prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- try: import json except ImportError: import simplejson as json import math import pytz import locale import pytest import time import datetime import calendar import re import decimal import dateutil from functools import partial from pandas.compat import range, StringIO, u from pandas._libs.tslib import Timestamp import pandas._libs.json as ujson import pandas.compat as compat import numpy as np from pandas import DataFrame, Series, Index, NaT, DatetimeIndex, date_range import pandas.util.testing as tm json_unicode = (json.dumps if compat.PY3 else partial(json.dumps, encoding="utf-8")) def _clean_dict(d): """ Sanitize dictionary for JSON by converting all keys to strings. Parameters ---------- d : dict The dictionary to convert. Returns ------- cleaned_dict : dict """ return {str(k): v for k, v in compat.iteritems(d)} @pytest.fixture(params=[ None, # Column indexed by default. "split", "records", "values", "index"]) def orient(request): return request.param @pytest.fixture(params=[None, True]) def numpy(request): return request.param class TestUltraJSONTests(object): @pytest.mark.skipif(compat.is_platform_32bit(), reason="not compliant on 32-bit, xref #15865") def test_encode_decimal(self): sut = decimal.Decimal("1337.1337") encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert decoded == 1337.1337 sut = decimal.Decimal("0.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.94") encoded = ujson.encode(sut, double_precision=1) assert encoded == "0.9" decoded = ujson.decode(encoded) assert decoded == 0.9 sut = decimal.Decimal("1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "2.0" decoded = ujson.decode(encoded) assert decoded == 2.0 sut = decimal.Decimal("-1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "-2.0" decoded = ujson.decode(encoded) assert decoded == -2.0 sut = decimal.Decimal("0.995") encoded = ujson.encode(sut, double_precision=2) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.9995") encoded = ujson.encode(sut, double_precision=3) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.99999999999999944") encoded = ujson.encode(sut, double_precision=15) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 @pytest.mark.parametrize("ensure_ascii", [True, False]) def test_encode_string_conversion(self, ensure_ascii): string_input = "A string \\ / \b \f \n \r \t </script> &" not_html_encoded = ('"A string \\\\ \\/ \\b \\f \\n ' '\\r \\t <\\/script> &"') html_encoded = ('"A string \\\\ \\/ \\b \\f \\n \\r \\t ' '\\u003c\\/script\\u003e \\u0026"') def helper(expected_output, **encode_kwargs): output = ujson.encode(string_input, ensure_ascii=ensure_ascii, **encode_kwargs) assert output == expected_output assert string_input == json.loads(output) assert string_input == ujson.decode(output) # Default behavior assumes encode_html_chars=False. helper(not_html_encoded) # Make sure explicit encode_html_chars=False works. helper(not_html_encoded, encode_html_chars=False) # Make sure explicit encode_html_chars=True does the encoding. helper(html_encoded, encode_html_chars=True) @pytest.mark.parametrize("long_number", [ -4342969734183514, -12345678901234.56789012, -528656961.4399388 ]) def test_double_long_numbers(self, long_number): sut = {u("a"): long_number} encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert sut == decoded def test_encode_non_c_locale(self): lc_category = locale.LC_NUMERIC # We just need one of these locales to work. for new_locale in ("it_IT.UTF-8", "Italian_Italy"): if tm.can_set_locale(new_locale, lc_category): with tm.set_locale(new_locale, lc_category): assert ujson.loads(ujson.dumps(4.78e60)) == 4.78e60 assert ujson.loads("4.78", precise_float=True) == 4.78 break def test_decimal_decode_test_precise(self): sut = {u("a"): 4.56} encoded = ujson.encode(sut) decoded = ujson.decode(encoded, precise_float=True) assert sut == decoded @pytest.mark.skipif(compat.is_platform_windows() and not compat.PY3, reason="buggy on win-64 for py2") def test_encode_double_tiny_exponential(self): num = 1e-40 assert num == ujson.decode(ujson.encode(num)) num = 1e-100 assert num == ujson.decode(ujson.encode(num)) num = -1e-45 assert num == ujson.decode(ujson.encode(num)) num = -1e-145 assert np.allclose(num, ujson.decode(ujson.encode(num))) @pytest.mark.parametrize("unicode_key", [ u("key1"), u("بن") ]) def test_encode_dict_with_unicode_keys(self, unicode_key): unicode_dict = {unicode_key: u("value1")} assert unicode_dict == ujson.decode(ujson.encode(unicode_dict)) @pytest.mark.parametrize("double_input", [ math.pi, -math.pi # Should work with negatives too. ]) def test_encode_double_conversion(self, double_input): output = ujson.encode(double_input) assert round(double_input, 5) == round(json.loads(output), 5) assert round(double_input, 5) == round(ujson.decode(output), 5) def test_encode_with_decimal(self): decimal_input = 1.0 output = ujson.encode(decimal_input) assert output == "1.0" def test_encode_array_of_nested_arrays(self): nested_input = [[[[]]]] * 20 output = ujson.encode(nested_input) assert nested_input == json.loads(output) assert nested_input == ujson.decode(output) nested_input = np.array(nested_input) tm.assert_numpy_array_equal(nested_input, ujson.decode( output, numpy=True, dtype=nested_input.dtype)) def test_encode_array_of_doubles(self): doubles_input = [31337.31337, 31337.31337, 31337.31337, 31337.31337] * 10 output = ujson.encode(doubles_input) assert doubles_input == json.loads(output) assert doubles_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(doubles_input), ujson.decode(output, numpy=True)) def test_double_precision(self): double_input = 30.012345678901234 output = ujson.encode(double_input, double_precision=15) assert double_input == json.loads(output) assert double_input == ujson.decode(output) for double_precision in (3, 9): output = ujson.encode(double_input, double_precision=double_precision) rounded_input = round(double_input, double_precision) assert rounded_input == json.loads(output) assert rounded_input == ujson.decode(output) @pytest.mark.parametrize("invalid_val", [ 20, -1, "9", None ]) def test_invalid_double_precision(self, invalid_val): double_input = 30.12345678901234567890 expected_exception = (ValueError if isinstance(invalid_val, int) else TypeError) with pytest.raises(expected_exception): ujson.encode(double_input, double_precision=invalid_val) def test_encode_string_conversion2(self): string_input = "A string \\ / \b \f \n \r \t" output = ujson.encode(string_input) assert string_input == json.loads(output) assert string_input == ujson.decode(output) assert output == '"A string \\\\ \\/ \\b \\f \\n \\r \\t"' @pytest.mark.parametrize("unicode_input", [ "Räksmörgås اسامة بن محمد بن عوض بن لادن", "\xe6\x97\xa5\xd1\x88" ]) def test_encode_unicode_conversion(self, unicode_input): enc = ujson.encode(unicode_input) dec = ujson.decode(enc) assert enc == json_unicode(unicode_input) assert dec == json.loads(enc) def test_encode_control_escaping(self): escaped_input = "\x19" enc = ujson.encode(escaped_input) dec = ujson.decode(enc) assert escaped_input == dec assert enc == json_unicode(escaped_input) def test_encode_unicode_surrogate_pair(self): surrogate_input = "\xf0\x90\x8d\x86" enc = ujson.encode(surrogate_input) dec = ujson.decode(enc) assert enc == json_unicode(surrogate_input) assert dec == json.loads(enc) def test_encode_unicode_4bytes_utf8(self): four_bytes_input = "\xf0\x91\x80\xb0TRAILINGNORMAL" enc = ujson.encode(four_bytes_input) dec = ujson.decode(enc) assert enc == json_unicode(four_bytes_input) assert dec == json.loads(enc) def test_encode_unicode_4bytes_utf8highest(self): four_bytes_input = "\xf3\xbf\xbf\xbfTRAILINGNORMAL" enc = ujson.encode(four_bytes_input) dec = ujson.decode(enc) assert enc == json_unicode(four_bytes_input) assert dec == json.loads(enc) def test_encode_array_in_array(self): arr_in_arr_input = [[[[]]]] output = ujson.encode(arr_in_arr_input) assert arr_in_arr_input == json.loads(output) assert output == json.dumps(arr_in_arr_input) assert arr_in_arr_input ==
ujson.decode(output)
pandas._libs.json.decode
import pandas as pd import numpy as np from mstrio.connection import Connection from mstrio.application_objects.datasets import SuperCube from functools import reduce def vdo_invoice_calc(df): """Calculates only bill values.""" df['REVENUE'] = df['REVENUE'].astype(float) df['PRICE_NO_DISCOUNT'] = df['PRICE_NO_DISCOUNT'].astype(float) df['PRICE_TAG'] = df['PRICE_TAG'].astype(int) df['ENTER_DATE'] = pd.DatetimeIndex(df['ENTER_DATE']) df['ENTER_DATE'] = df['ENTER_DATE'].dt.date df['LEAVE_DATE'] = pd.DatetimeIndex(df['LEAVE_DATE']) df['LEAVE_DATE'] = df['LEAVE_DATE'].dt.date df['BIRTH_DATE'] = pd.DatetimeIndex(df['BIRTH_DATE']) df['MAIN_CATEGORY_CODE'] = df['MAIN_CATEGORY_CODE'].astype(str) df.loc[df['MAIN_CATEGORY_CODE'].isin(['115', '129', '147', '161']), 'BUNDLE'] = 'YES' df.loc[(df['MAIN_CATEGORY_CODE'] == '44') & (df['PRICE_TAG'] >= 25), 'BUNDLE'] = 'YES' df['SESSION_NO'] = df['CUSTOMERNO'].astype(str) + df['DATE_TAG'].astype(str) df['AGE'] = pd.DatetimeIndex(df['ENTER_DATE']).year - pd.DatetimeIndex(df['BIRTH_DATE']).year df['STORE_NAME'].replace(to_replace=['Aadvark'], value='ADVRK', inplace=True) df_bndl_revenue = df[df['BUNDLE'] == 'YES'].groupby('SESSION_NO').agg({'REVENUE': 'sum'}) df_bndl_revenue = pd.DataFrame(df_bndl_revenue).reset_index() df_bndl_revenue.columns = ['SESSION_NO', 'BUNDLE_REVENUE'] df_bndl_individual_rvn = df[df['PAYMENT_TAG'] == 'P'].groupby('SESSION_NO').agg({'REVENUE': 'sum'}) df_bndl_individual_rvn = pd.DataFrame(df_bndl_individual_rvn).reset_index() df_bndl_individual_rvn.columns = ['SESSION_NO', 'BUNDLE_IND_SUM'] merged = df_bndl_revenue.merge(df_bndl_individual_rvn, on='SESSION_NO', how='outer', left_index=False, right_index=False) merged['RATIO'] = merged['BUNDLE_REVENUE'] / merged['BUNDLE_IND_SUM'] df_last = df.merge(merged[['SESSION_NO', 'RATIO']], on='SESSION_NO', how='outer', left_index=False, right_index=False) df_last.loc[df_last['PAYMENT_TAG'] == 'P', 'UNBUNDLED_DISCOUNTED'] = df_last['REVENUE'] * df_last['RATIO'] df_last.loc[df_last['PAYMENT_TAG'] != 'P', 'UNBUNDLED_DISCOUNTED'] = df_last['REVENUE'] df_last.loc[df_last['MAIN_CATEGORY_CODE'].isin(['102', '108', '109', '110', '111', '112', '114', '115', '116', '117', '120', '121', '123', '124', '125', '129', '132', '133', '134', '136', '141', '149', '150', '157', '166', '175', '179', '182']), 'MATCHING_CAT'] = 'SUPPLEMENT' df_last.loc[df_last['MAIN_CATEGORY_CODE'].isin(['113', '122', '128', '145', '163']), 'MATCHING_CAT'] = 'CONSUMABLES' df_last.loc[df_last['MAIN_CATEGORY_CODE'].isin(['103', '118', '135']), 'MATCHING_CAT'] = 'HOMEBUILD' df_last.loc[df_last['MAIN_CATEGORY_CODE'].isin(['106', '107', '131', '154', '181']), 'MATCHING_CAT'] = 'PROFESSIONAL' df_last.loc[(df_last['MAIN_CATEGORY_CODE'] == '04') & (df_last['PRICE_TAG'].between(10, 60)), 'MATCHING_CAT'] = 'PROFESSIONAL' df_last.loc[(df_last['MAIN_CATEGORY_CODE'] == '04') & (df_last['PRICE_TAG'] == 100), 'MATCHING_CAT'] = 'HOMEBUILD' df_last.loc[(df_last['MAIN_CATEGORY_CODE'] == '04') & (df_last['PRICE_TAG'] == 70), 'MATCHING_CAT'] = 'HOMEBUILD' df_last.loc[df_last['MATCHING_CAT'].isna(), 'MATCHING_CAT'] = 'Other' # to detect uncategorized goods seller_fee_includes = df_last[(df_last['MAIN_CATEGORY_CODE'] == '04') & (df_last['PRICE_TAG'] == 1)]['CUSTOMERNO'].unique() depot_fee_includes = df_last[df_last['MAIN_CATEGORY_CODE'] == '45']['CUSTOMERNO'].unique() pivot = pd.pivot_table(df_last[(df_last['BUNDLE'] != 'YES') & (~df_last['PAYMENT_TAG'].isin(['M', 'S', 'X']))], index='CUSTOMERNO', columns='MATCHING_CAT', values='UNBUNDLED_DISCOUNTED', aggfunc=np.sum) pivot = pd.DataFrame(pivot).reset_index() pivot_info = df_last.groupby('CUSTOMERNO').agg({'SESSION_NO': 'first', 'STATE': 'first', 'GENDER': 'first', 'AGE': 'first', 'STORE_CODE': 'first', 'STORE_NAME': 'first', 'OPERATION': 'first', 'NAME_SURNAME': 'first', 'SELLER_NAME': 'first', 'ENTER_DATE': 'first', 'LEAVE_DATE': 'first'}) pivot_info =
pd.DataFrame(pivot_info)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 23 11:11:57 2018 @author: kazuki.onodera -d- -> / -x- -> * -p- -> + -m- -> - nohup python -u 000.py 0 > LOG/log_000.py_0.txt & nohup python -u 000.py 1 > LOG/log_000.py_1.txt & nohup python -u 000.py 2 > LOG/log_000.py_2.txt & nohup python -u 000.py 3 > LOG/log_000.py_3.txt & nohup python -u 000.py 4 > LOG/log_000.py_4.txt & nohup python -u 000.py 5 > LOG/log_000.py_5.txt & nohup python -u 000.py 6 > LOG/log_000.py_6.txt & """ import numpy as np import pandas as pd from multiprocessing import Pool, cpu_count NTHREAD = cpu_count() from itertools import combinations from tqdm import tqdm import sys argv = sys.argv import os, utils, gc utils.start(__file__) #============================================================================== folders = [ # '../data', '../feature', '../feature_unused', # '../feature_var0', '../feature_corr1' ] for fol in folders: os.system(f'rm -rf {fol}') os.system(f'mkdir {fol}') col_app_money = ['app_AMT_INCOME_TOTAL', 'app_AMT_CREDIT', 'app_AMT_ANNUITY', 'app_AMT_GOODS_PRICE'] col_app_day = ['app_DAYS_BIRTH', 'app_DAYS_EMPLOYED', 'app_DAYS_REGISTRATION', 'app_DAYS_ID_PUBLISH', 'app_DAYS_LAST_PHONE_CHANGE'] def get_trte(): usecols = ['SK_ID_CURR', 'AMT_INCOME_TOTAL', 'AMT_CREDIT', 'AMT_ANNUITY', 'AMT_GOODS_PRICE'] usecols += ['DAYS_BIRTH', 'DAYS_EMPLOYED', 'DAYS_REGISTRATION', 'DAYS_ID_PUBLISH', 'DAYS_LAST_PHONE_CHANGE'] rename_di = { 'AMT_INCOME_TOTAL': 'app_AMT_INCOME_TOTAL', 'AMT_CREDIT': 'app_AMT_CREDIT', 'AMT_ANNUITY': 'app_AMT_ANNUITY', 'AMT_GOODS_PRICE': 'app_AMT_GOODS_PRICE', 'DAYS_BIRTH': 'app_DAYS_BIRTH', 'DAYS_EMPLOYED': 'app_DAYS_EMPLOYED', 'DAYS_REGISTRATION': 'app_DAYS_REGISTRATION', 'DAYS_ID_PUBLISH': 'app_DAYS_ID_PUBLISH', 'DAYS_LAST_PHONE_CHANGE': 'app_DAYS_LAST_PHONE_CHANGE', } trte = pd.concat([pd.read_csv('../input/application_train.csv.zip', usecols=usecols).rename(columns=rename_di), pd.read_csv('../input/application_test.csv.zip', usecols=usecols).rename(columns=rename_di)], ignore_index=True) return trte def prep_prev(df): df['AMT_APPLICATION'].replace(0, np.nan, inplace=True) df['AMT_CREDIT'].replace(0, np.nan, inplace=True) df['CNT_PAYMENT'].replace(0, np.nan, inplace=True) df['AMT_DOWN_PAYMENT'].replace(np.nan, 0, inplace=True) df.loc[df['NAME_CONTRACT_STATUS']!='Approved', 'AMT_DOWN_PAYMENT'] = np.nan df['RATE_DOWN_PAYMENT'].replace(np.nan, 0, inplace=True) df.loc[df['NAME_CONTRACT_STATUS']!='Approved', 'RATE_DOWN_PAYMENT'] = np.nan # df['xxx'].replace(0, np.nan, inplace=True) # df['xxx'].replace(0, np.nan, inplace=True) return p = int(argv[1]) if True: #def multi(p): if p==0: # ============================================================================= # application # ============================================================================= def f1(df): df['CODE_GENDER'] = 1 - (df['CODE_GENDER']=='F')*1 # 4 'XNA' are converted to 'M' df['FLAG_OWN_CAR'] = (df['FLAG_OWN_CAR']=='Y')*1 df['FLAG_OWN_REALTY'] = (df['FLAG_OWN_REALTY']=='Y')*1 df['EMERGENCYSTATE_MODE'] = (df['EMERGENCYSTATE_MODE']=='Yes')*1 df['AMT_CREDIT-d-AMT_INCOME_TOTAL'] = df['AMT_CREDIT'] / df['AMT_INCOME_TOTAL'] df['AMT_ANNUITY-d-AMT_INCOME_TOTAL'] = df['AMT_ANNUITY'] / df['AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-d-AMT_INCOME_TOTAL'] = df['AMT_GOODS_PRICE'] / df['AMT_INCOME_TOTAL'] df['AMT_CREDIT-d-AMT_ANNUITY'] = df['AMT_CREDIT'] / df['AMT_ANNUITY'] # how long should user pay?(month) df['AMT_GOODS_PRICE-d-AMT_ANNUITY'] = df['AMT_GOODS_PRICE'] / df['AMT_ANNUITY']# how long should user pay?(month) df['AMT_GOODS_PRICE-d-AMT_CREDIT'] = df['AMT_GOODS_PRICE'] / df['AMT_CREDIT'] df['AMT_GOODS_PRICE-m-AMT_CREDIT'] = df['AMT_GOODS_PRICE'] - df['AMT_CREDIT'] df['AMT_GOODS_PRICE-m-AMT_CREDIT-d-AMT_INCOME_TOTAL'] = df['AMT_GOODS_PRICE-m-AMT_CREDIT'] / df['AMT_INCOME_TOTAL'] df['age_finish_payment'] = df['DAYS_BIRTH'].abs() + (df['AMT_CREDIT-d-AMT_ANNUITY']*30) # df['age_finish_payment'] = (df['DAYS_BIRTH']/-365) + df['credit-d-annuity'] df.loc[df['DAYS_EMPLOYED']==365243, 'DAYS_EMPLOYED'] = np.nan df['DAYS_EMPLOYED-m-DAYS_BIRTH'] = df['DAYS_EMPLOYED'] - df['DAYS_BIRTH'] df['DAYS_REGISTRATION-m-DAYS_BIRTH'] = df['DAYS_REGISTRATION'] - df['DAYS_BIRTH'] df['DAYS_ID_PUBLISH-m-DAYS_BIRTH'] = df['DAYS_ID_PUBLISH'] - df['DAYS_BIRTH'] df['DAYS_LAST_PHONE_CHANGE-m-DAYS_BIRTH'] = df['DAYS_LAST_PHONE_CHANGE'] - df['DAYS_BIRTH'] df['DAYS_REGISTRATION-m-DAYS_EMPLOYED'] = df['DAYS_REGISTRATION'] - df['DAYS_EMPLOYED'] df['DAYS_ID_PUBLISH-m-DAYS_EMPLOYED'] = df['DAYS_ID_PUBLISH'] - df['DAYS_EMPLOYED'] df['DAYS_LAST_PHONE_CHANGE-m-DAYS_EMPLOYED'] = df['DAYS_LAST_PHONE_CHANGE'] - df['DAYS_EMPLOYED'] df['DAYS_ID_PUBLISH-m-DAYS_REGISTRATION'] = df['DAYS_ID_PUBLISH'] - df['DAYS_REGISTRATION'] df['DAYS_LAST_PHONE_CHANGE-m-DAYS_REGISTRATION'] = df['DAYS_LAST_PHONE_CHANGE'] - df['DAYS_REGISTRATION'] df['DAYS_LAST_PHONE_CHANGE-m-DAYS_ID_PUBLISH'] = df['DAYS_LAST_PHONE_CHANGE'] - df['DAYS_ID_PUBLISH'] col = ['DAYS_EMPLOYED-m-DAYS_BIRTH', 'DAYS_REGISTRATION-m-DAYS_BIRTH', 'DAYS_ID_PUBLISH-m-DAYS_BIRTH', 'DAYS_LAST_PHONE_CHANGE-m-DAYS_BIRTH', 'DAYS_REGISTRATION-m-DAYS_EMPLOYED', 'DAYS_ID_PUBLISH-m-DAYS_EMPLOYED', 'DAYS_LAST_PHONE_CHANGE-m-DAYS_EMPLOYED', 'DAYS_ID_PUBLISH-m-DAYS_REGISTRATION', 'DAYS_LAST_PHONE_CHANGE-m-DAYS_REGISTRATION', 'DAYS_LAST_PHONE_CHANGE-m-DAYS_ID_PUBLISH' ] col_comb = list(combinations(col, 2)) for i,j in col_comb: df[f'{i}-d-{j}'] = df[i] / df[j] df['DAYS_EMPLOYED-d-DAYS_BIRTH'] = df['DAYS_EMPLOYED'] / df['DAYS_BIRTH'] df['DAYS_REGISTRATION-d-DAYS_BIRTH'] = df['DAYS_REGISTRATION'] / df['DAYS_BIRTH'] df['DAYS_ID_PUBLISH-d-DAYS_BIRTH'] = df['DAYS_ID_PUBLISH'] / df['DAYS_BIRTH'] df['DAYS_LAST_PHONE_CHANGE-d-DAYS_BIRTH'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_BIRTH'] df['DAYS_REGISTRATION-d-DAYS_EMPLOYED'] = df['DAYS_REGISTRATION'] / df['DAYS_EMPLOYED'] df['DAYS_ID_PUBLISH-d-DAYS_EMPLOYED'] = df['DAYS_ID_PUBLISH'] / df['DAYS_EMPLOYED'] df['DAYS_LAST_PHONE_CHANGE-d-DAYS_EMPLOYED'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_EMPLOYED'] df['DAYS_ID_PUBLISH-d-DAYS_REGISTRATION'] = df['DAYS_ID_PUBLISH'] / df['DAYS_REGISTRATION'] df['DAYS_LAST_PHONE_CHANGE-d-DAYS_REGISTRATION'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_REGISTRATION'] df['DAYS_LAST_PHONE_CHANGE-d-DAYS_ID_PUBLISH'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_ID_PUBLISH'] df['OWN_CAR_AGE-d-DAYS_BIRTH'] = (df['OWN_CAR_AGE']*(-365)) / df['DAYS_BIRTH'] df['OWN_CAR_AGE-m-DAYS_BIRTH'] = df['DAYS_BIRTH'] + (df['OWN_CAR_AGE']*365) df['OWN_CAR_AGE-d-DAYS_EMPLOYED'] = df['OWN_CAR_AGE'] / df['DAYS_EMPLOYED'] df['OWN_CAR_AGE-m-DAYS_EMPLOYED'] = df['DAYS_EMPLOYED'] + (df['OWN_CAR_AGE']*365) df['cnt_adults'] = df['CNT_FAM_MEMBERS'] - df['CNT_CHILDREN'] df['CNT_CHILDREN-d-CNT_FAM_MEMBERS'] = df['CNT_CHILDREN'] / df['CNT_FAM_MEMBERS'] df['income_per_adult'] = df['AMT_INCOME_TOTAL'] / df['cnt_adults'] # df.loc[df['CNT_CHILDREN']==0, 'CNT_CHILDREN'] = np.nan df['AMT_INCOME_TOTAL-d-CNT_CHILDREN'] = df['AMT_INCOME_TOTAL'] / (df['CNT_CHILDREN']+0.000001) df['AMT_CREDIT-d-CNT_CHILDREN'] = df['AMT_CREDIT'] / (df['CNT_CHILDREN']+0.000001) df['AMT_ANNUITY-d-CNT_CHILDREN'] = df['AMT_ANNUITY'] / (df['CNT_CHILDREN']+0.000001) df['AMT_GOODS_PRICE-d-CNT_CHILDREN'] = df['AMT_GOODS_PRICE'] / (df['CNT_CHILDREN']+0.000001) df['AMT_INCOME_TOTAL-d-cnt_adults'] = df['AMT_INCOME_TOTAL'] / df['cnt_adults'] df['AMT_CREDIT-d-cnt_adults'] = df['AMT_CREDIT'] / df['cnt_adults'] df['AMT_ANNUITY-d-cnt_adults'] = df['AMT_ANNUITY'] / df['cnt_adults'] df['AMT_GOODS_PRICE-d-cnt_adults'] = df['AMT_GOODS_PRICE'] / df['cnt_adults'] df['AMT_INCOME_TOTAL-d-CNT_FAM_MEMBERS'] = df['AMT_INCOME_TOTAL'] / df['CNT_FAM_MEMBERS'] df['AMT_CREDIT-d-CNT_FAM_MEMBERS'] = df['AMT_CREDIT'] / df['CNT_FAM_MEMBERS'] df['AMT_ANNUITY-d-CNT_FAM_MEMBERS'] = df['AMT_ANNUITY'] / df['CNT_FAM_MEMBERS'] df['AMT_GOODS_PRICE-d-CNT_FAM_MEMBERS'] = df['AMT_GOODS_PRICE'] / df['CNT_FAM_MEMBERS'] # EXT_SOURCE_x df['EXT_SOURCES_prod'] = df['EXT_SOURCE_1'] * df['EXT_SOURCE_2'] * df['EXT_SOURCE_3'] df['EXT_SOURCES_sum'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].sum(axis=1) df['EXT_SOURCES_sum'] = df['EXT_SOURCES_sum'].fillna(df['EXT_SOURCES_sum'].mean()) df['EXT_SOURCES_mean'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].mean(axis=1) df['EXT_SOURCES_mean'] = df['EXT_SOURCES_mean'].fillna(df['EXT_SOURCES_mean'].mean()) df['EXT_SOURCES_std'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].std(axis=1) df['EXT_SOURCES_std'] = df['EXT_SOURCES_std'].fillna(df['EXT_SOURCES_std'].mean()) df['EXT_SOURCES_1-2-3'] = df['EXT_SOURCE_1'] - df['EXT_SOURCE_2'] - df['EXT_SOURCE_3'] df['EXT_SOURCES_2-1-3'] = df['EXT_SOURCE_2'] - df['EXT_SOURCE_1'] - df['EXT_SOURCE_3'] df['EXT_SOURCES_1-2'] = df['EXT_SOURCE_1'] - df['EXT_SOURCE_2'] df['EXT_SOURCES_2-3'] = df['EXT_SOURCE_2'] - df['EXT_SOURCE_3'] df['EXT_SOURCES_1-3'] = df['EXT_SOURCE_1'] - df['EXT_SOURCE_3'] # ========= # https://www.kaggle.com/jsaguiar/updated-0-792-lb-lightgbm-with-simple-features/code # ========= df['DAYS_EMPLOYED_PERC'] = df['DAYS_EMPLOYED'] / df['DAYS_BIRTH'] df['INCOME_PER_PERSON'] = df['AMT_INCOME_TOTAL'] / df['CNT_FAM_MEMBERS'] df['PAYMENT_RATE'] = df['AMT_ANNUITY'] / df['AMT_CREDIT'] # ========= # https://www.kaggle.com/poohtls/fork-of-fork-lightgbm-with-simple-features/code # ========= docs = [_f for _f in df.columns if 'FLAG_DOC' in _f] live = [_f for _f in df.columns if ('FLAG_' in _f) & ('FLAG_DOC' not in _f) & ('_FLAG_' not in _f)] inc_by_org = df[['AMT_INCOME_TOTAL', 'ORGANIZATION_TYPE']].groupby('ORGANIZATION_TYPE').median()['AMT_INCOME_TOTAL'] df['alldocs_kurt'] = df[docs].kurtosis(axis=1) df['alldocs_skew'] = df[docs].skew(axis=1) df['alldocs_mean'] = df[docs].mean(axis=1) df['alldocs_sum'] = df[docs].sum(axis=1) df['alldocs_std'] = df[docs].std(axis=1) df['NEW_LIVE_IND_SUM'] = df[live].sum(axis=1) df['NEW_INC_PER_CHLD'] = df['AMT_INCOME_TOTAL'] / (1 + df['CNT_CHILDREN']) df['NEW_INC_BY_ORG'] = df['ORGANIZATION_TYPE'].map(inc_by_org) df['NEW_ANNUITY_TO_INCOME_RATIO'] = df['AMT_ANNUITY'] / (1 + df['AMT_INCOME_TOTAL']) df['NEW_CAR_TO_BIRTH_RATIO'] = df['OWN_CAR_AGE'] / df['DAYS_BIRTH'] df['NEW_CAR_TO_EMPLOY_RATIO'] = df['OWN_CAR_AGE'] / df['DAYS_EMPLOYED'] df['NEW_PHONE_TO_BIRTH_RATIO'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_BIRTH'] df['NEW_PHONE_TO_EMPLOYED_RATIO'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_EMPLOYED'] # ============================================================================= # Maxwell features # ============================================================================= bdg_avg = df.filter(regex='_AVG$').columns bdg_mode = df.filter(regex='_MODE$').columns bdg_medi = df.filter(regex='_MEDI$').columns[:len(bdg_avg)] # ignore FONDKAPREMONT_MODE... df['building_score_avg_mean'] = df[bdg_avg].mean(1) df['building_score_avg_std'] = df[bdg_avg].std(1) df['building_score_avg_sum'] = df[bdg_avg].sum(1) df['building_score_mode_mean'] = df[bdg_mode].mean(1) df['building_score_mode_std'] = df[bdg_mode].std(1) df['building_score_mode_sum'] = df[bdg_mode].sum(1) df['building_score_medi_mean'] = df[bdg_medi].mean(1) df['building_score_medi_std'] = df[bdg_medi].std(1) df['building_score_medi_sum'] = df[bdg_medi].sum(1) df['maxwell_feature_1'] = (df['EXT_SOURCE_1'] * df['EXT_SOURCE_3']) ** (1 / 2) df.replace(np.inf, np.nan, inplace=True) # TODO: any other plan? df.replace(-np.inf, np.nan, inplace=True) return df = pd.read_csv('../input/application_train.csv.zip') f1(df) utils.to_pickles(df, '../data/train', utils.SPLIT_SIZE) utils.to_pickles(df[['TARGET']], '../data/label', utils.SPLIT_SIZE) df = pd.read_csv('../input/application_test.csv.zip') f1(df) utils.to_pickles(df, '../data/test', utils.SPLIT_SIZE) df[['SK_ID_CURR']].to_pickle('../data/sub.p') elif p==1: # ============================================================================= # prev # ============================================================================= """ df = utils.read_pickles('../data/previous_application') """ df = pd.merge(pd.read_csv('../data/prev_new_v4.csv.gz'), get_trte(), on='SK_ID_CURR', how='left') # df = pd.merge(pd.read_csv('../input/previous_application.csv.zip'), # get_trte(), on='SK_ID_CURR', how='left') prep_prev(df) df['FLAG_LAST_APPL_PER_CONTRACT'] = (df['FLAG_LAST_APPL_PER_CONTRACT']=='Y')*1 # day for c in ['DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE', 'DAYS_LAST_DUE_1ST_VERSION', 'DAYS_LAST_DUE', 'DAYS_TERMINATION']: df.loc[df[c]==365243, c] = np.nan df['days_fdue-m-fdrw'] = df['DAYS_FIRST_DUE'] - df['DAYS_FIRST_DRAWING'] df['days_ldue1-m-fdrw'] = df['DAYS_LAST_DUE_1ST_VERSION'] - df['DAYS_FIRST_DRAWING'] df['days_ldue-m-fdrw'] = df['DAYS_LAST_DUE'] - df['DAYS_FIRST_DRAWING'] # total span df['days_trm-m-fdrw'] = df['DAYS_TERMINATION'] - df['DAYS_FIRST_DRAWING'] df['days_ldue1-m-fdue'] = df['DAYS_LAST_DUE_1ST_VERSION'] - df['DAYS_FIRST_DUE'] df['days_ldue-m-fdue'] = df['DAYS_LAST_DUE'] - df['DAYS_FIRST_DUE'] df['days_trm-m-fdue'] = df['DAYS_TERMINATION'] - df['DAYS_FIRST_DUE'] df['days_ldue-m-ldue1'] = df['DAYS_LAST_DUE'] - df['DAYS_LAST_DUE_1ST_VERSION'] df['days_trm-m-ldue1'] = df['DAYS_TERMINATION'] - df['DAYS_LAST_DUE_1ST_VERSION'] df['days_trm-m-ldue'] = df['DAYS_TERMINATION'] - df['DAYS_LAST_DUE'] # money df['total_debt'] = df['AMT_ANNUITY'] * df['CNT_PAYMENT'] df['AMT_CREDIT-d-total_debt'] = df['AMT_CREDIT'] / df['total_debt'] df['AMT_GOODS_PRICE-d-total_debt'] = df['AMT_GOODS_PRICE'] / df['total_debt'] df['AMT_GOODS_PRICE-d-AMT_CREDIT'] = df['AMT_GOODS_PRICE'] / df['AMT_CREDIT'] # app & money df['AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = df['AMT_ANNUITY'] / df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-d-app_AMT_INCOME_TOTAL'] = df['AMT_APPLICATION'] / df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = df['AMT_CREDIT'] / df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = df['AMT_GOODS_PRICE'] / df['app_AMT_INCOME_TOTAL'] df['AMT_ANNUITY-m-app_AMT_INCOME_TOTAL'] = df['AMT_ANNUITY'] - df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-m-app_AMT_INCOME_TOTAL'] = df['AMT_APPLICATION'] - df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-m-app_AMT_INCOME_TOTAL'] = df['AMT_CREDIT'] - df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-m-app_AMT_INCOME_TOTAL'] = df['AMT_GOODS_PRICE'] - df['app_AMT_INCOME_TOTAL'] df['AMT_ANNUITY-d-app_AMT_CREDIT'] = df['AMT_ANNUITY'] / df['app_AMT_CREDIT'] df['AMT_APPLICATION-d-app_AMT_CREDIT'] = df['AMT_APPLICATION'] / df['app_AMT_CREDIT'] df['AMT_CREDIT-d-app_AMT_CREDIT'] = df['AMT_CREDIT'] / df['app_AMT_CREDIT'] df['AMT_GOODS_PRICE-d-app_AMT_CREDIT'] = df['AMT_GOODS_PRICE'] / df['app_AMT_CREDIT'] df['AMT_ANNUITY-m-app_AMT_CREDIT'] = df['AMT_ANNUITY'] - df['app_AMT_CREDIT'] df['AMT_APPLICATION-m-app_AMT_CREDIT'] = df['AMT_APPLICATION'] - df['app_AMT_CREDIT'] df['AMT_CREDIT-m-app_AMT_CREDIT'] = df['AMT_CREDIT'] - df['app_AMT_CREDIT'] df['AMT_GOODS_PRICE-m-app_AMT_CREDIT'] = df['AMT_GOODS_PRICE'] - df['app_AMT_CREDIT'] df['AMT_ANNUITY-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = (df['AMT_ANNUITY'] - df['app_AMT_CREDIT']) / df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = (df['AMT_APPLICATION'] - df['app_AMT_CREDIT']) / df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = (df['AMT_CREDIT'] - df['app_AMT_CREDIT']) / df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = (df['AMT_GOODS_PRICE'] - df['app_AMT_CREDIT']) / df['app_AMT_INCOME_TOTAL'] df['AMT_ANNUITY-d-app_AMT_ANNUITY'] = df['AMT_ANNUITY'] / df['app_AMT_ANNUITY'] df['AMT_APPLICATION-d-app_AMT_ANNUITY'] = df['AMT_APPLICATION'] / df['app_AMT_ANNUITY'] df['AMT_CREDIT-d-app_AMT_ANNUITY'] = df['AMT_CREDIT'] / df['app_AMT_ANNUITY'] df['AMT_GOODS_PRICE-d-app_AMT_ANNUITY'] = df['AMT_GOODS_PRICE'] / df['app_AMT_ANNUITY'] df['AMT_ANNUITY-m-app_AMT_ANNUITY'] = df['AMT_ANNUITY'] - df['app_AMT_ANNUITY'] df['AMT_APPLICATION-m-app_AMT_ANNUITY'] = df['AMT_APPLICATION'] - df['app_AMT_ANNUITY'] df['AMT_CREDIT-m-app_AMT_ANNUITY'] = df['AMT_CREDIT'] - df['app_AMT_ANNUITY'] df['AMT_GOODS_PRICE-m-app_AMT_ANNUITY'] = df['AMT_GOODS_PRICE'] - df['app_AMT_ANNUITY'] df['AMT_ANNUITY-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = (df['AMT_ANNUITY'] - df['app_AMT_ANNUITY']) / df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = (df['AMT_APPLICATION'] - df['app_AMT_ANNUITY']) / df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = (df['AMT_CREDIT'] - df['app_AMT_ANNUITY']) / df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = (df['AMT_GOODS_PRICE'] - df['app_AMT_ANNUITY']) / df['app_AMT_INCOME_TOTAL'] df['AMT_ANNUITY-d-app_AMT_GOODS_PRICE'] = df['AMT_ANNUITY'] / df['app_AMT_GOODS_PRICE'] df['AMT_APPLICATION-d-app_AMT_GOODS_PRICE'] = df['AMT_APPLICATION'] / df['app_AMT_GOODS_PRICE'] df['AMT_CREDIT-d-app_AMT_GOODS_PRICE'] = df['AMT_CREDIT'] / df['app_AMT_GOODS_PRICE'] df['AMT_GOODS_PRICE-d-app_AMT_GOODS_PRICE'] = df['AMT_GOODS_PRICE'] / df['app_AMT_GOODS_PRICE'] df['AMT_ANNUITY-m-app_AMT_GOODS_PRICE'] = df['AMT_ANNUITY'] - df['app_AMT_GOODS_PRICE'] df['AMT_APPLICATION-m-app_AMT_GOODS_PRICE'] = df['AMT_APPLICATION'] - df['app_AMT_GOODS_PRICE'] df['AMT_CREDIT-m-app_AMT_GOODS_PRICE'] = df['AMT_CREDIT'] - df['app_AMT_GOODS_PRICE'] df['AMT_GOODS_PRICE-m-app_AMT_GOODS_PRICE'] = df['AMT_GOODS_PRICE'] - df['app_AMT_GOODS_PRICE'] df['AMT_ANNUITY-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = (df['AMT_ANNUITY'] - df['app_AMT_GOODS_PRICE']) / df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = (df['AMT_APPLICATION'] - df['app_AMT_GOODS_PRICE']) / df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = (df['AMT_CREDIT'] - df['app_AMT_GOODS_PRICE']) / df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = (df['AMT_GOODS_PRICE'] - df['app_AMT_GOODS_PRICE']) / df['app_AMT_INCOME_TOTAL'] # nejumi f_name='nejumi'; init_rate=0.9; n_iter=500 df['AMT_ANNUITY_d_AMT_CREDIT_temp'] = df.AMT_ANNUITY / df.AMT_CREDIT df[f_name] = df['AMT_ANNUITY_d_AMT_CREDIT_temp']*((1 + init_rate)**df.CNT_PAYMENT - 1)/((1 + init_rate)**df.CNT_PAYMENT) for i in range(n_iter): df[f_name] = df['AMT_ANNUITY_d_AMT_CREDIT_temp']*((1 + df[f_name])**df.CNT_PAYMENT - 1)/((1 + df[f_name])**df.CNT_PAYMENT) df.drop(['AMT_ANNUITY_d_AMT_CREDIT_temp'], axis=1, inplace=True) df.sort_values(['SK_ID_CURR', 'DAYS_DECISION'], inplace=True) df.reset_index(drop=True, inplace=True) col = [ 'total_debt', 'AMT_CREDIT-d-total_debt', 'AMT_GOODS_PRICE-d-total_debt', 'AMT_GOODS_PRICE-d-AMT_CREDIT', 'AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'AMT_ANNUITY-d-app_AMT_CREDIT', 'AMT_APPLICATION-d-app_AMT_CREDIT', 'AMT_CREDIT-d-app_AMT_CREDIT', 'AMT_GOODS_PRICE-d-app_AMT_CREDIT', 'AMT_ANNUITY-d-app_AMT_ANNUITY', 'AMT_APPLICATION-d-app_AMT_ANNUITY', 'AMT_CREDIT-d-app_AMT_ANNUITY', 'AMT_GOODS_PRICE-d-app_AMT_ANNUITY', 'AMT_ANNUITY-d-app_AMT_GOODS_PRICE', 'AMT_APPLICATION-d-app_AMT_GOODS_PRICE', 'AMT_CREDIT-d-app_AMT_GOODS_PRICE', 'AMT_GOODS_PRICE-d-app_AMT_GOODS_PRICE', 'AMT_ANNUITY-m-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-m-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-m-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-m-app_AMT_INCOME_TOTAL', 'AMT_ANNUITY-m-app_AMT_CREDIT', 'AMT_APPLICATION-m-app_AMT_CREDIT', 'AMT_CREDIT-m-app_AMT_CREDIT', 'AMT_GOODS_PRICE-m-app_AMT_CREDIT', 'AMT_ANNUITY-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_ANNUITY-m-app_AMT_ANNUITY', 'AMT_APPLICATION-m-app_AMT_ANNUITY', 'AMT_CREDIT-m-app_AMT_ANNUITY', 'AMT_GOODS_PRICE-m-app_AMT_ANNUITY', 'AMT_ANNUITY-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_ANNUITY-m-app_AMT_GOODS_PRICE', 'AMT_APPLICATION-m-app_AMT_GOODS_PRICE', 'AMT_CREDIT-m-app_AMT_GOODS_PRICE', 'AMT_GOODS_PRICE-m-app_AMT_GOODS_PRICE', 'AMT_ANNUITY-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'nejumi' ] def multi_prev(c): ret_diff = [] ret_pctchng = [] key_bk = x_bk = None for key, x in df[['SK_ID_CURR', c]].values: # for key, x in tqdm(df[['SK_ID_CURR', c]].values, mininterval=30): if key_bk is None: ret_diff.append(None) ret_pctchng.append(None) else: if key_bk == key: ret_diff.append(x - x_bk) ret_pctchng.append( (x_bk-x) / x_bk) else: ret_diff.append(None) ret_pctchng.append(None) key_bk = key x_bk = x ret_diff = pd.Series(ret_diff, name=f'{c}_diff') ret_pctchng = pd.Series(ret_pctchng, name=f'{c}_pctchange') ret = pd.concat([ret_diff, ret_pctchng], axis=1) return ret pool = Pool(len(col)) callback = pd.concat(pool.map(multi_prev, col), axis=1) print('===== PREV ====') print(callback.columns.tolist()) pool.close() df = pd.concat([df, callback], axis=1) # app & day col_prev = ['DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE', 'DAYS_LAST_DUE_1ST_VERSION', 'DAYS_LAST_DUE', 'DAYS_TERMINATION'] for c1 in col_prev: for c2 in col_app_day: # print(f"'{c1}-m-{c2}',") df[f'{c1}-m-{c2}'] = df[c1] - df[c2] df[f'{c1}-d-{c2}'] = df[c1] / df[c2] df['cnt_paid'] = df.apply(lambda x: min( np.ceil(x['DAYS_FIRST_DUE']/-30), x['CNT_PAYMENT'] ), axis=1) df['cnt_paid_ratio'] = df['cnt_paid'] / df['CNT_PAYMENT'] df['cnt_unpaid'] = df['CNT_PAYMENT'] - df['cnt_paid'] df['amt_paid'] = df['AMT_ANNUITY'] * df['cnt_paid'] # df['amt_paid_ratio'] = df['amt_paid'] / df['total_debt'] # same as cnt_paid_ratio df['amt_unpaid'] = df['total_debt'] - df['amt_paid'] df['active'] = (df['cnt_unpaid']>0)*1 df['completed'] = (df['cnt_unpaid']==0)*1 # future payment df_tmp = pd.DataFrame() print('future payment') rem_max = df['cnt_unpaid'].max() # 80 # rem_max = 1 df['cnt_unpaid_tmp'] = df['cnt_unpaid'] for i in range(int( rem_max )): c = f'future_payment_{i+1}m' df_tmp[c] = df['cnt_unpaid_tmp'].map(lambda x: min(x, 1)) * df['AMT_ANNUITY'] df_tmp.loc[df_tmp[c]==0, c] = np.nan df['cnt_unpaid_tmp'] -= 1 df['cnt_unpaid_tmp'] = df['cnt_unpaid_tmp'].map(lambda x: max(x, 0)) # df['prev_future_payment_max'] = df.filter(regex='^prev_future_payment_').max(1) del df['cnt_unpaid_tmp'] df = pd.concat([df, df_tmp], axis=1) # past payment df_tmp = pd.DataFrame() print('past payment') rem_max = df['cnt_paid'].max() # 72 df['cnt_paid_tmp'] = df['cnt_paid'] for i in range(int( rem_max )): c = f'past_payment_{i+1}m' df_tmp[c] = df['cnt_paid_tmp'].map(lambda x: min(x, 1)) * df['AMT_ANNUITY'] df_tmp.loc[df_tmp[c]==0, c] = np.nan df['cnt_paid_tmp'] -= 1 df['cnt_paid_tmp'] = df['cnt_paid_tmp'].map(lambda x: max(x, 0)) # df['prev_past_payment_max'] = df.filter(regex='^prev_past_payment_').max(1) del df['cnt_paid_tmp'] df = pd.concat([df, df_tmp], axis=1) df['APP_CREDIT_PERC'] = df['AMT_APPLICATION'] / df['AMT_CREDIT'] #df.filter(regex='^amt_future_payment_') df.replace(np.inf, np.nan, inplace=True) # TODO: any other plan? df.replace(-np.inf, np.nan, inplace=True) utils.to_pickles(df, '../data/previous_application', utils.SPLIT_SIZE) elif p==2: # ============================================================================= # POS # ============================================================================= """ df = utils.read_pickles('../data/POS_CASH_balance') """ df = pd.read_csv('../input/POS_CASH_balance.csv.zip') # data cleansing!!! ## drop signed. sample SK_ID_PREV==1769939 df = df[df.NAME_CONTRACT_STATUS!='Signed'] ## Zombie NAME_CONTRACT_STATUS=='Completed' and CNT_INSTALMENT_FUTURE!=0. 1134377 df.loc[(df.NAME_CONTRACT_STATUS=='Completed') & (df.CNT_INSTALMENT_FUTURE!=0), 'NAME_CONTRACT_STATUS'] = 'Active' ## CNT_INSTALMENT_FUTURE=0 and Active. sample SK_ID_PREV==1998905, 2174168 df.loc[(df.CNT_INSTALMENT_FUTURE==0) & (df.NAME_CONTRACT_STATUS=='Active'), 'NAME_CONTRACT_STATUS'] = 'Completed' ## remove duplicated CNT_INSTALMENT_FUTURE=0. sample SK_ID_PREV==2601827 df_0 = df[df['CNT_INSTALMENT_FUTURE']==0] df_1 = df[df['CNT_INSTALMENT_FUTURE']>0] df_0['NAME_CONTRACT_STATUS'] = 'Completed' df_0.sort_values(['SK_ID_PREV', 'MONTHS_BALANCE'], ascending=[True, False], inplace=True) df_0.drop_duplicates('SK_ID_PREV', keep='last', inplace=True) df = pd.concat([df_0, df_1], ignore_index=True) del df_0, df_1; gc.collect() # TODO: end in active. 1002879 # df['CNT_INSTALMENT_FUTURE_min'] = df.groupby('SK_ID_PREV').CNT_INSTALMENT_FUTURE.transform('min') # df['MONTHS_BALANCE_max'] = df.groupby('SK_ID_PREV').MONTHS_BALANCE.transform('max') # df.loc[(df.CNT_INSTALMENT_FUTURE_min!=0) & (df.MONTHS_BALANCE_max!=-1)] df['CNT_INSTALMENT-m-CNT_INSTALMENT_FUTURE'] = df['CNT_INSTALMENT'] - df['CNT_INSTALMENT_FUTURE'] df['CNT_INSTALMENT_FUTURE-d-CNT_INSTALMENT'] = df['CNT_INSTALMENT_FUTURE'] / df['CNT_INSTALMENT'] df.sort_values(['SK_ID_PREV', 'MONTHS_BALANCE'], inplace=True) df.reset_index(drop=True, inplace=True) col = ['CNT_INSTALMENT_FUTURE', 'SK_DPD', 'SK_DPD_DEF'] def multi_pos(c): ret_diff = [] ret_pctchng = [] key_bk = x_bk = None for key, x in df[['SK_ID_PREV', c]].values: # for key, x in tqdm(df[['SK_ID_CURR', c]].values, mininterval=30): if key_bk is None: ret_diff.append(None) ret_pctchng.append(None) else: if key_bk == key: ret_diff.append(x - x_bk) ret_pctchng.append( (x_bk-x) / x_bk) else: ret_diff.append(None) ret_pctchng.append(None) key_bk = key x_bk = x ret_diff = pd.Series(ret_diff, name=f'{c}_diff') ret_pctchng = pd.Series(ret_pctchng, name=f'{c}_pctchange') ret = pd.concat([ret_diff, ret_pctchng], axis=1) return ret pool = Pool(len(col)) callback = pd.concat(pool.map(multi_pos, col), axis=1) print('===== POS ====') print(callback.columns.tolist()) pool.close() df = pd.concat([df, callback], axis=1) df['SK_DPD-m-SK_DPD_DEF'] = df['SK_DPD'] - df['SK_DPD_DEF'] # df['SK_DPD_diff_over0'] = (df['SK_DPD_diff']>0)*1 # df['SK_DPD_diff_over5'] = (df['SK_DPD_diff']>5)*1 # df['SK_DPD_diff_over10'] = (df['SK_DPD_diff']>10)*1 # df['SK_DPD_diff_over15'] = (df['SK_DPD_diff']>15)*1 # df['SK_DPD_diff_over20'] = (df['SK_DPD_diff']>20)*1 # df['SK_DPD_diff_over25'] = (df['SK_DPD_diff']>25)*1 df.replace(np.inf, np.nan, inplace=True) # TODO: any other plan? df.replace(-np.inf, np.nan, inplace=True) utils.to_pickles(df, '../data/POS_CASH_balance', utils.SPLIT_SIZE) elif p==3: # ============================================================================= # ins # ============================================================================= """ df = utils.read_pickles('../data/installments_payments') """ df = pd.read_csv('../input/installments_payments.csv.zip') trte = get_trte() df = pd.merge(df, trte, on='SK_ID_CURR', how='left') prev = pd.read_csv('../input/previous_application.csv.zip', usecols=['SK_ID_PREV', 'CNT_PAYMENT', 'AMT_ANNUITY']) prev['CNT_PAYMENT'].replace(0, np.nan, inplace=True) # prep_prev(prev) df = pd.merge(df, prev, on='SK_ID_PREV', how='left') del trte, prev; gc.collect() df['month'] = (df['DAYS_ENTRY_PAYMENT']/30).map(np.floor) # app df['DAYS_ENTRY_PAYMENT-m-app_DAYS_BIRTH'] = df['DAYS_ENTRY_PAYMENT'] - df['app_DAYS_BIRTH'] df['DAYS_ENTRY_PAYMENT-m-app_DAYS_EMPLOYED'] = df['DAYS_ENTRY_PAYMENT'] - df['app_DAYS_EMPLOYED'] df['DAYS_ENTRY_PAYMENT-m-app_DAYS_REGISTRATION'] = df['DAYS_ENTRY_PAYMENT'] - df['app_DAYS_REGISTRATION'] df['DAYS_ENTRY_PAYMENT-m-app_DAYS_ID_PUBLISH'] = df['DAYS_ENTRY_PAYMENT'] - df['app_DAYS_ID_PUBLISH'] df['DAYS_ENTRY_PAYMENT-m-app_DAYS_LAST_PHONE_CHANGE'] = df['DAYS_ENTRY_PAYMENT'] - df['app_DAYS_LAST_PHONE_CHANGE'] df['AMT_PAYMENT-d-app_AMT_INCOME_TOTAL'] = df['AMT_PAYMENT'] / df['app_AMT_INCOME_TOTAL'] df['AMT_PAYMENT-d-app_AMT_CREDIT'] = df['AMT_PAYMENT'] / df['app_AMT_CREDIT'] df['AMT_PAYMENT-d-app_AMT_ANNUITY'] = df['AMT_PAYMENT'] / df['app_AMT_ANNUITY'] df['AMT_PAYMENT-d-app_AMT_GOODS_PRICE'] = df['AMT_PAYMENT'] / df['app_AMT_GOODS_PRICE'] # prev df['NUM_INSTALMENT_ratio'] = df['NUM_INSTALMENT_NUMBER'] / df['CNT_PAYMENT'] df['AMT_PAYMENT-d-AMT_ANNUITY'] = df['AMT_PAYMENT'] / df['AMT_ANNUITY'] df['days_delayed_payment'] = df['DAYS_ENTRY_PAYMENT'] - df['DAYS_INSTALMENT'] df['amt_ratio'] = df['AMT_PAYMENT'] / df['AMT_INSTALMENT'] df['amt_delta'] = df['AMT_INSTALMENT'] - df['AMT_PAYMENT'] df['days_weighted_delay'] = df['amt_ratio'] * df['days_delayed_payment'] # Days past due and days before due (no negative values) df['DPD'] = df['DAYS_ENTRY_PAYMENT'] - df['DAYS_INSTALMENT'] df['DBD'] = df['DAYS_INSTALMENT'] - df['DAYS_ENTRY_PAYMENT'] df['DPD'] = df['DPD'].apply(lambda x: x if x > 0 else 0) df['DBD'] = df['DBD'].apply(lambda x: x if x > 0 else 0) decay = 0.0003 # decay rate per a day feature = f'days_weighted_delay_tsw3' # Time Series Weight df[feature] = df['days_weighted_delay'] * (1 + (df['DAYS_ENTRY_PAYMENT']*decay) ) # df_tmp = pd.DataFrame() # for i in range(0, 50, 5): # c1 = f'delayed_day_over{i}' # df_tmp[c1] = (df['days_delayed_payment']>i)*1 # # c2 = f'delayed_money_{i}' # df_tmp[c2] = df_tmp[c1] * df.AMT_PAYMENT # # c3 = f'delayed_money_ratio_{i}' # df_tmp[c3] = df_tmp[c1] * df.amt_ratio # # c1 = f'not-delayed_day_{i}' # df_tmp[c1] = (df['days_delayed_payment']<=i)*1 # # c2 = f'not-delayed_money_{i}' # df_tmp[c2] = df_tmp[c1] * df.AMT_PAYMENT # # c3 = f'not-delayed_money_ratio_{i}' # df_tmp[c3] = df_tmp[c1] * df.amt_ratio # # df = pd.concat([df, df_tmp], axis=1) df.replace(np.inf, np.nan, inplace=True) # TODO: any other plan? df.replace(-np.inf, np.nan, inplace=True) utils.to_pickles(df, '../data/installments_payments', utils.SPLIT_SIZE) utils.to_pickles(df[df['days_delayed_payment']>0].reset_index(drop=True), '../data/installments_payments_delay', utils.SPLIT_SIZE) utils.to_pickles(df[df['days_delayed_payment']<=0].reset_index(drop=True), '../data/installments_payments_notdelay', utils.SPLIT_SIZE) elif p==4: # ============================================================================= # credit card # ============================================================================= """ df = utils.read_pickles('../data/credit_card_balance') """ df = pd.read_csv('../input/credit_card_balance.csv.zip') df = pd.merge(df, get_trte(), on='SK_ID_CURR', how='left') df[col_app_day] = df[col_app_day]/30 # app df['AMT_BALANCE-d-app_AMT_INCOME_TOTAL'] = df['AMT_BALANCE'] / df['app_AMT_INCOME_TOTAL'] df['AMT_BALANCE-d-app_AMT_CREDIT'] = df['AMT_BALANCE'] / df['app_AMT_CREDIT'] df['AMT_BALANCE-d-app_AMT_ANNUITY'] = df['AMT_BALANCE'] / df['app_AMT_ANNUITY'] df['AMT_BALANCE-d-app_AMT_GOODS_PRICE'] = df['AMT_BALANCE'] / df['app_AMT_GOODS_PRICE'] df['AMT_DRAWINGS_CURRENT-d-app_AMT_INCOME_TOTAL'] = df['AMT_DRAWINGS_CURRENT'] / df['app_AMT_INCOME_TOTAL'] df['AMT_DRAWINGS_CURRENT-d-app_AMT_CREDIT'] = df['AMT_DRAWINGS_CURRENT'] / df['app_AMT_CREDIT'] df['AMT_DRAWINGS_CURRENT-d-app_AMT_ANNUITY'] = df['AMT_DRAWINGS_CURRENT'] / df['app_AMT_ANNUITY'] df['AMT_DRAWINGS_CURRENT-d-app_AMT_GOODS_PRICE'] = df['AMT_DRAWINGS_CURRENT'] / df['app_AMT_GOODS_PRICE'] for c in col_app_day: print(f'MONTHS_BALANCE-m-{c}') df[f'MONTHS_BALANCE-m-{c}'] = df['MONTHS_BALANCE'] - df[c] df['AMT_BALANCE-d-AMT_CREDIT_LIMIT_ACTUAL'] = df['AMT_BALANCE'] / df['AMT_CREDIT_LIMIT_ACTUAL'] df['AMT_BALANCE-d-AMT_DRAWINGS_CURRENT'] = df['AMT_BALANCE'] / df['AMT_DRAWINGS_CURRENT'] df['AMT_DRAWINGS_CURRENT-d-AMT_CREDIT_LIMIT_ACTUAL'] = df['AMT_DRAWINGS_CURRENT'] / df['AMT_CREDIT_LIMIT_ACTUAL'] df['AMT_TOTAL_RECEIVABLE-m-AMT_RECEIVABLE_PRINCIPAL'] = df['AMT_TOTAL_RECEIVABLE'] - df['AMT_RECEIVABLE_PRINCIPAL'] df['AMT_RECEIVABLE_PRINCIPAL-d-AMT_TOTAL_RECEIVABLE'] = df['AMT_RECEIVABLE_PRINCIPAL'] / df['AMT_TOTAL_RECEIVABLE'] df['SK_DPD-m-SK_DPD_DEF'] = df['SK_DPD'] - df['SK_DPD_DEF'] df['SK_DPD-m-SK_DPD_DEF_over0'] = (df['SK_DPD-m-SK_DPD_DEF']>0)*1 df['SK_DPD-m-SK_DPD_DEF_over5'] = (df['SK_DPD-m-SK_DPD_DEF']>5)*1 df['SK_DPD-m-SK_DPD_DEF_over10'] = (df['SK_DPD-m-SK_DPD_DEF']>10)*1 df['SK_DPD-m-SK_DPD_DEF_over15'] = (df['SK_DPD-m-SK_DPD_DEF']>15)*1 df['SK_DPD-m-SK_DPD_DEF_over20'] = (df['SK_DPD-m-SK_DPD_DEF']>20)*1 df['SK_DPD-m-SK_DPD_DEF_over25'] = (df['SK_DPD-m-SK_DPD_DEF']>25)*1 col = ['AMT_BALANCE', 'AMT_CREDIT_LIMIT_ACTUAL', 'AMT_DRAWINGS_ATM_CURRENT', 'AMT_DRAWINGS_CURRENT', 'AMT_DRAWINGS_OTHER_CURRENT', 'AMT_DRAWINGS_POS_CURRENT', 'AMT_INST_MIN_REGULARITY', 'AMT_PAYMENT_CURRENT', 'AMT_PAYMENT_TOTAL_CURRENT', 'AMT_RECEIVABLE_PRINCIPAL', 'AMT_RECIVABLE', 'AMT_TOTAL_RECEIVABLE', 'CNT_DRAWINGS_ATM_CURRENT', 'CNT_DRAWINGS_CURRENT', 'CNT_DRAWINGS_OTHER_CURRENT', 'CNT_DRAWINGS_POS_CURRENT', 'CNT_INSTALMENT_MATURE_CUM', 'SK_DPD', 'SK_DPD_DEF', 'AMT_BALANCE-d-app_AMT_INCOME_TOTAL', 'AMT_BALANCE-d-app_AMT_CREDIT', 'AMT_BALANCE-d-app_AMT_ANNUITY', 'AMT_BALANCE-d-app_AMT_GOODS_PRICE', 'AMT_DRAWINGS_CURRENT-d-app_AMT_INCOME_TOTAL', 'AMT_DRAWINGS_CURRENT-d-app_AMT_CREDIT', 'AMT_DRAWINGS_CURRENT-d-app_AMT_ANNUITY', 'AMT_DRAWINGS_CURRENT-d-app_AMT_GOODS_PRICE', 'AMT_BALANCE-d-AMT_CREDIT_LIMIT_ACTUAL', 'AMT_BALANCE-d-AMT_DRAWINGS_CURRENT', 'AMT_DRAWINGS_CURRENT-d-AMT_CREDIT_LIMIT_ACTUAL', 'AMT_TOTAL_RECEIVABLE-m-AMT_RECEIVABLE_PRINCIPAL', 'AMT_RECEIVABLE_PRINCIPAL-d-AMT_TOTAL_RECEIVABLE' ] df.sort_values(['SK_ID_PREV', 'MONTHS_BALANCE'], inplace=True) df.reset_index(drop=True, inplace=True) def multi_cre(c): ret_diff = [] ret_pctchng = [] key_bk = x_bk = None for key, x in df[['SK_ID_PREV', c]].values: if key_bk is None: ret_diff.append(None) ret_pctchng.append(None) else: if key_bk == key: ret_diff.append(x - x_bk) ret_pctchng.append( (x_bk-x) / x_bk) else: ret_diff.append(None) ret_pctchng.append(None) key_bk = key x_bk = x ret_diff = pd.Series(ret_diff, name=f'{c}_diff') ret_pctchng = pd.Series(ret_pctchng, name=f'{c}_pctchange') ret = pd.concat([ret_diff, ret_pctchng], axis=1) return ret pool = Pool(len(col)) callback1 = pd.concat(pool.map(multi_cre, col), axis=1) print('===== CRE ====') col = callback1.columns.tolist() print(col) pool.close() # callback1['SK_ID_PREV'] = df['SK_ID_PREV'] df = pd.concat([df, callback1], axis=1) del callback1; gc.collect() pool = Pool(10) callback2 = pd.concat(pool.map(multi_cre, col), axis=1) print('===== CRE ====') col = callback2.columns.tolist() print(col) pool.close() df = pd.concat([df, callback2], axis=1) del callback2; gc.collect() df.replace(np.inf, np.nan, inplace=True) # TODO: any other plan? df.replace(-np.inf, np.nan, inplace=True) utils.to_pickles(df, '../data/credit_card_balance', utils.SPLIT_SIZE) elif p==5: # ============================================================================= # bureau # ============================================================================= df = pd.read_csv('../input/bureau.csv.zip') df = pd.merge(df, get_trte(), on='SK_ID_CURR', how='left') col_bure_money = ['AMT_CREDIT_SUM', 'AMT_CREDIT_SUM_DEBT', 'AMT_CREDIT_SUM_LIMIT', 'AMT_CREDIT_SUM_OVERDUE'] col_bure_day = ['DAYS_CREDIT', 'DAYS_CREDIT_ENDDATE', 'DAYS_ENDDATE_FACT'] # app for c1 in col_bure_money: for c2 in col_app_money: # print(f"'{c1}-d-{c2}',") df[f'{c1}-d-{c2}'] = df[c1] / df[c2] for c1 in col_bure_day: for c2 in col_app_day: # print(f"'{c1}-m-{c2}',") df[f'{c1}-m-{c2}'] = df[c1] - df[c2] df[f'{c1}-d-{c2}'] = df[c1] / df[c2] df['DAYS_CREDIT_ENDDATE-m-DAYS_CREDIT'] = df['DAYS_CREDIT_ENDDATE'] - df['DAYS_CREDIT'] df['DAYS_ENDDATE_FACT-m-DAYS_CREDIT'] = df['DAYS_ENDDATE_FACT'] - df['DAYS_CREDIT'] df['DAYS_ENDDATE_FACT-m-DAYS_CREDIT_ENDDATE'] = df['DAYS_ENDDATE_FACT'] - df['DAYS_CREDIT_ENDDATE'] df['DAYS_CREDIT_UPDATE-m-DAYS_CREDIT'] = df['DAYS_CREDIT_UPDATE'] - df['DAYS_CREDIT'] df['DAYS_CREDIT_UPDATE-m-DAYS_CREDIT_ENDDATE'] = df['DAYS_CREDIT_UPDATE'] - df['DAYS_CREDIT_ENDDATE'] df['DAYS_CREDIT_UPDATE-m-DAYS_ENDDATE_FACT'] = df['DAYS_CREDIT_UPDATE'] - df['DAYS_ENDDATE_FACT'] df['AMT_CREDIT_SUM-m-AMT_CREDIT_SUM_DEBT'] = df['AMT_CREDIT_SUM'] - df['AMT_CREDIT_SUM_DEBT'] df['AMT_CREDIT_SUM_DEBT-d-AMT_CREDIT_SUM'] = df['AMT_CREDIT_SUM_DEBT'] / df['AMT_CREDIT_SUM'] df['AMT_CREDIT_SUM-m-AMT_CREDIT_SUM_DEBT-d-AMT_CREDIT_SUM_LIMIT'] = df['AMT_CREDIT_SUM-m-AMT_CREDIT_SUM_DEBT'] / df['AMT_CREDIT_SUM_LIMIT'] df['AMT_CREDIT_SUM_DEBT-d-AMT_CREDIT_SUM_LIMIT'] = df['AMT_CREDIT_SUM_DEBT'] / df['AMT_CREDIT_SUM_LIMIT'] df['AMT_CREDIT_SUM_DEBT-p-AMT_CREDIT_SUM_LIMIT'] = df['AMT_CREDIT_SUM_DEBT'] + df['AMT_CREDIT_SUM_LIMIT'] df['AMT_CREDIT_SUM-d-debt-p-AMT_CREDIT_SUM_DEBT-p-AMT_CREDIT_SUM_LIMIT'] = df['AMT_CREDIT_SUM'] / df['AMT_CREDIT_SUM_DEBT-p-AMT_CREDIT_SUM_LIMIT'] col = ['AMT_CREDIT_MAX_OVERDUE', 'CNT_CREDIT_PROLONG', 'AMT_CREDIT_SUM', 'AMT_CREDIT_SUM_DEBT', 'AMT_CREDIT_SUM_LIMIT', 'AMT_CREDIT_SUM_OVERDUE', 'DAYS_CREDIT_UPDATE', 'AMT_ANNUITY', 'AMT_CREDIT_SUM-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT_SUM-d-app_AMT_CREDIT', 'AMT_CREDIT_SUM-d-app_AMT_ANNUITY', 'AMT_CREDIT_SUM-d-app_AMT_GOODS_PRICE', 'AMT_CREDIT_SUM_DEBT-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT_SUM_DEBT-d-app_AMT_CREDIT', 'AMT_CREDIT_SUM_DEBT-d-app_AMT_ANNUITY', 'AMT_CREDIT_SUM_DEBT-d-app_AMT_GOODS_PRICE', 'AMT_CREDIT_SUM_LIMIT-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT_SUM_LIMIT-d-app_AMT_CREDIT', 'AMT_CREDIT_SUM_LIMIT-d-app_AMT_ANNUITY', 'AMT_CREDIT_SUM_LIMIT-d-app_AMT_GOODS_PRICE', 'AMT_CREDIT_SUM_OVERDUE-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT_SUM_OVERDUE-d-app_AMT_CREDIT', 'AMT_CREDIT_SUM_OVERDUE-d-app_AMT_ANNUITY', 'AMT_CREDIT_SUM_OVERDUE-d-app_AMT_GOODS_PRICE', 'AMT_CREDIT_SUM-m-AMT_CREDIT_SUM_DEBT', 'AMT_CREDIT_SUM_DEBT-d-AMT_CREDIT_SUM', 'AMT_CREDIT_SUM-m-AMT_CREDIT_SUM_DEBT-d-AMT_CREDIT_SUM_LIMIT', 'AMT_CREDIT_SUM_DEBT-d-AMT_CREDIT_SUM_LIMIT', 'AMT_CREDIT_SUM_DEBT-p-AMT_CREDIT_SUM_LIMIT', 'AMT_CREDIT_SUM-d-debt-p-AMT_CREDIT_SUM_DEBT-p-AMT_CREDIT_SUM_LIMIT' ] df.sort_values(['SK_ID_CURR', 'DAYS_CREDIT'], inplace=True) df.reset_index(drop=True, inplace=True) def multi_b(c): ret_diff = [] ret_pctchng = [] key_bk = x_bk = None for key, x in df[['SK_ID_CURR', c]].values: # for key, x in tqdm(df[['SK_ID_CURR', c]].values, mininterval=30): if key_bk is None: ret_diff.append(None) ret_pctchng.append(None) else: if key_bk == key: ret_diff.append(x - x_bk) ret_pctchng.append( (x_bk-x) / x_bk) else: ret_diff.append(None) ret_pctchng.append(None) key_bk = key x_bk = x ret_diff = pd.Series(ret_diff, name=f'{c}_diff') ret_pctchng = pd.Series(ret_pctchng, name=f'{c}_pctchange') ret =
pd.concat([ret_diff, ret_pctchng], axis=1)
pandas.concat
import matplotlib import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import pandas as pd from analytics.fp_acceptance_percentage import FpAcceptance from classifiers.svm_classifier import SvmClassifier from dataset.biometric_dataset import BioDataSet from dataset.min_max_scaling_operation import MinMaxScaling from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D from metrics.confusion_matrix import ConfusionMatrix from metrics.fcs import FCS from metrics.roc_curve import RocCurve from synth_data_gen.gauss_blob_generator import GaussBlob from matplotlib.lines import Line2D from analytics.dataoverlap_interval import OverLapInt import os from pathlib import Path from sklearn.utils import shuffle from dataset.outlier_removal import OutLierRemoval import seaborn as sns root_path = Path(__file__).parent.parent.parent.parent hmog_in = os.path.join(root_path, 'raw_data\\hmog_dataset\\public_dataset') hmog_out = os.path.join(root_path, 'processed_data\\hmog_touch\\df_example.csv') scaled_data_path = os.path.join(root_path, 'experiment_results\\overlap_test\\df_ovr.csv') data_metric_save_path = os.path.join(root_path, 'experiment_results\\overlap_test\\') rand_state = 42 features = 2 samples = 575 users = 10 train_data_size = 0.6 cv = 5 sns.set_theme(context="poster") sns.set_style("whitegrid") # Creating dictionaries for gathering figures roc_fcs_fig_dict = dict() roc_fcs_fig_dict_at = dict() fcs_fig_dict_fc = dict() fcs_fig_dict_at = dict() db_fig_dict = dict() # Creating dictionaries for gathering predictions full_feat_test_set_pred_dict = dict() full_feat_overlap_set_pred_dict = dict() full_feat_test_set_pred_dict_prob = dict() full_feat_overlap_set_pred_dict_prob = dict() cm_val_full_feat_test_set_svm_dict = dict() cm_val_full_feat_overlap_set_svm_dict = dict() test_roc_dict = dict() overlap_roc_dict = dict() # Creating dataframes for results gathering fp_accept_pers_svm_df = \
pd.DataFrame(columns=["user", "cv_iter", "c_val", "rand_state", "fp_accept_pers", "fp_accept_pers_at"])
pandas.DataFrame
""" Modified from pvlib python pvlib/tests/test_bsrn.py. See LICENSES/PVLIB-PYTHON_LICENSE """ import inspect import gzip import os from pathlib import Path import re import pandas as pd import pytest from solarforecastarbiter.io.fetch import bsrn from pandas.testing import assert_index_equal, assert_frame_equal DATA_DIR = Path(os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe())))) / 'data' @pytest.mark.parametrize('testfile,open_func,mode,expected_index', [ ('bsrn-pay0616.dat.gz', gzip.open, 'rt', pd.date_range(start='20160601', periods=43200, freq='1min', tz='UTC')), ('bsrn-lr0100-pay0616.dat', open, 'r', pd.date_range(start='20160601', periods=43200, freq='1min', tz='UTC')), ]) def test_read_bsrn(testfile, open_func, mode, expected_index): with open_func(DATA_DIR / testfile, mode) as buf: data = bsrn.parse_bsrn(buf) assert_index_equal(expected_index, data.index) assert 'ghi' in data.columns assert 'dni_std' in data.columns assert 'dhi_min' in data.columns assert 'lwd_max' in data.columns assert 'relative_humidity' in data.columns @pytest.mark.parametrize('year', [2020, '2020']) @pytest.mark.parametrize('month', [1, '01', '1']) def test_read_bsrn_month_from_nasa_larc(year, month, requests_mock): # all 2020-01 int/str variants should produce this url expected_url = 'https://cove.larc.nasa.gov/BSRN/LRC49/2020/lrc0120.dat' with open(DATA_DIR / 'bsrn-lr0100-pay0616.dat') as f: content = f.read() matcher = re.compile('https://cove.larc.nasa.gov/BSRN/LRC49/.*') r = requests_mock.register_uri('GET', matcher, content=content.encode()) out = bsrn.read_bsrn_month_from_nasa_larc(year, month) assert isinstance(out, pd.DataFrame) assert r.last_request.url == expected_url @pytest.mark.parametrize('start,end,ncalls', [ ('20200101', '20210101', 13), ('20200101', '20200103', 1) ]) def test_read_bsrn_from_nasa_larc(start, end, ncalls, mocker): start, end = pd.Timestamp(start, tz='UTC'), pd.Timestamp(end, tz='UTC') m = mocker.patch( 'solarforecastarbiter.io.fetch.bsrn.read_bsrn_month_from_nasa_larc') m.return_value = pd.DataFrame() out = bsrn.read_bsrn_from_nasa_larc(start, end) assert m.call_count == ncalls assert isinstance(out, pd.DataFrame) def test_read_bsrn_from_nasa_larc_now_limiter(mocker): mocked_now = mocker.patch('pandas.Timestamp.now') mocked_now.return_value =
pd.Timestamp('2021-02-16 15:15:15', tz='UTC')
pandas.Timestamp
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): other + rng with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng = pd.period_range("1/1/2000", freq="Q", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values with pytest.raises(IncompatibleFrequency): rng + tdarr with pytest.raises(IncompatibleFrequency): tdarr + rng with pytest.raises(IncompatibleFrequency): rng - tdarr with pytest.raises(TypeError): tdarr - rng def test_pi_add_sub_td64_array_tick(self): # PeriodIndex + Timedelta-like is allowed only with # tick-like frequencies rng = pd.period_range("1/1/2000", freq="90D", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.period_range("12/31/1999", freq="90D", periods=3) result = rng + tdi tm.assert_index_equal(result, expected) result = rng + tdarr tm.assert_index_equal(result, expected) result = tdi + rng tm.assert_index_equal(result, expected) result = tdarr + rng tm.assert_index_equal(result, expected) expected = pd.period_range("1/2/2000", freq="90D", periods=3) result = rng - tdi tm.assert_index_equal(result, expected) result = rng - tdarr tm.assert_index_equal(result, expected) with pytest.raises(TypeError): tdarr - rng with pytest.raises(TypeError): tdi - rng # ----------------------------------------------------------------- # operations with array/Index of DateOffset objects @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_add_offset_array(self, box): # GH#18849 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) offs = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = pd.PeriodIndex([pd.Period("2015Q2"), pd.Period("2015Q4")]) with tm.assert_produces_warning(PerformanceWarning): res = pi + offs tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = offs + pi tm.assert_index_equal(res2, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) # addition/subtraction ops with incompatible offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi + unanchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): unanchored + pi @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_sub_offset_array(self, box): # GH#18824 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) other = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))]) with tm.assert_produces_warning(PerformanceWarning): res = pi - other tm.assert_index_equal(res, expected) anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi - anchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): anchored - pi def test_pi_add_iadd_int(self, one): # Variants of `one` for #19012 rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng + one expected = pd.period_range("2000-01-01 10:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) def test_pi_sub_isub_int(self, one): """ PeriodIndex.__sub__ and __isub__ with several representations of the integer 1, e.g. int, np.int64, np.uint8, ... """ rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng - one expected = pd.period_range("2000-01-01 08:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng -= one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)]) def test_pi_sub_intlike(self, five): rng = period_range("2007-01", periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_pi_sub_isub_offset(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng - pd.offsets.YearEnd(5) expected = pd.period_range("2009", "2019", freq="A") tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) rng = pd.period_range("2014-01", "2016-12", freq="M") result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range("2013-08", "2016-07", freq="M") tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_offset_n_gt1(self, box_transpose_fail): # GH#23215 # add offset to PeriodIndex with freq.n > 1 box, transpose = box_transpose_fail per = pd.Period("2016-01", freq="2M") pi = pd.PeriodIndex([per]) expected = pd.PeriodIndex(["2016-03"], freq="2M") pi = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = pi + per.freq tm.assert_equal(result, expected) result = per.freq + pi tm.assert_equal(result, expected) def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array): # GH#23215 # PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0 pi = pd.PeriodIndex(["2016-01"], freq="2M") expected = pd.PeriodIndex(["2016-04"], freq="2M") # FIXME: with transposing these tests fail pi = tm.box_expected(pi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = pi + to_offset("3M") tm.assert_equal(result, expected) result = to_offset("3M") + pi tm.assert_equal(result, expected) # --------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_pi_add_intarray(self, int_holder, op): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = op(pi, other) expected = pd.PeriodIndex([pd.Period("2016Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_pi_sub_intarray(self, int_holder): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = pi - other expected = pd.PeriodIndex([pd.Period("2014Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - pi # --------------------------------------------------------------- # Timedelta-like (timedelta, timedelta64, Timedelta, Tick) # TODO: Some of these are misnomers because of non-Tick DateOffsets def test_pi_add_timedeltalike_minute_gt1(self, three_days): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # minute frequency with n != 1. A more general case is tested below # in test_pi_add_timedeltalike_tick_gt1, but here we write out the # expected result more explicitly. other = three_days rng = pd.period_range("2014-05-01", periods=3, freq="2D") expected = pd.PeriodIndex(["2014-05-04", "2014-05-06", "2014-05-08"], freq="2D") result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.PeriodIndex(["2014-04-28", "2014-04-30", "2014-05-02"], freq="2D") result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng @pytest.mark.parametrize("freqstr", ["5ns", "5us", "5ms", "5s", "5T", "5h", "5d"]) def test_pi_add_timedeltalike_tick_gt1(self, three_days, freqstr): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # tick-like frequency with n != 1 other = three_days rng = pd.period_range("2014-05-01", periods=6, freq=freqstr) expected = pd.period_range(rng[0] + other, periods=6, freq=freqstr) result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.period_range(rng[0] - other, periods=6, freq=freqstr) result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng def test_pi_add_iadd_timedeltalike_daily(self, three_days): # Tick other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-05-04", "2014-05-18", freq="D") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_sub_isub_timedeltalike_daily(self, three_days): # Tick-like 3 Days other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-04-28", "2014-05-12", freq="D") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_daily(self, not_daily): other = not_daily rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") msg = "Input has different freq(=.+)? from Period.*?\\(freq=D\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 12:00", "2014-01-05 12:00", freq="H") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_add_timedeltalike_mismatched_freq_hourly(self, not_hourly): other = not_hourly rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") msg = "Input has different freq(=.+)? from Period.*?\\(freq=H\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other def test_pi_sub_isub_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 08:00", "2014-01-05 08:00", freq="H") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_add_iadd_timedeltalike_annual(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng + pd.offsets.YearEnd(5) expected = pd.period_range("2019", "2029", freq="A") tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_annual(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014", "2024", freq="A") msg = "Input has different freq(=.+)? from Period.*?\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_M(self): rng = pd.period_range("2014-01", "2016-12", freq="M") expected = pd.period_range("2014-06", "2017-05", freq="M") result = rng + pd.offsets.MonthEnd(5) tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_monthly(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014-01", "2016-12", freq="M") msg = "Input has different freq(=.+)? from Period.*?\\(freq=M\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_parr_add_sub_td64_nat(self, box_transpose_fail): # GH#23320 special handling for timedelta64("NaT") box, transpose = box_transpose_fail pi = pd.period_range("1994-04-01", periods=9, freq="19D") other = np.timedelta64("NaT") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) with pytest.raises(TypeError): other - obj @pytest.mark.parametrize( "other", [ np.array(["NaT"] * 9, dtype="m8[ns]"), TimedeltaArray._from_sequence(["NaT"] * 9), ], ) def test_parr_add_sub_tdt64_nat_array(self, box_df_fail, other): # FIXME: DataFrame fails because when when operating column-wise # timedelta64 entries become NaT and are treated like datetimes box = box_df_fail pi = pd.period_range("1994-04-01", periods=9, freq="19D") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) with pytest.raises(TypeError): other - obj # --------------------------------------------------------------- # Unsorted def test_parr_add_sub_index(self): # Check that PeriodArray defers to Index on arithmetic ops pi =
pd.period_range("2000-12-31", periods=3)
pandas.period_range
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda: Series([1, 2, 3]).cat) self.assertRaises(AttributeError, lambda: Series(['a', 'b', 'c']).cat) self.assertRaises(AttributeError, lambda: Series(np.arange(5.)).cat) self.assertRaises(AttributeError, lambda: Series([Timestamp('20130101')]).cat) # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = np.array([1, 2, 3]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype='int8') tm.assert_series_equal(s.cat.codes, exp_codes) self.assertEqual(s.cat.ordered, True) s = s.cat.as_unordered() self.assertEqual(s.cat.ordered, False) s.cat.as_ordered(inplace=True) self.assertEqual(s.cat.ordered, True) # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) s = s.cat.set_categories(["c", "b", "a"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c" ])) exp_categories = np.array(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"]) s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: def f(): s.set_categories([4, 3, 2, 1]) self.assertRaises(Exception, f) # right: s.cat.set_categories([4,3,2,1]) def test_series_functions_no_warnings(self): df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_assignment_to_dataframe(self): # assignment df = DataFrame({'value': np.array( np.random.randint(0, 10000, 100), dtype='int32')}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df['D'] = d str(df) result = df.dtypes expected = Series( [np.dtype('int32'), com.CategoricalDtype()], index=['value', 'D']) tm.assert_series_equal(result, expected) df['E'] = s str(df) result = df.dtypes expected = Series([np.dtype('int32'), com.CategoricalDtype(), com.CategoricalDtype()], index=['value', 'D', 'E']) tm.assert_series_equal(result, expected) result1 = df['D'] result2 = df['E'] self.assertTrue(result1._data._block.values.equals(d)) # sorting s.name = 'E' self.assertTrue(result2.sort_index().equals(s.sort_index())) cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = pd.DataFrame(pd.Series(cat)) def test_describe(self): # Categoricals should not show up together with numerical columns result = self.cat.describe() self.assertEqual(len(result.columns), 1) # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = pd.Series(pd.Categorical(["a", "b", "c", "c"])) df3 = pd.DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) res = df3.describe() self.assert_numpy_array_equal(res["cat"].values, res["s"].values) def test_repr(self): a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") self.assertEqual(exp, a.__unicode__()) a = pd.Series(pd.Categorical(["a", "b"] * 25)) exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "dtype: category\nCategories (2, object): [a, b]") with option_context("display.max_rows", 5): self.assertEqual(exp, repr(a)) levs = list("abcdefghijklmnopqrstuvwxyz") a = pd.Series(pd.Categorical( ["a", "b"], categories=levs, ordered=True)) exp = u("0 a\n1 b\n" + "dtype: category\n" "Categories (26, object): [a < b < c < d ... w < x < y < z]") self.assertEqual(exp, a.__unicode__()) def test_categorical_repr(self): c = pd.Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_ordered(self): c = pd.Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) # TODO(wesm): exceeding 80 characters in the console is not good # behavior exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]""") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]") self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) def test_categorical_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx =
pd.period_range('2011-01', freq='M', periods=5)
pandas.period_range
import argparse import matplotlib.pyplot as plt import os import pandas as pd import pathlib import psutil import scipy.interpolate import subprocess import threading import time from .utils import run_command, _init_modes, _init_precs from .timing import _aggregate_along_rows, _LINESTYLES, _COLORS DCGM_FIELD_IDS = { 'DCGM_FI_PROF_GR_ENGINE_ACTIVE': 1001, 'DCGM_FI_PROF_DRAM_ACTIVE': 1005, 'DCGM_FI_DEV_GPU_UTIL': 203, 'DCGM_FI_PROF_PIPE_TENSOR_ACTIVE': 1004, 'DCGM_FI_PROF_PIPE_FP16_ACTIVE': 1008, 'DCGM_FI_PROF_PIPE_FP32_ACTIVE': 1007, 'DCGM_FI_PROF_PIPE_FP64_ACTIVE': 1006, 'DCGM_FI_PROF_SM_OCCUPANCY': 1003, 'DCGM_FI_PROF_SM_ACTIVE': 1002, 'DCGM_FI_DEV_FB_TOTAL': 250, 'DCGM_FI_DEV_FB_FREE': 251, 'DCGM_FI_DEV_FB_USED': 252, 'DCGM_FI_PROF_PCIE_TX_BYTES': 1009, 'DCGM_FI_PROF_PCIE_RX_BYTES': 1010, 'DCGM_FI_DEV_MEM_COPY_UTIL': 204, } def _get_dcgm_fields_enabled_for(device_model): if device_model in {'v100', 'a100'}: return [ 'DCGM_FI_DEV_GPU_UTIL', 'DCGM_FI_PROF_PIPE_TENSOR_ACTIVE', 'DCGM_FI_PROF_PIPE_FP16_ACTIVE', 'DCGM_FI_PROF_PIPE_FP32_ACTIVE', 'DCGM_FI_PROF_PIPE_FP64_ACTIVE', 'DCGM_FI_PROF_SM_OCCUPANCY', 'DCGM_FI_PROF_SM_ACTIVE', 'DCGM_FI_DEV_FB_USED', 'DCGM_FI_PROF_PCIE_RX_BYTES', 'DCGM_FI_PROF_PCIE_TX_BYTES', 'DCGM_FI_DEV_MEM_COPY_UTIL', 'DCGM_FI_PROF_GR_ENGINE_ACTIVE', 'DCGM_FI_PROF_DRAM_ACTIVE', ] else: return [ "DCGM_FI_DEV_GPU_UTIL", "DCGM_FI_DEV_FB_USED", "DCGM_FI_DEV_MEM_COPY_UTIL", ] class DcgmMonitor: def __init__(self, device_model): self.fields = _get_dcgm_fields_enabled_for(device_model) self.field_ids = [DCGM_FIELD_IDS[f] for f in self.fields] self.field_ids_str = ','.join(map(str, self.field_ids)) self.reset() def reset(self): self.metrics = {f: [] for f in self.fields} self.metrics.update({ 'timestamp': [], 'cpu_percent': [], 'host_mem_total': [], 'host_mem_available': [], }) self.to_shutdown = False def sample_metrics(self, interval=1.0): cpu = psutil.cpu_percent(interval=interval, percpu=False) self.metrics['cpu_percent'].append(cpu) mem = psutil.virtual_memory() self.metrics['host_mem_total'].append(mem.total) self.metrics['host_mem_available'].append(mem.available) self.metrics['timestamp'].append(time.time()) dcgmi_out = run_command('dcgmi dmon -e {} -c 5'.format(self.field_ids_str)) dcgmi_samples = {f: [] for f in self.fields} for line in dcgmi_out.split('\n')[-4:-1]: # THIS ASSUMES THAT THE OUTPUT OF DCGM MONITOR HAS THE FORMAT GPU X METRIC1 METRIC2 ... for idx, val in enumerate(line.split()[2:]): if val == 'N/A': continue dcgmi_samples[self.fields[idx]].append(float(val)) for f, vals in dcgmi_samples.items(): if len(vals) > 0: self.metrics[f].append(sum(vals) / len(vals)) else: self.metrics[f].append(float('nan')) def save(self, output_dir, filename='dcgm_metrics.csv'): csv_path = os.path.join(output_dir, filename)
pd.DataFrame(self.metrics)
pandas.DataFrame
import datetime import pandas as pd import numpy as np import os from sklearn.linear_model import LinearRegression import time import pika class analitica(): ventana = 15 pronostico = 1 file_name = "data_base.csv " servidor = "rabbit" desc = {} # diccionario con los datos de analitica descriptiva pred = {} # diccionario con los datos de analitica predictiva def __init__(self): self.load_data() def load_data(self): if self.file_name not in os.listdir(os.getcwd()): self.df =
pd.DataFrame(columns=["fecha", "sensor", "valor"])
pandas.DataFrame
import pandas as pd import numpy as np import talib class Indicators(object): """ Input: Price DataFrame, Moving average/lookback period and standard deviation multiplier This function returns a dataframe with 5 columns Output: Prices, Moving Average, Upper BB, Lower BB and BB Val """ def bb(self, l_sym, df_price, time_period, st_dev_u, st_dev_l): df_bb_u = pd.DataFrame(columns=l_sym, index=df_price.index) df_bb_m = pd.DataFrame(columns=l_sym, index=df_price.index) df_bb_l = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_bb_u[sym], df_bb_m[sym], df_bb_l[sym] = talib.BBANDS(np.asarray(df_price[sym]), timeperiod=time_period, nbdevup=st_dev_u, nbdevdn=st_dev_l) except: pass return df_bb_u, df_bb_m, df_bb_l def ema(self, l_sym, df_price, time_period): df_ema = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_ema[sym] = talib.EMA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_ema def ma(self, l_sym, df_price, time_period): df_ma = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_ma[sym] = talib.MA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_ma def sma(self, l_sym, df_price, time_period): df_sma = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_sma[sym] = talib.SMA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_sma def adx(self, l_sym, df_high, df_low, df_close, time_period): df_adx = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_adx[sym] = talib.ADX(high=np.asarray(df_high[sym]), low=np.asarray(df_low[sym]), close=np.asarray(df_close[sym]), timeperiod = time_period) except: pass return df_adx def mom(self, l_sym, df_price, time_period): df_mom = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_mom[sym] = talib.MOM(np.asarray(df_price[sym]), timeperiod = time_period) except: pass return df_mom def atr(self, l_sym, df_high, df_low, df_close, time_period): df_atr = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_atr[sym] = talib.ATR(high=np.asarray(df_high[sym]), low=np.asarray(df_low[sym]), close=np.asarray(df_close[sym]), timeperiod=time_period) except: pass return df_atr def macd(self, l_sym, df_price, fast_period, slow_period, signal_period): df_macd = pd.DataFrame(columns=l_sym, index=df_price.index) df_macdsignal = pd.DataFrame(columns=l_sym, index=df_price.index) df_macdhist = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_macd[sym], df_macdsignal[sym], df_macdhist[sym] = talib.MACD(np.asarray(df_price[sym]), fastperiod=fast_period, slowperiod=slow_period, signalperiod=signal_period) except: pass return df_macd, df_macdsignal, df_macdhist def wavec(self, l_sym, df_three, df_four, df_five): df_ca =
pd.DataFrame(columns=l_sym, index=df_three.index)
pandas.DataFrame
# Functionality to read and store in HDF5 files import h5py import pandas as pd import random import string import os import datetime import json from data_science.data_transfer.data_api import Dataset class HDF5Dataset: def __init__(self, file_name, file_path, dataset_id, random_string_in_name=10): """ Initialization. :param self: :param file_name: name for the file. No ending necessary :param file_path: location path :param dataset_id: dataset's id :param random_string_in_name: lenght of the random string to add to the name """ self.file_name = file_name self.file_path = file_path self.file_w_path = os.path.join(self.file_path, self.file_name) self._dataset_id = dataset_id self.random_string_in_name = random_string_in_name @property def dataset_id(self): # do something return self._dataset_id @dataset_id.setter def dataset_id(self, value): self._dataset_id = value def create_h5_file(self): """ Create the h5 file and add the groups. :param self: self """ self.file_name = self.file_name + '-' + \ _generate_random_string(l=self.random_string_in_name) + '.h5' self.file_w_path = os.path.join(self.file_path, self.file_name) try: f = h5py.File(self.file_w_path, 'a') f.create_group('meta') f.create_group('meta/columns') f.create_group('data') f.close() return self.file_name except ValueError as e: print(e) return def add_dataset_meta_to_h5(self, dataset): """ Add the meta data of the dataset to the file. Consist of: A dataframe with the dataset attributes. A dataframe with the columns of the dataset. :param self: self :param dataset: a Dataset instance """ if not isinstance(dataset, Dataset): raise TypeError('A dataset has to be provided.') # create a df with the metadata columns = list(dataset.dump_attributes_to_dictionary().keys()) df =
pd.DataFrame(columns=columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Apr 25 17:27:29 2019 @author: ryw """ import pandas as pd import numpy as np from scipy import stats import time import statsmodels.tsa.stattools as ts from datetime import datetime import matplotlib from matplotlib.font_manager import FontProperties from matplotlib.font_manager import _rebuild import matplotlib.pyplot as plt import matplotlib.ticker as ticker import matplotlib.dates as mdates from pylab import mpl myfont = matplotlib.font_manager.FontProperties(fname='/Users/weihuang/Downloads/simheittf/simhei.ttf') mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 #inFilepathStk='merge-30.csv' outFileNumbers='D:/18-19/graduationDesign/data/out/resultNumbers.csv' #timePeriod='20150504' #inFilepathStk='D:/18-19/graduationDesign/data/Stk_Tick/Stk_Tick_SZ01/SZ000001_20150504.csv' #inFilepathIdx='D:/18-19/graduationDesign/data/Stk_Tick/Stk_Tick_SZ399107/sz399107_20150504.csv' #outFilepathCsv='D:/18-19/graduationDesign/data/out/dfFluctuationDeviation_20150504.csv' #outFilepathPng='D:/18-19/graduationDesign/图/code/fluctuation/最新价+涨跌幅_20150504.png' #outliersThreshold=0.02 timePeriod='201505' outliersThreshold=0.04 # 0.05 0.06 inFilepathStk='D:/18-19/graduationDesign/data/Stk_Tick/Stk_Tick_SZ01/mergeSZ000001_Tick_201505.csv' inFilepathIdx='D:/18-19/graduationDesign/data/Stk_Tick/Stk_Tick_SZ399107/mergeSZ399107_Tick_201505.csv' outFilepathCsv='D:/18-19/graduationDesign/data/out/dfFluctuationDeviation_201505_'+str(outliersThreshold)+'.csv' outFilepathPng='D:/18-19/graduationDesign/图/code/fluctuation/最新价+涨跌幅_201505_'+str(outliersThreshold)+'.png' #timePeriod='201812' #outliersThreshold=0.02 #inFilepathStk='D:/18-19/graduationDesign/data/Stk_Tick/Stk_Tick_SZ01/mergeSZ000001_Tick_201812.csv' #inFilepathIdx='D:/18-19/graduationDesign/data/Stk_Tick/Stk_Tick_SZ399107/mergeSZ399107_Tick_201812.csv' #outFilepathCsv='D:/18-19/graduationDesign/data/out/dfFluctuationDeviation_201812_'+str(outliersThreshold)+'.csv' #outFilepathPng='D:/18-19/graduationDesign/图/code/fluctuation/最新价+涨跌幅_201812_'+str(outliersThreshold)+'.png' #%% 转化函数 dateTimePattern="%Y-%m-%d %H:%M:%S" minPattern="%Y-%m-%d %H:%M" zscore = lambda x: (x-x.mean())/x.std() timestamp=lambda x :int(time.mktime(time.strptime(x,dateTimePattern))) hour=lambda x :int((int(time.mktime(time.strptime(x,dateTimePattern))))/3600) minute=lambda x :int((int(time.mktime(time.strptime(x,dateTimePattern))))/60) threeSecond=lambda x :int( (int(time.mktime(time.strptime(x,dateTimePattern))))+ (3-int(time.mktime(time.strptime(x,dateTimePattern))))%3) # int(time.mktime(datetime.strptime(x[:-3],"%Y-%m-%d %H:%M")) # if ((int(time.mktime(time.strptime(x,dateTimePattern))))%86400-33900)<600 ## time.strftime('%H:%M',datetime.strptime(x[11:-3],minPattern)) # else date23Second=lambda x :time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(x)) date2Min=lambda x :datetime.strptime(x[:-3],"%Y-%m-%d %H:%M") date2Hour=lambda x :datetime.strptime(x[:-6],"%Y-%m-%d %H") date2Date=lambda x :datetime.strptime(x[:-9],"%Y-%m-%d").strftime("%Y-%m-%d") print('start') #%% 读入股票tick日期-最新价 dfStk=pd.read_csv(inFilepathStk) #head="市场代码,证券代码,时间,最新价,成交笔数,成交额,成交量,方向,买一价,买二价,买三价,买四价,买五价,卖一价,卖二价,卖三价,卖四价,卖五价,买一量,买二量,买三量,买四量,买五量,卖一量,卖二量,卖三量,卖四量,卖五量" #columnHeadTuple=head.split(",") dfStk['日期']=dfStk['时间'].transform(date2Date) dfStk['交易时间按3s']=dfStk['时间'].transform(threeSecond) dfStk['3s']=dfStk['交易时间按3s'].transform(date23Second) dfStkU=dfStk.loc[:,['时间','交易时间按3s','日期','最新价','3s']] #print(dfStkU.columns) print(dfStkU[0:5]) #%% 读入股票日线 昨收价 dfSDay=pd.read_csv('D:/18-19/graduationDesign/data/stk_day_20190307/SZ000001_day.csv') #dayHead='代码,时间,开盘价,最高价,最低价,收盘价,成交量(股),成交额(元)' #dayHeadTuple=dayHead.split(',') dfSDay.rename(columns={'时间':'当前交易日'}, inplace = True) lastDay=list(dfSDay['当前交易日'].drop(0)) lastDay.append(lastDay[-1]) dfSDay['下一交易日']=lastDay dfSDayU=dfSDay.loc[:,['当前交易日','下一交易日','收盘价']] #print(dfSDayU.columns) #print(dfSDayU[0:5]) #%% 股票tick -join昨收 dfStkDay=pd.merge(dfStkU, dfSDayU, how='left', on=None, left_on='日期', right_on='下一交易日', left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False) #print(dfStkDay[0:5]) print('股票tick -join昨收') #%% 计算股票涨跌幅 dfSPrice=dfStkDay.loc[:,['交易时间按3s','最新价','收盘价']] dfSPrice.rename(columns={'收盘价':'昨收价'}, inplace = True) dfSFluctuation=dfSPrice.groupby(dfStk['交易时间按3s']).last() dfSUniqueTime=dfStk.drop_duplicates(['3s'])['3s'] dfSFluctuation.index = pd.Index(dfSUniqueTime) dfSFluctuation.dropna(inplace=True) dfSFluctuation['股票涨跌幅']=(dfSFluctuation['最新价']-dfSFluctuation['昨收价'])/dfSFluctuation['昨收价'] #print(dfSFluctuation[0:5]) #%% 读入股指tick日期-最新价 dfItk=pd.read_csv(inFilepathIdx) #head="市场代码,证券代码,时间,最新价,成交笔数,成交额,成交量,方向,买一价,买二价,买三价,买四价,买五价,卖一价,卖二价,卖三价,卖四价,卖五价,买一量,买二量,买三量,买四量,买五量,卖一量,卖二量,卖三量,卖四量,卖五量" #columnHeadTuple=head.split(",") dfItk['日期']=dfItk['时间'].transform(date2Date) dfItk['交易时间按3s']=dfItk['时间'].transform(threeSecond) dfItk['3s']=dfItk['交易时间按3s'].transform(date23Second) dfItkU=dfItk.loc[:,['时间','交易时间按3s','日期','最新价','3s']] #print(dfItkU.columns) #print(dfItkU[0:5]) #%% 读入股指日线 昨收价 dfIDay=
pd.read_csv('D:/18-19/graduationDesign/data/Idx_DAY_20190223/SZ399107_day.csv')
pandas.read_csv
import re import pandas as pd from lxml import etree def get_data(file_name,genre): sentences = [] with (open('./data/ar_PAN/{}.xml'.format(file_name),'r',encoding='utf8')) as f: doc = etree.parse(f) root = doc.getroot() for i in range(len(root[0])): sentences.append([preprocessing(root[0][i].text),genre]) return sentences def get_tweets(df): sentences = [] for index, row in df.iterrows(): sentences +=get_data(row.id,row.genre) return
pd.DataFrame(sentences,columns=['text','label'])
pandas.DataFrame
""" This module contains function to plot smooth ROC curves using KFold Examples: result, aucs = roc_curve_cv(xgb.XGBClassifier(), X, y, n_splits=6) plot_roc_curve_cv(result) plt.show() plot_specificity_cv(result) plt.show() plot_specificity_cv(result, invert_x=True, invert_y=True) plt.show() print(f"AUC: {np.mean(aucs)} (std:{np.std(aucs)})") Comparing models: result_xgb, aucs = roc_curve_cv(xgb.XGBClassifier(), X, y, n_splits=6, n_repeats=4) result_rf, aucs = roc_curve_cv(RandomForestClassifier(), X, y, n_splits=6, n_repeats=4) plot_specificity_cv({'XGB': result_xgb, 'RF':result_rf}) plt.show() Comparing hyperparameters results = [] for max_depth in (3,10): for max_features in (0.5, 0.9): result, _ = roc_curve_cv( RandomForestClassifier(max_depth=max_depth, max_features=max_features), x_full, y_full, n_repeats=4, properties={'max features':max_features, 'max depth':max_depth}) results.append(result) plot_specificity_cv(results, hue='max features', style='max depth', ci=False) plt.show() plot_roc_curve_cv(results, hue='max features', style='max depth', ci=False) plt.show() """ from sklearn.model_selection import StratifiedKFold, RepeatedStratifiedKFold from numpy import interp import numpy as np from sklearn.metrics import roc_curve, auc import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import label_binarize def roc_curve_simple(model, X, y): y_pred = model.predict_proba(X)[:,1] fpr, tpr, thres = roc_curve(y, y_pred) result_df = pd.DataFrame({'fpr':fpr, 'tpr':tpr, 'threshold':thres}, index=range(len(fpr))) return result_df, auc(fpr,tpr) def roc_curve_cv(model, X, y, n_splits=5, n_repeats=1, properties=None): if n_repeats > 1: cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats) else: cv = StratifiedKFold(n_splits=n_splits) auc_list = [] result_df =
pd.DataFrame()
pandas.DataFrame
# Copyright 2019-2020 The Lux Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .context import lux import pytest import pandas as pd from lux.vis.Vis import Vis def test_vary_filter_val(global_var): lux.config.set_executor_type("Pandas") df = pytest.olympic vis = Vis(["Height", "SportType=Ball"], df) df.set_intent_as_vis(vis) df._ipython_display_() assert len(df.recommendation["Filter"]) == len(df["SportType"].unique()) - 1 linechart = list(filter(lambda x: x.mark == "line", df.recommendation["Enhance"]))[0] assert ( linechart.get_attr_by_channel("x")[0].attribute == "Year" ), "Ensure recommended vis does not inherit input vis channel" def test_filter_inequality(global_var): df = pytest.car_df df["Year"] = pd.to_datetime(df["Year"], format="%Y") df.set_intent( [ lux.Clause(attribute="Horsepower"), lux.Clause(attribute="MilesPerGal"), lux.Clause(attribute="Acceleration", filter_op=">", value=10), ] ) df._ipython_display_() from lux.utils.utils import get_filter_specs complement_vis = df.recommendation["Filter"][0] fltr_clause = get_filter_specs(complement_vis._intent)[0] assert fltr_clause.filter_op == "<=" assert fltr_clause.value == 10 def test_generalize_action(global_var): # test that generalize action creates all unique visualizations df = pytest.car_df df["Year"] = pd.to_datetime( df["Year"], format="%Y" ) # change pandas dtype for the column "Year" to datetype df.set_intent(["Acceleration", "MilesPerGal", "Cylinders", "Origin=USA"]) df._ipython_display_() assert len(df.recommendation["Generalize"]) == 4 v1 = df.recommendation["Generalize"][0] v2 = df.recommendation["Generalize"][1] v3 = df.recommendation["Generalize"][2] v4 = df.recommendation["Generalize"][3] for clause in v4._inferred_intent: assert clause.value == "" # No filter value assert v4.title == "Overall" check1 = v1 != v2 and v1 != v3 and v1 != v4 check2 = v2 != v3 and v2 != v4 check3 = v3 != v4 assert check1 and check2 and check3 def test_row_column_group(global_var): df = pd.read_csv( "https://github.com/lux-org/lux-datasets/blob/master/data/state_timeseries.csv?raw=true" ) df["Date"] = pd.to_datetime(df["Date"]) tseries = df.pivot(index="State", columns="Date", values="Value") # Interpolating missing values tseries[tseries.columns.min()] = tseries[tseries.columns.min()].fillna(0) tseries[tseries.columns.max()] = tseries[tseries.columns.max()].fillna(tseries.max(axis=1)) tseries = tseries.interpolate("zero", axis=1) tseries._ipython_display_() assert list(tseries.recommendation.keys()) == ["Temporal"] def test_groupby(global_var): df = pytest.college_df groupbyResult = df.groupby("Region").sum() groupbyResult._ipython_display_() assert list(groupbyResult.recommendation.keys()) == ["Column Groups"] def test_crosstab(): # Example from http://www.datasciencemadesimple.com/cross-tab-cross-table-python-pandas/ d = { "Name": [ "Alisa", "Bobby", "Cathrine", "Alisa", "Bobby", "Cathrine", "Alisa", "Bobby", "Cathrine", "Alisa", "Bobby", "Cathrine", ], "Exam": [ "Semester 1", "Semester 1", "Semester 1", "Semester 1", "Semester 1", "Semester 1", "Semester 2", "Semester 2", "Semester 2", "Semester 2", "Semester 2", "Semester 2", ], "Subject": [ "Mathematics", "Mathematics", "Mathematics", "Science", "Science", "Science", "Mathematics", "Mathematics", "Mathematics", "Science", "Science", "Science", ], "Result": [ "Pass", "Pass", "Fail", "Pass", "Fail", "Pass", "Pass", "Fail", "Fail", "Pass", "Pass", "Fail", ], } df = pd.DataFrame(d, columns=["Name", "Exam", "Subject", "Result"]) result = pd.crosstab([df.Exam], df.Result) result._ipython_display_() assert list(result.recommendation.keys()) == ["Row Groups", "Column Groups"] def test_custom_aggregation(global_var): import numpy as np df = pytest.college_df df.set_intent(["HighestDegree", lux.Clause("AverageCost", aggregation=np.ptp)]) df._ipython_display_() assert list(df.recommendation.keys()) == ["Enhance", "Filter", "Generalize"] df.clear_intent() def test_year_filter_value(global_var): df = pytest.car_df df["Year"] = pd.to_datetime(df["Year"], format="%Y") df.set_intent(["Acceleration", "Horsepower"]) df._ipython_display_() list_of_vis_with_year_filter = list( filter( lambda vis: len( list( filter( lambda clause: clause.value != "" and clause.attribute == "Year", vis._intent, ) ) ) != 0, df.recommendation["Filter"], ) ) vis = list_of_vis_with_year_filter[0] assert ( "T00:00:00.000000000" not in vis.to_altair() ), "Year filter title contains extraneous string, not displayed as summarized string" df.clear_intent() def test_similarity(global_var): lux.config.early_pruning = False df = pytest.car_df df["Year"] = pd.to_datetime(df["Year"], format="%Y") df.set_intent( [ lux.Clause("Year", channel="x"), lux.Clause("Displacement", channel="y"), lux.Clause("Origin=USA"), ] ) df._ipython_display_() assert len(df.recommendation["Similarity"]) == 2 ranked_list = df.recommendation["Similarity"] japan_vis = list( filter( lambda vis: vis.get_attr_by_attr_name("Origin")[0].value == "Japan", ranked_list, ) )[0] europe_vis = list( filter( lambda vis: vis.get_attr_by_attr_name("Origin")[0].value == "Europe", ranked_list, ) )[0] assert japan_vis.score > europe_vis.score df.clear_intent() lux.config.early_pruning = True def test_similarity2(): df = pd.read_csv( "https://raw.githubusercontent.com/lux-org/lux-datasets/master/data/real_estate_tutorial.csv" ) df["Month"] = pd.to_datetime(df["Month"], format="%m") df["Year"] =
pd.to_datetime(df["Year"], format="%Y")
pandas.to_datetime
import pandas as pd import numpy from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn import tree from sklearn import neighbors from sklearn.naive_bayes import MultinomialNB,BernoulliNB,GaussianNB from sklearn.decomposition import PCA from sklearn import metrics import matplotlib.pyplot as plt def readData(filename): data=[] with open(filename, "r") as f: for line in f.readlines(): words = line.split(",") words[0] = float(words[0]) words[1] = float(words[1]) words[2] = float(words[2]) words[3] = float(words[3]) words[4] = words[4].replace("\n","") data.append(words) return data def iris(): iris_data = readData("iris.data") iris_x=[] #feature iris_y=[] #target for i in range(len(iris_data)): iris_x.append(iris_data[i][:4]) iris_y.append(iris_data[i][4]) ''' pca=PCA(n_components='mle') new_iris_x=pca.fit_transform(iris_x) explained_variance = numpy.var(new_iris_x, axis=0) explained_variance_ratio = explained_variance / numpy.sum(explained_variance) print(explained_variance) print(explained_variance_ratio) ''' train_x, test_x, train_y, test_y = train_test_split(iris_x, iris_y, test_size=0.3) #Decision Tree decision_tree= tree.DecisionTreeClassifier() iris_decision_tree = decision_tree.fit(train_x, train_y) DT_test_y_predicted = iris_decision_tree.predict(test_x) DT_accuracy = metrics.accuracy_score(test_y, DT_test_y_predicted) #KNN knn = neighbors.KNeighborsClassifier(n_neighbors = 5) iris_knn = knn.fit(train_x, train_y) KNN_test_y_predicted = iris_knn.predict(test_x) KNN_accuracy = metrics.accuracy_score(test_y, KNN_test_y_predicted) #Naive Bayes nb = GaussianNB() iris_nb = nb.fit(train_x, train_y) NB_test_y_predicted = iris_nb.predict(test_x) NB_accuracy = metrics.accuracy_score(test_y, NB_test_y_predicted, normalize=True) #Accuarcy print("Iris---------------------------------------") print("DecsionTree = " + str(round(DT_accuracy, 7))) print("KNN = " + str(round(KNN_accuracy,7))) print("NaiveBayes = " + str(round(NB_accuracy, 7))) print("") def fire(): fire_data =
pd.read_csv("forestfires.csv")
pandas.read_csv
# import Ipynb_importer import pandas as pd from .public_fun import * # 全局变量 class glv: def _init(): global _global_dict _global_dict = {} def set_value(key,value): _global_dict[key] = value def get_value(key,defValue=None): try: return _global_dict[key] except KeyError: return defValue ## fun_01to06 class fun_01to06(object): def __init__(self, data): self.cf = [2, 1, 1, 17, 1, 2] self.cf_a = hexlist2(self.cf) self.o = data[0:self.cf_a[-1]] self.list_o = [ "起始符", "命令标识", "应答标志", "唯一识别码", "数据单元加密方式", "数据单元长度" ] self.oj = list2dict(self.o, self.list_o, self.cf_a) self.ol = pd.DataFrame([self.oj]).reindex(columns=self.list_o) self.pj = { "起始符":hex2str(self.oj["起始符"]), "命令标识":dict_list_replace('02', self.oj['命令标识']), "应答标志":dict_list_replace('03', self.oj['应答标志']), "唯一识别码":hex2str(self.oj["唯一识别码"]), "数据单元加密方式":dict_list_replace('05', self.oj['数据单元加密方式']), "数据单元长度":hex2dec(self.oj["数据单元长度"]), } self.pl = pd.DataFrame([self.pj]).reindex(columns=self.list_o) self.next = data[len(self.o):] self.nextMark = data[len(self.o):len(self.o)+2] self.mo = self.oj["命令标识"] glv.set_value('data_f', self.next) glv.set_value('data_mo', self.mo) glv.set_value('data_01to07', self.o) print('fun_01to06 done!') ## fun_07 class fun_07: def __init__(self, data): self.mo = glv.get_value("data_mo") if self.mo == '01': self.o = fun_07_01(glv.get_value('data_f')) elif self.mo == '02' or self.mo == '03': self.o = fun_07_02(glv.get_value('data_f')) elif self.mo == '04': self.o = fun_07_04(glv.get_value('data_f')) elif self.mo == '05': self.o = fun_07_05(glv.get_value('data_f')) elif self.mo == '06': self.o = fun_07_06(glv.get_value('data_f')) else : print('命令标识:',self.mo,'有误') self.c = fun_07_cursor(glv.get_value('data_f')) self.oj = dict(self.o.oj, **self.c.oj) self.oj2 = {'数据单元':self.oj} self.ol = pd.merge(self.o.ol, self.c.ol, left_index=True, right_index=True) self.pj = dict(self.o.pj, **self.c.pj) self.pj2 = {'数据单元':self.pj} self.pl = pd.merge(self.o.pl, self.c.pl, left_index=True, right_index=True) print('fun_07 done!') ## fun_07_01 class fun_07_01(object): def __init__(self, data): self.cf = [6, 2, 20, 1, 1] self.cf_a = hexlist2(self.cf) self.n = hex2dec(data[self.cf_a[3]:self.cf_a[4]]) self.m = hex2dec(data[self.cf_a[4]:self.cf_a[5]]) self.cf.append(self.n*self.m) self.cf_a = hexlist2(self.cf) self.o = data[0:self.cf_a[-1]] self.list_o = [ "数据采集时间", "登入流水号", "ICCID", "可充电储能子系统数", "可充电储能系统编码长度", "可充电储能系统编码", ] self.oj = list2dict(self.o, self.list_o, self.cf_a) self.oj2 = {'车辆登入': self.oj} self.ol = pd.DataFrame([self.oj]).reindex(columns=self.list_o) self.pj = { "数据采集时间":get_datetime(self.oj['数据采集时间']), "登入流水号":hex2dec(self.oj['登入流水号']), "ICCID":hex2str(self.oj['ICCID']), "可充电储能子系统数":hex2dec(self.oj['可充电储能子系统数']), "可充电储能系统编码长度":hex2dec(self.oj['可充电储能系统编码长度']), "可充电储能系统编码":fun_07_01.fun_07_01_06(self.oj['可充电储能系统编码'], self.oj['可充电储能子系统数'], self.oj['可充电储能系统编码长度']), } self.pj2 = {'车辆登入': self.pj} self.pl = pd.DataFrame([self.pj]).reindex(columns=self.list_o) self.next = data[len(self.o):] self.nextMark = data[len(self.o):len(self.o)+2] glv.set_value('data_f', self.next) glv.set_value('data_07_01', self.o) print('fun_07_01 done!') def fun_07_01_06(data, n, m): if m=='00': return "NA" else : n = hex2dec(n) m = hex2dec(m) * 2 output = [] for i in range(n): output_unit = hex2str(data[i * m: i* m +m]) output.append(output_unit) return output ## fun_07_04 class fun_07_04(object): def __init__(self, data): self.cf = [6, 2] self.cf_a = hexlist2(self.cf) self.o = data[0:self.cf_a[-1]] self.list_o = [ "登出时间", "登出流水号", ] self.oj = list2dict(self.o, self.list_o, self.cf_a) self.ol = pd.DataFrame([self.oj]).reindex(columns=self.list_o) self.pj = { "登出时间":get_datetime(self.oj['登出时间']), "登出流水号":hex2dec(self.oj['登出流水号']), } self.pl = pd.DataFrame([self.pj]).reindex(columns=self.list_o) self.next = data[len(self.o):] self.nextMark = data[len(self.o):len(self.o)+2] glv.set_value('data_f', self.next) glv.set_value('data_07_04', self.o) print('fun_07_04 done!') ## fun_07_05 class fun_07_05(object): def __init__(self, data): self.cf = [6, 2, 12, 20, 1] self.cf_a = hexlist2(self.cf) self.o = data[0:self.cf_a[-1]] self.list_o = [ "平台登入时间", "登入流水号", "平台用户名", "平台密码", "加密规则", ] self.oj = list2dict(self.o, self.list_o, self.cf_a) self.ol = pd.DataFrame([self.oj]).reindex(columns=self.list_o) self.pj = { "平台登入时间":get_datetime(self.oj['平台登入时间']), "登入流水号":hex2dec(self.oj['登入流水号']), "平台用户名":hex2str(self.oj['平台用户名']), "平台密码":hex2str(self.oj['平台密码']), "加密规则":dict_list_replace('07_05_05',self.oj['加密规则']), } self.pl = pd.DataFrame([self.pj]).reindex(columns=self.list_o) self.next = data[len(self.o):] self.nextMark = data[len(self.o):len(self.o)+2] glv.set_value('data_f', self.next) glv.set_value('data_07_05', self.o) print('fun_07_05 done!') ## fun_07_06 class fun_07_06(object): def __init__(self, data): self.cf = [6, 2] self.cf_a = hexlist2(self.cf) self.o = data[0:self.cf_a[-1]] self.list_o = [ "登出时间", "登出流水号", ] self.oj = list2dict(self.o, self.list_o, self.cf_a) print(self.oj) self.ol = pd.DataFrame([self.oj]).reindex(columns=self.list_o) self.pj = { "登出时间":get_datetime(self.oj['登出时间']), "登出流水号":hex2dec(self.oj['登出流水号']), } self.pl = pd.DataFrame([self.pj]).reindex(columns=self.list_o) self.next = data[len(self.o):] self.nextMark = data[len(self.o):len(self.o)+2] glv.set_value('data_f', self.next) glv.set_value('data_07_06', self.o) print('fun_07_06 done!') ## fun_07_02 class fun_07_02: def __init__(self, data): self.o = data self.oj = {'数据采集时间': self.o[:12]} self.ol = pd.DataFrame({'01':['01']}) self.pj = {'数据采集时间': get_datetime(self.oj['数据采集时间'])} self.pl = pd.DataFrame({'01':['01']}) glv.set_value('data_f', data[12:]) glv.set_value('m_07_02', data[12:14]) self.mo_list = glv.get_value('model') self.do_list = [] while(glv.get_value('m_07_02') in self.mo_list): # 记录已执行的 self.do_list.append(glv.get_value('m_07_02')) # 删除已执行的 self.mo_list.remove(glv.get_value('m_07_02')) if glv.get_value('m_07_02') == '01': self.f_01 = fun_07_02_01(glv.get_value('data_f')) elif glv.get_value('m_07_02') == '02': self.f_02 = fun_07_02_02(glv.get_value('data_f')) elif glv.get_value('m_07_02') == '03': self.f_03 = fun_07_02_03(glv.get_value('data_f')) elif glv.get_value('m_07_02') == '04': self.f_04 = fun_07_02_04(glv.get_value('data_f')) elif glv.get_value('m_07_02') == '05': self.f_05 = fun_07_02_05(glv.get_value('data_f')) elif glv.get_value('m_07_02') == '06': self.f_06 = fun_07_02_06(glv.get_value('data_f')) elif glv.get_value('m_07_02') == '07': self.f_07 = fun_07_02_07(glv.get_value('data_f')) elif glv.get_value('m_07_02') == '08': self.f_08 = fun_07_02_08(glv.get_value('data_f')) elif glv.get_value('m_07_02') == '09': self.f_09 = fun_07_02_09(glv.get_value('data_f')) else: print("fun_07_02 done") print(glv.get_value('data_f')) print(glv.get_value('m_07_02')) self.do_list.sort() for i in self.do_list: if i == '01': self.oj = dict(self.oj,**self.f_01.oj2) self.ol = pd.merge(self.ol, self.f_01.ol, left_index=True, right_index=True) self.pj = dict(self.pj,**self.f_01.pj2) self.pl = pd.merge(self.pl, self.f_01.pl, left_index=True, right_index=True) elif i == '02': self.oj = dict(self.oj,**self.f_02.oj2) self.ol = pd.merge(self.ol, self.f_02.ol, left_index=True, right_index=True) self.pj = dict(self.pj,**self.f_02.pj2) self.pl =
pd.merge(self.pl, self.f_02.pl, left_index=True, right_index=True)
pandas.merge
import unittest import pandas.util.testing as pdt import pandas as pd from qiime2 import Artifact from qiime2.plugin.testing import TestPluginBase from qiime2.plugins import gcn_norm class GcnNormTests(TestPluginBase): package = 'q2_gcn_norm.tests' def test_gcn_norm_silva(self): feature_id = ['taxon_1', 'taxon_2', 'taxon_3', 'taxon_4', 'taxon_5', 'taxon_6'] taxa = ['D_0__Bacteria;D_1__Firmicutes;D_2__Bacilli;D_3__Lactobacillales;'\ 'D_4__Lactobacillaceae;D_5__Lactobacillus;D_6__Lactobacillus murinus', 'D_0__Bacteria;D_1__Firmicutes;D_2__Bacilli;D_3__Lactobacillales;'\ 'D_4__Lactobacillaceae;D_5__Lactobacillus', 'D_0__Bacteria;D_1__Bacteroidetes;D_2__Bacteroidia;D_3__Bacteroidales;'\ 'D_4__Rikenellaceae;D_5__Alistipes;D_6__Alistipes sp. N15.MGS-157', 'D_0__Bacteria;D_1__Bacteroidetes;D_2__Bacteroidia;D_3__Bacteroidales;'\ 'D_4__Rikenellaceae;D_5__Alistipes', 'D_0__Bacteria;D_1__Bacteroidetes;D_2__Bacteroidia;D_3__Bacteroidales', 'Unassigned' ] confidence = [0.99]*len(feature_id) data_taxonomy = {'Feature ID': feature_id,'Taxon': taxa, 'Confidence': confidence} df_taxa = pd.DataFrame(data_taxonomy) df_taxa.set_index('Feature ID', inplace=True) taxonomy_silva = Artifact.import_data('FeatureData[Taxonomy]', df_taxa) df_table = pd.DataFrame([[10,10,10,10,10,10], [ 5, 5, 5, 0, 0, 0]], index=['sample A','sample B'], columns=feature_id) table = Artifact.import_data('FeatureTable[Frequency]', df_table) table_gcn_normalized = gcn_norm.actions.copy_num_normalize(table, taxonomy_silva ,database='silva') df_table_normalized = table_gcn_normalized.gcn_norm_table.view(pd.DataFrame) copy_num = [6, 5.04, 2.12, 2.12, 3.52, 1] df_true = df_table/copy_num
pdt.assert_frame_equal(df_table_normalized, df_true)
pandas.util.testing.assert_frame_equal
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 =
Series([20, 30, 40], dtype=dtype)
pandas.Series
#!/usr/bin/env python """Tests for `arcos_py` package.""" from numpy import int64 import pandas as pd import pytest from pandas.testing import assert_frame_equal from arcos4py import ARCOS from arcos4py.tools._errors import noDataError @pytest.fixture def no_bin_data(): """ pytest fixture to generate test data """ data = [item for i in range(10) for item in list(range(1, 11))] m = [0 for i in range(100)] d = {'id': data, 'time': data, 'm': m, 'x': data} print(d) df = pd.DataFrame(d) return df def test_empty_data(no_bin_data: pd.DataFrame): with pytest.raises(noDataError, match='Input is empty'): test_data = no_bin_data[no_bin_data['m'] > 0] pos = ['x'] ts = ARCOS( test_data, posCols=pos, frame_column='time', id_column='id', measurement_column='m', clid_column='clTrackID' ) ts.trackCollev(eps=1, minClsz=1, nPrev=2) def test_1_central_1_prev(): df_in = pd.read_csv('tests/testdata/1central_in.csv') df_true = pd.read_csv('tests/testdata/1central_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true, check_dtype=False) def test_1_central_2_prev(): df_in = pd.read_csv('tests/testdata/1central_in.csv') df_true = pd.read_csv('tests/testdata/1central2prev_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=2) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true, check_dtype=False) def test_1_central_3D(): df_in = pd.read_csv('tests/testdata/1central3D_in.csv') df_true = pd.read_csv('tests/testdata/1central3D_res.csv') pos = ['x', 'y', 'z'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x', 'y', 'z']) assert_frame_equal(out, df_true) def test_1_central_growing(): df_in = pd.read_csv('tests/testdata/1centralGrowing_in.csv') df_true = pd.read_csv('tests/testdata/1centralGrowing_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_2_central_growing(): df_in = pd.read_csv('tests/testdata/2centralGrowing_in.csv') df_true = pd.read_csv('tests/testdata/2centralGrowing_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_2_with_1_common_symmetric(): df_in = pd.read_csv('tests/testdata/2with1commonSym_in.csv') df_true = pd.read_csv('tests/testdata/2with1commonSym_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_2_with_1_common_asymmetric(): df_in = pd.read_csv('tests/testdata/2with1commonAsym_in.csv') df_true = pd.read_csv('tests/testdata/2with1commonAsym_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_3_spreading_1_prev(): df_in = pd.read_csv('tests/testdata/3spreading_in.csv') df_true = pd.read_csv('tests/testdata/3spreading_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_3_spreading_2_prev(): df_in = pd.read_csv('tests/testdata/3spreading_in.csv') df_true = pd.read_csv('tests/testdata/3spreading2prev_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=2) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_5_overlapping_1_prev(): df_in = pd.read_csv('tests/testdata/5overlapping_in.csv') df_true = pd.read_csv('tests/testdata/5overlapping_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_5_overlapping_2_prev(): df_in = pd.read_csv('tests/testdata/5overlapping_in.csv') df_true = pd.read_csv('tests/testdata/5overlapping2prev_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=2) out = out.drop(columns=['m', 'x']) assert_frame_equal(out, df_true) def test_6_overlapping(): df_in = pd.read_csv('tests/testdata/6overlapping_in.csv') df_true = pd.read_csv('tests/testdata/6overlapping_res.csv') pos = ['x'] ts = ARCOS( df_in, posCols=pos, frame_column='time', id_column='trackID', measurement_column='m', clid_column='clTrackID' ) ts.bin_col = 'm' out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['m', 'x']) out['trackID'] = out['trackID'].astype(int64) assert_frame_equal(out, df_true) def test_split_from_single(): df_in = pd.read_csv('tests/testdata/1objSplit_in.csv') df_true = pd.read_csv('tests/testdata/1objSplit_res.csv') pos = ['pos'] ts = ARCOS(df_in, posCols=pos, frame_column='t', id_column='id', measurement_column=None, clid_column='collid') out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['pos']) assert_frame_equal(out, df_true) def test_split_from_2_objects(): df_in = pd.read_csv('tests/testdata/2objSplit_in.csv') df_true = pd.read_csv('tests/testdata/2objSplit_res.csv') pos = ['pos'] ts = ARCOS(df_in, posCols=pos, frame_column='t', id_column='id', measurement_column=None, clid_column='collid') out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['pos']) assert_frame_equal(out, df_true) def test_cross_2_objects(): df_in = pd.read_csv('tests/testdata/2objCross_in.csv') df_true = pd.read_csv('tests/testdata/2objCross_res.csv') pos = ['pos'] ts = ARCOS(df_in, posCols=pos, frame_column='t', id_column='id', measurement_column=None, clid_column='collid') out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['pos']) assert_frame_equal(out, df_true) def test_merge_split_2_objects_with_common(): df_in = pd.read_csv('tests/testdata/2objMergeSplitCommon_in.csv') df_true = pd.read_csv('tests/testdata/2objMergeSplitCommon_res.csv') pos = ['pos'] ts = ARCOS(df_in, posCols=pos, frame_column='t', id_column='id', measurement_column=None, clid_column='collid') out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['pos']) assert_frame_equal(out, df_true) ## if algorithm behaves differently (like in R) a different output is produced regarding collective events def test_merge_split_2_objects_crossing(): df_in = pd.read_csv('tests/testdata/2objMergeSplitCross_in.csv') df_true = pd.read_csv('tests/testdata/2objMergeSplitCross_res.csv') pos = ['pos'] ts = ARCOS(df_in, posCols=pos, frame_column='t', id_column='id', measurement_column=None, clid_column='collid') out = ts.trackCollev(eps=1.0, minClsz=1, nPrev=1) out = out.drop(columns=['pos'])
