame.DataFrame): raise Exception('Wrong type for Y_t. Expected np.ndarray or pd.DataFrame') self.X_t_df = X_t.copy(); self.Y_t_df = Y_t.copy() X_t['label'] = Y_t train_df = X_t for i in range(self.epochs): self.bag = [] for run in np.arange(self.n_trees): # resampling the dataframe (number of distinct, number of distinct) train_df_bs = train_df.iloc[np.random.randint(len(train_df), size=len(train_df))] X_train = train_df_bs.iloc[:,:-1] Y_train = train_df_bs.iloc[:,-1:] # Storing each trained tree wl = DecisionTreeClassifier(criterion=self.criterion , min_samples_leaf=self.min_samples_leaf , max_depth=self.max_depth , min_samples_split=self.min_samples_splits , max_leaf_nodes=self.max_leaf_nodes).fit(X_train,Y_train) #, random_state=run # add tree into bag self.bag.append(wl) ## Score on Training set t_predictions = [] for i in range(self.n_trees): tree_t_prediction = self.bag[i].predict(self.X_t_df) # predict validation and training sets t_predictions.append(tree_t_prediction) # Append predictions # Convert predictions lists into np.array to transpose them and obtain "n_tree" predictions per line t_predictions_T = np.array(t_predictions).T t_final_predictions = [] # for each entry "m" of X_t_df(m x features) for line in t_predictions_T: # countabilize the "n_tree" votes in v_predictions_T (m x n_tree) most_common = Counter(line).most_common(1)[0][0] t_final_predictions.append(most_common) # accuracies values self.acc = accuracy_score(self.Y_t_df, t_final_predictions) self.f1 = f1_score(self.Y_t_df, t_final_predictions, average='macro') self.bcr = balanced_accuracy_score(self.Y_t_df, t_final_predictions) self.auc = roc_auc_score(self.Y_t_df, t_final_predictions, average='macro') return def predict(self, X_v): if isinstance(X_v,np.ndarray): X_v =
pd.DataFrame(X_v)
pandas.DataFrame
import unittest import numpy as np import pandas as pd import dfauditor.extractor import dfauditor.response class TestExtractorNumeric(unittest.TestCase): @classmethod def setUpClass(cls): numeric_data = { 'x': [50, 50, -10, 0, 0, 5, 15, -3, None, 0], 'y': [0.00001, 256.128, None, 16.32, 2048, -3.1415926535, 111, 2.4, 4.8, 0.0], 'trivial': [1]*10 } cls.numeric_df = pd.DataFrame(numeric_data) cls.mixed_df = None def test_trivial(self): resp = dfauditor.extractor.numeric(self.numeric_df.trivial) expected = dfauditor.response.Numeric() expected.__dict__ = {'attr': 'trivial', 'type': 'NUMERIC', 'median': 1.0, 'variance': 0.0, 'std': 0.0, 'max': 1, 'min': 1, 'mad': 0.0, 'p_zeros': 0.0, 'kurtosis': 0, 'skewness': 0, 'iqr': 0.0, 'range': 0, 'p_nan': 0.0, 'mean': 1.0} self.assertEqual(resp.__dict__, expected.__dict__) def test_nans(self): """ confirm that nans are adequately counted :return: """ df_nan = self.numeric_df.trivial.copy() # unlike `at`, `loc` changes the int type column to float (there is no NaN in panda-land float) df_nan.loc[5] = np.nan resp = dfauditor.extractor.numeric(df_nan) self.assertAlmostEqual(10.0, resp.p_nan) # this should agree with None too df_none = self.numeric_df.trivial.copy() df_none.loc[5] = None df_none.loc[4] = None resp = dfauditor.extractor.numeric(df_none) self.assertAlmostEqual(20.0, resp.p_nan) class TestExtractorString(unittest.TestCase): @classmethod def setUpClass(cls): data = { 'trivial': ['a'] * 10, 'mix': ['a'] * 3 + ['b'] * 2 + ['c'] + [None] * 4 } cls.df =
pd.DataFrame(data)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv1D, MaxPooling1D from sklearn.model_selection import GridSearchCV from keras.wrappers.scikit_learn import KerasClassifier # combine low and high expression examples high_exp = pd.read_csv("high_exp.csv", index_col=0) low_exp =
pd.read_csv("low_exp.csv", index_col=0)
pandas.read_csv
""" Take all the methylation data created from the scWGBS pipeline and create a dataset which combine all the patients and chromosome to one, next we will use this to create the data for a NN We provide information about the pmd, the avg meth, the var in meth, the avg meth in normal cells for this patient and across all patient and allow to filter based on another set of boundaries (not only pmd), to provide list of cells to use and minimum number of samples per group of cells to be a valid cpg and a ways to remove percentage of top and bottom coverage cpgs """ import argparse import os import sys import numpy as np import pandas as pd import tqdm sys.path.append(os.path.dirname(os.getcwd())) sys.path.append(os.getcwd()) from commons import files_tools, consts, utils, sequence_tools from format_files import handle_pmds PATIENTS = ["CRC01", "CRC11", "CRC13", "CRC10"] def parse_input(): parser = argparse.ArgumentParser() parser.add_argument('--methylation_folder', help='Path to methylation files', required=True) parser.add_argument('--windows_file', help='Path to files with windows we want to take', required=False, default=None) parser.add_argument('--nc_files', help='Path to nc files', required=True) parser.add_argument('--cells_to_use', help='Path to cells to use file, default is all', required=False, type=str, default=None) parser.add_argument('--min_cells_threshold', help='minimum samples per cell group to be a valid ' 'cpg', required=False, default=5, type=int) parser.add_argument('--output_folder', help='Path of the output folder', required=False, default=os.path.dirname(sys.argv[0])) parser.add_argument('--coverage_perc_cpgs_to_remove', type=int, default=5, required=False, help='Percentage of cells to remove based on extreme coverage(high and low)') args = parser.parse_args() return args def get_chromosome_df(file_path, cells_to_use=None): patient, chromosome = consts.DATA_FILE_SCWGBS_RE.findall(file_path)[0] if patient not in PATIENTS: return None, None, None if cells_to_use is not None and patient not in cells_to_use: return None, None, None return patient, chromosome, pd.read_pickle(file_path) def filter_chromosome_df(df, patient, chromosome, boundaries_data=None, min_cells_threshold=5, cells_to_use=None, perc_of_cpg_to_remove_based_on_coverage=5): """ - filter out non-pmd cpg (and maybe add index) - Filtered out again based on boundaries - Only take non normal cells :param df: The df :param patient: name of the patient :param chromosome: name of the chromosome :param boundaries_data: The boundaries data, can be empty :param cells_to_use: A dictionary mapping patient to a dictionary of groups of cells to use {p1: {group1:[c1,c2,c3], group2:[c5,c8,c1]}, p2:...} :param min_cells_threshold: A min number of cells needed to be a valid cpg in each cells to use :param perc_of_cpg_to_remove_based_on_coverage: Percentage of cpg to remove from top and low coverage :return: A new dictionary in the same format of the input but filtered by what is required """ # This need to be true filtered_df = handle_pmds.filtered_out_non_pmd(df, chromosome) filtered_df = utils.filter_df_based_on_region_name(filtered_df, region_name=utils.NOT_NC) if boundaries_data: filtered_df = utils.filter_df_based_on_tuple_list(filtered_df, boundaries_data) if cells_to_use: cells = set(list(cells_to_use[patient].values())[0]) & set(filtered_df.index) if len(cells) == 0: return None group_coverage = np.sum(~
pd.isnull(filtered_df.loc[cells])
pandas.isnull
from operator import methodcaller import numpy as np import pandas as pd from pandas.util import testing as tm import pytest import ibis execute = ibis.pandas.execute pytestmark = pytest.mark.pandas @pytest.fixture(scope='session') def sort_kind(): return 'mergesort' default = pytest.mark.parametrize('default', [ibis.NA, ibis.literal('a')]) row_offset = pytest.mark.parametrize( 'row_offset', list(map(ibis.literal, [-1, 1, 0]))) delta_offset = pytest.mark.parametrize( 'delta_offset', [ibis.day(), 2 * ibis.day(), -2 * ibis.day()] ) @default @row_offset def test_lead(t, df, row_offset, default): expr = t.dup_strings.lead(row_offset, default=default) result = expr.execute() expected = df.dup_strings.shift(-execute(row_offset)) if default is not ibis.NA: expected = expected.fillna(execute(default)) tm.assert_series_equal(result, expected) @default @row_offset def test_lag(t, df, row_offset, default): expr = t.dup_strings.lag(row_offset, default=default) result = expr.execute() expected = df.dup_strings.shift(execute(row_offset)) if default is not ibis.NA: expected = expected.fillna(execute(default)) tm.assert_series_equal(result, expected) @default @delta_offset def test_lead_delta(time_t, time_df, delta_offset, default): expr = time_t.dup_strings.lead(delta_offset, default=default) result = expr.execute() expected = time_df.dup_strings.tshift(freq=-execute(delta_offset)) if default is not ibis.NA: expected = expected.fillna(execute(default)) tm.assert_series_equal(result, expected) @default @delta_offset def test_lag_delta(time_t, time_df, delta_offset, default): expr = time_t.dup_strings.lag(delta_offset, default=default) result = expr.execute() expected = time_df.dup_strings.tshift(freq=execute(delta_offset)) if default is not ibis.NA: expected = expected.fillna(execute(default)) tm.assert_series_equal(result, expected) def test_first(t, df): expr = t.dup_strings.first() result = expr.execute() assert result == df.dup_strings.iloc[0] def test_last(t, df): expr = t.dup_strings.last() result = expr.execute() assert result == df.dup_strings.iloc[-1] def test_group_by_mutate_analytic(t, df): gb = t.groupby(t.dup_strings) expr = gb.mutate( first_value=t.plain_int64.first(), last_value=t.plain_strings.last(), avg_broadcast=t.plain_float64 - t.plain_float64.mean(), delta=(t.plain_int64 - t.plain_int64.lag()) / ( t.plain_float64 - t.plain_float64.lag() ) ) result = expr.execute() gb = df.groupby('dup_strings') expected = df.assign( last_value=gb.plain_strings.transform('last'), first_value=gb.plain_int64.transform('first'), avg_broadcast=df.plain_float64 - gb.plain_float64.transform('mean'), delta=( (df.plain_int64 - gb.plain_int64.shift(1)) / (df.plain_float64 - gb.plain_float64.shift(1)) ) ) tm.assert_frame_equal(result[expected.columns], expected) def test_players(players, players_df): lagged = players.mutate(pct=lambda t: t.G - t.G.lag()) result = lagged.execute() expected = players_df.assign( pct=players_df.G - players_df.groupby('playerID').G.shift(1) ) tm.assert_frame_equal(result[expected.columns], expected) def test_batting_filter_mean(batting, batting_df): expr = batting[batting.G > batting.G.mean()] result = expr.execute() expected = batting_df[batting_df.G > batting_df.G.mean()].reset_index( drop=True ) tm.assert_frame_equal(result[expected.columns], expected) def test_batting_zscore(players, players_df): expr = players.mutate(g_z=lambda t: (t.G - t.G.mean()) / t.G.std()) result = expr.execute() gb = players_df.groupby('playerID') expected = players_df.assign( g_z=(players_df.G - gb.G.transform('mean')) / gb.G.transform('std') ) tm.assert_frame_equal(result[expected.columns], expected) def test_batting_avg_change_in_games_per_year(players, players_df): expr = players.mutate( delta=lambda t: (t.G - t.G.lag()) / (t.yearID - t.yearID.lag()) ) result = expr.execute() gb = players_df.groupby('playerID') expected = players_df.assign( delta=(players_df.G - gb.G.shift(1)) / ( players_df.yearID - gb.yearID.shift(1) ) ) tm.assert_frame_equal(result[expected.columns], expected) @pytest.mark.xfail(AssertionError, reason='NYI') def test_batting_most_hits(players, players_df): expr = players.mutate( hits_rank=lambda t: t.H.rank().over( ibis.cumulative_window(order_by=ibis.desc(t.H)) ) ) result = expr.execute() hits_rank = players_df.groupby('playerID').H.rank( method='min', ascending=False ) expected = players_df.assign(hits_rank=hits_rank) tm.assert_frame_equal(result[expected.columns], expected) def test_batting_quantile(players, players_df): expr = players.mutate(hits_quantile=lambda t: t.H.quantile(0.25)) result = expr.execute() hits_quantile = players_df.groupby('playerID').H.transform( 'quantile', 0.25 ) expected = players_df.assign(hits_quantile=hits_quantile) tm.assert_frame_equal(result[expected.columns], expected) @pytest.mark.parametrize('op', ['sum', 'mean', 'min', 'max']) def test_batting_specific_cumulative(batting, batting_df, op, sort_kind): ibis_method = methodcaller('cum{}'.format(op)) expr = ibis_method(batting.sort_by([batting.yearID]).G) result = expr.execute().astype('float64') pandas_method = methodcaller(op) expected = pandas_method( batting_df[['G', 'yearID']].sort_values( 'yearID', kind=sort_kind).G.expanding() ).reset_index(drop=True) tm.assert_series_equal(result, expected) def test_batting_cumulative(batting, batting_df, sort_kind): expr = batting.mutate( more_values=lambda t: t.G.sum().over( ibis.cumulative_window(order_by=t.yearID) ) ) result = expr.execute() columns = ['G', 'yearID'] more_values = batting_df[columns].sort_values( 'yearID', kind=sort_kind).G.cumsum() expected = batting_df.assign(more_values=more_values) tm.assert_frame_equal(result[expected.columns], expected) def test_batting_cumulative_partitioned(batting, batting_df, sort_kind): expr = batting.mutate( more_values=lambda t: t.G.sum().over( ibis.cumulative_window(order_by=t.yearID, group_by=t.lgID) ) ) result = expr.execute().more_values columns = ['G', 'yearID', 'lgID'] key = 'lgID' expected_result = batting_df[columns].groupby( key, sort=False, as_index=False ).apply(lambda df: df.sort_values('yearID', kind=sort_kind)).groupby( key, sort=False ).G.cumsum().sort_index(level=-1) expected = expected_result.reset_index( list(range(expected_result.index.nlevels - 1)), drop=True ).reindex(batting_df.index) expected.name = result.name tm.assert_series_equal(result, expected) def test_batting_rolling(batting, batting_df, sort_kind): expr = batting.mutate( more_values=lambda t: t.G.sum().over( ibis.trailing_window(5, order_by=t.yearID) ) ) result = expr.execute() columns = ['G', 'yearID'] more_values = batting_df[columns].sort_values( 'yearID', kind=sort_kind).G.rolling(5).sum() expected = batting_df.assign(more_values=more_values) tm.assert_frame_equal(result[expected.columns], expected) def test_batting_rolling_partitioned(batting, batting_df, sort_kind): expr = batting.mutate( more_values=lambda t: t.G.sum().over( ibis.trailing_window(3, order_by=t.yearID, group_by=t.lgID) ) ) result = expr.execute().more_values columns = ['G', 'yearID', 'lgID'] key = 'lgID' expected_result = batting_df[columns].groupby( key, sort=False, as_index=False ).apply(lambda df: df.sort_values('yearID', kind=sort_kind)).groupby( key, sort=False ).G.rolling(3).sum().sort_index(level=-1) expected = expected_result.reset_index( list(range(expected_result.index.nlevels - 1)), drop=True ).reindex(batting_df.index) expected.name = result.name
