prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Drawon # Time:2020/11/6 16:01 # Version:python 3.7.6 import logging import datetime import numpy as np import pandas as pd from statsmodels.tsa.holtwinters import Holt import warnings warnings.filterwarnings('ignore') def valueForecast(file): """ 电费预测 :param data: 电量数据 格式为:用户 日期 使用电量值 :return: 预测电量值 """ logging.debug('开始运行') data = pd.read_excel(file) if data.shape[0] == 0: raise ValueError('相关性原始数据不存在') data.iloc[:, 0] = data.iloc[:,0].astype(str) users = set(data.iloc[:,0].values) # 用电量预测 result_pre = pd.DataFrame(columns=['DATA_DATE', 'DATA_DATE1', 'DATA_DATE2', 'DATA_DATE3', 'DATA_DATE4', 'DATA_DATE5']) for user in users: subdata = data.loc[data.iloc[:,0]==user] df_index =
pd.MultiIndex.from_frame(subdata.iloc[:, 1:2])
pandas.MultiIndex.from_frame
import opendp.smartnoise.core as sn import random import string import numpy as np from tests import (TEST_PUMS_PATH, TEST_PUMS_NAMES, TEST_EDUC_PATH, TEST_EDUC_NAMES) def generate_bools(): private_data = [[True, True], [True, False], [False, True], [False, False]] dataset = sn.literal(value=private_data, value_public=False) typed = sn.to_bool(dataset, true_label=True) return sn.resize(typed, number_columns=2, categories=[True, False]) def generate_synthetic(var_type, n=10, rand_min=0, rand_max=10, cats_str=None, cats_num=None, variants=None): cats_str = ['A', 'B', 'C', 'D'] if cats_str is None else cats_str cats_num = [0, 1, 2, 3] if cats_num is None else cats_num variants = ['Index', 'Random', 'Constant', 'Categories'] if variants is None else variants data = [] names = [] for variant in variants: if var_type == bool: data.append(list({ 'Index': (bool(i % 2) for i in range(n)), 'Random': (random.choice([True, False]) for _ in range(n)), 'Constant': (bool(1) for _ in range(n)), 'Categories': (bool(random.choice(cats_num)) for _ in range(n)) }[variant])) names.append('B_' + variant) if var_type == float: data.append(list({ 'Index': (float(i) for i in range(n)), 'Random': (rand_min + random.random() * (rand_max - rand_min) for _ in range(n)), 'Constant': (float(1) for _ in range(n)), 'Categories': (float(random.choice(cats_num)) for _ in range(n)), }[variant])) names.append('F_' + variant) if var_type == int: data.append(list({ 'Index': range(n), 'Random': (random.randrange(rand_min, rand_max) for _ in range(n)), 'Constant': (1 for _ in range(n)), 'Categories': (random.choice(cats_num) for _ in range(n)), }[variant])) names.append('I_' + variant) if var_type == str: data.append(list({ 'Index': (str(i) for i in range(n)), 'Random': (''.join([random.choice(string.ascii_letters + string.digits) for n in range(2)]) for _ in range(n)), 'Constant': (str(1) for _ in range(n)), 'Categories': (random.choice(cats_str) for _ in range(n)), }[variant])) names.append('S_' + variant) data = list(zip(*data)) dataset = sn.literal(value=data, value_public=False) typed = sn.cast(dataset, atomic_type={ bool: 'bool', float: 'float', int: 'int', str: 'str' }[var_type], true_label=True, lower=0, upper=10) resized = sn.resize(typed, number_columns=len(variants), lower=0., upper=10.) return sn.to_dataframe(resized, names=names) def test_dp_covariance(): # establish data information var_names = ["age", "sex", "educ", "race", "income", "married"] with sn.Analysis() as analysis: wn_data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) # # get scalar covariance age_income_cov_scalar = sn.dp_covariance( left=sn.to_float(wn_data['age']), right=sn.to_float(wn_data['income']), privacy_usage={'epsilon': 5000}, left_lower=0., left_upper=100., left_rows=1000, right_lower=0., right_upper=500_000., right_rows=1000) data = sn.to_float(wn_data['age', 'income']) # get full covariance matrix age_income_cov_matrix = sn.dp_covariance( data=data, privacy_usage={'epsilon': 5000}, data_lower=[0., 0.], data_upper=[100., 500_000.], data_rows=1000) # get cross-covariance matrix cross_covar = sn.dp_covariance( left=data, right=data, privacy_usage={'epsilon': 5000}, left_lower=[0., 0.], left_upper=[100., 500_000.], left_rows=1_000, right_lower=[0., 0.], right_upper=[100., 500_000.], right_rows=1000) analysis.release() print('scalar covariance:\n{0}\n'.format(age_income_cov_scalar.value)) print('covariance matrix:\n{0}\n'.format(age_income_cov_matrix.value)) print('cross-covariance matrix:\n{0}'.format(cross_covar.value)) def test_dp_linear_regression(): with sn.Analysis(): wn_data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) wn_data = sn.resize( sn.to_float(wn_data[["age", "income"]]), number_rows=1000, lower=[0., 0.], upper=[100., 500_000.]) dp_linear_regression = sn.dp_linear_regression( data_x=sn.index(wn_data, indices=0), data_y=sn.index(wn_data, indices=1), privacy_usage={'epsilon': 10.}, lower_slope=0., upper_slope=1000., lower_intercept=0., upper_intercept=1000. ) print(dp_linear_regression.value) def test_divide(): with sn.Analysis(): data_A = generate_synthetic(float, variants=['Random']) f_random = data_A['F_Random'] imputed = sn.impute(f_random, lower=0., upper=10.) clamped_nonzero = sn.clamp(imputed, lower=1., upper=10.) clamped_zero = sn.clamp(imputed, lower=0., upper=10.) # test properties assert f_random.nullity assert not imputed.nullity assert (2. / imputed).nullity assert (f_random / imputed).nullity assert (2. / clamped_zero).nullity # TODO: fix these assertions in the validator- we should be able to get these tighter bounds # assert not (2. / clamped_nonzero).nullity # assert not (imputed / 2.).nullity def test_dp_mean(): with sn.Analysis(): data = generate_synthetic(float, variants=['Random']) mean = sn.dp_mean( data['F_Random'], privacy_usage={'epsilon': 0.1}, data_lower=0., data_upper=10., data_rows=10) print("accuracy", mean.get_accuracy(0.05)) print(mean.from_accuracy(2.3, .05)) with sn.Analysis(): data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) print(sn.dp_mean(sn.to_float(data['income']), implementation="plug-in", data_lower=0., data_upper=200_000., privacy_usage={"epsilon": 0.5}).value) with sn.Analysis(protect_sensitivity=False, protect_floating_point=False): data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) mean = sn.mean(sn.to_float(data['income']), data_lower=0., data_upper=200_000., data_rows=1000) print(sn.gaussian_mechanism( mean, sensitivity=[[0.0000001]], privacy_usage={"epsilon": 0.5, 'delta': .000001}).value) def test_dp_median(): with sn.Analysis(): data = generate_synthetic(float, variants=['Random']) candidates = [-10., -2., 2., 3., 4., 7., 10., 12.] median_scores = sn.median( data['F_Random'], candidates=candidates, data_rows=10, data_lower=0., data_upper=10.) dp_median = sn.exponential_mechanism(median_scores, candidates=candidates, privacy_usage={"epsilon": 1.}) print(dp_median.value) assert sn.dp_median( data['F_Random'], privacy_usage={"epsilon": 1.}, candidates=candidates, data_lower=0., data_upper=10.).value is not None def test_dp_median_raw(): with sn.Analysis() as analysis: # create a literal data vector, and tag it as private data = sn.Component.of([float(i) for i in range(20)], public=False) dp_median = sn.dp_median( sn.to_float(data), privacy_usage={"epsilon": 1.}, candidates=[-10., -2., 2., 3., 4., 7., 10., 12.], data_lower=0., data_upper=10., data_columns=1).value print(dp_median) # analysis.plot() assert dp_median is not None def test_median_education(): # import pandas as pd # print(pd.read_csv(data_path)['value'].median()) with sn.Analysis(filter_level="all") as analysis: data = sn.Dataset(path=TEST_EDUC_PATH, column_names=TEST_EDUC_NAMES) candidates = list(map(float, range(1, 200, 2))) median_scores = sn.median( sn.impute(sn.to_float(data['value']), 100., 200.), candidates=candidates) # print(list(zip(candidates, median_scores.value[0]))) dp_median = sn.exponential_mechanism( median_scores, candidates=candidates, privacy_usage={"epsilon": 100.}) print(dp_median.value) analysis.release() def test_equal(): with sn.Analysis(filter_level='all') as analysis: data = generate_bools() equality = sn.index(data, indices=0) == sn.index(data, indices=1) analysis.release() assert np.array_equal(equality.value, np.array([True, False, False, True])) def test_partition(): with sn.Analysis(filter_level='all') as analysis: data = generate_bools() partitioned = sn.partition(data, num_partitions=3) analysis.release() # print(partitioned.value) assert np.array_equal(partitioned.value[0], np.array([[True, True], [True, False]])) assert np.array_equal(partitioned.value[1], np.array([[False, True]])) assert np.array_equal(partitioned.value[2], np.array([[False, False]])) def test_histogram(): # generate raw data import numpy as np import pandas as pd import tempfile import os n = 1000 data = np.random.normal(loc=10, scale=25, size=n) mean = np.mean(data) sd = np.std(data) data =
pd.DataFrame([(elem - mean) / sd for elem in data])
pandas.DataFrame
import pytest from pandas import DataFrame import pandas._testing as tm class TestAssign: def test_assign(self): df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) original = df.copy() result = df.assign(C=df.B / df.A) expected = df.copy() expected["C"] = [4, 2.5, 2] tm.assert_frame_equal(result, expected) # lambda syntax result = df.assign(C=lambda x: x.B / x.A) tm.assert_frame_equal(result, expected) # original is unmodified tm.assert_frame_equal(df, original) # Non-Series array-like result = df.assign(C=[4, 2.5, 2]) tm.assert_frame_equal(result, expected) # original is unmodified tm.assert_frame_equal(df, original) result = df.assign(B=df.B / df.A) expected = expected.drop("B", axis=1).rename(columns={"C": "B"}) tm.assert_frame_equal(result, expected) # overwrite result = df.assign(A=df.A + df.B) expected = df.copy() expected["A"] = [5, 7, 9] tm.assert_frame_equal(result, expected) # lambda result = df.assign(A=lambda x: x.A + x.B) tm.assert_frame_equal(result, expected) def test_assign_multiple(self): df = DataFrame([[1, 4], [2, 5], [3, 6]], columns=["A", "B"]) result = df.assign(C=[7, 8, 9], D=df.A, E=lambda x: x.B) expected = DataFrame( [[1, 4, 7, 1, 4], [2, 5, 8, 2, 5], [3, 6, 9, 3, 6]], columns=list("ABCDE") ) tm.assert_frame_equal(result, expected) def test_assign_order(self): # GH 9818 df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) result = df.assign(D=df.A + df.B, C=df.A - df.B) expected = DataFrame([[1, 2, 3, -1], [3, 4, 7, -1]], columns=list("ABDC")) tm.assert_frame_equal(result, expected) result = df.assign(C=df.A - df.B, D=df.A + df.B) expected = DataFrame([[1, 2, -1, 3], [3, 4, -1, 7]], columns=list("ABCD"))
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
#!/usr/bin/env python # -*- coding:utf-8 -*- import os import logging import traceback import six logger = logging.getLogger(__name__) try: import pandas as pd except ImportError: _HAS_PANDAS = False logger.info("Can't import pandas") else: _HAS_PANDAS = True try: from munch import munchify # noqa except ImportError: _HAS_MUNCH = False logger.info("Can't import munch") else: _HAS_MUNCH = True DATE_FORMATS = {1: "%Y:%m:%d-%H:%M:%S", 2: "%Y/%m/%d %H:%M:%S", 3: "%Y/%m/%d %H:%M:%S"} def conv_resol(resolution): """Returns a string for resolution (from a Pandas) """ if _HAS_PANDAS: from pandas.tseries.frequencies import to_offset d = { to_offset("1s"): "SECOND", to_offset("1Min"): "MINUTE",
to_offset("2Min")
pandas.tseries.frequencies.to_offset
from io import StringIO import pandas as pd import numpy as np import pytest import bioframe import bioframe.core.checks as checks # import pyranges as pr # def bioframe_to_pyranges(df): # pydf = df.copy() # pydf.rename( # {"chrom": "Chromosome", "start": "Start", "end": "End"}, # axis="columns", # inplace=True, # ) # return pr.PyRanges(pydf) # def pyranges_to_bioframe(pydf): # df = pydf.df # df.rename( # {"Chromosome": "chrom", "Start": "start", "End": "end", "Count": "n_intervals"}, # axis="columns", # inplace=True, # ) # return df # def pyranges_overlap_to_bioframe(pydf): # ## convert the df output by pyranges join into a bioframe-compatible format # df = pydf.df.copy() # df.rename( # { # "Chromosome": "chrom_1", # "Start": "start_1", # "End": "end_1", # "Start_b": "start_2", # "End_b": "end_2", # }, # axis="columns", # inplace=True, # ) # df["chrom_1"] = df["chrom_1"].values.astype("object") # to remove categories # df["chrom_2"] = df["chrom_1"].values # return df chroms = ["chr12", "chrX"] def mock_bioframe(num_entries=100): pos = np.random.randint(1, 1e7, size=(num_entries, 2)) df = pd.DataFrame() df["chrom"] = np.random.choice(chroms, num_entries) df["start"] = np.min(pos, axis=1) df["end"] = np.max(pos, axis=1) df.sort_values(["chrom", "start"], inplace=True) return df ############# tests ##################### def test_select(): df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) region1 = "chr1:4-10" df_result = pd.DataFrame([["chr1", 4, 5]], columns=["chrom", "start", "end"]) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX:4-6" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) ### select with non-standard column names region1 = "chrX:4-6" new_names = ["chr", "chrstart", "chrend"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=new_names, ) df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=new_names, ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) region1 = "chrX" pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) ### select from a DataFrame with NaNs colnames = ["chrom", "start", "end", "view_region"] df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_result = pd.DataFrame( [["chr1", -6, 12, "chr1p"]], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) region1 = "chr1:0-1" pd.testing.assert_frame_equal( df_result, bioframe.select(df, region1).reset_index(drop=True) ) def test_trim(): ### trim with view_df view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 32, 36, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 26, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) with pytest.raises(ValueError): bioframe.trim(df, view_df=view_df) # df_view_col already exists, so need to specify it: pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col="view_region") ) ### trim with view_df interpreted from dictionary for chromsizes chromsizes = {"chr1": 20, "chrX_0": 5} df = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX_0", 1, 8], ], columns=["chrom", "startFunky", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 20], ["chrX_0", 1, 5], ], columns=["chrom", "startFunky", "end"], ).astype({"startFunky": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_trimmed, bioframe.trim( df, view_df=chromsizes, cols=["chrom", "startFunky", "end"], return_view_columns=False, ), ) ### trim with default limits=None and negative values df = pd.DataFrame( [ ["chr1", -4, 12], ["chr1", 13, 26], ["chrX", -5, -1], ], columns=["chrom", "start", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX", 0, 0], ], columns=["chrom", "start", "end"], ) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim when there are NaN intervals df = pd.DataFrame( [ ["chr1", -4, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", -5, -1, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 0, 0, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim with view_df and NA intervals view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12], ["chr1", 0, 12], [pd.NA, pd.NA, pd.NA], ["chrX", 1, 20], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, pd.NA], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) # infer df_view_col with assign_view and ignore NAs pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col=None, return_view_columns=True)[ ["chrom", "start", "end", "view_region"] ], ) def test_expand(): d = """chrom start end 0 chr1 1 5 1 chr1 50 55 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+") expand_bp = 10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 -9 15 1 chr1 40 65 2 chr2 90 210""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with negative pad expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 110 190""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp, side="left") d = """chrom start end 0 chr1 3 5 1 chr1 52 55 2 chr2 110 200""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with multiplicative pad mult = 0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 150 150""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) mult = 2.0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 -1 7 1 chr1 48 58 2 chr2 50 250""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with NA and non-integer multiplicative pad d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) mult = 1.10 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 95 205""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df, fake_expanded) def test_overlap(): ### test consistency of overlap(how='inner') with pyranges.join ### ### note does not test overlap_start or overlap_end columns of bioframe.overlap df1 = mock_bioframe() df2 = mock_bioframe() assert df1.equals(df2) == False # p1 = bioframe_to_pyranges(df1) # p2 = bioframe_to_pyranges(df2) # pp = pyranges_overlap_to_bioframe(p1.join(p2, how=None))[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # bb = bioframe.overlap(df1, df2, how="inner")[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # pp = pp.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # bb = bb.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # pd.testing.assert_frame_equal(bb, pp, check_dtype=False, check_exact=False) # print("overlap elements agree") ### test overlap on= [] ### df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "-", "dog"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ) b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 3 b = bioframe.overlap( df1, df2, on=["strand"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 2 b = bioframe.overlap( df1, df2, on=None, how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 0 ### test overlap 'left', 'outer', and 'right' b = bioframe.overlap( df1, df2, on=None, how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 b = bioframe.overlap( df1, df2, on=["animal"], how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 5 b = bioframe.overlap( df1, df2, on=["animal"], how="inner", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 0 b = bioframe.overlap( df1, df2, on=["animal"], how="right", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 2 b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 ### test keep_order and NA handling df1 = pd.DataFrame( [ ["chr1", 8, 12, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 1, 8, "+"], ], columns=["chrom", "start", "end", "strand"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 7, 10, "-"]], columns=["chrom2", "start2", "end2", "strand"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=True, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) assert ~df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=False, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chrX", 1, 8, pd.NA, pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, pd.NA, "tiger"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert ( bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, keep_order=False, ).shape == (3, 12) ) ### result of overlap should still have bedframe-like properties overlap_df = bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) overlap_df = bioframe.overlap( df1, df2, how="innter", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) # test keep_order incompatible if how!= 'left' with pytest.raises(ValueError): bioframe.overlap( df1, df2, how="outer", on=["animal"], cols2=["chrom2", "start2", "end2"], keep_order=True, ) def test_cluster(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 1]) ).all() # the last interval does not overlap the first three df_annotated = bioframe.cluster(df1, min_dist=2) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 0]) ).all() # all intervals part of the same cluster df_annotated = bioframe.cluster(df1, min_dist=None) assert ( df_annotated["cluster"].values == np.array([0, 0, 1, 2]) ).all() # adjacent intervals not clustered df1.iloc[0, 0] = "chrX" df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([2, 0, 0, 1]) ).all() # do not cluster intervals across chromosomes # test consistency with pyranges (which automatically sorts df upon creation and uses 1-based indexing for clusters) # assert ( # (bioframe_to_pyranges(df1).cluster(count=True).df["Cluster"].values - 1) # == bioframe.cluster(df1.sort_values(["chrom", "start"]))["cluster"].values # ).all() # test on=[] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert ( bioframe.cluster(df1, on=["animal"])["cluster"].values == np.array([0, 1, 0, 2]) ).all() assert ( bioframe.cluster(df1, on=["strand"])["cluster"].values == np.array([0, 1, 1, 2]) ).all() assert ( bioframe.cluster(df1, on=["location", "animal"])["cluster"].values == np.array([0, 2, 1, 3]) ).all() ### test cluster with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.cluster(df1)["cluster"].max() == 3 assert bioframe.cluster(df1, on=["strand"])["cluster"].max() == 4 pd.testing.assert_frame_equal(df1, bioframe.cluster(df1)[df1.columns]) assert checks.is_bedframe( bioframe.cluster(df1, on=["strand"]), cols=["chrom", "cluster_start", "cluster_end"], ) assert checks.is_bedframe( bioframe.cluster(df1), cols=["chrom", "cluster_start", "cluster_end"] ) assert checks.is_bedframe(bioframe.cluster(df1)) def test_merge(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) # the last interval does not overlap the first three with default min_dist=0 assert (bioframe.merge(df1)["n_intervals"].values == np.array([3, 1])).all() # adjacent intervals are not clustered with min_dist=none assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([2, 1, 1]) ).all() # all intervals part of one cluster assert ( bioframe.merge(df1, min_dist=2)["n_intervals"].values == np.array([4]) ).all() df1.iloc[0, 0] = "chrX" assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([1, 1, 1, 1]) ).all() assert ( bioframe.merge(df1, min_dist=0)["n_intervals"].values == np.array([2, 1, 1]) ).all() # total number of intervals should equal length of original dataframe mock_df = mock_bioframe() assert np.sum(bioframe.merge(mock_df, min_dist=0)["n_intervals"].values) == len( mock_df ) # # test consistency with pyranges # pd.testing.assert_frame_equal( # pyranges_to_bioframe(bioframe_to_pyranges(df1).merge(count=True)), # bioframe.merge(df1), # check_dtype=False, # check_exact=False, # ) # test on=['chrom',...] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert len(bioframe.merge(df1, on=None)) == 2 assert len(bioframe.merge(df1, on=["strand"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location", "animal"])) == 4 d = """ chrom start end animal n_intervals 0 chr1 3 10 cat 2 1 chr1 3 8 dog 1 2 chrX 6 10 cat 1""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.merge(df1, on=["animal"]), check_dtype=False, ) # merge with repeated indices df = pd.DataFrame( {"chrom": ["chr1", "chr2"], "start": [100, 400], "end": [110, 410]} ) df.index = [0, 0] pd.testing.assert_frame_equal( df.reset_index(drop=True), bioframe.merge(df)[["chrom", "start", "end"]] ) # test merge with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start":
pd.Int64Dtype()
pandas.Int64Dtype
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functionally annotate a fasta file. Write functional predictions as a TSV with columns - sequence_name (string) - predicted_label (string) - confidence (float); number between 0 and 1. An estimate of the model's confidence that the label is true. - label_description (string); a human-readable label description. """ import decimal import io import logging import os from typing import Dict, List, Text, Tuple from absl import app from absl import flags from Bio.SeqIO import FastaIO import numpy as np import pandas as pd import inference import utils os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # TF c++ logging set to ERROR import tensorflow.compat.v1 as tf # pylint: disable=g-import-not-at-top import tqdm _logger = logging.getLogger('proteinfer') FLAGS = flags.FLAGS flags.DEFINE_string('i', None, 'Input fasta file path.') flags.DEFINE_string('o', None, 'Output write path.') flags.DEFINE_integer( 'num_ensemble_elements', 1, 'In order to run with more than one ensemble element, you will need to run ' 'install_models.py --install_ensemble=true. ' 'More ensemble elements takes more time, but tends to be more accurate. ' 'Run-time scales linearly with the number of ensemble elements. ' 'Maximum value of this flag is {}.'.format( utils.MAX_NUM_ENSEMBLE_ELS_FOR_INFERENCE)) flags.DEFINE_float( 'reporting_threshold', .5, 'Number between 0 (exclusive) and 1 (inclusive). Predicted labels with ' 'confidence at least resporting_threshold will be included in the output.', lower_bound=0., upper_bound=1.) flags.DEFINE_string('model_cache_path', 'cached_models', 'Path from which to use downloaded models and metadata.') # A list of inferrers that all have the same label set. _InferrerEnsemble = List[inference.Inferrer] # (list_of_pfam_inferrers, list_of_ec_inferrers, list_of_go_inferrers) _Models = Tuple[_InferrerEnsemble, _InferrerEnsemble, _InferrerEnsemble] def _num_decimal_places(f): """Get the number of decimal places in a float.""" # https://stackoverflow.com/a/6190291/1445296 return abs(decimal.Decimal('{}'.format(f)).as_tuple().exponent) def _gcs_path_to_relative_unzipped_path(p): """Parses GCS path, to gets the last part, and removes .tar.gz.""" return os.path.join( os.path.basename(os.path.normpath(p)).replace('.tar.gz', '')) def _get_inferrer_paths(model_urls, model_cache_path): """Convert list of model GCS urls to a list of locally cached paths.""" return [ os.path.join(model_cache_path, _gcs_path_to_relative_unzipped_path(p)) for p in model_urls ] def load_models(model_cache_path, num_ensemble_elements): """Load models from cache path into inferrerLists. Args: model_cache_path: path that contains downloaded SavedModels and associated metadata. Same path that was used when installing the models via install_models. num_ensemble_elements: number of ensemble elements of each type to load. Returns: (list_of_pfam_inferrers, list_of_ec_inferrers, list_of_go_inferrers) Raises: ValueError if the models were not found. The exception message describes that install_models.py needs to be rerun. """ try: pfam_inferrer_paths = _get_inferrer_paths(utils.OSS_PFAM_ZIPPED_MODELS_URLS, model_cache_path) ec_inferrer_paths = _get_inferrer_paths(utils.OSS_EC_ZIPPED_MODELS_URLS, model_cache_path) go_inferrer_paths = _get_inferrer_paths(utils.OSS_GO_ZIPPED_MODELS_URLS, model_cache_path) to_return = [] inferrer_list_paths_for_all_models = [ pfam_inferrer_paths, ec_inferrer_paths, go_inferrer_paths ] pbar = tqdm.tqdm( desc='Loading models', position=0, total=len(inferrer_list_paths_for_all_models) * num_ensemble_elements, leave=True, dynamic_ncols=True) for inferrer_list_paths in inferrer_list_paths_for_all_models: inner_itr = inferrer_list_paths[:num_ensemble_elements] inferrer_list = [] for p in inner_itr: inferrer_list.append(inference.Inferrer(p, use_tqdm=True)) pbar.update() to_return.append(inferrer_list) pfam_inferrers = to_return[0] ec_inferrers = to_return[1] go_inferrers = to_return[2] return pfam_inferrers, ec_inferrers, go_inferrers except tf.errors.NotFoundError as exc: err_msg = 'Unable to find cached models in {}.'.format(model_cache_path) if num_ensemble_elements > 1: err_msg += ( ' Make sure you have installed the entire ensemble of models by ' 'running\n install_models.py --install_ensemble ' '--model_cache_path={}'.format(model_cache_path)) else: err_msg += ( ' Make sure you have installed the models by running\n ' 'install_models.py --model_cache_path={}'.format(model_cache_path)) err_msg += '\nThen try rerunning this script.' raise ValueError(err_msg, exc) def _assert_fasta_parsable(input_text): with io.StringIO(initial_value=input_text) as f: fasta_itr = FastaIO.FastaIterator(f) end_iteration_sentinel = object() # Avoid parsing the entire FASTA contents by using `next`. # A malformed FASTA file will have no entries in its FastaIterator. # This is unfortunate (instead of it throwing an error). if next(fasta_itr, end_iteration_sentinel) is end_iteration_sentinel: raise ValueError('Failed to parse any input from fasta file. ' 'Consider checking the formatting of your fasta file. ' 'First bit of contents from the fasta file was\n' '{}'.format(input_text.splitlines()[:3])) def parse_input_to_text(input_fasta_path): """Parses input fasta file. Args: input_fasta_path: path to FASTA file. Returns: Contents of file as a string. Raises: ValueError if parsing the FASTA file gives no records. """ _logger.info('Parsing input from %s', input_fasta_path) with tf.io.gfile.GFile(input_fasta_path, 'r') as input_file: input_text = input_file.read() _assert_fasta_parsable(input_text=input_text) return input_text def input_text_to_df(input_text): """Converts fasta contents to a df with columns sequence_name and sequence.""" with io.StringIO(initial_value=input_text) as f: fasta_records = list(FastaIO.FastaIterator(f)) fasta_df = pd.DataFrame([(f.name, str(f.seq)) for f in fasta_records], columns=['sequence_name', 'sequence']) return fasta_df def perform_inference(input_df, models, reporting_threshold): """Perform inference for Pfam, EC, and GO using given models. Args: input_df: pd.DataFrame with columns sequence_name (str) and sequence (str). models: (list_of_pfam_inferrers, list_of_ec_inferrers, list_of_go_inferrers). reporting_threshold: report labels with mean confidence across ensemble elements that exceeds this threshold. Returns: pd.DataFrame with columns sequence_name (str), label (str), confidence (float). """ predictions = [] for inferrer_list in tqdm.tqdm( models, position=1, desc='Progress', leave=True): predictions.append( inference.get_preds_at_or_above_threshold(input_df, inferrer_list, reporting_threshold)) print('\n') # Because the tqdm bar is position 1, we need to print a newline. predictions = pd.concat(predictions) return predictions def _sort_df_multiple_columns(df, key): """Sort df based on callable key. Args: df: pd.DataFrame. key: function from rows of df (namedtuples) to tuple. This is used in the builtin `sorted` method as the key. Returns: A sorted copy of df. """ # Unpack into list to take advantage of builtin sorted function. # Note that pd.DataFrame.sort_values will not work because sort_values' # sorting function is applied to each column at a time, whereas we need to # consider multiple fields at once. df_rows_sorted = sorted(df.itertuples(index=False), key=key) return
pd.DataFrame(df_rows_sorted, columns=df.columns)
pandas.DataFrame
import networkx as nx import os import osmnx as ox import pandas as pd import pickle import numpy as np import random import statistics from pathlib import Path from instance_class import Instance from output_files import JsonConverter from shapely.geometry import Polygon from descartes.patch import PolygonPatch from shapely.geometry import Point import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt plt.style.use('ggplot') from matplotlib.colors import LogNorm from fitter import Fitter, get_common_distributions, get_distributions from multiprocessing import cpu_count import ray import gc @ray.remote def compute_distances(network, idx, origin, destination): dist = network._return_estimated_distance_drive(origin, destination) print(idx) tuple_re = (idx, dist) return tuple_re def geographic_dispersion(inst, inst1, problem, filename1): if problem == 'DARP': #mu #average travel time between origin and destinations dtt = [] for idx, req in inst1.iterrows(): dtt.append(req['direct_travel_time']) mudarp = sum(dtt) / len(dtt) mu2 = inst1['direct_travel_time'].mean() #average travel time between x nearest neighbors #nyc -> compute for the 5 nearest zones earliest_departure = 'earliest_departure' #latest_arrival = 'do_time_sec' time_gap = 600 #node_origin = #node_destination = osmid_origin = 'originnode_drive' osmid_destination = 'destinationnode_drive' speed = 7.22 #26kmh sumnn = 0 for idx1, row1 in inst1.iterrows(): ltro = [] ltrd = [] for idx2, row2 in inst1.iterrows(): if idx2 != idx1: latest_arrival1 = row1[earliest_departure] + row1['direct_travel_time'] latest_arrival2 = row2[earliest_departure] + row2['direct_travel_time'] #print(row2['earliest_departure']) if (row2[earliest_departure] >= row1[earliest_departure] - time_gap) and (row2[earliest_departure] <= row1[earliest_departure] + time_gap): #if (row2['originnode_drive'] != row1['originnode_drive']) and (row2['originnode_drive'] != row1['destinationnode_drive']): #ltro.append(row2['originnode_drive']) #origin_point = (row2['Pickup_Centroid_Latitude'], row2['Pickup_Centroid_Longitude']) node_origin = row2[osmid_origin] ltro.append(node_origin) if (latest_arrival2 >= row1[earliest_departure] - time_gap) and (latest_arrival2 <= row1[earliest_departure] + time_gap): #if (row2['destinationnode_drive'] != row1['originnode_drive']) and (row2['destinationnode_drive'] != row1['destinationnode_drive']): #ltro.append(row2['destinationnode_drive']) #destination_point = (row2['Dropoff_Centroid_Latitude'], row2['Dropoff_Centroid_Longitude']) node_destination = row2[osmid_destination] ltro.append(node_destination) if (latest_arrival2 >= latest_arrival1 - time_gap) and (latest_arrival2 <= latest_arrival1 + time_gap): #if (row2['destinationnode_drive'] != row1['originnode_drive']) and (row2['destinationnode_drive'] != row1['destinationnode_drive']): #ltrd.append(row2['destinationnode_drive']) #destination_point = (row2['Dropoff_Centroid_Latitude'], row2['Dropoff_Centroid_Longitude']) node_destination = row2[osmid_destination] ltro.append(node_destination) if (row2[earliest_departure] >= latest_arrival1 - time_gap) and (row2[earliest_departure] <= latest_arrival1 + time_gap): #if (row2['originnode_drive'] != row1['originnode_drive']) and (row2['originnode_drive'] != row1['destinationnode_drive']): #ltrd.append(row2['originnode_drive']) #origin_point = (row2['Pickup_Centroid_Latitude'], row2['Pickup_Centroid_Longitude']) node_origin = row2[osmid_origin] ltro.append(node_origin) #ltro = list(dict.fromkeys(ltro)) #ltrd = list(dict.fromkeys(ltrd)) #print(ltro) #print(ltrd) ltrot = [] ltrdt = [] #org_row1 = int(row1['originnode_drive']) #origin_point = (row1['Pickup_Centroid_Latitude'], row1['Pickup_Centroid_Longitude']) #org_row1 = ox.get_nearest_node(inst.network.G_drive, origin_point) org_row1 = row1[osmid_origin] for x in ltro: #tuplx = (x, inst.network._return_estimated_travel_time_drive(int(org_row1), int(x))) dist = inst.network._return_estimated_distance_drive(int(org_row1), int(x)) tt = dist/speed tuplx = (x, tt) ltrot.append(tuplx) #dest_row1 = int(row1['destinationnode_drive']) #destination_point = (row1['Dropoff_Centroid_Latitude'], row1['Dropoff_Centroid_Longitude']) #dest_row1 = ox.get_nearest_node(inst.network.G_drive, destination_point) dest_row1 = row1[osmid_destination] for y in ltrd: #tuply = (y, inst.network._return_estimated_travel_time_drive(int(dest_row1), int(y))) dist = inst.network._return_estimated_distance_drive(int(dest_row1), int(y)) tt = dist/speed tuply = (y, tt) ltrdt.append(tuply) #ordenar as tuplas ltrot.sort(key = lambda x: x[1]) ltrdt.sort(key = lambda x: x[1]) #pegar a media das 5 primeiras n_neig = 5 avgo = 0 for i in range(min(n_neig, len(ltrot))): avgo += ltrot[i][1] if len(ltrot) > 0: avgo = avgo/min(n_neig, len(ltrot)) avgd = 0 for j in range(min(n_neig, len(ltrdt))): avgd += ltrdt[j][1] #adicionar numa variavel de soma if len(ltrdt) > 0: avgd = avgd/min(n_neig, len(ltrdt)) #print(avgo, avgd) #print(avgd) sumnn += avgo + avgd omegadarp = sumnn/(len(inst1)*2) #ttm1['mean'] = ttm1.mean(axis=1) #varchi = 0.7 #omega = ttm1['mean'].mean() print(mudarp) print(omegadarp) gd = mudarp + omegadarp print(gd) else: ttm_file_inst1 = 'travel_time_matrix_'+filename1 ttmfilename1 = os.fsdecode(ttm_file_inst1) ttm1 = pd.read_csv(ttm_directory+'/'+ttmfilename1) ttm1.set_index(['osmid_origin'], inplace=True) earliest_departure = 'earliest_departure' latest_arrival = 'latest_arrival' time_gap = 600 #node_origin = #node_destination = osmid_origin = 'originnode_drive' osmid_destination = 'destinationnode_drive' speed = 7.22 #26kmh stops_orgn = 'stops_orgn' stops_dest = 'stops_dest' stations = [] ovrsumm = 0 for idx, row in inst1.iterrows(): orgn = row[stops_orgn].strip('][').split(', ') dest = row[stops_dest].strip('][').split(', ') orgn = [int(i) for i in orgn] dest = [int(i) for i in dest] summ = 0 count = 0 for so in orgn: for sd in dest: if so != sd: summ += ttm1.loc[so, str(sd)] count += 1 ovrsumm += summ/count muodbrp = ovrsumm/(len(inst1)) sumnn = 0 for idx1, row1 in inst1.iterrows(): ltro = [] ltrd = [] for idx2, row2 in inst1.iterrows(): if idx2 != idx1: if (row2[earliest_departure] >= row1[earliest_departure] - time_gap) and (row2[earliest_departure] <= row1[earliest_departure] + time_gap): stps = row2[stops_orgn].strip('][').split(', ') ltro.extend(stps) if (row2[latest_arrival] >= row1[earliest_departure] - time_gap) and (row2[latest_arrival] <= row1[earliest_departure] + time_gap): stps = row2[stops_dest].strip('][').split(', ') ltro.extend(stps) if (row2[latest_arrival] >= row1[latest_arrival] - time_gap) and (row2[latest_arrival] <= row1[latest_arrival] + time_gap): stps = row2[stops_dest].strip('][').split(', ') ltrd.extend(stps) if (row2[earliest_departure] >= row1[latest_arrival] - time_gap) and (row2[earliest_departure] <= row1[latest_arrival] + time_gap): stps = row2[stops_orgn].strip('][').split(', ') ltrd.extend(stps) ltro = list(dict.fromkeys(ltro)) ltrd = list(dict.fromkeys(ltrd)) ltrot = [] ltrdt = [] org_stps = row1[stops_orgn].strip('][').split(', ') org_stps = [int(i) for i in org_stps] ltro = [int(i) for i in ltro if int(i) not in org_stps] for s in org_stps: for x in ltro: tuplx = (x, ttm1.loc[int(s), str(x)]) ltrot.append(tuplx) dest_stps = row1[stops_dest].strip('][').split(', ') dest_stps = [int(i) for i in dest_stps] ltrd = [int(i) for i in ltrd if int(i) not in dest_stps] for s in dest_stps: for y in ltrd: tuply = (y, ttm1.loc[int(s), str(y)]) ltrdt.append(tuply) #sort tuples ltrot.sort(key = lambda x: x[1]) ltrdt.sort(key = lambda x: x[1]) #avg 5 first n_neig = 5 avgo = 0 for i in range(min(n_neig, len(ltrot))): avgo += ltrot[i][1] if len(ltrot) > 0: avgo = avgo/min(n_neig, len(ltrot)) avgd = 0 for j in range(min(n_neig, len(ltrdt))): avgd += ltrdt[j][1] if len(ltrdt) > 0: avgd = avgd/min(n_neig, len(ltrdt)) sumnn += avgo + avgd omegaodbrp = sumnn/(len(inst1)*2) print(muodbrp) print(omegaodbrp) gd = muodbrp + omegaodbrp print(gd) def similarity(inst, inst1, inst2): thtt = 360 thts = 60 the = 60 speed = 7.22 #26kmh #columns for computation earliest_departure = 'earliest_departure' osmid_origin = 'originnode_drive' osmid_destination = 'destinationnode_drive' number_reqs = len(inst1) G = nx.Graph() for i in range(number_reqs*2): G.add_node(int(i)) #top_nodes = [i for i in range(number_reqs)] #bottom_nodes = [i+500 for i in range(number_reqs)] for id1, req1 in inst1.iterrows(): #o1 = req1['originnode_drive'] #d1 = req1['destinationnode_drive'] #origin_point = (req1['Pickup_Centroid_Latitude'], req1['Pickup_Centroid_Longitude']) #o1 = ox.get_nearest_node(inst.network.G_drive, origin_point) #destination_point = (req1['Dropoff_Centroid_Latitude'], req1['Dropoff_Centroid_Longitude']) #d1 = ox.get_nearest_node(inst.network.G_drive, destination_point) o1 = req1[osmid_origin] d1 = req1[osmid_destination] for id2, req2 in inst2.iterrows(): #o2 = req2['originnode_drive'] #d2 = req2['destinationnode_drive'] #origin_point = (req2['Pickup_Centroid_Latitude'], req2['Pickup_Centroid_Longitude']) #o2 = ox.get_nearest_node(inst.network.G_drive, origin_point) #destination_point = (req2['Dropoff_Centroid_Latitude'], req2['Dropoff_Centroid_Longitude']) #d2 = ox.get_nearest_node(inst.network.G_drive, destination_point) o2 = req2[osmid_origin] d2 = req2[osmid_destination] #oott = inst.network._return_estimated_travel_time_drive(int(o1), int(o2)) #ddtt = inst.network._return_estimated_travel_time_drive(int(d1), int(d2)) #oott2 = inst.network._return_estimated_travel_time_drive(int(o2), int(o1)) #ddtt2 = inst.network._return_estimated_travel_time_drive(int(d2), int(d1)) oott = inst.network._return_estimated_distance_drive(int(o1), int(o2)) ddtt = inst.network._return_estimated_distance_drive(int(d1), int(d2)) oott2 = inst.network._return_estimated_distance_drive(int(o2), int(o1)) ddtt2 = inst.network._return_estimated_distance_drive(int(d2), int(d1)) oott = oott/speed ddtt = ddtt/speed oott2 = oott2/speed ddtt2 = ddtt2/speed phi = min(oott + ddtt, oott2 + ddtt2) n1 = int(id1) n2 = int(id2+number_reqs) #print(n1, n2) if phi < thtt: #print("here") tau = abs(req1['time_stamp'] - req2['time_stamp']) eu1 = abs(req1[earliest_departure]) eu2 = abs(req2[earliest_departure]) vartheta = abs(eu1 - eu2) #print(tau, vartheta) if (vartheta < the): G.add_edge(n1, n2, weight=100) else: if (tau < thts) or (vartheta < the): #print("here") G.add_edge(n1, n2, weight=75) else: #print("here") G.add_edge(n1, n2, weight=50) else: G.add_edge(n1, n2, weight=0) M = nx.max_weight_matching(G, weight='weight', maxcardinality=True) #M = nx.bipartite.minimum_weight_full_matching(G, weight='weight') si1i2 = 0 print(len(M)) #print(M) count = 0 for e in M: #print(e) #print(e[0]) #print(e[1]) #print(e) #print(e) peso = G.edges[int(e[0]), int(e[1])]['weight'] #if peso > 1: si1i2 += peso count += 1 #print(si1i2) #print(count) si1i2 = si1i2/count print(si1i2) return si1i2 def dynamism(inst1, ed, ld): time_stamp = 'time_stamp' Te = abs(ld - ed) inst1 = inst1.sort_values(time_stamp) sorted_ts = inst1[time_stamp].tolist() #sorted_ts = [i for i in sorted_ts if i != 0] #exclude time stamp 0 DELTA = [] for ts in range(len(sorted_ts)-1): DELTA.append(float(abs(sorted_ts[ts+1] - sorted_ts[ts]))) number_reqs = len(inst1) theta = Te/len(sorted_ts) SIGMA = [] for k in range(len(DELTA)): if ((k == 0) and (DELTA[k] < theta)): SIGMA.append(theta - DELTA[k]) else: if ((k > 0) and (DELTA[k] < theta)): SIGMA.append(theta - DELTA[k] + SIGMA[k-1]*((theta - DELTA[k])/theta)) else: SIGMA.append(0) #print(SIGMA) lambdax = 0 for sk in SIGMA: lambdax += sk NEGSIGMA = [] for k in range(len(DELTA)): if ((k > 0) and (DELTA[k] < theta)): NEGSIGMA.append(theta + SIGMA[k-1]*((theta - DELTA[k])/theta)) else: NEGSIGMA.append(theta) #print(NEGSIGMA) eta = 0 for nsk in NEGSIGMA: eta += nsk rho = 1 - (sum(SIGMA)/sum(NEGSIGMA)) print(rho) def new_heatmap(inst, dfc): df_og = dfc df_de = dfc pts_bhx = [] pts_bhy = [] pts_og = [] pts_ogx = [] pts_ogy = [] for idx, row in df_og.iterrows(): pt = (row['originx'], row['originy']) pts_og.append(pt) pts_ogx.append(row['originx']) pts_ogy.append(row['originy']) pts_bhx.append(row['originx']) pts_bhy.append(row['originy']) pts_de = [] pts_dex = [] pts_dey = [] for idx, row in df_de.iterrows(): pt = (row['destinationx'], row['destinationy']) pts_de.append(pt) pts_dex.append(row['destinationx']) pts_dey.append(row['destinationy']) pts_bhx.append(row['destinationx']) pts_bhy.append(row['destinationy']) minx, miny, maxx, maxy = inst.network.polygon.bounds #hm = Heatmap(libpath="cHeatmap.cpython-38-x86_64-linux-gnu.so") #img = hm.heatmap(pts_og, scheme='classic', dotsize=75, opacity=128, area=((minx, miny), (maxx, maxy))) #img.save("heatmap_og.png") #hm = Heatmap(libpath="cHeatmap.cpython-38-x86_64-linux-gnu.so") #img = hm.heatmap(pts_de, scheme='classic', dotsize=75, opacity=128, area=((minx, miny), (maxx, maxy))) #img.save("heatmap_de.png") #print(' len points ', len(pts_ogx)) #plt.hist2d(pts_ogx,pts_ogy, bins=[np.arange(minx,maxx,5),np.arange(miny,maxy,5)]) #print(len(pts_ogx)) h = plt.hist2d(pts_ogx,pts_ogy, bins=25, norm=LogNorm(), cmap='jet') plt.colorbar(h[3]) plt.xlabel('longitude') plt.ylabel('latitude') plt.savefig('heatmap_origin_syn.png') plt.close() #plt.hist2d(pts_dex,pts_dey, bins=[np.arange(minx,maxx,10),np.arange(miny,maxy,10)]) h = plt.hist2d(pts_dex,pts_dey, bins=25, norm=LogNorm(), cmap='jet') plt.colorbar(h[3]) plt.xlabel('longitude') plt.ylabel('latitude') plt.savefig('heatmap_destination_syn.png') plt.close() h = plt.hist2d(pts_bhx,pts_bhy, bins=25, norm=LogNorm(), cmap='jet') plt.colorbar(h[3]) plt.xlabel('longitude') plt.ylabel('latitude') plt.savefig('heatmap_both_syn.png') plt.close() #curr_folder = os.getcwd() #fig, ax = ox.plot_graph(inst.network.G_drive,figsize=(8, 8), dpi=128, show=False, filepath='heatmap_origin_points.png', save=True) #fig, ax = ox.plot_graph(inst.network.G_drive,figsize=(8, 8), dpi=128, show=False, filepath='heatmap_destination_points.png', save=True) def new_heatmap_pois(inst, place_name): output_folder_base = place_name save_dir_csv = os.path.join(save_dir, 'csv') path_pois = os.path.join(save_dir_csv, output_folder_base+'.pois.csv') if os.path.isfile(path_pois): print('is file POIs') pois =
pd.read_csv(path_pois)
pandas.read_csv
import pandas as pd import numpy as np # # TODO: # Load up the dataset, setting correct header labels. # # .. your code here .. df=pd.read_csv('D:/Python_Microscoft/DAT210x/Module2/Datasets/census.data',index_col=0, header=None) df.head(5) # # TODO: # Use basic pandas commands to look through the dataset... get a # feel for it before proceeding! Do the data-types of each column # reflect the values you see when you look through the data using # a text editor / spread sheet program? If you see 'object' where # you expect to see 'int32' / 'float64', that is a good indicator # that there is probably a string or missing value in a column. # use `your_data_frame['your_column'].unique()` to see the unique # values of each column and identify the rogue values. If these # should be represented as nans, you can convert them using # na_values when loading the dataframe. # # .. your code here .. df.columns=['education', 'age', 'capital-gain', 'race', 'capital-loss', 'hours-per-week', 'sex', 'classification'] df['capital-gain'].unique() df2=df df2['capital-gain']=pd.to_numeric(df2['capital-gain'], errors='coerce') # # TODO: # Look through your data and identify any potential categorical # features. Ensure you properly encode any ordinal and nominal # types using the methods discussed in the chapter. # # Be careful! Some features can be represented as either categorical # or continuous (numerical). If you ever get confused, think to yourself # what makes more sense generally---to represent such features with a # continuous numeric type... or a series of categories? # # .. your code here .. df3=
pd.get_dummies(df2['classification'])
pandas.get_dummies
import matplotlib.pyplot as plt import requests import json import pandas as pd import numpy as np # Округа Москвы COLORS = ['y', 'b', 'r', 'g', 'c', 'm', 'lime', 'gold', 'orange', 'coral', 'purple', 'grey'] DISTRICT = {"Восточный административный округ": [55.787710, 37.775631], "Западный административный округ": [55.728003, 37.443533], "Зеленоградский административный округ": [55.987583, 37.194250], "Новомосковский административный округ": [55.558121, 37.370724], "Северный административный округ": [55.838384, 37.525765], "Северо-Восточный административный округ": [55.863894, 37.620923], "Северо-Западный административный округ": [55.829370, 37.451546], "Троицкий административный округ": [55.355771, 37.146990], "Центральный административный округ": [55.753995, 37.614069], "Юго-Восточный административный округ": [55.692019, 37.754583], "Юго-Западный административный округ": [55.662735, 37.576178], "Южный административный округ": [55.610906, 37.681479]} # Название округа DISTRICT_NAME = ['ВАО', 'ЗАО', 'ЗелАО', 'Новомосковский АО', 'САО', 'СВАО', 'СЗАО', 'Троицкий АО', 'ЦАО', 'ЮВАО', 'ЮЗАО', 'ЮАО'] # POST запрос данных def get_data(url, filename): URL = url client = requests.session() client.get(URL) res = requests.post(URL, headers=dict(Referer=URL)) with open(filename, 'w') as outfile: json.dump(res.json(), outfile, ensure_ascii=False, separators=(',', ': '), indent=4, sort_keys=False) class network_KH: def __init__(self, values, centers): self.values = np.array(values) self.centers = np.array(centers) self.weights = np.zeros((len(values), len(centers))) def euclidDist(self, a, b): return np.linalg.norm(a - b) def find_weights(self): for value_i in range(len(self.values)): for center_i in range(len(self.centers)): self.weights[value_i][center_i] = self.euclidDist(self.values[value_i], self.centers[center_i]) for value_i in range(len(self.values)): min_index = self.weights[value_i].argmin() self.weights[value_i][min_index] = 1 self.weights[value_i][0:min_index] = 0 self.weights[value_i][min_index + 1:] = 0 return self.weights class ClusterAnalysis(): def __init__(self, data_lyceums): self.read_json(data_lyceums) _, self.ax = plt.subplots() self.save_data('init.png') # Считывание JSON def read_json(self, data_lyceums): json_data = open(data_lyceums).read() data = json.loads(json_data) lyceums_data = [data['features'][i]['geometry']['coordinates'] for i in range(len(data['features']))] dist_data = [data['features'][i]['properties']['Attributes']['okrug'] for i in range(len(data['features']))] name_data = [data['features'][i]['properties']['Attributes']['name'] for i in range(len(data['features']))] lyceums =
pd.DataFrame(lyceums_data, columns=['x', 'y'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Sep 11 12:01:40 2018 @author: suvod """ from main.git_log import git2repo import pygit2 import re import numpy as np import matplotlib.pyplot as plt import networkx as nx import pandas as pd from datetime import datetime import re, unicodedata import nltk.corpus from nltk.stem import PorterStemmer,SnowballStemmer from nltk.stem import WordNetLemmatizer from pygit2 import GIT_SORT_TOPOLOGICAL, GIT_SORT_REVERSE from main.utils import utils import threading from multiprocessing import Queue from threading import Thread import math import os from multiprocessing import Pool, cpu_count import platform from os.path import dirname as up import sys class ThreadWithReturnValue(Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs={}, Verbose=None): Thread.__init__(self, group, target, name, args, kwargs) self._return = None def run(self): #print(type(self._target)) if self._target is not None: self._return = self._target(*self._args, **self._kwargs) def join(self, *args): Thread.join(self, *args) return self._return class create_code_interaction_graph(object): def __init__(self,repo_url,repo_name): self.repo_url = repo_url self.repo_name = repo_name self.repo_obj = git2repo.git2repo(self.repo_url,self.repo_name) self.repo = self.repo_obj.clone_repo() if platform.system() == 'Darwin' or platform.system() == 'Linux': self.repo_path = up(os.getcwd()) + '/temp_repo/' + repo_name self.file_path = up(os.getcwd()) + '/data/' + repo_name + '_commit.pkl' else: self.repo_path = up(os.getcwd()) + '\\temp_repo\\' + repo_name self.file_path = up(os.getcwd()) + '\\data\\' + repo_name + '_commit.pkl' #self.commits = self.repo_obj.get_commit_objects() self.commits = self.read_commits() self.commit_df = pd.DataFrame(self.commits, columns = ['commit_object']) #self.committed_files = self.repo_obj.get_committed_files() self.diffs = self.get_diffs() self.cores = cpu_count() self.blame_count = 0 def read_commits(self): df = pd.read_pickle(self.file_path) df_commit_id = df.commit_number.values.tolist() commits = [] for commit in df_commit_id: obj = self.repo.get(commit) if obj == None: continue commits.append(obj) return commits def get_diffs(self): commmit_id = [] for i in self.commits: commmit_id.append(i.id) diffs = self.repo_obj.get_diffs(commmit_id) return diffs def get_bug_creators(self,diffs): bug_creator = [] for value in diffs: _diff_files = diffs[value]['files'] self.repo.head.set_target(diffs[value]['object'].parent_ids[0]) for _value in _diff_files: try: file_path = _diff_files[_value]['file_path'] #print("Get blame start in get_bug_creators") self.blame_count += 1 blame = self.repo_obj.get_blame(file_path) #print("Get blame end in get_bug_creators") for _line in _diff_files[_value]['old_lines']: if _line != -1: ref = blame.for_line(_line) bug_creator.append([ref.final_committer.name,diffs[value]['object'].committer.name ,ref.orig_commit_id, 1]) except Exception as e: #print(file_path,e) continue bug_creator_df = pd.DataFrame(bug_creator, columns = ['committer1','committer2','commit','ob']) return bug_creator_df def create_adjacency_matrix(self): threads = [] bug_creator_df = pd.DataFrame([], columns = ['committer1','committer2','commit','ob']) #i = 0 keys = list(self.diffs.keys()) len_bd = len(self.diffs) sub_list_len = len_bd/self.cores keys_set = set(self.diffs.keys()) for i in range(self.cores): sub_keys = keys[int(i*sub_list_len):int((i+1)*sub_list_len)] subdict = {x: self.diffs[x] for x in sub_keys if x in keys_set} t = ThreadWithReturnValue(target = self.get_bug_creators, args = [subdict]) threads.append(t) for i in range(0,len(threads),self.cores): print("Starting Thread group:",i) _threads = threads[i:i+self.cores] for th in _threads: th.start() for th in _threads: response = th.join() bug_creator_df =
pd.concat([bug_creator_df,response])
pandas.concat
# pylint: disable=E1101,W0232 import numpy as np from warnings import warn import types from pandas import compat from pandas.compat import u from pandas.core.algorithms import factorize from pandas.core.base import PandasObject, PandasDelegate from pandas.core.index import Index, _ensure_index from pandas.core.indexing import _is_null_slice from pandas.tseries.period import PeriodIndex import pandas.core.common as com from pandas.core.common import isnull from pandas.util.terminal import get_terminal_size from pandas.core.config import get_option from pandas.core import format as fmt def _cat_compare_op(op): def f(self, other): # On python2, you can usually compare any type to any type, and Categoricals can be # seen as a custom type, but having different results depending whether a level are # the same or not is kind of insane, so be a bit stricter here and use the python3 idea # of comparing only things of equal type. if not self.ordered: if op in ['__lt__', '__gt__','__le__','__ge__']: raise TypeError("Unordered Categoricals can only compare equality or not") if isinstance(other, Categorical): # Two Categoricals can only be be compared if the levels are the same if (len(self.levels) != len(other.levels)) or not ((self.levels == other.levels).all()): raise TypeError("Categoricals can only be compared if 'levels' are the same") if not (self.ordered == other.ordered): raise TypeError("Categoricals can only be compared if 'ordered' is the same") na_mask = (self._codes == -1) | (other._codes == -1) f = getattr(self._codes, op) ret = f(other._codes) if na_mask.any(): # In other series, the leads to False, so do that here too ret[na_mask] = False return ret elif np.isscalar(other): if other in self.levels: i = self.levels.get_loc(other) return getattr(self._codes, op)(i) else: return np.repeat(False, len(self)) else: msg = "Cannot compare a Categorical for op {op} with type {typ}. If you want to \n" \ "compare values, use 'np.asarray(cat) <op> other'." raise TypeError(msg.format(op=op,typ=type(other))) f.__name__ = op return f def _is_categorical(array): """ return if we are a categorical possibility """ return isinstance(array, Categorical) or isinstance(array.dtype, com.CategoricalDtype) def _maybe_to_categorical(array): """ coerce to a categorical if a series is given """ if isinstance(array, com.ABCSeries): return array.values return array _codes_doc = """The level codes of this categorical. Level codes are an array if integer which are the positions of the real values in the levels array. There is not setter, used the other categorical methods and the item setter on Categorical to change values in the categorical. """ _levels_doc = """The levels of this categorical. Setting assigns new values to each level (effectively a rename of each individual level). The assigned value has to be a list-like object. If the number of level-items is less than number of level-items in the current level, all level-items at a higher position are set to NaN. If the number of level-items is more that the current number of level-items, new (unused) levels are added at the end. To add level-items in between, use `reorder_levels`. Raises ------ ValueError If the new levels do not validate as levels See also -------- Categorical.reorder_levels Categorical.remove_unused_levels """ class Categorical(PandasObject): """ Represents a categorical variable in classic R / S-plus fashion `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`levels`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `levels` or `np.nan`. Assigning values outside of `levels` will raise a `ValueError`. Order is defined by the order of the `levels`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If levels are given, values not in levels will be replaced with NaN. levels : Index-like (unique), optional The unique levels for this categorical. If not given, the levels are assumed to be the unique values of values. ordered : boolean, optional Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be ordered if values can be sorted. name : str, optional Name for the Categorical variable. If name is None, will attempt to infer from values. compat : boolean, default=False Whether to treat values as codes to the levels (old API, deprecated) Attributes ---------- levels : Index The levels of this categorical codes : ndarray The codes (integer positions, which point to the levels) of this categorical, read only ordered : boolean Whether or not this Categorical is ordered name : string The name of this Categorical Raises ------ ValueError If the levels do not validate TypeError If an explicit ``ordered=True`` is given but no `levels` and the `values` are not sortable Examples -------- >>> from pandas import Categorical >>> Categorical([1, 2, 3, 1, 2, 3]) 1 2 3 1 2 3 Levels (3): Int64Index([1, 2, 3], dtype=int64), ordered >>> Categorical(['a', 'b', 'c', 'a', 'b', 'c']) a b c a b c Levels (3): Index(['a', 'b', 'c'], dtype=object), ordered >>> a = Categorical(['a','b','c','a','b','c'], ['c', 'b', 'a']) >>> a.min() 'c' """ ndim = 1 """Number of dimensions (always 1!)""" dtype = com.CategoricalDtype() """The dtype (always "category")""" ordered = None """Whether or not this Categorical is ordered. Only ordered `Categoricals` can be sorted (according to the order of the levels) and have a min and max value. See also -------- Categorical.sort Categorical.order Categorical.min Categorical.max """ # For comparisons, so that numpy uses our implementation if the compare ops, which raise __array_priority__ = 1000 def __init__(self, values, levels=None, ordered=None, name=None, fastpath=False, compat=False): if fastpath: # fast path self._codes = values self.name = name self.levels = levels self.ordered = ordered return if name is None: name = getattr(values, 'name', None) # sanitize input if com.is_categorical_dtype(values): # we are either a Series or a Categorical cat = values if isinstance(values, com.ABCSeries): cat = values.values if levels is None: levels = cat.levels if ordered is None: ordered = cat.ordered values = values.__array__() elif isinstance(values, Index): pass else: # on numpy < 1.6 datetimelike get inferred to all i8 by _sanitize_array # which is fine, but since factorize does this correctly no need here # this is an issue because _sanitize_array also coerces np.nan to a string # under certain versions of numpy as well values = com._possibly_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) from pandas.core.series import _sanitize_array # On list with NaNs, int values will be converted to float. Use "object" dtype # to prevent this. In the end objects will be casted to int/... in the level # assignment step. dtype = 'object' if isnull(values).any() else None values = _sanitize_array(values, None, dtype=dtype) if levels is None: try: codes, levels = factorize(values, sort=True) # If the underlying data structure was sortable, and the user doesn't want to # "forget" this order, the categorical also is sorted/ordered if ordered is None: ordered = True except TypeError: codes, levels = factorize(values, sort=False) if ordered: # raise, as we don't have a sortable data structure and so the usershould # give us one by specifying levels raise TypeError("'values' is not ordered, please explicitly specify the level " "order by passing in a level argument.") else: # there are two ways if levels are present # the old one, where each value is a int pointer to the levels array # the new one, where each value is also in the level array (or np.nan) # make sure that we always have the same type here, no matter what we get passed in levels = self._validate_levels(levels) # There can be two ways: the old which passed in codes and levels directly # and values have to be inferred and the new one, which passes in values and levels # and _codes have to be inferred. # min and max can be higher and lower if not all levels are in the values if compat and (com.is_integer_dtype(values) and (np.min(values) >= -1) and (np.max(values) < len(levels))): warn("Using 'values' as codes is deprecated.\n" "'Categorical(... , compat=True)' is only there for historical reasons and " "should not be used in new code!\n" "See https://github.com/pydata/pandas/pull/7217", FutureWarning) codes = values else: codes = _get_codes_for_values(values, levels) # if we got levels, we can assume that the order is intended # if ordered is unspecified if ordered is None: ordered = True self.ordered = False if ordered is None else ordered self._codes = codes self.levels = levels self.name = name def copy(self): """ Copy constructor. """ return Categorical(values=self._codes.copy(),levels=self.levels, name=self.name, ordered=self.ordered, fastpath=True) @classmethod def from_array(cls, data): """ Make a Categorical type from a single array-like object. Parameters ---------- data : array-like Can be an Index or array-like. The levels are assumed to be the unique values of `data`. """ return Categorical(data) @classmethod def from_codes(cls, codes, levels, ordered=False, name=None): """ Make a Categorical type from codes and levels arrays. This constructor is useful if you already have codes and levels and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like, integers An integer array, where each integer points to a level in levels or -1 for NaN levels : index-like The levels for the categorical. Items need to be unique. ordered : boolean, optional Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be unordered. name : str, optional Name for the Categorical variable. """ try: codes = np.asarray(codes, np.int64) except: raise ValueError("codes need to be convertible to an arrays of integers") levels = cls._validate_levels(levels) if codes.max() >= len(levels) or codes.min() < -1: raise ValueError("codes need to be between -1 and len(levels)-1") return Categorical(codes, levels=levels, ordered=ordered, name=name, fastpath=True) _codes = None def _get_codes(self): """ Get the level codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _get_labels(self): """ Get the level labels (deprecated). Deprecated, use .codes! """ import warnings warnings.warn("'labels' is deprecated. Use 'codes' instead", FutureWarning) return self.codes labels = property(fget=_get_labels, fset=_set_codes) _levels = None @classmethod def _validate_levels(cls, levels): """" Validates that we have good levels """ if not isinstance(levels, Index): dtype = None if not hasattr(levels, "dtype"): levels = _convert_to_list_like(levels) # on levels with NaNs, int values would be converted to float. Use "object" dtype # to prevent this. if isnull(levels).any(): without_na = np.array([x for x in levels if com.notnull(x)]) with_na = np.array(levels) if with_na.dtype != without_na.dtype: dtype = "object" levels = Index(levels, dtype=dtype) if not levels.is_unique: raise ValueError('Categorical levels must be unique') return levels def _set_levels(self, levels): """ Sets new levels """ levels = self._validate_levels(levels) if not self._levels is None and len(levels) < len(self._levels): # remove all _codes which are larger self._codes[self._codes >= len(levels)] = -1 self._levels = levels def _get_levels(self): """ Gets the levels """ # levels is an Index, which is immutable -> no need to copy return self._levels levels = property(fget=_get_levels, fset=_set_levels, doc=_levels_doc) def reorder_levels(self, new_levels, ordered=None): """ Reorders levels as specified in new_levels. `new_levels` must include all old levels but can also include new level items. In contrast to assigning to `levels`, these new level items can be in arbitrary positions. The level reordering is done inplace. Raises ------ ValueError If the new levels do not contain all old level items Parameters ---------- new_levels : Index-like The levels in new order. must be of same length as the old levels ordered : boolean, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. """ new_levels = self._validate_levels(new_levels) if len(new_levels) < len(self._levels) or len(self._levels.difference(new_levels)): raise ValueError('Reordered levels must include all original levels') values = self.__array__() self._codes = _get_codes_for_values(values, new_levels) self._levels = new_levels if not ordered is None: self.ordered = ordered def remove_unused_levels(self): """ Removes levels which are not used. The level removal is done inplace. """ _used = sorted(np.unique(self._codes)) new_levels = self.levels.take(com._ensure_platform_int(_used)) new_levels = _ensure_index(new_levels) self._codes = _get_codes_for_values(self.__array__(), new_levels) self._levels = new_levels __eq__ = _cat_compare_op('__eq__') __ne__ = _cat_compare_op('__ne__') __lt__ = _cat_compare_op('__lt__') __gt__ = _cat_compare_op('__gt__') __le__ = _cat_compare_op('__le__') __ge__ = _cat_compare_op('__ge__') # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def __array__(self, dtype=None): """ The numpy array interface. Returns ------- values : numpy array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.levels.dtype """ ret = com.take_1d(self.levels.values, self._codes) if dtype and dtype != self.levels.dtype: return np.asarray(ret, dtype) return ret @property def T(self): return self def isnull(self): """ Detect missing values Both missing values (-1 in .codes) and NA as a level are detected. Returns ------- a boolean array of whether my values are null See also -------- pandas.isnull : pandas version Categorical.notnull : boolean inverse of Categorical.isnull """ ret = self._codes == -1 # String/object and float levels can hold np.nan if self.levels.dtype.kind in ['S', 'O', 'f']: if np.nan in self.levels: nan_pos = np.where(isnull(self.levels))[0] # we only have one NA in levels ret = np.logical_or(ret , self._codes == nan_pos) return ret def notnull(self): """ Reverse of isnull Both missing values (-1 in .codes) and NA as a level are detected as null. Returns ------- a boolean array of whether my values are not null See also -------- pandas.notnull : pandas version Categorical.isnull : boolean inverse of Categorical.notnull """ return ~self.isnull() def get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- values : numpy array A numpy array of the same dtype as categorical.levels.dtype or dtype string if periods """ # if we are a period index, return a string repr if isinstance(self.levels, PeriodIndex): return com.take_1d(np.array(self.levels.to_native_types(), dtype=object), self._codes) return np.array(self) def argsort(self, ascending=True, **kwargs): """ Implements ndarray.argsort. For internal compatibility with numpy arrays. Only ordered Categoricals can be argsorted! Returns ------- argsorted : numpy array """ if not self.ordered: raise TypeError("Categorical not ordered") result = np.argsort(self._codes.copy(), **kwargs) if not ascending: result = result[::-1] return result def order(self, inplace=False, ascending=True, na_position='last', **kwargs): """ Sorts the Category by level value returning a new Categorical by default. Only ordered Categoricals can be sorted! Categorical.sort is the equivalent but sorts the Categorical inplace. Parameters ---------- ascending : boolean, default True Sort ascending. Passing False sorts descending inplace : boolean, default False Do operation in place. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- y : Category or None See Also -------- Category.sort """ if not self.ordered: raise TypeError("Categorical not ordered") if na_position not in ['last','first']: raise ValueError('invalid na_position: {!r}'.format(na_position)) codes = np.sort(self._codes) if not ascending: codes = codes[::-1] # NaN handling na_mask = (codes==-1) if na_mask.any(): n_nans = len(codes[na_mask]) if na_position=="first" and not ascending: # in this case sort to the front new_codes = codes.copy() new_codes[0:n_nans] = -1 new_codes[n_nans:] = codes[~na_mask] codes = new_codes elif na_position=="last" and not ascending: # ... and to the end new_codes = codes.copy() pos = len(codes)-n_nans new_codes[0:pos] = codes[~na_mask] new_codes[pos:] = -1 codes = new_codes if inplace: self._codes = codes return else: return Categorical(values=codes,levels=self.levels, ordered=self.ordered, name=self.name, fastpath=True) def sort(self, inplace=True, ascending=True, na_position='last', **kwargs): """ Sorts the Category inplace by level value. Only ordered Categoricals can be sorted! Catgorical.order is the equivalent but returns a new Categorical. Parameters ---------- ascending : boolean, default True Sort ascending. Passing False sorts descending inplace : boolean, default False Do operation in place. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- y : Category or None See Also -------- Category.order """ return self.order(inplace=inplace, ascending=ascending, **kwargs) def ravel(self, order='C'): """ Return a flattened (numpy) array. For internal compatibility with numpy arrays. Returns ------- raveled : numpy array """ return np.array(self) def view(self): """Return a view of myself. For internal compatibility with numpy arrays. Returns ------- view : Categorical Returns `self`! """ return self def to_dense(self): """ Return my 'dense' repr """ return np.asarray(self) def fillna(self, fill_value=None, method=None, limit=None, **kwargs): """ Fill NA/NaN values using the specified method. Parameters ---------- method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar Value to use to fill holes (e.g. 0) limit : int, default None Maximum size gap to forward or backward fill (not implemented yet!) Returns ------- filled : Categorical with NA/NaN filled """ if fill_value is None: fill_value = np.nan if limit is not None: raise NotImplementedError values = self._codes # Make sure that we also get NA in levels if self.levels.dtype.kind in ['S', 'O', 'f']: if np.nan in self.levels: values = values.copy() nan_pos = np.where(isnull(self.levels))[0] # we only have one NA in levels values[values == nan_pos] = -1 # pad / bfill if method is not None: values = self.to_dense().reshape(-1,len(self)) values = com.interpolate_2d( values, method, 0, None, fill_value).astype(self.levels.dtype)[0] values = _get_codes_for_values(values, self.levels) else: if not com.isnull(fill_value) and fill_value not in self.levels: raise ValueError("fill value must be in levels") mask = values==-1 if mask.any(): values = values.copy() values[mask] = self.levels.get_loc(fill_value) return Categorical(values, levels=self.levels, ordered=self.ordered, name=self.name, fastpath=True) def take_nd(self, indexer, allow_fill=True, fill_value=None): """ Take the codes by the indexer, fill with the fill_value. """ # filling must always be None/nan here # but is passed thru internally assert isnull(fill_value) codes = com.take_1d(self._codes, indexer, allow_fill=True, fill_value=-1) result = Categorical(codes, levels=self.levels, ordered=self.ordered, name=self.name, fastpath=True) return result take = take_nd def _slice(self, slicer): """ Return a slice of myself. """ # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if isinstance(slicer, tuple) and len(slicer) == 2: if not _is_null_slice(slicer[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") slicer = slicer[1] _codes = self._codes[slicer] return Categorical(values=_codes,levels=self.levels, ordered=self.ordered, name=self.name, fastpath=True) def __len__(self): return len(self._codes) def __iter__(self): return iter(np.array(self)) def _tidy_repr(self, max_vals=20): num = max_vals // 2 head = self[:num]._get_repr(length=False, name=False, footer=False) tail = self[-(max_vals - num):]._get_repr(length=False, name=False, footer=False) result = '%s\n...\n%s' % (head, tail) result = '%s\n%s' % (result, self._repr_footer()) return compat.text_type(result) def _repr_level_info(self): """ Returns a string representation of the footer.""" max_levels = (10 if get_option("display.max_levels") == 0 else get_option("display.max_levels")) level_strs = fmt.format_array(self.levels.get_values(), None) if len(level_strs) > max_levels: num = max_levels // 2 head = level_strs[:num] tail = level_strs[-(max_levels - num):] level_strs = head + ["..."] + tail # Strip all leading spaces, which format_array adds for columns... level_strs = [x.strip() for x in level_strs] levheader = "Levels (%d, %s): " % (len(self.levels), self.levels.dtype) width, height = get_terminal_size() max_width = (width if get_option("display.width") == 0 else
get_option("display.width")