assert_frame_equal(out, df_true)
pandas.testing.assert_frame_equal
import torch import torch.nn as nn from torch.nn import functional as F import math from torch.utils.data import Dataset import os import pandas as pd import pdb import numpy as np import math import pickle import random from sklearn.utils import shuffle class FinalTCGAPCAWG(Dataset): def __init__(self, dataset_name = None, data_dir=None, mode='training', curr_fold=1, block_size=5000, load=False, addtriplettoken=False, addpostoken=False, addgestoken=False, addrt=False, nummut = 0, frac = 0, crossdata=False, crossdatadir=None, pcawg2tgca_class=False, tcga2pcawg_class=False, mutratio = '1-0-0-0-0-0', adddatadir = None): self.dataset_name = dataset_name self.data_dir=data_dir self.mode=mode self.curr_fold=int(curr_fold) self.block_size=block_size self.load=load self.addtriplettoken=addtriplettoken self.addpostoken=addpostoken self.addrt=addrt self.nummut = nummut self.frac = frac self.addgestoken = addgestoken self.crossdata= crossdata self.crossdatadir = crossdatadir self.adddatadir = adddatadir self.pcawg2tgca_class=pcawg2tgca_class self.tcga2pcawg_class=tcga2pcawg_class self.NiSi = False self.SNV = False self.indel = False self.SVMEI = False self.Normal = False if self.nummut > 0 : self.block_size = self.nummut if self.dataset_name == 'finalpcawg': self.training_fold = pd.read_csv('./notebookpcawg/pcawg_trainfold' + str(self.curr_fold) + '.csv',index_col=0) self.validation_fold = pd.read_csv('./notebookpcawg/pcawg_valfold' + str(self.curr_fold) + '.csv',index_col=0) elif self.dataset_name == 'finaltcga': self.training_fold = pd.read_csv('./notebookpcawg/tcga_trainfold' + str(self.curr_fold) + '.csv',index_col=0) self.validation_fold = pd.read_csv('./notebookpcawg/tcga_valfold' + str(self.curr_fold) + '.csv',index_col=0) elif self.dataset_name == 'westcga': self.training_fold = pd.read_csv('./notebookpcawg/tcgawes_trainfold' + str(self.curr_fold) + '.csv',index_col=0) self.validation_fold = pd.read_csv('./notebookpcawg/tcgawes_valfold' + str(self.curr_fold) + '.csv',index_col=0) elif self.dataset_name == 'wgspcawg': self.training_fold = pd.read_csv('./notebookpcawg/pcawgwgs_trainfold' + str(self.curr_fold) + '.csv',index_col=0) self.validation_fold = pd.read_csv('./notebookpcawg/pcawgwgs_valfold' + str(self.curr_fold) + '.csv',index_col=0) if self.adddatadir is not None: adddata = pd.DataFrame(columns=self.validation_fold.columns) adddata.columns = self.validation_fold.columns folder = os.listdir(self.adddatadir) for i in folder: samples = os.listdir(self.adddatadir + i ) for j in samples: if j[0:3] == 'new': counter = pd.read_csv(self.adddatadir + i + '/count_new_' + j[4:],index_col=0) listall = [i,j[4:]] + counter['0'].values.tolist() + [1] pds = pd.DataFrame(listall) pds = pds.T pds.columns=self.validation_fold.columns adddata = adddata.append(pds) adddata = adddata.reset_index(drop=True) self.adddata = adddata #self.validation_fold = self.validation_fold.append(self.adddata) self.validation_fold = self.adddata self.data_dir = self.adddatadir self.load_classinfo() self.vocab_mutation = pd.read_csv('./notebookpcawg/dictMutation.csv',index_col=0) self.allSNV_index = 0 self.mutratio = mutratio.split('-') self.mutratio = [float(i) for i in self.mutratio] if self.mutratio[0]>0: self.NiSi = True if self.mutratio[1]>0: self.SNV = True if self.mutratio[2]>0: self.indel = True if self.mutratio[3]>0: self.SVMEI = True if self.mutratio[4]>0: self.Normal = True if self.NiSi: vocabsize = len(self.vocab_mutation.loc[self.vocab_mutation['typ']=='NiSi']) if self.SNV: vocabsize = vocabsize + len(self.vocab_mutation.loc[self.vocab_mutation['typ']=='SNV']) if self.indel: vocabsize = vocabsize + len(self.vocab_mutation.loc[self.vocab_mutation['typ']=='indel']) if self.SVMEI: vocabsize = vocabsize + len(self.vocab_mutation.loc[self.vocab_mutation['typ'].isin(['MEI','SV'])]) if self.Normal: vocabsize = vocabsize + len(self.vocab_mutation.loc[self.vocab_mutation['typ']=='Normal']) self.vocab_size = vocabsize + 1 #print(self.vocab_size) #pdb.set_trace() self.pd_position_vocab = pd.read_csv('./notebookpcawg/dictChpos.csv',index_col=0) self.pd_ges_vocab = pd.read_csv('./notebookpcawg/dictGES.csv',index_col=0) self.position_size = len(self.pd_position_vocab) + 1 self.ges_size = len(self.pd_ges_vocab) + 1 self.rt_size = 1 self.midstring = '.' + self.dataset_name + str(mutratio) + str(int(self.addtriplettoken)) + str(int(self.addpostoken)) + str(int(self.addgestoken)) + str(int(self.addrt)) + '/' if self.mode == 'validation': if self.crossdata: os.makedirs(self.crossdatadir + self.midstring, exist_ok=True) self.data_dir = self.crossdatadir #pdb.set_trace() else: os.makedirs(self.data_dir + self.midstring, exist_ok=True) def load_classinfo(self): if self.dataset_name == 'finalpcawg': num_class = os.listdir(self.data_dir) name_class = [i for i in num_class if len(i.split('.'))==1] name_class = sorted(name_class) n_samples = [] for idx,nm_class in enumerate(name_class): samples = os.listdir(self.data_dir+nm_class) samples = [x for x in samples if x[:10]=='count_new_'] n_samples.append(len(samples)) data = list(zip(name_class, np.arange(len(name_class)),n_samples)) self.pd_class_info = pd.DataFrame(data,columns=['class_name','class_index','n_samples']) else: num_class = os.listdir(self.data_dir) name_class = [i for i in num_class if len(i.split('.'))==1] name_class = sorted(name_class) n_samples = [] for idx,nm_class in enumerate(name_class): samples = os.listdir(self.data_dir+nm_class) samples = [x for x in samples if x[:10]=='count_new_'] n_samples.append(len(samples)) data = list(zip(name_class, np.arange(len(name_class)),n_samples)) self.pd_class_info = pd.DataFrame(data,columns=['class_name','class_index','n_samples']) if self.crossdata: self.crossdatadir = self.data_dir num_class = os.listdir(self.crossdatadir) name_class = [i for i in num_class if len(i.split('.'))==1] name_class = sorted(name_class) n_samples = [] for idx,nm_class in enumerate(name_class): samples = os.listdir(self.crossdatadir+nm_class) samples = [x for x in samples if x[:10]=='count_new_'] n_samples.append(len(samples)) data = list(zip(name_class, np.arange(len(name_class)),n_samples)) self.pd_class_infoto = pd.DataFrame(data,columns=['class_name','class_index','n_samples']) self.pd_class_crossdata = pd.read_csv('./extfile/crossdata.csv',index_col =0) #pdb.set_trace() def get_data(self,idx): if self.mode=='training': instances=self.training_fold.iloc[idx] elif self.mode=='validation': instances=self.validation_fold.iloc[idx] elif self.mode == 'testing': instances=self.test_data.iloc[idx] #if self.prioritize: # instances=self.training_fold.loc[self.training_fold['samples']=='f8593ac0-9480-22a0-e040-11ac0d48697a.csv'] # instances=instances.iloc[0] target_name = instances['nm_class'] #if self.crossdata: # target_name = self.pd_class_crossdata.loc[self.pd_class_crossdata['tcga_class']==target_name]['class_name'].to_list()[0] samples = instances[1] avail_count = np.asarray(self.mutratio) * self.block_size row_count = instances[['NiSi','SNV','indel','SVMEI','Normal']].to_numpy() diff = avail_count - row_count pos = diff>0 avail_count1 = row_count * pos diff = row_count > avail_count avail_count2 = avail_count * diff avail_count3 = avail_count1 + avail_count2 shadowavail_count3 = avail_count3 shadowavail_count3[0] = row_count[0] if sum(shadowavail_count3) > self.block_size: diff = self.block_size - sum(avail_count3) shadowavail_count3[0] = diff + avail_count3[0] avail_count2 = shadowavail_count3.astype(int) if avail_count2[0]<0: secondmax = avail_count2[np.argmax(avail_count2)] avail_count2 = avail_count2 * 0.7 avail_count = avail_count2 diff = avail_count - row_count pos = diff>0 avail_count1 = row_count * pos diff = row_count > avail_count avail_count2 = avail_count * diff avail_count3 = avail_count1 + avail_count2 shadowavail_count3 = avail_count3 shadowavail_count3[0] = row_count[0] if sum(shadowavail_count3) > self.block_size: diff = self.block_size - sum(avail_count3) shadowavail_count3[0] = diff + avail_count3[0] avail_count2 = shadowavail_count3.astype(int) avail_count = avail_count2 def grab(pd_input,grabcol): return pd_input[grabcol] def allgrab(grabcol): if self.NiSi: #pdb.set_trace() pd_nisi = pd.read_csv(self.data_dir + target_name + '/' + 'NiSi_new_' + samples,index_col=0) pd_nisi = pd_nisi.sample(n = avail_count[0], replace = False) pd_nisi = grab(pd_nisi,grabcol) if self.SNV: pd_SNV = pd.read_csv(self.data_dir + target_name + '/' + 'SNV_new_' + samples,index_col=0) pd_SNV = pd_SNV.sample(n = avail_count[1], replace = False) pd_SNV = grab(pd_SNV,grabcol) pd_nisi = pd_nisi.append(pd_SNV) if self.indel: pd_indel = pd.read_csv(self.data_dir + target_name + '/' + 'indel_new_' + samples,index_col=0) pd_indel = pd_indel.sample(n = avail_count[2], replace = False) pd_indel = grab(pd_indel,grabcol) pd_nisi = pd_nisi.append(pd_indel) if self.SVMEI: pd_meisv = pd.read_csv(self.data_dir + target_name + '/' + 'MEISV_new_' + samples,index_col=0) pd_meisv = pd_meisv.sample(n = avail_count[3], replace = False) pd_meisv = grab(pd_meisv,grabcol) pd_nisi = pd_nisi.append(pd_meisv) if self.Normal: pd_normal = pd.read_csv(self.data_dir + target_name + '/' + 'Normal_new_' + samples,index_col=0) pd_normal = pd_normal.sample(n = avail_count[4], replace = False) pd_normal = grab(pd_normal,grabcol) pd_nisi = pd_nisi.append(pd_normal) pd_nisi = pd_nisi.fillna(0) return pd_nisi if self.addtriplettoken: if self.mode=='training' : pd_nisi = allgrab(['triplettoken']) else: filename = self.data_dir + self.midstring + 'val_' + samples if os.path.isfile(filename): try: pd_nisi =
pd.read_csv(filename,index_col=0)
pandas.read_csv
import datetime from datetime import datetime as dt from datetime import timedelta as td import os import re as reg from math import sqrt import matplotlib.pyplot as plt import matplotlib.pylab as plb import numpy as np from sklearn.ensemble import VotingRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from plotly.subplots import make_subplots import plotly.graph_objs as go from plotly.offline import plot from fbprophet import Prophet from fbprophet.plot import plot_plotly import pandas as pd #Constant EPOCH_TIME = datetime.datetime.utcfromtimestamp(0) #Functions def access_csv_url(url): """This python module downloads the csv from a url passed and return the dataframe else raises a FileNotFoundError exception""" df = pd.read_csv(url) if df.empty is False: return df else: raise FileNotFoundError def get_company_name(company_df): """lvl1 @2 : Following line loads the initial data of list of companies""" company_symbol = '' while (company_df.empty is False and company_symbol == ''): surety_value = input("Are you sure of company symbol you want to search? (Y/N/E(Exit)) : ") if surety_value.upper() == 'Y' or surety_value.upper() == 'N': if surety_value.upper() == 'N': search_dict = company_search('', company_df) if len(search_dict) == 0: print("\n No related results found, Give it another Try!!") continue elif len(search_dict) > 0: if len(search_dict) > 10: print("Showing Top 10 results for your search which gave ", len(search_dict), " results") else: print("found ", str(len(search_dict)), "results") print(" \t Symbol \t Name") print("\t _________", "\t", "_________") for index, key in enumerate(search_dict.keys()): if index+1 == 11: break else: print("\t", key, "\t\t", search_dict[key]) surety_value = input("Have you found your symbol yet ? Y/N : ") if surety_value.upper() == 'N' or surety_value.upper() == 'Y': if surety_value.upper() == 'Y': company_symbol = input("Enter the final symbol : ") search_dict = company_search(company_symbol, company_df) if len(search_dict) > 1: print("Your search resulted into multiple results, please reselect your company!") company_symbol = '' #resetting the value so that value can be input again elif len(search_dict) == 0: print("Your search yielded no results") company_symbol = '' else: continue else: print("please choose only Y or N or y or n or E or e") continue elif surety_value.upper() == 'Y': company_symbol = input("Enter the final symbol : ") search_dict = company_search(company_symbol, company_df) if len(search_dict) > 1: print("Your search resulted into multiple results, please reselect your company!") company_symbol = '' #resetting the value so that value can be input again elif len(search_dict) == 0: print("Your search yielded no results") company_symbol = '' elif surety_value.upper() == 'E': company_symbol = '' break else: print("please choose only Y or N or y or n") continue return company_symbol.upper() def file_exists(filename, filepath): file_tree = [file for file in os.listdir(filepath) if os.path.isfile(file)] if filename not in file_tree: return False else: return True def update_company_data(company_symbol): """If a file does not exit then data will be downloaded from the website and save in the file with that company name""" file_name = (str(company_symbol)+'.csv') existing_file = file_exists(file_name, '.') end_date = dt.date(dt.utcnow() - td(seconds=14400)) if existing_file is False: alpha_url = f"http://quotes.wsj.com/{company_symbol}/historical-prices/download?MOD_VIEW=page%20&num_rows=7500&range_days=7500&startDate=11/01/1970%20&endDate={end_date}" #mm/dd/yyyy company_data = pd.read_csv(alpha_url) company_data.columns = [col_name.lstrip() for col_name in company_data.columns] company_data['Date'] = pd.to_datetime(company_data['Date'], format='%m/%d/%y') company_data['Date'] = company_data['Date'].dt.date company_data = company_data.sort_values(by='Date') if not company_data.empty: company_data.to_csv(f"{company_symbol}.csv") else: """if the file exists, read the last line and update the data until todays date""" company_data = pd.read_csv(file_name, index_col=0) company_data['Date'] = company_data['Date'].apply(lambda x: datetime.datetime.strptime(x, '%Y-%m-%d').date()) row = company_data.sort_values('Date').tail(1) date = row['Date'] date = str(date).split() date = datetime.datetime.strptime(date[1], '%Y-%m-%d').date() + td(days=1) if end_date != date: remaining_df = pd.read_csv('http://quotes.wsj.com/'+company_symbol+'/historical-prices/download?MOD_VIEW=page%20&num_rows=7500&range_days=7500&startDate='+str(date.month)+'/'+str(date.day)+'/'+str(date.year)+'%20&endDate='+str(end_date.month)+'/'+str(end_date.day)+'/'+str(end_date.year)) remaining_df.columns = company_data.columns remaining_df['Date'] = pd.to_datetime(remaining_df['Date'], format='%m/%d/%y') remaining_df['Date'] = remaining_df['Date'].dt.date company_data = company_data.append(remaining_df, sort=False) company_data.columns = [col_name.lstrip() for col_name in company_data.columns] company_data['Date'] = pd.to_datetime(company_data['Date'], format='%Y-%m-%d') company_data['Date'] = company_data['Date'].dt.date company_data = company_data.sort_values(by='Date') company_data.reset_index(inplace=True, drop=True) company_data.to_csv(str(company_symbol)+'.csv') return company_data def print_menu(company_symbol): """This prints the main user menu with dynamic company name""" print("/" + "-" * 56 + "\\") #print(f"\t\t USER MENU: {company_symbol}") print(f"\t Stock Analysis MENU of {company_symbol}\t\t\t\t ") print("|" + "-" * 56 + "|") print("| 1. Current Data\t\t\t\t\t |") print("| 2. Summary Statistic \t\t\t\t |") print("| 3. Raw time-series \t\t\t\t\t |") print("| 4. Linear trend line \t\t\t\t |") print("| 5. Moving Averages \t\t\t\t\t |") print("| 6. Predict close price for a day \t\t\t |") print("| 7. Enhance Prediction \t\t\t\t |") print("| 8. Predict close price for N-future days\t\t |") print("| 9. Compare 2 companies using candlestick chart\t |") print("| 10. Analyse with new start and end date\t\t |") print("| 11. Search New Company \t\t\t\t |") print("| 12. Exit \t\t\t\t\t\t |") print("\\" + "-" * 56 + "/") def date_validation(start_date, end_date): try: #Check for format of start date, It should be in format of YYYY-MM-DD datetime.datetime.strptime(start_date, "%Y-%m-%d") except ValueError: #If any errors, raise an exception print("Incorrect Start Date Format") return '1' try: #Check for format of start date, It should be in format of YYYY-MM-DD datetime.datetime.strptime(end_date, "%Y-%m-%d") except ValueError: #If any errors, raise an exception print("Incorrect End Date Format") return '2' try: #Start Date cannot be later than today if datetime.datetime.strptime(start_date, "%Y-%m-%d") >= dt.today(): raise ValueError except ValueError: #If any errors, raise an exception print("Start Date cannot be greater than today's date") return '3' try: #End date cannot be greater than today if datetime.datetime.strptime(end_date, "%Y-%m-%d") >= dt.today(): raise ValueError except ValueError: #If any errors, raise an exception print("End Date cannot be greater than today's date") return '4' try: #Start date can not greater than end date if datetime.datetime.strptime(start_date, "%Y-%m-%d") >= datetime.datetime.strptime(end_date, "%Y-%m-%d"): raise ValueError except ValueError: print("Start Date should be less than End date") return '5' def period_validation(start_date, end_date, period): try: #Period should be greater than 0 and less than days between start date and end date if period < (end_date - start_date).days and period > 0: return False else: raise ValueError except ValueError: print('Incorrect value of Window') return '1' def current_data(company_symbol): """This API gives statistical data of the last working business day""" last_stats_url = "https://www.alphavantage.co/query?function=GLOBAL_QUOTE&symbol=" + company_symbol + "&apikey=T11CBFXU1UTRD2KG&datatype=csv" last_stats = pd.read_csv(last_stats_url) last_stat_transposed = last_stats.T print(last_stat_transposed) def norm_values_plot(norm_values, start_date, end_date, company_symbol): """Plotting of normalised values""" fig = go.Figure(data=[go.Scatter(x=norm_values['Date'], y=norm_values['NormValues'], name="Normalised Prices")]) fig.update_layout(title=f"Normalised Prices of {company_symbol}", xaxis_title=f"Date range from {start_date} to {end_date}", yaxis_title="Normalised Prices", showlegend=True, font=dict(size=18)) plot(fig, filename=f'{company_symbol}_normalised_graph.html') def raw_time_series(required_data, company_symbol, start_date, end_date): """Plotting Closing Values of the company symbol selected""" required_data.Date = pd.to_datetime(required_data['Date']) fig = go.Figure(data=go.Scatter(x=required_data['Date'], y=required_data['Close'], name='Closing price'), layout=go.Layout(title=go.layout.Title(text="Linear Raw Time Series", font=dict(size=18)), yaxis=go.layout.YAxis(title=go.layout.yaxis.Title(text=f"Closing price of {company_symbol}", font=dict(size=18))), xaxis=go.layout.XAxis(title=go.layout.xaxis.Title(text=f"Date range from {start_date} to {end_date}", font=dict(size=18))))) fig.update_layout(showlegend=True) plot(fig, filename=f'{company_symbol}_raw_time_graph.html') def linear_trend_line(required_data, start_date, end_date, company_symbol): """Plotting linear trend line which indicates if the closing price at the end date is higher or lower from the closing price during the start date""" required_data.Date = pd.to_datetime(required_data['Date']) required_data.reset_index(inplace=True, drop=True) plt.plot(required_data['Close'], label='Closing Price') plt.ylabel(f'Closing Price of {company_symbol}') plt.xlabel(f'Date range from {start_date} to {end_date}') plt.title(f'Linear Trend line of {company_symbol}', loc='center') plt.tick_params( axis='x', # changes apply to the x-axis which='major', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) z = np.polyfit(required_data.index, required_data.Close, 1) p = np.poly1d(z) plb.plot(required_data.index, p(required_data.index), 'm--', label='Linear Trend Line') plb.legend(loc='upper left') plb.plot() required_data[['ds', 'y']] = required_data[['Date', 'Close']] df = required_data[['ds', 'y']] m = Prophet(weekly_seasonality=False, yearly_seasonality=False, daily_seasonality=False, n_changepoints=15) m.fit(df) future = m.make_future_dataframe(periods=0) forecast = m.predict(future) m.plot_components(forecast) plt.show() #Create a Subplot showing moving average graphs #https://plot.ly/python/subplots/ #https://www.learndatasci.com/tutorials/python-finance-part-3-moving-average-trading-strategy/ def moving_average_all(dataframe, window, start_date, end_date, company_symbol): """Calculate Simple Moving Average""" """System takes above data and uses rolling property""" """of dataframe and use plotly over timeseries index to plot the graph""" subset_df = dataframe subset_df = subset_df.sort_values(by='Date') subset_df.drop_duplicates(inplace=True) subset_df.set_index('Date', inplace=True) window_df = subset_df.rolling(window=window).mean() roller = (window + 1) series = np.arange(1, roller) WMASeriesData =
pd.DataFrame()
pandas.DataFrame
import datetime from unittest import TestCase import numpy as np import pandas as pd from mlnext import pipeline class TestColumnSelector(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_select_columns(self): t = pipeline.ColumnSelector(keys=['a']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestColumnDropper(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_drop_columns(self): t = pipeline.ColumnDropper(columns=['b']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop_columns_verbose(self): t = pipeline.ColumnDropper(columns=['b'], verbose=True) expected = self.df.loc[:, ['a']] result = t.transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop__missing_columns(self): t = pipeline.ColumnDropper(columns=['c']) with self.assertWarns(Warning): t.transform(self.df) class TestColumnRename(TestCase): def test_rename_columns(self): t = pipeline.ColumnRename(lambda x: x.split('.')[-1]) df = pd.DataFrame(columns=['a.b.c', 'd.e.f']) expected = pd.DataFrame(columns=['c', 'f']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestNaDropper(TestCase): def test_drop_na(self): t = pipeline.NaDropper() df = pd.DataFrame([1, 0, pd.NA]) expected = pd.DataFrame([1, 0], dtype=object) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestClip(TestCase): def test_clip(self): t = pipeline.Clip(lower=0.5, upper=1.5) df = pd.DataFrame([[0.1, 0.4, 0.6, 0.8, 1.2, 1.5]]) expected = pd.DataFrame([[0.5, 0.5, 0.6, 0.8, 1.2, 1.5]]) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestDatetimeTransformer(TestCase): # FIXME: fails in gitlab pipeline but succeeds locally def test_datetime(self): t = pipeline.DatetimeTransformer(columns=['time']) df = pd.DataFrame([['2021-01-04 14:12:31']], columns=['time']) expected = pd.DataFrame([[datetime.datetime(2021, 1, 4, 14, 12, 31)]], columns=['time']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_datetime_missing_cols(self): t = pipeline.DatetimeTransformer(columns=['t']) df = pd.DataFrame([['2021-01-04 14:12:31']], columns=['time']) with self.assertRaises(ValueError): t.fit_transform(df) class TestNumericTransformer(TestCase): # FIXME: fails in gitlab pipeline but succeeds locally def test_numeric(self): t = pipeline.NumericTransformer(columns=['1']) df = pd.DataFrame([0, 1], columns=['1'], dtype=object) expected = pd.DataFrame([0, 1], columns=['1'], dtype=np.int64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_missing_column(self): t = pipeline.NumericTransformer(columns=['2']) df = pd.DataFrame([0, 1], columns=['1'], dtype=object) with self.assertRaises(ValueError): t.fit_transform(df) def test_numeric_additional_column(self): t = pipeline.NumericTransformer(columns=['2']) df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected['2'] = expected['2'].apply(pd.to_numeric) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_multiple_column(self): t = pipeline.NumericTransformer(columns=['1', '2']) df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_all_column(self): t = pipeline.NumericTransformer() df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestTimeframeExtractor(TestCase): def setUp(self): self.dates = [datetime.datetime(2021, 10, 1, 9, 50, 0), datetime.datetime(2021, 10, 1, 10, 0, 0), datetime.datetime(2021, 10, 1, 11, 0, 0), datetime.datetime(2021, 10, 1, 12, 0, 0), datetime.datetime(2021, 10, 1, 12, 10, 0)] self.values = np.arange(len(self.dates)) self.df = pd.DataFrame(zip(self.dates, self.values), columns=['time', 'value']) def test_timeframe_extractor(self): t = pipeline.TimeframeExtractor( time_column='time', start_time=datetime.time(10, 0, 0), end_time=datetime.time(12, 0, 0), verbose=True) expected = pd.DataFrame(zip(self.dates[1:-1], np.arange(1, 4)), columns=['time', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_timeframe_extractor_invert(self): t = pipeline.TimeframeExtractor( time_column='time', start_time=datetime.time(10, 0, 0), end_time=datetime.time(12, 0, 0), invert=True) expected = pd.DataFrame(zip([self.dates[0], self.dates[-1]], np.array([0, 4])), columns=['time', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestDateExtractor(TestCase): def setUp(self): self.dates = [datetime.datetime(2021, 10, 1, 9, 50, 0), datetime.datetime(2021, 10, 2, 10, 0, 0), datetime.datetime(2021, 10, 3, 11, 0, 0), datetime.datetime(2021, 10, 4, 12, 0, 0), datetime.datetime(2021, 10, 5, 12, 10, 0)] self.values = np.arange(len(self.dates)) self.df = pd.DataFrame(zip(self.dates, self.values), columns=['date', 'value']) def test_date_extractor(self): t = pipeline.DateExtractor( date_column='date', start_date=datetime.date(2021, 10, 2), end_date=datetime.date(2021, 10, 4), verbose=True) expected = pd.DataFrame(zip(self.dates[1:-1], np.arange(1, 4)), columns=['date', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_date_extractor_invert(self): t = pipeline.DateExtractor( date_column='date', start_date=datetime.date(2021, 10, 2), end_date=datetime.date(2021, 10, 4), invert=True) expected = pd.DataFrame(zip([self.dates[0], self.dates[-1]], np.array([0, 4])), columns=['date', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestValueMapper(TestCase): def test_value_mapper_one_column(self): t = pipeline.ValueMapper(columns=['b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)) * 2, columns=['a', 'b']) expected = pd.DataFrame(zip(np.ones((3, 1)) * 2, np.ones((3, 1))), columns=['a', 'b'], dtype=np.float64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_value_mapper_all_columns(self): t = pipeline.ValueMapper(columns=['a', 'b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)) * 2, columns=['a', 'b']) expected = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b'], dtype=np.float64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_value_mapper_missing_value(self): t = pipeline.ValueMapper(columns=['a', 'b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b']) expected = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b'], dtype=np.float64) with self.assertWarns(Warning): result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestSorter(TestCase): def setUp(self): self.df = pd.DataFrame({ 'a': [2, 3, 1, 4], 'b': ['A', 'D', 'C', 'B'] }) def test_sorter(self): t = pipeline.Sorter(columns=['a']) result = t.fit_transform(self.df) expected = self.df.copy().sort_values(by=['a'])
pd.testing.assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
import scrapy, re, pdb, pandas as pd, requests from urllib.parse import urlparse from bs4 import BeautifulSoup from sqlalchemy import create_engine from crawl_htmls.items import RaResult from urllib.parse import urlparse with open('psql_engine.txt') as f: psql = create_engine(f.read()) unix_offset = (pd.to_datetime('now') - pd.DateOffset(days=30)).replace(hour=0, minute=0, second=0).value // 10**9 q = f''' SELECT * FROM (SELECT fbfeeds.link, fbfeeds.fbfeeds_id FROM fbfeeds LEFT JOIN htmls ON (fbfeeds.link = htmls.link) WHERE htmls.link ISNULL AND fbfeeds.unix_time > {unix_offset} ) AS fb FULL OUTER JOIN (SELECT rss.link, rss.rss_id FROM rss LEFT JOIN htmls ON (rss.link = htmls.link) WHERE htmls.link ISNULL AND rss.published_parsed > {unix_offset} ) AS r ON (r.link = fb.link); ''' raw = pd.read_sql(q, psql) raw.columns = ['link', 'fbfeeds_id', 'link1', 'rss_id'] raw.link = raw.link.fillna(raw.link1) del(raw['link1']) raw = raw.sample(frac=1) # raw = pd.read_sql(f''' # select distinct link, fbfeeds_id, rss_id from htmls # where (link ~~ '%%hromadske.ua%%' and is_other isnull) # or link ~~ '%%alternatio.org%%'; # ''', psql) class SitesCrawler(scrapy.Spider): name = 'ra_htmls' psql = psql custom_settings = { 'CONCURRENT_ITEMS': 300, 'URLLENGTH_LIMIT': 10000, } def start_requests(self): urls = raw.sample(frac=1).values blocked = ['tvzvezda.ru', 'tk-union.tv', 'novorossiatv.com', 'ria.ru', 'sputniknews.com', 'rian.com.ua', 'news-front.info', 'armiyadnr.su', 'lug-info.com', 'dnr-live.ru', 'dnr-pravda.ru', 'republic-tv.ru', 'dan-news.info'] for link, fbfeeds_id, rss_id in urls: domain = urlparse(link).netloc if domain == 'hromadske.ua': link = link.replace('hromadske.ua', 'ru.hromadske.ua') if domain in blocked: yield scrapy.Request(link, callback=self.parse, meta={'link':link, 'fbfeeds_id': fbfeeds_id, 'rss_id': rss_id, 'proxy': 'http://localhost:8123',}) else: yield scrapy.Request(link, callback=self.parse, meta={'link':link, 'fbfeeds_id': fbfeeds_id, 'rss_id': rss_id,}) def parse(self, r): link = r.meta['link'] domain = urlparse(link).netloc page_links = filter(lambda a: 'http' in a, r.xpath('//a/@href').extract()) page_links = map(lambda a: urlparse(a).netloc.replace('www.', ' '), page_links) page_links = list(set(filter(lambda a: a != domain, page_links))) if 'alternatio.org' in link or 'hromadske.ua' in link: soup = BeautifulSoup(r.body.decode('utf8', 'ignore'), 'lxml') else: soup = BeautifulSoup(r.body, 'lxml') [t.extract() for t in soup.find_all() if len(t.text.strip()) == 0 or t.name in ['img', 'iframe', 'script', 'link', 'footer', 'meta'] or re.search('nav|p[io]dval|footer|copyright|re[ck]lam', str(list(t.attrs.values()))) ] try: d = requests.post('http://localhost:3000', data={'raw_html': str(soup)} ).json() assert len(d['title']) > 0 except Exception as err: self.logger.info(f'Failed {r.url}') pass item = RaResult() item['link'] = r.meta['link'] item['real_url'] = r.url item['ra_title'] = d['title'] item['ra_summary'] = re.sub('\s+', ' ', d['content']) item['rss_id'] = r.meta['rss_id'] if pd.notnull(r.meta['rss_id']) else 'null' item['fbfeeds_id'] = r.meta['fbfeeds_id'] if
pd.notnull(r.meta['fbfeeds_id'])
pandas.notnull
from __future__ import annotations import numpy as np import pandas as pd from sklearn import datasets from IMLearn.metrics import mean_square_error from IMLearn.utils import split_train_test from IMLearn.model_selection import cross_validate from IMLearn.learners.regressors import PolynomialFitting, LinearRegression, RidgeRegression from sklearn.linear_model import Lasso from utils import * import plotly.graph_objects as go from plotly.subplots import make_subplots def select_polynomial_degree(n_samples: int = 100, noise: float = 5): """ Simulate data from a polynomial model and use cross-validation to select the best fitting degree Parameters ---------- n_samples: int, default=100 Number of samples to generate noise: float, default = 5 Noise level to simulate in responses """ # Question 1 - Generate dataset for model f(x)=(x+3)(x+2)(x+1)(x-1)(x-2) + eps for eps Gaussian noise # and split into training- and testing portions func = lambda x: (x + 3) * (x + 2) * (x + 1) * (x - 1) * (x - 2) noise = np.random.normal(0, noise, n_samples) X = np.linspace(-1.2, 2, n_samples) y = func(X) + noise X_train, y_train, X_test, y_test = split_train_test(pd.DataFrame(X),
pd.Series(y)
pandas.Series
import os os.chdir('seqFISH_AllenVISp/') import numpy as np import pandas as pd import matplotlib matplotlib.use('qt5agg') matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 import matplotlib.pyplot as plt import scipy.stats as st import pickle ### Original data with open ('data/SpaGE_pkl/seqFISH_Cortex.pkl', 'rb') as f: datadict = pickle.load(f) seqFISH_data = datadict['seqFISH_data'] del datadict test_set = pd.read_csv('Results/10SpaGE_New_genes.csv',header=0,index_col=0,sep=',').columns seqFISH_data = seqFISH_data[test_set] ### SpaGE #10 SpaGE_imputed_10 = pd.read_csv('Results/10SpaGE_New_genes.csv',header=0,index_col=0,sep=',') SpaGE_Corr_10 = pd.Series(index = test_set) for i in test_set: SpaGE_Corr_10[i] = st.spearmanr(seqFISH_data[i],SpaGE_imputed_10[i])[0] #30 SpaGE_imputed_30 = pd.read_csv('Results/30SpaGE_New_genes.csv',header=0,index_col=0,sep=',') SpaGE_Corr_30 = pd.Series(index = test_set) for i in test_set: SpaGE_Corr_30[i] = st.spearmanr(seqFISH_data[i],SpaGE_imputed_30[i])[0] #50 SpaGE_imputed_50 = pd.read_csv('Results/50SpaGE_New_genes.csv',header=0,index_col=0,sep=',') SpaGE_Corr_50 = pd.Series(index = test_set) for i in test_set: SpaGE_Corr_50[i] = st.spearmanr(seqFISH_data[i],SpaGE_imputed_50[i])[0] #100 SpaGE_imputed_100 =
pd.read_csv('Results/100SpaGE_New_genes.csv',header=0,index_col=0,sep=',')
pandas.read_csv
import pytest import pandas as pd import numpy as np import itertools from vivarium.interpolation import Interpolation, validate_parameters, check_data_complete, Order0Interp def make_bin_edges(data: pd.DataFrame, col: str) -> pd.DataFrame: """ Given a dataframe and a column containing midpoints, construct equally sized bins around midpoints. """ mid_pts = data[[col]].drop_duplicates().sort_values(by=col).reset_index(drop=True) mid_pts['shift'] = mid_pts[col].shift() mid_pts['left'] = mid_pts.apply(lambda row: (row[col] if pd.isna(row['shift']) else 0.5 * (row[col] + row['shift'])), axis=1) mid_pts['right'] = mid_pts['left'].shift(-1) mid_pts['right'] = mid_pts.right.fillna(mid_pts.right.max() + mid_pts.left.tolist()[-1] - mid_pts.left.tolist()[-2]) data = data.copy() idx = data.index data = data.set_index(col, drop=False) mid_pts = mid_pts.set_index(col, drop=False) data[[col, f'{col}_left', f'{col}_right']] = mid_pts[[col, 'left', 'right']] return data.set_index(idx) @pytest.mark.skip(reason="only order 0 interpolation currently supported") def test_1d_interpolation(): df = pd.DataFrame({'a': np.arange(100), 'b': np.arange(100), 'c': np.arange(100, 0, -1)}) df = df.sample(frac=1) # Shuffle table to assure interpolation works given unsorted input i = Interpolation(df, (), ('a',), 1, True) query = pd.DataFrame({'a': np.arange(100, step=0.01)}) assert np.allclose(query.a, i(query).b) assert np.allclose(100-query.a, i(query).c) @pytest.mark.skip(reason="only order 0 interpolation currently supported") def test_age_year_interpolation(): years = list(range(1990, 2010)) ages = list(range(0, 90)) pops = np.array(ages)*11.1 data = [] for age, pop in zip(ages, pops): for year in years: for sex in ['Male', 'Female']: data.append({'age': age, 'sex': sex, 'year': year, 'pop': pop}) df = pd.DataFrame(data) df = df.sample(frac=1) # Shuffle table to assure interpolation works given unsorted input i = Interpolation(df, ('sex', 'age'), ('year',), 1, True) query = pd.DataFrame({'year': [1990, 1990], 'age': [35, 35], 'sex': ['Male', 'Female']}) assert np.allclose(i(query), 388.5) @pytest.mark.skip(reason="only order 0 interpolation currently supported") def test_interpolation_called_missing_key_col(): a = [range(1990, 1995), range(25, 30), ['Male', 'Female']] df = pd.DataFrame(list(itertools.product(*a)), columns=['year', 'age', 'sex']) df['pop'] = df.age * 11.1 df = df.sample(frac=1) # Shuffle table to assure interpolation works given unsorted input i = Interpolation(df, ['sex',], ['year','age'], 1, True) query = pd.DataFrame({'year': [1990, 1990], 'age': [35, 35]}) with pytest.raises(ValueError): i(query) @pytest.mark.skip(reason="only order 0 interpolation currently supported") def test_interpolation_called_missing_param_col(): a = [range(1990, 1995), range(25, 30), ['Male', 'Female']] df = pd.DataFrame(list(itertools.product(*a)), columns=['year', 'age', 'sex']) df['pop'] = df.age * 11.1 df = df.sample(frac=1) # Shuffle table to assure interpolation works given unsorted input i = Interpolation(df, ['sex',], ['year','age'], 1, True) query = pd.DataFrame({'year': [1990, 1990], 'sex': ['Male', 'Female']}) with pytest.raises(ValueError): i(query) @pytest.mark.skip(reason="only order 0 interpolation currently supported") def test_2d_interpolation(): a = np.mgrid[0:5, 0:5][0].reshape(25) b = np.mgrid[0:5, 0:5][1].reshape(25) df = pd.DataFrame({'a': a, 'b': b, 'c': b, 'd': a}) df = df.sample(frac=1) # Shuffle table to assure interpolation works given unsorted input i = Interpolation(df, (), ('a', 'b'), 1, True) query = pd.DataFrame({'a': np.arange(4, step=0.01), 'b': np.arange(4, step=0.01)}) assert np.allclose(query.b, i(query).c) assert np.allclose(query.a, i(query).d) @pytest.mark.skip(reason="only order 0 interpolation currently supported") def test_interpolation_with_categorical_parameters(): a = ['one']*100 + ['two']*100 b = np.append(np.arange(100), np.arange(100)) c = np.append(np.arange(100), np.arange(100, 0, -1)) df = pd.DataFrame({'a': a, 'b': b, 'c': c}) df = df.sample(frac=1) # Shuffle table to assure interpolation works given unsorted input i = Interpolation(df, ('a',), ('b',), 1, True) query_one = pd.DataFrame({'a': 'one', 'b': np.arange(100, step=0.01)}) query_two = pd.DataFrame({'a': 'two', 'b': np.arange(100, step=0.01)}) assert np.allclose(np.arange(100, step=0.01), i(query_one).c) assert np.allclose(np.arange(100, 0, step=-0.01), i(query_two).c) def test_order_zero_2d(): a = np.mgrid[0:5, 0:5][0].reshape(25) b = np.mgrid[0:5, 0:5][1].reshape(25) df = pd.DataFrame({'a': a + 0.5, 'b': b + 0.5, 'c': b*3, 'garbage': ['test']*len(a)}) df = make_bin_edges(df, 'a') df = make_bin_edges(df, 'b') df = df.sample(frac=1) # Shuffle table to assure interpolation works given unsorted input i = Interpolation(df, ('garbage',), [('a', 'a_left', 'a_right'), ('b', 'b_left', 'b_right')], order=0, extrapolate=True, validate=True) column = np.arange(0.5, 4, step=0.011) query = pd.DataFrame({'a': column, 'b': column, 'garbage': ['test']*(len(column))}) assert np.allclose(query.b.astype(int) * 3, i(query).c) def test_order_zero_2d_fails_on_extrapolation(): a = np.mgrid[0:5, 0:5][0].reshape(25) b = np.mgrid[0:5, 0:5][1].reshape(25) df = pd.DataFrame({'a': a + 0.5, 'b': b + 0.5, 'c': b*3, 'garbage': ['test']*len(a)}) df = make_bin_edges(df, 'a') df = make_bin_edges(df, 'b') df = df.sample(frac=1) # Shuffle table to assure interpolation works given unsorted input i = Interpolation(df, ('garbage',), [('a', 'a_left', 'a_right'), ('b', 'b_left', 'b_right')], order=0, extrapolate=False, validate=True) column = np.arange(4, step=0.011) query = pd.DataFrame({'a': column, 'b': column, 'garbage': ['test']*(len(column))}) with pytest.raises(ValueError) as error: i(query) message = error.value.args[0] assert 'Extrapolation' in message and 'a' in message def test_order_zero_1d_no_extrapolation(): s = pd.Series({0: 0, 1: 1}).reset_index() s = make_bin_edges(s, 'index') f = Interpolation(s, tuple(), [['index', 'index_left', 'index_right']], order=0, extrapolate=False, validate=True) assert f(pd.DataFrame({'index': [0]}))[0][0] == 0, 'should be precise at index values' assert f(pd.DataFrame({'index': [0.999]}))[0][0] == 1 with pytest.raises(ValueError) as error: f(pd.DataFrame({'index': [1]})) message = error.value.args[0] assert 'Extrapolation' in message and 'index' in message def test_order_zero_1d_constant_extrapolation(): s = pd.Series({0: 0, 1: 1}).reset_index() s = make_bin_edges(s, 'index') f = Interpolation(s, tuple(), [['index', 'index_left', 'index_right']], order=0, extrapolate=True, validate=True) assert f(pd.DataFrame({'index': [1]}))[0][0] == 1 assert f(pd.DataFrame({'index': [2]}))[0][0] == 1, 'should be constant extrapolation outside of input range' assert f(pd.DataFrame({'index': [-1]}))[0][0] == 0 def test_validate_parameters__empty_data(): with pytest.raises(ValueError) as error: validate_parameters(pd.DataFrame(columns=["age_left", "age_right", "sex", "year_left", "year_right", "value"]), ["sex"], [("age", "age_left", "age_right"), ["year", "year_left", "year_right"]]) message = error.value.args[0] assert 'empty' in message def test_check_data_complete_gaps(): data = pd.DataFrame({'year_start': [1990, 1990, 1995, 1995], 'year_end': [1995, 1995, 2000, 2000], 'age_start': [16, 10, 10, 16], 'age_end': [20, 15, 15, 20],}) with pytest.raises(NotImplementedError) as error: check_data_complete(data, [('year', 'year_start', 'year_end'), ['age', 'age_start', 'age_end']]) message = error.value.args[0] assert "age_start" in message and "age_end" in message def test_check_data_complete_overlap(): data = pd.DataFrame({'year_start': [1995, 1995, 2000, 2005, 2010], 'year_end': [2000, 2000, 2005, 2010, 2015]}) with pytest.raises(ValueError) as error: check_data_complete(data, [('year', 'year_start', 'year_end')]) message = error.value.args[0] assert "year_start" in message and "year_end" in message def test_check_data_missing_combos(): data = pd.DataFrame({'year_start': [1990, 1990, 1995], 'year_end': [1995, 1995, 2000], 'age_start': [10, 15, 10], 'age_end': [15, 20, 15]}) with pytest.raises(ValueError) as error: check_data_complete(data, [['year', 'year_start', 'year_end'], ('age', 'age_start', 'age_end')]) message = error.value.args[0] assert 'combination' in message def test_order0interp(): data = pd.DataFrame({'year_start': [1990, 1990, 1990, 1990, 1995, 1995, 1995, 1995], 'year_end': [1995, 1995, 1995, 1995, 2000, 2000, 2000, 2000], 'age_start': [15, 10, 10, 15, 10, 10, 15, 15], 'age_end': [20, 15, 15, 20, 15, 15, 20, 20], 'height_start': [140, 160, 140, 160, 140, 160, 140, 160], 'height_end': [160, 180, 160, 180, 160, 180, 160, 180], 'value': [5, 3, 1, 7, 8, 6, 4, 2]}) interp = Order0Interp(data, [('age', 'age_start', 'age_end'), ('year', 'year_start', 'year_end'), ('height', 'height_start', 'height_end'),] , ['value'], True, True) interpolants = pd.DataFrame({'age': [12, 17, 8, 24, 12], 'year': [1992, 1998, 1985, 1992, 1992], 'height': [160, 145, 140, 179, 160]}) result = interp(interpolants) assert result.equals(pd.DataFrame({'value': [3, 4, 1, 7, 3]})) def test_order_zero_1d_with_key_column(): data = pd.DataFrame({'year_start': [1990, 1990, 1995, 1995], 'year_end': [1995, 1995, 2000, 2000], 'sex': ['Male', 'Female', 'Male', 'Female'], 'value_1': [10, 7, 2, 12], 'value_2': [1200, 1350, 1476, 1046]}) i = Interpolation(data, ['sex',], [('year', 'year_start', 'year_end'),], 0, True, True) query = pd.DataFrame({'year': [1992, 1993,], 'sex': ['Male', 'Female']}) expected_result = pd.DataFrame({'value_1': [10.0, 7.0], 'value_2': [1200.0, 1350.0]}) assert i(query).equals(expected_result) def test_order_zero_non_numeric_values(): data = pd.DataFrame({'year_start': [1990, 1990], 'year_end': [1995, 1995], 'age_start': [15, 24,], 'age_end': [24, 30], 'value_1': ['blue', 'red']}) i = Interpolation(data, tuple(), [('year', 'year_start', 'year_end'), ('age', 'age_start', 'age_end')], 0, True, True) query = pd.DataFrame({'year': [1990, 1990], 'age': [15, 24,]}, index=[1, 0]) expected_result = pd.DataFrame({'value_1': ['blue', 'red']}, index=[1, 0]) assert i(query).equals(expected_result) def test_order_zero_3d_with_key_col(): data = pd.DataFrame({'year_start': [1990, 1990, 1990, 1990, 1995, 1995, 1995, 1995]*2, 'year_end': [1995, 1995, 1995, 1995, 2000, 2000, 2000, 2000]*2, 'age_start': [15, 10, 10, 15, 10, 10, 15, 15]*2, 'age_end': [20, 15, 15, 20, 15, 15, 20, 20]*2, 'height_start': [140, 160, 140, 160, 140, 160, 140, 160]*2, 'height_end': [160, 180, 160, 180, 160, 180, 160, 180]*2, 'sex': ['Male']*8+['Female']*8, 'value': [5, 3, 1, 7, 8, 6, 4, 2, 6, 4, 2, 8, 9, 7, 5, 3]}) interp = Interpolation(data, ('sex',), [('age', 'age_start', 'age_end'), ('year', 'year_start', 'year_end'), ('height', 'height_start', 'height_end')], 0, True, True) interpolants = pd.DataFrame({'age': [12, 17, 8, 24, 12], 'year': [1992, 1998, 1985, 1992, 1992], 'height': [160, 145, 140, 185, 160], 'sex': ['Male', 'Female', 'Female', 'Male', 'Male']}, index=[10, 4, 7, 0, 9]) result = interp(interpolants) assert result.equals(pd.DataFrame({'value': [3.0, 5.0, 2.0, 7.0, 3.0]}, index=[10, 4, 7, 0, 9])) def test_order_zero_diff_bin_sizes(): data = pd.DataFrame({'year_start': [1990, 1995, 1996, 2005, 2005.5,], 'year_end': [1995, 1996, 2005, 2005.5, 2010], 'value': [1, 5, 2.3, 6, 100]}) i = Interpolation(data, tuple(), [('year', 'year_start', 'year_end')], 0, False, True) query = pd.DataFrame({'year': [2007, 1990, 2005.4, 1994, 2004, 1995, 2002, 1995.5, 1996]}) expected_result = pd.DataFrame({'value': [100, 1, 6, 1, 2.3, 5, 2.3, 5, 2.3]}) assert i(query).equals(expected_result) def test_order_zero_given_call_column(): data = pd.DataFrame({'year_start': [1990, 1995, 1996, 2005, 2005.5,], 'year_end': [1995, 1996, 2005, 2005.5, 2010], 'year': [1992.5, 1995.5, 2000, 2005.25, 2007.75], 'value': [1, 5, 2.3, 6, 100]}) i = Interpolation(data, tuple(), [('year', 'year_start', 'year_end')], 0, False, True) query = pd.DataFrame({'year': [2007, 1990, 2005.4, 1994, 2004, 1995, 2002, 1995.5, 1996]}) expected_result = pd.DataFrame({'value': [100, 1, 6, 1, 2.3, 5, 2.3, 5, 2.3]}) assert i(query).equals(expected_result) @pytest.mark.parametrize('validate', [True, False]) def test_interpolation_init_validate_option_invalid_data(validate): if validate: with pytest.raises(ValueError, match='You must supply non-empty data to create the interpolation.'): i = Interpolation(
pd.DataFrame()
pandas.DataFrame
import typing import os import time import sys import warnings import traceback import shlex import tempfile from subprocess import CalledProcessError from .backends import AbstractSlurmBackend, LocalSlurmBackend from .utils import check_call from .orchestrator import Orchestrator, BACKENDS, version import yaml import pandas as pd from agutil import status_bar class Xargs(Orchestrator): """ Simplified Orchestrator Built to work on a local slurm cluster. No localization is performed. Job-specific commands are dumped to a staging directory, and jobs are dispatched. Outputs are not gathered or delocalized, and the only cleanup performed removes the temporary staging dir """ def __init__( self, command: str, inputs: typing.Dict[str, typing.Any], backend: typing.Union[AbstractSlurmBackend, typing.Dict[str, typing.Any]], name: typing.Optional[str] = None, cwd: typing.Optional[str] = None, resources: typing.Optional[typing.Dict[str, typing.Any]] = None ): if isinstance(backend, AbstractSlurmBackend): self.backend = backend self._slurmconf_path = None else: self.backend = BACKENDS[backend['type']](**backend) self._slurmconf_path = backend['slurm_conf_path'] if 'slurm_conf_path' in backend else None if not isinstance(self.backend, LocalSlurmBackend): raise TypeError("Xargs only works on local-based slurm backends") self.resources = {} if resources is None else resources self.inputs = inputs self.cwd = cwd self.n_jobs = 0 if len(inputs) == 0 else len(inputs['canine_arg0']) self.name = name if name is not None else 'Canine-Xargs' self.command = command def run_pipeline(self, dry_run: bool = False) -> pd.DataFrame: warnings.warn( "The Xargs orchestrator is officially deprecated due to lack of use or support. It will be removed soon", DeprecationWarning ) print("Preparing a pipeline of", self.n_jobs, "jobs") print("Connecting to backend...") start_time = time.monotonic() with self.backend: print("Initializing pipeline workspace") with tempfile.TemporaryDirectory(dir=self.cwd) as tempdir: for jid in range(self.n_jobs): # By creating a local tempdir # but using the backend to write the script # we ensure that this is a local-based backend self.backend.pack_batch_script( *( 'export {}={}'.format( argname, shlex.quote(argvalues[jid]) ) for argname, argvalues in self.inputs.items() ), script_path=os.path.join( tempdir, '{}.sh'.format(jid) ) ) print("Job staged on SLURM controller in:", tempdir) print("Preparing pipeline script") self.backend.pack_batch_script( 'export CANINE={}'.format(version), 'export CANINE_BACKEND='.format(type(self.backend)), 'export CANINE_ADAPTER=Xargs', 'export CANINE_ROOT={}'.format(tempdir), 'export CANINE_COMMON=""', 'export CANINE_OUTPUT=""', 'export CANINE_JOBS={}'.format(self.cwd), 'source $CANINE_ROOT/$SLURM_ARRAY_TASK_ID.sh', self.command, script_path=os.path.join( tempdir, 'entrypoint.sh' ) ) if dry_run: return print("Waiting for cluster to finish startup...") self.backend.wait_for_cluster_ready() if self.backend.hard_reset_on_orch_init and self._slurmconf_path: active_jobs = self.backend.squeue('all') if len(active_jobs): print("There are active jobs. Skipping slurmctld restart") else: try: print("Stopping slurmctld") rc, stdout, stderr = self.backend.invoke( 'sudo pkill slurmctld', True ) check_call('sudo pkill slurmctld', rc, stdout, stderr) print("Loading configurations", self._slurmconf_path) rc, stdout, stderr = self.backend.invoke( 'sudo slurmctld -c -f {}'.format(self._slurmconf_path), True ) check_call('sudo slurmctld -c -f {}'.format(self._slurmconf_path), rc, stdout, stderr) print("Restarting slurmctl") rc, stdout, stderr = self.backend.invoke( 'sudo slurmctld reconfigure', True ) check_call('sudo slurmctld reconfigure', rc, stdout, stderr) except CalledProcessError: traceback.print_exc() print("Slurmctld restart failed") print("Submitting batch job") batch_id = self.backend.sbatch( os.path.join( tempdir, 'entrypoint.sh' ), **{ 'chdir': '~' if self.cwd is None else self.cwd, 'requeue': True, 'job_name': self.name, 'array': "0-{}".format(self.n_jobs-1), 'output': "{}/%A.%a.stdout".format('~' if self.cwd is None else self.cwd), 'error': "{}/%A.%a.stderr".format('~' if self.cwd is None else self.cwd), **self.resources } ) print("Batch id:", batch_id) completed_jobs = [] cpu_time = {} uptime = {} prev_acct = None try: waiting_jobs = { '{}_{}'.format(batch_id, i) for i in range(self.n_jobs) } while len(waiting_jobs): time.sleep(30) acct = self.backend.sacct(job=batch_id, format="JobId,State,ExitCode,CPUTimeRAW").astype({'CPUTimeRAW': int}) for jid in [*waiting_jobs]: if jid in acct.index: if prev_acct is not None and jid in prev_acct.index and prev_acct['CPUTimeRAW'][jid] > acct['CPUTimeRAW'][jid]: # Job has restarted since last update: if jid in cpu_time: cpu_time[jid] += prev_acct['CPUTimeRAW'][jid] else: cpu_time[jid] = prev_acct['CPUTimeRAW'][jid] if acct['State'][jid] not in {'RUNNING', 'PENDING', 'NODE_FAIL'}: job = jid.split('_')[1] print("Job",job, "completed with status", acct['State'][jid], acct['ExitCode'][jid].split(':')[0]) completed_jobs.append((job, jid)) waiting_jobs.remove(jid) for node in {node for node in self.backend.squeue(jobs=batch_id)['NODELIST(REASON)'] if not node.startswith('(')}: if node in uptime: uptime[node] += 1 else: uptime[node] = 1 if prev_acct is None: prev_acct = acct else: prev_acct = pd.concat([ acct, prev_acct.loc[[idx for idx in prev_acct.index if idx not in acct.index]] ]) except: print("Encountered unhandled exception. Cancelling batch job", file=sys.stderr) self.backend.scancel(batch_id) raise runtime = time.monotonic() - start_time job_spec = { str(i): { argname: argvalues[i] for argname, argvalues in self.inputs.items() } for i in range(self.n_jobs) } df = pd.DataFrame( data={ job_id: { 'slurm_state': acct['State'][batch_id+'_'+job_id], 'exit_code': acct['ExitCode'][batch_id+'_'+job_id], 'cpu_hours': (prev_acct['CPUTimeRAW'][batch_id+'_'+job_id] + ( cpu_time[batch_id+'_'+job_id] if batch_id+'_'+job_id in cpu_time else 0 ))/3600, **job_spec[job_id], } for job_id in job_spec } ).T.set_index(
pd.Index([*job_spec], name='job_id')
pandas.Index
import os import re import shlex import numpy as np import pandas as pd from scipy.io import mmread, mmwrite from scipy.sparse import csr_matrix import tempfile import subprocess from typing import List, Dict, Tuple, Union import logging logger = logging.getLogger(__name__) from pegasusio import UnimodalData, CITESeqData, MultimodalData def _enumerate_files(path: str, parts: List[str], repl_list1: List[str], repl_list2: List[str] = None) -> str: """ Enumerate all possible file names """ if len(parts) <= 2: for token in repl_list1: parts[-1] = token candidate = os.path.join(path, ''.join(parts)) if os.path.isfile(candidate): return candidate else: assert len(parts) == 4 for p2 in repl_list1: parts[1] = p2 for p4 in repl_list2: parts[3] = p4 candidate = os.path.join(path, ''.join(parts)) if os.path.isfile(candidate): return candidate return None def _locate_barcode_and_feature_files(path: str, fname: str) -> Tuple[str, str]: """ Locate barcode and feature files (with path) based on mtx file name (no suffix) """ barcode_file = feature_file = None if fname == "matrix": barcode_file = _enumerate_files(path, [''], ["cells.tsv.gz", "cells.tsv", "barcodes.tsv.gz", "barcodes.tsv"]) feature_file = _enumerate_files(path, [''], ["genes.tsv.gz", "genes.tsv", "features.tsv.gz", "features.tsv"]) else: p1, p2, p3 = fname.partition("matrix") if p2 == '' and p3 == '': barcode_file = _enumerate_files(path, [p1, ''], [".barcodes.tsv.gz", ".barcodes.tsv", ".cells.tsv.gz", ".cells.tsv", "_barcode.tsv", ".barcodes.txt"]) feature_file = _enumerate_files(path, [p1, ''], [".genes.tsv.gz", ".genes.tsv", ".features.tsv.gz", ".features.tsv", "_gene.tsv", ".genes.txt"]) else: barcode_file = _enumerate_files(path, [p1, '', p3, ''], ["barcodes", "cells"], [".tsv.gz", ".tsv"]) feature_file = _enumerate_files(path, [p1, '', p3, ''], ["genes", "features"], [".tsv.gz", ".tsv"]) if barcode_file is None: raise ValueError("Cannot find barcode file!") if feature_file is None: raise ValueError("Cannot find feature file!") return barcode_file, feature_file def _load_barcode_metadata(barcode_file: str, sep: str = "\t") -> Tuple[pd.DataFrame, str]: """ Load cell barcode information """ format_type = None barcode_metadata = pd.read_csv(barcode_file, sep=sep, header=None) if "cellkey" in barcode_metadata.iloc[0].values: # HCA DCP format barcode_metadata = pd.DataFrame(data = barcode_metadata.iloc[1:].values, columns = barcode_metadata.iloc[0].values) barcode_metadata.rename(columns={"cellkey": "barcodekey"}, inplace=True) format_type = "HCA DCP" elif "barcodekey" in barcode_metadata.iloc[0].values: # Pegasus format barcode_metadata =
pd.DataFrame(data = barcode_metadata.iloc[1:].values, columns = barcode_metadata.iloc[0].values)
pandas.DataFrame
"Functions specific to GenX outputs" from itertools import product import logging from pathlib import Path from typing import Dict import pandas as pd from powergenome.external_data import ( load_policy_scenarios, load_demand_segments, load_user_genx_settings, ) from powergenome.load_profiles import make_distributed_gen_profiles from powergenome.time_reduction import kmeans_time_clustering from powergenome.util import load_settings from powergenome.nrelatb import investment_cost_calculator logger = logging.getLogger(__name__) INT_COLS = [ "Inv_cost_per_MWyr", "Fixed_OM_cost_per_MWyr", "Inv_cost_per_MWhyr", "Fixed_OM_cost_per_MWhyr", "Line_Reinforcement_Cost_per_MW_yr", ] COL_ROUND_VALUES = { "Var_OM_cost_per_MWh": 2, "Var_OM_cost_per_MWh_in": 2, "Start_cost_per_MW": 0, "Cost_per_MMBtu": 2, "CO2_content_tons_per_MMBtu": 5, "Cap_size": 2, "Heat_rate_MMBTU_per_MWh": 2, "distance_mile": 4, "Line_Max_Reinforcement_MW": 0, "distance_miles": 1, "distance_km": 1, } def add_emission_policies(transmission_df, settings, DistrZones=None): """Add emission policies to the transmission dataframe Parameters ---------- transmission_df : DataFrame Zone to zone transmission constraints settings : dict User-defined parameters from a settings file. Should have keys of `input_folder` (a Path object of where to find user-supplied data) and `emission_policies_fn` (the file to load). DistrZones : [type], optional Placeholder setting, by default None Returns ------- DataFrame The emission policies provided by user next to the transmission constraints. """ model_year = settings["model_year"] case_id = settings["case_id"] policies = load_policy_scenarios(settings) year_case_policy = policies.loc[(case_id, model_year), :] # Bug where multiple regions for a case will return this as a df, even if the policy # for this case applies to all regions (code below expects a Series) ycp_shape = year_case_policy.shape if ycp_shape[0] == 1 and len(ycp_shape) > 1: year_case_policy = year_case_policy.squeeze() # convert to series zones = settings["model_regions"] zone_num_map = { zone: f"z{number + 1}" for zone, number in zip(zones, range(len(zones))) } zone_cols = ["Region_description", "Network_zones", "Distr_Zones"] + list( policies.columns ) zone_df = pd.DataFrame(columns=zone_cols) zone_df["Region_description"] = zones zone_df["Network_zones"] = zone_df["Region_description"].map(zone_num_map) if DistrZones is None: zone_df["Distr_Zones"] = 0 # Add code here to make DistrZones something else! # If there is only one region, assume that the policy is applied across all regions. if isinstance(year_case_policy, pd.Series): logger.info( "Only one zone was found in the emissions policy file." " The same emission policies are being applied to all zones." ) for col, value in year_case_policy.iteritems(): if col == "CO_2_Max_Mtons": zone_df.loc[:, col] = 0 if value > 0: zone_df.loc[0, col] = value else: zone_df.loc[:, col] = value else: for region, col in product( year_case_policy["region"].unique(), year_case_policy.columns ): zone_df.loc[ zone_df["Region_description"] == region, col ] = year_case_policy.loc[year_case_policy.region == region, col].values[0] zone_df = zone_df.drop(columns="region") network_df = pd.concat([zone_df, transmission_df], axis=1) return network_df def add_misc_gen_values(gen_clusters, settings): path = Path(settings["input_folder"]) / settings["misc_gen_inputs_fn"] misc_values = pd.read_csv(path) misc_values = misc_values.fillna("skip") for resource in misc_values["Resource"].unique(): # resource_misc_values = misc_values.loc[misc_values["Resource"] == resource, :].dropna() for col in misc_values.columns: if col == "Resource": continue value = misc_values.loc[misc_values["Resource"] == resource, col].values[0] if value != "skip": gen_clusters.loc[ gen_clusters["Resource"].str.contains(resource, case=False), col ] = value return gen_clusters def make_genx_settings_file(pudl_engine, settings, calculated_ces=None): """Make a copy of the GenX settings file for a specific case. This function tries to make some intellegent choices about parameter values like the RPS/CES type and can also read values from a file. There should be a base-level GenX settings file with parameters like the solver and solver-specific settings that stay constant across all cases. Parameters ---------- pudl_engine : sqlalchemy.Engine A sqlalchemy connection for use by pandas to access IPM load profiles. These load profiles are needed when DG is calculated as a fraction of load. settings : dict User-defined parameters from a settings file. Should have keys of `model_year` `case_id`, 'case_name', `input_folder` (a Path object of where to find user-supplied data), `emission_policies_fn`, 'distributed_gen_profiles_fn' (the files to load in other functions), and 'genx_settings_fn'. Returns ------- dict Dictionary of settings for a GenX run """ model_year = settings["model_year"] case_id = settings["case_id"] case_name = settings["case_name"] genx_settings = load_settings(settings["genx_settings_fn"]) policies = load_policy_scenarios(settings) year_case_policy = policies.loc[(case_id, model_year), :] # Bug where multiple regions for a case will return this as a df, even if the policy # for this case applies to all regions (code below expects a Series) ycp_shape = year_case_policy.shape if ycp_shape[0] == 1 and len(ycp_shape) > 1: year_case_policy = year_case_policy.squeeze() # convert to series if settings.get("distributed_gen_profiles_fn"): dg_generation = make_distributed_gen_profiles(pudl_engine, settings) total_dg_gen = dg_generation.sum().sum() else: total_dg_gen = 0 if isinstance(year_case_policy, pd.DataFrame): year_case_policy = year_case_policy.sum() # If a value isn't supplied to the function use value from file if calculated_ces is None: CES = year_case_policy["CES"] else: CES = calculated_ces RPS = year_case_policy["RPS"] # THIS WILL NEED TO BE MORE FLEXIBLE FOR OTHER SCENARIOS if float(year_case_policy["CO_2_Max_Mtons"]) >= 0: genx_settings["CO2Cap"] = 2 else: genx_settings["CO2Cap"] = 0 if float(year_case_policy["RPS"]) > 0: # print(total_dg_gen) # print(year_case_policy["RPS"]) if policies.loc[(case_id, model_year), "region"].all() == "all": genx_settings["RPS"] = 3 genx_settings["RPS_Adjustment"] = float((1 - RPS) * total_dg_gen) else: genx_settings["RPS"] = 2 genx_settings["RPS_Adjustment"] = 0 else: genx_settings["RPS"] = 0 genx_settings["RPS_Adjustment"] = 0 if float(year_case_policy["CES"]) > 0: if policies.loc[(case_id, model_year), "region"].all() == "all": genx_settings["CES"] = 3 # This is a little confusing but for partial CES if settings.get("partial_ces"): genx_settings["CES_Adjustment"] = 0 else: genx_settings["CES_Adjustment"] = float((1 - CES) * total_dg_gen) else: genx_settings["CES"] = 2 genx_settings["CES_Adjustment"] = 0 else: genx_settings["CES"] = 0 genx_settings["CES_Adjustment"] = 0 # Don't wrap when time domain isn't reduced if not settings.get("reduce_time_domain"): genx_settings["OperationWrapping"] = 0 genx_settings["case_id"] = case_id genx_settings["case_name"] = case_name genx_settings["year"] = str(model_year) # This is a new setting, will need to have a way to change. genx_settings["CapacityReserveMargin"] = 0 genx_settings["LDS"] = 0 # Load user defined values for the genx settigns file. This overrides the # complicated logic above. if settings.get("case_genx_settings_fn"): user_genx_settings = load_user_genx_settings(settings) user_case_settings = user_genx_settings.loc[(case_id, model_year), :] for key, value in user_case_settings.items(): if not pd.isna(value): genx_settings[key] = value return genx_settings def reduce_time_domain( resource_profiles, load_profiles, settings, variable_resources_only=True ): demand_segments = load_demand_segments(settings) if settings.get("reduce_time_domain"): days = settings["time_domain_days_per_period"] time_periods = settings["time_domain_periods"] include_peak_day = settings["include_peak_day"] load_weight = settings["demand_weight_factor"] results, _, _ = kmeans_time_clustering( resource_profiles=resource_profiles, load_profiles=load_profiles, days_in_group=days, num_clusters=time_periods, include_peak_day=include_peak_day, load_weight=load_weight, variable_resources_only=variable_resources_only, ) reduced_resource_profile = results["resource_profiles"] reduced_resource_profile.index.name = "Resource" reduced_resource_profile.index = range(1, len(reduced_resource_profile) + 1) reduced_load_profile = results["load_profiles"] time_series_mapping = results["time_series_mapping"] time_index = pd.Series(data=reduced_load_profile.index + 1, name="Time_index") sub_weights = pd.Series( data=[x * (days * 24) for x in results["ClusterWeights"]], name="Sub_Weights", ) hours_per_period = pd.Series(data=[days * 24], name="Hours_per_period") subperiods = pd.Series(data=[time_periods], name="Subperiods") reduced_load_output = pd.concat( [ demand_segments, subperiods, hours_per_period, sub_weights, time_index, reduced_load_profile.round(0), ], axis=1, ) return reduced_resource_profile, reduced_load_output, time_series_mapping else: time_index = pd.Series(data=range(1, 8761), name="Time_index") sub_weights =
pd.Series(data=[1], name="Sub_Weights")
pandas.Series
import numpy as np from sklearn.preprocessing import StandardScaler import pyswarms as ps from sklearn.model_selection import cross_val_score,ShuffleSplit from sklearn.metrics import mean_squared_error,r2_score from sklearn.externals import joblib import pandas as pd import time def discretize(x,num): result = min(num-1, max(0, x)) return int(result) def ErrorDistribs(y_true,y_pred): return abs(y_true-y_pred)/y_true class model(): def __init__(self,n_particles=20,c1=0.5,c2=0.5,w=0.9,verbose=1,cv=5,scoring='neg_mean_squared_error'): self.StandardScaler=StandardScaler() self.n_particles=n_particles self.c1=c1 self.c2=c2 self.w=w self.options={'c1':self.c1,'c2':self.c2,'w':self.w} self.verbose=verbose self.cv=cv self.scoring=scoring def train(self,X_train,y_train,reg,param_distribs): start=time.perf_counter() self.X_train_pre=self.StandardScaler.fit_transform(X_train) self.y_train=y_train self.reg=reg self.param_distribs=param_distribs self.dimensions=len(param_distribs) upper=np.zeros(self.dimensions) lower=np.zeros(self.dimensions) for count, (key, value) in enumerate(self.param_distribs.items()): lower[count]=value[1] upper[count]=value[2] bounds=(lower,upper) optimizer=ps.single.GlobalBestPSO(n_particles=self.n_particles,dimensions=self.dimensions,options=self.options,bounds=bounds) best_cost,best_pos=optimizer.optimize(self.search,iters=50,verbose=self.verbose) # best_pos=[-0.7811003950341757, 4.736212131795903, 0.3134303131418766] self.best_params={} for count, (key, value) in enumerate(self.param_distribs.items()): if value[0].__name__=='choice': index=value[0](best_pos[count]) self.best_params[key]=value[3][index] else: self.best_params[key]=value[0](best_pos[count]) self.final_model=self.reg(**self.best_params) self.final_model.fit(self.X_train_pre,self.y_train) y_pred=self.final_model.predict(self.X_train_pre) now=time.perf_counter() RMSE=np.sqrt(mean_squared_error(y_train,y_pred))/10**6 R2=r2_score(y_train,y_pred) rela_error=ErrorDistribs(y_train,y_pred)*100 error_hist,_=np.histogram(rela_error,bins=50) error_median=np.median(rela_error) # with open('{}.txt'.format(self.reg.__name__),'w+') as f: # f.write('RMSE: {}\r\nR2: {}\r\nError_median: {}\r\n'.format(RMSE,R2,error_median)) self.my_dict={} self.my_dict['train_time']=now-start self.my_dict['RMSE']=RMSE self.my_dict['R2']=R2 self.my_dict['Error_Median']=error_median self.my_dict['Error_Hist']=error_hist.ravel() self.my_dict['y_true']=self.y_train.ravel() self.my_dict['y_pred']=y_pred.ravel() joblib.dump(self.final_model,'{}.pkl'.format(self.reg.__name__)) # my_model_loaded=joblib.load('{}.pkl'.format(self.reg.__name__)) def search(self,param): score_array=np.zeros((self.n_particles,self.cv)) fit_params={} for i in range(self.n_particles): for count, (key, value) in enumerate(self.param_distribs.items()): if value[0].__name__=='choice': index=value[0](param[i,count]) fit_params[key]=value[3][index] else: fit_params[key]=value[0](param[i,count]) # cv=ShuffleSplit(n_splits=5,test_size=0.3) score_array[i,:]=cross_val_score(self.reg(**fit_params),self.X_train_pre,self.y_train,scoring=self.scoring,cv=self.cv) return -np.mean(score_array,axis=1) def predict(self,X_test): """ x: numpy.ndarray of shape (n_particles, dimensions) """ X_test_pre=self.StandardScaler.transform(X_test) y_pred=self.final_model.predict(X_test_pre) return -y_pred def optimize(self): start=time.perf_counter() upper=250*np.ones(72) lower=15*np.ones(72) bounds=(lower,upper) optimizer=ps.single.GlobalBestPSO(n_particles=self.n_particles,dimensions=72,options=self.options,bounds=bounds) best_cost,best_pos=optimizer.optimize(self.predict,iters=100,verbose=self.verbose) best_pos=np.array(best_pos) cost_history=np.array(optimizer.cost_history) now=time.perf_counter() self.my_dict['opt_time']=now-start self.my_dict['X_test']=best_pos.ravel() self.my_dict['cost_history']=cost_history.ravel() df=pd.DataFrame(dict([ (k,
pd.Series(v)
pandas.Series
import requests import pandas as pd import numpy as np import json import haversine import datetime from haversine import Unit import os import prefect from prefect import task, Flow, Parameter, case from prefect.tasks.notifications.email_task import EmailTask from prefect.schedules import IntervalSchedule ENDPOINT = 'https://www.vaccinespotter.org/api/v0/states' @task(log_stdout=True) def load_data(state): endpoint = f'{ENDPOINT}/{state}.json' print(f'Checking: {endpoint}') json_payload = requests.get(endpoint) data = json.loads(json_payload.content) df = pd.DataFrame([x['properties'] for x in data['features']]) df['coordinates'] = [(x['geometry']['coordinates'][1], x['geometry']['coordinates'][0]) for x in data['features']] df['appointments_last_fetched'] =
pd.to_datetime(data['metadata']['appointments_last_fetched'])
pandas.to_datetime
import sys import pandas as pd import pytd from pedestrian_detector import PedestrianDetector # TODO: fill the following env vars TD_DATABASE = "" TD_TABLE = "" TD_API_KEY = "" TD_API_SERVER = "https://api.treasuredata.com" if __name__ == "__main__": client = pytd.Client( database=TD_DATABASE, apikey=TD_API_KEY, endpoint=TD_API_SERVER ) detector = PedestrianDetector() counts, timestamps = [], [] try: while True: cnt, ts = detector.detect() print(cnt, ts) counts.append(cnt) timestamps.append(ts) if len(counts) == 10: client.load_table_from_dataframe(
pd.DataFrame(data={"time": timestamps, "num_pedestrian": counts})
pandas.DataFrame
# coding: utf-8 import re import numpy as np import pandas as pd def vnpy_opt_DAY_IN(opt): """ vnpy 优化结果清洗,用于 DAY_IN 和 DAY_OUT :param opt: :return: """ data = re.compile(r'DAY_IN\':\s(\d+),\s\'DAY_OUT\':\s(\d+)\}"\]:\s([\d\.]+)').findall(opt) data = np.array(data).T dic = { "DAY_IN": pd.Series(data[0], dtype=np.int), "DAY_OUT": pd.Series(data[1], dtype=np.int), "capital": pd.Series(data[2], dtype=np.float) } return
pd.DataFrame(dic)
pandas.DataFrame
from datetime import datetime from io import StringIO import itertools import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range, ) import pandas._testing as tm class TestDataFrameReshape: def test_stack_unstack(self, float_frame): df = float_frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({"foo": stacked, "bar": stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() tm.assert_frame_equal(unstacked, df) tm.assert_frame_equal(unstacked_df["bar"], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) tm.assert_frame_equal(unstacked_cols.T, df) tm.assert_frame_equal(unstacked_cols_df["bar"].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, "a", "b"], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) tm.assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame( 1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1] ) tm.assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[["a", "b"]].stack(1) expected = expected[["a", "b"]] tm.assert_frame_equal(result, expected) def test_unstack_not_consolidated(self, using_array_manager): # Gh#34708 df = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) df2 = df[["x"]] df2["y"] = df["y"] if not using_array_manager: assert len(df2._mgr.blocks) == 2 res = df2.unstack() expected = df.unstack() tm.assert_series_equal(res, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack(fill_value=-1) expected = DataFrame( {"a": [1, -1, 5], "b": [2, 4, -1]}, index=["x", "y", "z"], dtype=np.int16 ) tm.assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame( {"a": [1, 0.5, 5], "b": [2, 4, 0.5]}, index=["x", "y", "z"], dtype=float ) tm.assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame( {"x": ["a", "a", "b"], "y": ["j", "k", "j"], "z": [0, 1, 2], "w": [0, 1, 2]} ).set_index(["x", "y", "z"]) unstacked = df.unstack(["x", "y"], fill_value=0) key = ("<KEY>") expected = unstacked[key] result = Series([0, 0, 2], index=unstacked.index, name=key) tm.assert_series_equal(result, expected) stacked = unstacked.stack(["x", "y"]) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] tm.assert_frame_equal(result, df) # From a series s = df["w"] result = s.unstack(["x", "y"], fill_value=0) expected = unstacked["w"] tm.assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list("AB"), dtype=np.int32) df.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list("xyz"), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) # From a mixed type dataframe df["A"] = df["A"].astype(np.int16) df["B"] = df["B"].astype(np.float64) result = df.unstack(fill_value=-1) expected["A"] = expected["A"].astype(np.int16) expected["B"] = expected["B"].astype(np.float64) tm.assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list("xyz"), dtype=float) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = date_range("2012-01-01", periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [dv[0], pd.NaT, dv[3]], "b": [dv[1], dv[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame( {"a": [dv[0], dv[0], dv[3]], "b": [dv[1], dv[2], dv[0]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [td[0], pd.NaT, td[3]], "b": [td[1], td[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame( {"a": [td[0], td[1], td[3]], "b": [td[1], td[2], td[1]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [ Period("2012-01"), Period("2012-02"), Period("2012-03"), Period("2012-04"), ] data = Series(periods) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [periods[0], None, periods[3]], "b": [periods[1], periods[2], None]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame( { "a": [periods[0], periods[1], periods[3]], "b": [periods[1], periods[2], periods[1]], }, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = Series(["a", "b", "c", "a"], dtype="category") data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) # By default missing values will be NaN result = data.unstack() expected = DataFrame( { "a": pd.Categorical(list("axa"), categories=list("abc")), "b": pd.Categorical(list("bcx"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) # Fill with non-category results in a ValueError msg = r"'fill_value=d' is not present in" with pytest.raises(TypeError, match=msg): data.unstack(fill_value="d") # Fill with category value replaces missing values as expected result = data.unstack(fill_value="c") expected = DataFrame( { "a": pd.Categorical(list("aca"), categories=list("abc")), "b": pd.Categorical(list("bcc"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) def test_unstack_tuplename_in_multiindex(self): # GH 19966 idx = MultiIndex.from_product( [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")] ) df = DataFrame({"d": [1] * 9, "e": [2] * 9}, index=idx) result = df.unstack(("A", "a")) expected = DataFrame( [[1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2]], columns=MultiIndex.from_tuples( [ ("d", "a"), ("d", "b"), ("d", "c"), ("e", "a"), ("e", "b"), ("e", "c"), ], names=[None, ("A", "a")], ), index=Index([1, 2, 3], name=("B", "b")), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "unstack_idx, expected_values, expected_index, expected_columns", [ ( ("A", "a"), [[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]], MultiIndex.from_tuples( [(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"] ), MultiIndex.from_tuples( [("d", "a"), ("d", "b"), ("e", "a"), ("e", "b")], names=[None, ("A", "a")], ), ), ( (("A", "a"), "B"), [[1, 1, 1, 1, 2, 2, 2, 2], [1, 1, 1, 1, 2, 2, 2, 2]], Index([3, 4], name="C"), MultiIndex.from_tuples( [ ("d", "a", 1), ("d", "a", 2), ("d", "b", 1), ("d", "b", 2), ("e", "a", 1), ("e", "a", 2), ("e", "b", 1), ("e", "b", 2), ], names=[None, ("A", "a"), "B"], ), ), ], ) def test_unstack_mixed_type_name_in_multiindex( self, unstack_idx, expected_values, expected_index, expected_columns ): # GH 19966 idx = MultiIndex.from_product( [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"] ) df = DataFrame({"d": [1] * 8, "e": [2] * 8}, index=idx) result = df.unstack(unstack_idx) expected = DataFrame( expected_values, columns=expected_columns, index=expected_index ) tm.assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = DataFrame( { "state": ["IL", "MI", "NC"], "index": ["a", "b", "c"], "some_categories": Series(["a", "b", "c"]).astype("category"), "A": np.random.rand(3), "B": 1, "C": "foo", "D": pd.Timestamp("20010102"), "E": Series([1.0, 50.0, 100.0]).astype("float32"), "F": Series([3.0, 4.0, 5.0]).astype("float64"), "G": False, "H": Series([1, 200, 923442], dtype="int8"), } ) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) tm.assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(["state", "index"]) unstack_and_compare(df1, "index") df1 = df.set_index(["state", "some_categories"]) unstack_and_compare(df1, "some_categories") df1 = df.set_index(["F", "C"]) unstack_and_compare(df1, "F") df1 = df.set_index(["G", "B", "state"]) unstack_and_compare(df1, "B") df1 = df.set_index(["E", "A"]) unstack_and_compare(df1, "E") df1 = df.set_index(["state", "index"]) s = df1["A"] unstack_and_compare(s, "index") def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) tm.assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) tm.assert_frame_equal( df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1) ) df_named = df.copy() return_value = df_named.columns.set_names(range(3), inplace=True) assert return_value is None tm.assert_frame_equal( df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1) ) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ["exp", "animal", 1] tm.assert_frame_equal( df2.stack(level=["animal", 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=["exp", 1]), exp_hair_stacked, check_names=False ) # When mixed types are passed and the ints are not level # names, raise msg = ( "level should contain all level names or all level numbers, not " "a mixture of the two" ) with pytest.raises(ValueError, match=msg): df2.stack(level=["animal", 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ["exp", "animal", 0] tm.assert_frame_equal( df3.stack(level=["animal", 0]), animal_hair_stacked, check_names=False ) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=["exp", "animal"]) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) df2 = df.copy() df2.columns.names = [0, 1, 2] tm.assert_frame_equal( df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False ) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] tm.assert_frame_equal( df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False ) def test_unstack_bool(self): df = DataFrame( [False, False], index=MultiIndex.from_arrays([["a", "b"], ["c", "l"]]), columns=["col"], ) rs = df.unstack() xp = DataFrame( np.array([[False, np.nan], [np.nan, False]], dtype=object), index=["a", "b"], columns=MultiIndex.from_arrays([["col", "col"], ["c", "l"]]), ) tm.assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"], ["a", "b"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=["first", "second", "third"], ) s = Series(0, index=mi) result = s.unstack([1, 2]).stack(0) expected_mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=["first", "second"], ) expected = DataFrame( np.array( [[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64 ), index=expected_mi, columns=Index(["a", "b"], name="third"), ) tm.assert_frame_equal(result, expected) def test_unstack_to_series(self, float_frame): # check reversibility data = float_frame.unstack() assert isinstance(data, Series) undo = data.unstack().T tm.assert_frame_equal(undo, float_frame) # check NA handling data = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) data.index = Index(["a", "b", "c"]) result = data.unstack() midx = MultiIndex( levels=[["x", "y"], ["a", "b", "c"]], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], ) expected = Series([1, 2, np.NaN, 3, 4, np.NaN], index=midx) tm.assert_series_equal(result, expected) # check composability of unstack old_data = data.copy() for _ in range(4): data = data.unstack() tm.assert_frame_equal(old_data, data) def test_unstack_dtypes(self): # GH 2929 rows = [[1, 1, 3, 4], [1, 2, 3, 4], [2, 1, 3, 4], [2, 2, 3, 4]] df = DataFrame(rows, columns=list("ABCD")) result = df.dtypes expected = Series([np.dtype("int64")] * 4, index=list("ABCD")) tm.assert_series_equal(result, expected) # single dtype df2 = df.set_index(["A", "B"]) df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("int64")] * 4, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) # mixed df2 = df.set_index(["A", "B"]) df2["C"] = 3.0 df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("int64")] * 2, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) df2["D"] = "foo" df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("object")] * 2, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) # GH7405 for c, d in ( (np.zeros(5), np.zeros(5)), (np.arange(5, dtype="f8"), np.arange(5, 10, dtype="f8")), ): df = DataFrame( { "A": ["a"] * 5, "C": c, "D": d, "B": date_range("2012-01-01", periods=5), } ) right = df.iloc[:3].copy(deep=True) df = df.set_index(["A", "B"]) df["D"] = df["D"].astype("int64") left = df.iloc[:3].unstack(0) right = right.set_index(["A", "B"]).unstack(0) right[("D", "a")] = right[("D", "a")].astype("int64") assert left.shape == (3, 2) tm.assert_frame_equal(left, right) def test_unstack_non_unique_index_names(self): idx = MultiIndex.from_tuples([("a", "b"), ("c", "d")], names=["c1", "c1"]) df = DataFrame([1, 2], index=idx) msg = "The name c1 occurs multiple times, use a level number" with pytest.raises(ValueError, match=msg): df.unstack("c1") with pytest.raises(ValueError, match=msg): df.T.stack("c1") def test_unstack_unused_levels(self): # GH 17845: unused codes in index make unstack() cast int to float idx = MultiIndex.from_product([["a"], ["A", "B", "C", "D"]])[:-1] df = DataFrame([[1, 0]] * 3, index=idx) result = df.unstack() exp_col = MultiIndex.from_product([[0, 1], ["A", "B", "C"]]) expected = DataFrame([[1, 1, 1, 0, 0, 0]], index=["a"], columns=exp_col) tm.assert_frame_equal(result, expected) assert (result.columns.levels[1] == idx.levels[1]).all() # Unused items on both levels levels = [[0, 1, 7], [0, 1, 2, 3]] codes = [[0, 0, 1, 1], [0, 2, 0, 2]] idx = MultiIndex(levels, codes) block = np.arange(4).reshape(2, 2) df = DataFrame(np.concatenate([block, block + 4]), index=idx) result = df.unstack() expected = DataFrame( np.concatenate([block * 2, block * 2 + 1], axis=1), columns=idx ) tm.assert_frame_equal(result, expected) assert (result.columns.levels[1] == idx.levels[1]).all() # With mixed dtype and NaN levels = [["a", 2, "c"], [1, 3, 5, 7]] codes = [[0, -1, 1, 1], [0, 2, -1, 2]] idx = MultiIndex(levels, codes) data = np.arange(8) df = DataFrame(data.reshape(4, 2), index=idx) cases = ( (0, [13, 16, 6, 9, 2, 5, 8, 11], [np.nan, "a", 2], [np.nan, 5, 1]), (1, [8, 11, 1, 4, 12, 15, 13, 16], [np.nan, 5, 1], [np.nan, "a", 2]), ) for level, idces, col_level, idx_level in cases: result = df.unstack(level=level) exp_data = np.zeros(18) * np.nan exp_data[idces] = data cols = MultiIndex.from_product([[0, 1], col_level]) expected = DataFrame(exp_data.reshape(3, 6), index=idx_level, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("cols", [["A", "C"], slice(None)]) def test_unstack_unused_level(self, cols): # GH 18562 : unused codes on the unstacked level df = DataFrame([[2010, "a", "I"], [2011, "b", "II"]], columns=["A", "B", "C"]) ind = df.set_index(["A", "B", "C"], drop=False) selection = ind.loc[(slice(None), slice(None), "I"), cols] result = selection.unstack() expected = ind.iloc[[0]][cols] expected.columns = MultiIndex.from_product( [expected.columns, ["I"]], names=[None, "C"] ) expected.index = expected.index.droplevel("C") tm.assert_frame_equal(result, expected) def test_unstack_long_index(self): # PH 32624: Error when using a lot of indices to unstack. # The error occurred only, if a lot of indices are used. df = DataFrame( [[1]], columns=MultiIndex.from_tuples([[0]], names=["c1"]), index=MultiIndex.from_tuples( [[0, 0, 1, 0, 0, 0, 1]], names=["i1", "i2", "i3", "i4", "i5", "i6", "i7"], ), ) result = df.unstack(["i2", "i3", "i4", "i5", "i6", "i7"]) expected = DataFrame( [[1]], columns=MultiIndex.from_tuples( [[0, 0, 1, 0, 0, 0, 1]], names=["c1", "i2", "i3", "i4", "i5", "i6", "i7"], ), index=Index([0], name="i1"), ) tm.assert_frame_equal(result, expected) def test_unstack_multi_level_cols(self): # PH 24729: Unstack a df with multi level columns df = DataFrame( [[0.0, 0.0], [0.0, 0.0]], columns=MultiIndex.from_tuples( [["B", "C"], ["B", "D"]], names=["c1", "c2"] ), index=MultiIndex.from_tuples( [[10, 20, 30], [10, 20, 40]], names=["i1", "i2", "i3"] ), ) assert df.unstack(["i2", "i1"]).columns.names[-2:] == ["i2", "i1"] def test_unstack_multi_level_rows_and_cols(self): # PH 28306: Unstack df with multi level cols and rows df = DataFrame( [[1, 2], [3, 4], [-1, -2], [-3, -4]], columns=MultiIndex.from_tuples([["a", "b", "c"], ["d", "e", "f"]]), index=MultiIndex.from_tuples( [ ["m1", "P3", 222], ["m1", "A5", 111], ["m2", "P3", 222], ["m2", "A5", 111], ], names=["i1", "i2", "i3"], ), ) result = df.unstack(["i3", "i2"]) expected = df.unstack(["i3"]).unstack(["i2"]) tm.assert_frame_equal(result, expected) def test_unstack_nan_index1(self): # GH7466 def cast(val): val_str = "" if val != val else val return f"{val_str:1}" def verify(df): mk_list = lambda a: list(a) if isinstance(a, tuple) else [a] rows, cols = df.notna().values.nonzero() for i, j in zip(rows, cols): left = sorted(df.iloc[i, j].split(".")) right = mk_list(df.index[i]) + mk_list(df.columns[j]) right = sorted(map(cast, right)) assert left == right df = DataFrame( { "jim": ["a", "b", np.nan, "d"], "joe": ["w", "x", "y", "z"], "jolie": ["a.w", "b.x", " .y", "d.z"], } ) left = df.set_index(["jim", "joe"]).unstack()["jolie"] right = df.set_index(["joe", "jim"]).unstack()["jolie"].T tm.assert_frame_equal(left, right) for idx in itertools.permutations(df.columns[:2]): mi = df.set_index(list(idx)) for lev in range(2): udf = mi.unstack(level=lev) assert udf.notna().values.sum() == len(df) verify(udf["jolie"]) df = DataFrame( { "1st": ["d"] * 3 + [np.nan] * 5 + ["a"] * 2 + ["c"] * 3 + ["e"] * 2 + ["b"] * 5, "2nd": ["y"] * 2 + ["w"] * 3 + [np.nan] * 3 + ["z"] * 4 + [np.nan] * 3 + ["x"] * 3 + [np.nan] * 2, "3rd": [ 67, 39, 53, 72, 57, 80, 31, 18, 11, 30, 59, 50, 62, 59, 76, 52, 14, 53, 60, 51, ], } ) df["4th"], df["5th"] = ( df.apply(lambda r: ".".join(map(cast, r)), axis=1), df.apply(lambda r: ".".join(map(cast, r.iloc[::-1])), axis=1), ) for idx in itertools.permutations(["1st", "2nd", "3rd"]): mi = df.set_index(list(idx)) for lev in range(3): udf = mi.unstack(level=lev) assert udf.notna().values.sum() == 2 * len(df) for col in ["4th", "5th"]: verify(udf[col]) def test_unstack_nan_index2(self): # GH7403 df = DataFrame({"A": list("aaaabbbb"), "B": range(8), "C": range(8)}) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [ [3, 0, 1, 2, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, 4, 5, 6, 7], ] vals = list(map(list, zip(*vals))) idx = Index([np.nan, 0, 1, 2, 4, 5, 6, 7], name="B") cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) df = DataFrame({"A": list("aaaabbbb"), "B": list(range(4)) * 2, "C": range(8)}) df.iloc[2, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [[2, np.nan], [0, 4], [1, 5], [np.nan, 6], [3, 7]] cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) idx = Index([np.nan, 0, 1, 2, 3], name="B") right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) df = DataFrame({"A": list("aaaabbbb"), "B": list(range(4)) * 2, "C": range(8)}) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [[3, np.nan], [0, 4], [1, 5], [2, 6], [np.nan, 7]] cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) idx = Index([np.nan, 0, 1, 2, 3], name="B") right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) def test_unstack_nan_index3(self, using_array_manager): # GH7401 df = DataFrame( { "A": list("aaaaabbbbb"), "B": (date_range("2012-01-01", periods=5).tolist() * 2), "C": np.arange(10), } ) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack() vals = np.array([[3, 0, 1, 2, np.nan, 4], [np.nan, 5, 6, 7, 8, 9]]) idx = Index(["a", "b"], name="A") cols = MultiIndex( levels=[["C"], date_range("2012-01-01", periods=5)], codes=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, "B"], ) right = DataFrame(vals, columns=cols, index=idx) if using_array_manager: # INFO(ArrayManager) with ArrayManager preserve dtype where possible cols = right.columns[[1, 2, 3, 5]] right[cols] = right[cols].astype(df["C"].dtype) tm.assert_frame_equal(left, right) def test_unstack_nan_index4(self): # GH4862 vals = [ ["Hg", np.nan, np.nan, 680585148], ["U", 0.0, np.nan, 680585148], ["Pb", 7.07e-06, np.nan, 680585148], ["Sn", 2.3614e-05, 0.0133, 680607017], ["Ag", 0.0, 0.0133, 680607017], ["Hg", -0.00015, 0.0133, 680607017], ] df = DataFrame( vals, columns=["agent", "change", "dosage", "s_id"], index=[17263, 17264, 17265, 17266, 17267, 17268], ) left = df.copy().set_index(["s_id", "dosage", "agent"]).unstack() vals = [ [np.nan, np.nan, 7.07e-06, np.nan, 0.0], [0.0, -0.00015, np.nan, 2.3614e-05, np.nan], ] idx = MultiIndex( levels=[[680585148, 680607017], [0.0133]], codes=[[0, 1], [-1, 0]], names=["s_id", "dosage"], ) cols = MultiIndex( levels=[["change"], ["Ag", "Hg", "Pb", "Sn", "U"]], codes=[[0, 0, 0, 0, 0], [0, 1, 2, 3, 4]], names=[None, "agent"], ) right =
DataFrame(vals, columns=cols, index=idx)
pandas.DataFrame
"""Miscellaneous spatial and statistical transforms.""" import copy import logging import os.path as op import nibabel as nib import numpy as np import pandas as pd from nilearn.reporting import get_clusters_table from scipy import stats from . import references from .base import Transformer from .due import due from .utils import dict_to_coordinates, dict_to_df, get_masker, listify LGR = logging.getLogger(__name__) class ImageTransformer(Transformer): """A class to create new images from existing ones within a Dataset. This class is a light wrapper around :func:`nimare.transforms.transform_images`. .. versionadded:: 0.0.9 Parameters ---------- target : {'z', 'p', 'beta', 'varcope'} or list Target image type. Multiple target types may be specified as a list. overwrite : :obj:`bool`, optional Whether to overwrite existing files or not. Default is False. See Also -------- nimare.transforms.transform_images : The function called by this class. """ def __init__(self, target, overwrite=False): self.target = listify(target) self.overwrite = overwrite def transform(self, dataset): """Generate images of the target type from other image types in a Dataset. Parameters ---------- dataset : :obj:`nimare.dataset.Dataset` A Dataset containing images and relevant metadata. Returns ------- new_dataset : :obj:`nimare.dataset.Dataset` A copy of the input Dataset, with new images added to its images attribute. """ # Using attribute check instead of type check to allow fake Datasets for testing. if not hasattr(dataset, "slice"): raise ValueError( f"Argument 'dataset' must be a valid Dataset object, not a {type(dataset)}." ) new_dataset = dataset.copy() temp_images = dataset.images for target_type in self.target: temp_images = transform_images( temp_images, target=target_type, masker=dataset.masker, metadata_df=dataset.metadata, out_dir=dataset.basepath, overwrite=self.overwrite, ) new_dataset.images = temp_images return new_dataset def transform_images(images_df, target, masker, metadata_df=None, out_dir=None, overwrite=False): """Generate images of a given type from other image types and write out to files. .. versionchanged:: 0.0.9 * [ENH] Add overwrite option to transform_images .. versionadded:: 0.0.4 Parameters ---------- images_df : :class:`pandas.DataFrame` DataFrame with paths to images for studies in Dataset. target : {'z', 'p', 'beta', 'varcope'} Target data type. masker : :class:`nilearn.input_data.NiftiMasker` or similar Masker used to define orientation and resolution of images. Specific voxels defined in mask will not be used, and a new masker with _all_ voxels in acquisition matrix selected will be created. metadata_df : :class:`pandas.DataFrame` or :obj:`None`, optional DataFrame with metadata. Rows in this DataFrame must match those in ``images_df``, including the ``'id'`` column. out_dir : :obj:`str` or :obj:`None`, optional Path to output directory. If None, use folder containing first image for each study in ``images_df``. overwrite : :obj:`bool`, optional Whether to overwrite existing files or not. Default is False. Returns ------- images_df : :class:`pandas.DataFrame` DataFrame with paths to new images added. """ images_df = images_df.copy() valid_targets = {"z", "p", "beta", "varcope"} if target not in valid_targets: raise ValueError( f"Target type {target} not supported. Must be one of: {', '.join(valid_targets)}" ) mask_img = masker.mask_img new_mask = np.ones(mask_img.shape, int) new_mask = nib.Nifti1Image(new_mask, mask_img.affine, header=mask_img.header) new_masker = get_masker(new_mask) res = masker.mask_img.header.get_zooms() res = "x".join([str(r) for r in res]) if target not in images_df.columns: target_ids = images_df["id"].values else: target_ids = images_df.loc[images_df[target].isnull(), "id"] for id_ in target_ids: row = images_df.loc[images_df["id"] == id_].iloc[0] # Determine output filename, if file can be generated if out_dir is None: options = [r for r in row.values if isinstance(r, str) and op.isfile(r)] id_out_dir = op.dirname(options[0]) else: id_out_dir = out_dir new_file = op.join(id_out_dir, f"{id_}_{res}_{target}.nii.gz") # Grab columns with actual values available_data = row[~row.isnull()].to_dict() if metadata_df is not None: metadata_row = metadata_df.loc[metadata_df["id"] == id_].iloc[0] metadata = metadata_row[~metadata_row.isnull()].to_dict() for k, v in metadata.items(): if k not in available_data.keys(): available_data[k] = v # Get converted data img = resolve_transforms(target, available_data, new_masker) if img is not None: if overwrite or not op.isfile(new_file): img.to_filename(new_file) else: LGR.debug("Image already exists. Not overwriting.") images_df.loc[images_df["id"] == id_, target] = new_file else: images_df.loc[images_df["id"] == id_, target] = None return images_df def resolve_transforms(target, available_data, masker): """Determine and apply the appropriate transforms to a target image type from available data. .. versionchanged:: 0.0.8 * [FIX] Remove unnecessary dimensions from output image object *img_like*. \ Now, the image object only has 3 dimensions. .. versionadded:: 0.0.4 Parameters ---------- target : {'z', 'p', 't', 'beta', 'varcope'} Target image type. available_data : dict Dictionary mapping data types to their values. Images in the dictionary are paths to files. masker : nilearn Masker Masker used to convert images to arrays and back. Preferably, this mask should cover the full acquisition matrix (rather than an ROI), given that the calculated images will be saved and used for the full Dataset. Returns ------- img_like or None Image object with the desired data type, if it can be generated. Otherwise, None. """ if target in available_data.keys(): LGR.warning(f"Target '{target}' already available.") return available_data[target] if target == "z": if ("t" in available_data.keys()) and ("sample_sizes" in available_data.keys()): dof = sample_sizes_to_dof(available_data["sample_sizes"]) t = masker.transform(available_data["t"]) z = t_to_z(t, dof) elif "p" in available_data.keys(): p = masker.transform(available_data["p"]) z = p_to_z(p) else: return None z = masker.inverse_transform(z.squeeze()) return z elif target == "t": # will return none given no transform/target exists temp = resolve_transforms("z", available_data, masker) if temp is not None: available_data["z"] = temp if ("z" in available_data.keys()) and ("sample_sizes" in available_data.keys()): dof = sample_sizes_to_dof(available_data["sample_sizes"]) z = masker.transform(available_data["z"]) t = z_to_t(z, dof) t = masker.inverse_transform(t.squeeze()) return t else: return None elif target == "beta": if "t" not in available_data.keys(): # will return none given no transform/target exists temp = resolve_transforms("t", available_data, masker) if temp is not None: available_data["t"] = temp if "varcope" not in available_data.keys(): temp = resolve_transforms("varcope", available_data, masker) if temp is not None: available_data["varcope"] = temp if ("t" in available_data.keys()) and ("varcope" in available_data.keys()): t = masker.transform(available_data["t"]) varcope = masker.transform(available_data["varcope"]) beta = t_and_varcope_to_beta(t, varcope) beta = masker.inverse_transform(beta.squeeze()) return beta else: return None elif target == "varcope": if "se" in available_data.keys(): se = masker.transform(available_data["se"]) varcope = se_to_varcope(se) elif ("samplevar_dataset" in available_data.keys()) and ( "sample_sizes" in available_data.keys() ): sample_size = sample_sizes_to_sample_size(available_data["sample_sizes"]) samplevar_dataset = masker.transform(available_data["samplevar_dataset"]) varcope = samplevar_dataset_to_varcope(samplevar_dataset, sample_size) elif ("sd" in available_data.keys()) and ("sample_sizes" in available_data.keys()): sample_size = sample_sizes_to_sample_size(available_data["sample_sizes"]) sd = masker.transform(available_data["sd"]) varcope = sd_to_varcope(sd, sample_size) varcope = masker.inverse_transform(varcope) elif ("t" in available_data.keys()) and ("beta" in available_data.keys()): t = masker.transform(available_data["t"]) beta = masker.transform(available_data["beta"]) varcope = t_and_beta_to_varcope(t, beta) else: return None varcope = masker.inverse_transform(varcope.squeeze()) return varcope elif target == "p": if ("t" in available_data.keys()) and ("sample_sizes" in available_data.keys()): dof = sample_sizes_to_dof(available_data["sample_sizes"]) t = masker.transform(available_data["t"]) z = t_to_z(t, dof) p = z_to_p(z) elif "z" in available_data.keys(): z = masker.transform(available_data["z"]) p = z_to_p(z) else: return None p = masker.inverse_transform(p.squeeze()) return p else: return None class ImagesToCoordinates(Transformer): """Transformer from images to coordinates. .. versionadded:: 0.0.8 Parameters ---------- merge_strategy : {"fill", "replace", "demolish"}, optional Strategy for how to incorporate the generated coordinates with possible pre-existing coordinates. Default="fill". Descriptions of the options: - ``"fill"``: only add coordinates to study contrasts that do not have coordinates. If a study contrast has both image and coordinate data, the original coordinate data will be kept. - ``"replace"``: replace existing coordinates with coordinates generated by this function. If a study contrast only has coordinate data and no images or if the statistical threshold is too high for nimare to detect any peaks the original coordinates will be kept. - ``"demolish"``: only keep generated coordinates and discard any study contrasts with coordinate data, but no images. cluster_threshold : :obj:`int` or `None`, optional Cluster size threshold, in voxels. Default=None. remove_subpeaks : :obj:`bool`, optional If True, removes subpeaks from the cluster results. Default=False. two_sided : :obj:`bool`, optional Whether to employ two-sided thresholding or to evaluate positive values only. Default=False. min_distance : :obj:`float`, optional Minimum distance between subpeaks in mm. Default=8mm. z_threshold : :obj:`float` Cluster forming z-scale threshold. Default=3.1. Notes ----- The raw Z and/or P maps are not corrected for multiple comparisons. Uncorrected z-values and/or p-values are used for thresholding. """ def __init__( self, merge_strategy="fill", cluster_threshold=None, remove_subpeaks=False, two_sided=False, min_distance=8.0, z_threshold=3.1, ): self.merge_strategy = merge_strategy self.cluster_threshold = cluster_threshold self.remove_subpeaks = remove_subpeaks self.min_distance = min_distance self.two_sided = two_sided self.z_threshold = z_threshold def transform(self, dataset): """Create coordinate peaks from statistical images. Parameters ---------- dataset : :obj:`nimare.dataset.Dataset` Dataset with z maps and/or p maps that can be converted to coordinates. Returns ------- dataset : :obj:`nimare.dataset.Dataset` Dataset with coordinates generated from images and metadata indicating origin of coordinates ('original' or 'nimare'). """ # relevant variables from dataset space = dataset.space masker = dataset.masker images_df = dataset.images metadata = dataset.metadata.copy() # conform space specification if "mni" in space.lower() or "ale" in space.lower(): coordinate_space = "MNI" elif "tal" in space.lower(): coordinate_space = "TAL" else: coordinate_space = None coordinates_dict = {} for _, row in images_df.iterrows(): if row["id"] in list(dataset.coordinates["id"]) and self.merge_strategy == "fill": continue if row.get("z"): clusters = get_clusters_table( nib.funcs.squeeze_image(nib.load(row.get("z"))), self.z_threshold, self.cluster_threshold, self.two_sided, self.min_distance, ) elif row.get("p"): LGR.info( f"No Z map for {row['id']}, using p map " "(p-values will be treated as positive z-values)" ) if self.two_sided: LGR.warning(f"Cannot use two_sided threshold using a p map for {row['id']}") p_threshold = 1 - z_to_p(self.z_threshold) nimg = nib.funcs.squeeze_image(nib.load(row.get("p"))) inv_nimg = nib.Nifti1Image(1 - nimg.get_fdata(), nimg.affine, nimg.header) clusters = get_clusters_table( inv_nimg, p_threshold, self.cluster_threshold, self.min_distance, ) # Peak stat p-values are reported as 1 - p in get_clusters_table clusters["Peak Stat"] = p_to_z(1 - clusters["Peak Stat"]) else: LGR.warning(f"No Z or p map for {row['id']}, skipping...") continue # skip entry if no clusters are found if clusters.empty: LGR.warning( f"No clusters were found for {row['id']} at a threshold of {self.z_threshold}" ) continue if self.remove_subpeaks: # subpeaks are identified as 1a, 1b, etc # while peaks are kept as 1, 2, 3, etc, # so removing all non-int rows will # keep main peaks while removing subpeaks clusters = clusters[clusters["Cluster ID"].apply(lambda x: isinstance(x, int))] coordinates_dict[row["study_id"]] = { "contrasts": { row["contrast_id"]: { "coords": { "space": coordinate_space, "x": list(clusters["X"]), "y": list(clusters["Y"]), "z": list(clusters["Z"]), "z_stat": list(clusters["Peak Stat"]), }, "metadata": {"coordinate_source": "nimare"}, } } } # only the generated coordinates ('demolish') coordinates_df = dict_to_coordinates(coordinates_dict, masker, space) meta_df = dict_to_df(