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import pandas as pd import numpy as np from skimage.io import MultiImage from skimage.morphology import skeletonize import maskslic as seg import cv2 import matplotlib.pyplot as plt from pathlib import Path import warnings VALID_SLIDE_EXTENSIONS = {'.tiff', '.mrmx', '.svs'} # ~~~~~~~~~~~~ Helper functions ~~~~~~~~~~~~ def generateMetaDF(data_dir, meta_fn:str='train.csv'): ''' Makes a pandas.DataFrame of paths out of a directory including slides. Drop the `train.csv` in `data_dir` and the script will also merge any meta data from there on `image_id` key. ''' all_files = [path.resolve() for path in Path(data_dir).rglob("*.*")] slide_paths = [path for path in all_files if path.suffix in VALID_SLIDE_EXTENSIONS] if len(slide_paths)==0: raise ValueError('No slides in `data_dir`=%s'%data_dir) data_df =
pd.DataFrame({'slide_path':slide_paths})
pandas.DataFrame
# -*- coding: utf-8 -*- """csvmerge""" import click import numpy as np import pandas as pd import re import sys @click.command() @click.option('-f1', '--from-file', required=True, type=click.Path(exists=True), help='input file to merge FROM (.csv). This is typically the smaller file.') @click.option('-f2', '--to-file', required=True, type=click.Path(exists=True), help='input file to merge TO (.csv). This can be a very large file, as it is only streamed from disk, never stored completely in memory.') @click.option('-k1', '--from-key', required=True, help='field to match in the FROM file') @click.option('-k2', '--to-key', required=True, help='field to match in the TO file') @click.option('-o', '--output-file', required=True, type=click.Path(exists=False), help='output file to write results (.csv)') def main(from_file, to_file, from_key, to_key, output_file): """Join two csv files on specified keys and write the results.""" of = open(output_file, 'wt') f1_df = read_file(from_file, from_key) duns2row_f1 = {r[from_key]:r for i,r in f1_df.iterrows()} print('read %d from %s' % (len(f1_df), from_file)) header = False header1 = ['MATCH_%s' % c for i,c in enumerate(f1_df.columns)] for row in iter_big_file(to_file, to_key): header2 = [c for i,c in enumerate(row.index)] if row[to_key] in duns2row_f1: match = duns2row_f1[row[to_key]] match = pd.DataFrame([match]) match.reset_index(inplace=True, drop=True) row =
pd.DataFrame([row])
pandas.DataFrame
from bokeh.embed import components from bokeh.plotting import figure, curdoc, ColumnDataSource from bokeh.resources import INLINE from bokeh.util.string import encode_utf8 from bokeh.models import CustomJS, LabelSet, Slider from bokeh.models.widgets import Slider from bokeh.models.layouts import WidgetBox, Row from bokeh.layouts import row, widgetbox from werkzeug import secure_filename from flask import Flask, render_template, flash, request, redirect, url_for, session from wtforms import Form, TextField, TextAreaField, validators, StringField, SubmitField import os from forms import * import pandas as pd import plotly import plotly.plotly as py import json import numpy as np from pandas import ExcelWriter from pandas import ExcelFile DEBUG = True app = Flask(__name__) #initialising flask app.config.from_object(__name__) #configuring flask app.config['SECRET_KEY'] = '<KEY>' CURRENT_YEAR = '2015' data = pd.read_csv("test_data.csv") df =
pd.DataFrame(data)
pandas.DataFrame
import numpy as np import pandas as pd import scanpy as sc from termcolor import colored import time import matplotlib import matplotlib.pyplot as plt from sklearn.metrics.pairwise import euclidean_distances import umap import phate import seaborn as sns from pyVIA.core import * def cellrank_Human(ncomps=80, knn=30, v0_random_seed=7): import scvelo as scv dict_abb = {'Basophils': 'BASO1', 'CD4+ Effector Memory': 'TCEL7', 'Colony Forming Unit-Granulocytes': 'GRAN1', 'Colony Forming Unit-Megakaryocytic': 'MEGA1', 'Colony Forming Unit-Monocytes': 'MONO1', 'Common myeloid progenitors': "CMP", 'Early B cells': "PRE_B2", 'Eosinophils': "EOS2", 'Erythroid_CD34- CD71+ GlyA-': "ERY2", 'Erythroid_CD34- CD71+ GlyA+': "ERY3", 'Erythroid_CD34+ CD71+ GlyA-': "ERY1", 'Erythroid_CD34- CD71lo GlyA+': 'ERY4', 'Granulocyte/monocyte progenitors': "GMP", 'Hematopoietic stem cells_CD133+ CD34dim': "HSC1", 'Hematopoietic stem cells_CD38- CD34+': "HSC2", 'Mature B cells class able to switch': "B_a2", 'Mature B cells class switched': "B_a4", 'Mature NK cells_CD56- CD16- CD3-': "Nka3", 'Monocytes': "MONO2", 'Megakaryocyte/erythroid progenitors': "MEP", 'Myeloid Dendritic Cells': 'mDC', 'Naïve B cells': "B_a1", 'Plasmacytoid Dendritic Cells': "pDC", 'Pro B cells': 'PRE_B3'} string_ = 'ncomp =' + str(ncomps) + ' knn=' + str(knn) + ' randseed=' + str(v0_random_seed) # print('ncomp =', ncomps, ' knn=', knn, ' randseed=', v0_random_seed) print(colored(string_, 'blue')) nover_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_PredFine_notLogNorm.csv')[ 'x'].values.tolist() nover_labels = [dict_abb[i] for i in nover_labels] for i in list(set(nover_labels)): print('the population of ', i, 'is ', nover_labels.count(i)) ad = scv.read_loom('/home/shobi/Downloads/Human Hematopoietic Profiling homo_sapiens 2019-11-08 16.12.loom') print(ad) # ad = sc.read('/home/shobi/Trajectory/Datasets/HumanCD34/human_cd34_bm_rep1.h5ad') # ad.obs['nover_label'] = nover_labels print('start cellrank pipeline', time.ctime()) # scv.utils.show_proportions(ad) scv.pl.proportions(ad) scv.pp.filter_and_normalize(ad, min_shared_counts=20, n_top_genes=2000) sc.tl.pca(ad, n_comps=ncomps) n_pcs = ncomps print('npcs', n_pcs, 'knn', knn) sc.pp.neighbors(ad, n_pcs=n_pcs, n_neighbors=knn) sc.tl.louvain(ad, key_added='clusters', resolution=1) scv.pp.moments(ad, n_pcs=n_pcs, n_neighbors=knn) scv.tl.velocity(ad) scv.tl.velocity_graph(ad) scv.pl.velocity_embedding_stream(ad, basis='umap', color='nover_label') def adata_preprocess(adata, n_top_genes=1000, log=True): # this is a lot like the steps for scvelo.pp.filter_and_normalize() which also allows selection of top genes (see Pancreas) sc.pp.filter_genes(adata, min_counts=1) # only consider genes with more than 1 count#1 # print(adata) sc.pp.normalize_per_cell( # normalize with total UMI count per cell #same as normalize_total() adata, key_n_counts='n_counts_all' ) # select highly-variable genes filter_result = sc.pp.filter_genes_dispersion(adata.X, flavor='cell_ranger', n_top_genes=n_top_genes, log=False) adata = adata[:, filter_result.gene_subset] # subset the genes sc.pp.normalize_per_cell(adata) # renormalize after filtering if log: sc.pp.log1p(adata) # log transform: adata.X = log(adata.X + 1) ''' total = adata.X total = total.sum(axis=0).transpose() total = pd.DataFrame(total.transpose()) print('total') print(total.shape) #total = total.sum(axis=0).transpose() total.columns = [i for i in adata.var_names] print(total) total.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/library_counts_500hvg.csv') sc.pp.scale(adata, max_value=10) from sklearn.decomposition import PCA pca = PCA(n_components=499) # estimate only 2 PCs X_new = pca.fit_transform(adata.X) print('variance explained') print(pca.explained_variance_ratio_) print('pca.components_ shape ncomp x nfeat') print() df = pd.DataFrame(abs(pca.components_)) df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_500hvg.csv') print('done saving') ''' # sc.pp.scale(adata, max_value=10)zheng scales after the log, but this doesnt work well and is also not used in scvelo.pp.filter_and_normalize return adata def main_Human(ncomps=80, knn=30, v0_random_seed=7, run_palantir_func=False): ''' df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_500hvg.csv') print(df) df = df.set_index('Unnamed: 0') print(df) df = df.sort_values(by='totals', axis=1, ascending = False) df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_sorted_500hvg.csv') print('saved') ''' import random random.seed(100) dict_abb = {'Basophils': 'BASO1', 'CD4+ Effector Memory': 'TCEL7', 'Colony Forming Unit-Granulocytes': 'GRAN1', 'Colony Forming Unit-Megakaryocytic': 'MEGA1', 'Colony Forming Unit-Monocytes': 'MONO1', 'Common myeloid progenitors': "CMP", 'Early B cells': "PRE_B2", 'Eosinophils': "EOS2", 'Erythroid_CD34- CD71+ GlyA-': "ERY2", 'Erythroid_CD34- CD71+ GlyA+': "ERY3", 'Erythroid_CD34+ CD71+ GlyA-': "ERY1", 'Erythroid_CD34- CD71lo GlyA+': 'ERY4', 'Granulocyte/monocyte progenitors': "GMP", 'Hematopoietic stem cells_CD133+ CD34dim': "HSC1", 'Hematopoietic stem cells_CD38- CD34+': "HSC2", 'Mature B cells class able to switch': "B_a2", 'Mature B cells class switched': "B_a4", 'Mature NK cells_CD56- CD16- CD3-': "Nka3", 'Monocytes': "MONO2", 'Megakaryocyte/erythroid progenitors': "MEP", 'Myeloid Dendritic Cells': 'mDC (cDC)', 'Naïve B cells': "B_a1", 'Plasmacytoid Dendritic Cells': "pDC", 'Pro B cells': 'PRE_B3'} # NOTE: Myeloid DCs are now called Conventional Dendritic Cells cDCs string_ = 'ncomp =' + str(ncomps) + ' knn=' + str(knn) + ' randseed=' + str(v0_random_seed) # print('ncomp =', ncomps, ' knn=', knn, ' randseed=', v0_random_seed) print(colored(string_, 'blue')) nover_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_PredFine_notLogNorm.csv')[ 'x'].values.tolist() nover_labels = [dict_abb[i] for i in nover_labels] df_nover = pd.DataFrame(nover_labels) # df_nover.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/noverLabelsforMonocle.csv') print('save nover') for i in list(set(nover_labels)): print('the population of ', i, 'is ', nover_labels.count(i)) parc53_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_Parc53_set1.csv')[ 'x'].values.tolist() parclabels_all = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/parclabels_all_set1.csv')[ 'parc'].values.tolist() parc_dict_nover = {} for i, c in enumerate(parc53_labels): parc_dict_nover[i] = dict_abb[c] parclabels_all = [parc_dict_nover[ll] for ll in parclabels_all] # print('all', len(parclabels_all)) ad = sc.read( '/home/shobi/Trajectory/Datasets/HumanCD34/human_cd34_bm_rep1.h5ad') # 5780 cells x 14651 genes Human Replicate 1. Male african american, 38 years print('h5ad ad size', ad) colors = pd.Series(ad.uns['cluster_colors']) colors['10'] = '#0b128f' ct_colors = pd.Series(ad.uns['ct_colors']) list_var_names = ad.var_names # print(list_var_names) ad.uns['iroot'] = np.flatnonzero(ad.obs_names == ad.obs['palantir_pseudotime'].idxmin())[0] print('iroot', np.flatnonzero(ad.obs_names == ad.obs['palantir_pseudotime'].idxmin())[0]) tsne = pd.DataFrame(ad.obsm['tsne'], index=ad.obs_names, columns=['x', 'y']) tsnem = ad.obsm['tsne'] palantir_tsne_df = pd.DataFrame(tsnem) # palantir_tsne_df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/palantir_tsne.csv') revised_clus = ad.obs['clusters'].values.tolist().copy() loc_DCs = [i for i in range(5780) if ad.obs['clusters'].values.tolist()[i] == '7'] for loc_i in loc_DCs: if ad.obsm['palantir_branch_probs'][loc_i, 5] > ad.obsm['palantir_branch_probs'][ loc_i, 2]: # if prob that cDC > pDC, then relabel as cDC revised_clus[loc_i] = '10' revised_clus = [int(i) for i in revised_clus] # magic_df = ad.obsm['MAGIC_imputed_data'] # ad.X: Filtered, normalized and log transformed count matrix # ad.raw.X: Filtered raw count matrix # print('before extra filtering' ,ad.shape) # sc.pp.filter_genes(ad, min_cells=10) # print('after extra filtering', ad.shape) adata_counts = sc.AnnData(ad.X) print(ad.raw.X.shape) # df_X = pd.DataFrame(ad.raw.X.todense(), columns = ad.var_names) # df_X.columns = [i for i in ad.var_names] # print('starting to save .X') # df_X.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/expression_matrix_raw.csv") print('finished save .X') # (ad.X) # ad.X is filtered, lognormalized,scaled// ad.raw.X is the filtered but not pre-processed adata_counts.obs_names = ad.obs_names adata_counts.var_names = ad.var_names adata_counts_raw = sc.AnnData(ad.raw.X) adata_counts_raw.var_names = [i for i in ad.var_names] # adata_counts_raw = adata_preprocess(adata_counts_raw, n_top_genes=500, log=True) # when using HVG and no PCA # sc.tl.pca(adata_counts_raw,svd_solver='arpack', n_comps=ncomps) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) marker = ['x', '+', (5, 0), '>', 'o', (5, 2)] import colorcet as cc # tsnem = TSNE().fit_transform(adata_counts.obsm['X_pca']) ''' f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True) line = np.linspace(0, 1, len(set(revised_clus))) for color, group in zip(line, set(revised_clus)): where = np.where(np.array(revised_clus) == group)[0] ax1.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend() ax1.set_title('Palantir Phenograph Labels') import colorcet as cc marker = ['x', '+', (5, 0), '>', 'o', (5, 2)] line_nover = np.linspace(0, 1, len(set(nover_labels))) col_i = 0 for color, group in zip(line_nover, set(nover_labels)): where = np.where(np.array(nover_labels) == group)[0] marker_x = marker[random.randint(0, 5)] # ax2.scatter(tsnem[where, 0],tsnem[where, 1], label=group, c=plt.cm.nipy_spectral(color), marker = marker_x, alpha=0.5) ax2.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=cc.glasbey_dark[col_i], marker=marker_x, alpha=0.5) col_i = col_i + 1 ax2.legend(fontsize=6) ax2.set_title('Novershtern Corr. Labels') line = np.linspace(0, 1, len(set(parclabels_all))) col_i = 0 for color, group in zip(line, set(parclabels_all)): where = np.where(np.array(parclabels_all) == group)[0] ax3.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=cc.glasbey_dark[col_i], alpha=0.5) col_i = col_i + 1 ax3.legend() ax3.set_title('Parc53 Nover Labels') # plt.show() ''' ''' plt.figure(figsize=[5, 5]) plt.title('palantir, ncomps = ' + str(ncomps) + ' knn' + str(knn)) for group in set(revised_clus): loc_group = np.where(np.asarray(revised_clus) == group)[0] plt.scatter(tsnem[loc_group, 0], tsnem[loc_group, 1], s=5, color=colors[group], label=group) ax = plt.gca() ax.set_axis_off() ax.legend(fontsize=6) ''' gene_list = [ 'ITGAX'] # ['GATA1', 'GATA2', 'ITGA2B', 'CSF1R', 'MPO', 'CD79B', 'SPI1', 'IRF8', 'CD34', 'IL3RA', 'ITGAX', 'IGHD', # 'CD27', 'CD14', 'CD22', 'ITGAM', 'CLC', 'MS4A3', 'FCGR3A', 'CSF1R'] true_label = nover_labels # revised_clus root_user = [4823] print('v0 random seed', v0_random_seed) # df_temp_write = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:200]) # df_temp_write.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/Human_CD34_200PCA.csv") Xin = adata_counts.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts_raw.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts_raw.X.todense() print(time.ctime()) print(time.ctime()) v0 = VIA(Xin, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.2, root_user=root_user, dataset='humanCD34', preserve_disconnected=True, random_seed=v0_random_seed, do_impute_bool=True, is_coarse=True, pseudotime_threshold_TS=10, neighboring_terminal_states_threshold=3) # *.4 root=1, v0.run_VIA() v0.make_JSON(filename='scRNA_Hema_temp.js') super_labels = v0.labels print('starting to save selected genes') genes_save = ['ITGAX', 'GATA1', 'GATA2', 'ITGA2B', 'CSF1R', 'MPO', 'CD79B', 'SPI1', 'IRF8', 'CD34', 'IL3RA', 'ITGAX', 'IGHD', 'CD27', 'CD14', 'CD22', 'ITGAM', 'CLC', 'MS4A3', 'FCGR3A', 'CSF1R'] df_selected_genes = pd.DataFrame(adata_counts.X, columns=[cc for cc in adata_counts.var_names]) df_selected_genes = df_selected_genes[genes_save] # df_selected_genes.