pandas.core.config.get_option
import pickle import random import pandas as pd from imblearn.over_sampling import SMOTE from matplotlib import pyplot as plt from sklearn.preprocessing import StandardScaler from common.env import get_scaler_file def generate_frauds(trainInputs, trainOutputs): sm = SMOTE(random_state=2) trainInputs, trainOutputs = sm.fit_resample(trainInputs, trainOutputs) return trainInputs, trainOutputs def normalization(data): scaler = StandardScaler() if not isinstance(data[0], list): xData = [[d] for d in data] scaler.fit(xData) normalisedData = scaler.transform(xData) xNormalisedData = [el[0] for el in normalisedData] else: scaler.fit(data) xNormalisedData = scaler.transform(data) # save scaler information to pickle file scaler_file = get_scaler_file() with open(scaler_file, 'wb') as handle: pickle.dump(scaler, handle, protocol=pickle.HIGHEST_PROTOCOL) return xNormalisedData def split_data(inputs, outputs): random.seed(5) indexes = [i for i in range(len(inputs))] trainSample = random.choices(indexes, k=int(0.5 * len(inputs))) testSample = [i for i in indexes if not i in trainSample] trainInputs = [inputs[i] for i in trainSample] trainOutputs = [outputs[i] for i in trainSample] testInputs = [inputs[i] for i in testSample] testOutputs = [outputs[i] for i in testSample] return trainInputs, trainOutputs, testInputs, testOutputs def balance_histogram(outputs):
pd.value_counts(outputs)
pandas.value_counts
#!/usr/bin/env python # -*- coding: utf-8 -*- # # <NAME> # # Merge top loci table # import sys import argparse import pandas as pd from collections import OrderedDict from parquet_writer import write_parquet import datetime def main(): # Parse args args = parse_args() # Load gwas = pd.read_json(args.in_gwascat, orient='records', lines=True) ukb =
pd.read_json(args.in_ukb, orient='records', lines=True)
pandas.read_json
""" ET Dataset from Informer Paper. Dataset: https://github.com/zhouhaoyi/ETDataset Dataloader: https://github.com/zhouhaoyi/Informer2020 """ from typing import List import os import numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequencies import to_offset import torch from torch.utils import data from torch.utils.data import Dataset, DataLoader import warnings warnings.filterwarnings("ignore") from src.dataloaders.datasets import SequenceDataset, default_data_path class TimeFeature: def __init__(self): pass def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: pass def __repr__(self): return self.__class__.__name__ + "()" class SecondOfMinute(TimeFeature): """Minute of hour encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.second / 59.0 - 0.5 class MinuteOfHour(TimeFeature): """Minute of hour encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.minute / 59.0 - 0.5 class HourOfDay(TimeFeature): """Hour of day encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.hour / 23.0 - 0.5 class DayOfWeek(TimeFeature): """Hour of day encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.dayofweek / 6.0 - 0.5 class DayOfMonth(TimeFeature): """Day of month encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.day - 1) / 30.0 - 0.5 class DayOfYear(TimeFeature): """Day of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.dayofyear - 1) / 365.0 - 0.5 class MonthOfYear(TimeFeature): """Month of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.month - 1) / 11.0 - 0.5 class WeekOfYear(TimeFeature): """Week of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.isocalendar().week - 1) / 52.0 - 0.5 def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]: """ Returns a list of time features that will be appropriate for the given frequency string. Parameters ---------- freq_str Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc. """ features_by_offsets = { offsets.YearEnd: [], offsets.QuarterEnd: [MonthOfYear], offsets.MonthEnd: [MonthOfYear], offsets.Week: [DayOfMonth, WeekOfYear], offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear], offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear], offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear], offsets.Minute: [ MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, DayOfYear, ], offsets.Second: [ SecondOfMinute, MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, DayOfYear, ], } offset =
to_offset(freq_str)
pandas.tseries.frequencies.to_offset
import os import common from pytz import timezone from datetime import datetime import pandas as pd import hashlib import yaml from copy import deepcopy common_dir = os.path.dirname(os.path.abspath(__file__)) config_path = os.path.join(common_dir, 'config.yml') types_map = {'categorical': str, 'float': float, 'bool': bool, 'datetime': datetime} def validate_headers(df:pd.DataFrame, expected_headers:set): """ :param df: :param expected_headers: :return: None """ headers = set(df.columns.tolist()) missing_headers = set(expected_headers) - headers additional_headers = headers - set(expected_headers) # tell user any additional fields which could cause issues. if len(additional_headers): print(f'Found additional headers in supplied file: {additional_headers}. This may potentially cause issues.') if len(missing_headers) != 0: raise ValueError(f'Dataframe is missing expected headers: {missing_headers}') fields_with_missing_vals = [] for header in expected_headers: missing_vals = df[header].isnull().values.sum() if missing_vals > 0: fields_with_missing_vals.append(header) if len(fields_with_missing_vals): print(f'Fields {fields_with_missing_vals} are missing values. This may potentially cause issues.') def make_prediction_df(qradar_df:pd.DataFrame, desired_subnet:str=None): """ :param qradar_df: DataFrame :param desired_subnet: str :return: my_perspective_network_df: DataFrame """ # validate_headers(qradar_df, set(FILE_CONFIG.biflow_fields)) if desired_subnet is None: raise ValueError('Please provide a "desired_subnet" parameter (ex. 19.43)') # re-work source only dataframe src_subnet_field = FILE_CONFIG.biflow_src_prfx + FILE_CONFIG.hierarchy[0] df_source = qradar_df[qradar_df[src_subnet_field] == desired_subnet] df_source.columns = df_source.columns.str.replace(FILE_CONFIG.biflow_src_prfx, FILE_CONFIG.uniflow_this_prfx) df_source.columns = df_source.columns.str.replace(FILE_CONFIG.biflow_dst_prfx, FILE_CONFIG.uniflow_that_prfx) df_source = df_source.assign(**{FILE_CONFIG.uniflow_indicator: True}) dst_subnet_field = FILE_CONFIG.biflow_dst_prfx + FILE_CONFIG.hierarchy[0] df_dest = qradar_df[qradar_df[dst_subnet_field] == desired_subnet] df_dest.columns = df_dest.columns.str.replace(FILE_CONFIG.biflow_src_prfx, FILE_CONFIG.uniflow_that_prfx) df_dest.columns = df_dest.columns.str.replace(FILE_CONFIG.biflow_dst_prfx, FILE_CONFIG.uniflow_this_prfx) df_dest = df_dest.assign(**{FILE_CONFIG.uniflow_indicator: False}) my_perspective_network_df = pd.concat([df_source, df_dest], sort=True).sort_index() # my_perspective_network_df['mytotheirbytesratio'] = my_perspective_network_df['mybytes'] / (my_perspective_network_df['mybytes'] + my_perspective_network_df['theirbytes']) # my_perspective_network_df['myserverfromford'] = my_perspective_network_df['mysubnet'].str.startswith('19.') # my_perspective_network_df['theirserverfromford'] = my_perspective_network_df['theirsubnet'].str.startswith('19.') # validate_headers(my_perspective_network_df, FILE_CONFIG.uniflow_fields.keys()) return my_perspective_network_df def md5(fname): """ :param fname: :return: """ hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def get_file_metadata(filepath, desired_subnet=None, priors_dir=None): now = datetime.now() qradar_df =
pd.read_csv(filepath, dtype=FILE_CONFIG.biflow_fields)
pandas.read_csv
import sys import os import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' Function to load in messages and categories data, join them and return the result. This function also removes duplicates before merging datasets Args: messages_filepath (string): path to the messages csv file. categories_filepath (string): path to the categories csv file Returns: df (DataFrame): merged dataset containing messages and categories columns ''' # read in messages data messages_df = pd.read_csv(messages_filepath) # remove duplicates messages_df.drop_duplicates(inplace=True) # read in categories data categories_df =
pd.read_csv(categories_filepath)
pandas.read_csv
import dataclasses from collections import Counter from itertools import compress import numpy as np import pandas as pd import pytest from ..tree import ( Node, PeriodicPatternMiner, Tree, combine_horizontally, combine_vertically, encode_leaves, get_occs, greedy_cover, grow_horizontally, ) @pytest.mark.parametrize("tau", [0, 330]) def test_create_tree_3_wakeup_breakfast(tau): """ during 3 weeks on every business day wake up at 7:00 AM breakfast at 7:10 AM periods and distances expressed in minutes """ week_node = Node( r=5, p=1440, children=["wake up", "breakfast"], children_dists=[10] ) tree = Tree(tau, r=3, p=1440 * 7, children=[week_node]) assert dataclasses.is_dataclass(tree) instances = tree.to_list() assert len(instances) == tree._n_occs == 30 # 2 events per day, 5 days for 3 weeks assert instances[0][0] == tau # first occurence at tau assert tree._size == len(tree) == 4 assert {"r", "p"}.issubset(tree.to_dict().keys()) def test_prefit(): logs =
pd.Series(["wake up", "breakfast"] * 10)
pandas.Series
import numpy as np; import pandas as pd; import os raw_data_path = os.path.join(os.path.pardir,'data','raw') train_file_path = os.path.join(raw_data_path,'train.csv') test_file_path = os.path.join(raw_data_path,'test.csv') #read data as dataframe train_df =
pd.read_csv(train_file_path,index_col='PassengerId')
pandas.read_csv
import re from inspect import isclass import numpy as np import pandas as pd import pytest from mock import patch import woodwork as ww from woodwork.accessor_utils import ( _is_dask_dataframe, _is_dask_series, _is_koalas_dataframe, _is_koalas_series, init_series, ) from woodwork.exceptions import ( ColumnNotPresentError, IndexTagRemovedWarning, ParametersIgnoredWarning, TypeConversionError, TypingInfoMismatchWarning, WoodworkNotInitError, ) from woodwork.logical_types import ( URL, Address, Age, AgeFractional, AgeNullable, Boolean, BooleanNullable, Categorical, CountryCode, Datetime, Double, EmailAddress, Filepath, Integer, IntegerNullable, IPAddress, LatLong, NaturalLanguage, Ordinal, PersonFullName, PhoneNumber, PostalCode, SubRegionCode, Unknown, ) from woodwork.table_accessor import ( WoodworkTableAccessor, _check_index, _check_logical_types, _check_partial_schema, _check_time_index, _check_unique_column_names, _check_use_standard_tags, _infer_missing_logical_types, ) from woodwork.table_schema import TableSchema from woodwork.tests.testing_utils import ( is_property, is_public_method, to_pandas, validate_subset_schema, ) from woodwork.tests.testing_utils.table_utils import assert_schema_equal from woodwork.utils import import_or_none dd = import_or_none("dask.dataframe") ks = import_or_none("databricks.koalas") def test_check_index_errors(sample_df): error_message = "Specified index column `foo` not found in dataframe" with pytest.raises(ColumnNotPresentError, match=error_message): _check_index(dataframe=sample_df, index="foo") if isinstance(sample_df, pd.DataFrame): # Does not check for index uniqueness with Dask error_message = "Index column must be unique" with pytest.raises(LookupError, match=error_message): _check_index(sample_df, index="age") def test_check_logical_types_errors(sample_df): error_message = "logical_types must be a dictionary" with pytest.raises(TypeError, match=error_message): _check_logical_types(sample_df, logical_types="type") bad_logical_types_keys = { "full_name": None, "age": None, "birthday": None, "occupation": None, } error_message = re.escape( "logical_types contains columns that are not present in dataframe: ['birthday', 'occupation']" ) with pytest.raises(ColumnNotPresentError, match=error_message): _check_logical_types(sample_df, bad_logical_types_keys) def test_check_time_index_errors(sample_df): error_message = "Specified time index column `foo` not found in dataframe" with pytest.raises(ColumnNotPresentError, match=error_message): _check_time_index(dataframe=sample_df, time_index="foo") def test_check_unique_column_names_errors(sample_df): if _is_koalas_dataframe(sample_df): pytest.skip("Koalas enforces unique column names") duplicate_cols_df = sample_df.copy() if _is_dask_dataframe(sample_df): duplicate_cols_df = dd.concat( [duplicate_cols_df, duplicate_cols_df["age"]], axis=1 ) else: duplicate_cols_df.insert(0, "age", [18, 21, 65, 43], allow_duplicates=True) with pytest.raises( IndexError, match="Dataframe cannot contain duplicate columns names" ): _check_unique_column_names(duplicate_cols_df) def test_check_use_standard_tags_errors(): error_message = "use_standard_tags must be a dictionary or a boolean" with pytest.raises(TypeError, match=error_message): _check_use_standard_tags(1) def test_accessor_init(sample_df): assert sample_df.ww.schema is None sample_df.ww.init() assert isinstance(sample_df.ww.schema, TableSchema) def test_accessor_schema_property(sample_df): sample_df.ww.init() assert sample_df.ww._schema is not sample_df.ww.schema assert sample_df.ww._schema == sample_df.ww.schema def test_set_accessor_name(sample_df): df = sample_df.copy() error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): df.ww.name with pytest.raises(WoodworkNotInitError, match=error): df.ww.name = "name" df.ww.init() assert df.ww.name is None df.ww.name = "name" assert df.ww.schema.name == "name" assert df.ww.name == "name" def test_rename_init_with_name(sample_df): df = sample_df.copy() df.ww.init(name="name") assert df.ww.name == "name" df.ww.name = "new_name" assert df.ww.schema.name == "new_name" assert df.ww.name == "new_name" def test_name_error_on_init(sample_df): err_msg = "Table name must be a string" with pytest.raises(TypeError, match=err_msg): sample_df.ww.init(name=123) def test_name_error_on_update(sample_df): sample_df.ww.init() err_msg = "Table name must be a string" with pytest.raises(TypeError, match=err_msg): sample_df.ww.name = 123 def test_name_persists_after_drop(sample_df): df = sample_df.copy() df.ww.init() df.ww.name = "name" assert df.ww.name == "name" dropped_df = df.ww.drop(["id"]) assert dropped_df.ww.name == "name" assert dropped_df.ww.schema.name == "name" def test_set_accessor_metadata(sample_df): df = sample_df.copy() error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): df.ww.metadata with pytest.raises(WoodworkNotInitError, match=error): df.ww.metadata = {"new": "metadata"} df.ww.init() assert df.ww.metadata == {} df.ww.metadata = {"new": "metadata"} assert df.ww.schema.metadata == {"new": "metadata"} assert df.ww.metadata == {"new": "metadata"} def test_set_metadata_after_init_with_metadata(sample_df): df = sample_df.copy() df.ww.init(table_metadata={"new": "metadata"}) assert df.ww.metadata == {"new": "metadata"} df.ww.metadata = {"new": "new_metadata"} assert df.ww.schema.metadata == {"new": "new_metadata"} assert df.ww.metadata == {"new": "new_metadata"} def test_metadata_persists_after_drop(sample_df): df = sample_df.copy() df.ww.init() df.ww.metadata = {"new": "metadata"} assert df.ww.metadata == {"new": "metadata"} dropped_df = df.ww.drop(["id"]) assert dropped_df.ww.metadata == {"new": "metadata"} assert dropped_df.ww.schema.metadata == {"new": "metadata"} def test_metadata_error_on_init(sample_df): err_msg = "Table metadata must be a dictionary." with pytest.raises(TypeError, match=err_msg): sample_df.ww.init(table_metadata=123) def test_metadata_error_on_update(sample_df): sample_df.ww.init() err_msg = "Table metadata must be a dictionary." with pytest.raises(TypeError, match=err_msg): sample_df.ww.metadata = 123 def test_accessor_physical_types_property(sample_df): sample_df.ww.init(logical_types={"age": "Categorical"}) assert isinstance(sample_df.ww.physical_types, dict) assert set(sample_df.ww.physical_types.keys()) == set(sample_df.columns) for k, v in sample_df.ww.physical_types.items(): logical_type = sample_df.ww.columns[k].logical_type if _is_koalas_dataframe(sample_df) and logical_type.backup_dtype is not None: assert v == logical_type.backup_dtype else: assert v == logical_type.primary_dtype def test_accessor_separation_of_params(sample_df): # mix up order of acccessor and schema params schema_df = sample_df.copy() schema_df.ww.init( name="test_name", index="id", semantic_tags={"id": "test_tag"}, time_index="signup_date", ) assert schema_df.ww.semantic_tags["id"] == {"index", "test_tag"} assert schema_df.ww.index == "id" assert schema_df.ww.time_index == "signup_date" assert schema_df.ww.name == "test_name" def test_init_with_full_schema(sample_df): schema_df = sample_df.copy() schema_df.ww.init(name="test_schema", semantic_tags={"id": "test_tag"}, index="id") schema = schema_df.ww._schema head_df = schema_df.head(2) assert head_df.ww.schema is None head_df.ww.init_with_full_schema(schema=schema) assert head_df.ww._schema is schema assert head_df.ww.name == "test_schema" assert head_df.ww.semantic_tags["id"] == {"index", "test_tag"} iloc_df = schema_df.loc[[2, 3]] assert iloc_df.ww.schema is None iloc_df.ww.init_with_full_schema(schema=schema) assert iloc_df.ww._schema is schema assert iloc_df.ww.name == "test_schema" assert iloc_df.ww.semantic_tags["id"] == {"index", "test_tag"} # Extra parameters do not take effect assert isinstance(iloc_df.ww.logical_types["id"], Integer) def test_accessor_init_errors_methods(sample_df): methods_to_exclude = ["init", "init_with_full_schema", "init_with_partial_schema"] public_methods = [ method for method in dir(sample_df.ww) if is_public_method(WoodworkTableAccessor, method) ] public_methods = [ method for method in public_methods if method not in methods_to_exclude ] method_args_dict = { "add_semantic_tags": [{"id": "new_tag"}], "describe": None, "pop": ["id"], "describe": None, "describe_dict": None, "drop": ["id"], "get_valid_mi_columns": None, "mutual_information": None, "mutual_information_dict": None, "remove_semantic_tags": [{"id": "new_tag"}], "rename": [{"id": "new_id"}], "reset_semantic_tags": None, "select": [["Double"]], "set_index": ["id"], "set_time_index": ["signup_date"], "set_types": [{"id": "Integer"}], "to_disk": ["dir"], "to_dictionary": None, "value_counts": None, "infer_temporal_frequencies": None, } error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) for method in public_methods: func = getattr(sample_df.ww, method) method_args = method_args_dict[method] with pytest.raises(WoodworkNotInitError, match=error): if method_args: func(*method_args) else: func() def test_accessor_init_errors_properties(sample_df): props_to_exclude = ["iloc", "loc", "schema", "_dataframe"] props = [ prop for prop in dir(sample_df.ww) if is_property(WoodworkTableAccessor, prop) and prop not in props_to_exclude ] error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) for prop in props: with pytest.raises(WoodworkNotInitError, match=error): getattr(sample_df.ww, prop) def test_init_accessor_with_schema_errors(sample_df): schema_df = sample_df.copy() schema_df.ww.init() schema = schema_df.ww.schema iloc_df = schema_df.iloc[:, :-1] assert iloc_df.ww.schema is None error = "Provided schema must be a Woodwork.TableSchema object." with pytest.raises(TypeError, match=error): iloc_df.ww.init_with_full_schema(schema=int) error = ( "Woodwork typing information is not valid for this DataFrame: " "The following columns in the typing information were missing from the DataFrame: {'ip_address'}" ) with pytest.raises(ValueError, match=error): iloc_df.ww.init_with_full_schema(schema=schema) def test_accessor_with_schema_parameter_warning(sample_df): schema_df = sample_df.copy() schema_df.ww.init(name="test_schema", semantic_tags={"id": "test_tag"}, index="id") schema = schema_df.ww.schema head_df = schema_df.head(2) warning = ( "A schema was provided and the following parameters were ignored: index, " "time_index, logical_types, already_sorted, semantic_tags, use_standard_tags" ) with pytest.warns(ParametersIgnoredWarning, match=warning): head_df.ww.init_with_full_schema( index="ignored_id", time_index="ignored_time_index", logical_types={"ignored": "ltypes"}, already_sorted=True, semantic_tags={"ignored_id": "ignored_test_tag"}, use_standard_tags={"id": True, "age": False}, schema=schema, ) assert head_df.ww.name == "test_schema" assert head_df.ww.semantic_tags["id"] == {"index", "test_tag"} def test_accessor_getattr(sample_df): schema_df = sample_df.copy() # We can access attributes on the Accessor class before the schema is initialized assert schema_df.ww.schema is None error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): schema_df.ww.index schema_df.ww.init() assert schema_df.ww.name is None assert schema_df.ww.index is None assert schema_df.ww.time_index is None assert set(schema_df.ww.columns.keys()) == set(sample_df.columns) error = re.escape("Woodwork has no attribute 'not_present'") with pytest.raises(AttributeError, match=error): sample_df.ww.init() sample_df.ww.not_present def test_getitem(sample_df): df = sample_df df.ww.init( time_index="signup_date", index="id", name="df_name", logical_types={"age": "Double"}, semantic_tags={"age": {"custom_tag"}}, ) assert list(df.columns) == list(df.ww.schema.columns) subset = ["id", "signup_date"] df_subset = df.ww[subset] pd.testing.assert_frame_equal(to_pandas(df[subset]), to_pandas(df_subset)) assert subset == list(df_subset.ww._schema.columns) assert df_subset.ww.index == "id" assert df_subset.ww.time_index == "signup_date" subset = ["age", "email"] df_subset = df.ww[subset] pd.testing.assert_frame_equal(to_pandas(df[subset]), to_pandas(df_subset)) assert subset == list(df_subset.ww._schema.columns) assert df_subset.ww.index is None assert df_subset.ww.time_index is None assert isinstance(df_subset.ww.logical_types["age"], Double) assert df_subset.ww.semantic_tags["age"] == {"custom_tag", "numeric"} subset = df.ww[[]] assert len(subset.ww.columns) == 0 assert subset.ww.index is None assert subset.ww.time_index is None series = df.ww["age"] pd.testing.assert_series_equal(to_pandas(series), to_pandas(df["age"])) assert isinstance(series.ww.logical_type, Double) assert series.ww.semantic_tags == {"custom_tag", "numeric"} series = df.ww["id"] pd.testing.assert_series_equal(to_pandas(series), to_pandas(df["id"])) assert isinstance(series.ww.logical_type, Integer) assert series.ww.semantic_tags == {"index"} def test_getitem_init_error(sample_df): error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): sample_df.ww["age"] def test_getitem_invalid_input(sample_df): df = sample_df df.ww.init() error_msg = r"Column\(s\) '\[1, 2\]' not found in DataFrame" with pytest.raises(ColumnNotPresentError, match=error_msg): df.ww[["email", 2, 1]] error_msg = "Column with name 'invalid_column' not found in DataFrame" with pytest.raises(ColumnNotPresentError, match=error_msg): df.ww["invalid_column"] def test_accessor_equality(sample_df): # Confirm equality with same schema and same data schema_df = sample_df.copy() schema_df.ww.init() copy_df = schema_df.ww.copy() assert schema_df.ww == copy_df.ww # Confirm not equal with different schema but same data copy_df.ww.set_time_index("signup_date") assert schema_df.ww != copy_df.ww # Confirm not equal with same schema but different data - only pandas loc_df = schema_df.ww.loc[:2, :] if isinstance(sample_df, pd.DataFrame): assert schema_df.ww != loc_df else: assert schema_df.ww == loc_df def test_accessor_shallow_equality(sample_df): metadata_table = sample_df.copy() metadata_table.ww.init(table_metadata={"user": "user0"}) diff_metadata_table = sample_df.copy() diff_metadata_table.ww.init(table_metadata={"user": "user2"}) assert diff_metadata_table.ww.__eq__(metadata_table, deep=False) assert not diff_metadata_table.ww.__eq__(metadata_table, deep=True) schema = metadata_table.ww.schema diff_data_table = metadata_table.ww.loc[:2, :] same_data_table = metadata_table.ww.copy() assert diff_data_table.ww.schema.__eq__(schema, deep=True) assert same_data_table.ww.schema.__eq__(schema, deep=True) assert same_data_table.ww.__eq__(metadata_table.ww, deep=False) assert same_data_table.ww.__eq__(metadata_table.ww, deep=True) assert diff_data_table.ww.__eq__(metadata_table.ww, deep=False) if isinstance(sample_df, pd.DataFrame): assert not diff_data_table.ww.__eq__(metadata_table.ww, deep=True) def test_accessor_init_with_valid_string_time_index(time_index_df): time_index_df.ww.init(name="schema", index="id", time_index="times") assert time_index_df.ww.name == "schema" assert time_index_df.ww.index == "id" assert time_index_df.ww.time_index == "times" assert isinstance( time_index_df.ww.columns[time_index_df.ww.time_index].logical_type, Datetime ) def test_accessor_init_with_numeric_datetime_time_index(time_index_df): schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints", logical_types={"ints": Datetime}) error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init( name="schema", time_index="strs", logical_types={"strs": Datetime} ) assert schema_df.ww.time_index == "ints" assert schema_df["ints"].dtype == "datetime64[ns]" def test_accessor_with_numeric_time_index(time_index_df): # Set a numeric time index on init schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints") date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Integer) assert date_col.semantic_tags == {"time_index", "numeric"} # Specify logical type for time index on init schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints", logical_types={"ints": "Double"}) date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"time_index", "numeric"} schema_df = time_index_df.copy() schema_df.ww.init(time_index="strs", logical_types={"strs": "Double"}) date_col = schema_df.ww.columns["strs"] assert schema_df.ww.time_index == "strs" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"time_index", "numeric"} error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init(time_index="ints", logical_types={"ints": "Categorical"}) error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init(time_index="letters", logical_types={"strs": "Integer"}) # Set numeric time index after init schema_df = time_index_df.copy() schema_df.ww.init(logical_types={"ints": "Double"}) assert schema_df.ww.time_index is None schema_df.ww.set_time_index("ints") date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"numeric", "time_index"} def test_numeric_time_index_dtypes(numeric_time_index_df): numeric_time_index_df.ww.init(time_index="ints") assert numeric_time_index_df.ww.time_index == "ints" assert isinstance(numeric_time_index_df.ww.logical_types["ints"], Integer) assert numeric_time_index_df.ww.semantic_tags["ints"] == {"time_index", "numeric"} numeric_time_index_df.ww.set_time_index("floats") assert numeric_time_index_df.ww.time_index == "floats" assert isinstance(numeric_time_index_df.ww.logical_types["floats"], Double) assert numeric_time_index_df.ww.semantic_tags["floats"] == {"time_index", "numeric"} numeric_time_index_df.ww.set_time_index("with_null") assert numeric_time_index_df.ww.time_index == "with_null" assert isinstance( numeric_time_index_df.ww.logical_types["with_null"], IntegerNullable ) assert numeric_time_index_df.ww.semantic_tags["with_null"] == { "time_index", "numeric", } def test_accessor_init_with_invalid_string_time_index(sample_df): error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): sample_df.ww.init(name="schema", time_index="full_name") def test_accessor_init_with_string_logical_types(sample_df): logical_types = {"full_name": "natural_language", "age": "Double"} schema_df = sample_df.copy() schema_df.ww.init(name="schema", logical_types=logical_types) assert isinstance(schema_df.ww.columns["full_name"].logical_type, NaturalLanguage) assert isinstance(schema_df.ww.columns["age"].logical_type, Double) logical_types = { "full_name": "NaturalLanguage", "age": "IntegerNullable", "signup_date": "Datetime", } schema_df = sample_df.copy() schema_df.ww.init( name="schema", logical_types=logical_types, time_index="signup_date" ) assert isinstance(schema_df.ww.columns["full_name"].logical_type, NaturalLanguage) assert isinstance(schema_df.ww.columns["age"].logical_type, IntegerNullable) assert schema_df.ww.time_index == "signup_date" def test_int_dtype_inference_on_init(): df = pd.DataFrame( { "ints_no_nans": pd.Series([1, 2]), "ints_nan": pd.Series([1, np.nan]), "ints_NA": pd.Series([1, pd.NA]), "ints_NA_specified": pd.Series([1, pd.NA], dtype="Int64"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["ints_no_nans"].dtype == "int64" assert df["ints_nan"].dtype == "float64" assert df["ints_NA"].dtype == "category" assert df["ints_NA_specified"].dtype == "Int64" def test_bool_dtype_inference_on_init(): df = pd.DataFrame( { "bools_no_nans": pd.Series([True, False]), "bool_nan": pd.Series([True, np.nan]), "bool_NA": pd.Series([True, pd.NA]), "bool_NA_specified": pd.Series([True, pd.NA], dtype="boolean"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["bools_no_nans"].dtype == "bool" assert df["bool_nan"].dtype == "category" assert df["bool_NA"].dtype == "category" assert df["bool_NA_specified"].dtype == "boolean" def test_str_dtype_inference_on_init(): df = pd.DataFrame( { "str_no_nans": pd.Series(["a", "b"]), "str_nan": pd.Series(["a", np.nan]), "str_NA": pd.Series(["a", pd.NA]), "str_NA_specified": pd.Series([1, pd.NA], dtype="string"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["str_no_nans"].dtype == "category" assert df["str_nan"].dtype == "category" assert df["str_NA"].dtype == "category" assert df["str_NA_specified"].dtype == "category" def test_float_dtype_inference_on_init(): df = pd.DataFrame( { "floats_no_nans": pd.Series([1.1, 2.2]), "floats_nan": pd.Series([1.1, np.nan]), "floats_NA": pd.Series([1.1, pd.NA]), "floats_nan_specified": pd.Series([1.1, np.nan], dtype="float"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["floats_no_nans"].dtype == "float64" assert df["floats_nan"].dtype == "float64" assert df["floats_NA"].dtype == "category" assert df["floats_nan_specified"].dtype == "float64" def test_datetime_dtype_inference_on_init(): df = pd.DataFrame( { "date_no_nans": pd.Series([pd.to_datetime("2020-09-01")] * 2), "date_nan": pd.Series([pd.to_datetime("2020-09-01"), np.nan]), "date_NA": pd.Series([pd.to_datetime("2020-09-01"), pd.NA]), "date_NaT": pd.Series([pd.to_datetime("2020-09-01"), pd.NaT]), "date_NA_specified": pd.Series( [pd.to_datetime("2020-09-01"), pd.NA], dtype="datetime64[ns]" ), } ) df.ww.init() assert df["date_no_nans"].dtype == "datetime64[ns]" assert df["date_nan"].dtype == "datetime64[ns]" assert df["date_NA"].dtype == "datetime64[ns]" assert df["date_NaT"].dtype == "datetime64[ns]" assert df["date_NA_specified"].dtype == "datetime64[ns]" def test_datetime_inference_with_format_param(): df = pd.DataFrame( { "index": [0, 1, 2], "dates": ["2019/01/01", "2019/01/02", "2019/01/03"], "ymd_special": ["2019~01~01", "2019~01~02", "2019~01~03"], "mdy_special": pd.Series( ["3~11~2000", "3~12~2000", "3~13~2000"], dtype="string" ), } ) df.ww.init( name="df_name", logical_types={ "ymd_special": Datetime(datetime_format="%Y~%m~%d"), "mdy_special": Datetime(datetime_format="%m~%d~%Y"), "dates": Datetime, }, time_index="ymd_special", ) assert df["dates"].dtype == "datetime64[ns]" assert df["ymd_special"].dtype == "datetime64[ns]" assert df["mdy_special"].dtype == "datetime64[ns]" assert df.ww.time_index == "ymd_special" assert isinstance(df.ww["dates"].ww.logical_type, Datetime) assert isinstance(df.ww["ymd_special"].ww.logical_type, Datetime) assert isinstance(df.ww["mdy_special"].ww.logical_type, Datetime) df.ww.set_time_index("mdy_special") assert df.ww.time_index == "mdy_special" df = pd.DataFrame( { "mdy_special": pd.Series( ["3&11&2000", "3&12&2000", "3&13&2000"], dtype="string" ), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["mdy_special"].dtype == "category" df.ww.set_types(logical_types={"mdy_special": Datetime(datetime_format="%m&%d&%Y")}) assert df["mdy_special"].dtype == "datetime64[ns]" df.ww.set_time_index("mdy_special") assert isinstance(df.ww["mdy_special"].ww.logical_type, Datetime) assert df.ww.time_index == "mdy_special" def test_timedelta_dtype_inference_on_init(): df = pd.DataFrame( { "delta_no_nans": ( pd.Series([pd.to_datetime("2020-09-01")] * 2) - pd.to_datetime("2020-07-01") ), "delta_nan": ( pd.Series([pd.to_datetime("2020-09-01"), np.nan]) - pd.to_datetime("2020-07-01") ), "delta_NaT": ( pd.Series([pd.to_datetime("2020-09-01"), pd.NaT]) - pd.to_datetime("2020-07-01") ), "delta_NA_specified": ( pd.Series([pd.to_datetime("2020-09-01"), pd.NA], dtype="datetime64[ns]") - pd.to_datetime("2020-07-01") ), } ) df.ww.init() assert df["delta_no_nans"].dtype == "timedelta64[ns]" assert df["delta_nan"].dtype == "timedelta64[ns]" assert df["delta_NaT"].dtype == "timedelta64[ns]" assert df["delta_NA_specified"].dtype == "timedelta64[ns]" def test_sets_category_dtype_on_init(): column_name = "test_series" series_list = [ pd.Series(["a", "b", "c"], name=column_name), pd.Series(["a", None, "c"], name=column_name), pd.Series(["a", np.nan, "c"], name=column_name), pd.Series(["a", pd.NA, "c"], name=column_name), pd.Series(["a", pd.NaT, "c"], name=column_name), ] logical_types = [ Categorical, CountryCode, Ordinal(order=["a", "b", "c"]), PostalCode, SubRegionCode, ] for series in series_list: series = series.astype("object") for logical_type in logical_types: if isclass(logical_type): logical_type = logical_type() ltypes = { column_name: logical_type, } df = pd.DataFrame(series) df.ww.init(logical_types=ltypes) assert df.ww.columns[column_name].logical_type == logical_type assert df[column_name].dtype == logical_type.primary_dtype def test_sets_object_dtype_on_init(latlong_df): for column_name in latlong_df.columns: ltypes = { column_name: LatLong, } df = latlong_df.loc[:, [column_name]] df.ww.init(logical_types=ltypes) assert isinstance(df.ww.columns[column_name].logical_type, LatLong) assert df[column_name].dtype == LatLong.primary_dtype df_pandas = to_pandas(df[column_name]) expected_val = (3, 4) if _is_koalas_dataframe(latlong_df): expected_val = [3, 4] assert df_pandas.iloc[-1] == expected_val def test_sets_string_dtype_on_init(): column_name = "test_series" series_list = [ pd.Series(["a", "b", "c"], name=column_name), pd.Series(["a", None, "c"], name=column_name), pd.Series(["a", np.nan, "c"], name=column_name), pd.Series(["a", pd.NA, "c"], name=column_name), ] logical_types = [ Address, Filepath, PersonFullName, IPAddress, NaturalLanguage, PhoneNumber, URL, ] for series in series_list: series = series.astype("object") for logical_type in logical_types: ltypes = { column_name: logical_type, } df = pd.DataFrame(series) df.ww.init(logical_types=ltypes) assert isinstance(df.ww.columns[column_name].logical_type, logical_type) assert df[column_name].dtype == logical_type.primary_dtype def test_sets_boolean_dtype_on_init(): column_name = "test_series" series_list = [ pd.Series([True, False, True], name=column_name), pd.Series([True, None, True], name=column_name),
pd.Series([True, np.nan, True], name=column_name)
pandas.Series
import re import pandas as pd import numpy as np import time import constants import pickle # Cleansing def cleanse(text): """ Clean up the text a little by removing punctuation, extra spaces, new lines, etc. This should be run after split_to_sentences(), tokenize_by_sentence() because I think it removes all the punctuation you will need to split the text into sentences. :param text: :return: """ text = text.lower() text = text.replace("'", '') # Remove apostrophes # text = re.sub('[^\w\s]', ' ', text) # Replace punct with a space so that when someone does something like <word comma word> you don't accidentally # transform it into one word. We remove extra spaces in the next line. text = re.sub('[^\w\s]', ' ', text) text = re.sub('\\n', ' ', text) text = re.sub(' +', ' ', text) text = text.strip() # Small thing but remove a trailing space. return text # Tokenization def tokenize_string(sentence): """ cleanse the string and tokenize to individual words :param sentence: a string of text (in the context of this application, most likely an individual sentence) :return: a list of strings """ sentence = cleanse(sentence) return sentence.split(' ') # TODO: Convert contractions to the "uncontracted" two words. Ex "you'll" -> "you are". # Would need some list of common contractions. Of course, this is language dependent. def split_to_sentences(text): """ Gets a bunch of text and returns the sentences as a list. It attempts to split the text up into its component sentences, using punctuation that typically ends a sentence (see constants.PUNCTUATION_REGEX, which at the moment is '[.?!]'). Text that does not behave this way, for example when each line is intended to be independent, will likely give an unexpected result. :param text: regular text; for example the contents of a file of text :return: a list, where each element in the list is a sentence """ # TODO: A way to handle text that is broken up by lines (for example, poetry); maybe allow the call to specify # the regex. p = re.compile(constants.PUNCTUATION_REGEX) sentences = p.split(text) for i in range(len(sentences)): sentences[i] = sentences[i].strip() if sentences[-1] == '': sentences = sentences[:-1] return sentences def tokenize_by_sentence(text): """ Tokenize the text, but group words in sentences together. The input, and constraints on tokenization, are the same as for split_to_sentences(). :param text: regular text; for example the contents of a file of text :return: A list of lists. Each list inside the overall list is the words in a given sentence. """ sentences = split_to_sentences(text) result = [] for sentence in sentences: current_result = tokenize_string(sentence) if current_result is not None and current_result != ['']: result.append(current_result) return result # Statistics def find_word_stats(text): """ Get statistics on word frequencies. This tells you the word and how many times it occurred in the text. There are also columns for the fraction of total words that it represents, cumulative count and cumulative ratio of all words, "cumulative" being if you count that word and all other words above it. :param text: :return: a DataFrame, sorted by most common words first """ tokens = tokenize_string(text) tokens_pd =
pd.Series(tokens)
pandas.Series
import datetime import random from typing import List import pandas as pd from dateutil.utils import today from numpy import array_split from toloka.client import TolokaClient from toloka.client.actions import RestrictionV2 from toloka.client.batch_create_results import TaskSuiteBatchCreateResult from toloka.client.collectors import Income, SkippedInRowAssignments, MajorityVote from toloka.client.conditions import IncomeSumForLast24Hours, SkippedInRowCount, TotalAnswersCount, \ CorrectAnswersRate from toloka.client.filter import FilterAnd, FilterOr, RegionByPhone, Languages, \ ClientType from toloka.client.owner import Owner from toloka.client.pool import Pool from toloka.client.primitives.operators import InclusionOperator, IdentityOperator, CompareOperator from toloka.client.quality_control import QualityControl from toloka.client.task import BaseTask from toloka.client.task_suite import TaskSuite from toloka.client.user_restriction import UserRestriction, DurationUnit from config import TOKEN_YANDEX_TOLOKA, YANDEX_TOLOKA_PROJECT_ID REWARD_PER_ASSIGNMENT = 0.01 TASKS_PER_TASK_SUITE = 20 TRAINING_PASSING_SKILL_VALUE = 90 OVERLAP = 20 TYPE_ORIGINAL = 'original' TYPE_ANALOG = 'analog' TYPE_RANDOM = 'random' class YToloka: client: TolokaClient = None def get_or_create_pool(self, pool_type: str) -> Pool: self._check_auth() project_id = YANDEX_TOLOKA_PROJECT_ID all_pools = self.client.get_pools(project_id=project_id) pool = next(filter(lambda p: p.private_comment == pool_type, all_pools), None) if pool is None: pool = self.client.create_pool(self._get_pool(project_id, pool_type)) return pool def upload_tasks(self, pool_type: str, tasks: List[BaseTask]) -> TaskSuiteBatchCreateResult: self._check_auth() pool_id = self._get_pool_id(pool_type) task_suites: List[TaskSuite] = [] n_suites = (len(tasks) + TASKS_PER_TASK_SUITE - 1) // TASKS_PER_TASK_SUITE for tasks_batch in array_split(tasks, n_suites): task_suites.append(TaskSuite( overlap=OVERLAP, pool_id=pool_id, tasks=tasks_batch.tolist() )) return self.client.create_task_suites(task_suites=task_suites) def upload_tasks_analog(self) -> TaskSuiteBatchCreateResult: df = pd.read_csv('my_vs_another.csv') if len(df) == 0: return TaskSuiteBatchCreateResult() tasks: List[BaseTask] = [] for _, row in df.iterrows(): tasks.append(BaseTask(input_values={ 'image_first': row['cover_generated_my'], 'image_second': row['cover_generated_another'], 'audio_path': row['audio'] })) return self.upload_tasks(TYPE_ANALOG, tasks) def upload_tasks_original(self) -> TaskSuiteBatchCreateResult: df = pd.read_csv('my_vs_original.csv') if len(df) == 0: return TaskSuiteBatchCreateResult() tasks: List[BaseTask] = [] for _, row in df.iterrows(): tasks.append(BaseTask(input_values={ 'image_first': row['cover_original'], 'image_second': row['cover_generated'], 'audio_path': row['audio'] })) return self.upload_tasks(TYPE_ORIGINAL, tasks) def upload_tasks_random(self) -> TaskSuiteBatchCreateResult: df = pd.read_csv('my_vs_original.csv') if len(df) == 0: return TaskSuiteBatchCreateResult() covers = df.cover_generated.tolist() tasks: List[BaseTask] = [] for _, row in df.iterrows(): tasks.append(BaseTask(input_values={ 'image_first': row['cover_generated'], 'image_second': random.choice(covers), 'audio_path': row['audio'] })) return self.upload_tasks(TYPE_RANDOM, tasks) def stop_pool(self, pool_type: str): pool_id = self._get_pool_id(pool_type) task_suites = self.client.get_task_suites(pool_id=pool_id) for task_suite in task_suites: if task_suite.remaining_overlap > 0: self.client.patch_task_suite_overlap_or_min(task_suite.id, overlap=0) def open_pool(self, pool_type: str): try: self.client.open_pool(self._get_pool_id(pool_type)) except Exception as e: print(e) pass @staticmethod def filter_assigned(tracks: pd.DataFrame, assignments: pd.DataFrame) -> pd.DataFrame: assigned_set = set(assignments['track_id'].tolist()) unassigned_tracks = [] for i, track in tracks.iterrows(): if track['track_id'] in assigned_set: unassigned_tracks.append(track) return
pd.DataFrame(unassigned_tracks)
pandas.DataFrame
import addfips import os import pandas as pd import datetime ageVariables = { 'DATE': 'date_stamp', 'AGE_RANGE': 'age_group', 'AR_TOTALCASES': 'cnt_confirmed', 'AR_TOTALPERCENT': 'pct_confirmed', 'AR_NEWCASES': 'cnt_confirmed_new', 'AR_NEWPERCENT': 'pct_confirmed_new', 'AR_TOTALDEATHS' : 'cnt_death', 'AR_NEWDEATHS': 'cnt_death_new' } countyVariables = { 'DATE': 'date_stamp', 'COUNTY': 'us_county_fips', 'TOTAL_CASES': 'cnt_total', 'NEW_CASES': 'cnt_total_new', 'TOTAL_CONFIRMED': 'cnt_confirmed', 'NEW_CONFIRMED': 'cnt_confirmed_new', 'TOTAL_PROBABLE': 'cnt_probable', 'NEW_PROBABLE': 'cnt_probable_new', 'POS_TESTS': 'cnt_tested_pos', 'NEG_TESTS': 'cnt_tested_neg', 'TOTAL_TESTS': 'cnt_tested', 'NEW_TESTS': 'cnt_tested_new', 'NEW_DEATHS': 'cnt_death_new', 'TOTAL_DEATHS': 'cnt_death', 'NEW_RECOVERED': 'cnt_recovered_new', 'TOTAL_RECOVERED': 'cnt_recovered', 'NEW_ACTIVE': 'cnt_active_new', 'TOTAL_ACTIVE': 'cnt_active', 'NEW_HOSPITALIZED': 'cnt_hospitalized_new', 'TOTAL_HOSPITALIZED': 'cnt_hospitalized', } dailyVariables = { 'DATE': 'date_stamp', 'TOTAL_CASES': 'cnt_total', 'NEW_CASES': 'cnt_total_new', 'TOTAL_CONFIRMED': 'cnt_confirmed', 'NEW_CONFIRMED': 'cnt_confirmed_new', 'TOTAL_PROBABLE': 'cnt_probable', 'NEW_PROBABLE': 'cnt_probable_new', 'POS_TESTS': 'cnt_tested_pos', 'NEG_TESTS': 'cnt_tested_neg', 'TOTAL_TESTS': 'cnt_tested', 'NEW_TESTS': 'cnt_tested_new', 'NEW_DEATHS': 'cnt_death_new', 'TOTAL_DEATHS': 'cnt_death', 'NEW_RECOVERED': 'cnt_recovered_new', 'TOTAL_RECOVERED': 'cnt_recovered', 'NEW_ACTIVE': 'cnt_active_new', 'TOTAL_ACTIVE': 'cnt_active', 'NEW_HOSP': 'cnt_hospitalized_new', 'TOTAL_HOSP': 'cnt_hospitalized', } raceEthSexVariables = { 'Date': 'date_stamp', 'Category': 'category_type', 'Cat_Detail': 'category_name', 'CAT_DETAIL': 'category_name', 'Cat_CaseCount': 'cnt_confirmed', 'Cat_Percent': 'pct_confirmed', 'CAT_DEATHCOUNT' : 'cnt_death', 'CAT_DEATHPERCENT': 'pct_death' } def cleanAgeData(data): df = pd.DataFrame(data) # Rename the file headers df.rename(ageVariables, axis="columns", inplace=True) # Reformat dates df['date_stamp'] = pd.to_datetime(df['date_stamp'], format='%m-%d-%y') # Code age ranges df['age_group'] = df['age_group'].map({ '0-10 years':'00', '11-20 years': '11', '21-30 years': '21', '31-40 years': '31', '41-50 years': '41', '51-60 years': '51', '61-70 years': '61', '71-80 years': '71', '81+ years': '81', 'Pending': '99' }) # multiply the percentages by 100 df['pct_confirmed'] = df['pct_confirmed'].apply(lambda x: round(x*100,4)) df['pct_confirmed_new'] = df['pct_confirmed_new'].apply(lambda x: round(x*100, 4)) #cast count variables to integers df['cnt_death'] = df['cnt_death'].astype(pd.Int32Dtype()) df['cnt_death_new'] = df['cnt_death_new'].astype(pd.Int32Dtype()) df['cnt_confirmed'] = df['cnt_confirmed'].astype(pd.Int32Dtype()) # reorder so that the cnt and new are always next to each other in the same order df = df[['date_stamp', 'age_group', 'cnt_confirmed', 'cnt_confirmed_new', 'pct_confirmed', 'pct_confirmed_new', 'cnt_death', 'cnt_death_new']] # order the records by date df = df.sort_values(by=['date_stamp','age_group'], ascending=True) return df def cleanCountyData(data): df = pd.DataFrame(data) # Rename the file headers df.rename(countyVariables, axis="columns", inplace=True) # Reformat dates df['date_stamp'] = pd.to_datetime(df['date_stamp'], format='%m-%d-%y') # Copy original county value to keep the pending and out of state values df['tn_covid_geo'] = df['us_county_fips'] # Change county name to fips code af = addfips.AddFIPS() fips = [] for key, value in df['us_county_fips'].items(): fips.append(af.get_county_fips(value, 'Tennessee')) df['us_county_fips'] = fips # Copy appropriate fips codes to covid geo df.loc[(df['tn_covid_geo'] != 'Pending') & (df['tn_covid_geo'] != 'Out of State'), 'tn_covid_geo'] = df['us_county_fips'] df.loc[df['tn_covid_geo'] == 'Pending', 'tn_covid_geo'] = '47PEN' df.loc[df['tn_covid_geo'] == 'Out of State', 'tn_covid_geo'] = '47OOS' # format as Integers a none df['cnt_total'] = df['cnt_total'].astype(pd.Int32Dtype()) df['cnt_total_new'] = df['cnt_total_new'].astype(pd.Int32Dtype()) df['cnt_confirmed'] = df['cnt_confirmed'].astype(pd.Int32Dtype()) df['cnt_confirmed_new'] = df['cnt_confirmed_new'].astype(pd.Int32Dtype()) if 'cnt_probable' in df.columns: df['cnt_probable'] = df['cnt_probable'].astype(pd.Int32Dtype()) df['cnt_probable_new'] = df['cnt_probable_new'].astype(pd.Int32Dtype()) df['cnt_tested_pos'] = df['cnt_tested_pos'].astype(pd.Int32Dtype()) df['cnt_tested_neg'] = df['cnt_tested_neg'].astype(pd.Int32Dtype()) df['cnt_tested'] = df['cnt_tested'].astype(pd.Int32Dtype()) df['cnt_tested_new'] = df['cnt_tested_new'].astype(pd.Int32Dtype()) df['cnt_death_new'] = df['cnt_death_new'].astype(pd.Int32Dtype()) df['cnt_death'] = df['cnt_death'].astype(pd.Int32Dtype()) df['cnt_recovered_new'] = df['cnt_recovered_new'].astype(pd.Int32Dtype()) df['cnt_recovered'] = df['cnt_recovered'].astype(pd.Int32Dtype()) df['cnt_active_new'] = df['cnt_active_new'].astype(pd.Int32Dtype()) df['cnt_active'] = df['cnt_active'].astype(pd.Int32Dtype()) df['cnt_hospitalized_new'] = df['cnt_hospitalized_new'].astype(pd.Int32Dtype()) df['cnt_hospitalized'] = df['cnt_hospitalized'].astype(pd.Int32Dtype()) # reorder so that the total and new are always next to each other in the same order if 'cnt_probable' in df.columns: df = df[['date_stamp', 'us_county_fips', 'tn_covid_geo', 'cnt_total', 'cnt_total_new', 'cnt_confirmed', 'cnt_confirmed_new', 'cnt_probable', 'cnt_probable_new', 'cnt_active', 'cnt_active_new', 'cnt_hospitalized', 'cnt_hospitalized_new', 'cnt_recovered', 'cnt_recovered_new', 'cnt_death', 'cnt_death_new', 'cnt_tested_pos', 'cnt_tested_neg', 'cnt_tested', 'cnt_tested_new']] else: df = df[['date_stamp', 'us_county_fips', 'tn_covid_geo', 'cnt_total', 'cnt_total_new', 'cnt_confirmed', 'cnt_confirmed_new', 'cnt_active', 'cnt_active_new', 'cnt_hospitalized', 'cnt_hospitalized_new', 'cnt_recovered', 'cnt_recovered_new', 'cnt_death', 'cnt_death_new', 'cnt_tested_pos', 'cnt_tested_neg', 'cnt_tested', 'cnt_tested_new']] # order the records by date df = df.sort_values(by='date_stamp', ascending=True) return df def cleanDailyData(data): df = pd.DataFrame(data) # Rename the file headers df.rename(dailyVariables, axis="columns", inplace=True) # Reformat dates df['date_stamp'] = pd.to_datetime(df['date_stamp'], format='%m-%d-%y') # format as Integers a none df['cnt_total'] = df['cnt_total'].astype(pd.Int32Dtype()) df['cnt_total_new'] = df['cnt_total_new'].astype(pd.Int32Dtype()) df['cnt_confirmed'] = df['cnt_confirmed'].astype(pd.Int32Dtype()) df['cnt_confirmed_new'] = df['cnt_confirmed_new'].astype(pd.Int32Dtype()) if 'cnt_probable' in df.columns: df['cnt_probable'] = df['cnt_probable'].astype(pd.Int32Dtype()) df['cnt_probable_new'] = df['cnt_probable_new'].astype(pd.Int32Dtype()) df['cnt_tested_pos'] = df['cnt_tested_pos'].astype(pd.Int32Dtype()) df['cnt_tested_neg'] = df['cnt_tested_neg'].astype(pd.Int32Dtype()) df['cnt_tested'] = df['cnt_tested'].astype(
pd.Int32Dtype()
pandas.Int32Dtype
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(
StringIO(data)
pandas.compat.StringIO
import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from datetime import datetime, timedelta # 记录outputs_time,记录循环用时 # matplotlib.use('Agg' from IPython import display #%matplotlib inline import torch from pprint import pprint import itertools from pathlib import Path from stable_baselines3 import A2C import sys, os import hashlib from finrl.neo_finrl.preprocessor.yahoodownloader import YahooDownloader from finrl.neo_finrl.preprocessor.preprocessors import FeatureEngineer #%load_ext autoreload #%autoreload 2 mpl.rcParams.update({"font.size": 16}) # import sys # sys.path.append("../FinRL-Library") # import sys,os # sys.path.append(os.path.dirname(os.path.realpath("."))) import yfinance as yf DATASETS_FULL_PATH = [ "dow_full.csv", "nas_full.csv", "sp_full.csv", ] def data_split(df, start, end): """ split the dataset into training or testing using date :param data: (df) pandas dataframe, start, end :return: (df) pandas dataframe """ data = df[(df.date >= start) & (df.date < end)] data = data.sort_values(["date", "tic"], ignore_index=True) data.index = data.date.factorize()[0] return data def preprocess( dataset_dir, market_id, start_date, end_date, ticker_list, train_start, train_end, val_start, val_end, test_start, test_end, tech_indicators, cache_dir, ): ticker_list.sort() encoder = hashlib.sha256() encoder.update("_".join(list(ticker_list)).encode()) encoder.update("_".join(list(tech_indicators)).encode()) cache_path = cache_dir/ f"data_{market_id}_{start_date}_{end_date}_{encoder.hexdigest()}.csv" # 缓存原始数据 if os.path.exists(cache_path): processed_full =
pd.read_csv(cache_path)
pandas.read_csv
# -*- coding: utf-8 -*- from pyalgotrade import strategy from pyalgotrade.technical import ma from pyalgotrade.technical import cross, highlow from pyalgotrade import technical from pyalgotrade.technical import vwap from pyalgotrade.stratanalyzer import sharpe from pandas import DataFrame # from compiler.ast import flatten import numpy as np class SMACrossOver(strategy.BacktestingStrategy): def __init__(self, feed, instrument, smaPeriod): strategy.BacktestingStrategy.__init__(self, feed) self.__instrument = instrument self.__position = None # We'll use adjusted close values instead of regular close values. self.setUseAdjustedValues(False) self.__prices = feed[instrument].getPriceDataSeries() self.__sma = ma.SMA(self.__prices, smaPeriod) def getSMA(self): return self.__sma def onEnterCanceled(self, position): self.__position = None def onExitOk(self, position): self.__position = None def onExitCanceled(self, position): # If the exit was canceled, re-submit it. self.__position.exitMarket() def onBars(self, bars): # If a position was not opened, check if we should enter a long position. if self.__position is None: if cross.cross_above(self.__prices, self.__sma) > 0: shares = int(self.getBroker().getCash() * 0.9 / bars[self.__instrument].getPrice()) # Enter a buy market order. The order is good till canceled. self.__position = self.enterLong(self.__instrument, shares, True) # Check if we have to exit the position. elif not self.__position.exitActive() and cross.cross_below(self.__prices, self.__sma) > 0: self.__position.exitMarket() class VWAPMomentum(strategy.BacktestingStrategy): def __init__(self, feed, instrument, vwapWindowSize, threshold): strategy.BacktestingStrategy.__init__(self, feed) self.__instrument = instrument self.__feed = feed self.__threshold = threshold self.__vwap = {} for element in instrument: self.__vwap[element] = vwap.VWAP(feed[element], vwapWindowSize) self.__notional = 0 self.__count = 0 self.__info = DataFrame(columns={'date', 'id', 'action', 'instrument', 'quantity', 'price'}) # 交易记录信息 self.__info_matrix = [] # 手动增加日志信息,以获取数据,备网页显示,先单个交易的信息,多个交易暂时未写,从order中获取 def addInfo(self, order): __date = order.getSubmitDateTime() # 时间 __action = order.getAction() # 动作 __id = order.getId() # 订单号 __instrument = order.getInstrument() __quantity = order.getQuantity() # 数量 __price = order.getAvgFillPrice() self.__info_matrix.append([__date, __id, __action, __instrument, __quantity, __price]) # 有多重实现方式和存储方式,考虑到组合数据,最终选用dataFrame且ID默认,因为或存在一日多单 def getInfo(self): _matrix = np.array(self.__info_matrix).reshape((len(self.__info_matrix), 6)) return DataFrame( {'date': _matrix[:, 0], 'id': _matrix[:, 1], 'action': _matrix[:, 2], 'instrument': _matrix[:, 3], 'quantity': _matrix[:, 4], 'price': _matrix[:, 5]}) # 对于组合取其并集 def getDateTimeSeries(self, instrument=None): if instrument is None: __dateTime = DataFrame() for element in self.__instrument: __dateTime = __dateTime.append(self.__feed[element].getPriceDataSeries().getDateTimes()) __dateTime = __dateTime.drop_duplicates([0]) return __dateTime.values # 此时返回的为二维数组 return self.__feed[instrument].getPriceDataSeries().getDateTimes() def getVWAP(self): return self.__vwap def onBars(self, bars): for element in bars.getInstruments(): # element in self.__instrument这种可能存在部分元素不在的情况 self.__count += 1 vwap = self.__vwap[element][-1] if vwap is None: return shares = self.getBroker().getShares(element) price = bars[element].getClose() notional = shares * price if self.__count < 30: print(self.__count, element, shares, notional, self.getBroker().getCash( False), self.getBroker().getCash()) self.__notional = notional # 记录上一次的值 # print vwap,self.__notional if price > vwap * (1 + self.__threshold) and notional < 1000000: __order = self.marketOrder(element, 100) self.addInfo(__order) # 添加交易信息 if (self.__count < 30): # print "buy %s at ¥%.2f" % (element, price) self.info("buy %s at ¥%.2f" % (element,price)) elif price < vwap * (1 - self.__threshold) and notional > 0: __order = self.marketOrder(element, -100) self.addInfo(__order) # 添加交易信息 if (self.__count < 30): # print "sell %s at ¥%.2f" % (element, price) self.info("sell %s at ¥%.2f" % (element,price)) class turtle(strategy.BacktestingStrategy): def __init__(self, feed, instrument, N1, N2): strategy.BacktestingStrategy.__init__(self, feed) self.__instrument = instrument self.__feed = feed self.__position = None self.setUseAdjustedValues(False) self.__prices = feed[instrument].getPriceDataSeries() self.__high = highlow.High(self.__prices, N1, 3) self.__low = highlow.Low(self.__prices, N2, 3) self._count = 0 self.__info =
DataFrame(columns={'date', 'id', 'action', 'instrument', 'quantity', 'price'})
pandas.DataFrame