pd.DataFrame(dataset._ids)
pandas.DataFrame
import cv2 import os import mediapipe as mp import pandas as pd import argparse parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", help="data file name", type=str, required=True) parser.add_argument( "-p", "--path", help="directory to save the data", type=str, default='.') args = parser.parse_args() mp_drawing = mp.solutions.drawing_utils mp_hands = mp.solutions.hands landmarks = [x.name for x in mp_hands.HandLandmark] data = [] file_name = args.file path = args.path file_path = os.path.join(path, file_name + '.csv') cnt_mouse, cnt_left, cnt_right = 0, 0, 0 cnt_scrllup, cnt_scrlldown, cnt_zoom = 0, 0, 0 cap = cv2.VideoCapture(0) with mp_hands.Hands( max_num_hands=1, min_detection_confidence=0.5, min_tracking_confidence=0.5) as hands: while(True): ret, image = cap.read() image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB) image.flags.writeable = False results = hands.process(image) key = (cv2.waitKey(10) & 0xFF) image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if results.multi_hand_landmarks: for hand_landmarks, handedness in zip(results.multi_hand_landmarks, results.multi_handedness): if handedness.classification[0].score <= .9: continue new_data = {} for lm in landmarks: new_data[lm + '_x'] = hand_landmarks.landmark[mp_hands.HandLandmark[lm]].x new_data[lm + '_y'] = hand_landmarks.landmark[mp_hands.HandLandmark[lm]].y new_data[lm + '_z'] = hand_landmarks.landmark[mp_hands.HandLandmark[lm]].z new_data['hand'] = handedness.classification[0].label if (key == ord('a')): new_data['class'] = 'mouse' data.append(new_data) cnt_mouse += 1 elif key == ord('s'): new_data['class'] = 'left_click' data.append(new_data) cnt_left += 1 elif key == ord('d'): new_data['class'] = 'right_click' data.append(new_data) cnt_right += 1 elif key == ord('f'): new_data['class'] = 'scroll_up' data.append(new_data) cnt_scrllup += 1 elif key == ord('g'): new_data['class'] = 'scroll_down' data.append(new_data) cnt_scrlldown += 1 elif key == ord('h'): new_data['class'] = 'zoom' data.append(new_data) cnt_zoom += 1 mp_drawing.draw_landmarks( image, hand_landmarks, mp_hands.HAND_CONNECTIONS) cv2.imshow('frame', image) print(f'\rM: {cnt_mouse} - L: {cnt_left} - R: {cnt_right} - UP: {cnt_scrllup} - DOWN: {cnt_scrlldown} - ZOOM: {cnt_zoom} -- TOTAL = {len(data)}', end='', flush=True) if key == ord('q'): break if key == ord('w'): if data[-1]['class'] == 'mouse': cnt_mouse -= 1 elif data[-1]['class'] == 'left_click': cnt_left -= 1 elif data[-1]['class'] == 'right_click': cnt_right -= 1 elif data[-1]['class'] == 'scroll_up': cnt_scrllup -= 1 elif data[-1]['class'] == 'scroll_down': cnt_scrlldown -= 1 elif data[-1]['class'] == 'zoom': cnt_zoom -= 1 data.pop(-1) if key == ord('e'): pd.DataFrame(data).to_csv(file_path, index=False) print()
pd.DataFrame(data)
pandas.DataFrame
import glob import os import pandas as pd import pytz from dateutil import parser, tz from matplotlib import pyplot as plt fp = "C:\\Users\\Robert\\Documents\\Uni\\SOLARNET\\HomogenizationCampaign\\rome\\" file = os.path.join(fp, "data.csv") data = pd.read_csv(file, delimiter=" ") print(data) converted_data = [] for fits_file, ut in zip(data.file, data.UT): time = parser.parse(fits_file[-15:-7] +"T" + ut) time = pytz.utc.localize(time) type = fits_file[9:14] if type != "CaIIK": print(fits_file) converted_data.append([fits_file, time, type, 1]) converted_data =
pd.DataFrame(converted_data, columns=["file", "date", "type", "quality"])
pandas.DataFrame
import pydp as dp # type: ignore from pydp.algorithms.laplacian import BoundedSum, Count # type: ignore import math import statistics as s import pandas as pd # type: ignore from collections import defaultdict # Assumptions: # Time when visitors start entering the restaurant (900 represents 9:00 AM) OPENING_HOUR = 900 # Time when visitors finish entering the restaurant (2000 represents 20:00 PM) CLOSING_HOUR = 2000 # A python list of valid work hours when visitors can come to the restaurant. VALID_HOURS = list(range(OPENING_HOUR, CLOSING_HOUR + 1)) # Cap the maximum number of visiting days at 3 per each visitor (any number above will not be taken into account) COUNT_MAX_CONTRIBUTED_DAYS = 3 # Cap the maximum number of visiting days at 4 per each visitor (any number above will not be taken into account) SUM_MAX_CONTRIBUTED_DAYS = 4 # Expected minimum amount of money (in Euros) to be spent by a visitor per a single visit MIN_EUROS_SPENT = 0 # Expected maximum amount of money (in Euros) to be spent by a visitor per a single visit MAX_EUROS_SPENT_1 = 50 MAX_EUROS_SPENT_2 = 65 LN_3 = math.log(3) class RestaurantStatistics: """Class to replicate the restaurant example from Google's DP library. Includes both Count and Sum operations. Original code in java: - https://github.com/google/differential-privacy/tree/main/examples/java""" def __init__(self, hours_filename, days_filename, epsilon=LN_3): # Store the .csv filenames for daily and weekly restaurant data self.hours_filename = hours_filename self.days_filename = days_filename # The privacy threshold, a number between 0 and 1 self._epsilon = epsilon # The hourly and weekly data as pandas DataFrames self._hour_visits = pd.read_csv(self.hours_filename, sep=",") self._day_visits = pd.read_csv(self.days_filename, sep=",") def count_visits_per_hour(self) -> tuple: """Compute the number of visits per hour of day and return two dictionaries that map an hour to the number of visits in that hour. The first dictionary is the count calculation without any differential privacy, while the second one uses the PyDP library for a private calculation """ non_private_counts = self.get_non_private_counts_per_hour() private_counts = self.get_private_counts_per_hour() return non_private_counts, private_counts def count_visits_per_day(self) -> tuple: """Compute the number of visits per hour of day and return two dictionaries that map a day to the number of visits in that day. The first dictionary is the count calculation without any differential privacy, while the second one uses the PyDP library for a private calculation """ non_private_counts = self.get_non_private_counts_per_day() private_counts = self.get_private_counts_per_day() return non_private_counts, private_counts def sum_revenue_per_day(self) -> tuple: """Compute the restaurant's daily revenue for the whole week. The first dictionary is the count calculation without any differential privacy, while the second one uses the PyDP library for a private calculation """ non_private_sum = self.get_non_private_sum_revenue() private_sum = self.get_private_sum_revenue() return non_private_sum, private_sum def sum_revenue_per_day_with_preaggregation(self) -> tuple: """Calculates the restaurant's daily revenue for the whole week, while pre-agreggating each visitor's spending before calculating the BoundedSum with PyDP. The first dictionary is the count calculation without any differential privacy, while the second one uses the PyDP library for a private calculation """ non_private_sum = self.get_non_private_sum_revenue() private_sum = self.get_private_sum_revenue_with_preaggregation() return non_private_sum, private_sum def get_non_private_counts_per_hour(self) -> dict: """Compute the number of visits per hour without any differential privacy. Return a dictionary mapping hours to number of visits """ hours_count = dict() # Parse times so its easy to check whether they are valid visits = self._hour_visits.copy() visits["Time entered"] = (
pd.to_datetime(visits["Time entered"])
pandas.to_datetime
from mindsdb.libs.constants.mindsdb import * from mindsdb.config import * from mindsdb.libs.helpers.general_helpers import disable_console_output, get_tensorflow_colname from dateutil.parser import parse as parse_datetime import os, sys import shutil from tensorflow.python.client import device_lib from ludwig.api import LudwigModel from ludwig.data.preprocessing import build_metadata import pandas as pd from imageio import imread # @TODO: Define generci interface, similar to 'base_module' in the phases class LudwigBackend(): def __init__(self, transaction): self.transaction = transaction def _translate_df_to_timeseries_format(self, df, model_definition, timeseries_cols, mode='predict'): timeseries_col_name = timeseries_cols[0] previous_predict_col_names = [] predict_col_names = [] for feature_def in model_definition['output_features']: if mode == 'train': predict_col_names.append(feature_def['name']) else: predict_col_names = [] previous_predict_col_name = 'previous_' + feature_def['name'] previous_predict_col_already_in = False for definition in model_definition['input_features']: if definition['name'] == previous_predict_col_name: previous_predict_col_already_in = True if not previous_predict_col_already_in: model_definition['input_features'].append({ 'name': previous_predict_col_name ,'type': 'sequence' }) other_col_names = [] for feature_def in model_definition['input_features']: if feature_def['name'] not in self.transaction.lmd['model_group_by'] and feature_def['name'] not in previous_predict_col_names: feature_def['type'] = 'sequence' if feature_def['name'] not in [timeseries_col_name]: other_col_names.append(feature_def['name']) previous_predict_col_names.append(previous_predict_col_name) new_cols = {} for col in [*other_col_names,*previous_predict_col_names,timeseries_col_name,*predict_col_names,*self.transaction.lmd['model_group_by']]: new_cols[col] = [] nr_ele = len(df[timeseries_col_name]) i = 0 while i < nr_ele: new_row = {} timeseries_row = [df[timeseries_col_name][i]] for col in other_col_names: new_row[col] = [df[col][i]] for col in previous_predict_col_names: new_row[col] = [] for col in predict_col_names: new_row[col] = df[col][i] for col in self.transaction.lmd['model_group_by']: new_row[col] = df[col][i] inverted_index_range = list(range(i)) inverted_index_range.reverse() ii = 0 for ii in inverted_index_range: if (i - ii) > self.transaction.lmd['window_size']: break timeseries_row.append(df[timeseries_col_name][ii]) for col in other_col_names: new_row[col].append(df[col][ii]) for col in previous_predict_col_names: try: new_row[col].append(df[col.replace('previous_', '')][ii]) except: try: new_row[col].append(df[col][ii]) except: self.transaction.log.warning('Missing previous predicted values for output column: {}, these should be included in your input under the name: {}'.format(col.replace('previous_', ''), col)) if mode == 'train': i = max(i + 1, (i + round((i - ii)/2))) else: i = i + 1 new_row[timeseries_col_name] = timeseries_row for col in new_row: if col not in predict_col_names and col not in self.transaction.lmd['model_group_by']: new_row[col].reverse() new_cols[col].append(new_row[col]) new_df =
pd.DataFrame(data=new_cols)
pandas.DataFrame
import pickle from typing import Any, Dict, Iterable import numpy as np import pandas as pd from numpy.lib.function_base import iterable from pandas.api.types import CategoricalDtype from pandas.core.groupby import DataFrameGroupBy from scipy.sparse import hstack from sklearn.naive_bayes import MultinomialNB from sklearn.preprocessing import OneHotEncoder from spacy.language import Language from spacy.strings import StringStore from spacy.tokens import Doc, Span from .functional import _convert_series_to_array, _get_label class EndLinesModel: """Model to classify if an end line is a real one or it should be a space. Parameters ---------- nlp : Language spaCy nlp pipeline to use for matching. """ def __init__(self, nlp: Language): self.nlp = nlp def _preprocess_data(self, corpus: Iterable[Doc]) -> pd.DataFrame: """ Parameters ---------- corpus : Iterable[Doc] Corpus of documents Returns ------- pd.DataFrame Preprocessed data """ # Extract the vocabulary string_store = self.nlp.vocab.strings # Iterate in the corpus and construct a dataframe train_data_list = [] for i, doc in enumerate(corpus): train_data_list.append(self._get_attributes(doc, i)) df = pd.concat(train_data_list) df.reset_index(inplace=True, drop=False) df.rename(columns={"ORTH": "A1", "index": "original_token_index"}, inplace=True) # Retrieve string representation of token_id and shape df["TEXT"] = df.A1.apply(self._get_string, string_store=string_store) df["SHAPE_"] = df.SHAPE.apply(self._get_string, string_store=string_store) # Convert new lines as an attribute instead of a row df = self._convert_line_to_attribute(df, expr="\n", col="END_LINE") df = self._convert_line_to_attribute(df, expr="\n\n", col="BLANK_LINE") df = df.loc[~(df.END_LINE | df.BLANK_LINE)] df = df.drop(columns="END_LINE") df = df.drop(columns="BLANK_LINE") df.rename( columns={"TEMP_END_LINE": "END_LINE", "TEMP_BLANK_LINE": "BLANK_LINE"}, inplace=True, ) # Construct A2 by shifting df = self._shift_col(df, "A1", "A2", direction="backward") # Compute A3 and A4 df = self._compute_a3(df) df = self._shift_col(df, "A3", "A4", direction="backward") # SPACE is the class to predict. Set 1 if not an END_LINE df["SPACE"] = np.logical_not(df["END_LINE"]).astype("int") df[["END_LINE", "BLANK_LINE"]] = df[["END_LINE", "BLANK_LINE"]].fillna( True, inplace=False ) # Assign a sentence id to each token df = df.groupby("DOC_ID").apply(self._retrieve_lines) df["SENTENCE_ID"] = df["SENTENCE_ID"].astype("int") # Compute B1 and B2 df = self._compute_B(df) # Drop Tokens without info (last token of doc) df.dropna(subset=["A1", "A2", "A3", "A4"], inplace=True) # Export the vocabularies to be able to use the model with another corpus voc_a3a4 = self._create_vocabulary(df.A3_.cat.categories) voc_B2 = self._create_vocabulary(df.cv_bin.cat.categories) voc_B1 = self._create_vocabulary(df.l_norm_bin.cat.categories) vocabulary = {"A3A4": voc_a3a4, "B1": voc_B1, "B2": voc_B2} self.vocabulary = vocabulary return df def fit_and_predict(self, corpus: Iterable[Doc]) -> pd.DataFrame: """Fit the model and predict for the training data Parameters ---------- corpus : Iterable[Doc] An iterable of Documents Returns ------- pd.DataFrame one line by end_line prediction """ # Preprocess data to have a pd DF df = self._preprocess_data(corpus) # Train and predict M1 self._fit_M1(df.A1, df.A2, df.A3, df.A4, df.SPACE) outputs_M1 = self._predict_M1( df.A1, df.A2, df.A3, df.A4, ) df["M1"] = outputs_M1["predictions"] df["M1_proba"] = outputs_M1["predictions_proba"] # Force Blank lines to 0 df.loc[df.BLANK_LINE, "M1"] = 0 # Train and predict M2 df_endlines = df.loc[df.END_LINE] self._fit_M2(B1=df_endlines.B1, B2=df_endlines.B2, label=df_endlines.M1) outputs_M2 = self._predict_M2(B1=df_endlines.B1, B2=df_endlines.B2) df.loc[df.END_LINE, "M2"] = outputs_M2["predictions"] df.loc[df.END_LINE, "M2_proba"] = outputs_M2["predictions_proba"] df["M2"] = df["M2"].astype( pd.Int64Dtype() ) # cast to pd.Int64Dtype cause there are None values # M1M2 df = df.loc[df.END_LINE] df["M1M2_lr"] = (df["M2_proba"] / (1 - df["M2_proba"])) * ( df["M1_proba"] / (1 - df["M1_proba"]) ) df["M1M2"] = (df["M1M2_lr"] > 1).astype("int") # Force Blank lines to 0 df.loc[df.BLANK_LINE, ["M2", "M1M2"]] = 0 # Make binary col df["PREDICTED_END_LINE"] = np.logical_not(df["M1M2"].astype(bool)) return df def predict(self, df: pd.DataFrame) -> pd.DataFrame: """Use the model for inference The df should have the following columns: `["A1","A2","A3","A4","B1","B2","BLANK_LINE"]` Parameters ---------- df : pd.DataFrame The df should have the following columns: `["A1","A2","A3","A4","B1","B2","BLANK_LINE"]` Returns ------- pd.DataFrame The result is added to the column `PREDICTED_END_LINE` """ df = self._convert_raw_data_to_codes(df) outputs_M1 = self._predict_M1(df.A1, df.A2, df._A3, df._A4) df["M1"] = outputs_M1["predictions"] df["M1_proba"] = outputs_M1["predictions_proba"] outputs_M2 = self._predict_M2(B1=df._B1, B2=df._B2) df["M2"] = outputs_M2["predictions"] df["M2_proba"] = outputs_M2["predictions_proba"] df["M2"] = df["M2"].astype( pd.Int64Dtype() ) # cast to pd.Int64Dtype cause there are None values # M1M2 df["M1M2_lr"] = (df["M2_proba"] / (1 - df["M2_proba"])) * ( df["M1_proba"] / (1 - df["M1_proba"]) ) df["M1M2"] = (df["M1M2_lr"] > 1).astype("int") # Force Blank lines to 0 df.loc[ df.BLANK_LINE, [ "M1M2", ], ] = 0 # Make binary col df["PREDICTED_END_LINE"] = np.logical_not(df["M1M2"].astype(bool)) return df def save(self, path="base_model.pkl"): """Save a pickle of the model. It could be read by the pipeline later. Parameters ---------- path : str, optional path to file .pkl, by default `base_model.pkl` """ with open(path, "wb") as outp: del self.nlp pickle.dump(self, outp, pickle.HIGHEST_PROTOCOL) def _convert_A(self, df: pd.DataFrame, col: str) -> pd.DataFrame: """ Parameters ---------- df : pd.DataFrame col : str column to translate Returns ------- pd.DataFrame """ cat_type_A = CategoricalDtype( categories=self.vocabulary["A3A4"].keys(), ordered=True ) new_col = "_" + col df[new_col] = df[col].astype(cat_type_A) df[new_col] = df[new_col].cat.codes # Ensure that not known values are coded as OTHER df.loc[ ~df[col].isin(self.vocabulary["A3A4"].keys()), new_col ] = self.vocabulary["A3A4"]["OTHER"] return df def _convert_B(self, df: pd.DataFrame, col: str) -> pd.DataFrame: """ Parameters ---------- df : pd.DataFrame [description] col : str column to translate Returns ------- pd.DataFrame [description] """ # Translate B1 index_B = pd.IntervalIndex(list(self.vocabulary[col].keys())) new_col = "_" + col df[new_col] = pd.cut(df[col], index_B) df[new_col] = df[new_col].cat.codes df.loc[df[col] >= index_B.right.max(), new_col] = max( self.vocabulary[col].values() ) df.loc[df[col] <= index_B.left.min(), new_col] = min( self.vocabulary[col].values() ) return df def _convert_raw_data_to_codes(self, df: pd.DataFrame) -> pd.DataFrame: """ Function to translate data as extracted from spacy to the model codes. `A1` and `A2` are not translated cause are supposed to be already in good encoding. Parameters ---------- df : pd.DataFrame It should have columns `['A3','A4','B1','B2']` Returns ------- pd.DataFrame """ df = self._convert_A(df, "A3") df = self._convert_A(df, "A4") df = self._convert_B(df, "B1") df = self._convert_B(df, "B2") return df def _convert_line_to_attribute( self, df: pd.DataFrame, expr: str, col: str ) -> pd.DataFrame: """ Function to convert a line into an attribute (column) of the previous row. Particularly we use it to identify "\\n" and "\\n\\n" that are considered tokens, express this information as an attribute of the previous token. Parameters ---------- df : pd.DataFrame expr : str pattern to search in the text. Ex.: "\\n" col : str name of the new column Returns ------- pd.DataFrame """ idx = df.TEXT.str.contains(expr) df.loc[idx, col] = True df[col] = df[col].fillna(False) df = self._shift_col(df, col, "TEMP_" + col, direction="backward") return df def _compute_a3(self, df: pd.DataFrame) -> pd.DataFrame: """ A3 (A4 respectively): typographic form of left word (or right) : - All in capital letter - It starts with a capital letter - Starts by lowercase - It's a number - Strong punctuation - Soft punctuation - A number followed or preced by a punctuation (it's the case of enumerations) Parameters ---------- df: pd.DataFrame Returns ------- df: pd.DataFrame with the columns `A3` and `A3_` """ df = self._shift_col( df, "IS_PUNCT", "IS_PUNCT_+1", direction="backward", fill=False ) df = self._shift_col( df, "IS_PUNCT", "IS_PUNCT_-1", direction="forward", fill=False ) CONDITION1 = df.IS_UPPER CONDITION2 = df.SHAPE_.str.startswith("Xx", na=False) CONDITION3 = df.SHAPE_.str.startswith("x", na=False) CONDITION4 = df.IS_DIGIT STRONG_PUNCT = [".", ";", "..", "..."] CONDITION5 = (df.IS_PUNCT) & (df.TEXT.isin(STRONG_PUNCT)) CONDITION6 = (df.IS_PUNCT) & (~df.TEXT.isin(STRONG_PUNCT)) CONDITION7 = (df.IS_DIGIT) & (df["IS_PUNCT_+1"] | df["IS_PUNCT_-1"]) # discuss df["A3_"] = None df.loc[CONDITION1, "A3_"] = "UPPER" df.loc[CONDITION2, "A3_"] = "S_UPPER" df.loc[CONDITION3, "A3_"] = "LOWER" df.loc[CONDITION4, "A3_"] = "DIGIT" df.loc[CONDITION5, "A3_"] = "STRONG_PUNCT" df.loc[CONDITION6, "A3_"] = "SOFT_PUNCT" df.loc[CONDITION7, "A3_"] = "ENUMERATION" df = df.drop(columns=["IS_PUNCT_+1", "IS_PUNCT_-1"]) df["A3_"] = df["A3_"].astype("category") df["A3_"] = df["A3_"].cat.add_categories("OTHER") df["A3_"].fillna("OTHER", inplace=True) df["A3"] = df["A3_"].cat.codes return df def _fit_M1( self, A1: pd.Series, A2: pd.Series, A3: pd.Series, A4: pd.Series, label: pd.Series, ): """Function to train M1 classifier (Naive Bayes) Parameters ---------- A1 : pd.Series [description] A2 : pd.Series [description] A3 : pd.Series [description] A4 : pd.Series [description] label : pd.Series [description] """ # Encode classes to OneHotEncoder representation encoder_A1_A2 = self._fit_encoder_2S(A1, A2) self.encoder_A1_A2 = encoder_A1_A2 encoder_A3_A4 = self._fit_encoder_2S(A3, A4) self.encoder_A3_A4 = encoder_A3_A4 # M1 m1 = MultinomialNB(alpha=1) X = self._get_X_for_M1(A1, A2, A3, A4) m1.fit(X, label) self.m1 = m1 def _fit_M2(self, B1: pd.Series, B2: pd.Series, label: pd.Series): """Function to train M2 classifier (Naive Bayes) Parameters ---------- B1 : pd.Series B2 : pd.Series label : pd.Series """ # Encode classes to OneHotEncoder representation encoder_B1 = self._fit_encoder_1S(B1) self.encoder_B1 = encoder_B1 encoder_B2 = self._fit_encoder_1S(B2) self.encoder_B2 = encoder_B2 # Multinomial Naive Bayes m2 = MultinomialNB(alpha=1) X = self._get_X_for_M2(B1, B2) m2.fit(X, label) self.m2 = m2 def _get_X_for_M1( self, A1: pd.Series, A2: pd.Series, A3: pd.Series, A4: pd.Series ) -> np.ndarray: """Get X matrix for classifier Parameters ---------- A1 : pd.Series A2 : pd.Series A3 : pd.Series A4 : pd.Series Returns ------- np.ndarray """ A1_enc = self._encode_series(self.encoder_A1_A2, A1) A2_enc = self._encode_series(self.encoder_A1_A2, A2) A3_enc = self._encode_series(self.encoder_A3_A4, A3) A4_enc = self._encode_series(self.encoder_A3_A4, A4) X = hstack([A1_enc, A2_enc, A3_enc, A4_enc]) return X def _get_X_for_M2(self, B1: pd.Series, B2: pd.Series) -> np.ndarray: """Get X matrix for classifier Parameters ---------- B1 : pd.Series B2 : pd.Series Returns ------- np.ndarray """ B1_enc = self._encode_series(self.encoder_B1, B1) B2_enc = self._encode_series(self.encoder_B2, B2) X = hstack([B1_enc, B2_enc]) return X def _predict_M1( self, A1: pd.Series, A2: pd.Series, A3: pd.Series, A4: pd.Series ) -> Dict[str, Any]: """Use M1 for prediction Parameters ---------- A1 : pd.Series A2 : pd.Series A3 : pd.Series A4 : pd.Series Returns ------- Dict[str, Any] """ X = self._get_X_for_M1(A1, A2, A3, A4) predictions = self.m1.predict(X) predictions_proba = self.m1.predict_proba(X)[:, 1] outputs = {"predictions": predictions, "predictions_proba": predictions_proba} return outputs def _predict_M2(self, B1: pd.Series, B2: pd.Series) -> Dict[str, Any]: """Use M2 for prediction Parameters ---------- B1 : pd.Series B2 : pd.Series Returns ------- Dict[str, Any] """ X = self._get_X_for_M2(B1, B2) predictions = self.m2.predict(X) predictions_proba = self.m2.predict_proba(X)[:, 1] outputs = {"predictions": predictions, "predictions_proba": predictions_proba} return outputs def _fit_encoder_2S(self, S1: pd.Series, S2: pd.Series) -> OneHotEncoder: """Fit a one hot encoder with 2 Series. It concatenates the series and after it fits. Parameters ---------- S1 : pd.Series S2 : pd.Series Returns ------- OneHotEncoder """ _S1 = _convert_series_to_array(S1) _S2 = _convert_series_to_array(S2) S = np.concatenate([_S1, _S2]) encoder = self._fit_one_hot_encoder(S) return encoder def _fit_encoder_1S(self, S1: pd.Series) -> OneHotEncoder: """Fit a one hot encoder with 1 Series. Parameters ---------- S1 : pd.Series Returns ------- OneHotEncoder """ _S1 = _convert_series_to_array(S1) encoder = self._fit_one_hot_encoder(_S1) return encoder def _encode_series(self, encoder: OneHotEncoder, S: pd.Series) -> np.ndarray: """Use the one hot encoder to transform a series. Parameters ---------- encoder : OneHotEncoder S : pd.Series a series to encode (transform) Returns ------- np.ndarray """ _S = _convert_series_to_array(S) S_enc = encoder.transform(_S) return S_enc def set_spans(self, corpus: Iterable[Doc], df: pd.DataFrame): """ Function to set the results of the algorithm (pd.DataFrame) as spans of the spaCy document. Parameters ---------- corpus : Iterable[Doc] Iterable of spaCy Documents df : pd.DataFrame It should have the columns: ["DOC_ID","original_token_index","PREDICTED_END_LINE"] """ for doc_id, doc in enumerate(corpus): spans = [] for token_i, pred in df.loc[ df.DOC_ID == doc_id, ["original_token_index", "PREDICTED_END_LINE"] ].values: s = Span(doc, start=token_i, end=token_i + 1, label=_get_label(pred)) spans.append(s) doc.spans["new_lines"] = spans @staticmethod def _retrieve_lines(dfg: DataFrameGroupBy) -> DataFrameGroupBy: """Function to give a sentence_id to each token. Parameters ---------- dfg : DataFrameGroupBy Returns ------- DataFrameGroupBy Same DataFrameGroupBy with the column `SENTENCE_ID` """ sentences_ids = np.arange(dfg.END_LINE.sum()) dfg.loc[dfg.END_LINE, "SENTENCE_ID"] = sentences_ids dfg["SENTENCE_ID"] = dfg["SENTENCE_ID"].fillna(method="bfill") return dfg @staticmethod def _create_vocabulary(x: iterable) -> dict: """Function to create a vocabulary for attributes in the training set. Parameters ---------- x : iterable Returns ------- dict """ v = {} for i, key in enumerate(x): v[key] = i return v @staticmethod def _compute_B(df: pd.DataFrame) -> pd.DataFrame: """Function to compute B1 and B2 Parameters ---------- df : pd.DataFrame Returns ------- pd.DataFrame """ data = df.groupby(["DOC_ID", "SENTENCE_ID"]).agg(l=("LENGTH", "sum")) df_t = df.loc[df.END_LINE, ["DOC_ID", "SENTENCE_ID"]].merge( data, left_on=["DOC_ID", "SENTENCE_ID"], right_index=True, how="left" ) stats_doc = df_t.groupby("DOC_ID").agg(mu=("l", "mean"), sigma=("l", "std")) stats_doc["sigma"].replace( 0.0, 1.0, inplace=True ) # Replace the 0 std by unit std, otherwise it breaks the code. stats_doc["cv"] = stats_doc["sigma"] / stats_doc["mu"] df_t = df_t.drop(columns=["DOC_ID", "SENTENCE_ID"]) df2 = df.merge(df_t, left_index=True, right_index=True, how="left") df2 = df2.merge(stats_doc, on=["DOC_ID"], how="left") df2["l_norm"] = (df2["l"] - df2["mu"]) / df2["sigma"] df2["cv_bin"] = pd.cut(df2["cv"], bins=10) df2["B2"] = df2["cv_bin"].cat.codes df2["l_norm_bin"] =
pd.cut(df2["l_norm"], bins=10)
pandas.cut
""" SMALL HELPER FUNCTIONS """ import os from time import time from scipy import stats import numpy as np import pandas as pd from colorspace.colorlib import HCL from sklearn.metrics import roc_auc_score from sklearn.metrics import average_precision_score import warnings import itertools from sklearn.metrics import roc_auc_score as auc # y, score, groups = df_woy.query('has_woy==False').ili.values, df_woy.query('has_woy==False').ili_score.values, df_woy.query('has_woy==False').woy.values # Function to decompose the within/between/aggregate AUC def auc_decomp(y, score, groups): assert y.shape[0] == score.shape[0] == groups.shape[0] idx1, idx0 = np.where(y == 1)[0], np.where(y == 0)[0] # Calculate number of pairs npairs_agg = len(idx1) * len(idx0) auc_agg = auc(y, score) ugroups = np.unique(groups) # --- Calculate within AUC --- # df =
pd.DataFrame({'y':y,'score':score,'groups':groups})
pandas.DataFrame
import pandas as pd import numpy as np import datetime from itertools import repeat from astropy.time import Time, TimeDelta from typing import Union, Tuple, Sequence, List def convert_day_of_year(date: Union[float, str]) -> Time: """Convert day of the year (defined as yyyy.ddd where ddd is the day number of that year) to an astropy Time object. Some important dates for the COS team were recorded in this format. """ return Time(datetime.datetime.strptime(str(date), '%Y.%j'), format='datetime') def fit_line(x: Sequence, y: Sequence) -> Tuple[np.poly1d, np.ndarray]: """Given arrays x and y, fit a line.""" fit = np.poly1d(np.polyfit(x, y, 1)) return fit, fit(x) def explode_df(df: pd.DataFrame, list_keywords: list) -> pd.DataFrame: """If a dataframe contains arrays for the element of a column or columns given by list_keywords, expand the dataframe to one row per array element. Each row in list_keywords must be the same length. """ idx = df.index.repeat(df[list_keywords[0]].str.len()) # Repeat values based on the number of elements in the arrays unpacked = pd.concat([pd.DataFrame({x: np.concatenate(df[x].values)}) for x in list_keywords], axis=1) unpacked.index = idx # assigns repeated index to the unpacked dataframe, unpacked. # Join unpacked df to the original df and drop the old columns exploded = unpacked.join(df.drop(list_keywords, 1), how='left').reset_index(drop=True) if exploded.isna().values.any(): # If there are NaNs, then it didn't make sense to "explode" the input df raise ValueError('Elements in columns to be exploded are not the same length across rows.') return exploded def absolute_time(df: pd.DataFrame = None, expstart: Sequence = None, time: Sequence = None, time_key: str = None, time_format: str = 'sec') -> TimeDelta: """Compute the time sequence relative to the start of the exposure (EXPSTART). Can be computed from a DataFrame that contains an EXPSTART column and some other time array column, or from an EXPSTART array and time array pair. """ # If no input is given raise an error if df is None and expstart is None and time is None: raise TypeError('Computing and absolute time requires either a dataframe or set of arrays') # Check that expstart and time_array are used together if bool(expstart is not None or time is not None) and not (expstart is not None and time is not None): raise TypeError('expstart and time must be used together.') # Ingest given dataframe if one is given and check that it's not used with arrays at the same time if df is not None: if bool(expstart is not None or time is not None): raise ValueError('Cannot use a dataframe and arrays as input at the same time. Use one or the other.') expstart = df.EXPSTART time = df.TIME if not time_key else df[time_key] zero_points = Time(expstart, format='mjd') time_delta = TimeDelta(time, format=time_format) return zero_points + time_delta def create_visibility(trace_lengths: List[int], visible_list: List[bool]) -> List[bool]: """Create visibility lists for plotly buttons. trace_lengths and visible_list must be in the correct order. :param trace_lengths: List of the number of traces in each "button set". :param visible_list: Visibility setting for each button set (either True or False). """ visibility = [] # Total visibility. Length should match the total number of traces in the figure. for visible, trace_length in zip(visible_list, trace_lengths): visibility += list(repeat(visible, trace_length)) # Set each trace per button. return visibility def v2v3(slew_x: Sequence, slew_y: Sequence) -> Tuple[Union[np.ndarray, pd.Series], Union[np.ndarray, pd.Series]]: """Detector coordinates to V2/V3 coordinates.""" # If input are lists, convert to np arrays so that the operations are completed as expected if isinstance(slew_x, list): slew_x = np.array(slew_x) if isinstance(slew_y, list): slew_y = np.array(slew_y) rotation_angle = np.radians(45.0) # rotation angle in degrees converted to radians x_conversion = slew_x * np.cos(rotation_angle) y_conversion = slew_y * np.sin(rotation_angle) v2 = x_conversion + y_conversion v3 = x_conversion - y_conversion return v2, v3 def get_osm_data(datamodel, detector: str) -> pd.DataFrame: """Query for OSM data and append any relevant new data to it.""" data =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt bandera_paso = False iter = 0 lsupAnterior = -5 linfAnterior = -5 licentAnterior = -5 datos =
pd.read_csv('data.csv', header=None)
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series import pandas._testing as tm class TestSeriesCombine: def test_combine_scalar(self): # GH 21248 # Note - combine() with another Series is tested elsewhere because # it is used when testing operators s = pd.Series([i * 10 for i in range(5)]) result = s.combine(3, lambda x, y: x + y) expected = pd.Series([i * 10 + 3 for i in range(5)]) tm.assert_series_equal(result, expected) result = s.combine(22, lambda x, y: min(x, y)) expected = pd.Series([min(i * 10, 22) for i in range(5)]) tm.assert_series_equal(result, expected) def test_update(self): s = Series([1.5, np.nan, 3.0, 4.0, np.nan]) s2 = Series([np.nan, 3.5, np.nan, 5.0]) s.update(s2) expected = Series([1.5, 3.5, 3.0, 5.0, np.nan]) tm.assert_series_equal(s, expected) # GH 3217 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df["c"] = np.nan df["c"].update(Series(["foo"], index=[0])) expected = DataFrame( [[1, np.nan, "foo"], [3, 2.0, np.nan]], columns=["a", "b", "c"] ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "other, dtype, expected", [ # other is int ([61, 63], "int32", pd.Series([10, 61, 12], dtype="int32")), ([61, 63], "int64", pd.Series([10, 61, 12])), ([61, 63], float, pd.Series([10.0, 61.0, 12.0])), ([61, 63], object, pd.Series([10, 61, 12], dtype=object)), # other is float, but can be cast to int ([61.0, 63.0], "int32", pd.Series([10, 61, 12], dtype="int32")), ([61.0, 63.0], "int64", pd.Series([10, 61, 12])), ([61.0, 63.0], float, pd.Series([10.0, 61.0, 12.0])), ([61.0, 63.0], object, pd.Series([10, 61.0, 12], dtype=object)), # others is float, cannot be cast to int ([61.1, 63.1], "int32", pd.Series([10.0, 61.1, 12.0])), ([61.1, 63.1], "int64", pd.Series([10.0, 61.1, 12.0])), ([61.1, 63.1], float, pd.Series([10.0, 61.1, 12.0])), ([61.1, 63.1], object, pd.Series([10, 61.1, 12], dtype=object)), # other is object, cannot be cast ([(61,), (63,)], "int32", pd.Series([10, (61,), 12])), ([(61,), (63,)], "int64", pd.Series([10, (61,), 12])), ([(61,), (63,)], float, pd.Series([10.0, (61,), 12.0])), ([(61,), (63,)], object, pd.Series([10, (61,), 12])), ], ) def test_update_dtypes(self, other, dtype, expected): s = Series([10, 11, 12], dtype=dtype) other = Series(other, index=[1, 3]) s.update(other) tm.assert_series_equal(s, expected) def test_concat_empty_series_dtypes_roundtrips(self): # round-tripping with self & like self dtypes = map(np.dtype, ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"]) for dtype in dtypes: assert pd.concat([Series(dtype=dtype)]).dtype == dtype assert pd.concat([Series(dtype=dtype), Series(dtype=dtype)]).dtype == dtype def int_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"i", "u", "b"}) and ( dtype.kind == "i" or dtype2.kind == "i" ): return "i" elif not len(typs - {"u", "b"}) and ( dtype.kind == "u" or dtype2.kind == "u" ): return "u" return None def float_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"f", "i", "u"}) and ( dtype.kind == "f" or dtype2.kind == "f" ): return "f" return None def get_result_type(dtype, dtype2): result = float_result_type(dtype, dtype2) if result is not None: return result result = int_result_type(dtype, dtype2) if result is not None: return result return "O" for dtype in dtypes: for dtype2 in dtypes: if dtype == dtype2: continue expected = get_result_type(dtype, dtype2) result = pd.concat([Series(dtype=dtype),
Series(dtype=dtype2)
pandas.Series
from typing import Tuple, List import matplotlib.pyplot as plt import numpy as np import pandas as pd from LSSTM.LS_STM import LSSTM from hottbox.core import Tensor from pandas._libs.tslibs import timestamps from LSSTM.aiding_functions import load_obj from LSSTM.data_makers import create_stm_slice # Load Data # This dict has two Keys, "Volume" and "Price" # "Volume" contains a pd.DataFrame with a DatetimeIndex and the Cols: VIX Price Gold Price SPX Close Label # "Price" contains a pd.DataFrame with a DatetimeIndex and the Cols: VIX Volume Gold Volume SPX Volume Label data_stm = load_obj("data_stm") num_rows = len(data_stm["Price"]) tensor_shape = [2, 3, 2] slice_width = 250 num_slices = num_rows - slice_width - tensor_shape[0] + 1 # TODO: why? y_pred = np.zeros(num_slices - 1) # I guess this is because there is no prediction for the last row stm = LSSTM(C=10, max_iter=100) success = 0 pred_dates_idcs = [] # iteratively calculate slices for i in range(num_slices - 1): # called num_slices times with i as the i_th iteration # print progress print("\r{0}".format((float(i) / (num_slices - 1)) * 100)) # prepare data ## TODO adapt to my data stm_slice: Tuple[List[Tensor], np.array, Tensor, np.float64, timestamps.Timestamp] = create_stm_slice( d=data_stm, start_index=i, slice_width=slice_width, tensor_shape=tensor_shape ) xs_train, y_train, xs_test, y_test, associated_index = stm_slice # fit a model stm.fit(xs_train, y_train) y_tmp, _ = stm.predict(xs_test) y_pred[i] = y_tmp[0] # pred_dates_idcs.append(associated_index) if y_test == y_pred[i]: success += 1 ############# # EVALUATION ############# # read from file raw_data = pd.read_csv("./finance_data/raw_data.csv") # Date, SPX Close, SPX Volume, VIX Price, VIX Volume, Gold Price, Gold Volume # create DatetimeIndex raw_data["Date"] =
pd.to_datetime(raw_data["Date"], format="%Y-%m-%d")
pandas.to_datetime
import os import numpy as np import pandas as pd from itertools import chain, combinations pd.set_option('display.max_rows', 1000) bright_dark_csv = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'all_seven_note_modes_sorted_dark_to_bright.csv') bd =
pd.read_csv(bright_dark_csv)
pandas.read_csv
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 = pd.Series([], dtype="float", name="dbt_bird_hc95") self.dbt_bird_sub_direct = pd.Series([], dtype="float", name="dbt_bird_sub_direct") self.dbt_bird_sub_indirect = pd.Series([], dtype="float", name="dbt_bird_sub_indirect") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.dbt_bird_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort_wgt") self.dbt_bird_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inten_mort_wgt") self.dbt_bird_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_bird_low_ld50_wgt") self.dbt_bird_hc05_wgt = pd.Series([], dtype="float", name="dbt_bird_hc05_wgt") self.dbt_bird_hc50_wgt = pd.Series([], dtype="float", name="dbt_bird_hc50_wgt") self.dbt_bird_hc95_wgt = pd.Series([], dtype="float", name="dbt_bird_hc95_wgt") self.dbt_bird_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_direct_wgt") self.dbt_bird_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_indirect_wgt") self.mineau_sca_fact_wgt = pd.Series([], dtype="float", name="mineau_sca_fact_wgt") # dose based toxicity(dbt): reptiles, terrestrial-phase amphibians (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort") self.dbt_reptile_1inten_mort = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort") self.dbt_reptile_low_ld50 = pd.Series([], dtype="float", name="dbt_reptile_low_ld50") self.dbt_reptile_sub_direct = pd.Series([], dtype="float", name="dbt_reptile_sub_direct") self.dbt_reptile_sub_indirect = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect") self.dbt_reptile_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort_wgt") self.dbt_reptile_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort_wgt") self.dbt_reptile_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_reptile_low_ld50_wgt") self.dbt_reptile_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_direct_wgt") self.dbt_reptile_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect_wgt") # concentration-based toxicity (cbt) : mammals (mg-pest/kg-diet food) self.cbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="cbt_mamm_1inmill_mort") self.cbt_mamm_1inten_mort = pd.Series([], dtype="float", name="cbt_mamm_1inten_mort") self.cbt_mamm_low_lc50 = pd.Series([], dtype="float", name="cbt_mamm_low_lc50") self.cbt_mamm_sub_direct = pd.Series([], dtype="float", name="cbt_mamm_sub_direct") self.cbt_mamm_grow_noec = pd.Series([], dtype="float", name="cbt_mamm_grow_noec") self.cbt_mamm_grow_loec = pd.Series([], dtype="float", name="cbt_mamm_grow_loec") self.cbt_mamm_repro_noec = pd.Series([], dtype="float", name="cbt_mamm_repro_noec") self.cbt_mamm_repro_loec = pd.Series([], dtype="float", name="cbt_mamm_repro_loec") self.cbt_mamm_behav_noec = pd.Series([], dtype="float", name="cbt_mamm_behav_noec") self.cbt_mamm_behav_loec = pd.Series([], dtype="float", name="cbt_mamm_behav_loec") self.cbt_mamm_sensory_noec = pd.Series([], dtype="float", name="cbt_mamm_sensory_noec") self.cbt_mamm_sensory_loec = pd.Series([], dtype="float", name="cbt_mamm_sensory_loec") self.cbt_mamm_sub_indirect = pd.Series([], dtype="float", name="cbt_mamm_sub_indirect") # concentration-based toxicity (cbt) : birds (mg-pest/kg-diet food) self.cbt_bird_1inmill_mort = pd.Series([], dtype="float", name="cbt_bird_1inmill_mort") self.cbt_bird_1inten_mort = pd.Series([], dtype="float", name="cbt_bird_1inten_mort") self.cbt_bird_low_lc50 = pd.Series([], dtype="float", name="cbt_bird_low_lc50") self.cbt_bird_sub_direct = pd.Series([], dtype="float", name="cbt_bird_sub_direct") self.cbt_bird_grow_noec = pd.Series([], dtype="float", name="cbt_bird_grow_noec") self.cbt_bird_grow_loec = pd.Series([], dtype="float", name="cbt_bird_grow_loec") self.cbt_bird_repro_noec = pd.Series([], dtype="float", name="cbt_bird_repro_noec") self.cbt_bird_repro_loec = pd.Series([], dtype="float", name="cbt_bird_repro_loec") self.cbt_bird_behav_noec = pd.Series([], dtype="float", name="cbt_bird_behav_noec") self.cbt_bird_behav_loec = pd.Series([], dtype="float", name="cbt_bird_behav_loec") self.cbt_bird_sensory_noec = pd.Series([], dtype="float", name="cbt_bird_sensory_noec") self.cbt_bird_sensory_loec = pd.Series([], dtype="float", name="cbt_bird_sensory_loec") self.cbt_bird_sub_indirect = pd.Series([], dtype="float", name="cbt_bird_sub_indirect") # concentration-based toxicity (cbt) : reptiles, terrestrial-phase amphibians (mg-pest/kg-diet food) self.cbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="cbt_reptile_1inmill_mort") self.cbt_reptile_1inten_mort = pd.Series([], dtype="float", name="cbt_reptile_1inten_mort") self.cbt_reptile_low_lc50 = pd.Series([], dtype="float", name="cbt_reptile_low_lc50") self.cbt_reptile_sub_direct = pd.Series([], dtype="float", name="cbt_reptile_sub_direct") self.cbt_reptile_grow_noec = pd.Series([], dtype="float", name="cbt_reptile_grow_noec") self.cbt_reptile_grow_loec = pd.Series([], dtype="float", name="cbt_reptile_grow_loec") self.cbt_reptile_repro_noec = pd.Series([], dtype="float", name="cbt_reptile_repro_noec") self.cbt_reptile_repro_loec = pd.Series([], dtype="float", name="cbt_reptile_repro_loec") self.cbt_reptile_behav_noec = pd.Series([], dtype="float", name="cbt_reptile_behav_noec") self.cbt_reptile_behav_loec = pd.Series([], dtype="float", name="cbt_reptile_behav_loec") self.cbt_reptile_sensory_noec = pd.Series([], dtype="float", name="cbt_reptile_sensory_noec") self.cbt_reptile_sensory_loec = pd.Series([], dtype="float", name="cbt_reptile_sensory_loec") self.cbt_reptile_sub_indirect = pd.Series([], dtype="float", name="cbt_reptile_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body weight (mg-pest/kg-bw(ww)) self.cbt_inv_bw_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inmill_mort") self.cbt_inv_bw_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inten_mort") self.cbt_inv_bw_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_bw_low_lc50") self.cbt_inv_bw_sub_direct = pd.Series([], dtype="float", name="cbt_inv_bw_sub_direct") self.cbt_inv_bw_grow_noec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_noec") self.cbt_inv_bw_grow_loec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_loec") self.cbt_inv_bw_repro_noec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_noec") self.cbt_inv_bw_repro_loec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_loec") self.cbt_inv_bw_behav_noec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_noec") self.cbt_inv_bw_behav_loec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_loec") self.cbt_inv_bw_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_bw_sensory_noec") self.cbt_inv_bw_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_bw_sensory_loec") self.cbt_inv_bw_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_bw_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body diet (mg-pest/kg-food(ww)) self.cbt_inv_food_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_food_1inmill_mort") self.cbt_inv_food_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_food_1inten_mort") self.cbt_inv_food_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_food_low_lc50") self.cbt_inv_food_sub_direct = pd.Series([], dtype="float", name="cbt_inv_food_sub_direct") self.cbt_inv_food_grow_noec = pd.Series([], dtype="float", name="cbt_inv_food_grow_noec") self.cbt_inv_food_grow_loec = pd.Series([], dtype="float", name="cbt_inv_food_grow_loec") self.cbt_inv_food_repro_noec = pd.Series([], dtype="float", name="cbt_inv_food_repro_noec") self.cbt_inv_food_repro_loec = pd.Series([], dtype="float", name="cbt_inv_food_repro_loec") self.cbt_inv_food_behav_noec = pd.Series([], dtype="float", name="cbt_inv_food_behav_noec") self.cbt_inv_food_behav_loec = pd.Series([], dtype="float", name="cbt_inv_food_behav_loec") self.cbt_inv_food_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_food_sensory_noec") self.cbt_inv_food_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_food_sensory_loec") self.cbt_inv_food_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_food_sub_indirect") # concentration-based toxicity (cbt) : invertebrates soil (mg-pest/kg-soil(dw)) self.cbt_inv_soil_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_soil_1inmill_mort") self.cbt_inv_soil_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_soil_1inten_mort") self.cbt_inv_soil_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_soil_low_lc50") self.cbt_inv_soil_sub_direct = pd.Series([], dtype="float", name="cbt_inv_soil_sub_direct") self.cbt_inv_soil_grow_noec = pd.Series([], dtype="float", name="cbt_inv_soil_grow_noec") self.cbt_inv_soil_grow_loec = pd.Series([], dtype="float", name="cbt_inv_soil_grow_loec") self.cbt_inv_soil_repro_noec =
pd.Series([], dtype="float", name="cbt_inv_soil_repro_noec")
pandas.Series
import numpy as np import pandas as pd from surprise import Reader, Dataset, SVD class CollabRecSys: def __init__(self, data): self.df =
pd.read_csv(data)
pandas.read_csv
""" Use the ``MNLDiscreteChoiceModel`` class to train a choice module using multinomial logit and make subsequent choice predictions. """ from __future__ import print_function, division import abc import logging import numpy as np import pandas as pd from patsy import dmatrix from prettytable import PrettyTable from zbox import toolz as tz from . import util from ..exceptions import ModelEvaluationError from ..urbanchoice import interaction, mnl from ..utils import yamlio from ..utils.logutil import log_start_finish from urbansim_defaults.randomfile import fixedrandomseed,seednum logger = logging.getLogger(__name__) def unit_choice(chooser_ids, alternative_ids, probabilities): """ Have a set of choosers choose from among alternatives according to a probability distribution. Choice is binary: each alternative can only be chosen once. Parameters ---------- chooser_ids : 1d array_like Array of IDs of the agents that are making choices. alternative_ids : 1d array_like Array of IDs of alternatives among which agents are making choices. probabilities : 1d array_like The probability that an agent will choose an alternative. Must be the same shape as `alternative_ids`. Unavailable alternatives should have a probability of 0. Returns ------- choices : pandas.Series Mapping of chooser ID to alternative ID. Some choosers will map to a nan value when there are not enough alternatives for all the choosers. """ chooser_ids = np.asanyarray(chooser_ids) alternative_ids = np.asanyarray(alternative_ids) probabilities = np.asanyarray(probabilities) logger.debug( 'start: unit choice with {} choosers and {} alternatives'.format( len(chooser_ids), len(alternative_ids))) choices = pd.Series(index=chooser_ids) if probabilities.sum() == 0: # return all nan if there are no available units return choices # probabilities need to sum to 1 for np.random.choice probabilities = probabilities / probabilities.sum() # need to see if there are as many available alternatives as choosers n_available = np.count_nonzero(probabilities) n_choosers = len(chooser_ids) n_to_choose = n_choosers if n_choosers < n_available else n_available if fixedrandomseed==0: np.random.seed(seednum) chosen = np.random.choice( alternative_ids, size=n_to_choose, replace=False, p=probabilities) # if there are fewer available units than choosers we need to pick # which choosers get a unit if n_to_choose == n_available: if fixedrandomseed==0: np.random.seed(seednum) chooser_ids = np.random.choice( chooser_ids, size=n_to_choose, replace=False) choices[chooser_ids] = chosen logger.debug('finish: unit choice') return choices # define the minimum interface a class must have in order to # look like we expect DCMs to look class DiscreteChoiceModel(object): """ Abstract base class for discrete choice models. """ __metaclass__ = abc.ABCMeta @staticmethod def _check_prob_choice_mode_compat(probability_mode, choice_mode): """ Check that the probability and choice modes are compatibly with each other. Currently 'single_chooser' must be paired with 'aggregate' and 'full_product' must be paired with 'individual'. """ if (probability_mode == 'full_product' and choice_mode == 'aggregate'): raise ValueError( "'full_product' probability mode is not compatible with " "'aggregate' choice mode") if (probability_mode == 'single_chooser' and choice_mode == 'individual'): raise ValueError( "'single_chooser' probability mode is not compatible with " "'individual' choice mode") @staticmethod def _check_prob_mode_interaction_compat( probability_mode, interaction_predict_filters): """ The 'full_product' probability mode is currently incompatible with post-interaction prediction filters, so make sure we don't have both of those. """ if (interaction_predict_filters is not None and probability_mode == 'full_product'): raise ValueError( "interaction filters may not be used in " "'full_product' mode") @abc.abstractmethod def apply_fit_filters(self, choosers, alternatives): choosers = util.apply_filter_query(choosers, self.choosers_fit_filters) alternatives = util.apply_filter_query( alternatives, self.alts_fit_filters) return choosers, alternatives @abc.abstractmethod def apply_predict_filters(self, choosers, alternatives): choosers = util.apply_filter_query( choosers, self.choosers_predict_filters) alternatives = util.apply_filter_query( alternatives, self.alts_predict_filters) return choosers, alternatives @abc.abstractproperty def fitted(self): pass @abc.abstractmethod def probabilities(self): pass @abc.abstractmethod def summed_probabilities(self): pass @abc.abstractmethod def fit(self): pass @abc.abstractmethod def predict(self): pass @abc.abstractmethod def choosers_columns_used(self): pass @abc.abstractmethod def alts_columns_used(self): pass @abc.abstractmethod def interaction_columns_used(self): pass @abc.abstractmethod def columns_used(self): pass class MNLDiscreteChoiceModel(DiscreteChoiceModel): """ A discrete choice model with the ability to store an estimated model and predict new data based on the model. Based on multinomial logit. Parameters ---------- model_expression : str, iterable, or dict A patsy model expression. Should contain only a right-hand side. sample_size : int Number of choices to sample for estimating the model. probability_mode : str, optional Specify the method to use for calculating probabilities during prediction. Available string options are 'single_chooser' and 'full_product'. In "single chooser" mode one agent is chosen for calculating probabilities across all alternatives. In "full product" mode probabilities are calculated for every chooser across all alternatives. Currently "single chooser" mode must be used with a `choice_mode` of 'aggregate' and "full product" mode must be used with a `choice_mode` of 'individual'. choice_mode : str, optional Specify the method to use for making choices among alternatives. Available string options are 'individual' and 'aggregate'. In "individual" mode choices will be made separately for each chooser. In "aggregate" mode choices are made for all choosers at once. Aggregate mode implies that an alternative chosen by one agent is unavailable to other agents and that the same probabilities can be used for all choosers. Currently "individual" mode must be used with a `probability_mode` of 'full_product' and "aggregate" mode must be used with a `probability_mode` of 'single_chooser'. choosers_fit_filters : list of str, optional Filters applied to choosers table before fitting the model. choosers_predict_filters : list of str, optional Filters applied to the choosers table before calculating new data points. alts_fit_filters : list of str, optional Filters applied to the alternatives table before fitting the model. alts_predict_filters : list of str, optional Filters applied to the alternatives table before calculating new data points. interaction_predict_filters : list of str, optional Filters applied to the merged choosers/alternatives table before predicting agent choices. estimation_sample_size : int, optional Whether to sample choosers during estimation (needs to be applied after choosers_fit_filters). prediction_sample_size : int, optional Whether (and how much) to sample alternatives during prediction. Note that this can lead to multiple choosers picking the same alternative. choice_column : optional Name of the column in the `alternatives` table that choosers should choose. e.g. the 'building_id' column. If not provided the alternatives index is used. name : optional Optional descriptive name for this model that may be used in output. """ def __init__( self, model_expression, sample_size, probability_mode='full_product', choice_mode='individual', choosers_fit_filters=None, choosers_predict_filters=None, alts_fit_filters=None, alts_predict_filters=None, interaction_predict_filters=None, estimation_sample_size=None, prediction_sample_size=None, choice_column=None, name=None): self._check_prob_choice_mode_compat(probability_mode, choice_mode) self._check_prob_mode_interaction_compat( probability_mode, interaction_predict_filters) self.model_expression = model_expression self.sample_size = sample_size self.probability_mode = probability_mode self.choice_mode = choice_mode self.choosers_fit_filters = choosers_fit_filters self.choosers_predict_filters = choosers_predict_filters self.alts_fit_filters = alts_fit_filters self.alts_predict_filters = alts_predict_filters self.interaction_predict_filters = interaction_predict_filters self.estimation_sample_size = estimation_sample_size self.prediction_sample_size = prediction_sample_size self.choice_column = choice_column self.name = name if name is not None else 'MNLDiscreteChoiceModel' self.sim_pdf = None self.log_likelihoods = None self.fit_parameters = None @classmethod def from_yaml(cls, yaml_str=None, str_or_buffer=None): """ Create a DiscreteChoiceModel instance from a saved YAML configuration. Arguments are mutally exclusive. Parameters ---------- yaml_str : str, optional A YAML string from which to load model. str_or_buffer : str or file like, optional File name or buffer from which to load YAML. Returns ------- MNLDiscreteChoiceModel """ cfg = yamlio.yaml_to_dict(yaml_str, str_or_buffer) model = cls( cfg['model_expression'], cfg['sample_size'], probability_mode=cfg.get('probability_mode', 'full_product'), choice_mode=cfg.get('choice_mode', 'individual'), choosers_fit_filters=cfg.get('choosers_fit_filters', None), choosers_predict_filters=cfg.get('choosers_predict_filters', None), alts_fit_filters=cfg.get('alts_fit_filters', None), alts_predict_filters=cfg.get('alts_predict_filters', None), interaction_predict_filters=cfg.get( 'interaction_predict_filters', None), estimation_sample_size=cfg.get('estimation_sample_size', None), prediction_sample_size=cfg.get('prediction_sample_size', None), choice_column=cfg.get('choice_column', None), name=cfg.get('name', None) ) if cfg.get('log_likelihoods', None): model.log_likelihoods = cfg['log_likelihoods'] if cfg.get('fit_parameters', None): model.fit_parameters = pd.DataFrame(cfg['fit_parameters']) logger.debug('loaded LCM model {} from YAML'.format(model.name)) return model @property def str_model_expression(self): """ Model expression as a string suitable for use with patsy/statsmodels. """ return util.str_model_expression( self.model_expression, add_constant=False) def apply_fit_filters(self, choosers, alternatives): """ Filter `choosers` and `alternatives` for fitting. Parameters ---------- choosers : pandas.DataFrame Table describing the agents making choices, e.g. households. alternatives : pandas.DataFrame Table describing the things from which agents are choosing, e.g. buildings. Returns ------- filtered_choosers, filtered_alts : pandas.DataFrame """ return super(MNLDiscreteChoiceModel, self).apply_fit_filters( choosers, alternatives) def apply_predict_filters(self, choosers, alternatives): """ Filter `choosers` and `alternatives` for prediction. Parameters ---------- choosers : pandas.DataFrame Table describing the agents making choices, e.g. households. alternatives : pandas.DataFrame Table describing the things from which agents are choosing, e.g. buildings. Returns ------- filtered_choosers, filtered_alts : pandas.DataFrame """ return super(MNLDiscreteChoiceModel, self).apply_predict_filters( choosers, alternatives) def fit(self, choosers, alternatives, current_choice): """ Fit and save model parameters based on given data. Parameters ---------- choosers : pandas.DataFrame Table describing the agents making choices, e.g. households. alternatives : pandas.DataFrame Table describing the things from which agents are choosing, e.g. buildings. current_choice : pandas.Series or any A Series describing the `alternatives` currently chosen by the `choosers`. Should have an index matching `choosers` and values matching the index of `alternatives`. If a non-Series is given it should be a column in `choosers`. Returns ------- log_likelihoods : dict Dict of log-liklihood values describing the quality of the model fit. Will have keys 'null', 'convergence', and 'ratio'. """ logger.debug('start: fit LCM model {}'.format(self.name)) if not isinstance(current_choice, pd.Series): current_choice = choosers[current_choice] choosers, alternatives = self.apply_fit_filters(choosers, alternatives) if self.estimation_sample_size: if fixedrandomseed==0: np.random.seed(seednum) choosers = choosers.loc[np.random.choice( choosers.index, min(self.estimation_sample_size, len(choosers)), replace=False)] current_choice = current_choice.loc[choosers.index] _, merged, chosen = interaction.mnl_interaction_dataset( choosers, alternatives, self.sample_size, current_choice) model_design = dmatrix( self.str_model_expression, data=merged, return_type='dataframe') if len(merged) != model_design.values.shape[0]: raise ModelEvaluationError( 'Estimated data does not have the same length as input. ' 'This suggests there are null values in one or more of ' 'the input columns.') self.log_likelihoods, self.fit_parameters = mnl.mnl_estimate( model_design.values, chosen, self.sample_size) self.fit_parameters.index = model_design.columns logger.debug('finish: fit LCM model {}'.format(self.name)) return self.log_likelihoods @property def fitted(self): """ True if model is ready for prediction. """ return self.fit_parameters is not None def assert_fitted(self): """ Raises `RuntimeError` if the model is not ready for prediction. """ if not self.fitted: raise RuntimeError('Model has not been fit.') def report_fit(self): """ Print a report of the fit results. """ if not self.fitted: print('Model not yet fit.') return print('Null Log-liklihood: {0:.3f}'.format( self.log_likelihoods['null'])) print('Log-liklihood at convergence: {0:.3f}'.format( self.log_likelihoods['convergence'])) print('Log-liklihood Ratio: {0:.3f}\n'.format( self.log_likelihoods['ratio'])) tbl = PrettyTable( ['Component', ]) tbl = PrettyTable() tbl.add_column('Component', self.fit_parameters.index.values) for col in ('Coefficient', 'Std. Error', 'T-Score'): tbl.add_column(col, self.fit_parameters[col].values) tbl.align['Component'] = 'l' tbl.float_format = '.3' print(tbl) def probabilities(self, choosers, alternatives, filter_tables=True): """ Returns the probabilities for a set of choosers to choose from among a set of alternatives. Parameters ---------- choosers : pandas.DataFrame Table describing the agents making choices, e.g. households. alternatives : pandas.DataFrame Table describing the things from which agents are choosing. filter_tables : bool, optional If True, filter `choosers` and `alternatives` with prediction filters before calculating probabilities. Returns ------- probabilities : pandas.Series Probability of selection associated with each chooser and alternative. Index will be a MultiIndex with alternative IDs in the inner index and chooser IDs in the out index. """ logger.debug('start: calculate probabilities for LCM model {}'.format( self.name)) self.assert_fitted() if filter_tables: choosers, alternatives = self.apply_predict_filters( choosers, alternatives) if self.prediction_sample_size is not None: sample_size = self.prediction_sample_size else: sample_size = len(alternatives) if self.probability_mode == 'single_chooser': _, merged, _ = interaction.mnl_interaction_dataset( choosers.head(1), alternatives, sample_size) elif self.probability_mode == 'full_product': _, merged, _ = interaction.mnl_interaction_dataset( choosers, alternatives, sample_size) else: raise ValueError( 'Unrecognized probability_mode option: {}'.format( self.probability_mode)) merged = util.apply_filter_query( merged, self.interaction_predict_filters) model_design = dmatrix( self.str_model_expression, data=merged, return_type='dataframe') if len(merged) != model_design.values.shape[0]: raise ModelEvaluationError( 'Simulated data does not have the same length as input. ' 'This suggests there are null values in one or more of ' 'the input columns.') # get the order of the coefficients in the same order as the # columns in the design matrix coeffs = [self.fit_parameters['Coefficient'][x] for x in model_design.columns] # probabilities are returned from mnl_simulate as a 2d array # with choosers along rows and alternatives along columns if self.probability_mode == 'single_chooser': numalts = len(merged) else: numalts = sample_size probabilities = mnl.mnl_simulate( model_design.values, coeffs, numalts=numalts, returnprobs=True) # want to turn probabilities into a Series with a MultiIndex # of chooser IDs and alternative IDs. # indexing by chooser ID will get you the probabilities # across alternatives for that chooser mi = pd.MultiIndex.from_arrays( [merged['join_index'].values, merged.index.values], names=('chooser_id', 'alternative_id')) probabilities = pd.Series(probabilities.flatten(), index=mi) logger.debug('finish: calculate probabilities for LCM model {}'.format( self.name)) return probabilities def summed_probabilities(self, choosers, alternatives): """ Calculate total probability associated with each alternative. Parameters ---------- choosers : pandas.DataFrame Table describing the agents making choices, e.g. households. alternatives : pandas.DataFrame Table describing the things from which agents are choosing. Returns ------- probs : pandas.Series Total probability associated with each alternative. """ def normalize(s): return s / s.sum() choosers, alternatives = self.apply_predict_filters( choosers, alternatives) probs = self.probabilities(choosers, alternatives, filter_tables=False) # groupby the the alternatives ID and sum if self.probability_mode == 'single_chooser': return ( normalize(probs) * len(choosers) ).reset_index(level=0, drop=True) elif self.probability_mode == 'full_product': return probs.groupby(level=0).apply(normalize)\ .groupby(level=1).sum() else: raise ValueError( 'Unrecognized probability_mode option: {}'.format( self.probability_mode)) def predict(self, choosers, alternatives, debug=False): """ Choose from among alternatives for a group of agents. Parameters ---------- choosers : pandas.DataFrame Table describing the agents making choices, e.g. households. alternatives : pandas.DataFrame Table describing the things from which agents are choosing. debug : bool If debug is set to true, will set the variable "sim_pdf" on the object to store the probabilities for mapping of the outcome. Returns ------- choices : pandas.Series Mapping of chooser ID to alternative ID. Some choosers will map to a nan value when there are not enough alternatives for all the choosers. """ self.assert_fitted() logger.debug('start: predict LCM model {}'.format(self.name)) choosers, alternatives = self.apply_predict_filters( choosers, alternatives) if len(choosers) == 0: return pd.Series() if len(alternatives) == 0: return
pd.Series(index=choosers.index)
pandas.Series
import pytest import pandas as pd from pandas.testing import assert_series_equal from yeast import Recipe from yeast.steps import JoinStep, SortStep, RenameColumnsStep from yeast.errors import YeastValidationError from tests.data_samples import startrek_starships from tests.data_samples import startrek_starships_specs def test_join_on_left_step(startrek_starships, startrek_starships_specs): """ Left Join with NA mismmatches """ recipe = Recipe([ JoinStep(startrek_starships_specs, by="uid", how="left"), SortStep('uid') ]) baked_data = recipe.prepare(startrek_starships).bake(startrek_starships) assert baked_data.shape == (5, 3) row = pd.Series({'uid': 'NCC-1031', 'name': 'USS Discovery', 'warp': 9.9}, name=0) assert_series_equal(baked_data.loc[0], row) row = pd.Series({'uid': 'NX-01', 'name': 'Enterprise', 'warp': None}, name=4) assert_series_equal(baked_data.loc[4], row) def test_join_on_inner_step(startrek_starships, startrek_starships_specs): """ Inner Join with NA mismmatches """ recipe = Recipe([ JoinStep(startrek_starships_specs, by="uid", how="inner"), SortStep('uid') ]) baked_data = recipe.prepare(startrek_starships).bake(startrek_starships) assert baked_data.shape == (4, 3) row = pd.Series({'uid': 'NCC-1031', 'name': 'USS Discovery', 'warp': 9.9}, name=0) assert_series_equal(baked_data.loc[0], row) row = pd.Series({'uid': 'NCC-74656', 'name': 'USS Voyager', 'warp': 9.975}, name=3) assert_series_equal(baked_data.loc[3], row) def test_join_on_right_step(startrek_starships, startrek_starships_specs): """ Right Join with NA mismmatches """ recipe = Recipe([ JoinStep(startrek_starships_specs, by="uid", how="right"), SortStep('uid') ]) baked_data = recipe.prepare(startrek_starships).bake(startrek_starships) assert baked_data.shape == (4, 3) row = pd.Series({'uid': 'NCC-1031', 'name': 'USS Discovery', 'warp': 9.9}, name=0) assert_series_equal(baked_data.loc[0], row) row = pd.Series({'uid': 'NCC-74656', 'name': 'USS Voyager', 'warp': 9.975}, name=3) assert_series_equal(baked_data.loc[3], row) def test_join_on_fullouter_step(startrek_starships, startrek_starships_specs): """ Full outer Join with NA mismmatches """ recipe = Recipe([ JoinStep(startrek_starships_specs, by="uid", how="full"), SortStep('uid') ]) baked_data = recipe.prepare(startrek_starships).bake(startrek_starships) assert baked_data.shape == (5, 3) row = pd.Series({'uid': 'NCC-1031', 'name': 'USS Discovery', 'warp': 9.9}, name=0) assert_series_equal(baked_data.loc[0], row) row =
pd.Series({'uid': 'NX-01', 'name': 'Enterprise', 'warp': None}, name=4)
pandas.Series
#-*- coding: utf-8 -*- #!usr/bin/env python """ SPACE GROUP a-CNN filneame: space_group_a_CNN.py version: 1.0 dependencies: autoXRD version 1.0 autoXRD_vis version 0.2 Code to perform classification of XRD patterns for various spcae-group using physics-informed data augmentation and all convolutional neural network (a-CNN). Code to plot class activation maps from a-CNN and global average pooling layer @authors: <NAME> and <NAME> MIT Photovoltaics Laboratory / Singapore and MIT Alliance for Research and Tehcnology All code is under Apache 2.0 license, please cite any use of the code as explained in the README.rst file, in the GitHub repository. """ ################################################################# #Libraries and dependencies ################################################################# # Loads series of functions for preprocessing and data augmentation from autoXRD import * # Loads CAMs visualizations for a-CNN from autoXRD_vis import * import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn import metrics from sklearn.model_selection import KFold # Neural networks uses Keran with TF background import keras as K from keras.models import Model from keras.models import Sequential from keras.callbacks import ReduceLROnPlateau from keras.callbacks import EarlyStopping import tensorflow as tf # Clear Keras and TF session, if run previously K.backend.clear_session() tf.reset_default_graph() # Training Parameters BATCH_SIZE=128 # Network Parameters n_input = 1200 # Total angles in XRD pattern n_classes = 7 # Number of space-group classes filter_size = 2 kernel_size = 10 ################################################################ # Load data and preprocess ################################################################ # Load simulated and anonimized dataset import os dirname = os.path.dirname(__file__) theor = pd.read_csv(os.path.join(dirname, 'Datasets/theor.csv'), index_col=0) theor = theor.iloc[1:,] theor_arr=theor.values # Normalize data for training ntheor = normdata(theor_arr) # Load labels for simulated data label_theo = pd.read_csv(os.path.join(dirname, 'Datasets/label_theo.csv'), header=None, index_col=0) label_theo = label_theo[1].tolist() # Load experimental data as dataframe exp_arr_new = pd.read_csv(os.path.join(dirname, 'Datasets/exp.csv'), index_col=0) exp_arr_new = exp_arr_new.values # Load experimental class labels label_exp= pd.read_csv(os.path.join(dirname, 'Datasets/label_exp.csv'), index_col=0).values label_exp = label_exp.reshape([len(label_exp),]) # Load class enconding space_group_enc = pd.read_csv(os.path.join(dirname, 'Datasets/encoding.csv'), index_col=0) space_group_enc = list(space_group_enc['0']) # Normalize experimental data nexp = normdata(exp_arr_new) # Define spectral range for data augmentation exp_min = 0 exp_max = 1200 theor_min = 125 #window size for experimental data extraction window = 20 theor_max = theor_min+exp_max-exp_min # Preprocess experimental data post_exp = normdatasingle(exp_data_processing (nexp, exp_min, exp_max, window)) ################################################################ # Perform data augmentation ################################################################ # Specify how many data points we augmented th_num = 2000 # Augment data, this may take a bit augd,pard,crop_augd = augdata(ntheor, th_num, label_theo, theor_min, theor_max) # Enconde theoretical labels label_t=np.zeros([len(pard),]) for i in range(len(pard)): label_t[i]=space_group_enc.index(pard[i]) # Input the num of experimetal data points exp_num =88 # Prepare experimental arrays for training and testing X_exp = np.transpose(post_exp[:,0:exp_num]) y_exp = label_exp[0:exp_num] # Prepare simulated arrays for training and testing X_th = np.transpose(crop_augd ) y_th = label_t ################################################################ # Perform training and cross-validation ################################################################ fold = 5 # Number of k-folds k_fold = KFold(n_splits=fold, shuffle=True, random_state=3) # Create arrays to populate metrics accuracy_exp = np.empty((fold,1)) accuracy_exp_b = np.empty((fold,1)) accuracy_exp_r1 = np.empty((fold,1)) accuracy_exp_p1 = np.empty((fold,1)) accuracy_exp_r2 = np.empty((fold,1)) accuracy_exp_p2 = np.empty((fold,1)) f1=np.empty((fold,1)) f1_m=np.empty((fold,1)) # Create auxiliary arrays accuracy=[] logs=[] ground_truth=[] predictions_ord=[] trains=[] tests=[] trains_combine=[] trains_y=[] # Run cross validation and define a-CNN each time in loop for k, (train, test) in enumerate(k_fold.split(X_exp, y_exp)): #Save splits for later use trains.append(train) tests.append(test) #Data augmentation of experimental traning dataset, we # already removed the experimental training dataset temp_x = X_exp[train] temp_y = y_exp[train] exp_train_x,exp_train_y = exp_augdata(temp_x.T,5000,temp_y) # Combine theoretical and experimenal dataset for training train_combine = np.concatenate((X_th,exp_train_x.T)) trains_combine.append(train_combine) # Clear weights and networks state K.backend.clear_session() # Network Parameters BATCH_SIZE=128 n_input = 1200 # MNIST data input (img shape: 28*28) n_classes = 7 # MNIST total classes (0-9 digits) filter_size = 2 kernel_size = 10 enc = OneHotEncoder(sparse=False) train_dim = train_combine.reshape(train_combine.shape[0],1200,1) train_y = np.concatenate((y_th,exp_train_y)) trains_y.append(train_y) train_y_hot = enc.fit_transform(train_y.reshape(-1,1)) # Define network structure model = Sequential() model.add(K.layers.Conv1D(32, 8,strides=8, padding='same',input_shape=(1200,1), activation='relu')) model.add(K.layers.Conv1D(32, 5,strides=5, padding='same', activation='relu')) model.add(K.layers.Conv1D(32, 3,strides=3, padding='same', activation='relu')) model.add(K.layers.pooling.GlobalAveragePooling1D()) model.add(K.layers.Dense(n_classes, activation='softmax')) #Define optimizer optimizer = K.optimizers.Adam() # Compile model model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['categorical_accuracy']) # Choose early stop #early_stop = EarlyStopping(monitor='val_loss', patience=50, verbose=1, restore_best_weights=True) # Reduce learning rate during optimization # reduce_lr = ReduceLROnPlateau(monitor = 'loss', factor=0.5, # patience=50, min_lr=0.00001) # Define test data test_x = X_exp[test] test_x = test_x.reshape(test_x.shape[0],1200,1) test_y = enc.fit_transform(y_exp.reshape(-1,1))[test] # Fit model hist = model.fit(train_dim, train_y_hot, batch_size=BATCH_SIZE, nb_epoch=100, verbose=1, validation_data=(test_x, test_y)) # hist = model.fit(train_dim, train_y_hot, batch_size=BATCH_SIZE, nb_epoch=100, # verbose=1, validation_data=(test_x, test_y), callbacks = [early_stop]) # #Compute model predictions prediction=model.predict(test_x) #Go from one-hot to ordinal... prediction_ord=[np.argmax(element) for element in prediction] predictions_ord.append(prediction_ord) # Compute accuracy, recall, precision and F1 with macro and micro averaging accuracy_exp[k] = metrics.accuracy_score(y_exp[test], prediction_ord) accuracy_exp_r1[k] = metrics.recall_score(y_exp[test], prediction_ord, average='macro') accuracy_exp_r2[k] = metrics.recall_score(y_exp[test], prediction_ord, average='micro') accuracy_exp_p1[k] = metrics.precision_score(y_exp[test], prediction_ord, average='macro') accuracy_exp_p2[k] = metrics.precision_score(y_exp[test], prediction_ord, average='micro') f1[k]=metrics.f1_score(y_exp[test], prediction_ord, average='micro') f1_m[k]=metrics.f1_score(y_exp[test], prediction_ord, average='macro') #Produce ground_truth, each list element contains array with test elements on first column with respect to X_exp and ground_truth.append(np.concatenate([test.reshape(len(test),1),y_exp[test].reshape(len(test),1)],axis=1)) #Compute loss and accuracy for each k validation accuracy.append(model.evaluate(test_x, test_y, verbose=0)) #Save logs log = pd.DataFrame(hist.history) logs.append(log) #Save models on current folder with names subscripts 0 to 4 model.save(os.path.join(dirname, 'keras_model')+str(k)+'.h5') # accuracy = np.array(accuracy) # Plot final cross validation accuracy print ('Mean Cross-val accuracy', np.mean(accuracy[:,1])) ################################################################ # Plotting Class Activation Maps ################################################################ # Compute correctly classified and incorrectly classified cases corrects, incorrects = find_incorrects(ground_truth,predictions_ord) # Get dataframe of all incorrects and dataframe of all corrects corrects_df = pd.concat([r for r in corrects], ignore_index=False, axis=0) incorrects_df =
pd.concat([r for r in incorrects], ignore_index=False, axis=0)
pandas.concat
#!/usr/bin/env python3.6 """This module describes functions for analysis of the SNSS Dataset""" import os import pandas as pd from sas7bdat import SAS7BDAT import numpy as np import subprocess from datetime import datetime, date from csv import DictReader from shutil import rmtree from json import load as jsonLoad import functools import itertools from colour import Color import matplotlib.pyplot as plt from matplotlib.lines import Line2D import matplotlib.patches as patches import seaborn as sb import textwrap as txtwrp import ast import imageio as imgio import tqdm import pickle import scipy.stats as stats import statsmodels.stats.api as sms import scipy.interpolate as interpolate from statsmodels.stats.weightstats import CompareMeans, DescrStatsW from statsmodels.discrete.discrete_model import Logit from statsmodels.tools.tools import add_constant from sklearn import preprocessing, decomposition, manifold from sklearn.metrics import confusion_matrix, \ accuracy_score, roc_auc_score, roc_curve, \ classification_report, precision_score, recall_score, explained_variance_score, r2_score, f1_score from scipy.stats import logistic from scipy.optimize import curve_fit import pydot from tensorflow.keras.metrics import top_k_categorical_accuracy from tensorflow.keras.models import Sequential, load_model from tensorflow.keras.layers import Dense, Dropout, AlphaDropout, LeakyReLU from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import CSVLogger, TensorBoard, Callback, EarlyStopping, ModelCheckpoint from tensorflow.keras.backend import clear_session import tensorflow.compat as tfCompat __author__ = "<NAME>" __copyright__ = "Copyright 2018, <NAME>" __credits__ = ["<NAME>", "<NAME>", "<NAME>", "<NAME>"] __license__ = "Apache-2.0" __version__ = "0.1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL> <EMAIL>" """ Short title Description Args: arg1: arg1 Description Returns: output1: output1 description. Raises: excpeption1: excpetion circumstances. """ def loadJSON(fname): # Load configuration f = open(fname) # Open config file... cfg = jsonLoad(f) # Load data... f.close() # Close config file... return cfg def moduleInit(): pd.options.display.max_columns = None pd.options.display.max_rows = 20 tfCompat.v1.disable_eager_execution() def rmws(strList): stripList = [] for s in strList: stripList.append(s.replace(" ", "")) return stripList def timeAppend(varList, T): timeVarList = [] for v in varList: timeVarList.append(T + '_' + v) return timeVarList def autoscale(x): return (x-np.min(x))/np.max(x) def normalise(x): return (x-np.mean(x))/np.std(x) def import_SNSS(usr, pwd, local_file=0): """ Mount UoE CMVM smb and import SNSS as dataframe. Note you must have access permissions to specific share. Keyword arguments: usr = Edinburgh University matriculation number pwd = <PASSWORD> Location of data is specified in a JSON config file not included. The SNSS dataset includes confidential patient information and must be handled according to Caldicott principles. """ cfg = loadJSON("config.json") if local_file: print('Importing local data file...') # Open and read SNSS data file fp = '../../../../../Volumes/mount/SNSSFull.sas7bdat' f = SAS7BDAT(fp) rawDf = f.to_data_frame() print('Dataframe loaded!') else: cmd = "mount_smbfs" mountCmd = cmd+" //'"+cfg['dom']+";"+usr+":"+pwd+"'@"+cfg['shr']+" "+cfg['mnt'] uMountCmd = 'umount raw_data/mount/' # Send smb mount command.. print('Mounting datashare...') smbCall = subprocess.call(mountCmd, shell=True) # Open and read SNSS data file f = SAS7BDAT(cfg['fpath']) print('Converting sas7bdat file to pd.dataframe...') rawDf = f.to_data_frame() print('Conversion completed! Closing file...') f.close() print('Attempting Unmount..') try: smbCall = subprocess.call(uMountCmd, shell=True) print('dataShare Unmounted Successfully!') except(OSError, EOFError): print('Unmount failed...') return rawDf def SNSSNullity(raw): """ Assess nullity of raw data import Takes the raw imported dataset, ensures index integrity, assigns new binary variables for follow up at each study timepoint and computes attrittion numbers and ratios for each. Args: raw: Pandas DataFrame object from SAS7BDAT file. Returns: raw: The validated raw dataframe. retentionTable: A pandas dataframe of counts for use in scripts if required. Raises: NONE """ # Assign nPatid as index variable. raw = raw.set_index('nPatid', verify_integrity=True) # Convert diagnostic nullity into binary variable in dataframe. raw['All'] = raw.T0_PatID.notna() raw['T1_HCData'] = raw.T1_HealthChange.notna() raw['T2_HCData'] = raw.T2_HealthChange.notna() raw['T1and2_HCData'] = (raw.T2_HealthChange.notna()) & (raw.T1_HealthChange.notna()) # Quantify diagnostic nullity and export T = [] FULabels = ['T1_HCData', 'T2_HCData', 'T1and2_HCData'] for FU in FULabels: T.append(raw.groupby(FU)['ExpGroups'].agg([('Total', 'count'), ('Label', lambda x: tuple(np.unique(x[~np.isnan(x)], return_counts=True)[0])), ('N(i)', lambda x: tuple(np.unique(x[~np.isnan(x)], return_counts=True)[1])), ('%', lambda x: tuple((np.unique(x[~np.isnan(x)], return_counts=True)[1]/sum(~np.isnan(x))*100).round(2)))])) retentionTable = pd.concat(T, keys=FULabels, axis=0) retentionTable.index = retentionTable.index.rename(['', 'FUDataAvailable']) retentionTable.to_csv('output/0_SNSS_retention.tsv', sep='\t') return raw, retentionTable def SNSSCompoundVariables(df): """Produce variable compund measures e.g. SF12, HADS etc. Adds the specified custom variables normally products or sums of other Variables or binarisation etc to the provided dataframe. This function also undertakes SIMD quintile mapping to patient postcodes. Args: df: Pandas dataframe. Returns: df: The dataframe with new variables added.. Raises: KeyError, ValueError: If errors in postcode mapping. """ # Deactivate assignment warning which slows down SIMD processing. pd.options.mode.chained_assignment = None # Declare variable groups varGroups = {'PHQ13': ['StomachPain', 'BackPain', 'Paininarmslegsjoints', 'Headaches', 'Chestpain', 'Dizziness', 'FaintingSpells', 'HeartPoundingorRacing', 'ShortnessofBreath', 'Constipation', 'NauseaorGas', 'Tired', 'Sleeping'], 'NeuroSymptoms': ['Lackofcoordination', 'MemorConcentration', 'LossofSensation', 'LossofVision', 'LossofHearing', 'Paralysisorweakness', 'DoubleorBlurredVision', 'DifficultySwallowing', 'DifficultySpeaking', 'SeizureorFit', 'AnxietyattackorPanicAttack', 'Littleinterestorpleasure', 'Feelingdownorhopeless', 'Nervesorfeelinganxious', 'Worryingalot'], 'IllnessWorry': ['Wworry', 'Wseriousworry', 'Wattention'], 'Satisfaction': ['Sat1', 'Sat2', 'Sat3', 'Sat4', 'Sat5', 'Sat6', 'Sat7', 'Sat8'], 'other': ['LossofHearing', 'Littleinterestorpleasure', 'Feelingdownorhopeless', 'Nervesorfeelinganxious', 'Worryingalot', 'AnxietyattackorPanicAttack']} # Time specify certain groups into useful keysets. T0IllnessWorryKeys = timeAppend(varGroups['IllnessWorry'], 'T0') T0PHQ13Keys = timeAppend(varGroups['PHQ13'], 'T0') T1PHQ13Keys = timeAppend(varGroups['PHQ13'], 'T1') T2PHQ13Keys = timeAppend(varGroups['PHQ13'], 'T2') T0PHQNeuro28Keys = timeAppend(varGroups['PHQ13'] + varGroups['NeuroSymptoms'], 'T0') T1PHQNeuro28Keys = timeAppend(varGroups['PHQ13'] + varGroups['NeuroSymptoms'], 'T1') T2PHQNeuro28Keys = timeAppend(varGroups['PHQ13'] + varGroups['NeuroSymptoms'], 'T2') T0SatisfactionKeys = timeAppend(varGroups['Satisfaction'], 'T0') T1SatisfactionKeys = timeAppend(varGroups['Satisfaction'], 'T1') # Criteria Used for defining successful follow up as T1 any satisfaction data available.. # df['T1_Satisfaction_Bool'] = df['T1_Satisfaction_Total'].notna() # Strict df['T1_Satisfaction_Bool'] = df[T1SatisfactionKeys].notna().any(axis=1) # Loose # Add binarised ExpGroups. df['ExpGroups_bin'] = (df['ExpGroups']-2)*-1 # Add binarised gender. df['Gender_bin'] = df['Gender']-1 # Adding summative compound measures df['T0_PHQNeuro28_Total'] = df[T0PHQNeuro28Keys].sum(axis=1, skipna=False) df['T1_PHQNeuro28_Total'] = df[T1PHQNeuro28Keys].sum(axis=1, skipna=False) df['T2_PHQNeuro28_Total'] = df[T2PHQNeuro28Keys].sum(axis=1, skipna=False) df['T0_PHQ13_Total'] = df[T0PHQ13Keys].sum(axis=1, skipna=False) df['T1_PHQ13_Total'] = df[T1PHQ13Keys].sum(axis=1, skipna=False) df['T2_PHQ13_Total'] = df[T2PHQ13Keys].sum(axis=1, skipna=False) df['T0_IllnessWorry'] = df[T0IllnessWorryKeys].sum(axis=1, skipna=False) df['T0_Satisfaction_Total'] = df[T0SatisfactionKeys].sum(axis=1, skipna=False) df['T1_Satisfaction_Total'] = df[T1SatisfactionKeys].sum(axis=1, skipna=False) df['T2_Satisfaction_Total'] = df[T1SatisfactionKeys].sum(axis=1, skipna=False) # Adding boolean compound measures df['T0_NegExpectation'] = (df['T0_IPQ1'] > 3).astype(int) # Define "Negative Expectation" df['T0_NegExpectation'].loc[df['T0_IPQ1'].isna()] = np.nan # Boolean operator treats NaN as 0 so replace with NaNs df['T0_PsychAttribution'] = ((df['T0_C7'] > 3) | (df['T0_C8'] > 3)).astype(int) df['T0_PsychAttribution'].loc[(df['T0_C7'].isna()) | (df['T0_C8'].isna())] = np.nan df['T0_LackofPsychAttribution'] = (df['T0_PsychAttribution']-1)*-1 for S in ['T0_Sat1', 'T0_Sat2', 'T0_Sat3', 'T0_Sat4', 'T0_Sat5', 'T0_Sat6', 'T0_Sat7', 'T0_Sat8']: satNAIdx = df[S].isna() df[S + '_Poor_Bin'] = df[S] <= 2 # Binarise Satsifaction into Poor/Fair or not df[S + '_Poor_Bin'].loc[satNAIdx] = np.nan # Add binned measures df['T0_PHQ13_Binned'] = pd.cut(df['T0_PHQ13_Total'], [0, 2.1, 5.1, 8.1, 13.1], labels=['0-2', '3-5', '6-8', '9-13'], right=True, include_lowest=True) df['T0_PHQ13_BinInt'] = pd.cut(df['T0_PHQ13_Total'], [0, 2.1, 5.1, 8.1, 13.1], labels=False, right=True, include_lowest=True) df['T0_PHQNeuro28_Binned'] = pd.cut(df['T0_PHQNeuro28_Total'], [0, 5.1, 8.1, 13.1, 27.1], labels=['0-5', '6-8', '9-13', '14-27'], right=True, include_lowest=True) df['T0_PHQNeuro28_BinInt'] = pd.cut(df['T0_PHQNeuro28_Total'], [0, 5.1, 8.1, 13.1, 27.1], labels=False, right=True, include_lowest=True) df['AgeBins'] = pd.cut(df['Age'], [0, 36, 46, 56, max(df['Age'])+0.1], labels=['<=35', '36-45', '46-55', '>=56'], right=True, include_lowest=True) df['AgeBinInt'] = pd.cut(df['Age'], [0, 36, 46, 56, max(df['Age'])+0.1], labels=False, right=True, include_lowest=True) df['T0_HADS_Binned'] = pd.cut(df['T0_HADS'], [0, 7.1, 14.1, 21.1, max(df['T0_HADS'])+0.1], labels=['0-7', '8-14', '15-21', '>=22'], right=True, include_lowest=True) df['T0_HADS_BinInt'] = pd.cut(df['T0_HADS'], [0, 7.1, 14.1, 21.1, max(df['T0_HADS'])+0.1], labels=False, right=True, include_lowest=True) df['T0_SF12_PF_Binned'] = pd.cut(df['T0_SF12_PF'], [-0.1, 24.9, 49.9, 74.9, 99.9, 100.1], labels=['0', '25', '50', '75', '100'], right=True, include_lowest=True) df['T0_SF12_PF_BinInt'] = pd.cut(df['T0_SF12_PF'], [-0.1, 24.9, 49.9, 74.9, 99.9, 100.1], labels=False, right=True, include_lowest=True) # Add binarised outcomes poorOutcomeDict = {0: 1, 1: 1, 2: 1, 3: 0, 4: 0} strictPoorOutcomeDict = {0: 1, 1: 1, 2: 0, 3: 0, 4: 0} ternaryPoorOutcomeDict = {0: 2, 1: 2, 2: 1, 3: 0, 4: 0} df['T1_poorCGI'] = df['T1_HealthChange'].replace(poorOutcomeDict) df['T1_poorIPS'] = df['T1_SymptomsChange'].replace(poorOutcomeDict) df['T2_poorCGI'] = df['T2_HealthChange'].replace(poorOutcomeDict) df['T2_poorIPS'] = df['T2_SymptomsChange'].replace(poorOutcomeDict) df['T2_strictPoorCGI'] = df['T2_HealthChange'].replace(strictPoorOutcomeDict) df['T2_strictPoorIPS'] = df['T2_SymptomsChange'].replace(strictPoorOutcomeDict) df['T2_ternaryCGI'] = df['T2_HealthChange'].replace(ternaryPoorOutcomeDict) df['T2_ternaryIPS'] = df['T2_SymptomsChange'].replace(ternaryPoorOutcomeDict) # Add relative secondary outcomes df['T0T1_SF12_NormedMCS'] = df['T1_SF12_NormedMCS'] - df['T0_SF12_NormedMCS'] df['T1T2_SF12_NormedMCS'] = df['T2_SF12_NormedMCS'] - df['T1_SF12_NormedMCS'] df['T0T2_SF12_NormedMCS'] = df['T2_SF12_NormedMCS'] - df['T0_SF12_NormedMCS'] df['T0T2_SF12_binaryNormedMCS'] = (df['T0T2_SF12_NormedMCS'] < 0).astype(int) df['T0T2_SF12_binaryNormedMCS'].loc[df['T0T2_SF12_NormedMCS'].isna()] = np.nan df['T0T1_SF12_NormedPCS'] = df['T1_SF12_NormedPCS'] - df['T0_SF12_NormedPCS'] df['T1T2_SF12_NormedPCS'] = df['T2_SF12_NormedPCS'] - df['T1_SF12_NormedPCS'] df['T0T2_SF12_NormedPCS'] = df['T2_SF12_NormedPCS'] - df['T0_SF12_NormedPCS'] df['T0T2_SF12_binaryNormedPCS'] = (df['T0T2_SF12_NormedPCS'] < 0).astype(int) df['T0T2_SF12_binaryNormedPCS'].loc[df['T0T2_SF12_NormedPCS'].isna()] = np.nan df['T0T1_HADS'] = df['T1_HADS'] - df['T0_HADS'] df['T1T2_HADS'] = df['T2_HADS'] - df['T1_HADS'] df['T0T2_HADS'] = df['T2_HADS'] - df['T0_HADS'] df['T0T2_binaryHADS'] = (df['T0T2_HADS'] < 0).astype(int) df['T0T2_binaryHADS'].loc[df['T0T2_HADS'].isna()] = np.nan df['T0T1_PHQNeuro28_Total'] = df['T1_PHQNeuro28_Total'] - df['T0_PHQNeuro28_Total'] df['T1T2_PHQNeuro28_Total'] = df['T2_PHQNeuro28_Total'] - df['T1_PHQNeuro28_Total'] df['T0T2_PHQNeuro28_Total'] = df['T2_PHQNeuro28_Total'] - df['T0_PHQNeuro28_Total'] df['T0T2_binaryPHQNeuro28_Total'] = (df['T0T2_PHQNeuro28_Total'] < 0).astype(int) df['T0T2_binaryPHQNeuro28_Total'].loc[df['T0T2_PHQNeuro28_Total'].isna()] = np.nan print('SIMD 2004 to 2006 Postcode conversion...') SIMD04 = pd.read_csv('raw_data/SIMDData/postcode_2006_2_simd2004.csv', index_col=0) nullIdx = SIMD04['simd2004rank'].str.contains(' ') domains = ['inc', 'emp', 'hlth', 'educ', 'access', 'house'] for d in domains: SIMD04['simd2004_' + d + '_quintile'] = 5-pd.qcut(SIMD04['simd2004_' + d + '_rank'] [~nullIdx].astype(float), 5, retbins=False, labels=False) SIMDDict = dict(zip([str.replace(' ', '') for str in SIMD04.sort_index().index.values.tolist()], SIMD04[['simd2004_sc_quintile', 'simd2004score', 'simd2004_inc_score', 'simd2004_emp_score', 'simd2004_hlth_score', 'simd2004_educ_score', 'simd2004_access_score', 'simd2004_house_score', 'simd2004_inc_quintile', 'simd2004_emp_quintile', 'simd2004_hlth_quintile', 'simd2004_educ_quintile', 'simd2004_access_quintile', 'simd2004_house_quintile']].values)) # Initialising variables as NaN arrays df['T0_SIMD04'] = np.nan df['T0_SIMD04_score'] = np.nan for d in domains: df['T0_SIMD04_' + d + '_score'] = np.nan df['T0_SIMD04_' + d + '_quintile'] = np.nan print('Constructed SIMD quintiles and Initialised Panda Variables') print('Iterating through postcodes') i = 0 for p in df['Postcode']: if (p == '') | pd.isnull(p): df['Postcode'].iloc[i] = np.nan df['T0_SIMD04'].iloc[i] = np.nan i = i + 1 # print('No Postcode Data') else: try: p = p.replace(' ', '') # print(p) df['T0_SIMD04'].iloc[i] = int(SIMDDict[p][0]) df['T0_SIMD04_score'].iloc[i] = float(SIMDDict[p][1]) dd = 2 for d in domains: df['T0_SIMD04_' + d + '_score'].iloc[i] = float(SIMDDict[p][dd]) df['T0_SIMD04_' + d + '_quintile'].iloc[i] = int(SIMDDict[p][dd+len(domains)]) dd += 1 except (KeyError, ValueError) as err: # print('%s: Error!' % (p)) df['T0_SIMD04'].iloc[i] = np.nan # print('No SIMD04 postcode map') i = i + 1 # Add most deprived binarisation df['T0_SIMD04_bin'] = df['T0_SIMD04'] >= 4 # Add interaction variables df['Diagnosis*T0_IncapacityBenefitorDLA'] = df['Diagnosis']*df['T0_IncapacityBenefitorDLA'] df['ExpGroups*T0_IncapacityBenefitorDLA'] = df['ExpGroups']*df['T0_IncapacityBenefitorDLA'] df['ExpGroups_bin*T0_IncapacityBenefitorDLA'] = df['ExpGroups_bin']*df['T0_IncapacityBenefitorDLA'] df['ExpGroups_bin*T0_LackofPsychAttribution'] = df['ExpGroups_bin']*df['T0_LackofPsychAttribution'] df['ExpGroups_bin*T0_SIMD04_bin'] = df['ExpGroups_bin']*df['T0_SIMD04_bin'] df['ExpGroups_bin*T0_SF12_PF_BinInt'] = df['ExpGroups_bin']*df['T0_SF12_PF_BinInt'] df['ExpGroups_bin*T0_NegExpectation'] = df['ExpGroups_bin']*df['T0_NegExpectation'] df['ExpGroups_bin*Gender_bin'] = df['ExpGroups_bin']*df['Gender_bin'] print('Complete!') return df def cohen_d(x, y): stats = {} nx = len(x); meanx = np.mean(x); stdx = np.std(x, ddof=1); semx = stdx/np.sqrt(nx); ny = len(y); meany = np.mean(y); stdy = np.std(y, ddof=1); semy = stdy/np.sqrt(ny); meancix = [meanx+(1.96*i*semx) for i in [-1, 1]] meanciy = [meany+(1.96*i*semy) for i in [-1, 1]] dof = nx + ny - 2 d = (meanx - meany) / np.sqrt(((nx-1)*stdx ** 2 + (ny-1)*stdy ** 2) / dof) vard = (((nx+ny)/(nx*ny))+((d**2)/(2*(nx+ny-2))))*((nx+ny)/(nx+ny-2)) sed = np.sqrt(vard) cid = [d+(1.96*i*sed) for i in [-1, 1]] stats['d'] = d stats['cid'] = cid stats['mean'] = [meanx, meany] stats['std'] = [stdx, stdy] stats['sem'] = [semx, semy] return d, stats def cramersV(nrows, ncols, chisquared, correct_bias=True): nobs = nrows*ncols if correct_bias is True: phi = 0 else: phi = chisquared/nobs V = np.sqrt((phi**2)/(min(nrows-1, ncols-1))) return V, phi def partitionData(df, partitionRatio=0.7): """ Partition data into training and evaluation sets Takes a dataframe and returns two arrays with the proportion to use for training declared as the partition ratio and the other as evaluation of (1-partitionRatio) size. Args: df: Pandas DataFrame to be partitioned. partitionRatio: Ratio of the data to be used for training. Returns: trainIdx: The indices of data asssigned to training set. evalIdx: The indices of data asssigned to eval set. Raises: NONE """ randIdx = np.linspace(0, df.shape[0]-1, df.shape[0]).astype(int) np.random.shuffle(randIdx) trainIdx = randIdx[0:round(df.shape[0]*partitionRatio)] evalIdx = randIdx[round(df.shape[0]*(partitionRatio)):len(randIdx)] return trainIdx, evalIdx def FollowUpandBaselineComparison(df): """ A group-wise and follow-up wise comparison of declared Vars Takes a pandas dataframe and as per the declared variables of interest below, compares between groups and between lost to follow up and retained. Args: df: Pandas DataFrame to be assessed. Returns: NONE: All relevant tables are exported to CSV in the function. Raises: NONE """ def sigTest(G, varList, vType, df): sigDict = {} if vType == 'cat': for v in varList: T = pd.crosstab(index=df[G], columns=df[v], margins=False, normalize=False) chi2Stat, chi2p, _, _ = stats.chi2_contingency(T, correction=True) cats = np.unique(df[v].dropna()) if len(cats) == 2: LOR = np.log((T.iloc[0,0]*T.iloc[1,1])/(T.iloc[1,0]*T.iloc[0,1])) SE = np.sqrt((1/T.iloc[0,0])+(1/T.iloc[1,0])+(1/T.iloc[0,1])+(1/T.iloc[1,1])) CI = [np.exp(LOR-1.96*SE), np.exp(LOR+1.96*SE)] OR = np.exp(LOR) else: OR = np.nan CI = np.nan sigDict[v] = [chi2p, chi2Stat, OR, CI] elif vType == 'cont': for v in varList: if G == 'ExpGroups': Gi = [1, 2] elif G == 'T2_HCData': Gi = [0, 1] elif G == 'T2_poorCGI': Gi = [0, 1] cm = CompareMeans.from_data(df[v][(df[G] == Gi[0]) & (df[v].notna())], df[v][(df[G] == Gi[1]) & (df[v].notna())]) tStat, tp, _ = cm.ttest_ind() cohend, cohenstat = cohen_d(cm.d1.data, cm.d2.data) sigDict[v] = [tp, tStat, cohend, cohenstat['cid']] sigT = pd.DataFrame.from_dict(sigDict, orient='index', columns=['p', 'stat', 'effect', 'effectCI']) return sigT def varTables(G, varList, vType, df): if vType == 'cont': T = df.groupby(G)[varList].agg([('N', 'count'), ('Mean', 'mean'), ('SD', 'std')]) elif vType == 'cat': T = df.groupby(G)[varList].\ agg([('N', 'count'), ('i', lambda x: tuple(np.unique(x[~np.isnan(x)], return_counts=True)[0])), ('N(i)', lambda x: tuple(np.unique(x[~np.isnan(x)], return_counts=True)[1])), ('%', lambda x: tuple(np.unique(x[~np.isnan(x)], return_counts=True)[1]/sum(~np.isnan(x))))]) return T contVars = ['Age', 'T0_PHQ13_Total', 'T0_PHQNeuro28_Total', 'T0_HADS', 'T0_IllnessWorry', 'T0_SF12_PF'] catVars = ['AgeBins', 'Gender', 'ExpGroups', 'T0_PHQ13_Binned', 'T0_SF12_PF', 'T0_HADS_Binned', 'T0_NegExpectation', 'T0_PsychAttribution', 'T0_IllnessWorry', 'T0_IncapacityBenefitorDLA', 'T0_SIMD04_bin', 'ExpGroups_bin*T0_IncapacityBenefitorDLA', 'ExpGroups_bin*T0_LackofPsychAttribution','T0_Inemployment'] groupVar = 'T2_HCData' catT = varTables(G=groupVar, varList=catVars, vType='cat', df=df) catStats = sigTest(G=groupVar, varList=catVars, vType='cat', df=df) catT.transpose().to_csv('output/0_FollowUpCategoricalTable.tsv', sep='\t') catStats.transpose().to_csv('output/0_FollowUpCategoricalStats.tsv', sep='\t') contT = varTables(G=groupVar, varList=contVars, vType='cont', df=df) contStats = sigTest(G=groupVar, varList=contVars, vType='cont', df=df) contT.transpose().to_csv('output/0_FollowUpContinuousTable.tsv', sep='\t') contStats.transpose().to_csv('output/0_FollowUpContinuousStats.tsv', sep='\t') groupVar = 'ExpGroups' catT = varTables(G=groupVar, varList=catVars, vType='cat', df=df[df.T2_HCData == 1]) catStats = sigTest(G=groupVar, varList=catVars, vType='cat', df=df[df.T2_HCData == 1]) catT.transpose().to_csv('output/0_BaselineCategoricalTable.tsv', sep='\t') catStats.transpose().to_csv('output/0_BaselineCategoricalStats.tsv', sep='\t') contT = varTables(G=groupVar, varList=contVars, vType='cont', df=df[df.T2_HCData == 1]) contStats = sigTest(G=groupVar, varList=contVars, vType='cont', df=df[df.T2_HCData == 1]) contT.transpose().to_csv('output/0_BaselineContinuousTable.tsv', sep='\t') contStats.transpose().to_csv('output/0_BaselineContinuousStats.tsv', sep='\t') groupVar = 'T2_poorCGI' catT = varTables(G=groupVar, varList=catVars, vType='cat', df=df[df.T2_HCData == 1]) catStats = sigTest(G=groupVar, varList=catVars, vType='cat', df=df[df.T2_HCData == 1]) catT.transpose().to_csv('output/0_OutcomeCategoricalTable.tsv', sep='\t') catStats.transpose().to_csv('output/0_OutcomeCategoricalStats.tsv', sep='\t') contT = varTables(G=groupVar, varList=contVars, vType='cont', df=df[df.T2_HCData == 1]) contStats = sigTest(G=groupVar, varList=contVars, vType='cont', df=df[df.T2_HCData == 1]) contT.transpose().to_csv('output/0_OutcomeContinuousTable.tsv', sep='\t') contStats.transpose().to_csv('output/0_OutcomeContinuousStats.tsv', sep='\t') return def SNSSPrimaryOutcomeMeasures(df): """ Compare IPS and CGI outcomes between functional groups. This function compares CGI and IPS both in raw and pooled form between functional groups. Outputs tables of counts and proportions of reported outcomes. Args: df: Pandas DataFrame to be assessed. Returns: NONE: All relevant tables are exported to CSV in the function. Raises: NONE """ outcomes = [['T2_HealthChange', 'T2_SymptomsChange'], ['T2_poorCGI', 'T2_poorIPS']] outcomeTag = ['', 'Pool'] i = 0 for O in outcomes: PrimaryOutcomeGroupT = [] PrimaryOutcomeGroupT.append(pd.crosstab(index=df.ExpGroups, columns=df[O[0]], margins=False, normalize=False, dropna=True)) PrimaryOutcomeGroupT.append(pd.crosstab(index=df.ExpGroups, columns=df[O[0]], margins=False, normalize='index', dropna=True)) PrimaryOutcomeGroupT.append(pd.crosstab(index=df.ExpGroups, columns=df[O[1]], margins=False, normalize=False, dropna=True)) PrimaryOutcomeGroupT.append(pd.crosstab(index=df.ExpGroups, columns=df[O[1]], margins=False, normalize='index', dropna=True)) PrimaryOutcomeGroupTExport = pd.concat(PrimaryOutcomeGroupT, keys=['CGI_N', 'CGI_%', 'IPS_N', 'IPS_%'], axis=0) if i: CGIchi2stat, CGIchi2p, _, _ = stats.chi2_contingency(PrimaryOutcomeGroupT[0], correction=True) CGIfisherOR, CGIfisherp = stats.fisher_exact(PrimaryOutcomeGroupT[0]) IPSchi2stat, IPSchi2p, _, _ = stats.chi2_contingency(PrimaryOutcomeGroupT[2], correction=True) IPSfisherOR, IPSfisherp = stats.fisher_exact(PrimaryOutcomeGroupT[2]) PrimaryOutcomeGroupTExport['chi2p'] = [CGIchi2p]*4 + [IPSchi2p]*4 PrimaryOutcomeGroupTExport['fisher2p'] = [CGIfisherp]*4 + [IPSfisherp]*4 PrimaryOutcomeGroupTExport.to_csv('output/1_PrimaryOutcome' + outcomeTag[i] + 'byGroup.tsv', sep='\t') i = i+1 return def multi_text(ax, x, y, s, txt_params={}): """ Matplotlib multi-line text plotting Takes a matplotlib axes, set of strings and positions and plots. Args: ax: Matplotlib axes. x: Array of x values y: constant y value s: Array of strings. txt_params: Dict of text params. Returns: NONE: Text is plotted onto provided axes. Raises: NONE """ for i in range(len(s)): ax.text(x[i], y, s[i], **txt_params) def stackedBarPlot(x_var, y_vars, df, featMetaData): """ Plots stacked bar charts as per declared variables. Takes a matplotlib axes, set of strings and positions and plots a stacked bar chart with the X variables being subdivided by the Y variables. Args: x_var: Names of variables on X_axis y_vars: Names of variables with which to subdivide X variables. df: Pandas dataframe to be used. featMetaData: Variable meta data provided in JSON file. Returns: NONE: Figure is saved in function. Raises: NONE """ if not isinstance(y_vars, list): y_vars = [y_vars] fig_params={'num': 1, 'figsize': (6*len(y_vars), 6), 'dpi': 200, 'frameon': False} txt_params={'fontsize': 6, 'ha': 'center', 'va': 'center'} label_params={'fontsize': 10, 'ha': 'center', 'va': 'top'} fig = plt.figure(**fig_params) sp = 1 for y_var in y_vars: data = df.dropna(subset=[y_var]) ax_params={'title': featMetaData[y_var]['label'], 'ylabel': 'Normalised Frequency', 'xlabel': y_var} ax = fig.add_subplot(1, len(y_vars), sp, **ax_params) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) x_cats = np.unique(data[x_var]) x_cats = x_cats[~np.isnan(x_cats)] x_var_meta = featMetaData[x_var] y_cats = np.unique(data[y_var]) y_cats = y_cats[~np.isnan(y_cats)] y_var_meta = featMetaData[y_var] xMinorTicks = [] xMinorLabels = [] x = 0 bw = 0.8 y_bottom=0 for xc in x_cats: for yc in y_cats: y = np.nanmean(data[y_var][data[x_var] == xc] == yc) t = str(int(round(y*100, 0)))+'%' ax.bar(x=x, height=y, width=bw, color=ast.literal_eval(y_var_meta['colors'][y_var_meta['values'].index(yc)]), bottom=y_bottom) ax.text(x, y_bottom+(y/2), t, **txt_params) xMinorLabels.append(x_var_meta['truncvaluelabels'][x_var_meta['values'].index(xc)]) xMinorTicks.append(x) y_bottom = y+y_bottom y_bottom=0 x += 1 ax.set_xticks(xMinorTicks) ax.set_xticklabels(xMinorLabels, **label_params) sp+=1 fig.savefig('output/1_SNSSPrimaryOutcomeStackedBars.pdf', dpi=300, format='pdf', pad_inches=0.1, bbox_inches='tight') plt.close() def subCatBarPlot(x_vars, x_sub_var, df, featMetaData): """ Plots stacked bar charts as per declared variables. Takes a matplotlib axes, set of strings and positions and plots a bar chart with the X variables being subdivided by the X_sub variables and the subdivisions being plotted side by side. Args: x_vars: Names of variables on X_axis x_sub_var: Names of variables with which to subdivide X variables. df: Pandas dataframe to be used. featMetaData: Variable meta data provided in JSON file. Returns: NONE: Figure is saved in function. Raises: NONE """ if not isinstance(x_vars, list): x_vars = [x_vars] print('is not list') fig_params={'num': 1, 'figsize': (6*len(x_vars), 6), 'dpi': 200, 'frameon': False} txt_params={'fontsize': 6, 'ha': 'center', 'va': 'bottom'} label_params={'fontsize': 10, 'ha': 'center', 'va': 'top'} fig = plt.figure(**fig_params) sp = 1 for x_var in x_vars: data = df.dropna(subset=[x_var]) ax_params={'title': featMetaData[x_var]['label'], 'ylabel': 'Normalised Frequency', 'xlabel': ''} ax = fig.add_subplot(1, len(x_vars), sp, **ax_params) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) x_cats = np.unique(data[x_var]) x_cats = x_cats[~np.isnan(x_cats)] x_var_meta = featMetaData[x_var] x_sub_cats = np.unique(data[x_sub_var]) x_sub_cats = x_sub_cats[~np.isnan(x_sub_cats)] x_sub_var_meta = featMetaData[x_sub_var] xMinorTicks = [] xMajorTicks = [] xMinorLabels = [] xMajorLabels = [] x = 0 bw = 1 for xc in x_cats: for xsc in x_sub_cats: y = np.nanmean(data[x_var][data[x_sub_var] == xsc] == xc) t = str(int(round(y*100, 0)))+'%' ax.bar(x=x, height=y, width=bw, color=x_sub_var_meta['colors'][x_sub_var_meta['values'].index(xsc)]) ax.text(x, y, t, **txt_params) xMinorLabels.append(x_sub_var_meta['truncvaluelabels'][x_sub_var_meta['values'].index(xsc)]) xMinorTicks.append(x) x += 1 xMajorLabels.append(x_var_meta['truncvaluelabels'][x_var_meta['values'].index(xc)]) xMajorTicks.append(x-1-((len(x_sub_cats)-1)/2)) x += 1 ax.set_xticks(xMinorTicks) ax.set_xticklabels(xMinorLabels, **label_params) multi_text(ax, xMajorTicks, ax.get_ylim()[1]*-0.1, xMajorLabels, label_params) sp+=1 fig.savefig('output/1_SNSSPrimaryOutcomeBars.pdf', dpi=300, format='pdf', pad_inches=0.1, bbox_inches='tight') plt.close() def primaryOutcomePlot(outcome, group_var, data, featMetaData, style='subCat'): """ Plots bar charts of declared outcome and grouping var. Takes declared variables and plots bar chart accordingly. Args: outcome: name of outcome variable group_var: Names grouping variable i.e. X variables to be used data: Pandas dataframe to be used. featMetaData: Variable meta data provided in JSON file. style: Defaults to side-by-side vs stacked plotting. Returns: NONE: Figure is saved in respective function. Raises: NONE """ if style == 'subCat': subCatBarPlot(outcome, group_var, data, featMetaData) elif style == 'stacked': stackedBarPlot(group_var, outcome, data, featMetaData) def SNSSSecondaryOutcomeMeasures(df): """ Plots line chart and produced table of secondary SNSS outcomes Takes pandas dataframe and assesses between group differences over time of secindary outcome measures including depressino scales and physical/mental functioning. Args: df: Pandas dataframe Returns: outcomeT: Table of outcome measures grouped by functional diagnosis. Raises: NONE """ groupVar = 'ExpGroups' SNSSVars = loadJSON('raw_data/SNSS_vars.json') rowDict = dict(zip(SNSSVars[groupVar]['values'], SNSSVars[groupVar]['valuelabels'])) outcomes = ['T0_SF12_NormedMCS', 'T1_SF12_NormedMCS', 'T2_SF12_NormedMCS', 'T0_SF12_NormedPCS', 'T1_SF12_NormedPCS', 'T2_SF12_NormedPCS', 'T0_PHQNeuro28_Total', 'T1_PHQNeuro28_Total', 'T2_PHQNeuro28_Total', 'T0_HADS', 'T1_HADS', 'T2_HADS', 'T0T1_SF12_NormedMCS', 'T1T2_SF12_NormedMCS', 'T0T1_SF12_NormedPCS', 'T1T2_SF12_NormedPCS', 'T0T1_PHQNeuro28_Total', 'T1T2_PHQNeuro28_Total', 'T0T1_HADS', 'T1T2_HADS'] outcomeT = df.groupby(groupVar)[outcomes].agg([('N', 'count'), ('Mean', 'mean'), ('SD', 'std'), ('CI', lambda x: tuple(np.round( DescrStatsW(x.dropna()). tconfint_mean(), 2)))]) # Significance testing for O in outcomes: NE = (df.ExpGroups == 1) & (df[O].notna()) E = (df.ExpGroups == 2) & (df[O].notna()) cm = CompareMeans.from_data(df[O].loc[NE], df[O].loc[E]) outcomeT[O, 'tTestp'] = [cm.ttest_ind()[1]]*2 outcomeT[O, 'cohend'], _ = cohen_d(cm.d1.data, cm.d2.data) outcomeT = outcomeT.sort_index(axis=1) outcomeT.rename(index=rowDict).transpose().