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/selected_genes.csv") df_ = pd.DataFrame(ad.X) df_.columns = [i for i in ad.var_names] print('start magic') gene_list_magic = ['IL3RA', 'IRF8', 'GATA1', 'GATA2', 'ITGA2B', 'MPO', 'CD79B', 'SPI1', 'CD34', 'CSF1R', 'ITGAX'] df_magic = v0.do_impute(df_, magic_steps=3, gene_list=gene_list_magic) df_magic_cluster = df_magic.copy() df_magic_cluster['parc'] = v0.labels df_magic_cluster = df_magic_cluster.groupby('parc', as_index=True).mean() print('end magic', df_magic.shape) f, ((ax, ax1)) = plt.subplots(1, 2, sharey=True) v0.draw_piechart_graph(ax, ax1, type_pt='gene', gene_exp=df_magic_cluster['GATA1'].values, title='GATA1') plt.show() super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v0, np.arange(0, len(true_label))) draw_trajectory_gams(tsnem, super_clus_ds_PCA_loc, super_labels, super_labels, v0.edgelist_maxout, v0.x_lazy, v0.alpha_teleport, v0.single_cell_pt_markov, true_label, knn=v0.knn, final_super_terminal=v0.terminal_clusters, sub_terminal_clusters=v0.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=str(Xin.shape[1])) plt.show() print('super labels', set(super_labels)) ad.obs['via0_label'] = [str(i) for i in super_labels] magic_ad = ad.obsm['MAGIC_imputed_data'] magic_ad = sc.AnnData(magic_ad) magic_ad.obs_names = ad.obs_names magic_ad.var_names = ad.var_names magic_ad.obs['via0_label'] = [str(i) for i in super_labels] marker_genes = {"ERY": ['GATA1', 'GATA2', 'ITGA2B'], "BCell": ['IGHD', 'CD22'], "DC": ['IRF8', 'IL3RA', 'IRF4', 'CSF2RA', 'ITGAX'], "MONO": ['CD14', 'SPI1', 'MPO', 'IL12RB1', 'IL13RA1', 'C3AR1', 'FCGR3A'], 'HSC': ['CD34']} sc.pl.matrixplot(magic_ad, marker_genes, groupby='via0_label', dendrogram=True) ''' sc.tl.rank_genes_groups(ad, groupby='via0_label', use_raw=True, method='wilcoxon', n_genes=10) # compute differential expression sc.pl.rank_genes_groups_heatmap(ad, n_genes=10, groupby="via0_label", show_gene_labels=True, use_raw=False) sc.pl.rank_genes_groups_tracksplot(ad, groupby='via0_label', n_genes = 3) # plot the result ''' loaded_magic_df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/MAGIC_palantir_knn30ncomp100_subset.csv') # loaded_magic_df.head() for gene_name in ['ITGA2B', 'IL3RA', 'IRF8', 'MPO', 'CSF1R', 'GATA2', 'CD79B', 'CD34', 'GATA1', 'IL3RA']: # ,'SPI1', 'CD34','CSF1R','IL3RA','IRF4', 'CSF2RA','ITGAX']: print('gene name', gene_name) # DC markers https://www.cell.com/pb-assets/products/nucleus/nucleus-phagocytes/rnd-systems-dendritic-cells-br.pdf gene_name_dict = {'GATA1': 'GATA1', 'GATA2': 'GATA2', 'ITGA2B': 'CD41 (Mega)', 'MPO': 'MPO (Mono)', 'CD79B': 'CD79B (B)', 'IRF8': 'IRF8 (DC)', 'SPI1': 'PU.1', 'CD34': 'CD34', 'CSF1R': 'CSF1R (cDC Up. Up then Down in pDC)', 'IL3RA': 'CD123 (pDC)', 'IRF4': 'IRF4 (pDC)', 'ITGAX': 'ITGAX (cDCs)', 'CSF2RA': 'CSF2RA (cDC)'} loc_gata = np.where(np.asarray(ad.var_names) == gene_name)[0][0] magic_ad = ad.obsm['MAGIC_imputed_data'][:, loc_gata] magic_ad = loaded_magic_df[gene_name] # subset_ = magic_ad subset_ = df_magic[gene_name].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v0.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name]) plt.show() super_edges = v0.edgelist_maxout # v0.edgelist tsi_list = get_loc_terminal_states(v0, Xin) v1 = VIA(Xin, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.05, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, x_lazy=0.95, alpha_teleport=0.99, dataset='humanCD34', preserve_disconnected=True, super_terminal_clusters=v0.terminal_clusters, is_coarse=False, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=v0_random_seed, pseudotime_threshold_TS=10) # *.4super_terminal_cells = tsi_list #3root=1, v1.run_VIA() labels = v1.labels v1.make_JSON(filename='scRNA_Hema_via1_temp.js') df_magic_cluster = df_magic.copy() df_magic_cluster['via1'] = v1.labels df_magic_cluster = df_magic_cluster.groupby('via1', as_index=True).mean() # print('df_magic_cluster', df_magic_cluster) ''' #Get the clustsergraph gene expression on topology for gene_i in gene_list_magic: f, ((ax, ax1)) = plt.subplots(1, 2, sharey=True) v1.draw_piechart_graph(ax,ax1,type_pt='gene', gene_exp = df_magic_cluster[gene_i].values, title = gene_i) plt.show() ''' ad.obs['parc1_label'] = [str(i) for i in labels] ''' tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster for tsi in v1.revised_super_terminal_clusters: loc_i = np.where(super_labels == tsi)[0] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = v0.knn_struct.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) sc.tl.rank_genes_groups(ad, groupby='parc1_label', use_raw=True, method='wilcoxon', n_genes=10) # compute differential expression sc.pl.matrixplot(ad, marker_genes, groupby='parc1_label', use_raw=False) sc.pl.rank_genes_groups_heatmap(ad, n_genes=3, groupby="parc1_label", show_gene_labels=True, use_raw=False) ''' label_df = pd.DataFrame(labels, columns=['parc']) # label_df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/parclabels.csv', index=False) gene_ids = adata_counts.var_names obs = ad.raw.X.toarray() print('shape obs', obs.shape) obs = pd.DataFrame(obs, columns=gene_ids) # obs['parc']=v1.labels obs['louvain'] = revised_clus # obs_average = obs.groupby('parc', as_index=True).mean() obs_average = obs.groupby('louvain', as_index=True).mean() # print(obs_average.head()) # obs_average.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/louvain_palantir_average.csv', index=False) ad_obs = sc.AnnData(obs_average) ad_obs.var_names = gene_ids ad_obs.obs['parc'] = [i for i in range(len(set(revised_clus)))] # v1.labels instaed of revised_clus # sc.write('/home/shobi/Trajectory/Datasets/HumanCD34/louvain_palantir_average.h5ad',ad_obs) # fig_0, ax_0 = plt.subplots() loaded_magic_df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/MAGIC_palantir_knn30ncomp100_subset.csv') # loaded_magic_df.head() for gene_name in ['ITGA2B', 'IL3RA', 'IRF8', 'MPO', 'CSF1R', 'GATA2', 'CD79B', 'CD34']: # ['GATA1', 'GATA2', 'ITGA2B', 'MPO', 'CD79B','IRF8','SPI1', 'CD34','CSF1R','IL3RA','IRF4', 'CSF2RA','ITGAX']: print('gene name', gene_name) # DC markers https://www.cell.com/pb-assets/products/nucleus/nucleus-phagocytes/rnd-systems-dendritic-cells-br.pdf gene_name_dict = {'GATA1': 'GATA1', 'GATA2': 'GATA2', 'ITGA2B': 'CD41 (Mega)', 'MPO': 'MPO (Mono)', 'CD79B': 'CD79B (B)', 'IRF8': 'IRF8 (DC)', 'SPI1': 'PU.1', 'CD34': 'CD34', 'CSF1R': 'CSF1R (cDC Up. Up then Down in pDC)', 'IL3RA': 'CD123 (pDC)', 'IRF4': 'IRF4 (pDC)', 'ITGAX': 'ITGAX (cDCs)', 'CSF2RA': 'CSF2RA (cDC)'} loc_gata = np.where(np.asarray(ad.var_names) == gene_name)[0][0] magic_ad = ad.obsm['MAGIC_imputed_data'][:, loc_gata] magic_ad = loaded_magic_df[gene_name] # subset_ = magic_ad subset_ = df_magic[gene_name].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v1.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name]) # v0.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name] + 'VIA MAGIC') print('start tsne') n_downsample = 4000 if len(labels) > n_downsample: # idx = np.random.randint(len(labels), size=4000) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=5780, replace=False, p=None) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) print('labels p1', len(labels), set(labels)) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov)[idx]) # graph_hnsw = v0.knngraph_visual() embedding = tsnem[idx, :] # TSNE().fit_transform(adata_counts.obsm['X_pca'][idx, :]) # phate_op = phate.PHATE() # embedding = phate_op.fit_transform(adata_counts.obsm['X_pca'][:, 0:20]) # embedding = embedding[idx, :] # embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:20]) print('size of downsampled embedding', embedding.shape) else: embedding = tsnem # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][:,0:20]) idx = np.random.randint(len(labels), size=len(labels)) print('end tsne') super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() # DRAW EVOLUTION PATHS knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx) plt.show() def main_Toy_comparisons(ncomps=10, knn=30, random_seed=42, dataset='Toy3', root_user='M1', foldername="/home/shobi/Trajectory/Datasets/Toy3/"): print('dataset, ncomps, knn, seed', dataset, ncomps, knn, random_seed) # root_user = ["T1_M1", "T2_M1"] # "M1" # #'M1' # "T1_M1", "T2_M1"] #"T1_M1" if dataset == "Toy3": print('dataset Toy3') df_counts = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000.csv", delimiter=",") #df_counts = pd.read_csv(foldername + "Toy3_noise_100genes_thinfactor8.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/Toy3/toy_multifurcating_M8_n1000d1000.csv") print('df_ids', df_ids.columns) root_user = ['M1'] paga_root = "M1" palantir_root = 'C107' if dataset == "Toy4": # 2 disconnected components df_counts = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "Toy4_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/Toy4/toy_disconnected_M9_n1000d1000.csv") print(df_counts.shape, 'df_counts shape') root_user = ['T1_M1', 'T2_M1'] # 'T1_M1' paga_root = 'T2_M1' palantir_root = 'C107' if dataset == "Connected": df_counts = pd.read_csv(foldername + "ToyConnected_M9_n2000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyConnected_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv(foldername + "ToyConnected_M9_n2000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyConnected/ToyConnected_M9_n2000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C1' if dataset == "Connected2": df_counts = pd.read_csv(foldername + "Connected2_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyConnected2_noise_500genes.csv", 'rt',delimiter=",") df_ids = pd.read_csv(foldername + "Connected2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyConnected2/Connected2_n1000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C11' # suggest to use visual jaccard pruning of 1 (this doesnt alter underlying graph, just the display. can also use "M2" as the starting root, if dataset == "ToyMultiM11": df_counts = pd.read_csv(foldername + "Toymulti_M11_n3000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyMulti_M11_noised.csv", delimiter=",") df_ids = pd.read_csv(foldername + "Toymulti_M11_n3000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv( "/home/shobi/Trajectory/Datasets/ToyMultifurcating_M11/Toymulti_M11_n3000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C1005' if dataset == "Cyclic": # 4 milestones df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_noise_100genes_thinfactor3.csv", delimiter=",") df_ids = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C1' if dataset == "Cyclic2": # 4 milestones df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/ToyCyclic2_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C107' if dataset == 'Bifurc2': df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/ToyBifurc2_noised.csv", delimiter=",") df_ids = pd.read_csv( "/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000_ids_with_truetime.csv",delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C1006' if dataset == 'Disconnected2': df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/ToyDisconnected2_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv( "/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000.csv") root_user = ['T1_M1', 'T1_M2', 'T1_M3'] # 'T1_M1' paga_root = 'T1_M1' palantir_root = 'C125' df_ids['cell_id_num'] = [int(s[1::]) for s in df_ids['cell_id']] print("shape", df_counts.shape, df_ids.shape) df_counts = df_counts.drop('Unnamed: 0', 1) df_ids = df_ids.sort_values(by=['cell_id_num']) df_ids = df_ids.reset_index(drop=True) # df_ids.to_csv("/home/shobi/Trajectory/Datasets/ToyConnected2/Connected2_n1000d1000_ids_sorted_with_truetime.csv") # df_counts['group_id'] = df_ids['group_id']#to split Toy4 # df_counts['main_Traj'] = [i[0:2] for i in df_ids['group_id']]#to split Toy4 # df_ids['main_Traj'] = [i[0:2] for i in df_ids['group_id']]#to split Toy4 # df_counts = df_counts[df_counts['main_Traj']=='T2']#to split Toy4 # df_ids = df_ids[df_ids['main_Traj'] == 'T2']#to split Toy4 #true_time = df_ids['true_time'] true_label = df_ids['group_id'].tolist() # df_counts = df_counts.drop('main_Traj', 1)#to split Toy4 # df_counts = df_counts.drop('group_id', 1)#to split Toy4 # df_ids = df_ids.reset_index(drop=True)#to split Toy4 # df_counts = df_counts.reset_index(drop=True)#to split Toy4 # true_label = df_ids['group_id'] #to split Toy4 print("shape", df_counts.index, df_ids.index) adata_counts = sc.AnnData(df_counts, obs=df_ids) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) # comparisons adata_counts.uns['iroot'] = np.flatnonzero(adata_counts.obs['group_id'] == paga_root)[0] # 'T1_M1'#'M1' do_paga = False # do_palantir = False # # comparisons if do_paga == True: sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X', ) # n_pcs=ncomps) # 4 sc.tl.draw_graph(adata_counts) # sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') # force-directed layout start_dfmap = time.time() # sc.tl.diffmap(adata_counts, n_comps=ncomps) sc.tl.diffmap(adata_counts, n_comps=200) # default retains n_comps = 15 print('time taken to get diffmap given knn', time.time() - start_dfmap) sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X_diffmap') # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') sc.tl.leiden(adata_counts, resolution=1.0, random_state=10) sc.tl.paga(adata_counts, groups='leiden') # sc.pl.paga(adata_counts, color=['leiden','group_id']) sc.tl.dpt(adata_counts, n_dcs=ncomps) df_paga = pd.DataFrame() df_paga['paga_dpt'] = adata_counts.obs['dpt_pseudotime'].values correlation = df_paga['paga_dpt'].corr(df_ids['true_time']) print('corr paga knn', knn, correlation) sc.pl.paga(adata_counts, color=['leiden', 'group_id', 'dpt_pseudotime'], title=['leiden (knn:' + str(knn) + ' ncomps:' + str(ncomps) + ')', 'group_id (ncomps:' + str(ncomps) + ')', 'pseudotime (ncomps:' + str(ncomps) + ')']) # X = df_counts.values ''' # palantir if do_palantir == True: print(palantir.__file__) # location of palantir source code str_true_label = true_label.tolist() str_true_label = [(i[1:]) for i in str_true_label] str_true_label = pd.Series(str_true_label, index=counts.index) norm_df = counts # palantir.preprocess.normalize_counts(counts) # pca_projections, _ = palantir.utils.run_pca(norm_df, n_components=ncomps) #normally use pca_projections = counts dm_res = palantir.utils.run_diffusion_maps(pca_projections, knn=knn, n_components=300) ## n_components=ncomps, knn=knn) ms_data = palantir.utils.determine_multiscale_space(dm_res) # n_eigs is determined using eigengap tsne = palantir.utils.run_tsne(ms_data) palantir.plot.plot_cell_clusters(tsne, str_true_label) # C108 for M12 connected' #M8n1000d1000 start - c107 #c1001 for bifurc n2000d1000 #disconnected n1000 c108, "C1 for M10 connected" # c10 for bifurcating_m4_n2000d1000 # c107 for T1_M1, C42 for T2_M1 disconnected # C1 for M8_connected, C1005 for multi_M11 , 'C1006 for bifurc2' pr_res = palantir.core.run_palantir(ms_data, early_cell=palantir_root, num_waypoints=500, knn=knn) df_palantir = pd.read_csv( '/home/shobi/Trajectory/Datasets/Toy3/palantir_pt.csv') # /home/shobi/anaconda3/envs/ViaEnv/lib/python3.7/site-packages/palantir pt = df_palantir['pt'] correlation = pt.corr(true_time) print('corr Palantir', correlation) print('') palantir.plot.plot_palantir_results(pr_res, tsne, n_knn=knn, n_comps=pca_projections.shape[1]) plt.show() ''' # from sklearn.decomposition import PCA # pca = PCA(n_components=ncomps) # pc = pca.fit_transform(df_counts) Xin = adata_counts.