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data = pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]}) df = from_pandas_df(data) df = df.rechunk((2, 2)).rechunk({1: 3}) res = df.execute().fetch() pd.testing.assert_frame_equal(data, res) def test_series_map_execution(setup): raw = pd.Series(np.arange(10)) s = from_pandas_series(raw, chunk_size=7) with pytest.raises(ValueError): # cannot infer dtype, the inferred is int, # but actually it is float # just due to nan s.map({5: 10}) r = s.map({5: 10}, dtype=float) result = r.execute().fetch() expected = raw.map({5: 10}) pd.testing.assert_series_equal(result, expected) r = s.map({i: 10 + i for i in range(7)}, dtype=float) result = r.execute().fetch() expected = raw.map({i: 10 + i for i in range(7)}) pd.testing.assert_series_equal(result, expected) r = s.map({5: 10}, dtype=float, na_action='ignore') result = r.execute().fetch() expected = raw.map({5: 10}, na_action='ignore') pd.testing.assert_series_equal(result, expected) # dtype can be inferred r = s.map({5: 10.}) result = r.execute().fetch() expected = raw.map({5: 10.}) pd.testing.assert_series_equal(result, expected) r = s.map(lambda x: x + 1, dtype=int) result = r.execute().fetch() expected = raw.map(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) def f(x: int) -> float: return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) def f(x: int): return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series raw2 = pd.Series([10], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2, dtype=float) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series, and dtype can be inferred raw2 = pd.Series([10.], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test str raw = pd.Series(['a', 'b', 'c', 'd']) s = from_pandas_series(raw, chunk_size=2) r = s.map({'c': 'e'}) result = r.execute().fetch() expected = raw.map({'c': 'e'}) pd.testing.assert_series_equal(result, expected) # test map index raw = pd.Index(np.random.rand(7)) idx = from_pandas_index(pd.Index(raw), chunk_size=2) r = idx.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_index_equal(result, expected) def test_describe_execution(setup): s_raw = pd.Series(np.random.rand(10)) # test one chunk series = from_pandas_series(s_raw, chunk_size=10) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) # test multi chunks series = from_pandas_series(s_raw, chunk_size=3) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(5) df_raw = pd.DataFrame(rs.rand(10, 4), columns=list('abcd')) df_raw['e'] = rs.randint(100, size=10) # test one chunk df = from_pandas_df(df_raw, chunk_size=10) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = series.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = s_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_series_equal(result, expected) # test multi chunks df = from_pandas_df(df_raw, chunk_size=3) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = df.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_frame_equal(result, expected) # test skip percentiles r = df.describe(percentiles=False, include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) expected.drop(['50%'], axis=0, inplace=True) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.describe(percentiles=[1.1]) with pytest.raises(ValueError): # duplicated values df.describe(percentiles=[0.3, 0.5, 0.3]) # test input dataframe which has unknown shape df = from_pandas_df(df_raw, chunk_size=3) df2 = df[df['a'] < 0.5] r = df2.describe() result = r.execute().fetch() expected = df_raw[df_raw['a'] < 0.5].describe() pd.testing.assert_frame_equal(result, expected) def test_data_frame_apply_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) r = df.apply('ffill') result = r.execute().fetch() expected = df_raw.apply('ffill') pd.testing.assert_frame_equal(result, expected) r = df.apply(['sum', 'max']) result = r.execute().fetch() expected = df_raw.apply(['sum', 'max']) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sqrt) result = r.execute().fetch() expected = df_raw.apply(np.sqrt) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2])) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2])) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sum, axis='index') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='index') pd.testing.assert_series_equal(result, expected) r = df.apply(np.sum, axis='columns') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='columns') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1) pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1, result_type='expand') result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='reduce') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='reduce') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') pd.testing.assert_frame_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit def test_series_apply_execute(setup): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = series.apply('add', args=(1,)) result = r.execute().fetch() expected = s_raw.apply('add', args=(1,)) pd.testing.assert_series_equal(result, expected) r = series.apply(['sum', 'max']) result = r.execute().fetch() expected = s_raw.apply(['sum', 'max']) pd.testing.assert_series_equal(result, expected) r = series.apply(np.sqrt) result = r.execute().fetch() expected = s_raw.apply(np.sqrt) pd.testing.assert_series_equal(result, expected) r = series.apply('sqrt') result = r.execute().fetch() expected = s_raw.apply('sqrt') pd.testing.assert_series_equal(result, expected) r = series.apply(lambda x: [x, x + 1], convert_dtype=False) result = r.execute().fetch() expected = s_raw.apply(lambda x: [x, x + 1], convert_dtype=False) pd.testing.assert_series_equal(result, expected) s_raw2 = pd.Series([np.array([1, 2, 3]), np.array([4, 5, 6])]) series = from_pandas_series(s_raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes) result = r.execute().fetch() expected = s_raw2.apply(pd.Series) pd.testing.assert_frame_equal(result, expected) @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_apply_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.apply(lambda row: str(row[0]) + row[1], axis=1) result = r.execute().fetch() expected = df1.apply(lambda row: str(row[0]) + row[1], axis=1) pd.testing.assert_series_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.apply(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.apply(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_transform_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) idx_vals = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idx_vals) def rename_fn(f, new_name): f.__name__ = new_name return f old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 # DATAFRAME CASES df = from_pandas_df(df_raw, chunk_size=5) # test transform scenarios on data frames r = df.transform(lambda x: list(range(len(x)))) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x)))) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: list(range(len(x))), axis=1) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x))), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.transform(['cumsum', 'cummax', lambda x: x + 1]) result = r.execute().fetch() expected = df_raw.transform(['cumsum', 'cummax', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) fn_dict = OrderedDict([ ('A', 'cumsum'), ('D', ['cumsum', 'cummax']), ('F', lambda x: x + 1), ]) r = df.transform(fn_dict) result = r.execute().fetch() expected = df_raw.transform(fn_dict) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1]) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], axis=1, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1], axis=1) pd.testing.assert_frame_equal(result, expected) fn_list = [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)] r = df.transform(fn_list, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_list) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.sum(), _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.sum()) pd.testing.assert_series_equal(result, expected) fn_dict = OrderedDict([ ('A', rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1')), ('D', [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)]), ('F', lambda x: x.iloc[:-1].reset_index(drop=True)), ]) r = df.transform(fn_dict, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_dict) pd.testing.assert_frame_equal(result, expected) # SERIES CASES series = from_pandas_series(s_raw, chunk_size=5) # test transform scenarios on series r = series.transform(lambda x: x + 1) result = r.execute().fetch() expected = s_raw.transform(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) r = series.transform(['cumsum', lambda x: x + 1]) result = r.execute().fetch() expected = s_raw.transform(['cumsum', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) # test transform on string dtype df_raw = pd.DataFrame({'col1': ['str'] * 10, 'col2': ['string'] * 10}) df = from_pandas_df(df_raw, chunk_size=3) r = df['col1'].transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw['col1'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) r = df.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw.transform(lambda x: x + '_suffix') pd.testing.assert_frame_equal(result, expected) r = df['col2'].transform(lambda x: x + '_suffix', dtype=np.dtype('str')) result = r.execute().fetch() expected = df_raw['col2'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_transform_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.transform({'b': lambda x: x + '_suffix'}) result = r.execute().fetch() expected = df1.transform({'b': lambda x: x + '_suffix'}) pd.testing.assert_frame_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_string_method_execution(setup): s = pd.Series(['s1,s2', 'ef,', 'dd', np.nan]) s2 = pd.concat([s, s, s]) series = from_pandas_series(s, chunk_size=2) series2 = from_pandas_series(s2, chunk_size=2) # test getitem r = series.str[:3] result = r.execute().fetch() expected = s.str[:3] pd.testing.assert_series_equal(result, expected) # test split, expand=False r = series.str.split(',', n=2) result = r.execute().fetch() expected = s.str.split(',', n=2) pd.testing.assert_series_equal(result, expected) # test split, expand=True r = series.str.split(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.split(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test rsplit r = series.str.rsplit(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.rsplit(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test cat all data r = series2.str.cat(sep='/', na_rep='e') result = r.execute().fetch() expected = s2.str.cat(sep='/', na_rep='e') assert result == expected # test cat list r = series.str.cat(['a', 'b', np.nan, 'c']) result = r.execute().fetch() expected = s.str.cat(['a', 'b', np.nan, 'c']) pd.testing.assert_series_equal(result, expected) # test cat series r = series.str.cat(series.str.capitalize(), join='outer') result = r.execute().fetch() expected = s.str.cat(s.str.capitalize(), join='outer') pd.testing.assert_series_equal(result, expected) # test extractall r = series.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") result = r.execute().fetch() expected = s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") pd.testing.assert_frame_equal(result, expected) # test extract, expand=False r = series.str.extract(r'[ab](\d)', expand=False) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=False) pd.testing.assert_series_equal(result, expected) # test extract, expand=True r = series.str.extract(r'[ab](\d)', expand=True) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=True) pd.testing.assert_frame_equal(result, expected) def test_datetime_method_execution(setup): # test datetime s = pd.Series([pd.Timestamp('2020-1-1'), pd.Timestamp('2020-2-1'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.year result = r.execute().fetch() expected = s.dt.year pd.testing.assert_series_equal(result, expected) r = series.dt.strftime('%m-%d-%Y') result = r.execute().fetch() expected = s.dt.strftime('%m-%d-%Y') pd.testing.assert_series_equal(result, expected) # test timedelta s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('3 days'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.days result = r.execute().fetch() expected = s.dt.days pd.testing.assert_series_equal(result, expected) def test_isin_execution(setup): # one chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=10) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in one chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=4) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = np.array([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = tensor(b, chunk_size=3) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = {2, 1, 9, 3} # set sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 3))) df = from_pandas_df(raw, chunk_size=(5, 2)) # set b = {2, 1, raw[1][0]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin(b) pd.testing.assert_frame_equal(result, expected) # mars object b = tensor([2, 1, raw[1][0]], chunk_size=2) r = df.isin(b) result = r.execute().fetch() expected = raw.isin([2, 1, raw[1][0]]) pd.testing.assert_frame_equal(result, expected) # dict b = {1: tensor([2, 1, raw[1][0]], chunk_size=2), 2: [3, 10]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin({1: [2, 1, raw[1][0]], 2: [3, 10]}) pd.testing.assert_frame_equal(result, expected) def test_cut_execution(setup): session = setup rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) bins = [10, 100, 500] ii = pd.interval_range(10, 500, 3) labels = ['a', 'b'] t = tensor(raw, chunk_size=4) series = from_pandas_series(s, chunk_size=4) iii = from_pandas_index(ii, chunk_size=2) # cut on Series r = cut(series, bins) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins)) r, b = cut(series, bins, retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # cut on tensor r = cut(t, bins) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # one chunk r = cut(s, tensor(bins, chunk_size=2), right=False, include_lowest=True) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins, right=False, include_lowest=True)) # test labels r = cut(t, bins, labels=labels) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) r = cut(t, bins, labels=False) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=False) np.testing.assert_array_equal(result, expected) # test labels which is tensor labels_t = tensor(['a', 'b'], chunk_size=1) r = cut(raw, bins, labels=labels_t, include_lowest=True) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels, include_lowest=True) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # test labels=False r, b = cut(raw, ii, labels=False, retbins=True) # result and expected is array whose dtype is CategoricalDtype r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(raw, ii, labels=False, retbins=True) for r, e in zip(r_result, r_expected): np.testing.assert_equal(r, e) pd.testing.assert_index_equal(b_result, b_expected) # test bins which is md.IntervalIndex r, b = cut(series, iii, labels=tensor(labels, chunk_size=1), retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, ii, labels=labels, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) pd.testing.assert_index_equal(b_result, b_expected) # test duplicates bins2 = [0, 2, 4, 6, 10, 10] r, b = cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test integer bins r = cut(series, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, 3)) r, b = cut(series, 3, right=False, retbins=True) r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(s, 3, right=False, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test min max same s2 = pd.Series([1.1] * 15) r = cut(s2, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s2, 3)) # test inf exist s3 = s2.copy() s3[-1] = np.inf with pytest.raises(ValueError): cut(s3, 3).execute() def test_transpose_execution(setup): raw = pd.DataFrame({"a": ['1', '2', '3'], "b": ['5', '-6', '7'], "c": ['1', '2', '3']}) # test 1 chunk df = from_pandas_df(raw) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # test multi chunks df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = from_pandas_df(raw, chunk_size=2) result = df.T.execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # dtypes are varied raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": [5, -6, 7], "c": [1, 2, 3]}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": ['5', '-6', '7']}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # Transposing from results of other operands raw = pd.DataFrame(np.arange(0, 100).reshape(10, 10)) df = DataFrame(arange(0, 100, chunk_size=5).reshape(10, 10)) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = DataFrame(rand(100, 100, chunk_size=10)) raw = df.to_pandas() result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) def test_to_numeric_execition(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100)) s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test multi chunks series = from_pandas_series(s, chunk_size=20) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test object dtype s = pd.Series(['1.0', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test errors and downcast s = pd.Series(['appple', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series, errors='ignore', downcast='signed') pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s, errors='ignore', downcast='signed')) # test list data l = ['1.0', 2, -3, '2.0'] r = to_numeric(l) np.testing.assert_array_equal(r.execute().fetch(), pd.to_numeric(l)) def test_q_cut_execution(setup): rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) series = from_pandas_series(s) r = qcut(series, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) r = qcut(s, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s) r = qcut(series, [0.3, 0.5, 0.7]) result = r.execute().fetch() expected = pd.qcut(s, [0.3, 0.5, 0.7]) pd.testing.assert_series_equal(result, expected) r = qcut(range(5), 3) result = r.execute().fetch() expected = pd.qcut(range(5), 3) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), [0.2, 0.5]) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), tensor([0.2, 0.5])) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) def test_shift_execution(setup): # test dataframe rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=5) for periods in (2, -2, 6, -6): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df.shift(periods=periods, axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw.shift(periods=periods, axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected, check_dtype=False) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}' ) from e raw2 = raw.copy() raw2.index = pd.date_range('2020-1-1', periods=10) raw2.columns = pd.date_range('2020-3-1', periods=8) df2 = from_pandas_df(raw2, chunk_size=5) # test freq not None for periods in (2, -2): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}') from e # test tshift r = df2.tshift(periods=1) result = r.execute().fetch() expected = raw2.tshift(periods=1) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): _ = df.tshift(periods=1) # test series s = raw.iloc[:, 0] series = from_pandas_series(s, chunk_size=5) for periods in (0, 2, -2, 6, -6): for fill_value in (None, 0, 1.): r = series.shift(periods=periods, fill_value=fill_value) try: result = r.execute().fetch() expected = s.shift(periods=periods, fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e s2 = raw2.iloc[:, 0] # test freq not None series2 = from_pandas_series(s2, chunk_size=5) for periods in (2, -2): for fill_value in (None, 0, 1.): r = series2.shift(periods=periods, freq='D', fill_value=fill_value) try: result = r.execute().fetch() expected = s2.shift(periods=periods, freq='D', fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e def test_diff_execution(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) raw1 = raw.copy() raw1['col4'] = raw1['col4'] < 400 r = from_pandas_df(raw1, chunk_size=(10, 5)).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw1, chunk_size=5).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw, chunk_size=(5, 8)).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1)) r = from_pandas_df(raw, chunk_size=5).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1), check_dtype=False) # test series s = raw.iloc[:, 0] s1 = s.copy() < 400 r = from_pandas_series(s, chunk_size=10).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s, chunk_size=5).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s1, chunk_size=5).diff(1) pd.testing.assert_series_equal(r.execute().fetch(), s1.diff(1)) def test_value_counts_execution(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100), name='s') s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s, chunk_size=100) r = series.value_counts() pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) # test multi chunks series = from_pandas_series(s, chunk_size=30) r = series.value_counts(method='tree') pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(method='tree', normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(normalize=True)) # test bins and normalize r = series.value_counts(method='tree', bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) def test_astype(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) # single chunk df = from_pandas_df(raw) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # multiply chunks df = from_pandas_df(raw, chunk_size=6) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # dict type df = from_pandas_df(raw, chunk_size=5) r = df.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) pd.testing.assert_frame_equal(expected, result) # test arrow_string dtype df = from_pandas_df(raw, chunk_size=8) r = df.astype({'c1': 'arrow_string'}) result = r.execute().fetch() expected = raw.astype({'c1': 'arrow_string'}) pd.testing.assert_frame_equal(expected, result) # test series s = pd.Series(rs.randint(5, size=20)) series = from_pandas_series(s) r = series.astype('int32') result = r.execute().fetch() expected = s.astype('int32') pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s, chunk_size=6) r = series.astype('arrow_string') result = r.execute().fetch() expected = s.astype('arrow_string') pd.testing.assert_series_equal(result, expected) # test index raw = pd.Index(rs.randint(5, size=20)) mix = from_pandas_index(raw) r = mix.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_index_equal(result, expected) # multiply chunks series = from_pandas_series(s, chunk_size=6) r = series.astype('str') result = r.execute().fetch() expected = s.astype('str') pd.testing.assert_series_equal(result, expected) # test category raw = pd.DataFrame(rs.randint(3, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=5) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=3) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=6) r = df.astype({'c1': 'category', 'c5': 'float', 'c2': 'int32', 'c7': pd.CategoricalDtype([1, 3, 4, 2]), 'c4': pd.CategoricalDtype([1, 3, 2])}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c5': 'float', 'c2': 'int32', 'c7':
pd.CategoricalDtype([1, 3, 4, 2])
pandas.CategoricalDtype
import pandas as pd import numpy as np import matplotlib.pyplot as plt import random import requests from CodOpY.misc import initiate_code_table def retrieve_kazusa(taxID): '''Returns a table with codon usage frequencies per 1000 nt from the Kazusa website. Parameters ========== taxID : int or str taxID can be the NCBI Taxonomy ID of an organism or the latin name (or part thereof) of an organism. Returns ======= pandas.core.frame.DataFrame A dataframe containing codons, amino acid abbreviations and the relative usage frequency per 1000 codons for each of the 64 possible RNA codons. ''' if type(taxID) == str: if not taxID.isdecimal(): search_result = requests.get('http://www.kazusa.or.jp/codon/cgi-bin/spsearch.cgi?species=' + taxID.replace(' ','+') + '&c=i') if '\nNot found\n' in search_result.text: return 'Search term not found' result_lines = search_result.text.split('<A') ids = [] print('Available entries include:\n') for line in result_lines[:-1]: if line[1:5] == 'HREF': idx = line.split('=')[2].split('\"')[0] species = line.split('<I>')[1].split('</I>')[0] if idx.isdecimal(): ids.append(idx) print(species + ': ' + idx) if len(ids) == 1: print('Using unique result') taxID = ids[0] else: query = input('\nPlease select a numerical ID') if query not in ids: return 'Invalid ID' else: taxID = query base_frame = initiate_code_table() base_frame['codon'] = base_frame['codon'].str.replace('T','U') search_result = requests.get('http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=' + str(taxID)) if 'Not found' in search_result.text: return 'Search term not found' species = search_result.text.split('\n')[7].split('<i>')[1].split(' </i>')[0] print('\nRetrieving data for ' + species) if len(search_result.text.split('PRE')) == 1: print('no codon usage data found for this taxonomy ID') return else: result_table = search_result.text.split('PRE')[1].replace('\n','').replace('>','').replace('</','') result_table = result_table.split(')') #retrieve information from lines codons,frequency = [],[] for line in result_table: #remove leading spaces if len(line)>1: while line[0] == ' ': line=line[1:] codons.append(line[:3]) frequency.append(float(line[line.find(' ')+1:line.find('(')])) results_frame = pd.DataFrame({'codon':codons,'usage.frequency':frequency}) results_frame = base_frame.merge(results_frame, how = 'outer',on='codon') return results_frame.sort_values(by='codon').reset_index(drop=True) #================================================================================================== def opt_seq(seq,diversify=['K','N','I','H','V','G','D','Y','C','F'], diversify_range=0.2,ref_table = 'Scer', optimise_by=['decoding.time',min]): ''' Makes an optimised DNA sequence corresponding to an input amino acid sequence. Parameters ========== seq : str The amino aid sequence to be otimised diversify : list of str A list specifying individual amino acids for which codons should be diversified. diversify_range : float The proportion over which the optimisation parameters that is allowed to vary for diversified amno acids, relative to 1. ref_table : str the name of the data file containing the codon data. optimise_by : list of str and function The str part of optimise_by specifies which cloumn of the ref_tble shold be used for optimisation. Function can be min or max and specifies whether the highestt or lowest value should be selected for optimisation. Returns ======= str Returns a DNA sequence string. ''' #prepare package data for use try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 `importlib_resources`. import importlib_resources as pkg_resources from . import Data # relative-import the *package* containing the data #import the stored data for the dataset in question try: with open(Data.__path__[0] + '/' + ref_table + '.csv') as read_file: parameterset = pd.read_csv(read_file) except: raise ValueError('ref_table does not refer to a valid dataset.') #define the reverse translation dictionary: which codons should be considered for which amino acid? #if an amino acid is not in the diversify list, use the fastest codon #if an amino acid is in the diversify list, diversify codon choice by random draw from all codons for which the diversify_range threshold applies reverse_dict = {} for aa in parameterset['one.letter'].unique(): codons_for_aa = parameterset.loc[parameterset['one.letter']==aa] if aa in diversify: if optimise_by[1] == min: diversify_threshold = min(codons_for_aa[optimise_by[0]]) * (1 + diversify_range) acceptable_codons_for_aa = list(codons_for_aa.loc[codons_for_aa['decoding.time']<diversify_threshold]['codon']) elif optimise_by[1] == max: diversify_threshold = max(codons_for_aa[optimise_by[0]]) * (1 - diversify_range) acceptable_codons_for_aa = list(codons_for_aa.loc[codons_for_aa['decoding.time']>diversify_threshold]['codon']) else: return else: best_decoding_time_for_aa = optimise_by[1](codons_for_aa['decoding.time']) acceptable_codons_for_aa = list(codons_for_aa.loc[codons_for_aa['decoding.time']==best_decoding_time_for_aa]['codon']) reverse_dict[aa] = acceptable_codons_for_aa codon_seq = [] for seq_aa in seq: codon_seq.append(random.choice(reverse_dict[seq_aa])) return ''.join(codon_seq).replace('U','T') #================================================================================================== def remove_RE(site, test_seq, ref_table = 'Scer',optimise_by=['decoding.time',min],suppress_not_found=False): '''Removes restriction enzyme sites from DNA sequences without altering the encoded amino acid sequence and while maintaining codon optimisation as much as possible. Parameters ========== site : str the name of the restriction enzyme for which sites should be removed. test_seq : str the sequence from which sites are to be removed. ref_table : str the name of the reference table from which the optimisation information is being used. optimise_by : list of str and Function As for opt_seq, the name of the column of ref_table from which optimisation info is generated, and whether optimal is the minimum or maximum. Returns ======= str A DNA sequence string. ''' #prepare package data for use try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 `importlib_resources`. import importlib_resources as pkg_resources from . import Data # relative-import the *package* containing the data #import the stored data for S cerevisiae with open(Data.__path__[0] + '/RE_List.csv') as read_file: RE_ref =
pd.read_csv(read_file)
pandas.read_csv
import pandas as pd import numpy as np import lightgbm as lgb from sklearn.model_selection import KFold from catboost import CatBoostRegressor from utils import * import argparse from sklearn import preprocessing import wordbatch from wordbatch.extractors import WordBag from wordbatch.models import FM_FTRL class TargetEncoder: # Adapted from https://www.kaggle.com/ogrellier/python-target-encoding-for-categorical-features def __repr__(self): return 'TargetEncoder' def __init__(self, cols, smoothing=1, min_samples_leaf=1, noise_level=0, keep_original=False): self.cols = cols self.smoothing = smoothing self.min_samples_leaf = min_samples_leaf self.noise_level = noise_level self.keep_original = keep_original @staticmethod def add_noise(series, noise_level): return series * (1 + noise_level * np.random.randn(len(series))) def encode(self, train, test, target): for col in self.cols: if self.keep_original: train[col + '_te'], test[col + '_te'] = self.encode_column(train[col], test[col], target) else: train[col], test[col] = self.encode_column(train[col], test[col], target) return train, test def encode_column(self, trn_series, tst_series, target): temp = pd.concat([trn_series, target], axis=1) # Compute target mean averages = temp.groupby(by=trn_series.name)[target.name].agg(["mean", "count"]) # Compute smoothing smoothing = 1 / (1 + np.exp(-(averages["count"] - self.min_samples_leaf) / self.smoothing)) # Apply average function to all target data prior = target.mean() # The bigger the count the less full_avg is taken into account averages[target.name] = prior * (1 - smoothing) + averages["mean"] * smoothing averages.drop(['mean', 'count'], axis=1, inplace=True) # Apply averages to trn and tst series ft_trn_series = pd.merge( trn_series.to_frame(trn_series.name), averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), on=trn_series.name, how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) # pd.merge does not keep the index so restore it ft_trn_series.index = trn_series.index ft_tst_series = pd.merge( tst_series.to_frame(tst_series.name), averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), on=tst_series.name, how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) # pd.merge does not keep the index so restore it ft_tst_series.index = tst_series.index return self.add_noise(ft_trn_series, self.noise_level), self.add_noise(ft_tst_series, self.noise_level) def rmse(y, y0): assert len(y) == len(y0) return np.sqrt(np.mean(np.power((y - y0), 2))) stopwords = {x: 1 for x in stopwords.words('russian')} non_alphanums = re.compile(u'[^A-Za-z0-9]+') non_alphanumpunct = re.compile(u'[^A-Za-z0-9\.?!,; \(\)\[\]\'\"\$]+') RE_PUNCTUATION = '|'.join([re.escape(x) for x in string.punctuation]) train = pd.read_csv('../input/train.csv', index_col = "item_id", parse_dates = ["activation_date"]) test =
pd.read_csv('../input/test.csv', index_col = "item_id", parse_dates = ["activation_date"])
pandas.read_csv
import torch import torch.nn as nn from model import WaveletLeTransform from config.config import get_cfg from utils import * from solver import make_lr_scheduler, make_optimizer from tqdm import tqdm from torch.utils.data import DataLoader, Subset from apex import amp from sklearn.metrics import roc_auc_score, log_loss import argparse import os from datasets.rsna_dataset import RSNAHemorrhageDS3d from class_weighted_bce_loss import WeightedBCEWithLogitsLoss import numpy as np import pandas as pd from datasets.custom_dataset import IntracranialDataset import glob from einops import rearrange import gc from torch.utils.tensorboard import SummaryWriter import sys from torchvision.utils import make_grid from torchsampler.weighted_sampler import ImbalancedDatasetSampler as imb import pandas as pd from sklearn.utils import shuffle import warnings from utils.utils import EarlyStopping, test_time_augmentation from collections import OrderedDict from colorama import init, Fore, Back, Style import matplotlib.pyplot as plt import json import torchmetrics # from torchsampler.imbalanced_sampler import ImbalancedDatasetSampler as imb warnings.filterwarnings('ignore') tb = SummaryWriter("runs/wavelet") metric = torchmetrics.Accuracy(num_classes=6,average='macro') def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="", help="config yaml path") parser.add_argument("--load", type=str, default="./weights/RSNA_Wavelet_Transformer.pth", help="path to model weight") parser.add_argument("--fold", type=int, default=0, help="fold for validation") parser.add_argument("-ft", "--finetune", action="store_true", help="path to model weight") parser.add_argument("-m", "--mode", type=str, default="train", help="model running mode (train/valid/test)") parser.add_argument("--valid", action="store_true", help="enable evaluation mode for validation", ) parser.add_argument("--test", action="store_true", help="enable evaluation mode for testset") parser.add_argument("--tta", action="store_true", help="enable tta infer") parser.add_argument("-d", "--debug", action="store_true", help="enable debug mode for test") parser.add_argument('-y', '--autocrop', action="store", dest="autocrop", help="Autocrop", default="T") parser.add_argument('-s', '--seed', action="store", dest="seed", help="model seed", default="1234") parser.add_argument('-p', '--nbags', action="store", dest="nbags", help="Number of bags for averaging", default="0") parser.add_argument('-e', '--epochs', action="store", dest="epochs", help="epochs", default="5") parser.add_argument('-j', '--start', action="store", dest="start", help="Start epochs", default="0") parser.add_argument('-w', '--workpath', action="store", dest="workpath", help="Working path", default="densenetv1/weights") parser.add_argument('-f', '--weightsname', action="store", dest="weightsname", help="Weights file name", default="pytorch_model.bin") parser.add_argument('-g', '--logmsg', action="store", dest="logmsg", help="root directory", default="Recursion-pytorch") parser.add_argument('-c', '--size', action="store", dest="size", help="model size", default="512") parser.add_argument('-a', '--infer', action="store", dest="infer", help="root directory", default="TRN") parser.add_argument('-z', '--wtsize', action="store", dest="wtsize", help="model size", default="999") parser.add_argument('-hf', '--hflip', action="store", dest="hflip", help="Augmentation - Embedding horizontal flip", default="F") parser.add_argument('-tp', '--transpose', action="store", dest="transpose", help="Augmentation - Embedding transpose", default="F") parser.add_argument('-xg', '--stage2', action="store", dest="stage2", help="Stage2 embeddings only", default="F") args = parser.parse_args() if args.valid: args.mode = "valid" elif args.test: args.mode = "test" return args def build_model(cfg): model = WaveletLeTransform(cfg.MODEL.WL_CHNS, cfg.MODEL.CONV_CHNS, cfg.MODEL.LEVELS) return model def dataloader(cfg, df, autocrop, hflip, transpose, class_props, intra_class_props, mode='train'): DataSet = IntracranialDataset data_loader = "" if mode == 'train': train_img_path = os.path.join(cfg.DIRS.DATA, cfg.DIRS.TRAIN) train_ds = DataSet(cfg, df, train_img_path, labels=True, AUTOCROP=autocrop, HFLIP=hflip, TRANSPOSE=transpose, mode="train") if cfg.DEBUG: train_ds = Subset(train_ds, np.random.choice(np.arange(len(train_ds)), 500)) data_loader = DataLoader(train_ds, 4, pin_memory=True, shuffle=True, drop_last=False, num_workers=1) elif mode == 'valid': valid_img_path = os.path.join(cfg.DIRS.DATA, cfg.DIRS.TRAIN) valid_ds = DataSet(cfg, df, valid_img_path, labels=True, AUTOCROP=autocrop, HFLIP=hflip, TRANSPOSE=transpose, mode="valid") if cfg.DEBUG: valid_ds = Subset(valid_ds, np.random.choice(np.arange(len(valid_ds)), 500)) data_loader = DataLoader(valid_ds, 4, pin_memory=True, shuffle=False, drop_last=False, num_workers=2) # test_img_path = os.path.join(cfg.DIRS.DATA,cfg.DIRS.TEST) # test_ds = DataSet(cfg,test,test_img_path,labels=True,AUTOCROP=autocrop,HFLIP=hflip,TRANSPOSE=transpose, mode="test") return data_loader def weighted_multi_label_logloss(criterion, prediction, target, weights): assert target.size() == prediction.size() assert weights.shape[0] == target.size(1) loss = 0 for i in range(target.size(1)): loss += weights[i] * criterion(prediction[:, i], target[:, i]) return loss def train_loop(_print, cfg, train_criterion, valid_criterion, valid_criterion_2,class_props, intra_class_props, train, AUTOCROP, HFLIP, TRANSPOSE, start_epoch, best_metric): start = time.time() # Create model model = build_model(cfg) scores, fold_data = [], OrderedDict() device = device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') tl = {} tc = {} acc = {} accuracy,total_correct = 0,0 optimizer = make_optimizer(cfg, model) #optimizer = torch.optim.AdamW(model.parameters(), lr=0.001) # CUDA & Mixed Precision if cfg.SYSTEM.CUDA: model = model.cuda() train_criterion = train_criterion.cuda() ''' if cfg.SYSTEM.FP16: model, optimizer = amp.initialize(models=model, optimizers=optimizer, opt_level=cfg.SYSTEM.OPT_L, keep_batchnorm_fp32=(True if cfg.SYSTEM.OPT_L == "O2" else None)) ''' valdf = train[train['fold'] <2].reset_index(drop=True) trndf = train[train['fold'] >1].reset_index(drop=True) # shuffle the train df trndf = shuffle(trndf, random_state=48) eno=0 # split trndf into 6 parts #train_csvs = np.array_split(trndf, 3) # reset the index of each dataframe #train_csvs = [df.reset_index() for df in train_csvs] valid_loader = dataloader(cfg, valdf, AUTOCROP, HFLIP, TRANSPOSE, class_props, intra_class_props, mode="valid") train_loader = dataloader(cfg, trndf, AUTOCROP, HFLIP, TRANSPOSE, class_props, intra_class_props,mode="train") #early_stopping = EarlyStopping(patience=3, verbose=True, file_path=f"{cfg.EXP}.pth") #scheduler = make_lr_scheduler(cfg, optimizer, train_loader) #scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.TRAIN.EPOCHS) weights = np.array([2, 1, 1, 1, 1, 1]) weights_norm = weights / weights.sum() #if torch.cuda.is_available(): #model, optimizer = amp.initialize(model, optimizer, opt_level="O1") #for k, train in enumerate(train_csvs): train_loss, valid_loss, valid_metric = {}, {}, {} #train_loader = dataloader(cfg, train, AUTOCROP, HFLIP, TRANSPOSE, class_props, intra_class_props, #mode="train") #scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.TRAIN.EPOCHS) scheduler = make_lr_scheduler(cfg, optimizer, train_loader) # Load checkpoint try: if args.load != "": if os.path.isfile(args.load): _print(Fore.YELLOW + f"=> loading checkpoint {args.load}") checkpoint = torch.load(args.load, "cpu") model.load_state_dict(checkpoint.pop('state_dict')) if not args.finetune: _print(Fore.GREEN + "resuming optimizer ...") optimizer.load_state_dict(checkpoint.pop('optimizer')) start_epoch, best_metric = checkpoint['epoch']+1, checkpoint['best_metric'] _print(f"=> loaded checkpoint '{args.load}' (epoch {checkpoint['epoch']}, best_metric: {checkpoint['best_metric']})") #train_loss, valid_loss = checkpoint["train_loss"], checkpoint["valid_loss"] #valid_metric = checkpoint['valid_metric'] #optimizer.load_state_dict(checkpoint['optimizer']) #scheduler.load_state_dict(checkpoint['lr_scheduler']) #start_epoch = checkpoint["epoch"] + 1 #early_stopping.load_state_dict(checkpoint["stopping_params"]) else: _print(Fore.RED + f"=> no checkpoint found at '{args.load}'") start_epoch = 0 except ValueError: _print(Fore.RED + f"=> no checkpoint found at '{args.load}'") start_epoch = 0 for epoch in range(start_epoch, cfg.TRAIN.EPOCHS): _print(Fore.GREEN + f"Starting Training.....") mixed_target = "" lamb = "" t_loss = 0 total_loss = 0 targets_all = [] outputs_all = [] t_losses = [] auc_results="" losses = AverageMeter() model.train() tbar = tqdm(train_loader) torch.cuda.empty_cache() for x, batch in enumerate(tbar): image = batch["image"].cuda() target = batch["labels"].cuda() image = rearrange(image, 'b w h c->b c w h') # calculate loss if cfg.DATA.CUTMIX: image, target, mixed_target, lamb = cutmix_data(image, target, cfg.DATA.CM_ALPHA) elif cfg.DATA.MIXUP: image, target, mixed_target, lamb = mixup_data(image, target, cfg.DATA.CM_ALPHA) output = model(image) target, mixed_target = target.type(torch.float32), mixed_target.type(torch.float32) t_loss = mixup_criterion(train_criterion, output, target, mixed_target, lamb) with torch.no_grad(): #ids_all.extend(ids) targets_all.extend(target.cpu().numpy()) outputs_all.extend(torch.sigmoid(output).cpu().numpy()) t_losses.append(t_loss.item()) #outputs_all.append(torch.softmax(outputs, dim=1).cpu().numpy()) #t_loss = weighted_multi_label_logloss(train_criterion,output,target,weights_norm) #if cfg.SYSTEM.FP16: #with amp.scale_loss(t_loss, optimizer) as scaled_loss: #scaled_loss.backward() #else: #t_loss.backward() #total_correct += get_num_correct(output, target) #accuracy = metric(output.cpu(), target.type(torch.int8).cpu()) del target, mixed_target, lamb, output gc.collect() torch.cuda.empty_cache() # gradient accumulation t_loss = t_loss / cfg.OPT.GD_STEPS total_loss+=t_loss.item() t_loss.backward() ''' if cfg.SYSTEM.FP16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() ''' if (x + 1) % cfg.OPT.GD_STEPS == 0: optimizer.step() scheduler.step() optimizer.zero_grad() # record loss losses.update(t_loss.item() * cfg.OPT.GD_STEPS, image.size(0)) tbar.set_description(Fore.YELLOW + f"Epoch:({epoch+1}/{2}) ==> Train Loss: {losses.avg:.5f} lr: {optimizer.param_groups[-1]['lr']:.6f}") #tbar.set_description(Fore.YELLOW + "Train loss: %.5f, learning rate: %.6f, \ #Correct Prediction: %s., Accuracy: %.3f" % (losses.avg, optimizer.param_groups[-1]['lr'], #total_correct,accuracy)) tb.add_scalar(f"Train_Data/Train_Loss_{epoch+1}", t_loss.item(), x) tb.add_scalar(f"Train_Data/Train_Loss_avg_{epoch+1}", losses.avg, x) #tb.add_scalar(f"Train_Data/Accuracy_{epoch+1}", accuracy, x) #tb.add_scalar("Data/Learning Rate", optimizer.param_groups[-1]['lr'], x) tb.close() result = { 'targets': np.array(targets_all), 'outputs': np.array(outputs_all), 'loss': np.sum(t_losses) / (x+1), } result.update(calc_auc(result['targets'], result['outputs'])) result.update(calc_logloss(result['targets'], result['outputs'])) _print(Fore.GREEN + "Train_loss: %.5f, learning rate: %.6f" % (losses.avg, optimizer.param_groups[-1]['lr'])) _print(Fore.GREEN + f"AUC[auc:{result['auc_micro']}, micro:{result['auc_micro']}, macro:{result['auc_macro']}") _print(Fore.GREEN + f"Log Loss:{result['logloss']}, Log Loss classes:{np.round(result['logloss_classes'],6)}") #_print(Fore.GREEN + "Accuracy: %.3f, Total Correct Prediction: %s." % (accuracy, total_correct)) _print(Fore.YELLOW + f"Training Done in {(time.time() - start) // 60} minutes") start = time.time() _print(Fore.YELLOW + f"Validation Started....") auc_score, val_loss = test_time_augmentation(model, valid_loader, cfg, epoch, tb, "Valid",valid_criterion_2,weights_norm,_print,valid_criterion) _print(Fore.YELLOW + f"Validation Done in {(time.time() - start) // 60} minutes") scores.append(auc_score) validation_metric = val_loss.item() running_loss = total_loss / len(train_loader) _print(Fore.GREEN + f'Train Loss: {running_loss:.5f}, ' f'Validation Loss: {val_loss:.5f}, ' f'Validation Metric: {validation_metric:.5f}, ' f'ROC AUC: {auc_score:.5f}') is_best = val_loss < best_metric best_metric = min(val_loss, best_metric) _print(Fore.YELLOW + f'Best Metric: {best_metric}') train_loss[f"train_loss_{epoch}"] = running_loss valid_loss[f"valid_loss_{epoch}"] = val_loss.item() valid_metric[f"valid_metric_{epoch}"] = validation_metric if epoch in [2,5,7,10]: _print(Fore.YELLOW + 'Saving checkpoint........') save_checkpoint({ "epoch": epoch, "arch": cfg.EXP, "state_dict": model.state_dict(), "best_metric": best_metric, "optimizer": optimizer.state_dict(), }, is_best, root=cfg.DIRS.WEIGHTS, filename=f"{cfg.EXP}.pth") _print(Fore.YELLOW + 'Checkpoint Saved!') total_loss,total_correct,accuracy =0,0,0 ''' early_stopping(validation_metric, model, epoch=epoch, args=args, optimizer=optimizer.state_dict(), train_loss=train_loss, valid_loss=valid_loss, valid_metric=valid_metric, lr_scheduler=scheduler.state_dict()) if early_stopping.early_stop: print("Early stopping") break ''' _print(f"Best score: {validation_metric:.5f}") train_loss_keys = list(train_loss.keys()) train_loss_values = list(train_loss.values()) for i in range(len(train_loss_keys)): fold_data[train_loss_keys[i]]=pd.Series(train_loss_values[i]) valid_loss_keys = list(valid_loss.keys()) valid_loss_values = list(valid_loss.values()) for i in range(len(valid_loss_keys)): fold_data[valid_loss_keys[i]]=pd.Series(valid_loss_values[i]) valid_metric_keys = list(valid_metric.keys()) valid_metric_values = list(valid_metric.values()) for i in range(len(valid_metric_keys)): fold_data[valid_metric_keys[i]]=pd.Series(valid_metric_values[i]) train_loss = valid_loss = valid_metric = [] print(fold_data) metric_values = [v.iloc[-1] for k, v in fold_data.items() if 'valid_metric' in k] for i, (ll, roc) in enumerate(zip(metric_values, scores)): print(Fore.GREEN + f'Epoch {i+1} LogLoss: {ll:.4f}, ROC AUC: {roc:.4f}') print(Fore.CYAN + f'CV mean ROC AUC score: {np.mean(scores):.4f}, std: {np.std(scores):.4f}') print(Fore.CYAN + f'CV mean Log Loss: {np.mean(metric_values):.4f}, std: {np.std(metric_values):.4f}') ''' # Make a plot fold_data = pd.DataFrame(fold_data) fig, ax = plt.subplots() plt.title(f"CV Mean score: {np.mean(metric_values):.4f} +/- {np.std(metric_values):.4f}") valid_curves = fold_data.loc[:, fold_data.columns.str.startswith('valid_loss')] train_curves = fold_data.loc[:, fold_data.columns.str.startswith('train_loss')] print(valid_curves,train_curves) valid_curves.plot(ax=ax, colormap='Blues_r') train_curves.plot(ax=ax, colormap='Reds_r') # ax.set_ylim([np.min(train_curves.values), np.max(valid_curves.values)]) ax.tick_params(labelleft=True, labelright=True, left=True, right=True) plt.savefig(os.path.join(cfg.DIRS.OUTPUTS, f"train_epoch_{eno}.png")) print("Done in", (time.time() - start) // 60, "minutes") if valid_loader is not None: loss = valid_model(_print, cfg, model, valid_loader, valid_criterion,tb) is_best = loss < best_metric best_metric = min(loss, best_metric) tb.add_scalar("Data/valid_Loss",loss.item(),epoch) _print(f"best Metric: {best_metric}") save_checkpoint({ "epoch": epoch, "arch": cfg.EXP, "state_dict": model.state_dict(), "best_metric": best_metric, "optimizer": optimizer.state_dict(), }, is_best, root=cfg.DIRS.WEIGHTS, filename=f"{cfg.EXP}.pth") ''' def calc_auc(targets, outputs): macro = roc_auc_score(np.round(targets), outputs, average='macro') micro = roc_auc_score(np.round(targets), outputs, average='micro') return { 'auc': (macro + micro) / 2, 'auc_macro': macro, 'auc_micro': micro, } def calc_logloss(targets, outputs, eps=1e-5): # for RSNA try: logloss_classes = [log_loss(np.round(targets[:,i]), np.clip(outputs[:,i], eps, 1-eps)) for i in range(6)] except ValueError as e: logloss_classes = [1, 1, 1, 1, 1, 1] return { 'logloss_classes': logloss_classes, 'logloss': np.average(logloss_classes, weights=[2,1,1,1,1,1]), } def write_json(new_data,details,filename='log.json'): with open(filename,'r+') as file: # First we load existing data into a dict. file_data = json.load(file) # Join new_data with file_data inside emp_details file_data[details].append(new_data) # Sets file's current position at offset. file.seek(0) # convert back to json. json.dump(file_data, file, indent = 4) def valid_model(_print, cfg, model, valid_loader, valid_criterion,tb): folds = [0, 1, 2, 3, 4] # switch to evaluate mode model.eval() mixed_target = "" lamb = "" valid_loss= "" losses = AverageMeter() preds = [] targets = [] tbar = tqdm(valid_loader) with torch.no_grad(): for i, batch in enumerate(tbar): image = batch['image'].cuda() target = batch['labels'].cuda() image = rearrange(image, 'b w h c->b c w h') ''' if cfg.DATA.CUTMIX: image, target, mixed_target, lamb = cutmix_data(image, target, cfg.DATA.CM_ALPHA) elif cfg.DATA.MIXUP: image, target, mixed_target, lamb = mixup_data(image, target, cfg.DATA.CM_ALPHA) target, mixed_target = target.type(torch.float32), mixed_target.type(torch.float32) valid_loss = mixup_criterion(valid_criterion, output, target, mixed_target, lamb) ''' output = model(image) preds.append(output.cpu()) targets.append(target.cpu()) preds, targets = torch.cat(preds, 0), torch.cat(targets, 0) targets = targets.type(torch.float32) # record loss loss_tensor = valid_criterion(preds, targets) val_loss = loss_tensor.sum() / valid_criterion.class_weights.sum() any_loss = loss_tensor[0] intraparenchymal_loss = loss_tensor[1] intraventricular_loss = loss_tensor[2] subarachnoid_loss = loss_tensor[3] subdural_loss = loss_tensor[4] epidural_loss = loss_tensor[5] _print( "Val. loss: %.5f - any: %.3f - intraparenchymal: %.3f - intraventricular: %.3f - subarachnoid: %.3f - subdural: %.3f - epidural: %.3f" % ( val_loss, any_loss, intraparenchymal_loss, intraventricular_loss, subarachnoid_loss, subdural_loss, epidural_loss)) # record AUC auc = roc_auc_score(targets[:, 1:].numpy(), preds[:, 1:].numpy(), average=None) _print( "Val. AUC - intraparenchymal: %.3f - intraventricular: %.3f - subarachnoid: %.3f - subdural: %.3f - epidural: %.3f" % ( auc[0], auc[1], auc[2], auc[3], auc[4])) return val_loss def test_model(_print, cfg, model, test_loader): # switch to evaluate mode model.eval() ids = [] probs = [] tbar = tqdm(test_loader) with torch.no_grad(): for i, (image, id_code) in enumerate(tbar): image = image.cuda() id_code = list(*zip(*id_code)) bsize, seq_len, c, h, w = image.size() image = image.view(bsize * seq_len, c, h, w) output = model(image, seq_len) output = torch.sigmoid(output) probs.append(output.cpu().numpy()) ids += id_code probs = np.concatenate(probs, 0) submit = pd.concat([
pd.Series(ids)
pandas.Series
###################################################################### ## DeepBiome ## - Main code ## ## July 10. 2019 ## Youngwon (<EMAIL>) ## ## Reference ## - Keras (https://github.com/keras-team/keras) ###################################################################### import os import sys import json import time import numpy as np import pandas as pd import gc import warnings warnings.filterwarnings("ignore") import logging from sklearn.model_selection import KFold from . import logging_daily from . import configuration from . import loss_and_metric from . import readers from . import build_network from .utils import file_path_fold, argv_parse, taxa_selection_accuracy import keras.backend as k import tensorflow as tf import copy from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle, CircleFace, TextFace, RectFace import matplotlib.colors as mcolors pd.set_option('display.float_format', lambda x: '%.03f' % x) np.set_printoptions(formatter={'float_kind':lambda x: '%.03f' % x}) def deepbiome_train(log, network_info, path_info, number_of_fold=None, tree_level_list = ['Genus', 'Family', 'Order', 'Class', 'Phylum'], max_queue_size=10, workers=1, use_multiprocessing=False, verbose=True): """ Function for training the deep neural network with phylogenetic tree weight regularizer. It uses microbiome abundance data as input and uses the phylogenetic taxonomy to guide the decision of the optimal number of layers and neurons in the deep learning architecture. Parameters ---------- log (logging instance) : python logging instance for logging network_info (dictionary) : python dictionary with network_information path_info (dictionary): python dictionary with path_information number_of_fold (int): default=None tree_level_list (list): name of each level of the given reference tree weights default=['Genus', 'Family', 'Order', 'Class', 'Phylum'] max_queue_size (int): default=10 workers (int): default=1 use_multiprocessing (boolean): default=False verbose (boolean): show the log if True default=True Returns ------- test_evaluation (numpy array): numpy array of the evaluation using testset from all fold train_evaluation (numpy array): numpy array of the evaluation using training from all fold network (deepbiome network instance): deepbiome class instance Examples -------- Training the deep neural network with phylogenetic tree weight regularizer. test_evaluation, train_evaluation, network = deepbiome_train(log, network_info, path_info) """ if tf.__version__.startswith('2'): gpus = tf.config.experimental.get_visible_devices(device_type='GPU') try: tf.config.experimental.set_memory_growth(gpus, True) except: pass else: config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) ### Argument ######################################################################################### model_save_dir = path_info['model_info']['model_dir'] model_path = os.path.join(model_save_dir, path_info['model_info']['weight']) try: hist_path = os.path.join(model_save_dir, path_info['model_info']['history']) is_save_hist = True except: is_save_hist = False try: warm_start = network_info['training_info']['warm_start'] == 'True' warm_start_model = network_info['training_info']['warm_start_model'] except: warm_start = False # try: save_frequency=int(network_info['training_info']['save_frequency']) # except: save_frequency=None ### Reader ########################################################################################### if verbose: log.info('-----------------------------------------------------------------') reader_class = getattr(readers, network_info['model_info']['reader_class'].strip()) # TODO: fix path_info reader = reader_class(log, path_info, verbose=verbose) data_path = path_info['data_info']['data_path'] y_path = '%s/%s'%(data_path, path_info['data_info']['y_path']) ############################################ # Set the cross-validation try: idxs = np.array(pd.read_csv(path_info['data_info']['idx_path'])-1, dtype=np.int) if number_of_fold == None: number_of_fold = idxs.shape[1] except: nsample = pd.read_csv(y_path).shape[0] if number_of_fold == None: number_of_fold = nsample kf = KFold(n_splits=number_of_fold, shuffle=True, random_state=12) cv_gen = kf.split(range(nsample)) idxs = np.array([train_idx for train_idx, test_idx in cv_gen]).T ############################################ try: count_path = path_info['data_info']['count_path'] x_list = np.array(pd.read_csv(path_info['data_info']['count_list_path'], header=None).iloc[:,0]) x_path = np.array(['%s/%s'%(count_path, x_list[fold]) for fold in range(x_list.shape[0]) if '.csv' in x_list[fold]]) except: x_path = np.array(['%s/%s'%(data_path, path_info['data_info']['x_path']) for fold in range(number_of_fold)]) ### Simulations ################################################################################# # if is_save_hist: history = [] train_evaluation = [] test_evaluation = [] # train_tot_idxs = [] # test_tot_idxs = [] starttime = time.time() for fold in range(number_of_fold): if verbose: log.info('-------%d simulation start!----------------------------------' % (fold+1)) foldstarttime = time.time() ### Read datasets #################################################################################### reader.read_dataset(x_path[fold], y_path, fold) try: fold_idxs = idxs[:,fold] except: fold_idxs = idxs[fold] x_train, x_test, y_train, y_test = reader.get_dataset(fold_idxs) num_classes = reader.get_num_classes() ### Bulid network #################################################################################### if not tf.__version__.startswith('2'): k.set_session(tf.Session(config=config)) if verbose: log.info('-----------------------------------------------------------------') log.info('Build network for %d simulation' % (fold+1)) network_class = getattr(build_network, network_info['model_info']['network_class'].strip()) network = network_class(network_info, path_info, log, fold, num_classes=num_classes, tree_level_list = tree_level_list, is_covariates=reader.is_covariates, covariate_names = reader.covariate_names, verbose=verbose) network.model_compile() ## TODO : weight clear only (no recompile) if warm_start: network.load_weights(file_path_fold(warm_start_model, fold)) sys.stdout.flush() ### Training ######################################################################################### log.info('-----------------------------------------------------------------') log.info('%d fold computing start!----------------------------------' % (fold+1)) hist = network.fit(x_train, y_train, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, model_path=file_path_fold(model_path, fold)) # if is_save_hist: history.append(hist.history) sys.stdout.flush() network.save_weights(file_path_fold(model_path, fold)) if verbose: log.debug('Save weight at {}'.format(file_path_fold(model_path, fold))) if is_save_hist: network.save_history(file_path_fold(hist_path, fold), hist.history) if verbose: log.debug('Save history at {}'.format(file_path_fold(hist_path, fold))) sys.stdout.flush() # Evaluation train_eval_res = network.evaluate(x_train, y_train) train_evaluation.append(train_eval_res) test_eval_res = network.evaluate(x_test, y_test) test_evaluation.append(test_eval_res) if not tf.__version__.startswith('2'): k.clear_session() if verbose: log.info('Compute time : {}'.format(time.time()-foldstarttime)) if verbose: log.info('%d fold computing end!---------------------------------------------' % (fold+1)) ### Summary ######################################################################################### train_evaluation = np.vstack(train_evaluation) mean = np.mean(train_evaluation, axis=0) std = np.std(train_evaluation, axis=0) test_evaluation = np.vstack(test_evaluation) test_mean = np.mean(test_evaluation, axis=0) test_std = np.std(test_evaluation, axis=0) if verbose: log.info('-----------------------------------------------------------------') log.info('Train Evaluation : %s' % np.array(['loss']+[metric.strip() for metric in network_info['model_info']['metrics'].split(',')])) log.info(' mean : %s',mean) log.info(' std : %s',std) log.info('-----------------------------------------------------------------') log.info('Test Evaluation : %s' % np.array(['loss']+[metric.strip() for metric in network_info['model_info']['metrics'].split(',')])) log.info(' mean : %s',test_mean) log.info(' std : %s',test_std) log.info('-----------------------------------------------------------------') ### Save ######################################################################################### np.save(os.path.join(model_save_dir, 'train_%s'%path_info['model_info']['evaluation']),train_evaluation) np.save(os.path.join(model_save_dir, 'test_%s'%path_info['model_info']['evaluation']),test_evaluation) # np.save(os.path.join(model_save_dir, path_info['model_info']['train_tot_idxs']), np.array(train_tot_idxs)) # np.save(os.path.join(model_save_dir, path_info['model_info']['test_tot_idxs']), np.array(test_tot_idxs)) ### Exit ######################################################################################### gc.collect() if verbose: log.info('Total Computing Ended') log.info('-----------------------------------------------------------------') return test_evaluation, train_evaluation, network def deepbiome_test(log, network_info, path_info, number_of_fold=None, tree_level_list = ['Genus', 'Family', 'Order', 'Class', 'Phylum'], max_queue_size=10, workers=1, use_multiprocessing=False, verbose=True): """ Function for testing the pretrained deep neural network with phylogenetic tree weight regularizer. If you use the index file, this function provide the evaluation using test index (index set not included in the index file) for each fold. If not, this function provide the evaluation using the whole samples. Parameters ---------- log (logging instance) : python logging instance for logging network_info (dictionary) : python dictionary with network_information path_info (dictionary): python dictionary with path_information number_of_fold (int): If `number_of_fold` is set as `k`, the function will test the model only with first `k` folds. default=None tree_level_list (list): name of each level of the given reference tree weights default=['Genus', 'Family', 'Order', 'Class', 'Phylum'] max_queue_size (int): default=10 workers (int): default=1 use_multiprocessing (boolean): default=False verbose (boolean): show the log if True default=True Returns ------- evaluation (numpy array): evaluation result using testset as a numpy array with a shape of (number of fold, number of evaluation measures) Examples -------- Test the pre-trained deep neural network with phylogenetic tree weight regularizer. evaluation = deepbiome_test(log, network_info, path_info) """ if tf.__version__.startswith('2'): gpus = tf.config.experimental.get_visible_devices(device_type='GPU') try: tf.config.experimental.set_memory_growth(gpus, True) except: pass else: config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) ### Argument ######################################################################################### model_save_dir = path_info['model_info']['model_dir'] model_path = os.path.join(model_save_dir, path_info['model_info']['weight']) ### Reader ########################################################################################### if verbose: log.info('-----------------------------------------------------------------') reader_class = getattr(readers, network_info['model_info']['reader_class'].strip()) reader = reader_class(log, path_info, verbose=verbose) data_path = path_info['data_info']['data_path'] y_path = '%s/%s'%(data_path, path_info['data_info']['y_path']) ############################################ # Set the cross-validation try: idxs = np.array(pd.read_csv(path_info['data_info']['idx_path'])-1, dtype=np.int) if number_of_fold == None: number_of_fold = idxs.shape[1] except: nsample = pd.read_csv(y_path).shape[0] if number_of_fold == None: number_of_fold = pd.read_csv(y_path).shape[1] try: idxs = np.array([np.arange(nsample) for i in range(number_of_fold)]).T except: idxs = np.array([np.arange(nsample)]).T ############################################ try: count_path = path_info['data_info']['count_path'] x_list = np.array(pd.read_csv(path_info['data_info']['count_list_path'], header=None).iloc[:,0]) x_path = np.array(['%s/%s'%(count_path, x_list[fold]) for fold in range(x_list.shape[0]) if '.csv' in x_list[fold]]) except: x_path = np.array(['%s/%s'%(data_path, path_info['data_info']['x_path']) for fold in range(number_of_fold)]) ### Simulations ################################################################################# train_evaluation = [] test_evaluation = [] starttime = time.time() if verbose: log.info('Test Evaluation : %s' % np.array(['loss']+[metric.strip() for metric in network_info['model_info']['metrics'].split(',')])) for fold in range(number_of_fold): if verbose: log.info('-------%d fold test start!----------------------------------' % (fold+1)) foldstarttime = time.time() ### Read datasets #################################################################################### reader.read_dataset(x_path[fold], y_path, fold) x_train, x_test, y_train, y_test = reader.get_dataset(idxs[:,fold]) num_classes = reader.get_num_classes() ### Bulid network #################################################################################### if not tf.__version__.startswith('2'): k.set_session(tf.Session(config=config)) if verbose: log.info('-----------------------------------------------------------------') log.info('Build network for %d fold testing' % (fold+1)) network_class = getattr(build_network, network_info['model_info']['network_class'].strip()) network = network_class(network_info, path_info, log, fold, num_classes=num_classes, tree_level_list = tree_level_list, is_covariates=reader.is_covariates, covariate_names = reader.covariate_names, verbose=verbose) network.model_compile() ## TODO : weight clear only (no recompile) network.load_weights(file_path_fold(model_path, fold), verbose=verbose) sys.stdout.flush() ### Training ######################################################################################### if verbose: log.info('-----------------------------------------------------------------') log.info('%d fold computing start!----------------------------------' % (fold+1)) test_eval_res = network.evaluate(x_test, y_test) test_evaluation.append(test_eval_res) if not tf.__version__.startswith('2'): k.clear_session() if verbose: log.info('' % test_eval_res) log.info('Compute time : {}'.format(time.time()-foldstarttime)) log.info('%d fold computing end!---------------------------------------------' % (fold+1)) ### Summary ######################################################################################### test_evaluation = np.vstack(test_evaluation) mean = np.mean(test_evaluation, axis=0) std = np.std(test_evaluation, axis=0) gc.collect() if verbose: log.info('-----------------------------------------------------------------') log.info('Test Evaluation : %s' % np.array(['loss']+[metric.strip() for metric in network_info['model_info']['metrics'].split(',')])) log.info(' mean : %s',mean) log.info(' std : %s',std) log.info('-----------------------------------------------------------------') log.info('Total Computing Ended') log.info('-----------------------------------------------------------------') return test_evaluation def deepbiome_prediction(log, network_info, path_info, num_classes, number_of_fold=None, change_weight_for_each_fold=False, get_y = False, tree_level_list = ['Genus', 'Family', 'Order', 'Class', 'Phylum'], max_queue_size=10, workers=1, use_multiprocessing=False, verbose=True): """ Function for prediction by the pretrained deep neural network with phylogenetic tree weight regularizer. Parameters ---------- log (logging instance) : python logging instance for logging network_info (dictionary) : python dictionary with network_information path_info (dictionary): python dictionary with path_information num_classes (int): number of classes for the network. 0 for regression, 1 for binary classificatin. number_of_fold (int): 1) For the list of input files for repeatitions, the function will predict the output of the first `number_of_fold` repetitions. If `number_of_fold` is None, then the function will predict the output of the whole repetitions. 2) For the one input file for cross-validation, the function will predict the output of the `k`-fold cross validatoin. If `number_of_fold` is None, then the function will predict the output of the LOOCV. default=None change_weight_for_each_fold (boolean): If `True`, weight will be changed for each fold (repetition). For example, if the given weight's name is `weight.h5` then `weight_0.h5` will loaded for the first fold (repetition). If `False`, weight path in the path_info will used for whole prediction. For example, if the given weight's name is `weight_0.h5` then `weight_0.h5` will used for whole fold (repetition). default=False get_y (boolean): If 'True', the function will provide a list of tuples (prediction, true output) as a output. degault=False tree_level_list (list): name of each level of the given reference tree weights default=['Genus', 'Family', 'Order', 'Class', 'Phylum'] max_queue_size (int): default=10 workers (int): default=1 use_multiprocessing (boolean): default=False verbose (boolean): show the log if True default=True Returns ------- prediction (numpy array): prediction using whole dataset in the data path Examples -------- Prediction by the pre-trained deep neural network with phylogenetic tree weight regularizer. prediction = deepbiome_predictoin(log, network_info, path_info, num_classes) For LOOCV prediction, we can use this options. prediction = deepbiome_predictoin(log, network_info, path_info, num_classes, number_of_fold=None, change_weight_for_each_fold=True) """ if tf.