\ to_csv('output/2_SecondaryOutcomeMeasures.tsv', sep='\t') return outcomeT def plot_ci(ax, x, y, color, style='t'): if style == 't': for i in range(len(y)): ax.plot([x[i], x[i]], [y[i][0], y[i][1]], color=color, alpha=0.4, marker='_', linewidth=2) def lineTimeSeriesPlot(y_vars, groupVar, df, featMetaData): fig_params={'num': 1, 'figsize': (6*4, 6), 'dpi': 200, 'frameon': False} txt_params={'fontsize': 6, 'ha': 'center', 'va': 'center'} label_params={'fontsize': 10, 'ha': 'center', 'va': 'top'} fig = plt.figure(**fig_params) grps = np.unique(df[groupVar]) grps = grps[~np.isnan(grps)] groupVar_meta = featMetaData[groupVar] sp = 1 time = [0, 3, 12] for y_var_group in y_vars: for y_var in y_var_group: ax_params={'title': y_var[0], 'ylabel': 'Secondary Measure', 'xlabel': 'Time', 'xticks': [0, 3, 12], 'xticklabels': ['Baseline', '3 Months', '12 Months']} ax = fig.add_subplot(1, 4, sp, **ax_params) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) grp_jitter = [0.1, 0.1, 0.1] for grp in grps: mean_array = [] ci_array = [] for T_var in y_var: data = df.dropna(subset=[T_var]) mean_array.append(np.nanmean(data[T_var][data[groupVar] == grp])) ci_array.append(DescrStatsW(data[T_var][data[groupVar] == grp]).tconfint_mean()) ax.plot(time, mean_array, color=groupVar_meta['colors'][groupVar_meta['values'].index(grp)], alpha=0.9, linewidth=4) plot_ci(ax, time, ci_array, groupVar_meta['colors'][groupVar_meta['values'].index(grp)], 't') # ax.set_ylim([0, ax.get_ylim()[1]]) sp += 1 fig.subplots_adjust(wspace=0.3) fig.savefig('output/2_SNSSSecondaryOutcomePlot.pdf', dpi=300, format='pdf', pad_inches=0.1, bbox_inches='tight') plt.close() # color=groupVar_meta['colors'][groupVar_meta['values'].index(grp)] def secondaryOutcomePlot(outcome, groupVar, df, featMetaData, style='line'): if style == 'line': lineTimeSeriesPlot(outcome, groupVar, df, featMetaData) def SNSSSocioeconomicAssessment(df): """ Multiple plots comparing SIMD quintile to functional diagnosis and outcome Takes pandas dataframe and plots SIMD quintiles as per each functional Diagnosis and primary and secondary outcomes. Args: df: Pandas dataframe Returns: NONE: All plots saved within function. Raises: NONE """ # Figure & Table 1: Are functional vs structural patients from different SIMD quintiles? SIMDGroupT = [] SIMDGroupT.append(pd.crosstab(index=[df.ExpGroups], columns=df.T0_SIMD04, margins=False, normalize='index', dropna=True)) SIMDGroupT.append(pd.crosstab(index=[df.ExpGroups], columns=df.T0_SIMD04, margins=False, normalize=False, dropna=True)) SIMDGroupTExport = pd.concat(SIMDGroupT, keys=['N', '%']) SIMDGroupTExport.to_csv('output/3_DeprivationGroups.tsv', sep='\t') SIMDOutcomeT = [] SIMDOutcomeT.append(pd.crosstab(index=[df.ExpGroups, df.T2_poorCGI], columns=df.T0_SIMD04, margins=False, normalize=False, dropna=True)) SIMDOutcomeT.append(pd.crosstab(index=[df.ExpGroups, df.T2_poorCGI], columns=df.T0_SIMD04, margins=False, normalize='index', dropna=True)) SIMDOutcomeT.append(pd.crosstab(index=[df.ExpGroups, df.T2_poorIPS], columns=df.T0_SIMD04, margins=False, normalize=False, dropna=True)) SIMDOutcomeT.append(pd.crosstab(index=[df.ExpGroups, df.T2_poorIPS], columns=df.T0_SIMD04, margins=False, normalize='index', dropna=True)) SIMDOutcomeTExport = pd.concat(SIMDOutcomeT, keys=['CGI_N', 'CGI_%', 'IPS_N', 'IPS_%']) SIMDOutcomeTExport.to_csv('output/3_DeprivationOutcomeAndGroup.tsv', sep='\t') fig1 = plt.figure(num=1, figsize=(5, 5), dpi=200, frameon=False) ax = fig1.add_subplot(111) sb.distplot(df.T0_SIMD04[(df.T0_SIMD04.notna()) & (df.ExpGroups == 1)], ax=ax, kde=False, norm_hist=True, bins=5, kde_kws={'bw': 0.55}, hist_kws={'rwidth': 0.8}, color='xkcd:blood red') sb.distplot(df.T0_SIMD04[(df.T0_SIMD04.notna()) & (df.ExpGroups == 2)], ax=ax, kde=False, norm_hist=True, bins=5, kde_kws={'bw': 0.55}, hist_kws={'rwidth': 0.8}, color='xkcd:ocean blue') 1.4+0.8*4 ax.set_xlabel('SIMD04 Quintile') ax.set_xticks(np.linspace(start=1.4, stop=4.6, num=5)) ax.set_xticklabels(['1 (Least Deprived)', '2', '3', '4', '5 (Most Deprived)'], rotation=45, ha='right', fontsize=8) ax.set_ylabel('Proportion') ax.set_xlim([1, 5]) ax.legend(labels=['Not Explained', 'Explained'], bbox_to_anchor=(1.25, 1), loc=1) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) fig1.savefig('output/3_SNSSSocioeconomicGroups.pdf', dpi=300, format='pdf', pad_inches=0.1, bbox_inches='tight') plt.close() # Figure 2: Does SIMD correlate with socioeconomic questions in SNSS and are outcomes different? contOutcomes = ['T0_PHQNeuro28_Total', 'T0_HADS', 'T0_SF12_NormedMCS', 'T0_SF12_NormedPCS', 'T0T2_PHQNeuro28_Total', 'T0T2_HADS', 'T0T2_SF12_NormedMCS', 'T0T2_SF12_NormedPCS'] catOutcomes = ['T0_Inemployment', 'T0_IncapacityBenefitorDLA', 'T2_poorIPS', 'T2_poorCGI'] ylabels = ['Symptom Count (Baseline)', 'HADS Score (Baseline)', 'SF12 MCS (Baseline)', 'SF12 PCS (Baseline)', 'Symptom Count (12 Month Change)', 'HADS Score (12 Month Change)', 'SF12 MCS (12 Month Change)', 'SF12 PCS (12 Month Change)', '% in Employment (Baseline)', '% in Receipt of DLA (Baseline)', '% Reporting Poor IPS (12 Months)', '% Reporting Poor CGI (12 Months)'] fig2 = plt.figure(num=1, figsize=(16, 12), dpi=200, frameon=False) i = 0 ax = [] for o in contOutcomes: ax.append(fig2.add_subplot(3, 4, i+1)) sb.boxplot(x='ExpGroups', y=o, hue='T0_SIMD04', data=df, ax=ax[i], palette=sb.cubehelix_palette(5, start=0, reverse=False), flierprops={'marker': '+'}) ax[i].set_xticklabels(labels=['Unexplained', 'Explained']) ax[i].set_ylabel(ylabels[i]) if i == 3: handles, _ = ax[i].get_legend_handles_labels() ax[i].legend(handles=handles, labels=['1 (Least Deprived)', '2', '3', '4', '5 (Most Deprived)'], bbox_to_anchor=(1.55, 1), loc=1) else: ax[i].legend_.remove() i = i+1 for o in catOutcomes: ax.append(fig2.add_subplot(3, 4, i+1)) sb.barplot(x='ExpGroups', y=o, hue='T0_SIMD04', data=df, palette=sb.cubehelix_palette(5, start=0, reverse=False), ax=ax[i]) ax[i].set_ylabel(ylabels[i]) ax[i].set_xticklabels(labels=['Unexplained', 'Explained']) ax[i].set_ylim([0, 1]) ax[i].legend_.remove() i = i+1 fig2.subplots_adjust(wspace=0.3, hspace=0.3) fig2.savefig('output/3_SNSSSocioeconomicAssessment.pdf', dpi=300, format='pdf', pad_inches=0.1, bbox_inches='tight') plt.close() # Figure 3: Do individual domains differ in outcome (!!! Not population weighted) for Y in ['T0_Inemployment', 'T0_IncapacityBenefitorDLA', 'T2_poorCGI']: fig3 = plt.figure(num=1, figsize=(9, 6), dpi=200, frameon=False) i = 0 ax = [] domains = ['inc', 'emp', 'hlth', 'educ', 'access', 'house'] for d in domains: ax.append(fig3.add_subplot(2, 3, i+1)) sb.barplot(x='ExpGroups', y=Y, hue='T0_SIMD04_' + d + '_quintile', data=df, palette=sb.cubehelix_palette(5, start=0, reverse=False), ax=ax[i]) # ax[i].set_ylabel(ylabels[i]) ax[i].set_xticklabels(labels=['Unexplained', 'Explained']) ax[i].set_ylim([0, 1]) ax[i].legend_.remove() ax[i].set_title(d) i = i+1 fig3.subplots_adjust(wspace=0.3, hspace=0.3) plt.close() # sb.violinplot(x='ExpGroups', y='T0_SIMD04_access_score', hue='T2_SymptomsChange', # palette=sb.cubehelix_palette(5, start=2, reverse=True), data=df) fig3.savefig('output/3_SNSSSocioeconomicDomainsAssessment_' + Y + '.pdf', dpi=300, format='pdf', pad_inches=0.1, bbox_inches='tight') return def performanceMetrics(trainDat, evalDat): """ General function for assessing training vs eval performance Takes two arrays of Nx2 size. Each array is made up of a TRUE label [0] and a PREDICTED Score [1], the arrays are training and eval. The function computes binary or multivariate performance metrics and outputs a dictionary. Args: trainDat: An Nx2 array of true labels and predicted scores for the training set. evalDat: An Nx2 array of true labels and predicted scores for the eval set. Returns: perfDict: A dictionary which includes the original scores and labels as well as all computed metrics. Raises: NONE """ perfDict = {} nClasses = len(np.unique(trainDat[0])) dLabels = ['train', 'eval'] i = 0 for d in [trainDat, evalDat]: true = d[0] score = d[1] if nClasses == 2: # If binary classification problem... perfDict['problemType'] = 'binaryProblem' # Calculate 'optimal' ROC operating threshold to assign binary pred. fpr, tpr, t = roc_curve(true, score) optimalIdx = np.argmax(tpr - fpr) optimalThreshold = t[optimalIdx] pred = np.reshape((score >= optimalThreshold).astype(int), [len(score), ]) # Compute Accuracy Scores Acc = accuracy_score(true, pred, normalize=True) Auroc = roc_auc_score(true, score) R2 = r2_score(true, pred) f1 = f1_score(true, pred) precision = precision_score(true, pred, average='binary') recall = recall_score(true, pred, average='binary') CM = confusion_matrix(true, pred) TN = CM[0][0] TP = CM[1][1] FN = CM[1][0] FP = CM[0][1] Sens = TP/(TP+FN) Spec = TN/(TN+FP) perfDict[dLabels[i] + 'True'] = true perfDict[dLabels[i] + 'Pred'] = pred perfDict[dLabels[i] + 'Score'] = score perfDict[dLabels[i] + 'Acc'] = Acc perfDict[dLabels[i] + 'Auroc'] = Auroc perfDict[dLabels[i] + 'R2'] = R2 perfDict[dLabels[i] + 'F1'] = f1 perfDict[dLabels[i] + 'Precision'] = precision perfDict[dLabels[i] + 'Recall'] = recall perfDict[dLabels[i] + 'CM'] = CM perfDict[dLabels[i] + 'Sens'] = Sens perfDict[dLabels[i] + 'Spec'] = Spec perfDict[dLabels[i] + 'OperatingThreshold'] = optimalThreshold i += 1 else: # If multiclass classification problem... perfDict['problemType'] = 'multiClassProblem' pred = np.argmax(score, axis=1) Acc = accuracy_score(true, pred, normalize=True) CM = confusion_matrix(true, pred) microPrecision = precision_score(true, pred, average='micro') microRecall = recall_score(true, pred, average='micro') macroPrecision = precision_score(true, pred, average='macro') macroRecall = recall_score(true, pred, average='macro') # microAuroc = roc_auc_score(true, score, average='micro') # macroAuroc = roc_auc_score(true, score, average='macro') perfDict[dLabels[i] + 'True'] = true perfDict[dLabels[i] + 'Pred'] = pred perfDict[dLabels[i] + 'Score'] = score perfDict[dLabels[i] + 'Acc'] = Acc perfDict[dLabels[i] + 'CM'] = CM perfDict[dLabels[i] + 'Precision'] = microPrecision perfDict[dLabels[i] + 'Recall'] = microRecall perfDict[dLabels[i] + 'MicroPrecision'] = microPrecision perfDict[dLabels[i] + 'MicroRecall'] = microRecall perfDict[dLabels[i] + 'MacroPrecision'] = macroPrecision perfDict[dLabels[i] + 'MacroRecall'] = macroRecall # perfDict[dLabels[i] + 'Auroc'] = microAuroc # perfDict[dLabels[i] + 'MicroAuroc'] = microAuroc # perfDict[dLabels[i] + 'MacroAuroc'] = macroAuroc i += 1 return perfDict def UVLogisticRegression_v2(df, featureSet, outcomeVar, featMetaData, featDataTypeDict, dummyExceptionDict, trainIdx=[], evalIdx=[]): """ Conducts univariable logistic regression for every variable in the feature set. Takes a dataframe, feature set and outcome variable and conducts univariable logistic modelling. Args: df: The pandas dataframe object featureSet: The names of columns to be assess as inputs into the model. (Exog) outcomeVar: The outcome variable. (Endog) featMetaData: Feature meta data for constructing legible tables etc. featDataTypeDict: Feature data type dictionary e.g. discrete vs continuous. NOTE variables will be treated as per this in the models discrete variables will be dummy encoded automatically. dummyExceptionDict: A dictionary of variables and the value to use as the dummy variable if not the first. trainIdx: Dataframe indices for observations to be used for training. If empty all will be used. evalIdx: Dataframe indices for observations to be used for evaluation. If empty all will be used. Returns: UVMdlExportT: Returns the model results in a table of OR CIs and p-values. mdlArray: Returns an array of statsmodels regression objects. modelSummaryInfoDict: A dict of dictionaries containing summary statistics about each model. Raises: NONE """ mdlExportTArray = [] mdlArray = [] modelSummaryInfoDict = {} for P in featureSet: # For each feature construct k-1 dummy array and construct model. # Exclude missing data from featureSet subset rDat = df.dropna(subset=[P] + [outcomeVar]) # Initialise feat & outcome arrays outcome = np.asarray(rDat[outcomeVar]).astype(int) # Initialise outcome array, MUST BE BINARY feats = np.ones([len(rDat), 1]).astype(int) # Initialise dummy feat array with constant featNames = ['constant'] # Initialise dummy featNames array with constant featNameIndex = ['constant'] sigTestIdx = {} modelSummaryInfo = {} if featDataTypeDict[P] in ['nominal', 'binary']: if rDat[P].dtype.name != 'category': # If not a categorical then convert... rDat[P] = pd.Categorical(rDat[P]) # Drop single category as constant. # Decision based on dummy exception dict, defaults to first category. try: X = pd.get_dummies(rDat[P], drop_first=False).drop(axis=1, columns=dummyExceptionDict[P]) except (KeyError) as err: X =
pd.get_dummies(rDat[P], drop_first=True)
pandas.get_dummies
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day, prev_market_trade_day from qteasy.utilfuncs import next_market_trade_day from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator from qteasy.history import stack_dataframes from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.database import DataSource from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000, 20000, 10000]) self.op = np.array([0, 1, -0.33333333]) self.prices = np.array([10, 20, 10]) self.r = qt.Cost() def test_rate_creation(self): print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') def test_rate_operations(self): self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """Test transaction cost calculated by rate with min_fee""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31'), Timestamp('2031-12-29'), Timestamp('2032-12-29'), Timestamp('2033-12-29'), Timestamp('2034-12-29'), Timestamp('2035-12-29'), Timestamp('2036-12-29'), Timestamp('2037-12-29'), Timestamp('2038-12-29'), Timestamp('2039-12-29'), Timestamp('2040-12-29'), Timestamp('2041-12-29'), Timestamp('2042-12-29')]) self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31')]) self.assertEqual(cp_mul_float2.amounts, [20000.0, 22000.0, 24000.0, 26000.0, 28000.0, 30000.0, 32000.0, 34000.0, 36000.0, 38000.0, 40000.0, 42000.0]) class TestPool(unittest.TestCase): def setUp(self): self.p = ResultPool(5) self.items = ['first', 'second', (1, 2, 3), 'this', 24] self.perfs = [1, 2, 3, 4, 5] self.additional_result1 = ('abc', 12) self.additional_result2 = ([1, 2], -1) self.additional_result3 = (12, 5) def test_create(self): self.assertIsInstance(self.p, ResultPool) def test_operation(self): self.p.in_pool(self.additional_result1[0], self.additional_result1[1]) self.p.cut() self.assertEqual(self.p.item_count, 1) self.assertEqual(self.p.items, ['abc']) for item, perf in zip(self.items, self.perfs): self.p.in_pool(item, perf) self.assertEqual(self.p.item_count, 6) self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24]) self.p.cut() self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc']) self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12]) self.p.in_pool(self.additional_result2[0], self.additional_result2[1]) self.p.in_pool(self.additional_result3[0], self.additional_result3[1]) self.assertEqual(self.p.item_count, 7) self.p.cut(keep_largest=False) self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24]) self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5]) class TestCoreSubFuncs(unittest.TestCase): """Test all functions in core.py""" def setUp(self): pass def test_input_to_list(self): print('Testing input_to_list() function') input_str = 'first' self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first']) input_list = ['first', 'second'] self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None]) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second']) def test_point_in_space(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) p2 = (-1, 3, 10) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') self.assertFalse(p2 in sp) print(f'point {p2} is not in space {sp}') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum') p1 = (5.5, 3.2, 8) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') def test_space_in_space(self): print('test if a space is in another space') sp = Space([(0., 10.), (0., 10.), (0., 10.)]) sp2 = Space([(0., 10.), (0., 10.), (0., 10.)]) self.assertTrue(sp2 in sp) self.assertTrue(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is in space {sp2}\n' f'they are equal to each other\n') sp2 = Space([(0, 5.), (2, 7.), (3., 9.)]) self.assertTrue(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'{sp2} is a sub space of {sp}\n') sp2 = Space([(0, 5), (2, 7), (3., 9)]) self.assertFalse(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)]) self.assertFalse(sp in sp2) self.assertFalse(sp2 in sp) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') def test_space_around_centre(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) ssp = space_around_centre(space=sp, centre=p1, radius=1.2) print(ssp.boes) print('\ntest multiple diameters:') self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)]) ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1]) print(ssp.boes) self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)]) print('\ntest points on edge:') p2 = (5.5, 3.2, 10) ssp = space_around_centre(space=sp, centre=p1, radius=3.9) print(ssp.boes) self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)]) print('\ntest enum spaces') sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum') p1 = [34, 12] ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False) self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(ssp.boes) print('\ntest enum space and ignore enum axis') ssp = space_around_centre(space=sp, centre=p1, radius=5) self.assertEqual(ssp.boes, [(29, 39), (40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(sp.boes) def test_time_string_format(self): print('Testing qt.time_string_format() function:') t = 3.14 self.assertEqual(time_str_format(t), '3s 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '3s ') self.assertEqual(time_str_format(t, short_form=True), '3"140') self.assertEqual(time_str_format(t, estimation=True, short_form=True), '3"') t = 300.14 self.assertEqual(time_str_format(t), '5min 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '5min ') self.assertEqual(time_str_format(t, short_form=True), "5'140") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "5'") t = 7435.0014 self.assertEqual(time_str_format(t), '2hrs 3min 55s 1.4ms') self.assertEqual(time_str_format(t, estimation=True), '2hrs ') self.assertEqual(time_str_format(t, short_form=True), "2H3'55\"001") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "2H") t = 88425.0509 self.assertEqual(time_str_format(t), '1days 33min 45s 50.9ms') self.assertEqual(time_str_format(t, estimation=True), '1days ') self.assertEqual(time_str_format(t, short_form=True), "1D33'45\"051") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "1D") def test_get_stock_pool(self): print(f'start test building stock pool function\n') share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange') print(f'\nselect all stocks by area') stock_pool = qt.get_stock_pool(area='上海') print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "上海"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all()) print(f'\nselect all stocks by multiple areas') stock_pool = qt.get_stock_pool(area='贵州,北京,天津') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州', '北京', '天津']).all()) print(f'\nselect all stocks by area and industry') stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all()) print(f'\nselect all stocks by industry') stock_pool = qt.get_stock_pool(industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stocks industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) print(f'\nselect all stocks by market') stock_pool = qt.get_stock_pool(market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) print(f'\nselect all stocks by market and list date') stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板", and list date after "2000-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all()) print(f'\nselect all stocks by list date') stock_pool = qt.get_stock_pool(date='1997-01-01') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all list date after "1997-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all()) print(f'\nselect all stocks by exchange') stock_pool = qt.get_stock_pool(exchange='SSE') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all()) print(f'\nselect all stocks by industry, area and list date') industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产', '酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃', '家用电器', '文教休闲', '其他商业', '元器件', 'IT设备', '其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件', '广告包装', '轻工机械', '新型电力', '多元金融', '饲料'] area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东', '安徽', '四川', '浙江', '湖南', '河北', '新疆', '山东', '河南', '山西', '江西', '青海', '湖北', '内蒙', '海南', '重庆', '陕西', '福建', '广西', '上海'] stock_pool = qt.get_stock_pool(date='19980101', industry=industry_list, area=area_list) print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all()) self.assertRaises(KeyError, qt.get_stock_pool, industry=25) self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH') self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE') class TestEvaluations(unittest.TestCase): """Test all evaluation functions in core.py""" # 以下手动计算结果在Excel文件中 def setUp(self): """用np.random生成测试用数据,使用cumsum()模拟股票走势""" self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632, 6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665, 5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353, 5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677, 6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763, 6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003, 6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674, 6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109, 6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144, 6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523, 7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968, 7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015, 6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645, 6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041, 7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393, 6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693, 6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466, 6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206, 7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462, 7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474], columns=['value']) self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451, 4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551, 3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935, 4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529, 5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168, 5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151, 6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831, 5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697, 5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713, 6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168, 6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113, 7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161, 7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005, 7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395, 8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815, 9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222, 8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021, 10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045, 10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092, 10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375], columns=['value']) self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371, 5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247, 4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319, 5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386, 5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695, 5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783, 6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396, 6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263, 7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014, 8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943, 7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287, 7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519, 7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632, 6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015, 7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434, 7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561, 7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528, 8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364, 9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389, 7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113], columns=['value']) self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553, 5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749, 5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618, 6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379, 5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611, 5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266, 5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379, 5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577, 5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352, 5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863, 4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182, 6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794, 8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649, 8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245, 8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745, 8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872, 7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188, 7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091, 8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692, 8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591], columns=['value']) self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985, 3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051, 4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605, 3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158, 5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314, 5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908, 4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813, 4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576, 4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319, 4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746, 4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855, 3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401, 2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161, 3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979, 4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663, 4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156, 4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156, 5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017, 5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567, 4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048], columns=['value']) self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183, 4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482, 3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346, 3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872, 2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475, 2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111, 2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127, 2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959, 2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542, 2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246, 2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177, 1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791, 2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206, 1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998, 1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648, 1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546, 2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031, 3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406, 2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045, 3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795], columns=['value']) self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892, 4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953, 3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557, 4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126, 4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498, 4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741, 2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962, 1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663, 1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681, 1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759, 1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655, 1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128, 2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182, 3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017, 3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012, 3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199, 3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838, 3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759, 2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191, 3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313], columns=['value']) # 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程 self.long_data = pd.DataFrame([ 9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288, 10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4 , 10.87 , 11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423, 12.19 , 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239, 11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97 , 12.178, 11.95 , 12.438, 12.612, 12.804, 12.952, 12.612, 12.867, 12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64 , 12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871, 12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649, 12.252, 12.579, 12.3 , 11.988, 12.177, 12.312, 12.744, 12.599, 12.524, 12.82 , 12.67 , 12.876, 12.986, 13.271, 13.606, 13.82 , 14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759, 12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655, 13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391, 12.923, 12.555, 12.503, 12.292, 11.877, 12.34 , 12.141, 11.687, 11.992, 12.458, 12.131, 11.75 , 11.739, 11.263, 11.762, 11.976, 11.578, 11.854, 12.136, 12.422, 12.311, 12.56 , 12.879, 12.861, 12.973, 13.235, 13.53 , 13.531, 13.137, 13.166, 13.31 , 13.103, 13.007, 12.643, 12.69 , 12.216, 12.385, 12.046, 12.321, 11.9 , 11.772, 11.816, 11.871, 11.59 , 11.518, 11.94 , 11.803, 11.924, 12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388, 11.874, 12.184, 12.002, 12.16 , 11.741, 11.26 , 11.123, 11.534, 11.777, 11.407, 11.275, 11.679, 11.62 , 11.218, 11.235, 11.352, 11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475, 11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89 , 10.728, 11.191, 11.646, 11.62 , 11.195, 11.178, 11.18 , 10.956, 11.205, 10.87 , 11.098, 10.639, 10.487, 10.507, 10.92 , 10.558, 10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726, 10.116, 10.452, 10.77 , 11.225, 10.92 , 10.824, 11.096, 11.542, 11.06 , 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285, 10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239, 9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55 , 9.008, 9.138, 9.088, 9.434, 9.156, 9.65 , 9.431, 9.654, 10.079, 10.411, 10.865, 10.51 , 10.205, 10.519, 10.367, 10.855, 10.642, 10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597, 9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332, 10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72 , 12.158, 12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11 , 13.53 , 13.123, 13.138, 13.57 , 13.389, 13.511, 13.759, 13.698, 13.744, 13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073, 12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811, 12.163, 11.86 , 11.935, 11.809, 12.145, 12.624, 12.768, 12.321, 12.277, 11.889, 12.11 , 12.606, 12.943, 12.945, 13.112, 13.199, 13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086, 15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215, 16.096, 16.089, 16.32 , 16.59 , 16.657, 16.752, 16.583, 16.743, 16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225, 17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588, 17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148, 17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729, 17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493, 18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391, 17.988, 17.986, 17.653, 17.249, 17.298, 17.06 , 17.36 , 17.108, 17.348, 17.596, 17.46 , 17.635, 17.275, 17.291, 16.933, 17.337, 17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64 , 16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67 , 15.911, 16.077, 16.17 , 15.722, 15.258, 14.877, 15.138, 15. , 14.811, 14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453, 15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698, 16.365, 16.493, 16.973, 16.71 , 16.327, 16.605, 16.486, 16.846, 16.935, 17.21 , 17.389, 17.546, 17.773, 17.641, 17.485, 17.794, 17.354, 16.904, 16.675, 16.43 , 16.898, 16.819, 16.921, 17.201, 17.617, 17.368, 17.864, 17.484], columns=['value']) self.long_bench = pd.DataFrame([ 9.7 , 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662, 10.59 , 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252, 10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55 , 10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379, 11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034, 12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91 , 13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97 , 14.228, 13.84 , 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987, 13.611, 14.028, 14.229, 14.41 , 14.74 , 15.03 , 14.915, 15.207, 15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893, 14.86 , 15.097, 15.178, 15.293, 15.238, 15. , 15.283, 14.994, 14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802, 14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978, 15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465, 16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292, 16.551, 16.724, 16.817, 16.81 , 17.192, 16.86 , 16.745, 16.707, 16.552, 16.133, 16.301, 16.08 , 15.81 , 15.75 , 15.909, 16.127, 16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831, 16.653, 16.791, 16.57 , 16.778, 16.928, 16.932, 17.22 , 16.876, 17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669, 17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412, 17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95 , 16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781, 15.583, 15.36 , 15.558, 16.046, 15.968, 15.905, 16.358, 16.783, 17.048, 16.762, 17.224, 17.363, 17.246, 16.79 , 16.608, 16.423, 15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046, 15.429, 14.999, 15.407, 15.124, 14.72 , 14.713, 15.022, 15.092, 14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483, 15.472, 15.277, 15.503, 15.116, 15.12 , 15.442, 15.476, 15.789, 15.36 , 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645, 16.336, 16.511, 16.2 , 15.994, 15.86 , 15.929, 16.316, 16.416, 16.746, 17.173, 17.531, 17.627, 17.407, 17.49 , 17.768, 17.509, 17.795, 18.147, 18.63 , 18.945, 19.021, 19.518, 19.6 , 19.744, 19.63 , 19.32 , 18.933, 19.297, 19.598, 19.446, 19.236, 19.198, 19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3 , 17.894, 17.744, 17.5 , 17.083, 17.092, 16.864, 16.453, 16.31 , 16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673, 16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162, 15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039, 13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93 , 14.104, 14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019, 14.265, 14.67 , 14.797, 14.42 , 14.681, 15.16 , 14.715, 14.292, 14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294, 13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32 , 13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362, 13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404, 13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649, 12.425, 11.967, 12.062, 11.71 , 11.645, 12.058, 12.136, 11.749, 11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244, 10.864, 11.207, 11.135, 11.39 , 11.723, 12.084, 11.8 , 11.471, 11.33 , 11.504, 11.295, 11.3 , 10.901, 10.494, 10.825, 11.054, 10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94 , 10.521, 10.36 , 10.411, 10.792, 10.472, 10.305, 10.525, 10.853, 10.556, 10.72 , 10.54 , 10.583, 10.299, 10.061, 10.004, 9.903, 9.796, 9.472, 9.246, 9.54 , 9.456, 9.177, 9.484, 9.557, 9.493, 9.968, 9.536, 9.39 , 8.922, 8.423, 8.518, 8.686, 8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996, 9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4 , 9.332, 9.34 , 9.284, 8.844, 8.722, 8.376, 8.775, 8.293, 8.144, 8.63 , 8.831, 8.957, 9.18 , 9.601, 9.695, 10.018, 9.841, 9.743, 9.292, 8.85 , 9.316, 9.288, 9.519, 9.738, 9.289, 9.785, 9.804, 10.06 , 10.188, 10.095, 9.739, 9.881, 9.7 , 9.991, 10.391, 10.002], columns=['value']) def test_performance_stats(self): """test the function performance_statistics() """ pass def test_fv(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474) self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375) self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113) self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591) self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048) self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795) self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313) self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) def test_max_drawdown(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308) self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53) self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849) self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10) self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19) self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899) self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90) self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684) self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50) self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54) self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456) self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21) self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689) self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449) self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17) self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3])) self.assertEqual(eval_max_drawdown(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) # test max drawdown == 0: # TODO: investigate: how does divide by zero change? self.assertAlmostEqual(eval_max_drawdown(self.test_data4 - 5)[0], 1.0770474121951792) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[2], 50) def test_info_ratio(self): reference = self.test_data1 self.assertAlmostEqual(eval_info_ratio(self.test_data2, reference, 'value'), 0.075553316) self.assertAlmostEqual(eval_info_ratio(self.test_data3, reference, 'value'), 0.018949457) self.assertAlmostEqual(eval_info_ratio(self.test_data4, reference, 'value'), 0.056328143) self.assertAlmostEqual(eval_info_ratio(self.test_data5, reference, 'value'), -0.004270068) self.assertAlmostEqual(eval_info_ratio(self.test_data6, reference, 'value'), 0.009198027) self.assertAlmostEqual(eval_info_ratio(self.test_data7, reference, 'value'), -0.000890283) def test_volatility(self): self.assertAlmostEqual(eval_volatility(self.test_data1), 0.748646166) self.assertAlmostEqual(eval_volatility(self.test_data2), 0.75527442) self.assertAlmostEqual(eval_volatility(self.test_data3), 0.654188853) self.assertAlmostEqual(eval_volatility(self.test_data4), 0.688375814) self.assertAlmostEqual(eval_volatility(self.test_data5), 1.089989522) self.assertAlmostEqual(eval_volatility(self.test_data6), 1.775419308) self.assertAlmostEqual(eval_volatility(self.test_data7), 1.962758406) self.assertAlmostEqual(eval_volatility(self.test_data1, logarithm=False), 0.750993311) self.assertAlmostEqual(eval_volatility(self.test_data2, logarithm=False), 0.75571473) self.assertAlmostEqual(eval_volatility(self.test_data3, logarithm=False), 0.655331424) self.assertAlmostEqual(eval_volatility(self.test_data4, logarithm=False), 0.692683021) self.assertAlmostEqual(eval_volatility(self.test_data5, logarithm=False), 1.09602969) self.assertAlmostEqual(eval_volatility(self.test_data6, logarithm=False), 1.774789504) self.assertAlmostEqual(eval_volatility(self.test_data7, logarithm=False), 2.003329156) self.assertEqual(eval_volatility(pd.DataFrame()), -np.inf) self.assertRaises(AssertionError, eval_volatility, [1, 2, 3]) # 测试长数据的Volatility计算 expected_volatility = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.39955371, 0.39974258, 0.40309866, 0.40486593, 0.4055514 , 0.40710639, 0.40708157, 0.40609006, 0.4073625 , 0.40835305, 0.41155304, 0.41218193, 0.41207489, 0.41300276, 0.41308415, 0.41292392, 0.41207645, 0.41238397, 0.41229291, 0.41164056, 0.41316317, 0.41348842, 0.41462249, 0.41474574, 0.41652625, 0.41649176, 0.41701556, 0.4166593 , 0.41684221, 0.41491689, 0.41435209, 0.41549087, 0.41849338, 0.41998049, 0.41959106, 0.41907311, 0.41916103, 0.42120773, 0.42052391, 0.42111225, 0.42124589, 0.42356445, 0.42214672, 0.42324022, 0.42476639, 0.42621689, 0.42549439, 0.42533678, 0.42539414, 0.42545038, 0.42593637, 0.42652095, 0.42665489, 0.42699563, 0.42798159, 0.42784512, 0.42898006, 0.42868781, 0.42874188, 0.42789631, 0.4277768 , 0.42776827, 0.42685216, 0.42660989, 0.42563155, 0.42618281, 0.42606281, 0.42505222, 0.42653242, 0.42555378, 0.42500842, 0.42561939, 0.42442059, 0.42395414, 0.42384356, 0.42319135, 0.42397497, 0.42488579, 0.42449729, 0.42508766, 0.42509878, 0.42456616, 0.42535577, 0.42681884, 0.42688552, 0.42779918, 0.42706058, 0.42792887, 0.42762114, 0.42894045, 0.42977398, 0.42919859, 0.42829041, 0.42780946, 0.42825318, 0.42858952, 0.42858315, 0.42805601, 0.42764751, 0.42744107, 0.42775518, 0.42707283, 0.4258592 , 0.42615335, 0.42526286, 0.4248906 , 0.42368986, 0.4232565 , 0.42265079, 0.42263954, 0.42153046, 0.42132051, 0.41995353, 0.41916605, 0.41914271, 0.41876945, 0.41740175, 0.41583884, 0.41614026, 0.41457908, 0.41472411, 0.41310876, 0.41261041, 0.41212369, 0.41211677, 0.4100645 , 0.40852504, 0.40860297, 0.40745338, 0.40698661, 0.40644546, 0.40591375, 0.40640744, 0.40620663, 0.40656649, 0.40727154, 0.40797605, 0.40807137, 0.40808913, 0.40809676, 0.40711767, 0.40724628, 0.40713077, 0.40772698, 0.40765157, 0.40658297, 0.4065991 , 0.405011 , 0.40537645, 0.40432626, 0.40390177, 0.40237701, 0.40291623, 0.40301797, 0.40324145, 0.40312864, 0.40328316, 0.40190955, 0.40246506, 0.40237663, 0.40198407, 0.401969 , 0.40185623, 0.40198313, 0.40005643, 0.39940743, 0.39850438, 0.39845398, 0.39695093, 0.39697295, 0.39663201, 0.39675444, 0.39538699, 0.39331959, 0.39326074, 0.39193287, 0.39157266, 0.39021327, 0.39062591, 0.38917591, 0.38976991, 0.38864187, 0.38872158, 0.38868096, 0.38868377, 0.38842057, 0.38654784, 0.38649517, 0.38600464, 0.38408115, 0.38323049, 0.38260215, 0.38207663, 0.38142669, 0.38003262, 0.37969367, 0.37768092, 0.37732108, 0.37741991, 0.37617779, 0.37698504, 0.37606784, 0.37499276, 0.37533731, 0.37350437, 0.37375172, 0.37385382, 0.37384003, 0.37338938, 0.37212288, 0.37273075, 0.370559 , 0.37038506, 0.37062153, 0.36964661, 0.36818564, 0.3656634 , 0.36539259, 0.36428672, 0.36502487, 0.3647148 , 0.36551435, 0.36409919, 0.36348181, 0.36254383, 0.36166601, 0.36142665, 0.35954942, 0.35846915, 0.35886759, 0.35813867, 0.35642888, 0.35375231, 0.35061783, 0.35078463, 0.34995508, 0.34688918, 0.34548257, 0.34633158, 0.34622833, 0.34652111, 0.34622774, 0.34540951, 0.34418809, 0.34276593, 0.34160916, 0.33811193, 0.33822709, 0.3391685 , 0.33883381]) test_volatility = eval_volatility(self.long_data) test_volatility_roll = self.long_data['volatility'].values self.assertAlmostEqual(test_volatility, np.nanmean(expected_volatility)) self.assertTrue(np.allclose(expected_volatility, test_volatility_roll, equal_nan=True)) def test_sharp(self): self.assertAlmostEqual(eval_sharp(self.test_data1, 5, 0), 0.06135557) self.assertAlmostEqual(eval_sharp(self.test_data2, 5, 0), 0.167858667) self.assertAlmostEqual(eval_sharp(self.test_data3, 5, 0), 0.09950547) self.assertAlmostEqual(eval_sharp(self.test_data4, 5, 0), 0.154928241) self.assertAlmostEqual(eval_sharp(self.test_data5, 5, 0.002), 0.007868673) self.assertAlmostEqual(eval_sharp(self.test_data6, 5, 0.002), 0.018306537) self.assertAlmostEqual(eval_sharp(self.test_data7, 5, 0.002), 0.006259971) # 测试长数据的sharp率计算 expected_sharp = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.02346815, -0.02618783, -0.03763912, -0.03296276, -0.03085698, -0.02851101, -0.02375842, -0.02016746, -0.01107885, -0.01426613, -0.00787204, -0.01135784, -0.01164232, -0.01003481, -0.00022512, -0.00046792, -0.01209378, -0.01278892, -0.01298135, -0.01938214, -0.01671044, -0.02120509, -0.0244281 , -0.02416067, -0.02763238, -0.027579 , -0.02372774, -0.02215294, -0.02467094, -0.02091266, -0.02590194, -0.03049876, -0.02077131, -0.01483653, -0.02488144, -0.02671638, -0.02561547, -0.01957986, -0.02479803, -0.02703162, -0.02658087, -0.01641755, -0.01946472, -0.01647757, -0.01280889, -0.00893643, -0.00643275, -0.00698457, -0.00549962, -0.00654677, -0.00494757, -0.0035633 , -0.00109037, 0.00750654, 0.00451208, 0.00625502, 0.01221367, 0.01326454, 0.01535037, 0.02269538, 0.02028715, 0.02127712, 0.02333264, 0.02273159, 0.01670643, 0.01376513, 0.01265342, 0.02211647, 0.01612449, 0.00856706, -0.00077147, -0.00268848, 0.00210993, -0.00443934, -0.00411912, -0.0018756 , -0.00867461, -0.00581601, -0.00660835, -0.00861137, -0.00678614, -0.01188408, -0.00589617, -0.00244323, -0.00201891, -0.01042846, -0.01471016, -0.02167034, -0.02258554, -0.01306809, -0.00909086, -0.01233746, -0.00595166, -0.00184208, 0.00750497, 0.01481886, 0.01761972, 0.01562886, 0.01446414, 0.01285826, 0.01357719, 0.00967613, 0.01636272, 0.01458437, 0.02280183, 0.02151903, 0.01700276, 0.01597368, 0.02114336, 0.02233297, 0.02585631, 0.02768459, 0.03519235, 0.04204535, 0.04328161, 0.04672855, 0.05046191, 0.04619848, 0.04525853, 0.05381529, 0.04598861, 0.03947394, 0.04665006, 0.05586077, 0.05617728, 0.06495018, 0.06205172, 0.05665466, 0.06500615, 0.0632062 , 0.06084328, 0.05851466, 0.05659229, 0.05159347, 0.0432977 , 0.0474047 , 0.04231723, 0.03613176, 0.03618391, 0.03591012, 0.03885674, 0.0402686 , 0.03846423, 0.04534014, 0.04721458, 0.05130912, 0.05026281, 0.05394312, 0.05529349, 0.05949243, 0.05463304, 0.06195165, 0.06767606, 0.06880985, 0.07048996, 0.07078815, 0.07420767, 0.06773439, 0.0658441 , 0.06470875, 0.06302349, 0.06456876, 0.06411282, 0.06216669, 0.067094 , 0.07055075, 0.07254976, 0.07119253, 0.06173308, 0.05393352, 0.05681246, 0.05250643, 0.06099845, 0.0655544 , 0.06977334, 0.06636514, 0.06177949, 0.06869908, 0.06719767, 0.06178738, 0.05915714, 0.06882277, 0.06756821, 0.06507994, 0.06489791, 0.06553941, 0.073123 , 0.07576757, 0.06805446, 0.06063571, 0.05033801, 0.05206971, 0.05540306, 0.05249118, 0.05755587, 0.0586174 , 0.05051288, 0.0564852 , 0.05757284, 0.06358355, 0.06130082, 0.04925482, 0.03834472, 0.04163981, 0.04648316, 0.04457858, 0.04324626, 0.04328791, 0.04156207, 0.04818652, 0.04972634, 0.06024123, 0.06489556, 0.06255485, 0.06069815, 0.06466389, 0.07081163, 0.07895358, 0.0881782 , 0.09374151, 0.08336506, 0.08764795, 0.09080174, 0.08808926, 0.08641158, 0.07811943, 0.06885318, 0.06479503, 0.06851185, 0.07382819, 0.07047903, 0.06658251, 0.07638379, 0.08667974, 0.08867918, 0.08245323, 0.08961866, 0.09905298, 0.0961908 , 0.08562706, 0.0839014 , 0.0849072 , 0.08338395, 0.08783487, 0.09463609, 0.10332336, 0.11806497, 0.11220297, 0.11589097, 0.11678405]) test_sharp = eval_sharp(self.long_data, 5, 0.00035) self.assertAlmostEqual(np.nanmean(expected_sharp), test_sharp) self.assertTrue(np.allclose(self.long_data['sharp'].values, expected_sharp, equal_nan=True)) def test_beta(self): reference = self.test_data1 self.assertAlmostEqual(eval_beta(self.test_data2, reference, 'value'), -0.017148939) self.assertAlmostEqual(eval_beta(self.test_data3, reference, 'value'), -0.042204233) self.assertAlmostEqual(eval_beta(self.test_data4, reference, 'value'), -0.15652986) self.assertAlmostEqual(eval_beta(self.test_data5, reference, 'value'), -0.049195532) self.assertAlmostEqual(eval_beta(self.test_data6, reference, 'value'), -0.026995082) self.assertAlmostEqual(eval_beta(self.test_data7, reference, 'value'), -0.01147809) self.assertRaises(TypeError, eval_beta, [1, 2, 3], reference, 'value') self.assertRaises(TypeError, eval_beta, self.test_data3, [1, 2, 3], 'value') self.assertRaises(KeyError, eval_beta, self.test_data3, reference, 'not_found_value') # 测试长数据的beta计算 expected_beta = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.04988841, -0.05127618, -0.04692104, -0.04272652, -0.04080598, -0.0493347 , -0.0460858 , -0.0416761 , -0.03691527, -0.03724924, -0.03678865, -0.03987324, -0.03488321, -0.02567672, -0.02690303, -0.03010128, -0.02437967, -0.02571932, -0.02455681, -0.02839811, -0.03358653, -0.03396697, -0.03466321, -0.03050966, -0.0247583 , -0.01629325, -0.01880895, -0.01480403, -0.01348783, -0.00544294, -0.00648176, -0.00467036, -0.01135331, -0.0156841 , -0.02340763, -0.02615705, -0.02730771, -0.02906174, -0.02860664, -0.02412914, -0.02066416, -0.01744816, -0.02185133, -0.02145285, -0.02681765, -0.02827694, -0.02394581, -0.02744096, -0.02778825, -0.02703065, -0.03160023, -0.03615371, -0.03681072, -0.04265126, -0.04344738, -0.04232421, -0.04705272, -0.04533344, -0.04605934, -0.05272737, -0.05156463, -0.05134196, -0.04730733, -0.04425352, -0.03869831, -0.04159571, -0.04223998, -0.04346747, -0.04229844, -0.04740093, -0.04992507, -0.04621232, -0.04477644, -0.0486915 , -0.04598224, -0.04943463, -0.05006391, -0.05362256, -0.04994067, -0.05464769, -0.05443275, -0.05513493, -0.05173594, -0.04500994, -0.04662891, -0.03903505, -0.0419592 , -0.04307773, -0.03925718, -0.03711574, -0.03992631, -0.0433058 , -0.04533641, -0.0461183 , -0.05600344, -0.05758377, -0.05959874, -0.05605942, -0.06002859, -0.06253002, -0.06747014, -0.06427915, -0.05931947, -0.05769974, -0.04791515, -0.05175088, -0.05748039, -0.05385232, -0.05072975, -0.05052637, -0.05125567, -0.05005785, -0.05325104, -0.04977727, -0.04947867, -0.05148544, -0.05739156, -0.05742069, -0.06047279, -0.0558414 , -0.06086126, -0.06265151, -0.06411129, -0.06828052, -0.06781762, -0.07083409, -0.07211207, -0.06799162, -0.06913295, -0.06775162, -0.0696265 , -0.06678248, -0.06867502, -0.06581961, -0.07055823, -0.06448184, -0.06097973, -0.05795587, -0.0618383 , -0.06130145, -0.06050652, -0.05936661, -0.05749424, -0.0499 , -0.05050495, -0.04962687, -0.05033439, -0.05070116, -0.05422009, -0.05369759, -0.05548943, -0.05907353, -0.05933035, -0.05927918, -0.06227663, -0.06011455, -0.05650432, -0.05828134, -0.05620949, -0.05715323, -0.05482478, -0.05387113, -0.05095559, -0.05377999, -0.05334267, -0.05220438, -0.04001521, -0.03892434, -0.03660782, -0.04282708, -0.04324623, -0.04127048, -0.04227559, -0.04275226, -0.04347049, -0.04125853, -0.03806295, -0.0330632 , -0.03155531, -0.03277152, -0.03304518, -0.03878731, -0.03830672, -0.03727434, -0.0370571 , -0.04509224, -0.04207632, -0.04116198, -0.04545179, -0.04584584, -0.05287341, -0.05417433, -0.05175836, -0.05005509, -0.04268674, -0.03442321, -0.03457309, -0.03613426, -0.03524391, -0.03629479, -0.04361312, -0.02626705, -0.02406115, -0.03046384, -0.03181044, -0.03375164, -0.03661673, -0.04520779, -0.04926951, -0.05726738, -0.0584486 , -0.06220608, -0.06800563, -0.06797431, -0.07562211, -0.07481996, -0.07731229, -0.08413381, -0.09031826, -0.09691925, -0.11018071, -0.11952675, -0.10826026, -0.11173895, -0.10756359, -0.10775916, -0.11664559, -0.10505051, -0.10606547, -0.09855355, -0.10004159, -0.10857084, -0.12209301, -0.11605758, -0.11105113, -0.1155195 , -0.11569505, -0.10513348, -0.09611072, -0.10719791, -0.10843965, -0.11025856, -0.10247839, -0.10554044, -0.10927647, -0.10645088, -0.09982498, -0.10542734, -0.09631372, -0.08229695]) test_beta_mean = eval_beta(self.long_data, self.long_bench, 'value') test_beta_roll = self.long_data['beta'].values self.assertAlmostEqual(test_beta_mean, np.nanmean(expected_beta)) self.assertTrue(np.allclose(test_beta_roll, expected_beta, equal_nan=True)) def test_alpha(self): reference = self.test_data1 self.assertAlmostEqual(eval_alpha(self.test_data2, 5, reference, 'value', 0.5), 11.63072977) self.assertAlmostEqual(eval_alpha(self.test_data3, 5, reference, 'value', 0.5), 1.886590071) self.assertAlmostEqual(eval_alpha(self.test_data4, 5, reference, 'value', 0.5), 6.827021872) self.assertAlmostEqual(eval_alpha(self.test_data5, 5, reference, 'value', 0.92), -1.192265168) self.assertAlmostEqual(eval_alpha(self.test_data6, 5, reference, 'value', 0.92), -1.437142359) self.assertAlmostEqual(eval_alpha(self.test_data7, 5, reference, 'value', 0.92), -1.781311545) # 测试长数据的alpha计算 expected_alpha = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.09418119, -0.11188463, -0.17938358, -0.15588172, -0.1462678 , -0.13089586, -0.10780125, -0.09102891, -0.03987585, -0.06075686, -0.02459503, -0.04104284, -0.0444565 , -0.04074585, 0.02191275, 0.02255955, -0.05583375, -0.05875539, -0.06055551, -0.09648245, -0.07913737, -0.10627829, -0.12320965, -0.12368335, -0.1506743 , -0.15768033, -0.13638829, -0.13065298, -0.14537834, -0.127428 , -0.15504529, -0.18184636, -0.12652146, -0.09190138, -0.14847221, -0.15840648, -0.1525789 , -0.11859418, -0.14700954, -0.16295761, -0.16051645, -0.10364859, -0.11961134, -0.10258267, -0.08090148, -0.05727746, -0.0429945 , -0.04672356, -0.03581408, -0.0439215 , -0.03429495, -0.0260362 , -0.01075022, 0.04931808, 0.02779388, 0.03984083, 0.08311951, 0.08995566, 0.10522428, 0.16159058, 0.14238174, 0.14759783, 0.16257712, 0.158908 , 0.11302115, 0.0909566 , 0.08272888, 0.15261884, 0.10546376, 0.04990313, -0.01284111, -0.02720704, 0.00454725, -0.03965491, -0.03818265, -0.02186992, -0.06574751, -0.04846454, -0.05204211, -0.06316498, -0.05095099, -0.08502656, -0.04681162, -0.02362027, -0.02205091, -0.07706374, -0.10371841, -0.14434688, -0.14797935, -0.09055402, -0.06739549, -0.08824959, -0.04855888, -0.02291244, 0.04027138, 0.09370505, 0.11472939, 0.10243593, 0.0921445 , 0.07662648, 0.07946651, 0.05450718, 0.10497677, 0.09068334, 0.15462924, 0.14231034, 0.10544952, 0.09980256, 0.14035223, 0.14942974, 0.17624102, 0.19035477, 0.2500807 , 0.30724652, 0.31768915, 0.35007521, 0.38412975, 0.34356521, 0.33614463, 0.41206165, 0.33999177, 0.28045963, 0.34076789, 0.42220356, 0.42314636, 0.50790423, 0.47713348, 0.42520169, 0.50488411, 0.48705211, 0.46252601, 0.44325578, 0.42640573, 0.37986783, 0.30652822, 0.34503393, 0.2999069 , 0.24928617, 0.24730218, 0.24326897, 0.26657905, 0.27861168, 0.26392824, 0.32552649, 0.34177792, 0.37837011, 0.37025267, 0.4030612 , 0.41339361, 0.45076809, 0.40383354, 0.47093422, 0.52505036, 0.53614256, 0.5500943 , 0.55319293, 0.59021451, 0.52358459, 0.50605947, 0.49359168, 0.47895956, 0.49320243, 0.4908336 , 0.47310767, 0.51821564, 0.55105932, 0.57291504, 0.5599809 , 0.46868842, 0.39620087, 0.42086934, 0.38317217, 0.45934108, 0.50048866, 0.53941991, 0.50676751, 0.46500915, 0.52993663, 0.51668366, 0.46405428, 0.44100603, 0.52726147, 0.51565458, 0.49186248, 0.49001081, 0.49367648, 0.56422294, 0.58882785, 0.51334664, 0.44386256, 0.35056709, 0.36490029, 0.39205071, 0.3677061 , 0.41134736, 0.42315067, 0.35356394, 0.40324562, 0.41340007, 0.46503322, 0.44355762, 0.34854314, 0.26412842, 0.28633753, 0.32335224, 0.30761141, 0.29709569, 0.29570487, 0.28000063, 0.32802547, 0.33967726, 0.42511212, 0.46252357, 0.44244974, 0.42152907, 0.45436727, 0.50482359, 0.57339198, 0.6573356 , 0.70912003, 0.60328917, 0.6395092 , 0.67015805, 0.64241557, 0.62779142, 0.55028063, 0.46448736, 0.43709245, 0.46777983, 0.51789439, 0.48594916, 0.4456216 , 0.52008189, 0.60548684, 0.62792473, 0.56645031, 0.62766439, 0.71829315, 0.69481356, 0.59550329, 0.58133754, 0.59014148, 0.58026655, 0.61719273, 0.67373203, 0.75573056, 0.89501633, 0.8347253 , 0.87964685, 0.89015835]) test_alpha_mean = eval_alpha(self.long_data, 100, self.long_bench, 'value') test_alpha_roll = self.long_data['alpha'].values self.assertAlmostEqual(test_alpha_mean, np.nanmean(expected_alpha)) self.assertTrue(np.allclose(test_alpha_roll, expected_alpha, equal_nan=True)) def test_calmar(self): """test evaluate function eval_calmar()""" pass def test_benchmark(self): reference = self.test_data1 tr, yr = eval_benchmark(self.test_data2, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data3, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data4, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data5, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data6, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data7, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) def test_evaluate(self): pass class TestLoop(unittest.TestCase): """通过一个假设但精心设计的例子来测试loop_step以及loop方法的正确性""" def setUp(self): self.shares = ['share1', 'share2', 'share3', 'share4', 'share5', 'share6', 'share7'] self.dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08', '2016/09/09', '2016/09/12', '2016/09/13', '2016/09/14', '2016/09/15', '2016/09/16', '2016/09/19', '2016/09/20', '2016/09/21', '2016/09/22', '2016/09/23', '2016/09/26', '2016/09/27', '2016/09/28', '2016/09/29', '2016/09/30', '2016/10/10', '2016/10/11', '2016/10/12', '2016/10/13', '2016/10/14', '2016/10/17', '2016/10/18', '2016/10/19', '2016/10/20', '2016/10/21', '2016/10/23', '2016/10/24', '2016/10/25', '2016/10/26', '2016/10/27', '2016/10/29', '2016/10/30', '2016/10/31', '2016/11/01', '2016/11/02', '2016/11/05', '2016/11/06', '2016/11/07', '2016/11/08', '2016/11/09', '2016/11/12', '2016/11/13', '2016/11/14', '2016/11/15', '2016/11/16', '2016/11/19', '2016/11/20', '2016/11/21', '2016/11/22'] self.dates = [pd.Timestamp(date_text) for date_text in self.dates] self.prices = np.array([[5.35, 5.09, 5.03, 4.98, 4.50, 5.09, 4.75], [5.66, 4.84, 5.21, 5.44, 4.35, 5.06, 4.48], [5.79, 4.60, 5.02, 5.45, 4.07, 4.76, 4.56], [5.56, 4.63, 5.50, 5.74, 3.88, 4.62, 4.62], [5.88, 4.64, 5.07, 5.46, 3.74, 4.63, 4.62], [6.25, 4.51, 5.11, 5.45, 3.98, 4.25, 4.59], [5.93, 4.96, 5.15, 5.24, 4.08, 4.13, 4.33], [6.39, 4.65, 5.02, 5.47, 4.00, 3.91, 3.88], [6.31, 4.26, 5.10, 5.58, 4.28, 3.77, 3.47], [5.86, 3.77, 5.24, 5.36, 4.01, 3.43, 3.51], [5.61, 3.39, 4.93, 5.38, 4.14, 3.68, 3.83], [5.31, 3.76, 4.96, 5.30, 4.49, 3.63, 3.67], [5.40, 4.06, 5.40, 5.77, 4.49, 3.94, 3.79], [5.03, 3.87, 5.74, 5.75, 4.46, 4.40, 4.18], [5.38, 3.91, 5.53, 6.15, 4.13, 4.03, 4.02], [5.79, 4.13, 5.79, 6.04, 3.79, 3.93, 4.41], [6.27, 4.27, 5.68, 6.01, 4.23, 3.50, 4.65], [6.59, 4.57, 5.90, 5.71, 4.57, 3.39, 4.89], [6.91, 5.04, 5.75, 5.23, 4.92, 3.30, 4.41], [6.71, 5.31, 6.11, 5.47, 5.28, 3.25, 4.66], [6.33, 5.40, 5.77, 5.79, 5.67, 2.94, 4.37], [6.07, 5.21, 5.85, 5.82, 6.00, 2.71, 4.58], [5.98, 5.06, 5.61, 5.61, 5.89, 2.55, 4.76], [6.46, 4.69, 5.75, 5.31, 5.55, 2.21, 4.37], [6.95, 5.12, 5.50, 5.24, 5.39, 2.29, 4.16], [6.77, 5.27, 5.14, 5.41, 5.26, 2.21, 4.02], [6.70, 5.72, 5.31, 5.60, 5.31, 2.04, 3.77], [6.28, 6.10, 5.68, 5.28, 5.22, 2.39, 3.38], [6.61, 6.27, 5.73, 4.99, 4.90, 2.30, 3.07], [6.25, 6.49, 6.04, 5.09, 4.57, 2.41, 2.90], [6.47, 6.16, 6.27, 5.39, 4.96, 2.40, 2.50], [6.45, 6.26, 6.60, 5.58, 4.82, 2.79, 2.76], [6.88, 6.39, 6.10, 5.33, 4.39, 2.67, 2.29], [7.00, 6.58, 6.25, 5.48, 4.63, 2.27, 2.17], [6.59, 6.20, 6.73, 5.10, 5.05, 2.09, 1.84], [6.59, 5.70, 6.91, 5.39, 4.68, 2.55, 1.83], [6.64, 5.20, 7.01, 5.30, 5.02, 2.22, 2.21], [6.38, 5.37, 7.36, 5.04, 4.84, 2.59, 2.00], [6.10, 5.40, 7.72, 5.51, 4.60, 2.59, 1.76], [6.35, 5.22, 7.68, 5.43, 4.66, 2.95, 1.27], [6.52, 5.38, 7.62, 5.23, 4.41, 2.69, 1.40], [6.87, 5.53, 7.74, 4.99, 4.87, 2.20, 1.11], [6.84, 6.03, 7.53, 5.43, 4.42, 2.69, 1.60], [7.09, 5.77, 7.46, 5.40, 4.08, 2.65, 1.23], [6.88, 5.66, 7.84, 5.60, 4.16, 2.63, 1.59], [6.84, 6.08, 8.11, 5.66, 4.10, 2.14, 1.50], [6.98, 5.62, 8.04, 6.01, 4.43, 2.39, 1.80], [7.02, 5.63, 7.65, 5.64, 4.07, 1.95, 1.55], [7.13, 6.11, 7.52, 5.67, 3.97, 2.32, 1.35], [7.59, 6.03, 7.67, 5.30, 4.16, 2.69, 1.51], [7.61, 6.27, 7.47, 4.91, 4.12, 2.51, 1.08], [7.21, 6.28, 7.44, 5.37, 4.04, 2.62, 1.06], [7.48, 6.52, 7.59, 5.75, 3.84, 2.16, 1.43], [7.66, 7.00, 7.94, 6.08, 3.46, 2.35, 1.43], [7.51, 7.34, 8.25, 6.58, 3.18, 2.31, 1.74], [7.12, 7.34, 7.77, 6.78, 3.10, 1.96, 1.44], [6.97, 7.68, 8.03, 7.20, 3.55, 2.35, 1.83], [6.67, 8.09, 7.87, 7.65, 3.66, 2.58, 1.71], [6.20, 7.68, 7.58, 8.00, 3.66, 2.40, 2.12], [6.34, 7.58, 7.33, 7.92, 3.29, 2.20, 2.45], [6.22, 7.46, 7.22, 8.30, 2.80, 2.31, 2.85], [5.98, 7.59, 6.86, 8.46, 2.88, 2.16, 2.79], [6.37, 7.19, 7.18, 7.99, 3.04, 2.16, 2.91], [6.56, 7.40, 7.54, 8.19, 3.45, 2.20, 3.26], [6.26, 7.48, 7.24, 8.61, 3.88, 1.73, 3.14], [6.69, 7.93, 6.85, 8.66, 3.58, 1.93, 3.53], [7.13, 8.23, 6.60, 8.91, 3.60, 2.25, 3.65], [6.83, 8.35, 6.65, 9.08, 3.97, 2.69, 3.69], [7.31, 8.44, 6.74, 9.34, 4.05, 2.59, 3.50], [7.43, 8.35, 7.19, 8.96, 4.40, 2.14, 3.25], [7.54, 8.58, 7.14, 8.98, 4.06, 1.68, 3.64], [7.18, 8.82, 6.88, 8.50, 3.60, 1.98, 4.00], [7.21, 9.09, 7.14, 8.65, 3.61, 2.14, 3.63], [7.45, 9.02, 7.30, 8.94, 4.10, 1.89, 3.78], [7.37, 8.87, 6.95, 8.63, 3.74, 1.97, 3.42], [6.88, 9.22, 7.02, 8.65, 4.02, 1.99, 3.76], [7.08, 9.04, 7.38, 8.40, 3.95, 2.37, 3.62], [6.75, 8.60, 7.50, 8.38, 3.81, 2.14, 3.67], [6.60, 8.48, 7.60, 8.23, 3.71, 2.35, 3.61], [6.21, 8.71, 7.15, 8.04, 3.94, 1.86, 3.39], [6.36, 8.79, 7.30, 7.91, 4.43, 2.14, 3.43], [6.82, 8.93, 7.80, 7.57, 4.07, 2.39, 3.33], [6.45, 9.36, 8.15, 7.73, 4.04, 2.53, 3.03], [6.85, 9.68, 8.40, 7.74, 4.34, 2.47, 3.28], [6.48, 10.16, 8.87, 8.07, 4.80, 2.93, 3.46], [6.10, 10.56, 8.53, 7.99, 5.18, 3.09, 3.25], [5.64, 10.63, 8.94, 7.92, 4.90, 2.93, 2.95], [6.01, 10.55, 8.52, 8.40, 5.40, 3.22, 2.87], [6.21, 10.65, 8.80, 8.80, 5.73, 3.06, 2.63], [6.61, 10.55, 8.92, 8.47, 5.62, 2.90, 2.40], [7.02, 10.19, 9.20, 8.07, 5.20, 2.68, 2.53], [7.04, 10.48, 8.71, 7.87, 4.85, 2.46, 2.96], [6.77, 10.36, 8.25, 8.02, 5.18, 2.41, 3.26], [7.09, 10.03, 8.19, 8.39, 4.72, 2.74, 2.97], [6.65, 10.24, 7.80, 8.69, 4.62, 3.15, 3.16], [7.07, 10.01, 7.69, 8.81, 4.55, 3.40, 3.58], [6.80, 10.14, 7.23, 8.99, 4.37, 3.82, 3.23], [6.79, 10.31, 6.98, 9.10, 4.26, 4.02, 3.62], [6.48, 9.88, 7.07, 8.90, 4.25, 3.76, 3.13], [6.39, 10.05, 6.95, 8.87, 4.59, 4.10, 2.93]]) self.op_signals = np.array([[0, 0, 0, 0, 0.25, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0.1, 0.15], [0.2, 0.2, 0, 0, 0, 0, 0], [0, 0, 0.1, 0, 0, 0, 0], [0, 0, 0, 0, -0.75, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [-0.333, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, -0.5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -1], [0, 0, 0, 0, 0.2, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [-0.5, 0, 0, 0.15, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0.2, 0, -1, 0.2, 0], [0.5, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0.2, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -0.5, 0.2], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0.2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.15, 0, 0], [-1, 0, 0.25, 0.25, 0, 0.25, 0], [0, 0, 0, 0, 0, 0, 0], [0.25, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0.2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0.2], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, -1, 0, 0, 0, 0, 0], [-1, 0, 0.15, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) self.cash = qt.CashPlan(['2016/07/01', '2016/08/12', '2016/09/23'], [10000, 10000, 10000]) self.rate = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=0, sell_min=0, slipage=0) self.rate2 = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=10, sell_min=5, slipage=0) self.op_signal_df = pd.DataFrame(self.op_signals, index=self.dates, columns=self.shares) self.history_list = pd.DataFrame(self.prices, index=self.dates, columns=self.shares) self.res = np.array([[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 205.065, 321.089, 5059.722, 0.000, 9761.111], [346.982, 416.679, 0.000, 0.000, 555.556, 205.065, 321.089, 1201.278, 0.000, 9646.112], [346.982, 416.679, 191.037, 0.000, 555.556, 205.065, 321.089, 232.719, 0.000, 9685.586], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9813.218], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9803.129], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9608.020], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9311.573], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8883.625], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8751.390], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8794.181], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9136.570], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9209.359], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9093.829], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9387.554], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9585.959], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 9928.777], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10060.381], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10281.002], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10095.561], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 0.000, 4506.393, 0.000, 10029.957], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9875.613], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9614.946], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9824.172], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9732.574], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9968.339], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 10056.158], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9921.492], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9894.162], [115.719, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 6179.774, 0.000, 20067.937], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21133.508], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20988.848], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20596.743], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 19910.773], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20776.707], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20051.797], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20725.388], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20828.880], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21647.181], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21310.169], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20852.099], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21912.395], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21937.828], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21962.458], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21389.402], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22027.453], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 20939.999], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21250.064], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22282.781], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21407.066], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21160.237], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21826.768], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22744.940], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23466.118], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22017.882], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23191.466], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23099.082], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22684.767], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22842.135], [1073.823, 416.679, 735.644, 269.850, 1785.205, 938.697, 1339.207, 5001.425, 0, 33323.836], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 32820.290], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 33174.614], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35179.466], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 34465.195], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 34712.354], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35755.550], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37895.223], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37854.284], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37198.374], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35916.711], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35806.937], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36317.592], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37103.973], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35457.883], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36717.685], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37641.463], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36794.298], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37073.817], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35244.299], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37062.382], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37420.067], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 38089.058], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 39260.542], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 42609.684], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 43109.309], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 42283.408], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 43622.444], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42830.254], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41266.463], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41164.839], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41797.937], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42440.861], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42113.839], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 43853.588], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 46216.760], [0.000, 0.000, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 5140.743, 0.000, 45408.737], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 47413.401], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 44603.718], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 44381.544]]) def test_loop_step(self): cash, amounts, fee, value = qt.core._loop_step(pre_cash=10000, pre_amounts=np.zeros(7, dtype='float'), op=self.op_signals[0], prices=self.prices[0], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) self.assertAlmostEqual(value, 10000.00) cash, amounts, fee, value = qt.core._loop_step(pre_cash=5059.722222, pre_amounts=np.array([0, 0, 0, 0, 555.5555556, 205.0653595, 321.0891813]), op=self.op_signals[3], prices=self.prices[3], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 1201.2775195, 5) self.assertTrue(np.allclose(amounts, np.array([346.9824373, 416.6786936, 0, 0, 555.5555556, 205.0653595, 321.0891813]))) self.assertAlmostEqual(value, 9646.111756, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=6179.77423, pre_amounts=np.array([115.7186428, 416.6786936, 735.6441811, 269.8495646, 0, 1877.393446, 0]), op=self.op_signals[31], prices=self.prices[31], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 0, 1877.393446, 0]))) self.assertAlmostEqual(value, 21133.50798, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=10000, pre_amounts=np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 0, 938.6967231, 1339.207325]), op=self.op_signals[60], prices=self.prices[60], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 5001.424618, 5) self.assertTrue(np.allclose(amounts, np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 1785.205494, 938.6967231, 1339.207325]))) self.assertAlmostEqual(value, 33323.83588, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=cash, pre_amounts=amounts, op=self.op_signals[61], prices=self.prices[61], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([0, 416.6786936, 1290.69215, 719.9239224, 1785.205494, 2701.487958, 1339.207325]))) self.assertAlmostEqual(value, 32820.29007, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=915.6208259, pre_amounts=np.array([0, 416.6786936, 1290.69215, 719.9239224, 0, 2701.487958, 4379.098907]), op=self.op_signals[96], prices=self.prices[96], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 5140.742779, 5) self.assertTrue(np.allclose(amounts, np.array([0, 0, 1290.69215, 719.9239224, 0, 2701.487958, 4379.098907]))) self.assertAlmostEqual(value, 45408.73655, 4) cash, amounts, fee, value = qt.core._loop_step(pre_cash=cash, pre_amounts=amounts, op=self.op_signals[97], prices=self.prices[97], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([0, 0, 2027.18825, 719.9239224, 0, 2701.487958, 4379.098907]))) self.assertAlmostEqual(value, 47413.40131, 4) def test_loop(self): res = apply_loop(op_list=self.op_signal_df, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res.values, self.res, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, self.op_signal_df, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, self.op_signal_df, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_list=self.op_signal_df, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') class TestOperatorSubFuncs(unittest.TestCase): def setUp(self): mask_list = [[0.0, 0.0, 0.0, 0.0], [0.5, 0.0, 0.0, 1.0], [0.5, 0.0, 0.3, 1.0], [0.5, 0.0, 0.3, 0.5], [0.5, 0.5, 0.3, 0.5], [0.5, 0.5, 0.3, 1.0], [0.3, 0.5, 0.0, 1.0], [0.3, 1.0, 0.0, 1.0]] signal_list = [[0.0, 0.0, 0.0, 0.0], [0.5, 0.0, 0.0, 1.0], [0.0, 0.0, 0.3, 0.0], [0.0, 0.0, 0.0, -0.5], [0.0, 0.5, 0.0, 0.0], [0.0, 0.0, 0.0, 0.5], [-0.4, 0.0, -1.0, 0.0], [0.0, 0.5, 0.0, 0.0]] mask_multi = [[[0, 0, 1, 1, 0], [0, 1, 1, 1, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 0, 1, 1], [0, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 0, 0, 0, 1]], [[0, 0, 1, 0, 1], [0, 1, 1, 1, 1], [1, 1, 0, 1, 1], [1, 1, 1, 0, 0], [1, 1, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [1, 1, 0, 1, 0], [0, 1, 0, 1, 0]], [[0, 0, 0., 0, 1], [0, 0, 1., 0, 1], [0, 0, 1., 0, 1], [1, 0, 1., 0, 1], [1, 1, .5, 1, 1], [1, 0, .5, 1, 0], [1, 1, .5, 1, 0], [0, 1, 0., 0, 0], [1, 0, 0., 0, 0], [0, 1, 0., 0, 0]]] signal_multi = [[[0., 0., 1., 1., 0.], [0., 1., 0., 0., 0.], [1., 0., 0., 0., 0.], [0., 0., 0., 0., 1.], [0., 0., 0., 0., 0.], [0., 0., -1., 0., 0.], [-1., 0., 0., -1., 0.], [1., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., -1., 0., 0., 0.]], [[0., 0., 1., 0., 1.], [0., 1., 0., 1., 0.], [1., 0., -1., 0., 0.], [0., 0., 1., -1., -1.], [0., 0., -1., 0., 0.], [0., -1., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 0., 1., 0.], [-1., 0., 0., 0., 0.]], [[0., 0., 0., 0., 1.], [0., 0., 1., 0., 0.], [0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [0., 1., -0.5, 1., 0.], [0., -1., 0., 0., -1.], [0., 1., 0., 0., 0.], [-1., 0., -1., -1., 0.], [1., -1., 0., 0., 0.], [-1., 1., 0., 0., 0.]]] self.mask = np.array(mask_list) self.multi_mask = np.array(mask_multi) self.correct_signal = np.array(signal_list) self.correct_multi_signal = np.array(signal_multi) self.op = qt.Operator() def test_ls_blend(self): """测试多空蒙板的混合器,三种混合方式均需要测试""" ls_mask1 = [[0.0, 0.0, 0.0, -0.0], [1.0, 0.0, 0.0, -1.0], [1.0, 0.0, 1.0, -1.0], [1.0, 0.0, 1.0, -1.0], [1.0, 1.0, 1.0, -1.0], [1.0, 1.0, 1.0, -1.0], [0.0, 1.0, 0.0, -1.0], [0.0, 1.0, 0.0, -1.0]] ls_mask2 = [[0.0, 0.0, 0.5, -0.5], [0.0, 0.0, 0.5, -0.3], [0.0, 0.5, 0.5, -0.0], [0.5, 0.5, 0.3, -0.0], [0.5, 0.5, 0.3, -0.3], [0.5, 0.5, 0.0, -0.5], [0.3, 0.5, 0.0, -1.0], [0.3, 1.0, 0.0, -1.0]] ls_mask3 = [[0.5, 0.0, 1.0, -0.4], [0.4, 0.0, 1.0, -0.3], [0.3, 0.0, 0.8, -0.2], [0.2, 0.0, 0.6, -0.1], [0.1, 0.2, 0.4, -0.2], [0.1, 0.3, 0.2, -0.5], [0.1, 0.4, 0.0, -0.5], [0.1, 0.5, 0.0, -1.0]] # result with blender 'avg' ls_blnd_avg = [[0.16666667, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.16666667, 0.76666667, -0.4], [0.56666667, 0.16666667, 0.63333333, -0.36666667], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.40000000, -0.66666667], [0.13333333, 0.63333333, 0.00000000, -0.83333333], [0.13333333, 0.83333333, 0.00000000, -1.]] # result with blender 'str-1.5' ls_blnd_str_15 = [[0, 0, 1, 0], [0, 0, 1, -1], [0, 0, 1, 0], [1, 0, 1, 0], [1, 1, 1, -1], [1, 1, 0, -1], [0, 1, 0, -1], [0, 1, 0, -1]] # result with blender 'pos-2' == 'pos-2-0' ls_blnd_pos_2 = [[0, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, -1], [1, 1, 1, -1], [1, 1, 1, -1], [1, 1, 0, -1], [1, 1, 0, -1]] # result with blender 'pos-2-0.25' ls_blnd_pos_2_25 = [[0, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, 0], [1, 0, 1, 0], [1, 1, 1, -1], [1, 1, 0, -1], [0, 1, 0, -1], [0, 1, 0, -1]] # result with blender 'avg_pos-2' == 'pos-2-0' ls_blnd_avg_pos_2 = [[0.00000000, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.00000000, 0.76666667, -0.4], [0.56666667, 0.00000000, 0.63333333, -0.36666667], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.40000000, -0.66666667], [0.13333333, 0.63333333, 0.00000000, -0.83333333], [0.13333333, 0.83333333, 0.00000000, -1.]] # result with blender 'avg_pos-2-0.25' ls_blnd_avg_pos_2_25 = [[0.00000000, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.00000000, 0.76666667, 0.00000000], [0.56666667, 0.00000000, 0.63333333, 0.00000000], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.00000000, -0.66666667], [0.00000000, 0.63333333, 0.00000000, -0.83333333], [0.00000000, 0.83333333, 0.00000000, -1.]] # result with blender 'combo' ls_blnd_combo = [[0.5, 0., 1.5, -0.9], [1.4, 0., 1.5, -1.6], [1.3, 0.5, 2.3, -1.2], [1.7, 0.5, 1.9, -1.1], [1.6, 1.7, 1.7, -1.5], [1.6, 1.8, 1.2, -2.], [0.4, 1.9, 0., -2.5], [0.4, 2.5, 0., -3.]] ls_masks = np.array([np.array(ls_mask1), np.array(ls_mask2), np.array(ls_mask3)]) # test A: the ls_blender 'str-T' self.op.set_blender('ls', 'str-1.5') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'test A: result of ls_blender: str-1.5: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_str_15)) # test B: the ls_blender 'pos-N-T' self.op.set_blender('ls', 'pos-2') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test B-1: result of ls_blender: pos-2: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2)) self.op.set_blender('ls', 'pos-2-0.25') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test B-2: result of ls_blender: pos-2-0.25: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2_25)) # test C: the ls_blender 'avg_pos-N-T' self.op.set_blender('ls', 'avg_pos-2') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test C-1: result of ls_blender: avg_pos-2: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2, 5)) self.op.set_blender('ls', 'avg_pos-2-0.25') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test C-2: result of ls_blender: avg_pos-2-0.25: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2_25, 5)) # test D: the ls_blender 'avg' self.op.set_blender('ls', 'avg') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test D: result of ls_blender: avg: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_avg)) # test E: the ls_blender 'combo' self.op.set_blender('ls', 'combo') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test E: result of ls_blender: combo: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_combo)) def test_sel_blend(self): """测试选股蒙板的混合器,包括所有的混合模式""" # step2, test blending of sel masks pass def test_bs_blend(self): """测试买卖信号混合模式""" # step3, test blending of op signals pass def test_unify(self): print('Testing Unify functions\n') l1 = np.array([[3, 2, 5], [5, 3, 2]]) res = qt.unify(l1) target = np.array([[0.3, 0.2, 0.5], [0.5, 0.3, 0.2]]) self.assertIs(np.allclose(res, target), True, 'sum of all elements is 1') l1 = np.array([[1, 1, 1, 1, 1], [2, 2, 2, 2, 2]]) res = qt.unify(l1) target = np.array([[0.2, 0.2, 0.2, 0.2, 0.2], [0.2, 0.2, 0.2, 0.2, 0.2]]) self.assertIs(np.allclose(res, target), True, 'sum of all elements is 1') def test_mask_to_signal(self): signal = qt.mask_to_signal(self.mask) print(f'Test A: single mask to signal, result: \n{signal}') self.assertTrue(np.allclose(signal, self.correct_signal)) signal = qt.mask_to_signal(self.multi_mask) print(f'Test A: single mask to signal, result: \n{signal}') self.assertTrue(np.allclose(signal, self.correct_multi_signal)) class TestLSStrategy(qt.RollingTiming): """用于test测试的简单多空蒙板生成策略。基于RollingTiming滚动择时方法生成 该策略有两个参数,N与Price N用于计算OHLC价格平均值的N日简单移动平均,判断,当移动平均值大于等于Price时,状态为看多,否则为看空 """ def __init__(self): super().__init__(stg_name='test_LS', stg_text='test long/short strategy', par_count=2, par_types='discr, conti', par_bounds_or_enums=([1, 5], [2, 10]), data_types='close, open, high, low', data_freq='d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): n, price = params h = hist_data.T avg = (h[0] + h[1] + h[2] + h[3]) / 4 ma = sma(avg, n) if ma[-1] < price: return 0 else: return 1 class TestSelStrategy(qt.SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='high, low, close', data_freq='d', sample_freq='10d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = np.nanmean(hist_data, axis=(1, 2)) dif = (hist_data[:, :, 2] - np.roll(hist_data[:, :, 2], 1, 1)) dif_no_nan = np.array([arr[~np.isnan(arr)][-1] for arr in dif]) difper = dif_no_nan / avg large2 = difper.argsort()[1:] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSelStrategyDiffTime(qt.SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='close, low, open', data_freq='d', sample_freq='w', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = hist_data.mean(axis=1).squeeze() difper = (hist_data[:, :, 0] - np.roll(hist_data[:, :, 0], 1))[:, -1] / avg large2 = difper.argsort()[0:2] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSigStrategy(qt.SimpleTiming): """用于Test测试的简单信号生成策略,基于SimpleTiming策略生成 策略有三个参数,第一个参数为ratio,另外两个参数为price1以及price2 ratio是k线形状比例的阈值,定义为abs((C-O)/(H-L))。当这个比值小于ratio阈值时,判断该K线为十字交叉(其实还有丁字等多种情形,但这里做了 简化处理。 信号生成的规则如下: 1,当某个K线出现十字交叉,且昨收与今收之差大于price1时,买入信号 2,当某个K线出现十字交叉,且昨收与今收之差小于price2时,卖出信号 """ def __init__(self): super().__init__(stg_name='test_SIG', stg_text='test signal creation strategy', par_count=3, par_types='conti, conti, conti', par_bounds_or_enums=([2, 10], [0, 3], [0, 3]), data_types='close, open, high, low', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): r, price1, price2 = params h = hist_data.T ratio = np.abs((h[0] - h[1]) / (h[3] - h[2])) diff = h[0] - np.roll(h[0], 1) sig = np.where((ratio < r) & (diff > price1), 1, np.where((ratio < r) & (diff < price2), -1, 0)) return sig class TestOperator(unittest.TestCase): """全面测试Operator对象的所有功能。包括: 1, Strategy 参数的设置 2, 历史数据的获取与分配提取 3, 策略优化参数的批量设置和优化空间的获取 4, 策略输出值的正确性验证 5, 策略结果的混合结果确认 """ def setUp(self): """prepare data for Operator test""" print('start testing HistoryPanel object\n') # build up test data: a 4-type, 3-share, 50-day matrix of prices that contains nan values in some days # for some share_pool # for share1: data_rows = 50 share1_close = [10.04, 10, 10, 9.99, 9.97, 9.99, 10.03, 10.03, 10.06, 10.06, 10.11, 10.09, 10.07, 10.06, 10.09, 10.03, 10.03, 10.06, 10.08, 10, 9.99, 10.03, 10.03, 10.06, 10.03, 9.97, 9.94, 9.83, 9.77, 9.84, 9.91, 9.93, 9.96, 9.91, 9.91, 9.88, 9.91, 9.64, 9.56, 9.57, 9.55, 9.57, 9.61, 9.61, 9.55, 9.57, 9.63, 9.64, 9.65, 9.62] share1_open = [10.02, 10, 9.98, 9.97, 9.99, 10.01, 10.04, 10.06, 10.06, 10.11, 10.11, 10.07, 10.06, 10.09, 10.03, 10.02, 10.06, 10.08, 9.99, 10, 10.03, 10.02, 10.06, 10.03, 9.97, 9.94, 9.83, 9.78, 9.77, 9.91, 9.92, 9.97, 9.91, 9.9, 9.88, 9.91, 9.63, 9.64, 9.57, 9.55, 9.58, 9.61, 9.62, 9.55, 9.57, 9.61, 9.63, 9.64, 9.61, 9.56] share1_high = [10.07, 10, 10, 10, 10.03, 10.03, 10.04, 10.09, 10.1, 10.14, 10.11, 10.1, 10.09, 10.09, 10.1, 10.05, 10.07, 10.09, 10.1, 10, 10.04, 10.04, 10.06, 10.09, 10.05, 9.97, 9.96, 9.86, 9.77, 9.92, 9.94, 9.97, 9.97, 9.92, 9.92, 9.92, 9.93, 9.64, 9.58, 9.6, 9.58, 9.62, 9.62, 9.64, 9.59, 9.62, 9.63, 9.7, 9.66, 9.64] share1_low = [9.99, 10, 9.97, 9.97, 9.97, 9.98, 9.99, 10.03, 10.03, 10.04, 10.11, 10.07, 10.05, 10.03, 10.03, 10.01, 9.99, 10.03, 9.95, 10, 9.95, 10, 10.01, 9.99, 9.96, 9.89, 9.83, 9.77, 9.77, 9.8, 9.9, 9.91, 9.89, 9.89, 9.87, 9.85, 9.6, 9.64, 9.53, 9.55, 9.54, 9.55, 9.58, 9.54, 9.53, 9.53, 9.63, 9.64, 9.59, 9.56] # for share2: share2_close = [9.68, 9.87, 9.86, 9.87, 9.79, 9.82, 9.8, 9.66, 9.62, 9.58, 9.69, 9.78, 9.75, 9.96, 9.9, 10.04, 10.06, 10.08, 10.24, 10.24, 10.24, 9.86, 10.13, 10.12, 10.1, 10.25, 10.24, 10.22, 10.75, 10.64, 10.56, 10.6, 10.42, 10.25, 10.24, 10.49, 10.57, 10.63, 10.48, 10.37, 10.96, 11.02, np.nan, np.nan, 10.88, 10.87, 11.01, 11.01, 11.58, 11.8] share2_open = [9.88, 9.88, 9.89, 9.75, 9.74, 9.8, 9.62, 9.65, 9.58, 9.67, 9.81, 9.8, 10, 9.95, 10.1, 10.06, 10.14, 9.9, 10.2, 10.29, 9.86, 9.48, 10.01, 10.24, 10.26, 10.24, 10.12, 10.65, 10.64, 10.56, 10.42, 10.43, 10.29, 10.3, 10.44, 10.6, 10.67, 10.46, 10.39, 10.9, 11.01, 11.01, np.nan, np.nan, 10.82, 11.02, 10.96, 11.55, 11.74, 11.8] share2_high = [9.91, 10.04, 9.93, 10.04, 9.84, 9.88, 9.99, 9.7, 9.67, 9.71, 9.85, 9.9, 10, 10.2, 10.11, 10.18, 10.21, 10.26, 10.38, 10.47, 10.42, 10.07, 10.24, 10.27, 10.38, 10.43, 10.39, 10.65, 10.84, 10.65, 10.73, 10.63, 10.51, 10.35, 10.46, 10.63, 10.74, 10.76, 10.54, 11.02, 11.12, 11.17, np.nan, np.nan, 10.92, 11.15, 11.11, 11.55, 11.95, 11.93] share2_low = [9.63, 9.84, 9.81, 9.74, 9.67, 9.72, 9.57, 9.54, 9.51, 9.47, 9.68, 9.63, 9.75, 9.65, 9.9, 9.93, 10.03, 9.8, 10.14, 10.09, 9.78, 9.21, 9.11, 9.68, 10.05, 10.12, 9.89, 9.89, 10.59, 10.43, 10.34, 10.32, 10.21, 10.2, 10.18, 10.36, 10.51, 10.41, 10.32, 10.37, 10.87, 10.95, np.nan, np.nan, 10.65, 10.71, 10.75, 10.91, 11.31, 11.58] # for share3: share3_close = [6.64, 7.26, 7.03, 6.87, np.nan, 6.64, 6.85, 6.7, 6.39, 6.22, 5.92, 5.91, 6.11, 5.91, 6.23, 6.28, 6.28, 6.27, np.nan, 5.56, 5.67, 5.16, 5.69, 6.32, 6.14, 6.25, 5.79, 5.26, 5.05, 5.45, 6.06, 6.21, 5.69, 5.46, 6.02, 6.69, 7.43, 7.72, 8.16, 7.83, 8.7, 8.71, 8.88, 8.54, 8.87, 8.87, 8.18, 7.8, 7.97, 8.25] share3_open = [7.26, 7, 6.88, 6.91, np.nan, 6.81, 6.63, 6.45, 6.16, 6.24, 5.96, 5.97, 5.96, 6.2, 6.35, 6.11, 6.37, 5.58, np.nan, 5.65, 5.19, 5.42, 6.3, 6.15, 6.05, 5.89, 5.22, 5.2, 5.07, 6.04, 6.12, 5.85, 5.67, 6.02, 6.04, 7.07, 7.64, 7.99, 7.59, 8.73, 8.72, 8.97, 8.58, 8.71, 8.77, 8.4, 7.95, 7.76, 8.25, 7.51] share3_high = [7.41, 7.31, 7.14, 7, np.nan, 6.82, 6.96, 6.85, 6.5, 6.34, 6.04, 6.02, 6.12, 6.38, 6.43, 6.46, 6.43, 6.27, np.nan, 6.01, 5.67, 5.67, 6.35, 6.32, 6.43, 6.36, 5.79, 5.47, 5.65, 6.04, 6.14, 6.23, 5.83, 6.25, 6.27, 7.12, 7.82, 8.14, 8.27, 8.92, 8.76, 9.15, 8.9, 9.01, 9.16, 9, 8.27, 7.99, 8.33, 8.25] share3_low = [6.53, 6.87, 6.83, 6.7, np.nan, 6.63, 6.57, 6.41, 6.15, 6.07, 5.89, 5.82, 5.73, 5.81, 6.1, 6.06, 6.16, 5.57, np.nan, 5.51, 5.19, 5.12, 5.69, 6.01, 5.97, 5.86, 5.18, 5.19, 4.96, 5.45, 5.84, 5.85, 5.28, 5.42, 6.02, 6.69, 7.28, 7.64, 7.25, 7.83, 8.41, 8.66, 8.53, 8.54, 8.73, 8.27, 7.95, 7.67, 7.8, 7.51] # for sel_finance test shares_eps = np.array([[np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, 0.2, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [0.1, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.3, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.15, np.nan, np.nan], [np.nan, 0.1, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.2, np.nan, np.nan], [np.nan, 0.5, np.nan], [0.4, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [0.9, np.nan, np.nan], [np.nan, np.nan, 0.1]]) self.date_indices = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14', '2016-07-15', '2016-07-18', '2016-07-19', '2016-07-20', '2016-07-21', '2016-07-22', '2016-07-25', '2016-07-26', '2016-07-27', '2016-07-28', '2016-07-29', '2016-08-01', '2016-08-02', '2016-08-03', '2016-08-04', '2016-08-05', '2016-08-08', '2016-08-09', '2016-08-10', '2016-08-11', '2016-08-12', '2016-08-15', '2016-08-16', '2016-08-17', '2016-08-18', '2016-08-19', '2016-08-22', '2016-08-23', '2016-08-24', '2016-08-25', '2016-08-26', '2016-08-29', '2016-08-30', '2016-08-31', '2016-09-01', '2016-09-02', '2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08'] self.shares = ['000010', '000030', '000039'] self.types = ['close', 'open', 'high', 'low'] self.sel_finance_tyeps = ['eps'] self.test_data_3D = np.zeros((3, data_rows, 4)) self.test_data_2D = np.zeros((data_rows, 3)) self.test_data_2D2 = np.zeros((data_rows, 4)) self.test_data_sel_finance = np.empty((3, data_rows, 1)) # Build up 3D data self.test_data_3D[0, :, 0] = share1_close self.test_data_3D[0, :, 1] = share1_open self.test_data_3D[0, :, 2] = share1_high self.test_data_3D[0, :, 3] = share1_low self.test_data_3D[1, :, 0] = share2_close self.test_data_3D[1, :, 1] = share2_open self.test_data_3D[1, :, 2] = share2_high self.test_data_3D[1, :, 3] = share2_low self.test_data_3D[2, :, 0] = share3_close self.test_data_3D[2, :, 1] = share3_open self.test_data_3D[2, :, 2] = share3_high self.test_data_3D[2, :, 3] = share3_low self.test_data_sel_finance[:, :, 0] = shares_eps.T self.hp1 = qt.HistoryPanel(values=self.test_data_3D, levels=self.shares, columns=self.types, rows=self.date_indices) print(f'in test Operator, history panel is created for timing test') self.hp1.info() self.hp2 = qt.HistoryPanel(values=self.test_data_sel_finance, levels=self.shares, columns=self.sel_finance_tyeps, rows=self.date_indices) print(f'in test_Operator, history panel is created for selection finance test:') self.hp2.info() self.op = qt.Operator(selecting_types=['all'], timing_types='dma', ricon_types='urgent') def test_info(self): """Test information output of Operator""" print(f'test printing information of operator object') # self.op.info() def test_operator_ready(self): """test the method ready of Operator""" pass # print(f'operator is ready? "{self.op.ready}"') def test_operator_add_strategy(self): """test adding strategies to Operator""" pass # self.assertIsInstance(self.op, qt.Operator) # self.assertIsInstance(self.op.timing[0], qt.TimingDMA) # self.assertIsInstance(self.op.selecting[0], qt.SelectingAll) # self.assertIsInstance(self.op.ricon[0], qt.RiconUrgent) # self.assertEqual(self.op.selecting_count, 1) # self.assertEqual(self.op.strategy_count, 3) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 1) # self.assertEqual(self.op.ls_blender, 'pos-1') # print(f'test adding strategies into existing op') # print('test adding strategy by string') # self.op.add_strategy('macd', 'timing') # self.assertIsInstance(self.op.timing[0], qt.TimingDMA) # self.assertIsInstance(self.op.timing[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 1) # self.assertEqual(self.op.strategy_count, 4) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 2) # self.assertEqual(self.op.ls_blender, 'pos-1') # self.op.add_strategy('random', 'selecting') # self.assertIsInstance(self.op.selecting[0], qt.TimingDMA) # self.assertIsInstance(self.op.selecting[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 2) # self.assertEqual(self.op.strategy_count, 5) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 2) # self.assertEqual(self.op.selecting_blender, '0 or 1') # self.op.add_strategy('none', 'ricon') # self.assertIsInstance(self.op.ricon[0], qt.TimingDMA) # self.assertIsInstance(self.op.ricon[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 2) # self.assertEqual(self.op.strategy_count, 6) # self.assertEqual(self.op.ricon_count, 2) # self.assertEqual(self.op.timing_count, 2) # print('test adding strategy by list') # self.op.add_strategy(['dma', 'macd'], 'timing') # print('test adding strategy by object') # test_ls = TestLSStrategy() # self.op.add_strategy(test_ls, 'timing') def test_operator_remove_strategy(self): """test removing strategies from Operator""" pass # self.op.remove_strategy(stg='macd') def test_property_get(self): self.assertIsInstance(self.op, qt.Operator) self.assertIsInstance(self.op.timing[0], qt.TimingDMA) self.assertIsInstance(self.op.selecting[0], qt.SelectingAll) self.assertIsInstance(self.op.ricon[0], qt.RiconUrgent) self.assertEqual(self.op.selecting_count, 1) self.assertEqual(self.op.strategy_count, 3) self.assertEqual(self.op.ricon_count, 1) self.assertEqual(self.op.timing_count, 1) print(self.op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy: \n{self.op.strategies[0].info()}') self.assertEqual(len(self.op.strategies), 3) self.assertIsInstance(self.op.strategies[0], qt.TimingDMA) self.assertIsInstance(self.op.strategies[1], qt.SelectingAll) self.assertIsInstance(self.op.strategies[2], qt.RiconUrgent) self.assertEqual(self.op.strategy_count, 3) self.assertEqual(self.op.op_data_freq, 'd') self.assertEqual(self.op.op_data_types, ['close']) self.assertEqual(self.op.opt_space_par, ([], [])) self.assertEqual(self.op.max_window_length, 270) self.assertEqual(self.op.ls_blender, 'pos-1') self.assertEqual(self.op.selecting_blender, '0') self.assertEqual(self.op.ricon_blender, 'add') self.assertEqual(self.op.opt_types, [0, 0, 0]) def test_prepare_data(self): test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(timing_types=[test_ls], selecting_types=[test_sel], ricon_types=[test_sig]) too_early_cash = qt.CashPlan(dates='2016-01-01', amounts=10000) early_cash = qt.CashPlan(dates='2016-07-01', amounts=10000) on_spot_cash = qt.CashPlan(dates='2016-07-08', amounts=10000) no_trade_cash = qt.CashPlan(dates='2016-07-08, 2016-07-30, 2016-08-11, 2016-09-03', amounts=[10000, 10000, 10000, 10000]) late_cash = qt.CashPlan(dates='2016-12-31', amounts=10000) multi_cash = qt.CashPlan(dates='2016-07-08, 2016-08-08', amounts=[10000, 10000]) self.op.set_parameter(stg_id='t-0', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='s-0', pars=()) self.op.set_parameter(stg_id='r-0', pars=(0.2, 0.02, -0.02)) self.op.prepare_data(hist_data=self.hp1, cash_plan=on_spot_cash) self.assertIsInstance(self.op._selecting_history_data, list) self.assertIsInstance(self.op._timing_history_data, list) self.assertIsInstance(self.op._ricon_history_data, list) self.assertEqual(len(self.op._selecting_history_data), 1) self.assertEqual(len(self.op._timing_history_data), 1) self.assertEqual(len(self.op._ricon_history_data), 1) sel_hist_data = self.op._selecting_history_data[0] tim_hist_data = self.op._timing_history_data[0] ric_hist_data = self.op._ricon_history_data[0] print(f'in test_prepare_data in TestOperator:') print('selecting history data:\n', sel_hist_data) print('originally passed data in correct sequence:\n', self.test_data_3D[:, 3:, [2, 3, 0]]) print('difference is \n', sel_hist_data - self.test_data_3D[:, :, [2, 3, 0]]) self.assertTrue(np.allclose(sel_hist_data, self.test_data_3D[:, :, [2, 3, 0]], equal_nan=True)) self.assertTrue(np.allclose(tim_hist_data, self.test_data_3D, equal_nan=True)) self.assertTrue(np.allclose(ric_hist_data, self.test_data_3D[:, 3:, :], equal_nan=True)) # raises Value Error if empty history panel is given empty_hp = qt.HistoryPanel() correct_hp = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 4)), columns=self.types, levels=self.shares, rows=self.date_indices) too_many_shares = qt.HistoryPanel(values=np.random.randint(10, size=(5, 50, 4))) too_many_types = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 5))) # raises Error when history panel is empty self.assertRaises(ValueError, self.op.prepare_data, empty_hp, on_spot_cash) # raises Error when first investment date is too early self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, early_cash) # raises Error when last investment date is too late self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, late_cash) # raises Error when some of the investment dates are on no-trade-days self.assertRaises(ValueError, self.op.prepare_data, correct_hp, no_trade_cash) # raises Error when number of shares in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_shares, on_spot_cash) # raises Error when too early cash investment date self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, too_early_cash) # raises Error when number of d_types in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_types, on_spot_cash) # test the effect of data type sequence in strategy definition def test_operator_generate(self): """ :return: """ test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(timing_types=[test_ls], selecting_types=[test_sel], ricon_types=[test_sig]) self.assertIsInstance(self.op, qt.Operator, 'Operator Creation Error') self.op.set_parameter(stg_id='t-0', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='s-0', pars=()) # 在所有策略的参数都设置好之前调用prepare_data会发生assertion Error self.assertRaises(AssertionError, self.op.prepare_data, hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) self.op.set_parameter(stg_id='r-0', pars=(0.2, 0.02, -0.02)) self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) self.op.info() op_list = self.op.create_signal(hist_data=self.hp1) print(f'operation list is created: as following:\n {op_list}') self.assertTrue(isinstance(op_list, pd.DataFrame)) self.assertEqual(op_list.shape, (26, 3)) # 删除去掉重复信号的code后,信号从原来的23条变为26条,包含三条重复信号,但是删除重复信号可能导致将不应该删除的信号删除,详见 # operator.py的create_signal()函数注释836行 target_op_dates = ['2016/07/08', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/18', '2016/07/20', '2016/07/22', '2016/07/26', '2016/07/27', '2016/07/28', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/10', '2016/08/16', '2016/08/18', '2016/08/24', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/05', '2016/09/06', '2016/09/08'] target_op_values = np.array([[0.0, 1.0, 0.0], [0.5, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.5, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, -1.0], [0.0, 0.0, 1.0], [-1.