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts.X if dataset == 'Toy4': jac_std_global = .15 # .15 else: jac_std_global = 0.15 # .15#0.15 #bruge 1 til cyclic2, ellers 0.15 # v0 = VIA(Xin, true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.3, root_user=root_user, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, random_seed=random_seed) # *.4 root=2, v0.run_VIA() super_labels = v0.labels df_ids['pt'] = v0.single_cell_pt_markov correlation = df_ids['pt'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) super_edges = v0.edgelist # v0.make_JSON(filename = 'Toy3_ViaOut_temp.js') p = hnswlib.Index(space='l2', dim=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[1]) p.init_index(max_elements=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[0], ef_construction=200, M=16) p.add_items(adata_counts.obsm['X_pca'][:, 0:ncomps]) p.set_ef(50) tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster in PCA space ( for tsi in v0.terminal_clusters: loc_i = np.where(np.asarray(v0.labels) == tsi)[0] val_pt = [v0.single_cell_pt_markov[i] for i in loc_i] th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = p.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) print('Granular VIA iteration') v1 = VIA(Xin, true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.1, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, is_coarse=False, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, super_terminal_clusters=v0.terminal_clusters, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=random_seed) # root=1, v1.run_VIA() df_ids['pt1'] = v1.single_cell_pt_markov correlation = df_ids['pt1'].corr(df_ids['true_time']) print('corr via1 knn', knn, correlation) labels = v1.labels # v1 = PARC(adata_counts.obsm['X_pca'], true_label, jac_std_global=1, knn=5, too_big_factor=0.05, anndata= adata_counts, small_pop=2) # v1.run_VIA() # labels = v1.labels print('start tsne') n_downsample = 500 if len(labels) > n_downsample: # idx = np.random.randint(len(labels), size=900) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=len(labels), replace=False, p=None) print('len idx', len(idx)) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov[idx])) # embedding = v0.run_umap_hnsw(adata_counts.obsm['X_pca'][idx, :], graph) embedding = adata_counts.obsm['X_pca'][idx, 0:2] # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:5]) # embedding = TSNE().fit_transform(adata_counts.obsm['X_pca'][idx, :]) print('tsne downsampled size', embedding.shape) else: embedding = umap.UMAP().fit_transform(Xin) # (adata_counts.obsm['X_pca']) print('tsne input size', adata_counts.obsm['X_pca'].shape) # embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca']) idx = np.random.randint(len(labels), size=len(labels)) print('end tsne') super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) print('super terminal and sub terminal', v0.super_terminal_cells, v1.terminal_clusters) knn_hnsw, ci_list = sc_loc_ofsuperCluster_embeddedspace(embedding, v0, v1, idx) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() ''' draw_trajectory_dimred(embedding, ci_list, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v0.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) ''' plt.show() num_group = len(set(true_label)) line = np.linspace(0, 1, num_group) f, (ax1, ax3) = plt.subplots(1, 2, sharey=True) for color, group in zip(line, set(true_label)): where = np.where(np.asarray(true_label) == group)[0] ax1.scatter(embedding[where, 0], embedding[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend(fontsize=6) ax1.set_title('true labels') ax3.set_title("Markov Sim PT ncomps:" + str(Xin.shape[1]) + '. knn:' + str(knn)) ax3.scatter(embedding[:, 0], embedding[:, 1], c=sc_pt_markov, cmap='viridis_r') plt.show() df_subset = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:5], columns=['Gene0', 'Gene1', 'Gene2', 'Gene3', 'Gene4']) for gene_i in ['Gene0', 'Gene1', 'Gene2']: # , 'Gene3', 'Gene4']: subset_ = df_subset[gene_i].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v1.get_gene_expression(subset_, title_gene=gene_i) # knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx, adata_counts.obsm['X_pca'][:, 0:ncomps]) plt.show() def main_Toy(ncomps=10, knn=30, random_seed=41, dataset='Toy3', root_user=['M1'], cluster_graph_pruning_std=1., foldername="/home/shobi/Trajectory/Datasets/"): print('dataset, ncomps, knn, seed', dataset, ncomps, knn, random_seed) if dataset == "Toy3": df_counts = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000_ids_with_truetime.csv", delimiter=",") root_user = ['M1'] paga_root = "M1" if dataset == "Toy4": # 2 disconnected components print('inside toy4') df_counts = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000_ids_with_truetime.csv", delimiter=",") root_user = ['T1_M1', 'T2_M1'] # 'T1_M1' paga_root = 'T1_M1' df_ids['cell_id_num'] = [int(s[1::]) for s in df_ids['cell_id']] # print("shape", df_counts.shape, df_ids.shape) df_counts = df_counts.drop('Unnamed: 0', 1) df_ids = df_ids.sort_values(by=['cell_id_num']) df_ids = df_ids.reset_index(drop=True) true_label = df_ids['group_id'].tolist() #true_time = df_ids['true_time'] adata_counts = sc.AnnData(df_counts, obs=df_ids) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) # true_label =['a' for i in true_label] #testing dummy true_label adata_counts.uns['iroot'] = np.flatnonzero(adata_counts.obs['group_id'] == paga_root)[0] # 'T1_M1'#'M1' # via_wrapper(adata_counts, true_label, embedding= adata_counts.obsm['X_pca'][:,0:2], root=[1], knn=30, ncomps=10,cluster_graph_pruning_std = 1) # print('starting via wrapper disconn') # via_wrapper_disconnected(adata_counts, true_label, embedding=adata_counts.obsm['X_pca'][:, 0:2], root=[23,902], preserve_disconnected=True, knn=10, ncomps=10, cluster_graph_pruning_std=1 ,random_seed=41) # print('end via wrapper disconn') if dataset == 'Toy4': jac_std_global = 0.15 # 1 else: jac_std_global = 0.15 import umap embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][:, 0:10]) # 50 # embedding = adata_counts.obsm['X_pca'][:, 0:2] # plt.scatter(embedding[:,0],embedding[:,1]) # plt.show() print('root user', root_user) v0 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=0.3, root_user=root_user, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, random_seed=random_seed, piegraph_arrow_head_width=0.4, piegraph_edgeweight_scalingfactor=1.0) # *.4 root=2, v0.run_VIA() super_labels = v0.labels print('super labels', type(super_labels)) df_ids['pt'] = v0.single_cell_pt_markov correlation = df_ids['pt'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) super_edges = v0.edgelist # v0.make_JSON(filename = 'Toy3_ViaOut_temp.js') p = hnswlib.Index(space='l2', dim=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[1]) p.init_index(max_elements=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[0], ef_construction=200, M=16) p.add_items(adata_counts.obsm['X_pca'][:, 0:ncomps]) p.set_ef(50) tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster in PCA space ( for tsi in v0.terminal_clusters: loc_i = np.where(np.asarray(v0.labels) == tsi)[0] val_pt = [v0.single_cell_pt_markov[i] for i in loc_i] th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = p.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) print('Granular VIA iteration') v1 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.1, cluster_graph_pruning_std=cluster_graph_pruning_std, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, is_coarse=False, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, super_terminal_clusters=v0.terminal_clusters, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=random_seed) # root=1, v1.run_VIA() labels = v1.labels df_ids['pt1'] = v1.single_cell_pt_markov correlation = df_ids['pt1'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) n_downsample = 50 if len(labels) > n_downsample: # just testing the downsampling and indices. Not actually downsampling # idx = np.random.randint(len(labels), size=900) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=len(labels), replace=False, p=None) print('len idx', len(idx)) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov[idx])) embedding = embedding[idx, :] # embedding = v0.run_umap_hnsw(adata_counts.obsm['X_pca'][idx, :], graph) # embedding = adata_counts.obsm['X_pca'][idx, 0:2] # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:5]) super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) print('super terminal and sub terminal', v0.super_terminal_cells, v1.terminal_clusters) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() num_group = len(set(true_label)) line = np.linspace(0, 1, num_group) ''' f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) for color, group in zip(line, set(true_label)): where = np.where(np.asarray(true_label) == group)[0] ax1.scatter(embedding[where, 0], embedding[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend(fontsize=6) ax1.set_title('true labels') ax2.set_title("Markov Sim PT ncomps:" + str(ncomps) + '. knn:' + str(knn)) ax2.scatter(embedding[:, 0], embedding[:, 1], c=sc_pt_markov, cmap='viridis_r') plt.show() ''' df_subset = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:5], columns=['Gene0', 'Gene1', 'Gene2', 'Gene3', 'Gene4']) for gene_i in ['Gene0', 'Gene1', 'Gene2']: # , 'Gene3', 'Gene4']: subset_ = df_subset[gene_i].values v1.get_gene_expression(subset_, title_gene=gene_i) knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx) plt.show() def main_Bcell(ncomps=50, knn=20, random_seed=0, cluster_graph_pruning_std=.15,path='/home/shobi/Trajectory/Datasets/Bcell/'): print('Input params: ncomp, knn, random seed', ncomps, knn, random_seed) # https://github.com/STATegraData/STATegraData def run_zheng_Bcell(adata, min_counts=3, n_top_genes=500, do_HVG=True): sc.pp.filter_genes(adata, min_counts=min_counts) # sc.pp.filter_genes(adata, min_cells=3)# only consider genes with more than 1 count ''' sc.pp.normalize_per_cell( # normalize with total UMI count per cell adata, key_n_counts='n_counts_all') ''' sc.pp.normalize_total(adata, target_sum=1e4) if do_HVG == True: sc.pp.log1p(adata) ''' filter_result = sc.pp.filter_genes_dispersion( # select highly-variable genes adata.X, flavor='cell_ranger', n_top_genes=n_top_genes, log=False ) adata = adata[:, filter_result.gene_subset] # subset the genes ''' sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, min_mean=0.0125, max_mean=3, min_disp=0.5) # this function expects logarithmized data print('len hvg ', sum(adata.var.highly_variable)) adata = adata[:, adata.var.highly_variable] sc.pp.normalize_per_cell(adata) # renormalize after filtering # if do_log: sc.pp.log1p(adata) # log transform: adata.X = log(adata.X + 1) if do_HVG == False: sc.pp.log1p(adata) sc.pp.scale(adata, max_value=10) # scale to unit variance and shift to zero mean return adata ''' def run_palantir_func_Bcell(ad1, ncomps, knn, tsne_X, true_label): ad = ad1.copy() tsne = pd.DataFrame(tsne_X, index=ad.obs_names, columns=['x', 'y']) norm_df_pal = pd.DataFrame(ad.X) new = ['c' + str(i) for i in norm_df_pal.index] norm_df_pal.columns = [i for i in ad.var_names] # print('norm df', norm_df_pal) norm_df_pal.index = new pca_projections, _ = palantir.utils.run_pca(norm_df_pal, n_components=ncomps) sc.tl.pca(ad, svd_solver='arpack') dm_res = palantir.utils.run_diffusion_maps(pca_projections, n_components=ncomps, knn=knn) ms_data = palantir.utils.determine_multiscale_space(dm_res) # n_eigs is determined using eigengap print('ms data shape: determined using eigengap', ms_data.shape) # tsne = pd.DataFrame(tsnem)#palantir.utils.run_tsne(ms_data) tsne.index = new # print(type(tsne)) str_true_label = pd.Series(true_label, index=norm_df_pal.index) palantir.plot.plot_cell_clusters(tsne, str_true_label) start_cell = 'c42' # '#C108 for M12 connected' #M8n1000d1000 start - c107 #c1001 for bifurc n2000d1000 #disconnected n1000 c108, "C1 for M10 connected" # c10 for bifurcating_m4_n2000d1000 pr_res = palantir.core.run_palantir(ms_data, early_cell=start_cell, num_waypoints=1200, knn=knn) palantir.plot.plot_palantir_results(pr_res, tsne, n_knn=knn, n_comps=ncomps) imp_df = palantir.utils.run_magic_imputation(norm_df_pal, dm_res) Bcell_marker_gene_list = ['Igll1', 'Myc', 'Ldha', 'Foxo1', 'Lig4'] # , 'Slc7a5']#,'Slc7a5']#,'Sp7','Zfp629'] gene_trends = palantir.presults.compute_gene_trends(pr_res, imp_df.loc[:, Bcell_marker_gene_list]) palantir.plot.plot_gene_trends(gene_trends) plt.show() ''' def run_paga_func_Bcell(adata_counts1, ncomps, knn, embedding): # print('npwhere',np.where(np.asarray(adata_counts.obs['group_id']) == '0')[0][0]) adata_counts = adata_counts1.copy() sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) adata_counts.uns['iroot'] = 33 # np.where(np.asarray(adata_counts.obs['group_id']) == '0')[0][0] sc.pp.neighbors(adata_counts, n_neighbors=knn, n_pcs=ncomps) # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') # force-directed layout start_dfmap = time.time() sc.tl.diffmap(adata_counts, n_comps=ncomps) print('time taken to get diffmap given knn', time.time() - start_dfmap) sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X_diffmap') # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') sc.tl.leiden(adata_counts, resolution=1.0) sc.tl.paga(adata_counts, groups='leiden') # sc.pl.paga(adata_counts, color=['louvain','group_id']) sc.tl.dpt(adata_counts, n_dcs=ncomps) sc.pl.paga(adata_counts, color=['leiden', 'group_id', 'dpt_pseudotime'], title=['leiden (knn:' + str(knn) + ' ncomps:' + str(ncomps) + ')', 'group_id (ncomps:' + str(ncomps) + ')', 'pseudotime (ncomps:' + str(ncomps) + ')']) sc.pl.draw_graph(adata_counts, color='dpt_pseudotime', legend_loc='on data') print('dpt format', adata_counts.obs['dpt_pseudotime']) plt.scatter(embedding[:, 0], embedding[:, 1], c=adata_counts.obs['dpt_pseudotime'].values, cmap='viridis') plt.title('PAGA DPT') plt.show() def find_time_Bcell(s): start = s.find("Ik") + len("Ik") end = s.find("h") return int(s[start:end]) def find_cellID_Bcell(s): start = s.find("h") + len("h") end = s.find("_") return s[start:end] Bcell = pd.read_csv(path + 'genes_count_table.txt', sep='\t') gene_name = pd.read_csv(path + 'genes_attr_table.txt', sep='\t') Bcell_columns = [i for i in Bcell.columns] adata_counts = sc.AnnData(Bcell.values[:, 1:].T) Bcell_columns.remove('tracking_id') print(gene_name.shape, gene_name.columns) Bcell['gene_short_name'] = gene_name['gene_short_name'] adata_counts.var_names = gene_name['gene_short_name'] adata_counts.obs['TimeCellID'] = Bcell_columns time_list = [find_time_Bcell(s) for s in Bcell_columns] print('time list