__version__.startswith('2'): gpus = tf.config.experimental.get_visible_devices(device_type='GPU') try: tf.config.experimental.set_memory_growth(gpus, True) except: pass else: config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) ### Argument ######################################################################################### model_save_dir = path_info['model_info']['model_dir'] model_path = os.path.join(model_save_dir, path_info['model_info']['weight']) ### Reader ########################################################################################### if verbose: log.info('-----------------------------------------------------------------') reader_class = getattr(readers, network_info['model_info']['reader_class'].strip()) reader = reader_class(log, path_info, verbose=verbose) data_path = path_info['data_info']['data_path'] if get_y: y_path = '%s/%s'%(data_path, path_info['data_info']['y_path']) ############################################################ # Set the cross-validation try: idxs = np.array(pd.read_csv(path_info['data_info']['idx_path'])-1, dtype=np.int) if number_of_fold == None: number_of_fold = idxs.shape[1] except: # TODO: check if number_of_fold == None: number_of_fold = 1 idxs = None ############################################################ try: count_path = path_info['data_info']['count_path'] x_list = np.array(pd.read_csv(path_info['data_info']['count_list_path'], header=None).iloc[:,0]) x_path = np.array(['%s/%s'%(count_path, x_list[fold]) for fold in range(x_list.shape[0]) if '.csv' in x_list[fold]]) except: x_path = np.array(['%s/%s'%(data_path, path_info['data_info']['x_path']) for fold in range(number_of_fold)]) ############################################################ starttime = time.time() if not tf.__version__.startswith('2'): k.set_session(tf.Session(config=config)) prediction = [] for fold in range(number_of_fold): if verbose: log.info('-------%d th repeatition prediction start!----------------------------------' % (fold+1)) foldstarttime = time.time() ### Read datasets #################################################################################### if get_y: reader.read_dataset(x_path[fold], y_path, fold) if not np.all(idxs == None): x_train, x_test, y_train, y_test = reader.get_dataset(idxs[:,fold]) else: x_test, _, y_test, _ = reader.get_dataset() else: reader.read_dataset(x_path[fold], None, fold) if not np.all(idxs == None): x_train, x_test = reader.get_input(idxs[:,fold]) else: x_test, _ = reader.get_input() ### Bulid network #################################################################################### if verbose: log.info('-----------------------------------------------------------------') network_class = getattr(build_network, network_info['model_info']['network_class'].strip()) network = network_class(network_info, path_info, log, fold=fold, num_classes=num_classes, tree_level_list = tree_level_list, is_covariates=reader.is_covariates, covariate_names = reader.covariate_names, verbose=verbose) network.model_compile() if change_weight_for_each_fold:network.load_weights(file_path_fold(model_path, fold), verbose=verbose) else: network.load_weights(model_path, verbose=verbose) sys.stdout.flush() ### Training ######################################################################################### if verbose: log.info('-----------------------------------------------------------------') pred = network.predict(x_test) if get_y: prediction.append(np.array(list(zip(pred, y_test)))) else: prediction.append(pred) if verbose: log.info('Compute time : {}'.format(time.time()-foldstarttime)) if verbose: log.info('%d fold computing end!---------------------------------------------' % (fold+1)) ### Exit ######################################################################################### if not tf.__version__.startswith('2'): k.clear_session() prediction = np.array(prediction) if verbose: log.info('Total Computing Ended') if verbose: log.info('-----------------------------------------------------------------') gc.collect() return prediction def deepbiome_get_trained_weight(log, network_info, path_info, num_classes, weight_path, tree_level_list = ['Genus', 'Family', 'Order', 'Class', 'Phylum'], verbose=True): """ Function for prediction by the pretrained deep neural network with phylogenetic tree weight regularizer. Parameters ---------- log (logging instance) : python logging instance for logging network_info (dictionary) : python dictionary with network_information path_info (dictionary): python dictionary with path_information num_classes (int): number of classes for the network. 0 for regression, 1 for binary classificatin. weight_path (string): path of the model weight tree_level_list (list): name of each level of the given reference tree weights default=['Genus', 'Family', 'Order', 'Class', 'Phylum'] verbose (boolean): show the log if True default=True Returns ------- list of pandas dataframe: the trained model's weight Examples -------- Trained weight of the deep neural network with phylogenetic tree weight regularizer. tree_weight_list = deepbiome_get_trained_weight(log, network_info, path_info, num_classes, weight_path) """ if tf.__version__.startswith('2'): gpus = tf.config.experimental.get_visible_devices(device_type='GPU') try: tf.config.experimental.set_memory_growth(gpus, True) except: pass else: config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) if not tf.__version__.startswith('2'): k.set_session(tf.Session(config=config)) reader_class = getattr(readers, network_info['model_info']['reader_class'].strip()) reader = reader_class(log, path_info, verbose=verbose) data_path = path_info['data_info']['data_path'] try: count_path = path_info['data_info']['count_path'] x_list = np.array(pd.read_csv(path_info['data_info']['count_list_path'], header=None).iloc[:,0]) x_path = np.array(['%s/%s'%(count_path, x_list[fold]) for fold in range(x_list.shape[0]) if '.csv' in x_list[fold]]) except: x_path = np.array(['%s/%s'%(data_path, path_info['data_info']['x_path']) for fold in range(1)]) reader.read_dataset(x_path[0], None, 0) network_class = getattr(build_network, network_info['model_info']['network_class'].strip()) network = network_class(network_info, path_info, log, fold=0, num_classes=num_classes, tree_level_list = tree_level_list, is_covariates=reader.is_covariates, covariate_names = reader.covariate_names, verbose=verbose) network.fold = '' network.load_weights(weight_path, verbose=False) tree_weight_list = network.get_trained_weight() if not tf.__version__.startswith('2'): k.clear_session() if reader.is_covariates: if len(tree_weight_list[-1].index) - len(reader.covariate_names) > 0: tree_weight_list[-1].index = list(tree_weight_list[-1].index)[:-len(reader.covariate_names)] + list(reader.covariate_names) return tree_weight_list def deepbiome_taxa_selection_performance(log, network_info, path_info, num_classes, true_tree_weight_list, trained_weight_path_list, tree_level_list = ['Genus', 'Family', 'Order', 'Class', 'Phylum'], lvl_category_dict = None, verbose=True): """ Function for prediction by the pretrained deep neural network with phylogenetic tree weight regularizer. Parameters ---------- log (logging instance) : python logging instance for logging network_info (dictionary) : python dictionary with network_information path_info (dictionary): python dictionary with path_information num_classes (int): number of classes for the network. 0 for regression, 1 for binary classificatin. true_tree_weight_list (ndarray): lists of the true weight information with the shape of (k folds, number of weights) `true_tree_weight_list[0][0]` is the true weight information between the first and second layers for the first fold. It is a numpy array with the shape of (number of nodes for the first layer, number of nodes for the second layer). trained_weight_path_list (list): lists of the path of trained weight for each fold. tree_level_list (list): name of each level of the given reference tree weights default=['Genus', 'Family', 'Order', 'Class', 'Phylum'] verbose (boolean): show the log if True default=True Returns ------- summary (numpy array): summary of the taxa selection performance Examples -------- The taxa selection performance of the trained deep neural network with phylogenetic tree weight regularizer. summary = deepbiome_taxa_selection_performance(log, network_info, path_info, num_classes) """ if tf.__version__.startswith('2'): gpus = tf.config.experimental.get_visible_devices(device_type='GPU') try: tf.config.experimental.set_memory_growth(gpus, True) except: pass else: config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) ### Argument ######################################################################################### model_save_dir = path_info['model_info']['model_dir'] model_path = os.path.join(model_save_dir, path_info['model_info']['weight']) data_path = path_info['data_info']['data_path'] starttime = time.time() if not tf.__version__.startswith('2'): k.set_session(tf.Session(config=config)) reader_class = getattr(readers, network_info['model_info']['reader_class'].strip()) reader = reader_class(log, path_info, verbose=verbose) data_path = path_info['data_info']['data_path'] try: count_path = path_info['data_info']['count_path'] x_list = np.array(pd.read_csv(path_info['data_info']['count_list_path'], header=None).iloc[:,0]) x_path = np.array(['%s/%s'%(count_path, x_list[fold]) for fold in range(x_list.shape[0]) if '.csv' in x_list[fold]]) except: x_path = np.array(['%s/%s'%(data_path, path_info['data_info']['x_path']) for fold in range(1)]) reader.read_dataset(x_path[0], None, 0) network_class = getattr(build_network, network_info['model_info']['network_class'].strip()) network = network_class(network_info, path_info, log, fold=0, num_classes=num_classes, tree_level_list = tree_level_list, is_covariates=reader.is_covariates, covariate_names = reader.covariate_names, # lvl_category_dict = lvl_category_dict, verbose=False) prediction = [] accuracy_list = [] for fold in range(len(trained_weight_path_list)): foldstarttime = time.time() network.load_weights(trained_weight_path_list[fold], verbose=verbose) tree_weight_list = network.get_trained_weight() # true_tree_weight_list = network.load_true_tree_weight_list(path_info['data_info']['data_path']) try: accuracy_list.append(np.array(taxa_selection_accuracy(tree_weight_list, true_tree_weight_list[fold]))) except: for tree_level in range(len(tree_weight_list)): tw = tree_weight_list[tree_level] row_setdiff = np.setdiff1d(lvl_category_dict[tree_level], tw.index) if len(row_setdiff) > 0: for new_row in row_setdiff: tw = tw.append(pd.Series(0, index=tw.columns, name=new_row)) tree_weight_list[tree_level] = tw.loc[lvl_category_dict[tree_level],:] if tree_level+1 < len(tree_weight_list): tw = tree_weight_list[tree_level] col_setdiff = np.setdiff1d(lvl_category_dict[tree_level+1], tw.columns) if len(col_setdiff) > 0: for new_col in col_setdiff: tw[new_col] = 0 tree_weight_list[tree_level] = tw.loc[:, lvl_category_dict[tree_level+1]] accuracy_list.append(np.array(taxa_selection_accuracy(tree_weight_list, true_tree_weight_list[fold]))) accuracy_list = np.array(accuracy_list)[:,:,1:] for fold in range(len(trained_weight_path_list)): tree_level = [] selected = [] true_node = [] for i in range(accuracy_list.shape[1]): tree_tw = true_tree_weight_list[fold][i].astype(np.int32) tree_level.append(network.tree_level_list[i]) selected.append(np.sum(np.sum(tree_tw, axis=1)>0)) true_node.append(tree_tw.shape[0]) taxa_metrics = [ms.strip() for ms in network_info['model_info']['taxa_selection_metrics'].split(',')] metrics_names = list(np.array([['%s_mean' % ms.capitalize(), '%s_std' % ms.capitalize()] for ms in taxa_metrics]).flatten()) summary =
pd.DataFrame(columns=['Model','PhyloTree','No. true taxa', 'No. total taxa'] + metrics_names)
pandas.DataFrame
# -*- coding: utf-8 -*- """ # @Time :2018/5/7 下午10:39 # @Author :Xuxian """ import numpy as np import pandas as pd import lightgbm as lgb import time def model_train(lgb_train, num_boost_round): params = { 'learning_rate': 0.03, 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': 'l2', 'sub_feature': 0.7, 'bagging_fraction': 0.7, 'bagging_freq': 1, 'min_data': 85, 'max_depth': 14, 'verbose': -1, } def fScore(preds, train_data): labels = train_data.get_label() a = np.log1p(preds) - np.log1p(labels) score = np.power(a, 2) return 'fScore', score.mean(), False gbm = lgb.train(params, lgb_train, feval=fScore, valid_sets=[lgb_train], num_boost_round=num_boost_round, verbose_eval=10, ) return gbm def get_feature_and_target(feature, target, test): train_vid = target[['vid']] data = pd.merge(feature, train_vid, on='vid') data = pd.merge(data, target, 'left', on='vid') # 处理异常值 data = data.drop(data[data['收缩压'].isnull()].index) data = data.drop(data[data['vid'] == '7685d48685028a006c84070f68854ce1'].index, axis=0) data = data.drop(data[data['vid'] == 'fa04c8db6d201b9f705a00c3086481b0'].index, axis=0) data = data.drop(data[data['vid'] == 'bd0322cf42fc6c2932be451e0b54ed02'].index, axis=0) data = data.drop(data[data['vid'] == 'de82a4130c4907cff4bfb96736674bbc'].index, axis=0) data = data.drop(data[data['vid'] == 'd9919661f0a45fbcacc4aa2c1119c3d2'].index, axis=0) data = data.drop(data[data['vid'] == '798d859a63044a8a5addf1f8c528629e'].index, axis=0) data_feature = data.drop(['vid', '收缩压', '舒张压', '血清甘油三酯', '血清高密度脂蛋白', '血清低密度脂蛋白'], axis=1) data_target = data[['收缩压', '舒张压', '血清甘油三酯', '血清高密度脂蛋白', '血清低密度脂蛋白']] test_feature = pd.merge(feature, test[['vid']], on='vid') return data_feature, data_target, test_feature def get_result(data_feature, data_target, test_feature, test): test_vid = test[['vid']] score =
pd.DataFrame()
pandas.DataFrame
"""Class to process full HydReSGeo dataset. Note: If IRUtils.py is not available, you need to download it before the installation of the package into the `hprocessing/` folder: .. code:: bash wget -P hprocessing/ https://raw.githubusercontent.com/felixriese/thermal -image-processing/master/tiprocessing/IRUtils.py """ import configparser import glob import itertools import os import numpy as np import pandas as pd from tqdm import tqdm from .ProcessEnviFile import (ProcessEnviFile, getEnviFile, getEnviHeader, readEnviHeader) from .IRUtils import getIRDataFromMultipleZones class ProcessFullDataset(): """ Class to process the full HydReSGeo dataset. Parameters ---------- envi_hdr_filepath : str Path to envi header file (low resolution) meas_name : str Name of measurement positions_hyp : dict Dictionary with information of the positions config file for the hyperspectral camera positions_lwir : dict Dictionary with information of the positions config file for the lwir camera zone_list : list List of measurement zones in the image. That does not include the spectralon (white reference). If a zone needs to be ignored, it needs to be removed from this list. lwir_path : str Path to long-wave infrared (LWIR) data soilmoisture_filepath : str Path to soil moisture data masks : pd.DataFrame or None Masks for hyperspectral images soilmode : str Mode of the soil measurements (e.g. KW33, Lysimeter) imageshape : tuple, optional (default= (50, 50)) Height and width of the image time_window_width : int, optional (default=6) Time window width to match the hyperspectral image to the soil moisture data. The unit of the time window width is minutes. hyp_stat_mode : str Mode for calculating the "mean spectrum" of a hyperspectral image. Possible values: median, mean, max, max10 (= maximum of the top 10 pixels), std. hyp_spectralon_factor : float, optional (default=0.95) Factor of how much solar radiation the spectralon reflects. verbose : int, optional (default=0) Controls the verbosity. Todo ----- - Add attributes to class docstring. - Remove self.date and self.time, only use self.datetime. Remove all unnecessary functions of self.date and self.time. """ def __init__(self, hyp_hdr_path: str, meas_name: str, positions_hyp: dict, positions_lwir: dict, zone_list: list, lwir_path: str, soilmoisture_path: str, masks: pd.DataFrame, grid: tuple = (1, 1), imageshape: tuple = (50, 50), time_window_width: int = 6, hyp_stat_mode: str = "median", hyp_spectralon_factor: float = 0.95, verbose=0): """Initialize ProcessDataset instance.""" self.hyp_hdr_path = hyp_hdr_path self.meas_name = meas_name self.positions_hyp = positions_hyp self.positions_lwir = positions_lwir self.zone_list = zone_list self.lwir_path = lwir_path self.soilmoisture_path = soilmoisture_path self.masks = masks self.grid = grid self.imageshape = imageshape self.time_window_width = time_window_width self.hyp_stat_mode = hyp_stat_mode self.hyp_spectralon_factor = hyp_spectralon_factor self.verbose = verbose # get Envi files self.envi_hdr_highres_path = self.hyp_hdr_path[:-4] + "_highres.hdr" self.hdr, self.envi_img = getEnviFile(self.hyp_hdr_path) self.hdr_highres = getEnviHeader(self.envi_hdr_highres_path) self.date, self.time = readEnviHeader(self.hdr_highres) # set datetime TODO: remove hard-coded timezone self.datetime = pd.to_datetime(self.date+" "+self.time+"+02:00", utc=True) # read out header file self.wavelengths = self.hdr_highres["Wavelength"] self.bbl = self.hdr_highres["bbl"] # get measurement index self.index_of_meas = int(np.argwhere( positions_hyp["measurement"].values == meas_name)) self.mask = None # improvised solution to translate between zone1-8 to A1-D2 self.zone_dict = { "A1": "zone1", "A2": "zone2", "B1": "zone3", "B2": "zone4", "C1": "zone5", "C2": "zone6", "D1": "zone7", "D2": "zone8"} def process(self) -> pd.DataFrame: """ Process a full dataset. Returns ------- pd.DataFrame Dataframe with hyperspectral, LWIR, and soil moisture data for one image. """ # set mask if self.masks is not None: mask_index = self.masks.index[ self.masks["measurement"] == self.meas_name].tolist()[0] if self.index_of_meas != mask_index: raise IOError(("positions.csv and mask.csv don't have the" "same sequence of dates.")) self.mask = getMask( masks=self.masks, index_of_meas=self.index_of_meas, imageshape=self.imageshape) # random check if hyperspectral image is empty if np.sum(self.envi_img[:, :, 5]) == 0: if self.verbose: print("Error: The hyperspectral image is empty.") return None # process envi_processor = ProcessEnviFile( image=self.envi_img, wavelengths=self.wavelengths, bbl=self.bbl, zone_list=self.zone_list, positions=self.positions_hyp, index_of_meas=self.index_of_meas, mask=self.mask, grid=self.grid, stat_mode=self.hyp_stat_mode, spectralon_factor=self.hyp_spectralon_factor) df_hyp = envi_processor.getMultipleSpectra() # add datetime as column df_hyp["datetime"] = self.datetime # add soil moisture data df_hyd = self.getSoilMoistureData() df_hyd = df_hyd.drop(labels=["zone"], axis=1) # add IR data df_lwir = self.getLwirData() df_lwir = df_lwir.drop(labels=["zone"], axis=1) return pd.concat([df_hyp, df_hyd, df_lwir], axis=1) def getSoilMoistureData(self): """ Get soil moisture data. To match the dates of the soil moisture measurements and the hyperspectral image, the timezones are converted to UTC. Returns ------- pd.Dataframe Dataframe of soil moisture measurements which correspond to the hyperspectral image of this instance. Todo ---- - Move the CSV file read out into process-function outside this file - Add an optional time shift correction between soil moisture data and the hyperspectral data. """ soilmoisture_sensors = getUppermostSoilMoistureSensors() # read out soil moisture data df_sm = pd.read_csv(self.soilmoisture_path) df_sm["timestamp"] = pd.to_datetime(df_sm["timestamp"], utc=True) sm_dict = {"zone": [], "volSM_vol%": [], "T_C": []} for i, sensor in enumerate(soilmoisture_sensors["number"]): # only consider sensors in zone_list zone = soilmoisture_sensors["zone"].iloc[i] if self.zone_dict[zone] not in self.zone_list: continue # find nearest date nearest_date, time_delta = findNearestDate( df_sm[df_sm["sensorID"] == "T"+str(sensor)].timestamp, self.datetime) if time_delta > self.time_window_width / 2: if self.verbose: print("Warning: Could not find a soil moisture measurement" "for sensor {0}".format(sensor)) continue nearest_row = df_sm[(df_sm["sensorID"] == "T"+str(sensor)) & (df_sm["timestamp"] == nearest_date)] sm_dict["zone"].append(self.zone_dict[zone]) sm_dict["volSM_vol%"].append(nearest_row["volSM_vol%"].values[0]) sm_dict["T_C"].append(nearest_row["T_C"].values[0]) return pd.DataFrame(sm_dict) def getLwirData(self): """ Get LWIR data from one of the CSV export files. This function is based on code from another repository by the authors: https://github.com/felixriese/thermal-image-processing Parameters ---------- date : str Date formatted as yyyymmdd, e.g. 20170816 time : str Time formatted as hh-mm-ss, e.g. 13-31-40. Returns ------- pd.DataFrame IR data of the current datapoint (matched to date and time) Todo ----- - Implement grid-wise LWIR data extraction. (For now, only zone-wise data extraction is implemented.) """ # find LWIR file within the correct time window lwir_datetime_list = [] for csvfile in glob.glob(self.lwir_path+"/ir_export_*.csv"): csvfile_list = csvfile.split("/")[-1].split("_") lwir_datetime = pd.to_datetime( csvfile_list[2]+" "+csvfile_list[5][:-4].replace("-", ":") + "+02:00", utc=True) lwir_datetime_list.append(lwir_datetime) nearest_date, time_delta = findNearestDate( lwir_datetime_list, self.datetime) # check if the nearest datetime is close enough if time_delta > self.time_window_width / 2: if self.verbose: print("Warning: Did not find LWIR data.") return pd.DataFrame({"zone": [np.nan], "mean": [np.nan], "med": [np.nan], "std": [np.nan]}) # load LWIR CSV file csvfile = glob.glob(self.lwir_path+"ir_export_" + nearest_date.strftime("%Y%m%d")+"_*" + nearest_date.tz_convert("Europe/Berlin").strftime( "%H-%M-%S")+".csv")[0] # get data from different zones df_lwir_original = getIRDataFromMultipleZones( csvpath=csvfile, positions=self.positions_lwir.to_dict('list'), zone_list=self.zone_list) # The `df_lwir_original` results in one row and column names such as # "ir_zone1_med". In the next step, one row per zone needs to be # generated. lwir_dict = {"zone": [], "mean": [], "med": [], "std": []} for zone in self.zone_list: lwir_dict["zone"].append(zone) lwir_dict["mean"].append( df_lwir_original["ir_"+str(zone)+"_mean"].values[0]) lwir_dict["med"].append( df_lwir_original["ir_"+str(zone)+"_med"].values[0]) lwir_dict["std"].append( df_lwir_original["ir_"+str(zone)+"_std"].values[0]) return pd.DataFrame(lwir_dict) def getMask(masks, index_of_meas, imageshape=(50, 50)): """ Mask image with masks from mask.csv file. Parameters ---------- masks : pd.DataFrame or None Masks for hyperspectral images index_of_meas : int Index of the measurement in the file imageshape : tuple, optional (default= (50, 50)) Height and width of the image Returns ------- mask : 2D numpy array Mask in imageshape with 1 (= true value) and 0 (= mask) """ mask = np.ones(imageshape, dtype=int) # define borders start_row = int(masks["start_row"][index_of_meas]) end_row = int(masks["end_row"][index_of_meas]) start_col = int(masks["start_col"][index_of_meas]) end_col = int(masks["end_col"][index_of_meas]) # mask around borders mask[:start_row] = 0 mask[end_row:] = 0 mask[:, :start_col] = 0 mask[:, end_col:] = 0 # bar masks for i in range(1, 5): wooden_bar = getWoodenBarMask( [masks["bar"+str(i)+"_p1_x"][index_of_meas], masks["bar"+str(i)+"_p1_y"][index_of_meas]], [masks["bar"+str(i)+"_p2_x"][index_of_meas], masks["bar"+str(i)+"_p2_y"][index_of_meas]], height=masks["bar"+str(i)+"_height"][index_of_meas], imageshape=imageshape) mask[[x[0] for x in wooden_bar], [x[1] for x in wooden_bar]] = 0 return mask def getWoodenBarMask(point1, point2, height, imageshape=(50, 50)): """ Get mask for wooden bar. Parameters ---------- point1, point2 : list of int Coordinates of the two points height : int Height/width of the bar in y (row) direction imageshape : tuple, optional (default= (50, 50)) Height and width of the image Returns ------- wooden_bar : list of tuple (int, int) List of pixels to be masked """ m1, c1 = getLineFromPoints(point1, point2) m2, c2 = getLineFromPoints((point1[0] + height, point1[1]), (point2[0] + height, point2[1])) def woodenBarUpper(x): return m1*x + c1 def woodenBarLower(x): return m2*x + c2 wooden_bar = [(x, y) for (x, y) in itertools.product( range(imageshape[0]), range(imageshape[1])) if woodenBarLower(x) < y < woodenBarUpper(x)] return wooden_bar def getAllSoilMoistureSensors(): """ Get information about the soil moisture sensors. The sensor data is taken from the HydReSGeo dataset. For other datasets, the dictionary `sensors` has to be modified. Returns ------- sensors : dict Sensor information consisting of number, field, depth, and name. """ sensors = { "number": [36554, 36555, 36556, 36547, 36557, 36558, 36559, 36553, 36549, 36550, 36551, 36552, 36560, 36562, 36563, 36564, 36565, 36561], "zone": ["A1", "A1", "A1", "A2", "B1", "B1", "B1", "B2", "C1", "C1", "C1", "C1", "C2", "D1", "D1", "D1", "D1", "D2"], "depth": [2.5, 5.0, 10.0, 5.0, 2.5, 5.0, 10.0, 5.0, 2.5, 5.0, 10.0, 20.0, 5.0, 2.5, 5.0, 10.0, 20.0, 5.0]} sensors["name"] = ["SM_" + str(sensors["number"][i]) + "_" + str(sensors["zone"][i]) + "_" + str(sensors["depth"][i]) for i in range(len(sensors["number"]))] return sensors def getUppermostSoilMoistureSensors(): """ Get information about the soil moisture sensors. Returns ------- sensors : dict Sensor information consisting of number, field, depth, and name. """ sensors = pd.DataFrame(getAllSoilMoistureSensors()) df_temp_list = [] for zone in np.unique(sensors["zone"].values): min_index = sensors[sensors["zone"] == zone]["depth"].values.argmin() df_temp_list.append(sensors[sensors["zone"] == zone].iloc[min_index]) return pd.concat(df_temp_list, axis=1).T def findNearestDate(date_list, date): """ Find closest datapoint of each uppermost sensor in time window. Adapted from https://stackoverflow.com/a/32237949/3816498 . Parameters ---------- date_list : array-like List of dates date : datetime The date, to which the nearest date in `items` should be found. Returns ------- nearest_date : datetime Nearest date to `date` in `date_list` time_delta : int Time difference in minutes """ nearest_date = min(date_list, key=lambda x: abs(x - date)) time_delta = (nearest_date - date).total_seconds() / 60. return nearest_date, time_delta def readConfig(config_path: str, data_directory: str, verbose=0) -> dict: """ Read config file to process a dataset. Parameters ---------- config_path : str Path to config file data_directory : str Directory of the dataset folder. verbose : int, optional (default=0) Controls the verbosity. Returns ------- config_dict : dict Configuration of the processing """ # open config file config = configparser.ConfigParser(allow_no_value=True) config.read(config_path) if verbose: print("Config file is valid.") if verbose > 1: print("Config file sections: {0}.".format(config.sections())) config_dict = {} # read out data paths for var in ["data_hyp", "data_lwir", "data_sm"]: config_dict[var] = (data_directory + config["Paths"][var]) config_dict["data_output"] = config["Paths"]["data_output"] # read out positions, ignore-csv-files, and masks for var in ["positions_hyp", "positions_lwir", "ignore_hyp_measurements", "ignore_hyp_fields", "ignore_hyp_datapoints", "masks_hyp"]: config_dict[var] = pd.read_csv(data_directory + config["Paths"][var], sep="\s+") if "measurement" in config_dict[var].columns: config_dict[var]["measurement"] = config_dict[var][ "measurement"].astype("str") # read out grid size config_dict["grid"] = (1, 1) if (config["Process"]["grid_rows"].isdigit() and config["Process"]["grid_columns"].isdigit()): config_dict["grid"] = (int(config["Process"]["grid_rows"]), int(config["Process"]["grid_columns"])) # read out image shape config_dict["imageshape"] = (50, 50) if (config["Process"]["hyp_image_rows"].isdigit() and config["Process"]["hyp_image_columns"].isdigit()): config_dict["imageshape"] = ( int(config["Process"]["hyp_image_rows"]), int(config["Process"]["hyp_image_columns"])) # read out booleans config_dict["overwrite_csv_file"] = config["Process"].getboolean( "overwrite_csv_file") # read out time window width config_dict["time_window_width"] = int( config["Process"]["time_window_width"]) # read out hyperspectral spectralon factor config_dict["hyp_spectralon_factor"] = float( config["Process"]["hyp_spectralon_factor"]) # read out hyperspectral spectralon factor config_dict["hyp_stat_mode"] = str( config["Process"]["hyp_stat_mode"]) return config_dict def getLineFromPoints(point1, point2): """ Get line parameter (y = mx +c) from two points. Parameters ---------- point1, point2 : list of int Coordinates of the two points Returns ------- m, c : float Line parameters for y = mx +c """ # m = (y2 - y1)/(x1 - x2) m = (point2[1] - point1[1]) / (point2[0] - point1[0]) # c = y2 - m*x2 c = point2[1] - m * point2[0] return m, c def processHydReSGeoDataset(config_path: str, data_directory: str, verbose=0) -> pd.DataFrame: """ Process the full HydReSGeo dataset. Parameters ---------- config_path : str Path to config file data_directory : str Directory of the dataset folder. verbose : int, optional (default=0) Controls the verbosity. Returns ------- pd.DataFrame Output data of the processing """ # path to the output folder config = readConfig(config_path=config_path, data_directory=data_directory) params = { "positions_hyp": config["positions_hyp"], "positions_lwir": config["positions_lwir"], "lwir_path": config["data_lwir"], "soilmoisture_path": config["data_sm"], "masks": config["masks_hyp"], "grid": config["grid"], "imageshape": config["imageshape"], "time_window_width": config["time_window_width"], "verbose": verbose } output_list = [] if (not config["overwrite_csv_file"] and os.path.isfile(config["data_output"])): print("Processing not executed, file already exists.") print("To overwrite the existing file, change the config.") # loop through hyperspectral images for _, hyp_header in enumerate( tqdm(glob.glob(config["data_hyp"]+"*/*[0-9].hdr"))): meas_name = hyp_header.split("/")[-2].replace("_hyp", "") file_number = int(hyp_header.split("/")[-1][4:7]) zone_list = ["zone"+str(i) for i in range(1, 9)] # ignore measurements if verbose: print("-"*50) print("Processing {0} - file {1}...".format( meas_name, file_number)) if meas_name in config["ignore_hyp_measurements"].values: if verbose: print("Ignoring measurement.") continue # ignore datapoint if meas_name in config["ignore_hyp_datapoints"]["measurement"].values: if file_number in config["ignore_hyp_datapoints"][ config["ignore_hyp_datapoints"]["measurement"] == meas_name]["filenumber"].values: if verbose: print("Ignoring file.") continue # ignore field if meas_name in config["ignore_hyp_fields"]["measurement"].values: if file_number in config["ignore_hyp_fields"][ config["ignore_hyp_fields"]["measurement"] == meas_name]["filenumber"].values: zones_to_drop = config["ignore_hyp_fields"][ (config["ignore_hyp_fields"]["measurement"] == meas_name) & (config["ignore_hyp_fields"]["filenumber"] == file_number) ]["zone"].values for zone_to_drop in zones_to_drop: zone_list.remove("zone"+str(zone_to_drop)) if verbose: print("Removed {0} zone(s).".format(len(zones_to_drop))) proc = ProcessFullDataset( hyp_hdr_path=hyp_header, meas_name=meas_name, zone_list=zone_list, **params) datapoint = proc.process() if datapoint is not None: output_list.append(datapoint) output_df =
pd.concat(output_list, axis=0, ignore_index=True)
pandas.concat
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# """ BLIS - Balancing Load of Intermittent Solar: A characteristic-based transient power plant model Copyright (C) 2020. University of Virginia Licensing & Ventures Group (UVA LVG). All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Hardcoded Inputs: debug = False # If True, additional information is presented to the console plotDPI = 300 omitPeriod = 0 # Number of samples to ignore (5 hours to give sufficient start-up time) threshold = 0.001 # threshold for rounding (MW) # General Imports: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # BLIS Imports: from blis import defaultInputs, PowerPlant, Solar, Fuel, Battery, Grid # ======================================================================== # Class to simulate and analyze Hybrid Renewable Energy System (HRES) # ======================================================================== # Time Series Data attributes_time_series = ['PowerRequest', 'PowerOutput', 'PowerRamp', 'HeatInput', 'Efficiency', 'battCharge', 'battIncrease', 'battDecrease', 'battDischargeRate', 'battChargeRate', 'battRamp', 'solarUsed', 'loadShed', 'deficit', 'gridUsed', 'CO2_produced', 'CO2_captured', 'Emissions'] # Results attributes_results = ['demand_MWh', 'solar_MWh', 'powerOutput_MWh', 'heatInput_MWh', 'solarUsed_MWh', 'loadShed_MWh', 'gridUsed_MWh', 'fuelCost_dollars', 'LCOE', 'efficiency_pct', 'emissions_tons', 'deficit_max', 'deficit_min', 'deficit_pct_time', 'deficit_pct_energy', 'solarCurtail_pct', 'loadShed_pct_energy', 'loadShed_pct_time'] # Add time of day attributes tod_vars = ['emissions', 'costs', 'demand'] tod_hrs = range(24) attributes_tod = [] for var in tod_vars: for hr in tod_hrs: if hr < 10: attributes_tod.append(var + '_hr0' + str(hr)) else: attributes_tod.append(var + '_hr' + str(hr)) attributes_results = attributes_results + attributes_tod # ======================================================================== # Class to simulate and analyze Hybrid Renewable Energy System (HRES) # ======================================================================== class HRES: # ======================================================================== # Initialize HRES Simulation # ======================================================================== def __init__(self, data, plant, solar=Solar(), batt=Battery(), fuel=Fuel(), grid=Grid(), i=0.02, n=20): # Store Inputs self.data = data self.solar = solar self.batt = batt self.fuel = fuel self.plant = plant self.grid = grid self.i = i # (fraction) Interst rate self.n = n # (years) System lifetime # Record number of datapoints self.steps = len(data) # Create pandas dataframe to hold time series performance rows = range(self.steps) self.perf = pd.DataFrame(data=0.0, index=rows, columns=attributes_time_series) # ---- # Create pandas series to store results # ---- self.results =
pd.Series(index=attributes_results)
pandas.Series
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import anchors from poola import core as pool from sklearn.metrics import auc ## Reformatting functions ## def clean_Sanjana_data(df, guide_col='Guide', library = False): ''' Input: 1. df: Reads dataframe with guide_col and data columns 2. guide_col: Formatted as 'library_guide_gene' (e.g. 'HGLibA_00001_A1BG') Output: df_clean: Dataframe with columns 'Guide', 'Gene Symbol', 'Reads' ''' df_clean = df.rename(columns={guide_col:'old_Guide'}) library_list = [] guide_list = [] gene_list = [] for i, row in enumerate(df_clean.loc[:,'old_Guide']): split_row = row.split('_') library = split_row[0] library_list.append(library) guide = split_row[1] guide_list.append(guide) gene = split_row[2] gene_list.append(gene) df_clean['Library'] =
pd.Series(library_list)
pandas.Series
""" See also: test_reindex.py:TestReindexSetIndex """ from datetime import ( datetime, timedelta, ) import numpy as np import pytest from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, date_range, period_range, to_datetime, ) import pandas._testing as tm class TestSetIndex: def test_set_index_multiindex(self): # segfault in GH#3308 d = {"t1": [2, 2.5, 3], "t2": [4, 5, 6]} df = DataFrame(d) tuples = [(0, 1), (0, 2), (1, 2)] df["tuples"] = tuples index = MultiIndex.from_tuples(df["tuples"]) # it works! df.set_index(index) def test_set_index_empty_column(self): # GH#1971 df = DataFrame( [ {"a": 1, "p": 0}, {"a": 2, "m": 10}, {"a": 3, "m": 11, "p": 20}, {"a": 4, "m": 12, "p": 21}, ], columns=["a", "m", "p", "x"], ) result = df.set_index(["a", "x"]) expected = df[["m", "p"]] expected.index = MultiIndex.from_arrays([df["a"], df["x"]], names=["a", "x"]) tm.assert_frame_equal(result, expected) def test_set_index_empty_dataframe(self): # GH#38419 df1 = DataFrame( {"a": Series(dtype="datetime64[ns]"), "b": Series(dtype="int64"), "c": []} ) df2 = df1.set_index(["a", "b"]) result = df2.index.to_frame().dtypes expected = df1[["a", "b"]].dtypes tm.assert_series_equal(result, expected) def test_set_index_multiindexcolumns(self): columns = MultiIndex.from_tuples([("foo", 1), ("foo", 2), ("bar", 1)]) df = DataFrame(np.random.randn(3, 3), columns=columns) result = df.set_index(df.columns[0]) expected = df.iloc[:, 1:] expected.index = df.iloc[:, 0].values expected.index.names = [df.columns[0]] tm.assert_frame_equal(result, expected) def test_set_index_timezone(self): # GH#12358 # tz-aware Series should retain the tz idx = DatetimeIndex(["2014-01-01 10:10:10"], tz="UTC").tz_convert("Europe/Rome") df = DataFrame({"A": idx}) assert df.set_index(idx).index[0].hour == 11 assert DatetimeIndex(Series(df.A))[0].hour == 11 assert df.set_index(df.A).index[0].hour == 11 def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_set_index_dst(self): di = date_range("2006-10-29 00:00:00", periods=3, freq="H", tz="US/Pacific") df = DataFrame(data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=di).reset_index() # single level res = df.set_index("index") exp = DataFrame( data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=Index(di, name="index"), ) exp.index = exp.index._with_freq(None) tm.assert_frame_equal(res, exp) # GH#12920 res = df.set_index(["index", "a"]) exp_index = MultiIndex.from_arrays([di, [0, 1, 2]], names=["index", "a"]) exp = DataFrame({"b": [3, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp) def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_names(self): df = tm.makeDataFrame() df.index.name = "name" assert df.set_index(df.index).index.names == ["name"] mi = MultiIndex.from_arrays(df[["A", "B"]].T.values, names=["A", "B"]) mi2 = MultiIndex.from_arrays( df[["A", "B", "A", "B"]].T.values, names=["A", "B", "C", "D"] ) df = df.set_index(["A", "B"]) assert df.set_index(df.index).index.names == ["A", "B"] # Check that set_index isn't converting a MultiIndex into an Index assert isinstance(df.set_index(df.index).index, MultiIndex) # Check actual equality tm.assert_index_equal(df.set_index(df.index).index, mi) idx2 = df.index.rename(["C", "D"]) # Check that [MultiIndex, MultiIndex] yields a MultiIndex rather # than a pair of tuples assert isinstance(df.set_index([df.index, idx2]).index, MultiIndex) # Check equality tm.assert_index_equal(df.set_index([df.index, idx2]).index, mi2) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() return_value = result.set_index(keys, drop=drop, inplace=True) assert return_value is None else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH#1590 df = DataFrame({"val": [0, 1, 2], "key": ["a", "b", "c"]}) expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key")) df2 = df.loc[df.index.map(lambda indx: indx >= 1)] result = df2.set_index("key") tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # Add list-of-list constructor because list is ambiguous -> lambda # also test index name if append=True (name is duplicate here for B) @pytest.mark.parametrize( "box", [ Series, Index, np.array, list, lambda x: [list(x)], lambda x: MultiIndex.from_arrays([x]), ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_single_array( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name key = box(df["B"]) if box == list: # list of strings gets interpreted as list of keys msg = "['one', 'two', 'three', 'one', 'two']" with pytest.raises(KeyError, match=msg): df.set_index(key, drop=drop, append=append) else: # np.array/list-of-list "forget" the name of B name_mi = getattr(key, "names", None) name = [getattr(key, "name", None)] if name_mi is None else name_mi result = df.set_index(key, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, nothing is dropped expected = df.set_index(["B"], drop=False, append=append) expected.index.names = [index_name] + name if append else name tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # also test index name if append=True (name is duplicate here for A & B) @pytest.mark.parametrize( "box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])] ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)], ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name keys = ["A", box(df["B"])] # np.array/list "forget" the name of B names = ["A", None if box in [np.array, list, tuple, iter] else "B"] result = df.set_index(keys, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, only A is dropped, if at all expected = df.set_index(["A", "B"], drop=False, append=append) expected = expected.drop("A", axis=1) if drop else expected expected.index.names = [index_name] + names if append else names tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # We also emulate a "constructor" for the label -> lambda # also test index name if append=True (name is duplicate here for A) @pytest.mark.parametrize( "box2", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "box1", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays_duplicate( self, frame_of_index_cols, drop, append, index_name, box1, box2 ): df = frame_of_index_cols df.index.name = index_name keys = [box1(df["A"]), box2(df["A"])] result = df.set_index(keys, drop=drop, append=append) # if either box is iter, it has been consumed; re-read keys = [box1(df["A"]), box2(df["A"])] # need to adapt first drop for case that both keys are 'A' -- # cannot drop the same column twice; # plain == would give ambiguous Boolean error for containers first_drop = ( False if ( isinstance(keys[0], str) and keys[0] == "A" and isinstance(keys[1], str) and keys[1] == "A" ) else drop ) # to test against already-tested behaviour, we add sequentially, # hence second append always True; must wrap keys in list, otherwise # box = list would be interpreted as keys expected = df.set_index([keys[0]], drop=first_drop, append=append) expected = expected.set_index([keys[1]], drop=drop, append=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append): df = frame_of_index_cols keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"]) result = df.set_index(keys, drop=drop, append=append) # setting with a MultiIndex will never drop columns expected = df.set_index(["A", "B"], drop=False, append=append) tm.assert_frame_equal(result, expected) def test_construction_with_categorical_index(self): ci =
tm.makeCategoricalIndex(10)
pandas._testing.makeCategoricalIndex
import plotly import json import requests import pandas as pd import plotly.graph_objects as go from plotly.subplots import make_subplots from io import StringIO #Swiching pandas ploting backend to plotly pd.options.plotting.backend = "plotly" class globalvars_class: def __init__(self): self.covid_df = self.covid_pd_make() self.covid_positive = self.covid_positive_frame() self.database_date = self.updated_to() self.daily_covid_positive = self.covid_positive.groupby(self.covid_positive.index).sum() self.daily_covid_positive_saved = self.make_daily_covid_positive_saved() self.saved_ma_list= [] def make_daily_covid_positive_saved(self): temp = self.daily_covid_positive.copy(deep=False) temp.rename(columns={'corona_result':'Covid-19 Positive results'}, inplace=True) return temp #Reading and manipulating the Covid-19 result lab data from csv def covid_pd_make(self): csv_lab = pd.read_csv("corona_lab_tests_ver_0090.csv") csv_lab.index = pd.DatetimeIndex(csv_lab["result_date"]) csv_lab.drop(["result_date"], axis=1, inplace=True) csv_lab["corona_result"][csv_lab["corona_result"] == "שלילי"] = 0 csv_lab["corona_result"][csv_lab["corona_result"] == "חיובי"] = 1 csv_lab["is_first_Test"][csv_lab["is_first_Test"] == "Yes"] = 1 csv_lab["is_first_Test"][csv_lab["is_first_Test"] == "No"] = 0 return csv_lab '''In this function we are reading and making database from info.data.gov.il about the corona test lab result From the api we getting the result in json and inside the json string in csv format. used query parameters: limit,get_total,resource_id,total_records,records_format read more how to execute api quary :https://docs.ckan.org/en/latest/maintaining/datastore.html#ckanext.datastore.logic.action.datastore_search ''' def covid_pd_make_gov_api(self): # gov api resource code to corona lab test results resource_id = 'dcf999c1-d394-4b57-a5e0-9d014a62e046' limit = 0 get_total = "True" records_format ="csv" #here we get by quary the total records of covids_test results url = "https://data.gov.il/api/3/action/datastore_search?resource_id={}&include_total={}&limit={}".format(resource_id,get_total, limit) response = requests.get(url) response_json = response.json() total_records = response_json['result']["total"] #here we genererate all the values from the json csv url = "https://data.gov.il/api/3/action/datastore_search?resource_id={}&limit={}&records_format={}".format( resource_id, total_records,records_format) response = requests.get(url) response_json = response.json() records = response_json['result']['records'] #Making csv readable for pandas dataframe data = StringIO(records) df = pd.read_csv(data, sep=",", names=["_id", "test_date", "result_date", "corona_result", "lab_id", "test_for_corona_diagnosis", "is_first_Test"]) ## here we cuts and manipuilating the data df.drop(["_id"], axis=1, inplace=True) #result_date is the only persist date colnum so we set it as datetime index df.index =
pd.DatetimeIndex(df["result_date"])
pandas.DatetimeIndex
# -*- coding: utf-8 -*- """ Created on Fri Sep 6 15:41:19 2019 @Author: <NAME>, <NAME> @Institution: CBDD Group, Xiangya School of Pharmaceutical Science, CSU, China @Homepage: http://www.scbdd.com @Mail: <EMAIL>; <EMAIL> @Blog: https://blog.moyule.me ♥I love <NAME> forever♥ """ import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.metrics import auc from load import load from matplotlib.ticker import MultipleLocator class Enrichment(object): def __init__(self, loadfile, label_col, Ascore_col, Dscore_col): self.loadfile = loadfile self.df = pd.DataFrame() self.length = 0 self.hit_all = 0 self.scores = pd.Series() self.score_col = Ascore_col + Dscore_col self.Ascore = Ascore_col self.Dscore = Dscore_col self.label_col = label_col def Load(self): data = load(self.loadfile) self.df = data # self.df = abs(self.df) self.length = len(self.df) self.hit_all = len(self.df[self.df[self.label_col]==1]) self.scorers =
pd.Series(self.score_col)
pandas.Series
#!/usr/bin/python # -*- coding: utf-8 -*- """ Library to execute a exploratory data analysis (EDA). It is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. Primarily EDA is for seeing what the data can tell us beyond the formal modeling or hypothesis testing task. @author: ucaiado Created on 10/20/2016 """ ########################################### # Suppress matplotlib user warnings # Necessary for newer version of matplotlib try: import warnings from IPython import get_ipython import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns from collections import defaultdict import json import numpy as np import pandas as pd import StringIO warnings.filterwarnings('ignore', category=UserWarning, module='matplotlib') # Display inline matplotlib plots with IPython get_ipython().run_line_magic('matplotlib', 'inline') # aesthetics sns.set_palette('deep', desat=.6) sns.set_context(rc={'figure.figsize': (8, 4)}) sns.set_style('whitegrid') sns.set_palette(sns.color_palette('Set2', 10)) # loading style sheet get_ipython().run_cell('from IPython.core.display import HTML') get_ipython().run_cell('HTML(open("ipython_style.css").read())') except: pass ########################################### ''' Begin help functions ''' def func_estimator(x): ''' pseudo estimator to be used by poinplot ''' return x[0] ''' End help functions ''' def read_logs(i_desired_trial, s_fname): ''' Return a dictionary with information for the passed log file and trial and the number of trades in the main instrument of the strategy :param i_desired_trial: integer. the trial ID to colect data :param s_fname: string. the name of the log file analized ''' with open(s_fname) as fr: # initiate the returned dictionary ans other control variables d_rtn = {'pnl': defaultdict(dict), 'position': defaultdict(dict), 'duration': defaultdict(dict), 'mid': defaultdict(dict)} f_reward = 0. f_count_step = 0 last_reward = 0. i_trial = 0 i_trades = 0 for idx, row in enumerate(fr): if row == '\n': continue # extract desired information # count the number of trials if ' New Trial will start!' in row: i_trial += 1 f_count_step = 0 f_reward = 0 elif '.update():' in row and i_trial == i_desired_trial: s_aux = row.strip().split(';')[1] s_x = row.split('time = ')[1].split(',')[0] s_date_all = s_x s_x = s_date_all[:-7] s_date = s_x ts_date_all = pd.to_datetime(s_date_all) ts_date = pd.to_datetime(s_date) last_reward = float(s_aux.split('reward = ')[1].split(',')[0]) f_duration = float(s_aux.split('duration = ')[1].split(',')[0]) f_reward += last_reward f_count_step += 1. # extract some data d_rtn['duration'][i_trial][ts_date_all] = f_duration if ', position = ' in s_aux: s_pos = s_aux.split(', position = ')[1].split('}')[0][1:] s_pos = s_pos.replace("'", "") l_pos = [(a.strip(), float(b)) for a, b in [s.split(': ')for s in s_pos.split(',')]] d_rtn['position'][i_trial][ts_date_all] = dict(l_pos) if ', pnl = ' in s_aux: s_action = s_aux.split(', pnl = ')[1].split(',')[0] f_aux = float(s_action) d_rtn['pnl'][i_trial][ts_date_all] = f_aux if 'crossed_prices' in s_aux or 'correction_by_trade' in s_aux: i_trades += 1 if ', inputs = ' in s_aux: s_mid = s_aux.split(', inputs = ')[1].split("{'midPrice':") s_mid = s_mid[1][1:].split('}}')[0] s_mid = s_mid.replace("'", "")[1:] l_pos = [(a.strip(), float(b)) for a, b in [s.split(': ')for s in s_mid.split(',')]] d_rtn['mid'][i_trial][ts_date_all] = dict(l_pos) # finish the loop as soon as the trial is analyzed if i_trial > i_desired_trial: break return d_rtn, i_trades def read_logs2(i_desired_trial, s_fname): ''' Return a dictionary with information for the passed log file and trial and the number of trades in the main instrument of the strategy :param i_desired_trial: integer. the trial ID to colect data :param s_fname: string. the name of the log file analized ''' with open(s_fname) as fr: # initiate the returned dictionary ans other control variables d_rtn = {'pnl': defaultdict(dict), 'position': defaultdict(dict), 'duration': defaultdict(dict), 'mid': defaultdict(dict)} f_reward = 0. f_count_step = 0 last_reward = 0. i_trial = 0 i_trades = 0 for idx, row in enumerate(fr): if row == '\n': continue # extract desired information # count the number of trials if ' New Trial will start!' in row: i_trial += 1 f_count_step = 0 f_reward = 0 elif '.update():' in row and i_trial == i_desired_trial: s_aux = row.strip().split(';')[1] s_x = row.split('time = ')[1].split(',')[0] s_date_all = s_x s_x = s_date_all[:-7] s_date = s_x ts_date_all = pd.to_datetime(s_date_all) ts_date = pd.to_datetime(s_date) last_reward = float(s_aux.split('reward = ')[1].split(',')[0]) f_duration = float(s_aux.split('duration = ')[1].split(',')[0]) f_reward += last_reward f_count_step += 1. # extract some data d_rtn['duration'][i_trial][ts_date_all] = f_duration if ', position = ' in s_aux: s_pos = s_aux.split(', position = ')[1].split('}')[0][1:] s_pos = s_pos.replace("'", "") l_pos = [(a.strip(), float(b)) for a, b in [s.split(': ')for s in s_pos.split(',')]] d_rtn['position'][i_trial][ts_date_all] = dict(l_pos) if ', pnl = ' in s_aux: s_action = s_aux.split(', pnl = ')[1].split(',')[0] f_aux = float(s_action) d_rtn['pnl'][i_trial][ts_date_all] = f_aux if 'crossed_prices' in s_aux or 'correction_by_trade' in s_aux: i_trades += 1 if ', inputs = ' in s_aux: s_mid = s_aux.split(', inputs = ')[1].split("{'midPrice':") s_mid = s_mid[0].split(', position =')[0] s_mid = s_mid.replace("'", '"').replace('None', '0') l_mid = json.loads(s_mid) s_mid = s_mid.replace("'", "")[1:] l_mid = [(s_key, (float(x))) for s_key, x in l_mid['midPrice'].iteritems()] d_rtn['mid'][i_trial][ts_date_all] = dict(l_mid) # finish the loop as soon as the trial is analyzed if i_trial > i_desired_trial: break return d_rtn, i_trades def read_logs_to_form_spread(i_desired_trial, s_fname): ''' Return a dictionary with information for the passed log file and trial and the number of trades in the main instrument of the strategy (just F21 and F19) :param i_desired_trial: integer. the trial ID to colect data :param s_fname: string. the name of the log file analized ''' with open(s_fname) as fr: # initiate the returned dictionary ans other control variables d_rtn = {'pnl': defaultdict(dict), 'position': defaultdict(dict), 'mid': defaultdict(dict), 'duration': defaultdict(dict), 'TOB_F21': defaultdict(dict), 'TOB_F19': defaultdict(dict), 'MY_PRICES': defaultdict(dict), 'EXEC': defaultdict(dict), 'LAST_SPREAD': defaultdict(dict)} # where I am most aggres f_reward = 0. f_count_step = 0 last_reward = 0. i_trial = 0 i_trades = 0 l_trade_actions = ['TAKE', 'crossed_prices', 'correction_by_trade', 'HIT'] for idx, row in enumerate(fr): if row == '\n': continue # extract desired information # count the number of trials if ' New Trial will start!' in row: i_trial += 1 f_count_step = 0 f_reward = 0 elif '.update():' in row and i_trial == i_desired_trial: s_aux = row.strip().split(';')[1] s_x = row.split('time = ')[1].split(',')[0] s_date_all = s_x s_x = s_date_all[:-7] s_date = s_x ts_date_all = pd.to_datetime(s_date_all) ts_date = pd.to_datetime(s_date) last_reward = float(s_aux.split('reward = ')[1].split(',')[0]) f_duration = float(s_aux.split('duration = ')[1].split(',')[0]) f_reward += last_reward f_count_step += 1. # extract some data d_rtn['duration'][i_trial][ts_date_all] = f_duration if ', position = ' in s_aux: s_pos = s_aux.split(', position = ')[1].split('}')[0][1:] s_pos = s_pos.replace("'", "") l_pos = [(a.strip(), float(b)) for a, b in [s.split(': ')for s in s_pos.split(',')]] d_rtn['position'][i_trial][ts_date_all] = dict(l_pos) if 'action = ' in s_aux: s_action = row.split('action = ')[1].split(',')[0].strip() d_aux2 = {'DI1F21': 0, 'DI1F19': 0} if ts_date_all not in d_rtn['EXEC'][i_trial]: d_rtn['EXEC'][i_trial][ts_date_all] = d_aux2.copy() d_aux2 = d_rtn['EXEC'][i_trial][ts_date_all] if s_action in l_trade_actions: s_msgs = s_aux.split('msgs_to_env = ')[1] for d_aux in json.loads(s_msgs.replace("'", '"')): i_mult = 1 if d_aux['S'] == 'Buy' else -1 d_aux2[d_aux['C']] += float(d_aux['P']) * i_mult if ', pnl = ' in s_aux: s_action = s_aux.split(', pnl = ')[1].split(',')[0] f_aux = float(s_action) d_rtn['pnl'][i_trial][ts_date_all] = f_aux if 'crossed_prices' in s_aux or 'correction_by_trade' in s_aux: i_trades += 1 if ', inputs = ' in s_aux: s_mid = s_aux.split(', inputs = ')[1].split("{'midPrice':") s_mid = s_mid[0].split(', position =')[0] s_mid = s_mid.replace("'", '"').replace('None', '0') l_mid = json.loads(s_mid) s_mid = s_mid.replace("'", "")[1:] l_mid = [(s_key, (float(x))) for s_key, x in l_mid['midPrice'].iteritems()] d_rtn['mid'][i_trial][ts_date_all] = dict(l_mid) if s_mid[0] != '{': s_mid = '{' + s_mid d_input = json.loads(s_mid) d_aux = d_input['TOB']['DI1F19'] d_rtn['TOB_F19'][i_trial][ts_date_all] = d_aux d_aux = d_input['TOB']['DI1F21'] d_rtn['TOB_F21'][i_trial][ts_date_all] = d_aux d_aux = dict(zip(['BID', 'ASK'], d_input['last_spread'])) d_rtn['LAST_SPREAD'][i_trial][ts_date_all] = d_aux d_aux = dict(zip(['BID', 'ASK'], [d_input['agentOrders']['agentBid'], d_input['agentOrders']['agentAsk']])) d_rtn['MY_PRICES'][i_trial][ts_date_all] = d_aux # finish the loop as soon as the trial is analyzed if i_trial > i_desired_trial: break return d_rtn, i_trades def plot_trial(d_data, i_trades): ''' Plots the data from logged metrics during a specific trial of a simulation. It is designed to plot trades using D1F21, F19 and F23. :param d_data: dict. data with the metrics used :param i_trades: integer. number of trades in the simulation ''' fig = plt.figure(figsize=(12, 10)) s_key = d_data['mid'].keys()[0] majorFormatter = mpl.dates.DateFormatter('%H:%M') ############### # Spread plot ############### df_spread = pd.DataFrame(d_data['mid'][s_key]).T df_spread = df_spread.resample('1min').last() ax = plt.subplot2grid((6, 6), (4, 0), colspan=2, rowspan=2) ((df_spread['DI1F23'] - df_spread['DI1F21'])*10**2).plot(ax=ax) ax.set_title('F23 - F21') ax.set_ylabel('Spread') # ax.xaxis.set_major_formatter(majorFormatter) ax = plt.subplot2grid((6, 6), (4, 2), colspan=2, rowspan=2) ((df_spread['DI1F21'] - df_spread['DI1F19'])*10**2).plot(ax=ax) ax.set_title('F21 - F19') # ax.xaxis.set_major_formatter(majorFormatter) ############### # PnL plot ############### ax = plt.subplot2grid((6, 6), (0, 0), colspan=3, rowspan=4) df_pnl = pd.Series(d_data['pnl'][s_key]) df_pnl = df_pnl.resample('1min').last() df_pnl.plot(ax=ax) ax.axhline(xmin=0, xmax=1, y=0, color='black', linestyle='dashed') ax.set_title('PnL Curve') ax.set_ylabel('Value') # ax.xaxis.set_major_formatter(majorFormatter) ############### # Position plot ############### ax1 = plt.subplot2grid((6, 6), (0, 3), colspan=3, rowspan=2) df_pos =
pd.DataFrame(d_data['position'][s_key])
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright 2017 <NAME> <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Python modules import math import datetime import datetime as dt from datetime import datetime # Third party modules import geopy import geopy.distance as geo_dist import pandas as pd TIME_FORMATS = ['%H:%M', '%H%M', '%I:%M%p', '%I%M%p', '%H:%M:%S', '%H%M%S', '%I:%M:%S%p', '%I%M%S%p'] class TrackException(Exception): """ Generic exception for TrackAnimation """ def __init__(self, msg, original_exception): super(TrackException, self).__init__(msg + (": %s" % original_exception)) self.original_exception = original_exception def getBearing(start_point, end_point): """ Calculates the bearing between two points. Parameters ---------- start_point: geopy.Point end_point: geopy.Point Returns ------- point: int Bearing in degrees between the start and end points. """ start_lat = math.radians(start_point.latitude) start_lng = math.radians(start_point.longitude) end_lat = math.radians(end_point.latitude) end_lng = math.radians(end_point.longitude) d_lng = end_lng - start_lng if abs(d_lng) > math.pi: if d_lng > 0.0: d_lng = -(2.0 * math.pi - d_lng) else: d_lng = (2.0 * math.pi + d_lng) tan_start = math.tan(start_lat / 2.0 + math.pi / 4.0) tan_end = math.tan(end_lat / 2.0 + math.pi / 4.0) dPhi = math.log(tan_end / tan_start) bearing = (math.degrees(math.atan2(d_lng, dPhi)) + 360.0) % 360.0 return bearing def getCoordinates(start_point, end_point, distance_meters): """ Calculates the new coordinates between two points depending of the specified distance and the calculated bearing. Parameters ---------- start_point: geopy.Point end_point: geopy.Point distance_meters: float Returns ------- point: geopy.Point A new point between the start and the end points. """ bearing = getBearing(start_point, end_point) distance_km = distance_meters / 1000 d = geo_dist.VincentyDistance(kilometers=distance_km) destination = d.destination(point=start_point, bearing=bearing) return geopy.Point(destination.latitude, destination.longitude) def getPointInTheMiddle(start_point, end_point, time_diff, point_idx): """ Calculates a new point between two points depending of the time difference between them and the point index. Parameters ---------- start_point: DataFrame end_point: DataFrame time_diff: float point_idx: int Point index between the start and the end points Returns ------- point: list A new point between the start and the end points. """ time_proportion = (time_diff * point_idx) / end_point['TimeDifference'].item() distance_proportion = end_point['Distance'].item() * time_proportion time_diff_proportion = end_point['TimeDifference'].item() * time_proportion speed = distance_proportion / time_diff_proportion distance = time_diff * speed cum_time_diff = int(start_point['CumTimeDiff'].item() + time_diff_proportion) # date = datetime.strptime(start_point['Date'].item(), '%Y-%m-%d %H:%M:%S') + dt.timedelta(seconds=int(time_diff_proportion)) date = pd.to_datetime(start_point['Date'].astype(str), format='%Y-%m-%d %H:%M:%S') + dt.timedelta(seconds=int(time_diff_proportion)) altitude = (end_point['Altitude'].item() + start_point['Altitude'].item()) / 2 name = start_point['CodeRoute'].item() geo_start = geopy.Point(start_point['Latitude'].item(), start_point['Longitude'].item()) geo_end = geopy.Point(end_point['Latitude'].item(), end_point['Longitude'].item()) middlePoint = getCoordinates(geo_start, geo_end, distance_proportion) df_middlePoint = ([[name, middlePoint.latitude, middlePoint.longitude, altitude, date, speed, int(time_diff), distance, None, cum_time_diff]]) return df_middlePoint def rgb(value, minimum, maximum): """ Calculates an rgb color of a value depending of the minimum and maximum values. Parameters ---------- value: float or int minimum: float or int maximum: float or int Returns ------- rgb: tuple """ value = float(value) minimum = float(minimum) maximum = float(maximum) if minimum == maximum: ratio = 0 else: ratio = 2 * (value - minimum) / (maximum - minimum) b = int(max(0, 255 * (1 - ratio))) r = int(max(0, 255 * (ratio - 1))) g = 255 - b - r return r/255.0, g/255.0, b/255.0 def calculateCumTimeDiff(df): """ Calculates the cumulative of the time difference between points for each track of 'dfTrack' Parameters ---------- df: DataFrame Returns ------- df_cum: DataFrame """ df = df.copy() df_cum = pd.DataFrame() grouped = df['CodeRoute'].unique() for name in grouped: df_slice = df[df['CodeRoute'] == name] df_slice = df_slice.reset_index(drop=True) df_slice['CumTimeDiff'] = df_slice['TimeDifference'].cumsum() df_cum =
pd.concat([df_cum, df_slice])
pandas.concat
""" Quickly subset Redcap inventories. """ import argparse import pandas as pd import sys # import sibispy # Reports ## 1. Reports that indicate mistakes (site check required) # empty_marked_present def empty_marked_present(inventory): # -> Site should investigate why the form was marked "not missing" return ((inventory['non_nan_count'] == 0) & (inventory['missing'] == 0) & (inventory['exclude'] != 1) & (inventory['form_name'] != 'biological_mr')) # false positives # content_marked_missing def content_marked_missing(inventory): # -> Missingness likely applied by mistake, should be switched to present return ((inventory['missing'] == 1) & (inventory['non_nan_count'] > 0) & (inventory['exclude'] != 1)) ## 2. Reports that contain possible omissions (site check recommended) def less_content_than_max(inventory): # -> Site should ensure that no content was omitted # (only makes sense on some forms) return ((inventory['non_nan_count'] > 0) & (inventory['non_nan_count'] < inventory['non_nan_count'].max())) def empty_unmarked(inventory): # -> Site should double-check that these cases are actually absent, and # mark missingness where appropriate # (potentially better handled in check_form_groups) # (hits "grey" circles, but not just them) return ((inventory['non_nan_count'] == 0) & inventory['missing'].isnull() & (inventory['exclude'] != 1)) ## 3. Reports that indicate undermarking, and can be auto-marked (site consent requested) ### 3a. Undermarking of non-missingness def content_unmarked(inventory): # -> Site should confirm that hits can be automatically marked "not missing" return (inventory['non_nan_count'] > 0) & (inventory['missing'].isnull()) ### 3b. Undermarking of completion def content_not_complete(inventory): # -> Site should confirm that hits can be automatically marked "complete" return ((inventory['non_nan_count'] > 0) & (inventory['complete'] < 2) # Computed forms that will be marked Complete once other forms are & (~inventory['form_name'].isin(['clinical', 'brief'])) ) def missing_not_complete(inventory): # -> Site should confirm that hits can be automatically marked "complete" return (inventory['missing'] == 1) & (inventory['complete'] < 2) ### 4. Excluded forms with content on them def excluded_with_content(inventory): # -> Site should either unmark exclusion, or have the content deleted return ((inventory['exclude'] == 1) & (inventory['non_nan_count'] > 0) & (~inventory['form_name'].isin(['visit_date', 'clinical']))) # Reports -- end def get_filter_results(inventorized_data, filter_function, verbose=False): """ Apply pd.Index-returning function to data and return it filtered. """ try: index = filter_function(inventorized_data) except KeyError as e: if verbose: print("Error in {}:".format(filter_function.__name__), str(e)) return None else: return inventorized_data.loc[index] def parse_args(filter_choices, input_args=None): parser = argparse.ArgumentParser() parser.add_argument("-v", "--verbose", help="Verbose operation", action="store_true") # parser.add_argument("-p", "--post-to-github", # help="Post all issues to GitHub instead of stdout.", # action="store_true") parser.add_argument("-i", "--input", help="Inventory file to operate on", nargs='+', required=True) parser.add_argument('-o', '--output', help="File to save filtered inventory to", default=sys.stdout) # `choices` in `help` courtesy of https://stackoverflow.com/a/20335589 parser.add_argument('filter', metavar='FILTER', choices=filter_choices, help="Filter function to apply, one of following: " "{%(choices)s}") args = parser.parse_args(input_args) return args if __name__ == '__main__': # TODO: There should be some way to auto-generate this - maybe embed the # filters in a file, import it, then get the names of all callables? FILTER_LIST = [ empty_marked_present, content_marked_missing, less_content_than_max, empty_unmarked, content_unmarked, content_not_complete, missing_not_complete, excluded_with_content, ] FILTERS = {x.__name__: x for x in FILTER_LIST} args = parse_args(FILTERS.keys()) # TODO: Should explicitly assume + read in columns? all_out = [] for filename in args.input: data = pd.read_csv(filename) filter_function = FILTERS[args.filter] result = get_filter_results(data, filter_function, verbose=args.verbose) if result is None: if args.verbose: print("Filter {} failed on file {}; skipping" .format(args.filter, filename)) elif not result.empty: all_out.append(result) if args.verbose: if args.output == sys.stdout: output_display_name = "stdout" else: output_display_name = args.output print("Filter {} used on {} => {}" .format(args.filter, filename, output_display_name)) else: if args.verbose: print("Filter {} used on {} => no matches, skipping." .format(args.filter, filename)) if len(all_out) > 0: (