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.5], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]]) target_op = pd.DataFrame(data=target_op_values, index=target_op_dates, columns=['000010', '000030', '000039']) target_op = target_op.rename(index=pd.Timestamp) print(f'target operation list is as following:\n {target_op}') dates_pairs = [[date1, date2, date1 == date2] for date1, date2 in zip(target_op.index.strftime('%m-%d'), op_list.index.strftime('%m-%d'))] signal_pairs = [[list(sig1), list(sig2), all(sig1 == sig2)] for sig1, sig2 in zip(list(target_op.values), list(op_list.values))] print(f'dates side by side:\n ' f'{dates_pairs}') print(f'signals side by side:\n' f'{signal_pairs}') print([item[2] for item in dates_pairs]) print([item[2] for item in signal_pairs]) self.assertTrue(np.allclose(target_op.values, op_list.values, equal_nan=True)) self.assertTrue(all([date1 == date2 for date1, date2 in zip(target_op.index.strftime('%m-%d'), op_list.index.strftime('%m-%d'))])) def test_operator_parameter_setting(self): """ :return: """ new_op = qt.Operator(selecting_types=['all'], timing_types='dma', ricon_types='urgent') print(new_op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy in new op: \n{new_op.strategies[0].info()}') self.op.set_parameter('t-0', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.op.set_parameter(stg_id='s-0', pars=None, opt_tag=1, sample_freq='10d', window_length=10, data_types='close, open') self.op.set_parameter(stg_id='r-0', pars=None, opt_tag=0, sample_freq='d', window_length=20, data_types='close, open') self.assertEqual(self.op.timing[0].pars, (5, 10, 5)) self.assertEqual(self.op.timing[0].par_boes, ((5, 10), (5, 15), (10, 15))) self.assertEqual(self.op.op_data_freq, 'd') self.assertEqual(self.op.op_data_types, ['close', 'high', 'open']) self.assertEqual(self.op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (0, 1)], ['discr', 'discr', 'discr', 'conti'])) self.assertEqual(self.op.max_window_length, 20) self.assertRaises(AssertionError, self.op.set_parameter, stg_id='t-1', pars=(1, 2)) self.assertRaises(AssertionError, self.op.set_parameter, stg_id='t1', pars=(1, 2)) self.assertRaises(AssertionError, self.op.set_parameter, stg_id=32, pars=(1, 2)) self.op.set_blender('selecting', '0 and 1 or 2') self.op.set_blender('ls', 'str-1.2') self.assertEqual(self.op.ls_blender, 'str-1.2') self.assertEqual(self.op.selecting_blender, '0 and 1 or 2') self.assertEqual(self.op.selecting_blender_expr, ['or', 'and', '0', '1', '2']) self.assertEqual(self.op.ricon_blender, 'add') self.assertRaises(ValueError, self.op.set_blender, 'select', '0and1') self.assertRaises(TypeError, self.op.set_blender, 35, '0 and 1') self.assertEqual(self.op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (0, 1)], ['discr', 'discr', 'discr', 'conti'])) self.assertEqual(self.op.opt_types, [1, 1, 0]) def test_exp_to_blender(self): self.op.set_blender('selecting', '0 and 1 or 2') self.assertEqual(self.op.selecting_blender_expr, ['or', 'and', '0', '1', '2']) self.op.set_blender('selecting', '0 and ( 1 or 2 )') self.assertEqual(self.op.selecting_blender_expr, ['and', '0', 'or', '1', '2']) self.assertRaises(ValueError, self.op.set_blender, 'selecting', '0 and (1 or 2)') def test_set_opt_par(self): self.op.set_parameter('t-0', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.op.set_parameter(stg_id='s-0', pars=(0.5,), opt_tag=0, sample_freq='10d', window_length=10, data_types='close, open') self.op.set_parameter(stg_id='r-0', pars=(9, -0.23), opt_tag=1, sample_freq='d', window_length=20, data_types='close, open') self.assertEqual(self.op.timing[0].pars, (5, 10, 5)) self.assertEqual(self.op.selecting[0].pars, (0.5,)) self.assertEqual(self.op.ricon[0].pars, (9, -0.23)) self.assertEqual(self.op.opt_types, [1, 0, 1]) self.op.set_opt_par((5, 12, 9, 8, -0.1)) self.assertEqual(self.op.timing[0].pars, (5, 12, 9)) self.assertEqual(self.op.selecting[0].pars, (0.5,)) self.assertEqual(self.op.ricon[0].pars, (8, -0.1)) # test set_opt_par when opt_tag is set to be 2 (enumerate type of parameters) self.assertRaises(ValueError, self.op.set_opt_par, (5, 12, 9, 8)) def test_stg_attribute_get_and_set(self): self.stg = qt.TimingCrossline() self.stg_type = 'TIMING' self.stg_name = "CROSSLINE STRATEGY" self.stg_text = 'Moving average crossline strategy, determine long/short position according to the cross ' \ 'point' \ ' of long and short term moving average prices ' self.pars = (35, 120, 10, 'buy') self.par_boes = [(10, 250), (10, 250), (1, 100), ('buy', 'sell', 'none')] self.par_count = 4 self.par_types = ['discr', 'discr', 'conti', 'enum'] self.opt_tag = 0 self.data_types = ['close'] self.data_freq = 'd' self.sample_freq = 'd' self.window_length = 270 self.assertEqual(self.stg.stg_type, self.stg_type) self.assertEqual(self.stg.stg_name, self.stg_name) self.assertEqual(self.stg.stg_text, self.stg_text) self.assertEqual(self.stg.pars, self.pars) self.assertEqual(self.stg.par_types, self.par_types) self.assertEqual(self.stg.par_boes, self.par_boes) self.assertEqual(self.stg.par_count, self.par_count) self.assertEqual(self.stg.opt_tag, self.opt_tag) self.assertEqual(self.stg.data_freq, self.data_freq) self.assertEqual(self.stg.sample_freq, self.sample_freq) self.assertEqual(self.stg.data_types, self.data_types) self.assertEqual(self.stg.window_length, self.window_length) self.stg.stg_name = 'NEW NAME' self.stg.stg_text = 'NEW TEXT' self.assertEqual(self.stg.stg_name, 'NEW NAME') self.assertEqual(self.stg.stg_text, 'NEW TEXT') self.stg.pars = (1, 2, 3, 4) self.assertEqual(self.stg.pars, (1, 2, 3, 4)) self.stg.par_count = 3 self.assertEqual(self.stg.par_count, 3) self.stg.par_boes = [(1, 10), (1, 10), (1, 10), (1, 10)] self.assertEqual(self.stg.par_boes, [(1, 10), (1, 10), (1, 10), (1, 10)]) self.stg.par_types = ['conti', 'conti', 'discr', 'enum'] self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'enum']) self.stg.par_types = 'conti, conti, discr, conti' self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'conti']) self.stg.data_types = 'close, open' self.assertEqual(self.stg.data_types, ['close', 'open']) self.stg.data_types = ['close', 'high', 'low'] self.assertEqual(self.stg.data_types, ['close', 'high', 'low']) self.stg.data_freq = 'w' self.assertEqual(self.stg.data_freq, 'w') self.stg.window_length = 300 self.assertEqual(self.stg.window_length, 300) def test_rolling_timing(self): stg = TestLSStrategy() stg_pars = {'000100': (5, 10), '000200': (5, 10), '000300': (5, 6)} stg.set_pars(stg_pars) history_data = self.hp1.values output = stg.generate(hist_data=history_data) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) lsmask = np.array([[0., 0., 1.], [0., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 0.], [1., 1., 0.], [1., 1., 0.], [1., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]) # TODO: Issue to be solved: the np.nan value are converted to 0 in the lsmask,这样做可能会有意想不到的后果 # TODO: 需要解决nan值的问题 self.assertEqual(output.shape, lsmask.shape) self.assertTrue(np.allclose(output, lsmask, equal_nan=True)) def test_sel_timing(self): stg = TestSelStrategy() stg_pars = () stg.set_pars(stg_pars) history_data = self.hp1['high, low, close', :, :] seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) def test_simple_timing(self): stg = TestSigStrategy() stg_pars = (0.2, 0.02, -0.02) stg.set_pars(stg_pars) history_data = self.hp1['close, open, high, low', :, 3:50] output = stg.generate(hist_data=history_data, shares=self.shares, dates=self.date_indices) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) sigmatrix = np.array([[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) side_by_side_array = np.array([[i, out_line, sig_line] for i, out_line, sig_line in zip(range(len(output)), output, sigmatrix)]) print(f'output and signal matrix lined up side by side is \n' f'{side_by_side_array}') self.assertEqual(sigmatrix.shape, output.shape) self.assertTrue(np.allclose(output, sigmatrix)) def test_sel_finance(self): """Test selecting_finance strategy, test all built-in strategy parameters""" stg = SelectingFinanceIndicator() stg_pars = (False, 'even', 'greater', 0, 0, 0.67) stg.set_pars(stg_pars) stg.window_length = 5 stg.data_freq = 'd' stg.sample_freq = '10d' stg.sort_ascending = False stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg._poq = 0.67 history_data = self.hp2.values print(f'Start to test financial selection parameter {stg_pars}') seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get mininum factor stg_pars = (True, 'even', 'less', 1, 1, 0.67) stg.sort_ascending = True stg.condition = 'less' stg.lbound = 1 stg.ubound = 1 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'linear', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'linear' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'proportion', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'proportion' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) # test single factor, get max factor in linear weight, threshold 0.2 stg_pars = (False, 'even', 'greater', 0.2, 0.2, 0.67) stg.sort_ascending = False stg.weighting = 'even' stg.condition = 'greater' stg.lbound = 0.2 stg.ubound = 0.2 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) class TestLog(unittest.TestCase): def test_init(self): pass class TestConfig(unittest.TestCase): """测试Config对象以及QT_CONFIG变量的设置和获取值""" def test_init(self): pass def test_invest(self): pass def test_pars_string_to_type(self): _parse_string_kwargs('000300', 'asset_pool', _valid_qt_kwargs()) class TestHistoryPanel(unittest.TestCase): def setUp(self): print('start testing HistoryPanel object\n') self.data = np.random.randint(10, size=(5, 10, 4)) self.index = pd.date_range(start='20200101', freq='d', periods=10) self.index2 = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14'] self.index3 = '2016-07-01, 2016-07-04, 2016-07-05, 2016-07-06, 2016-07-07, ' \ '2016-07-08, 2016-07-11, 2016-07-12, 2016-07-13, 2016-07-14' self.shares = '000100,000101,000102,000103,000104' self.htypes = 'close,open,high,low' self.data2 = np.random.randint(10, size=(10, 5)) self.data3 = np.random.randint(10, size=(10, 4)) self.data4 = np.random.randint(10, size=(10)) self.hp = qt.HistoryPanel(values=self.data, levels=self.shares, columns=self.htypes, rows=self.index) self.hp2 = qt.HistoryPanel(values=self.data2, levels=self.shares, columns='close', rows=self.index) self.hp3 = qt.HistoryPanel(values=self.data3, levels='000100', columns=self.htypes, rows=self.index2) self.hp4 = qt.HistoryPanel(values=self.data4, levels='000100', columns='close', rows=self.index3) self.hp5 = qt.HistoryPanel(values=self.data) self.hp6 = qt.HistoryPanel(values=self.data, levels=self.shares, rows=self.index3) def test_properties(self): """ test all properties of HistoryPanel """ self.assertFalse(self.hp.is_empty) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.shape, (5, 10, 4)) self.assertSequenceEqual(self.hp.htypes, ['close', 'open', 'high', 'low']) self.assertSequenceEqual(self.hp.shares, ['000100', '000101', '000102', '000103', '000104']) self.assertSequenceEqual(list(self.hp.hdates), list(self.index)) self.assertDictEqual(self.hp.columns, {'close': 0, 'open': 1, 'high': 2, 'low': 3}) self.assertDictEqual(self.hp.levels, {'000100': 0, '000101': 1, '000102': 2, '000103': 3, '000104': 4}) row_dict = {Timestamp('2020-01-01 00:00:00', freq='D'): 0, Timestamp('2020-01-02 00:00:00', freq='D'): 1, Timestamp('2020-01-03 00:00:00', freq='D'): 2, Timestamp('2020-01-04 00:00:00', freq='D'): 3, Timestamp('2020-01-05 00:00:00', freq='D'): 4, Timestamp('2020-01-06 00:00:00', freq='D'): 5, Timestamp('2020-01-07 00:00:00', freq='D'): 6, Timestamp('2020-01-08 00:00:00', freq='D'): 7, Timestamp('2020-01-09 00:00:00', freq='D'): 8, Timestamp('2020-01-10 00:00:00', freq='D'): 9} self.assertDictEqual(self.hp.rows, row_dict) def test_len(self): """ test the function len(HistoryPanel) :return: """ self.assertEqual(len(self.hp), 10) def test_empty_history_panel(self): """测试空HP或者特殊HP如维度标签为纯数字的HP""" test_hp = qt.HistoryPanel(self.data) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) self.assertEqual(test_hp.level_count, 5) self.assertEqual(test_hp.row_count, 10) self.assertEqual(test_hp.column_count, 4) self.assertEqual(test_hp.shares, list(range(5))) self.assertEqual(test_hp.hdates, list(pd.date_range(start='20200730', periods=10, freq='d'))) self.assertEqual(test_hp.htypes, list(range(4))) self.assertTrue(np.allclose(test_hp.values, self.data)) print(f'shares: {test_hp.shares}\nhtypes: {test_hp.htypes}') print(test_hp) empty_hp = qt.HistoryPanel() self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) def test_create_history_panel(self): """ test the creation of a HistoryPanel object by passing all data explicitly """ self.assertIsInstance(self.hp, qt.HistoryPanel) self.assertEqual(self.hp.shape[0], 5) self.assertEqual(self.hp.shape[1], 10) self.assertEqual(self.hp.shape[2], 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(list(self.hp.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp2, qt.HistoryPanel) self.assertEqual(self.hp2.shape[0], 5) self.assertEqual(self.hp2.shape[1], 10) self.assertEqual(self.hp2.shape[2], 1) self.assertEqual(self.hp2.level_count, 5) self.assertEqual(self.hp2.row_count, 10) self.assertEqual(self.hp2.column_count, 1) self.assertEqual(list(self.hp2.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp2.columns.keys()), ['close']) self.assertEqual(list(self.hp2.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp3, qt.HistoryPanel) self.assertEqual(self.hp3.shape[0], 1) self.assertEqual(self.hp3.shape[1], 10) self.assertEqual(self.hp3.shape[2], 4) self.assertEqual(self.hp3.level_count, 1) self.assertEqual(self.hp3.row_count, 10) self.assertEqual(self.hp3.column_count, 4) self.assertEqual(list(self.hp3.levels.keys()), ['000100']) self.assertEqual(list(self.hp3.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp3.rows.keys())[0], pd.Timestamp('2016-07-01')) self.assertIsInstance(self.hp4, qt.HistoryPanel) self.assertEqual(self.hp4.shape[0], 1) self.assertEqual(self.hp4.shape[1], 10) self.assertEqual(self.hp4.shape[2], 1) self.assertEqual(self.hp4.level_count, 1) self.assertEqual(self.hp4.row_count, 10) self.assertEqual(self.hp4.column_count, 1) self.assertEqual(list(self.hp4.levels.keys()), ['000100']) self.assertEqual(list(self.hp4.columns.keys()), ['close']) self.assertEqual(list(self.hp4.rows.keys())[0], pd.Timestamp('2016-07-01')) self.hp5.info() self.assertIsInstance(self.hp5, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp5.values, self.data)) self.assertEqual(self.hp5.shape[0], 5) self.assertEqual(self.hp5.shape[1], 10) self.assertEqual(self.hp5.shape[2], 4) self.assertEqual(self.hp5.level_count, 5) self.assertEqual(self.hp5.row_count, 10) self.assertEqual(self.hp5.column_count, 4) self.assertEqual(list(self.hp5.levels.keys()), [0, 1, 2, 3, 4]) self.assertEqual(list(self.hp5.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp5.rows.keys())[0], pd.Timestamp('2020-07-30')) self.hp6.info() self.assertIsInstance(self.hp6, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp6.values, self.data)) self.assertEqual(self.hp6.shape[0], 5) self.assertEqual(self.hp6.shape[1], 10) self.assertEqual(self.hp6.shape[2], 4) self.assertEqual(self.hp6.level_count, 5) self.assertEqual(self.hp6.row_count, 10) self.assertEqual(self.hp6.column_count, 4) self.assertEqual(list(self.hp6.levels.keys()), ['000100', '000101', '000102', '000103', '000104']) self.assertEqual(list(self.hp6.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp6.rows.keys())[0], pd.Timestamp('2016-07-01')) # Error testing during HistoryPanel creating # shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data, levels=self.shares, columns='close', rows=self.index) # valus is not np.ndarray self.assertRaises(AssertionError, qt.HistoryPanel, list(self.data)) # dimension/shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data2, levels='000100', columns=self.htypes, rows=self.index) # value dimension over 3 self.assertRaises(AssertionError, qt.HistoryPanel, np.random.randint(10, size=(5, 10, 4, 2))) # lebel value not valid self.assertRaises(ValueError, qt.HistoryPanel, self.data2, levels=self.shares, columns='close', rows='a,b,c,d,e,f,g,h,i,j') def test_history_panel_slicing(self): """测试HistoryPanel的各种切片方法 包括通过标签名称切片,通过数字切片,通过逗号分隔的标签名称切片,通过冒号分隔的标签名称切片等切片方式""" self.assertTrue(np.allclose(self.hp['close'], self.data[:, :, 0:1])) self.assertTrue(np.allclose(self.hp['close,open'], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp[['close', 'open']], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp['close:high'], self.data[:, :, 0:3])) self.assertTrue(np.allclose(self.hp['close,high'], self.data[:, :, [0, 2]])) self.assertTrue(np.allclose(self.hp[:, '000100'], self.data[0:1, :, ])) self.assertTrue(np.allclose(self.hp[:, '000100,000101'], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, ['000100', '000101']], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, '000100:000102'], self.data[0:3, :])) self.assertTrue(np.allclose(self.hp[:, '000100,000102'], self.data[[0, 2], :])) self.assertTrue(np.allclose(self.hp['close,open', '000100,000102'], self.data[[0, 2], :, 0:2])) print('start testing HistoryPanel') data = np.random.randint(10, size=(10, 5)) # index = pd.date_range(start='20200101', freq='d', periods=10) shares = '000100,000101,000102,000103,000104' dtypes = 'close' df = pd.DataFrame(data) print('=========================\nTesting HistoryPanel creation from DataFrame') hp = qt.dataframe_to_hp(df=df, shares=shares, htypes=dtypes) hp.info() hp = qt.dataframe_to_hp(df=df, shares='000100', htypes='close, open, high, low, middle', column_type='htypes') hp.info() print('=========================\nTesting HistoryPanel creation from initialization') data = np.random.randint(10, size=(5, 10, 4)).astype('float') index = pd.date_range(start='20200101', freq='d', periods=10) dtypes = 'close, open, high,low' data[0, [5, 6, 9], [0, 1, 3]] = np.nan data[1:4, [4, 7, 6, 2], [1, 1, 3, 0]] = np.nan data[4:5, [2, 9, 1, 2], [0, 3, 2, 1]] = np.nan hp = qt.HistoryPanel(data, levels=shares, columns=dtypes, rows=index) hp.info() print('==========================\n输出close类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close', :, :], data[:, :, 0:1], equal_nan=True)) print(f'==========================\n输出close和open类型的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1], :, :], data[:, :, 0:2], equal_nan=True)) print(f'==========================\n输出第一只股票的所有类型历史数据\n') self.assertTrue(np.allclose(hp[:, [0], :], data[0:1, :, :], equal_nan=True)) print('==========================\n输出第0、1、2个htype对应的所有股票全部历史数据\n') self.assertTrue(np.allclose(hp[[0, 1, 2]], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp[['close', 'high']], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出0、1两个htype的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1]], data[:, :, 0:2], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close,high'], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出close起到high止的三个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close:high'], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出0、1、3三个股票的全部历史数据\n') self.assertTrue(np.allclose(hp[:, [0, 1, 3]], data[[0, 1, 3], :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, ['000100', '000102']], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出0、1、2三个股票的历史数据\n', hp[:, 0: 3]) self.assertTrue(np.allclose(hp[:, 0: 3], data[0:3, :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, '000100, 000102'], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出所有股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, :, 0:8], data[:, 0:8, :], equal_nan=True)) print('==========================\n输出000100股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, '000100', 0:8], data[0, 0:8, :], equal_nan=True)) print('==========================\nstart testing multy axis slicing of HistoryPanel object') print('==========================\n输出000100、000120两只股票的close、open两组历史数据\n', hp['close,open', ['000100', '000102']]) print('==========================\n输出000100、000120两只股票的close到open三组历史数据\n', hp['close,open', '000100, 000102']) print(f'historyPanel: hp:\n{hp}') print(f'data is:\n{data}') hp.htypes = 'open,high,low,close' hp.info() hp.shares = ['000300', '600227', '600222', '000123', '000129'] hp.info() def test_relabel(self): new_shares_list = ['000001', '000002', '000003', '000004', '000005'] new_shares_str = '000001, 000002, 000003, 000004, 000005' new_htypes_list = ['close', 'volume', 'value', 'exchange'] new_htypes_str = 'close, volume, value, exchange' temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_list) print(temp_hp.info()) print(temp_hp.htypes) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_list) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) print(f'test errors raising') temp_hp = self.hp.copy() self.assertRaises(AssertionError, temp_hp.re_label, htypes=new_shares_str) self.assertRaises(TypeError, temp_hp.re_label, htypes=123) self.assertRaises(AssertionError, temp_hp.re_label, htypes='wrong input!') def test_csv_to_hp(self): pass def test_hdf_to_hp(self): pass def test_hp_join(self): # TODO: 这里需要加强,需要用具体的例子确认hp_join的结果正确 # TODO: 尤其是不同的shares、htypes、hdates,以及它们在顺 # TODO: 序不同的情况下是否能正确地组合 print(f'join two simple HistoryPanels with same shares') temp_hp = self.hp.join(self.hp2, same_shares=True) self.assertIsInstance(temp_hp, qt.HistoryPanel) def test_df_to_hp(self): print(f'test converting DataFrame to HistoryPanel') data = np.random.randint(10, size=(10, 5)) df1 = pd.DataFrame(data) df2 = pd.DataFrame(data, columns=qt.str_to_list(self.shares)) df3 = pd.DataFrame(data[:, 0:4]) df4 = pd.DataFrame(data[:, 0:4], columns=qt.str_to_list(self.htypes)) hp = qt.dataframe_to_hp(df1, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, [0, 1, 2, 3, 4]) self.assertEqual(hp.htypes, ['close']) self.assertEqual(hp.hdates, [pd.Timestamp('1970-01-01 00:00:00'), pd.Timestamp('1970-01-01 00:00:00.000000001'), pd.Timestamp('1970-01-01 00:00:00.000000002'), pd.Timestamp('1970-01-01 00:00:00.000000003'), pd.Timestamp('1970-01-01 00:00:00.000000004'), pd.Timestamp('1970-01-01 00:00:00.000000005'), pd.Timestamp('1970-01-01 00:00:00.000000006'), pd.Timestamp('1970-01-01 00:00:00.000000007'), pd.Timestamp('1970-01-01 00:00:00.000000008'), pd.Timestamp('1970-01-01 00:00:00.000000009')]) hp = qt.dataframe_to_hp(df2, shares=self.shares, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, qt.str_to_list(self.shares)) self.assertEqual(hp.htypes, ['close']) hp = qt.dataframe_to_hp(df3, shares='000100', column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, [0, 1, 2, 3]) hp = qt.dataframe_to_hp(df4, shares='000100', htypes=self.htypes, column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, qt.str_to_list(self.htypes)) hp.info() self.assertRaises(KeyError, qt.dataframe_to_hp, df1) def test_to_dataframe(self): """ 测试HistoryPanel对象的to_dataframe方法 """ print(f'START TEST == test_to_dataframe') print(f'test converting test hp to dataframe with share == "000102":') df_test = self.hp.to_dataframe(share='000102') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000102'], values)) print(f'test DataFrame conversion with share == "000100"') df_test = self.hp.to_dataframe(share='000100') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000100'], values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, share=3.0) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, share='000300') print(f'test DataFrame conversion with htype == "close"') df_test = self.hp.to_dataframe(htype='close') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['close'].T, values)) print(f'test DataFrame conversion with htype == "high"') df_test = self.hp.to_dataframe(htype='high') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['high'].T, values)) print(f'test DataFrame conversion with htype == "high" and dropna') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[4:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values))].reshape(9, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion with htype == "high", dropna and treat infs as na') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True, inf_as_na=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[5:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values) & ~np.isinf(target_values))].reshape(8, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, htype=pd.DataFrame()) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, htype='non_type') print(f'Raises ValueError when both or none parameter is given') self.assertRaises(KeyError, self.hp.to_dataframe) self.assertRaises(KeyError, self.hp.to_dataframe, share='000100', htype='close') def test_to_df_dict(self): """测试HistoryPanel公有方法to_df_dict""" print('test convert history panel slice by share') df_dict = self.hp.to_df_dict('share') self.assertEqual(self.hp.shares, list(df_dict.keys())) df_dict = self.hp.to_df_dict() self.assertEqual(self.hp.shares, list(df_dict.keys())) print('test convert historypanel slice by htype ') df_dict = self.hp.to_df_dict('htype') self.assertEqual(self.hp.htypes, list(df_dict.keys())) print('test raise assertion error') self.assertRaises(AssertionError, self.hp.to_df_dict, by='random text') self.assertRaises(AssertionError, self.hp.to_df_dict, by=3) print('test empty hp') df_dict = qt.HistoryPanel().to_df_dict('share') self.assertEqual(df_dict, {}) def test_stack_dataframes(self): print('test stack dataframes in a list') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes([df1, df2, df3], stack_along='shares', shares=['000100', '000200', '000300']) hp2 = stack_dataframes([df1, df2, df3], stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000100', '000200', '000300']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes=['close', 'high', 'low']) hp4 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) print('test stack dataframes in a dict') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares') hp2 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000001.SZ', '000002.SZ', '000003.SZ']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes(dfs={'close': df1, 'high': df2, 'low': df3}, stack_along='htypes') hp4 = stack_dataframes(dfs={'close': df1, 'low': df2, 'high': df3}, stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) def test_to_csv(self): pass def test_to_hdf(self): pass def test_fill_na(self): print(self.hp) new_values = self.hp.values.astype(float) new_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = np.nan print(new_values) temp_hp = qt.HistoryPanel(values=new_values, levels=self.hp.levels, rows=self.hp.rows, columns=self.hp.columns) self.assertTrue(np.allclose(temp_hp.values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]], np.nan, equal_nan=True)) temp_hp.fillna(2.3) new_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = 2.3 self.assertTrue(np.allclose(temp_hp.values, new_values, equal_nan=True)) def test_get_history_panel(self): # TODO: implement this test case # test get only one line of data pass def test_get_price_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20200101' end = '20200131' htypes = 'open, high, low, close' target_price_000039 = [[9.45, 9.49, 9.12, 9.17], [9.46, 9.56, 9.4, 9.5], [9.7, 9.76, 9.5, 9.51], [9.7, 9.75, 9.7, 9.72], [9.73, 9.77, 9.7, 9.73], [9.83, 9.85, 9.71, 9.72], [9.85, 9.85, 9.75, 9.79], [9.96, 9.96, 9.83, 9.86], [9.87, 9.94, 9.77, 9.93], [9.82, 9.9, 9.76, 9.87], [9.8, 9.85, 9.77, 9.82], [9.84, 9.86, 9.71, 9.72], [9.83, 9.93, 9.81, 9.86], [9.7, 9.87, 9.7, 9.82], [9.83, 9.86, 9.69, 9.79], [9.8, 9.94, 9.8, 9.86]] target_price_600748 = [[5.68, 5.68, 5.32, 5.37], [5.62, 5.68, 5.46, 5.65], [5.72, 5.72, 5.61, 5.62], [5.76, 5.77, 5.6, 5.73], [5.78, 5.84, 5.73, 5.75], [5.89, 5.91, 5.76, 5.77], [6.03, 6.04, 5.87, 5.89], [5.94, 6.07, 5.94, 6.02], [5.96, 5.98, 5.88, 5.97], [6.04, 6.06, 5.95, 5.96], [5.98, 6.04, 5.96, 6.03], [6.1, 6.11, 5.89, 5.94], [6.02, 6.12, 6., 6.1], [5.96, 6.05, 5.88, 6.01], [6.03, 6.03, 5.95, 5.99], [6.02, 6.12, 5.99, 5.99]] target_price_000040 = [[3.63, 3.83, 3.63, 3.65], [3.99, 4.07, 3.97, 4.03], [4.1, 4.11, 3.93, 3.95], [4.12, 4.13, 4.06, 4.11], [4.13, 4.19, 4.07, 4.13], [4.27, 4.28, 4.11, 4.12], [4.37, 4.38, 4.25, 4.29], [4.34, 4.5, 4.32, 4.41], [4.28, 4.35, 4.2, 4.34], [4.41, 4.43, 4.29, 4.31], [4.42, 4.45, 4.36, 4.41], [4.51, 4.56, 4.33, 4.35], [4.35, 4.55, 4.31, 4.55], [4.3, 4.41, 4.22, 4.36], [4.27, 4.44, 4.23, 4.34], [4.23, 4.27, 4.18, 4.25]] print(f'test get price type raw data with single thread') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d') self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') print(f'test get price type raw data with with multi threads') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d', parallel=10) self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') def test_get_financial_report_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20160101' end = '20201231' htypes = 'eps,basic_eps,diluted_eps,total_revenue,revenue,total_share,' \ 'cap_rese,undistr_porfit,surplus_rese,net_profit' target_eps_000039 = [[1.41], [0.1398], [-0.0841], [-0.1929], [0.37], [0.1357], [0.1618], [0.1191], [1.11], [0.759], [0.3061], [0.1409], [0.81], [0.4187], [0.2554], [0.1624], [0.14], [-0.0898], [-0.1444], [0.1291]] target_eps_600748 = [[0.41], [0.22], [0.22], [0.09], [0.42], [0.23], [0.22], [0.09], [0.36], [0.16], [0.15], [0.07], [0.47], [0.19], [0.12], [0.07], [0.32], [0.22], [0.14], [0.07]] target_eps_000040 = [[-0.6866], [-0.134], [-0.189], [-0.036], [-0.6435], [0.05], [0.062], [0.0125], [0.8282], [1.05], [0.985], [0.811], [0.41], [0.242], [0.113], [0.027], [0.19], [0.17], [0.17], [0.064]] target_basic_eps_000039 = [[1.3980000e-01, 1.3980000e-01, 6.3591954e+10, 6.3591954e+10], [-8.4100000e-02, -8.4100000e-02, 3.9431807e+10, 3.9431807e+10], [-1.9290000e-01, -1.9290000e-01, 1.5852177e+10, 1.5852177e+10], [3.7000000e-01, 3.7000000e-01, 8.5815341e+10, 8.5815341e+10], [1.3570000e-01, 1.3430000e-01, 6.1660271e+10, 6.1660271e+10], [1.6180000e-01, 1.6040000e-01, 4.2717729e+10, 4.2717729e+10], [1.1910000e-01, 1.1900000e-01, 1.9099547e+10, 1.9099547e+10], [1.1100000e+00, 1.1000000e+00, 9.3497622e+10, 9.3497622e+10], [7.5900000e-01, 7.5610000e-01, 6.6906147e+10, 6.6906147e+10], [3.0610000e-01, 3.0380000e-01, 4.3560398e+10, 4.3560398e+10], [1.4090000e-01, 1.4050000e-01, 1.9253639e+10, 1.9253639e+10], [8.1000000e-01, 8.1000000e-01, 7.6299930e+10, 7.6299930e+10], [4.1870000e-01, 4.1710000e-01, 5.3962706e+10, 5.3962706e+10], [2.5540000e-01, 2.5440000e-01, 3.3387152e+10, 3.3387152e+10], [1.6240000e-01, 1.6200000e-01, 1.4675987e+10, 1.4675987e+10], [1.4000000e-01, 1.4000000e-01, 5.1111652e+10, 5.1111652e+10], [-8.9800000e-02, -8.9800000e-02, 3.4982614e+10, 3.4982614e+10], [-1.4440000e-01, -1.4440000e-01, 2.3542843e+10, 2.3542843e+10], [1.2910000e-01, 1.2860000e-01, 1.0412416e+10, 1.0412416e+10], [7.2000000e-01, 7.1000000e-01, 5.8685804e+10, 5.8685804e+10]] target_basic_eps_600748 = [[2.20000000e-01, 2.20000000e-01, 5.29423397e+09, 5.29423397e+09], [2.20000000e-01, 2.20000000e-01, 4.49275653e+09, 4.49275653e+09], [9.00000000e-02, 9.00000000e-02, 1.59067065e+09, 1.59067065e+09], [4.20000000e-01, 4.20000000e-01, 8.86555586e+09, 8.86555586e+09], [2.30000000e-01, 2.30000000e-01, 5.44850143e+09, 5.44850143e+09], [2.20000000e-01, 2.20000000e-01, 4.34978927e+09, 4.34978927e+09], [9.00000000e-02, 9.00000000e-02, 1.73793793e+09, 1.73793793e+09], [3.60000000e-01, 3.60000000e-01, 8.66375241e+09, 8.66375241e+09], [1.60000000e-01, 1.60000000e-01, 4.72875116e+09, 4.72875116e+09], [1.50000000e-01, 1.50000000e-01, 3.76879016e+09, 3.76879016e+09], [7.00000000e-02, 7.00000000e-02, 1.31785454e+09, 1.31785454e+09], [4.70000000e-01, 4.70000000e-01, 7.23391685e+09, 7.23391685e+09], [1.90000000e-01, 1.90000000e-01, 3.76072215e+09, 3.76072215e+09], [1.20000000e-01, 1.20000000e-01, 2.35845364e+09, 2.35845364e+09], [7.00000000e-02, 7.00000000e-02, 1.03831865e+09, 1.03831865e+09], [3.20000000e-01, 3.20000000e-01, 6.48880919e+09, 6.48880919e+09], [2.20000000e-01, 2.20000000e-01, 3.72209142e+09, 3.72209142e+09], [1.40000000e-01, 1.40000000e-01, 2.22563924e+09, 2.22563924e+09], [7.00000000e-02, 7.00000000e-02, 8.96647052e+08, 8.96647052e+08], [4.80000000e-01, 4.80000000e-01, 6.61917508e+09, 6.61917508e+09]] target_basic_eps_000040 = [[-1.34000000e-01, -1.34000000e-01, 2.50438755e+09, 2.50438755e+09], [-1.89000000e-01, -1.89000000e-01, 1.32692347e+09, 1.32692347e+09], [-3.60000000e-02, -3.60000000e-02, 5.59073338e+08, 5.59073338e+08], [-6.43700000e-01, -6.43700000e-01, 6.80576162e+09, 6.80576162e+09], [5.00000000e-02, 5.00000000e-02, 6.38891620e+09, 6.38891620e+09], [6.20000000e-02, 6.20000000e-02, 5.23267082e+09, 5.23267082e+09], [1.25000000e-02, 1.25000000e-02, 2.22420874e+09, 2.22420874e+09], [8.30000000e-01, 8.30000000e-01, 8.67628947e+09, 8.67628947e+09], [1.05000000e+00, 1.05000000e+00, 5.29431716e+09, 5.29431716e+09], [9.85000000e-01, 9.85000000e-01, 3.56822382e+09, 3.56822382e+09], [8.11000000e-01, 8.11000000e-01, 1.06613439e+09, 1.06613439e+09], [4.10000000e-01, 4.10000000e-01, 8.13102532e+09, 8.13102532e+09], [2.42000000e-01, 2.42000000e-01, 5.17971521e+09, 5.17971521e+09], [1.13000000e-01, 1.13000000e-01, 3.21704120e+09, 3.21704120e+09], [2.70000000e-02, 2.70000000e-02, 8.41966738e+08, 8.24272235e+08], [1.90000000e-01, 1.90000000e-01, 3.77350171e+09, 3.77350171e+09], [1.70000000e-01, 1.70000000e-01, 2.38643892e+09, 2.38643892e+09], [1.70000000e-01, 1.70000000e-01, 1.29127117e+09, 1.29127117e+09], [6.40000000e-02, 6.40000000e-02, 6.03256858e+08, 6.03256858e+08], [1.30000000e-01, 1.30000000e-01, 1.66572918e+09, 1.66572918e+09]] target_total_share_000039 = [[3.5950140e+09, 4.8005360e+09, 2.1573660e+10, 3.5823430e+09], [3.5860750e+09, 4.8402300e+09, 2.0750827e+10, 3.5823430e+09], [3.5860750e+09, 4.9053550e+09, 2.0791307e+10, 3.5823430e+09], [3.5845040e+09, 4.8813110e+09, 2.1482857e+10, 3.5823430e+09], [3.5831490e+09, 4.9764250e+09, 2.0926816e+10, 3.2825850e+09], [3.5825310e+09, 4.8501270e+09, 2.1020418e+10, 3.2825850e+09], [2.9851110e+09, 5.4241420e+09, 2.2438350e+10, 3.2825850e+09], [2.9849890e+09, 4.1284000e+09, 2.2082769e+10, 3.2825850e+09], [2.9849610e+09, 4.0838010e+09, 2.1045994e+10, 3.2815350e+09], [2.9849560e+09, 4.2491510e+09, 1.9694345e+10, 3.2815350e+09], [2.9846970e+09, 4.2351600e+09, 2.0016361e+10, 3.2815350e+09], [2.9828890e+09, 4.2096630e+09, 1.9734494e+10, 3.2815350e+09], [2.9813960e+09, 3.4564240e+09, 1.8562738e+10, 3.2793790e+09], [2.9803530e+09, 3.0759650e+09, 1.8076208e+10, 3.2793790e+09], [2.9792680e+09, 3.1376690e+09, 1.7994776e+10, 3.2793790e+09], [2.9785770e+09, 3.1265850e+09, 1.7495053e+10, 3.2793790e+09], [2.9783640e+09, 3.1343850e+09, 1.6740840e+10, 3.2035780e+09], [2.9783590e+09, 3.1273880e+09, 1.6578389e+10, 3.2035780e+09], [2.9782780e+09, 3.1169280e+09, 1.8047639e+10, 3.2035780e+09], [2.9778200e+09, 3.1818630e+09, 1.7663145e+10, 3.2035780e+09]] target_total_share_600748 = [[1.84456289e+09, 2.60058426e+09, 5.72443733e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.72096899e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.65738237e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.50257806e+09, 4.58026529e+08], [1.84456289e+09, 2.59868164e+09, 5.16741523e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 5.14677280e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.94955591e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.79001451e+09, 4.44998882e+08], [1.84456289e+09, 3.11401684e+09, 4.46326988e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.45419136e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.39652948e+09, 4.01064256e+08], [1.84456289e+09, 3.18007783e+09, 4.26608403e+09, 4.01064256e+08], [1.84456289e+09, 3.10935622e+09, 3.78417688e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.65806574e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.62063090e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.50063915e+09, 3.65651701e+08], [1.41889453e+09, 3.55940850e+09, 3.22272993e+09, 3.62124939e+08], [1.41889453e+09, 3.56129650e+09, 3.11477476e+09, 3.62124939e+08], [1.41889453e+09, 3.59632888e+09, 3.06836903e+09, 3.62124939e+08], [1.08337087e+09, 3.37400726e+07, 3.00918704e+09, 3.62124939e+08]] target_total_share_000040 = [[1.48687387e+09, 1.06757900e+10, 8.31900755e+08, 2.16091994e+08], [1.48687387e+09, 1.06757900e+10, 7.50177302e+08, 2.16091994e+08], [1.48687387e+09, 1.06757899e+10, 9.90255974e+08, 2.16123282e+08], [1.48687387e+09, 1.06757899e+10, 1.03109866e+09, 2.16091994e+08], [1.48687387e+09, 1.06757910e+10, 2.07704745e+09, 2.16123282e+08], [1.48687387e+09, 1.06757910e+10, 2.09608665e+09, 2.16123282e+08], [1.48687387e+09, 1.06803833e+10, 2.13354083e+09, 2.16123282e+08], [1.48687387e+09, 1.06804090e+10, 2.11489364e+09, 2.16123282e+08], [1.33717327e+09, 8.87361727e+09, 2.42939924e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.34220254e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.16390368e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 1.07961915e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 8.58866066e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 6.87024393e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.71554565e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.54241222e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 5.10059576e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 4.59351639e+08, 1.88489589e+08], [4.69593364e+08, 2.78355875e+08, 4.13430814e+08, 1.88489589e+08], [4.69593364e+08, 2.74235459e+08, 3.83557678e+08, 1.88489589e+08]] target_net_profit_000039 = [[np.nan], [2.422180e+08], [np.nan], [2.510113e+09], [np.nan], [1.102220e+09], [np.nan], [4.068455e+09], [np.nan], [1.315957e+09], [np.nan], [3.158415e+09], [np.nan], [1.066509e+09], [np.nan], [7.349830e+08], [np.nan], [-5.411600e+08], [np.nan], [2.271961e+09]] target_net_profit_600748 = [[np.nan], [4.54341757e+08], [np.nan], [9.14476670e+08], [np.nan], [5.25360283e+08], [np.nan], [9.24502415e+08], [np.nan], [4.66560302e+08], [np.nan], [9.15265285e+08], [np.nan], [2.14639674e+08], [np.nan], [7.45093049e+08], [np.nan], [2.10967312e+08], [np.nan], [6.04572711e+08]] target_net_profit_000040 = [[np.nan], [-2.82458846e+08], [np.nan], [-9.57130872e+08], [np.nan], [9.22114527e+07], [np.nan], [1.12643819e+09], [np.nan], [1.31715269e+09], [np.nan], [5.39940093e+08], [np.nan], [1.51440838e+08], [np.nan], [1.75339071e+08], [np.nan], [8.04740415e+07], [np.nan], [6.20445815e+07]] print('test get financial data, in multi thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=4) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据 print(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) print('test get financial data, in single thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=0) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据,因为网络问题,有可能会取到空数据 self.assertFalse(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) def test_get_composite_type_raw_data(self): pass class TestUtilityFuncs(unittest.TestCase): def setUp(self): pass def test_str_to_list(self): self.assertEqual(str_to_list('a,b,c,d,e'), ['a', 'b', 'c', 'd', 'e']) self.assertEqual(str_to_list('a, b, c '), ['a', 'b', 'c']) self.assertEqual(str_to_list('a, b: c', sep_char=':'), ['a,b', 'c']) def test_list_or_slice(self): str_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} self.assertEqual(qt.list_or_slice(slice(1, 2, 1), str_dict), slice(1, 2, 1)) self.assertEqual(qt.list_or_slice('open', str_dict), [1]) self.assertEqual(list(qt.list_or_slice('close, high, low', str_dict)), [0, 2, 3]) self.assertEqual(list(qt.list_or_slice('close:high', str_dict)), [0, 1, 2]) self.assertEqual(list(qt.list_or_slice(['open'], str_dict)), [1]) self.assertEqual(list(qt.list_or_slice(['open', 'high'], str_dict)), [1, 2]) self.assertEqual(list(qt.list_or_slice(0, str_dict)), [0]) self.assertEqual(list(qt.list_or_slice([0, 2], str_dict)), [0, 2]) self.assertEqual(list(qt.list_or_slice([True, False, True, False], str_dict)), [0, 2]) def test_label_to_dict(self): target_list = [0, 1, 10, 100] target_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} target_dict2 = {'close': 0, 'open': 2, 'high': 1, 'low': 3} self.assertEqual(qt.labels_to_dict('close, open, high, low', target_list), target_dict) self.assertEqual(qt.labels_to_dict(['close', 'open', 'high', 'low'], target_list), target_dict) self.assertEqual(qt.labels_to_dict('close, high, open, low', target_list), target_dict2) self.assertEqual(qt.labels_to_dict(['close', 'high', 'open', 'low'], target_list), target_dict2) def test_regulate_date_format(self): self.assertEqual(regulate_date_format('2019/11/06'), '20191106') self.assertEqual(regulate_date_format('2019-11-06'), '20191106') self.assertEqual(regulate_date_format('20191106'), '20191106') self.assertEqual(regulate_date_format('191106'), '20061119') self.assertEqual(regulate_date_format('830522'), '19830522') self.assertEqual(regulate_date_format(datetime.datetime(2010, 3, 15)), '20100315') self.assertEqual(regulate_date_format(pd.Timestamp('2010.03.15')), '20100315') self.assertRaises(ValueError, regulate_date_format, 'abc') self.assertRaises(ValueError, regulate_date_format, '2019/13/43') def test_list_to_str_format(self): self.assertEqual(list_to_str_format(['close', 'open', 'high', 'low']), 'close,open,high,low') self.assertEqual(list_to_str_format(['letters', ' ', '123 4', 123, ' kk l']), 'letters,,1234,kkl') self.assertEqual(list_to_str_format('a string input'), 'a,string,input') self.assertEqual(list_to_str_format('already,a,good,string'), 'already,a,good,string') self.assertRaises(AssertionError, list_to_str_format, 123) def test_is_trade_day(self): """test if the funcion maybe_trade_day() and is_market_trade_day() works properly """ date_trade = '20210401' date_holiday = '20210102' date_weekend = '20210424' date_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) self.assertTrue(maybe_trade_day(date_seems_trade_day)) self.assertTrue(maybe_trade_day(date_too_early)) self.assertTrue(maybe_trade_day(date_too_late)) self.assertTrue(maybe_trade_day(date_christmas)) self.assertTrue(is_market_trade_day(date_trade)) self.assertFalse(is_market_trade_day(date_holiday)) self.assertFalse(is_market_trade_day(date_weekend)) self.assertFalse(is_market_trade_day(date_seems_trade_day)) self.assertFalse(is_market_trade_day(date_too_early)) self.assertFalse(is_market_trade_day(date_too_late)) self.assertTrue(is_market_trade_day(date_christmas)) self.assertFalse(is_market_trade_day(date_christmas, exchange='XHKG')) date_trade = pd.to_datetime('20210401') date_holiday = pd.to_datetime('20210102') date_weekend = pd.to_datetime('20210424') self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) def test_prev_trade_day(self): """test the function prev_trade_day() """ date_trade = '20210401' date_holiday = '20210102' prev_holiday = pd.to_datetime(date_holiday) - pd.Timedelta(2, 'd') date_weekend = '20210424' prev_weekend = pd.to_datetime(date_weekend) - pd.Timedelta(1, 'd') date_seems_trade_day = '20210217' prev_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertEqual(pd.to_datetime(prev_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(prev_trade_day(date_holiday)), pd.to_datetime(prev_holiday)) self.assertEqual(pd.to_datetime(prev_trade_day(date_weekend)), pd.to_datetime(prev_weekend)) self.assertEqual(pd.to_datetime(prev_trade_day(date_seems_trade_day)), pd.to_datetime(prev_seems_trade_day)) self.assertEqual(pd.to_datetime(prev_trade_day(date_too_early)), pd.to_datetime(date_too_early)) self.assertEqual(pd.to_datetime(prev_trade_day(date_too_late)), pd.to_datetime(date_too_late)) self.assertEqual(pd.to_datetime(prev_trade_day(date_christmas)), pd.to_datetime(date_christmas)) def test_next_trade_day(self): """ test the function next_trade_day() """ date_trade = '20210401' date_holiday = '20210102' next_holiday = pd.to_datetime(date_holiday) + pd.Timedelta(2, 'd') date_weekend = '20210424' next_weekend = pd.to_datetime(date_weekend) + pd.Timedelta(2, 'd') date_seems_trade_day = '20210217' next_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertEqual(pd.to_datetime(next_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(next_trade_day(date_holiday)), pd.to_datetime(next_holiday)) self.assertEqual(pd.to_datetime(next_trade_day(date_weekend)), pd.to_datetime(next_weekend)) self.assertEqual(pd.to_datetime(next_trade_day(date_seems_trade_day)), pd.to_datetime(next_seems_trade_day)) self.assertEqual(pd.to_datetime(next_trade_day(date_too_early)), pd.to_datetime(date_too_early)) self.assertEqual(pd.to_datetime(next_trade_day(date_too_late)), pd.to_datetime(date_too_late)) self.assertEqual(pd.to_datetime(next_trade_day(date_christmas)), pd.to_datetime(date_christmas)) def test_prev_market_trade_day(self): """ test the function prev_market_trade_day() """ date_trade = '20210401' date_holiday = '20210102' prev_holiday = pd.to_datetime(date_holiday) - pd.Timedelta(2, 'd') date_weekend = '20210424' prev_weekend = pd.to_datetime(date_weekend) - pd.Timedelta(1, 'd') date_seems_trade_day = '20210217' prev_seems_trade_day = pd.to_datetime(date_seems_trade_day) - pd.Timedelta(7, 'd') date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' prev_christmas_xhkg = '20201224' self.assertEqual(pd.to_datetime(prev_market_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_holiday)), pd.to_datetime(prev_holiday)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_weekend)), pd.to_datetime(prev_weekend)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_seems_trade_day)), pd.to_datetime(prev_seems_trade_day)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_too_early)), None) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_too_late)), None) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_christmas, 'SSE')), pd.to_datetime(date_christmas)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_christmas, 'XHKG')), pd.to_datetime(prev_christmas_xhkg)) def test_next_market_trade_day(self): """ test the function next_market_trade_day() """ date_trade = '20210401' date_holiday = '20210102' next_holiday = pd.to_datetime(date_holiday) + pd.Timedelta(2, 'd') date_weekend = '20210424' next_weekend = pd.to_datetime(date_weekend) + pd.Timedelta(2, 'd') date_seems_trade_day = '20210217' next_seems_trade_day = pd.to_datetime(date_seems_trade_day) + pd.Timedelta(1, 'd') date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' next_christmas_xhkg = '20201228' self.assertEqual(pd.to_datetime(next_market_trade_day(date_trade)),
pd.to_datetime(date_trade)
pandas.to_datetime
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import math from pathlib import Path import numpy as np import pandas as pd from pyspark.sql import SparkSession import pytest from pysarplus import SARPlus, SARModel def assert_compare(expected_id, expected_score, actual_prediction): assert expected_id == actual_prediction.id assert math.isclose( expected_score, actual_prediction.score, rel_tol=1e-3, abs_tol=1e-3 ) @pytest.fixture(scope="module") def spark(tmp_path_factory, app_name="Sample", url="local[*]", memory="1G"): """Start Spark if not started Args: app_name (str): sets name of the application url (str): url for spark master memory (str): size of memory for spark driver """ try: sarplus_jar_path = next( Path(__file__) .parents[2] .joinpath("scala", "target") .glob("**/sarplus*.jar") ).absolute() except StopIteration: raise Exception("Could not find Sarplus JAR file") spark = ( SparkSession.builder.appName(app_name) .master(url) .config("spark.jars", sarplus_jar_path) .config("spark.driver.memory", memory) .config("spark.sql.shuffle.partitions", "1") .config("spark.default.parallelism", "1") .config("spark.sql.crossJoin.enabled", True) .config("spark.ui.enabled", False) .config("spark.sql.warehouse.dir", str(tmp_path_factory.mktemp("spark"))) # .config("spark.eventLog.enabled", True) # only for local debugging, breaks on build server .getOrCreate() ) return spark @pytest.fixture(scope="module") def sample_cache(spark): df = spark.read.csv("tests/sample-input.txt", header=True, inferSchema=True) path = "tests/sample-output.sar" df.coalesce(1).write.format("com.microsoft.sarplus").mode("overwrite").save(path) return path @pytest.fixture(scope="module") def pandas_dummy_dataset(header): """Load sample dataset in pandas for testing; can be used to create a Spark dataframe Returns: single Pandas dataframe """ ratings_dict = { header["col_user"]: [1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3], header["col_item"]: [1, 2, 3, 4, 1, 2, 7, 8, 9, 10, 1, 2], header["col_rating"]: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], } return pd.DataFrame(ratings_dict) @pytest.mark.spark def test_good(spark, sample_cache): model = SARModel(sample_cache) y = model.predict([0, 1], [10, 20], top_k=10, remove_seen=False) assert_compare(0, 5, y[0]) assert_compare(1, 44, y[1]) assert_compare(2, 64, y[2]) @pytest.mark.spark def test_good_less(spark, sample_cache): model = SARModel(sample_cache) y = model.predict([0, 2], [10, 3], top_k=5, remove_seen=False) assert_compare(0, 1, y[0]) assert_compare(1, 11.6, y[1]) assert_compare(2, 12.3, y[2]) @pytest.mark.spark def test_good_require_sort(spark, sample_cache): model = SARModel(sample_cache) y = model.predict([1, 0], [20, 10], top_k=10, remove_seen=False) assert_compare(0, 5, y[0]) assert_compare(1, 44, y[1]) assert_compare(2, 64, y[2]) assert 3 == len(y) @pytest.mark.spark def test_good_require_sort_remove_seen(spark, sample_cache): model = SARModel(sample_cache) y = model.predict([1, 0], [20, 10], top_k=10, remove_seen=True) assert_compare(2, 64, y[0]) assert 1 == len(y) @pytest.mark.spark def test_pandas(spark, sample_cache): item_scores = pd.DataFrame([(0, 2.3), (1, 3.1)], columns=["itemID", "score"]) model = SARModel(sample_cache) y = model.predict( item_scores["itemID"].values, item_scores["score"].values, top_k=10, remove_seen=False, ) assert_compare(0, 0.85, y[0]) assert_compare(1, 6.9699, y[1]) assert_compare(2, 9.92, y[2]) @pytest.mark.spark def test_e2e(spark, pandas_dummy_dataset, header): sar = SARPlus(spark, **header, cache_path="tests/test_e2e_cache") df = spark.createDataFrame(pandas_dummy_dataset) sar.fit(df) test_df = spark.createDataFrame(
pd.DataFrame({header["col_user"]: [3], header["col_item"]: [2]})
pandas.DataFrame
''' @ Author : <NAME> @ E-mail : <EMAIL> @ Github : https://github.com/WooilJeong/PublicDataReader @ Blog : https://wooiljeong.github.io ''' import pandas as pd import numpy as np import datetime import requests from bs4 import BeautifulSoup from PublicDataReader.PublicDataPortal.__init__ import * class AptTradeReader(Common): def __init__(self, serviceKey): super().__init__(serviceKey) # ServiceKey 유효성 검사 api_url = "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade?serviceKey=" + self.serviceKey super().test(api_url) def CodeFinder(self, name): ''' 국토교통부 실거래가 정보 오픈API는 법정동코드 10자리 중 앞 5자리인 구를 나타내는 지역코드를 사용합니다. API에 사용할 구 별 코드를 조회하는 메소드이며, 문자열 지역 명을 입력받고, 조회 결과를 Pandas DataFrame형식으로 출력합니다. ''' result = self.code[self.code['법정동명'].str.contains(name)][['법정동명','법정구코드']] result.index = range(len(result)) return result def DataReader(self, LAWD_CD, DEAL_YMD): ''' 지역코드와 계약월을 입력받고, 아파트 실거래 정보를 Pandas DataFrame 형식으로 출력합니다. ''' # URL url_1="http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade?LAWD_CD="+LAWD_CD url_2="&DEAL_YMD=" + DEAL_YMD url_3="&serviceKey=" + self.serviceKey url_4="&numOfRows=99999" url = url_1+url_2+url_3+url_4 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, 'lxml-xml') # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = ['법정동','지역코드','아파트','지번','년','월','일','건축년도','전용면적','층','거래금액'] for t in te: for variable in variables: try : globals()[variable] = t.find(variable).text except : globals()[variable] = np.nan data = pd.DataFrame( [[법정동,지역코드,아파트,지번,년,월,일,건축년도,전용면적,층,거래금액]], columns = variables ) df = pd.concat([df, data]) # Set Columns colNames = ['지역코드','법정동','거래일','아파트','지번','전용면적','층','건축년도','거래금액'] # Feature Engineering try: if len(df['년']!=0) & len(df['월']!=0) & len(df['일']!=0): df['거래일'] = df['년'] + '-' + df['월'] + '-' + df['일'] df['거래일'] = pd.to_datetime(df['거래일']) df['거래금액'] = pd.to_numeric(df['거래금액'].str.replace(',','')) except: df = pd.DataFrame(columns=colNames) print("조회할 자료가 없습니다.") # Arange Columns df = df[colNames] df = df.sort_values(['법정동','거래일']) df['법정동'] = df['법정동'].str.strip() df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, 'lxml-xml') # Filtering te = xmlsoup.findAll("header") # 정상 요청시 에러 발생 -> Python 코드 에러 if te[0].find('resultCode').text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API 서비스 제공처 오류 else: print(">>> Open API Error: {}".format(te[0].find['resultMsg'])) def DataCollector(self, LAWD_CD, start_date, end_date): ''' 특정 기간 동안의 데이터 수집 메소드 ''' end_date = datetime.datetime.strptime(end_date, "%Y-%m") end_date = end_date + datetime.timedelta(days=31) end_date = datetime.datetime.strftime(end_date, "%Y-%m") ts = pd.date_range(start=start_date, end=end_date, freq='m') date_list = list(ts.strftime('%Y%m')) df = pd.DataFrame() df_sum =
pd.DataFrame()
pandas.DataFrame
import lightgbm as lgb from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import numpy as np import pandas as pd df_x = pd.read_csv('../../resource/Term2/train_processed.csv') # x:説明変数 df_test = pd.read_csv('../../resource/Term2/test_processed.csv') # testデータ df =
pd.concat([df_x, df_test], axis=0)
pandas.concat
from core.models.metrics import cross_compute, avg_gain_ratio, gain_mean, rejection_ratio, loss_sum, MAX_GAIN def get_infos(min_offer, offer, metrics=None, do_cross_compute=False): if metrics is None: metrics = [avg_gain_ratio, gain_mean, rejection_ratio, loss_sum] #df = pd.DataFrame() size1, size2 = len(min_offer), len(offer) if size1 != size2: print("WARNING: different shapes!!!", size1, size2) min_size = min(size1, size2) min_offer = min_offer[:min_size] offer = offer[:min_size] infos = dict() for idx, metric in enumerate(metrics): if do_cross_compute: infos[metric.__name__] = cross_compute(min_offer, offer, metric) else: infos[metric.__name__] = metric(min_offer, offer) return infos import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) import pandas as pd import numpy as np def get_dfs_full_prop(): dfs = {} dfs_full = {} result_df = pd.DataFrame(index=range(105)) index=["Proposer", "Proposer + DSS"] stats = pd.DataFrame(index=index) #TREATMENTS = {"t00", "t10a", "t10b", "t11a", "t11b", "t11c"} TREATMENTS_MAPPING = { "t00": "T0", "t10a": "t1.0", "t10b": "t1.1", "t11a": "t1.2", "t11b": "t1.3", "t11c": "t1.4", } TREATMENTS = TREATMENTS_MAPPING.values() for treatment, new_treatment in TREATMENTS_MAPPING.items(): # Read and sanitize the data df_full =
pd.read_csv(f"../data/{treatment}/export/result__{treatment}_prop.csv")
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 13 10:08:05 2021 @author: babraham """ from django.db.models import IntegerField from django.db.models.functions import Cast from django.db.models import F import pandas as pd import numpy as np import json import os import time from va_explorer.va_data_management.models import Location from va_explorer.va_data_management.utils.loading import get_va_summary_stats # ============ GEOJSON Data (for map) ================= # load geojson data from flat file (will likely migrate to a database later) def load_geojson_data(json_file): geojson = None if os.path.isfile(json_file): raw_json = open(json_file, "r") geojson = json.loads(raw_json.read()) raw_json.close() # add min and max coordinates for mapping for i, g in enumerate(geojson["features"]): coordinate_list = g["geometry"]["coordinates"] coordinate_stat_tables = [] for coords in coordinate_list: if len(coords) == 1: coords = coords[0] coordinate_stat_tables.append( pd.DataFrame(coords, columns=["lon", "lat"]).describe() ) g["properties"]["area_name"] += " {}".format( g["properties"]["area_level_label"] ) g["properties"]["min_x"] = min( [stat_df["lon"]["min"] for stat_df in coordinate_stat_tables] ) g["properties"]["max_x"] = max( [stat_df["lon"]["max"] for stat_df in coordinate_stat_tables] ) g["properties"]["min_y"] = min( [stat_df["lat"]["min"] for stat_df in coordinate_stat_tables] ) g["properties"]["max_y"] = max( [stat_df["lat"]["max"] for stat_df in coordinate_stat_tables] ) geojson["features"][i] = g # save total districts and provinces for future use geojson["district_count"] = len( [ f for f in geojson["features"] if f["properties"]["area_level_label"] == "District" ] ) geojson["province_count"] = len( [ f for f in geojson["features"] if f["properties"]["area_level_label"] == "Province" ] ) return geojson # ============ VA Data ================= def load_va_data(user, geographic_levels=None, date_cutoff="1901-01-01"): # the dashboard requires date of death, exclude if the date is unknown # Using .values at the end lets us do select_related("causes") which drastically speeds up the query. user_vas = user.verbal_autopsies(date_cutoff=date_cutoff) # get stats on last update and last va submission date update_stats = get_va_summary_stats(user_vas) all_vas = user_vas\ .only( "id", "Id10019", "Id10058", "Id10023", "ageInYears", "age_group", "isNeonatal1", "isChild1", "isAdult1", "location", ) \ .exclude(Id10023__in=["dk", "DK"]) \ .exclude(location__isnull=True) \ .select_related("location") \ .select_related("causes") \ .values( "id", "Id10019", "Id10058", "age_group", "isNeonatal1", "isChild1", "isAdult1", 'location__id', 'location__name', 'ageInYears', date=F("Id10023"), cause=F("causes__cause"), ) if not all_vas: return json.dumps({"data": {"valid": pd.DataFrame().to_json(), "invalid": pd.DataFrame().to_json()}, "update_stats": {update_stats}}) # Build a dictionary of location ancestors for each facility # TODO: This is not efficient (though it"s better than 2 DB queries per VA) # TODO: This assumes that all VAs will occur in a facility, ok? # TODO: if there is no location data, we could use the location associated with the interviewer location_types = dict() locations = {} location_ancestors = { location.id: location.get_ancestors() for location in Location.objects.filter(location_type="facility") } for va in all_vas: # Find parents (likely district and province). for ancestor in location_ancestors[va['location__id']]: va[ancestor.location_type] = ancestor.name #location_types.add(ancestor.location_type) location_types[ancestor.depth] = ancestor.location_type locations[ancestor.name] = ancestor.location_type # Clean up location fields. va["location"] = va["location__name"] del va["location__name"] del va["location__id"] # Convert list to dataframe. va_df = pd.DataFrame.from_records(all_vas) # convert dates to datetimes va_df["date"] = pd.to_datetime(va_df["date"]) va_df["age"] =
pd.to_numeric(va_df["ageInYears"], errors="coerce")
pandas.to_numeric
import streamlit as st import pandas as pd import numpy as np import datetime import plotly.express as px import base64 def app(): LOGO_IMAGE_IBM = "apps/ibm.png" LOGO_IMAGE_U_OF_F = "apps/u_of_f.svg.png" LOGO_IMAGE_BRIGHTER = "apps/brighter_potential_logo.png" st.markdown( """ <style> .container { display: flex; } .logo-text { font-weight:700 !important; font-size:50px !important; color: #f9a01b !important; padding-top: 75px !important; } .logo-img { float: left; position: relative; margin-top: 600px; } #logo { position: absolute; float: right; } </style> """, unsafe_allow_html=True ) st.markdown( f""" <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE_IBM, "rb").read()).decode()}" width="100x`" height="40" style="border:20px;margin:0px" /> <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE_U_OF_F, "rb").read()).decode()}" width="200" height="40" style="border:20px;margin:0px"/> &ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp; &ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp; <img class="logo" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE_BRIGHTER, "rb").read()).decode()}" width="100" height="100" /> """, unsafe_allow_html=True ) st.markdown('---') st.header("Solar Rooftop Potential Prediction") # Sidebar st.sidebar.header('Choose Time Range to View:') min_date = st.sidebar.date_input('Min Date', datetime.datetime(2019, 1, 1)) min_date = min_date.strftime('%m/%d/%y') max_date = st.sidebar.date_input('Max Date', datetime.datetime(2019, 12, 31)) max_date = max_date.strftime('%m/%d/%y') st.sidebar.header('Choose Zipcode to View:') # Declare zipcode list zipcodes = [33131,33040,34112,33916,33407,33935,33471,33950, 34266,34994,34972,34236,34950,34205,33873,32960,33830,33606,33755,34741,33525,32806,34601, 32796,33513,32778,32771,34453,32720,34471,32621,32110,32601,32177,32456,32080,32091,32054, 32066,32347,32401,32327, 32025,32064,32063,32202,32502,32503,32424,32321,32304,32340,32344, 32351,32570,32034,32433,32536,32428,32448,32425,32602,32603,32604,32605,32606, 32607,32608,32609,32610,32611,32612,32614,32627,32641,32653,32402,32404,32405,32406, 32412,32073,32081,32099,32201,32203,32204,32205,32206,32207,32208,32209, 32210,32211,32212,32214,32216,32217,32218,32219,32220,32221,32222,32223,32224, 32225,32226,32227,32228,32229,32233,32234,32235,32236,32237,32238,32239, 32241,32244,32245,32246,32247,32250,32254,32255,32256,32257,32258,32266,32277, 32501,32504,32505,32514,32520,32522,32523,32524,32591,33601,33602,33603,33604, 33605,33607,33608,33609,33610,33611,33612,33613,33615,33616,33617,33619, 33620,33621,33622,33623,33629,33630,33631,33633,33634,33637,33646,33647,33650,33655,33660,33661, 33662,33664,33672,33673,33674,33675,33677,33679,33680,33681,33686,33901, 33902,33903,33905,33906,33907,33911,33912,33913,33917,33919,33966,33971,33990,32301,32302,32303,32305,32306, 32307,32308,32309,32310,32311,32312,32313,32314,32316,32317,32395,32399, 33101,33109,33111,33114,33125,33126,33127,33128,33129,33130,33132,33133,33134,33135,33136,33137,33138, 33139,33140,33142,33144,33145,33146,33147,33149,33150,33151,33159,33222,33233,33234, 33238,33242,33245,33255,32789,32801,32802,32803,32804,32805,32807,32808,32809, 32810,32811,32812,32814,32819,32822,32824,32827,32829,32832,32834, 32835,32839,32853,32854,32855,32856,32861,32862,32878,32885,32886, 32891,33401,33402,33403,33405,33409,33411,33412,33417,33756,33757,33758, 33759,33761,33763,33764,33765,33766,33767,33769,33302, 33303,33304,33305,33306,33307,33308,33309,33311,33312,33315,33316,33334,33338,33339,33348, 33394 ] # Put client and date options in the sidebar selected_zip = st.sidebar.selectbox( 'Choose Zipcode:', zipcodes, key='zipcodes' ) st.markdown(""" * Renewables currently account for roughly only 4% of energy production in Florida. * Stakeholders need to know how solar energy sources can supplement the power grid. * The sunburst chart below shows the daily potential of energy demand that could be supplied by rooftop solar energy for 2019. * This projection for 2019 is based on predictive modeling that predicts the daily rooftop solar energy potential and the energy demand based on the weather. """) # area_stats = pd.read_csv('data/RPMSZips.csv', dtype={'zip':str}) area_stats =
pd.read_csv('apps/florida_weather_w_predictions_and_zip_codes.csv', dtype={'zipcode':str})
pandas.read_csv
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import pytest import numpy as np import pandas import matplotlib import modin.pandas as pd import io from modin.pandas.test.utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, test_data_values, test_data_keys, create_test_dfs, test_data, ) from modin.config import NPartitions NPartitions.put(4) # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") @pytest.mark.parametrize("method", ["items", "iteritems", "iterrows"]) def test_items_iteritems_iterrows(method): data = test_data["float_nan_data"] modin_df, pandas_df = pd.DataFrame(data), pandas.DataFrame(data) for modin_item, pandas_item in zip( getattr(modin_df, method)(), getattr(pandas_df, method)() ): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("name", [None, "NotPandas"]) def test_itertuples_name(name): data = test_data["float_nan_data"] modin_df, pandas_df = pd.DataFrame(data), pandas.DataFrame(data) modin_it_custom = modin_df.itertuples(name=name) pandas_it_custom = pandas_df.itertuples(name=name) for modin_row, pandas_row in zip(modin_it_custom, pandas_it_custom): np.testing.assert_equal(modin_row, pandas_row) def test_itertuples_multiindex(): data = test_data["int_data"] modin_df, pandas_df = pd.DataFrame(data), pandas.DataFrame(data) new_idx = pd.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))] ) modin_df.columns = new_idx pandas_df.columns = new_idx modin_it_custom = modin_df.itertuples() pandas_it_custom = pandas_df.itertuples() for modin_row, pandas_row in zip(modin_it_custom, pandas_it_custom): np.testing.assert_equal(modin_row, pandas_row) def test___iter__(): modin_df = pd.DataFrame(test_data_values[0]) pandas_df = pandas.DataFrame(test_data_values[0]) modin_iterator = modin_df.__iter__() # Check that modin_iterator implements the iterator interface assert hasattr(modin_iterator, "__iter__") assert hasattr(modin_iterator, "next") or hasattr(modin_iterator, "__next__") pd_iterator = pandas_df.__iter__() assert list(modin_iterator) == list(pd_iterator) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___contains__(request, data): modin_df = pd.DataFrame(data) pandas_df =
pandas.DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp = pd.DataFrame(data['temp']) sma1 = SMA(temp,20,1) sma2 = SMA(pd.DataFrame(data['close_std']),20,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2']) alpha.columns = ['alpha23'] return alpha @timer def alpha24(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis=1 ,join = 'inner' ) temp = data['Close'] - data['close_delay'] temp = pd.DataFrame(temp) alpha = SMA(temp,5,1) alpha.columns = ['alpha24'] return alpha @timer def alpha25(self): close = self.close close_delta = Delta(close,7) ret = self.ret r1 = Rank(close_delta) r3 = Rank(Sum(ret,250)) volume = self.volume volume_mean = Mean(pd.DataFrame(volume['Vol']),20) volume_mean.columns = ['volume_mean'] data = pd.concat([volume,volume_mean],axis = 1,join = 'inner') temp0 = pd.DataFrame(data['Vol']/data['volume_mean']) temp = DecayLinear(temp0,9) r2 = Rank(temp) rank = pd.concat([r1,r2,r3],axis = 1, join = 'inner') rank.columns = ['r1','r2','r3'] alpha = pd.DataFrame(-1 * rank['r1'] * (1 - rank['r2']) * rank['r3']) alpha.columns = ['alpha25'] return alpha @timer def alpha26(self): close = self.close vwap = self.vwap close_mean7 = Mean(close,7) close_mean7.columns = ['close_mean7'] close_delay5 = Delay(close,5) close_delay5.columns = ['close_delay5'] data = pd.concat([vwap,close_delay5],axis = 1,join = 'inner') corr = Corr(data,230) corr.columns = ['corr'] data_temp = pd.concat([corr,close_mean7,close],axis = 1,join = 'inner') alpha = data_temp['close_mean7'] - data_temp['Close'] + data_temp['corr'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha26'] return alpha @timer def alpha27(self): """ uncompleted """ close = self.close close_delay3 = Delay(close,3) close_delay6 = Delay(close,6) data = pd.concat([close,close_delay3,close_delay6],axis = 1,join = 'inner') data.columns = ['close','close_delay3','close_delay6'] temp1 = pd.DataFrame((data['close'] - data['close_delay3'])/data['close_delay3'] * 100) temp2 = pd.DataFrame((data['close'] - data['close_delay6'])/data['close_delay6'] * 100) data_temp = pd.concat([temp1,temp2],axis = 1,join = 'inner') data_temp.columns = ['temp1','temp2'] temp = pd.DataFrame(data_temp['temp1'] + data_temp['temp2']) alpha = DecayLinear(temp,12) alpha.columns = ['alpha27'] return alpha @timer def alpha28(self): close = self.close low = self.low high = self.high low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['Close','low_min','high_max'] temp1 = pd.DataFrame((data['Close'] - data['low_min']) /(data['high_max'] - data['low_min'])) sma1 = SMA(temp1,3,1) sma2 = SMA(sma1,3,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] * 2 - sma['sma2'] * 3) alpha.columns = ['alpha28'] return alpha @timer def alpha29(self): close = self.close volume = self.volume close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha29'] return alpha @timer def alpha30(self): close = self.close close_delay = Delay(close,1) @timer def alpha31(self): close = self.close close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha31'] return alpha @timer def alpha32(self): volume = self.volume high = self.high r1 = Rank(volume) r2 = Rank(high) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,3) r = Rank(corr) alpha = -1 * Sum(r,3) alpha.columns = ['alpha32'] return alpha @timer def alpha33(self): low = self.low volume = self.volume ret = self.ret low_min = TsMin(low,5) low_min_delay = Delay(low_min,5) data1 = pd.concat([low_min,low_min_delay],axis = 1,join = 'inner') data1.columns = ['low_min','low_min_delay'] ret_sum240 = Sum(ret,240) ret_sum20 = Sum(ret,20) ret_temp = pd.concat([ret_sum240,ret_sum20],axis = 1, join = 'inner') ret_temp.columns = ['ret240','ret20'] temp1 = pd.DataFrame(data1['low_min_delay'] - data1['low_min']) temp2 = pd.DataFrame((ret_temp['ret240'] - ret_temp['ret20'])/220) r_temp2 = Rank(temp2) r_volume = TsRank(volume,5) temp = pd.concat([temp1,r_temp2,r_volume],axis = 1,join = 'inner') temp.columns = ['temp1','r_temp2','r_volume'] alpha = temp['temp1'] * temp['r_temp2'] * temp['r_volume'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha33'] return alpha @timer def alpha34(self): close = self.close close_mean = Mean(close,12) close_mean.columns = ['close_mean'] data = pd.concat([close,close_mean],axis = 1, join = 'inner') alpha = pd.DataFrame(data['close_mean']/data['Close']) alpha.columns = ['alpha34'] return alpha @timer def alpha35(self): volume = self.volume Open = self.open open_delay = Delay(Open,1) open_delay.columns = ['open_delay'] open_linear = DecayLinear(Open,17) open_linear.columns = ['open_linear'] open_delay_temp = DecayLinear(open_delay,15) r1 = Rank(open_delay_temp) data = pd.concat([Open,open_linear],axis = 1,join = 'inner') Open_temp = data['Open'] * 0.65 + 0.35 * data['open_linear'] rank = pd.concat([volume,Open_temp],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,7) r2 = Rank(-1 * corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = Cross_min(pd.DataFrame(r['r1']),pd.DataFrame(r['r2'])) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha35'] return alpha @timer def alpha36(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,6) temp = Sum(corr,2) alpha = Rank(temp) alpha.columns = ['alpha36'] return alpha @timer def alpha37(self): Open = self.open ret = self.ret open_sum = Sum(Open,5) ret_sum = Sum(ret,5) data = pd.concat([open_sum,ret_sum],axis = 1,join = 'inner') data.columns = ['open_sum','ret_sum'] temp = data['open_sum'] * data['ret_sum'] temp_delay = Delay(temp,10) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] alpha = -1 * Rank(pd.DataFrame(data_temp['temp'] - data_temp['temp_delay'])) alpha.columns = ['alpha37'] return alpha @timer def alpha38(self): high = self.high high_mean = Mean(high,20) high_delta = Delta(high,2) data = pd.concat([high,high_mean,high_delta],axis = 1,join = 'inner') data.columns = ['high','high_mean','high_delta'] data['alpha'] = -1 * data['high_delta'] data['alpha'][data['high_mean'] >= data['high']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha38'] return alpha @timer def alpha39(self): close = self.close Open = self.open vwap = self.vwap volume = self.volume close_delta2 = Delta(close,2) close_delta2_decay = DecayLinear(close_delta2,8) r1 = Rank(close_delta2_decay) price_temp = pd.concat([vwap,Open],axis = 1,join = 'inner') price = pd.DataFrame(price_temp['Vwap'] * 0.3 + price_temp['Open'] * 0.7) volume_mean = Mean(volume,180) volume_mean_sum = Sum(volume_mean,37) rank = pd.concat([price,volume_mean_sum],axis = 1,join = 'inner') corr = Corr(rank,14) corr_decay = DecayLinear(corr,12) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns = ['alpha39'] return alpha @timer def alpha40(self): close = self.close volume = self.volume close_delay = Delay(close,1) data = pd.concat([close,volume,close_delay],axis = 1, join = 'inner') data.columns = ['close','volume','close_delay'] data['temp1'] = data['volume'] data['temp2'] = data['volume'] data['temp1'][data['close'] <= data['close_delay']] = 0 data['temp2'][data['close'] > data['close_delay']] = 0 s1 = Sum(pd.DataFrame(data['temp1']),26) s2 = Sum(pd.DataFrame(data['temp2']),26) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha40'] return alpha @timer def alpha41(self): vwap = self.vwap vwap_delta = Delta(vwap,3) vwap_delta_max = TsMax(vwap_delta,5) alpha = -1 * Rank(vwap_delta_max) alpha.columns = ['alpha41'] return alpha @timer def alpha42(self): high = self.high volume = self.volume high_std = STD(high,10) r1 = Rank(high_std) data = pd.concat([high,volume],axis = 1,join = 'inner') corr = Corr(data,10) r = pd.concat([r1,corr],axis = 1,join = 'inner') r.columns = ['r1','corr'] alpha = pd.DataFrame(-1 * r['r1'] * r['corr']) alpha.columns = ['alpha42'] return alpha @timer def alpha43(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,6) alpha.columns = ['alpha43'] return alpha @timer def alpha44(self): volume = self.volume vwap = self.vwap low = self.low volume_mean = Mean(volume,10) rank = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(rank,7) corr_decay = DecayLinear(corr,6) r1 = TsRank(corr_decay,4) vwap_delta = Delta(vwap,3) vwap_delta_decay = DecayLinear(vwap_delta,10) r2 = TsRank(vwap_delta_decay,15) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha =
pd.DataFrame(r['r1'] + r['r2'])
pandas.DataFrame
from datetime import datetime import json from os.path import join, exists from tempfile import TemporaryDirectory import numpy as np import pandas as pd from delphi_utils import read_params from delphi_cdc_covidnet.update_sensor import update_sensor params = read_params() STATIC_DIR = params["static_file_dir"] class TestUpdateSensor: def test_syn_update_sensor(self): with TemporaryDirectory() as temp_dir: # Create synthetic data state_1 = {"datadownload": [ { "catchment": "California", "network": "Network A", "age_category": "Overall", "year": "2020", "mmwr-year": "2020", "mmwr-week": "10", "cumulative-rate": 2.5, "weekly-rate": 0.7 }, { "catchment": "California", "network": "Network A", "age_category": "Overall", "year": "2020", "mmwr-year": "2020", "mmwr-week": "11", "cumulative-rate": 3.5, "weekly-rate": 1.4 }, { "catchment": "California", "network": "Network A", "age_category": "Overall", "year": "2020", "mmwr-year": "2020", "mmwr-week": "12", "cumulative-rate": 4.2, "weekly-rate": 1.9 }]} state_2 = {"datadownload": [ { "catchment": "Pennsylvania", "network": "Network B", "age_category": "Overall", "year": "2020", "mmwr-year": "2020", "mmwr-week": "10", "cumulative-rate": 10.3, "weekly-rate": 0.9 }, { "catchment": "Pennsylvania", "network": "Network B", "age_category": "Overall", "year": "2020", "mmwr-year": "2020", "mmwr-week": "11", "cumulative-rate": 11.2, "weekly-rate": 4.5 }, { "catchment": "Pennsylvania", "network": "Network B", "age_category": "Overall", "year": "2020", "mmwr-year": "2020", "mmwr-week": "12", "cumulative-rate": 11.8, "weekly-rate": 1.2 }]} state_files = [join(temp_dir, state) for state in ["state_1.json", "state_2.json"]] with open(state_files[0], "w") as f_json: json.dump(state_1, f_json) with open(state_files[1], "w") as f_json: json.dump(state_2, f_json) for state_file in state_files: assert exists(state_file) mmwr_info = pd.DataFrame([ { "mmwrid": 3036, "weekend": "2020-03-07", "weeknumber": 10, "weekstart": "2020-03-01", "year": 2020, "seasonid": 59 }, { "mmwrid": 3037, "weekend": "2020-03-14", "weeknumber": 11, "weekstart": "2020-03-08", "year": 2020, "seasonid": 59 }, { "mmwrid": 3038, "weekend": "2020-03-21", "weeknumber": 12, "weekstart": "2020-03-15", "year": 2020, "seasonid": 59 }]) mmwr_info["weekstart"] = pd.to_datetime(mmwr_info["weekstart"]) mmwr_info["weekend"] =
pd.to_datetime(mmwr_info["weekend"])
pandas.to_datetime
""" @ author: Maiyaozong @ date: 2020.12.02 @ function: 打标,创建 BCG_down,ECG_down等 @ output: BCG_down ECG_down label_down (按10s对齐) """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from Preprocessing import BCG_Operation import os data_dir = "D:/研究生/数据统计/玮玮师姐/对齐/result201912/新增数据/" #修改这个路径就可以了 def read_data(test_person,posture): """ :param test_person: 测试者名字(文件名) :param posture: 测试者姿势 :return: BCG,ECG,RR location_R,location_J """ filename = data_dir file_dir = os.path.join(filename, test_person) file_dir = os.path.join(file_dir, posture) BCG_dir = os.path.join(file_dir, "new_orgData.txt") ECG_dir = os.path.join(file_dir, "new_ECG.txt") # RR_dir = os.path.join(file_dir, "RR.txt") location_R_dir = os.path.join(file_dir,"location_R.txt") location_J_dir = os.path.join(file_dir, "location_J.txt") # label_dir = os.path.join(file_dir,"label.txt") BCG = np.array(pd.read_csv(BCG_dir, header=None)).reshape(-1) ECG = np.array(pd.read_csv(ECG_dir, header=None)).reshape(-1) # RR = np.array(pd.read_csv(RR_dir, delimiter='\t', header=None)).reshape(-1) location_R = np.array(pd.read_csv(location_R_dir)["Rpeak"]).reshape(-1) location_J = np.array(pd.read_csv(location_J_dir)["Jpeak"]).reshape(-1) # label = np.array(pd.read_csv(label_dir, header=None).reshape(-1)) return BCG, ECG, location_R,location_J def get_Rpeak(test_person, posture, d=0, sample=1000, write_data=False): """ 读取文件中的R峰坐标 :param lable_dir: 文件地址 :param d: 读取第d列的数据 :param sample: 采样频率 :param write_data: 是否输出csv文件 :param file_name: 文件名 :return: R峰位置 """ # ecg_lable = pd.read_csv(lable_dir,encoding='utf-8',sep='\s+',error_bad_lines=False)['Time'].to_numpy().reshape(-1) lable_dir = data_dir file_dir = os.path.join(lable_dir, test_person) file_dir = os.path.join(file_dir, posture) ECGlabel_dir = os.path.join(file_dir, "label.txt") location_R_dir = data_dir+"/%s/%s/location_R.txt" % (test_person, posture) print(location_R_dir) ecg_lable = [] f = open(ECGlabel_dir, encoding='gbk') # 读取含有中文的txt文件时,需要加上encoding='utf-8'或者其他类型 for line in f.readlines()[1:]: c = line.strip().split() # strip()是删除文本的前后空格,split()是把每个字符按空格分割,组成一个列表 e = c[d] # c是一个list,c[1]代表读取第一列的数据 ecg_lable.append(int(float(e) * sample)) ecg_lable.sort(key=None, reverse=False) if write_data: data = { "Rpeak": ecg_lable } pd.DataFrame(data).to_csv(location_R_dir, index=False) # print(ecg_lable) return ecg_lable def find_TPeak(data, peaks, th=50): """ 找出真实的J峰或R峰 :param data: BCG或ECG数据 :param peaks: 初步峰值(从label中导出的location_R) :param th: 范围阈值 :return: 真实峰值 """ return_peak = [] for peak in peaks: if peak > len(data): continue min_win, max_win = max(0, int(peak - th)), min(len(data), int(peak + th)) return_peak.append(np.argmax(data[min_win:max_win]) + min_win) return return_peak if __name__ == '__main__': write_data = 0 #write_data = 1 输出标签 write_data1 = 0 #write_data1 = 1 输出BCG和ECG降采样的数据,一般两个都要改成1,同时输出 test_person = "MAJIAXIN" posture = "YOU" location_R_dir = data_dir+"%s/%s/location_R_down.txt" % (test_person, posture) location_J_dir = data_dir+"%s/%s/location_J_down.txt" % (test_person, posture) orgData_down_dir = data_dir+"%s/%s/orgData_down.txt" % (test_person, posture) label_down_dir = data_dir+"%s/%s/label_down.txt" % (test_person, posture) ECG_down_dir = data_dir+"%s/%s/ECG_down.txt" % (test_person, posture) preprocessing = BCG_Operation(sample_rate=100) preprocessing_donw = BCG_Operation(sample_rate=1000) BCG, ECG, location_R,location_J = read_data(test_person,posture) BCG_down = preprocessing_donw.down_sample(BCG, down_radio=10) ECG_down = preprocessing_donw.down_sample(ECG, down_radio=10) data_end = len(ECG_down) // 1000 * 1000 BCG_down1 = BCG_down[:data_end] ECG_down1 = ECG_down[:data_end] print("BCG长度:",BCG.shape,ECG.shape,"BCG_down长度:",BCG_down1.shape,ECG_down1.shape) print("时长:",len(BCG)/60000,"min") if write_data1: pd.DataFrame(BCG_down1.reshape(-1)).to_csv(orgData_down_dir, index=False,header=None) pd.DataFrame(ECG_down1.reshape(-1)).to_csv(ECG_down_dir, index=False, header=None) # location_J = np.array([num for num in location_J if num < len(BCG)]) print(location_J.shape,location_R.shape) # location_R = np.array([num for num in location_R if num < len(ECG)]) location_J = location_J // 10 location_R = location_R // 10 location_R_down = find_TPeak(ECG_down1, location_R, th=3) location_J_down = find_TPeak(BCG_down1, location_J, th=3) #再次找降采样之后的J峰 location_R_down = np.array(location_R_down) location_J_down = np.array(location_J_down) print(location_J_down.shape, location_R_down.shape) if write_data: pd.DataFrame(location_R_down.reshape(-1)).to_csv(location_R_dir, index=False,header=None) pd.DataFrame(location_J_down.reshape(-1)).to_csv(location_J_dir, index=False, header=None) bcg = preprocessing.Butterworth(BCG_down1, "bandpass", low_cut=1, high_cut=10, order=2) label = np.zeros(len(BCG_down)) for J in location_J_down: if J < 3 or J > len(BCG_down) - 3: continue label[J - 3:J + 3] = 1 if write_data:
pd.DataFrame(label)
pandas.DataFrame
""" Functions for comparing and visualizing model performance """ import os import sys import pdb import pandas as pd import numpy as np import matplotlib import logging import json from collections import OrderedDict from atomsci.ddm.utils import datastore_functions as dsf from atomsci.ddm.pipeline import mlmt_client_wrapper as mlmt_client_wrapper from atomsci.ddm.pipeline import model_tracker as trkr import atomsci.ddm.pipeline.model_pipeline as mp #matplotlib.style.use('ggplot') matplotlib.rc('xtick', labelsize=12) matplotlib.rc('ytick', labelsize=12) matplotlib.rc('axes', labelsize=12) logging.basicConfig(format='%(asctime)-15s %(message)s') nan = np.float32('nan') client_wrapper = mlmt_client_wrapper.MLMTClientWrapper(ds_client=dsf.config_client()) client_wrapper.instantiate_mlmt_client() #------------------------------------------------------------------------------------------------------------------ def get_collection_datasets(collection_name): """ Returns a list of training (dataset_key, bucket) tuples for models in the given collection. """ model_filter = {} #models = list(trkr.get_full_metadata(model_filter, client_wrapper, # collection_name=collection_name)) #if models == []: # print("No matching models returned") # return #else: # print("Found %d matching models" % len(models)) dataset_set = set() models = trkr.get_metadata(model_filter, client_wrapper, collection_name=collection_name) for i, metadata_dict in enumerate(models): if i % 10 == 0: print("Looking at model %d" % i) dataset_key = metadata_dict['ModelMetadata']['TrainingDataset']['dataset_key'] bucket = metadata_dict['ModelMetadata']['TrainingDataset']['bucket'] dataset_set.add((dataset_key, bucket)) return sorted(dataset_set) #------------------------------------------------------------------------------------------------------------------ def extract_collection_perf_metrics(collection_name, output_dir, pred_type='regression'): """ Obtain list of training datasets with models in the given collection. Get performance metrics for models on each dataset and save them as CSV files in the given output directory. """ datasets = get_collection_datasets(collection_name) os.makedirs(output_dir, exist_ok=True) for dset_key, bucket in datasets: dset_perf_df = get_training_perf_table(dset_key, bucket, collection_name, pred_type=pred_type) dset_perf_file = '%s/%s_%s_model_perf_metrics.csv' % (output_dir, os.path.basename(dset_key).replace('.csv', ''), collection_name) dset_perf_df.to_csv(dset_perf_file, index=False) print('Wrote file %s' % dset_perf_file) #------------------------------------------------------------------------------------------------------------------ def get_training_perf_table(dataset_key, bucket, collection_name, pred_type='regression', other_filters = {}): """ Load performance metrics from model tracker for all models saved in the model tracker DB under a given collection that were trained against a particular dataset. Identify training parameters that vary between models, and generate plots of performance vs particular combinations of parameters. """ model_filter = {"ModelMetadata.TrainingDataset.dataset_key" : dataset_key, "ModelMetadata.TrainingDataset.bucket" : bucket, "ModelMetrics.TrainingRun.label" : "best",} model_filter.update(other_filters) print("Finding models trained on %s dataset %s" % (bucket, dataset_key)) models = list(trkr.get_full_metadata(model_filter, client_wrapper, collection_name=collection_name)) if models == []: print("No matching models returned") return else: print("Found %d matching models" % len(models)) model_uuid_list = [] model_type_list = [] max_epochs_list = [] learning_rate_list = [] dropouts_list = [] layer_sizes_list = [] featurizer_list = [] splitter_list = [] rf_estimators_list = [] rf_max_features_list = [] rf_max_depth_list = [] xgb_learning_rate_list = [] xgb_gamma_list = [] best_epoch_list = [] max_epochs_list = [] subsets = ['train', 'valid', 'test'] score_dict = {} for subset in subsets: score_dict[subset] = [] if pred_type == 'regression': metric_type = 'r2_score' else: metric_type = 'roc_auc_score' for metadata_dict in models: model_uuid = metadata_dict['model_uuid'] #print("Got metadata for model UUID %s" % model_uuid) # Get model metrics for this model metrics_dicts = metadata_dict['ModelMetrics']['TrainingRun'] #print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) if len(metrics_dicts) < 3: print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) continue # TODO: get_full_metadata() seems to ignore label='best' constraint; below is workaround #if len(metrics_dicts) > 3: # raise Exception('Got more than one set of best epoch metrics for model %s' % model_uuid) subset_metrics = {} for metrics_dict in metrics_dicts: if metrics_dict['label'] == 'best': subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['PredictionResults'] model_uuid_list.append(model_uuid) model_params = metadata_dict['ModelMetadata']['ModelParameters'] model_type = model_params['model_type'] model_type_list.append(model_type) featurizer = model_params['featurizer'] featurizer_list.append(featurizer) split_params = metadata_dict['ModelMetadata']['SplittingParameters']['Splitting'] splitter_list.append(split_params['splitter']) dataset_key = metadata_dict['ModelMetadata']['TrainingDataset']['dataset_key'] if model_type == 'NN': nn_params = metadata_dict['ModelMetadata']['NNSpecific'] max_epochs_list.append(nn_params['max_epochs']) best_epoch_list.append(nn_params['best_epoch']) learning_rate_list.append(nn_params['learning_rate']) layer_sizes_list.append(','.join(['%d' % s for s in nn_params['layer_sizes']])) dropouts_list.append(','.join(['%.2f' % d for d in nn_params['dropouts']])) rf_estimators_list.append(nan) rf_max_features_list.append(nan) rf_max_depth_list.append(nan) xgb_learning_rate_list.append(nan) xgb_gamma_list.append(nan) if model_type == 'RF': rf_params = metadata_dict['ModelMetadata']['RFSpecific'] rf_estimators_list.append(rf_params['rf_estimators']) rf_max_features_list.append(rf_params['rf_max_features']) rf_max_depth_list.append(rf_params['rf_max_depth']) max_epochs_list.append(nan) best_epoch_list.append(nan) learning_rate_list.append(nan) layer_sizes_list.append(nan) dropouts_list.append(nan) xgb_learning_rate_list.append(nan) xgb_gamma_list.append(nan) if model_type == 'xgboost': xgb_params = metadata_dict['ModelMetadata']['xgbSpecific'] rf_estimators_list.append(nan) rf_max_features_list.append(nan) rf_max_depth_list.append(nan) max_epochs_list.append(nan) best_epoch_list.append(nan) learning_rate_list.append(nan) layer_sizes_list.append(nan) dropouts_list.append(nan) xgb_learning_rate_list.append(xgb_params["xgb_learning_rate"]) xgb_gamma_list.append(xgb_params["xgb_gamma"]) for subset in subsets: score_dict[subset].append(subset_metrics[subset][metric_type]) perf_df = pd.DataFrame(dict( model_uuid=model_uuid_list, model_type=model_type_list, dataset_key=dataset_key, featurizer=featurizer_list, splitter=splitter_list, max_epochs=max_epochs_list, best_epoch=best_epoch_list, learning_rate=learning_rate_list, layer_sizes=layer_sizes_list, dropouts=dropouts_list, rf_estimators=rf_estimators_list, rf_max_features=rf_max_features_list, rf_max_depth=rf_max_depth_list, xgb_learning_rate = xgb_learning_rate_list, xgb_gamma = xgb_gamma_list)) for subset in subsets: metric_col = '%s_%s' % (metric_type, subset) perf_df[metric_col] = score_dict[subset] sort_metric = '%s_valid' % metric_type perf_df = perf_df.sort_values(sort_metric, ascending=False) return perf_df # ------------------------------------------------------------------------------------------------------------------ def get_best_perf_table(col_name, metric_type, model_uuid=None, metadata_dict=None, PK_pipe=False): """ Load performance metrics from model tracker for all models saved in the model tracker DB under a given collection that were trained against a particular dataset. Identify training parameters that vary between models, and generate plots of performance vs particular combinations of parameters. """ if metadata_dict is None: if model_uuid is None: print("Have to specify either metadatadict or model_uuid") return # Right now this subsetting of metrics does not work, so need to do manually below. model_filter = {"model_uuid": model_uuid, # "ModelMetrics.TrainingRun.label" : "best" } models = list(trkr.get_full_metadata(model_filter, client_wrapper, collection_name=col_name)) if models == []: print("No matching models returned") return elif len(models) > 1: print("Found %d matching models, which is too many" % len(models)) return metadata_dict = models[0] model_info = {} model_info['model_uuid'] = metadata_dict['model_uuid'] #print("Got metadata for model UUID %s" % model_info['model_uuid']) # Get model metrics for this model metrics_dicts = metadata_dict['ModelMetrics']['TrainingRun'] # workaround for now # metrics_dicts = [m for m in metrics_dicts if m['label'] == 'best'] # print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) if len(metrics_dicts) < 3: print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) return if len(metrics_dicts) > 3: metrics_dicts = [m for m in metrics_dicts if m['label'] == 'best'] # raise Exception('Got more than one set of best epoch metrics for model %s' % model_uuid) model_params = metadata_dict['ModelMetadata']['ModelParameters'] model_info['model_type'] = model_params['model_type'] model_info['featurizer'] = model_params['featurizer'] split_params = metadata_dict['ModelMetadata']['SplittingParameters']['Splitting'] model_info['splitter'] = split_params['splitter'] if 'split_uuid' in split_params: model_info['split_uuid'] = split_params['split_uuid'] model_info['dataset_key'] = metadata_dict['ModelMetadata']['TrainingDataset']['dataset_key'] model_info['bucket'] = metadata_dict['ModelMetadata']['TrainingDataset']['bucket'] if PK_pipe: model_info['collection_name']=col_name model_info['assay_name'] = metadata_dict['ModelMetadata']['TrainingDataset']['DatasetMetadata'][ 'assay_category'] model_info['response_col'] = metadata_dict['ModelMetadata']['TrainingDataset']['DatasetMetadata'][ 'response_col'] if model_info['featurizer'] == 'descriptors': model_info['descriptor_type'] = metadata_dict['ModelMetadata']['DescriptorSpecific']['descriptor_type'] else: model_info['descriptor_type'] = 'N/A' try: model_info['descriptor_type'] = metadata_dict['ModelMetadata']['DescriptorSpecific']['descriptor_type'] except: model_info['descriptor_type'] = None try: model_info['num_samples'] = metadata_dict['ModelMetadata']['TrainingDataset']['DatasetMetadata']['num_row'] except: tmp_df = dsf.retrieve_dataset_by_datasetkey(model_info['dataset_key'], model_info['bucket']) model_info['num_samples'] = tmp_df.shape[0] if model_info['model_type'] == 'NN': nn_params = metadata_dict['ModelMetadata']['NNSpecific'] model_info['max_epochs'] = nn_params['max_epochs'] model_info['best_epoch'] = nn_params['best_epoch'] model_info['learning_rate'] = nn_params['learning_rate'] model_info['layer_sizes'] = ','.join(['%d' % s for s in nn_params['layer_sizes']]) model_info['dropouts'] = ','.join(['%.2f' % d for d in nn_params['dropouts']]) model_info['rf_estimators'] = nan model_info['rf_max_features'] = nan model_info['rf_max_depth'] = nan if model_info['model_type'] == 'RF': rf_params = metadata_dict['ModelMetadata']['RFSpecific'] model_info['rf_estimators'] = rf_params['rf_estimators'] model_info['rf_max_features'] = rf_params['rf_max_features'] model_info['rf_max_depth'] = rf_params['rf_max_depth'] model_info['max_epochs'] = nan model_info['best_epoch'] = nan model_info['learning_rate'] = nan model_info['layer_sizes'] = nan model_info['dropouts'] = nan for metrics_dict in metrics_dicts: subset = metrics_dict['subset'] metric_col = '%s_%s' % (metric_type, subset) model_info[metric_col] = metrics_dict['PredictionResults'][metric_type] metric_col = 'rms_score_%s' % subset model_info[metric_col] = metrics_dict['PredictionResults']['rms_score'] return model_info # --------------------------------------------------------------------------------------------------------- def get_best_models_info(col_names, bucket, pred_type, PK_pipeline=False, output_dir='/usr/local/data', shortlist_key=None, input_dset_keys=None, save_results=False, subset='valid', metric_type=None, selection_type='max', other_filters={}): """ Get results for models in the given collection. """ top_models_info = [] if metric_type is None: if pred_type == 'regression': metric_type = 'r2_score' else: metric_type = 'roc_auc_score' if other_filters is None: other_filters = {} if type(col_names) == str: col_names = [col_names] for col_name in col_names: res_dir = os.path.join(output_dir, '%s_perf' % col_name) plt_dir = '%s/Plots' % res_dir os.makedirs(plt_dir, exist_ok=True) res_files = os.listdir(res_dir) suffix = '_%s_model_perf_metrics.csv' % col_name if input_dset_keys is None: dset_keys = dsf.retrieve_dataset_by_datasetkey(shortlist_key, bucket) # Need to figure out how to handle an unknown column name for dataset_keys if 'dataset_key' in dset_keys.columns: dset_keys = dset_keys['dataset_key'] elif 'task_name' in dset_keys.columns: dset_keys = dset_keys['task_name'] else: dset_keys = dset_keys.values else: if type(input_dset_keys) == str: dset_keys = [input_dset_keys] else: dset_keys = input_dset_keys for dset_key in dset_keys: dset_key = dset_key.strip() try: # TODO: get dataset bucket model_filter = {"ModelMetadata.TrainingDataset.dataset_key": dset_key, "ModelMetadata.TrainingDataset.bucket": bucket, "ModelMetrics.TrainingRun.label": "best", 'ModelMetrics.TrainingRun.subset': subset, 'ModelMetrics.TrainingRun.PredictionResults.