set', set(time_list)) adata_counts.obs['TimeStamp'] = [str(tt) for tt in time_list] ID_list = [find_cellID_Bcell(s) for s in Bcell_columns] adata_counts.obs['group_id'] = [str(i) for i in time_list] ID_dict = {} color_dict = {} for j, i in enumerate(list(set(ID_list))): ID_dict.update({i: j}) print('timelist', list(set(time_list))) for j, i in enumerate(list(set(time_list))): color_dict.update({i: j}) print('shape of raw data', adata_counts.shape) adata_counts_unfiltered = adata_counts.copy() Bcell_marker_gene_list = ['Myc', 'Igll1', 'Slc7a5', 'Ldha', 'Foxo1', 'Lig4'] small_large_gene_list = ['Kit', 'Pcna', 'Ptprc', 'Il2ra', 'Vpreb1', 'Cd24a', 'Igll1', 'Cd79a', 'Cd79b', 'Mme', 'Spn'] list_var_names = [s for s in adata_counts_unfiltered.var_names] matching = [s for s in list_var_names if "IgG" in s] for gene_name in Bcell_marker_gene_list: print('gene name', gene_name) loc_gata = np.where(np.asarray(adata_counts_unfiltered.var_names) == gene_name)[0][0] for gene_name in small_large_gene_list: print('looking at small-big list') print('gene name', gene_name) loc_gata = np.where(np.asarray(adata_counts_unfiltered.var_names) == gene_name)[0][0] # diff_list = [i for i in diff_list if i in list_var_names] #based on paper STable1 https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006506#pbio.2006506.s007 # adata_counts = adata_counts[:,diff_list] #if using these, then set do-HVG to False print('adata counts difflisted', adata_counts.shape) adata_counts = run_zheng_Bcell(adata_counts, n_top_genes=5000, min_counts=30, do_HVG=True) # 5000 for better ordering print('adata counts shape', adata_counts.shape) # sc.pp.recipe_zheng17(adata_counts) # (ncomp=50, knn=20 gives nice results. use 10PCs for visualizing) marker_genes = {"small": ['Rag2', 'Rag1', 'Pcna', 'Myc', 'Ccnd2', 'Cdkn1a', 'Smad4', 'Smad3', 'Cdkn2a'], # B220 = Ptprc, PCNA negative for non cycling "large": ['Ighm', 'Kit', 'Ptprc', 'Cd19', 'Il2ra', 'Vpreb1', 'Cd24a', 'Igll1', 'Cd79a', 'Cd79b'], "Pre-B2": ['Mme', 'Spn']} # 'Cd19','Cxcl13',,'Kit' print('make the v0 matrix plot') mplot_adata = adata_counts_unfiltered.copy() # mplot_adata is for heatmaps so that we keep all genes mplot_adata = run_zheng_Bcell(mplot_adata, n_top_genes=25000, min_counts=1, do_HVG=False) # mplot_adata.X[mplot_adata.X>10] =10 # mplot_adata.X[mplot_adata.X< -1] = -1 # sc.pl.matrixplot(mplot_adata, marker_genes, groupby='TimeStamp', dendrogram=True) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=200) # ncomps # df_bcell_pc = pd.DataFrame(adata_counts.obsm['X_pca']) # print('df_bcell_pc.shape',df_bcell_pc.shape) # df_bcell_pc['time'] = [str(i) for i in time_list] # df_bcell_pc.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_200PCs.csv') # sc.pl.pca_variance_ratio(adata_counts, log=True) jet = cm.get_cmap('viridis', len(set(time_list))) cmap_ = jet(range(len(set(time_list)))) jet2 = cm.get_cmap('jet', len(set(ID_list))) cmap2_ = jet2(range(len(set(ID_list)))) # color_dict = {"0": [0], "2": [1], "6": [2], "12": [3], "18": [4], "24": [5]} # sc.pl.heatmap(mplot_adata, var_names = small_large_gene_list,groupby = 'TimeStamp', dendrogram = True) embedding = umap.UMAP(random_state=42, n_neighbors=15, init='random').fit_transform( adata_counts.obsm['X_pca'][:, 0:5]) df_umap = pd.DataFrame(embedding) # df_umap.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_umap.csv') f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, sharey=True) for i in list(set(time_list)): loc = np.where(np.asarray(time_list) == i)[0] ax4.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap_[color_dict[i]], alpha=1, label=str(i)) if i == 0: for xx in range(len(loc)): poss = loc[xx] ax4.text(embedding[poss, 0], embedding[poss, 1], 'c' + str(xx)) ax4.legend() ax1.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Pcna'].X.flatten(), alpha=1) ax1.set_title('Pcna, cycling') ax2.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Vpreb1'].X.flatten(), alpha=1) ax2.set_title('Vpreb1') ax3.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Cd24a'].X.flatten(), alpha=1) ax3.set_title('Cd24a') # ax2.text(embedding[i, 0], embedding[i, 1], str(i)) ''' for i, j in enumerate(list(set(ID_list))): loc = np.where(np.asarray(ID_list) == j) if 'r'in j: ax2.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap2_[i], alpha=1, label=str(j), edgecolors = 'black' ) else: ax2.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap2_[i], alpha=1, label=str(j)) ''' # plt.show() true_label = time_list # run_paga_func_Bcell(adata_counts, ncomps, knn, embedding) #run_palantir_func_Bcell(adata_counts, ncomps, knn, embedding, true_label) print('input has shape', adata_counts.obsm['X_pca'].shape) input_via = adata_counts.obsm['X_pca'][:, 0:ncomps] df_input = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:200]) df_annot = pd.DataFrame(['t' + str(i) for i in true_label]) # df_input.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_200PC_5000HVG.csv') # df_annot.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_annots.csv') root_user = [42] v0 = VIA(input_via, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.3, dataset='bcell', cluster_graph_pruning_std=cluster_graph_pruning_std, root_user=root_user, preserve_disconnected=True, random_seed=random_seed, do_impute_bool=True) # *.4#root_user = 34 v0.run_VIA() super_labels = v0.labels tsi_list = get_loc_terminal_states(via0=v0, X_input=adata_counts.obsm['X_pca'][:, 0:ncomps]) v1 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.05, is_coarse=False, cluster_graph_pruning_std=cluster_graph_pruning_std, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, full_neighbor_array=v0.full_neighbor_array, full_distance_array=v0.full_distance_array, ig_full_graph=v0.ig_full_graph, csr_array_locally_pruned=v0.csr_array_locally_pruned, x_lazy=0.99, alpha_teleport=0.99, preserve_disconnected=True, dataset='bcell', super_terminal_clusters=v0.terminal_clusters, random_seed=random_seed) v1.run_VIA() labels = v1.labels super_edges = v0.edgelist # plot gene expression vs. pseudotime Bcell_marker_gene_list = ['Igll1', 'Myc', 'Slc7a5', 'Ldha', 'Foxo1', 'Lig4', 'Sp7', 'Zfp629'] # irf4 down-up df_ =
pd.DataFrame(adata_counts_unfiltered.X)
pandas.DataFrame
""" Copyright (c) 2016 Genome Research Ltd. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import argparse import sys import pandas from mupit.open_ddd_data import standardise_ddd_de_novos, open_known_genes, \ get_ddd_rates from mupit.gene_enrichment import analyse_enrichment from mupit.write_json_probands import write_probands_by_gene def get_options(): """ get the command line options. """ parser = argparse.ArgumentParser(description="script to analyse enrichment" "of de novo mutations in genes in probands") parser.add_argument("--rates", help="Path to table of mutation rates.", default="/lustre/scratch113/projects/ddd/users/jm33/de_novos.ddd_4k.mutation_rates.2015-11-24.txt") parser.add_argument("--de-novos", help="Path to DDD de novo dataset.", default="/lustre/scratch113/projects/ddd/users/jm33/de_novos.ddd_4k.ddd_only.2015-11-24.txt") parser.add_argument("--validations", help="Path to validation results.", default="/lustre/scratch113/projects/ddd/users/jm33/de_novos.validation_results.2015-11-24.txt") parser.add_argument("--families", help="Path to families PED file.", default="/nfs/ddd0/Data/datafreeze/ddd_data_releases/2015-04-13/family_relationships.txt") parser.add_argument("--trios", help="Path to file listing complete trios.", default="/nfs/ddd0/Data/datafreeze/ddd_data_releases/2015-04-13/trios.txt") parser.add_argument("--known-genes", help="path to table of known developmental disorder genes.", default="/lustre/scratch113/projects/ddd/resources/ddd_data_releases/2015-04-13/DDG2P/dd_genes_for_clinical_filter") parser.add_argument("--diagnosed", help="Path to diagnosed probands file.") parser.add_argument("--skip-ddd", default=False, action="store_true", help="whether to remove all the DDD probands, and run with the " \ "external subsets alone.") parser.add_argument("--external-cohorts", help="Path to table of proband counts in other published de novo datasets.") parser.add_argument("--external-variants", help="Path to table of de novo mutations in other published de novo datasets.") parser.add_argument("--meta-subset", help="Comma-separated list of phenotypes eg " \ "intellectual_disability,autism. This list determines the subset " \ "of external studies to include. (defaults to using all subsets, " \ "if the meta-analysis flag is also used).") parser.add_argument("--out-manhattan", help="Path to put PDF of manhattan plot.") parser.add_argument("--out-probands-by-gene", help="Path to put json file of probands per gene.") parser.add_argument("--out-enrichment", help="Path to put file of enrichment testing results.") parser.add_argument("--out-clustering", help="Path to put file of enrichment testing results.") args = parser.parse_args() if not ((args.external_cohorts is None and args.external_variants is None) | \ (args.external_cohorts is not None and args.external_variants is not None)): sys.exit("You have to either use both of the external-cohorts and " "external-variants arguments, or not use either of them.") return args def count_trios(families_path, trios_path, diagnosed_path, known_genes_path, meta_cohort=None, meta_variants=None, meta_subset=None, skip_ddd=False): """ defines the cohort sizes, used to get the overall population size Args: families_path: path to DDD family relationships file, in ped format, containing proband IDs and sex information trios_path: path to table of probands in complete trios. diagnosed_path: path to table of probands with diagnoses known_genes_path: path to table of known developmental disorder genes meta_cohort: path to table of counts of probands in external exome and genome sequencing studies. meta_variants: path to table of de novo mutations from external exome and genome sequencing studies. meta_subset: string of comma-separated list of phenotypes to include in the meta-analysis, or None. skip_ddd: boolean of whether to not use any DDD probands. Returns: dictionary with total counts of trios with male and female offspring """ male = 0 female = 0 if not skip_ddd: ddd_male, ddd_female = count_ddd_trios(families_path, trios_path, diagnosed_path) male += ddd_male female += ddd_female if meta_cohort is not None: (external_male, external_female) = count_external_trios(meta_cohort, meta_variants, known_genes_path, diagnosed_path, meta_subset) male += external_male female += external_female return {"male": int(male), "female": int(female)} def count_ddd_trios(families_path, trios_path, diagnosed_path): """ count the male and female probands in the complete DDD trios Args: families_path: path to DDD family relationships file, in ped format, containing proband IDs and sex information trios_path: path to table of probands in complete trios. diagnosed_path: path to table of probands with diagnoses Returns: tuple of male and female proband counts. """ # load proband information, then select the proband who have exome sequence # available for both parents. families = pandas.read_table(families_path, sep="\t") trios = pandas.read_table(trios_path, sep="\t") proband_ids = trios["proband_stable_id"] probands = families[families["individual_id"].isin(proband_ids)] # get the number of trios studied in our data for each sex sex = probands["sex"].value_counts() male = sex[["M"]] female = sex[["F"]] if diagnosed_path is not None: # remove probands in DDD, unless we are not using the DDD probands. diagnosed = pandas.read_table(diagnosed_path, sep="\t") diagnosed = diagnosed[~diagnosed[["person_id", "sex"]].duplicated()] male -= sum(diagnosed["sex"].isin(["Male", "male", "M", "m"])) female -= sum(diagnosed["sex"].isin(["Female", "female", "F", "f"])) return (male, female) def count_external_trios(meta_cohort, meta_variants, known_genes_path, diagnosed, meta_subset=None): """ defines the cohort sizes, used to get the overall population size Args: meta_cohort: path to table of counts of probands in external exome and genome sequencing studies. meta_variants: path to table of de novo mutations from external exome and genome sequencing studies. known_genes_path: path to table of known developmental disorder genes remove_diagnosed: boolean of whether to remove probands with diagnostic variants. meta_subset: string of comma-separated list of phenotypes to include in the meta-analysis, or None. Returns: tuple of male and female proband counts. """ cohorts =
pandas.read_table(meta_cohort, sep="\t")
pandas.read_table
# Silence infinite debug/warnings coming from deeppavlov & tf # nltk uses plain old `print()` so can't silence... import os import logging import warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' logging.disable(logging.CRITICAL) warnings.filterwarnings('ignore') import json import pandas as pd import whoosh.index from whoosh.qparser import MultifieldParser, OrGroup from qa_query import BertSquad # Force printout of all df columns in console output pd.set_option('display.max_columns', None)
pd.set_option('display.expand_frame_repr', False)
pandas.set_option
""" Created by: <NAME> Sep 10 IEEE Fraud Detection Model - Features from public kernel - Shuffle = False - lgbm - Remove Low feature importance """ import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import sys import matplotlib.pylab as plt from sklearn.model_selection import KFold from datetime import datetime import time import logging from sklearn.metrics import roc_auc_score from catboost import CatBoostClassifier, Pool from timeit import default_timer as timer import lightgbm as lgb start = timer() ################## # PARAMETERS ################### run_id = "{:%m%d_%H%M}".format(datetime.now()) KERNEL_RUN = False MODEL_NUMBER = os.path.basename(__file__).split('.')[0] if KERNEL_RUN: INPUT_DIR = '../input/champs-scalar-coupling/' FE_DIR = '../input/molecule-fe024/' FOLDS_DIR = '../input/champs-3fold-ids/' TARGET = "isFraud" N_ESTIMATORS = 100000 N_META_ESTIMATORS = 500000 LEARNING_RATE = 0.1 VERBOSE = 100 EARLY_STOPPING_ROUNDS = 100 RANDOM_STATE = 529 N_THREADS = 48 DEPTH = 14 N_FOLDS = 5 SHUFFLE = False MODEL_TYPE = "lightgbm" ##################### ## SETUP LOGGER ##################### def get_logger(): """ credits to: https://www.kaggle.com/ogrellier/user-level-lightgbm-lb-1-4480 """ os.environ["TZ"] = "US/Eastern" time.tzset() FORMAT = "[%(levelname)s]%(asctime)s:%(name)s:%(message)s" logging.basicConfig(format=FORMAT) logger = logging.getLogger("main") logger.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) fhandler = logging.FileHandler(f'../logs/{MODEL_NUMBER}_{run_id}.log') formatter = logging.Formatter(FORMAT) handler.setFormatter(formatter) # logger.addHandler(handler) logger.addHandler(fhandler) return logger logger = get_logger() logger.info(f'Running for Model Number {MODEL_NUMBER}') ################## # PARAMETERS ################### if MODEL_TYPE == 'xgboost': EVAL_METRIC = "AUC" elif MODEL_TYPE == 'lightgbm': EVAL_METRIC = 'auc' elif MODEL_TYPE == 'catboost': EVAL_METRIC = "AUC" ################## # TRACKING FUNCTION ################### def update_tracking(run_id, field, value, csv_file="../tracking/tracking.csv", integer=False, digits=None, drop_incomplete_rows=False): """ Function to update the tracking CSV with information about the model """ try: df = pd.read_csv(csv_file, index_col=[0]) except FileNotFoundError: df = pd.DataFrame() if integer: value = round(value) elif digits is not None: value = round(value, digits) if drop_incomplete_rows: df = df.loc[~df['AUC'].isna()] df.loc[run_id, field] = value # Model number is index df.to_csv(csv_file) update_tracking(run_id, "model_number", MODEL_NUMBER, drop_incomplete_rows=True) update_tracking(run_id, "n_estimators", N_ESTIMATORS) update_tracking(run_id, "early_stopping_rounds", EARLY_STOPPING_ROUNDS) update_tracking(run_id, "random_state", RANDOM_STATE) update_tracking(run_id, "n_threads", N_THREADS) update_tracking(run_id, "learning_rate", LEARNING_RATE) update_tracking(run_id, "n_fold", N_FOLDS) update_tracking(run_id, "model_type", MODEL_TYPE) update_tracking(run_id, "eval_metric", EVAL_METRIC) update_tracking(run_id, "depth", DEPTH) update_tracking(run_id, "shuffle", SHUFFLE) ##################### # PREPARE MODEL DATA ##################### folds = KFold(n_splits=N_FOLDS, random_state=RANDOM_STATE, shuffle=SHUFFLE) logger.info('Loading Data...') train_df = pd.read_parquet('../data/train_FE003.parquet') test_df =