pd.concat(all_out, sort=False)
pandas.concat
import numpy as np import pandas as pd import pytest from dku_timeseries import WindowAggregator from recipe_config_loading import get_windowing_params @pytest.fixture def columns(): class COLUMNS: date = "Date" category = "country" aggregation = "value1_avg" return COLUMNS @pytest.fixture def df(columns): co2 = [315.58, 316.39, 316.79, 316.2] country = ["first", "first", "second", "second"] time_index = pd.date_range("1-1-1959", periods=4, freq="M") df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, columns.category: country, columns.date: time_index}) return df @pytest.fixture def long_df(columns): co2 = [315.58, 316.39, 316.79, 316.2, 345, 234, 100, 299] country = ["first", "first", "first", "first", "second", "second", "second", "second"] time_index = pd.date_range("1-1-1959", periods=4, freq="D").append(pd.date_range("1-1-1959", periods=4, freq="D")) df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, columns.category: country, columns.date: time_index}) return df @pytest.fixture def long_df_2(columns): co2 = [315.58, 316.39, 316.79, 316.2, 9, 10] country = ["first", "first", "second", "second", "third", "third"] country_2 = ["first", "first", "second", "second", "third", "third"] time_index = pd.date_range("1-1-1959", periods=2, freq="M").append(pd.date_range("1-1-1959", periods=2, freq="M")).append( pd.date_range("1-1-1959", periods=2, freq="M")) df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, columns.category: country, "item": country_2, columns.date: time_index}) return df @pytest.fixture def long_df_3(columns): co2 = [315.58, 316.39, 316.79, 316.2, 9, 10, 2, 3] country = ["first", "first", "second", "second", "third", "third", "fourth", "fourth"] country_2 = ["first", "first", "second", "second", "third", "third", "fourth", "fourth"] country_3 = ["first", "first", "second", "second", "third", "third", "fourth", "fourth"] time_index = pd.date_range("1-1-1959", periods=2, freq="M").append(pd.date_range("1-1-1959", periods=2, freq="M")).append( pd.date_range("1-1-1959", periods=2, freq="M")).append(pd.date_range("1-1-1959", periods=2, freq="M")) df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, columns.category: country, "item": country_2, "store": country_3, columns.date: time_index}) return df @pytest.fixture def long_df_4(columns): co2 = [315.58, 316.39, 316.79, 316.2, 9, 10, 2, 3] country = ["first", "first", "second", "second", "third", "third", "first", "first"] country_2 = ["first", "first", "second", "second", "third", "third", "second", "first"] country_3 = ["first", "first", "second", "second", "third", "third", "third", "fourth"] time_index = pd.date_range("1-1-2020", periods=2, freq="M").append(pd.date_range("1-1-2020", periods=2, freq="M")).append( pd.date_range("1-1-2020", periods=2, freq="M")).append(pd.date_range("1-1-2020", periods=2, freq="M")) df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, columns.category: country, "item": country_2, "store": country_3, columns.date: time_index}) return df @pytest.fixture def long_df_numerical(columns): co2 = [315.58, 316.39, 316.79, 316.2, 345, 234, 100, 299] country = [1, 1, 1, 1, 2, 2, 2, 2] time_index = pd.date_range("1-1-1959", periods=4, freq="D").append(
pd.date_range("1-1-1959", periods=4, freq="D")
pandas.date_range
import pandas as pd import numpy as np users_df = pd.read_csv("../../data/processed/users.csv", delimiter = ',') posts_df = pd.read_csv("../../data/processed//posts.csv", delimiter = ',') def get_accepted_answerer_reputation(): accepted_answerer_data = [] userId_list = users_df['Id'] for user in userId_list: accepted_postid_list = posts_df[(posts_df.OwnerUserId == user) & (posts_df.PostTypeId == 1) & (posts_df.AcceptedAnswerId.notnull())]['AcceptedAnswerId'] accepted_answerer_userIds = posts_df[posts_df.Id.isin(accepted_postid_list)]['OwnerUserId'] mean_rep = users_df[users_df.Id.isin(accepted_answerer_userIds)].Reputation.mean() accepted_answerer_data.append({'userid': user, 'mean_reputation': mean_rep}) accepted_answerer_rep =
pd.DataFrame(accepted_answerer_data)
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, DatetimeIndex, Series, concat, isna, notna, ) import pandas._testing as tm import pandas.tseries.offsets as offsets @pytest.mark.parametrize( "compare_func, roll_func, kwargs", [ [np.mean, "mean", {}], [np.nansum, "sum", {}], pytest.param( lambda x: np.isfinite(x).astype(float).sum(), "count", {}, marks=pytest.mark.filterwarnings("ignore:min_periods:FutureWarning"), ), [np.median, "median", {}], [np.min, "min", {}], [np.max, "max", {}], [lambda x: np.std(x, ddof=1), "std", {}], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}], [lambda x: np.var(x, ddof=1), "var", {}], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}], ], ) def test_series(series, compare_func, roll_func, kwargs): result = getattr(series.rolling(50), roll_func)(**kwargs) assert isinstance(result, Series) tm.assert_almost_equal(result.iloc[-1], compare_func(series[-50:])) @pytest.mark.parametrize( "compare_func, roll_func, kwargs", [ [np.mean, "mean", {}], [np.nansum, "sum", {}], pytest.param( lambda x: np.isfinite(x).astype(float).sum(), "count", {}, marks=pytest.mark.filterwarnings("ignore:min_periods:FutureWarning"), ), [np.median, "median", {}], [np.min, "min", {}], [np.max, "max", {}], [lambda x: np.std(x, ddof=1), "std", {}], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}], [lambda x: np.var(x, ddof=1), "var", {}], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}], ], ) def test_frame(raw, frame, compare_func, roll_func, kwargs): result = getattr(frame.rolling(50), roll_func)(**kwargs) assert isinstance(result, DataFrame) tm.assert_series_equal( result.iloc[-1, :], frame.iloc[-50:, :].apply(compare_func, axis=0, raw=raw), check_names=False, ) @pytest.mark.parametrize( "compare_func, roll_func, kwargs, minp", [ [np.mean, "mean", {}, 10], [np.nansum, "sum", {}, 10], [lambda x: np.isfinite(x).astype(float).sum(), "count", {}, 0], [np.median, "median", {}, 10], [np.min, "min", {}, 10], [np.max, "max", {}, 10], [lambda x: np.std(x, ddof=1), "std", {}, 10], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}, 10], [lambda x: np.var(x, ddof=1), "var", {}, 10], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}, 10], ], ) def test_time_rule_series(series, compare_func, roll_func, kwargs, minp): win = 25 ser = series[::2].resample("B").mean() series_result = getattr(ser.rolling(window=win, min_periods=minp), roll_func)( **kwargs ) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = series[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], compare_func(trunc_series)) @pytest.mark.parametrize( "compare_func, roll_func, kwargs, minp", [ [np.mean, "mean", {}, 10], [np.nansum, "sum", {}, 10], [lambda x: np.isfinite(x).astype(float).sum(), "count", {}, 0], [np.median, "median", {}, 10], [np.min, "min", {}, 10], [np.max, "max", {}, 10], [lambda x: np.std(x, ddof=1), "std", {}, 10], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}, 10], [lambda x: np.var(x, ddof=1), "var", {}, 10], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}, 10], ], ) def test_time_rule_frame(raw, frame, compare_func, roll_func, kwargs, minp): win = 25 frm = frame[::2].resample("B").mean() frame_result = getattr(frm.rolling(window=win, min_periods=minp), roll_func)( **kwargs ) last_date = frame_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_frame = frame[::2].truncate(prev_date, last_date) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(compare_func, raw=raw), check_names=False, ) @pytest.mark.parametrize( "compare_func, roll_func, kwargs", [ [np.mean, "mean", {}], [np.nansum, "sum", {}], [np.median, "median", {}], [np.min, "min", {}], [np.max, "max", {}], [lambda x: np.std(x, ddof=1), "std", {}], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}], [lambda x: np.var(x, ddof=1), "var", {}], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}], ], ) def test_nans(compare_func, roll_func, kwargs): obj = Series(np.random.randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN result = getattr(obj.rolling(50, min_periods=30), roll_func)(**kwargs) tm.assert_almost_equal(result.iloc[-1], compare_func(obj[10:-10])) # min_periods is working correctly result = getattr(obj.rolling(20, min_periods=15), roll_func)(**kwargs) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(np.random.randn(20)) result = getattr(obj2.rolling(10, min_periods=5), roll_func)(**kwargs) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if roll_func != "sum": result0 = getattr(obj.rolling(20, min_periods=0), roll_func)(**kwargs) result1 = getattr(obj.rolling(20, min_periods=1), roll_func)(**kwargs) tm.assert_almost_equal(result0, result1) def test_nans_count(): obj = Series(np.random.randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN result = obj.rolling(50, min_periods=30).count() tm.assert_almost_equal( result.iloc[-1], np.isfinite(obj[10:-10]).astype(float).sum() ) @pytest.mark.parametrize( "roll_func, kwargs", [ ["mean", {}], ["sum", {}], ["median", {}], ["min", {}], ["max", {}], ["std", {}], ["std", {"ddof": 0}], ["var", {}], ["var", {"ddof": 0}], ], ) @pytest.mark.parametrize("minp", [0, 99, 100]) def test_min_periods(series, minp, roll_func, kwargs): result = getattr(series.rolling(len(series) + 1, min_periods=minp), roll_func)( **kwargs ) expected = getattr(series.rolling(len(series), min_periods=minp), roll_func)( **kwargs ) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) def test_min_periods_count(series): result = series.rolling(len(series) + 1, min_periods=0).count() expected = series.rolling(len(series), min_periods=0).count() nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) @pytest.mark.parametrize( "roll_func, kwargs, minp", [ ["mean", {}, 15], ["sum", {}, 15], ["count", {}, 0], ["median", {}, 15], ["min", {}, 15], ["max", {}, 15], ["std", {}, 15], ["std", {"ddof": 0}, 15], ["var", {}, 15], ["var", {"ddof": 0}, 15], ], ) def test_center(roll_func, kwargs, minp): obj = Series(np.random.randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN result = getattr(obj.rolling(20, min_periods=minp, center=True), roll_func)( **kwargs ) expected = getattr( concat([obj, Series([np.NaN] * 9)]).rolling(20, min_periods=minp), roll_func )(**kwargs)[9:].reset_index(drop=True) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "roll_func, kwargs, minp, fill_value", [ ["mean", {}, 10, None], ["sum", {}, 10, None], ["count", {}, 0, 0], ["median", {}, 10, None], ["min", {}, 10, None], ["max", {}, 10, None], ["std", {}, 10, None], ["std", {"ddof": 0}, 10, None], ["var", {}, 10, None], ["var", {"ddof": 0}, 10, None], ], ) def test_center_reindex_series(series, roll_func, kwargs, minp, fill_value): # shifter index s = [f"x{x:d}" for x in range(12)] series_xp = ( getattr( series.reindex(list(series.index) + s).rolling(window=25, min_periods=minp), roll_func, )(**kwargs) .shift(-12) .reindex(series.index) ) series_rs = getattr( series.rolling(window=25, min_periods=minp, center=True), roll_func )(**kwargs) if fill_value is not None: series_xp = series_xp.fillna(fill_value) tm.assert_series_equal(series_xp, series_rs) @pytest.mark.parametrize( "roll_func, kwargs, minp, fill_value", [ ["mean", {}, 10, None], ["sum", {}, 10, None], ["count", {}, 0, 0], ["median", {}, 10, None], ["min", {}, 10, None], ["max", {}, 10, None], ["std", {}, 10, None], ["std", {"ddof": 0}, 10, None], ["var", {}, 10, None], ["var", {"ddof": 0}, 10, None], ], ) def test_center_reindex_frame(frame, roll_func, kwargs, minp, fill_value): # shifter index s = [f"x{x:d}" for x in range(12)] frame_xp = ( getattr( frame.reindex(list(frame.index) + s).rolling(window=25, min_periods=minp), roll_func, )(**kwargs) .shift(-12) .reindex(frame.index) ) frame_rs = getattr( frame.rolling(window=25, min_periods=minp, center=True), roll_func )(**kwargs) if fill_value is not None: frame_xp = frame_xp.fillna(fill_value) tm.assert_frame_equal(frame_xp, frame_rs) @pytest.mark.parametrize( "f", [ lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).max(), lambda x: x.rolling(window=10, min_periods=5).min(), lambda x: x.rolling(window=10, min_periods=5).sum(), lambda x: x.rolling(window=10, min_periods=5).mean(), lambda x: x.rolling(window=10, min_periods=5).std(), lambda x: x.rolling(window=10, min_periods=5).var(), lambda x: x.rolling(window=10, min_periods=5).skew(), lambda x: x.rolling(window=10, min_periods=5).kurt(), lambda x: x.rolling(window=10, min_periods=5).quantile(quantile=0.5), lambda x: x.rolling(window=10, min_periods=5).median(), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True), pytest.param( lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(), marks=td.skip_if_no_scipy, ), ], ) def test_rolling_functions_window_non_shrinkage(f): # GH 7764 s = Series(range(4)) s_expected = Series(np.nan, index=s.index) df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=["A", "B"]) df_expected = DataFrame(np.nan, index=df.index, columns=df.columns) s_result = f(s) tm.assert_series_equal(s_result, s_expected) df_result = f(df) tm.assert_frame_equal(df_result, df_expected) def test_rolling_max_gh6297(): """Replicate result expected in GH #6297""" indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 2 datapoints on one of the days indices.append(datetime(1975, 1, 3, 6, 0)) series = Series(range(1, 7), index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() expected = Series( [1.0, 2.0, 6.0, 4.0, 5.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").max().rolling(window=1).max() tm.assert_series_equal(expected, x) def test_rolling_max_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be max expected = Series( [0.0, 1.0, 2.0, 3.0, 20.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").max().rolling(window=1).max() tm.assert_series_equal(expected, x) # Now specify median (10.0) expected = Series( [0.0, 1.0, 2.0, 3.0, 10.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").median().rolling(window=1).max() tm.assert_series_equal(expected, x) # Now specify mean (4+10+20)/3 v = (4.0 + 10.0 + 20.0) / 3.0 expected = Series( [0.0, 1.0, 2.0, 3.0, v], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").mean().rolling(window=1).max() tm.assert_series_equal(expected, x) def test_rolling_min_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be min expected = Series( [0.0, 1.0, 2.0, 3.0, 4.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) r = series.resample("D").min().rolling(window=1) tm.assert_series_equal(expected, r.min()) def test_rolling_median_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be median expected = Series( [0.0, 1.0, 2.0, 3.0, 10], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").median().rolling(window=1).median() tm.assert_series_equal(expected, x) def test_rolling_median_memory_error(): # GH11722 n = 20000 Series(np.random.randn(n)).rolling(window=2, center=False).median() Series(np.random.randn(n)).rolling(window=2, center=False).median() @pytest.mark.parametrize( "data_type", [np.dtype(f"f{width}") for width in [4, 8]] + [np.dtype(f"{sign}{width}") for width in [1, 2, 4, 8] for sign in "ui"], ) def test_rolling_min_max_numeric_types(data_type): # GH12373 # Just testing that these don't throw exceptions and that # the return type is float64. Other tests will cover quantitative # correctness result = DataFrame(np.arange(20, dtype=data_type)).rolling(window=5).max() assert result.dtypes[0] == np.dtype("f8") result = DataFrame(np.arange(20, dtype=data_type)).rolling(window=5).min() assert result.dtypes[0] == np.dtype("f8") @pytest.mark.parametrize( "f", [ lambda x: x.rolling(window=10, min_periods=0).count(), lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).max(), lambda x: x.rolling(window=10, min_periods=5).min(), lambda x: x.rolling(window=10, min_periods=5).sum(), lambda x: x.rolling(window=10, min_periods=5).mean(), lambda x: x.rolling(window=10, min_periods=5).std(), lambda x: x.rolling(window=10, min_periods=5).var(), lambda x: x.rolling(window=10, min_periods=5).skew(), lambda x: x.rolling(window=10, min_periods=5).kurt(), lambda x: x.rolling(window=10, min_periods=5).quantile(0.5), lambda x: x.rolling(window=10, min_periods=5).median(), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True), pytest.param( lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(), marks=td.skip_if_no_scipy, ), ], ) def test_moment_functions_zero_length(f): # GH 8056 s = Series(dtype=np.float64) s_expected = s df1 = DataFrame() df1_expected = df1 df2 = DataFrame(columns=["a"]) df2["a"] = df2["a"].astype("float64") df2_expected = df2 s_result = f(s)
tm.assert_series_equal(s_result, s_expected)
pandas._testing.assert_series_equal
# -*- coding: utf-8 -*- """ Functions for preprocessing the data and crowd results Authors: <NAME>, <NAME> URL: https://github.com/adriapr/crowdairway """ import json, csv import pandas as pd import numpy as np from matplotlib.patches import Ellipse import math from skimage import draw from parse import search import os.path # Define some constants image_width = 500 image_height = 500 path_raw = 'data' path_processed = 'data_processed' file_subject = os.path.join(path_raw, 'subjects.csv') file_truth = os.path.join(path_processed, 'airways_ground_truth.csv') file_task = os.path.join(path_processed, 'tasks.csv') file_res = os.path.join(path_processed, 'results.csv') file_annot = os.path.join(path_processed, 'annotations.csv') file_task_class = os.path.join(path_raw, 'airways_classified.csv') def get_df_processed(): """"Returns data frames with previously processed data""" df_subject = pd.read_csv(file_subject) df_truth=pd.read_csv(file_truth) df_task = pd.read_csv(file_task) df_res = pd.read_csv(file_res) df_annot =
pd.read_csv(file_annot)
pandas.read_csv
from statistics import mean, stdev, median import pandas as pd import numpy as np class MacroIndicator(object): """ To build a macroeconomic indicator according to Ilmanem (2014). """ def __init__(self): pass def _historical_normalizer(self, df): """ Normalize the series iterating row by row. Parameters ---------- df : Pandas Dataframe uni-column Returns ------- Series: with the normalized series df: Pandas Dataframe with data as index and column of the normalized series """ df_aux = df.copy() normalized_rows_aux = [] normalized_rows = [] for ind, row in df_aux.itertuples(): normalized_rows_aux.append(row) if len(normalized_rows_aux) > 1: try: score = (normalized_rows_aux[-1] - mean(normalized_rows_aux)) / stdev(normalized_rows_aux) normalized_rows.append(score) except: # divisão por zero score = normalized_rows[-1] normalized_rows.append(score) normalized_df = df_aux.iloc[1:] normalized_df[str(normalized_df.columns[0])].replace( to_replace=normalized_df[str(normalized_df.columns[0])].values, value=pd.Series(normalized_rows), inplace=True) normalized_df.rename(columns={str(normalized_df.columns[0]): 'Normalized ' + str(normalized_df.columns[0])}, inplace=True) return pd.Series(normalized_rows), normalized_df def _expanding_median(self, df): """ Calculates the historical median iterating row by row Parameters ---------- df : Pandas Dataframe uni-column Returns ------- Series: with the historical median df: Pandas Dataframe with data as index and column of the median series """ df_aux = df.copy() list_median_rows_aux = [] list_median_rows = [] for ind, row in df_aux.itertuples(): list_median_rows_aux.append(row) list_median_rows.append(median(list_median_rows_aux)) df_aux[str(df_aux.columns[0])].replace(to_replace=df_aux[str(df_aux.columns[0])].values, value=pd.Series(list_median_rows), inplace=True) df_aux.rename(columns={str(df_aux.columns[0]): 'Median-' + str(df_aux.columns[0])}, inplace=True) return pd.Series(list_median_rows), df_aux def get_macro_indicator(self, dfs, name, median_type, window=3): """ Takes series of macroeconomic data and provides signals if the variable is in an up or down scenario by comparing the average series with the median series. Parameters ---------- dfs: List of macroeconomic data Pandas DataFrame name: str pf the name of the macro indicator, e.g. 'growth' median_type: str 'expanding' or 'rolling' window: number of years that will be used in the rolling median Returns ------- df : Pandas DataFrame with dates as index and columns as: (1) normalized series of each macro data, (2) the mean series, (3) the median series, and (4) the signal up (1) and down (0). """ normalized_df_list = [] for df in dfs: normalized_df = self._historical_normalizer(df)[1] normalized_df_list.append(normalized_df) concat_df =
pd.concat(normalized_df_list, join='inner', axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat May 30 22:25:05 2020 @author: usama """ import numpy as np import warnings import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler warnings.filterwarnings("ignore") def plot(dates,data,l,countryName,analysisType,baseline=True,factor=1): plt.figure(figsize=(11,6.875)) if baseline: a=data['Cumulative_cases'].to_numpy() z=[x - a[i - 1] for i, x in enumerate(a)][1:] z=z/max(z) z=z*factor plt.plot(z,label='Difference of consecutive Cummulative Cases',c='r') mrkr=['H','o','1','4','*','h','2','+','3','x'] total=len(l) c=0 for i in l: plt.plot(data[i], label=i,marker=mrkr[c%total],linestyle='') c=c+1 xx=np.arange(0,len(dates),10) xDates=dates[xx] plt.xticks(xx,xDates,rotation=30) plt.xlabel('Time',fontsize=14) plt.title(countryName+' - '+analysisType,fontsize=18) plt.legend() plt.grid() def dataScaling(df): scaling=MinMaxScaler() _scaled=scaling.fit_transform(df) dfScaled =
pd.DataFrame(_scaled, columns=df.columns,index=df.index)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Sep 7 22:19:04 2020 @author: Briggs some usefule links: Average draft position (ADP) - 'https://fantasyfootballcalculator.com/api/v1/adp/standard?teams=8&year=2019' Expert consensus Rankings - 'https://partners.fantasypros.com/api/v1/consensus-rankings.php?sport=NFL&year=2019&week=0&id=1054&position=ALL&type=ST&scoring=HALF&filters=1:2:3:4:5:7:8:9:285:699&export=json' """ import requests import datetime from bs4 import BeautifulSoup import pandas as pd import csv import urllib.parse from io import StringIO slotnames = { 0:'QB', 1:'RB', 2:'WR', 3:'TE', 5:'DEF', 4:'KICKER'} slotvalues = {} for slotid in slotnames: slotvalues[slotnames[slotid]]=slotid class privateLeague(): '''create an instance of a league for the current year. to change year use the setyear function''' #teams = {} def __init__(self, LID, UID,X,REALTIME,Season,MyTeamName): self.league_id = LID self.year = datetime.datetime.now().year # should change this from calendar year to be within the typical season timeframe self.url = "https://www.rtsports.com/" self.user_id = UID self.parameters = {'LID': LID, 'UID': UID, 'X':X} self.cookies = {'REALTIME':REALTIME} self.scoreboard = [None] * 16 self.rosters = {} self.teams = {} self.rosterFormat = {} self.leaguesettings = None self.boxscore = None self.season = Season self.MyTeamName = MyTeamName print('Getting the current Week') self.setCurrentWeek() print('Getting Rosters') self.Rosters = self.getRosters(self.CurrentWeek) self.Rankings = self.getROSECR() self.MyRoster = self.Rosters[self.Rosters['ffl-team']==self.MyTeamName] print('Getting Player Data') self.Players = self.getPlayerData() self.Players = pd.merge(self.Players,self.Rosters,how='outer',on='Player') self.Players = pd.merge(self.Players,self.Rankings,how='outer',on='Player') self.Players = pd.merge(self.Players,self.getWeeklyECR(),how='outer',on='Player') self.Players.sort_values(by='rank_ecr',inplace=True) print('Getting Rankings') #%% SET VALUES def setCurrentWeek(self): data = requests.get(self.url +'football/lineup.php', params=self.parameters, cookies=self.cookies) if data == None: print("Failed to get Current Week") soup = BeautifulSoup(data.content, 'html.parser') week = soup.find(class_='header-notes hidden-tn') print(week.string) currentweek = int(week.string[10:12]) self.CurrentWeek = currentweek return #%% GET RTS DATA def getRosters(self,Week): csvparams={'CID':0,'FWK':Week,'CSV':'YES'} csvparams.update(self.parameters) data = requests.get(self.url +'football/report-rosters.php', params=csvparams, cookies=self.cookies).text data = pd.read_csv(StringIO(data)) data.columns = ['ffl-team','Player','Position','nfl-team','Roster Status',''] data.drop(columns=['','Position','nfl-team'], inplace=True) data = data.set_index('Player') data.index = data.index.str.replace(' II','') return data def getPlayerData(self): players = pd.DataFrame() for Position in slotnames: csvparams={'CONF':0,'CSV':'YES','POS':Position, 'STATS':'FFL','TEAM':-1,'SEASON': self.season} csvparams.update(self.parameters) data = requests.get(self.url +'football/report-top-players.php', params=csvparams, cookies=self.cookies).text data = pd.read_csv(StringIO(data)) data = data.iloc[:,0:10] data.columns = ["Rank","Player","Position","nfl-team","Bye","injury","ffl-team","pts","avg","avg-3wk"] data.drop(columns=['ffl-team'], inplace=True) data = data.set_index('Player') data.index = data.index.str.replace(' II','') data.index = data.index.str.replace(' V','') data.index = data.index.str.replace(' IV','') data.index = data.index.str.replace(' Jr.','') data.index = data.index.str.replace(' ',' ') players = players.append(data) return players #%% FREE AGENT STUFF #%% RANKINGS def getROSECR(self): ''' valid position codes: "QB, RB, WR, TE, K, OP, FLX, DST, IDP, DL, LB, DB, TK, TQB, TRB, TWR, TTE, TOL, HC, P"} Valid type codes: ST, weekly, Draft Half PPR, ROS ROS will give rest of season rankings weekly will give just this week I am not sure what the type is for? id: 1054 Unused params 'filters':'fc00:e968:6179::de52:7100:285:699', not sure what the filters mean Returns ------- ecr : TYPE DESCRIPTION. ''' rankings = pd.DataFrame() positions = ['QB', 'RB', 'WR', 'TE', 'K', 'DST'] for position in positions: params = {'sport':'NFL','year':self.year,'week':0, 'position':position,'id':1054,'type':'ROS',"ranking_type_name":"ros",'scoring':'PPR', 'export':'json'} url ='https://partners.fantasypros.com/api/v1/consensus-rankings.php' #?sport=NFL&year=2020&week=0&id=1054&position=ALL&type=ST&scoring=HALF&filters=1:2:3:4:5:7:8:9:285:699&export=json' data = requests.get(url,params=params) ecr = data.json() positionrankings =
pd.DataFrame(ecr['players'])
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s =
Series(rng)
pandas.Series
import time import numpy as np import pandas as pd from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.decomposition import TruncatedSVD from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from dataset.biased_dataset import BiasedDataset DATA_ADULT_TRAIN = './data/raw/adult.data.csv' DATA_ADULT_TEST = './data/raw/adult.test.csv' DATA_CRIME_FILENAME = './data/raw/crime.csv' DATA_GERMAN_FILENAME = './data/raw/german.csv' # ADULT DATASET # Listing of attributes: # target: >50K, <=50K. # age: continuous. # workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, # Without-pay, Never-worked. # fnlwgt: continuous. # education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, # 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. # education-num: continuous. # marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, # Married-spouse-absent, Married-AF-spouse. # occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, # Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, # Priv-house-serv, Protective-serv, Armed-Forces. # relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. # race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. # sex: Female, Male. # capital-gain: continuous. # capital-loss: continuous. # hours-per-week: continuous. # native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, # Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, # Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, # Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, # Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands. def get_adult_data(sensitive_features, drop_columns=[], test_size=0.2, random_state=42): """ train_path: path to training data test_path: path to test data returns: tuple of training features, training labels, test features and test labels """ train_df =
pd.read_csv(DATA_ADULT_TRAIN, na_values='?')
pandas.read_csv
"""Author: <NAME> This contains the main Spomato class to be used to access the Spotify API and create new playlists based on the user's defined criteria. """ import os import pandas as pd import spotipy class Spomato(): """Object used to access spotify API through spotipy and generate playlists. This can take a combination user's saved tracks, playlists, and/or artist's songs to generate a playlist of a specified length. This was conceived to use the Tomato Timer method as Spotify playlists. This does require the user to provide a user API token from the spotify API. The API scopes used by this library are playlist-read-private, playlist-modify-private, and user-library-read. Parameters ---------- access_token : str A valid Spotify Access token. Attributes ---------- data : dictionary Dictionary storing available data structures to create playlists. spotipy_session : spotipy.client.Spotify A spotipy session to access the spotify API. access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read current_user_id : str The string id of the user of the access token used to create the spotipy session. """ def __init__(self, access_token=None): """Initialization function that sets access token and generates initial spotipy session. Parameters ---------- access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read. Returns ------- None """ self.access_token = access_token self.data = {} self.spotipy_session = self._get_spotipy_session() self.current_user_id = self.spotipy_session.current_user()['id'] def update_token(self, access_token): """Updates the token and spotify session with the provided access_token. Generally used if your access token has expired. Parameters ---------- access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read. Returns ------- None """ # update the class access token and the spotipy session self.access_token = access_token self.spotipy_session = self._get_spotipy_session() self.current_user_id = self.spotipy_session.current_user()['id'] def _get_spotipy_session(self): """Internal Function to create a new spotify session. Returns ------- spotipy_session : spotipy.client.Spotify A spotipy session to access the spotify API. """ return spotipy.Spotify(auth=self.access_token) @staticmethod def _parse_album(album_data, market='US'): """Parses the album data returned from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- album_data : dict A dictionary of album data from Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the album data and parse the track data series_list = [] album_tracks = album_data['tracks']['items'] for record in album_tracks: songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df @staticmethod def _parse_user_playlist(data, market='US'): """Parses a user playlist data set from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- data : dictionary Contains songs in a playlist from the Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the playlist data and parse the track data series_list = [] data = data['tracks']['items'] for item in data: record = item['track'] songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df =
pd.DataFrame(columns=['song_id', 'time'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jan 20 21:05:00 2020 @author: Starlitnightly """ import itertools import numpy as np import pandas as pd def FindERG( data, depth=2): ''' Find out endogenous reference gene Parameters ---------- data:pandas.DataFrmae DataFrame of data points with each entry in the form:['gene_id','sample1',...] depth:int Accuracy of endogenous reference gene,must be larger that 2 The larger the number, the fewer genes are screened out,Accuracy improvement Returns ------- result:list a list of endogenous reference gene ''' if depth==1: print('the depth must larger than 2') return if len(data.columns)<=2: print('the number of samples must larger than 2') return if depth>(len(data.columns)-1): print('depth larger than samples') return time=0 result=[]#result datana=pd.DataFrame() data1=pd.DataFrame() data2=pd.DataFrame() for i in itertools.combinations(range(1,depth+1), 2): time=time+1 #calculate circle times data=data.dropna() data=data.drop_duplicates(data.columns[0]) data.reset_index(drop=True, inplace=True) last_std=pd.DataFrame() length=len(data)//1000 remain=len(data)-1000*length for k in range(1,length+1): datana=data.iloc[1000*(k-1):1000*k,0:1] data1=data.iloc[1000*(k-1):1000*k,i[0]:i[0]+1] data2=data.iloc[1000*(k-1):1000*k,i[1]:i[1]+1] l1=pd.DataFrame() l2=pd.DataFrame() for j in range(1000*(k-1),1000*k): l1[datana.loc[j]]=data1 l2[datana.loc[j]]=data2 l1=l1.div(np.asarray(data.iloc[1000*(k-1):1000*k,i[0]])) l2=l2.div(np.asarray(data.iloc[1000*(k-1):1000*k,i[1]])) l=l1-l2 l_std=l.std(axis=0) l_std=l_std.sort_values()[0:20] if(k==1): last_std=l_std else: last_std=
pd.concat([last_std,l_std])
pandas.concat
import os import cx_Oracle import logging import numpy as np import pandas as pd import re import zipfile import logging from datetime import datetime from glob import glob from os.path import split, normpath, join, relpath, basename from pathlib import Path from piper.decorators import shape from piper.text import _file_with_ext from piper.text import _get_qual_file from piper.verbs import clean_names from piper.verbs import str_trim from zipfile import ZipFile, ZIP_DEFLATED from piper.xl import WorkBook logger = logging.getLogger(__name__) from typing import ( Any, Callable, Dict, Hashable, Iterable, List, NamedTuple, Optional, Pattern, Set, Tuple, Union, ) logger = logging.getLogger(__name__) # duplicate_files() {{{1 def duplicate_files(source=None, glob_pattern='*.*', recurse=False, filesize=1, keep=False, xl_file=None): ''' select files that have the same file size. This files are are assumed to be 'duplicates'. Parameters ---------- source source directory, default None glob_pattern filter extension suffix, default '*.*' recurse default False, if True, recurse source directory provided filesize file size filter, default 1 (kb) keep {‘first’, ‘last’, False}, default ‘first’ Determines which duplicates (if any) to mark. first: Mark duplicates as True except for the first occurrence. last: Mark duplicates as True except for the last occurrence. False: Mark all duplicates as True. xl_file default None: output results to Excel workbook to xl_file Returns ------- pd.DataFrame Examples -------- .. code-block:: from piper.io import duplicate_files source = '/home/mike/Documents' duplicate_files(source, glob_pattern='*.*', recurse=True, filesize=2000000, keep=False).query("duplicate == True") **References** https://docs.python.org/3/library/pathlib.html https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.duplicated.html ''' def func(f): try: size = os.stat(f.as_posix()).st_size except OSError as e: size = 0 data = {'parent': f.parents[0].as_posix(), 'name': f.name, # 'stem': f.stem, 'suffix': f.suffix, 'size': size} return data file_data = list_files(source=source, glob_pattern = glob_pattern, recurse=recurse, regex=None) file_data = [func(x) for x in file_data] df = (
pd.DataFrame(file_data)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt plt.rc('figure', figsize=(14,6)) alugueis = pd.read_csv('/home/laumzav/PycharmProjects/Python_study/AlCuOn/Pandas/aluguel_tratado.csv') alugueis.boxplot(['Valor']) corte = alugueis[alugueis['Valor'] <= 100000.00] corte.boxplot(['Valor']) q1 = alugueis['Valor'].quantile(.25) q3 = alugueis['Valor'].quantile(.75) iiq = q3 - q1 limite_inferior = q1 - 1.5 * iiq limite_superior = q3 + 1.5 * iiq selecao = (alugueis['Valor'] >= limite_inferior) & (alugueis['Valor'] <= limite_superior) corte = alugueis[selecao] corte.boxplot(['Valor']) corte.hist(['Valor']) grupo_tipo = alugueis.groupby('Tipo') q1 = grupo_tipo['Valor'].quantile(.25) q3 = grupo_tipo['Valor'].quantile(.75) iiq = q3 - q1 limite_inferior = q1 - 1.5 * iiq limite_superior = q3 + 1.5 * iiq corte =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(
StringIO(data)
pandas.compat.StringIO
import re from abc import ABC, abstractmethod import pandas as pd import negation.modifiers as modifiers import negation.risk_vars as risk_vars from pprint import pprint # pyreverse -o png -p classdiagram1 negation\risk.py # %% class Factory: def __init__(self): pass _numeric_vars = ["age", "vef", "sbp", "bmi", "creatinine"] _factorial_vars = ["nyha"] _binary_vars = ["gender", "current smoker", "diabetes", "copd", "heart failure", "beta blocker", "acei"] def createVar(self, type, object): # print("type:", type) if type in self._numeric_vars: return(risk_vars.NumVar(object)) elif type in self._factorial_vars: return(risk_vars.FactVar(object)) elif type in self._binary_vars: return(risk_vars.BinVar(object)) else: raise Exception("Variable type not recognized:", type, object) _examination_mods = ["indication", "hypothetical"] _negation_mods = [ "definite_negated_existence", "probable_negated_existence", "probable_existence", "definite_existence", "ambivalent_existence", "pseudoneg"] _date_mods = ["date"] _temporality_mods = ["historical", "future", "acute"] def createMod(self, type, object): if type in self._examination_mods: return(modifiers.ExamMod(object)) elif type in self._negation_mods: return(modifiers.NegMod(object)) elif type in self._date_mods: return(modifiers.DateMod(object)) elif type in self._temporality_mods: return(modifiers.TempMod(object)) else: raise Exception("Modifier type not recognized:", type, object) class PatientVars: _risk_vars = ["vef", "sbp", "nyha", "current smoker", "diabetes", "copd"] # i = 0 # for var in risk_vars: # risk_vars[i] = "['" + risk_vars[i] + "']" # i += 1 def __init__(self): # self.vef = [] # self.sbp = [] # self.nyha = [] # self.current_smoker = [] # self.diabetes = [] # self.copd = [] for var in self._risk_vars: setattr(self, var, []) dict = {} for key in self._risk_vars: dict[key] = [] self.dict = dict def addFinding(self, object): """ Adds RiskVar object to PatientVars dictionary based on the category of the RiskVar object """ atr_list = getattr(self, object.cat) atr_list.append(object) setattr(self, object.cat, atr_list) def process(self): """Processes all findings. Must be performed before querying results """ self._setFindingIndex() # self._detMissingAtrs() # self._detAbundantAtrs() # self._conflictAtrs() def loopOverFindings(self, method): for var in self._risk_vars: findings = getattr(self, var) if findings: for finding in findings: func = getattr(finding, method) pprint(func()) def loopOverMods(self, method): for var in self._risk_vars: findings = getattr(self, var) if findings: for finding in findings: finding.loopOverMods(method) def _setFindingIndex(self): for var in self._risk_vars: findings = getattr(self, var) for index, finding in enumerate(findings): setattr(finding, "index", index) # def _detMissingAtrs(self): # """Add all keys of missing attributes to list self.missing # """ # self.missing = [] # self.present = [] # for key in self.dict: # if not self.dict[key]: # self.missing.append(key) # else: # self.present.append(key) # def _detAbundantAtrs(self): # """Compares for each attribute the findings if multiple findings # """ # self.abundant = [] # for key in self.dict: # atr = self.dict[key] # if len(atr) > 1: # self.abundant.append(key) # def _conflictAtrs(self): # """Keep track of all matching and conflicting findings per variable # Stores them in a dictionary # """ # # Initialize conflicts dictionary # conflicts = {} # for key in self.abundant: # conflicts[key] = {"match":[], "conflict":[]} # # Loop over variable objects per variable # for key in self.abundant: # for i in range(len(self.dict[key])): # for j in range(i+1, len(self.dict[key])): # match = self.dict[key][i] == self.dict[key][j] # if match: # conflicts[key]["match"].append((i,j)) # else: # conflicts[key]["conflict"].append((i,j)) # self.conflicts = conflicts # def _gatherResults(self): # new_dict = {} # for atr in self.dict: # ls = [] # for finding in self.dict[atr]: # if finding.type == "numeric": # result = self._gatherNumResult(finding) # elif finding.type == "factorial": # result = self._gatherFactResult(finding) # elif finding.type == "binary": # result = self._gatherBinResult(finding) # ls.append(result) # new_dict.update({atr : ls}) # def _gatherNumResult(self, finding): # values = finding.rec_values # def getOverview(self): # new_dict = {} # for atr in self.dict: # ls = [] # for finding in self.dict[atr]: # data = finding.getOverview() # ls.append(data) # new_dict.update({atr : ls}) # return(new_dict) # def getMods(self): # new_dict = {} # for atr in self.dict: # findings = self.dict[atr] # if findings: # ls = [] # for finding in findings: # mods = finding.mod # if mods: # for mod in mods: # ls.append((mod.phrase, mod.type, mod.value)) # new_dict.update({atr : ls}) # return(new_dict) def getSummary(self): df = pd.DataFrame() for var in self._risk_vars: findings = getattr(self, var) if findings: for finding in findings: df = df.append(finding.getSummary(), ignore_index=True, sort=False) return(df) def view(self): dict = {} for var in self._risk_vars: findings = getattr(self, var) sub_dict = {} for index, finding in enumerate(findings): # sub_dict.update({"mod" : finding.getModInfo()}) sub_dict.update({ index : finding.view()}) dict.update({var : sub_dict}) return(dict) def getDataframe2(self): df = pd.DataFrame() for var in self._risk_vars: findings = getattr(self, var) # In case there are findings for current var: if findings: for finding in findings: df = df.append(finding.getDataframe(), ignore_index=True, sort=False) return(df) def getDataframe(self): finding_df =
pd.DataFrame()
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0, 'b', 1, 'd', 'e', 'f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a', 'b', 'c', 0, 1, 'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)), 'b', 'c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1, 2, 3, 4]) result = s.mask(s > 2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s > 1, 'X') self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, ['X', 'Y', 'Z']) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, np.array(['X', 'Y', 'Z'])) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1, 2, 3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment', None) df = DataFrame({"aa": range(5), "bb": [2.2] * 5}) df["cc"] = 0.0 ck = [True] * len(df) df["bb"].iloc[0] = .13 # TODO: unused df_tmp = df.iloc[ck] # noqa df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment', 'raise') # GH 3217 df = DataFrame(dict(a=[1, 3], b=[np.nan, 2])) df['c'] = np.nan df['c'].update(pd.Series(['foo'], index=[0])) expected = DataFrame(dict(a=[1, 3], b=[np.nan, 2], c=['foo', np.nan])) tm.assert_frame_equal(df, expected) def test_preserveRefs(self): seq = self.ts[[5, 10, 15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_drop(self): # unique s = Series([1, 2], index=['one', 'two']) expected = Series([1], index=['one']) result = s.drop(['two']) assert_series_equal(result, expected) result = s.drop('two', axis='rows') assert_series_equal(result, expected) # non-unique # GH 5248 s = Series([1, 1, 2], index=['one', 'two', 'one']) expected = Series([1, 2], index=['one', 'one']) result = s.drop(['two'], axis=0) assert_series_equal(result, expected) result = s.drop('two') assert_series_equal(result, expected) expected = Series([1], index=['two']) result = s.drop(['one']) assert_series_equal(result, expected) result = s.drop('one') assert_series_equal(result, expected) # single string/tuple-like s = Series(range(3), index=list('abc')) self.assertRaises(ValueError, s.drop, 'bc') self.assertRaises(ValueError, s.drop, ('a', )) # errors='ignore' s = Series(range(3), index=list('abc')) result = s.drop('bc', errors='ignore') assert_series_equal(result, s) result = s.drop(['a', 'd'], errors='ignore') expected = s.ix[1:] assert_series_equal(result, expected) # bad axis self.assertRaises(ValueError, s.drop, 'one', axis='columns') # GH 8522 s = Series([2, 3], index=[True, False]) self.assertTrue(s.index.is_object()) result = s.drop(True) expected = Series([3], index=[False]) assert_series_equal(result, expected) def test_align(self): def _check_align(a, b, how='left', fill=None): aa, ab = a.align(b, join=how, fill_value=fill) join_index = a.index.join(b.index, how=how) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: self.assertTrue((aa.reindex(diff_a) == fill).all()) if len(diff_b) > 0: self.assertTrue((ab.reindex(diff_b) == fill).all()) ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) self.assertEqual(aa.name, 'ts') self.assertEqual(ea.name, 'ts') self.assertEqual(ab.name, 'ts') self.assertEqual(eb.name, 'ts') for kind in JOIN_TYPES: _check_align(self.ts[2:], self.ts[:-5], how=kind) _check_align(self.ts[2:], self.ts[:-5], how=kind, fill=-1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind) _check_align(self.ts[:0], self.ts[:-5], how=kind, fill=-1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind) _check_align(self.ts[:-5], self.ts[:0], how=kind, fill=-1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind) _check_align(self.ts[:0], self.ts[:0], how=kind, fill=-1) def test_align_fill_method(self): def _check_align(a, b, how='left', method='pad', limit=None): aa, ab = a.align(b, join=how, method=method, limit=limit) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: for meth in ['pad', 'bfill']: _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth, limit=1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth, limit=1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth, limit=1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth, limit=1) def test_align_nocopy(self): b = self.ts[:5].copy() # do copy a = self.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 self.assertFalse((a[:5] == 5).any()) # do not copy a = self.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 self.assertTrue((a[:5] == 5).all()) # do copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 self.assertFalse((b[:3] == 5).any()) # do not copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 self.assertTrue((b[:2] == 5).all()) def test_align_sameindex(self): a, b = self.ts.align(self.ts, copy=False) self.assertIs(a.index, self.ts.index) self.assertIs(b.index, self.ts.index) # a, b = self.ts.align(self.ts, copy=True) # self.assertIsNot(a.index, self.ts.index) # self.assertIsNot(b.index, self.ts.index) def test_align_multiindex(self): # GH 10665 midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') s1 = pd.Series(np.arange(12, dtype='int64'), index=midx) s2 = pd.Series(np.arange(2, dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = s1.align(s2, join='left') res2l, res2r = s2.align(s1, join='right') expl = s1 tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) res1l, res1r = s1.align(s2, join='right') res2l, res2r = s2.align(s1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) def test_reindex(self): identity = self.series.reindex(self.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: self.assertTrue(np.may_share_memory(self.series.index, identity.index)) except (AttributeError): pass self.assertTrue(identity.index.is_(self.series.index)) self.assertTrue(identity.index.identical(self.series.index)) subIndex = self.series.index[10:20] subSeries = self.series.reindex(subIndex) for idx, val in compat.iteritems(subSeries): self.assertEqual(val, self.series[idx]) subIndex2 = self.ts.index[10:20] subTS = self.ts.reindex(subIndex2) for idx, val in compat.iteritems(subTS): self.assertEqual(val, self.ts[idx]) stuffSeries = self.ts.reindex(subIndex) self.assertTrue(np.isnan(stuffSeries).all()) # This is extremely important for the Cython code to not screw up nonContigIndex = self.ts.index[::2] subNonContig = self.ts.reindex(nonContigIndex) for idx, val in compat.iteritems(subNonContig): self.assertEqual(val, self.ts[idx]) # return a copy the same index here result = self.ts.reindex() self.assertFalse((result is self.ts)) def test_reindex_nan(self): ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8]) i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2] assert_series_equal(ts.reindex(i), ts.iloc[j]) ts.index = ts.index.astype('object') # reindex coerces index.dtype to float, loc/iloc doesn't assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) def test_reindex_corner(self): # (don't forget to fix this) I think it's fixed self.empty.reindex(self.ts.index, method='pad') # it works # corner case: pad empty series reindexed = self.empty.reindex(self.ts.index, method='pad') # pass non-Index reindexed = self.ts.reindex(list(self.ts.index)) assert_series_equal(self.ts, reindexed) # bad fill method ts = self.ts[::2] self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo') def test_reindex_pad(self): s = Series(np.arange(10), dtype='int64') s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) # GH4604 s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']) new_index = ['a', 'g', 'c', 'f'] expected = Series([1, 1, 3, 3], index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() assert_series_equal(result, expected.astype('float64')) result = s.reindex(new_index).ffill(downcast='infer') assert_series_equal(result, expected) expected = Series([1, 5, 3, 5], index=new_index) result = s.reindex(new_index, method='ffill') assert_series_equal(result, expected) # inferrence of new dtype s = Series([True, False, False, True], index=list('abcd')) new_index = 'agc' result = s.reindex(list(new_index)).ffill() expected = Series([True, True, False], index=list(new_index)) assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False, index=lrange(0, 5)) result = s.shift(1).fillna(method='bfill') expected = Series(False, index=lrange(0, 5)) assert_series_equal(result, expected) def test_reindex_nearest(self): s = Series(np.arange(10, dtype='int64')) target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = Series(np.around(target).astype('int64'), target) assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest') assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest', tolerance=1) assert_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = Series([0, 1, np.nan, 2], target) assert_series_equal(expected, actual) def test_reindex_backfill(self): pass def test_reindex_int(self): ts = self.ts[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_int.dtype, np.float_) # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) self.assertEqual(reindexed_int.dtype, np.int_) def test_reindex_bool(self): # A series other than float, int, string, or object ts = self.ts[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_bool.dtype, np.object_) # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) self.assertEqual(reindexed_bool.dtype, np.bool_) def test_reindex_bool_pad(self): # fail ts = self.ts[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(self.ts.index, method='pad') self.assertTrue(isnull(filled_bool[:5]).all()) def test_reindex_like(self): other = self.ts[::2] assert_series_equal(self.ts.reindex(other.index), self.ts.reindex_like(other)) # GH 7179 day1 = datetime(2013, 3, 5) day2 = datetime(2013, 5, 5) day3 = datetime(2014, 3, 5) series1 = Series([5, None, None], [day1, day2, day3]) series2 = Series([None, None], [day1, day3]) result = series1.reindex_like(series2, method='pad') expected = Series([5, np.nan], index=[day1, day3]) assert_series_equal(result, expected) def test_reindex_fill_value(self): # ----------------------------------------------------------- # floats floats = Series([1., 2., 3.]) result = floats.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) result = floats.reindex([1, 2, 3], fill_value=0) expected = Series([2., 3., 0], index=[1, 2, 3]) assert_series_equal(result, expected) # ----------------------------------------------------------- # ints ints = Series([1, 2, 3]) result = ints.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) # don't upcast result = ints.reindex([1, 2, 3], fill_value=0) expected = Series([2, 3, 0], index=[1, 2, 3]) self.assertTrue(issubclass(result.dtype.type, np.integer)) assert_series_equal(result, expected) # ----------------------------------------------------------- # objects objects = Series([1, 2, 3], dtype=object) result = objects.reindex([1, 2, 3]) expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = objects.reindex([1, 2, 3], fill_value='foo') expected = Series([2, 3, 'foo'], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) # ------------------------------------------------------------ # bools bools = Series([True, False, True]) result = bools.reindex([1, 2, 3]) expected =
Series([False, True, np.nan], index=[1, 2, 3], dtype=object)
pandas.Series
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = cudf.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: assert_exceptions_equal( lfunc=ps_where.where, rfunc=gs_where.where, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False if error is NotImplementedError else True, ) assert_exceptions_equal( lfunc=ps_mask.mask, rfunc=gs_mask.mask, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False, ) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = cudf.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): cudf.from_pandas(data) with pytest.raises(error): cudf.Series(data) with pytest.raises(error): cudf.from_pandas(pdf) with pytest.raises(error): cudf.DataFrame(pdf) else: df = cudf.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = cudf.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = cudf.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = cudf.Series(column.as_column(data, nan_as_null=nan_as_null)) got = cudf.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) assert_exceptions_equal( lfunc=psr.astype, rfunc=gsr.astype, lfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), rfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), ) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = cudf.DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = cudf.DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf = pd.DataFrame(pd_data, columns=cols, index=index) gdf = cudf.DataFrame(gd_data, columns=cols, index=index) assert_eq(pdf, gdf, check_dtype=False) # verify with columns pdf = pd.DataFrame(pd_data, columns=cols) gdf = cudf.DataFrame(gd_data, columns=cols) assert_eq(pdf, gdf, check_dtype=False) pdf = pd.DataFrame(pd_data) gdf = cudf.DataFrame(gd_data) assert_eq(pdf, gdf, check_dtype=False) if numba_data is not None: gdf = cudf.DataFrame(numba_data) assert_eq(pdf, gdf, check_dtype=False) @pytest.mark.parametrize( "col_data", [ range(5), ["a", "b", "x", "y", "z"], [1.0, 0.213, 0.34332], ["a"], [1], [0.2323], [], ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar(col_data, assign_val): pdf = pd.DataFrame({"a": col_data}) gdf = cudf.DataFrame({"a": col_data}) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) @pytest.mark.parametrize( "col_data", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar_with_scalar_cols(col_data, assign_val): pdf = pd.DataFrame( { "a": cupy.asnumpy(col_data) if isinstance(col_data, cupy.ndarray) else col_data }, index=["dummy_mandatory_index"], ) gdf = cudf.DataFrame({"a": col_data}, index=["dummy_mandatory_index"]) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) def test_dataframe_info_basic(): buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 10 entries, a to 1111 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 859.0+ bytes """ ) df = pd.DataFrame( np.random.randn(10, 10), index=["a", "2", "3", "4", "5", "6", "7", "8", "100", "1111"], ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s def test_dataframe_info_verbose_mem_usage(): buffer = io.StringIO() df = pd.DataFrame({"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Columns: 2 entries, a to b dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=False) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) df = pd.DataFrame( {"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}, index=["sdfdsf", "sdfsdfds", "dsfdf"], ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 3 entries, sdfdsf to dsfdf Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 91.0 bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True, memory_usage="deep") s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0 bytes """ ) df.info(buf=buffer, verbose=True, memory_usage="deep") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) def test_dataframe_info_null_counts(): int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 int_col int64 1 text_col object 2 float_col float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes """ ) df.info(buf=buffer, verbose=True, null_counts=False) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, verbose=True, max_cols=0) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 0 entries Empty DataFrame""" ) df.info(buf=buffer, verbose=True) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame( { "a": [1, 2, 3, None, 10, 11, 12, None], "b": ["a", "b", "c", "sd", "sdf", "sd", None, None], } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Dtype --- ------ ----- 0 a int64 1 b object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) pd.options.display.max_info_rows = 2 df.info(buf=buffer, max_cols=2, null_counts=None) pd.reset_option("display.max_info_rows") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 6 non-null int64 1 b 6 non-null object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) df.info(buf=buffer, max_cols=2, null_counts=None) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, null_counts=True) actual_string = buffer.getvalue() assert str_cmp == actual_string @pytest.mark.parametrize( "data1", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize("rtol", [0, 0.01, 1e-05, 1e-08, 5e-1, 50.12]) @pytest.mark.parametrize("atol", [0, 0.01, 1e-05, 1e-08, 50.12]) def test_cudf_isclose(data1, data2, rtol, atol): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, rtol=rtol, atol=atol)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose(data1, data2, rtol=rtol, atol=atol) assert_eq(expected, actual) actual = cudf.isclose( cupy.array(data1), cupy.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( np.array(data1), np.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( pd.Series(data1), pd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) @pytest.mark.parametrize( "data1", [ [ -1.9876543, -2.9876654, np.nan, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, np.nan, -21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, np.nan, np.nan, np.nan, 21.1212, ], ], ) @pytest.mark.parametrize("equal_nan", [True, False]) def test_cudf_isclose_nulls(data1, data2, equal_nan): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, equal_nan=equal_nan)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), equal_nan=equal_nan ) assert_eq(expected, actual, check_dtype=False) actual = cudf.isclose(data1, data2, equal_nan=equal_nan) assert_eq(expected, actual, check_dtype=False) def test_cudf_isclose_different_index(): s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 3, 4, 2], ) expected = cudf.Series([True] * 6, index=s1.index) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 10, 4, 2], ) expected = cudf.Series( [True, True, True, False, True, True], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[100, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 100, 10, 4, 2], ) expected = cudf.Series( [False, True, True, False, True, False], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) def test_dataframe_to_dict_error(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [9, 5, 3]}) with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df.to_dict() with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df["a"].to_dict() @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]}), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], } ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=[10, 20, 30, 40, 50, 60], ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=["a", "b", "c", "d", "e", "f"], ), pd.DataFrame(index=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(columns=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(index=[10, 11, 12]), pd.DataFrame(columns=[10, 11, 12]), pd.DataFrame(), pd.DataFrame({"one": [], "two": []}), pd.DataFrame({2: [], 1: []}), pd.DataFrame( { 0: [1, 2, 3, 4, 5, 10], 1: ["abc", "def", "ghi", "xyz", "pqr", "abc"], 100: ["a", "b", "b", "x", "z", "a"], }, index=[10, 20, 30, 40, 50, 60], ), ], ) def test_dataframe_keys(df): gdf = cudf.from_pandas(df) assert_eq(df.keys(), gdf.keys()) @pytest.mark.parametrize( "ps", [ pd.Series([1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]), pd.Series(["abc", "def", "ghi", "xyz", "pqr", "abc"]), pd.Series( [1, 2, 3, 4, 5, 10], index=["abc", "def", "ghi", "xyz", "pqr", "abc"], ), pd.Series( ["abc", "def", "ghi", "xyz", "pqr", "abc"], index=[1, 2, 3, 4, 5, 10], ), pd.Series(index=["a", "b", "c", "d", "e", "f"], dtype="float64"), pd.Series(index=[10, 11, 12], dtype="float64"), pd.Series(dtype="float64"),
pd.Series([], dtype="float64")
pandas.Series
""" Usage: Specify paths to: training and test sets; screenshots screen size; CSV input path and output paths. Outputs two CSV files (training and test), with labels and positions. These CSV files will be used to generate TFRecord format files. """ import pandas as pd import os from collections import OrderedDict # set paths to training and test sets training_set_path = os.path.join('.', 'training_set') test_set_path = os.path.join('.', 'test_set') train_fnames = os.listdir(training_set_path) test_fnames = os.listdir(test_set_path) # screenshots size, this could be inferred but since I took it localy I know the values screen_width = 1366 screen_height = 768 # CSV file names window_positions_path = 'windows_positions.csv' training_labels_path = 'training_labels.csv' # output fname test_labels_path = 'test_labels.csv' # output fname # import window position data windows_positions = pd.read_csv( window_positions_path, header=0) # split to training and test labels training_set_labels = [] test_set_labels = [] for window_ind, window_row in windows_positions.iterrows(): row = OrderedDict() row['filename'] = str(window_row.observation_id) + '.png' row['width'] = screen_width row['height'] = screen_height row['class'] = 'Chrome' row['xmin'] = window_row.pos_x row['ymin'] = window_row.pos_y row['xmax'] = window_row.pos_x2 row['ymax'] = window_row.pos_y2 # test if this should go to training or testing CSV if row['filename'] in train_fnames: training_set_labels.append(row) elif row['filename'] in test_fnames: test_set_labels.append(row) else: raise ValueError('Encoutered unknown file') # convert OrderedDict to df training_set_labels =
pd.DataFrame(training_set_labels)
pandas.DataFrame
# -*- coding: utf-8 -*- """Functions for creating an oemof energy system. --- @ <NAME> - <EMAIL>, 27.01.2020 """ import os import pandas as pd import logging def import_scenario(filepath): """Imports data from a spreadsheet scenario file. The excel sheet has to contain the following sheets: - energysystem - buses - transformers - sinks - sources - storages - powerlines - time_series ---- Keyword arguments: filepath : obj:'str' -- path to excel scenario file ---- Returns: nodes_data : obj:'dict' -- dictionary containing data from excel scenario file ---- @ <NAME> - <EMAIL>, 05.03.2020 """ from oemof.tools import logger # reads node data from Excel sheet if not filepath or not os.path.isfile(filepath): raise FileNotFoundError( 'Excel data file {} not found.'.format(filepath)) # creates nodes from excel sheet xls = pd.ExcelFile(filepath) nd = {'buses': xls.parse('buses'), 'transformers': xls.parse('transformers'), 'demand': xls.parse('sinks'), 'storages': xls.parse('storages'), 'links': xls.parse('links'), 'timeseries': xls.parse('time_series'), 'energysystem': xls.parse('energysystem'), 'sources': xls.parse('sources') #'constraints': xls.parse('constraints') } # error message, if no nodes are provided if not nd: raise ValueError('No nodes data provided.') # returns logging info logger.define_logging() logging.info('Spreadsheet scenario successfully imported.') # returns nodes return nd def define_energy_system(nodes_data): """Creates an energy system. Creates an energy system with the parameters defined in the given .xlsx-file. The file has to contain a sheet called "energysystem", which has to be structured as follows: |start_date |end_date |temporal resolution| |-------------------|-------------------|-------------------| |YYYY-MM-DD hh:mm:ss|YYYY-MM-DD hh:mm:ss|h | ---- Keyword arguments: nodes_data : obj:'dict' -- dictionary containing data from excel scenario file ---- Returns: esys : obj:'dict' -- oemof energy system ---- @ <NAME> - <EMAIL>, 05.03.2020 """ from oemof import solph # Importing energysystem parameters from the scenario ts = next(nodes_data['energysystem'].iterrows())[1] temp_resolution = ts['temporal resolution'] start_date = ts['start date'] end_date = ts['end date'] # creates time index datetime_index = pd.date_range(start_date, end_date, freq=temp_resolution) # initialisation of the energy system esys = solph.EnergySystem(timeindex=datetime_index) # defines a time series nodes_data['timeseries'].set_index('timestamp', inplace=True) nodes_data['timeseries'].index = pd.to_datetime( nodes_data['timeseries'].index) # returns logging info logging.info( 'Date time index successfully defined:\n start date: ' + str(start_date) + ',\n end date: ' + str(end_date) + ',\n temporal resolution: ' + str(temp_resolution)) # returns oemof energy system as result of this function return esys def format_weather_dataset(filepath): """ The feedinlib can only read .csv data sets, so the weather data from the .xlsx scenario file have to be converted into a .csv data set and saved ---- Keyword arguments: filepath: obj:'str' -- -- path to excel scenario file """ # The feedinlib can only read .csv data sets, so the weather data # from the .xlsx scenario file have to be converted into a # .csv data set and saved read_file =
pd.read_excel(filepath, sheet_name='weather data')
pandas.read_excel