%s' % metric_type: [selection_type, None] } model_filter.update(other_filters) try: models = list(trkr.get_full_metadata(model_filter, client_wrapper, collection_name=col_name)) except Exception as e: print("Error returned when querying the best model for dataset %s" % dset_key) print(e) continue if models == []: #print("No matching models returned for dset_key {0} and bucket {1}".format(dset_key, bucket)) continue elif len(models) > 1: print("Found %d models with the same %s value, saving all." % (len(models), metric_type)) for model in models: res_df = pd.DataFrame.from_records( [get_best_perf_table(col_name, metric_type, metadata_dict=model, PK_pipe=PK_pipeline)]) top_models_info.append(res_df) except Exception as e: print(e) continue if top_models_info == []: print("No metadata found") return top_models_df = pd.concat(top_models_info, ignore_index=True) selection_col = '%s_%s' % (metric_type, subset) if selection_type == 'max': top_models_df = top_models_df.loc[top_models_df.groupby('dataset_key')[selection_col].idxmax()] else: top_models_df = top_models_df.loc[top_models_df.groupby('dataset_key')[selection_col].idxmin()] #TODO: Update res_dirs if save_results: if shortlist_key is not None: # Not including shortlist key right now because some are weirdly formed and have .csv in the middle top_models_df.to_csv(os.path.join(res_dir, 'best_models_metadata.csv'), index=False) else: for dset_key in input_dset_keys: shortened_key = dset_key.rstrip('.csv') top_models_df.to_csv(os.path.join(res_dir, 'best_models_metadata_%s.csv' % shortened_key), index=False) return top_models_df ''' #--------------------------------------------------------------------------------------------------------- def get_best_grouped_models_info(collection='pilot_fixed', pred_type='regression', top_n=1, subset='test'): """ Get results for models in the given collection. """ res_dir = '/usr/local/data/%s_perf' % collection plt_dir = '%s/Plots' % res_dir os.makedirs(plt_dir, exist_ok=True) res_files = os.listdir(res_dir) suffix = '_%s_model_perf_metrics.csv' % collection if pred_type == 'regression': metric_type = 'r2_score' else: metric_type = 'roc_auc_score' for res_file in res_files: try: if not res_file.endswith(suffix): continue res_path = os.path.join(res_dir, res_file) res_df = pd.read_csv(res_path, index_col=False) res_df['combo'] = ['%s/%s' % (m,f) for m, f in zip(res_df.model_type.values, res_df.featurizer.values)] dset_name = res_file.replace(suffix, '') datasets.append(dset_name) res_df['dataset'] = dset_name print(dset_name) res_df = res_df.sort_values('{0}_{1}'.format(metric_type, subset), ascending=False) res_df['model_type/feat'] = ['%s/%s' % (m,f) for m, f in zip(res_df.model_type.values, res_df.featurizer.values)] res_df = res_df.sort_values('{0}_{1}'.format(metric_type, subset), ascending=False) grouped_df = res_df.groupby('model_type/feat').apply( lambda t: t.head(top_n) ).reset_index(drop=True) top_grouped_models.append(grouped_df) top_combo = res_df['model_type/feat'].values[0] top_combo_dsets.append(top_combo + dset_name.lstrip('ATOM_GSK_dskey')) top_score = res_df['{0}_{1}'.format(metric_type, subset)].values[0] top_model_feat.append(top_combo) top_scores.append(top_score) num_samples.append(res_df['Dataset Size'][0]) ''' #------------------------------------------------------------------------------------------------------------------ def get_umap_nn_model_perf_table(dataset_key, bucket, collection_name, pred_type='regression'): """ Load performance metrics from model tracker for all NN models with the given prediction_type saved in the model tracker DB under a given collection that were trained against a particular dataset. Show parameter settings for UMAP transformer for models where they are available. """ model_filter = {"ModelMetadata.TrainingDataset.dataset_key" : dataset_key, "ModelMetadata.TrainingDataset.bucket" : bucket, "ModelMetrics.TrainingRun.label" : "best", "ModelMetadata.ModelParameters.model_type" : "NN", "ModelMetadata.ModelParameters.prediction_type" : pred_type } print("Finding models trained on %s dataset %s" % (bucket, dataset_key)) models = list(trkr.get_full_metadata(model_filter, client_wrapper, collection_name=collection_name)) if models == []: print("No matching models returned") return else: print("Found %d matching models" % len(models)) model_uuid_list = [] learning_rate_list = [] dropouts_list = [] layer_sizes_list = [] featurizer_list = [] best_epoch_list = [] max_epochs_list = [] feature_transform_type_list = [] umap_dim_list = [] umap_targ_wt_list = [] umap_neighbors_list = [] umap_min_dist_list = [] subsets = ['train', 'valid', 'test'] if pred_type == 'regression': sort_metric = 'r2_score' metrics = ['r2_score', 'rms_score', 'mae_score'] else: sort_metric = 'roc_auc_score' metrics = ['roc_auc_score', 'prc_auc_score', 'matthews_cc', 'kappa', 'confusion_matrix'] score_dict = {} for subset in subsets: score_dict[subset] = {} for metric in metrics: score_dict[subset][metric] = [] for metadata_dict in models: model_uuid = metadata_dict['model_uuid'] #print("Got metadata for model UUID %s" % model_uuid) # Get model metrics for this model metrics_dicts = metadata_dict['ModelMetrics']['TrainingRun'] #print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) if len(metrics_dicts) < 3: print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) continue if len(metrics_dicts) > 3: raise Exception('Got more than one set of best epoch metrics for model %s' % model_uuid) subset_metrics = {} for metrics_dict in metrics_dicts: subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['PredictionResults'] model_uuid_list.append(model_uuid) model_params = metadata_dict['ModelMetadata']['ModelParameters'] model_type = model_params['model_type'] if model_type != 'NN': continue featurizer = model_params['featurizer'] featurizer_list.append(featurizer) feature_transform_type = metadata_dict['ModelMetadata']['TrainingDataset']['feature_transform_type'] feature_transform_type_list.append(feature_transform_type) nn_params = metadata_dict['ModelMetadata']['NNSpecific'] max_epochs_list.append(nn_params['max_epochs']) best_epoch_list.append(nn_params['best_epoch']) learning_rate_list.append(nn_params['learning_rate']) layer_sizes_list.append(','.join(['%d' % s for s in nn_params['layer_sizes']])) dropouts_list.append(','.join(['%.2f' % d for d in nn_params['dropouts']])) for subset in subsets: for metric in metrics: score_dict[subset][metric].append(subset_metrics[subset][metric]) if 'UmapSpecific' in metadata_dict['ModelMetadata']: umap_params = metadata_dict['ModelMetadata']['UmapSpecific'] umap_dim_list.append(umap_params['umap_dim']) umap_targ_wt_list.append(umap_params['umap_targ_wt']) umap_neighbors_list.append(umap_params['umap_neighbors']) umap_min_dist_list.append(umap_params['umap_min_dist']) else: umap_dim_list.append(nan) umap_targ_wt_list.append(nan) umap_neighbors_list.append(nan) umap_min_dist_list.append(nan) perf_df = pd.DataFrame(dict( model_uuid=model_uuid_list, learning_rate=learning_rate_list, dropouts=dropouts_list, layer_sizes=layer_sizes_list, featurizer=featurizer_list, best_epoch=best_epoch_list, max_epochs=max_epochs_list, feature_transform_type=feature_transform_type_list, umap_dim=umap_dim_list, umap_targ_wt=umap_targ_wt_list, umap_neighbors=umap_neighbors_list, umap_min_dist=umap_min_dist_list )) for subset in subsets: for metric in metrics: metric_col = '%s_%s' % (metric, subset) perf_df[metric_col] = score_dict[subset][metric] sort_by = '%s_valid' % sort_metric perf_df = perf_df.sort_values(sort_by, ascending=False) return perf_df #------------------------------------------------------------------------------------------------------------------ def get_filesystem_perf_results(result_dir, hyper_id=None, dataset_name='GSK_Amgen_Combined_BSEP_PIC50', pred_type='classification'): """ Retrieve model metadata and performance metrics stored in the filesystem from a hyperparameter search run. """ model_uuid_list = [] model_type_list = [] max_epochs_list = [] learning_rate_list = [] dropouts_list = [] layer_sizes_list = [] featurizer_list = [] splitter_list = [] rf_estimators_list = [] rf_max_features_list = [] rf_max_depth_list = [] best_epoch_list = [] model_score_type_list = [] feature_transform_type_list = [] umap_dim_list = [] umap_targ_wt_list = [] umap_neighbors_list = [] umap_min_dist_list = [] subsets = ['train', 'valid', 'test'] if pred_type == 'regression': metrics = ['r2_score', 'r2_std', 'rms_score', 'mae_score'] else: metrics = ['roc_auc_score', 'roc_auc_std', 'prc_auc_score', 'precision', 'recall_score', 'accuracy_score', 'npv', 'matthews_cc', 'kappa', 'cross_entropy', 'confusion_matrix'] score_dict = {} for subset in subsets: score_dict[subset] = {} for metric in metrics: score_dict[subset][metric] = [] score_dict['valid']['model_choice_score'] = [] # Navigate the results directory tree model_list = [] metrics_list = [] if hyper_id is None: # hyper_id not specified, so let's do all that exist under the given result_dir subdirs = os.listdir(result_dir) hyper_ids = list(set(subdirs) - {'logs', 'slurm_files'}) else: hyper_ids = [hyper_id] for hyper_id in hyper_ids: topdir = os.path.join(result_dir, hyper_id, dataset_name) if not os.path.isdir(topdir): continue # Next component of path is a random UUID added by hyperparam script for each run. Iterate over runs. run_uuids = [fname for fname in os.listdir(topdir) if not fname.startswith('.')] for run_uuid in run_uuids: run_path = os.path.join(topdir, run_uuid, dataset_name) # Next path component is a combination of various model parameters param_dirs = os.listdir(run_path) for param_str in param_dirs: new_path = os.path.join(topdir, run_uuid, dataset_name, param_str) model_dirs = [dir for dir in os.listdir(new_path) if not dir.startswith('.')] model_uuid = model_dirs[0] meta_path = os.path.join(new_path, model_uuid, 'model_metadata.json') metrics_path = os.path.join(new_path, model_uuid, 'training_model_metrics.json') if not (os.path.exists(meta_path) and os.path.exists(metrics_path)): continue with open(meta_path, 'r') as meta_fp: meta_dict = json.load(meta_fp) model_list.append(meta_dict) with open(metrics_path, 'r') as metrics_fp: metrics_dict = json.load(metrics_fp) metrics_list.append(metrics_dict) print("Found data for %d models under %s" % (len(model_list), result_dir)) for metadata_dict, metrics_dict in zip(model_list, metrics_list): model_uuid = metadata_dict['model_uuid'] #print("Got metadata for model UUID %s" % model_uuid) # Get list of prediction run metrics for this model pred_dicts = metrics_dict['ModelMetrics']['TrainingRun'] #print("Got %d metrics dicts for model %s" % (len(pred_dicts), model_uuid)) if len(pred_dicts) < 3: print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) continue subset_metrics = {} for metrics_dict in pred_dicts: if metrics_dict['label'] == 'best': subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['PredictionResults'] model_uuid_list.append(model_uuid) model_params = metadata_dict['ModelMetadata']['ModelParameters'] model_type = model_params['model_type'] model_type_list.append(model_type) model_score_type = model_params['model_choice_score_type'] model_score_type_list.append(model_score_type) featurizer = model_params['featurizer'] featurizer_list.append(featurizer) split_params = metadata_dict['ModelMetadata']['SplittingParameters']['Splitting'] splitter_list.append(split_params['splitter']) feature_transform_type = metadata_dict['ModelMetadata']['TrainingDataset']['feature_transform_type'] feature_transform_type_list.append(feature_transform_type) if model_type == 'NN': nn_params = metadata_dict['ModelMetadata']['NNSpecific'] max_epochs_list.append(nn_params['max_epochs']) best_epoch_list.append(nn_params['best_epoch']) learning_rate_list.append(nn_params['learning_rate']) layer_sizes_list.append(','.join(['%d' % s for s in nn_params['layer_sizes']])) dropouts_list.append(','.join(['%.2f' % d for d in nn_params['dropouts']])) rf_estimators_list.append(nan) rf_max_features_list.append(nan) rf_max_depth_list.append(nan) if model_type == 'RF': rf_params = metadata_dict['ModelMetadata']['RFSpecific'] rf_estimators_list.append(rf_params['rf_estimators']) rf_max_features_list.append(rf_params['rf_max_features']) rf_max_depth_list.append(rf_params['rf_max_depth']) max_epochs_list.append(nan) best_epoch_list.append(nan) learning_rate_list.append(nan) layer_sizes_list.append(nan) dropouts_list.append(nan) for subset in subsets: for metric in metrics: score_dict[subset][metric].append(subset_metrics[subset][metric]) score_dict['valid']['model_choice_score'].append(subset_metrics['valid']['model_choice_score']) if 'UmapSpecific' in metadata_dict['ModelMetadata']: umap_params = metadata_dict['ModelMetadata']['UmapSpecific'] umap_dim_list.append(umap_params['umap_dim']) umap_targ_wt_list.append(umap_params['umap_targ_wt']) umap_neighbors_list.append(umap_params['umap_neighbors']) umap_min_dist_list.append(umap_params['umap_min_dist']) else: umap_dim_list.append(nan) umap_targ_wt_list.append(nan) umap_neighbors_list.append(nan) umap_min_dist_list.append(nan) perf_df = pd.DataFrame(dict( model_uuid=model_uuid_list, model_type=model_type_list, featurizer=featurizer_list, splitter=splitter_list, model_score_type=model_score_type_list, feature_transform_type=feature_transform_type_list, umap_dim=umap_dim_list, umap_targ_wt=umap_targ_wt_list, umap_neighbors=umap_neighbors_list, umap_min_dist=umap_min_dist_list, learning_rate=learning_rate_list, dropouts=dropouts_list, layer_sizes=layer_sizes_list, best_epoch=best_epoch_list, max_epochs=max_epochs_list, rf_estimators=rf_estimators_list, rf_max_features=rf_max_features_list, rf_max_depth=rf_max_depth_list)) perf_df['model_choice_score'] = score_dict['valid']['model_choice_score'] for subset in subsets: for metric in metrics: metric_col = '%s_%s' % (metric, subset) perf_df[metric_col] = score_dict[subset][metric] sort_by = 'model_choice_score' perf_df = perf_df.sort_values(sort_by, ascending=False) return perf_df #------------------------------------------------------------------------------------------------------------------ def get_summary_perf_tables(collection_names, filter_dict={}, prediction_type='regression'): """ Load model parameters and performance metrics from model tracker for all models saved in the model tracker DB under the given collection names. Generate a pair of tables, one for regression models and one for classification, listing: dataset (assay name, target, parameter, key, bucket) dataset size (train/valid/test/total) number of training folds model type (NN or RF) featurizer transformation type metrics: r2_score, mae_score and rms_score for regression, or ROC AUC for classification """ collection_list = [] model_uuid_list = [] time_built_list = [] model_type_list = [] dataset_key_list = [] bucket_list = [] param_list = [] featurizer_list = [] desc_type_list = [] transform_list = [] dset_size_list = [] splitter_list = [] split_strategy_list = [] split_uuid_list = [] rf_estimators_list = [] rf_max_features_list = [] rf_max_depth_list = [] best_epoch_list = [] max_epochs_list = [] learning_rate_list = [] layer_sizes_list = [] dropouts_list = [] umap_dim_list = [] umap_targ_wt_list = [] umap_neighbors_list = [] umap_min_dist_list = [] split_uuid_list=[] if prediction_type == 'regression': score_types = ['r2_score', 'mae_score', 'rms_score'] else: # TODO: add more classification metrics later score_types = ['roc_auc_score', 'prc_auc_score', 'accuracy_score', 'precision', 'recall_score', 'npv', 'matthews_cc'] subsets = ['train', 'valid', 'test'] score_dict = {} ncmpd_dict = {} for subset in subsets: score_dict[subset] = {} for score_type in score_types: score_dict[subset][score_type] = [] ncmpd_dict[subset] = [] filter_dict['ModelMetadata.ModelParameters.prediction_type'] = prediction_type for collection_name in collection_names: print("Finding models in collection %s" % collection_name) models = trkr.get_full_metadata(filter_dict, client_wrapper, collection_name=collection_name) for i, metadata_dict in enumerate(models): if i % 10 == 0: print('Processing collection %s model %d' % (collection_name, i)) # Check that model has metrics before we go on if not 'ModelMetrics' in metadata_dict: continue collection_list.append(collection_name) model_uuid = metadata_dict['model_uuid'] model_uuid_list.append(model_uuid) time_built = metadata_dict['time_built'] time_built_list.append(time_built) #print("Got metadata for model UUID %s" % model_uuid) model_params = metadata_dict['ModelMetadata']['ModelParameters'] model_type = model_params['model_type'] model_type_list.append(model_type) featurizer = model_params['featurizer'] featurizer_list.append(featurizer) if 'DescriptorSpecific' in metadata_dict['ModelMetadata']: desc_type = metadata_dict['ModelMetadata']['DescriptorSpecific']['descriptor_type'] else: desc_type = '' desc_type_list.append(desc_type) dataset_key = metadata_dict['ModelMetadata']['TrainingDataset']['dataset_key'] bucket = metadata_dict['ModelMetadata']['TrainingDataset']['bucket'] dataset_key_list.append(dataset_key) bucket_list.append(bucket) dset_metadata = metadata_dict['ModelMetadata']['TrainingDataset']['DatasetMetadata'] param = metadata_dict['ModelMetadata']['TrainingDataset']['response_cols'][0] param_list.append(param) transform_type = metadata_dict['ModelMetadata']['TrainingDataset']['feature_transform_type'] transform_list.append(transform_type) split_params = metadata_dict['ModelMetadata']['SplittingParameters']['Splitting'] splitter_list.append(split_params['splitter']) split_uuid_list.append(split_params['split_uuid']) split_strategy = split_params['split_strategy'] split_strategy_list.append(split_strategy) if 'UmapSpecific' in metadata_dict['ModelMetadata']: umap_params = metadata_dict['ModelMetadata']['UmapSpecific'] umap_dim_list.append(umap_params['umap_dim']) umap_targ_wt_list.append(umap_params['umap_targ_wt']) umap_neighbors_list.append(umap_params['umap_neighbors']) umap_min_dist_list.append(umap_params['umap_min_dist']) else: umap_dim_list.append(nan) umap_targ_wt_list.append(nan) umap_neighbors_list.append(nan) umap_min_dist_list.append(nan) if model_type == 'NN': nn_params = metadata_dict['ModelMetadata']['NNSpecific'] max_epochs_list.append(nn_params['max_epochs']) best_epoch_list.append(nn_params['best_epoch']) learning_rate_list.append(nn_params['learning_rate']) layer_sizes_list.append(','.join(['%d' % s for s in nn_params['layer_sizes']])) dropouts_list.append(','.join(['%.2f' % d for d in nn_params['dropouts']])) rf_estimators_list.append(nan) rf_max_features_list.append(nan) rf_max_depth_list.append(nan) elif model_type == 'RF': rf_params = metadata_dict['ModelMetadata']['RFSpecific'] rf_estimators_list.append(rf_params['rf_estimators']) rf_max_features_list.append(rf_params['rf_max_features']) rf_max_depth_list.append(rf_params['rf_max_depth']) max_epochs_list.append(nan) best_epoch_list.append(nan) learning_rate_list.append(nan) layer_sizes_list.append(nan) dropouts_list.append(nan) elif model_type == 'xgboost': # TODO: Add xgboost parameters max_epochs_list.append(nan) best_epoch_list.append(nan) learning_rate_list.append(nan) layer_sizes_list.append(nan) dropouts_list.append(nan) rf_estimators_list.append(nan) rf_max_features_list.append(nan) rf_max_depth_list.append(nan) else: raise Exception('Unexpected model type %s' % model_type) # Get model metrics for this model metrics_dicts = metadata_dict['ModelMetrics']['TrainingRun'] #print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) subset_metrics = {} for metrics_dict in metrics_dicts: if metrics_dict['label'] == 'best': subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['PredictionResults'] if split_strategy == 'k_fold_cv': dset_size = subset_metrics['train']['num_compounds'] + subset_metrics['test']['num_compounds'] else: dset_size = subset_metrics['train']['num_compounds'] + subset_metrics['valid']['num_compounds'] + subset_metrics['test']['num_compounds'] for subset in subsets: subset_size = subset_metrics[subset]['num_compounds'] for score_type in score_types: try: score = subset_metrics[subset][score_type] except KeyError: score = float('nan') score_dict[subset][score_type].append(score) ncmpd_dict[subset].append(subset_size) dset_size_list.append(dset_size) col_dict = dict( collection=collection_list, model_uuid=model_uuid_list, time_built=time_built_list, model_type=model_type_list, featurizer=featurizer_list, descr_type=desc_type_list, transformer=transform_list, splitter=splitter_list, split_strategy=split_strategy_list, split_uuid=split_uuid_list, umap_dim=umap_dim_list, umap_targ_wt=umap_targ_wt_list, umap_neighbors=umap_neighbors_list, umap_min_dist=umap_min_dist_list, layer_sizes=layer_sizes_list, dropouts=dropouts_list, learning_rate=learning_rate_list, best_epoch=best_epoch_list, max_epochs=max_epochs_list, rf_estimators=rf_estimators_list, rf_max_features=rf_max_features_list, rf_max_depth=rf_max_depth_list, dataset_bucket=bucket_list, dataset_key=dataset_key_list, dataset_size=dset_size_list, parameter=param_list ) perf_df = pd.DataFrame(col_dict) for subset in subsets: ncmpds_col = '%s_size' % subset perf_df[ncmpds_col] = ncmpd_dict[subset] for score_type in score_types: metric_col = '%s_%s' % (subset, score_type) perf_df[metric_col] = score_dict[subset][score_type] return perf_df #------------------------------------------------------------------------------------------------------------------ def get_summary_metadata_table(uuids, collections=None): if isinstance(uuids,str): uuids = [uuids] if isinstance(collections,str): collections = [collections] * len(uuids) mlist = [] for idx,uuid in enumerate(uuids): if collections is not None: collection_name = collections[idx] else: collection_name = trkr.get_model_collection_by_uuid(uuid,client_wrapper) model_meta = trkr.get_metadata_by_uuid(uuid,client_wrapper=client_wrapper,collection_name=collection_name) mdl_params = model_meta['ModelMetadata']['ModelParameters'] data_params = model_meta['ModelMetadata']['TrainingDataset'] # Get model metrics for this model metrics = pd.DataFrame(model_meta['ModelMetrics']['TrainingRun']) metrics = metrics[metrics['label']=='best'] train_metrics = metrics[metrics['subset']=='train']['PredictionResults'].values[0] valid_metrics = metrics[metrics['subset']=='valid']['PredictionResults'].values[0] test_metrics = metrics[metrics['subset']=='test']['PredictionResults'].values[0] # Try to name the model something intelligible in the table name = 'NA' if 'target' in data_params['DatasetMetadata']: name = data_params['DatasetMetadata']['target'] if (name == 'NA') & ('assay_endpoint' in data_params['DatasetMetadata']): name = data_params['DatasetMetadata']['assay_endpoint'] if (name == 'NA') & ('response_col' in data_params['DatasetMetadata']): name = data_params['DatasetMetadata']['response_col'] if name != 'NA': if 'param' in data_params['DatasetMetadata'].keys(): name = name + ' ' + data_params['DatasetMetadata']['param'] else: name = 'unknown' transform = 'None' if 'transformation' in data_params['DatasetMetadata'].keys(): transform = data_params['DatasetMetadata']['transformation'] if mdl_params['featurizer'] == 'computed_descriptors': featurizer = model_meta['ModelMetadata']['DescriptorSpecific']['descriptor_type'] else: featurizer = mdl_params['featurizer'] try: split_uuid = model_meta['ModelMetadata']['SplittingParameters']['Splitting']['split_uuid'] except: split_uuid = 'Not Avaliable' if mdl_params['model_type'] == 'NN': nn_params = model_meta['ModelMetadata']['NNSpecific'] minfo = {'Name': name, 'Transformation': transform, 'Model Type (Featurizer)': '%s (%s)' % (mdl_params['model_type'],featurizer), 'r^2 (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['r2_score'], valid_metrics['r2_score'], test_metrics['r2_score']), 'MAE (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['mae_score'], valid_metrics['mae_score'], test_metrics['mae_score']), 'RMSE(Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['rms_score'], valid_metrics['rms_score'], test_metrics['rms_score']), 'Data Size (Train/Valid/Test)': '%i/%i/%i' % (train_metrics["num_compounds"],valid_metrics["num_compounds"],test_metrics["num_compounds"]), 'Splitter': model_meta['ModelMetadata']['SplittingParameters']['Splitting']['splitter'], 'Layer Sizes': nn_params['layer_sizes'], 'Optimizer': nn_params['optimizer_type'], 'Learning Rate': nn_params['learning_rate'], 'Dropouts': nn_params['dropouts'], 'Best Epoch (Max)': '%i (%i)' % (nn_params['best_epoch'],nn_params['max_epochs']), 'Collection': collection_name, 'UUID': model_meta['model_uuid'], 'Split UUID': split_uuid, 'Dataset Key': data_params['dataset_key']} elif mdl_params['model_type'] == 'RF': rf_params = model_meta['ModelMetadata']['RFSpecific'] minfo = {'Name': name, 'Transformation': transform, 'Model Type (Featurizer)': '%s (%s)' % (mdl_params['model_type'],featurizer), 'Max Depth': rf_params['rf_max_depth'], 'Max Features': rf_params['rf_max_depth'], 'RF Estimators': rf_params['rf_estimators'], 'r^2 (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['r2_score'], valid_metrics['r2_score'], test_metrics['r2_score']), 'MAE (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['mae_score'], valid_metrics['mae_score'], test_metrics['mae_score']), 'RMSE(Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['rms_score'], valid_metrics['rms_score'], test_metrics['rms_score']), 'Data Size (Train/Valid/Test)': '%i/%i/%i' % (train_metrics["num_compounds"],valid_metrics["num_compounds"],test_metrics["num_compounds"]), 'Splitter': model_meta['ModelMetadata']['SplittingParameters']['Splitting']['splitter'], 'Collection': collection_name, 'UUID': model_meta['model_uuid'], 'Split UUID': split_uuid, 'Dataset Key': data_params['dataset_key']} else: architecture = 'unknown' mlist.append(OrderedDict(minfo)) return pd.DataFrame(mlist).set_index('Name').transpose() #------------------------------------------------------------------------------------------------------------------ def get_model_datasets(collection_names, filter_dict={}): """ Query the model tracker for all models saved in the model tracker DB under the given collection names. Returns a dictionary mapping (dataset_key,bucket) pairs to the list of model_uuids trained on the corresponding datasets. """ result_dict = {} for collection_name in collection_names: if collection_name.endswith('_metrics'): continue models = trkr.get_full_metadata(filter_dict, client_wrapper, collection_name=collection_name) for i, metadata_dict in enumerate(models): if i % 10 == 0: print('Processing collection %s model %d' % (collection_name, i)) # Check that model has metrics before we go on if not 'ModelMetrics' in metadata_dict: continue try: model_uuid = metadata_dict['model_uuid'] dataset_key = metadata_dict['ModelMetadata']['TrainingDataset']['dataset_key'] bucket = metadata_dict['ModelMetadata']['TrainingDataset']['bucket'] result_dict.setdefault((dataset_key,bucket), []).append(model_uuid) except KeyError: continue return result_dict #------------------------------------------------------------------------------------------------------------------- def aggregate_predictions(datasets, bucket, col_names, client_wrapper, result_dir): results = [] for dset_key, bucket in datasets: for model_type in ['NN', 'RF']: for split_type in ['scaffold', 'random']: for descriptor_type in ['mordred_filtered', 'moe']: model_filter = {"ModelMetadata.TrainingDataset.dataset_key" : dset_key, "ModelMetadata.TrainingDataset.bucket" : bucket, "ModelMetrics.TrainingRun.label" : "best", 'ModelMetrics.TrainingRun.subset': 'valid', 'ModelMetrics.TrainingRun.PredictionResults.r2_score': ['max', None], 'ModelMetadata.ModelParameters.model_type': model_type, 'ModelMetadata.ModelParameters.featurizer': 'descriptors', 'ModelMetadata.DescriptorSpecific.descriptor_type': descriptor_type, 'ModelMetadata.SplittingParameters.Splitting.splitter': split_type } for col_name in col_names: model = list(trkr.get_full_metadata(model_filter, client_wrapper, collection_name=col_name)) if model: model = model[0] result_dir = '/usr/local/data/%s/%s' % (col_name, dset_key.rstrip('.csv')) result_df = mp.regenerate_results(result_dir, metadata_dict=model) result_df['dset_key'] = dset_key actual_col = [col for col in result_df.columns if 'actual' in col][0] pred_col = [col for col in result_df.columns if 'pred' in col][0] result_df['error'] = abs(result_df[actual_col] - result_df[pred_col]) result_df['cind'] = pd.Categorical(result_df['dset_key']).labels results.append(result_df) results_df = pd.concat(results).reset_index(drop=True) results_df.to_csv(os.path.join(result_dir, 'predictions_%s_%s_%s_%s.csv' % (dset_key, model_type, split_type, descriptor_type)), index=False) for featurizer in ['graphconv', 'ecfp']: model_filter = {"ModelMetadata.TrainingDataset.dataset_key" : dset_key, "ModelMetadata.TrainingDataset.bucket" : bucket, "ModelMetrics.TrainingRun.label" : "best", 'ModelMetrics.TrainingRun.subset': 'valid', 'ModelMetrics.TrainingRun.PredictionResults.r2_score': ['max', None], 'ModelMetadata.ModelParameters.model_type': model_type, 'ModelMetadata.ModelParameters.featurizer': featurizer, 'ModelMetadata.SplittingParameters.Splitting.splitter': split_type } for col_name in col_names: model = list(trkr.get_full_metadata(model_filter, client_wrapper, collection_name=col_name)) if model: model = model[0] result_dir = '/usr/local/data/%s/%s' % (col_name, dset_key.rstrip('.csv')) result_df = mp.regenerate_results(result_dir, metadata_dict=model) result_df['dset_key'] = dset_key actual_col = [col for col in result_df.columns if 'actual' in col][0] pred_col = [col for col in result_df.columns if 'pred' in col][0] result_df['error'] = abs(result_df[actual_col] - result_df[pred_col]) result_df['cind'] =
pd.Categorical(result_df['dset_key'])
pandas.Categorical
import os import sys import json from datetime import datetime from os import system, name from time import sleep import copy import threading import imp import numpy as np import altair as alt import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import pandasql as psql from libraries.utility import Utility class import_export_data(Utility): ALL_COUNTRIES_DATA_FRAME = None ALL_COUNTRIES_BY_TYPE_DF = None ALL_COUNTRIES_GDP_DATA = None EXCHANGE_RATE_DATA = None def __init__(self,load_data_from_url=False): super().__init__() global ALL_COUNTRIES_DATA_FRAME global ALL_COUNTRIES_BY_TYPE_DF global ALL_COUNTRIES_GDP_DATA global EXCHANGE_RATE_DATA if load_data_from_url == False: EXCHANGE_RATE_DATA = self.load_exchange_rate_data() ALL_COUNTRIES_DATA_FRAME = self.load_and_clean_up_top_20_file() ALL_COUNTRIES_BY_TYPE_DF = self.load_and_clean_up_WTO_file() ALL_COUNTRIES_GDP_DATA = self.load_and_clean_up_GDP_file() else: ALL_COUNTRIES_DATA_FRAME = self.load_and_clean_up_top_20_file_fromurl() ALL_COUNTRIES_BY_TYPE_DF = self.load_and_clean_up_WTO_file_fromurl() def print_internal_directory(self): for k,v in self.__dict__.items(): print("{} is \"{}\"".format(k,v)) def get_world_event_data(self) : data_directory = "data" trade_balance_sub_dir = "world_events" file_name = "world_events.txt" return_file_name = os.path.join(self.get_this_dir(),data_directory,trade_balance_sub_dir,file_name) return pd.read_csv(return_file_name,sep='\t').replace(np.nan,'',regex=True) def get_world_event_data_json(self): return self.get_world_event_data().to_json(orient='records') def get_top_20_full_file_name(self) : data_directory = "data" trade_balance_sub_dir = "trade_balance_datasets" top_20_file_name = "top20_2014-2020_all.csv" return_file_name = os.path.join(self.get_this_dir(),data_directory,trade_balance_sub_dir,top_20_file_name) return return_file_name def get_GDP_full_file_name(self): data_directory = "data" trade_balance_sub_dir = "trade_balance_datasets" GDP_file_name = "wb_econind_gdp_data.csv" return_file_name = os.path.join(self.get_this_dir(),data_directory,trade_balance_sub_dir,GDP_file_name) return return_file_name def get_WTO_individual_file_name(self) : file_names = ['WtoData_services_imports.csv','WtoData_services_imports.csv','WtoData_merchandise_imports.csv','WtoData_merchandise_exports.csv'] data_directory = "data" trade_balance_sub_dir = "trade_balance_datasets" return_file_path_list = [] for file_name in file_names: return_file_path_list.append(os.path.join(self.get_this_dir(),data_directory,trade_balance_sub_dir,file_name)) return return_file_path_list def get_WTO_full_file_name(self) : data_directory = "data" trade_balance_sub_dir = "trade_balance_datasets" WTO_file_name = "WtoData_all.csv" return_file_name = os.path.join(self.get_this_dir(),data_directory,trade_balance_sub_dir,WTO_file_name) return return_file_name def get_world_countries_by_iso_label(self): data_directory = "data" file_name = "countries.tsv" load_file_name = os.path.join(self.get_this_dir(),data_directory,file_name) my_data = pd.read_csv(load_file_name,sep='\t') return my_data def get_exchange_rate_files(self) : data_directory = "data" exchange_rate_dir = "exchange_rates" exchange_rate = "exchange_rates_from_oecd_website.csv" country_codes = "wikipedia-iso-country-codes.csv" exchange_rate_file = os.path.join(self.get_this_dir(),data_directory,exchange_rate_dir,exchange_rate) country_code_file = os.path.join(self.get_this_dir(),data_directory,exchange_rate_dir,country_codes) return exchange_rate_file, country_code_file def load_exchange_rate_data(self): exchange_rate_file, country_code_file = self.get_exchange_rate_files() exchange_rates = pd.read_csv(exchange_rate_file) country_codes = pd.read_csv(country_code_file) mysql = ''' select country_codes.[English short name lower case] as Country, exchange_rates.TIME as year, exchange_rates.Value as rate from exchange_rates join country_codes on country_codes.[Alpha-3 code] = exchange_rates.LOCATION ''' return psql.sqldf(mysql) def load_and_clean_up_top_20_file_fromurl(self): #url = "https://tuneman7.github.io/WtoData_all.csv" url = "https://tuneman7.github.io/top20_2014-2020_all.csv" my_data = pd.read_csv(url) return my_data def load_and_clean_up_top_20_file(self): global EXCHANGE_RATE_DATA file_to_load = self.get_top_20_full_file_name() my_data = pd.read_csv(file_to_load) sql = ''' select my_data.*, EXCHANGE_RATE_DATA_1.rate as country_exchange_rate, EXCHANGE_RATE_DATA_2.rate as trading_partner_exchange_rate from my_data left join EXCHANGE_RATE_DATA as EXCHANGE_RATE_DATA_1 on EXCHANGE_RATE_DATA_1.year = my_data.year and EXCHANGE_RATE_DATA_1.Country = my_data.Country left join EXCHANGE_RATE_DATA as EXCHANGE_RATE_DATA_2 on EXCHANGE_RATE_DATA_2.year = my_data.year and EXCHANGE_RATE_DATA_2.Country = my_data.[Trading Partner] ''' my_data = psql.sqldf(sql) return my_data def load_and_clean_up_GDP_file(self): file_to_load = self.get_GDP_full_file_name() my_data = pd.read_csv(file_to_load) global EXCHANGE_RATE_DATA sql = ''' select my_data.*, EXCHANGE_RATE_DATA.rate as exchange_rate from my_data left join EXCHANGE_RATE_DATA on EXCHANGE_RATE_DATA.Country = my_data.Country and EXCHANGE_RATE_DATA.year = my_data.Year ''' return psql.sqldf(sql) def load_and_clean_up_EU_files(self): #file_to_load = self.get_WTO_individual_file_name() file_to_load = self.load_and_clean_up_top_20_file() eu_countries=['Austria','Belgium','Croatia','Czech Republic','Denmark','Finland','France','Germany','Greece','Hungary', 'Italy','Netherlands','Poland','Portugal','Spain','Sweden','United Kingdom'] eu_df = file_to_load.loc[(file_to_load['Trading Partner'].isin(eu_countries)) & (file_to_load['country'].isin(eu_countries))] eu_df_filtered = eu_df[['Trading Partner','country','Total Trade ($M)','year']].reset_index() #df_concat = eu_df_filtered.pivot_table('Total Trade ($M)', ['Trading Partner','country'], 'year').reset_index() return eu_df_filtered def load_and_clean_up_WTO_file(self): file_to_load = self.get_WTO_full_file_name() my_data = pd.read_csv(file_to_load) global EXCHANGE_RATE_DATA # sql = ''' # select # my_data.*, # EXCHANGE_RATE_DATA_1.rate as reporting_economy_exchange_rate, # EXCHANGE_RATE_DATA_2.rate as partner_economy_exchange_rate # from my_data # left join EXCHANGE_RATE_DATA as EXCHANGE_RATE_DATA_1 # on # EXCHANGE_RATE_DATA_1.Country = my_data.[Reporting Economy] # left join EXCHANGE_RATE_DATA as EXCHANGE_RATE_DATA_2 # on # EXCHANGE_RATE_DATA_2.Country = my_data.[Partner Economy] # ''' sql = ''' select my_data.*, EXCHANGE_RATE_DATA_1.rate as reporting_economy_exchange_rate from my_data left join EXCHANGE_RATE_DATA as EXCHANGE_RATE_DATA_1 on EXCHANGE_RATE_DATA_1.Country = my_data.[Reporting Economy] and EXCHANGE_RATE_DATA_1.year = my_data.Year ''' return psql.sqldf(sql) def load_and_clean_up_WTO_file_fromurl(self): url = "https://tuneman7.github.io/WtoData_all.csv" #url = "https://tuneman7.github.io/top20_2014-2020_all.csv" my_data = pd.read_csv(url) return my_data def get_sql_for_world_or_region(self, source_country): my_sql = ''' SELECT 'World' [Trading Partner], sum([Total Trade ($M)]) [Total Trade ($M) ], avg([RtW (%)]) [RtW (%)], sum([Exports ($M)] )[Exports ($M)], avg([RtW (%).1]) [RtW (%).1], sum([Imports ($M)]) [Imports ($M)], avg([RtW (%).2]) [RtW (%).2], sum([Net Exports ($M)]) [Net Exports ($M)], '' [Exports Ticker], '' [Imports Ticker], country, year FROM my_data_frame WHERE country = \'''' + source_country + '''\' and [Trading Partner] <> \'''' + source_country + '''\' GROUP BY country, year ''' #print(my_sql) return my_sql def get_sql_for_world_or_region(self, source_country): my_sql = ''' SELECT 'World' [Trading Partner], sum([Total Trade ($M)]) [Total Trade ($M)], avg([RtW (%)]) [RtW (%)], sum([Exports ($M)] )[Exports ($M)], avg([RtW (%).1]) [RtW (%).1], sum([Imports ($M)]) [Imports ($M)], avg([RtW (%).2]) [RtW (%).2], sum([Net Exports ($M)]) [Net Exports ($M)], '' [Exports Ticker], '' [Imports Ticker], country, year FROM my_data_frame WHERE country = \'''' + source_country + '''\' and [Trading Partner] <> \'''' + source_country + '''\' GROUP BY country, year ''' #print(my_sql) return my_sql def get_data_by_source_and_target_country(self,source_country,target_country): global ALL_COUNTRIES_DATA_FRAME my_data_frame = ALL_COUNTRIES_DATA_FRAME if target_country.lower() == "world": my_sql = self.get_sql_for_world_or_region(source_country) else: my_sql = "SELECT * FROM my_data_frame WHERE country = '" + source_country + "' and [Trading Partner] = '" + target_country + "' " my_return_data = psql.sqldf(my_sql) return my_return_data def get_top5data_by_source_country(self,source_country): global ALL_COUNTRIES_DATA_FRAME my_data_frame = ALL_COUNTRIES_DATA_FRAME if source_country.lower() == 'world': my_sql = ''' SELECT * FROM ( SELECT *, RANK() OVER(PARTITION BY year ORDER BY [Total Trade ($M)] DESC) AS rnk FROM my_data_frame where country in (select distinct country from my_data_frame) ) t WHERE rnk <= 5 ''' else: my_sql = ''' SELECT * FROM ( SELECT *, RANK() OVER(PARTITION BY year ORDER BY [Total Trade ($M)] DESC) AS rnk FROM my_data_frame WHERE country = ''' + "'" + source_country + '''\' ) t WHERE rnk <= 5 ''' my_return_data = psql.sqldf(my_sql) return my_return_data def get_top5data_by_imports_exports(self,source_country, direction): global ALL_COUNTRIES_BY_TYPE_DF my_data_frame = ALL_COUNTRIES_BY_TYPE_DF if source_country.lower() != "world": my_sql = ''' SELECT * FROM ( SELECT Year, Value, [Product/Sector-reformatted], RANK() OVER( PARTITION BY Year ORDER BY Value DESC) AS rnk FROM my_data_frame WHERE [Reporting Economy] = \'''' + source_country + '''\' and Direction = \'''' + direction + '''\' and [Product/Sector-reformatted] NOT LIKE '%Total%' ) t WHERE rnk <= 5 ''' else: my_sql = ''' SELECT * FROM ( SELECT Year, Value, [Product/Sector-reformatted], RANK() OVER( PARTITION BY Year ORDER BY Value DESC) AS rnk FROM my_data_frame WHERE [Reporting Economy] in (select distinct [Reporting Economy] from my_data_frame) and Direction = \'''' + direction + '''\' and [Product/Sector-reformatted] NOT LIKE '%Total%' ) t WHERE rnk <= 5 ''' my_return_data = psql.sqldf(my_sql) return my_return_data def imports_exports_by_sectors(self,source_country, target_country, direction): global ALL_COUNTRIES_BY_TYPE_DF my_data_frame = ALL_COUNTRIES_BY_TYPE_DF if source_country.lower() != "world": my_sql = ''' SELECT Year, Value, [Product/Sector-reformatted], [Reporting Economy] FROM my_data_frame WHERE ([Reporting Economy] = \'''' + source_country + '''\' or [Reporting Economy] = \'''' + target_country + '''\' ) and Direction = \'''' + direction + '''\' and [Product/Sector-reformatted] NOT LIKE '%Total%' ''' else: my_sql = ''' SELECT Year, Value, [Product/Sector-reformatted], [Reporting Economy] FROM my_data_frame WHERE [Reporting Economy] in (select distinct [Reporting Economy] from my_data_frame) and Direction = \'''' + direction + '''\' and [Product/Sector-reformatted] NOT LIKE '%Total%' ''' my_return_data = psql.sqldf(my_sql) return my_return_data def imports_exports_by_sectors_source(self): global ALL_COUNTRIES_BY_TYPE_DF my_data_frame = ALL_COUNTRIES_BY_TYPE_DF my_sql = ''' SELECT distinct Year, Value, [Product/Sector-reformatted], [Direction], [Type], [Reporting Economy] FROM my_data_frame WHERE [Product/Sector-reformatted] NOT LIKE '%Total%' ''' ## and [Reporting Economy] = \'''' + source_country + '''\' my_return_data = psql.sqldf(my_sql) return my_return_data def get_top_trading_and_net_value(self,source_country): global ALL_COUNTRIES_DATA_FRAME my_data_frame = ALL_COUNTRIES_DATA_FRAME if source_country.lower() != "world": my_sql = ''' SELECT [Trading Partner], [year], [Total Trade ($M)], [Exports ($M)]-[Imports ($M)] as net_trade, 'Net: ' || '$' || printf("%,d",cast([Exports ($M)]-[Imports ($M)] as text)) as net_trade_text, [Exports ($M)], [Imports ($M)], ''' + "'" + source_country + "'" + ''' as 'source_country' FROM ( SELECT *, RANK() OVER(PARTITION BY year ORDER BY [Total Trade ($M)] DESC) AS rnk FROM my_data_frame WHERE country = ''' + "'" + source_country + '''\' ) t WHERE rnk <= 5 ''' else: my_sql = ''' SELECT distinct [Trading Partner], [year], [Total Trade ($M)], [Exports ($M)]-[Imports ($M)] as net_trade, 'Net: ' || '$' || printf("%,d",cast([Exports ($M)]-[Imports ($M)] as text)) as net_trade_text, [Exports ($M)], [Imports ($M)], 'World' as source_country FROM ( SELECT [Trading Partner], sum([Total Trade ($M)]) as [Total Trade ($M)], sum([Exports ($M)]) as [Exports ($M)], sum([Imports ($M)]) as [Imports ($M)], year, RANK() OVER(PARTITION BY year ORDER BY sum([Total Trade ($M)]) DESC) AS rnk FROM my_data_frame WHERE country in (select distinct country from my_data_frame ) --and [Trading Partner] <> 'European Union' group by [Trading Partner],year ) t WHERE rnk <= 5 group by [Trading Partner], [year] ''' my_return_data = psql.sqldf(my_sql) return my_return_data def get_eu_trade_data(self): global ALL_COUNTRIES_DATA_FRAME my_data_frame = ALL_COUNTRIES_DATA_FRAME eu_countries=['Austria','Belgium','Croatia','Czech Republic','Denmark','Finland','France','Germany','Greece','Hungary', 'Italy','Netherlands','Poland','Portugal','Spain','Sweden'] eu_countries=pd.DataFrame(eu_countries) eu_countries.columns=['Country'] eu_countries my_sql = ''' SELECT t.*, t.Exports*-1 ExportsN FROM ( select [country], [year], case WHEN [Trading Partner] in (select distinct Country from eu_countries) then 'EU' WHEN [Trading Partner] not in (select distinct Country from eu_countries) then 'World' ELSE 'World' END [Trade Group], sum([Imports ($M)]) Imports, sum([Exports ($M)]) Exports, sum([Total Trade ($M)]) TotalTrade, sum([Net Exports ($M)]) NetTrade, sum(case WHEN [Total Trade ($M)] > 0 then 1 else 0 end) as [Trade Partners] from my_data_frame group by [country],[year],[Trade Group] ) t ''' my_return_data = psql.sqldf(my_sql) return my_return_data def get_eu_trade_data_pcts(self): global ALL_COUNTRIES_DATA_FRAME eu_countries=['Austria','Belgium','Croatia','Czech Republic','Denmark','Finland','France','Germany','Greece','Hungary', 'Italy','Netherlands','Poland','Portugal','Spain','Sweden'] eu_countries=pd.DataFrame(eu_countries) eu_countries.columns=['Country'] eu_countries my_data_frame = ALL_COUNTRIES_DATA_FRAME eu_data_frame=self.get_eu_trade_data() my_sql = ''' SELECT t.*, g.[Imports] TotalTop20Imports, g.[Exports] TotalTop20Exports, g.[TotalTrade] TotalTop20Trade, g.[NetTrade] TotalTop20NetTrade, t.[Imports]/g.[Imports] EUvWorld_Imports_tradepct, t.[Exports]/g.[Exports] EUvWorld_Exports_tradepct, t.[TotalTrade]/g.[TotalTrade] EUvWorld_TotalTrade_tradepct FROM ( select case WHEN [country] in ('United States') then 'US' WHEN [country] in ('China') then [country] WHEN [country] in (select distinct Country from eu_countries) then 'EU' WHEN [country] not in (select distinct Country from eu_countries) then 'RoW' ELSE 'RoW' END [Top20group], [year], [Trade Group], sum([Imports]) Imports, sum([Exports]) Exports, sum([TotalTrade]) TotalTrade, sum([NetTrade]) NetTrade from eu_data_frame group by [Top20group],[year],[Trade Group] ) t left join ( SELECT [year], case WHEN [country] in ('United States') then 'US' WHEN [country] in ('China') then [country] WHEN [country] in (select distinct Country from eu_countries) then 'EU' WHEN [country] not in (select distinct Country from eu_countries) then 'RoW' ELSE 'RoW' END [Top20group], sum([Imports]) Imports, sum([Exports]) Exports, sum([TotalTrade]) TotalTrade, sum([NetTrade]) NetTrade from eu_data_frame group by [year],[Top20group] ) g ON t.[Top20group]=g.[Top20group] and t.[year]=g.[year] ''' my_return_data = psql.sqldf(my_sql) my_return_data['EUvsWorld Imports %']=(my_return_data['EUvWorld_Imports_tradepct']*100).round(2) my_return_data['EUvsWorld Exports %']=(my_return_data['EUvWorld_Exports_tradepct']*100).round(2) my_return_data['EUvsWorld Total Trade %']=(my_return_data['EUvWorld_TotalTrade_tradepct']*100).round(2) return my_return_data def get_data_nafta_trade_continent_tool(self): nafta_return_top5=self.get_top20_trade_continental_cont_data() my_return_data_top5_continent=nafta_return_top5[nafta_return_top5['Continent Trade Rank']<=5] my_return_data_top5_continent my_dataframe=self.get_top20_trade_nafta_continental_cont_data() my_dataframe my_sql = ''' SELECT country as [Trade Group], [Continent TP] as [Continent], [year] as [Year], [Exports ($M)], [Imports ($M)], [Net Exports ($M)], [Total Trade ($M)], [Continent Trade Rank] FROM my_return_data_top5_continent UNION SELECT [group] as [Trade Group], [Continent TP] as [Continent], [year] [Year], [Exports ($M)], [Imports ($M)], [Net Exports ($M)], [Total Trade ($M)], [Continent Trade Rank] from my_dataframe ''' my_return_data = psql.sqldf(my_sql) return my_return_data def get_nafta_trade_data(self): global ALL_COUNTRIES_DATA_FRAME my_data_frame = ALL_COUNTRIES_DATA_FRAME nafta_countries=['United States','Mexico','Canada'] nafta_countries=
pd.DataFrame(nafta_countries)
pandas.DataFrame
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1), n]) assert lib.infer_dtype(arr) == 'datetime' # different type of nat arr = np.array([np.timedelta64('nat'), np.datetime64('2011-01-02')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.datetime64('2011-01-02'), np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' # mixed datetime arr = np.array([datetime(2011, 1, 1), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' # should be datetime? arr = np.array([np.datetime64('2011-01-01'), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Timestamp('2011-01-02'), np.datetime64('2011-01-01')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1]) assert lib.infer_dtype(arr) == 'mixed-integer' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_timedelta(self): arr = np.array([pd.Timedelta('1 days'), pd.Timedelta('2 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([timedelta(1), timedelta(2)]) assert lib.infer_dtype(arr) == 'timedelta' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, Timedelta('1 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1)]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, pd.Timedelta('1 days'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1), n]) assert lib.infer_dtype(arr) == 'timedelta' # different type of nat arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_period(self): # GH 13664 arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='M')]) assert lib.infer_dtype(arr) == 'period' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Period('2011-01', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([n, pd.Period('2011-01', freq='D'), n]) assert lib.infer_dtype(arr) == 'period' # different type of nat arr = np.array([np.datetime64('nat'), pd.Period('2011-01', freq='M')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Period('2011-01', freq='M'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' @pytest.mark.parametrize( "data", [ [datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)], [Timestamp("20170612"), Timestamp("20170311")], [Timestamp("20170612", tz='US/Eastern'), Timestamp("20170311", tz='US/Eastern')], [date(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')], [np.datetime64("2017-06-12"), np.datetime64("2017-03-11")], [np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)] ] ) def test_infer_datetimelike_array_datetime(self, data): assert lib.infer_datetimelike_array(data) == "datetime" @pytest.mark.parametrize( "data", [ [timedelta(2017, 6, 12), timedelta(2017, 3, 11)], [timedelta(2017, 6, 12), date(2017, 3, 11)], [np.timedelta64(2017, "D"), np.timedelta64(6, "s")], [np.timedelta64(2017, "D"), timedelta(2017, 3, 11)] ] ) def test_infer_datetimelike_array_timedelta(self, data): assert lib.infer_datetimelike_array(data) == "timedelta" def test_infer_datetimelike_array_date(self): arr = [date(2017, 6, 12), date(2017, 3, 11)] assert lib.infer_datetimelike_array(arr) == "date" @pytest.mark.parametrize( "data", [ ["2017-06-12", "2017-03-11"], [20170612, 20170311], [20170612.5, 20170311.8], [Dummy(), Dummy()], [Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')], [Timestamp("20170612"), 20170311], [timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')] ] ) def test_infer_datetimelike_array_mixed(self, data): assert lib.infer_datetimelike_array(data) == "mixed" @pytest.mark.parametrize( "first, expected", [ [[None], "mixed"], [[np.nan], "mixed"], [[pd.NaT], "nat"], [[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"], [[np.datetime64("2017-06-12"), pd.NaT], "datetime"], [[date(2017, 6, 12), pd.NaT], "date"], [[timedelta(2017, 6, 12), pd.NaT], "timedelta"], [[np.timedelta64(2017, "D"), pd.NaT], "timedelta"] ] ) @pytest.mark.parametrize("second", [None, np.nan]) def test_infer_datetimelike_array_nan_nat_like(self, first, second, expected): first.append(second) assert lib.infer_datetimelike_array(first) == expected def test_infer_dtype_all_nan_nat_like(self): arr = np.array([np.nan, np.nan]) assert lib.infer_dtype(arr) == 'floating' # nan and None mix are result in mixed arr = np.array([np.nan, np.nan, None]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([None, np.nan, np.nan]) assert lib.infer_dtype(arr) == 'mixed' # pd.NaT arr = np.array([pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([None, pd.NaT, None]) assert lib.infer_dtype(arr) == 'datetime' # np.datetime64(nat) arr = np.array([np.datetime64('nat')]) assert lib.infer_dtype(arr) == 'datetime64' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([pd.NaT, n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([pd.NaT, n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' # datetime / timedelta mixed arr = np.array([pd.NaT, np.datetime64('nat'), np.timedelta64('nat'), np.nan]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64('nat'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_is_datetimelike_array_all_nan_nat_like(self): arr = np.array([np.nan, pd.NaT, np.datetime64('nat')]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.datetime64('nat'), np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, np.nan], dtype=object) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) assert lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='US/Eastern')], dtype=object)) assert not lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='CET')], dtype=object)) @pytest.mark.parametrize( "func", [ 'is_datetime_array', 'is_datetime64_array', 'is_bool_array', 'is_timedelta_or_timedelta64_array', 'is_date_array', 'is_time_array', 'is_interval_array', 'is_period_array']) def test_other_dtypes_for_array(self, func): func = getattr(lib, func) arr = np.array(['foo', 'bar']) assert not func(arr) arr = np.array([1, 2]) assert not func(arr) def test_date(self): dates = [date(2012, 1, day) for day in range(1, 20)] index = Index(dates) assert index.inferred_type == 'date' dates = [date(2012, 1, day) for day in range(1, 20)] + [np.nan] result = lib.infer_dtype(dates) assert result == 'mixed' result = lib.infer_dtype(dates, skipna=True) assert result == 'date' def test_is_numeric_array(self): assert lib.is_float_array(np.array([1, 2.0])) assert lib.is_float_array(np.array([1, 2.0, np.nan])) assert not lib.is_float_array(np.array([1, 2])) assert lib.is_integer_array(np.array([1, 2])) assert not lib.is_integer_array(np.array([1, 2.0])) def test_is_string_array(self): assert lib.is_string_array(np.array(['foo', 'bar'])) assert not lib.is_string_array( np.array(['foo', 'bar', np.nan], dtype=object), skipna=False) assert lib.is_string_array( np.array(['foo', 'bar', np.nan], dtype=object), skipna=True) assert not lib.is_string_array(np.array([1, 2])) def test_to_object_array_tuples(self): r = (5, 6) values = [r] result = lib.to_object_array_tuples(values) try: # make sure record array works from collections import namedtuple record = namedtuple('record', 'x y') r = record(5, 6) values = [r] result = lib.to_object_array_tuples(values) # noqa except ImportError: pass def test_object(self): # GH 7431 # cannot infer more than this as only a single element arr = np.array([None], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' def test_to_object_array_width(self): # see gh-13320 rows = [[1, 2, 3], [4, 5, 6]] expected = np.array(rows, dtype=object) out =
lib.to_object_array(rows)
pandas._libs.lib.to_object_array
import copy from builtins import range from datetime import datetime import numpy as np import pandas as pd import pytest from ..testing_utils import make_ecommerce_entityset from featuretools import variable_types from featuretools.entityset import EntitySet @pytest.fixture() def entityset(): return make_ecommerce_entityset() @pytest.fixture def entity(entityset): return entityset['log'] class TestQueryFuncs(object): def test_query_by_id(self, entityset): df = entityset['log'].query_by_values(instance_vals=[0]) assert df['id'].values[0] == 0 def test_query_by_id_with_sort(self, entityset): df = entityset['log'].query_by_values( instance_vals=[2, 1, 3], return_sorted=True) assert df['id'].values.tolist() == [2, 1, 3] def test_query_by_id_with_time(self, entityset): df = entityset['log'].query_by_values( instance_vals=[0, 1, 2, 3, 4], time_last=datetime(2011, 4, 9, 10, 30, 2 * 6)) assert df['id'].get_values().tolist() == [0, 1, 2] def test_query_by_variable_with_time(self, entityset): df = entityset['log'].query_by_values( instance_vals=[0, 1, 2], variable_id='session_id', time_last=datetime(2011, 4, 9, 10, 50, 0)) true_values = [ i * 5 for i in range(5)] + [i * 1 for i in range(4)] + [0] assert df['id'].get_values().tolist() == list(range(10)) assert df['value'].get_values().tolist() == true_values def test_query_by_variable_with_training_window(self, entityset): df = entityset['log'].query_by_values( instance_vals=[0, 1, 2], variable_id='session_id', time_last=datetime(2011, 4, 9, 10, 50, 0), training_window='15m') assert df['id'].get_values().tolist() == [9] assert df['value'].get_values().tolist() == [0] def test_query_by_indexed_variable(self, entityset): df = entityset['log'].query_by_values( instance_vals=['taco clock'], variable_id='product_id') assert df['id'].get_values().tolist() == [15, 16] def test_query_by_non_unique_sort_raises(self, entityset): with pytest.raises(ValueError): entityset['log'].query_by_values( instance_vals=[0, 2, 1], variable_id='session_id', return_sorted=True) class TestVariableHandling(object): # TODO: rewrite now that ds and entityset are seperate def test_check_variables_and_dataframe(self): # matches df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a']}) vtypes = {'id': variable_types.Categorical, 'category': variable_types.Categorical} entityset = EntitySet(id='test') entityset.entity_from_dataframe('test_entity', df, index='id', variable_types=vtypes) assert entityset.entity_stores['test_entity'].variable_types['category'] == variable_types.Categorical def test_make_index_variable_ordering(self): df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a']}) vtypes = {'id': variable_types.Categorical, 'category': variable_types.Categorical} entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id1', make_index=True, variable_types=vtypes, dataframe=df) assert entityset.entity_stores['test_entity'].df.columns[0] == 'id1' def test_extra_variable_type(self): # more variables df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a']}) vtypes = {'id': variable_types.Categorical, 'category': variable_types.Categorical, 'category2': variable_types.Categorical} with pytest.raises(LookupError): entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df) def test_unknown_index(self): # more variables df = pd.DataFrame({'category': ['a', 'b', 'a']}) vtypes = {'category': variable_types.Categorical} entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df) assert entityset['test_entity'].index == 'id' assert entityset['test_entity'].df['id'].tolist() == list(range(3)) def test_bad_index_variables(self): # more variables df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a']}) vtypes = {'id': variable_types.Categorical, 'category': variable_types.Categorical} with pytest.raises(LookupError): entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df, time_index='time') def test_converts_variable_types_on_init(self): df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a'], 'category_int': [1, 2, 3], 'ints': ['1', '2', '3'], 'floats': ['1', '2', '3.0']}) df["category_int"] = df["category_int"].astype("category") vtypes = {'id': variable_types.Categorical, 'ints': variable_types.Numeric, 'floats': variable_types.Numeric} entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df) entity_df = entityset.get_dataframe('test_entity') assert entity_df['ints'].dtype.name in variable_types.PandasTypes._pandas_numerics assert entity_df['floats'].dtype.name in variable_types.PandasTypes._pandas_numerics # this is infer from pandas dtype e = entityset["test_entity"] assert isinstance(e['category_int'], variable_types.Categorical) def test_converts_variable_type_after_init(self): df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a'], 'ints': ['1', '2', '1']}) df["category"] = df["category"].astype("category") entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', dataframe=df) e = entityset['test_entity'] df = entityset.get_dataframe('test_entity') e.convert_variable_type('ints', variable_types.Numeric) assert isinstance(e['ints'], variable_types.Numeric) assert df['ints'].dtype.name in variable_types.PandasTypes._pandas_numerics e.convert_variable_type('ints', variable_types.Categorical) assert isinstance(e['ints'], variable_types.Categorical) e.convert_variable_type('ints', variable_types.Ordinal) assert isinstance(e['ints'], variable_types.Ordinal) e.convert_variable_type('ints', variable_types.Boolean, true_val=1, false_val=2) assert isinstance(e['ints'], variable_types.Boolean) assert df['ints'].dtype.name == 'bool' def test_converts_datetime(self): # string converts to datetime correctly # This test fails without defining vtypes. Entityset # infers time column should be numeric type times = pd.date_range('1/1/2011', periods=3, freq='H') time_strs = times.strftime('%Y-%m-%d') df = pd.DataFrame({'id': [0, 1, 2], 'time': time_strs}) vtypes = {'id': variable_types.Categorical, 'time': variable_types.Datetime} entityset = EntitySet(id='test') entityset._import_from_dataframe(entity_id='test_entity', index='id', time_index="time", variable_types=vtypes, dataframe=df) pd_col = entityset.get_column_data('test_entity', 'time') # assert type(es['test_entity']['time']) == variable_types.Datetime assert type(pd_col[0]) == pd.Timestamp def test_handles_datetime_format(self): # check if we load according to the format string # pass in an ambigious date datetime_format = "%d-%m-%Y" actual = pd.Timestamp('Jan 2, 2011') time_strs = [actual.strftime(datetime_format)] * 3 df = pd.DataFrame( {'id': [0, 1, 2], 'time_format': time_strs, 'time_no_format': time_strs}) vtypes = {'id': variable_types.Categorical, 'time_format': (variable_types.Datetime, {"format": datetime_format}), 'time_no_format': variable_types.Datetime} entityset = EntitySet(id='test') entityset._import_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df) col_format = entityset.get_column_data('test_entity', 'time_format') col_no_format = entityset.get_column_data( 'test_entity', 'time_no_format') # without formatting pandas gets it wrong assert (col_no_format != actual).all() # with formatting we correctly get jan2 assert (col_format == actual).all() def test_handles_datetime_mismatch(self): # can't convert arbitrary strings df = pd.DataFrame({'id': [0, 1, 2], 'time': ['a', 'b', 'tomorrow']}) vtypes = {'id': variable_types.Categorical, 'time': variable_types.Datetime} with pytest.raises(ValueError): entityset = EntitySet(id='test') entityset.entity_from_dataframe('test_entity', df, 'id', time_index='time', variable_types=vtypes) def test_calculates_statistics_on_init(self): df = pd.DataFrame({'id': [0, 1, 2], 'time': [datetime(2011, 4, 9, 10, 31, 3 * i) for i in range(3)], 'category': ['a', 'b', 'a'], 'number': [4, 5, 6], 'boolean': [True, False, True], 'boolean_with_nan': [True, False, np.nan]}) vtypes = {'id': variable_types.Categorical, 'time': variable_types.Datetime, 'category': variable_types.Categorical, 'number': variable_types.Numeric, 'boolean': variable_types.Boolean, 'boolean_with_nan': variable_types.Boolean} entityset = EntitySet(id='test') entityset.entity_from_dataframe('stats_test_entity', df, 'id', variable_types=vtypes) e = entityset["stats_test_entity"] # numerics don't have nunique or percent_unique defined for v in ['time', 'category', 'number']: assert e[v].count == 3 for v in ['time', 'number']: with pytest.raises(AttributeError): e[v].nunique with pytest.raises(AttributeError): e[v].percent_unique # 'id' column automatically parsed as id assert e['id'].count == 3 # categoricals have nunique and percent_unique defined assert e['category'].nunique == 2 assert e['category'].percent_unique == 2. / 3 # booleans have count and number of true/false labels defined assert e['boolean'].count == 3 # assert e['boolean'].num_true == 3 assert e['boolean'].num_true == 2 assert e['boolean'].num_false == 1 # TODO: the below fails, but shouldn't # boolean with nan have count and number of true/false labels defined # assert e['boolean_with_nan'].count == 2 # assert e['boolean_with_nan'].num_true == 1 # assert e['boolean_with_nan'].num_false == 1 def test_column_funcs(self, entityset): # Note: to convert the time column directly either the variable type # or convert_date_columns must be specifie df = pd.DataFrame({'id': [0, 1, 2], 'time': [datetime(2011, 4, 9, 10, 31, 3 * i) for i in range(3)], 'category': ['a', 'b', 'a'], 'number': [4, 5, 6]}) vtypes = {'time': variable_types.Datetime} entityset.entity_from_dataframe('test_entity', df, index='id', time_index='time', variable_types=vtypes) assert entityset.get_dataframe('test_entity').shape == df.shape assert entityset.get_index('test_entity') == 'id' assert entityset.get_time_index('test_entity') == 'time' assert set(entityset.get_column_names( 'test_entity')) == set(df.columns) assert entityset.get_column_max('test_entity', 'number') == 6 assert entityset.get_column_min('test_entity', 'number') == 4 assert entityset.get_column_std('test_entity', 'number') == 1 assert entityset.get_column_count('test_entity', 'number') == 3 assert entityset.get_column_mean('test_entity', 'number') == 5 assert entityset.get_column_nunique('test_entity', 'number') == 3 assert entityset.get_column_type( 'test_entity', 'time') == df['time'].dtype assert set(entityset.get_column_data( 'test_entity', 'id')) == set(df['id']) def test_combine_variables(self, entityset): # basic case entityset.combine_variables('log', 'comment+product_id', ['comments', 'product_id']) assert entityset['log']['comment+product_id'].dtype == 'categorical' assert 'comment+product_id' in entityset['log'].df # one variable to combine entityset.combine_variables('log', 'comment+', ['comments']) assert entityset['log']['comment+'].dtype == 'categorical' assert 'comment+' in entityset['log'].df # drop columns entityset.combine_variables('log', 'new_priority_level', ['priority_level'], drop=True) assert entityset['log']['new_priority_level'].dtype == 'categorical' assert 'new_priority_level' in entityset['log'].df assert 'priority_level' not in entityset['log'].df assert 'priority_level' not in entityset['log'].variables # hashed entityset.combine_variables('log', 'hashed_comment_product', ['comments', 'product_id'], hashed=True) assert entityset['log']['comment+product_id'].dtype == 'categorical' assert entityset['log'].df['hashed_comment_product'].dtype == 'int64' assert 'comment+product_id' in entityset['log'].df def test_add_parent_time_index(self, entityset): entityset = copy.deepcopy(entityset) entityset.add_parent_time_index(entity_id='sessions', parent_entity_id='customers', parent_time_index_variable=None, child_time_index_variable='session_date', include_secondary_time_index=True, secondary_time_index_variables=['cancel_reason']) sessions = entityset['sessions'] assert sessions.time_index == 'session_date' assert sessions.secondary_time_index == { 'cancel_date': ['cancel_reason']} true_session_dates = ([datetime(2011, 4, 6)] + [datetime(2011, 4, 8)] * 3 + [datetime(2011, 4, 9)] * 2) for t, x in zip(true_session_dates, sessions.df['session_date']): assert t == x.to_pydatetime() true_cancel_dates = ([datetime(2012, 1, 6)] + [datetime(2011, 6, 8)] * 3 + [datetime(2011, 10, 9)] * 2) for t, x in zip(true_cancel_dates, sessions.df['cancel_date']): assert t == x.to_pydatetime() true_cancel_reasons = (['reason_1'] + ['reason_1'] * 3 + ['reason_2'] * 2) for t, x in zip(true_cancel_reasons, sessions.df['cancel_reason']): assert t == x def test_sort_time_id(self): transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "transaction_time":
pd.date_range(start="10:00", periods=6, freq="10s")
pandas.date_range
import pandas as pd import glob class make_annotation_dataframe(): def __init__(self, fileName, direcrtoryPath): self.fileName = fileName self.direcrtoryPath = direcrtoryPath def __getitem__(self, item): return getattr(self, item) def prepare_dataframe(self): annotationsTrainDF = self.readCSVFileAsDataFrame() dfTrain = self.readImagesFromDirectory() train_df = dfTrain.merge(annotationsTrainDF, how='inner', left_on='imageName', right_on='Image_Name') train_df = train_df.assign(image_path=self.direcrtoryPath) from sklearn import preprocessing # label_encoder object knows how to understand word labels. label_encoder = preprocessing.LabelEncoder() train_df['le_carName'] = label_encoder.fit_transform(train_df['carName']) dfTrain_W_H =
pd.read_csv("D:\\GreatLearning\\Flask\\OBJECT_DETECTION_CAR\\files\\train_8144_images.csv")
pandas.read_csv
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import datetime as dt import os from typing import Union import numpy as np import pandas as pd import pytest import pytz from gs_quant.target.common import XRef, PricingLocation, Currency as CurrEnum from numpy.testing import assert_allclose from pandas.testing import assert_series_equal from pandas.tseries.offsets import CustomBusinessDay from pytz import timezone from testfixtures import Replacer from testfixtures.mock import Mock import gs_quant.timeseries.measures as tm import gs_quant.timeseries.measures_rates as tm_rates from gs_quant.api.gs.assets import GsTemporalXRef, GsAssetApi, GsIdType, IdList, GsAsset from gs_quant.api.gs.data import GsDataApi, MarketDataResponseFrame from gs_quant.api.gs.data import QueryType from gs_quant.data.core import DataContext from gs_quant.data.dataset import Dataset from gs_quant.data.fields import Fields from gs_quant.errors import MqError, MqValueError, MqTypeError from gs_quant.markets.securities import AssetClass, Cross, Index, Currency, SecurityMaster, Stock, \ Swap, CommodityNaturalGasHub from gs_quant.session import GsSession, Environment from gs_quant.test.timeseries.utils import mock_request from gs_quant.timeseries import Returns from gs_quant.timeseries.measures import BenchmarkType _index = [pd.Timestamp('2019-01-01')] _test_datasets = ('TEST_DATASET',) def mock_empty_market_data_response(): df = MarketDataResponseFrame() df.dataset_ids = () return df def map_identifiers_default_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-LIBOR-BBA" in ids: return {"USD-LIBOR-BBA": "MAPDB7QNB2TZVQ0E"} elif "EUR-EURIBOR-TELERATE" in ids: return {"EUR-EURIBOR-TELERATE": "MAJNQPFGN1EBDHAE"} elif "GBP-LIBOR-BBA" in ids: return {"GBP-LIBOR-BBA": "MAFYB8Z4R1377A19"} elif "JPY-LIBOR-BBA" in ids: return {"JPY-LIBOR-BBA": "MABMVE27EM8YZK33"} elif "EUR OIS" in ids: return {"EUR OIS": "MARFAGXDQRWM07Y2"} def map_identifiers_swap_rate_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m" in ids: return {"USD-3m": "MAAXGV0GZTW4GFNC"} elif "EUR-6m" in ids: return {"EUR-6m": "MA5WM2QWRVMYKDK0"} elif "KRW" in ids: return {"KRW": 'MAJ6SEQH3GT0GA2Z'} def map_identifiers_inflation_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "CPI-UKRPI" in ids: return {"CPI-UKRPI": "MAQ7ND0MBP2AVVQW"} elif "CPI-CPXTEMU" in ids: return {"CPI-CPXTEMU": "MAK1FHKH5P5GJSHH"} def map_identifiers_cross_basis_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m/JPY-3m" in ids: return {"USD-3m/JPY-3m": "MA99N6C1KF9078NM"} elif "EUR-3m/USD-3m" in ids: return {"EUR-3m/USD-3m": "MAXPKTXW2D4X6MFQ"} elif "GBP-3m/USD-3m" in ids: return {"GBP-3m/USD-3m": "MA8BZHQV3W32V63B"} def get_data_policy_rate_expectation_mocker( start: Union[dt.date, dt.datetime] = None, end: Union[dt.date, dt.datetime] = None, as_of: dt.datetime = None, since: dt.datetime = None, fields: Union[str, Fields] = None, asset_id_type: str = None, **kwargs) -> pd.DataFrame: if 'meetingNumber' in kwargs: if kwargs['meetingNumber'] == 0: return mock_meeting_spot() elif 'meeting_date' in kwargs: if kwargs['meeting_date'] == dt.date(2019, 10, 24): return mock_meeting_spot() return mock_meeting_expectation() def test_parse_meeting_date(): assert tm.parse_meeting_date(5) == '' assert tm.parse_meeting_date('') == '' assert tm.parse_meeting_date('test') == '' assert tm.parse_meeting_date('2019-09-01') == dt.date(2019, 9, 1) def test_currency_to_default_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_default_mocker) asset_id_list = ["MAZ7RWC904JYHYPS", "MAJNQPFGN1EBDHAE", "MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] correct_mapping = ["MAPDB7QNB2TZVQ0E", "MAJNQPFGN1EBDHAE", "MAFYB8Z4R1377A19", "MABMVE27EM8YZK33", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_default_swap_rate_asset(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_swap_rate_mocker) asset_id_list = ['MAZ7RWC904JYHYPS', 'MAJNQPFGN1EBDHAE', 'MAJ6SEQH3GT0GA2Z'] correct_mapping = ['MAAXGV0GZTW4GFNC', 'MA5WM2QWRVMYKDK0', 'MAJ6SEQH3GT0GA2Z'] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_swap_rate_asset(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_inflation_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_inflation_mocker) asset_id_list = ["MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] correct_mapping = ["MAQ7ND0MBP2AVVQW", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_inflation_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.currency_to_inflation_benchmark_rate('MA66CZBQJST05XKG') == 'MA66CZBQJST05XKG' def test_cross_to_basis(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_cross_basis_mocker) asset_id_list = ["MAYJPCVVF2RWXCES", "MA4B66MW5E27U8P32SB", "nobbid"] correct_mapping = ["MA99N6C1KF9078NM", "MA4B66MW5E27U8P32SB", "nobbid"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_basis(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.cross_to_basis('MAYJPCVVF2RWXCES') == 'MAYJPCVVF2RWXCES' def test_currency_to_tdapi_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA25DW5ZGC1BSC8Y', 'NOK') bbid_mock.return_value = 'NOK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAFRSWPAF5QPNTP2' == correct_id bbid_mock.return_value = 'CHF' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAW25BGQJH9P6DPT' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAA9MVX15AJNQCVG' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA6QCAP9B7ABS9HA' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAEE219J5ZP0ZKRK' == correct_id bbid_mock.return_value = 'SEK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAETMVTPNP3199A5' == correct_id bbid_mock.return_value = 'HKD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MABRNGY8XRFVC36N' == correct_id bbid_mock.return_value = 'NZD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAH16NHE1HBN0FBZ' == correct_id bbid_mock.return_value = 'AUD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAY8147CRK0ZP53B' == correct_id bbid_mock.return_value = 'CAD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MANJ8SS88WJ6N28Q' == correct_id bbid_mock.return_value = 'KRW' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAP55AXG5SQVS6C5' == correct_id bbid_mock.return_value = 'INR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA20JHJXN1PD5HGE' == correct_id bbid_mock.return_value = 'CNY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA4K1D8HH2R0RQY5' == correct_id bbid_mock.return_value = 'SGD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA5CQFHYBPH9E5BS' == correct_id bbid_mock.return_value = 'DKK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAF131NKWVRESFYA' == correct_id asset = Currency('MA890', 'PLN') bbid_mock.return_value = 'PLN' assert 'MA890' == tm_rates._currency_to_tdapi_swap_rate_asset(asset) replace.restore() def test_currency_to_tdapi_basis_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA890', 'NOK') bbid_mock.return_value = 'NOK' assert 'MA890' == tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAQB1PGEJFCET3GG' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAGRG2VT11GQ2RQ9' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAHCYNB3V75JC5Q8' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAXVRBEZCJVH0C4V' == correct_id replace.restore() def test_check_clearing_house(): assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house('lch') assert tm_rates._ClearingHouse.CME == tm_rates._check_clearing_house(tm_rates._ClearingHouse.CME) assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house(None) invalid_ch = ['NYSE'] for ch in invalid_ch: with pytest.raises(MqError): tm_rates._check_clearing_house(ch) def test_get_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] assert dict(csaTerms='USD-1') == tm_rates._get_swap_csa_terms('USD', fed_funds_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_swap_csa_terms('EUR', estr_index) assert {} == tm_rates._get_swap_csa_terms('EUR', euribor_index) assert {} == tm_rates._get_swap_csa_terms('USD', usd_libor_index) def test_get_basis_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] sofr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.SOFR.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] eonia_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EONIA.value] assert dict(csaTerms='USD-1') == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, sofr_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_basis_swap_csa_terms('EUR', estr_index, eonia_index) assert {} == tm_rates._get_basis_swap_csa_terms('EUR', eonia_index, euribor_index) assert {} == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, usd_libor_index) def test_match_floating_tenors(): swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='6m') assert swap_args == tm_rates._match_floating_tenors(swap_args) def test_get_term_struct_date(mocker): today = datetime.datetime.today() biz_day = CustomBusinessDay() assert today == tm_rates._get_term_struct_date(tenor=today, index=today, business_day=biz_day) date_index = datetime.datetime(2020, 7, 31, 0, 0) assert date_index == tm_rates._get_term_struct_date(tenor='2020-07-31', index=date_index, business_day=biz_day) assert date_index == tm_rates._get_term_struct_date(tenor='0b', index=date_index, business_day=biz_day) assert datetime.datetime(2021, 7, 30, 0, 0) == tm_rates._get_term_struct_date(tenor='1y', index=date_index, business_day=biz_day) def test_cross_stored_direction_for_fx_vol(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_stored_direction_for_fx_vol(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_usd_based_cross_for_fx_forecast(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_usd_based_cross(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_used_based_cross(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_to_usd_based_cross(Cross('FUN', 'EURUSD')) replace.restore() def test_cross_stored_direction(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_stored_direction_for_fx_vol(Cross('FUN', 'EURUSD')) replace.restore() def test_get_tdapi_rates_assets(mocker): mock_asset_1 = GsAsset(asset_class='Rate', id='MAW25BGQJH9P6DPT', type_='Swap', name='Test_asset') mock_asset_2 = GsAsset(asset_class='Rate', id='MAA9MVX15AJNQCVG', type_='Swap', name='Test_asset') mock_asset_3 = GsAsset(asset_class='Rate', id='MANQHVYC30AZFT7R', type_='BasisSwap', name='Test_asset') replace = Replacer() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1] assert 'MAW25BGQJH9P6DPT' == tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict(asset_parameters_termination_date='10y', asset_parameters_effective_date='0b') with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [] with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict() assert ['MAW25BGQJH9P6DPT', 'MAA9MVX15AJNQCVG'] == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() # test case will test matching sofr maturity with libor leg and flipping legs to get right asset kwargs = dict(type='BasisSwap', asset_parameters_termination_date='10y', asset_parameters_payer_rate_option=BenchmarkType.LIBOR, asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=BenchmarkType.SOFR, asset_parameters_receiver_designated_maturity='1y', asset_parameters_clearing_house='lch', asset_parameters_effective_date='Spot', asset_parameters_notional_currency='USD', pricing_location='NYC') assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_3] assert 'MANQHVYC30AZFT7R' == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() def test_get_swap_leg_defaults(): result_dict = dict(currency=CurrEnum.JPY, benchmark_type='JPY-LIBOR-BBA', floating_rate_tenor='6m', pricing_location=PricingLocation.TKO) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.JPY) assert result_dict == defaults result_dict = dict(currency=CurrEnum.USD, benchmark_type='USD-LIBOR-BBA', floating_rate_tenor='3m', pricing_location=PricingLocation.NYC) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.USD) assert result_dict == defaults result_dict = dict(currency=CurrEnum.EUR, benchmark_type='EUR-EURIBOR-TELERATE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.EUR) assert result_dict == defaults result_dict = dict(currency=CurrEnum.SEK, benchmark_type='SEK-STIBOR-SIDE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.SEK) assert result_dict == defaults def test_check_forward_tenor(): valid_tenors = [datetime.date(2020, 1, 1), '1y', 'imm2', 'frb2', '1m', '0b'] for tenor in valid_tenors: assert tenor == tm_rates._check_forward_tenor(tenor) invalid_tenors = ['5yr', 'imm5', 'frb0'] for tenor in invalid_tenors: with pytest.raises(MqError): tm_rates._check_forward_tenor(tenor) def mock_commod(_cls, _q): d = { 'price': [30, 30, 30, 30, 35.929686, 35.636039, 27.307498, 23.23177, 19.020833, 18.827291, 17.823749, 17.393958, 17.824999, 20.307603, 24.311249, 25.160103, 25.245728, 25.736873, 28.425206, 28.779789, 30.519996, 34.896348, 33.966973, 33.95489, 33.686348, 34.840307, 32.674163, 30.261665, 30, 30, 30] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-05-01', periods=31, freq='H', tz=timezone('UTC'))) df.dataset_ids = _test_datasets return df def mock_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 11.6311, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "M20", "J20", "K20", "M20", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 9)) df.dataset_ids = _test_datasets return df def mock_fair_price(_cls, _q): d = { 'fairPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_natgas_forward_price(_cls, _q): d = { 'forwardPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_fair_price_swap(_cls, _q): d = {'fairPrice': [2.880]} df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)])) df.dataset_ids = _test_datasets return df def mock_implied_volatility(_cls, _q): d = { 'impliedVolatility': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_missing_bucket_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "J20", "K20", "M20", ] } return pd.DataFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 8)) def mock_fx_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'impliedVolatility': [3]}, index=[pd.Timestamp('2019-01-04T12:00:00Z')]) d = { 'strikeReference': ['delta', 'spot', 'forward'], 'relativeStrike': [25, 100, 100], 'impliedVolatility': [5, 1, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-01-01', periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_fx_forecast(_cls, _q): d = { 'fxForecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_delta(_cls, _q): d = { 'relativeStrike': [25, -25, 0], 'impliedVolatility': [1, 5, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_empty(_cls, _q): d = { 'strikeReference': [], 'relativeStrike': [], 'impliedVolatility': [] } df = MarketDataResponseFrame(data=d, index=[]) df.dataset_ids = _test_datasets return df def mock_fx_switch(_cls, _q, _n): replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_empty) replace.restore() return Cross('MA1889', 'ABC/XYZ') def mock_curr(_cls, _q): d = { 'swapAnnuity': [1, 2, 3], 'swapRate': [1, 2, 3], 'basisSwapRate': [1, 2, 3], 'swaptionVol': [1, 2, 3], 'atmFwdRate': [1, 2, 3], 'midcurveVol': [1, 2, 3], 'capFloorVol': [1, 2, 3], 'spreadOptionVol': [1, 2, 3], 'inflationSwapRate': [1, 2, 3], 'midcurveAtmFwdRate': [1, 2, 3], 'capFloorAtmFwdRate': [1, 2, 3], 'spreadOptionAtmFwdRate': [1, 2, 3], 'strike': [0.25, 0.5, 0.75] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_cross(_cls, _q): d = { 'basis': [1, 2, 3], } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq(_cls, _q): d = { 'relativeStrike': [0.75, 0.25, 0.5], 'impliedVolatility': [5, 1, 2], 'impliedCorrelation': [5, 1, 2], 'realizedCorrelation': [3.14, 2.71828, 1.44], 'averageImpliedVolatility': [5, 1, 2], 'averageImpliedVariance': [5, 1, 2], 'averageRealizedVolatility': [5, 1, 2], 'impliedVolatilityByDeltaStrike': [5, 1, 2], 'fundamentalMetric': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: idx = [pd.Timestamp(datetime.datetime.now(pytz.UTC))] return MarketDataResponseFrame({'impliedVolatility': [3]}, index=idx) d = { 'impliedVolatility': [5, 1, 2], } end = datetime.datetime.now(pytz.UTC).date() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_err(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: raise MqValueError('error while getting last') d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_empty(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame() d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_norm(_cls, _q): d = { 'relativeStrike': [-4.0, 4.0, 0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_spot(_cls, _q): d = { 'relativeStrike': [0.75, 1.25, 1.0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_inc(_cls, _q): d = { 'relativeStrike': [0.25, 0.75], 'impliedVolatility': [5, 1] } df = MarketDataResponseFrame(data=d, index=_index * 2) df.dataset_ids = _test_datasets return df def mock_meeting_expectation(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2020, 1, 29)], 'endingDate': [dt.date(2020, 1, 29)], 'meetingNumber': [2], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2020, 1, 23)], 'value': [-0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_spot(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2019, 10, 30)], 'endingDate': [dt.date(2019, 12, 18)], 'meetingNumber': [0], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2019, 10, 24)], 'value': [-0.004522570525] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_absolute(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2', 'MARFAGXDQRWM07Y2'], 'location': ['NYC', 'NYC'], 'rateType': ['Meeting Forward', 'Meeting Forward'], 'startingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'endingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'meetingNumber': [0, 2], 'valuationDate': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 10, 24), datetime.date(2020, 1, 23)], 'value': [-0.004522570525, -0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_ois_spot(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Spot'], 'startingDate': [datetime.date(2019, 12, 6)], 'endingDate': [datetime.date(2019, 12, 7)], 'meetingNumber': [-1], 'valuationDate': [datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 12, 6)], 'value': [-0.00455] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_esg(_cls, _q): d = { "esNumericScore": [2, 4, 6], "esNumericPercentile": [81.2, 75.4, 65.7], "esPolicyScore": [2, 4, 6], "esPolicyPercentile": [81.2, 75.4, 65.7], "esScore": [2, 4, 6], "esPercentile": [81.2, 75.4, 65.7], "esProductImpactScore": [2, 4, 6], "esProductImpactPercentile": [81.2, 75.4, 65.7], "gScore": [2, 4, 6], "gPercentile": [81.2, 75.4, 65.7], "esMomentumScore": [2, 4, 6], "esMomentumPercentile": [81.2, 75.4, 65.7], "gRegionalScore": [2, 4, 6], "gRegionalPercentile": [81.2, 75.4, 65.7], "controversyScore": [2, 4, 6], "controversyPercentile": [81.2, 75.4, 65.7], "esDisclosurePercentage": [49.2, 55.7, 98.4] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_index_positions_data( asset_id, start_date, end_date, fields=None, position_type=None ): return [ {'underlyingAssetId': 'MA3', 'netWeight': 0.1, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA1', 'netWeight': 0.6, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA2', 'netWeight': 0.3, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' } ] def mock_rating(_cls, _q): d = { 'rating': ['Buy', 'Sell', 'Buy', 'Neutral'], 'convictionList': [1, 0, 0, 0] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_gsdeer_gsfeer(_cls, assetId, start_date): d = { 'gsdeer': [1, 1.2, 1.1], 'gsfeer': [2, 1.8, 1.9], 'year': [2000, 2010, 2020], 'quarter': ['Q1', 'Q2', 'Q3'] } df = MarketDataResponseFrame(data=d, index=_index * 3) return df def mock_factor_profile(_cls, _q): d = { 'growthScore': [0.238, 0.234, 0.234, 0.230], 'financialReturnsScore': [0.982, 0.982, 0.982, 0.982], 'multipleScore': [0.204, 0.192, 0.190, 0.190], 'integratedScore': [0.672, 0.676, 0.676, 0.674] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_commodity_forecast(_cls, _q): d = { 'forecastPeriod': ['3m', '3m', '3m', '3m'], 'forecastType': ['spotReturn', 'spotReturn', 'spotReturn', 'spotReturn'], 'commodityForecast': [1700, 1400, 1500, 1600] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def test_skew(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_norm) actual = tm.skew(mock_spx, '1m', tm.SkewReference.NORMALIZED, 4) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_spot) actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) mock.return_value = mock_empty_market_data_response() actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert actual.empty replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_inc) with pytest.raises(MqError): tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) replace.restore() with pytest.raises(MqError): tm.skew(mock_spx, '1m', None, 25) def test_skew_fx(): replace = Replacer() cross = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = cross replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_delta) mock = cross actual = tm.skew(mock, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.DELTA, 25, real_time=True) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.SPOT, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.FORWARD, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.NORMALIZED, 25) with pytest.raises(MqError): tm.skew(mock, '1m', None, 25) replace.restore() def test_implied_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol) idx = pd.date_range(end=datetime.datetime.now(pytz.UTC).date(), periods=4, freq='D') actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_NEUTRAL) with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL) replace.restore() def test_implied_vol_no_last(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') idx = pd.date_range(end=datetime.date.today() - datetime.timedelta(days=1), periods=3, freq='D') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_err) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_empty) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace.restore() def test_implied_vol_fx(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock # for different delta strikes replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_vol) actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL, 25) expected = pd.Series([5, 1, 2, 3], index=pd.date_range('2019-01-01', periods=4, freq='D'), name='impliedVolatility') assert_series_equal(expected,
pd.Series(actual)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- import pytest import pandas as pd import pandas_should # noqa class TestEqualAccessorMixin(object): def test_equal_true(self): s1 = pd.Series([1, 2, 3]) s2 = pd.Series([1, 2, 3]) assert s1.should.equal(s2) def test_equal_false(self): s1 =
pd.Series([1, 2, 3])
pandas.Series
import pandas as pd c1 = pd.read_csv('machine/Calling/Sensors_1.csv') c2 = pd.read_csv('machine/Calling/Sensors_2.csv') c3 = pd.read_csv('machine/Calling/Sensors_3.csv') c4 = pd.read_csv('machine/Calling/Sensors_4.csv') c5 = pd.read_csv('machine/Calling/Sensors_5.csv') c6 = pd.read_csv('machine/Calling/Sensors_6.csv') c7 = pd.read_csv('machine/Calling/Sensors_7.csv') c8 = pd.read_csv('machine/Calling/Sensors_8.csv') c9 = pd.read_csv('machine/Calling/Sensors_9.csv') c10 = pd.read_csv('machine/Calling/Sensors_10.csv') calling = pd.concat([c1,c2,c3,c4,c5,c6,c7,c8,c9,c10], axis = 0) t1 = pd.read_csv('machine/Texting/Sensors_1.csv') t2 = pd.read_csv('machine/Texting/Sensors_2.csv') t3 = pd.read_csv('machine/Texting/Sensors_3.csv') t4 = pd.read_csv('machine/Texting/Sensors_4.csv') t5 = pd.read_csv('machine/Texting/Sensors_5.csv') t6 = pd.read_csv('machine/Texting/Sensors_6.csv') t7 = pd.read_csv('machine/Texting/Sensors_7.csv') t8 = pd.read_csv('machine/Texting/Sensors_8.csv') t9 = pd.read_csv('machine/Texting/Sensors_9.csv') t10 = pd.read_csv('machine/Texting/Sensors_10.csv') texting = pd.concat([t1,t2,t3,t4,t5,t6,t7,t8,t9,t10], axis = 0) s1 = pd.read_csv('machine/Swinging/Sensors_1.csv') s2 = pd.read_csv('machine/Swinging/Sensors_2.csv') s3 = pd.read_csv('machine/Swinging/Sensors_3.csv') s4 = pd.read_csv('machine/Swinging/Sensors_4.csv') s5 = pd.read_csv('machine/Swinging/Sensors_5.csv') s6 = pd.read_csv('machine/Swinging/Sensors_6.csv') s7 = pd.read_csv('machine/Swinging/Sensors_7.csv') s8 = pd.read_csv('machine/Swinging/Sensors_8.csv') s9 =
pd.read_csv('machine/Swinging/Sensors_9.csv')
pandas.read_csv
import streamlit as st import pandas as pd import numpy as np import pickle from sklearn.ensemble import RandomForestClassifier st.write(""" # Penguin Prediction App This app predicts the **Palmer Penguin** species! Data obtained from the [palmerpenguins library](https://github.com/allisonhorst/palmerpenguins) in R by <NAME>. """) st.sidebar.header('User Input Features') st.sidebar.markdown(""" [Example CSV input file](https://raw.githubusercontent.com/dataprofessor/data/master/penguins_example.csv) """) # Collects user input features into dataframe uploaded_file = st.sidebar.file_uploader( "Upload your input CSV file", type=["csv"]) if uploaded_file is not None: input_df = pd.read_csv(uploaded_file) else: def user_input_features(): island = st.sidebar.selectbox( 'Island', ('Biscoe', 'Dream', 'Torgersen')) sex = st.sidebar.selectbox('Sex', ('male', 'female')) bill_length_mm = st.sidebar.slider( 'Bill length (mm)', 32.1, 59.6, 43.9) bill_depth_mm = st.sidebar.slider('Bill depth (mm)', 13.1, 21.5, 17.2) flipper_length_mm = st.sidebar.slider( 'Flipper length (mm)', 172.0, 231.0, 201.0) body_mass_g = st.sidebar.slider( 'Body mass (g)', 2700.0, 6300.0, 4207.0) data = {'island': island, 'bill_length_mm': bill_length_mm, 'bill_depth_mm': bill_depth_mm, 'flipper_length_mm': flipper_length_mm, 'body_mass_g': body_mass_g, 'sex': sex} features = pd.DataFrame(data, index=[0]) return features input_df = user_input_features() # Combines user input features with entire penguins dataset # This will be useful for the encoding phase penguins_raw = pd.read_csv('penguins_cleaned.csv') penguins = penguins_raw.drop(columns=['species']) df = pd.concat([input_df, penguins], axis=0) # Encoding of ordinal features # https://www.kaggle.com/pratik1120/penguin-dataset-eda-classification-and-clustering encode = ['sex', 'island'] for col in encode: dummy =
pd.get_dummies(df[col], prefix=col)
pandas.get_dummies
""" Input: Hsk data files. Output: HSK infos merged file. """ import argparse import os import pandas SCRIPT_PATH = os.path.dirname(os.path.realpath(__file__)) MERGE_FILEPATH = os.path.join( SCRIPT_PATH, 'revised/merged_hanzi_data.csv', ) HEADERS = [ 'simplified', 'traditional', 'pinyin', 'translation', 'hsk2.0', 'hsk3.0', ] HSK3_0_FILENAME = 'hsk_words_list.csv' def merge_to_csv(csv_cedict_file, csv_cfdict_file, chinese_charfreq_file, hsk2_0_wordlist_file, hsk3_0_wordlist_file, radical_meaning): cedict_df = pandas.read_csv(csv_cedict_file, sep='\t') cfdict_df = pandas.read_csv(csv_cfdict_file, sep='\t') radical_meaning = pandas.read_csv(radical_meaning, sep=',') charfreq_df =
pandas.read_csv(chinese_charfreq_file, sep=',')
pandas.read_csv
import pathlib import re import pandas as pd """ Ok, so it seems there are actually three different file types: msds msms 2019-04 to 2019-08 msms < 2019-04 For now, just focus on the last one, it's got the most data. """ data_path = pathlib.Path(__file__).parents[1] / 'data' def pull_csvs(glob_mask: str = '*.csv'): """ This convenience function loads the maternity csvs. I've made it add the file name as some of the files have columns that are all over the place. It combines the csvs into a dataframe end on end. :param glob_mask: str this should be a glob expression to pull the required csvs :return concatenated_dataframe : pd.Dataframe """ file_paths = data_path.glob(glob_mask) df_list = [] for path in file_paths: df =
pd.read_csv(path)
pandas.read_csv
#%% import numpy as np import pandas as pd import diaux.io import tqdm from io import StringIO import glob # Load the list of turnover files growth_samples = glob.glob('../../../data/2021-02-15_NCM3722_glucose_acetate_diauxic_shift/raw/*HPLC*diauxic*.txt') cal_samples = glob.glob('../../../data/2021-02-15_NCM3722_glucose_acetate_diauxic_shift/raw/*HPLC*calibration*.txt') # Instantiate storage lists for the peak tables and chromatogram outputs = [[], []] # Parse identifing information about the sample for s in tqdm.tqdm(growth_samples, desc='Processing diauxic shift measurements'): fname = s.split('/')[-1] date, _, strain, _, _, _, sample_id = fname.split('_') sample_id = int(sample_id.split('.')[0]) sample_id if strain == 'NCM': strain = 'NCM3722' # Isolate the peak table and chromatogram out = diaux.io.parse_HPLC_output(s) # Add identifying information to each for i, df in enumerate(out): df['strain'] = strain df['date'] = date df['sample_id'] = sample_id outputs[i].append(df) # Concatenate the dataframes peaks = pd.concat(outputs[0]) chroms = pd.concat(outputs[1]) # Save the files to disk peaks.to_csv('../../../data/2021-02-15_NCM3722_glucose_acetate_diauxic_shift/processed/2021-02-15_diauxic_shift_peaks.csv', index=False) chroms.to_csv('../../../data/2021-02-15_NCM3722_glucose_acetate_diauxic_shift/processed/2021-02-15_diauxic_shift_chromatograms.csv', index=False) #%% # Generate the files for the calibration # Instantiate storage lists for the peak tables and chromatogram outputs = [[], []] # Parse identifing information about the sample for s in tqdm.tqdm(cal_samples, desc='Processing calibration measurements'): fname = s.split('/')[-1] date, _, _, carbon, conc = fname.split('_') conc = conc.split('mM')[0] # Isolate the peak table and chromatogram out = diaux.io.parse_HPLC_output(s) # Add identifying information to each for i, df in enumerate(out): df['date'] = date df['carbon_source'] = carbon df['concentration_mM'] = conc outputs[i].append(df) # Concatenate the dataframes peaks =
pd.concat(outputs[0])
pandas.concat
# Author : <NAME> # Date : 01/03/2018 # Version : 1.2 import pandas as pd import sys import os import sklearn.metrics import pprint as pprint import annotate import debug AMBIGUOUS_OK = True SKIPPED_OK = False UNKNOWN_OK = False def print_divergent(div): print("\n\n[ANNOTATION DIVERGENCE DETAILS]") pd.set_option('display.max_colwidth', int(div.convID.map(len).max())+1) pd.set_option('display.width', 1000)
pd.set_option('display.max_rows',500)
pandas.set_option
import pytest from pandas import Interval, DataFrame from pandas.testing import assert_frame_equal from datar.base.funs import * from datar.base import table, pi, paste0 from datar.stats import rnorm from .conftest import assert_iterable_equal def test_cut(): z = rnorm(10000) tab = table(cut(z, breaks=range(-6, 7))) assert tab.shape == (1, 12) assert tab.columns.tolist() == [ Interval(-6, -5, closed='right'), Interval(-5, -4, closed='right'), Interval(-4, -3, closed='right'), Interval(-3, -2, closed='right'), Interval(-2, -1, closed='right'), Interval(-1, 0, closed='right'), Interval(0, 1, closed='right'), Interval(1, 2, closed='right'), Interval(2, 3, closed='right'), Interval(3, 4, closed='right'), Interval(4, 5, closed='right'), Interval(5, 6, closed='right'), ] assert sum(tab.values.flatten()) == 10000 z = cut([1] * 5, 4) assert_iterable_equal(z.to_numpy(), [Interval(0.9995, 1.0, closed='right')] * 5) assert_iterable_equal(z.categories.to_list(), [ Interval(0.999, 0.9995, closed='right'),
Interval(0.9995, 1.0, closed='right')
pandas.Interval
# Hide deprecation warnings import warnings warnings.filterwarnings('ignore') # Common imports import numpy as np import pandas as pd import seaborn as sns import squarify import missingno as msno from statsmodels.graphics.mosaicplot import mosaic # To plot pretty figures import matplotlib import matplotlib.pyplot as plt plt.rcParams['axes.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 # To format floats from IPython.display import display
pd.set_option('display.float_format', lambda x: '%.5f' % x)
pandas.set_option