pd.read_parquet('../data/test_FE003.parquet')
pandas.read_parquet
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # Copyright (c) 2016, Battelle Memorial Institute # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation # are those of the authors and should not be interpreted as representing # official policies, either expressed or implied, of the FreeBSD # Project. # # This material was prepared as an account of work sponsored by an # agency of the United States Government. Neither the United States # Government nor the United States Department of Energy, nor Battelle, # nor any of their employees, nor any jurisdiction or organization that # has cooperated in the development of these materials, makes any # warranty, express or implied, or assumes any legal liability or # responsibility for the accuracy, completeness, or usefulness or any # information, apparatus, product, software, or process disclosed, or # represents that its use would not infringe privately owned rights. # # Reference herein to any specific commercial product, process, or # service by trade name, trademark, manufacturer, or otherwise does not # necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors # expressed herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY # operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import os import sys import logging import datetime from dateutil import parser from volttron.platform.vip.agent import Agent, Core, PubSub, RPC, compat from volttron.platform.agent import utils from volttron.platform.agent.utils import (get_aware_utc_now, format_timestamp) import pandas as pd import statsmodels.formula.api as sm utils.setup_logging() _log = logging.getLogger(__name__) class PGnEAgent(Agent): def __init__(self, config_path, **kwargs): super(PGnEAgent, self).__init__(**kwargs) self.config = utils.load_config(config_path) self.site = self.config.get('campus') self.building = self.config.get('building') self.temp_unit = self.config.get('temp_unit') self.power_unit = self.config.get('power_unit') self.out_temp_name = self.config.get('out_temp_name') self.power_name = self.config.get('power_name') self.aggregate_in_min = self.config.get('aggregate_in_min') self.aggregate_freq = str(self.aggregate_in_min) + 'Min' self.ts_name = self.config.get('ts_name') self.window_size_in_day = int(self.config.get('window_size_in_day')) self.min_required_window_size_in_percent = float(self.config.get('min_required_window_size_in_percent')) self.interval_in_min = int(self.config.get('interval_in_min')) self.no_of_recs_needed = 10 # self.window_size_in_day * 24 * (60 / self.interval_in_min) self.min_no_of_records_needed_after_aggr = int(self.min_required_window_size_in_percent/100 * self.no_of_recs_needed/self.aggregate_in_min) self.schedule_run_in_sec = int(self.config.get('schedule_run_in_hr')) * 3600 # Testing #self.no_of_recs_needed = 200 #self.min_no_of_records_needed_after_aggr = self.no_of_recs_needed/self.aggregate_in_min @Core.receiver('onstart') def onstart(self, sender, **kwargs): self.core.periodic(self.schedule_run_in_sec, self.calculate_latest_coeffs) def calculate_latest_coeffs(self): unit_topic_tmpl = "{campus}/{building}/{unit}/{point}" unit_points = [self.power_name] df = None #Get data unit = self.temp_unit for point in unit_points: if point == self.power_name: unit = self.power_unit unit_topic = unit_topic_tmpl.format(campus=self.site, building=self.building, unit=unit, point=point) result = self.vip.rpc.call('platform.historian', 'query', topic=unit_topic, count=self.no_of_recs_needed, order="LAST_TO_FIRST").get(timeout=10000) df2 = pd.DataFrame(result['values'], columns=[self.ts_name, point]) df2[self.ts_name] = pd.to_datetime(df2[self.ts_name]) df2 = df2.groupby([pd.TimeGrouper(key=self.ts_name, freq=self.aggregate_freq)]).mean() # df2[self.ts_name] = df2[self.ts_name].apply(lambda dt: dt.replace(second=0, microsecond=0)) df = df2 if df is None else
pd.merge(df, df2, how='outer', left_index=True, right_index=True)
pandas.merge
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'limin' import pandas as pd import datetime from contextlib import closing from tqsdk import TqApi, TqSim, TqBacktest, BacktestFinished, TargetPosTask from tqsdk.tafunc import sma, ema2, trma from sklearn.ensemble import RandomForestClassifier pd.set_option('display.max_rows', None) # 设置Pandas显示的行数 pd.set_option('display.width', None) # 设置Pandas显示的宽度 ''' 应用随机森林对某交易日涨跌情况的预测(使用sklearn包) 参考:https://www.joinquant.com/post/1571 ''' symbol = "SHFE.ru1811" # 交易合约代码 close_hour, close_minute = 14, 50 # 预定收盘时间(因为真实收盘后无法进行交易, 所以提前设定收盘时间) def get_prediction_data(klines, n): """获取用于随机森林的n个输入数据(n为数据长度): n天中每天的特征参数及其涨跌情况""" close_prices = klines.close[- 30 - n:] # 获取本交易日及以前的收盘价(此时在预定的收盘时间: 认为本交易日已收盘) # 计算所需指标 sma_data = sma(close_prices, 30, 0.02)[-n:] # SMA指标, 函数默认时间周期参数:30 wma_data = ema2(close_prices, 30)[-n:] # WMA指标 mom_data = trma(close_prices, 30)[-n:] # MOM指标 x_all = list(zip(sma_data, wma_data, mom_data)) # 样本特征组 y_all = list(klines.close.iloc[i] >= klines.close.iloc[i - 1] for i in list(reversed(range(-1, -n - 1, -1)))) # 样本标签组 # x_all: 大前天指标 前天指标 昨天指标 (今天指标) # y_all: (大前天) 前天 昨天 今天 -明天- # 准备算法需要用到的数据 x_train = x_all[: -1] # 训练数据: 特征 x_predict = x_all[-1] # 预测数据(用本交易日的指标预测下一交易日的涨跌) y_train = y_all[1:] # 训练数据: 标签 (去掉第一个数据后让其与指标隔一位对齐(例如: 昨天的特征 -> 对应预测今天的涨跌标签)) return x_train, y_train, x_predict predictions = [] # 用于记录每次的预测结果(在每个交易日收盘时用收盘数据预测下一交易日的涨跌,并记录在此列表里) api = TqApi(TqSim(), backtest=TqBacktest(start_dt=datetime.date(2018, 7, 2), end_dt=datetime.date(2018, 9, 26))) quote = api.get_quote(symbol) klines = api.get_kline_serial(symbol, duration_seconds=24 * 60 * 60) # 日线 target_pos = TargetPosTask(api, symbol) with closing(api): try: while True: while not api.is_changing(klines.iloc[-1], "datetime"): # 等到达下一个交易日 api.wait_update() while True: api.wait_update() # 在收盘后预测下一交易日的涨跌情况 if api.is_changing(quote, "datetime"): now = datetime.datetime.strptime(quote["datetime"], "%Y-%m-%d %H:%M:%S.%f") # 当前quote的时间 # 判断是否到达预定收盘时间: 如果到达 则认为本交易日收盘, 此时预测下一交易日的涨跌情况, 并调整为对应仓位 if now.hour == close_hour and now.minute >= close_minute: # 1- 获取数据 x_train, y_train, x_predict = get_prediction_data(klines, 75) # 参数1: K线, 参数2:需要的数据长度 # 2- 利用机器学习算法预测下一个交易日的涨跌情况 # n_estimators 参数: 选择森林里(决策)树的数目; bootstrap 参数: 选择建立决策树时,是否使用有放回抽样 clf = RandomForestClassifier(n_estimators=30, bootstrap=True) clf.fit(x_train, y_train) # 传入训练数据, 进行参数训练 predictions.append(bool(clf.predict([x_predict]))) # 传入测试数据进行预测, 得到预测的结果 # 3- 进行交易 if predictions[-1] == True: # 如果预测结果为涨: 买入 print(quote["datetime"], "预测下一交易日为 涨") target_pos.set_target_volume(10) else: # 如果预测结果为跌: 卖出 print(quote["datetime"], "预测下一交易日为 跌") target_pos.set_target_volume(-10) break except BacktestFinished: # 回测结束, 获取预测结果,统计正确率 klines["pre_close"] = klines["close"].shift(1) # 增加 pre_close(上一交易日的收盘价) 字段 klines = klines[-len(predictions) + 1:] # 取出在回测日期内的K线数据 klines["prediction"] = predictions[:-1] # 增加预测的本交易日涨跌情况字段(向后移一个数据目的: 将 本交易日对应下一交易日的涨跌 调整为 本交易日对应本交易日的涨跌) results = (klines["close"] - klines["pre_close"] >= 0) == klines["prediction"] print(klines) print("----回测结束----") print("预测结果正误:\n", results) print("预测结果数目统计: 总计", len(results),"个预测结果") print(pd.value_counts(results)) print("预测的准确率:") print((
pd.value_counts(results)
pandas.value_counts
#Creates temperature mean from Tmin and Tmax average import sys import numpy as np import pandas as pd import rasterio from osgeo import gdal from affine import Affine from pyproj import Transformer #NAMING SETTINGS & OUTPUT FLAGS----------------------------------------------# MASTER_DIR = r'/home/hawaii_climate_products_container/preliminary/' CODE_MASTER_DIR = MASTER_DIR + r'air_temp/daily/code/' RUN_MASTER_DIR = MASTER_DIR + r'air_temp/data_outputs/' MAP_OUTPUT_DIR = RUN_MASTER_DIR + r'tiffs/daily/county/' #Set subdirectories based on varname and iCode SE_OUTPUT_DIR = RUN_MASTER_DIR + r'tiffs/daily/county/' CV_OUTPUT_DIR = RUN_MASTER_DIR + r'tables/loocv/daily/county/' TIFF_SUFFIX = '.tif' SE_SUFFIX = '_se.tif' CV_SUFFIX = '_loocv.csv' NO_DATA_VAL = -9999 #END SETTINGS----------------------------------------------------------------# #FUNCTION DEFINITION---------------------------------------------------------# def get_Coordinates(GeoTiff_name): # Read raster with rasterio.open(GeoTiff_name) as r: T0 = r.transform # upper-left pixel corner affine transform A = r.read() # pixel values # All rows and columns cols, rows = np.meshgrid(np.arange(A.shape[2]), np.arange(A.shape[1])) # Get affine transform for pixel centres T1 = T0 * Affine.translation(0.5, 0.5) # Function to convert pixel row/column index (from 0) to easting/northing # at centre def rc2en(r, c): return T1 * (c, r) # All eastings and northings (there is probably a faster way to do this) eastings, northings = np.vectorize( rc2en, otypes=[ float, float])( rows, cols) transformer = Transformer.from_proj( 'EPSG:4326', '+proj=longlat +datum=WGS84 +no_defs +type=crs', always_xy=True, skip_equivalent=True) LON, LAT = transformer.transform(eastings, northings) return LON, LAT def get_island_df(tiff_name,varname): lon,lat = get_Coordinates(tiff_name) lon = lon.reshape(-1) lat = lat.reshape(-1) df_dict = {'LON':lon,'LAT':lat} raster_img = rasterio.open(tiff_name) raster_data = raster_img.read(1) raster_mask = raster_img.read_masks(1) raster_mask[raster_mask > 0] = 1 masked_array = raster_data * raster_mask masked_array[raster_mask == 0] = np.nan masked_array = masked_array.reshape(-1) df_dict[varname] = masked_array island_df =
pd.DataFrame.from_dict(df_dict)
pandas.DataFrame.from_dict
import pandas as pd df_pub = pd.read_csv('tableS4.Refseq.assembly.summary.tsv',sep='\t') df_pub['ATCC Catalog'] = df_pub['ATCC Catalog'].apply(lambda x: x.upper()) #set all catalogIDs to uppercase #count = 577 df_port = pd.read_csv('tableS4.atcc.assembly.summary.tsv',sep='\t') portal_catalog = list(set(list((df_port['Base Catalog Number'])))) #get list of pcatalog IDs on the portal. MAY BE REDUNDANT #plan: return ratio values of length, illumina n50, contig count, read depth, gc content - gc content not currently in public dataset #int(df_pub[df_pub['ATCC Catalog'] == catalog]['Total Length']) / int(df_port[df_port['Base Catalog Number'] == catalog]['Total Length']) #need to remove redundancy problem #ideas: #separate into assembly level data frames - still has redundancies by catalog id. #return average ratio values when catalog ID appears more than once #Both of the above so values returned are collected by assembly level. Would need to prevent lower levels from repeating higher level assemblies per catalogID #third option will be addressed below #set public assembly dataframes df_pub_complete = df_pub[(df_pub['Assembly Level'] == 'Chromosome') | (df_pub['Assembly Level'] == 'Complete Genome')] #count=234 pub_complete = [x for x in portal_catalog if x in list(df_pub_complete['ATCC Catalog'])] #get "complete" catalog IDs from public assemblies df_pub_scaffold = df_pub[df_pub['Assembly Level'] == 'Scaffold'] #get down to just scaffolds pub_scaffold = [x for x in portal_catalog if x in list(df_pub_scaffold['ATCC Catalog'])] #get list of scaffold catalogIDs #count = 107 df_pub_contig = df_pub[df_pub['Assembly Level'] == 'Contig'] #just contigs #should be unnecessary at this stage #count = 81 #totals of dataframes don't add up to top level dataframe count because of assemblies that exist at multiple stages. This approach should only compare the highest quality public assembly to ATCC's. df_pub_comp_mean = df_pub_complete.groupby('ATCC Catalog').mean().reset_index() #summarize values by average df_pub_comp_min = df_pub_complete.groupby('ATCC Catalog').min().reset_index() #summarize values by minimum (appropriate for contig counts) df_pub_comp_max = df_pub_complete.groupby('ATCC Catalog').max().reset_index() #summarize values by maximum (appropriate for N50, perhaps) df_pub_scaffold_mean = df_pub_scaffold.groupby('ATCC Catalog').mean().reset_index() #summarize values by average df_pub_scaffold_min = df_pub_scaffold.groupby('ATCC Catalog').min().reset_index() #summarize values by minimum (appropriate for contig counts) df_pub_scaffold_max = df_pub_scaffold.groupby('ATCC Catalog').max().reset_index() #summarize values by maximum (appropriate for N50, perhaps) df_pub_contig_mean = df_pub_contig.groupby('ATCC Catalog').mean().reset_index() #summarize values by average df_pub_contig_min = df_pub_contig.groupby('ATCC Catalog').min().reset_index() #summarize values by minimum (appropriate for contig counts) df_pub_contig_max = df_pub_contig.groupby('ATCC Catalog').max().reset_index() #summarize values by maximum (appropriate for N50, perhaps) #set portal assembly dataframes df_port_complete = df_port if len(df_port_complete) == len(portal_catalog): print('Evaluating only top ranked assemblies') if len(list(set(list(df_port_complete['Base Catalog Number'])))) == len(portal_catalog): print('No Repeated Catalog IDs will be evaluated') else: print('There are Catalog IDs are present more than once in the top ranked assemblies, which will be averaged') else: port_cat_2 = list(df_port[df_port['Assembly Rank'] == 2]['Base Catalog Number']) #get all second rank assemblies to check that each assembly has a top ranking if len([x for x in port_cat_2 if x not in list(df_port[df_port['Assembly Rank'] == 1]['Base Catalog Number'])]) == 0: print('No second rank assemblies without a first rank assembly in the portal assembly list') #comparisons #'complete' public assemblies #genome length #compared by average length #comparison metric could be command line argument and consistent across all fields. port_length = df_port_complete[['Base Catalog Number', 'Total Length', 'Product Collection']] pub_length = df_pub_complete[['ATCC Catalog', 'Total Length', 'Assembly Accession', 'Organism']] port_length.columns = ['Catalog ID', 'Total Length', 'Product Collection'] pub_length.columns = ['Catalog ID', 'Total Length', 'Assembly Accession', 'Organism'] #need same column names to merge dataframes print('public df length is: {}'.format(len(df_pub))) print('pub_len length is: {}'.format(len(pub_length))) print(len(port_length)) df_len = pd.merge(port_length, pub_length, on=['Catalog ID'], suffixes=('_portal','_public')) df_len['Length Ratio'] = df_len['Total Length_portal'] / df_len['Total Length_public'] df_len['Length Difference'] = df_len['Total Length_portal'] - df_len['Total Length_public'] df_len['Public Assembly Level'] = 'Complete' df_len.to_csv('Assembly_Complete_length_no_aggregate.comparisons.txt',sep='\t',index=False) print(len(df_len)) #N50 #compared by max N50 port_N50= df_port_complete[['Base Catalog Number', 'Filtered N50', 'Product Collection']] pub_N50 = df_pub_complete[['ATCC Catalog', 'Scaffold N50', 'Assembly Accession', 'Organism']] port_N50.columns = ['Catalog ID', 'N50', 'Product Collection'] pub_N50.columns = ['Catalog ID', 'N50', 'Assembly Accession', 'Organism'] df_N50 = pd.merge(port_N50, pub_N50, on=['Catalog ID'], suffixes=('_portal','_public')) df_N50['N50 Ratio'] = df_N50['N50_portal'] / df_N50['N50_public'] df_N50['N50 Difference'] = df_N50['N50_portal'] - df_N50['N50_public'] df_N50['Public Assembly Level'] = 'Complete' df_N50.to_csv('Assembly_Complete_N50_no_aggregate.comparisons.txt',sep='\t',index=False) #contig/replicon count #compared by min port_contig= df_port_complete[['Base Catalog Number', 'Total Contigs', 'Product Collection']] pub_contig = df_pub_complete[['ATCC Catalog', 'Scaffold Count', 'Assembly Accession', 'Organism']] port_contig.columns = ['Catalog ID', 'Contig Count', 'Product Collection'] pub_contig.columns = ['Catalog ID', 'Contig Count', 'Assembly Accession', 'Organism'] df_contig =