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 =
pd.date_range('1/1/2000', freq='D', periods=5, tz=tz)
pandas.date_range
import pandas as pd import util_functions as uf import os import numpy as np def create_dockless_trips(cur): # This script creates the dockless trips received May, 18, 2018 AWS table cur.execute(""" DROP TABLE IF EXISTS dockless_trips; CREATE TABLE dockless_trips( duration_in_minute numeric, EndLatitude numeric, EndLongitude numeric, end_time timestamp, endutc timestamp, EndWard numeric, Distance numeric, MilesMoved numeric, Operator varchar(50), StartLatitude numeric, StartLongitude numeric, start_time timestamp, startutc timestamp, StartWard numeric, TripID varchar(50) , TripDistance numeric, UserID varchar(50), BikeID varchar(50), UniqueTripID varchar(50) PRIMARY KEY, OperatorClean varchar(50) ) """) def patch_user_id(): # Userid is missing for ~15,000 limebike records in most recent file provided by DDOT. Patch with older file patch_df =
pd.read_sql("""select DISTINCT userid::text as user_id_patch, startutc, endutc, operatorclean, startlatitude::text as start_lat, startlongitude::text as start_lon, endlatitude::text as end_lat, endlongitude::text as end_lon FROM dockless_trips_org WHERE OperatorClean='lime'; """, con=conn)
pandas.read_sql
import gym from gym import error, spaces, utils from gym.utils import seeding import os import time import numpy as np from numpy import random import pandas as pd import logging import pdb import tempfile from sqlalchemy import create_engine from sklearn.preprocessing import MinMaxScaler from Config import Config conf = Config() log = logging.getLogger(__name__) log.info('%s logger started.',__name__) def load_data(instrument, train): if train: data_path = conf.TRAINING_DATA_PATH csv_path = os.path.join(data_path, instrument + conf.csv_file) if conf.num_of_rows_read > 0: return pd.read_csv(csv_path, sep=';', nrows=conf.num_of_rows_read) else: return
pd.read_csv(csv_path, sep=';')
pandas.read_csv
#standard python libraries import json import atexit import datetime import os import warnings import math import shutil import joblib #external libraries from binance.client import Client import numpy as np import pandas as pd import ta from sklearn import preprocessing import torch #external methods from utils import read_config, read_json from hyperparameters import HyperParameters, CandlestickInterval, Derivation, Scaling, Balancing, Shuffle, ScalerType class dbid(): """ Description: Class which can be used like a dictionary. This Class is not threadsafe! The changes to the dictionary, only get written to disk when the instance goes out of scope! Arguments: -path (string): Path of the database """ def __init__(self, path): self.path = f"{path}/dbid.json" #load in the dbid with open(self.path) as json_file: self.dbid = json.load(json_file) #register the dump at the end of lifetime atexit.register(self.dump) def __getitem__(self, key): return self.dbid[key] def __setitem__(self, key, item): #change the dict in ram self.dbid[key] = item def dump(self): #save changes to json file with open(self.path, 'w') as fp: json.dump(self.dbid, fp, indent=4) class DataBase(): """ Description: This is the base Database class, on which every other Database Objects builds upon. Arguments: -path[string]: Path of the Database """ def __init__(self, path): #save the params self.path = path #check if the path exists and is a database if not os.path.isdir(path): raise Exception("The path you chose is not existing") if not os.path.isfile(f"{path}/dbid.json"): raise Exception("The path you chose is not a DataBase") #setup dbid self.dbid = dbid(path=self.path) def __getitem__(self, index): """ Description: Method for accessing data of the database. The access is direct from the harddrive (slower but more memory efficient) Arguments: -index[string, list]: Generally: [candlestick_interval, list of features]. To access the whole dataframe only specify the candlestick_interval you want e.g. db["5m"]. To access only one feature specify the datatype and the feature you want e.g. db["5m", "close"] To access multiple features specify the datatype and a list of features you want e.g. db["5m", ["close", "open"]] Return: -data[pd.DataFrame]: Returns always a DataFrame in the shape (rows, number of specified features) """ #make sure that candlestick interval is of type CandlestickInterval if type(index) == tuple: if not isinstance(index[0], CandlestickInterval): raise Exception(f"Make sure your candlestick interval is of type CandlestickInterval and not {type(index[0])}") elif not isinstance(index, CandlestickInterval): raise Exception(f"Make sure your candlestick interval is of type CandlestickInterval and not {type(index)}") #set the path if type(index) == tuple: path = f"{self.path}/{index[0].value}" elif isinstance(index, CandlestickInterval): path = f"{self.path}/{index.value}" else: raise Exception("Your chosen index is not valid") #check if path is available if not os.path.isdir(path): raise Exception("Your chosen kline-interval is not available") #access whole dataframe of certain kline-interval if isinstance(index, CandlestickInterval): #load in the data and return try: data = pd.read_csv(filepath_or_buffer=f"{path}/{index.value}", index_col="index") #convert the date columns data["close_time"]= pd.to_datetime(data["close_time"]) data["open_time"]=
pd.to_datetime(data["open_time"])
pandas.to_datetime
import vectorbt as vbt import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from vectorbt.generic import nb as generic_nb from vectorbt.generic.enums import range_dt from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) mask = pd.DataFrame([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ]), columns=['a', 'b', 'c']) ts = pd.Series([1., 2., 3., 2., 1.], index=mask.index) price = pd.DataFrame({ 'open': [10, 11, 12, 11, 10], 'high': [11, 12, 13, 12, 11], 'low': [9, 10, 11, 10, 9], 'close': [11, 12, 11, 10, 9] }) group_by = pd.Index(['g1', 'g1', 'g2']) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# accessors.py ############# # class TestAccessors: def test_indexing(self): assert mask.vbt.signals['a'].total() == mask['a'].vbt.signals.total() def test_freq(self): assert mask.vbt.signals.wrapper.freq == day_dt assert mask['a'].vbt.signals.wrapper.freq == day_dt assert mask.vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert mask['a'].vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([False, True]).vbt.signals.wrapper.freq is None assert pd.Series([False, True]).vbt.signals(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([False, True]).vbt.signals(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(mask['a'].vbt.signals.fshift(test_n), mask['a'].shift(test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.fshift(test_n).values, generic_nb.fshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.fshift(test_n), mask.shift(test_n, fill_value=False)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal( mask['a'].vbt.signals.bshift(test_n), mask['a'].shift(-test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.bshift(test_n).values, generic_nb.bshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.bshift(test_n), mask.shift(-test_n, fill_value=False)) def test_empty(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.empty(5, index=np.arange(10, 15), name='a'), pd.Series(np.full(5, False), index=np.arange(10, 15), name='a') ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty((5, 3), index=np.arange(10, 15), columns=['a', 'b', 'c']), pd.DataFrame(np.full((5, 3), False), index=np.arange(10, 15), columns=['a', 'b', 'c']) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.empty_like(mask['a']), pd.Series(np.full(mask['a'].shape, False), index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty_like(mask), pd.DataFrame(np.full(mask.shape, False), index=mask.index, columns=mask.columns) ) def test_generate(self): @njit def choice_func_nb(from_i, to_i, col, n): if col == 0: return np.arange(from_i, to_i) elif col == 1: return np.full(1, from_i) else: return np.full(1, to_i - n) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate(5, choice_func_nb, 1, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate((5, 2), choice_func_nb, 1) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [True, False, False], [True, False, False], [True, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, pick_first=True, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [False, False, False], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_generate_both(self): @njit def entry_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] @njit def exit_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) en, ex = pd.Series.vbt.signals.generate_both( 5, entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, True, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, True], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=1, exit_wait=0) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=0, exit_wait=1) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) @njit def entry_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] @njit def exit_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func2_nb, (temp_int,), exit_func2_nb, (temp_int,), entry_pick_first=False, exit_pick_first=False, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_exits(self): @njit def choice_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_exits(choice_func_nb, temp_int), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) @njit def choice_func2_nb(from_i, to_i, col, temp_int): for i in range(from_i, to_i): temp_int[i - from_i] = i return temp_int[:to_i - from_i] pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func2_nb, temp_int, until_next=False, pick_first=False), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [True, True, False], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) mask2 = pd.Series([True, True, True, True, True], index=mask.index) pd.testing.assert_series_equal( mask2.vbt.signals.generate_exits(choice_func_nb, temp_int, until_next=False, skip_until_exit=True), pd.Series( np.array([False, True, False, True, False]), index=mask.index ) ) def test_clean(self): entries = pd.DataFrame([ [True, False, True], [True, False, False], [True, True, True], [False, True, False], [False, True, True] ], index=mask.index, columns=mask.columns) exits = pd.Series([True, False, True, False, True], index=mask.index) pd.testing.assert_frame_equal( entries.vbt.signals.clean(), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[1], pd.DataFrame( np.array([ [False, True, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.clean(entries, entries, entries) def test_generate_random(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, n=3, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([False, True, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), n=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=3, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [True, True, True], [True, True, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [False, False, True], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, prob=0.5, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), prob=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=0.5, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, True], [False, True, False], [False, False, False], [False, False, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, True, True], [False, False, True], [False, False, True], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], pick_first=True, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_random_both(self): # n en, ex = pd.Series.vbt.signals.generate_random_both( 5, n=2, seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, False]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=2, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, True, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, False, True], [False, True, False], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, True], [False, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((2, 3), n=2, seed=seed, entry_wait=1, exit_wait=0) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True] ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((3, 3), n=2, seed=seed, entry_wait=0, exit_wait=1) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((7, 3), n=2, seed=seed, entry_wait=2, exit_wait=2) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True] ]) ) ) n = 10 a = np.full(n * 2, 0.) for i in range(10000): en, ex = pd.Series.vbt.signals.generate_random_both(1000, n, entry_wait=2, exit_wait=2) _a = np.empty((n * 2,), dtype=np.int_) _a[0::2] = np.flatnonzero(en) _a[1::2] = np.flatnonzero(ex) a += _a greater = a > 10000000 / (2 * n + 1) * np.arange(0, 2 * n) less = a < 10000000 / (2 * n + 1) * np.arange(2, 2 * n + 2) assert np.all(greater & less) # probs en, ex = pd.Series.vbt.signals.generate_random_both( 5, entry_prob=0.5, exit_prob=1., seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=0.5, exit_prob=1., seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=[0., 0.5, 1.], exit_prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, True, True], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., exit_wait=0, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=False, exit_pick_first=True, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=True, exit_pick_first=False, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) # none with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) def test_generate_random_exits(self): pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(seed=seed), pd.Series( np.array([False, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, False], [False, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(prob=1., seed=seed), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=[0., 0.5, 1.], seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., wait=0, seed=seed), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., until_next=False, seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_stop_exits(self): e = pd.Series([True, False, False, False, False, False]) t = pd.Series([2, 3, 4, 3, 2, 1]).astype(np.float64) # stop loss pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits(t.vbt.tile(3), [np.nan, -0.5, -1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, True, False], [False, True, False] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # take profit pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits((4 - t).vbt.tile(3), [np.nan, 0.5, 1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, True, True], [False, True, True] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # chain e = pd.Series([True, True, True, True, True, True]) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, True])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, entry_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, False, True])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) # until_next and pick_first e2 = pd.Series([True, True, True, True, True, True]) t2 = pd.Series([6, 5, 4, 3, 2, 1]).astype(np.float64) ex = e2.vbt.signals.generate_stop_exits(t2, -0.1, until_next=False, pick_first=False) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, True, True, True, True, True])) ) def test_generate_ohlc_stop_exits(self): with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=-0.1) with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=-0.1) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1, reverse=True) ) def _test_ohlc_stop_exits(**kwargs): out_dict = {'stop_price': np.nan, 'stop_type': -1} result = mask.vbt.signals.generate_ohlc_stop_exits( price['open'], price['high'], price['low'], price['close'], out_dict=out_dict, **kwargs ) if isinstance(result, tuple): _, ex = result else: ex = result return result, out_dict['stop_price'], out_dict['stop_type'] ex, stop_price, stop_type = _test_ohlc_stop_exits() pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, 0], [0, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 11.7, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, 1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=[np.nan, 0.1, 0.2], sl_trail=True, tp_stop=[np.nan, 0.1, 0.2]) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, True, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 9.6] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, 1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1, exit_wait=0) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [9.0, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 11.7], [10.8, 9.0, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, 1, -1] ]), index=mask.index, columns=mask.columns) ) (en, ex), stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=0.1, sl_trail=True, tp_stop=0.1, chain=True) pd.testing.assert_frame_equal( en, pd.DataFrame(np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) def test_between_ranges(self): ranges = mask.vbt.signals.between_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 0, 3, 1), (1, 1, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask.vbt.wrapper mask2 = pd.DataFrame([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [False, False, False] ], index=mask.index, columns=mask.columns) other_mask = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [False, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_ranges(other=other_mask) record_arrays_close( ranges.values, np.array([ (0, 0, 0, 1, 1), (1, 0, 1, 1, 1), (2, 1, 0, 2, 1), (3, 1, 1, 2, 1), (4, 2, 0, 3, 1), (5, 2, 1, 3, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper ranges = mask2.vbt.signals.between_ranges(other=other_mask, from_other=True) record_arrays_close( ranges.values, np.array([ (0, 0, 1, 1, 1), (1, 0, 1, 2, 1), (2, 1, 1, 2, 1), (3, 1, 1, 3, 1), (4, 2, 1, 3, 1), (5, 2, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_partition_ranges(self): mask2 = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [True, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 0, 4, 4, 0), (2, 1, 2, 4, 1), (3, 2, 3, 4, 0) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_between_partition_ranges(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 1, 2, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.pos_rank(), pd.Series([-1, 0, 1, -1, 0], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 2, 2], [2, -1, 3] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask['a'], allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 0, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask, allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) def test_partition_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.partition_pos_rank(), pd.Series([-1, 0, 0, -1, 1], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 1, 1], [1, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [0, 0, -1], [-1, 0, 0], [1, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask['a']), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_fns(self): pd.testing.assert_frame_equal( (~mask).vbt.signals.first(), pd.DataFrame( np.array([ [False, True, True], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(1), pd.DataFrame( np.array([ [False, False, False], [False, False, True], [True, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(2), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.from_nth(0), pd.DataFrame( np.array([ [False, True, True], [True, False, True], [True, True, False], [False, True, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 1, 0, 0, 1, 0, 0, 1]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_partition_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.partition_pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 0, 1, 0, 0, 1, 0, 0]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_nth_index(self): assert mask['a'].vbt.signals.nth_index(0) == pd.Timestamp('2020-01-01 00:00:00') pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1), pd.Series([ pd.Timestamp('2020-01-04 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-2), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), np.nan ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) def test_norm_avg_index(self): assert mask['a'].vbt.signals.norm_avg_index() == -0.25 pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(), pd.Series([-0.25, 0.25, 0.0], index=mask.columns, name='norm_avg_index') ) pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(group_by=group_by), pd.Series([0.0, 0.0], index=['g1', 'g2'], name='norm_avg_index') ) def test_index_mapped(self): mapped = mask.vbt.signals.index_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 3, 1, 4, 2]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 1, 1, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 3, 1, 4, 2]) ) assert mapped.wrapper == mask.vbt.wrapper def test_total(self): assert mask['a'].vbt.signals.total() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total(), pd.Series([2, 2, 1], index=mask.columns, name='total') ) pd.testing.assert_series_equal( mask.vbt.signals.total(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total') ) def test_rate(self): assert mask['a'].vbt.signals.rate() == 0.4 pd.testing.assert_series_equal( mask.vbt.signals.rate(), pd.Series([0.4, 0.4, 0.2], index=mask.columns, name='rate') ) pd.testing.assert_series_equal( mask.vbt.signals.rate(group_by=group_by), pd.Series([0.4, 0.2], index=['g1', 'g2'], name='rate') ) def test_total_partitions(self): assert mask['a'].vbt.signals.total_partitions() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(), pd.Series([2, 2, 1], index=mask.columns, name='total_partitions') ) pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total_partitions') ) def test_partition_rate(self): assert mask['a'].vbt.signals.partition_rate() == 1.0 pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(), pd.Series([1.0, 1.0, 1.0], index=mask.columns, name='partition_rate') ) pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(group_by=group_by), pd.Series([1.0, 1.0], index=['g1', 'g2'], name='partition_rate') ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Total', 'Rate [%]', 'First Index', 'Last Index', 'Norm Avg Index [-1, 1]', 'Distance: Min', 'Distance: Max', 'Distance: Mean', 'Distance: Std', 'Total Partitions', 'Partition Rate [%]', 'Partition Length: Min', 'Partition Length: Max', 'Partition Length: Mean', 'Partition Length: Std', 'Partition Distance: Min', 'Partition Distance: Max', 'Partition Distance: Mean', 'Partition Distance: Std' ], dtype='object') pd.testing.assert_series_equal( mask.vbt.signals.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 1.6666666666666667, 33.333333333333336, pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), 0.0, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 1.6666666666666667, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 2, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 2, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a', settings=dict(to_timedelta=False)), pd.Series([
pd.Timestamp('2020-01-01 00:00:00')
pandas.Timestamp
# Copyright (c) 2019-2021 - for information on the respective copyright owner # see the NOTICE file and/or the repository # https://github.com/boschresearch/pylife # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np import pandas as pd import pylife.mesh.meshsignal def test_plain_mesh_3d(): df = pd.DataFrame({'x': [1.0], 'y': [2.0], 'z': [3.0], 'a': [9.9]}) pd.testing.assert_frame_equal(df.plain_mesh.coordinates, pd.DataFrame({'x': [1.0], 'y': [2.0], 'z': [3.0]})) def test_plain_mesh_2d(): df = pd.DataFrame({'x': [1.0], 'y': [2.0], 'b': [3.0], 'a': [9.9]}) pd.testing.assert_frame_equal(df.plain_mesh.coordinates, pd.DataFrame({'x': [1.0], 'y': [2.0]})) def test_plain_mesh_3d_dims(): df =
pd.DataFrame({'x': [1.0, 2.0], 'y': [2.0, 3.0], 'z': [3.0, 4.0], 'b': [3.0, 3.0]})
pandas.DataFrame
""" functions used for EUV/CHD mapping of a full CR """ import time import numpy as np import datetime import pandas as pd from chmap.maps.util.map_manip import combine_cr_maps import chmap.utilities.plotting.psi_plotting as Plotting import software.ezseg.ezsegwrapper as ezsegwrapper import chmap.utilities.datatypes.datatypes as datatypes import chmap.database.db_funs as db_funcs import chmap.data.corrections.lbcc.LBCC_theoretic_funcs as lbcc_funcs import chmap.data.corrections.iit.IIT_pipeline_funcs as iit_funcs #### STEP ONE: SELECT IMAGES #### def query_datebase_cr(db_session, query_time_min=None, query_time_max=None, interest_date=None, center=None, ref_inst=None, cr_rot=None): if query_time_min and query_time_max is not None: query_pd = db_funcs.query_euv_images(db_session=db_session, time_min=query_time_min, time_max=query_time_max) elif cr_rot is not None: query_pd = db_funcs.query_euv_images_rot(db_session, rot_min=cr_rot, rot_max=cr_rot + 1) else: ref_instrument = [ref_inst, ] euv_images = db_funcs.query_euv_images(db_session, time_min=interest_date + datetime.timedelta(hours=1), time_max=interest_date + datetime.timedelta(hours=1), instrument=ref_instrument) # get min and max carrington rotation # TODO: really only want one CR_value cr_rot = euv_images.cr_rot if center: query_pd = db_funcs.query_euv_images_rot(db_session, rot_min=cr_rot - 0.5, rot_max=cr_rot + 0.5) else: query_pd = db_funcs.query_euv_images_rot(db_session, rot_min=cr_rot, rot_max=cr_rot + 1) return query_pd #### STEP TWO: APPLY PRE-PROCESSING CORRECTIONS #### def apply_ipp(db_session, hdf_data_dir, inst_list, row, methods_list, lbc_combo_query, iit_combo_query, n_intensity_bins=200, R0=1.01): start = time.time() index = row[0] image_row = row[1] inst_ind = inst_list.index(image_row.instrument) # apply LBC los_image, lbcc_image, mu_indices, use_ind, theoretic_query = lbcc_funcs.apply_lbc(db_session, hdf_data_dir, lbc_combo_query[inst_ind], image_row=image_row, n_intensity_bins=n_intensity_bins, R0=R0) # apply IIT lbcc_image, iit_image, use_indices, alpha, x = iit_funcs.apply_iit(db_session, iit_combo_query[inst_ind], lbcc_image, use_ind, los_image, R0=R0) # add methods to dataframe ipp_method = {'meth_name': ("LBCC", "IIT"), 'meth_description': ["LBCC Theoretic Fit Method", "IIT Fit Method"], 'var_name': ("LBCC", "IIT"), 'var_description': (" ", " ")} methods_list[index] = methods_list[index].append(pd.DataFrame(data=ipp_method), sort=False) end = time.time() print("Image Pre-Processing Corrections (Limb-Brightening and Inter-Instrument Transformation) have been " "applied to image", image_row.data_id, "in", end - start, "seconds.") return los_image, iit_image, methods_list, use_indices #### STEP THREE: CORONAL HOLE DETECTION #### def chd(db_session, inst_list, los_image, iit_image, use_indices, iit_combo_query, thresh1=0.95, thresh2=1.35, nc=3, iters=1000): start = time.time() # reference alpha, x for threshold sta_ind = inst_list.index('EUVI-A') ref_alpha, ref_x = db_funcs.query_var_val(db_session, meth_name='IIT', date_obs=los_image.info['date_string'], inst_combo_query=iit_combo_query[sta_ind]) # define chd parameters image_data = iit_image.iit_data use_chd = use_indices.astype(int) use_chd = np.where(use_chd == 1, use_chd, los_image.no_data_val) nx = iit_image.x.size ny = iit_image.y.size # calculate new threshold parameters based off reference (AIA) instrument t1 = thresh1 * ref_alpha + ref_x t2 = thresh2 * ref_alpha + ref_x # fortran chd algorithm np.seterr(divide='ignore') ezseg_output, iters_used = ezsegwrapper.ezseg(np.log10(image_data), use_chd, nx, ny, t1, t2, nc, iters) chd_result = np.logical_and(ezseg_output == 0, use_chd == 1) chd_result = chd_result.astype(int) # create CHD image chd_image = datatypes.create_chd_image(los_image, chd_result) chd_image.get_coordinates() end = time.time() print("Coronal Hole Detection Algorithm has been applied to image", iit_image.data_id, "in", end - start, "seconds.") return chd_image #### STEP FOUR: CONVERT TO MAP #### def create_map(iit_image, chd_image, methods_list, row, map_x=None, map_y=None, R0=1.01): start = time.time() index = row[0] image_row = row[1] # EUV map euv_map = iit_image.interp_to_map(R0=R0, map_x=map_x, map_y=map_y, image_num=image_row.data_id) # CHD map chd_map = chd_image.interp_to_map(R0=R0, map_x=map_x, map_y=map_y, image_num=image_row.data_id) # record image and map info euv_map.append_data_info(image_row) chd_map.append_data_info(image_row) # generate a record of the method and variable values used for interpolation interp_method = {'meth_name': ("Im2Map_Lin_Interp_1",), 'meth_description': ["Use SciPy.RegularGridInterpolator() to linearly interpolate from an Image to a Map"] * 1, 'var_name': ("R0",), 'var_description': ("Solar radii",), 'var_val': (R0,)} # add to the methods dataframe for this map methods_list[index] = methods_list[index].append(pd.DataFrame(data=interp_method), sort=False) # incorporate the methods dataframe into the map object euv_map.append_method_info(methods_list[index]) chd_map.append_method_info(methods_list[index]) end = time.time() print("Image number", iit_image.data_id, "has been interpolated to map(s) in", end - start, "seconds.") return euv_map, chd_map #### STEP FIVE: CREATE COMBINED MAPS #### def cr_map(euv_map, chd_map, euv_combined, chd_combined, data_info, map_info, mu_cutoff=0.0, mu_merge_cutoff=None, del_mu=None): start = time.time() # create map lists euv_maps = [euv_map, ] chd_maps = [chd_map, ] if euv_combined is not None: euv_maps.append(euv_combined) if chd_combined is not None: chd_maps.append(chd_combined) # determine number of images already in combined map n_images = len(data_info) # combine maps with minimum intensity merge if del_mu is not None: euv_combined, chd_combined = combine_cr_maps(n_images, euv_maps, chd_maps, del_mu=del_mu, mu_cutoff=mu_cutoff) combined_method = {'meth_name': ("Min-Int-CR-Merge-del_mu", "Min-Int-CR-Merge-del_mu"), 'meth_description': ["Minimum intensity merge for CR Map: using del mu"] * 2, 'var_name': ("mu_cutoff", "del_mu"), 'var_description': ("lower mu cutoff value", "max acceptable mu range"), 'var_val': (mu_cutoff, del_mu)} else: euv_combined, chd_combined = combine_cr_maps(n_images, euv_maps, chd_maps, mu_merge_cutoff=mu_merge_cutoff, mu_cutoff=mu_cutoff) combined_method = {'meth_name': ("Min-Int-CR-Merge-mu_merge", "Min-Int-CR-Merge-mu_merge"), 'meth_description': ["Minimum intensity merge for CR Map: based on Caplan et. al."] * 2, 'var_name': ("mu_cutoff", "mu_merge_cutoff"), 'var_description': ("lower mu cutoff value", "mu cutoff value in areas of " "overlap"), 'var_val': (mu_cutoff, mu_merge_cutoff)} # chd combined method chd_combined_method = {'meth_name': ("Prob-CR-CHD-Merge",), 'meth_description': ["Probability Merge for CR CHD Maps"]} # append image and map info records data_info.append(euv_map.data_info) map_info.append(euv_map.map_info) end = time.time() print("Image number", euv_map.data_info.data_id[0], "has been added to the combined CR map in", end - start, "seconds.") return euv_combined, chd_combined, combined_method, chd_combined_method #### STEP SIX: PLOT COMBINED MAP AND SAVE TO DATABASE #### def save_maps(db_session, map_data_dir, euv_combined, chd_combined, data_info, map_info, methods_list, combined_method, chd_combined_method): start = time.time() # generate a record of the method and variable values used for interpolation euv_combined.append_method_info(methods_list) euv_combined.append_method_info(
pd.DataFrame(data=combined_method)
pandas.DataFrame
# -*- coding: utf-8 -*- ''' Uncommonly used utility functions ''' import os import subprocess import pandas as pd from dramkit.gentools import cut_df_by_con_val from dramkit.iotools import read_lines, load_csv, logger_show def get_csv_colmaxmin(csv_path, col, skipna=True, return_data=True, ascending=None, **kwargs): ''' 获取指定csv文件中指定列的最大值和最小值 Parameters ---------- csv_path : str csv数据文件路径 col : str 指定列名 skipna : bool 计算max和min的时候设置是否skipna return_data : bool 为True时返回最大值、最小值和df数据,为False时不返回数据(替换为None) ascending : None, bool 返回数据按col列排序: None不排序, True升序, False降序 **kwargs : :func:`dramkit.iotools.load_csv` 函数接受的参数 Returns ------- col_max : col列最大值 col_min : col列最小值 data : None, pandas.DataFrame 返回数据 ''' data = load_csv(csv_path, **kwargs) col_max = data[col].max(skipna=skipna) col_min = data[col].min(skipna=skipna) if return_data: if ascending is not None: data.sort_values(col, ascending=ascending, inplace=True) return col_max, col_min, data else: return col_max, col_min, None def load_text_multi(fpath, sep=',', encoding=None, del_first_col=False, del_last_col=False, del_first_line=False, to_pd=True, keep_header=True, logger=None): ''' 读取可能存在多个表纵向排列,且每个表列数不相同的文件,读取出每个表格 (中金所持仓排名数据中存在这种情况) Parameters ---------- fpath : str 文本文件路径 sep : str 字段分隔符,默认`,` encoding : None, str 指定编码方式,为None时会尝试以uft-8和gbk编码读取 del_first_col : bool 是否删除首列,默认不删除 del_last_col : bool 是否删除最后一列,默认否 del_first_line : bool 是否删除首行,默认不删除 .. note:: 若del_first_line为True,则输出pandas.DataFrame没有列名 to_pd : bool 是否输出为pandas.DataFrame,默认是 keep_header : bool 输出为pandas.DataFrame时是否以首行作为列名,默认是 logger : logging.Logger, None 日志记录器 :returns: `list` - 返回读取的数据列表,元素为pandas.DataFrame或list ''' if not os.path.exists(fpath): logger_show('文件不存在,返回None:%s'%fpath, logger, 'warn') return None lines = read_lines(fpath, encoding=encoding, logger=logger) data = [] lens = [] for line in lines: line = str(line) line = line.strip() if line == '': continue line = line.split(sep) if del_first_col: line = line[1:] if del_last_col: line = line[:-1] data.append(line) lens.append(len(line)) tmp = pd.DataFrame({'len': lens}) tmp['idx'] = range(0, tmp.shape[0]) tmps = cut_df_by_con_val(tmp, 'len') start_end_idxs = [(x['idx'].iloc[0], x['idx'].iloc[-1]) for x in tmps] datas = [data[idx1:idx2+1] for idx1, idx2 in start_end_idxs] def _get_final_data(data): '''组织数据输出格式''' if del_first_line: data = data[1:] if to_pd: data = pd.DataFrame(data) else: if to_pd: if keep_header: cols = data[0] data = pd.DataFrame(data[1:]) data.columns = cols else: data =
pd.DataFrame(data)
pandas.DataFrame
#standard python libraries import json import atexit import datetime import os import warnings import math import shutil import joblib #external libraries from binance.client import Client import numpy as np import pandas as pd import ta from sklearn import preprocessing import torch #external methods from utils import read_config, read_json from hyperparameters import HyperParameters, CandlestickInterval, Derivation, Scaling, Balancing, Shuffle, ScalerType class dbid(): """ Description: Class which can be used like a dictionary. This Class is not threadsafe! The changes to the dictionary, only get written to disk when the instance goes out of scope! Arguments: -path (string): Path of the database """ def __init__(self, path): self.path = f"{path}/dbid.json" #load in the dbid with open(self.path) as json_file: self.dbid = json.load(json_file) #register the dump at the end of lifetime atexit.register(self.dump) def __getitem__(self, key): return self.dbid[key] def __setitem__(self, key, item): #change the dict in ram self.dbid[key] = item def dump(self): #save changes to json file with open(self.path, 'w') as fp: json.dump(self.dbid, fp, indent=4) class DataBase(): """ Description: This is the base Database class, on which every other Database Objects builds upon. Arguments: -path[string]: Path of the Database """ def __init__(self, path): #save the params self.path = path #check if the path exists and is a database if not os.path.isdir(path): raise Exception("The path you chose is not existing") if not os.path.isfile(f"{path}/dbid.json"): raise Exception("The path you chose is not a DataBase") #setup dbid self.dbid = dbid(path=self.path) def __getitem__(self, index): """ Description: Method for accessing data of the database. The access is direct from the harddrive (slower but more memory efficient) Arguments: -index[string, list]: Generally: [candlestick_interval, list of features]. To access the whole dataframe only specify the candlestick_interval you want e.g. db["5m"]. To access only one feature specify the datatype and the feature you want e.g. db["5m", "close"] To access multiple features specify the datatype and a list of features you want e.g. db["5m", ["close", "open"]] Return: -data[pd.DataFrame]: Returns always a DataFrame in the shape (rows, number of specified features) """ #make sure that candlestick interval is of type CandlestickInterval if type(index) == tuple: if not isinstance(index[0], CandlestickInterval): raise Exception(f"Make sure your candlestick interval is of type CandlestickInterval and not {type(index[0])}") elif not isinstance(index, CandlestickInterval): raise Exception(f"Make sure your candlestick interval is of type CandlestickInterval and not {type(index)}") #set the path if type(index) == tuple: path = f"{self.path}/{index[0].value}" elif isinstance(index, CandlestickInterval): path = f"{self.path}/{index.value}" else: raise Exception("Your chosen index is not valid") #check if path is available if not os.path.isdir(path): raise Exception("Your chosen kline-interval is not available") #access whole dataframe of certain kline-interval if isinstance(index, CandlestickInterval): #load in the data and return try: data = pd.read_csv(filepath_or_buffer=f"{path}/{index.value}", index_col="index") #convert the date columns data["close_time"]= pd.to_datetime(data["close_time"]) data["open_time"]= pd.to_datetime(data["open_time"]) return data except: raise Exception("Your chosen kline-interval is not available in this DataBase") #access all the labels elif type(index) == tuple and len(index) == 2 and isinstance(index[0], CandlestickInterval) and index[1] == "labels": try: #get all the label names label_names = next(os.walk(f"{path}/labels"))[1] #load in all the labels labels = pd.DataFrame() for label_name in label_names: df = pd.read_csv(filepath_or_buffer=f"{path}/labels/{label_name}/labels.csv", header=None, index_col=0, names=["index", "labels"]) labels[label_name] = df["labels"] return labels except: raise Exception("There are no labels in your database") #access one label elif type(index) == tuple and len(index) == 3 and isinstance(index[0], CandlestickInterval) and index[1] == "labels" and type(index[2]) == str: try: #load in the labels labels = pd.read_csv(filepath_or_buffer=f"{path}/labels/{index[2]}/labels.csv", header=None, index_col=0, names=["index", index[2]]) return labels except: raise Exception("Your chosen label-type is not available") #access a list of labels elif type(index) == tuple and len(index) == 3 and isinstance(index[0], CandlestickInterval) and index[1] == "labels" and type(index[2]) == list: try: #load in the labels labels = pd.DataFrame() for label_name in index[2]: df = pd.read_csv(filepath_or_buffer=f"{path}/labels/{label_name}/labels.csv", header=None, index_col=0, names=["index", label_name]) labels[label_name] = df[label_name] return labels[index[2]] except: raise Exception("Your chosen label-type is not available") #access one feature of a kline-interval elif type(index) == tuple and len(index) == 2 and isinstance(index[0], CandlestickInterval) and type(index[1]) == str: try: data = pd.read_csv(filepath_or_buffer=f"{path}/{index[0].value}", usecols=[index[1]]) #convert the date columns if "close_time" in data.columns: data["close_time"]= pd.to_datetime(data["close_time"]) if "open_time" in data.columns: data["open_time"]= pd.to_datetime(data["open_time"]) return data except: raise Exception("Your chosen feature is not available in this DataBase") #access list of features of a kline-interval elif type(index) == tuple and len(index) == 2 and isinstance(index[0], CandlestickInterval) and type(index[1]) == list: try: data = pd.read_csv(filepath_or_buffer=f"{path}/{index[0].value}", usecols=index[1]) #convert the date columns if "close_time" in data.columns: data["close_time"]= pd.to_datetime(data["close_time"]) if "open_time" in data.columns: data["open_time"]=
pd.to_datetime(data["open_time"])
pandas.to_datetime
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with
tm.assertRaisesRegexp(ValueError, 'skip_footer')
pandas.util.testing.assertRaisesRegexp
#import libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #load data df =
pd.read_csv('data.csv')
pandas.read_csv
"""QSAR modelling Data Sources This module supports representation of functional bioactivies - Directly from ChEMBL API - From a list of Canonical SMILES, along with the measured activity """ import chembl_webresource_client import numpy as np import pandas as pd from rdkit import Chem from rdkit.Chem import AllChem from abc import ABCMeta, abstractmethod from .utils import print_progress_bar from .dataset import QSARDataset from .preprocessing import Preprocessing from .cdk_utils import CDKUtils class DataSource(metaclass=ABCMeta): """ Represent a data source Chemical data might be obtained from different sources: - ChEMBL API (class ChEMBLApiDataSource) - A CSV file downloaded from ChEMBL (class ChEMBLCsvDataSource) - A CSV file produced manually or exported from elsewhere containing two columns: 'canonical_smiles' and 'activity' (class CsvDataSource) The first represent the Canonical Smiles of a compound while the second correspond to the acitivity of the compounds. DataSource parses the data and creates an object of the class modSAR.dataset.QSARDataset using the function `build_qsar_dataset`. """ def __init__(self, target_id, smiles_column, compound_id_column, activity_column, is_chembl_data, apply_filter, **kwargs): """ Generic DataSource construtor Args: target_id (str): name of the protein target common to all activities in the dataset smiles_column (str): name of column that contains SMILES code for the compounds compound_id_column (str): column in the DataFrame that identifies the compound activity_column (str): column in the DataFrame """ missing_attributes = [] if ((smiles_column is None) or (smiles_column == '')): missing_attributes.append(['smiles_column']) if (activity_column is None): missing_attributes.append(['activity_column']) if (compound_id_column is None): missing_attributes.append(['compound_id_column']) if (is_chembl_data is None): missing_attributes.append(['is_chembl_data']) if (len(missing_attributes) > 1): raise ValueError('DataSource does not have required attributes: %s' % (', '.join(missing_attributes))) self.target_id = target_id self.smiles_column = smiles_column self.compound_id_column = compound_id_column self.activity_column = activity_column self.is_chembl_data = is_chembl_data self.apply_filter = apply_filter for attr, val in kwargs.items(): setattr(self, attr, val) self.bioactivities_df = self._get_bioactivities_df() @abstractmethod def _get_bioactivities_df(self): pass def build_qsar_dataset(self, type="cdk", calculate_similarity=True): """ Preprocess bioactivities and builds a QSARDataset object """ preprocess = Preprocessing(compound_id_column=self.compound_id_column, activity_column=self.activity_column, apply_chembl_filter=self.is_chembl_data, remove_duplicated=True) clean_df = preprocess.do(self.bioactivities_df) if type == "cdk": cdk_utils = CDKUtils() descriptors_df = cdk_utils.calculate_descriptors(clean_df, self.smiles_column) descriptors_df.index = clean_df.index X = descriptors_df elif "morgan" in type: nBits = 1024 radius = int(type.replace("morgan", "")) smiles = clean_df[self.smiles_column] descriptors_df = pd.DataFrame(columns=['Bit_%04d' % x for x in range(nBits)], index=clean_df.index, dtype=int) for i in range(len(smiles)): try: molecule = AllChem.MolFromSmiles(smiles.iloc[i]) fingerprint = AllChem.GetMorganFingerprintAsBitVect(molecule, radius, nBits=nBits) except Exception: raise ValueError("Error parsing molecule %s" % (smiles.index[i])) for j in range(nBits): descriptors_df.iloc[i][j] = int(fingerprint.ToBitString()[j]) X = descriptors_df else: raise ValueError("Type of descriptors is not known: %s" % type) y = clean_df[self.activity_column] y.index = X.index qsar_dataset = QSARDataset(name=self.target_id, X=X, y=y, X_smiles=clean_df[self.smiles_column], metadata=clean_df, apply_filter=self.apply_filter, calculate_similarity=calculate_similarity) return qsar_dataset class ChEMBLApiDataSource(DataSource): """ Retrieve active compounds for a target using ChEMBL API Example of use: chembl_data_source = ChEMBLApiDataSource(target_id='CHEMBL202', standard_types=['IC50']) chembl202_dataset = chembl_data_source.get_qsar_dataset() """ def __init__(self, target_id, standard_types, smiles_column='canonical_smiles', compound_id_column='parent_molecule_chembl_id', activity_column='pchembl_value', apply_filter=True): """ Stores a DataFrame containing the bioactivities listed on ChEMBL for specified target. Bioactivities can later be converted to a QSARDataset using function `get_qsar_dataset` Args: target_id (str): ChEMBL target id standard_types (str or list): e.g.: IC50, Ki, etc. """ if type(standard_types) is str: standard_types = [standard_types] super(ChEMBLApiDataSource, self).__init__(target_id, smiles_column=smiles_column, compound_id_column=compound_id_column, activity_column=activity_column, is_chembl_data=True, standard_types=standard_types, apply_filter=apply_filter) def _get_bioactivities_df(self): activity = chembl_webresource_client.new_client.new_client.activity result = activity.filter(target_chembl_id=self.target_id, assay_type__iregex='(B|F)') def get_compound_df(idx, compound_dict, standard_types): """Filter compounds by the standard_types informed, returning a DataFrame""" if standard_types is None or compound_dict['standard_type'] is None: is_valid_std_type = False else: compound_std_type = compound_dict['standard_type'].lower() is_valid_std_type = any([std_type.lower() in compound_std_type for std_type in standard_types]) if is_valid_std_type: # Drop unused columns compound_dict.pop('activity_properties', None) # Capture Ligand Efficiency lig_efficiency = compound_dict.pop('ligand_efficiency', None) compound_df =
pd.DataFrame(compound_dict, index=[0])
pandas.DataFrame
""" Functions about validation. """ import re import pytz import datetime as dt from typing import Optional, List, Union, TYPE_CHECKING import pycountry import numpy as np import pandas as pd from pandas import DataFrame from . import constants as cs from . import helpers as hp if TYPE_CHECKING: from .feed import Feed TIME_PATTERN1 = re.compile(r"^\d\d:\d\d:\d\d$") TIME_PATTERN2 = re.compile(r"^\d:\d\d:\d\d$") DATE_FORMAT = "%Y%m%d" TIMEZONES = set(pytz.all_timezones) # ISO639-1 language codes, both lower and upper case LANGS = set( [lang.alpha_2 for lang in pycountry.languages if hasattr(lang, "alpha_2")] ) LANGS |= set(x.upper() for x in LANGS) CURRENCIES = set( [c.alpha_3 for c in pycountry.currencies if hasattr(c, "alpha_3")] ) URL_PATTERN = re.compile( r"^(?:http)s?://" # http:// or https:// r"(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|" # domain... r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})" # ...or ip r"(?::\d+)?" # optional port r"(?:/?|[/?]\S+)$", re.IGNORECASE, ) EMAIL_PATTERN = re.compile(r"[^@]+@[^@]+\.[^@]+") COLOR_PATTERN = re.compile(r"(?:[0-9a-fA-F]{2}){3}$") def valid_str(x: str) -> bool: """ Return ``True`` if ``x`` is a non-blank string; otherwise return ``False``. """ if isinstance(x, str) and x.strip(): return True else: return False def valid_time(x: str) -> bool: """ Return ``True`` if ``x`` is a valid H:MM:SS or HH:MM:SS time; otherwise return ``False``. """ if isinstance(x, str) and ( re.match(TIME_PATTERN1, x) or re.match(TIME_PATTERN2, x) ): return True else: return False def valid_date(x: str) -> bool: """ Retrun ``True`` if ``x`` is a valid YYYYMMDD date; otherwise return ``False``. """ try: if x != dt.datetime.strptime(x, DATE_FORMAT).strftime(DATE_FORMAT): raise ValueError return True except ValueError: return False def valid_timezone(x: str) -> bool: """ Retrun ``True`` if ``x`` is a valid human-readable timezone string, e.g. 'Africa/Abidjan'; otherwise return ``False``. """ return x in TIMEZONES def valid_lang(x: str) -> bool: """ Return ``True`` if ``x`` is a valid two-letter ISO 639 language code, e.g. 'aa'; otherwise return ``False``. """ return x in LANGS def valid_currency(x: str) -> bool: """ Return ``True`` if ``x`` is a valid three-letter ISO 4217 currency code, e.g. 'AED'; otherwise return ``False``. """ return x in CURRENCIES def valid_url(x: str) -> bool: """ Return ``True`` if ``x`` is a valid URL; otherwise return ``False``. """ if isinstance(x, str) and re.match(URL_PATTERN, x): return True else: return False def valid_email(x: str) -> bool: """ Return ``True`` if ``x`` is a valid email address; otherwise return ``False``. """ if isinstance(x, str) and re.match(EMAIL_PATTERN, x): return True else: return False def valid_color(x: str) -> bool: """ Return ``True`` if ``x`` a valid hexadecimal color string without the leading hash; otherwise return ``False``. """ if isinstance(x, str) and re.match(COLOR_PATTERN, x): return True else: return False def check_for_required_columns( problems: List, table: str, df: DataFrame ) -> List: """ Check that the given GTFS table has the required columns. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the GTFS is violated; ``'warning'`` means there is a problem but it is not a GTFS violation 2. A message (string) that describes the problem 3. A GTFS table name, e.g. ``'routes'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a GTFS table df : DataFrame The GTFS table corresponding to ``table`` Returns ------- list The ``problems`` list extended as follows. Check that the DataFrame contains the colums required by GTFS and append to the problems list one error for each column missing. """ r = cs.GTFS_REF req_columns = r.loc[ (r["table"] == table) & r["column_required"], "column" ].values for col in req_columns: if col not in df.columns: problems.append(["error", f"Missing column {col}", table, []]) return problems def check_for_invalid_columns( problems: List, table: str, df: DataFrame ) -> List: """ Check for invalid columns in the given GTFS DataFrame. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the GTFS is violated; ``'warning'`` means there is a problem but it is not a GTFS violation 2. A message (string) that describes the problem 3. A GTFS table name, e.g. ``'routes'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a GTFS table df : DataFrame The GTFS table corresponding to ``table`` Returns ------- list The ``problems`` list extended as follows. Check whether the DataFrame contains extra columns not in the GTFS and append to the problems list one warning for each extra column. """ r = cs.GTFS_REF valid_columns = r.loc[r["table"] == table, "column"].values for col in df.columns: if col not in valid_columns: problems.append( ["warning", f"Unrecognized column {col}", table, []] ) return problems def check_table( problems: List, table: str, df: DataFrame, condition, message: str, type_: str = "error", ) -> List: """ Check the given GTFS table for the given problem condition. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the GTFS is violated; ``'warning'`` means there is a problem but it is not a GTFS violation 2. A message (string) that describes the problem 3. A GTFS table name, e.g. ``'routes'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a GTFS table df : DataFrame The GTFS table corresponding to ``table`` condition : boolean expression One involving ``df``, e.g.`df['route_id'].map(is_valid_str)`` message : string Problem message, e.g. ``'Invalid route_id'`` type_ : string ``'error'`` or ``'warning'`` indicating the type of problem encountered Returns ------- list The ``problems`` list extended as follows. Record the indices of ``df`` that statisfy the condition. If the list of indices is nonempty, append to the problems the item ``[type_, message, table, indices]``; otherwise do not append anything. """ indices = df.loc[condition].index.tolist() if indices: problems.append([type_, message, table, indices]) return problems def check_column( problems: List, table: str, df: DataFrame, column: str, checker, message: Optional[str] = None, type_: str = "error", *, column_required: bool = True, ) -> List: """ Check the given column of the given GTFS with the given problem checker. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the GTFS is violated; ``'warning'`` means there is a problem but it is not a GTFS violation 2. A message (string) that describes the problem 3. A GTFS table name, e.g. ``'routes'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a GTFS table df : DataFrame The GTFS table corresponding to ``table`` column : string A column of ``df`` column_required : boolean ``True`` if and only if ``column`` is required (and not optional) by the GTFS checker : boolean valued unary function Returns ``True`` if and only if no problem is encountered message : string (optional) Problem message, e.g. 'Invalid route_id'. Defaults to 'Invalid ``column``; maybe has extra space characters' type_ : string ``'error'`` or ``'warning'`` indicating the type of problem encountered Returns ------- list The ``problems`` list extended as follows. Apply the checker to the column entries and record the indices of ``df`` where the checker returns ``False``. If the list of indices of is nonempty, append to the problems the item ``[type_, problem, table, indices]``; otherwise do not append anything. If not ``column_required``, then NaN entries will be ignored before applying the checker. """ f = df.copy() if not column_required: if column not in f.columns: f[column] = np.nan f = f.dropna(subset=[column]) cond = ~f[column].map(checker) if not message: message = f"Invalid {column}; maybe has extra space characters" problems = check_table(problems, table, f, cond, message, type_) return problems def check_column_id( problems: List, table: str, df: DataFrame, column: str, *, column_required: bool = True, ) -> List: """ A specialization of :func:`check_column`. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the GTFS is violated; ``'warning'`` means there is a problem but it is not a GTFS violation 2. A message (string) that describes the problem 3. A GTFS table name, e.g. ``'routes'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a GTFS table df : DataFrame The GTFS table corresponding to ``table`` column : string A column of ``df`` column_required : boolean ``True`` if and only if ``column`` is required (and not optional) by the GTFS Returns ------- list The ``problems`` list extended as follows. Record the indices of ``df`` where the given column has duplicated entry or an invalid strings. If the list of indices is nonempty, append to the problems the item ``[type_, problem, table, indices]``; otherwise do not append anything. If not ``column_required``, then NaN entries will be ignored in the checking. """ f = df.copy() if not column_required: if column not in f.columns: f[column] = np.nan f = f.dropna(subset=[column]) cond = ~f[column].map(valid_str) problems = check_table( problems, table, f, cond, f"Invalid {column}; maybe has extra space characters", ) cond = f[column].duplicated() problems = check_table(problems, table, f, cond, f"Repeated {column}") return problems def check_column_linked_id( problems: List, table: str, df: DataFrame, column: str, target_df: DataFrame, target_column: Optional[str] = None, *, column_required: bool = True, ) -> List: """ A modified version of :func:`check_column_id`. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the GTFS is violated; ``'warning'`` means there is a problem but it is not a GTFS violation 2. A message (string) that describes the problem 3. A GTFS table name, e.g. ``'routes'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs table : string Name of a GTFS table df : DataFrame The GTFS table corresponding to ``table`` column : string A column of ``df`` column_required : boolean ``True`` if and only if ``column`` is required (and not optional) by the GTFS target_df : DataFrame A GTFS table target_column : string A column of ``target_df``; defaults to ``column_name`` Returns ------- list The ``problems`` list extended as follows. Record indices of ``df`` where the following condition is violated: ``column`` contain IDs that are valid strings and are present in ``target_df`` under the ``target_column`` name. If the list of indices is nonempty, append to the problems the item ``[type_, problem, table, indices]``; otherwise do not append anything. If not ``column_required``, then NaN entries will be ignored in the checking. """ if target_column is None: target_column = column f = df.copy() if target_df is None: g = pd.DataFrame() g[target_column] = np.nan else: g = target_df.copy() if target_column not in g.columns: g[target_column] = np.nan if not column_required: if column not in f.columns: f[column] = np.nan f = f.dropna(subset=[column]) g = g.dropna(subset=[target_column]) cond = ~f[column].isin(g[target_column]) problems = check_table(problems, table, f, cond, f"Undefined {column}") return problems def format_problems( problems: List, *, as_df: bool = False ) -> Union[List, DataFrame]: """ Format the given problems list as a DataFrame. Parameters ---------- problems : list A four-tuple containing 1. A problem type (string) equal to ``'error'`` or ``'warning'``; ``'error'`` means the GTFS is violated; ``'warning'`` means there is a problem but it is not a GTFS violation 2. A message (string) that describes the problem 3. A GTFS table name, e.g. ``'routes'``, in which the problem occurs 4. A list of rows (integers) of the table's DataFrame where the problem occurs as_df : boolean Returns ------- list or DataFrame Return ``problems`` if not ``as_df``; otherwise return a DataFrame with the problems as rows and the columns ``['type', 'message', 'table', 'rows']``. """ if as_df: problems = pd.DataFrame( problems, columns=["type", "message", "table", "rows"] ).sort_values(["type", "table"]) return problems def check_agency( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Check that ``feed.agency`` follows the GTFS. Return a list of problems of the form described in :func:`check_table`; the list will be empty if no problems are found. """ table = "agency" problems = [] # Preliminary checks if feed.agency is None: problems.append(["error", "Missing table", table, []]) else: f = feed.agency.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check service_id problems = check_column_id( problems, table, f, "agency_id", column_required=False ) # Check agency_name problems = check_column(problems, table, f, "agency_name", valid_str) # Check agency_url problems = check_column(problems, table, f, "agency_url", valid_url) # Check agency_timezone problems = check_column( problems, table, f, "agency_timezone", valid_timezone ) # Check agency_fare_url problems = check_column( problems, table, f, "agency_fare_url", valid_url, column_required=False ) # Check agency_lang problems = check_column( problems, table, f, "agency_lang", valid_lang, column_required=False ) # Check agency_phone problems = check_column( problems, table, f, "agency_phone", valid_str, column_required=False ) # Check agency_email problems = check_column( problems, table, f, "agency_email", valid_email, column_required=False ) return format_problems(problems, as_df=as_df) def check_calendar( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.calendar``. """ table = "calendar" problems = [] # Preliminary checks if feed.calendar is None: return problems f = feed.calendar.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check service_id problems = check_column_id(problems, table, f, "service_id") # Check weekday columns v = lambda x: x in range(2) for col in [ "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday", ]: problems = check_column(problems, table, f, col, v) # Check start_date and end_date for col in ["start_date", "end_date"]: problems = check_column(problems, table, f, col, valid_date) if include_warnings: # Check if feed has expired d = f["end_date"].max() if feed.calendar_dates is not None and not feed.calendar_dates.empty: table += "/calendar_dates" d = max(d, feed.calendar_dates["date"].max()) if d < dt.datetime.today().strftime(DATE_FORMAT): problems.append(["warning", "Feed expired", table, []]) return format_problems(problems, as_df=as_df) def check_calendar_dates( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.calendar_dates``. """ table = "calendar_dates" problems = [] # Preliminary checks if feed.calendar_dates is None: return problems f = feed.calendar_dates.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check service_id problems = check_column(problems, table, f, "service_id", valid_str) # Check date problems = check_column(problems, table, f, "date", valid_date) # No duplicate (service_id, date) pairs allowed cond = f[["service_id", "date"]].duplicated() problems = check_table( problems, table, f, cond, "Repeated pair (service_id, date)" ) # Check exception_type v = lambda x: x in [1, 2] problems = check_column(problems, table, f, "exception_type", v) return format_problems(problems, as_df=as_df) def check_fare_attributes( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.calendar_dates``. """ table = "fare_attributes" problems = [] # Preliminary checks if feed.fare_attributes is None: return problems f = feed.fare_attributes.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check fare_id problems = check_column_id(problems, table, f, "fare_id") # Check currency_type problems = check_column( problems, table, f, "currency_type", valid_currency ) # Check payment_method v = lambda x: x in range(2) problems = check_column(problems, table, f, "payment_method", v) # Check transfers v = lambda x: pd.isna(x) or x in range(3) problems = check_column(problems, table, f, "transfers", v) # Check transfer_duration v = lambda x: x >= 0 problems = check_column( problems, table, f, "transfer_duration", v, column_required=False ) return format_problems(problems, as_df=as_df) def check_fare_rules( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.calendar_dates``. """ table = "fare_rules" problems = [] # Preliminary checks if feed.fare_rules is None: return problems f = feed.fare_rules.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check fare_id problems = check_column_linked_id( problems, table, f, "fare_id", feed.fare_attributes ) # Check route_id problems = check_column_linked_id( problems, table, f, "route_id", feed.routes, column_required=False ) # Check origin_id, destination_id, contains_id for col in ["origin_id", "destination_id", "contains_id"]: problems = check_column_linked_id( problems, table, f, col, feed.stops, "zone_id", column_required=False, ) return format_problems(problems, as_df=as_df) def check_feed_info( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.feed_info``. """ table = "feed_info" problems = [] # Preliminary checks if feed.feed_info is None: return problems f = feed.feed_info.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check feed_publisher_name problems = check_column( problems, table, f, "feed_publisher_name", valid_str ) # Check feed_publisher_url problems = check_column( problems, table, f, "feed_publisher_url", valid_url ) # Check feed_lang problems = check_column(problems, table, f, "feed_lang", valid_lang) # Check feed_start_date and feed_end_date cols = ["feed_start_date", "feed_end_date"] for col in cols: problems = check_column( problems, table, f, col, valid_date, column_required=False ) if set(cols) <= set(f.columns): d1, d2 = f.loc[0, ["feed_start_date", "feed_end_date"]].values if pd.notna(d1) and pd.notna(d2) and d1 > d1: problems.append( [ "error", "feed_start_date later than feed_end_date", table, [0], ] ) # Check feed_version problems = check_column( problems, table, f, "feed_version", valid_str, column_required=False ) return format_problems(problems, as_df=as_df) def check_frequencies( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.frequencies``. """ table = "frequencies" problems = [] # Preliminary checks if feed.frequencies is None: return problems f = feed.frequencies.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check trip_id problems = check_column_linked_id( problems, table, f, "trip_id", feed.trips ) # Check start_time and end_time time_cols = ["start_time", "end_time"] for col in time_cols: problems = check_column(problems, table, f, col, valid_time) for col in time_cols: f[col] = f[col].map(hp.timestr_to_seconds) # Start_time should be earlier than end_time cond = f["start_time"] >= f["end_time"] problems = check_table( problems, table, f, cond, "start_time not earlier than end_time" ) # Headway periods should not overlap f = f.sort_values(["trip_id", "start_time"]) for __, group in f.groupby("trip_id"): a = group["start_time"].values b = group["end_time"].values indices = np.flatnonzero(a[1:] < b[:-1]).tolist() if indices: problems.append( [ "error", "Headway periods for the same trip overlap", table, indices, ] ) # Check headway_secs v = lambda x: x >= 0 problems = check_column(problems, table, f, "headway_secs", v) # Check exact_times v = lambda x: x in range(2) problems = check_column( problems, table, f, "exact_times", v, column_required=False ) return format_problems(problems, as_df=as_df) def check_routes( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.routes``. """ table = "routes" problems = [] # Preliminary checks if feed.routes is None: problems.append(["error", "Missing table", table, []]) else: f = feed.routes.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check route_id problems = check_column_id(problems, table, f, "route_id") # Check agency_id if "agency_id" in f: if feed.agency is None: problems.append( [ "error", "agency_id column present in routes agency table missing", table, [], ] ) elif "agency_id" not in feed.agency.columns: problems.append( [ "error", "agency_id column present in routes but not in agency", table, [], ] ) else: g = f.dropna(subset=["agency_id"]) cond = ~g["agency_id"].isin(feed.agency["agency_id"]) problems = check_table( problems, table, g, cond, "Undefined agency_id" ) # Check route_short_name and route_long_name for column in ["route_short_name", "route_long_name"]: problems = check_column( problems, table, f, column, valid_str, column_required=False ) cond = ~(f["route_short_name"].notna() | f["route_long_name"].notna()) problems = check_table( problems, table, f, cond, "route_short_name and route_long_name both empty", ) # Check route_type v = lambda x: x in range(8) problems = check_column(problems, table, f, "route_type", v) # Check route_url problems = check_column( problems, table, f, "route_url", valid_url, column_required=False ) # Check route_color and route_text_color for col in ["route_color", "route_text_color"]: problems = check_column( problems, table, f, col, valid_color, column_required=False ) if include_warnings: # Check for duplicated (route_short_name, route_long_name) pairs cond = f[["route_short_name", "route_long_name"]].duplicated() problems = check_table( problems, table, f, cond, "Repeated pair (route_short_name, route_long_name)", "warning", ) # Check for routes without trips s = feed.trips["route_id"] cond = ~f["route_id"].isin(s) problems = check_table( problems, table, f, cond, "Route has no trips", "warning" ) return format_problems(problems, as_df=as_df) def check_shapes( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.shapes``. """ table = "shapes" problems = [] # Preliminary checks if feed.shapes is None: return problems f = feed.shapes.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) f.sort_values(["shape_id", "shape_pt_sequence"], inplace=True) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check shape_id problems = check_column(problems, table, f, "shape_id", valid_str) # Check shape_pt_lon and shape_pt_lat for column, bound in [("shape_pt_lon", 180), ("shape_pt_lat", 90)]: v = lambda x: pd.notna(x) and -bound <= x <= bound cond = ~f[column].map(v) problems = check_table( problems, table, f, cond, f"{column} out of bounds {[-bound, bound]}", ) # Check for duplicated (shape_id, shape_pt_sequence) pairs cond = f[["shape_id", "shape_pt_sequence"]].duplicated() problems = check_table( problems, table, f, cond, "Repeated pair (shape_id, shape_pt_sequence)" ) # Check if shape_dist_traveled does decreases on a trip if "shape_dist_traveled" in f.columns: g = f.dropna(subset=["shape_dist_traveled"]) indices = [] prev_sid = None prev_index = None prev_dist = -1 cols = ["shape_id", "shape_dist_traveled"] for i, sid, dist in g[cols].itertuples(): if sid == prev_sid and dist < prev_dist: indices.append(prev_index) prev_sid = sid prev_index = i prev_dist = dist if indices: problems.append( [ "error", "shape_dist_traveled decreases on a trip", table, indices, ] ) return format_problems(problems, as_df=as_df) def check_stops( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.stops``. """ table = "stops" problems = [] # Preliminary checks if feed.stops is None: problems.append(["error", "Missing table", table, []]) else: f = feed.stops.copy() problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check stop_id problems = check_column_id(problems, table, f, "stop_id") # Check stop_code, stop_desc, zone_id, parent_station for column in ["stop_code", "stop_desc", "zone_id", "parent_station"]: problems = check_column( problems, table, f, column, valid_str, column_required=False ) # Check stop_name problems = check_column(problems, table, f, "stop_name", valid_str) # Check stop_lon and stop_lat if "location_type" in f.columns: requires_location = f.location_type.isin([0, 1, 2]) else: requires_location = True for column, bound in [("stop_lon", 180), ("stop_lat", 90)]: v = lambda x: pd.notna(x) and -bound <= x <= bound cond = requires_location & ~f[column].map(v) problems = check_table( problems, table, f, cond, f"{column} out of bounds {[-bound, bound]}", ) # Check stop_url problems = check_column( problems, table, f, "stop_url", valid_url, column_required=False ) # Check location_type v = lambda x: x in range(5) problems = check_column( problems, table, f, "location_type", v, column_required=False ) # Check stop_timezone problems = check_column( problems, table, f, "stop_timezone", valid_timezone, column_required=False, ) # Check wheelchair_boarding v = lambda x: x in range(3) problems = check_column( problems, table, f, "wheelchair_boarding", v, column_required=False ) # Check further location_type and parent_station if "parent_station" in f.columns: if "location_type" not in f.columns: problems.append( [ "error", "parent_station column present but location_type column missing", table, [], ] ) else: # Parent stations must be well-defined S = set(f.stop_id) | {np.nan} v = lambda x: x in S problems = check_column( problems, table, f, "parent_station", v, "A parent station must be well-defined", column_required=False, ) # Stations must have location type 1 station_ids = f.loc[f.parent_station.notna(), "parent_station"] cond = f.stop_id.isin(station_ids) & (f.location_type != 1) problems = check_table( problems, table, f, cond, "A station must have location_type 1" ) # Stations must not lie in stations cond = (f.location_type == 1) & f.parent_station.notna() problems = check_table( problems, table, f, cond, "A station must not lie in another station", ) # Entrances (type 2), generic nodes (type 3) and boarding areas (type 4) # need to be part of a parent cond = f.location_type.isin([2, 3, 4]) & f.parent_station.isna() problems = check_table( problems, table, f, cond, "Entrances, nodes, and boarding areas must be part of a parent station", ) if include_warnings: # Check for stops of location type 0 or NaN without stop times ids = [] if feed.stop_times is not None: ids = feed.stop_times.stop_id.unique() cond = ~feed.stops.stop_id.isin(ids) if "location_type" in feed.stops.columns: cond &= f.location_type.isin([0, np.nan]) problems = check_table( problems, table, f, cond, "Stop has no stop times", "warning" ) return format_problems(problems, as_df=as_df) def check_stop_times( feed: "Feed", *, as_df: bool = False, include_warnings: bool = False ) -> List: """ Analog of :func:`check_agency` for ``feed.stop_times``. """ table = "stop_times" problems = [] # Preliminary checks if feed.stop_times is None: problems.append(["error", "Missing table", table, []]) else: f = feed.stop_times.copy().sort_values(["trip_id", "stop_sequence"]) problems = check_for_required_columns(problems, table, f) if problems: return format_problems(problems, as_df=as_df) if include_warnings: problems = check_for_invalid_columns(problems, table, f) # Check trip_id problems = check_column_linked_id( problems, table, f, "trip_id", feed.trips ) # Check arrival_time and departure_time v = lambda x: pd.isna(x) or valid_time(x) for col in ["arrival_time", "departure_time"]: problems = check_column(problems, table, f, col, v) # Check that arrival and departure times exist for the first and last # stop of each trip and for each timepoint. # For feeds with many trips, iterating through the stop time rows is # faster than uisg groupby. if "timepoint" not in f.columns: f["timepoint"] = np.nan # This will not mess up later timepoint check indices = [] prev_tid = None prev_index = None prev_atime = 1 prev_dtime = 1 for i, tid, atime, dtime, tp in f[ ["trip_id", "arrival_time", "departure_time", "timepoint"] ].itertuples(): if tid != prev_tid: # Check last stop of previous trip if pd.isna(prev_atime) or pd.isna(prev_dtime): indices.append(prev_index) # Check first stop of current trip if pd.isna(atime) or pd.isna(dtime): indices.append(i) elif tp == 1 and (