from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from pandas._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from pandas._libs.tslibs.c_timestamp import integer_op_not_supported from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas._libs.tslibs.timestamps import RoundTo, round_nsint64 from pandas._typing import DatetimeLikeScalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from pandas.util._decorators import Appender, Substitution from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna from pandas.core import missing, nanops, ops from pandas.core.algorithms import checked_add_with_arr, take, unique1d, value_counts from pandas.core.arrays.base import ExtensionArray, ExtensionOpsMixin import pandas.core.common as com from pandas.core.indexers import check_bool_array_indexer from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.ops.invalid import invalid_comparison, make_invalid_op from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick def _datetimelike_array_cmp(cls, op): """ Wrap comparison operations to convert Timestamp/Timedelta/Period-like to boxed scalars/arrays. """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" @unpack_zerodim_and_defer(opname) def wrapper(self, other): if isinstance(other, str): try: # GH#18435 strings get a pass from tzawareness compat other = self._scalar_from_string(other) except ValueError: # failed to parse as Timestamp/Timedelta/Period return invalid_comparison(self, other, op) if isinstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) other_i8 = self._unbox_scalar(other) result = op(self.view("i8"), other_i8) if isna(other): result.fill(nat_result) elif not is_list_like(other): return invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: if isinstance(other, list): # TODO: could use pd.Index to do inference? other = np.array(other) if not isinstance(other, (np.ndarray, type(self))): return invalid_comparison(self, other, op) if is_object_dtype(other): # We have to use comp_method_OBJECT_ARRAY instead of numpy # comparison otherwise it would fail to raise when # comparing tz-aware and tz-naive with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY( op, self.astype(object), other ) o_mask = isna(other) elif not type(self)._is_recognized_dtype(other.dtype): return invalid_comparison(self, other, op) else: # For PeriodDType this casting is unnecessary other = type(self)._from_sequence(other) self._check_compatible_with(other) result = op(self.view("i8"), other.view("i8")) o_mask = other._isnan if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result return set_function_name(wrapper, opname, cls) class AttributesMixin: _data: np.ndarray @classmethod def _simple_new(cls, values, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], setitem: bool = False ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other setitem : bool, default False For __setitem__ we may have stricter compatiblity resrictions than for comparisons. Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ result = self._format_native_types(date_format=date_format, na_rep=np.nan) return result.astype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _round_example = """>>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceil_example = """>>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _round(self, freq, mode, ambiguous, nonexistent): # round the local times if is_datetime64tz_dtype(self): # operate on naive timestamps, then convert back to aware naive = self.tz_localize(None) result = naive._round(freq, mode, ambiguous, nonexistent) aware = result.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return aware values = self.view("i8") result = round_nsint64(values, mode, freq) result = self._maybe_mask_results(result, fill_value=NaT) return self._simple_new(result, dtype=self.dtype) @Appender((_round_doc + _round_example).format(op="round")) def round(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent) @Appender((_round_doc + _floor_example).format(op="floor")) def floor(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent) @Appender((_round_doc + _ceil_example).format(op="ceil")) def ceil(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent) class DatetimeLikeArrayMixin(ExtensionOpsMixin, AttributesMixin, ExtensionArray): """ Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray Assumes that __new__/__init__ defines: _data _freq and that the inheriting class has methods: _generate_range """ @property def ndim(self) -> int: return self._data.ndim @property def shape(self): return self._data.shape def reshape(self, *args, **kwargs): # Note: we drop any freq data = self._data.reshape(*args, **kwargs) return type(self)(data, dtype=self.dtype) def ravel(self, *args, **kwargs): # Note: we drop any freq data = self._data.ravel(*args, **kwargs) return type(self)(data, dtype=self.dtype) @property def _box_func(self): """ box function to get object from internal representation """ raise AbstractMethodError(self) def _box_values(self, values): """ apply box func to passed values """ return lib.map_infer(values, self._box_func) def __iter__(self): return (self._box_func(v) for v in self.asi8) @property def asi8(self) -> np.ndarray: """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ # do not cache or you'll create a memory leak return self._data.view("i8") @property def _ndarray_values(self): return self._data # ---------------------------------------------------------------- # Rendering Methods def _format_native_types(self, na_rep="NaT", date_format=None): """ Helper method for astype when converting to strings. Returns ------- ndarray[str] """ raise AbstractMethodError(self) def _formatter(self, boxed=False): # TODO: Remove Datetime & DatetimeTZ formatters. return "'{}'".format # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods @property def nbytes(self): return self._data.nbytes def __array__(self, dtype=None) -> np.ndarray: # used for Timedelta/DatetimeArray, overwritten by PeriodArray if is_object_dtype(dtype): return np.array(list(self), dtype=object) return self._data @property def size(self) -> int: """The number of elements in this array.""" return np.prod(self.shape) def __len__(self) -> int: return len(self._data) def __getitem__(self, key): """ This getitem defers to the underlying array, which by-definition can only handle list-likes, slices, and integer scalars """ is_int = lib.is_integer(key) if lib.is_scalar(key) and not is_int: raise IndexError( "only integers, slices (`:`), ellipsis (`...`), " "numpy.newaxis (`None`) and integer or boolean " "arrays are valid indices" ) getitem = self._data.__getitem__ if is_int: val = getitem(key) if lib.is_scalar(val): # i.e. self.ndim == 1 return self._box_func(val) return type(self)(val, dtype=self.dtype) if com.is_bool_indexer(key): key = check_bool_array_indexer(self, key) if key.all(): key = slice(0, None, None) else: key = lib.maybe_booleans_to_slice(key.view(np.uint8)) is_period = is_period_dtype(self) if is_period: freq = self.freq else: freq = None if isinstance(key, slice): if self.freq is not None and key.step is not None: freq = key.step * self.freq else: freq = self.freq elif key is Ellipsis: # GH#21282 indexing with Ellipsis is similar to a full slice, # should preserve `freq` attribute freq = self.freq result = getitem(key) if result.ndim > 1: # To support MPL which performs slicing with 2 dim # even though it only has 1 dim by definition if is_period: return self._simple_new(result, dtype=self.dtype, freq=freq) return result return self._simple_new(result, dtype=self.dtype, freq=freq) def __setitem__( self, key: Union[int, Sequence[int], Sequence[bool], slice], value: Union[NaTType, Any, Sequence[Any]], ) -> None: # I'm fudging the types a bit here. "Any" above really depends # on type(self). For PeriodArray, it's Period (or stuff coercible # to a period in from_sequence). For DatetimeArray, it's Timestamp... # I don't know if mypy can do that, possibly with Generics. # https://mypy.readthedocs.io/en/latest/generics.html if lib.is_scalar(value) and not isna(value): value = com.maybe_box_datetimelike(value) if is_list_like(value): is_slice = isinstance(key, slice) if lib.is_scalar(key): raise ValueError("setting an array element with a sequence.") if not is_slice: key = cast(Sequence, key) if len(key) != len(value) and not com.is_bool_indexer(key): msg = ( f"shape mismatch: value array of length '{len(key)}' " "does not match indexing result of length " f"'{len(value)}'." ) raise ValueError(msg) elif not len(key): return value = type(self)._from_sequence(value, dtype=self.dtype) self._check_compatible_with(value, setitem=True) value = value.asi8 elif isinstance(value, self._scalar_type): self._check_compatible_with(value, setitem=True) value = self._unbox_scalar(value) elif is_valid_nat_for_dtype(value, self.dtype): value = iNaT else: msg = ( f"'value' should be a '{self._scalar_type.__name__}', 'NaT', " f"or array of those. Got '{type(value).__name__}' instead." ) raise TypeError(msg) self._data[key] = value self._maybe_clear_freq() def _maybe_clear_freq(self): # inplace operations like __setitem__ may invalidate the freq of # DatetimeArray and TimedeltaArray pass def astype(self, dtype, copy=True): # Some notes on cases we don't have to handle here in the base class: # 1. PeriodArray.astype handles period -> period # 2. DatetimeArray.astype handles conversion between tz. # 3. DatetimeArray.astype handles datetime -> period from pandas import Categorical dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self._box_values(self.asi8) elif is_string_dtype(dtype) and not is_categorical_dtype(dtype): return self._format_native_types() elif is_integer_dtype(dtype): # we deliberately ignore int32 vs. int64 here. # See https://github.com/pandas-dev/pandas/issues/24381 for more. values = self.asi8 if is_unsigned_integer_dtype(dtype): # Again, we ignore int32 vs. int64 values = values.view("uint64") if copy: values = values.copy() return values elif ( is_datetime_or_timedelta_dtype(dtype) and not is_dtype_equal(self.dtype, dtype) ) or is_float_dtype(dtype): # disallow conversion between datetime/timedelta, # and conversions for any datetimelike to float msg = f"Cannot cast {type(self).__name__} to dtype {dtype}" raise TypeError(msg) elif is_categorical_dtype(dtype): return Categorical(self, dtype=dtype) else: return np.asarray(self, dtype=dtype) def view(self, dtype=None): if dtype is None or dtype is self.dtype: return type(self)(self._data, dtype=self.dtype) return self._data.view(dtype=dtype) # ------------------------------------------------------------------ # ExtensionArray Interface def unique(self): result = unique1d(self.asi8) return type(self)(result, dtype=self.dtype) def _validate_fill_value(self, fill_value): """ If a fill_value is passed to `take` convert it to an i8 representation, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : np.int64 Raises ------ ValueError """ if isna(fill_value): fill_value = iNaT elif isinstance(fill_value, self._recognized_scalars): self._check_compatible_with(fill_value) fill_value = self._scalar_type(fill_value) fill_value = self._unbox_scalar(fill_value) else: raise ValueError( f"'fill_value' should be a {self._scalar_type}. Got '{fill_value}'." ) return fill_value def take(self, indices, allow_fill=False, fill_value=None): if allow_fill: fill_value = self._validate_fill_value(fill_value) new_values = take( self.asi8, indices, allow_fill=allow_fill, fill_value=fill_value ) return type(self)(new_values, dtype=self.dtype) @classmethod def _concat_same_type(cls, to_concat): dtypes = {x.dtype for x in to_concat} assert len(dtypes) == 1 dtype = list(dtypes)[0] values = np.concatenate([x.asi8 for x in to_concat]) return cls(values, dtype=dtype) def copy(self): values = self.asi8.copy() return type(self)._simple_new(values, dtype=self.dtype, freq=self.freq) def _values_for_factorize(self): return self.asi8, iNaT @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) def _values_for_argsort(self): return self._data # ------------------------------------------------------------------ # Additional array methods # These are not part of the EA API, but we implement them because # pandas assumes they're there. def searchsorted(self, value, side="left", sorter=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. """ if isinstance(value, str): value = self._scalar_from_string(value) if not (isinstance(value, (self._scalar_type, type(self))) or isna(value)): raise ValueError(f"Unexpected type for 'value': {type(value)}") self._check_compatible_with(value) if isinstance(value, type(self)): value = value.asi8 else: value = self._unbox_scalar(value) return self.asi8.searchsorted(value, side=side, sorter=sorter) def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view("i8"), dtype=self.dtype) def value_counts(self, dropna=False): """ Return a Series containing counts of unique values. Parameters ---------- dropna : bool, default True Don't include counts of NaT values. Returns ------- Series """ from pandas import Series, Index if dropna: values = self[~self.isna()]._data else: values = self._data cls = type(self) result = value_counts(values, sort=False, dropna=dropna) index = Index( cls(result.index.view("i8"), dtype=self.dtype), name=result.index.name ) return Series(result.values, index=index, name=result.name) def map(self, mapper): # TODO(GH-23179): Add ExtensionArray.map # Need to figure out if we want ExtensionArray.map first. # If so, then we can refactor IndexOpsMixin._map_values to # a standalone function and call from here.. # Else, just rewrite _map_infer_values to do the right thing. from pandas import Index return Index(self).map(mapper).array # ------------------------------------------------------------------ # Null Handling def isna(self): return self._isnan @property # NB: override with cache_readonly in immutable subclasses def _isnan(self): """ return if each value is nan """ return self.asi8 == iNaT @property # NB: override with cache_readonly in immutable subclasses def _hasnans(self): """ return if I have any nans; enables various perf speedups """ return bool(self._isnan.any()) def _maybe_mask_results(self, result, fill_value=iNaT, convert=None): """ Parameters ---------- result : a ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine. """ if self._hasnans: if convert: result = result.astype(convert) if fill_value is None: fill_value = np.nan result[self._isnan] = fill_value return result def fillna(self, value=None, method=None, limit=None): # TODO(GH-20300): remove this # Just overriding to ensure that we avoid an astype(object). # Either 20300 or a `_values_for_fillna` would avoid this duplication. if isinstance(value, ABCSeries): value = value.array value, method = validate_fillna_kwargs(value, method) mask = self.isna() if is_array_like(value): if len(value) != len(self): raise ValueError( f"Length of 'value' does not match. Got ({len(value)}) " f" expected {len(self)}" ) value = value[mask] if mask.any(): if method is not None: if method == "pad": func = missing.pad_1d else: func = missing.backfill_1d values = self._data if not is_period_dtype(self): # For PeriodArray self._data is i8, which gets copied # by `func`. Otherwise we need to make a copy manually # to avoid modifying `self` in-place. values = values.copy() new_values = func(values, limit=limit, mask=mask) if is_datetime64tz_dtype(self): # we need to pass int64 values to the constructor to avoid # re-localizing incorrectly new_values = new_values.view("i8") new_values = type(self)(new_values, dtype=self.dtype) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values # ------------------------------------------------------------------ # Frequency Properties/Methods @property def freq(self): """ Return the frequency object if it is set, otherwise None. """ return self._freq @freq.setter def freq(self, value): if value is not None: value = frequencies.to_offset(value) self._validate_frequency(self, value) self._freq = value @property def freqstr(self): """ Return the frequency object as a string if its set, otherwise None """ if self.freq is None: return None return self.freq.freqstr @property # NB: override with cache_readonly in immutable subclasses def inferred_freq(self): """ Tryies to return a string representing a frequency guess, generated by infer_freq. Returns None if it can't autodetect the frequency. """ if self.ndim != 1: return None try: return frequencies.infer_freq(self) except ValueError: return None @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return frequencies.Resolution.get_reso_from_freq(self.freqstr) @property # NB: override with cache_readonly in immutable subclasses def resolution(self): """ Returns day, hour, minute, second, millisecond or microsecond """ return frequencies.Resolution.get_str(self._resolution) @classmethod def _validate_frequency(cls, index, freq, **kwargs): """ Validate that a frequency is compatible with the values of a given Datetime Array/Index or Timedelta Array/Index Parameters ---------- index : DatetimeIndex or TimedeltaIndex The index on which to determine if the given frequency is valid freq : DateOffset The frequency to validate """ if is_period_dtype(cls): # Frequency validation is not meaningful for Period Array/Index return None inferred = index.inferred_freq if index.size == 0 or inferred == freq.freqstr: return None try: on_freq = cls._generate_range( start=index[0], end=None, periods=len(index), freq=freq, **kwargs ) if not np.array_equal(index.asi8, on_freq.asi8): raise ValueError except ValueError as e: if "non-fixed" in str(e): # non-fixed frequencies are not meaningful for timedelta64; # we retain that error message raise e # GH#11587 the main way this is reached is if the `np.array_equal` # check above is False. This can also be reached if index[0] # is `NaT`, in which case the call to `cls._generate_range` will # raise a ValueError, which we re-raise with a more targeted # message. raise ValueError( f"Inferred frequency {inferred} from passed values " f"does not conform to passed frequency {freq.freqstr}" ) # monotonicity/uniqueness properties are called via frequencies.infer_freq, # see GH#23789 @property def _is_monotonic_increasing(self): return algos.is_monotonic(self.asi8, timelike=True)[0] @property def _is_monotonic_decreasing(self): return algos.is_monotonic(self.asi8, timelike=True)[1] @property def _is_unique(self): return len(unique1d(self.asi8)) == len(self) # ------------------------------------------------------------------ # Arithmetic Methods _create_comparison_method = classmethod(_datetimelike_array_cmp) # pow is invalid for all three subclasses; TimedeltaArray will override # the multiplication and division ops __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") def _add_datetimelike_scalar(self, other): # Overridden by TimedeltaArray raise TypeError(f"cannot add {type(self).__name__} and {type(other).__name__}") _add_datetime_arraylike = _add_datetimelike_scalar def _sub_datetimelike_scalar(self, other): # Overridden by DatetimeArray assert other is not NaT raise TypeError(f"cannot subtract a datelike from a {type(self).__name__}") _sub_datetime_arraylike = _sub_datetimelike_scalar def _sub_period(self, other): # Overridden by PeriodArray raise TypeError(f"cannot subtract Period from a {type(self).__name__}") def _add_offset(self, offset): raise AbstractMethodError(self) def _add_delta(self, other): """ Add a timedelta-like, Tick or TimedeltaIndex-like object to self, yielding an int64 numpy array Parameters ---------- delta : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : ndarray[int64] Notes ----- The result's name is set outside of _add_delta by the calling method (__add__ or __sub__), if necessary (i.e. for Indexes). """ if isinstance(other, (Tick, timedelta, np.timedelta64)): new_values = self._add_timedeltalike_scalar(other) elif is_timedelta64_dtype(other): # ndarray[timedelta64] or TimedeltaArray/index new_values = self._add_delta_tdi(other) return new_values def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike return the i8 result view """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(self.shape, dtype="i8") new_values[:] = iNaT return new_values inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view( "i8" ) new_values = self._maybe_mask_results(new_values) return new_values.view("i8") def _add_delta_tdi(self, other): """ Add a delta of a TimedeltaIndex return the i8 result view """ if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas.core.arrays import TimedeltaArray other = TimedeltaArray._from_sequence(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr( self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan ) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view("i8") def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError( f"Cannot add {type(self).__name__} and {type(NaT).__name__}" ) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None) def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return result.view("timedelta64[ns]") def _sub_period_array(self, other): """ Subtract a Period Array/Index from self. This is only valid if self is itself a Period Array/Index, raises otherwise. Both objects must have the same frequency. Parameters ---------- other : PeriodIndex or PeriodArray Returns ------- result : np.ndarray[object] Array of DateOffset objects; nulls represented by NaT. """ if not is_period_dtype(self): raise TypeError( f"cannot subtract {other.dtype}-dtype from {type(self).__name__}" ) if self.freq != other.freq: msg = DIFFERENT_FREQ.format( cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr ) raise IncompatibleFrequency(msg) new_values = checked_add_with_arr( self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan ) new_values = np.array([self.freq.base * x for x in new_values]) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = NaT return new_values def _addsub_object_array(self, other: np.ndarray, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : np.ndarray[object] op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn( "Adding/subtracting array of DateOffsets to " f"{type(self).__name__} not vectorized", PerformanceWarning, ) # For EA self.astype('O') returns a numpy array, not an Index left = self.astype("O") res_values = op(left, np.array(other)) kwargs = {} if not is_period_dtype(self): kwargs["freq"] = "infer" try: res = type(self)._from_sequence(res_values, **kwargs) except ValueError: # e.g. we've passed a Timestamp to TimedeltaArray res = res_values return res def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None and freq != self.freq: if isinstance(freq, str): freq = frequencies.to_offset(freq) offset = periods * freq result = self + offset return result if periods == 0: # immutable so OK return self.copy() if self.freq is None: raise NullFrequencyError("Cannot shift with no freq") start = self[0] + periods * self.freq end = self[-1] + periods * self.freq # Note: in the DatetimeTZ case, _generate_range will infer the # appropriate timezone from `start` and `end`, so tz does not need # to be passed explicitly. return self._generate_range(start=start, end=end, periods=None, freq=self.freq) @unpack_zerodim_and_defer("__add__") def __add__(self, other): # scalar others if other is NaT: result = self._add_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(other) elif isinstance(other, (datetime, np.datetime64)): result = self._add_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.add) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] return self._add_datetime_arraylike(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.add) else: # Includes Categorical, other ExtensionArrays # For PeriodDtype, if self is a TimedeltaArray and other is a # PeriodArray with a timedelta-like (i.e. Tick) freq, this # operation is valid. Defer to the PeriodArray implementation. # In remaining cases, this will end up raising TypeError. return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __radd__(self, other): # alias for __add__ return self.__add__(other) @unpack_zerodim_and_defer("__sub__") def __sub__(self, other): # scalar others if other is NaT: result = self._sub_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(-other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(-other) elif isinstance(other, (datetime, np.datetime64)): result = self._sub_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(-other) elif isinstance(other, Period): result = self._sub_period(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(-other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.sub) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] result = self._sub_datetime_arraylike(other) elif is_period_dtype(other): # PeriodIndex result = self._sub_period_array(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise
integer_op_not_supported(self)
pandas._libs.tslibs.c_timestamp.integer_op_not_supported
import pandas as pd import numpy as np data=
pd.read_csv('england-premier-league-players-2018-to-2019-stats.csv')
pandas.read_csv
import boto3 import pandas as pd import matplotlib.pyplot as plt def getIexKey(): return '<KEY>' def getTickerList(): return [ 'JPM', 'BAC', 'C', 'WFC', 'GS', ] def getTickerListFlatten(tickerList: []): # Create an empty string called `ticker_string` that we'll add tickerList and commas to s = '' # Loop through every element of `tickerList` and add them and a comma to ticker_string for tickerElement in tickerList: s += tickerElement s += ',' # Drop the last comma from `ticker_string` s = s[:-1] return s def getHttpRequestString(ticker_string, endpoints, years, IEX_API_Key): # Interpolate the endpoint strings into the HTTP_request string return f'https://cloud.iexapis.com/stable/stock/market/batch?symbols={ticker_string}&types={endpoints}&range={years}y&cache=true&token={IEX_API_Key}' def getSeriesList(bank_data, tickers: []): # Create an empty list that we will append pandas Series of stock price data into seriesList = [] # Loop through each of our tickerList and parse a pandas Series of their closing prices over the last 5 years for tickerElement in tickers: seriesList.append(pd.DataFrame(bank_data[tickerElement]['chart'])['close']) # Add in a column of dates seriesList.append(
pd.DataFrame(bank_data['JPM']['chart'])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import seaborn as sns from sklearn.neighbors import DistanceMetric import networkx as nx from itertools import combinations def undo_PCA(x, pca, pca_comp): mu = np.mean(x, axis=0) xhat = np.dot(pca.transform(x), pca_comp) xhat += mu print(xhat.shape) return xhat.T def emb2exp(semb, gemb, semb_bias, gemb_bias): x = np.dot(semb, gemb.T) x += semb_bias x += gemb_bias.T print(x.shape) return x def plot_samp_3dPCA(samp_pca, cats, cat2col, subset_idxs=[], showcat=False, showlegend=True, alpha=0.1, s=25, fs=(20,20)): if len(subset_idxs)==0: X = samp_pca[0] Y = samp_pca[1] Z = samp_pca[2] else: X = samp_pca[0][subset_idxs] Y = samp_pca[1][subset_idxs] Z = samp_pca[2][subset_idxs] colors = [cat2col[c] for c in cats] fig = plt.figure(figsize=fs) ax = fig.gca(projection='3d') ax.scatter(X, Y, Z, c=colors, s=s, alpha=alpha) if showcat: for x, y, z, c in zip(X, Y, Z, cats): ax.text(x, y, z, c, fontsize=8) if showlegend: proxies = [] for c in cat2col: proxies.append(plt.Rectangle((0, 0), 1, 1, fc=cat2col[c])) ax.legend(proxies, list(set(list(cat2col))), numpoints = 1) ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_zlabel('PC3') plt.show() def plot_gene_3dPCA(gene_pca, genelist, hl_idxs=[], hl_cols=['r', 'g', 'b'], showhlgene=True, showbg=True, bgcol=(0.5,0.5,0.5), bgs=30, bgalpha=0.1, hlfs=10, hls=30, hlalpha=0.8, fs=(20,20)): X = gene_pca[0] Y = gene_pca[1] Z = gene_pca[2] fig = plt.figure(figsize=fs) ax = fig.gca(projection='3d') if showbg: ax.scatter(X, Y, Z, c=(0.5,0.5,0.5), s=bgs, alpha=bgalpha) for i, hl in enumerate(hl_idxs): for idx in hl: if showhlgene: ax.text(X[idx],Y[idx],Z[idx],genelist[idx], color=hl_cols[i], fontsize=hlfs) ax.scatter(X[idx],Y[idx],Z[idx], c=hl_cols[i], s=hls, alpha=hlalpha) ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_zlabel('PC3') plt.show() def find_centroid(emb, sid2ca, sids, cancer): idxs = [i for i,s in enumerate(sids) if sid2ca[s]==cancer] arr = np.array([emb[i] for i in idxs]) return np.mean(arr, axis=0) def print_gdist(g1, g2, dist, gene2idx): print(dist[gene2idx[g1]][gene2idx[g2]]) def get_emb_dist(emb, return_pd=True, index=[], distmetric='euclidean', masked=False, maskval=10): dist = DistanceMetric.get_metric(distmetric) emb_dist = np.absolute(dist.pairwise(emb)) if masked: utri = np.triu_indices(len(emb_dist)) emb_dist_masked = emb_dist emb_dist_masked[utri] = maskval res = emb_dist_masked else: res = emb_dist if return_pd: res = pd.DataFrame(res, index=index, columns=index) print('shape: %s; mean: %.3f; std: %.3f' % (str(emb_dist.shape), emb_dist.mean(), emb_dist.std())) mean = np.mean(emb_dist, axis=0) std = np.std(emb_dist, axis=0) return res, mean, std def n_closest_nbs(dist, gene, n=10): n += 1 arr = np.array(dist[gene]) nb_idx = np.argpartition(arr, n)[:n] tdf = pd.DataFrame(dist[gene][nb_idx]).T.assign(parent=gene) mdf =
pd.melt(tdf, id_vars='parent', var_name='child', value_name='l2dist')
pandas.melt
import pandas as pd import numpy as np import glob import os import math import re def _date_parser(pattern): def f(date): try: parsed = pd.datetime.strptime(date, pattern) except Exception as e: # the first 4 or 8 lines (header) and the last line won't be parsed parsed = '' return parsed return f def _caption_date_parser(col): return np.vectorize(_date_parser('%Y%m%d%H%M%S.%f'))(col) def _p_boundary_date_parser(date_A, date_B): date = '{} {}'.format(date_A, date_B) return _date_parser('%m/%d/%y %H:%M:%S')(date) def _load_csv_file(path, sep, names, parse_dates, date_parser, dtype=None): try: df = pd.read_csv(path, sep=sep, header=None, names=names, parse_dates=parse_dates, date_parser=date_parser, dtype=dtype) return df except Exception as e: # file may not exist # file may exist but may be empty print(e) return pd.DataFrame() def _load_single_caption_file(path, keep_story_boundary=False): col_names = ['t_start', 't_end', 'marker', 'caption'] df = _load_csv_file(path, sep='|', names=col_names, parse_dates=['t_start', 't_end'], date_parser=_caption_date_parser, dtype={'t_start':str, 't_end':str}) metadata = annotate_file(path) if not df.empty: # cleanse column data here df.drop(['marker', 't_end'], axis=1, inplace=True) df = df.dropna() df = df.reset_index(drop=True) if not keep_story_boundary and not df['caption'].empty: df = _remove_story_boundary_annotation(df) # story boundaries removed as ASR-generated caption files won't have these return (df, metadata) def _load_single_program_boundary_file(path): col_names = ['vcr_i', 'recording_date', 'vcr_i_2', 'recording_date_2', 't_start', 't_end', 't_schedule', 'program_name'] df = _load_csv_file(path, sep=r'\s+', names=col_names, parse_dates={'t_program_boundary': ['recording_date', 't_start']}, date_parser=_p_boundary_date_parser) # cleanse column data here cols_to_drop = ['vcr_i', 'vcr_i_2', 'recording_date_2', 't_end', 't_schedule', 'program_name'] df.drop(cols_to_drop, axis=1, inplace=True) df.dropna() df = df.reset_index(drop=True) metadata = annotate_file(path) return (df, metadata) def annotate_file(path): base = os.path.basename(path) filename, ext = os.path.splitext(base) filename_components = re.split('_|-', filename) # filename_components = filename.split('_') if len(filename_components) == 11: metadata = { 'filename': filename, 'filetype': ext, 'recording_end_date': '_'.join(filename_components[0:3]), 'vcr_index': filename_components[6] } else: print('corrupted filename: {}'.format(filename)) # corrupted file name metadata = { 'filename': filename, 'filetype': ext, 'recording_end_date': '', 'vcr_index': '' } return metadata def load_files(root_path, file_extension='txt3', recursive_search=True, keep_story_boundary=False): if not file_extension in ['txt3', 'cuts']: raise Exception('UnsupportedDataType') if root_path.endswith(file_extension): if file_extension == 'txt3': yield _load_single_caption_file(root_path, keep_story_boundary=keep_story_boundary) else: # TODO: caption filwee yield _load_single_program_boundary_file(root_path) else: if not root_path.endswith('/'): root_path += '/' root_path += '**/*.{}'.format(file_extension) filepaths = glob.iglob(root_path, recursive=recursive_search) if file_extension == 'txt3': for path in filepaths: yield _load_single_caption_file(path, keep_story_boundary=keep_story_boundary) else: for path in filepaths: yield _load_single_program_boundary_file(path) def load_caption_files(root_path, recursive_search=True, keep_story_boundary=False): '''[summary] [description] Returns: [description] [type] ''' return load_files(root_path, file_extension='txt3', recursive_search=recursive_search, keep_story_boundary=keep_story_boundary) def load_program_boundary_files(root_path, recursive_search=True): '''[summary] [description] Returns: [description] [type] ''' return load_files(root_path, file_extension='cuts', recursive_search=recursive_search) def _remove_story_boundary_annotation(caption): is_story_boundary = caption['caption'].str.contains('type=', flags=re.IGNORECASE) return caption[~is_story_boundary] def find_y_path_from_X_filename(X_filename, search_root_path): if search_root_path.endswith('/'): search_root_path = search_root_path[:-1] pattern = '{}/**/{}.{}'.format(search_root_path, X_filename, 'cuts') paths = glob.glob(pattern, recursive=True) if len(paths) > 1: print('duplicate files with matching caption filename') return paths[0] def split_video_to_clips(start_time, end_time, interval): pass def split_audio_to_clips(start_time, end_time, interval): pass def split_caption_to_X(caption, interval=10): '''[summary] [description] Args: caption: [consists of lines] interval: [seconds] (default: {10}) Returns: [description] [type] ''' freq = '{}s'.format(interval) grouper =
pd.Grouper(key='t_start',freq=freq)
pandas.Grouper
#!/usr/bin/env python # coding: utf-8 # 1 Import libraries and Set path import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm import scipy.stats as scs from scipy.stats.mstats import winsorize from scipy.stats.mstats import gmean from tabulate import tabulate # 2 Set path of my sub-directory from pathlib import Path # key in your own file path below myfolder = Path('key in your own file path here') # 3 Set up files to write output and charts from matplotlib.backends.backend_pdf import PdfPages outfile = open('output.txt', 'w') chartfile = PdfPages('chart-retreg.pdf') # Stock returns data # 4 Read Compustat monthly stock returns data df1 = pd.read_csv(my-folder / 'stock-returns.csv', parse_dates = ['datadate']) df1 = df1.sort_values(by=['gvkey','datadate']) df1 = df1.dropna() # 5 Create portfolio formation year (pfy) variable, where # pfy = current year for Jul-Dec dates and previous year for Jan-Jun dates. # This is to facilitate compounding returns over Jul-Jun by pfy later below. df1['year'], df1['month'] = df1['datadate'].dt.year, df1['datadate'].dt.month df1['pfy'] = np.where(df1.month > 6, df1.year, df1.year - 1) # 6 Compute monthly return compounding factor (1+monthly return) # trt1m is the monthly return, express as percentage, need to convert to % by / 100 df1['mretfactor'] = 1 + df1.trt1m/100 df1 = df1.sort_values(by=['gvkey','pfy']) df2 = df1[['gvkey', 'conm', 'datadate', 'pfy', 'mretfactor']] # 7 Compound monthly returns to get annual returns at end-June of each pfy, # ensuring only firm-years with 12 mths of return data from Jul-Jun are selected. df2['yret'] = df2.groupby(['gvkey', 'pfy'])['mretfactor'].cumprod() - 1 df3 = df2.groupby(['gvkey', 'pfy']).nth(11) df3['yret'] = winsorize(df3['yret'], limits=[0.025,0.025]) df3 = df3.drop(['mretfactor'], axis=1) # "axis=1" means to drop column # Accounting data # 8 Read Compustat accounting data df4 = pd.read_csv(myfolder / 'accounting-data2.csv', parse_dates = ['datadate']) df4 = df4.sort_values(by=['gvkey','datadate']) # 9 Create portfolio formation year (pfy) variable, portfolio formation in April where # pfy = current year for Jan-Mar year-end dates and next year for Apr-Dec year-end dates. # This is to facilitate compounding returns over July-June by pfy below. # dt.year is pandas method to extract year from 'datadate' variable # dt.month is pandas method to extract month from 'datadate' variable df4['year'], df4['month'] = df4['datadate'].dt.year, df4['datadate'].dt.month df4['pfy'] = np.where(df4.month < 4, df4.year, df4.year + 1) # 10 Compute accounting variables from Compustat data, keep relevant variables, delete missing values # Profitability df4['ROA'] = df4['ni'] / df4['at'] df4['ROA_prev'] = df4.groupby('gvkey')['ROA'].shift(1) # Leverage df4['Leverage_ratio'] = df4['dltt'] / df4['seq'] df4['Leverage_ratio_prev'] = df4.groupby('gvkey')['Leverage_ratio'].shift(1) df4['Current_ratio'] = df4['act'] / df4['lct'] df4['Current_ratio_prev'] = df4.groupby('gvkey')['Current_ratio'].shift(1) df4['csho_prev'] = df4.groupby('gvkey')['csho'].shift(1) df4['Shares_issued'] = df4['csho'] - df4['csho_prev'] # Operating df4['GP_margin'] = df4['gp'] / df4['revt'] df4['GP_margin_prev'] = df4.groupby('gvkey')['GP_margin'].shift(1) df4['at_prev'] = df4.groupby('gvkey')['at'].shift(1) df4['at_average']= (df4['at'] + df4['at_prev'])/2 df4['Asset_TO'] = df4['revt'] / df4['at_average'] df4['Asset_TO_prev'] = df4.groupby('gvkey')['Asset_TO'].shift(1) df4['GP_profitability'] = df4['gp']/df4['at'] df4 = df4[['ib', 'gvkey', 'pfy', 'ni', 'oancf', 'mkvalt', 'gsector', 'ROA', 'ROA_prev', 'Leverage_ratio', 'Leverage_ratio_prev', 'Current_ratio', 'Current_ratio_prev', 'csho_prev', 'Shares_issued', 'GP_margin', 'GP_margin_prev', 'at_prev', 'at_average', 'Asset_TO', 'Asset_TO_prev', 'GP_profitability' ]] df4 = df4[np.isfinite(df4)] df4 = df4.dropna() # 11 EDA before winsorize dfeda = df4[['ROA', 'ROA_prev', 'oancf', 'ib', 'Leverage_ratio', 'Current_ratio', 'Shares_issued', 'GP_margin', 'Asset_TO', 'mkvalt', 'ni']] dfeda['PE'] = dfeda['mkvalt'] / dfeda['ni'] dfeda['CROA'] = dfeda['ROA'] - dfeda['ROA_prev'] dfeda['Cquality'] = np.where(dfeda['oancf']> dfeda['ib'], 1, 0) dfeda2 = dfeda[['ROA', 'oancf', 'CROA', 'Cquality', 'Leverage_ratio', 'Current_ratio', 'Shares_issued', 'GP_margin', 'Asset_TO', 'PE']] print('EDA before winsorize \n\n', dfeda2.describe(), '\n'*5, file=outfile) # 12 Winsorize variables at 2.5% of left and right tails for var in ['ib', 'ni', 'oancf', 'mkvalt', 'ROA', 'ROA_prev', 'Leverage_ratio', 'Leverage_ratio_prev', 'Current_ratio', 'Current_ratio_prev', 'csho_prev', 'Shares_issued', 'GP_margin', 'GP_margin_prev', 'at_prev', 'at_average', 'Asset_TO', 'Asset_TO_prev', 'GP_profitability']: df4[var] = winsorize(df4[var], limits=[0.025,0.025]) # 13 EDA after winsorize dfeda3 = df4[['ROA', 'ROA_prev', 'oancf', 'ib', 'Leverage_ratio', 'Current_ratio', 'Shares_issued', 'GP_margin', 'Asset_TO', 'mkvalt', 'ni']] dfeda3['PE'] = dfeda3['mkvalt'] / dfeda3['ni'] dfeda3['CROA'] = dfeda3['ROA'] - dfeda3['ROA_prev'] dfeda3['Cquality'] = np.where(dfeda3['oancf']> dfeda3['ib'], 1, 0) dfeda4 = dfeda3[['ROA', 'oancf', 'CROA', 'Cquality', 'Leverage_ratio', 'Current_ratio', 'Shares_issued', 'GP_margin', 'Asset_TO', 'PE']] print('EDA after winsorize \n\n', dfeda4.describe(), '\n'*5, file=outfile) # Merge Stock returns data with Accounting data # 14 Merge accounting dataset (df4) with returns dataset (df3) # "inner" means to merge only observations that have data in BOTH datasets df5 = pd.merge(df3, df4, how='inner', on=['gvkey', 'pfy']) df5 = df5[['ib', 'gvkey', 'conm', 'pfy', 'yret', 'ni', 'mkvalt', 'oancf', 'gsector', 'ROA', 'ROA_prev', 'Leverage_ratio', 'Leverage_ratio_prev', 'Current_ratio', 'Current_ratio_prev', 'csho_prev', 'Shares_issued', 'GP_margin', 'GP_margin_prev', 'at_prev', 'at_average', 'Asset_TO', 'Asset_TO_prev', 'GP_profitability']] # Compute F-score # 15 Compute 9 F-score ratios # Profitability df5['F_income'] = np.where(df5['ROA']> 0, 1, 0) df5['F_opcash'] = np.where(df5['oancf']> 0, 1, 0) df5['F_ROA'] = np.where(df5['ROA']>df5['ROA_prev'], 1, 0) df5['F_quality'] = np.where(df5['oancf']> df5['ib'], 1, 0) # Leverage df5['F_leverage'] = np.where(df5['Leverage_ratio']< df5['Leverage_ratio_prev'], 1, 0) df5['F_currentratio'] = np.where(df5['Current_ratio']> df5['Current_ratio_prev'], 1, 0) df5['F_dilute'] = np.where(df5['Shares_issued']< 0 , 1, 0) # Operating df5['F_GPM'] = np.where(df5['GP_margin']< df5['GP_margin_prev'], 1, 0) df5['F_ATO'] = np.where(df5['Asset_TO']< df5['Asset_TO_prev'], 1, 0) # 16 Group F-score based on categories df5['F-profitability'] = df5['F_income'] + df5['F_opcash'] + df5['F_ROA'] + df5['F_quality'] df5['F_leverage_liquidity'] = df5['F_leverage'] + df5['F_currentratio'] + df5['F_dilute'] df5['F_operating'] = df5['F_GPM'] + df5['F_ATO'] df5['F_score'] = df5['F-profitability'] + df5['F_leverage_liquidity'] + df5['F_operating'] # Long Portfolio # 17 Filter out F_score more than 7 df6 = df5[df5.F_score > 7] # 18 Average PE per pfy per gsector df6['PE'] = df6['mkvalt'] / df6['ni'] df7 = df6.groupby(['pfy','gsector'], as_index=False)['PE'].mean() # 19 Filter for stocks with PE lower than gsector average df8 = df6.merge(df7, on = ['pfy','gsector'], how='left') df8['y_x'] = df8['PE_y'] - df8['PE_x'] df11 = df8[df8['y_x'] > 0] # 20 Finding the number of unique company/gvkey in our long portfolio df12 = df11['gvkey'].unique() # 21 Mean yret of each pfy df23 = pd.DataFrame(df11.groupby(['pfy'], as_index=False)['yret'].mean()) df23.rename(columns={'yret':'pyret'}, inplace = True) # 22 add pfy count number df24 = df11.groupby(['pfy'], as_index=False)['yret'].count() df25 = pd.merge(df23, df24, how='inner', on=['pfy']) df25.rename(columns={'yret':'count'}, inplace = True) # 23 Compute yearly return compounding factor (1+yearly return) df25['ppyret'] = df25['pyret'] + 1 # Risk free rate # 24 Calculate risk free rate using UStreasury 1month import quandl from datetime import datetime # Key in your quandl api key below QUANDL_API_KEY = 'key in your quandl api key here' quandl.ApiConfig.api_key = QUANDL_API_KEY start = datetime(2002, 1, 1) end = datetime(2020, 12, 31) rf = quandl.get('USTREASURY/YIELD.1',start_date=start, end_date=end) risk_free = rf['1 MO'] rfr = risk_free.mean()/100 # 25 Annualise the total return, based on average and total Lportfolio_annualised_return_rut = scs.gmean(df25.loc[:,"ppyret"])-1 # 26 Calculate annualized volatility from the standard deviation Lportfolio_vola_rut = np.std(df25['pyret'], ddof=1) # 27 Calculate the Sharpe ratio Lportfolio_sharpe_rut = ((Lportfolio_annualised_return_rut - rfr)/ Lportfolio_vola_rut) # 28 Define negative returns and compute standard deviation Lportfolio_negative_ret_rut = df25.loc[df25['pyret'] < 0] Lportfolio_expected_ret_rut = np.mean(df25['pyret']) Lportfolio_downside_std_rut = Lportfolio_negative_ret_rut['pyret'].std() # 29 Compute Sortino Ratio Lportfolio_sortino_rut = (Lportfolio_expected_ret_rut - rfr)/Lportfolio_downside_std_rut # 30 Compute Worst and Best pfy return Lpcolumn = df25["pyret"] Lpmax_value = Lpcolumn.max() Lpmin_value = Lpcolumn.min() # 31 Compute % of profitable pfy Lpprofitable_pfy = len(df25[df25['pyret']>0]['pyret'])/len(df25['pyret']) # 32 Compute long portfolio monthly price #Merge long portofio df11 with stock return to get monthly close price col = ['pfy','gvkey'] df21 = df11[col] df26 = pd.merge(df1, df21, how='inner', on=['gvkey', 'pfy']) # Calculate long portfolio monthly price df27 = df26.groupby(['pfy','month'], as_index=False)['prccm'].mean() # 33 Compute max drawdown and duration # Initialize variables: hwm (high watermark), drawdown, duration lphwm = np.zeros(len(df27)) lpdrawdown = np.zeros(len(df27)) lpduration = 0 # 34 Determine maximum drawdown (maxDD) for t in range(len(df27)): lphwm[t] = max(lphwm[t-1], df27['prccm'][t]) lpdrawdown[t] = ((lphwm[t] - df27.prccm[t]) / lphwm[t]) * 100 lpmaxDD = lpdrawdown.max() # 35 Determine maximum drawdown duration # numpy.allclose compares whether two floating values are equal to the absolute # tolerance (atol) precision (1e-8 is 1x10^-8) for j in range(len(df27)): if np.allclose(lpdrawdown[j], lpmaxDD, atol=1e-8): for k in range(j): if np.allclose(df27.prccm[k], lphwm[j], atol=1e-8): lpduration = j - k else: continue else: continue # Short portfolio # 36 Filter out F_score less than 2 df28 = df5[df5.F_score < 2] # 37 Average PE per pfy per gsector df28['PE'] = df28['mkvalt'] / df28['ni'] df29 = df28.groupby(['pfy','gsector'], as_index=False)['PE'].mean() # 38 Filter for stocks with PE lower than gsector average df30 = df28.merge(df29, on = ['pfy','gsector'], how='left') df30['y_x'] = df30['PE_y'] - df30['PE_x'] df33 = df30[df30['y_x'] > 0] # 39 Finding the number of unique company/gvkey in our short portfolio df34 = df33['gvkey'].unique() # 40 Mean yret of each pfy df37 = pd.DataFrame(df33.groupby(['pfy'], as_index=False)['yret'].mean()) df37.rename(columns={'yret':'pyret'}, inplace = True) # 41 add pfy count number df38 = df33.groupby(['pfy'], as_index=False)['yret'].count() df39 = pd.merge(df37, df38, how='inner', on=['pfy']) df39.rename(columns={'yret':'count'}, inplace = True) # 42 Reverse return sign due to short portfolio df39['spyret'] = df39['pyret'] * -1 # 43 Compute yearly return compounding factor (1+yearly return) df39['sppyret'] = df39['spyret'] + 1 # 44 Annualise the total return, based on average and total Sportfolio_annualised_return_rut = scs.gmean(df39.loc[:,"sppyret"])-1 # 45 Calculate annualized volatility from the standard deviation Sportfolio_vola_rut = np.std(df39['spyret'], ddof=1) # 46 Calculate the Sharpe ratio Sportfolio_sharpe_rut = ((Sportfolio_annualised_return_rut - rfr)/ Sportfolio_vola_rut) # 47 Define negative returns and compute standard deviation Sportfolio_negative_ret_rut = df39.loc[df39['spyret'] < 0] Sportfolio_expected_ret_rut = np.mean(df39['spyret']) Sportfolio_downside_std_rut = Sportfolio_negative_ret_rut['spyret'].std() # 48 Compute Sortino Ratio Sportfolio_sortino_rut = (Sportfolio_expected_ret_rut - rfr)/Sportfolio_downside_std_rut # 49 Compute Worst and Best pfy return Spcolumn = df39["spyret"] Spmax_value = Spcolumn.max() Spmin_value = Spcolumn.min() # 50 Compute % of profitable pfy Spprofitable_pfy = len(df39[df39['spyret']>0]['spyret'])/len(df39['spyret']) # 51 Compute short portfolio monthly price # Prepare the short portofio df11 to merge with yahoo finance data col = ['pfy','gvkey'] df40 = df33[col] # Merge short portofio df33 with stock return to get monthly close price df41 = pd.merge(df1, df40, how='inner', on=['gvkey', 'pfy']) # Calculate short portfolio monthly price df42 = df41.groupby(['pfy','month'], as_index=False)['prccm'].mean() # 52 Compute max drawdown and duration # Initialize variables: hwm (high watermark), drawdown, duration sphwm = np.zeros(len(df42)) spdrawdown = np.zeros(len(df42)) spduration = 0 # 53 Determine maximum drawdown (maxDD) for t in range(len(df42)): sphwm[t] = max(sphwm[t-1], df42['prccm'][t]) spdrawdown[t] = ((sphwm[t] - df42.prccm[t]) / sphwm[t]) * 100 spmaxDD = spdrawdown.max() # 54 Determine maximum drawdown duration # numpy.allclose compares whether two floating values are equal to the absolute # tolerance (atol) precision (1e-8 is 1x10^-8) for j in range(len(df42)): if np.allclose(spdrawdown[j], spmaxDD, atol=1e-8): for k in range(j): if np.allclose(df42.prccm[k], sphwm[j], atol=1e-8): spduration = j - k else: continue else: continue # Long & Short Portfolio # 55 Merge long and short portofio df43 = df25[['pfy','pyret']] df44 = df39[['pfy','spyret']] df45 = pd.merge(df43, df44, how='inner', on=['pfy']) # 56 compute long short return df45['lspyret'] = df45['pyret']/2 + df45['spyret']/2 # Compute yearly return compounding factor (1+yearly return) df45['lsppyret'] = df45['lspyret'] + 1 # 57 Annualise the total return, based on average and total LSportfolio_annualised_return_rut = scs.gmean(df45.loc[:,"lsppyret"])-1 # 58 Calculate annualized volatility from the standard deviation LSportfolio_vola_rut = np.std(df45['lspyret'], ddof=1) # 59 Calculate the Sharpe ratio LSportfolio_sharpe_rut = ((LSportfolio_annualised_return_rut - rfr)/ LSportfolio_vola_rut) # 60 Define negative returns and compute standard deviation LSportfolio_negative_ret_rut = df45.loc[df45['lspyret'] < 0] LSportfolio_expected_ret_rut = np.mean(df45['lspyret']) LSportfolio_downside_std_rut = LSportfolio_negative_ret_rut['lspyret'].std() # 61 Compute Sortino Ratio LSportfolio_sortino_rut = (LSportfolio_expected_ret_rut - rfr)/LSportfolio_downside_std_rut # 62 Compute Worst and Best pfy return LSpcolumn = df45["lspyret"] LSpmax_value = LSpcolumn.max() LSpmin_value = LSpcolumn.min() # 63 Compute % of profitable pfy LSpprofitable_pfy = len(df45[df45['lspyret']>0]['lspyret'])/len(df45['lspyret']) # 64 Merge long and short portofio monthly price df46 = pd.merge(df27, df42, how='inner', on=['pfy', 'month']) df46['lsprccm'] = df46['prccm_x']/2 + df46['prccm_y']/2 # 65 Compute max drawdown and duration # Initialize variables: hwm (high watermark), drawdown, duration lsphwm = np.zeros(len(df46)) lspdrawdown = np.zeros(len(df46)) lspduration = 0 # 66 Determine maximum drawdown (maxDD) for t in range(len(df46)): lsphwm[t] = max(lsphwm[t-1], df46['lsprccm'][t]) lspdrawdown[t] = ((lsphwm[t] - df46.lsprccm[t]) / lsphwm[t]) * 100 lspmaxDD = lspdrawdown.max() # 67 Determine maximum drawdown duration # numpy.allclose compares whether two floating values are equal to the absolute # tolerance (atol) precision (1e-8 is 1x10^-8) for j in range(len(df46)): if np.allclose(lspdrawdown[j], lspmaxDD, atol=1e-8): for k in range(j): if np.allclose(df46.lsprccm[k], lsphwm[j], atol=1e-8): lspduration = j - k else: continue else: continue # Market return # 68 Monthly return of Russell 3000 rut = pd.read_csv(myfolder / '^RUA.csv', parse_dates=['Date']) rut['rutret'] = rut.sort_values(by='Date')['Adj Close'].pct_change() # 69 Create portfolio formation year (pfy) variable, where # pfy = current year for Jul-Dec dates and previous year for Jan-Jun dates. # This is to facilitate compounding returns over Jul-Jun by pfy later below. rut['year'], rut['month'] = rut['Date'].dt.year, rut['Date'].dt.month rut['pfy'] = np.where(rut.month > 6, rut.year, rut.year - 1) rut # 70 Compute monthly return compounding factor (1+monthly return) rut['mretfactor'] = 1 + rut.rutret rut2 = rut[['Date','Adj Close','rutret', 'pfy', 'mretfactor']] # 71 Compound monthly returns to get annual returns at end-June of each pfy, # ensuring only firm-years with 12 mths of return data from Jul-Jun are selected. rut2['rutyret'] = rut2.groupby(['pfy'])['mretfactor'].cumprod() - 1 rut3 = rut2.groupby(['pfy']).nth(11) # 72 Compute yearly return compounding factor (1+yearly return) rut3['rrutyret'] = rut3['rutyret'] + 1 # 73 Compute Returns, Sharpe and Sortino ratio # 74 Compute monthly stock returns from price data rut4 = rut3[['Date', 'Adj Close','rutyret']] rut4 = rut3.rename(columns = {'Adj Close': 'price'}) # 75 Annualise the total return, based on average and total annualised_return_rut = scs.gmean(rut3.loc[:,"rrutyret"])-1 # 76 Calculate annualized volatility from the standard deviation vola_rut = np.std(rut4['rutyret'], ddof=1) # 77 Calculate the Sharpe ratio sharpe_rut = ((annualised_return_rut - rfr)/ vola_rut) # 78 Define negative returns and compute standard deviation negative_ret_rut = rut4.loc[rut4['rutyret'] < 0] expected_ret_rut = np.mean(rut4['rutyret']) downside_std_rut = negative_ret_rut['rutyret'].std() # 79 Compute Sortino Ratio sortino_rut = (expected_ret_rut - rfr)/downside_std_rut # 80 Compute Worst and Best pfy return rcolumn = rut4["rutyret"] rmax_value = rcolumn.max() rmin_value = rcolumn.min() # 81 Compute % of profitable pfy rprofitable_pfy = len(rut4[rut4['rutyret']>0]['rutyret'])/len(rut4['rutyret']) # Compute Max drawdown and duration # 82 Rename to price rut5 = rut2.rename(columns = {'Adj Close': 'price'}) # 83 Initialize variables: hwm (high watermark), drawdown, duration rhwm = np.zeros(len(rut5)) rdrawdown = np.zeros(len(rut5)) rduration = 0 # 84 Determine maximum drawdown (maxDD) for t in range(len(rut5)): rhwm[t] = max(rhwm[t-1], rut5['price'][t]) rdrawdown[t] = ((rhwm[t] - rut5.price[t]) / rhwm[t]) * 100 rmaxDD = rdrawdown.max() # 85 Determine maximum drawdown duration # numpy.allclose compares whether two floating values are equal to the absolute # tolerance (atol) precision (1e-8 is 1x10^-8) for j in range(len(rut5)): if np.allclose(rdrawdown[j], rmaxDD, atol=1e-8): for k in range(j): if np.allclose(rut5.price[k], rhwm[j], atol=1e-8): rduration = j - k else: continue else: continue # Investment peformance # 86 Plot Portfolio and Russell 3000 Returns rut6 = rut4.drop(['Date', 'price', 'rutret', 'mretfactor', 'rrutyret'], axis=1) # "axis=1" means to drop column df47 = df45.iloc[: , :-1] df48 = pd.merge(df47, rut6, how='inner', on=['pfy']) df48.rename(columns={'pyret':'Long Portfolio', 'spyret':'Short Portfolio', 'lspyret':'Long Short Portfolio','rutyret':'Market Index'}, inplace = True) df48_plot = pd.melt(df48,id_vars='pfy', var_name='Returns',value_name='returns') fig, ax = plt.subplots(figsize=(8,6)) ax = sns.lineplot(data=df48_plot, x='pfy', y='returns', hue='Returns') ax.set(xlabel = 'pfy', ylabel = 'Returns') ax.set_title('Plot of Portfolio and Russell 3000 Returns') plt.show() chartfile.savefig(fig) # 87 Calculate market Wealth Index #rut7 = rut.drop(['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'rutret', 'year', 'Adj Close'], axis=1) rut3['RUT_WI'] = (rut3['rrutyret']).cumprod() rut3 = rut3.reset_index() rut8 = rut3.drop(['Date', 'Adj Close', 'rutret', 'mretfactor', 'rutyret', 'rrutyret'], axis=1) # 88 Calculate long portfolio Wealth Index df25['P_WI'] = (df25['ppyret']).cumprod() df49 = df25.drop(['pyret', 'count', 'ppyret'], axis=1) # 89 Calculate short portfolio Wealth Index df39['S_WI'] = (df39['sppyret']).cumprod() df50 = df39.drop(['pyret', 'count', 'spyret', 'sppyret'], axis=1) # 90 Calculate long short portfolio Wealth Index df45['LS_WI'] = (df45['lsppyret']).cumprod() df52 = df45.drop(['pyret', 'spyret', 'lspyret', 'lsppyret'], axis=1) # 91 Plot Portfolio and Russell 3000 Wealth Index Line plot df53 = pd.merge(df49, df50, how='right', on=['pfy']) df54 = pd.merge(df53, df52, how='left', on=['pfy']) df55 = pd.merge(df54, rut8, how='left', on=['pfy']) df55.rename(columns={'P_WI':'Long Portfolio WI', 'S_WI':'Short Portfolio WI', 'LS_WI':'Long Short Portfolio WI','RUT_WI':'Market Index WI'}, inplace = True) df55_plot =
pd.melt(df55,id_vars='pfy', var_name='Wealth Index',value_name='wealth index')
pandas.melt
import re import pandas as pd import numpy as np from ._core import CoreReader from typing import Union from softnanotools.logger import Logger logger = Logger(__name__) class LAMMPSDataReader(CoreReader): def __init__( self, fname: str, names: Union[dict, list, tuple] = None, species: dict = None, classes: Union[dict, list, tuple] = None, style: str ='bond', configure: bool = True, **kwargs ): super().__init__() self.style = style self.fname = fname if names == None: self.names = None else: self.names = names self.species = species if classes == None: self.classes = [None] else: self.classes = classes self._read() if configure: self.configure() def _read(self): """Reads a LAMMPS Data File containing configuration and topology information""" box = {} with open(self.fname, 'r') as f: for i, line in enumerate(f.readlines()): if re.findall("atoms", line): n_atoms = int(line.split()[0]) elif re.findall("bonds", line): n_bonds = int(line.split()[0]) elif re.findall("xlo xhi", line): box['x'] = [float(j) for j in line.split()[:2]] elif re.findall("ylo yhi", line): box['y'] = [float(j) for j in line.split()[:2]] elif re.findall("zlo zhi", line): box['z'] = [float(j) for j in line.split()[:2]] elif re.findall("Atoms", line): skip_atoms = i + 1 elif re.findall("Bonds", line): skip_bonds = i + 1 break self.metadata['box'] = np.array([ ([float(i) for i in box['x']][1] - [float(i) for i in box['x']][0]), ([float(i) for i in box['y']][1] - [float(i) for i in box['y']][0]), ([float(i) for i in box['z']][1] - [float(i) for i in box['z']][0]), ]) logger.debug(f'Box: {self.metadata["box"]}') # manage styles for columns columns = { 0: 'id', 1: 'mol', 2: 'type', 3: 'x', 4: 'y', 5: 'z', } if self.style == 'full': columns = { 0: 'id', 1: 'mol', 2: 'type', 3: 'q', 4: 'x', 5: 'y', 6: 'z', } self.atoms = pd.read_csv( self.fname, delim_whitespace=True, header=None, nrows=n_atoms, skiprows=skip_atoms, ).rename(columns=columns).sort_values('id').reset_index(drop=True) logger.debug(f'ATOMS:\n{self.atoms}') try: assert len(self.atoms) == n_atoms assert self.atoms['id'].iloc[0] == 1 assert self.atoms['id'].iloc[-1] == n_atoms except: logger.error('Assertion Error when importing Atoms') self.bonds = pd.read_csv( self.fname, delim_whitespace=True, header=None, nrows=n_bonds, skiprows=skip_bonds, ).rename(columns={ 0: 'id', 1: 'type', 2: 'atom_1', 3: 'atom_2', }).sort_values('id').reset_index(drop=True) logger.debug(f'BONDS:\n{self.bonds}') try: assert len(self.bonds) == n_bonds assert self.bonds['id'].iloc[0] == 1 assert self.bonds['id'].iloc[-1] == n_bonds except: logger.error('Assertion Error when importing Bonds') def configure(self, simulation): """Adds positions and topologies to a ReaDDy simulation instance""" mols = set(list(self.atoms['mol'])) for idx, i in enumerate(mols): if isinstance(self.names, dict): name = self.names[i] cls = self.classes[i] elif isinstance(self.names, (list, tuple)): name = self.names[idx] cls = self.classes[idx] else: name = i cls = None mol = self.atoms[self.atoms['mol']==i] logger.debug(f"For molecule[{idx+1}] {name}:\n\nAtoms:\n{mol}") sequence = mol['type'].apply( lambda x: self.species[x] if self.species != None else x ) positions = mol[['x', 'y', 'z']] edges = [] if cls != None: for j, row in self.bonds.iterrows(): if row['atom_1'] in mol['id']: edges.append((row['atom_1']-1, row['atom_2']-1)) elif row['atom_2'] in mol['id']: edges.append((row['atom_1']-1, row['atom_2']-1)) logger.debug(f"Edges:\n{
pd.DataFrame(edges)
pandas.DataFrame
import pytest import pandas as pd import numpy as np from pandas.util.testing import assert_frame_equal, assert_index_equal from pdblp import pdblp import blpapi import os @pytest.fixture(scope="module") def port(request): return request.config.getoption("--port") @pytest.fixture(scope="module") def host(request): return request.config.getoption("--host") @pytest.fixture(scope="module") def timeout(request): return request.config.getoption("--timeout") @pytest.fixture(scope="module") def con(host, port, timeout): return pdblp.BCon(host=host, port=port, timeout=timeout).start() @pytest.fixture(scope="module") def data_path(): return os.path.join(os.path.dirname(__file__), "data/") def pivot_and_assert(df, df_exp, with_date=False): # as shown below, since the raw data returned from bbg is an array # with unknown ordering, there is no guruantee that the `position` will # always be the same so pivoting prior to comparison is necessary # # fieldData = { # INDX_MWEIGHT[] = { # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "BON8" # Percentage Weight = 2.410000 # } # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "C N8" # Percentage Weight = 6.560000 # } # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "CLN8" # Percentage Weight = 7.620000 # } # } # } name_cols = list(df_exp.name.unique()) sort_cols = list(df_exp.name.unique()) index_cols = ["name", "position", "field", "ticker"] if with_date: sort_cols.append("date") index_cols.append("date") df = (df.set_index(index_cols).loc[:, "value"] .unstack(level=0).reset_index().drop(columns="position") .sort_values(by=sort_cols, axis=0)) df_exp = (df_exp.set_index(index_cols).loc[:, "value"] .unstack(level=0).reset_index().drop(columns="position") .sort_values(by=sort_cols, axis=0)) # deal with mixed types resulting in str from csv read for name in name_cols: try: df_exp.loc[:, name] = df_exp.loc[:, name].astype(float) except ValueError: pass for name in name_cols: try: df.loc[:, name] = df.loc[:, name].astype(float) except ValueError: pass if with_date: df.loc[:, "date"] = pd.to_datetime(df.loc[:, "date"], format="%Y%m%d") df_exp.loc[:, "date"] = pd.to_datetime(df_exp.loc[:, "date"], format="%Y%m%d") assert_frame_equal(df, df_exp) ifbbg = pytest.mark.skipif(pytest.config.cache.get('offline', False), reason="No BBG connection, skipping tests") @ifbbg def test_bdh_empty_data_only(con): df = con.bdh( tickers=['1437355D US Equity'], flds=['PX_LAST', 'VOLUME'], start_date='20180510', end_date='20180511', longdata=False ) df_exp = pd.DataFrame( [], index=pd.DatetimeIndex([], name='date'), columns=pd.MultiIndex.from_product([[], []], names=('ticker', 'field')) ) assert_frame_equal(df, df_exp) @ifbbg def test_bdh_empty_data_with_non_empty_data(con): df = con.bdh( tickers=['AAPL US Equity', '1437355D US Equity'], flds=['PX_LAST', 'VOLUME'], start_date='20180510', end_date='20180511', longdata=False ) df_exp = pd.DataFrame( [[190.04, 27989289.0], [188.59, 26212221.0]], index=pd.DatetimeIndex(["20180510", "20180511"], name="date"), columns=pd.MultiIndex.from_product([["AAPL US Equity"], ["PX_LAST", "VOLUME"]], names=["ticker", "field"]) ) assert_frame_equal(df, df_exp) @ifbbg def test_bdh_partially_empty_data(con): df = con.bdh( tickers=['XIV US Equity', 'AAPL US Equity'], flds=['PX_LAST'], start_date='20180215', end_date='20180216', longdata=False ) df_exp = pd.DataFrame( [[6.04, 172.99], [np.NaN, 172.43]], index=pd.DatetimeIndex(["20180215", "20180216"], name="date"), columns=pd.MultiIndex.from_product( [["XIV US Equity", "AAPL US Equity"], ["PX_LAST"]], names=["ticker", "field"] ) ) assert_frame_equal(df, df_exp) @ifbbg def test_bdh_one_ticker_one_field_pivoted(con): df = con.bdh('SPY US Equity', 'PX_LAST', '20150629', '20150630') midx = pd.MultiIndex(levels=[["SPY US Equity"], ["PX_LAST"]], labels=[[0], [0]], names=["ticker", "field"]) df_expect = pd.DataFrame( index=pd.date_range("2015-06-29", "2015-06-30"), columns=midx, data=[205.42, 205.85] ) df_expect.index.names = ["date"] assert_frame_equal(df, df_expect) @ifbbg def test_bdh_one_ticker_one_field_longdata(con): df = con.bdh('SPY US Equity', 'PX_LAST', '20150629', '20150630', longdata=True) idx = pd.Index(["date", "ticker", "field", "value"]) data = [["2015-06-29", "2015-06-30"], ["SPY US Equity", "SPY US Equity"], ["PX_LAST", "PX_LAST"], [205.42, 205.85]] df_expect = pd.DataFrame(data=data, index=idx).transpose() df_expect.loc[:, "date"] = pd.to_datetime(df_expect.loc[:, "date"]) df_expect.loc[:, "value"] = np.float64(df_expect.loc[:, "value"]) assert_frame_equal(df, df_expect) @ifbbg def test_bdh_one_ticker_two_field_pivoted(con): cols = ['PX_LAST', 'VOLUME'] df = con.bdh('SPY US Equity', cols, '20150629', '20150630') midx = pd.MultiIndex( levels=[["SPY US Equity"], cols], labels=[[0, 0], [0, 1]], names=["ticker", "field"] ) df_expect = pd.DataFrame( index=pd.date_range("2015-06-29", "2015-06-30"), columns=midx, data=[[205.42, 202621332], [205.85, 182925106]] ) df_expect = df_expect.astype(np.float64) df_expect.index.names = ["date"] assert_frame_equal(df, df_expect) @ifbbg def test_bdh_one_ticker_two_field_longdata(con): cols = ['PX_LAST', 'VOLUME'] df = con.bdh('SPY US Equity', cols, '20150629', '20150630', longdata=True) idx = pd.Index(["date", "ticker", "field", "value"]) data = [["2015-06-29", "2015-06-29", "2015-06-30", "2015-06-30"], ["SPY US Equity", "SPY US Equity", "SPY US Equity", "SPY US Equity"], # NOQA ["PX_LAST", "VOLUME", "PX_LAST", "VOLUME"], [205.42, 202621332, 205.85, 182925106]] df_expect = pd.DataFrame(data=data, index=idx).transpose() df_expect.loc[:, "date"] = pd.to_datetime(df_expect.loc[:, "date"]) df_expect.loc[:, "value"] = np.float64(df_expect.loc[:, "value"]) assert_frame_equal(df, df_expect) @ifbbg def test_bdh_value_errors(con): bad_col = "not_a_fld" with pytest.raises(ValueError): con.bdh("SPY US Equity", bad_col, "20150630", "20150630") bad_ticker = "not_a_ticker" with pytest.raises(ValueError): con.bdh(bad_ticker, "PX_LAST", "20150630", "20150630") @ifbbg def test_bdib(con): # BBG has limited history for the IntradayBarRequest service so request # recent data prev_busday = pd.Timestamp( pd.np.busday_offset(pd.Timestamp.today().date(), -1) ) ts1 = prev_busday.strftime("%Y-%m-%d") + "T10:00:00" ts2 = prev_busday.strftime("%Y-%m-%d") + "T10:20:01" df = con.bdib('SPY US Equity', ts1, ts2, event_type="BID", interval=10) ts2e = prev_busday.strftime("%Y-%m-%d") + "T10:20:00" idx_exp = pd.date_range(ts1, ts2e, periods=3, name="time") col_exp = pd.Index(["open", "high", "low", "close", "volume", "numEvents"]) assert_index_equal(df.index, idx_exp) assert_index_equal(df.columns, col_exp) # REF TESTS @ifbbg def test_ref_one_ticker_one_field(con): df = con.ref('AUD Curncy', 'NAME') df_expect = pd.DataFrame( columns=["ticker", "field", "value"], data=[["AUD Curncy", "NAME", "Australian Dollar Spot"]] ) assert_frame_equal(df, df_expect) @ifbbg def test_ref_one_ticker_one_field_override(con): df = con.ref('AUD Curncy', 'SETTLE_DT', [("REFERENCE_DATE", "20161010")]) df_expect = pd.DataFrame( columns=["ticker", "field", "value"], data=[["AUD Curncy", "SETTLE_DT", pd.datetime(2016, 10, 12).date()]] ) assert_frame_equal(df, df_expect) @ifbbg def test_ref_invalid_field(con): with pytest.raises(ValueError): con.ref("EI862261 Corp", "not_a_field") @ifbbg def test_ref_not_applicable_field(con): # test both cases described in # https://github.com/matthewgilbert/pdblp/issues/6 df = con.ref("BCOM Index", ["INDX_GWEIGHT"]) df_expect = pd.DataFrame( [["BCOM Index", "INDX_GWEIGHT", np.NaN]], columns=['ticker', 'field', 'value'] ) assert_frame_equal(df, df_expect) df = con.ref("BCOM Index", ["INDX_MWEIGHT_PX2"]) df_expect = pd.DataFrame( [["BCOM Index", "INDX_MWEIGHT_PX2", np.NaN]], columns=['ticker', 'field', 'value'] ) assert_frame_equal(df, df_expect) @ifbbg def test_ref_invalid_security(con): with pytest.raises(ValueError): con.ref("NOT_A_TICKER", "MATURITY") @ifbbg def test_ref_applicable_with_not_applicable_field(con): df = con.ref("BVIS0587 Index", ["MATURITY", "NAME"]) df_exp = pd.DataFrame( [["BVIS0587 Index", "MATURITY", np.NaN], ["BVIS0587 Index", "NAME", "CAD Canada Govt BVAL Curve"]], columns=["ticker", "field", "value"]) assert_frame_equal(df, df_exp) @ifbbg def test_ref_mixed_data_error(con): # calling ref which returns singleton and array data throws error with pytest.raises(ValueError): con.ref('CL1 Comdty', 'FUT_CHAIN') # BULKREF TESTS @ifbbg def test_bulkref_one_ticker_one_field(con, data_path): df = con.bulkref('BCOM Index', 'INDX_MWEIGHT', ovrds=[("END_DATE_OVERRIDE", "20150530")]) df_expected = pd.read_csv( os.path.join(data_path, "bulkref_20150530.csv") ) pivot_and_assert(df, df_expected) @ifbbg def test_bulkref_two_ticker_one_field(con, data_path): df = con.bulkref(['BCOM Index', 'OEX Index'], 'INDX_MWEIGHT', ovrds=[("END_DATE_OVERRIDE", "20150530")]) df_expected = pd.read_csv( os.path.join(data_path, "bulkref_two_fields_20150530.csv") ) pivot_and_assert(df, df_expected) @ifbbg def test_bulkref_singleton_error(con): # calling bulkref which returns singleton throws error with pytest.raises(ValueError): con.bulkref('CL1 Comdty', 'FUT_CUR_GEN_TICKER') @ifbbg def test_bulkref_null_scalar_sub_element(con): # related to https://github.com/matthewgilbert/pdblp/issues/32#issuecomment-385555289 # NOQA # smoke test to check parse correctly ovrds = [("DVD_START_DT", "19860101"), ("DVD_END_DT", "19870101")] con.bulkref("101 HK EQUITY", "DVD_HIST", ovrds=ovrds) @ifbbg def test_bulkref_empty_field(con): df = con.bulkref(["88428LAA0 Corp"], ["INDEX_LIST"]) df_exp = pd.DataFrame( [["88428LAA0 Corp", "INDEX_LIST", np.NaN, np.NaN, np.NaN]], columns=["ticker", "field", "name", "value", "position"] ) assert_frame_equal(df, df_exp) @ifbbg def test_bulkref_empty_with_nonempty_field_smoketest(con): con.bulkref(['88428LAA0 Corp'], ['INDEX_LIST', 'USE_OF_PROCEEDS']) @ifbbg def test_bulkref_not_applicable_field(con): df = con.bulkref("CL1 Comdty", ["FUT_DLVRBLE_BNDS_ISINS"]) df_exp = pd.DataFrame( [["CL1 Comdty", "FUT_DLVRBLE_BNDS_ISINS", np.NaN, np.NaN, np.NaN]], columns=["ticker", "field", "name", "value", "position"] ) assert_frame_equal(df, df_exp) @ifbbg def test_bulkref_not_applicable_with_applicable_field_smoketest(con): con.bulkref('CL1 Comdty', ['OPT_CHAIN', 'FUT_DLVRBLE_BNDS_ISINS']) # REF_HIST TESTS @ifbbg def test_hist_ref_one_ticker_one_field_numeric(con): dates = ["20160104", "20160105"] df = con.ref_hist("AUD1M CMPN Curncy", "DAYS_TO_MTY", dates) df_expect = pd.DataFrame( {"date": dates, "ticker": ["AUD1M CMPN Curncy", "AUD1M CMPN Curncy"], "field": ["DAYS_TO_MTY", "DAYS_TO_MTY"], "value": [33, 32]} ) assert_frame_equal(df, df_expect) @ifbbg def test_hist_ref_one_ticker_one_field_non_numeric(con): dates = ["20160104", "20160105"] df = con.ref_hist("AUD1M CMPN Curncy", "SETTLE_DT", dates) df_expect = pd.DataFrame( {"date": dates, "ticker": ["AUD1M CMPN Curncy", "AUD1M CMPN Curncy"], "field": ["SETTLE_DT", "SETTLE_DT"], "value": 2 * [pd.datetime(2016, 2, 8).date()]} ) assert_frame_equal(df, df_expect) # BULKREF_HIST TESTS @ifbbg def test_bulkref_hist_one_field(con, data_path): dates = ["20150530", "20160530"] df = con.bulkref_hist('BCOM Index', 'INDX_MWEIGHT', dates=dates, date_field='END_DATE_OVERRIDE') df_expected = pd.read_csv( os.path.join(data_path, "bulkref_20150530_20160530.csv") ) pivot_and_assert(df, df_expected, with_date=True) @ifbbg def test_bulkhist_ref_with_alternative_reference_field(con): # smoke test to check that the response was sent off and correctly # received dates = ["20160625"] con.bulkref_hist("BVIS0587 Index", "CURVE_TENOR_RATES", dates, date_field="CURVE_DATE") @ifbbg def test_context_manager(port, host): with pdblp.bopen(host=host, port=port) as bb: df = bb.bdh('SPY US Equity', 'PX_LAST', '20150629', '20150630') midx = pd.MultiIndex(levels=[["SPY US Equity"], ["PX_LAST"]], labels=[[0], [0]], names=["ticker", "field"]) df_expect = pd.DataFrame( index=
pd.date_range("2015-06-29", "2015-06-30")
pandas.date_range
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ import os import pandas as pd import optuna from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import SGDClassifier from xgboost import XGBClassifier from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF import sklearn.metrics as metrics from sklearn.model_selection import train_test_split, StratifiedShuffleSplit import plot import preprocess import utils def tune_logreg(trial, X_train, X_test, y_train, y_test): alpha = trial.suggest_loguniform('alpha', 1e-4, 1.) classifier = SGDClassifier(loss='log', penalty='l2', max_iter=300, alpha=alpha, random_state=42) classifier.fit(X_train, y_train) y_pred = classifier.predict_proba(X_test)[:, 1] score = metrics.average_precision_score(y_test, y_pred) return score def tune_rf(trial, X_train, X_test, y_train, y_test): estimator = trial.suggest_int('n_estimators', 10, 50) classifier = RandomForestClassifier(n_estimators=estimator) classifier.fit(X_train, y_train) y_pred = classifier.predict_proba(X_test)[:, 1] score = metrics.average_precision_score(y_test, y_pred) return score def tune_xgboost(trial, X_train, X_test, y_train, y_test): n_estimators = trial.suggest_int('n_estimators', 10, 150) max_depth = trial.suggest_int('max_depth', 1, 5) learning_rate = trial.suggest_loguniform('learning_rate', 1e-4, 1.) classifier = XGBClassifier(n_estimators=n_estimators, max_depth=max_depth, learning_rate=learning_rate) classifier.fit(X_train, y_train) y_pred = classifier.predict_proba(X_test)[:, 1] score = metrics.average_precision_score(y_test, y_pred) return score def tune_GP(trial, X_train, X_test, y_train, y_test): length_scale = trial.suggest_loguniform('length_scale', 1e-4, 1.) classifier = GaussianProcessClassifier(1.0 * RBF(length_scale)) classifier.fit(X_train, y_train) y_pred = classifier.predict_proba(X_test)[:, 1] score = metrics.average_precision_score(y_test, y_pred) return score def select_impute(method, X_split, y_split, X_eval, y_eval): if IMPUTE == 'mean': X_split, X_eval = preprocess.impute(X_split, X_eval, 'mean') X_split, X_eval = preprocess.scale(X_split, X_eval, 'z-score') elif IMPUTE == 'median': X_split, X_eval = preprocess.impute(X_split, X_eval, 'median') X_split, X_eval = preprocess.scale(X_split, X_eval, 'z-score') elif IMPUTE == 'mice': X_split, X_eval = preprocess.impute(X_split, X_eval, 'mice') X_split, X_eval = preprocess.scale(X_split, X_eval, 'z-score') elif IMPUTE == 'mice+smote': X_split, X_eval = preprocess.impute(X_split, X_eval, 'mice+smote') X_split, X_eval = preprocess.scale(X_split, X_eval, 'z-score') X_split, y_split = preprocess.oversample(X_split, y_split, strategy='ADASYN', param=0.5) else: raise NameError('Imputation method not found.') return X_split, y_split, X_eval, y_eval def select_classifier(choice, X_split, y_split, X_eval, y_eval): study = optuna.create_study(direction='maximize') if MODEL == 'logreg': study.optimize(lambda trial: tune_logreg(trial, X_split, X_eval, y_split, y_eval), n_trials=N_TRIALS) classifier = SGDClassifier(loss='log', penalty='l2', max_iter=300, random_state=RANDOM_STATE, alpha=study.best_params['alpha']) elif MODEL == 'rf': study.optimize(lambda trial: tune_rf(trial, X_split, X_eval, y_split, y_eval), n_trials=N_TRIALS) classifier = RandomForestClassifier(**study.best_params) elif MODEL == 'xgboost': study.optimize(lambda trial: tune_xgboost(trial, X_split, X_eval, y_split, y_eval), n_trials=N_TRIALS) classifier = XGBClassifier(**study.best_params) elif MODEL == 'gp': study.optimize(lambda trial: tune_GP(trial, X_split, X_eval, y_split, y_eval), n_trials=50) classifier = GaussianProcessClassifier(1.0 * RBF(**study.best_params)) return classifier if __name__ == '__main__': SAVE_DIR = './saved_models/' # DATA_VER = 4.1 DATA_VER = 4.0 # OUTCOME = 'death' OUTCOME = 'vent' N_SPLITS = 3 RANDOM_STATE = 10 TEST_SIZE = 0.3 N_TRIALS = 200 IMPUTE = 'mean' # IMPUTE = 'median' # IMPUTE = 'mice' # MODEL = 'logreg' # MODEL = 'rf' MODEL = 'xgboost' # MODEL = 'gps' # setup model_dir = os.path.join(SAVE_DIR, '{}-{}'.format(DATA_VER, OUTCOME), '{}_impute{}_nsplit{}_testsize{}_rs{}'.format(MODEL, IMPUTE, N_SPLITS, TEST_SIZE, RANDOM_STATE)) os.makedirs(model_dir, exist_ok=True) # data loading col2remove = ["WEIGHT/SCALE", "HEIGHT", '% O2 Sat', 'Insp. O2 Conc.', 'PCO2', 'SPO2', 'PO2', 'R FIO2', 'diag_A', 'diag_B', 'diag_C', 'diag_D', 'diag_E', 'diag_F', 'diag_G', 'diag_H', 'diag_I', 'diag_J', 'diag_K', 'diag_L', 'diag_M', 'diag_N', 'diag_O', 'diag_P', 'diag_Q', 'diag_R', 'diag_S', 'diag_T', 'diag_U', 'diag_V', 'diag_W', 'diag_X', 'diag_Y', 'diag_Z', 'URINE OUTPUT', # 'gender', 'race', 'Procalcitonin', 'D-dimer', ] X, y, df = utils.load_data(DATA_VER, OUTCOME, col2remove) # train test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=RANDOM_STATE) sss = StratifiedShuffleSplit(n_splits=N_SPLITS, random_state=RANDOM_STATE, test_size=TEST_SIZE) # cross validation classifiers, scores = [], [] data_split, data_eval = [], [] labels_split, labels_eval = [], [] for idx_split, idx_eval in sss.split(X_train, y_train): # data X_split, y_split = X_train[idx_split], y_train[idx_split] X_eval, y_eval = X_train[idx_eval], y_train[idx_eval] X_split, y_split, X_eval, y_eval = select_impute(IMPUTE, X_split, y_split, X_eval, y_eval) # train classifier = select_classifier(MODEL, X_split, y_split, X_eval, y_eval) classifier.fit(X_split, y_split) pred, score = utils.get_results(classifier, X_eval, y_eval) # save for post-process data_split.append(X_split) data_eval.append(X_eval) labels_split.append(y_split) labels_eval.append(y_eval) classifiers.append(classifier) scores.append(score) # evaluation scores = pd.concat(pd.DataFrame(score, index=[i]) for i, score in enumerate(scores)) scores.to_csv(os.path.join(model_dir, 'scores_cv.csv')) scores_mean, scores_std = scores.mean(0), scores.std(0)
pd.DataFrame(scores_mean)
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_constructor(self): # Recognize TimeSeries self.assert_(isinstance(self.ts, TimeSeries)) # Pass in Series derived = Series(self.ts) self.assert_(isinstance(derived, TimeSeries)) self.assert_(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEquals(id(self.ts.index), id(derived.index)) # Pass in scalar scalar = Series(0.5) self.assert_(isinstance(scalar, float)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assert_(mixed.dtype == np.object_) self.assert_(mixed[1] is np.NaN) self.assert_(not isinstance(self.empty, TimeSeries)) self.assert_(not isinstance(Series({}), TimeSeries)) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=range(10)) empty2 = Series(np.nan, index=range(10)) assert_series_equal(empty, empty2) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) self.assert_(isinstance(s, Series)) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dict(self): d = {'a' : 0., 'b' : 1., 'c' : 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_fromDict(self): data = {'a' : 0, 'b' : 1, 'c' : 2, 'd' : 3} series = Series(data) self.assert_(tm.is_sorted(series.index)) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : datetime.now()} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : '3'} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : '0', 'b' : '1'} series = Series(data, dtype=float) self.assert_(series.dtype == np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(AssertionError, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) self.assert_(isinstance(series.index, Index)) def test_array_finalize(self): pass def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assert_(nans.dtype == np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assert_(strings.dtype == np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assert_(dates.dtype == np.object_) self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assert_(self.series.get(-1) is None) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) def test_iget(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) def test_getitem_regression(self): s = Series(range(5), index=range(5)) result = s[range(5)] assert_series_equal(result, s) def test_getitem_slice_bug(self): s = Series(range(10), range(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1,2,3]] slice2 = self.objSeries[[1,2,3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_(np.array_equal(result.index, s.index[mask])) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0]
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import pandas as pd import numpy as np import os, argparse, fnmatch, re, json TRACK_PREFIX = "week" GAME_PREFIX = "games" PLAYER_PREFIX = "players" PLAY_PREFIX = "plays" GAME_COL = "gameId" PLAY_COL = "playId" PLAYER_COL = "nflId" PREFIX_DELIM = "_" NAN_VALUE = "NAN" NUMERIC_COL = "number" NORMALIZE_PREFIX = "normalizer" ## appends new_list to old_list without ## creating duplicates while maintaining existing ## order of old_list def appendTo(norm_map, value, new_list): new_list = sorted(new_list) if value not in norm_map: norm_map[value] = { NAN_VALUE: 0 } old_list = list(norm_map[value].keys()) only_new_items = [item for item in new_list if item not in old_list] index = len(old_list) for item in new_list: if item in old_list: continue norm_map[value][item] = index index = index + 1 def normalize_same_type(data, data_format, norm_map): if data_format == NUMERIC_COL: data = data.replace([None, "NAN"], "0") data = data.astype(np.int8) return data data = data.fillna(NAN_VALUE) columns = list(data.columns) for col in columns: unique_values = list(data[col].unique()) appendTo(norm_map, data_format, unique_values) data = data.replace({col: norm_map[data_format]}) data = data.astype(np.int8) return data def split_data(data, col, split, norm_map): new_data = (data[col] .str.split(split["delim"]) .str.join(" ") .str.strip() .str.replace(r"\s+", " ") .str.split(" ", expand=True)) col_count = len(list(new_data.columns)) format_len = len(split["format"]) for start in range(format_len): prefix = (split["prefix"] + PREFIX_DELIM + split["format"][start] + PREFIX_DELIM) selected_columns = list(range(start, col_count, format_len)) cols_map = {} for index in range(len(selected_columns)): cols_index = start + index * format_len cols_map[cols_index] = prefix + str(index) new_data.rename(columns = cols_map, inplace=True) new_cols = list(cols_map.values()) new_data[new_cols] = normalize_same_type(new_data[new_cols], split["format"][start], norm_map) data = data.drop(columns=[col]) data[list(new_data.columns)] = new_data return data def normalize_data(data, meta, norm_map, split={}): object_cols = list(data.select_dtypes(["object"]).columns) data[object_cols] = data[object_cols].fillna(NAN_VALUE) boolean_cols = list(data.select_dtypes(["bool"]).columns) data[boolean_cols] = data[boolean_cols].astype(np.int8) for col in meta: unique_values = list(data[col].unique()) value = meta[col] appendTo(norm_map, value, unique_values) data = data.replace({col: norm_map[value]}) meta_cols = list(meta.keys()) data[meta_cols] = data[meta_cols].astype(np.int8) for col in split: data = split_data(data, col, split[col], norm_map) data.reset_index(drop=True, inplace=True) return data def normalize_play(data, normalize_map): SKIP_COLS = ["playDescription", "gameClock"] data = data.drop(columns=SKIP_COLS) normalize_split = { "personnelO": { "delim": ",", "prefix": "personnel_o", "format": ["number", "positions"], "style": "fixed" }, "personnelD": { "delim": ",", "prefix": "personnel_d", "format": ["number", "positions"], "style": "fixed" }, "penaltyCodes": { "delim": ";", "prefix": "penalty_code", "format": ["codes"] }, "penaltyJerseyNumbers": { "delim": ";", "prefix": "penalty_jn", "format": ["teams", "number"] } } normalize_meta = { "possessionTeam": "teams", "playType": "playtypes", "yardlineSide": "teams", "offenseFormation": "formations", "typeDropback": "dropbacktypes", "passResult": "results" } return normalize_data(data, normalize_meta, normalize_map, split=normalize_split) def normalize_game(data, normalize_map): SKIP_COLS = ["gameDate", "gameTimeEastern", "week"] data = data.drop(columns=SKIP_COLS) normalize_meta = { "homeTeamAbbr": "teams", "visitorTeamAbbr": "teams" } return normalize_data(data, normalize_meta, normalize_map) def normalize_track(data, normalize_map): SKIP_COLS = ["time", "displayName"] data = data.drop(columns=SKIP_COLS) normalize_meta = { "event": "events", "position": "positions", "team": "teamtypes", "playDirection": "directions", "route": "routes" } return normalize_data(data, normalize_meta, normalize_map) def save_dataframe_as_json(dataframe, output_path, filename): json_data = dataframe.to_json(orient="records", indent=2) json_path = os.path.join(output_path, filename) with open(json_path, "w") as output: output.write(json_data) def get_dataframes(data_path, output_path): normalizer = {} game_path = os.path.join(data_path, "{}.csv".format(GAME_PREFIX)) game_data = pd.read_csv(game_path) save_dataframe_as_json(game_data, output_path, "{}.json".format(GAME_PREFIX)) game_data = normalize_game(game_data, normalizer) player_path = os.path.join(data_path, "{}.csv".format(PLAYER_PREFIX)) player_data = pd.read_csv(player_path) save_dataframe_as_json(player_data, output_path, "{}.json".format(PLAYER_PREFIX)) play_path = os.path.join(data_path, "{}.csv".format(PLAY_PREFIX)) play_data = pd.read_csv(play_path) play_data = normalize_play(play_data, normalizer) track_files = fnmatch.filter(os.listdir(data_path), "{}*.csv".format( TRACK_PREFIX)) index = 0 for tf in track_files: track_path = os.path.join(data_path, tf) track_data =
pd.read_csv(track_path)
pandas.read_csv
import pandas as pd #import seaborn as sns from matplotlib import pyplot as plt import pdb import glob def get_all_dataframe( data_source='election_reporting_dot_com', state='mi', year=2020, ): county_folder_list = [ x.split('/')[-2] for x in glob.glob( './election_reporting_com/2020/mi/*/' ) ] state = 'mi' df_dict_all = { 'party': pd.DataFrame(), 'president': pd.DataFrame(), 'senator': pd.DataFrame() } for county in county_folder_list: print(f'getting dataframe for county {county}') df_dict = get_county_dataframe( data_source='election_reporting_dot_com', state='mi', county=county, year=2020 ) # pdb.set_trace() for x in df_dict.keys(): if x in df_dict_all: df_dict_all[x] = pd.concat( [df_dict_all[x], df_dict[x]], ignore_index=True ) else: print(f'key {x} not recognized. precess c to continue') pdb.set_trace() return df_dict_all def get_county_dataframe( data_source='election_reporting_dot_com', state='mi', county='kent', year=2020 ): ''' get data pandas dataframe dictionary given state, conuty, year and data source ''' if data_source == 'election_reporting_dot_com': file_list = glob.glob( f'./election_reporting_com/{year}/{state}/{county}/*cleaned.csv' ) df_dict = {} # df_dict_keys = [ # x.split('/')[-1].split('.')[0] for x in file_list # ] df_dict_keys = ['party', 'president', 'senator'] # for x, y in zip(df_dict_keys, file_list): for y in file_list: print(f'reading from {y}') for x in df_dict_keys: if x in y: df_dict[x] = pd.read_csv(y) else: return None return df_dict def plot_president_vs_senator_all_counties( fig_counter_base=100, state='mi', save_figure=True, year=2020 ): fig_counter = fig_counter_base df_dict = get_all_dataframe() df_p = df_dict['president'] df_s = df_dict['senator'] # precincts = df_p['precinct'].unique() df_merge = pd.merge(df_p, df_s, suffixes=('_p', '_s'), how='inner', on='precinct') senator_dem_key = None senator_rep_key = None for x in df_p.columns: if 'biden' in x: biden_key = x elif 'trump' in x: trump_key = x for x in df_s.columns: if '_dem' in x: senator_dem_key = x elif '_rep' in x: senator_rep_key = x if senator_dem_key is None or senator_rep_key is None: print(f'data for county {county} has column that does not have expected key') pdb.set_trace() total_president_series = df_merge[biden_key] + df_merge[trump_key] df_president_percentage_dem = df_merge[biden_key]/total_president_series df_president_percentage_rep = df_merge[trump_key]/total_president_series df_diff_dem = df_merge[biden_key]/total_president_series - df_merge[senator_dem_key] df_diff_rep = df_merge[trump_key]/total_president_series - df_merge[senator_rep_key] total_senator_series = df_merge[senator_dem_key]+df_merge[senator_rep_key] df_senator_percentage_dem = df_merge[senator_dem_key]/total_senator_series df_senator_percentage_rep = df_merge[senator_rep_key]/total_senator_series pdb.set_trace() fig_counter += 1 plt.figure(fig_counter) party = 'republican' title = f'{party} {state} all avaiable counties' plt.title(title) # plt.scatter(df_senator_percentage_rep, df_diff_rep) plt.scatter(df_senator_percentage_rep, df_president_percentage_rep) plt.xlabel(f'senator votes fractions for {party}') plt.ylabel(f'president votes fractions for {party}') if save_figure: filename = 'pdfs/electioncom/'+title.replace(' ', '_')+'.pdf' plt.savefig(filename) print(f'saving figure {filename}') else: plt.draw() plt.pause(0.001) fig_counter += 1 plt.figure(fig_counter) party = 'democrats' title = f'{party} {state} all avaiable counties' plt.title(title) # plt.scatter(df_senator_percentage_dem, df_diff_dem) plt.scatter(df_senator_percentage_dem, df_president_percentage_dem) plt.xlabel(f'senator votes fractions for {party}') plt.ylabel(f'president votes fractions for {party}') plt.xlim(0, 1) plt.ylim(0, 1) if save_figure: filename = 'pdfs/electioncom/'+title.replace(' ', '_')+'.pdf' print(f'saving figure {filename}') plt.savefig(filename) else: plt.draw() plt.pause(0.001) input("Press [enter] to continue.") def plot_president_vs_senator_per_county( county, fig_counter_base, state='mi', save_figure=True, year=2020 ): fig_counter = fig_counter_base # file_list = glob.glob( # f'./election_reporting_com/{year}/{state}/{county}/*cleaned.csv' # ) # df_dict = {} # df_dict_keys = [ # x.split('/')[-1].split('.')[0] for x in file_list # ] # for x, y in zip(df_dict_keys, file_list): # print(f'reading from {y}, dict key: {x}') # df_dict[x] = pd.read_csv(y) # if 'party' in y: # df_sp = df_dict[x] # elif 'president' in y: # df_p = df_dict[x] # elif 'senator' in y: # df_s = df_dict[x] # else: # print(f'unknown file {y} with key being {x}') df_dict = get_county_dataframe(county=county,year=year,state=state) df_p = df_dict['president'] df_s = df_dict['senator'] # precincts = df_p['precinct'].unique() # df_merge = pd.merge(df_p, df_s, suffixes=('_p', '_s')) df_merge =
pd.merge(df_p, df_s, suffixes=('_p', '_s'), how='inner', on='precinct')
pandas.merge
import pandas as pd import numpy as np import os, sys in_dir = '../../' + sys.argv[1] + '/'#'../../goal-inference-simulations/' out_dir = '../../synthetic-' + sys.argv[1] + '/'#'../../synthetic-goal-inference-simulations/' subset = '1en01' try: os.makedirs(out_dir) except: pass games = {1:{},2:{},3:{},4:{},5:{},6:{}} for game in os.listdir(in_dir): if game[-4:] != '.csv': continue bg_file = game.split('_')[-2] if bg_file.split('-')[1] != subset: continue data = pd.io.parsers.read_csv(in_dir + game) players = set(data['pid']) n = len(players) if bg_file in games[n]: games[n][bg_file][game] = [] else: games[n][bg_file] = {game:[]} for p in players: games[n][bg_file][game] += [data[data['pid'] == p].copy()] count = 0 for n in games: for bg in games[n]: for g in games[n][bg]: count += 1 assert len(games[n][bg][g]) == n if n == 1: df = games[n][bg][g][0] else: df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd class MultiPassSieveModel(): def __init__(self, *models): self.models = models def predict(self, df): preds = pd.DataFrame([[False]*2]*len(df), columns=['a_coref', 'b_coref']) for model in self.models: preds_ = model.predict(df) preds_ =
pd.DataFrame(preds_, columns=['a_coref', 'b_coref'])
pandas.DataFrame
''' Preprocessing Tranformers Based on sci-kit's API By <NAME> Created on June 12, 2017 ''' import copy import pandas as pd import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from pymo.rotation_tools import Rotation class MocapParameterizer(BaseEstimator, TransformerMixin): def __init__(self, param_type = 'euler'): ''' param_type = {'euler', 'quat', 'expmap', 'position'} ''' self.param_type = param_type def fit(self, X, y=None): return self def transform(self, X, y=None): if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._to_expmap(X) elif self.param_type == 'quat': return X elif self.param_type == 'position': return self._to_pos(X) elif self.param_type == 'axis_angle': return self._to_axis_angle(X) else: raise UnsupportedParamError('Unsupported param: %s. Valid param types are: euler, quat, expmap, position' % self.param_type) # return X def inverse_transform(self, X, copy=None): if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._expmap_to_euler(X) elif self.param_type == 'quat': raise UnsupportedParamError('quat2euler is not supported') elif self.param_type == 'position': print('positions 2 eulers is not supported') return X else: raise UnsupportedParamError('Unsupported param: %s. Valid param types are: euler, quat, expmap, position' % self.param_type) def _to_pos(self, X): '''Converts joints rotations in Euler angles to joint positions''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep pos_df = pd.DataFrame(index=euler_df.index) # Copy the root rotations into the new DataFrame # rxp = '%s_Xrotation'%track.root_name # ryp = '%s_Yrotation'%track.root_name # rzp = '%s_Zrotation'%track.root_name # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index) # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index) # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index) # List the columns that contain rotation channels rot_cols = [c for c in euler_df.columns if ('rotation' in c)] # List the columns that contain position channels pos_cols = [c for c in euler_df.columns if ('position' in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] # Get the rotation columns that belong to this joint rc = euler_df[[c for c in rot_cols if joint in c]] # Get the position columns that belong to this joint pc = euler_df[[c for c in pos_cols if joint in c]] # Make sure the columns are organized in xyz order if rc.shape[1] < 3: euler_values = [[0,0,0] for f in rc.iterrows()] else: euler_values = [[f[1]['%s_Xrotation'%joint], f[1]['%s_Yrotation'%joint], f[1]['%s_Zrotation'%joint]] for f in rc.iterrows()] ################# in euler angle, the order of rotation axis is very important ##################### rotation_order = rc.columns[0][rc.columns[0].find('rotation') - 1] + rc.columns[1][rc.columns[1].find('rotation') - 1] + rc.columns[2][rc.columns[2].find('rotation') - 1] #rotation_order is string : 'XYZ' or'ZYX' or ... #################################################################################################### if pc.shape[1] < 3: pos_values = [[0,0,0] for f in pc.iterrows()] else: pos_values =[[f[1]['%s_Xposition'%joint], f[1]['%s_Yposition'%joint], f[1]['%s_Zposition'%joint]] for f in pc.iterrows()] #euler_values = [[0,0,0] for f in rc.iterrows()] #for deugging #pos_values = [[0,0,0] for f in pc.iterrows()] #for deugging # Convert the eulers to rotation matrices ############################ input rotation order as Rotation class's argument ######################### rotmats = np.asarray([Rotation([f[0], f[1], f[2]], 'euler', rotation_order, from_deg=True).rotmat for f in euler_values]) ######################################################################################################## tree_data[joint]=[ [], # to store the rotation matrix [] # to store the calculated position ] if track.root_name == joint: tree_data[joint][0] = rotmats # tree_data[joint][1] = np.add(pos_values, track.skeleton[joint]['offsets']) tree_data[joint][1] = pos_values else: # for every frame i, multiply this joint's rotmat to the rotmat of its parent tree_data[joint][0] = np.asarray([np.matmul(rotmats[i], tree_data[parent][0][i]) for i in range(len(tree_data[parent][0]))]) # add the position channel to the offset and store it in k, for every frame i k = np.asarray([np.add(pos_values[i], track.skeleton[joint]['offsets']) for i in range(len(tree_data[parent][0]))]) # multiply k to the rotmat of the parent for every frame i q = np.asarray([np.matmul(k[i], tree_data[parent][0][i]) for i in range(len(tree_data[parent][0]))]) # add q to the position of the parent, for every frame i tree_data[joint][1] = np.asarray([np.add(q[i], tree_data[parent][1][i]) for i in range(len(tree_data[parent][1]))]) # Create the corresponding columns in the new DataFrame pos_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Zposition'%joint] = pd.Series(data=[e[2] for e in tree_data[joint][1]], index=pos_df.index) new_track = track.clone() new_track.values = pos_df Q.append(new_track) return Q def _to_axis_angle(self, X): '''Converts joints rotations in Euler angles to axis angle rotations''' Q = [] for track in X: # fix track names # adapt joint name so that it's equal for either male or female channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the axis angle values axis_anlge_df = pd.DataFrame(index=euler_df.index) # Copy the root rotations into the new DataFrame # rxp = '%s_Xrotation'%track.root_name # ryp = '%s_Yrotation'%track.root_name # rzp = '%s_Zrotation'%track.root_name # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index) # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index) # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index) # List the columns that contain rotation channels rot_cols = [c for c in euler_df.columns if ('rotation' in c)] # List the columns that contain position channels pos_cols = [c for c in euler_df.columns if ('position' in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] # Get the rotation columns that belong to this joint rc = euler_df[[c for c in rot_cols if joint in c]] # Get the position columns that belong to this joint pc = euler_df[[c for c in pos_cols if joint in c]] # Make sure the columns are organized in xyz order if rc.shape[1] < 3: euler_values = [[0,0,0] for f in rc.iterrows()] else: euler_values = [[f[1]['%s_Xrotation'%joint], f[1]['%s_Yrotation'%joint], f[1]['%s_Zrotation'%joint]] for f in rc.iterrows()] ################# in euler angle, the order of rotation axis is very important ##################### rotation_order = rc.columns[0][rc.columns[0].find('rotation') - 1] + rc.columns[1][rc.columns[1].find('rotation') - 1] + rc.columns[2][rc.columns[2].find('rotation') - 1] #rotation_order is string : 'XYZ' or'ZYX' or ... #################################################################################################### if pc.shape[1] < 3: pos_values = [[0,0,0] for f in pc.iterrows()] else: pos_values =[[f[1]['%s_Xposition'%joint], f[1]['%s_Yposition'%joint], f[1]['%s_Zposition'%joint]] for f in pc.iterrows()] #euler_values = [[0,0,0] for f in rc.iterrows()] #for deugging #pos_values = [[0,0,0] for f in pc.iterrows()] #for deugging # Convert the eulers to axis angles ############################ input rotation order as Rotation class's argument ######################### axis_angles = np.asarray([Rotation([f[0], f[1], f[2]], 'euler', rotation_order, from_deg=True).get_euler_axis() for f in euler_values]) ######################################################################################################## # Create the corresponding columns in the new DataFrame axis_anlge_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in pos_values], index=axis_anlge_df.index) axis_anlge_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in pos_values], index=axis_anlge_df.index) axis_anlge_df['%s_Zposition'%joint] = pd.Series(data=[e[2] for e in pos_values], index=axis_anlge_df.index) axis_anlge_df['%s_Xrotation'%joint] = pd.Series(data=[e[0] for e in axis_angles], index=axis_anlge_df.index) axis_anlge_df['%s_Yrotation'%joint] = pd.Series(data=[e[1] for e in axis_angles], index=axis_anlge_df.index) axis_anlge_df['%s_Zrotation'%joint] = pd.Series(data=[e[2] for e in axis_angles], index=axis_anlge_df.index) new_track = track.clone() new_track.values = axis_anlge_df Q.append(new_track) return Q def _to_expmap(self, X): '''Converts Euler angles to Exponential Maps''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep exp_df = pd.DataFrame(index=euler_df.index) # Copy the root positions into the new DataFrame rxp = '%s_Xposition'%track.root_name ryp = '%s_Yposition'%track.root_name rzp = '%s_Zposition'%track.root_name exp_df[rxp] = pd.Series(data=euler_df[rxp], index=exp_df.index) exp_df[ryp] = pd.Series(data=euler_df[ryp], index=exp_df.index) exp_df[rzp] = pd.Series(data=euler_df[rzp], index=exp_df.index) # List the columns that contain rotation channels rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) for joint in joints: r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint euler = [[f[1]['%s_Xrotation'%joint], f[1]['%s_Yrotation'%joint], f[1]['%s_Zrotation'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order exps = [Rotation(f, 'euler', from_deg=True).to_expmap() for f in euler] # Convert the eulers to exp maps # Create the corresponding columns in the new DataFrame exp_df['%s_alpha'%joint] = pd.Series(data=[e[0] for e in exps], index=exp_df.index) exp_df['%s_beta'%joint] = pd.Series(data=[e[1] for e in exps], index=exp_df.index) exp_df['%s_gamma'%joint] = pd.Series(data=[e[2] for e in exps], index=exp_df.index) new_track = track.clone() new_track.values = exp_df Q.append(new_track) return Q def _expmap_to_euler(self, X): Q = [] for track in X: channels = [] titles = [] exp_df = track.values # Create a new DataFrame to store the exponential map rep euler_df = pd.DataFrame(index=exp_df.index) # Copy the root positions into the new DataFrame rxp = '%s_Xposition'%track.root_name ryp = '%s_Yposition'%track.root_name rzp = '%s_Zposition'%track.root_name euler_df[rxp] = pd.Series(data=exp_df[rxp], index=euler_df.index) euler_df[ryp] = pd.Series(data=exp_df[ryp], index=euler_df.index) euler_df[rzp] = pd.Series(data=exp_df[rzp], index=euler_df.index) # List the columns that contain rotation channels exp_params = [c for c in exp_df.columns if ( any(p in c for p in ['alpha', 'beta','gamma']) and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) for joint in joints: r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint expmap = [[f[1]['%s_alpha'%joint], f[1]['%s_beta'%joint], f[1]['%s_gamma'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order euler_rots = [Rotation(f, 'expmap').to_euler(True)[0] for f in expmap] # Convert the eulers to exp maps # Create the corresponding columns in the new DataFrame euler_df['%s_Xrotation'%joint] = pd.Series(data=[e[0] for e in euler_rots], index=euler_df.index) euler_df['%s_Yrotation'%joint] = pd.Series(data=[e[1] for e in euler_rots], index=euler_df.index) euler_df['%s_Zrotation'%joint] = pd.Series(data=[e[2] for e in euler_rots], index=euler_df.index) new_track = track.clone() new_track.values = euler_df Q.append(new_track) return Q class JointSelector(BaseEstimator, TransformerMixin): ''' Allows for filtering the mocap data to include only the selected joints ''' def __init__(self, joints, include_root=False): self.joints = joints self.include_root = include_root def fit(self, X, y=None): return self def transform(self, X, y=None): selected_joints = [] selected_channels = [] if self.include_root: selected_joints.append(X[0].root_name) selected_joints.extend(self.joints) for joint_name in selected_joints: selected_channels.extend([o for o in X[0].values.columns if joint_name in o]) Q = [] for track in X: t2 = track.clone() for key in track.skeleton.keys(): if key not in selected_joints: t2.skeleton.pop(key) t2.values = track.values[selected_channels] Q.append(t2) return Q class Numpyfier(BaseEstimator, TransformerMixin): ''' Just converts the values in a MocapData object into a numpy array Useful for the final stage of a pipeline before training ''' def __init__(self): pass def fit(self, X, y=None): self.org_mocap_ = X[0].clone() self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True) return self def transform(self, X, y=None): Q = [] for track in X: Q.append(track.values.values) return np.array(Q) def inverse_transform(self, X, copy=None): Q = [] for track in X: new_mocap = self.org_mocap_.clone() time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit='s') new_df = pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns) new_mocap.values = new_df Q.append(new_mocap) return Q class RootTransformer(BaseEstimator, TransformerMixin): def __init__(self, method): """ Accepted methods: abdolute_translation_deltas pos_rot_deltas """ self.method = method def fit(self, X, y=None): return self def transform(self, X, y=None): Q = [] for track in X: if self.method == 'abdolute_translation_deltas': new_df = track.values.copy() xpcol = '%s_Xposition'%track.root_name ypcol = '%s_Yposition'%track.root_name zpcol = '%s_Zposition'%track.root_name dxpcol = '%s_dXposition'%track.root_name dzpcol = '%s_dZposition'%track.root_name dx = track.values[xpcol].diff() dz = track.values[zpcol].diff() dx[0] = 0 dz[0] = 0 new_df.drop([xpcol, zpcol], axis=1, inplace=True) new_df[dxpcol] = dx new_df[dzpcol] = dz new_track = track.clone() new_track.values = new_df # end of abdolute_translation_deltas elif self.method == 'pos_rot_deltas': new_track = track.clone() # Absolute columns xp_col = '%s_Xposition'%track.root_name yp_col = '%s_Yposition'%track.root_name zp_col = '%s_Zposition'%track.root_name xr_col = '%s_Xrotation'%track.root_name yr_col = '%s_Yrotation'%track.root_name zr_col = '%s_Zrotation'%track.root_name # Delta columns dxp_col = '%s_dXposition'%track.root_name dzp_col = '%s_dZposition'%track.root_name dxr_col = '%s_dXrotation'%track.root_name dyr_col = '%s_dYrotation'%track.root_name dzr_col = '%s_dZrotation'%track.root_name new_df = track.values.copy() root_pos_x_diff = pd.Series(data=track.values[xp_col].diff(), index=new_df.index) root_pos_z_diff = pd.Series(data=track.values[zp_col].diff(), index=new_df.index) root_rot_y_diff = pd.Series(data=track.values[yr_col].diff(), index=new_df.index) root_rot_x_diff = pd.Series(data=track.values[xr_col].diff(), index=new_df.index) root_rot_z_diff = pd.Series(data=track.values[zr_col].diff(), index=new_df.index) root_pos_x_diff[0] = 0 root_pos_z_diff[0] = 0 root_rot_y_diff[0] = 0 root_rot_x_diff[0] = 0 root_rot_z_diff[0] = 0 new_df.drop([xr_col, yr_col, zr_col, xp_col, zp_col], axis=1, inplace=True) new_df[dxp_col] = root_pos_x_diff new_df[dzp_col] = root_pos_z_diff new_df[dxr_col] = root_rot_x_diff new_df[dyr_col] = root_rot_y_diff new_df[dzr_col] = root_rot_z_diff new_track.values = new_df Q.append(new_track) return Q def inverse_transform(self, X, copy=None, start_pos=None): Q = [] #TODO: simplify this implementation startx = 0 startz = 0 if start_pos is not None: startx, startz = start_pos for track in X: new_track = track.clone() if self.method == 'abdolute_translation_deltas': new_df = new_track.values xpcol = '%s_Xposition'%track.root_name ypcol = '%s_Yposition'%track.root_name zpcol = '%s_Zposition'%track.root_name dxpcol = '%s_dXposition'%track.root_name dzpcol = '%s_dZposition'%track.root_name dx = track.values[dxpcol].values dz = track.values[dzpcol].values recx = [startx] recz = [startz] for i in range(dx.shape[0]-1): recx.append(recx[i]+dx[i+1]) recz.append(recz[i]+dz[i+1]) # recx = [recx[i]+dx[i+1] for i in range(dx.shape[0]-1)] # recz = [recz[i]+dz[i+1] for i in range(dz.shape[0]-1)] # recx = dx[:-1] + dx[1:] # recz = dz[:-1] + dz[1:] new_df[xpcol] = pd.Series(data=recx, index=new_df.index) new_df[zpcol] = pd.Series(data=recz, index=new_df.index) new_df.drop([dxpcol, dzpcol], axis=1, inplace=True) new_track.values = new_df # end of abdolute_translation_deltas elif self.method == 'pos_rot_deltas': new_track = track.clone() # Absolute columns xp_col = '%s_Xposition'%track.root_name yp_col = '%s_Yposition'%track.root_name zp_col = '%s_Zposition'%track.root_name xr_col = '%s_Xrotation'%track.root_name yr_col = '%s_Yrotation'%track.root_name zr_col = '%s_Zrotation'%track.root_name # Delta columns dxp_col = '%s_dXposition'%track.root_name dzp_col = '%s_dZposition'%track.root_name dxr_col = '%s_dXrotation'%track.root_name dyr_col = '%s_dYrotation'%track.root_name dzr_col = '%s_dZrotation'%track.root_name new_df = track.values.copy() dx = track.values[dxp_col].values dz = track.values[dzp_col].values drx = track.values[dxr_col].values dry = track.values[dyr_col].values drz = track.values[dzr_col].values rec_xp = [startx] rec_zp = [startz] rec_xr = [0] rec_yr = [0] rec_zr = [0] for i in range(dx.shape[0]-1): rec_xp.append(rec_xp[i]+dx[i+1]) rec_zp.append(rec_zp[i]+dz[i+1]) rec_xr.append(rec_xr[i]+drx[i+1]) rec_yr.append(rec_yr[i]+dry[i+1]) rec_zr.append(rec_zr[i]+drz[i+1]) new_df[xp_col] =
pd.Series(data=rec_xp, index=new_df.index)
pandas.Series
## some utils functions for scanpy import os import anndata import numpy as np import pandas as pd import scanpy as sc from scipy import io from scipy.sparse import hstack def adata_hstack(blocks, sample_ids=None, layer_keys=None): if layer_keys is None: layer_keys = blocks[0].layers.keys() layers = {} for _key in layer_keys: layers[_key] = hstack([adata.layers[_key].T for adata in blocks]).T if len(layer_keys) == 0: layers = None X_blocks = [adata.X.transpose() for adata in blocks] obs_blocks = [adata.obs for adata in blocks] new_X = hstack(X_blocks).transpose() new_obs = pd.concat(obs_blocks, axis=0) new_var = blocks[0].var new_adata = anndata.AnnData(X=new_X, obs=new_obs, var=new_var, layers=layers) sample_ids_default = [] for i in range(len(blocks)): sample_ids_default += ["S%d" %i] * blocks[i].shape[0] if sample_ids is not None: if len(sample_ids) != len(new_obs): print("sample ids has different size to observations, change to default.") sample_ids = sample_ids_default else: sample_ids = sample_ids_default cell_ids = [ new_adata.obs.index.values[i] + ":" + sample_ids[i] for i in range(len(sample_ids))] new_adata.obs['cell_id'] = cell_ids new_adata.obs['sample_id'] = sample_ids return new_adata def adata_preprocess(adata, min_cells=3, min_genes=500, max_genes=5000, max_percent_mito=0.1): ## first filtering sc.pp.filter_cells(adata, min_genes=min_genes) print(adata.shape) sc.pp.filter_genes(adata, min_cells=min_cells) print(adata.shape) ## basic info mito_genes = [name for name in adata.var_names if name.startswith('MT-')] adata.obs['n_counts'] = np.sum(adata.X, axis=1).A1 adata.obs['n_genes'] = np.sum(adata.X>=1, axis=1).A1 adata.obs['n_mito'] = np.sum(adata[:, mito_genes].X, axis=1).A1 adata.obs['percent_mito'] = adata.obs['n_mito'] / adata.obs['n_counts'] ## filter cells adata = adata[adata.obs['n_genes'] < max_genes, :] adata = adata[adata.obs['percent_mito'] < max_percent_mito, :] ## log transform adata.raw = sc.pp.log1p(adata, copy=True) sc.pp.normalize_per_cell(adata, counts_per_cell_after=1e4) ## filter genes filter_result = sc.pp.filter_genes_dispersion(adata.X, min_mean=0.0125, max_mean=3, min_disp=0.2) adata = adata[:, filter_result.gene_subset] ## regress and scale sc.pp.log1p(adata) sc.pp.regress_out(adata, ['n_counts', 'percent_mito']) sc.pp.scale(adata, max_value=10) ### PCA, t-SNE, and UMAP sc.tl.pca(adata) adata.obsm['X_pca'] *= -1 # multiply by -1 to match Seurat sc.tl.tsne(adata, random_state=2, n_pcs=10) sc.pp.neighbors(adata, n_neighbors=10) sc.tl.umap(adata) return adata def load_10X(path, min_counts=None, min_cells=None, version3=False): """ Load 10X data from cellranger output matrix, into scipy csr matrix, arrays for genes and cell barcodes Filter cells by min_counts and filter genes by min_cells """ ## load 10X matrix folder if version3: mat = io.mmread(path + "/matrix.mtx.gz").tocsr() genes = np.genfromtxt(path + "/features.tsv.gz", dtype="str", delimiter="\t") cells = np.genfromtxt(path + "/barcodes.tsv.gz", dtype="str", delimiter="\t") else: mat = io.mmread(path + "/matrix.mtx").tocsr() genes = np.genfromtxt(path + "/genes.tsv", dtype="str", delimiter="\t") cells = np.genfromtxt(path + "/barcodes.tsv", dtype="str", delimiter="\t") ## filter cells if min_counts is not None and min_counts > 0: n_counts = np.array(np.sum(mat, axis=0)).reshape(-1) idx = n_counts >= min_counts mat = mat[:, idx] cells = cells[idx] ## filter genes if min_cells is not None and min_cells > 0: n_cells = np.array(np.sum(mat, axis=1)).reshape(-1) idx = n_counts >= min_counts mat = mat[idx, :] genes = genes[idx, ] return mat, genes, cells def save_10X(path, mat, genes, barcodes, version3=False): """ Save 10X matrix, genes and cell barcodes into under the path. """ if not os.path.exists(path): os.makedirs(path) io.mmwrite(path + '/matrix.mtx', mat) if version3: fid = open(path + '/features.tsv', 'w') else: fid = open(path + '/genes.tsv', 'w') for ii in range(genes.shape[0]): fid.writelines("\t".join(genes[ii, :]) + "\n") fid.close() fid = open(path + '/barcodes.tsv', 'w') for _cell in barcodes: fid.writelines("%s\n" %(_cell)) fid.close() if version3: import subprocess bashCommand = "gzip -f %s %s %s" %(path + '/matrix.mtx', path + '/features.tsv', path + '/barcodes.tsv') pro = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) pro.communicate()[0] def read_dropEst(path, cell_file = 'barcodes.tsv', gene_file = 'genes.tsv', layer_keys = ['exon', 'intron', 'spanning'], layer_files = ['cell.counts.exon.mtx', 'cell.counts.intron.mtx', 'cell.counts.spanning.mtx'], combine_unspliced = True): """ Load dropEst matrices produced by this script: """ ## load 10X matrix folder # genes = np.genfromtxt(path + "/" + gene_file, dtype="str", delimiter="\t") # cells = np.genfromtxt(path + "/" + cell_file, dtype="str", delimiter="\t") genes =
pd.read_csv(path + "/" + gene_file, sep="\t", index_col=0, header=None)
pandas.read_csv
# -*- coding: utf-8 -*- """ @author: <NAME> @license: MIT """ from pandas import DataFrame # Load good XXth data good_XXth_data =
DataFrame.from_csv('good_XXth_data.csv', index_col=None)
pandas.DataFrame.from_csv