pd.merge(port_contig, pub_contig, on=['Catalog ID'], suffixes=('_portal','_public'))
pandas.merge
# coding: utf-8 """ Automated Tool for Optimized Modelling (ATOM) Author: Mavs Description: Unit tests for feature_engineering.py """ import pandas as pd import pytest from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import f_regression from atom.feature_engineering import ( FeatureExtractor, FeatureGenerator, FeatureSelector, ) from atom.utils import to_df from .utils import ( X10_dt, X10_str, X_bin, X_class, X_reg, X_sparse, y_bin, y_class, y_reg, ) # Test FeatureExtractor ============================================ >> def test_invalid_encoding_type(): """Assert that an error is raised when encoding_type is invalid.""" with pytest.raises(ValueError, match=r".*the encoding_type parameter.*"): FeatureExtractor(encoding_type="invalid").transform(X10_dt) def test_invalid_features(): """Assert that an error is raised when features are invalid.""" with pytest.raises(ValueError, match=r".*an attribute of pd.Series.dt.*"): FeatureExtractor(features="invalid").transform(X10_dt) def test_wrongly_converted_columns_are_ignored(): """Assert that columns converted unsuccessfully are skipped.""" extractor = FeatureExtractor() X = extractor.transform(X10_str) assert "feature_3" in X.columns def test_datetime_features_are_used(): """Assert that datetime64 features are used as is.""" X = to_df(X10_dt.copy()) X["feature_3"] =
pd.to_datetime(X["feature_3"])
pandas.to_datetime
from __future__ import print_function import sklearn #%% import lime import os import numpy as np import pandas as pd pd.set_option('display.max_colwidth', -1) pd.set_option('display.max_columns', None) import sklearn import sklearn.ensemble import sklearn.metrics import seaborn as sns from scipy.special import softmax import matplotlib.pyplot as plt from sklearn.utils import resample from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments from transformers import RobertaTokenizer, RobertaForSequenceClassification from transformers import AlbertTokenizer, AlbertForSequenceClassification import torch import torch.nn as nn import torch #%% import os os.chdir('/home/ubuntu/transformers/Dataset/SST-2') # %% # Set Directory as appropiate df_ST = pd.read_csv("original_data/train.tsv", sep="\t",nrows=1500) sns.countplot(df_ST['label']) plt.show() #%% zero = df_ST[df_ST.label==0] one = df_ST[df_ST.label==1] # downsample majority one_u = resample(one, replace=True, # sample with replacement n_samples=len(zero), # match number with majority class random_state=42) # reproducible results # combine majority and upsampled minority df_ST =
pd.concat([zero,one_u])
pandas.concat
import logging import networkx as nx import numpy as np import pandas as pd from skimage.feature import greycomatrix from skimage.measure import shannon_entropy from pyfibre.model.tools.analysis import ( tensor_analysis, angle_analysis) from pyfibre.model.tools.feature import greycoprops_edit from pyfibre.model.tools.filters import form_structure_tensor from pyfibre.model.tools.utilities import bbox_sample from pyfibre.utilities import IMAGE_MAX logger = logging.getLogger(__name__) STRUCTURE_METRICS = ['Angle SDI', 'Coherence', 'Local Coherence'] SHAPE_METRICS = ['Area', 'Eccentricity', 'Circularity', 'Coverage'] TEXTURE_METRICS = ['Mean', 'STD', 'Entropy'] FIBRE_METRICS = ['Waviness', 'Length'] NETWORK_METRICS = ['Degree', 'Eigenvalue', 'Connectivity', 'Cross-Link Density'] def _region_sample(region, metric): """Extract metric values for pixels within segment Parameters ---------- region: skimage.RegionProperties Region defining pixels within image to analyse metric: array-like Metric for all pixels in image to be analysed """ # Identify metrics for pixels within bounding box metric = bbox_sample(region, metric) # Return metrics only for pixels within segment indices = np.where(region.image) return metric[indices] def structure_tensor_metrics(structure_tensor, tag=''): """Nematic tensor analysis for a scikit-image region""" database = pd.Series(dtype=object) (segment_coher_map, segment_angle_map, segment_angle_map) = tensor_analysis(structure_tensor) # Calculate mean structure tensor elements axis = tuple(range(structure_tensor.ndim - 2)) mean_tensor = np.mean(structure_tensor, axis=axis) segment_coher, _, _ = tensor_analysis(mean_tensor) database[f"{tag} Angle SDI"], _ = angle_analysis( segment_angle_map, segment_coher_map) database[f"{tag} Coherence"] = segment_coher[0] database[f"{tag} Local Coherence"] = np.mean(segment_coher_map) return database def region_shape_metrics(region, tag=''): """Shape analysis for a scikit-image region""" database = pd.Series(dtype=object) # Perform all non-intensity image relevant metrics database[f"{tag} Area"] = region.area ratio = (np.pi * region.equivalent_diameter) / region.perimeter database[f"{tag} Circularity"] = ratio database[f"{tag} Eccentricity"] = region.eccentricity database[f"{tag} Coverage"] = region.extent # segment_hu = region.moments_hu # database[f"{tag} Hu Moment 1"] = segment_hu[0] # database[f"{tag} Hu Moment 2"] = segment_hu[1] # database[f"{tag} Hu Moment 3"] = segment_hu[2] # database[f"{tag} Hu Moment 4"] = segment_hu[3] return database def region_texture_metrics(region, image=None, tag='', glcm=False): """Texture analysis for a of scikit-image region""" database = pd.Series(dtype=object) # Check to see whether intensity_image is present or image argument # has been supplied if image is not None: region_image = bbox_sample(region, image) else: region_image = region.intensity_image # Obtain indices of pixels in region mask indices = np.where(region.image) intensity_sample = region_image[indices] # _, _, database[f"{tag} Fourier SDI"] = (0, 0, 0) # fourier_transform_analysis(segment_image) database[f"{tag} Mean"] = np.mean(intensity_sample) database[f"{tag} STD"] = np.std(intensity_sample) database[f"{tag} Entropy"] = shannon_entropy(intensity_sample) if glcm: glcm = greycomatrix( (region_image * region.image * IMAGE_MAX).astype('uint8'), [1, 2], [0, np.pi/4, np.pi/2, np.pi*3/4], 256, symmetric=True, normed=True) glcm[0, :, :, :] = 0 glcm[:, 0, :, :] = 0 greycoprops = greycoprops_edit(glcm) metrics = ["Contrast", "Homogeneity", "Energy", "Entropy", "Autocorrelation", "Clustering", "Mean", "Covariance", "Correlation"] for metric in metrics: value = greycoprops[metric.lower()].mean() database[f"{tag} GLCM {metric}"] = value return database def network_metrics(network, network_red, n_fibres, tag=''): """Analyse networkx Graph object""" database = pd.Series(dtype=object) database['No. Fibres'] = n_fibres cross_links = np.array( [degree[1] for degree in network.degree], dtype=int) database[f"{tag} Network Cross-Link Density"] = ( (cross_links > 2).sum() / n_fibres) try: value = nx.degree_pearson_correlation_coefficient( network, weight='r') ** 2 except Exception as err: logger.debug(f'Network Degree calculation failed: {str(err)}') value = None database[f"{tag} Network Degree"] = value try: value = np.real(nx.adjacency_spectrum(network_red).max()) except Exception as err: logger.debug(f'Network Eigenvalue calculation failed: {str(err)}') value = None database[f"{tag} Network Eigenvalue"] = value try: value = nx.algebraic_connectivity(network_red, weight='r') except Exception as err: logger.debug(f'Network Connectivity calculation failed: {str(err)}') value = None database[f"{tag} Network Connectivity"] = value return database def fibre_metrics(tot_fibres): """Analysis of list of `Fibre` objects Parameters ---------- tot_fibres : list of `<class: Fibre>` List of fibre to analyse Returns ------- database : DataFrame Metrics calculated from networkx Graph and scikit-image regionprops objects """ database = pd.DataFrame() for fibre in tot_fibres: fibre_series = fibre.generate_database() database = database.append( fibre_series, ignore_index=True) return database def fibre_network_metrics(fibre_networks): """Analysis of list of `FibreNetwork` objects Parameters ---------- fibre_networks : list of `<class: FibreNetwork>` List of fibre networks to analyse Returns ------- database : DataFrame Metrics calculated from networkx Graph and scikit-image regionprops objects """ database = pd.DataFrame() for i, fibre_network in enumerate(fibre_networks): # if segment.filled_area >= 1E-2 * image_shg.size: fibre_network_series = pd.Series(name=i, dtype=object) metrics = fibre_network.generate_database() fibre_network_series = pd.concat( (fibre_network_series, metrics)) database = database.append( fibre_network_series, ignore_index=True) return database def segment_metrics(segments, image, image_tag=None, sigma=0.0001): """Analysis of a list of `BaseSegment` objects Parameters ---------- segments : list of `<class: BaseSegment>` List of cells to analyse image: array-like Full image to analyse Returns ------- database : DataFrame Metrics calculated from scikit-image regionprops objects """ database = pd.DataFrame() structure_tensor = form_structure_tensor(image, sigma) for index, segment in enumerate(segments): segment_series = segment.generate_database( image_tag=image_tag) if image_tag is not None: tensor_tag = ' '.join([segment.tag, 'Segment', image_tag]) else: tensor_tag = ' '.join([segment.tag, 'Segment']) # Only use pixel tensors in segment segment_tensor = _region_sample( segment.region, structure_tensor) nematic_metrics = structure_tensor_metrics( segment_tensor, tensor_tag) segment_series =
pd.concat((segment_series, nematic_metrics))
pandas.concat
import string from itertools import product import numpy as np from pandas import DataFrame, MultiIndex, date_range, melt, wide_to_long import pandas as pd from .pandas_vb_common import setup # noqa class Melt(object): goal_time = 0.2 def setup(self): self.df = DataFrame(np.random.randn(10000, 3), columns=['A', 'B', 'C']) self.df['id1'] = np.random.randint(0, 10, 10000) self.df['id2'] = np.random.randint(100, 1000, 10000) def time_melt_dataframe(self): melt(self.df, id_vars=['id1', 'id2']) class Pivot(object): goal_time = 0.2 def setup(self): N = 10000 index = date_range('1/1/2000', periods=N, freq='h') data = {'value': np.random.randn(N * 50), 'variable': np.arange(50).repeat(N), 'date': np.tile(index.values, 50)} self.df = DataFrame(data) def time_reshape_pivot_time_series(self): self.df.pivot('date', 'variable', 'value') class SimpleReshape(object): goal_time = 0.2 def setup(self): arrays = [np.arange(100).repeat(100), np.roll(np.tile(np.arange(100), 100), 25)] index =
MultiIndex.from_arrays(arrays)
pandas.MultiIndex.from_arrays
import pandas as pd import numpy as np import pdb import os #load metadata metadata = pd.read_csv("../../metadata/lake_metadata.csv") #trim to observed lakes metadata = metadata[metadata['num_obs'] > 0]# obs = pd.read_feather("../../data/raw/obs/surface_lake_temp_daily_020421.feather") obs = pd.read_csv("../../data/raw/obs/lake_surface_temp_obs.csv") site_ids = np.unique(obs['site_id'].values) print(len(site_ids), ' lakes') # site_ids = metadata['site_id'].values #CHANGE DIS---------- n_folds = 5 combined_df = pd.DataFrame() combined_lm = pd.DataFrame() combined_gb = pd.DataFrame() combined_ea = pd.DataFrame() folds_arr = np.arange(n_folds)+1 for k in folds_arr: print("fold ",k) lm_df = pd.read_feather("../../results/bachmann_fold"+str(k)+"_all_season.feather") ea_df = pd.read_feather("../../results/err_est_outputs_072621_EALSTM_fold"+str(k)+"_oversamp_norm2.feather") ea_df = pd.merge(ea_df,lm_df,left_on=['Date','site_id'],right_on=['date','site_id'],how='left') combined_ea = combined_ea.append(ea_df) combined_ea.reset_index(inplace=True,drop=True) combined_df['Date'] = combined_ea['Date'] combined_df['site_id'] = combined_ea['site_id'] combined_df['wtemp_predicted-ealstm'] = combined_ea['wtemp_predicted'] combined_df['wtemp_predicted-linear_model'] = combined_ea['temp_pred_lm'] combined_df['wtemp_actual'] = combined_ea['wtemp_actual'] combined_df.reset_index(inplace=True) combined_df.to_feather("../../results/all_outputs_and_obs_wBachmann_allSeason.feather") combined_df.to_csv("../../results/all_outputs_and_obs_wBachmann_allSeason.csv") combined_df = pd.read_feather("../../results/all_outputs_and_obs_wBachmann.feather") per_site_df =
pd.DataFrame(columns=['site_id','n_obs','rmse_ealstm','rmse_lm'])
pandas.DataFrame