pd.isna(atime)
pandas.isna
#%% import sys import os #sys.path.append(os.getcwd() + '/connectome_tools/') os.chdir(os.path.dirname(os.getcwd())) # make directory one step up the current directory os.chdir(os.path.dirname(os.getcwd())) # make directory one step up the current directory sys.path.append('/Users/mwinding/repos/maggot_models') from pymaid_creds import url, name, password, token import pymaid import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from src.data import load_metagraph from src.visualization import CLASS_COLOR_DICT, adjplot from src.traverse import Cascade, to_transmission_matrix from src.traverse import TraverseDispatcher from src.visualization import matrixplot rm = pymaid.CatmaidInstance(url, token, name, password) import connectome_tools.cascade_analysis as casc import connectome_tools.celltype as ct #mg = load_metagraph("Gad", version="2020-06-10", path = '/Volumes/GoogleDrive/My Drive/python_code/maggot_models/data/processed/') #mg.calculate_degrees(inplace=True) #adj = mg.adj # adjacency matrix from the "mg" object adj_ad = pd.read_csv(f'data/adj/all-neurons_ad.csv', index_col = 0).rename(columns=int) adj = adj_ad.values clusters = pd.read_csv('cascades/data/meta-method=color_iso-d=8-bic_ratio=0.95-min_split=32.csv', index_col = 0, header = 0) order = pd.read_csv('cascades/data/signal_flow_order_lvl7.csv').values # make array from list of lists order_delisted = [] for sublist in order: order_delisted.append(sublist[0]) order = np.array(order_delisted) #%% # pull sensory annotations and then pull associated skids order = ['ORN', 'AN sensories', 'MN sensories', 'photoreceptors', 'thermosensories', 'v\'td', 'A1 ascending noci', 'A1 ascending mechano', 'A1 ascending proprio', 'A1 ascending class II_III'] sens = [ct.Celltype(name, pymaid.get_skids_by_annotation(f'mw {name}')) for name in order] input_skids_list = [x.get_skids() for x in sens] input_skids = [val for sublist in input_skids_list for val in sublist] output_names = pymaid.get_annotated('mw brain outputs').name output_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain outputs').name)) output_skids = [val for sublist in output_skids_list for val in sublist] #%% # cascades from each sensory modality p = 0.05 max_hops = 10 n_init = 100 simultaneous = True adj=adj_ad input_hit_hist_list = casc.Cascade_Analyzer.run_cascades_parallel(source_skids_list=input_skids_list, stop_skids=output_skids, adj=adj_ad, p=p, max_hops=max_hops, n_init=n_init, simultaneous=simultaneous) # **** continue here when new clusters are available #%% # grouping cascade indices by cluster type # level 7 clusters lvl7 = clusters.groupby('lvl7_labels') # cluster order and number of neurons per cluster cluster_lvl7 = [] for key in lvl7.groups.keys(): cluster_lvl7.append([key, len(lvl7.groups[key])]) cluster_lvl7 = pd.DataFrame(cluster_lvl7, columns = ['key', 'num_cluster']) # breaking signal cascades into cluster groups input_hit_hist_lvl7 = [] for hit_hist in input_hit_hist_list: sensory_clustered_hist = [] for key in lvl7.groups.keys(): skids = lvl7.groups[key] indices = np.where([x in skids for x in mg.meta.index])[0] cluster_hist = hit_hist[indices] cluster_hist = pd.DataFrame(cluster_hist, index = indices) sensory_clustered_hist.append(cluster_hist) input_hit_hist_lvl7.append(sensory_clustered_hist) # summed signal cascades per cluster group (hops remain intact) summed_hist_lvl7 = [] for input_hit_hist in input_hit_hist_lvl7: sensory_sum_hist = [] for i, cluster in enumerate(input_hit_hist): sum_cluster = cluster.sum(axis = 0)/(len(cluster.index)) # normalize by number of neurons in cluster sensory_sum_hist.append(sum_cluster) sensory_sum_hist = pd.DataFrame(sensory_sum_hist) # column names will be hop number sensory_sum_hist.index = cluster_lvl7.key # uses cluster name for index of each summed cluster row summed_hist_lvl7.append(sensory_sum_hist) # number of neurons per cluster group over threshold (hops remain intact) threshold = 50 num_hist_lvl7 = [] for input_hit_hist in input_hit_hist_lvl7: sensory_num_hist = [] for i, cluster in enumerate(input_hit_hist): num_cluster = (cluster>threshold).sum(axis = 0) sensory_num_hist.append(num_cluster) sensory_num_hist = pd.DataFrame(sensory_num_hist) # column names will be hop number sensory_num_hist.index = cluster_lvl7.key # uses cluster name for index of each summed cluster row num_hist_lvl7.append(sensory_num_hist) # %% # plot signal of all sensories through clusters # main figure fig, axs = plt.subplots( 1, 1, figsize=(5, 5) ) vmax = 300 ax = axs sns.heatmap(sum(summed_hist_lvl7).loc[order, 0:7], ax = ax, vmax = vmax, rasterized=True, cbar_kws={'label': 'Visits from sensory signal'}) ax.set_ylabel('Individual Clusters') ax.set_yticks([]) ax.set_xlabel('Hops from sensory neuron signal') plt.savefig('cascades/cluster_plots/all_sensory_through_clusters_lvl7.pdf', format='pdf', bbox_inches='tight') # plotting number of neurons downstream of each sensory modality (with threshold) fig, axs = plt.subplots( 1, 1, figsize=(5, 5) ) ax = axs sns.heatmap(sum(num_hist_lvl7).loc[order, 0:7], ax = ax, rasterized=True, cbar_kws={'label': 'Number of Neurons Downstream'}) ax.set_ylabel('Individual Clusters') ax.set_yticks([]) ax.set_xlabel('Hops from sensory neuron signal') #%% # # checking where inputs, outputs, etc are located in these reordered clusters # maybe supplemental figure cluster_membership = [] for cluster_key in order: cluster_temp = clusters[clusters.lvl7_labels==cluster_key] cluster_dSEZ = sum(cluster_temp.dSEZ == True) cluster_dVNC = sum(cluster_temp.dVNC == True) cluster_RG = sum(cluster_temp.RG == True) cluster_ORN = sum(cluster_temp.sens_subclass_ORN == True) cluster_AN = sum(cluster_temp.sens_subclass_AN == True) cluster_MN = sum(cluster_temp.sens_subclass_MN == True) cluster_thermo = sum(cluster_temp.sens_subclass_thermo == True) cluster_photo = sum((cluster_temp.sens_subclass_photoRh5 == True) | (cluster_temp.sens_subclass_photoRh6 == True)) cluster_A00c = sum(cluster_temp.A00c == True) cluster_vtd = sum(cluster_temp.sens_subclass_vtd == True) cluster_input = sum(cluster_temp.input == True) cluster_output = sum(cluster_temp.output == True) cluster_brain = sum(cluster_temp.brain_neurons == True) cluster_all = len(cluster_temp.index) cluster_membership.append(dict({'cluster_key': cluster_key, 'total_neurons': cluster_all, 'brain_neurons': cluster_brain/cluster_all, 'outputs': cluster_output/cluster_all, 'inputs': cluster_input/cluster_all, 'dVNC': cluster_dVNC/cluster_all, 'dSEZ': cluster_dSEZ/cluster_all, 'RG': cluster_RG/cluster_all, 'ORN': cluster_ORN/cluster_all, 'AN': cluster_AN/cluster_all, 'MN': cluster_MN/cluster_all, 'thermo': cluster_thermo/cluster_all, 'photo': cluster_photo/cluster_all, 'noci': cluster_A00c/cluster_all, 'vtd': cluster_vtd/cluster_all})) cluster_membership =
pd.DataFrame(cluster_membership)
pandas.DataFrame
import os import numpy as np import tensorflow as tf import gpflow from GPcounts import branchingKernel from GPcounts import NegativeBinomialLikelihood from sklearn.cluster import KMeans import scipy.stats as ss from pathlib import Path import pandas as pd from gpflow.utilities import set_trainable from tqdm import tqdm from scipy.signal import savgol_filter import random import scipy as sp from scipy import interpolate from robustgp import ConditionalVariance from pandas import DataFrame from scipy.special import logsumexp import warnings with warnings.catch_warnings(): warnings.simplefilter('ignore') # Get number of cores reserved by the batch system (NSLOTS is automatically set, or use 1 if not) NUMCORES=int(os.getenv("NSLOTS",1)) # print("Using", NUMCORES, "core(s)" ) # Create session properties config=tf.compat.v1.ConfigProto(inter_op_parallelism_threads=NUMCORES,intra_op_parallelism_threads=NUMCORES) tf.compat.v1.Session.intra_op_parallelism_threads = NUMCORES tf.compat.v1.Session.inter_op_parallelism_threads = NUMCORES class Fit_GPcounts(object): def __init__(self,X = None,Y= None,scale = None,sparse = False,M=0,nb_scaled=False,safe_mode = False): self.safe_mode = safe_mode self.folder_name = 'GPcounts_models/' self.transform = True # to use log(count+1) transformation self.sparse = sparse # use sparse or full inference self.nb_scaled = nb_scaled self.X = None # time points (cell,samples, spatial location) self.M = M # number of inducing points self.Z = None # inducing points self.ConditionalVariance = False # set inducing points using conditional variance from robustGP method self.Y = None # gene expression matrix self.Y_copy = None #copy of gene expression matrix self.D = None # number of genes self.N = None # number of cells self.scale = scale self.genes_name = None self.cells_name = None self.Scale = None self.kernel = None self.bic = None # statistical test information self.lik_name = None # the selected likelihood name self.models_number = None # Total number of models to fit for single gene for selected test self.model_index = None # index the current model self.hyper_parameters = {} # model paramaters initialization self.user_hyper_parameters = [None,None,None,None]# user model paramaters initialization self.model = None # GP model information self.var = None # GP variance of posterior predictive self.mean = None # GP mean of posterior predictive self.fix = False # fix hyper-parameters # save likelihood of hyper-parameters of dynamic model to initialize the constant model self.lik_alpha = None self.lik_km = None self.optimize = True # optimize or load model self.branching = None # DE kernel or RBF kernel self.xp = -1000. # Put branching time much earlier than zero time # single gene information self.y = None self.index = None self.global_seed = 0 self.seed_value = 0 # initialize seed self.count_fix = 0 # counter of number of trails to resolve either local optima or failure duo to numerical issues # check the X and Y are not missing if (X is None) or (Y is None): print('TypeError: GPcounts() missing 2 required positional arguments: X and Y') else: self.set_X_Y(X,Y) def set_X_Y(self,X,Y): self.seed_value = 0 np.random.seed(self.seed_value) if X.shape[0] == Y.shape[1]: self.X = X self.cells_name = list(map(str,list(X.index.values))) self.X = X.values.astype(float) if len(self.X.shape) > 1: self.X = self.X.reshape([-1,self.X.shape[1]]) else: self.X = self.X.reshape([-1, 1]) if self.sparse: if self.M == 0: self.M = int((5*(len(self.X)))/100) # number of inducing points is 5% of length of time points self.ConditionalVariance = True self.Y = Y self.genes_name = self.Y.index.values.tolist() # gene expression name self.Y = self.Y.values # gene expression matrix ''' if self.lik_name == 'Gaussian': self.Y = self.Y.values # gene expression matrix else: self.Y = self.Y.values.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y ''' self.Y_copy = self.Y self.D = Y.shape[0] # number of genes self.N = Y.shape[1] # number of cells else: print('InvalidArgumentError: Dimension 0 in X shape must be equal to Dimension 1 in Y, but shapes are %d and %d.' %(X.shape[0],Y.shape[1])) def Infer_trajectory(self,lik_name= 'Negative_binomial',transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y genes_index = range(self.D) genes_results = self.run_test(lik_name,1,genes_index) return genes_results def One_sample_test(self,lik_name= 'Negative_binomial', transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y genes_index = range(self.D) genes_results = self.run_test(lik_name,2,genes_index) return genes_results def Model_selection_test(self,lik_name = 'Negative_binomial',kernel = None,transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y # Run GP model for linear, periodic and rbf kernels and calculate BIC ker_list = ['Linear','Periodic','RBF'] genes_index = range(self.D) selection_results = pd.DataFrame() selection_results['Gene'] = 0 selection_results['Dynamic_model_log_likelihood'] = 0 selection_results['Constant_model_log_likelihood'] = 0 selection_results['log_likelihood_ratio'] = 0 selection_results['p_value'] = 0 selection_results['q_value'] = 0 selection_results['log_likelihood_ratio'] = 0 selection_results['Model'] = 0 selection_results['BIC'] = 0 for word in ker_list: self.kernel = word results = self.run_test(lik_name,2,genes_index) results['BIC'] = -2*results['Dynamic_model_log_likelihood'] + self.K*np.log(self.X.shape[0]) results['Gene'] = self.genes_name results['Model'] = word results['p_value'] = 1 - ss.chi2.cdf(2*results['log_likelihood_ratio'], df=1) results['q_value']= self.qvalue(results['p_value']) selection_results = selection_results.merge(results, how = 'outer') # Model probability estimation based on bic based on SpatialDE:identification of spatially variable genes: https://www.nature.com/articles/nmeth.4636 tr = selection_results.groupby(['Gene','Model'])['BIC'].transform(min) == selection_results['BIC'] # select bic values for each kernel and gene bic_values = -selection_results[tr].pivot_table(values='BIC', index='Gene', columns='Model') restore_these_settings = np.geterr() temp_settings = restore_these_settings.copy() temp_settings["over"] = "ignore" temp_settings["under"] = "ignore" np.seterr(**temp_settings) log_v = logsumexp(bic_values,1) log_model_prob= (bic_values.T - log_v).T model_prob = np.exp(log_model_prob).add_suffix('_probability') tr = selection_results.groupby('Gene')['BIC'].transform(min) == selection_results['BIC'] selection_results_prob = selection_results[tr] selection_results_prob = selection_results_prob.join(model_prob, on='Gene') transfer_columns = ['p_value', 'q_value'] np.seterr(**restore_these_settings) selection_results_prob = selection_results_prob.drop(transfer_columns,1)\ .merge(selection_results,how = 'inner') return selection_results_prob def Two_samples_test(self,lik_name= 'Negative_binomial',transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y genes_index = range(self.D) genes_results = self.run_test(lik_name,3,genes_index) return genes_results def Infer_branching_location(self, cell_labels, bins_num=50, lik_name='Negative_binomial', branching_point=-1000,transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y cell_labels = np.array(cell_labels) self.X = np.c_[self.X, cell_labels[:, None]] self.branching = True self.xp = branching_point # return self.X genes_index = range(self.D) log_likelihood = self.run_test(lik_name, 1, genes_index, branching=True) self.branching_kernel_var = self.model.kernel.kern.variance.numpy() self.branching_kernel_ls = self.model.kernel.kern.lengthscales.numpy() # return log_likelihood return self.infer_branching(lik_name, bins_num) def infer_branching(self, lik_name, bins_num): testTimes = np.linspace(min(self.X[:, 0]), max(self.X[:, 0]), bins_num, endpoint=True) ll = np.zeros(bins_num) models = list() genes_index = range(self.D) self.fix = True X = self.X for i in range(0, bins_num): del self.X # gpflow.utilities.print_summary(self.model, fmt='notebook') del self.model self.xp = testTimes[i] self.X = X.copy() self.X[np.where(self.X[:, 0] <= testTimes[i]), 1] = 1 _ = self.run_test(lik_name, 1, genes_index, branching=True) ll[i] = self.model.log_posterior_density().numpy() models.append(self.model) del self.model # Find MAP model log_ll = np.zeros(bins_num) i = 0 for mm in models: log_ll[i] = mm.log_posterior_density().numpy() i = i + 1 p = self.CalculateBranchingEvidence({'loglik': log_ll}, testTimes) ll = p['posteriorBranching'] # tmp = -500. - max(log_ll) # for i in range(0, bins_num): # ll[i] = np.exp(log_ll[i] + tmp) # normalized_ll = ll / ll.sum(0) iMAP = np.argmax(ll) # MAP_model = models[iMAP] self.model = models[iMAP] # Prediction Xnew = np.linspace(min(self.X[:,0]), max(self.X[:,0]), 100).reshape(-1)[:, None] x1 = np.c_[Xnew, np.ones(len(Xnew))[:, None]] x2 = np.c_[Xnew, (np.ones(len(Xnew)) * 2)[:, None]] Xtest = np.concatenate((x1, x2)) Xtest[np.where(Xtest[:, 0] <= self.model.kernel.xp), 1] = 1 if self.lik_name == 'Gaussian': mu, var = self.model.predict_y(Xtest) else: mu, var = self.samples_posterior_predictive_distribution(Xtest) del models self.branching = False return {'geneName':self.genes_name, 'branching_probability':ll, 'branching_location':self.model.kernel.xp, 'mean': mu, 'variance':var, 'Xnew':Xnew, 'test_times':testTimes, 'MAP_model':self.model, 'loglik':log_ll, 'logBayesFactor':p['logBayesFactor'], 'likelihood':self.lik_name} def CalculateBranchingEvidence(self, d, Bsearch): """ :param d: output dictionary from FitModel :param Bsearch: candidate list of branching points :return: posterior probability of branching at each point and log Bayes factor of branching vs not branching """ # Calculate probability of branching at each point # o = d['loglik'][:-1] o = d['loglik'] pn = np.exp(o - np.max(o)) p = pn / pn.sum() # normalize # Calculate log likelihood ratio by averaging out o = d['loglik'] Nb = o.size - 1 if Nb != len(Bsearch) - 1: raise NameError('Passed in wrong length of Bsearch is %g- should be %g' % (len(Bsearch), Nb)) obj = o[:-1] illmax = np.argmax(obj) llmax = obj[illmax] lratiostable = llmax + np.log(1 + np.exp(obj[np.arange(obj.size) != illmax] - llmax).sum()) - o[-1] - np.log(Nb) return {'posteriorBranching': p, 'logBayesFactor': lratiostable} def calculate_FDR(self,genes_results): genes_results['p_value'] = 1 - ss.chi2.cdf(2*genes_results['log_likelihood_ratio'], df=1) genes_results['q_value']= self.qvalue(genes_results['p_value']) return genes_results ''' def set_inducing_points_locations(self,Z): self.Z = Z self.M = self.Z.shape[0] ''' def kmean_algorithm_inducing_points(self,M = 0): if M != 0: self.M = M self.ConditionalVariance = False # set inducing points by K-mean cluster algorithm kmeans = KMeans(n_clusters= self.M).fit(self.X) self.Z = kmeans.cluster_centers_ self.Z = np.sort(self.Z,axis=None).reshape([self.M,1]) self.Z = self.Z.reshape([self.Z.shape[0],1]) # Run the selected test and get likelihoods for all genes def run_test(self,lik_name,models_number,genes_index,branching = False): genes_results = {} genes_state = {} self.Y = self.Y_copy self.models_number = models_number self.lik_name = lik_name self.optimize = True #column names for likelihood dataframe if self.models_number == 1: column_name = ['Dynamic_model_log_likelihood'] elif self.models_number == 2: column_name = ['Dynamic_model_log_likelihood','Constant_model_log_likelihood','log_likelihood_ratio'] else: column_name = ['Shared_log_likelihood','model_1_log_likelihood','model_2_log_likelihood','log_likelihood_ratio'] for self.index in tqdm(genes_index): self.y = self.Y[self.index].astype(float) self.y = self.y.reshape([-1,1]) results = self.fit_single_gene(column_name) genes_results[self.genes_name[self.index]] = results return pd.DataFrame.from_dict(genes_results, orient='index', columns= column_name) # fit numbers of GPs = models_number to run the selected test def fit_single_gene(self,column_name,reset =False): if self.models_number == 1: col_name = 0 else: col_name = 2 self.model_index = 1 model_1_log_likelihood = self.fit_model() results = [model_1_log_likelihood] if self.models_number == 2: if not(np.isnan(model_1_log_likelihood)): if self.lik_name == 'Negative_binomial': self.lik_alpha = self.model.likelihood.alpha.numpy() if self.lik_name == 'Zero_inflated_negative_binomial': self.lik_km = self.model.likelihood.km.numpy() self.lik_alpha = self.model.likelihood.alpha.numpy() self.model_index = 2 model_2_log_likelihood= self.fit_model() if not(np.isnan(model_2_log_likelihood)): ll_ratio = model_1_log_likelihood - model_2_log_likelihood if np.isnan(model_1_log_likelihood) or np.isnan(model_2_log_likelihood): model_2_log_likelihood = np.nan ll_ratio = np.nan results = [model_1_log_likelihood,model_2_log_likelihood,ll_ratio] if self.models_number == 3: X_df =
pd.DataFrame(data=self.X,index= self.cells_name,columns= ['times'])
pandas.DataFrame
"""Main class and helper functions. """ import os from enum import Enum from collections import OrderedDict from functools import reduce from pathlib import Path from typing import Any, Union, Optional from typing import Iterable, Sized, Sequence, Mapping, MutableMapping from typing import Tuple, List, Dict, KeysView from copy import deepcopy import numpy as np from numpy import ma import pandas as pd from numpy.lib.recfunctions import rec_drop_fields from pandas.core.index import RangeIndex from pandas.api.types import is_string_dtype, is_categorical from scipy import sparse from scipy.sparse import issparse from scipy.sparse.sputils import IndexMixin from natsort import natsorted # try importing zarr try: from zarr.core import Array as ZarrArray except ImportError: class ZarrArray: @staticmethod def __rep__(): return 'mock zarr.core.Array' # try importing zappy try: from zappy.base import ZappyArray except ImportError: class ZappyArray: @staticmethod def __rep__(): return 'mock zappy.base.ZappyArray' from . import h5py from .layers import AnnDataLayers from . import utils from .utils import Index, get_n_items_idx from .logging import anndata_logger as logger from .compat import PathLike class StorageType(Enum): Array = np.ndarray Masked = ma.MaskedArray Sparse = sparse.spmatrix ZarrArry = ZarrArray ZappyArry = ZappyArray @classmethod def classes(cls): print(ZarrArray) return tuple(c.value for c in cls.__members__.values()) class BoundRecArr(np.recarray): """A :class:`numpy.recarray` to which fields can be added using ``.['key']``. To enable this, it is bound to a instance of AnnData. """ _attr_choices = ['obsm', 'varm'] def __new__(cls, input_array: np.ndarray, parent: Any, attr: str): """ Parameters ---------- input_array A (structured) numpy array. parent Any object to which the BoundRecArr shall be bound to. attr The name of the attribute as which it appears in parent. """ arr = np.asarray(input_array).view(cls) arr._parent = parent arr._attr = attr return arr def __array_finalize__(self, obj: Any): if obj is None: return self._parent = getattr(obj, '_parent', None) self._attr = getattr(obj, '_attr', None) def __reduce__(self) -> Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]: pickled_state = super().__reduce__() new_state = pickled_state[2] + (self.__dict__, ) return pickled_state[0], pickled_state[1], new_state def __setstate__(self, state: Sequence[Mapping[str, Any]]): for k, v in state[-1].items(): self.__setattr__(k, v) super().__setstate__(state[0:-1]) def copy(self, order='C') -> 'BoundRecArr': new = super().copy() new._parent = self._parent return new def flipped(self) -> 'BoundRecArr': new_attr = (self._attr_choices[1] if self._attr == self._attr_choices[0] else self._attr_choices[0]) return BoundRecArr(self, self._parent, new_attr) def keys(self) -> Tuple[str, ...]: return self.dtype.names def __setitem__(self, key: str, arr: np.ndarray): if not isinstance(arr, np.ndarray): raise ValueError( 'Can only assign numpy ndarrays to .{}[{!r}], not objects of class {}' .format(self._attr, key, type(arr)) ) if arr.ndim == 1: raise ValueError('Use adata.obs or adata.var for 1-dimensional arrays.') if self.shape[0] != arr.shape[0]: raise ValueError( 'Can only assign an array of same length ({}), not of length {}.' .format(self.shape[0], arr.shape[0]) ) # the following always allocates a new array # even if the key already exists and dimensions match # TODO: one could check for this case # dtype merged_dtype = [] found_key = False for descr in self.dtype.descr: if descr[0] == key: merged_dtype.append((key, arr.dtype, arr.shape[1])) found_key = True else: merged_dtype.append(descr) if not found_key: merged_dtype.append((key, arr.dtype, arr.shape[1])) # create new array new = np.empty(len(self), dtype=merged_dtype) # fill the array for name in new.dtype.names: if name == key: new[name] = arr else: new[name] = self[name] # make it a BoundRecArr # TODO: why can we not do this step before filling the array? new = BoundRecArr(new, self._parent, self._attr) setattr(self._parent, self._attr, new) def __delitem__(self, key: str): """Delete field with name.""" if key not in self.dtype.names: raise ValueError( 'Currently, can only delete single names from {}.' .format(self.dtype.names) ) new_array = rec_drop_fields(self, key) new = BoundRecArr(new_array, self._parent, self._attr) setattr(self._parent, self._attr, new) def to_df(self) -> pd.DataFrame: """Convert to pandas dataframe.""" df = pd.DataFrame(index=RangeIndex(0, self.shape[0], name=None)) for key in self.keys(): value = self[key] for icolumn, column in enumerate(value.T): df['{}{}'.format(key, icolumn+1)] = column return df # for backwards compat def _find_corresponding_multicol_key(key, keys_multicol): """Find the corresponding multicolumn key.""" for mk in keys_multicol: if key.startswith(mk) and 'of' in key: return mk return None # for backwards compat def _gen_keys_from_multicol_key(key_multicol, n_keys): """Generates single-column keys from multicolumn key.""" keys = [('{}{:03}of{:03}') .format(key_multicol, i+1, n_keys) for i in range(n_keys)] return keys def df_to_records_fixed_width(df, var_len_str=True): uns = {} # unstructured dictionary for storing categories names = ['index'] if is_string_dtype(df.index): if var_len_str: index = df.index.values.astype(h5py.special_dtype(vlen=str)) else: max_len_index = 0 if 0 in df.shape else df.index.map(len).max() index = df.index.values.astype('S{}'.format(max_len_index)) else: index = df.index.values arrays = [index] for k in df.columns: names.append(k) if is_string_dtype(df[k]) and not is_categorical(df[k]): if var_len_str: arrays.append(df[k].values.astype(h5py.special_dtype(vlen=str))) else: lengths = df[k].map(len) if is_categorical(lengths): lengths = lengths.cat.as_ordered() arrays.append(df[k].values.astype('S{}'.format(lengths.max()))) elif is_categorical(df[k]): uns[k + '_categories'] = df[k].cat.categories arrays.append(df[k].cat.codes) else: arrays.append(df[k].values) formats = [v.dtype for v in arrays] return np.rec.fromarrays( arrays, dtype={'names': names, 'formats': formats}), uns def _check_2d_shape(X): """Check shape of array or sparse matrix. Assure that X is always 2D: Unlike numpy we always deal with 2D arrays. """ if X.dtype.names is None and len(X.shape) != 2: raise ValueError('X needs to be 2-dimensional, not ' '{}-dimensional.'.format(len(X.shape))) def _normalize_index(index, names): if not isinstance(names, RangeIndex): assert names.dtype != float and names.dtype != int, \ 'Don’t call _normalize_index with non-categorical/string names' # the following is insanely slow for sequences, we replaced it using pandas below def name_idx(i): if isinstance(i, str): # `where` returns an 1-tuple (1D array) of found indices i_found = np.where(names == i)[0] if len(i_found) == 0: # returns array of length 0 if nothing is found raise IndexError( 'Key "{}" is not valid observation/variable name/index.' .format(i)) i = i_found[0] return i if isinstance(index, slice): start = name_idx(index.start) stop = name_idx(index.stop) # string slices can only be inclusive, so +1 in that case if isinstance(index.stop, str): stop = None if stop is None else stop + 1 step = index.step return slice(start, stop, step) elif isinstance(index, (int, str)): return name_idx(index) elif isinstance(index, (Sequence, np.ndarray, pd.Index)): # here, we replaced the implementation based on name_idx with this # incredibly faster one positions = pd.Series(index=names, data=range(len(names))) positions = positions[index] if positions.isnull().values.any(): raise KeyError( 'Indices "{}" contain invalid observation/variables names/indices.' .format(index)) return positions.values else: raise IndexError('Unknown index {!r} of type {}' .format(index, type(index))) def _gen_dataframe(anno, length, index_names): if isinstance(anno, pd.DataFrame): return anno if anno is None or len(anno) == 0: _anno = pd.DataFrame(index=RangeIndex(0, length, name=None).astype(str)) else: for index_name in index_names: if index_name in anno: _anno = pd.DataFrame( anno, index=anno[index_name], columns=[k for k in anno.keys() if k != index_name]) break else: _anno = pd.DataFrame(anno, index=RangeIndex(0, length, name=None).astype(str)) return _anno class AnnDataFileManager: """Backing file manager for AnnData. """ def __init__( self, adata: 'AnnData', filename: Optional[PathLike] = None, filemode: Optional[str] = None, ): self._adata = adata self.filename = filename self._filemode = filemode self._file = None if filename: self.open() def __repr__(self) -> str: if self.filename is None: return 'Backing file manager: no file is set.' else: return 'Backing file manager of file {}.'.format(self.filename) def __getitem__(self, key: str) -> Union[h5py.Group, h5py.Dataset, h5py.SparseDataset]: return self._file[key] def __setitem__(self, key: str, value: Union[h5py.Group, h5py.Dataset, h5py.SparseDataset]): self._file[key] = value def __delitem__(self, key: str): del self._file[key] @property def filename(self) -> Path: return self._filename @filename.setter def filename(self, filename: Optional[PathLike]): self._filename = None if filename is None else Path(filename) def open( self, filename: Optional[PathLike] = None, filemode: Optional[str] = None, ): if filename is not None: self.filename = filename if filemode is not None: self._filemode = filemode if self.filename is None: raise ValueError( 'Cannot open backing file if backing not initialized.') self._file = h5py.File(self.filename, self._filemode, force_dense=True) def close(self): """Close the backing file, remember filename, do *not* change to memory mode.""" if self._file is not None: self._file.close() def _to_memory_mode(self): """Close the backing file, forget filename, *do* change to memory mode.""" self._adata.__X = self._adata.X[()] self._file.close() self._file = None self._filename = None @property def isopen(self) -> bool: """State of backing file.""" if self._file is None: return False # try accessing the id attribute to see if the file is open return bool(self._file.id) def _init_actual_AnnData(adata_view): if adata_view.isbacked: raise ValueError( 'You cannot modify elements of an AnnData view, ' 'but need a copy of the subset.\n\n' 'Call `adata_subset = adata[index].copy(filename=...)`.') adata_view._init_as_actual(adata_view.copy()) class _SetItemMixin: def __setitem__(self, idx: Any, value: Any): if self._view_args is None: super().__setitem__(idx, value) else: adata_view, attr_name = self._view_args _init_actual_AnnData(adata_view) getattr(adata_view, attr_name)[idx] = value class _ViewMixin(_SetItemMixin): def __init__(self, *args, view_args: Tuple['AnnData', str] = None, **kwargs): self._view_args = view_args super().__init__(*args, **kwargs) class ArrayView(_SetItemMixin, np.ndarray): def __new__( cls, input_array: Sequence[Any], view_args: Tuple['AnnData', str] = None, ): arr = np.asarray(input_array).view(cls) arr._view_args = view_args return arr def __array_finalize__(self, obj: Optional[np.ndarray]): if obj is None: return self._view_args = getattr(obj, '_view_args', None) def keys(self) -> KeysView[str]: # it's a structured array return self.dtype.names def copy(self, order: str = 'C') -> np.ndarray: # we want a conventional array return np.array(self) def toarray(self) -> np.ndarray: return self.copy() class SparseCSRView(_ViewMixin, sparse.csr_matrix): pass class SparseCSCView(_ViewMixin, sparse.csc_matrix): pass class DictView(_ViewMixin, dict): pass class DataFrameView(_ViewMixin, pd.DataFrame): _metadata = ['_view_args'] class Raw(IndexMixin): def __init__( self, adata: Optional['AnnData'] = None, X: Union[np.ndarray, sparse.spmatrix, None] = None, var: Optional[BoundRecArr] = None, varm: Optional[BoundRecArr] = None, ): self._adata = adata self._n_obs = adata.n_obs if X is not None: self._X = X self._var = var self._varm = varm else: self._X = None if adata.isbacked else adata.X.copy() self._var = adata.var.copy() self._varm = adata.varm.copy() @property def X(self): if self._adata.isbacked: if not self._adata.file.isopen: self._adata.file.open() X = self._adata.file['raw.X'] if self._adata.isview: return X[self._adata._oidx, self._adata._vidx] else: return X else: if self.n_obs == 1 and self.n_vars == 1: return self._X[0, 0] elif self.n_obs == 1 or self.n_vars == 1: X = self._X if issparse(self._X): X = self._X.toarray() return X.flatten() else: return self._X @property def shape(self): return self.X.shape @property def var(self): return self._var @property def n_vars(self): return self._var.shape[0] @property def n_obs(self): return self._n_obs @property def varm(self): return self._varm @property def var_names(self): return self.var.index def __getitem__(self, index): oidx, vidx = self._normalize_indices(index) if self._adata is not None or not self._adata.isbacked: X = self._X[oidx, vidx] else: X = self._adata.file['raw.X'][oidx, vidx] if isinstance(vidx, (int, np.int64)): vidx = slice(vidx, vidx+1, 1) var = self._var.iloc[vidx] if self._varm is not None: varm = self._varm[vidx] else: varm = None return Raw(self._adata, X=X, var=var, varm=varm) def copy(self): return Raw(self._adata, X=self._X.copy(), var=self._var.copy(), varm=None if self._varm is None else self._varm.copy()) def _normalize_indices(self, packed_index): # deal with slicing with pd.Series if isinstance(packed_index, pd.Series): packed_index = packed_index.values if isinstance(packed_index, tuple): if len(packed_index) != 2: raise IndexDimError(len(packed_index)) if isinstance(packed_index[1], pd.Series): packed_index = packed_index[0], packed_index[1].values if isinstance(packed_index[0], pd.Series): packed_index = packed_index[0].values, packed_index[1] obs, var = super()._unpack_index(packed_index) obs = _normalize_index(obs, self._adata.obs_names) var = _normalize_index(var, self.var_names) return obs, var INDEX_DIM_ERROR_MSG = 'You tried to slice an AnnData(View) object with an' \ '{}-dimensional index, but only 2 dimensions exist in such an object.' INDEX_DIM_ERROR_MSG_1D = '\nIf you tried to slice cells using adata[cells, ], ' \ 'be aware that Python (unlike R) uses adata[cells, :] as slicing syntax.' class IndexDimError(IndexError): def __init__(self, n_dims): msg = INDEX_DIM_ERROR_MSG.format(n_dims) if n_dims == 1: msg += INDEX_DIM_ERROR_MSG_1D super().__init__(msg) class AnnData(IndexMixin, metaclass=utils.DeprecationMixinMeta): """An annotated data matrix. :class:`~anndata.AnnData` stores a data matrix :attr:`X` together with annotations of observations :attr:`obs`, variables :attr:`var` and unstructured annotations :attr:`uns`. .. figure:: https://falexwolf.de/img/scanpy/anndata.svg :width: 350px An :class:`~anndata.AnnData` object ``adata`` can be sliced like a pandas dataframe, for instance, ``adata_subset = adata[:, list_of_variable_names]``. :class:`~anndata.AnnData`'s basic structure is similar to R's ExpressionSet [Huber15]_. If setting an ``.h5ad``-formatted HDF5 backing file ``.filename``, data remains on the disk but is automatically loaded into memory if needed. See this `blog post`_ for more details. .. _blog post: http://falexwolf.de/blog/171223_AnnData_indexing_views_HDF5-backing/ Parameters ---------- X A #observations × #variables data matrix. A view of the data is used if the data type matches, otherwise, a copy is made. obs Key-indexed one-dimensional observations annotation of length #observations. var Key-indexed one-dimensional variables annotation of length #variables. uns Key-index unstructured annotation. obsm Key-indexed multi-dimensional observations annotation of length #observations. If passing a :class:`~numpy.ndarray`, it needs to have a structured datatype. varm Key-indexed multi-dimensional variables annotation of length #variables. If passing a :class:`~numpy.ndarray`, it needs to have a structured datatype. dtype Data type used for storage. shape Shape tuple (#observations, #variables). Can only be provided if ``X`` is ``None``. filename Name of backing file. See :class:`anndata.h5py.File`. filemode Open mode of backing file. See :class:`anndata.h5py.File`. layers Dictionary with keys as layers' names and values as matrices of the same dimensions as X. See Also -------- read_h5ad read_csv read_excel read_hdf read_loom read_zarr read_mtx read_text read_umi_tools Notes ----- Multi-dimensional annotations are stored in :attr:`obsm` and :attr:`varm`. Indexing into an AnnData object with a numeric is supposed to be positional, like pandas’ :attr:`~pandas.DataFrame.iloc` accessor, while indexing with a string/categorical is supposed to behave like :attr:`~pandas.DataFrame.loc`. If the unstructured annotations :attr:`uns` contain a sparse matrix of shape :attr:`n_obs` × :attr:`n_obs`, these are sliced when calling ``[]``. A data matrix is flattened if either :attr:`n_obs` or :attr:`n_vars` is 1, so that numpy's slicing behavior is reproduced:: adata = AnnData(np.ones((2, 2))) adata[:, 0].X == adata.X[:, 0] :class:`~anndata.AnnData` stores observations (samples) of variables (features) in the rows of a matrix. This is the convention of the modern classics of statistics [Hastie09]_ and machine learning [Murphy12]_, the convention of dataframes both in R and Python and the established statistics and machine learning packages in Python (statsmodels_, scikit-learn_). .. _statsmodels: http://www.statsmodels.org/stable/index.html .. _scikit-learn: http://scikit-learn.org/ """ _BACKED_ATTRS = ['X', 'raw.X'] # backwards compat _H5_ALIASES = { 'X': {'X', '_X', 'data', '_data'}, 'obs': {'obs', '_obs', 'smp', '_smp'}, 'var': {'var', '_var'}, 'uns': {'uns'}, 'obsm': {'obsm', '_obsm', 'smpm', '_smpm'}, 'varm': {'varm', '_varm'}, 'layers': {'layers', '_layers'}, } _H5_ALIASES_NAMES = { 'obs': {'obs_names', 'smp_names', 'row_names', 'index'}, 'var': {'var_names', 'col_names', 'index'}, } def __init__( self, X: Optional[Union[np.ndarray, sparse.spmatrix, pd.DataFrame]] = None, obs: Optional[Union[pd.DataFrame, Mapping[str, Iterable[Any]]]] = None, var: Optional[Union[pd.DataFrame, Mapping[str, Iterable[Any]]]] = None, uns: Optional[Mapping[str, Any]] = None, obsm: Optional[Union[np.ndarray, Mapping[str, Sequence[Any]]]] = None, varm: Optional[Union[np.ndarray, Mapping[str, Sequence[Any]]]] = None, layers: Optional[Mapping[str, Union[np.ndarray, sparse.spmatrix]]] = None, raw: Optional[Raw] = None, dtype: Union[np.dtype, str] = 'float32', shape: Optional[Tuple[int, int]] = None, filename: Optional[PathLike] = None, filemode: Optional[str] = None, asview: bool = False, *, oidx: Index = None, vidx: Index = None): if asview: if not isinstance(X, AnnData): raise ValueError('`X` has to be an AnnData object.') self._init_as_view(X, oidx, vidx) else: self._init_as_actual( X=X, obs=obs, var=var, uns=uns, obsm=obsm, varm=varm, raw=raw, layers=layers, dtype=dtype, shape=shape, filename=filename, filemode=filemode) def _init_as_view(self, adata_ref: 'AnnData', oidx: Index, vidx: Index): if adata_ref.isbacked and adata_ref.isview: raise ValueError( 'Currently, you cannot index repeatedly into a backed AnnData, ' 'that is, you cannot make a view of a view.') self._isview = True self._adata_ref = adata_ref self._oidx = oidx self._vidx = vidx # the file is the same as of the reference object self.file = adata_ref.file # views on attributes of adata_ref oidx_normalized, vidx_normalized = oidx, vidx if isinstance(oidx, (int, np.int64)): oidx_normalized = slice(oidx, oidx+1, 1) if isinstance(vidx, (int, np.int64)): vidx_normalized = slice(vidx, vidx+1, 1) obs_sub = adata_ref.obs.iloc[oidx_normalized] var_sub = adata_ref.var.iloc[vidx_normalized] self._obsm = ArrayView(adata_ref.obsm[oidx_normalized], view_args=(self, 'obsm')) self._varm = ArrayView(adata_ref.varm[vidx_normalized], view_args=(self, 'varm')) # hackish solution here, no copy should be necessary uns_new = deepcopy(self._adata_ref._uns) # need to do the slicing before setting the updated self._n_obs, self._n_vars self._n_obs = self._adata_ref.n_obs # use the original n_obs here self._slice_uns_sparse_matrices_inplace(uns_new, self._oidx) # fix _n_obs, _n_vars if isinstance(oidx, slice): self._n_obs = get_n_items_idx(obs_sub.index, adata_ref.n_obs) elif isinstance(oidx, (int, np.int64)): self._n_obs = 1 elif isinstance(oidx, Sized): self._n_obs = get_n_items_idx(oidx, adata_ref.n_obs) else: raise KeyError('Unknown Index type') if isinstance(vidx, slice): self._n_vars = get_n_items_idx(var_sub.index, adata_ref.n_vars) elif isinstance(vidx, (int, np.int64)): self._n_vars = 1 elif isinstance(vidx, Sized): self._n_vars = get_n_items_idx(vidx, adata_ref.n_vars) else: raise KeyError('Unknown Index type') # fix categories self._remove_unused_categories(adata_ref.obs, obs_sub, uns_new) self._remove_unused_categories(adata_ref.var, var_sub, uns_new) # set attributes self._obs = DataFrameView(obs_sub, view_args=(self, 'obs')) self._var = DataFrameView(var_sub, view_args=(self, 'var')) self._uns = DictView(uns_new, view_args=(self, 'uns')) # set data if self.isbacked: self._X = None else: self._init_X_as_view() self._layers = AnnDataLayers(self, adata_ref=adata_ref, oidx=oidx, vidx=vidx) # set raw, easy, as it's immutable anyways... if adata_ref._raw is not None: # slicing along variables axis is ignored self._raw = adata_ref.raw[oidx] else: self._raw = None def _init_X_as_view(self): if self._adata_ref.X is None: self._X = None return X = self._adata_ref._X[self._oidx, self._vidx] if isinstance(X, sparse.csr_matrix): self._X = SparseCSRView(X, view_args=(self, 'X')) elif isinstance(X, sparse.csc_matrix): self._X = SparseCSCView(X, view_args=(self, 'X')) elif issparse(X): raise ValueError('View on non-csr/csc sparse matrices not implemented.') elif isinstance(X, ZappyArray): # ZappyArray acts as a view itself self._X = X else: shape = ( get_n_items_idx(self._oidx, self._adata_ref.n_obs), get_n_items_idx(self._vidx, self._adata_ref.n_vars) ) if np.isscalar(X): X = X.view() self._X = ArrayView(X.reshape(shape), view_args=(self, 'X')) def _init_as_actual( self, X=None, obs=None, var=None, uns=None, obsm=None, varm=None, raw=None, layers=None, dtype='float32', shape=None, filename=None, filemode=None): from .readwrite.read import _read_args_from_h5ad # view attributes self._isview = False self._adata_ref = None self._oidx = None self._vidx = None # ---------------------------------------------------------------------- # various ways of initializing the data # ---------------------------------------------------------------------- # init from file if filename is not None: if any((X, obs, var, uns, obsm, varm)): raise ValueError( 'If initializing from `filename`, ' 'no further arguments may be passed.') self.file = AnnDataFileManager(self, filename, filemode) X, obs, var, uns, obsm, varm, layers, raw = _read_args_from_h5ad(self, mode=filemode) if X is not None: # this is not a function that a user would use, hence it's fine to set the dtype dtype = X.dtype.name else: self.file = AnnDataFileManager(self, None) # init from AnnData if isinstance(X, AnnData): if any((obs, var, uns, obsm, varm)): raise ValueError( 'If `X` is a dict no further arguments must be provided.') X, obs, var, uns, obsm, varm, layers, raw = X._X, X.obs, X.var, X.uns, X.obsm, X.varm, X.layers, X.raw # init from DataFrame elif isinstance(X, pd.DataFrame): obs = pd.DataFrame(index=X.index) var = pd.DataFrame(index=X.columns) X = X.values # ---------------------------------------------------------------------- # actually process the data # ---------------------------------------------------------------------- # check data type of X if X is not None: for s_type in StorageType: if isinstance(X, s_type.value): break else: class_names = ', '.join(c.__name__ for c in StorageType.classes()) raise ValueError('`X` needs to be of one of {}, not {}.' .format(class_names, type(X))) if shape is not None: raise ValueError('`shape` needs to be `None` is `X` is not `None`.') _check_2d_shape(X) # if type doesn't match, a copy is made, otherwise, use a view if issparse(X) or isinstance(X, ma.MaskedArray): # TODO: maybe use view on data attribute of sparse matrix # as in readwrite.read_10x_h5 if X.dtype != np.dtype(dtype): X = X.astype(dtype) elif isinstance(X, ZarrArray): X = X.astype(dtype) else: # is np.ndarray X = X.astype(dtype, copy=False) # data matrix and shape self._X = X self._n_obs, self._n_vars = self._X.shape else: self._X = None self._n_obs = len([] if obs is None else obs) self._n_vars = len([] if var is None else var) # check consistency with shape if shape is not None: if self._n_obs == 0: self._n_obs = shape[0] else: if self._n_obs != shape[0]: raise ValueError('`shape` is inconsistent with `obs`') if self._n_vars == 0: self._n_vars = shape[1] else: if self._n_vars != shape[1]: raise ValueError('`shape` is inconsistent with `var`') # annotations self._obs = _gen_dataframe(obs, self._n_obs, ['obs_names', 'row_names', 'smp_names']) self._var = _gen_dataframe(var, self._n_vars, ['var_names', 'col_names']) # unstructured annotations self._uns = uns or OrderedDict() # multi-dimensional array annotations if obsm is None: try: obsm = np.empty(self._n_obs, dtype=[]) except TypeError: raise TypeError( 'TypeError: Empty data-type' '--> try installing a more recent numpy version: ' ' pip install numpy --upgrade') if varm is None: varm = np.empty(self._n_vars, dtype=[]) # deal with dictionaries if isinstance(obsm, Mapping): obsm = utils.convert_dictionary_to_structured_array(obsm) if isinstance(varm, Mapping): varm = utils.convert_dictionary_to_structured_array(varm) self._obsm = BoundRecArr(obsm, self, 'obsm') self._varm = BoundRecArr(varm, self, 'varm') self._check_dimensions() self._check_uniqueness() # raw if raw is None: self._raw = None else: if isinstance(raw, Raw): self._raw = raw else: # is dictionary from reading the file, nothing that is meant for a user shape = self.file['raw.X'].shape if self.isbacked else raw['X'].shape self._raw = Raw( self, X=raw['X'], var=_gen_dataframe(raw['var'], shape[1], ['var_names', 'col_names']), varm=raw['varm'] if 'varm' in raw else None) # clean up old formats self._clean_up_old_format(uns) # layers self._layers = AnnDataLayers(self, layers, dtype) def __sizeof__(self) -> int: size = 0 for attr in ['_X', '_obs', '_var', '_uns', '_obsm', '_varm']: s = getattr(self, attr).__sizeof__() size += s return size def _gen_repr(self, n_obs, n_vars) -> str: if self.isbacked: backed_at = 'backed at \'{}\''.format(self.filename) else: backed_at = '' descr = ( 'AnnData object with n_obs × n_vars = {} × {} {}' .format(n_obs, n_vars, backed_at)) for attr in ['obs', 'var', 'uns', 'obsm', 'varm', 'layers']: keys = getattr(self, attr).keys() if len(keys) > 0: descr += '\n {}: {}'.format(attr, str(list(keys))[1:-1]) return descr def __repr__(self) -> str: if self.isview: return 'View of ' + self._gen_repr(self.n_obs, self.n_vars) else: return self._gen_repr(self.n_obs, self.n_vars) @property def shape(self) -> Tuple[int, int]: r"""Shape of data matrix (:attr:`n_obs`, :attr:`n_vars`).""" return self.n_obs, self.n_vars @property def X(self) -> Optional[Union[np.ndarray, sparse.spmatrix, ArrayView]]: """Data matrix of shape :attr:`n_obs` × :attr:`n_vars`.""" if self.isbacked: if not self.file.isopen: self.file.open() X = self.file['X'] if self.isview: X = X[self._oidx, self._vidx] return X else: if self.n_obs == 1 and self.n_vars == 1: return self._X[0, 0] elif self.n_obs == 1 or self.n_vars == 1: X = self._X if issparse(self._X): X = self._X.toarray() return X.flatten() else: return self._X @X.setter def X(self, value: Optional[Union[np.ndarray, sparse.spmatrix]]): if value is None: if self.isview: raise ValueError('Copy the view before setting the data matrix to `None`.') if self.isbacked: raise ValueError('Not implemented.') self._X = None return var_get = self.n_vars == 1 and self.n_obs == len(value) obs_get = self.n_obs == 1 and self.n_vars == len(value) if var_get or obs_get or self.shape == value.shape: if self.isbacked: if self.isview: self.file['X'][self._oidx, self._vidx] = value else: self._set_backed('X', value) else: if self.isview: # exit the view if we go from sparse to dense if ( issparse(value) and not issparse(self._adata_ref._X) or not issparse(value) and issparse(self._adata_ref._X) ): self._init_as_actual(self.copy()) self._X = value else: self._adata_ref._X[self._oidx, self._vidx] = value self._init_X_as_view() else: self._X = value else: raise ValueError('Data matrix has wrong shape {}, need to be {}' .format(value.shape, self.shape)) @property def layers(self) -> AnnDataLayers: """Dictionary-like object with values of the same dimensions as :attr:`X`. Layers in AnnData have API similar to loompy :ref:`loomlayers`. Return the layer named ``"unspliced"``:: adata.layers["unspliced"] Create or replace the ``"spliced"`` layer:: adata.layers["spliced"] = ... Assign the 10th column of layer ``"spliced"`` to the variable a:: a = adata.layers["spliced"][:, 10] Delete the ``"spliced"`` layer:: del adata.layers["spliced"] Return layers’ names:: adata.layers.keys() .. warning:: If AnnData is a view, setting subsets of layers modifies the original data. """ return self._layers @property def raw(self) -> Raw: """Store raw version of :attr:`X` and :attr:`var` as ``.raw.X`` and ``.raw.var``. The :attr:`raw` attribute is initialized with the current content of an object by setting:: adata.raw = adata Its content can be deleted by setting it back to ``None``:: adata.raw = None Upon slicing an AnnData object along the observations (row) axis, :attr:`raw` is also sliced. Slicing an AnnData object along the variables (columns) axis, leaves :attr:`raw` unaffected. Note that you can call:: adata.raw[:, 'orig_variable_name'].X to retrieve the data associated with a variable that might have been filtered out or "compressed away" in :attr:`X`. """ return self._raw @raw.setter def raw(self, value: Optional['AnnData']): if not (isinstance(value, AnnData) or value is None): raise ValueError( 'Can only init raw attribute with an AnnData object or `None`.') if value is None: self._raw = None else: if self.isview: self._init_as_actual(self.copy()) self._raw = Raw(value) @property def n_obs(self) -> int: """Number of observations.""" return self._n_obs @property def n_vars(self) -> int: """Number of variables/features.""" return self._n_vars @property def obs(self) -> pd.DataFrame: """One-dimensional annotation of observations (`pd.DataFrame`).""" return self._obs @obs.setter def obs(self, value: pd.DataFrame): if not isinstance(value, pd.DataFrame): raise ValueError('Can only assign pd.DataFrame.') if len(value) != self.n_obs: raise ValueError('Length does not match.') utils.warn_no_string_index(value.index) if self.isview: self._adata_ref._obs.iloc[self._oidx] = value else: self._obs = value @property def var(self) -> pd.DataFrame: """One-dimensional annotation of variables/ features (`pd.DataFrame`).""" return self._var @var.setter def var(self, value: pd.DataFrame): if not isinstance(value, pd.DataFrame): raise ValueError('Can only assign pd.DataFrame.') if len(value) != self.n_vars: raise ValueError('Length does not match.') utils.warn_no_string_index(value.index) if self.isview: self._adata_ref._var.iloc[self._vidx] = value else: self._var = value @property def uns(self) -> MutableMapping: """Unstructured annotation (ordered dictionary).""" return self._uns @uns.setter def uns(self, value: MutableMapping): if not isinstance(value, MutableMapping): raise ValueError('Only mutable mapping types (e.g. dict) are allowed for `.uns`.') if self.isview: self._init_as_actual(self.copy()) self._uns = value @property def obsm(self) -> BoundRecArr: """Multi-dimensional annotation of observations (mutable structured :class:`~numpy.ndarray`). Stores for each key, a two or higher-dimensional :class:`np.ndarray` of length ``n_obs``. Is sliced with ``data`` and ``obs`` but behaves otherwise like a :class:`dict`. """ return self._obsm @obsm.setter def obsm(self, value: np.ndarray): if not isinstance(value, np.ndarray): raise ValueError('Can only assign `np.ndarray`.') if len(value) != self.n_obs: raise ValueError('Length does not match.') if self.isview: self._adata_ref._obsm[self._oidx] = value else: self._obsm = BoundRecArr(value, self, 'obsm') @property def varm(self) -> BoundRecArr: """Multi-dimensional annotation of variables/ features (mutable structured :class:`~numpy.ndarray`). Stores for each key, a two or higher-dimensional :class:`~numpy.ndarray` of length ``n_vars``. Is sliced with ``data`` and ``var`` but behaves otherwise like a :class:`dict`. """ return self._varm @varm.setter def varm(self, value: np.ndarray): if not isinstance(value, np.ndarray): raise ValueError('Can only assign `np.ndarray`.') if len(value) != self.n_vars: raise ValueError('Length does not match.') if self.isview: self._adata_ref._varm[self._vidx] = value else: self._varm = BoundRecArr(value, self, 'varm') @property def obs_names(self) -> pd.Index: """Names of observations (alias for ``.obs.index``).""" return self.obs.index @obs_names.setter def obs_names(self, names: Sequence[str]): utils.warn_no_string_index(names) self._obs.index = names if not self._obs.index.is_unique: utils.warn_names_duplicates('obs') @property def var_names(self) -> pd.Index: """Names of variables (alias for ``.var.index``).""" return self._var.index @var_names.setter def var_names(self, names: Sequence[str]): utils.warn_no_string_index(names) self._var.index = names if not self._var.index.is_unique: utils.warn_names_duplicates('var') def obs_keys(self) -> List[str]: """List keys of observation annotation :attr:`obs`.""" return self._obs.keys().tolist() def var_keys(self) -> List[str]: """List keys of variable annotation :attr:`var`.""" return self._var.keys().tolist() def obsm_keys(self) -> List[str]: """List keys of observation annotation :attr:`obsm`.""" return list(self._obsm.keys()) def varm_keys(self) -> List[str]: """List keys of variable annotation :attr:`varm`.""" return list(self._varm.keys()) def uns_keys(self) -> List[str]: """List keys of unstructured annotation.""" return sorted(list(self._uns.keys())) @property def isbacked(self) -> bool: """``True`` if object is backed on disk, ``False`` otherwise.""" return self.filename is not None @property def isview(self) -> bool: """``True`` if object is view of another AnnData object, ``False`` otherwise.""" return self._isview @property def filename(self) -> Optional[PathLike]: """Change to backing mode by setting the filename of a ``.h5ad`` file. - Setting the filename writes the stored data to disk. - Setting the filename when the filename was previously another name moves the backing file from the previous file to the new file. If you want to copy the previous file, use ``copy(filename='new_filename')``. """ return self.file.filename @filename.setter def filename(self, filename: Optional[PathLike]): # convert early for later comparison filename = None if filename is None else Path(filename) # change from backing-mode back to full loading into memory if filename is None: if self.filename is not None: self.file._to_memory_mode() else: # both filename and self.filename are None # do nothing return else: if self.filename is not None: if self.filename != filename: # write the content of self to the old file # and close the file self.write() os.rename(self.filename, filename) else: # do nothing return else: # change from memory to backing-mode # write the content of self to disk self.write(filename, force_dense=True) # open new file for accessing self.file.open(filename, 'r+') # as the data is stored on disk, we can safely set self._X to None self._X = None def _set_backed(self, attr, value): if (not isinstance(self.file[attr], h5py.SparseDataset) and not issparse(value)): self.file[attr] = value else: del self.file[attr] self.file._file.create_dataset(attr, data=value) def _normalize_indices(self, index: Optional[Index]): # deal with tuples of length 1 if isinstance(index, tuple) and len(index) == 1: index = index[0] # deal with pd.Series if isinstance(index, pd.Series): index = index.values if isinstance(index, tuple): if len(index) > 2: raise ValueError( 'AnnData can only be sliced in rows and columns.') # deal with pd.Series if isinstance(index[1], pd.Series): index = index[0], index[1].values if isinstance(index[0], pd.Series): index = index[0].values, index[1] no_slice = not any(isinstance(i, slice) for i in index) both_scalars = all(isinstance(i, (int, str, type(None))) for i in index) if no_slice and not both_scalars: raise NotImplementedError( 'Slicing with two indices at the same time is not yet implemented. ' 'As a workaround, do row and column slicing succesively.') # Speed up and error prevention for boolean indices (Don’t convert to integer indices) # Needs to be refactored once we support a tuple of two arbitrary index types if any(isinstance(i, np.ndarray) and i.dtype == bool for i in index): return index obs, var = super()._unpack_index(index) obs = _normalize_index(obs, self.obs_names) var = _normalize_index(var, self.var_names) return obs, var # TODO: this is not quite complete... def __delitem__(self, index: Index): obs, var = self._normalize_indices(index) # TODO: does this really work? if not self.isbacked: del self._X[obs, var] else: X = self.file['X'] del X[obs, var] self._set_backed('X', X) if var == slice(None): del self._obs.iloc[obs, :] if obs == slice(None): del self._var.iloc[var, :] def __getitem__(self, index: Index) -> 'AnnData': """Returns a sliced view of the object.""" return self._getitem_view(index) def _getitem_view(self, index: Index) -> 'AnnData': oidx, vidx = self._normalize_indices(index) return AnnData(self, oidx=oidx, vidx=vidx, asview=True) def _remove_unused_categories(self, df_full, df_sub, uns): from pandas.api.types import is_categorical for k in df_full: if is_categorical(df_full[k]): all_categories = df_full[k].cat.categories df_sub[k].cat.remove_unused_categories(inplace=True) # also correct the colors... if k + '_colors' in uns: # this is a strange hack... if np.array(uns[k + '_colors']).ndim == 0: uns[k + '_colors'] = np.array(uns[k + '_colors'])[None] uns[k + '_colors'] = np.array(uns[k + '_colors'])[ np.where(np.in1d( all_categories, df_sub[k].cat.categories))[0]] def rename_categories(self, key: str, categories: Sequence[Any]): """Rename categories of annotation ``key`` in :attr:`obs`, :attr:`var` and :attr:`uns`. Only supports passing a list/array-like ``categories`` argument. Besides calling ``self.obs[key].cat.categories = categories`` - similar for :attr:`var` - this also renames categories in unstructured annotation that uses the categorical annotation ``key``. Parameters ---------- key Key for observations or variables annotation. categories New categories, the same number as the old categories. """ if isinstance(categories, Mapping): raise ValueError('Only list-like `categories` is supported.') if key in self.obs: old_categories = self.obs[key].cat.categories.tolist() self.obs[key].cat.rename_categories(categories, inplace=True) elif key in self.var: old_categories = self.var[key].cat.categories.tolist() self.var[key].cat.rename_categories(categories, inplace=True) else: raise ValueError('{} is neither in `.obs` nor in `.var`.' .format(key)) # this is not a good solution # but depends on the scanpy conventions