# Apache License 2.0 # # Copyright (c) 2017 <NAME> & Dohme Corp. a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA. # Written by <NAME> <<EMAIL>> # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the LICENSE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest import csv import os import pickle import pandas as pd from io import StringIO from pMPO import pMPOBuilder ######################################################################################################################## ######################################################################################################################## # The DataFrame with the reference data used in the original model building REFERENCE_DATAFRAME = os.path.join(os.path.join(os.path.dirname(__file__), 'assets'), 'CNS_pMPO.df.pkl') # The refrence pMPO values for each molecule in Hakan's paper REFERENCE_CNS_PMPO_VALUES = {'Abacavir': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.157}, 'Acetohexamide': {'CNS_pMPO': 0.51, 'CNS_pMPO_withSigmoidal': 0.163}, 'Acetyldigitoxin': {'CNS_pMPO': 0.1, 'CNS_pMPO_withSigmoidal': 0.102}, 'Acrivastine': {'CNS_pMPO': 0.97, 'CNS_pMPO_withSigmoidal': 0.949}, 'Acyclovir': {'CNS_pMPO': 0.19, 'CNS_pMPO_withSigmoidal': 0.111}, 'Adefovir': {'CNS_pMPO': 0.2, 'CNS_pMPO_withSigmoidal': 0.15}, 'Albuterol': {'CNS_pMPO': 0.39, 'CNS_pMPO_withSigmoidal': 0.266}, 'Alendronate': {'CNS_pMPO': 0.2, 'CNS_pMPO_withSigmoidal': 0.203}, 'Alfuzosin': {'CNS_pMPO': 0.41, 'CNS_pMPO_withSigmoidal': 0.134}, 'Aliskiren': {'CNS_pMPO': 0.18, 'CNS_pMPO_withSigmoidal': 0.086}, 'Allopurinol': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.226}, 'Alogliptin': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.483}, 'Alosetron': {'CNS_pMPO': 0.96, 'CNS_pMPO_withSigmoidal': 0.754}, 'Altretamine': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.694}, 'Alvimopan': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.115}, 'Ambenonium': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.327}, 'Ambrisentan': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.438}, 'Amiloride': {'CNS_pMPO': 0.23, 'CNS_pMPO_withSigmoidal': 0.224}, 'Aminocaproic acid': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.379}, 'Aminosalicylic acid': {'CNS_pMPO': 0.26, 'CNS_pMPO_withSigmoidal': 0.06}, 'Amoxicillin': {'CNS_pMPO': 0.24, 'CNS_pMPO_withSigmoidal': 0.067}, 'Amprenavir': {'CNS_pMPO': 0.1, 'CNS_pMPO_withSigmoidal': 0.059}, 'Anagrelide': {'CNS_pMPO': 0.86, 'CNS_pMPO_withSigmoidal': 0.858}, 'Anastrozole': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.376}, 'Anisindione': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.701}, 'Anisotropine': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.527}, 'Apixaban': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.263}, 'Aspirin': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.607}, 'Astemizole': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.747}, 'Atazanavir': {'CNS_pMPO': 0.06, 'CNS_pMPO_withSigmoidal': 0.027}, 'Atenolol': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.254}, 'Atorvastatin': {'CNS_pMPO': 0.15, 'CNS_pMPO_withSigmoidal': 0.039}, 'Atovaquone': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.73}, 'Avanafil': {'CNS_pMPO': 0.24, 'CNS_pMPO_withSigmoidal': 0.087}, 'Azathioprine': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.415}, 'Azilsartan': {'CNS_pMPO': 0.34, 'CNS_pMPO_withSigmoidal': 0.279}, 'Azithromycin': {'CNS_pMPO': 0.24, 'CNS_pMPO_withSigmoidal': 0.234}, 'Balsalazide': {'CNS_pMPO': 0.15, 'CNS_pMPO_withSigmoidal': 0.094}, 'Bedaquiline': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.705}, 'Benazepril': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.011}, 'Bendroflumethiazide': {'CNS_pMPO': 0.24, 'CNS_pMPO_withSigmoidal': 0.127}, 'Bentiromide': {'CNS_pMPO': 0.22, 'CNS_pMPO_withSigmoidal': 0.003}, 'Betamethasone': {'CNS_pMPO': 0.35, 'CNS_pMPO_withSigmoidal': 0.136}, 'Betaxolol': {'CNS_pMPO': 0.83, 'CNS_pMPO_withSigmoidal': 0.599}, 'Bethanechol': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.647}, 'Bicalutamide': {'CNS_pMPO': 0.29, 'CNS_pMPO_withSigmoidal': 0.044}, 'Bisoprolol': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.564}, 'Boceprevir': {'CNS_pMPO': 0.14, 'CNS_pMPO_withSigmoidal': 0.126}, 'Bosentan': {'CNS_pMPO': 0.2, 'CNS_pMPO_withSigmoidal': 0.01}, 'Bosutinib': {'CNS_pMPO': 0.6, 'CNS_pMPO_withSigmoidal': 0.432}, 'Budesonide': {'CNS_pMPO': 0.41, 'CNS_pMPO_withSigmoidal': 0.111}, 'Bufuralol': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.685}, 'Busulfan': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.279}, 'Cabozantinib': {'CNS_pMPO': 0.36, 'CNS_pMPO_withSigmoidal': 0.048}, 'Canagliflozin': {'CNS_pMPO': 0.2, 'CNS_pMPO_withSigmoidal': 0.027}, 'Capecitabine': {'CNS_pMPO': 0.23, 'CNS_pMPO_withSigmoidal': 0.087}, 'Carbenicillin': {'CNS_pMPO': 0.15, 'CNS_pMPO_withSigmoidal': 0.029}, 'Carbidopa': {'CNS_pMPO': 0.26, 'CNS_pMPO_withSigmoidal': 0.226}, 'Carglumic acid': {'CNS_pMPO': 0.08, 'CNS_pMPO_withSigmoidal': 0.076}, 'Carprofen': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.619}, 'Carteolol': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.424}, 'Cefaclor': {'CNS_pMPO': 0.27, 'CNS_pMPO_withSigmoidal': 0.059}, 'Cefdinir': {'CNS_pMPO': 0.1, 'CNS_pMPO_withSigmoidal': 0.007}, 'Cefditoren': {'CNS_pMPO': 0.06, 'CNS_pMPO_withSigmoidal': 0.0}, 'Cefpodoxime': {'CNS_pMPO': 0.1, 'CNS_pMPO_withSigmoidal': 0.0}, 'Cefuroxime': {'CNS_pMPO': 0.1, 'CNS_pMPO_withSigmoidal': 0.0}, 'Celecoxib': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.404}, 'Ceritinib': {'CNS_pMPO': 0.27, 'CNS_pMPO_withSigmoidal': 0.195}, 'Cerivastatin': {'CNS_pMPO': 0.3, 'CNS_pMPO_withSigmoidal': 0.001}, 'Cetirizine': {'CNS_pMPO': 0.87, 'CNS_pMPO_withSigmoidal': 0.725}, 'Chenodiol': {'CNS_pMPO': 0.46, 'CNS_pMPO_withSigmoidal': 0.197}, 'Chlorambucil': {'CNS_pMPO': 0.87, 'CNS_pMPO_withSigmoidal': 0.737}, 'Chloroquine': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.854}, 'Chlorotrianisene': {'CNS_pMPO': 0.5, 'CNS_pMPO_withSigmoidal': 0.41}, 'Chlorphenesin carbamate': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.287}, 'Chlorpropamide': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.259}, 'Chlorthalidone': {'CNS_pMPO': 0.26, 'CNS_pMPO_withSigmoidal': 0.137}, 'Cimetidine': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.143}, 'Cinoxacin': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.411}, 'Ciprofloxacin': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.406}, 'Cisapride': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.244}, 'Clavulanate': {'CNS_pMPO': 0.37, 'CNS_pMPO_withSigmoidal': 0.101}, 'Clindamycin': {'CNS_pMPO': 0.35, 'CNS_pMPO_withSigmoidal': 0.114}, 'Clofazimine': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.708}, 'Clofibrate': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.654}, 'Clomiphene': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.384}, 'Clonidine': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.539}, 'Cloxacillin': {'CNS_pMPO': 0.27, 'CNS_pMPO_withSigmoidal': 0.01}, 'Cobicistat': {'CNS_pMPO': 0.18, 'CNS_pMPO_withSigmoidal': 0.109}, 'Colchicine': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.3}, 'Crizotinib': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.278}, 'Cromolyn': {'CNS_pMPO': 0.07, 'CNS_pMPO_withSigmoidal': 0.0}, 'Cyclacillin': {'CNS_pMPO': 0.32, 'CNS_pMPO_withSigmoidal': 0.181}, 'Cyclophosphamide': {'CNS_pMPO': 0.84, 'CNS_pMPO_withSigmoidal': 0.741}, 'Cysteamine': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.318}, 'Dabrafenib': {'CNS_pMPO': 0.3, 'CNS_pMPO_withSigmoidal': 0.126}, 'Dantrolene': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.523}, 'Dapagliflozin': {'CNS_pMPO': 0.21, 'CNS_pMPO_withSigmoidal': 0.053}, 'Darifenacin': {'CNS_pMPO': 0.88, 'CNS_pMPO_withSigmoidal': 0.805}, 'Deferasirox': {'CNS_pMPO': 0.29, 'CNS_pMPO_withSigmoidal': 0.042}, 'Delavirdine': {'CNS_pMPO': 0.22, 'CNS_pMPO_withSigmoidal': 0.103}, 'Demeclocycline': {'CNS_pMPO': 0.09, 'CNS_pMPO_withSigmoidal': 0.048}, 'Desogestrel': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.615}, 'Dexlansoprazole': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.654}, 'Diazoxide': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.741}, 'Dichlorphenamide': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.18}, 'Diclofenac': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.522}, 'Dicumarol': {'CNS_pMPO': 0.5, 'CNS_pMPO_withSigmoidal': 0.152}, 'Didanosine': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.136}, 'Diethylcarbamazine': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.487}, 'Diflunisal': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.576}, '<NAME>': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.512}, 'Diphemanil': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.485}, 'Dipyridamole': {'CNS_pMPO': 0.16, 'CNS_pMPO_withSigmoidal': 0.11}, 'Dirithromycin': {'CNS_pMPO': 0.24, 'CNS_pMPO_withSigmoidal': 0.242}, 'Disopyramide': {'CNS_pMPO': 0.91, 'CNS_pMPO_withSigmoidal': 0.787}, 'Dofetilide': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.127}, 'Dolutegravir': {'CNS_pMPO': 0.29, 'CNS_pMPO_withSigmoidal': 0.011}, 'Domperidone': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.421}, 'Doxazosin': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.263}, 'Doxercalciferol': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.328}, 'Drospirenone': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.63}, 'Dydrogesterone': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.665}, 'Dyphylline': {'CNS_pMPO': 0.4, 'CNS_pMPO_withSigmoidal': 0.147}, 'Edoxaban': {'CNS_pMPO': 0.24, 'CNS_pMPO_withSigmoidal': 0.087}, 'Eltrombopag': {'CNS_pMPO': 0.24, 'CNS_pMPO_withSigmoidal': 0.123}, 'Empagliflozin': {'CNS_pMPO': 0.18, 'CNS_pMPO_withSigmoidal': 0.091}, 'Emtricitabine': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.146}, 'Enalapril': {'CNS_pMPO': 0.45, 'CNS_pMPO_withSigmoidal': 0.044}, 'Entecavir': {'CNS_pMPO': 0.22, 'CNS_pMPO_withSigmoidal': 0.152}, 'Eplerenone': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.21}, 'Eprosartan': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.247}, 'Estradiol': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.537}, 'Estramustine': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.623}, 'Ethacrynic acid': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.699}, 'Ethambutol': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.45}, 'Ethoxzolamide': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.552}, 'Ethylestrenol': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.615}, 'Ethynodiol diacetate': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.554}, 'Etodolac': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.456}, 'Etoposide': {'CNS_pMPO': 0.12, 'CNS_pMPO_withSigmoidal': 0.0}, 'Etravirine': {'CNS_pMPO': 0.28, 'CNS_pMPO_withSigmoidal': 0.069}, 'Ezetimibe': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.41}, 'Fenoprofen': {'CNS_pMPO': 0.83, 'CNS_pMPO_withSigmoidal': 0.725}, 'Fesoterodine': {'CNS_pMPO': 0.87, 'CNS_pMPO_withSigmoidal': 0.785}, 'Fexofenadine': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.239}, 'Flavoxate': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.643}, 'Flecainide': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.412}, 'Fludarabine': {'CNS_pMPO': 0.22, 'CNS_pMPO_withSigmoidal': 0.155}, 'Fluoxymesterone': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.595}, 'Fluvastatin': {'CNS_pMPO': 0.38, 'CNS_pMPO_withSigmoidal': 0.022}, 'Fosfomycin': {'CNS_pMPO': 0.37, 'CNS_pMPO_withSigmoidal': 0.083}, 'Fosinopril': {'CNS_pMPO': 0.4, 'CNS_pMPO_withSigmoidal': 0.381}, 'Furazolidone': {'CNS_pMPO': 0.38, 'CNS_pMPO_withSigmoidal': 0.251}, 'Furosemide': {'CNS_pMPO': 0.27, 'CNS_pMPO_withSigmoidal': 0.147}, 'Gatifloxacin': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.181}, 'Gefitinib': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.583}, 'Gemifloxacin': {'CNS_pMPO': 0.38, 'CNS_pMPO_withSigmoidal': 0.124}, 'Glimepiride': {'CNS_pMPO': 0.17, 'CNS_pMPO_withSigmoidal': 0.03}, 'Glipizide': {'CNS_pMPO': 0.16, 'CNS_pMPO_withSigmoidal': 0.0}, 'Glyburide': {'CNS_pMPO': 0.2, 'CNS_pMPO_withSigmoidal': 0.127}, 'Glycopyrrolate': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.751}, 'Guaifenesin': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.407}, 'Guanadrel': {'CNS_pMPO': 0.46, 'CNS_pMPO_withSigmoidal': 0.147}, 'Guanethidine': {'CNS_pMPO': 0.55, 'CNS_pMPO_withSigmoidal': 0.329}, 'Hetacillin': {'CNS_pMPO': 0.45, 'CNS_pMPO_withSigmoidal': 0.024}, 'Hexocyclium': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.711}, 'Hydralazine': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.362}, 'Hydrocortisone': {'CNS_pMPO': 0.37, 'CNS_pMPO_withSigmoidal': 0.2}, 'Ibandronate': {'CNS_pMPO': 0.25, 'CNS_pMPO_withSigmoidal': 0.249}, 'Ibrutinib': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.371}, 'Idelalisib': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.117}, 'Imatinib': {'CNS_pMPO': 0.55, 'CNS_pMPO_withSigmoidal': 0.258}, 'Indapamide': {'CNS_pMPO': 0.51, 'CNS_pMPO_withSigmoidal': 0.202}, 'Indinavir': {'CNS_pMPO': 0.22, 'CNS_pMPO_withSigmoidal': 0.109}, 'Irbesartan': {'CNS_pMPO': 0.6, 'CNS_pMPO_withSigmoidal': 0.388}, 'Isoniazid': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.265}, 'Isopropamide': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.694}, 'Itraconazole': {'CNS_pMPO': 0.36, 'CNS_pMPO_withSigmoidal': 0.197}, 'Ivacaftor': {'CNS_pMPO': 0.34, 'CNS_pMPO_withSigmoidal': 0.071}, 'Ketoconazole': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.436}, 'Ketorolac': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.713}, 'Labetalol': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.247}, 'Lactulose': {'CNS_pMPO': 0.15, 'CNS_pMPO_withSigmoidal': 0.131}, 'Lapatinib': {'CNS_pMPO': 0.32, 'CNS_pMPO_withSigmoidal': 0.04}, 'Lenvatinib': {'CNS_pMPO': 0.24, 'CNS_pMPO_withSigmoidal': 0.091}, 'Levofloxacin': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.526}, 'Linagliptin': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.342}, 'Linezolid': {'CNS_pMPO': 0.83, 'CNS_pMPO_withSigmoidal': 0.573}, 'Lisinopril': {'CNS_pMPO': 0.18, 'CNS_pMPO_withSigmoidal': 0.066}, 'Lomitapide': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.43}, 'Loperamide': {'CNS_pMPO': 0.81, 'CNS_pMPO_withSigmoidal': 0.783}, 'Lopinavir': {'CNS_pMPO': 0.03, 'CNS_pMPO_withSigmoidal': 0.009}, 'Loracarbef': {'CNS_pMPO': 0.28, 'CNS_pMPO_withSigmoidal': 0.115}, 'Lubiprostone': {'CNS_pMPO': 0.51, 'CNS_pMPO_withSigmoidal': 0.036}, 'Macitentan': {'CNS_pMPO': 0.29, 'CNS_pMPO_withSigmoidal': 0.097}, 'Medroxyprogesterone acetate': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.522}, 'Mefenamic acid': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.594}, 'Meloxicam': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.121}, 'Melphalan': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.505}, 'Mepenzolate': {'CNS_pMPO': 0.86, 'CNS_pMPO_withSigmoidal': 0.754}, 'Mercaptopurine': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.494}, 'Mesalamine': {'CNS_pMPO': 0.3, 'CNS_pMPO_withSigmoidal': 0.06}, 'Mesna': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.62}, 'Metaproterenol': {'CNS_pMPO': 0.46, 'CNS_pMPO_withSigmoidal': 0.332}, 'Metaxalone': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.825}, 'Methantheline': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.567}, 'Methazolamide': {'CNS_pMPO': 0.51, 'CNS_pMPO_withSigmoidal': 0.385}, 'Methenamine': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.438}, 'Methimazole': {'CNS_pMPO': 0.51, 'CNS_pMPO_withSigmoidal': 0.438}, 'Methscopolamine': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.731}, 'Methyltestosterone': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.789}, 'Metolazone': {'CNS_pMPO': 0.51, 'CNS_pMPO_withSigmoidal': 0.202}, 'Metronidazole': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.336}, 'Metyrosine': {'CNS_pMPO': 0.4, 'CNS_pMPO_withSigmoidal': 0.202}, 'Midodrine': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.253}, 'Miglitol': {'CNS_pMPO': 0.29, 'CNS_pMPO_withSigmoidal': 0.201}, 'Miltefosine': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.419}, 'Minocycline': {'CNS_pMPO': 0.09, 'CNS_pMPO_withSigmoidal': 0.047}, 'Minoxidil': {'CNS_pMPO': 0.25, 'CNS_pMPO_withSigmoidal': 0.099}, 'Mirabegron': {'CNS_pMPO': 0.35, 'CNS_pMPO_withSigmoidal': 0.114}, 'Mitotane': {'CNS_pMPO': 0.39, 'CNS_pMPO_withSigmoidal': 0.385}, 'Montelukast': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.22}, 'Moxifloxacin': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.097}, 'Mycophenolic acid': {'CNS_pMPO': 0.5, 'CNS_pMPO_withSigmoidal': 0.165}, 'Nabumetone': {'CNS_pMPO': 0.6, 'CNS_pMPO_withSigmoidal': 0.598}, 'Nadolol': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.269}, 'Nalidixic acid': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.562}, 'Naproxen': {'CNS_pMPO': 0.81, 'CNS_pMPO_withSigmoidal': 0.712}, 'Nateglinide': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.411}, 'Nelfinavir': {'CNS_pMPO': 0.19, 'CNS_pMPO_withSigmoidal': 0.105}, 'Neostigmine': {'CNS_pMPO': 0.51, 'CNS_pMPO_withSigmoidal': 0.505}, 'Nevirapine': {'CNS_pMPO': 0.88, 'CNS_pMPO_withSigmoidal': 0.853}, 'Niacin': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.624}, 'Niclosamide': {'CNS_pMPO': 0.42, 'CNS_pMPO_withSigmoidal': 0.188}, 'Nilotinib': {'CNS_pMPO': 0.33, 'CNS_pMPO_withSigmoidal': 0.039}, 'Nilutamide': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.545}, 'Nintedanib': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.202}, 'Nitisinone': {'CNS_pMPO': 0.42, 'CNS_pMPO_withSigmoidal': 0.289}, 'Nizatidine': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.22}, 'Norgestimate': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.663}, 'Novobiocin': {'CNS_pMPO': 0.09, 'CNS_pMPO_withSigmoidal': 0.0}, 'Olaparib': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.287}, 'Olsalazine': {'CNS_pMPO': 0.23, 'CNS_pMPO_withSigmoidal': 0.158}, 'Orlistat': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.289}, 'Oseltamivir': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.28}, 'Oxamniquine': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.24}, 'Oxandrolone': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.847}, 'Oxaprozin': {'CNS_pMPO': 0.84, 'CNS_pMPO_withSigmoidal': 0.772}, 'Oxyphenbutazone': {'CNS_pMPO': 0.83, 'CNS_pMPO_withSigmoidal': 0.716}, 'Oxyphenonium': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.715}, 'Palbociclib': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.122}, 'Paliperidone': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.404}, 'Pantoprazole': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.417}, 'Pargyline': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.392}, 'Paricalcitol': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.318}, 'Pemoline': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.593}, 'Penicillamine': {'CNS_pMPO': 0.42, 'CNS_pMPO_withSigmoidal': 0.353}, 'Phenazone': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.427}, 'Phenazopyridine': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.205}, 'Phenprocoumon': {'CNS_pMPO': 0.87, 'CNS_pMPO_withSigmoidal': 0.876}, 'Phensuximide': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.52}, 'Phenylephrine': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.49}, 'Pilocarpine': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.563}, 'Pinacidil': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.385}, 'Pipobroman': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.58}, 'Pirenzepine': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.604}, 'Pitavastatin': {'CNS_pMPO': 0.35, 'CNS_pMPO_withSigmoidal': 0.003}, 'Ponatinib': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.722}, 'Pralidoxime': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.588}, 'Pravastatin': {'CNS_pMPO': 0.11, 'CNS_pMPO_withSigmoidal': 0.0}, 'Primaquine': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.524}, 'Probenecid': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.525}, 'Probucol': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.326}, 'Proguanil': {'CNS_pMPO': 0.46, 'CNS_pMPO_withSigmoidal': 0.308}, 'Propantheline': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.489}, 'Propylthiouracil': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.535}, 'Protokylol': {'CNS_pMPO': 0.46, 'CNS_pMPO_withSigmoidal': 0.255}, 'Pyridostigmine': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.487}, 'Quinestrol': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.593}, 'Quinethazone': {'CNS_pMPO': 0.34, 'CNS_pMPO_withSigmoidal': 0.157}, 'Quinidine': {'CNS_pMPO': 0.97, 'CNS_pMPO_withSigmoidal': 0.972}, 'Rabeprazole': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.548}, 'Raloxifene': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.334}, 'Raltegravir': {'CNS_pMPO': 0.08, 'CNS_pMPO_withSigmoidal': 0.0}, 'Ranolazine': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.328}, 'Regorafenib': {'CNS_pMPO': 0.19, 'CNS_pMPO_withSigmoidal': 0.028}, 'Repaglinide': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.187}, 'Reserpine': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.352}, 'Ribavirin': {'CNS_pMPO': 0.14, 'CNS_pMPO_withSigmoidal': 0.129}, 'Rifaximin': {'CNS_pMPO': 0.12, 'CNS_pMPO_withSigmoidal': 0.0}, 'Riociguat': {'CNS_pMPO': 0.29, 'CNS_pMPO_withSigmoidal': 0.01}, 'Risedronate': {'CNS_pMPO': 0.2, 'CNS_pMPO_withSigmoidal': 0.154}, 'Ritodrine': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.397}, 'Ritonavir': {'CNS_pMPO': 0.03, 'CNS_pMPO_withSigmoidal': 0.025}, 'Rivaroxaban': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.395}, 'Roflumilast': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.608}, 'Rosiglitazone': {'CNS_pMPO': 0.87, 'CNS_pMPO_withSigmoidal': 0.643}, 'Rosuvastatin': {'CNS_pMPO': 0.06, 'CNS_pMPO_withSigmoidal': 0.0}, 'Ruxolitinib': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.566}, 'Sapropterin': {'CNS_pMPO': 0.23, 'CNS_pMPO_withSigmoidal': 0.228}, 'Saquinavir': {'CNS_pMPO': 0.16, 'CNS_pMPO_withSigmoidal': 0.161}, 'Sibutramine': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.563}, 'Sildenafil': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.387}, 'Silodosin': {'CNS_pMPO': 0.35, 'CNS_pMPO_withSigmoidal': 0.154}, 'Simeprevir': {'CNS_pMPO': 0.25, 'CNS_pMPO_withSigmoidal': 0.113}, 'Sitagliptin': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.443}, 'Sodium phenylbutyrate': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.506}, 'Sofosbuvir': {'CNS_pMPO': 0.16, 'CNS_pMPO_withSigmoidal': 0.126}, 'Sotalol': {'CNS_pMPO': 0.4, 'CNS_pMPO_withSigmoidal': 0.204}, 'Sparfloxacin': {'CNS_pMPO': 0.37, 'CNS_pMPO_withSigmoidal': 0.122}, 'Spirapril': {'CNS_pMPO': 0.39, 'CNS_pMPO_withSigmoidal': 0.01}, 'Spironolactone': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.547}, 'Stanozolol': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.514}, 'Stavudine': {'CNS_pMPO': 0.5, 'CNS_pMPO_withSigmoidal': 0.169}, 'Succimer': {'CNS_pMPO': 0.31, 'CNS_pMPO_withSigmoidal': 0.177}, 'Sulfacytine': {'CNS_pMPO': 0.36, 'CNS_pMPO_withSigmoidal': 0.167}, 'Sulfadoxine': {'CNS_pMPO': 0.35, 'CNS_pMPO_withSigmoidal': 0.167}, 'Sulfameter': {'CNS_pMPO': 0.4, 'CNS_pMPO_withSigmoidal': 0.163}, 'Sulfamethizole': {'CNS_pMPO': 0.41, 'CNS_pMPO_withSigmoidal': 0.158}, 'Sulfamethoxazole': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.147}, 'Sulfaphenazole': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.194}, 'Sulfasalazine': {'CNS_pMPO': 0.2, 'CNS_pMPO_withSigmoidal': 0.005}, 'Sulfinpyrazone': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.463}, 'Sulfoxone': {'CNS_pMPO': 0.1, 'CNS_pMPO_withSigmoidal': 0.003}, 'Sumatriptan': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.523}, 'Sunitinib': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.276}, 'Tamsulosin': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.125}, 'Tedizolid': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.439}, 'Tegaserod': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.38}, 'Telaprevir': {'CNS_pMPO': 0.07, 'CNS_pMPO_withSigmoidal': 0.069}, 'Telithromycin': {'CNS_pMPO': 0.46, 'CNS_pMPO_withSigmoidal': 0.454}, 'Tenofovir': {'CNS_pMPO': 0.21, 'CNS_pMPO_withSigmoidal': 0.156}, 'Testolactone': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.743}, 'Thiabendazole': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.79}, 'Thioguanine': {'CNS_pMPO': 0.4, 'CNS_pMPO_withSigmoidal': 0.147}, 'Ticagrelor': {'CNS_pMPO': 0.15, 'CNS_pMPO_withSigmoidal': 0.127}, 'Ticlopidine': {'CNS_pMPO': 0.55, 'CNS_pMPO_withSigmoidal': 0.452}, 'Tiludronate': {'CNS_pMPO': 0.16, 'CNS_pMPO_withSigmoidal': 0.155}, 'Tinidazole': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.272}, 'Tiopronin': {'CNS_pMPO': 0.36, 'CNS_pMPO_withSigmoidal': 0.297}, 'Tipranavir': {'CNS_pMPO': 0.29, 'CNS_pMPO_withSigmoidal': 0.108}, 'Tofacitinib': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.424}, 'Tolazamide': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.22}, 'Tolrestat': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.693}, 'Torsemide': {'CNS_pMPO': 0.41, 'CNS_pMPO_withSigmoidal': 0.244}, 'Tranexamic acid': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.408}, 'Treprostinil': {'CNS_pMPO': 0.38, 'CNS_pMPO_withSigmoidal': 0.02}, 'Triamterene': {'CNS_pMPO': 0.37, 'CNS_pMPO_withSigmoidal': 0.25}, 'Tridihexethyl': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.607}, 'Trimethobenzamide': {'CNS_pMPO': 0.86, 'CNS_pMPO_withSigmoidal': 0.591}, 'Trimethoprim': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.182}, 'Trioxsalen': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.641}, 'Troleandomycin': {'CNS_pMPO': 0.37, 'CNS_pMPO_withSigmoidal': 0.367}, 'Trospium': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.606}, 'Trovafloxacin': {'CNS_pMPO': 0.45, 'CNS_pMPO_withSigmoidal': 0.127}, 'Uracil mustard': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.51}, 'Valsartan': {'CNS_pMPO': 0.32, 'CNS_pMPO_withSigmoidal': 0.01}, 'Vandetanib': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.74}, 'Vemurafenib': {'CNS_pMPO': 0.38, 'CNS_pMPO_withSigmoidal': 0.11}, 'Vismodegib': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.454}, 'Vorapaxar': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.375}, 'Zafirlukast': {'CNS_pMPO': 0.22, 'CNS_pMPO_withSigmoidal': 0.066}, 'Zidovudine': {'CNS_pMPO': 0.36, 'CNS_pMPO_withSigmoidal': 0.156}, 'Zileuton': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.452}, 'Abiraterone': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.674}, 'Acebutolol': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.243}, 'Acetaminophen': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.388}, 'Acetazolamide': {'CNS_pMPO': 0.33, 'CNS_pMPO_withSigmoidal': 0.118}, 'Acetophenazine': {'CNS_pMPO': 0.9, 'CNS_pMPO_withSigmoidal': 0.821}, 'Acitretin': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.851}, 'Afatinib': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.234}, 'Albendazole': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.496}, 'Almotriptan': {'CNS_pMPO': 0.92, 'CNS_pMPO_withSigmoidal': 0.824}, 'Alprazolam': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.742}, 'Alprenolol': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.562}, 'Amantadine': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.591}, 'Aminoglutethimide': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.4}, 'Amitriptyline': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.577}, 'Amlodipine': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.234}, 'Amoxapine': {'CNS_pMPO': 0.95, 'CNS_pMPO_withSigmoidal': 0.927}, 'Amphetamine': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.606}, 'Anileridine': {'CNS_pMPO': 0.97, 'CNS_pMPO_withSigmoidal': 0.936}, 'Aniracetam': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.579}, 'Apomorphine': {'CNS_pMPO': 0.84, 'CNS_pMPO_withSigmoidal': 0.718}, 'Aprepitant': {'CNS_pMPO': 0.46, 'CNS_pMPO_withSigmoidal': 0.167}, 'Aripiprazole': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.732}, 'Armodafinil': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.806}, 'Atomoxetine': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.674}, 'Atropine': {'CNS_pMPO': 0.88, 'CNS_pMPO_withSigmoidal': 0.835}, 'Axitinib': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.264}, 'Azatadine': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.654}, 'Baclofen': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.459}, 'Benzphetamine': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.563}, 'Benztropine': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.621}, 'Bepridil': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.527}, 'Bethanidine': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.382}, 'Bexarotene': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.701}, 'Biperiden': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.849}, 'Bromazepam': {'CNS_pMPO': 0.88, 'CNS_pMPO_withSigmoidal': 0.876}, 'Bromocriptine': {'CNS_pMPO': 0.17, 'CNS_pMPO_withSigmoidal': 0.03}, 'Bromodiphenhydramine': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.632}, 'Brompheniramine': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.68}, 'Buclizine': {'CNS_pMPO': 0.42, 'CNS_pMPO_withSigmoidal': 0.251}, 'Budipine': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.589}, 'Bumetanide': {'CNS_pMPO': 0.27, 'CNS_pMPO_withSigmoidal': 0.07}, 'Buprenorphine': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.537}, 'Bupropion': {'CNS_pMPO': 0.84, 'CNS_pMPO_withSigmoidal': 0.74}, 'Buspirone': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.456}, 'Butabarbital': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.327}, 'Cabergoline': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.267}, 'Caffeine': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.536}, 'Carbamazepine': {'CNS_pMPO': 0.83, 'CNS_pMPO_withSigmoidal': 0.833}, 'Carbinoxamine': {'CNS_pMPO': 0.76, 'CNS_pMPO_withSigmoidal': 0.76}, 'Carisoprodol': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.279}, 'Carvedilol': {'CNS_pMPO': 0.55, 'CNS_pMPO_withSigmoidal': 0.309}, 'Cevimeline': {'CNS_pMPO': 0.5, 'CNS_pMPO_withSigmoidal': 0.454}, 'Chlophedianol': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.853}, 'Chloramphenicol': {'CNS_pMPO': 0.32, 'CNS_pMPO_withSigmoidal': 0.188}, 'Chlordiazepoxide': {'CNS_pMPO': 0.88, 'CNS_pMPO_withSigmoidal': 0.879}, 'Chlormezanone': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.629}, 'Chlorphentermine': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.65}, 'Chlorpromazine': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.587}, 'Chlorprothixene': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.535}, 'Chlorzoxazone': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.751}, 'Cilostazol': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.445}, 'Cinacalcet': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.66}, 'Citalopram': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.681}, 'Clemastine': {'CNS_pMPO': 0.6, 'CNS_pMPO_withSigmoidal': 0.58}, 'Clidinium': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.71}, 'Clobazam': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.742}, 'Clomipramine': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.582}, 'Clonazepam': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.548}, 'Clozapine': {'CNS_pMPO': 0.91, 'CNS_pMPO_withSigmoidal': 0.807}, 'Cycloserine': {'CNS_pMPO': 0.55, 'CNS_pMPO_withSigmoidal': 0.296}, 'Danazol': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.776}, 'Dapsone': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.168}, 'Dasatinib': {'CNS_pMPO': 0.31, 'CNS_pMPO_withSigmoidal': 0.127}, 'Desloratadine': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.776}, 'Desvenlafaxine': {'CNS_pMPO': 0.81, 'CNS_pMPO_withSigmoidal': 0.58}, 'Dexmethylphenidate': {'CNS_pMPO': 0.88, 'CNS_pMPO_withSigmoidal': 0.782}, 'Dextromethorphan': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.65}, 'Dicyclomine': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.712}, 'Diethylpropion': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.662}, 'Difenoxin': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.755}, 'Dihydrocodeine': {'CNS_pMPO': 0.95, 'CNS_pMPO_withSigmoidal': 0.857}, 'Diltiazem': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.685}, 'Diphenylpyraline': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.627}, 'Disulfiram': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.469}, 'Dolasetron': {'CNS_pMPO': 0.92, 'CNS_pMPO_withSigmoidal': 0.816}, 'Donepezil': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.681}, 'Dronabinol': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.675}, 'Dronedarone': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.386}, 'Duloxetine': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.8}, 'Dutasteride': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.346}, 'Efavirenz': {'CNS_pMPO': 0.76, 'CNS_pMPO_withSigmoidal': 0.763}, 'Eletriptan': {'CNS_pMPO': 0.87, 'CNS_pMPO_withSigmoidal': 0.686}, 'Eliglustat': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.402}, 'Entacapone': {'CNS_pMPO': 0.4, 'CNS_pMPO_withSigmoidal': 0.168}, 'Enzalutamide': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.468}, 'Erlotinib': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.499}, 'Eszopiclone': {'CNS_pMPO': 0.51, 'CNS_pMPO_withSigmoidal': 0.155}, 'Ethchlorvynol': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.615}, 'Ethinamate': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.776}, 'Ethionamide': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.726}, 'Ethopropazine': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.566}, 'Ethosuximide': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.631}, 'Ethotoin': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.691}, 'Ezogabine': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.242}, 'Famotidine': {'CNS_pMPO': 0.31, 'CNS_pMPO_withSigmoidal': 0.255}, 'Febuxostat': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.564}, 'Felbamate': {'CNS_pMPO': 0.44, 'CNS_pMPO_withSigmoidal': 0.229}, 'Felodipine': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.586}, 'Fenofibrate': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.595}, 'Fentanyl': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.715}, 'Finasteride': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.468}, 'Fingolimod': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.625}, 'Flibanserin': {'CNS_pMPO': 0.86, 'CNS_pMPO_withSigmoidal': 0.765}, 'Fluconazole': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.448}, 'Flucytosine': {'CNS_pMPO': 0.46, 'CNS_pMPO_withSigmoidal': 0.268}, 'Fluoxetine': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.82}, 'Flurazepam': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.66}, 'Flurbiprofen': {'CNS_pMPO': 0.81, 'CNS_pMPO_withSigmoidal': 0.719}, 'Fluvoxamine': {'CNS_pMPO': 0.96, 'CNS_pMPO_withSigmoidal': 0.919}, 'Frovatriptan': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.37}, 'Gabapentin': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.42}, 'Galantamine': {'CNS_pMPO': 0.97, 'CNS_pMPO_withSigmoidal': 0.926}, 'Gemfibrozil': {'CNS_pMPO': 0.86, 'CNS_pMPO_withSigmoidal': 0.857}, 'Granisetron': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.819}, 'Guanabenz': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.44}, 'Guanfacine': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.294}, 'Halazepam': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.582}, 'Halofantrine': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.576}, 'Haloperidol': {'CNS_pMPO': 0.93, 'CNS_pMPO_withSigmoidal': 0.853}, 'Hydroxyzine': {'CNS_pMPO': 0.92, 'CNS_pMPO_withSigmoidal': 0.837}, 'Ibuprofen': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.66}, 'Iloperidone': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.631}, 'Indomethacin': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.57}, 'Isocarboxazid': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.401}, 'Isotretinoin': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.784}, 'Isradipine': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.394}, 'Ketoprofen': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.731}, 'Lacosamide': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.387}, 'Lamotrigine': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.151}, 'Lenalidomide': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.152}, 'Letrozole': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.478}, 'Levamisole': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.466}, 'Levetiracetam': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.6}, 'Levodopa': {'CNS_pMPO': 0.26, 'CNS_pMPO_withSigmoidal': 0.192}, 'Levomepromazine': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.649}, 'Levomethadyl': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.685}, 'Levomilnacipran': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.795}, 'Levopropoxyphene': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.714}, 'Lidocaine': {'CNS_pMPO': 0.9, 'CNS_pMPO_withSigmoidal': 0.897}, 'Lofexidine': {'CNS_pMPO': 0.9, 'CNS_pMPO_withSigmoidal': 0.897}, 'Lomustine': {'CNS_pMPO': 0.81, 'CNS_pMPO_withSigmoidal': 0.789}, 'Loratadine': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.497}, 'Lorazepam': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.579}, 'Lorcainide': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.6}, 'Lorcaserin': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.556}, 'Losartan': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.137}, 'Lovastatin': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.469}, 'Lurasidone': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.659}, 'Maprotiline': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.734}, 'Maraviroc': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.671}, 'Mazindol': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.721}, 'Mecamylamine': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.489}, 'Mefloquine': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.548}, 'Memantine': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.613}, 'Meperidine': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.769}, 'Mesoridazine': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.585}, 'Metergoline': {'CNS_pMPO': 0.84, 'CNS_pMPO_withSigmoidal': 0.757}, 'Metformin': {'CNS_pMPO': 0.17, 'CNS_pMPO_withSigmoidal': 0.041}, 'Methamphetamine': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.503}, 'Metharbital': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.665}, 'Methdilazine': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.595}, 'Methixene': {'CNS_pMPO': 0.55, 'CNS_pMPO_withSigmoidal': 0.555}, 'Methocarbamol': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.139}, 'Methylergonovine': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.587}, 'Methyprylon': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.664}, 'Metoclopramide': {'CNS_pMPO': 0.76, 'CNS_pMPO_withSigmoidal': 0.487}, 'Metoprolol': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.588}, 'Metyrapone': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.67}, 'Mexiletine': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.753}, 'Mifepristone': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.614}, 'Minaprine': {'CNS_pMPO': 0.99, 'CNS_pMPO_withSigmoidal': 0.885}, 'Mirtazapine': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.71}, 'Moclobemide': {'CNS_pMPO': 0.94, 'CNS_pMPO_withSigmoidal': 0.733}, 'Molindone': {'CNS_pMPO': 0.97, 'CNS_pMPO_withSigmoidal': 0.872}, 'Nabilone': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.644}, 'Nalmefene': {'CNS_pMPO': 0.86, 'CNS_pMPO_withSigmoidal': 0.718}, 'Naloxegol': {'CNS_pMPO': 0.28, 'CNS_pMPO_withSigmoidal': 0.01}, 'Naratriptan': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.503}, 'Nebivolol': {'CNS_pMPO': 0.6, 'CNS_pMPO_withSigmoidal': 0.411}, 'Nefazodone': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.686}, 'Nemonapride': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.597}, 'Nicardipine': {'CNS_pMPO': 0.47, 'CNS_pMPO_withSigmoidal': 0.326}, 'Nicergoline': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.635}, 'Nicotine': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.467}, 'Nifedipine': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.492}, 'Nortriptyline': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.718}, 'Noscapine': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.344}, 'Ondansetron': {'CNS_pMPO': 0.85, 'CNS_pMPO_withSigmoidal': 0.833}, 'Ospemifene': {'CNS_pMPO': 0.64, 'CNS_pMPO_withSigmoidal': 0.549}, 'Oxprenolol': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.586}, 'Oxybate': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.347}, 'Oxybutynin': {'CNS_pMPO': 0.9, 'CNS_pMPO_withSigmoidal': 0.864}, 'Oxyphencyclimine': {'CNS_pMPO': 0.88, 'CNS_pMPO_withSigmoidal': 0.847}, 'Palonosetron': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.601}, 'Panobinostat': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.412}, 'Paramethadione': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.526}, 'Paroxetine': {'CNS_pMPO': 0.94, 'CNS_pMPO_withSigmoidal': 0.939}, 'Pazopanib': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.137}, 'Penbutolol': {'CNS_pMPO': 0.83, 'CNS_pMPO_withSigmoidal': 0.699}, 'Pentazocine': {'CNS_pMPO': 0.84, 'CNS_pMPO_withSigmoidal': 0.843}, 'Pentoxifylline': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.387}, 'Perampanel': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.658}, 'Pergolide': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.791}, 'Perindopril': {'CNS_pMPO': 0.5, 'CNS_pMPO_withSigmoidal': 0.067}, 'Phenacemide': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.233}, 'Phenelzine': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.463}, 'Phenmetrazine': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.636}, 'Phenobarbital': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.348}, 'Phenoxybenzamine': {'CNS_pMPO': 0.57, 'CNS_pMPO_withSigmoidal': 0.475}, 'Phenylpropanolamine': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.499}, 'Phenytoin': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.582}, 'Pimozide': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.678}, 'Pioglitazone': {'CNS_pMPO': 0.86, 'CNS_pMPO_withSigmoidal': 0.705}, 'Pirfenidone': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.528}, 'Pramipexole': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.537}, 'Prasugrel': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.614}, 'Praziquantel': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.734}, 'Procainamide': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.531}, 'Procarbazine': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.556}, 'Prochlorperazine': {'CNS_pMPO': 0.56, 'CNS_pMPO_withSigmoidal': 0.478}, 'Propofol': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.577}, 'Propranolol': {'CNS_pMPO': 0.81, 'CNS_pMPO_withSigmoidal': 0.592}, 'Pseudoephedrine': {'CNS_pMPO': 0.61, 'CNS_pMPO_withSigmoidal': 0.433}, 'Pyrazinamide': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.497}, 'Pyrilamine': {'CNS_pMPO': 0.76, 'CNS_pMPO_withSigmoidal': 0.656}, 'Pyrimethamine': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.322}, 'Pyrvinium': {'CNS_pMPO': 0.38, 'CNS_pMPO_withSigmoidal': 0.294}, 'Quetiapine': {'CNS_pMPO': 0.93, 'CNS_pMPO_withSigmoidal': 0.742}, 'Ramelteon': {'CNS_pMPO': 0.83, 'CNS_pMPO_withSigmoidal': 0.828}, 'Rasagiline': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.672}, 'Reboxetine': {'CNS_pMPO': 0.97, 'CNS_pMPO_withSigmoidal': 0.974}, 'Remifentanil': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.385}, 'Riluzole': {'CNS_pMPO': 0.84, 'CNS_pMPO_withSigmoidal': 0.828}, 'Rimantadine': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.614}, 'Rimonabant': {'CNS_pMPO': 0.66, 'CNS_pMPO_withSigmoidal': 0.611}, 'Risperidone': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.677}, 'Rivastigmine': {'CNS_pMPO': 0.77, 'CNS_pMPO_withSigmoidal': 0.679}, 'Rizatriptan': {'CNS_pMPO': 0.88, 'CNS_pMPO_withSigmoidal': 0.841}, 'Rofecoxib': {'CNS_pMPO': 0.74, 'CNS_pMPO_withSigmoidal': 0.719}, 'Ropinirole': {'CNS_pMPO': 0.89, 'CNS_pMPO_withSigmoidal': 0.869}, 'Ropivacaine': {'CNS_pMPO': 0.91, 'CNS_pMPO_withSigmoidal': 0.916}, 'Rufinamide': {'CNS_pMPO': 0.71, 'CNS_pMPO_withSigmoidal': 0.509}, 'Saxagliptin': {'CNS_pMPO': 0.58, 'CNS_pMPO_withSigmoidal': 0.284}, 'Selegiline': {'CNS_pMPO': 0.53, 'CNS_pMPO_withSigmoidal': 0.514}, 'Sertindole': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.747}, 'Sertraline': {'CNS_pMPO': 0.76, 'CNS_pMPO_withSigmoidal': 0.761}, 'Sulindac': {'CNS_pMPO': 0.83, 'CNS_pMPO_withSigmoidal': 0.691}, 'Suvorexant': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.259}, 'Tacrine': {'CNS_pMPO': 0.87, 'CNS_pMPO_withSigmoidal': 0.854}, 'Tadalafil': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.501}, 'Talipexole': {'CNS_pMPO': 0.9, 'CNS_pMPO_withSigmoidal': 0.726}, 'Tamoxifen': {'CNS_pMPO': 0.52, 'CNS_pMPO_withSigmoidal': 0.441}, 'Tapentadol': {'CNS_pMPO': 0.8, 'CNS_pMPO_withSigmoidal': 0.776}, 'Tasimelteon': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.826}, 'Telmisartan': {'CNS_pMPO': 0.63, 'CNS_pMPO_withSigmoidal': 0.441}, 'Temozolomide': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.342}, 'Terbinafine': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.387}, 'Terguride': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.681}, 'Teriflunomide': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.292}, 'Tetrabenazine': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.694}, 'Thiopental': {'CNS_pMPO': 0.68, 'CNS_pMPO_withSigmoidal': 0.489}, 'Thiothixene': {'CNS_pMPO': 0.72, 'CNS_pMPO_withSigmoidal': 0.674}, 'Tiagabine': {'CNS_pMPO': 0.89, 'CNS_pMPO_withSigmoidal': 0.809}, 'Tianeptine': {'CNS_pMPO': 0.54, 'CNS_pMPO_withSigmoidal': 0.105}, 'Timolol': {'CNS_pMPO': 0.62, 'CNS_pMPO_withSigmoidal': 0.299}, 'Tizanidine': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.55}, 'Tocainide': {'CNS_pMPO': 0.76, 'CNS_pMPO_withSigmoidal': 0.532}, 'Tolcapone': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.287}, 'Tolmetin': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.714}, 'Topotecan': {'CNS_pMPO': 0.49, 'CNS_pMPO_withSigmoidal': 0.122}, 'Tramadol': {'CNS_pMPO': 0.87, 'CNS_pMPO_withSigmoidal': 0.774}, 'Tranylcypromine': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.634}, 'Trazodone': {'CNS_pMPO': 0.82, 'CNS_pMPO_withSigmoidal': 0.75}, 'Trimipramine': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.592}, 'Triprolidine': {'CNS_pMPO': 0.67, 'CNS_pMPO_withSigmoidal': 0.674}, 'Troglitazone': {'CNS_pMPO': 0.43, 'CNS_pMPO_withSigmoidal': 0.091}, 'Tropisetron': {'CNS_pMPO': 0.94, 'CNS_pMPO_withSigmoidal': 0.87}, 'Valdecoxib': {'CNS_pMPO': 0.7, 'CNS_pMPO_withSigmoidal': 0.555}, 'Valproic acid': {'CNS_pMPO': 0.69, 'CNS_pMPO_withSigmoidal': 0.602}, 'Varenicline': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.755}, 'Vilazodone': {'CNS_pMPO': 0.37, 'CNS_pMPO_withSigmoidal': 0.123}, 'Vinpocetine': {'CNS_pMPO': 0.73, 'CNS_pMPO_withSigmoidal': 0.702}, 'Voriconazole': {'CNS_pMPO': 0.75, 'CNS_pMPO_withSigmoidal': 0.471}, 'Vorinostat': {'CNS_pMPO': 0.48, 'CNS_pMPO_withSigmoidal': 0.206}, 'Vortioxetine': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.786}, 'Zaleplon': {'CNS_pMPO': 0.65, 'CNS_pMPO_withSigmoidal': 0.42}, 'Ziprasidone': {'CNS_pMPO': 0.89, 'CNS_pMPO_withSigmoidal': 0.813}, 'Zolmitriptan': {'CNS_pMPO': 0.78, 'CNS_pMPO_withSigmoidal': 0.58}, 'Zolpidem': {'CNS_pMPO': 0.79, 'CNS_pMPO_withSigmoidal': 0.706}, 'Zonisamide': {'CNS_pMPO': 0.59, 'CNS_pMPO_withSigmoidal': 0.369}} # The reference intermediate CSV values from the model building in Hakan's paper REFERENCE_INTERMEDIATE_VALUES_CSV = """name,p_value,good_mean,good_std,bad_mean,bad_std,good_nsamples,bad_nsamples,cutoff,b,c,z,w TPSA,1.53302825374e-37,50.7017727635,28.3039124335,86.6483879508,39.3310947469,299,366,65.7447200619,0.151695487107,0.793679783519,0.531479431818,0.333254 HBD,2.6491093047e-25,1.08695652174,0.891691734071,2.03825136612,1.35245625655,299,366,1.46494485092,0.0940054673368,9.51515104848e-05,0.423900227773,0.265798 MW,2.32807969696e-10,304.703053545,94.0468619927,362.423958393,135.961231175,299,366,328.304266431,0.0319893623019,0.829287962918,0.250951625455,0.157354 cLogD_ACD_v15,2.66954664227e-07,1.80861953019,1.93092146089,0.838442630309,2.84658487103,297,366,1.41650379728,0.0208331236351,131996.985929,0.203071818744,0.127332 mbpKa,0.000219929547677,8.07348212768,2.20894961173,7.17077320052,2.65960541699,224,194,7.66390710544,0.0173381729161,1459310.7835,0.185416190602,0.116262 """ ######################################################################################################################## ######################################################################################################################## # Transformation of the intermediate CSV values above into something usable def _read_csv_to_dict(csv_text: str) -> dict: data = {} csv_io = StringIO(csv_text) reader = csv.DictReader(csv_io, delimiter=',') for row in reader: name = row.pop('name') data[name] = row return data REFERENCE_INTERMEDIATE_VALUES = _read_csv_to_dict(REFERENCE_INTERMEDIATE_VALUES_CSV) ######################################################################################################################## ######################################################################################################################## class test_suite001_building(unittest.TestCase): def setUp(self): self.df =
pd.read_pickle(REFERENCE_DATAFRAME)
pandas.read_pickle
from lxml import etree import numpy as np import pandas as pd import re from sklearn.model_selection import train_test_split import Bio from Bio import SeqIO from pathlib import Path import glob #console from tqdm import tqdm as tqdm import re import os import itertools #jupyter #from tqdm import tqdm_notebook as tqdm #not supported in current tqdm version #from tqdm.autonotebook import tqdm #import logging #logging.getLogger('proteomics_utils').addHandler(logging.NullHandler()) #logger=logging.getLogger('proteomics_utils') #for cd-hit import subprocess from sklearn.metrics import f1_score import hashlib #for mhcii datasets from utils.dataset_utils import split_clusters_single,pick_all_members_from_clusters ####################################################################################################### #Parsing all sorts of protein data ####################################################################################################### def parse_uniprot_xml(filename,max_entries=0,parse_features=[]): '''parse uniprot xml file, which contains the full uniprot information (e.g. ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz) using custom low-level https://www.ibm.com/developerworks/xml/library/x-hiperfparse/ c.f. for full format https://www.uniprot.org/docs/uniprot.xsd parse_features: a list of strings specifying the kind of features to be parsed such as "modified residue" for phosphorylation sites etc. (see https://www.uniprot.org/help/mod_res) (see the xsd file for all possible entries) ''' context = etree.iterparse(str(filename), events=["end"], tag="{http://uniprot.org/uniprot}entry") context = iter(context) rows =[] for _, elem in tqdm(context): parse_func_uniprot(elem,rows,parse_features=parse_features) elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def parse_func_uniprot(elem, rows, parse_features=[]): '''extracting a single record from uniprot xml''' seqs = elem.findall("{http://uniprot.org/uniprot}sequence") sequence="" #print(seqs) for s in seqs: sequence=s.text #print("sequence",sequence) if sequence =="" or str(sequence)=="None": continue else: break #Sequence & fragment sequence="" fragment_map = {"single":1, "multiple":2} fragment = 0 seqs = elem.findall("{http://uniprot.org/uniprot}sequence") for s in seqs: if 'fragment' in s.attrib: fragment = fragment_map[s.attrib["fragment"]] sequence=s.text if sequence != "": break #print("sequence:",sequence) #print("fragment:",fragment) #dataset dataset=elem.attrib["dataset"] #accession accession = "" accessions = elem.findall("{http://uniprot.org/uniprot}accession") for a in accessions: accession=a.text if accession !="":#primary accession! https://www.uniprot.org/help/accession_numbers!!! break #print("accession",accession) #protein existence (PE in plain text) proteinexistence_map = {"evidence at protein level":5,"evidence at transcript level":4,"inferred from homology":3,"predicted":2,"uncertain":1} proteinexistence = -1 accessions = elem.findall("{http://uniprot.org/uniprot}proteinExistence") for a in accessions: proteinexistence=proteinexistence_map[a.attrib["type"]] break #print("protein existence",proteinexistence) #name name = "" names = elem.findall("{http://uniprot.org/uniprot}name") for n in names: name=n.text break #print("name",name) #organism organism = "" organisms = elem.findall("{http://uniprot.org/uniprot}organism") for s in organisms: s1=s.findall("{http://uniprot.org/uniprot}name") for s2 in s1: if(s2.attrib["type"]=='scientific'): organism=s2.text break if organism !="": break #print("organism",organism) #dbReference: PMP,GO,Pfam, EC ids = elem.findall("{http://uniprot.org/uniprot}dbReference") pfams = [] gos =[] ecs = [] pdbs =[] for i in ids: #print(i.attrib["id"],i.attrib["type"]) #cf. http://geneontology.org/external2go/uniprotkb_kw2go for Uniprot Keyword<->GO mapping #http://geneontology.org/ontology/go-basic.obo for List of go terms #https://www.uniprot.org/help/keywords_vs_go keywords vs. go if(i.attrib["type"]=="GO"): tmp1 = i.attrib["id"] for i2 in i: if i2.attrib["type"]=="evidence": tmp2= i2.attrib["value"] gos.append([int(tmp1[3:]),int(tmp2[4:])]) #first value is go code, second eco evidence ID (see mapping below) elif(i.attrib["type"]=="Pfam"): pfams.append(i.attrib["id"]) elif(i.attrib["type"]=="EC"): ecs.append(i.attrib["id"]) elif(i.attrib["type"]=="PDB"): pdbs.append(i.attrib["id"]) #print("PMP: ", pmp) #print("GOs:",gos) #print("Pfams:",pfam) #print("ECs:",ecs) #print("PDBs:",pdbs) #keyword keywords = elem.findall("{http://uniprot.org/uniprot}keyword") keywords_lst = [] #print(keywords) for k in keywords: keywords_lst.append(int(k.attrib["id"][-4:]))#remove the KW- #print("keywords: ",keywords_lst) #comments = elem.findall("{http://uniprot.org/uniprot}comment") #comments_lst=[] ##print(comments) #for c in comments: # if(c.attrib["type"]=="function"): # for c1 in c: # comments_lst.append(c1.text) #print("function: ",comments_lst) #ptm etc if len(parse_features)>0: ptms=[] features = elem.findall("{http://uniprot.org/uniprot}feature") for f in features: if(f.attrib["type"] in parse_features):#only add features of the requested type locs=[] for l in f[0]: locs.append(int(l.attrib["position"])) ptms.append([f.attrib["type"],f.attrib["description"] if 'description' in f.attrib else "NaN",locs, f.attrib['evidence'] if 'evidence' in f.attrib else "NaN"]) #print(ptms) data_dict={"ID": accession, "name": name, "dataset":dataset, "proteinexistence":proteinexistence, "fragment":fragment, "organism":organism, "ecs": ecs, "pdbs": pdbs, "pfams" : pfams, "keywords": keywords_lst, "gos": gos, "sequence": sequence} if len(parse_features)>0: data_dict["features"]=ptms #print("all children:") #for c in elem: # print(c) # print(c.tag) # print(c.attrib) rows.append(data_dict) def parse_uniprot_seqio(filename,max_entries=0): '''parse uniprot xml file using the SeqIO parser (smaller functionality e.g. does not extract evidence codes for GO)''' sprot = SeqIO.parse(filename, "uniprot-xml") rows = [] for p in tqdm(sprot): accession = str(p.name) name = str(p.id) dataset = str(p.annotations['dataset']) organism = str(p.annotations['organism']) ecs, pdbs, pfams, gos = [],[],[],[] for ref in p.dbxrefs: k = ref.split(':') if k[0] == 'GO': gos.append(':'.join(k[1:])) elif k[0] == 'Pfam': pfams.append(k[1]) elif k[0] == 'EC': ecs.append(k[1]) elif k[0] == 'PDB': pdbs.append(k[1:]) if 'keywords' in p.annotations.keys(): keywords = p.annotations['keywords'] else: keywords = [] sequence = str(p.seq) row = { 'ID': accession, 'name':name, 'dataset':dataset, 'organism':organism, 'ecs':ecs, 'pdbs':pdbs, 'pfams':pfams, 'keywords':keywords, 'gos':gos, 'sequence':sequence} rows.append(row) if(max_entries>0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def filter_human_proteome(df_sprot): '''extracts human proteome from swissprot proteines in DataFrame with column organism ''' is_Human = np.char.find(df_sprot.organism.values.astype(str), "Human") !=-1 is_human = np.char.find(df_sprot.organism.values.astype(str), "human") !=-1 is_sapiens = np.char.find(df_sprot.organism.values.astype(str), "sapiens") !=-1 is_Sapiens = np.char.find(df_sprot.organism.values.astype(str), "Sapiens") !=-1 return df_sprot[is_Human|is_human|is_sapiens|is_Sapiens] def filter_aas(df, exclude_aas=["B","J","X","Z"]): '''excludes sequences containing exclude_aas: B = D or N, J = I or L, X = unknown, Z = E or Q''' return df[~df.sequence.apply(lambda x: any([e in x for e in exclude_aas]))] ###################################################################################################### def explode_clusters_df(df_cluster): '''aux. function to convert cluster dataframe from one row per cluster to one row per ID''' df=df_cluster.reset_index(level=0) rows = [] if('repr_accession' in df.columns):#include representative if it exists _ = df.apply(lambda row: [rows.append([nn,row['entry_id'], row['repr_accession']==nn ]) for nn in row.members], axis=1) df_exploded = pd.DataFrame(rows, columns=['ID',"cluster_ID","representative"]).set_index(['ID']) else: _ = df.apply(lambda row: [rows.append([nn,row['entry_id']]) for nn in row.members], axis=1) df_exploded = pd.DataFrame(rows, columns=['ID',"cluster_ID"]).set_index(['ID']) return df_exploded def parse_uniref(filename,max_entries=0,parse_sequence=False, df_selection=None, exploded=True): '''parse uniref (clustered sequences) xml ftp://ftp.ebi.ac.uk/pub/databases/uniprot/uniref/uniref50/uniref50.xml.gz unzipped 100GB file using custom low-level parser https://www.ibm.com/developerworks/xml/library/x-hiperfparse/ max_entries: only return first max_entries entries (0=all) parse_sequences: return also representative sequence df_selection: only include entries with accessions that are present in df_selection.index (None keeps all records) exploded: return one row per ID instead of one row per cluster c.f. for full format ftp://ftp.ebi.ac.uk/pub/databases/uniprot/uniref/uniref50/README ''' #issue with long texts https://stackoverflow.com/questions/30577796/etree-incomplete-child-text #wait for end rather than start tag context = etree.iterparse(str(filename), events=["end"], tag="{http://uniprot.org/uniref}entry") context = iter(context) rows =[] for _, elem in tqdm(context): parse_func_uniref(elem,rows,parse_sequence=parse_sequence, df_selection=df_selection) elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("entry_id") df["num_members"]=df.members.apply(len) if(exploded): return explode_clusters_df(df) return df def parse_func_uniref(elem, rows, parse_sequence=False, df_selection=None): '''extract a single uniref entry''' #entry ID entry_id = elem.attrib["id"] #print("cluster id",entry_id) #name name = "" names = elem.findall("{http://uniprot.org/uniref}name") for n in names: name=n.text[9:] break #print("cluster name",name) members=[] #representative member repr_accession = "" repr_sequence ="" repr = elem.findall("{http://uniprot.org/uniref}representativeMember") for r in repr: s1=r.findall("{http://uniprot.org/uniref}dbReference") for s2 in s1: for s3 in s2: if s3.attrib["type"]=="UniProtKB accession": if(repr_accession == ""): repr_accession = s3.attrib["value"]#pick primary accession members.append(s3.attrib["value"]) if parse_sequence is True: s1=r.findall("{http://uniprot.org/uniref}sequence") for s2 in s1: repr_sequence = s2.text if repr_sequence !="": break #print("representative member accession:",repr_accession) #print("representative member sequence:",repr_sequence) #all members repr = elem.findall("{http://uniprot.org/uniref}member") for r in repr: s1=r.findall("{http://uniprot.org/uniref}dbReference") for s2 in s1: for s3 in s2: if s3.attrib["type"]=="UniProtKB accession": members.append(s3.attrib["value"]) #add primary and secondary accessions #print("members", members) if(not(df_selection is None)): #apply selection filter members = [y for y in members if y in df_selection.index] #print("all children") #for c in elem: # print(c) # print(c.tag) # print(c.attrib) if(len(members)>0): data_dict={"entry_id": entry_id, "name": name, "repr_accession":repr_accession, "members":members} if parse_sequence is True: data_dict["repr_sequence"]=repr_sequence rows.append(data_dict) ########################################################################################################################### #proteins and peptides from fasta ########################################################################################################################### def parse_uniprot_fasta(fasta_path, max_entries=0): '''parse uniprot from fasta file (which contains less information than the corresponding xml but is also much smaller e.g. ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta)''' rows=[] dataset_dict={"sp":"Swiss-Prot","tr":"TrEMBL"} for seq_record in tqdm(SeqIO.parse(fasta_path, "fasta")): sid=seq_record.id.split("|") accession = sid[1] dataset = dataset_dict[sid[0]] name = sid[2] description = seq_record.description sequence=str(seq_record.seq) #print(description) m = re.search('PE=\d', description) pe=int(m.group(0).split("=")[1]) m = re.search('OS=.* (?=OX=)', description) organism=m.group(0).split("=")[1].strip() data_dict={"ID": accession, "name": name, "dataset":dataset, "proteinexistence":pe, "organism":organism, "sequence": sequence} rows.append(data_dict) if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def proteins_from_fasta(fasta_path): '''load proteins (as seqrecords) from fasta (just redirects)''' return seqrecords_from_fasta(fasta_path) def seqrecords_from_fasta(fasta_path): '''load seqrecords from fasta file''' seqrecords = list(SeqIO.parse(fasta_path, "fasta")) return seqrecords def seqrecords_to_sequences(seqrecords): '''converts biopythons seqrecords into a plain list of sequences''' return [str(p.seq) for p in seqrecords] def sequences_to_fasta(sequences, fasta_path, sequence_id_prefix="s"): '''save plain list of sequences to fasta''' with open(fasta_path, "w") as output_handle: for i,s in tqdm(enumerate(sequences)): record = Bio.SeqRecord.SeqRecord(Bio.Seq.Seq(s), id=sequence_id_prefix+str(i), description="") SeqIO.write(record, output_handle, "fasta") def df_to_fasta(df, fasta_path): '''Save column "sequence" from pandas DataFrame to fasta file using the index of the DataFrame as ID. Preserves original IDs in contrast to the function sequences_to_fasta()''' with open(fasta_path, "w") as output_handle: for row in df.iterrows(): record = Bio.SeqRecord.SeqRecord(Bio.Seq.Seq(row[1]["sequence"]), id=str(row[0]), description="") SeqIO.write(record, output_handle, "fasta") def sequences_to_df(sequences, sequence_id_prefix="s"): data = {'ID': [(sequence_id_prefix+str(i) if sequence_id_prefix!="" else i) for i in range(len(sequences))], 'sequence': sequences} df=pd.DataFrame.from_dict(data) return df.set_index("ID") def fasta_to_df(fasta_path): seqs=SeqIO.parse(fasta_path, "fasta") res=[] for s in seqs: res.append({"ID":s.id,"sequence":str(s.seq)}) return pd.DataFrame(res) def peptides_from_proteins(protein_seqrecords, miss_cleavage=2,min_length=5,max_length=300): '''extract peptides from proteins seqrecords by trypsin digestion min_length: only return peptides of length min_length or greater (0 for all) max_length: only return peptides of length max_length or smaller (0 for all) ''' peptides = [] for seq in tqdm(protein_seqrecords): peps = trypsin_digest(str(seq.seq), miss_cleavage) peptides.extend(peps) tmp=list(set(peptides)) if(min_length>0 and max_length>0): tmp=[t for t in tmp if (len(t)>=min_length and len(t)<=max_length)] elif(min_length==0 and max_length>0): tmp=[t for t in tmp if len(t)<=max_length] elif(min_length>0 and max_length==0): tmp=[t for t in tmp if len(t)>=min_length] print("Extracted",len(tmp),"unique peptides.") return tmp def trypsin_digest(proseq, miss_cleavage): '''trypsin digestion of protein seqrecords TRYPSIN from https://github.com/yafeng/trypsin/blob/master/trypsin.py''' peptides=[] cut_sites=[0] for i in range(0,len(proseq)-1): if proseq[i]=='K' and proseq[i+1]!='P': cut_sites.append(i+1) elif proseq[i]=='R' and proseq[i+1]!='P': cut_sites.append(i+1) if cut_sites[-1]!=len(proseq): cut_sites.append(len(proseq)) if len(cut_sites)>2: if miss_cleavage==0: for j in range(0,len(cut_sites)-1): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) elif miss_cleavage==1: for j in range(0,len(cut_sites)-2): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+2]]) peptides.append(proseq[cut_sites[-2]:cut_sites[-1]]) elif miss_cleavage==2: for j in range(0,len(cut_sites)-3): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+2]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+3]]) peptides.append(proseq[cut_sites[-3]:cut_sites[-2]]) peptides.append(proseq[cut_sites[-3]:cut_sites[-1]]) peptides.append(proseq[cut_sites[-2]:cut_sites[-1]]) else: #there is no trypsin site in the protein sequence peptides.append(proseq) return list(set(peptides)) ########################################################################### # Processing CD-HIT clusters ########################################################################### def clusters_df_from_sequence_df(df,threshold=[1.0,0.9,0.5],alignment_coverage=[0.0,0.9,0.8],memory=16000, threads=8, exploded=True, verbose=False): '''create clusters df from sequence df (using cd hit) df: dataframe with sequence information threshold: similarity threshold for clustering (pass a list for hierarchical clustering e.g [1.0, 0.9, 0.5]) alignment_coverage: required minimum coverage of the longer sequence (to mimic uniref https://www.uniprot.org/help/uniref) memory: limit available memory threads: limit number of threads exploded: return exploded view of the dataframe (one row for every member vs. one row for every cluster) uses CD-HIT for clustering https://github.com/weizhongli/cdhit/wiki/3.-User's-Guide copy cd-hit into ~/bin TODO: extend to psi-cd-hit for thresholds smaller than 0.4 ''' if verbose: print("Exporting original dataframe as fasta...") fasta_file = "cdhit.fasta" df_original_index = list(df.index) #reindex the dataframe since cdhit can only handle 19 letters df = df.reset_index(drop=True) df_to_fasta(df, fasta_file) if(not(isinstance(threshold, list))): threshold=[threshold] alignment_coverage=[alignment_coverage] assert(len(threshold)==len(alignment_coverage)) fasta_files=[] for i,thr in enumerate(threshold): if(thr< 0.4):#use psi-cd-hit here print("thresholds lower than 0.4 require psi-cd-hit.pl require psi-cd-hit.pl (building on BLAST) which is currently not supported") return pd.DataFrame() elif(thr<0.5): wl = 2 elif(thr<0.6): wl = 3 elif(thr<0.7): wl = 4 else: wl = 5 aL = alignment_coverage[i] #cd-hit -i nr -o nr80 -c 0.8 -n 5 #cd-hit -i nr80 -o nr60 -c 0.6 -n 4 #psi-cd-hit.pl -i nr60 -o nr30 -c 0.3 if verbose: print("Clustering using cd-hit at threshold", thr, "using wordlength", wl, "and alignment coverage", aL, "...") fasta_file_new= "cdhit"+str(int(thr*100))+".fasta" command = "cd-hit -i "+fasta_file+" -o "+fasta_file_new+" -c "+str(thr)+" -n "+str(wl)+" -aL "+str(aL)+" -M "+str(memory)+" -T "+str(threads) if(verbose): print(command) process= subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) output, error = process.communicate() if(verbose): print(output) if(error !=""): print(error) fasta_files.append(fasta_file) if(i==len(threshold)-1): fasta_files.append(fasta_file_new) fasta_file= fasta_file_new #join results from all clustering steps if verbose: print("Joining results from different clustering steps...") for i,f in enumerate(reversed(fasta_files[1:])): if verbose: print("Processing",f,"...") if(i==0): df_clusters = parse_cdhit_clstr(f+".clstr",exploded=False) else: df_clusters2 = parse_cdhit_clstr(f+".clstr",exploded=False) for id,row in df_clusters.iterrows(): members = row['members'] new_members = [list(df_clusters2[df_clusters2.repr_accession==y].members)[0] for y in members] new_members = [item for sublist in new_members for item in sublist] #flattened row['members']=new_members df_clusters["members"]=df_clusters["members"].apply(lambda x:[df_original_index[int(y)] for y in x]) df_clusters["repr_accession"]=df_clusters["repr_accession"].apply(lambda x:df_original_index[int(x)]) if(exploded): return explode_clusters_df(df_clusters) return df_clusters def parse_cdhit_clstr(filename, exploded=True): '''Aux. Function (used by clusters_df_from_sequence_df) to parse CD-HITs clstr output file in a similar way as the uniref data for the format see https://github.com/weizhongli/cdhit/wiki/3.-User's-Guide#CDHIT exploded: single row for every ID instead of single for every cluster ''' def save_cluster(rows,members,representative): if(len(members)>0): rows.append({"entry_id":filename[:-6]+"_"+representative, "members":members, "repr_accession":representative}) rows=[] with open(filename, 'r') as f: members=[] representative="" for l in tqdm(f): if(l[0]==">"): save_cluster(rows,members,representative) members=[] representative="" else: member=(l.split(">")[1]).split("...")[0] members.append(member) if "*" in l: representative = member save_cluster(rows,members,representative) df=pd.DataFrame(rows).set_index("entry_id") if(exploded): return explode_clusters_df(df) return df ########################################################################### # MHC DATA ########################################################################### ######### Helper functions ########## def _label_binder(data, threshold=500, measurement_column="meas"): # Drop entries above IC50 > 500nM with inequality < (ambiguous) to_drop = (( (data['inequality']=='<')&(data[measurement_column]>threshold))|((data['inequality']=='>')&(data[measurement_column]<threshold))).mean() if to_drop > 0: print('Dropping {} % because of ambiguous inequality'.format(to_drop)) data = data[~(( (data['inequality']=='<')&(data[measurement_column]>threshold))|((data['inequality']=='>')&(data[measurement_column]<threshold)))] # Labeling data['label'] = (1* data[measurement_column]<=threshold).astype(int) return data def _transform_ic50(data, how="log",max_ic50=50000.0, inequality_offset=True, label_column="meas"): """Transform ic50 measurements how: "log" logarithmic transform, inequality "=" mapped to [0,1], inequality ">" mapped to [2,3], inequality "<" mapped to [4,5] "norm" "cap" """ x = data[label_column] if how=="cap": x = np.minimum(x, 50000) elif how=="norm": x = np.minimum(x, 50000) x = (x - x.mean()) / x.std() elif how=="log": # log transform x = 1 - (np.log(x)/np.log(max_ic50)) x = np.minimum(1.0, np.maximum(0.0,x)) if(inequality_offset): # add offsets for loss offsets = pd.Series(data['inequality']).map({'=': 0, '>': 2, '<': 4,}).values x += offsets return x def _string_index(data): # Add prefix letter "a" to the numerical index (such that it is clearly a string in order to avoid later errors). data["ID"] = data.index data["ID"] = data["ID"].apply(lambda x: "a"+ str(x)) data = data.set_index(["ID"]) return data def _format_alleles(x): if x[:3]=='HLA': return x[:5]+'-'+x[6:8]+x[9:] if x[:4]=='Mamu': return x[:6]+'-'+x[7:] else: return x def _get_allele_ranking(data_dir='.'): ''' Allele ranking should be the same across different datasets (noMS, withMS) to avoid confusion. Thus, the ranking is based on the larger withMS dataset ''' data_dir = Path(data_dir) curated_withMS_path = data_path/'data_curated.20180219'/'curated_training_data.with_mass_spec.csv' df = pd.read_csv(curated_withMS_path) # Drop duplicates df = df.drop_duplicates(["allele", "peptide","measurement_value"]) lens = df['peptide'].apply(len) df = df[(lens>7) & (lens<16)] # Keep only alleles with min 25 peptides like MHC flurry peptides_per_allele = df.groupby('allele').size() alleles_select = peptides_per_allele[peptides_per_allele>24].index df = df[df['allele'].isin(alleles_select)] mhc_rank = df.groupby('allele').size().sort_values(ascending=False).reset_index()['allele'] return mhc_rank def netmhpan_4_0_special_allele_map(allele): minus_idx = allele.find("-") pre, post = allele[:minus_idx], allele[minus_idx+1:] if pre=="Mamu": special_map = {"A01": "A1*00101", "A02": "A1*00201", "A07": "A1*00701", "A11": "A1*01101", "A2201": "A1*02201", "A2601": "A1*02601", 'A20102': "A2*00102", # "A2*0102" "A70103": "A7*00103", # "A7*0103" "B01": "B*00101", "B03": "B*00301", "B04": "B*00401", "B08": "B*00801", "B17": "B*01701", "B52": "B*05201", "B1001": "B*01001", 'B3901': "B*03901", #? 'B6601': "B*06601", #? 'B8301': "B*08301", #? 'B8701': "B*08701", #? } if post in special_map.keys(): post = special_map[post] elif pre=="BoLA": #source: select allele menu on http://www.cbs.dtu.dk/services/NetMHCpan-4.0/ special_map = { "D18.4": "1:02301", "T2a": "2:01201", "AW10": "3:00101", "JSP.1": "3:00201", "HD6": "6:01301", "T2b": "6:04101" } if post in special_map.keys(): post = special_map[post] return pre + "-" + post def prepare_pseudo_mhc_sequences(mhc_class, data_dir='.'): """ The pseudo sequences are provided with the NetMHCpan4.1/NetMHCIIpan4.0 data. """ data_path = Path(data_dir) if mhc_class=="II": pseudo_seq_file = "NetMHCIIpan_train/pseudosequence.2016.all.X.dat" else: pseudo_seq_file = "NetMHCpan_4_1_train/MHC_pseudo.dat" pseudo_mhc = [] with open(data_path/pseudo_seq_file, "r") as f: for line in f: allele, seq = line.split() pseudo_mhc.append((allele,seq)) pseudo_mhc = pd.DataFrame(pseudo_mhc, columns=("allele", "sequence1")) pseudo_mhc = pseudo_mhc[~pseudo_mhc["allele"].duplicated()] return pseudo_mhc ########## Generate DataFrame ########## def generate_mhc_kim(cv_type=None, mhc_select=0, regression=False, transform_ic50=None, to_csv=False, filename=None, data_dir='.', keep_all_alleles=False): ''' cv_type: string, strategy for 5-fold cross validation, options: - None: No cv-strategy, cv column is filled with 'TBD' - sr: removal of similar peptides seperatly in binder/ non-binder set, using similarity threshold of 80%, similarity found with 'Hobohm 1 like algorithm' - gs: grouping similar peptides in the same cv-partition - rnd: random partioning transform_ic50: string, ignnored if not regression - None: use raw ic50 measurements as labels - cap: cap ic50 meas at 50000 - norm: cap ic50 meas at 50000 and normalize - log: take log_50000 and cap at 50000 mhc_select: int between 0 and 50, choose allele by frequency rank in Binding Data 2009 ''' # Binding Data 2009. Used by Kim et al for Cross Validation. Used by MHCnugget for training. bd09_file = 'bdata.2009.mhci.public.1.txt' # Similar peptides removed bd09_cv_sr_file = 'bdata.2009.mhci.public.1.cv_sr.txt' # Random partioning bd09_cv_rnd_file = 'bdata.2009.mhci.public.1.cv_rnd.txt' # Similar peptides grouped bd09_cv_gs_file = 'bdata.2009.mhci.public.1.cv_gs.txt' # 'blind' used by Kim et al to estimate true predicitve accuracy. Used by MHCnugget for testing. # Generated by subtracting BD2009 from BD 2013 and removing similar peptides with respect to BD2009 # (similar = at least 80% similarity and same length) bdblind_file = 'bdata.2013.mhci.public.blind.1.txt' data_dir = Path(data_dir)/"benchmark_mhci_reliability/binding" # Read in data with specified cv type if cv_type=='sr': bd09 = pd.read_csv(data_dir/'bd2009.1'/bd09_cv_sr_file, sep='\t') elif cv_type=='gs': bd09 = pd.read_csv(data_dir/'bd2009.1'/bd09_cv_gs_file, sep='\t') elif cv_type=='rnd': bd09 = pd.read_csv(data_dir/'bd2009.1'/bd09_cv_rnd_file, sep='\t') else: bd09 = pd.read_csv(data_dir/'bd2009.1'/bd09_file, sep='\t') # Read in blind data bdblind = pd.read_csv(data_dir/'blind.1'/bdblind_file, sep='\t') # alleles are spelled differently in bdblind and bd2009, change spelling in bdblind bdblind['mhc'] = bdblind['mhc'].apply(_format_alleles) # Confirm there is no overlap print('{} entries from the blind data set are in the 2009 data set'.format(bdblind[['sequence', 'mhc']].isin(bd09[['sequence', 'mhc']]).all(axis=1).sum())) if regression: # For now: use only quantitative measurements, later tuple (label, inequality as int) #print('Using quantitative {} % percent of the data.'.format((bd09['inequality']=='=').mean())) #bd09 = bd09[bd09['inequality']=='='] #bd09.rename(columns={'meas':'label'}, inplace=True) #bdblind = bdblind[bdblind['inequality']=='='] #bdblind.rename(columns={'meas':'label'}, inplace=True) # Convert ic50 measurements to range [0,1] if transform_ic50 is not None: bd09['label'] = _transform_ic50(bd09, how=transform_ic50) bdblind['label'] = _transform_ic50(bdblind, how=transform_ic50) else: # Labeling for binder/NonBinder bd09 = _label_binder(bd09)[['mhc', 'sequence', 'label', 'cv']] #bdblind = _label_binder(bdblind)[['mhc', 'sequence', 'label', 'cv']] bdblind = bdblind.rename(columns={"meas":"label"}) if not keep_all_alleles: # in bd09 (train set) keep only entries with mhc also occuring in bdblind (test set) bd09 = bd09[bd09['mhc'].isin(bdblind['mhc'])] # Combine bdblind['cv'] = 'blind' bd = pd.concat([bd09, bdblind], ignore_index=True) if not(regression): # Test if there is at least one binder in bd09 AND bdblind min_one_binder = pd.concat([(bd09.groupby('mhc')['label'].sum() > 0), (bdblind.groupby('mhc')['label'].sum() > 0)], axis=1).all(axis=1) print('For {} alleles there is not at least one binder in bd 2009 AND bd blind. These will be dismissed.'.format((~min_one_binder).sum())) alleles = bd['mhc'].unique() allesles_to_keep = alleles[min_one_binder] # Dismiss alleles without at least one binder bd = bd[bd['mhc'].isin(allesles_to_keep)] # Make allele ranking based on binding data 2009 mhc_rank = bd[bd['cv']!='blind'].groupby('mhc').size().sort_values(ascending=False).reset_index()['mhc'] # Select allele if mhc_select is not None: print('Selecting allele {}'.format(mhc_rank.loc[mhc_select])) bd = bd[bd['mhc']==mhc_rank.loc[mhc_select]][['sequence', 'label', 'cv']] # Turn indices into strings bd = _string_index(bd) if to_csv and filename is not None: bd.to_csv(filename) return bd def generate_mhc_flurry(ms='noMS', mhc_select=0, regression=False, transform_ic50=None, binder_threshold=500, filter_length=True, label_binary=False, random_seed=42,data_dir='.'): ''' Load the MHC I data curated and uploaded to https://data.mendeley.com/datasets/8pz43nvvxh/1 by MHCFlurry Used by them for training and model selection ms: string, specifies if mass spectroscopy data should be included, options: - noMS: MHCFlurry no MS dataset - withMS: MHCFlurry with MS dataset mhc_select: int between 0 and 150 (noMS)/ 188 (withMS), choose allele by frequency rank filter_length: boolean, MHCFlurry selected peptides of length 8-15 (their model only deals with these lengths) ''' data_path = Path(data_dir) curated_noMS_path = data_path/'data_curated.20180219'/'curated_training_data.no_mass_spec.csv' curated_withMS_path = data_path/'data_curated.20180219'/'curated_training_data.with_mass_spec.csv' if ms=='noMS': df = pd.read_csv(curated_noMS_path) elif ms=='withMS': df = pd.read_csv(curated_withMS_path) if filter_length: lens = df['peptide'].apply(len) df = df[(lens>7) & (lens<16)] # Keep only alleles with min 25 peptides peptides_per_allele = df.groupby('allele').size() alleles_select = peptides_per_allele[peptides_per_allele>24].index df = df[df['allele'].isin(alleles_select)] df.rename(columns={'measurement_value':'meas', 'measurement_inequality':'inequality', 'peptide':'sequence'}, inplace=True) # label binder/non binder if label_binary: df = _label_binder(df, threshold=binder_threshold, measurement_column='label') if regression: df["label"] = _transform_ic50(df, how=transform_ic50) if mhc_select is not None: if type(mhc_select)==int: mhc_rank = df.groupby('allele').size().sort_values(ascending=False).reset_index()['allele'] print('Selecting allele {}'.format(mhc_rank.loc[mhc_select])) df = df[df['allele']==mhc_rank.loc[mhc_select]] else: print('Selecting allele {}'.format(mhc_select)) df = df[df['allele']==mhc_select] # Mark 10% of the data as validation set np.random.seed(seed=random_seed) val_ind = np.random.randint(0,high=df.shape[0],size=int(df.shape[0]/10)) df['cluster_ID'] = (df.reset_index().index.isin(val_ind))*1 df["ID"]=df.sequence.apply(lambda x: hashlib.md5(x.encode('utf-8')).hexdigest()) #df = _string_index(df) return df def generate_abelin(mhc_select=0, data_dir='.'): ''' mhc_select: int in [1, 2, 4, 6, 8, 10, 13, 14, 15, 16, 17, 21, 22, 36, 50, 63] ''' data_path = Path(data_dir) abelin = pd.read_csv(data_path/"abelin_peptides.all_predictions.csv")[['hit', 'allele', 'peptide']] abelin.rename(columns={'peptide':'sequence'}, inplace=True) # Remove entries present in training set (training data here: noMS as only MHCFlurry noMS is benchmarked with Abelin data) train = generate_mhc_flurry(ms='noMS',mhc_select=None, data_dir=data_dir)[['allele', 'sequence']] overlap_ind = abelin[['allele', 'sequence']].merge(train.drop_duplicates(['allele','sequence']).assign(vec=True),how='left', on=['allele', 'sequence']).fillna(False)['vec'] #print(abelin.shape[0], overlap_ind.shape, overlap_ind.sum() ) abelin = abelin[~overlap_ind.values] # Select allele specific data if type(mhc_select)==int: allele_ranking = _get_allele_ranking(data_dir=data_dir) mhc_select = allele_ranking.iloc[mhc_select] abelin = abelin[abelin['allele']==mhc_select] abelin.rename(columns={'hit':'label'}, inplace=True) abelin['cluster_ID'] = 2 return abelin def prepare_hpv(mhc_select, data_dir='.'): ''' To run, download Table S2 from Supplementary Material of [<NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, et al. Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC–peptide binding data set. Cancer Immunol Res 2019;7:719–36.] and save as HPV_data.csv in ./data mhc_select: string from ['HLAA1', 'HLAA2', 'HLAA3', 'HLAA11', 'HLAA24', 'HLAB7', 'HLAB15'] ''' data_path = Path(data_dir) df = pd.read_csv(data_path/"HPV_data.csv") df["label"] = df["Experimental binding capacity"].mask(df["Experimental binding capacity"]=="nb") return df[df["allele"]==mhc_select][["sequence","label"]] def prepare_sars_cov(mhc_select, mhc_class="I", with_MHC_seq=False, data_dir='.'): ''' To run, download https://www.immunitrack.com/wp/wp-content/uploads/Covid19-Intavis-Immunitrack-datasetV2.xlsx from [<NAME>., <NAME>., <NAME>.B. et al. Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Sci Rep 10, 20465 (2020). https://doi.org/10.1038/s41598-020-77466-4] and save in datadir mhc_select: string from ["1 A0101", "2 A0201", "3 A0301", "4 A1101", "5 A2402", "6 B4001", "7 C0401", "8 C0701", "9 C0702", "10 C0102", "11 DRB10401"] ''' allele_sheets = ["1 A0101", "2 A0201", "3 A0301", "4 A1101", "5 A2402", "6 B4001", "7 C0401", "8 C0701", "9 C0702", "10 C0102", "11 DRB10401"] data_path = Path(data_dir) df = pd.read_excel(data_path/"Covid19-Intavis-Immunitrack-datasetV2.xlsx", sheet_name=allele_sheets) df = pd.concat(df, sort=True)[["Sequence","Stab %"]] df.rename(columns={"Sequence":"sequence","Stab %":"label"}, inplace=True) if mhc_select is not None: df["allele"] = mhc_select df = df.loc[mhc_select] if with_MHC_seq: df = df.reset_index(level=0).rename(columns={"level_0":"allele"}) if mhc_class=="I": covid_allele_map = {"1 A0101": 'HLA-A01:01', "2 A0201": 'HLA-A02:01', "3 A0301": 'HLA-A03:01', "4 A1101": 'HLA-A11:01', "5 A2402": 'HLA-A24:02', "6 B4001": 'HLA-B40:01', "7 C0401": 'HLA-C04:01', "8 C0701": 'HLA-C07:01', "9 C0702": 'HLA-C07:02' } elif mhc_class=="II": covid_allele_map = {"11 DRB10401": "DRB1_0401" } df.allele = df.allele.map(covid_allele_map) # filter out nan alleles (eg. class i (ii) alleles for class ii (i)) df = df[~df.allele.isnull()] allele_df = prepare_pseudo_mhc_sequences(mhc_class, data_dir) df = df.merge(allele_df, on="allele", how="left") return df def prepare_mhci_netmhcpan_4(mhc_select, MS=False, with_MHC_seq=False, data_dir="./", netmhc_data_version="4.0"): """ Prepare training data of NetMHCpan4.0/NetMHCpan4.1 with test data from <NAME>., <NAME>., <NAME>. et al. Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Sci Rep 10, 20465 (2020). https://doi.org/10.1038/s41598-020-77466-4 Download - Train/Val Data Affinity measurements - either NetMHCpan4.1 data: http://www.cbs.dtu.dk/suppl/immunology/NAR_NetMHCpan_NetMHCIIpan/NetMHCpan_train.tar.gz unpack and rename as NetMHCpan_4_1_train - or NetMhCpan4.0 data: from http://www.cbs.dtu.dk/suppl/immunology/NetMHCpan-4.0/ download 0th CV split files f000_ba (train) and c000_ba (val, 20%) store in data_dir/NetMHCpan_4_0_train save everything in data_dir """ datatype = "ba" if not MS else "el" data = [] if netmhc_data_version=="4.0": for file in glob.glob(str(data_dir/"NetMHCpan_4_0_train/*000_{}".format(datatype))): df = pd.read_csv(file, header=None, delimiter=" " if not MS else "\t", names=("sequence","label","allele","ic50")) df["cluster_ID"] = 0 if file.split("/")[-1][0]=="f" else 1 data.append(df) elif netmhc_data_version=="4.1": for file in glob.glob(str(data_dir/"NetMHCpan_4_1_train/*_ba")): df = pd.read_csv(file, header=None, delimiter=" ", names=("sequence","label","allele")) # use one partition as validation set df["cluster_ID"] = 1 if file.split("/")[-1]=="c004_ba" else 0 data.append(df) data = pd.concat(data, ignore_index=True, sort=True) if mhc_select is not None: data = data[data["allele"]==mhc_select] if with_MHC_seq: if netmhc_data_version=="4.0": # some BoLA and Mamu alleles in NetMhCpan4.0 have names that can't be mapped to ipd alleles names with simple rules # map these to the convention of NetMhCpan4.1 first (these names can be mapped to ipd allele names) data.allele = data.allele.apply(netmhpan_4_0_special_allele_map) allele_df = prepare_pseudo_mhc_sequences("I", data_dir) data = data.merge(allele_df, on="allele", how="left") return data def prepare_mhcii_netmhcpan(mhc_select, MS=False, with_MHC_seq=False, data_dir="./", netmhc_data_version="3.2"): """ Prepare training data of NetMHCIIpan3.2/NetMHCIIpan4.0 with test data from <NAME>., <NAME>., <NAME>. et al. Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Sci Rep 10, 20465 (2020). https://doi.org/10.1038/s41598-020-77466-4 Download - Train/Val Data Affinity measurements - either NetMHCpan4.1 data: http://www.cbs.dtu.dk/suppl/immunology/NAR_NetMHCpan_NetMHCIIpan/NetMHCpan_train.tar.gz unpack and rename as NetMHCpan_4_1_train - or NetMhCpan4.0 data: from http://www.cbs.dtu.dk/suppl/immunology/NetMHCpan-4.0/ download 0th CV split files f000_ba (train) and c000_ba (val, 20%) store in data_dir/NetMHCpan_4_0_train - MS measurement data: Download http://www.cbs.dtu.dk/suppl/immunology/NAR_NetMHCpan_NetMHCIIpan/NetMHCIIpan_train.tar.gz, unpack and rename as NetMHCIIpan_train save everything in data_dir """ data = [] if MS: for file in glob.glob(str(data_dir/"NetMHCIIpan_train/*_EL1.txt")): df = pd.read_csv(file, header=None, delimiter="\t", names=("sequence","label","allele","context")) # use one partition as validation set df["cluster_ID"] = 1 if file.split("/")[-1]=="test_EL1.txt" else 0 data.append(df) else: if netmhc_data_version=="3.2": for file in glob.glob(str(data_dir/"NetMHCIIpan_3_2_train/*1.txt")): #print(file) df = pd.read_csv(file, header=None, delimiter="\t", names=("sequence","label","allele")) # use one partition as validation set df["cluster_ID"] = 1 if file.split("/")[-1]=="test1.txt" else 0 data.append(df) elif netmhc_data_version=="4.0": for file in glob.glob(str(data_dir/"NetMHCIIpan_train/*_BA1.txt")): df = pd.read_csv(file, header=None, delimiter="\t", names=("sequence","label","allele","context")) # use one partition as validation set df["cluster_ID"] = 1 if file.split("/")[-1]=="test_BA1.txt" else 0 data.append(df) data = pd.concat(data, ignore_index=True, sort=True) if mhc_select is not None: if MS: data = data[data["allele"].apply(lambda x: mhc_select in x)] else: data = data[data["allele"]==mhc_select] if with_MHC_seq: allele_df = prepare_pseudo_mhc_sequences("II", data_dir) data = data.merge(allele_df, on="allele", how="left") return data def prepare_mhcii_iedb2016(mhc_select, cv_fold, path_iedb="../data/iedb2016", path_jensen_csv="../data/jensen_et_al_2018_immunology_supplTabl3.csv"): '''prepares mhcii iedb 2016 dataset using train1 ... test5 from http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.2/''' def prepare_df(filename): df =
pd.read_csv(filename,header=None,sep="\t")
pandas.read_csv
import pandas as pd import numpy as np import os import math import random import pickle import time import feather from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import prismx as px from prismx.utils import read_gmt, load_correlation, loadPrediction from prismx.prediction import correlation_scores, loadPredictionsRange from sklearn.manifold import TSNE from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score from sklearn.preprocessing import MinMaxScaler from sklearn import mixture from sklearn.metrics.cluster import homogeneity_score from scipy import stats gene_auc = pd.read_csv("test_data/gene_auc.tsv", sep="\t", index_col=0) set_auc = pd.read_csv("test_data/set_auc.tsv", sep="\t", index_col=0) diff = gene_auc.iloc[:,5] - gene_auc.iloc[:,0] diff.sort_values(0,ascending=False).iloc[0:20] diff = set_auc.iloc[:,5] - set_auc.iloc[:,0] diff.sort_values(0,ascending=False).iloc[0:20] nx = "GO_Biological_Process_2018" set_auc.loc[nx,:] gene_auc.loc[nx,:] p1 = pd.read_feather("prediction_folder_300_umap/prediction_0.f").set_index("index") correlationFolder = "correlation_folder_300" predictionFolder = "prediction_folder_300_umap" outfolder = "prismxresult" clustn = 300 libs = px.list_libraries() gmt_file = px.load_library(libs[111], overwrite=True) outname = libs[111] #px.predict_gmt("gobp_model_"+str(clustn)+".pkl", gmt_file, correlationFolder, predictionFolder, outfolder, libs[111], step_size=200, intersect=True, verbose=True) gop =
pd.read_feather("prismxresult/GO_Biological_Process_2018.f")
pandas.read_feather
#!/usr/bin/env python3 import argparse import glob import numpy as np import os import pandas as pd import quaternion import sys import trimesh import json from tqdm import tqdm from scipy.spatial.distance import cdist import warnings warnings.filterwarnings("ignore") __dir__ = os.path.normpath( os.path.join( os.path.dirname(os.path.realpath(__file__)), '..') ) sys.path[1:1] = [__dir__] top_classes = { "03211117": "display", "04379243": "table", "02747177": "trashbin", "03001627": "chair", # "04256520": "sofa", "02808440": "bathtub", "02933112": "cabinet", "02871439": "bookshelf" } from shapefit.utils.utils import get_validation_appearance, get_symmetries, get_gt_dir, \ get_scannet, get_shapenet, make_M_from_tqs, make_tqs_from_M # helper function to calculate difference between two quaternions def calc_rotation_diff(q, q00): rotation_dot = np.dot(quaternion.as_float_array(q00), quaternion.as_float_array(q)) rotation_dot_abs = np.abs(rotation_dot) try: error_rotation_rad = 2 * np.arccos(rotation_dot_abs) except: return 0.0 error_rotation = np.rad2deg(error_rotation_rad) return error_rotation def rotation_error(row): q = quaternion.quaternion(*row[:4]) q_gt = quaternion.quaternion(*row[4:8]) sym = row[-1] if sym == "__SYM_ROTATE_UP_2": m = 2 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) elif sym == "__SYM_ROTATE_UP_4": m = 4 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) elif sym == "__SYM_ROTATE_UP_INF": m = 36 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) else: return calc_rotation_diff(q, q_gt) def print_to_(verbose, log_file, string): if verbose: print(string) sys.stdout.flush() with open(log_file, 'a+') as f: f.write(string + '\n') def get_init_mesh(scan_id, key): path = glob.glob(os.path.join( '/home/ishvlad/workspace/Scan2CAD/MeshDeformation/ARAP/', 'arap_output_GT', scan_id, key + '*', 'init.obj' )) if len(path) == 0: return None return trimesh.load_mesh(path[0], process=False) def DAME(mesh_1, mesh_2, k=0.59213): def dihedral(mesh): unique_faces, _ = np.unique(np.sort(mesh.faces, axis=1), axis=0, return_index=True) parts_bitriangles_map = [] bitriangles = {} for face in unique_faces: edge_1 = tuple(sorted([face[0], face[1]])) if edge_1 not in bitriangles: bitriangles[edge_1] = set([face[0], face[1], face[2]]) else: bitriangles[edge_1].add(face[2]) edge_2 = tuple(sorted([face[1], face[2]])) if edge_2 not in bitriangles: bitriangles[edge_2] = set([face[0], face[1], face[2]]) else: bitriangles[edge_2].add(face[0]) edge_3 = tuple(sorted([face[0], face[2]])) if edge_3 not in bitriangles: bitriangles[edge_3] = set([face[0], face[1], face[2]]) else: bitriangles[edge_3].add(face[1]) bitriangles_aligned = np.empty((len(mesh.edges_unique), 4), dtype=int) for j, edge in enumerate(mesh.edges_unique): bitriangle = [*sorted(edge)] bitriangle += [x for x in list(bitriangles[tuple(sorted(edge))]) if x not in bitriangle] bitriangles_aligned[j] = bitriangle vertices_bitriangles_aligned = mesh.vertices[bitriangles_aligned] normals_1 = np.cross((vertices_bitriangles_aligned[:, 2] - vertices_bitriangles_aligned[:, 0]), (vertices_bitriangles_aligned[:, 2] - vertices_bitriangles_aligned[:, 1])) normals_1 = normals_1 / np.sqrt(np.sum(normals_1 ** 2, axis=1)[:, None]) normals_2 = np.cross((vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 0]), (vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 1])) normals_2 = normals_2 / np.sqrt(np.sum(normals_2 ** 2, axis=1)[:, None]) n1_n2_arccos = np.arccos(np.sum(normals_1 * normals_2, axis=1).clip(-1, 1)) n1_n2_signs = np.sign( np.sum(normals_1 * (vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 1]), axis=1)) D_n1_n2 = n1_n2_arccos * n1_n2_signs return D_n1_n2 D_mesh_1 = dihedral(mesh_1) D_mesh_2 = dihedral(mesh_2) mask_1 = np.exp((k * D_mesh_1) ** 2) per_edge = np.abs(D_mesh_1 - D_mesh_2) * mask_1 result = np.sum(per_edge) / len(mesh_1.edges_unique) return result, per_edge def calc_ATSD(dists, border): return np.minimum(dists.min(1), border).mean() def calc_F1(dists, border): return np.sum(dists.min(1) < border) / len(dists) def calc_CD(dists, border): return max(np.minimum(dists.min(1), border).mean(), np.minimum(dists.min(0), border).mean()) def calc_metric(scan_mesh, shape_mesh, method='all', border=0.1): area = border * 2 # get scan bbox bbox = np.array([shape_mesh.vertices.min(0), shape_mesh.vertices.max(0)]) bbox += [[-area], [area]] batch = np.array([np.diag(bbox[0]), np.diag(bbox[1]), np.eye(3), -np.eye(3)]) slice_mesh = scan_mesh.copy() # xyz for i in range(3): slice_mesh = slice_mesh.slice_plane(batch[0, i], batch[2, i]) slice_mesh = slice_mesh.slice_plane(batch[1, i], batch[3, i]) if len(slice_mesh.vertices) == 0: if method == 'all': return {'ATSD': border, 'CD': border, 'F1': 0.0} else: return border scan_vertices = np.array(slice_mesh.vertices) if len(scan_vertices) > 20000: scan_vertices = scan_vertices[::len(scan_vertices) // 20000] dists = cdist(np.array(shape_mesh.vertices), scan_vertices, metric='minkowski', p=1) if method == 'ATSD': return calc_ATSD(dists, border) elif method == 'CD': return calc_CD(dists, border) elif method == 'F1': return calc_F1(dists, border) else: return { 'ATSD': calc_ATSD(dists, border), 'CD': calc_CD(dists, border), 'F1': calc_F1(dists, border), } def metric_on_deformation(options): output_name = options.output_name + '_' + str(options.border) + \ '_' + str(options.val_set) + '_' + str(options.metric_type) if options.output_type == 'align': # load needed models appearance = get_validation_appearance(options.val_set) # LOAD list of all aligned scenes csv_files = glob.glob(os.path.join(options.input_dir, '*.csv')) scenes = [x.split('/')[-1][:-4] for x in csv_files] # Which scenes do we want to calculate? scenes = np.intersect1d(scenes, list(appearance.keys())) batch = [] for s in scenes: df_scan = pd.read_csv( os.path.join(options.input_dir, s + '.csv'), index_col=0, dtype={'objectCategory': str} ) # Filter: take only objects from appearance df_scan['key'] = df_scan.objectCategory + '_' + df_scan.alignedModelId df_scan = df_scan[np.in1d(df_scan['key'].values, list(appearance[s].keys()))] batch.extend([{ 'scan_id': s, 'key': row['key'], 'objectCategory': row['objectCategory'], 'alignedModelId': row['alignedModelId'], 'path': 'path to origin ShapeNet mesh', 'object_num': i, 'T': [row['tx'], row['ty'], row['tz']], 'Q': [row['qw'], row['qx'], row['qy'], row['qz']], 'S': [row['sx'], row['sy'], row['sz']] } for i, row in df_scan.iterrows()]) df = pd.DataFrame(batch) else: # LOAD list of all aligned scenes in_files = glob.glob(os.path.join(options.input_dir, 'scene*/*/approx.obj')) if len(in_files) == 0: in_files = glob.glob(os.path.join(options.input_dir, '*/scene*/*/approx.obj')) info = [] for x in in_files: parts = x.split('/')[-3:-1] if len(parts[1].split('_')) == 3: category_id, shape_id, object_num = parts[1].split('_') else: category_id, shape_id = parts[1].split('_') object_num = -1 row = [ parts[0], # scan_id category_id + '_' + shape_id, # key category_id, shape_id, object_num, x, # path ] info.append(row) df = pd.DataFrame(info, columns=['scan_id', 'key', 'objectCategory', 'alignedModelId', 'object_num', 'path']) transform_files = ['/'.join(x.split('/')[:-1]) + '/transform.json' for x in in_files] Ts, Qs, Ss = [], [], [] for f in transform_files: if os.path.exists(f): matrix = np.array(json.load(open(f, 'rb'))['transform']) else: Ts.append(None) Qs.append(None) Ss.append(None) continue t, q, s = make_tqs_from_M(matrix) q = quaternion.as_float_array(q) Ts.append(t) Qs.append(q) Ss.append(s) df['T'] = Ts df['Q'] = Qs df['S'] = Ss metrics = {} batch = df.groupby('scan_id') if options.verbose: batch = tqdm(batch, desc='Scenes') # CALCULATE METRICS for scan_id, df_scan in batch: scan_mesh = get_scannet(scan_id, 'mesh') scan_batch = df_scan.iterrows() if options.verbose: scan_batch = tqdm(scan_batch, total=len(df_scan), desc='Shapes', leave=False) for i, row in scan_batch: if options.output_type == 'align': shape_mesh = get_shapenet(row['objectCategory'], row['alignedModelId'], 'mesh') else: try: shape_mesh = trimesh.load_mesh(row['path']) except Exception: metrics[i] = {'ATSD': np.nan, 'CD': np.nan, 'F1': np.nan} continue if row['T'] is None: metrics[i] = {'ATSD': np.nan, 'CD': np.nan, 'F1': np.nan} continue T = make_M_from_tqs(row['T'], row['Q'], row['S']) shape_mesh.apply_transform(T) metrics[i] = calc_metric(scan_mesh, shape_mesh, border=options.border) df_final = df.merge(pd.DataFrame(metrics).T, left_index=True, right_index=True) df_final.to_csv(output_name + '.csv') if len(df_final) == 0: print_to_(options.verbose, output_name + '.log', 'No aligned shapes') return df_final = df_final[~pd.isna(df_final['ATSD'])] # Calculate INSTANCE accuracy acc = df_final[['ATSD', 'CD', 'F1']].mean().values acc[-1] *= 100 print_string = '#' * 57 + '\nINSTANCE MEAN. ATSD: {:>4.2f}, CD: {:>4.2f}, F1: {:6.2f}\n'.format( *acc) + '#' * 57 print_to_(options.verbose, output_name + '.log', print_string) df_final['name'] = [top_classes.get(x, 'zother') for x in df_final.objectCategory] df_class = df_final.groupby('name').mean()[['ATSD', 'CD', 'F1']] print_string = '###' + ' ' * 7 + 'CLASS' + ' ' * 4 + '# ATSD # CD # F1 ###' print_to_(options.verbose, output_name + '.log', print_string) for name, row in df_class.iterrows(): print_string = '###\t{:10} # {:>4.2f} # {:>4.2f} # {:6.2f} ###'.format( name, row['ATSD'], row['CD'], row['F1']*100 ) print_to_(options.verbose, output_name + '.log', print_string) acc = df_class.mean().values acc[-1] *= 100 print_string = '#' * 57 + '\n CLASS MEAN. ATSD: {:>4.2f}, CD: {:>4.2f}, F1: {:6.2f}\n'.format( *acc) + '#' * 57 print_to_(options.verbose, output_name + '.log', print_string) def metric_on_alignment(options): output_name = options.output_name + '_' + str(options.border) + \ '_' + str(options.val_set) + '_' + str(options.metric_type) if options.output_type == 'deform': raise Exception # LOAD list of all aligned scenes csv_files = glob.glob(os.path.join(options.input_dir, '*.csv')) scenes = [x.split('/')[-1][:-4] for x in csv_files] # Which scenes do we want to calculate? appearances_cad = get_validation_appearance(options.val_set) df_appearance = pd.DataFrame(np.concatenate([ [(k, kk, appearances_cad[k][kk]) for kk in appearances_cad[k]] for k in appearances_cad ]), columns=['scan_id', 'key', 'count']) scenes = np.intersect1d(scenes, list(set(df_appearance.scan_id))) # LOAD GT and target alignments gt_dir = get_gt_dir('align') batch = [] batch_gt = [] for s in scenes: df = pd.read_csv(os.path.join(gt_dir, s + '.csv'), index_col=0, dtype={'objectCategory': str}) df['scan_id'] = s # Filter: take only objects from appearance df['key'] = df.objectCategory + '_' + df.alignedModelId df = df[np.in1d(df['key'].values, list(appearances_cad[s].keys()))] batch_gt.append(df) df = pd.read_csv(os.path.join(options.input_dir, s + '.csv'), index_col=0, dtype={'objectCategory': str}) df['scan_id'] = s # Filter: take only objects from appearance df['key'] = df.objectCategory + '_' + df.alignedModelId df = df[np.in1d(df['key'].values, list(appearances_cad[s].keys()))] batch.append(df) df_alignment = pd.concat(batch) df_alignment.reset_index(drop=True, inplace=True) df_alignment_gt = pd.concat(batch_gt) df_alignment_gt.reset_index(drop=True, inplace=True) # Create index for each GT object df_alignment_gt.reset_index(inplace=True) # LOAD Symmetry info df_symmetry = get_symmetries() df_alignment = df_alignment.merge(df_symmetry, how='left', on='key') df_alignment_gt = df_alignment_gt.merge(df_symmetry, how='left', on='key') # Make pairs for difference calculation df_mutual = df_alignment_gt.merge(df_alignment, how='left', on=['scan_id', 'objectCategory'], suffixes=('_gt', '')) # Calculate the difference t_dist = df_mutual[['tx_gt', 'ty_gt', 'tz_gt']].values - df_mutual[['tx', 'ty', 'tz']].values df_mutual['t_dist'] = np.linalg.norm(t_dist, ord=2, axis=-1) s_diff = df_mutual[['sx', 'sy', 'sz']].values / df_mutual[['sx_gt', 'sy_gt', 'sz_gt']].values df_mutual['s_dist'] = 100 * np.abs(s_diff.mean(-1) - 1) cols = ['qw', 'qx', 'qy', 'qz', 'qw_gt', 'qx_gt', 'qy_gt', 'qz_gt', 'symmetry'] df_mutual['q_dist'] = [rotation_error(row) for row in df_mutual[cols].values] df_mutual.q_dist.fillna(0, inplace=True) # does the aligned shape is near to GT shape df_mutual['is_fitted'] = (df_mutual.t_dist <= 0.2) & (df_mutual.q_dist <= 20) & (df_mutual.s_dist <= 20) # GET and SAVE the result df_fit = df_mutual[['index', 'is_fitted']].groupby('index').max().reset_index() df_fit = df_alignment_gt.merge(df_fit, on='index') df_final = df_fit[['scan_id', 'objectCategory', 'alignedModelId', 'is_fitted']] df_final.to_csv(output_name + '.csv') # Calculate INSTANCE accuracy df_scan = df_final.groupby('scan_id').agg({'is_fitted': ('sum', 'count')}) df_scan.columns = ['sum', 'count'] total = df_scan.sum() acc = total['sum'] / total['count'] * 100 print_string = '#' * 80 + '\n# scenes: {}, # fitted: {}, # total: {}, INSTANCE ACCURACY: {:>4.2f}\n'.format( len(df_scan), int(total['sum']), int(total['count']), acc ) + '#' * 80 print_to_(options.verbose, output_name + '.log', print_string) # Calculate CLASS accuracy df_final['name'] = [top_classes.get(x, 'zother') for x in df_final.objectCategory] df_class = df_final.groupby('name').agg({'is_fitted': ('sum', 'count')}) df_class.columns = ['sum', 'count'] df_class.sort_index() for name, row in df_class.iterrows(): print_string = '\t{:10} # fitted: {:4}, # total: {:4}, CLASS ACCURACY: {:6.2f}'.format( name, int(row['sum']), int(row['count']), row['sum'] / row['count'] * 100 ) print_to_(options.verbose, output_name + '.log', print_string) print_string = '#' * 80 + '\n CLASS MEAN ACCURACY: {:>4.2f}'.format( (df_class['sum'] / df_class['count']).mean() * 100 ) print_to_(options.verbose, output_name + '.log', print_string) def metric_on_perceptual(options): output_name = options.output_name + '_' + str(options.border) + \ '_' + str(options.val_set) + '_' + str(options.metric_type) if options.output_type == 'align': raise Exception('Perceptual is zero!') # LOAD list of all aligned scenes is_zhores = False paths = glob.glob(os.path.join(options.input_dir, 'scene*/*')) if len(paths) == 0: paths = glob.glob(os.path.join(options.input_dir, '*/scene*/*')) is_zhores = True if options.verbose: paths = tqdm(paths) rows = [] for p in paths: scan_id = p.split('/')[-2] if is_zhores: align, method = p.split('_output_')[-1].split('/')[0].split('_50_') else: method, align = p.split('/')[-3].split('_output_') if len(p.split('/')[-1].split('_')) == 3: category_id, shape_id, object_num = p.split('/')[-1].split('_') else: category_id, shape_id = p.split('/')[-1].split('_') object_num = -1 init = os.path.join(p, 'init.obj') if not os.path.exists(init): continue init_mesh = get_init_mesh(scan_id, category_id + '_' + shape_id) if init_mesh is None: continue approx_mesh = trimesh.load_mesh(os.path.join(p, 'approx.obj'), process=False) dame = np.array(DAME(init_mesh, approx_mesh, 0.59213)[1]) dame = dame[~pd.isna(dame)].mean() rows.append([ scan_id, category_id + '_' + shape_id, # key category_id, shape_id, object_num, p, # path dame ]) cols = ['scan_id', 'key', 'objectCategory', 'alignedModelId', 'object_num', 'path', 'DAME'] df_final =
pd.DataFrame(rows, columns=cols)
pandas.DataFrame