import pandas as pd import math import astropy as ast import numpy as np from astropy.time import Time import matplotlib.pylab as plt from astropy import units as u from astropy.io import fits import warnings from lstchain.reco.utils import get_effective_time,add_delta_t_key from lstchain.io.io import dl2_params_lstcam_key,dl2_params_src_dep_lstcam_key, get_srcdep_params import os class ReadFermiFile(): def __init__(self, file): if 'fits' not in file: raise ValueError('No FITS file provided for Fermi-LAT data') else: self.fname=file def read_file(self): f=fits.open(self.fname) fits_table=f[1].data return(fits_table) def create_df_from_info(self,fits_table): time=fits_table['BARYCENTRIC_TIME'].byteswap().newbyteorder() phases=fits_table['PULSE_PHASE'].byteswap().newbyteorder() energies=fits_table['ENERGY'].byteswap().newbyteorder() dataframe = pd.DataFrame({"mjd_time":time,"pulsar_phase":phases,"dragon_time":time*3600*24,"energy":energies/1000}) dataframe=dataframe.sort_values(by=['mjd_time']) self.info=dataframe return(self.info) def calculate_tobs(self): diff=np.array(self.info['mjd_time'].to_list()[1:])-np.array(self.info['mjd_time'].to_list()[0:-1]) diff[diff>5/24]=0 return(sum(diff)*24) def run(self): print(' Reading Fermi-LAT data file') ftable=self.read_file() self.create_df_from_info(ftable) self.tobs=self.calculate_tobs() print(' Finishing reading. Total time is '+str(self.tobs)+' h'+'\n') class ReadLSTFile(): def __init__(self, file=None, directory=None,src_dependent=False): if file==None and directory==None: raise ValueError('No file provided') elif file is not None and directory is not None: raise ValueError('Can only provide file or directory, but not both') elif file is not None: if 'h5' not in file: raise ValueError('No hdf5 file provided for LST data') else: self.fname=file elif directory is not None: self.direc=directory self.fname=[] for x in os.listdir(self.direc): rel_dir = os.path.relpath(self.direc) rel_file = os.path.join(rel_dir, x) if 'h5' in rel_file: self.fname.append(rel_file) self.fname.sort() self.info=None self.src_dependent=src_dependent def read_LSTfile(self,fname,df_type='short'): if self.src_dependent==False: df=pd.read_hdf(fname,key=dl2_params_lstcam_key) elif self.src_dependent==True: srcindep_df=pd.read_hdf(fname,key=dl2_params_lstcam_key,float_precision=20) on_df_srcdep=get_srcdep_params(fname,'on') if 'reco_energy' in srcindep_df.keys(): srcindep_df.drop(['reco_energy']) if 'gammaness' in srcindep_df.keys(): srcindep_df.drop(['gammaness']) df = pd.concat([srcindep_df, on_df_srcdep], axis=1) if df_type=='short': if 'alpha' in df and 'theta2' in df: df_filtered=df[["mjd_time","pulsar_phase", "dragon_time","gammaness","alpha","theta2","alt_tel"]] elif 'alpha' in df and 'theta2' not in df: df_filtered=df[["mjd_time","pulsar_phase", "dragon_time","gammaness","alpha","alt_tel"]] elif 'theta2' in df and 'alpha' not in df: df_filtered=df[["mjd_time","pulsar_phase", "dragon_time","gammaness","theta2","alt_tel"]] else: df_filtered=df[["mjd_time","pulsar_phase", "dragon_time","gammaness","alt_tel"]] try: df_filtered['energy']=df['reco_energy'] except: df_filtered['energy']=df['energy'] else: df_filtered = df df_filtered['energy']=df['reco_energy'] df_filtered=add_delta_t_key(df_filtered) return(df_filtered) def calculate_tobs(self): dataframe=add_delta_t_key(self.info) return(get_effective_time(dataframe)[1].value/3600) def run(self,pulsarana,df_type='long'): print(' Reading LST-1 data file') if isinstance(self.fname,list): info_list=[] for name in self.fname: try: info_file=self.read_LSTfile(name,df_type) self.info=info_file self.tobs=self.calculate_tobs() pulsarana.cuts.apply_fixed_cut(self) if pulsarana.cuts.energy_binning_cut is not None: pulsarana.cuts.apply_energydep_cuts(self) info_list.append(self.info) except: raise ValueError('Failing when reading:'+ str(name)) self.info=pd.concat(info_list) self.tobs=self.calculate_tobs() else: self.info=self.read_LSTfile(self.fname,df_type) self.tobs=self.calculate_tobs() print(' Finishing reading. Total time is '+str(self.tobs)+' h') pulsarana.cuts.apply_fixed_cut(self) if pulsarana.cuts.energy_binning_cut is not None: pulsarana.cuts.apply_energydep_cuts(self) print(' Finishing filtering events:') print(' gammaness cut:'+str(pulsarana.cuts.gammaness_cut)) print(' alpha cut:'+str(pulsarana.cuts.alpha_cut)) print(' theta2 cut:'+str(pulsarana.cuts.theta2_cut)) print(' zd cut:'+str(pulsarana.cuts.zd_cut)) print(' energy binning for the cuts:'+str(pulsarana.cuts.energy_binning_cut)) print('\n') class ReadtxtFile(): def __init__(self, file,format_txt): self.fname=file self.format=format_txt def read_file(self): data = pd.read_csv(file, sep=" ", header=None) return(data) def check_format(self): for name in ['t','p']: if name not in self.format: raise ValueError(' No valid format') def create_df_from_info(self,df): for i in range(0,len(self.format)): if self.format[i]=='t': times=df.iloc[:, i] elif self.format[i]=='e': energies=df.iloc[:, i] elif self.format[i]=='p': phases=df.iloc[:, i] elif self.format[i]=='g': gammaness=df.iloc[:, i] elif self.format[i]=='a': alphas=df.iloc[:, i] elif self.format[i]=='t2': theta2=df.iloc[:, i] elif self.format[i]=='at': alt_tel=df.iloc[:, i] dataframe = pd.DataFrame({"mjd_time":times,"pulsar_phase":phases,"dragon_time":times*3600*24,"energy":energies}) try: dataframe['gammaness']=gammaness except: pass try: dataframe['alpha']=alpha except: pass try: dataframe['theta2']=theta2 except: pass try: dataframe['alt_tel']=alt_tel except: pass dataframe=dataframe.sort_values(by=['mjd_time']) self.info=dataframe def calculate_tobs(self): diff=np.array(self.info['mjd_time'].to_list()[1:])-np.array(self.info['mjd_time'].to_list()[0:-1]) return(sum(diff)*24) def run(self): data=self.read_file() self.check_format() self.create_df_from_info(data) self.tobs=self.calculate_tobs() print(' Finishing reading. Total time is '+str(self.tobs)+' s'+'\n') class ReadList(): def __init__(self, phases_list, time_list=None,energy_list=None,tel='LST'): self.plist=phases_list self.tlist=time_list self.elist=energy_list self.tel=tel def create_df_from_info(self): dataframe =
pd.DataFrame({"mjd_time":self.tlist,"pulsar_phase":self.plist,"dragon_time":self.tlist*3600*24,"energy":self.elist})
pandas.DataFrame
import argparse import collections import os import json import logging import re import pathlib import pandas as pd import numpy as np from sqlalchemy import create_engine logger = logging.getLogger(__name__) def main(): logging.basicConfig(level=logging.INFO, format='%(asctime)s (%(levelname)s) %(message)s') parser = argparse.ArgumentParser() parser.add_argument('--db_path', type=str, default=None) parser.add_argument('--input_folder', type=str, default=None) parser.add_argument('--output_folder', type=str, default=None) parser.add_argument('--batch_size', type=int, default=int(1e4)) parser.add_argument( '--method', type=str, choices=['codon_bias', 'tri_nucleotide_bias'], default='codon_bias', ) args = parser.parse_args() db_path = args.db_path input_folder = args.input_folder output_folder = args.output_folder batch_size = args.batch_size method = args.method if db_path is None: db_path = os.path.join(os.getcwd(), 'data/db/seq.db') if input_folder is None: input_folder = os.path.join(os.getcwd(), 'data/Large_EBMC_Bact_DB') if output_folder is None: output_folder = os.path.join(os.getcwd(), f'data/domains/{method}') engine = create_engine(f'sqlite+pysqlite:///{db_path}') known_assemblies = set(pd.read_sql( 'select assembly_accession from assembly_source', engine, )['assembly_accession'].values) process_batch = process_batch_fn(engine, known_assemblies, output_folder, method) for batch_df in process_files(input_folder, known_assemblies, batch_size): process_batch(batch_df) logger.info('DONE') def process_batch_fn(engine, known_assemblies, output_folder, method): pfam_folder = os.path.join(output_folder, 'pfam') tigr_folder = os.path.join(output_folder, 'tigr') seen_tigr_assemblies = set() seen_pfam_assemblies = set() assembly_to_protein_ids = {} assembly_to_top_protein_ids = {} def fn(batch_df): assemblies = set(batch_df.index.tolist()) matching_assemblies = sorted(assemblies & known_assemblies) if len(matching_assemblies) == 0: return record_type = batch_df.iloc[0]['record_type'] for assembly_accession in matching_assemblies: if assembly_accession not in assembly_to_protein_ids: all_protein_ids, top_protein_ids = load_protein_ids(assembly_accession, method) assembly_to_protein_ids[assembly_accession] = all_protein_ids assembly_to_top_protein_ids[assembly_accession] = set(top_protein_ids) all_protein_ids = assembly_to_protein_ids[assembly_accession] top_protein_ids = assembly_to_top_protein_ids[assembly_accession] df = batch_df.loc[[assembly_accession]].copy() if len(df) == 0: continue df['below_threshold'] = df['protein_id'].apply(lambda p: p in top_protein_ids) if record_type == 'pfam': pfam_path = os.path.join(pfam_folder, f'{assembly_accession}_protein_domains.csv') header = assembly_accession not in seen_pfam_assemblies seen_pfam_assemblies.add(assembly_accession) df.to_csv(pfam_path, index=True, mode='a', header=header) elif record_type == 'tigr': tigr_path = os.path.join(tigr_folder, f'{assembly_accession}_protein_domains.csv') header = assembly_accession not in seen_tigr_assemblies seen_tigr_assemblies.add(assembly_accession) df.to_csv(tigr_path, index=True, mode='a', header=header) return fn def process_files(folder, known_assemblies, batch_size, skiplines=4, n_cols=19): files = [] for p in pathlib.Path(folder).iterdir(): if p.is_file() and ('pfam' in p.name.lower() or 'tigr' in p.name.lower()): files.append(p) logger.info(f'Processing {len(files)} files') p = r'\s+'.join([r'([^\s]+)' for _ in range(n_cols)]) pattern = f'^{p}$' batch = [] n_records = 0 for i, path in enumerate(sorted(files, key=lambda p: p.name)): logger.info(f'Processing file {i+1} / {len(files)}: {path.name}') if 'pfam' in path.name.lower(): record_type = 'pfam' else: record_type = 'tigr' line_nb = 0 with path.open() as f: for line in f: line_nb += 1 if line_nb < skiplines: continue m = re.match(pattern, line) if m is None: continue n_records += 1 if n_records % int(1e5) == 0: logger.info(f'{n_records:,} records processed') row = [m[i+1] for i in range(n_cols)] first_el = row[0] a, genome_accession = tuple(first_el.split('$')) if genome_accession not in known_assemblies: continue _, protein_id = tuple(a.split('@')) protein_label = row[-1] if row[-1] != '-' else None pfam_query = row[2] pfam_accession = row[3] data_row = [ genome_accession, protein_id, record_type, pfam_query, pfam_accession, protein_label, ] batch.append(data_row) if len(batch) >= batch_size: batch_df = prepare_batch(batch) yield batch_df batch = [] if len(batch) > 0: yield prepare_batch(batch) batch = [] if len(batch) > 0: yield prepare_batch(batch) logger.info(f'Total number of records: {n_records:,}') return def load_protein_ids(assembly_accession, method): if method == 'codon_bias': return load_codon_bias_protein_ids(assembly_accession) else: return load_tri_nucleotide_bias_protein_ids(assembly_accession) def load_codon_bias_protein_ids(assembly_accession): path_all = os.path.join(os.getcwd(), f'data/cds_codon_bias/all/{assembly_accession}_codon_bias.csv') path_below = os.path.join(os.getcwd(), f'data/cds_codon_bias/below_threshold/{assembly_accession}_codon_bias.csv') all_protein_ids = [ p_id.strip() for p_id in pd.read_csv(path_all)['protein_id'].unique() if not pd.isnull(p_id) ] top_protein_ids = [ p_id.strip() for p_id in pd.read_csv(path_below)['protein_id'].unique() if not
pd.isnull(p_id)
pandas.isnull
#!/usr/bin/env python # coding: utf-8 # In[1]: import pyspark import matplotlib.pyplot as plt # In[131]: from wordcloud import WordCloud # In[2]: import csv # In[121]: import numpy as np # In[3]: import pandas as pd # In[4]: from pyspark import SparkConf,SparkContext,SQLContext # In[5]: from pyspark import SparkConf,SparkContext,SQLContext # In[6]: conf=SparkConf() # In[7]: context=SparkContext(conf=conf) # In[8]: from pyspark.ml.feature import VectorAssembler # In[9]: from pyspark.ml.feature import FeatureHasher # In[10]: from pyspark.ml.feature import Tokenizer,HashingTF,IDF # In[11]: from pyspark.ml.classification import NaiveBayes, NaiveBayesModel # In[12]: from pyspark.mllib.classification import NaiveBayes, NaiveBayesModel # In[13]: from pyspark.mllib.util import MLUtils # In[14]: from pyspark.ml import Pipeline # In[15]: from pyspark.ml.evaluation import MulticlassClassificationEvaluator # In[16]: from pyspark.sql.functions import col, lit # In[17]: sql=SQLContext(context) # In[18]: rddnew=context.textFile("/home/salman/Downloads/spamraw.csv") # In[19]: def vectorize_data(inputStr) : attribute_split = inputStr.split(",") spam_or_ham = 0.0 if attribute_split[0] == "ham" else 1.0 return [spam_or_ham, attribute_split[1]] # In[20]: vectorized = rddnew.map(vectorize_data) # In[21]: dfnew = sql.createDataFrame(vectorized, ["label", "message"]) # In[22]: dfnew.show() # In[43]: (training_data, test_data) = dfnew.randomSplit([0.7, 0.3]) # In[100]: df=dfnew.toPandas() # In[101]: spam_words = ' '.join(list(df[df['label'] == 1]['message'])) spam_wc = WordCloud(width = 512,height = 512).generate(spam_words) plt.figure(figsize = (10, 8), facecolor = 'k') plt.imshow(spam_wc) plt.axis('off') plt.tight_layout(pad = 0) plt.show() # In[102]: ham_words = ' '.join(list(df[df['label'] == 0]['message'])) ham_wc = WordCloud(width = 512,height = 512).generate(ham_words) plt.figure(figsize = (10, 8), facecolor = 'k') plt.imshow(ham_wc) plt.axis('off') plt.tight_layout(pad = 0) plt.show() # In[44]: tokenizer = Tokenizer(inputCol="message",outputCol="tokenized") # In[45]: hasher = HashingTF(inputCol = tokenizer.getOutputCol(), outputCol = "frequency") # In[46]: idf = IDF(inputCol = hasher.getOutputCol(), outputCol = "features") # In[47]: from pyspark.ml.classification import RandomForestClassifier # In[48]: from pyspark.ml.classification import LinearSVC # In[49]: from pyspark.ml.classification import NaiveBayes # In[50]: lsvc = LinearSVC(maxIter=10, regParam=0.1) # In[51]: rf = RandomForestClassifier(labelCol="label", featuresCol="features", numTrees = 100, maxDepth = 4, maxBins = 32) # In[52]: nb = NaiveBayes(smoothing=1.0, modelType="multinomial") # In[53]: pipelinerf = Pipeline(stages=[tokenizer,hasher,idf,rf]) # In[54]: pipelinelsvc1 = Pipeline(stages=[tokenizer,hasher,idf,lsvc]) # In[55]: pipelinenb = Pipeline(stages=[tokenizer,hasher,idf,nb]) # In[56]: modelrf = pipelinerf.fit(training_data) # In[57]: modellsvcc = pipelinelsvc1.fit(training_data) # In[58]: modelnb = pipelinenb.fit(training_data) # In[59]: predictionrf = modelrf.transform(test_data) # In[60]: predictionlsvc= modellsvcc.transform(test_data) # In[61]: predictionnb = modelnb.transform(test_data) # In[62]: selectedrf = predictionrf.select("label", "message", "probability", "prediction") # In[63]: evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy") # In[64]: accuracyrf = evaluator.evaluate(predictionrf) # In[65]: accuracylsvc= evaluator.evaluate(predictionlsvc) # In[66]: accuracynb= evaluator.evaluate(predictionnb) # In[67]: print("Test set accuracy = " + str(accuracyrf)) # In[68]: print("Test set accuracy = " + str(accuracylsvc)) # # In[69]: print("Test set accuracy = " + str(accuracynb)) # In[ ]: # In[70]: pdd=
pd.DataFrame([["", ""]], columns=("label","message"))
pandas.DataFrame