for storing the categorical key # as `groupby` in the `params` slot for k1, v1 in self.uns.items(): if isinstance(v1, Mapping): if 'params' in v1 and 'groupby' in v1['params']: if v1['params']['groupby'] == key: for k2, v2 in v1.items(): # picks out the recarrays that are named according to the old # categories if isinstance(v2, np.ndarray) and v2.dtype.names is not None: if list(v2.dtype.names) == old_categories: self.uns[k1][k2].dtype.names = categories else: logger.warning( 'Omitting {}/{} as old categories do not match.' .format(k1, k2)) def strings_to_categoricals(self, df: Optional[pd.DataFrame] = None): """Transform string annotations to categoricals. Only affects string annotations that lead to less categories than the total number of observations. Params ------ df If ``df`` is ``None``, modifies both :attr:`obs` and :attr:`.var`, otherwise modifies ``df`` inplace. Notes ----- Turns the view of an :class:`~anndata.AnnData` into an actual :class:`~anndata.AnnData`. """ dont_modify = False # only necessary for backed views if df is None: dfs = [self.obs, self.var] if self.isview: if not self.isbacked: self._init_as_actual(self.copy()) else: dont_modify = True else: dfs = [df] for df in dfs: string_cols = [ key for key in df.columns if is_string_dtype(df[key]) and not is_categorical(df[key]) ] for key in string_cols: # make sure we only have strings (could be that there are # np.nans (float), -666, '-666', for instance) c = df[key].astype('U') # make a categorical c = pd.Categorical(c, categories=natsorted(np.unique(c))) if len(c.categories) < len(c): if dont_modify: raise RuntimeError( 'Please call `.strings_to_categoricals()` on full AnnData, not on this view. ' 'You might encounter this error message while copying or writing to disk.' ) df[key] = c logger.info('... storing {!r} as categorical'.format(key)) _sanitize = strings_to_categoricals # backwards compat def _slice_uns_sparse_matrices_inplace(self, uns, oidx): # slice sparse spatrices of n_obs × n_obs in self.uns if not (isinstance(oidx, slice) and oidx.start is None and oidx.step is None and oidx.stop is None): for k, v in uns.items(): # treat nested dicts if isinstance(v, Mapping): self._slice_uns_sparse_matrices_inplace(v, oidx) if isinstance(v, sparse.spmatrix) and v.shape == ( self.n_obs, self.n_obs): uns[k] = v.tocsc()[:, oidx].tocsr()[oidx, :] def _inplace_subset_var(self, index): """Inplace subsetting along variables dimension. Same as ``adata = adata[:, index]``, but inplace. """ adata_subset = self[:, index].copy() self._init_as_actual(adata_subset, dtype=self._X.dtype) def _inplace_subset_obs(self, index): """Inplace subsetting along variables dimension. Same as ``adata = adata[index, :]``, but inplace. """ adata_subset = self[index].copy() self._init_as_actual(adata_subset, dtype=self._X.dtype) def _get_obs_array(self, k, use_raw=False, layer='X'): """Get an array from the layer (default layer='X') along the observation dimension by first looking up obs.keys and then var.index.""" in_raw_var_names = k in self.raw.var_names if self.raw is not None else False if use_raw and self.raw is None: raise ValueError('.raw doesn\'t exist') if k in self.obs.keys(): x = self._obs[k] elif in_raw_var_names and use_raw and layer == 'X': x = self.raw[:, k].X elif k in self.var_names and not use_raw and (layer == 'X' or layer in self.layers.keys()): x = self[:, k].X if layer=='X' else self[:, k].layers[layer] elif use_raw and layer != 'X': raise ValueError('No layers in .raw') elif layer != 'X' and layer not in self.layers.keys(): raise ValueError('Did not find {} in layers.keys.' .format(layer)) else: raise ValueError('Did not find {} in obs.keys or var_names.' .format(k)) return x def _get_var_array(self, k, use_raw=False, layer='X'): """Get an array from the layer (default layer='X') along the variables dimension by first looking up ``var.keys`` and then ``obs.index``.""" in_raw_obs_names = k in self.raw.obs_names if self.raw is not None else False if use_raw and self.raw is None: raise ValueError('.raw doesn\'t exist') if k in self.var.keys(): x = self._var[k] elif in_raw_obs_names and use_raw and layer == 'X': x = self.raw[k].X elif k in self.obs_names and not use_raw and (layer == 'X' or layer in self.layers.keys()): x = self[k].X if layer=='X' else self[k].layers[layer] elif use_raw and layer != 'X': raise ValueError('No layers in .raw') elif layer != 'X' and layer not in self.layers.keys(): raise ValueError('Did not find {} in layers.keys.' .format(layer)) else: raise ValueError('Did not find {} in var.keys or obs_names.' .format(k)) return x def __setitem__(self, index: Index, val: Union[int, float, np.ndarray, sparse.spmatrix]): if self.isview: raise ValueError('Object is view and cannot be accessed with `[]`.') obs, var = self._normalize_indices(index) if not self.isbacked: self._X[obs, var] = val else: X = self.file['X'] X[obs, var] = val self._set_backed('X', X) def __len__(self) -> int: return self.shape[0] def transpose(self) -> 'AnnData': """Transpose whole object. Data matrix is transposed, observations and variables are interchanged. """ if self._X is not None and self._X.dtype.name != 'float32': logger.warning( 'Up to anndata 0.6.12, `.transpose()` cast a ' 'non-\'float32\' `.X` to \'float32\'. ' 'Now, the dtype \'{}\' is maintained. ' .format(self._X.dtype.name)) if not self.isbacked: X = self._X else: X = self.file['X'] if self.isview: raise ValueError( 'You\'re trying to transpose a view of an `AnnData`, which is currently not implemented. ' 'Call `.copy()` before transposing.') layers = {k:(v.T.tocsr() if sparse.isspmatrix_csr(v) else v.T) for (k, v) in self.layers.items(copy=False)} if sparse.isspmatrix_csr(X): return AnnData(X.T.tocsr(), self._var, self._obs, self._uns, self._varm.flipped(), self._obsm.flipped(), filename=self.filename, layers=layers, dtype=self.X.dtype.name) return AnnData(X.T, self._var, self._obs, self._uns, self._varm.flipped(), self._obsm.flipped(), filename=self.filename, layers=layers, dtype=self.X.dtype.name) T = property(transpose) def to_df(self) -> pd.DataFrame: """Generate shallow :class:`~pandas.DataFrame`. The data matrix :attr:`X` is returned as :class:`~pandas.DataFrame`, where :attr:`obs_names` initializes the index, and :attr:`var_names` the columns. * No annotations are maintained in the returned object. * The data matrix is densified in case it is sparse. """ if issparse(self._X): X = self._X.toarray() else: X = self._X return pd.DataFrame(X, index=self.obs_names, columns=self.var_names) def copy(self, filename: Optional[PathLike] = None) -> 'AnnData': """Full copy, optionally on disk.""" if not self.isbacked: if self._X is not None and self._X.dtype.name != 'float32': logger.warning( 'Up to anndata 0.6.12, `.copy()` cast a ' 'non-\'float32\' `.X` to \'float32\'. ' 'Now, the dtype \'{}\' is maintained. ' .format(self._X.dtype.name)) return AnnData(self._X.copy() if self._X is not None else None, self._obs.copy(), self._var.copy(), # deepcopy on DictView does not work and is unnecessary # as uns was copied already before self._uns.copy() if isinstance(self._uns, DictView) else deepcopy(self._uns), self._obsm.copy(), self._varm.copy(), raw=None if self._raw is None else self._raw.copy(), layers=self.layers.as_dict(), dtype=self._X.dtype.name if self._X is not None else 'float32') else: if filename is None: raise ValueError( 'To copy an AnnData object in backed mode, ' 'pass a filename: `.copy(filename=\'myfilename.h5ad\')`.') if self.isview: self.write(filename) else: from shutil import copyfile copyfile(self.filename, filename) return AnnData(filename=filename) def concatenate( self, *adatas: 'AnnData', join: str = 'inner', batch_key: str = 'batch', batch_categories: Sequence[Any] = None, index_unique: Optional[str] = '-' ) -> 'AnnData': """Concatenate along the observations axis. The :attr:`uns`, :attr:`varm` and :attr:`obsm` attributes are ignored. Currently, this works only in ``'memory'`` mode. Parameters ---------- adatas AnnData matrices to concatenate with. Each matrix is referred to as a “batch”. join Use intersection (``'inner'``) or union (``'outer'``) of variables. batch_key Add the batch annotation to :attr:`obs` using this key. batch_categories Use these as categories for the batch annotation. By default, use increasing numbers. index_unique Make the index unique by joining the existing index names with the batch category, using ``index_unique='-'``, for instance. Provide ``None`` to keep existing indices. Returns ------- :class:`~anndata.AnnData` The concatenated :class:`~anndata.AnnData`, where ``adata.obs[batch_key]`` stores a categorical variable labeling the batch. Notes ----- .. warning:: If you use ``join='outer'`` this fills 0s for sparse data when variables are absent in a batch. Use this with care. Dense data is filled with ``NaN``. See the examples. Examples -------- Joining on intersection of variables. >>> adata1 = AnnData(np.array([[1, 2, 3], [4, 5, 6]]), >>> {'obs_names': ['s1', 's2'], >>> 'anno1': ['c1', 'c2']}, >>> {'var_names': ['a', 'b', 'c'], >>> 'annoA': [0, 1, 2]}) >>> adata2 = AnnData(np.array([[1, 2, 3], [4, 5, 6]]), >>> {'obs_names': ['s3', 's4'], >>> 'anno1': ['c3', 'c4']}, >>> {'var_names': ['d', 'c', 'b'], >>> 'annoA': [0, 1, 2]}) >>> adata3 = AnnData(np.array([[1, 2, 3], [4, 5, 6]]), >>> {'obs_names': ['s1', 's2'], >>> 'anno2': ['d3', 'd4']}, >>> {'var_names': ['d', 'c', 'b'], >>> 'annoA': [0, 2, 3], >>> 'annoB': [0, 1, 2]}) >>> >>> adata = adata1.concatenate(adata2, adata3) >>> adata AnnData object with n_obs × n_vars = 6 × 2 obs_keys = ['anno1', 'anno2', 'batch'] var_keys = ['annoA-0', 'annoA-1', 'annoB-2', 'annoA-2'] >>> adata.X array([[2., 3.], [5., 6.], [3., 2.], [6., 5.], [3., 2.], [6., 5.]], dtype=float32) >>> adata.obs anno1 anno2 batch s1-0 c1 NaN 0 s2-0 c2 NaN 0 s3-1 c3 NaN 1 s4-1 c4 NaN 1 s1-2 NaN d3 2 s2-2 NaN d4 2 >>> adata.var.T b c annoA-0 1 2 annoA-1 2 1 annoB-2 2 1 annoA-2 3 2 Joining on the union of variables. >>> adata = adata1.concatenate(adata2, adata3, join='outer') >>> adata AnnData object with n_obs × n_vars = 6 × 4 obs_keys = ['anno1', 'anno2', 'batch'] var_keys = ['annoA-0', 'annoA-1', 'annoB-2', 'annoA-2'] >>> adata.var.T index a b c d annoA-0 0.0 1.0 2.0 NaN annoA-1 NaN 2.0 1.0 0.0 annoB-2 NaN 2.0 1.0 0.0 annoA-2 NaN 3.0 2.0 0.0 >>> adata.var_names Index(['a', 'b', 'c', 'd'], dtype='object') >>> adata.X array([[ 1., 2., 3., nan], [ 4., 5., 6., nan], [nan, 3., 2., 1.], [nan, 6., 5., 4.], [nan, 3., 2., 1.], [nan, 6., 5., 4.]], dtype=float32) >>> adata.X.sum(axis=0) array([nan, 25., 23., nan], dtype=float32) >>> import pandas as pd >>> Xdf = pd.DataFrame(adata.X, columns=adata.var_names) index a b c d 0 1.0 2.0 3.0 NaN 1 4.0 5.0 6.0 NaN 2 NaN 3.0 2.0 1.0 3 NaN 6.0 5.0 4.0 4 NaN 3.0 2.0 1.0 5 NaN 6.0 5.0 4.0 >>> Xdf.sum() index a 5.0 b 25.0 c 23.0 d 10.0 dtype: float32 >>> from numpy import ma >>> adata.X = ma.masked_invalid(adata.X) >>> adata.X masked_array( data=[[1.0, 2.0, 3.0, --], [4.0, 5.0, 6.0, --], [--, 3.0, 2.0, 1.0], [--, 6.0, 5.0, 4.0], [--, 3.0, 2.0, 1.0], [--, 6.0, 5.0, 4.0]], mask=[[False, False, False, True], [False, False, False, True], [ True, False, False, False], [ True, False, False, False], [ True, False, False, False], [ True, False, False, False]], fill_value=1e+20, dtype=float32) >>> adata.X.sum(axis=0).data array([ 5., 25., 23., 10.], dtype=float32) The masked array is not saved but has to be reinstantiated after saving. >>> adata.write('./test.h5ad') >>> from anndata import read_h5ad >>> adata = read_h5ad('./test.h5ad') >>> adata.X array([[ 1., 2., 3., nan], [ 4., 5., 6., nan], [nan, 3., 2., 1.], [nan, 6., 5., 4.], [nan, 3., 2., 1.], [nan, 6., 5., 4.]], dtype=float32) For sparse data, everything behaves similarly, except that for ``join='outer'``, zeros are added. >>> from scipy.sparse import csr_matrix >>> adata1 = AnnData(csr_matrix([[0, 2, 3], [0, 5, 6]]), >>> {'obs_names': ['s1', 's2'], >>> 'anno1': ['c1', 'c2']}, >>> {'var_names': ['a', 'b', 'c']}) >>> adata2 = AnnData(csr_matrix([[0, 2, 3], [0, 5, 6]]), >>> {'obs_names': ['s3', 's4'], >>> 'anno1': ['c3', 'c4']}, >>> {'var_names': ['d', 'c', 'b']}) >>> adata3 = AnnData(csr_matrix([[1, 2, 0], [0, 5, 6]]), >>> {'obs_names': ['s5', 's6'], >>> 'anno2': ['d3', 'd4']}, >>> {'var_names': ['d', 'c', 'b']}) >>> >>> adata = adata1.concatenate(adata2, adata3, join='outer') >>> adata.var_names Index(['a', 'b', 'c', 'd'], dtype='object') >>> adata.X.toarray() array([[0., 2., 3., 0.], [0., 5., 6., 0.], [0., 3., 2., 0.], [0., 6., 5., 0.], [0., 0., 2., 1.], [0., 6., 5., 0.]], dtype=float32) """ if self.isbacked: raise ValueError( 'Currently, concatenate does only work in \'memory\' mode.') if len(adatas) == 0: return self elif len(adatas) == 1 and not isinstance(adatas[0], AnnData): adatas = adatas[0] # backwards compatibility all_adatas = (self,) + tuple(adatas) # for controlled behavior, make all variable names unique printed_info = False for i, ad in enumerate(all_adatas): if not ad.var_names.is_unique: ad.var_names = utils.make_index_unique(ad.var_names) if not printed_info: logger.info( 'Making variable names unique for controlled concatenation.') printed_info = True # define variable names of joint AnnData mergers = dict(inner=set.intersection, outer=set.union) var_names_reduce = reduce(mergers[join], (set(ad.var_names) for ad in all_adatas)) # restore order of initial var_names, append non-sortable names at the end # see how this was done in the repo at commit state # 40a24f var_names = [] for v in all_adatas[0].var_names: if v in var_names_reduce: var_names.append(v) var_names_reduce.remove(v) # update the set var_names = pd.Index(var_names + list(var_names_reduce)) if batch_categories is None: categories = [str(i) for i, _ in enumerate(all_adatas)] elif len(batch_categories) == len(all_adatas): categories = batch_categories else: raise ValueError('Provide as many `batch_categories` as `adatas`.') out_shape = (sum(a.n_obs for a in all_adatas), len(var_names)) any_sparse = any(issparse(a.X) for a in all_adatas) if join == 'outer': if any_sparse: # not sure whether the lil_matrix is really the best option X = sparse.lil_matrix(out_shape, dtype=self.X.dtype) else: X = np.empty(out_shape, dtype=self.X.dtype) X[:] = np.nan else: Xs = [] # create layers dict that contains layers shared among all AnnDatas layers = OrderedDict() shared_layers = [key for key in all_adatas[0].layers.keys() if all([key in ad.layers.keys() for ad in all_adatas])] for key in shared_layers: layers[key] = [] # check whether tries to do 'outer' join and layers is non_empty. if join == 'outer' and len(shared_layers) > 0: logger.info( 'layers concatenation is not yet available for \'outer\' intersection and will be ignored.') # check whether layers are not consistently set in all AnnData objects. n_layers = np.array([len(ad.layers.keys()) for ad in all_adatas]) if join == 'inner' and not all(len(shared_layers) == n_layers): logger.info( 'layers are inconsistent - only layers that are shared among all AnnData objects are included.') var = pd.DataFrame(index=var_names) obs_i = 0 # start of next adata’s observations in X out_obss = [] for i, ad in enumerate(all_adatas): if join == 'outer': # only those names that are actually present in the current AnnData vars_intersect = [v for v in var_names if v in ad.var_names] else: vars_intersect = var_names # X if join == 'outer': # this is pretty slow, I guess sparse matrices shouldn't be # constructed like that X[obs_i:obs_i+ad.n_obs, var_names.isin(vars_intersect)] = ad[:, vars_intersect].X else: Xs.append(ad[:, vars_intersect].X) obs_i += ad.n_obs # layers if join == 'inner': for key in shared_layers: layers[key].append(ad[:, vars_intersect].layers[key]) # obs obs = ad.obs.copy() obs[batch_key] = pd.Categorical(ad.n_obs * [categories[i]], categories) if (is_string_dtype(all_adatas[0].obs.index) and not is_string_dtype(ad.obs.index)): obs.index = obs.index.astype(str) if index_unique is not None: if not is_string_dtype(ad.obs.index): obs.index = obs.index.astype(str) obs.index = obs.index.values + index_unique + categories[i] out_obss.append(obs) # var for c in ad.var.columns: new_c = c + (index_unique if index_unique is not None else '-') + categories[i] var.loc[vars_intersect, new_c] = ad.var.loc[vars_intersect, c] if join == 'inner': if any_sparse: from scipy.sparse import vstack X = vstack(Xs) else: X = np.concatenate(Xs) for key in shared_layers: if any(issparse(a.layers[key]) for a in all_adatas): layers[key] = vstack(layers[key]) else: layers[key] = np.concatenate(layers[key]) obs = pd.concat(out_obss, sort=True) if any_sparse: sparse_format = all_adatas[0].X.getformat() X = X.asformat(sparse_format) new_adata = AnnData(X, obs, var, layers=layers) if join == 'inner' else AnnData(X, obs, var) if not obs.index.is_unique: logger.info( 'Or pass `index_unique!=None` to `.concatenate`.') return new_adata def var_names_make_unique(self, join: str = '-'): self.var.index = utils.make_index_unique(self.var.index, join) var_names_make_unique.__doc__ = utils.make_index_unique.__doc__ def obs_names_make_unique(self, join: str = '-'): self.obs.index = utils.make_index_unique(self.obs.index, join) obs_names_make_unique.__doc__ = utils.make_index_unique.__doc__ def _check_uniqueness(self): if not self.obs.index.is_unique: utils.warn_names_duplicates('obs') if not self.var.index.is_unique: utils.warn_names_duplicates('var') def __contains__(self, key: Any): raise AttributeError('AnnData has no attribute __contains__, ' 'don\'t check `in adata`.') def _check_dimensions(self, key=None): if key is None: key = {'obs', 'var', 'obsm', 'varm'} else: key = {key} if 'obs' in key and len(self._obs) != self._n_obs: raise ValueError('Observations annot. `obs` must have number of ' 'rows of `X` ({}), but has {} rows.' .format(self._n_obs, self._obs.shape[0])) if 'var' in key and len(self._var) != self._n_vars: raise ValueError('Variables annot. `var` must have number of ' 'columns of `X` ({}), but has {} rows.' .format(self._n_vars, self._var.shape[0])) if 'obsm' in key and len(self._obsm) != self._n_obs: raise ValueError('Observations annot. `obsm` must have number of ' 'rows of `X` ({}), but has {} rows.' .format(self._n_obs, len(self._obsm))) if 'varm' in key and len(self._varm) != self._n_vars: raise ValueError('Variables annot. `varm` must have number of ' 'columns of `X` ({}), but has {} rows.' .format(self._n_vars, len(self._varm))) def write_h5ad( self, filename: Optional[PathLike] = None, compression: Optional[str] = None, compression_opts: Union[int, Any] = None, force_dense: Optional[bool] = None ): """Write ``.h5ad``-formatted hdf5 file. .. note:: Setting compression to ``'gzip'`` can save disk space but will slow down writing and subsequent reading. Prior to v0.6.16, this was the default for parameter ``compression``. Generally, if you have sparse data that are stored as a dense matrix, you can dramatically improve performance and reduce disk space by converting to a :class:`~scipy.sparse.csr_matrix`:: from scipy.sparse import csr_matrix adata.X = csr_matrix(adata.X) Parameters ---------- filename Filename of data file. Defaults to backing file. compression : ``None``, {``'gzip'``, ``'lzf'``} (default: ``None``) See the h5py :ref:`dataset_compression`. compression_opts See the h5py :ref:`dataset_compression`. force_dense Write sparse data as a dense matrix. Defaults to ``True`` if object is backed, otherwise to ``False``. """ from .readwrite.write import _write_h5ad if filename is None and not self.isbacked: raise ValueError('Provide a filename!') if filename is None: filename = self.filename if force_dense is None: force_dense = self.isbacked _write_h5ad(filename, self, compression=compression, compression_opts=compression_opts, force_dense=force_dense) if self.isbacked: self.file.close() write = write_h5ad # a shortcut and backwards compat def write_csvs(self, dirname: PathLike, skip_data: bool = True, sep: str = ','): """Write annotation to ``.csv`` files. It is not possible to recover the full :class:`~anndata.AnnData` from the output of this function. Use :meth:`~anndata.AnnData.write` for this. Parameters ---------- dirname Name of directory to which to export. skip_data Skip the data matrix :attr:`X`. sep Separator for the data. """ from .readwrite.write import write_csvs write_csvs(dirname, self, skip_data=skip_data, sep=sep) def write_loom(self, filename: PathLike, write_obsm_varm: bool = False): """Write ``.loom``-formatted hdf5 file. Parameters ---------- filename The filename. """ from .readwrite.write import write_loom write_loom(filename, self, write_obsm_varm = write_obsm_varm) def write_zarr( self, store: Union[MutableMapping, PathLike], chunks: Union[bool, int, Tuple[int, ...]], ): """Write a hierarchical Zarr array store. Parameters ---------- store The filename, a :class:`~typing.MutableMapping`, or a Zarr storage class. chunks Chunk shape. """ from .readwrite.write import write_zarr write_zarr(store, self, chunks=chunks) def chunked_X(self, chunk_size: Optional[int] = None): """Return an iterator over the rows of the data matrix :attr:`X`. Parameters ---------- chunk_size Row size of a single chunk. """ if chunk_size is None: # Should be some adaptive code chunk_size = 6000 start = 0 n = self.n_obs for _ in range(int(n // chunk_size)): end = start + chunk_size yield (self.X[start:end], start, end) start = end if start < n: yield (self.X[start:n], start, n) def chunk_X( self, select: Union[int, List[int], Tuple[int, ...], np.ndarray] = 1000, replace: bool = True, ): """Return a chunk of the data matrix :attr:`X` with random or specified indices. Parameters ---------- select If select is an integer, a random chunk of row size = select will be returned. If select is a list, tuple or numpy array of integers, then a chunk with these indices will be returned. replace If select is an integer then ``replace=True`` specifies random sampling of indices with replacement, ``replace=False`` - without replacement. """ if isinstance(select, int): select = select if select < self.n_obs else self.n_obs choice = np.random.choice(self.n_obs, select, replace) elif isinstance(select, (np.ndarray, list, tuple)): choice = np.asarray(select) else: raise ValueError('select should be int or array') reverse = None if self.isbacked: # h5py can only slice with a sorted list of unique index values # so random batch with indices [2, 2, 5, 3, 8, 10, 8] will fail # this fixes the problem indices, reverse = np.unique(choice, return_inverse=True) selection = self.X[indices.tolist()] else: selection = self.X[choice] selection = selection.toarray() if issparse(selection) else selection return selection if reverse is None else selection[reverse] @staticmethod def _args_from_dict(ddata: Mapping[str, Any]): """Allows to construct an instance of AnnData from a dictionary. Acts as interface for the communication with the hdf5 file. In particular, from a dict that has been written using ``AnnData._to_dict_fixed_width_arrays``. """ d_true_keys = {} # backwards compat uns_is_not_key = False valid_keys = [] for keys in AnnData._H5_ALIASES.values(): valid_keys += keys valid_keys += ['raw.X', 'raw.var', 'raw.varm', 'raw.cat'] for key in ddata.keys(): # if there is another key then the prdedefined # then we are reading the old format if key not in valid_keys: uns_is_not_key = True for true_key, keys in AnnData._H5_ALIASES.items(): for key in keys: if key in ddata: d_true_keys[true_key] = ddata[key] if uns_is_not_key: del ddata[key] break else: d_true_keys[true_key] = None # transform recarray to dataframe for true_key, keys in AnnData._H5_ALIASES_NAMES.items(): if d_true_keys[true_key] is not None: for key in keys: if key in d_true_keys[true_key].dtype.names: d_true_keys[true_key] = pd.DataFrame.from_records( d_true_keys[true_key], index=key) break d_true_keys[true_key].index = d_true_keys[true_key].index.astype('U') # transform to unicode string # TODO: this is quite a hack for c in d_true_keys[true_key].columns: if is_string_dtype(d_true_keys[true_key][c]): d_true_keys[true_key][c] = pd.Index( d_true_keys[true_key][c]).astype('U').values # these are the category fields k_to_delete = [] items = ( ddata.items() if uns_is_not_key else ddata['uns'].items() if 'uns' in ddata else [] ) for k, v in items: if k.endswith('_categories'): k_stripped = k.replace('_categories', '') if isinstance(v, (str, int)): # fix categories with a single category v = [v] for ann in ['obs', 'var']: if k_stripped in d_true_keys[ann]: d_true_keys[ann][k_stripped] = pd.Categorical.from_codes( codes=d_true_keys[ann][k_stripped].values, categories=v, ) k_to_delete.append(k) for k in k_to_delete: if uns_is_not_key: del ddata[k] else: del ddata['uns'][k] # assign the variables X = d_true_keys['X'] obs = d_true_keys['obs'] obsm = d_true_keys['obsm'] var = d_true_keys['var'] varm = d_true_keys['varm'] layers = d_true_keys['layers'] raw = None if 'raw.X' in ddata: raw = {} raw['X'] = ddata['raw.X'] del ddata['raw.X'] # get the dataframe raw['var'] = pd.DataFrame.from_records( ddata['raw.var'], index='index') del ddata['raw.var'] raw['var'].index = raw['var'].index.astype('U') # transform to unicode string for c in raw['var'].columns: if is_string_dtype(raw['var'][c]): raw['var'][c] =
pd.Index(raw['var'][c])
pandas.Index
from __future__ import print_function import re import codecs import operator import csv import glob import re from os import listdir from os.path import isfile, join import pandas as pd import bibtexparser META_STARTS = "META_STARTS" META_ENDS = "META_ENDS" CONSTANT_ARTICLE = "@Article" BIBTEX_MAIN_FILE_NAME = "KDD99ReviewArticles.bib" bibtex_folder = "../../../latexAndBibliography/" csv_save_folder = "../latex/excel/" def get_csv_save_folder(): return csv_save_folder def read_file_return_content(file_name): f = codecs.open(file_name, "r", "utf-8") c = f.read() return c def get_bibtex_full_filename_in_bibtex_directory(base_file_name): file_name = join(bibtex_folder, base_file_name) return file_name def read_bibtex_file_bibtex_directory_content(base_file_name): bibtex_file_name = get_bibtex_full_filename_in_bibtex_directory(base_file_name) bibtex_file_content = read_file_return_content(bibtex_file_name) return bibtex_file_content def find_list_of_bib_files(): files_to_find = bibtex_folder + "/*.bib" onlyfiles = [f for f in listdir(bibtex_folder) if isfile(join(bibtex_folder, f))] return [f for f in onlyfiles if f.endswith(".bib")] def find_bibtex_entries_from_content(bib_file_content): article_list = bib_file_content.split(CONSTANT_ARTICLE) articles_containing_meta = [] for article in article_list: if META_STARTS in article: articles_containing_meta.append(CONSTANT_ARTICLE + article) return articles_containing_meta def combine_bib_files_in_latexAndBibliography_to_one_list(): all_articles = [] total_article_count = 0 list_of_bib_files = sorted(find_list_of_bib_files()) journal_count = 0 for bib_filename in list_of_bib_files: bib_file_content = read_bibtex_file_bibtex_directory_content(bib_filename) if META_STARTS in bib_file_content: journal_count = journal_count + 1 list_of_articles_from_bib_file = find_bibtex_entries_from_content(bib_file_content) all_articles = all_articles + list_of_articles_from_bib_file journal_article_count = len(list_of_articles_from_bib_file) print(bib_filename) print("journal_article_count",journal_article_count) for article in list_of_articles_from_bib_file: first_line = article.split("\n")[0] print("\t\t",first_line) total_article_count = total_article_count + journal_article_count print("total_article_count",total_article_count) print("journal_count",journal_count) return all_articles def create_kdd99_review_bib_file(): list_of_all_articles = combine_bib_files_in_latexAndBibliography_to_one_list() fileToWrite = open(BIBTEX_MAIN_FILE_NAME, 'w') for bibtex_content in list_of_all_articles: lines = bibtex_content.split("\n") for line in lines: lineToWrite = not (("file" in line) or ("owner" in line) or ("@Comment" in line) or ("__markedentry" in line) or ("timestamp" in line) ) if(lineToWrite): lineUtf8 = line.encode('utf-8') fileToWrite.write("%s\n" % lineUtf8) fileToWrite.close() def get_list_of_dictionary_created_from_bibtex_file(): with open(BIBTEX_MAIN_FILE_NAME,"r" , encoding="utf-8") as bibtex_file: list_of_article_dictionaries = bibtexparser.load(bibtex_file) for article_entry in list_of_article_dictionaries.entries: str_review = article_entry["comment"] start = str_review.index("META_STARTS") end = str_review.index("META_ENDS") meta_all_values = str_review[start:end] meta_lines = meta_all_values.split("\n") for meta_line in meta_lines: l = meta_line.split(":") if (len(l) > 1): (meta_name,meta_value) = (l[0],l[1]) meta_name = meta_name.replace("%","").replace("-","").strip() meta_value = meta_value.strip() article_entry[meta_name] = meta_value return list_of_article_dictionaries def get_pandas_data_frame_created_from_bibtex_file(): list_of_all_articles = get_list_of_dictionary_created_from_bibtex_file() df = pd.DataFrame(list_of_all_articles.entries) return df def get_pandas_data_frame_dataset_sizes_training(): df = get_pandas_data_frame_created_from_bibtex_file() # find wrong records # df[df.metaTrainingSetSizes.isnull()].ID list1 = df.metaTrainingSetSizes.str.split(",").tolist() temp_list = [] for inner_list in list1: for test_size in inner_list: try: a = int(test_size) temp_list.append(a) except: pass list2 = sorted(temp_list) df1 =
pd.DataFrame(list2)
pandas.DataFrame
import pandas as pd from scripts.python.pheno.datasets.filter import filter_pheno, get_passed_fields from scripts.python.pheno.datasets.features import get_column_name, get_default_statuses_ids, get_status_dict, get_default_statuses, get_sex_dict from scripts.python.preprocessing.serialization.routines.pheno_betas_checking import get_pheno_betas_with_common_subjects from scripts.python.routines.betas import betas_drop_na import plotly.graph_objects as go from scripts.python.routines.manifest import get_manifest from scripts.python.routines.plot.save import save_figure from scripts.python.routines.plot.histogram import add_histogram_trace from scripts.python.routines.plot.layout import add_layout import json from pathlib import Path path = f"E:/YandexDisk/Work/pydnameth/datasets" datasets_info = pd.read_excel(f"{path}/datasets.xlsx", index_col='dataset') folder_name = f"proteomics" path_save = f"{path}/meta/tasks/{folder_name}" Path(f"{path_save}/figs").mkdir(parents=True, exist_ok=True) tissue_datasets = { 'Brain': ['GSE74193'], 'Liver': ['GSE48325', 'GSE61258', 'GSE61446'], 'Blood': ['GSE87571'] } target_features = ['Status', 'Age', 'Sex'] for tissue, datasets in tissue_datasets.items(): tmp_path = f"{path_save}/{tissue}" Path(f"{tmp_path}/figs").mkdir(parents=True, exist_ok=True) pheno_all = pd.DataFrame(columns=target_features + ['Dataset']) pheno_all.index.name = 'subject_id' for d_id, dataset in enumerate(datasets): platform = datasets_info.loc[dataset, 'platform'] manifest = get_manifest(platform) statuses = get_default_statuses(dataset) status_col = get_column_name(dataset, 'Status').replace(' ', '_') statuses_ids = get_default_statuses_ids(dataset) status_dict = get_status_dict(dataset) status_passed_fields = get_passed_fields(status_dict, statuses) controls_status_vals = [status_dict['Control'][x].column for x in statuses_ids['Control']] controls_labels = ', '.join([status_dict['Control'][x].label for x in statuses_ids['Control']]) age_col = get_column_name(dataset, 'Age').replace(' ', '_') sex_col = get_column_name(dataset, 'Sex').replace(' ', '_') sex_dict = get_sex_dict(dataset) continuous_vars = {'Age': age_col} categorical_vars = { status_col: [x.column for x in status_passed_fields], sex_col: [sex_dict[x] for x in sex_dict] } pheno = pd.read_pickle(f"{path}/{platform}/{dataset}/pheno.pkl") pheno = filter_pheno(dataset, pheno, continuous_vars, categorical_vars) betas = pd.read_pickle(f"{path}/{platform}/{dataset}/betas.pkl") betas = betas_drop_na(betas) df =
pd.merge(pheno, betas, left_index=True, right_index=True)
pandas.merge
import argparse, cv2, os, glob import numpy as np import pandas as pd from distutils.util import strtobool __all__ = ["get_parameter", "get_args", "rgb_dist", "proba_parts2joints", "figure_disappears", "ensure_dir", "bvh_exists", "enum_train_files", "enum_test_files"] def get_parameter(param_filename, tf=None): param_dict = {} if tf is None: with open(param_filename, 'r') as fin: for line in fin.readlines(): items = line.split(":") try: if items[0] == "Camera DollyZ": param_dict[items[0]] = float(items[1]) + 287 else: param_dict[items[0]] = float(items[1]) except ValueError: param_dict[items[0]] = items[1].replace("\n", "") else: p_file = tf.extractfile(param_filename) for line in p_file.readlines(): items = line.decode("utf-8").split(":") try: if items[0] == "Camera DollyZ": param_dict[items[0]] = float(items[1]) + 287 else: param_dict[items[0]] = float(items[1]) except ValueError: param_dict[items[0]] = items[1].replace("\n", "") return param_dict def get_args(): p = argparse.ArgumentParser() p.add_argument("-d", "--data_path", type=str, default="../../Data/") p.add_argument("-t", "--test_path", type=str, default="SyntheticImages/*male/") p.add_argument("-n", "--n_train_images", type=int, default=2000) p.add_argument("-N", "--n_test_images", type=int, default=100) p.add_argument("-f", "--full_rotation", type=str, default="False") p.add_argument("-D", "--discr_setting_type", type=str, default=None) p.add_argument("-s", "--n_sep", type=int, default=1) args = p.parse_args() args.full_rotation = bool(strtobool(args.full_rotation)) return args def rgb_dist(px_val, part_label): return np.sum((px_val.astype(np.float32) - part_label.astype(np.float32))**2)**(1./2.) def proba_parts2joints(part_proba, also_bg=False): if also_bg: joint_proba = np.zeros((part_proba.shape[0], 19)) joint_proba[:, 18] = part_proba[:, 31] # background else: joint_proba = np.zeros((part_proba.shape[0], 18)) joint_proba[:, 0] = np.sum(part_proba[:, :4], axis=1) # Head joint_proba[:, 1] = part_proba[:, 4] # neck joint_proba[:, 2] = np.sum(part_proba[:, 5:7], axis=1) # Chest joint_proba[:, 3] = np.sum(part_proba[:, 7:9], axis=1) # Waist joint_proba[:, 4:6] = part_proba[:, 9:11] # Shoulder joint_proba[:, 6:12] = part_proba[:, 15:21] # Elbow, Wrist, Hand joint_proba[:, 12:18] = part_proba[:, 25:31] # Knee, Ankle, Foot return joint_proba def figure_disappears(label_filename): label_px = cv2.imread(label_filename)[:, :, :3][:, :, ::-1] tmp = np.sum(label_px, axis=2) if np.where((255 * 3 - 63 >= tmp) & (tmp >= 63))[0].shape[0] > 10: return False else: return True def ensure_dir(directory): if not os.path.exists(directory): os.makedirs(directory) def bvh_exists(data_path, fname): bvh_path = data_path + "Preprocessing/MotionBVH/Regularized/" param_fname = fname + "_0_param" params = get_parameter(param_fname) return os.path.exists(bvh_path + params["BVH File Name"]) def enum_train_files(data_path, n_train_images, bpc_model, full_rotation): bpc_path = data_path + "Main/BodyPartClassification/" intermediate_path = bpc_path + "Intermediate/" images_path = bpc_path + "SyntheticImages/" active_idxs = [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62] train_images_order_path = intermediate_path + "input_order.csv" if os.path.exists(train_images_order_path): train_filenames = \ np.array([images_path + f for f in np.array(pd.read_csv(train_images_order_path, dtype=str, header=None))]).flatten() else: train_filenames = np.array([images_path+"male/%05d" % i for i in range(7500)]) train_filenames = np.append(train_filenames, np.array([images_path+"female/%05d" % i for i in range(7500)])) np.random.seed(1) np.random.shuffle(train_filenames) train_filename_ids = ["/".join(f.split("/")[-2:]) for f in train_filenames]
pd.DataFrame(train_filename_ids)
pandas.DataFrame
""" Provide a generic structure to support window functions, similar to how we have a Groupby object. """ from collections import defaultdict from datetime import timedelta from textwrap import dedent from typing import List, Optional, Set import warnings import numpy as np import pandas._libs.window as libwindow from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes.common import ( ensure_float64, is_bool, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDateOffset, ABCDatetimeIndex, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas._typing import Axis, FrameOrSeries from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.generic import _shared_docs from pandas.core.groupby.base import GroupByMixin _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ class _Window(PandasObject, SelectionMixin): _attributes = [ "window", "min_periods", "center", "win_type", "axis", "on", "closed", ] # type: List[str] exclusions = set() # type: Set[str] def __init__( self, obj, window=None, min_periods: Optional[int] = None, center: Optional[bool] = False, win_type: Optional[str] = None, axis: Axis = 0, on: Optional[str] = None, closed: Optional[str] = None, **kwargs ): self.__dict__.update(kwargs) self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self) -> Optional[bool]: return None @property def _on(self): return None @property def is_freq_type(self) -> bool: return self.win_type == "freq" def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in [ "right", "both", "left", "neither", ]: raise ValueError("closed must be 'right', 'left', 'both' or " "'neither'") def _create_blocks(self): """ Split data into blocks & return conformed data. """ obj = self._selected_obj # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj._to_dict_of_blocks(copy=False).values() return blocks, obj def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : str / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( "%r object has no attribute %r" % (type(self).__name__, attr) ) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None): return self.window @property def _window_type(self) -> str: return self.__class__.__name__ def __repr__(self) -> str: """ Provide a nice str repr of our rolling object. """ attrs = ( "{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None ) return "{klass} [{attrs}]".format( klass=self._window_type, attrs=",".join(attrs) ) def __iter__(self): url = "https://github.com/pandas-dev/pandas/issues/11704" raise NotImplementedError("See issue #11704 {url}".format(url=url)) def _get_index(self) -> Optional[np.ndarray]: """ Return index as an ndarray. Returns ------- None or ndarray """ if self.is_freq_type: return self._on.asi8 return None def _prep_values(self, values: Optional[np.ndarray] = None) -> np.ndarray: """Convert input to numpy arrays for Cython routines""" if values is None: values = getattr(self._selected_obj, "values", self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values.dtype): values = ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError( "ops for {action} for this " "dtype {dtype} are not " "implemented".format(action=self._window_type, dtype=values.dtype) ) else: try: values = ensure_float64(values) except (ValueError, TypeError): raise TypeError( "cannot handle this type -> {0}" "".format(values.dtype) ) # Always convert inf to nan values[np.isinf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None) -> FrameOrSeries: """ Wrap a single result. """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): from pandas import to_timedelta result = to_timedelta(result.ravel(), unit="ns").values.reshape( result.shape ) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj, exclude=None) -> FrameOrSeries: """ Wrap the results. Parameters ---------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) exclude: list of columns to exclude, default to None """ from pandas import Series, concat from pandas.core.index import ensure_index final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) # exclude nuisance columns so that they are not reindexed if exclude is not None and exclude: columns = [c for c in columns if c not in exclude] if not columns: raise DataError("No numeric types to aggregate") if not len(final): return obj.astype("float64") return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window) -> np.ndarray: """ Center the result in the window. """ if self.axis > result.ndim - 1: raise ValueError( "Requested axis is larger then no. of argument " "dimensions" ) offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def aggregate(self, func, *args, **kwargs): result, how = self._aggregate(func, *args, **kwargs) if result is None: return self.apply(func, raw=False, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs["sum"] = dedent( """ Calculate %(name)s sum of given DataFrame or Series. Parameters ---------- *args, **kwargs For compatibility with other %(name)s methods. Has no effect on the computed value. Returns ------- Series or DataFrame Same type as the input, with the same index, containing the %(name)s sum. See Also -------- Series.sum : Reducing sum for Series. DataFrame.sum : Reducing sum for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 >>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64 >>> s.expanding(3).sum() 0 NaN 1 NaN 2 6.0 3 10.0 4 15.0 dtype: float64 >>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64 For DataFrame, each %(name)s sum is computed column-wise. >>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25 >>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0 """ ) _shared_docs["mean"] = dedent( """ Calculate the %(name)s mean of the values. Parameters ---------- *args Under Review. **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.mean : Equivalent method for Series. DataFrame.mean : Equivalent method for DataFrame. Examples -------- The below examples will show rolling mean calculations with window sizes of two and three, respectively. >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 >>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64 """ ) class Window(_Window): """ Provide rolling window calculations. .. versionadded:: 0.18.0 Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, `min_periods` will default to 1. Otherwise, `min_periods` will default to the size of the window. center : bool, default False Set the labels at the center of the window. win_type : str, default None Provide a window type. If ``None``, all points are evenly weighted. See the notes below for further information. on : str, optional For a DataFrame, a datetime-like column on which to calculate the rolling window, rather than the DataFrame's index. Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window. axis : int or str, default 0 closed : str, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 Returns ------- a Window or Rolling sub-classed for the particular operation See Also -------- expanding : Provides expanding transformations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width) * ``exponential`` (needs tau), center is set to None. If ``win_type=None`` all points are evenly weighted. To learn more about different window types see `scipy.signal window functions <https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions>`__. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 0.5 2 1.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicitly set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [pd.Timestamp('20130101 09:00:00'), ... pd.Timestamp('20130101 09:00:02'), ... pd.Timestamp('20130101 09:00:03'), ... pd.Timestamp('20130101 09:00:05'), ... pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 """ def validate(self): super().validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window <= 0: raise ValueError("window must be > 0 ") import_optional_dependency( "scipy", extra="Scipy is required to generate window weight." ) import scipy.signal as sig if not isinstance(self.win_type, str): raise ValueError("Invalid win_type {0}".format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError("Invalid win_type {0}".format(self.win_type)) else: raise ValueError("Invalid window {0}".format(window)) def _prep_window(self, **kwargs): """ Provide validation for our window type, return the window we have already been validated. """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return com.asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = { "kaiser": ["beta"], "gaussian": ["std"], "general_gaussian": ["power", "width"], "slepian": ["width"], "exponential": ["tau"], } if win_type in arg_map: win_args = _pop_args(win_type, arg_map[win_type], kwargs) if win_type == "exponential": # exponential window requires the first arg (center) # to be set to None (necessary for symmetric window) win_args.insert(0, None) return tuple([win_type] + win_args) return win_type def _pop_args(win_type, arg_names, kwargs): msg = "%s window requires %%s" % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _apply_window(self, mean=True, **kwargs): """ Applies a moving window of type ``window_type`` on the data. Parameters ---------- mean : bool, default True If True computes weighted mean, else weighted sum Returns ------- y : same type as input argument """ window = self._prep_window(**kwargs) center = self.center blocks, obj = self._create_blocks() block_list = list(blocks) results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, len(window)) return libwindow.roll_window( np.concatenate((arg, additional_nans)) if center else arg, window, minp, avg=mean, ) result = np.apply_along_axis(f, self.axis, values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name="window") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply_window(mean=False, **kwargs) @Substitution(name="window") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply_window(mean=True, **kwargs) class _GroupByMixin(GroupByMixin): """ Provide the groupby facilities. """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop("parent", None) # noqa groupby = kwargs.pop("groupby", None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super().__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch("count") corr = GroupByMixin._dispatch("corr", other=None, pairwise=None) cov = GroupByMixin._dispatch("cov", other=None, pairwise=None) def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object. """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, str): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : str/callable to apply name : str, optional name of this function window : int/array, default to _get_window() center : bool, default to self.center check_minp : function, default to _use_window Returns ------- y : type of input """ if center is None: center = self.center if window is None: window = self._get_window() if check_minp is None: check_minp = _use_window blocks, obj = self._create_blocks() block_list = list(blocks) index_as_array = self._get_index() results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, str): cfunc = getattr(libwindow, func, None) if cfunc is None: raise ValueError( "we do not support this function " "in libwindow.{func}".format(func=func) ) def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) # ensure we are only rolling on floats arg = ensure_float64(arg) return cfunc(arg, window, minp, index_as_array, closed, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func( np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed, ) else: def calc(x): return func( x, window, min_periods=self.min_periods, closed=self.closed ) with np.errstate(all="ignore"): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) class _Rolling_and_Expanding(_Rolling): _shared_docs["count"] = dedent( r""" The %(name)s count of any non-NaN observations inside the window. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. DataFrame.count : Count of the full DataFrame. Examples -------- >>> s = pd.Series([2, 3, np.nan, 10]) >>> s.rolling(2).count() 0 1.0 1 2.0 2 1.0 3 1.0 dtype: float64 >>> s.rolling(3).count() 0 1.0 1 2.0 2 2.0 3 2.0 dtype: float64 >>> s.rolling(4).count() 0 1.0 1 2.0 2 2.0 3 3.0 dtype: float64 """ ) def count(self): blocks, obj = self._create_blocks() # Validate the index self._get_index() window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor( result, window=window, min_periods=0, center=self.center, axis=self.axis, closed=self.closed, ).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs["apply"] = dedent( r""" The %(name)s function's apply function. Parameters ---------- func : function Must produce a single value from an ndarray input if ``raw=True`` or a single value from a Series if ``raw=False``. raw : bool, default None * ``False`` : passes each row or column as a Series to the function. * ``True`` or ``None`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. The `raw` parameter is required and will show a FutureWarning if not passed. In the future `raw` will default to False. .. versionadded:: 0.23.0 *args, **kwargs Arguments and keyword arguments to be passed into func. Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ ) def apply(self, func, raw=None, args=(), kwargs={}): from pandas import Series kwargs.pop("_level", None) window = self._get_window() offset = _offset(window, self.center) index_as_array = self._get_index() # TODO: default is for backward compat # change to False in the future if raw is None: warnings.warn( "Currently, 'apply' passes the values as ndarrays to the " "applied function. In the future, this will change to passing " "it as Series objects. You need to specify 'raw=True' to keep " "the current behaviour, and you can pass 'raw=False' to " "silence this warning", FutureWarning, stacklevel=3, ) raw = True def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) if not raw: arg = Series(arg, index=self.obj.index) return libwindow.roll_generic( arg, window, minp, index_as_array, closed, offset, func, raw, args, kwargs, ) return self._apply(f, func, args=args, kwargs=kwargs, center=False, raw=raw) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply("roll_sum", "sum", **kwargs) _shared_docs["max"] = dedent( """ Calculate the %(name)s maximum. Parameters ---------- *args, **kwargs Arguments and keyword arguments to be passed into func. """ ) def max(self, *args, **kwargs): nv.validate_window_func("max", args, kwargs) return self._apply("roll_max", "max", **kwargs) _shared_docs["min"] = dedent( """ Calculate the %(name)s minimum. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with a Series. DataFrame.%(name)s : Calling object with a DataFrame. Series.min : Similar method for Series. DataFrame.min : Similar method for DataFrame. Examples -------- Performing a rolling minimum with a window size of 3. >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64 """ ) def min(self, *args, **kwargs): nv.validate_window_func("min", args, kwargs) return self._apply("roll_min", "min", **kwargs) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply("roll_mean", "mean", **kwargs) _shared_docs["median"] = dedent( """ Calculate the %(name)s median. Parameters ---------- **kwargs For compatibility with other %(name)s methods. Has no effect on the computed median. Returns ------- Series or DataFrame Returned type is the same as the original object. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.median : Equivalent method for Series. DataFrame.median : Equivalent method for DataFrame. Examples -------- Compute the rolling median of a series with a window size of 3. >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.rolling(3).median() 0 NaN 1 NaN 2 1.0 3 2.0 4 3.0 dtype: float64 """ ) def median(self, **kwargs): return self._apply("roll_median_c", "median", **kwargs) _shared_docs["std"] = dedent( """ Calculate %(name)s standard deviation. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.std : Equivalent method for Series. DataFrame.std : Equivalent method for DataFrame. numpy.std : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in Series.std is different than the default `ddof` of 0 in numpy.std. A minimum of one period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).std() 0 NaN 1 NaN 2 0.577350 3 1.000000 4 1.000000 5 1.154701 6 0.000000 dtype: float64 >>> s.expanding(3).std() 0 NaN 1 NaN 2 0.577350 3 0.957427 4 0.894427 5 0.836660 6 0.786796 dtype: float64 """ ) def std(self, ddof=1, *args, **kwargs): nv.validate_window_func("std", args, kwargs) window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _require_min_periods(1)(self.min_periods, window) return _zsqrt( libwindow.roll_var(arg, window, minp, index_as_array, self.closed, ddof) ) return self._apply( f, "std", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs["var"] = dedent( """ Calculate unbiased %(name)s variance. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.var : Equivalent method for Series. DataFrame.var : Equivalent method for DataFrame. numpy.var : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in :meth:`Series.var` is different than the default `ddof` of 0 in :func:`numpy.var`. A minimum of 1 period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).var() 0 NaN 1 NaN 2 0.333333 3 1.000000 4 1.000000 5 1.333333 6 0.000000 dtype: float64 >>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64 """ ) def var(self, ddof=1, *args, **kwargs): nv.validate_window_func("var", args, kwargs) return self._apply( "roll_var", "var", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs[ "skew" ] = """ Unbiased %(name)s skewness. Parameters ---------- **kwargs Keyword arguments to be passed into func. """ def skew(self, **kwargs): return self._apply( "roll_skew", "skew", check_minp=_require_min_periods(3), **kwargs ) _shared_docs["kurt"] = dedent( """ Calculate unbiased %(name)s kurtosis. This function uses Fisher's definition of kurtosis without bias. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.kurt : Equivalent method for Series. DataFrame.kurt : Equivalent method for DataFrame. scipy.stats.skew : Third moment of a probability density. scipy.stats.kurtosis : Reference SciPy method. Notes ----- A minimum of 4 periods is required for the %(name)s calculation. """ ) def kurt(self, **kwargs): return self._apply( "roll_kurt", "kurt", check_minp=_require_min_periods(4), **kwargs ) _shared_docs["quantile"] = dedent( """ Calculate the %(name)s quantile. Parameters ---------- quantile : float Quantile to compute. 0 <= quantile <= 1. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.23.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. **kwargs: For compatibility with other %(name)s methods. Has no effect on the result. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.quantile : Computes value at the given quantile over all data in Series. DataFrame.quantile : Computes values at the given quantile over requested axis in DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).quantile(.4, interpolation='lower') 0 NaN 1 1.0 2 2.0 3 3.0 dtype: float64 >>> s.rolling(2).quantile(.4, interpolation='midpoint') 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 """ ) def quantile(self, quantile, interpolation="linear", **kwargs): window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, window) if quantile == 1.0: return libwindow.roll_max( arg, window, minp, index_as_array, self.closed ) elif quantile == 0.0: return libwindow.roll_min( arg, window, minp, index_as_array, self.closed ) else: return libwindow.roll_quantile( arg, window, minp, index_as_array, self.closed, quantile, interpolation, ) return self._apply(f, "quantile", quantile=quantile, **kwargs) _shared_docs[ "cov" ] = """ Calculate the %(name)s sample covariance. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self and produce pairwise output. pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. **kwargs Keyword arguments to be passed into func. """ def cov(self, other=None, pairwise=None, ddof=1, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) # GH 16058: offset window if self.is_freq_type: window = self.win_freq else: window = self._get_window(other) def _get_cov(X, Y): # GH #12373 : rolling functions error on float32 data # to avoid potential overflow, cast the data to float64 X = X.astype("float64") Y = Y.astype("float64") mean = lambda x: x.rolling( window, self.min_periods, center=self.center ).mean(**kwargs) count = (X + Y).rolling(window=window, center=self.center).count(**kwargs) bias_adj = count / (count - ddof) return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise) ) _shared_docs["corr"] = dedent( """ Calculate %(name)s correlation. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self. pairwise : bool, default None Calculate pairwise combinations of columns within a DataFrame. If `other` is not specified, defaults to `True`, otherwise defaults to `False`. Not relevant for :class:`~pandas.Series`. **kwargs Unused. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.corr : Equivalent method for Series. DataFrame.corr : Equivalent method for DataFrame. %(name)s.cov : Similar method to calculate covariance. numpy.corrcoef : NumPy Pearson's correlation calculation. Notes ----- This function uses Pearson's definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). When `other` is not specified, the output will be self correlation (e.g. all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise` set to `True`. Function will return ``NaN`` for correlations of equal valued sequences; this is the result of a 0/0 division error. When `pairwise` is set to `False`, only matching columns between `self` and `other` will be used. When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame with the original index on the first level, and the `other` DataFrame columns on the second level. In the case of missing elements, only complete pairwise observations will be used. Examples -------- The below example shows a rolling calculation with a window size of four matching the equivalent function call using :meth:`numpy.corrcoef`. >>> v1 = [3, 3, 3, 5, 8] >>> v2 = [3, 4, 4, 4, 8] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> # numpy returns a 2X2 array, the correlation coefficient >>> # is the number at entry [0][1] >>> print(fmt.format(np.corrcoef(v1[:-1], v2[:-1])[0][1])) 0.333333 >>> print(fmt.format(np.corrcoef(v1[1:], v2[1:])[0][1])) 0.916949 >>> s1 = pd.Series(v1) >>> s2 = pd.Series(v2) >>> s1.rolling(4).corr(s2) 0 NaN 1 NaN 2 NaN 3 0.333333 4 0.916949 dtype: float64 The below example shows a similar rolling calculation on a DataFrame using the pairwise option. >>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.],\ [46., 31.], [50., 36.]]) >>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7)) [[1. 0.6263001] [0.6263001 1. ]] >>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7)) [[1. 0.5553681] [0.5553681 1. ]] >>> df = pd.DataFrame(matrix, columns=['X','Y']) >>> df X Y 0 51.0 35.0 1 49.0 30.0 2 47.0 32.0 3 46.0 31.0 4 50.0 36.0 >>> df.rolling(4).corr(pairwise=True) X Y 0 X NaN NaN Y NaN NaN 1 X NaN NaN Y NaN NaN 2 X NaN NaN Y NaN NaN 3 X 1.000000 0.626300 Y 0.626300 1.000000 4 X 1.000000 0.555368 Y 0.555368 1.000000 """ ) def corr(self, other=None, pairwise=None, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) window = self._get_window(other) def _get_corr(a, b): a = a.rolling( window=window, min_periods=self.min_periods, center=self.center ) b = b.rolling( window=window, min_periods=self.min_periods, center=self.center ) return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs)) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise) ) class Rolling(_Rolling_and_Expanding): @cache_readonly def is_datetimelike(self): return isinstance( self._on, (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex) ) @cache_readonly def _on(self): if self.on is None: return self.obj.index elif isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns: from pandas import Index return Index(self.obj[self.on]) else: raise ValueError( "invalid on specified as {0}, " "must be a column (if DataFrame) " "or None".format(self.on) ) def validate(self): super().validate() # we allow rolling on a datetimelike index if (self.obj.empty or self.is_datetimelike) and isinstance( self.window, (str, ABCDateOffset, timedelta) ): self._validate_monotonic() freq = self._validate_freq() # we don't allow center if self.center: raise NotImplementedError( "center is not implemented " "for datetimelike and offset " "based windows" ) # this will raise ValueError on non-fixed freqs self.win_freq = self.window self.window = freq.nanos self.win_type = "freq" # min_periods must be an integer if self.min_periods is None: self.min_periods = 1 elif not is_integer(self.window): raise ValueError("window must be an integer") elif self.window < 0: raise ValueError("window must be non-negative") if not self.is_datetimelike and self.closed is not None: raise ValueError( "closed only implemented for datetimelike " "and offset based windows" ) def _validate_monotonic(self): """ Validate on is_monotonic. """ if not self._on.is_monotonic: formatted = self.on or "index" raise ValueError("{0} must be " "monotonic".format(formatted)) def _validate_freq(self): """ Validate & return window frequency. """ from pandas.tseries.frequencies import to_offset try: return to_offset(self.window) except (TypeError, ValueError): raise ValueError( "passed window {0} is not " "compatible with a datetimelike " "index".format(self.window) ) _agg_see_also_doc = dedent( """ See Also -------- Series.rolling DataFrame.rolling """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3).sum() A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -2.655105 0.637799 -2.135068 3 -0.971785 -0.600366 -3.280224 4 -0.214334 -1.294599 -3.227500 5 1.514216 2.028250 -2.989060 6 1.074618 5.709767 -2.322600 7 2.718061 3.850718 0.256446 8 -0.289082 2.454418 1.416871 9 0.212668 0.403198 -0.093924 >>> df.rolling(3).agg({'A':'sum', 'B':'min'}) A B 0 NaN NaN 1 NaN NaN 2 -2.655105 -0.165272 3 -0.971785 -1.340923 4 -0.214334 -1.340923 5 1.514216 -1.340923 6 1.074618 0.211596 7 2.718061 -1.647453 8 -0.289082 -1.647453 9 0.212668 -1.647453 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name="rolling") @Appender(_shared_docs["count"]) def count(self): # different impl for freq counting if self.is_freq_type: return self._apply("roll_count", "count") return super().count() @Substitution(name="rolling") @Appender(_shared_docs["apply"]) def apply(self, func, raw=None, args=(), kwargs={}): return super().apply(func, raw=raw, args=args, kwargs=kwargs) @Substitution(name="rolling") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_rolling_func("sum", args, kwargs) return super().sum(*args, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["max"]) def max(self, *args, **kwargs): nv.validate_rolling_func("max", args, kwargs) return super().max(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["min"]) def min(self, *args, **kwargs): nv.validate_rolling_func("min", args, kwargs) return super().min(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_rolling_func("mean", args, kwargs) return super().mean(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["median"]) def median(self, **kwargs): return super().median(**kwargs) @Substitution(name="rolling") @Appender(_shared_docs["std"]) def std(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("std", args, kwargs) return super().std(ddof=ddof, **kwargs) @Substitution(name="rolling") @
Appender(_shared_docs["var"])
pandas.util._decorators.Appender
# Data Science with SQL Server Quick Start Guide # Chapter 05 # Imports import numpy as np import pandas as pd import pyodbc import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import scipy as sc # Handling NULLs con = pyodbc.connect('DSN=AWDW;UID=RUser;PWD=<PASSWORD>') query = """SELECT c1, c2, c3 FROM dbo.NULLTest;""" NULLTest = pd.read_sql(query, con) NULLTest # Checking for NULLs pd.isnull(NULLTest) # Omitting NULLTest.dropna(axis = 'rows') NULLTest.dropna(axis = 'columns') # Aggregate functions NULLTest.c2.mean() NULLTest.c2.mean(skipna = False) # Reading the data from SQL Server con = pyodbc.connect('DSN=AWDW;UID=RUser;PWD=<PASSWORD>') query = """SELECT CustomerKey, CommuteDistance, TotalChildren, NumberChildrenAtHome, Gender, HouseOwnerFlag, NumberCarsOwned, MaritalStatus, Age, YearlyIncome, BikeBuyer, EnglishEducation AS Education, EnglishOccupation AS Occupation FROM dbo.vTargetMail""" TM = pd.read_sql(query, con) # check the Age TM["Age"].describe() # Generating dummies (indicators) pd.get_dummies(TM.MaritalStatus) pd.get_dummies(TM.MaritalStatus, prefix = 'TM') # Create the dummies TM1 = TM[['MaritalStatus']].join(pd.get_dummies(TM.MaritalStatus, prefix = 'TM')) TM1.tail(3) # Show the Age in 20 equal width bins TM['AgeEWB'] =
pd.cut(TM['Age'], 20)
pandas.cut
"""Evaluate GRA.""" import os import argparse import numpy as np import tensorflow as tf import pandas as pd from pandas import Series, DataFrame from model.gra import GRA import config as cfg import util.dataset as dt def train(epoch, dataset, config, log_dir): """Train model for one epoch.""" model_config = config['model'] train_config = config['train'] sess_config = config['session'] with tf.Graph().as_default(): model = GRA(model_config) model.build_inference() model.build_loss(train_config['reg_coeff'], train_config['shu_coeff']) model.build_train(train_config['learning_rate']) with tf.Session(config=sess_config) as sess: sum_dir = os.path.join(log_dir, 'summary') # create event file for graph if not os.path.exists(sum_dir): summary_writer = tf.summary.FileWriter(sum_dir, sess.graph) summary_writer.close() summary_writer = tf.summary.FileWriter(sum_dir) ckpt_dir = os.path.join(log_dir, 'checkpoint') ckpt_path = tf.train.latest_checkpoint(ckpt_dir) saver = tf.train.Saver() if ckpt_path: print('load checkpoint {}.'.format(ckpt_path)) saver.restore(sess, ckpt_path) else: print('no checkpoint.') if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) sess.run(tf.global_variables_initializer()) stats_dir = os.path.join(log_dir, 'stats') stats_path = os.path.join(stats_dir, 'train.json') if os.path.exists(stats_path): print('load stats file {}.'.format(stats_path)) stats =
pd.read_json(stats_path, 'records')
pandas.read_json
import os import pandas as pd from keras.preprocessing.sequence import pad_sequences from sklearn.metrics import roc_auc_score from main import load_train_data, load_test_data, fit_tokenizer, create_padded_sequences from main import TRAIN_DATA_PATH, TEST_DATA_PATH, MODELS_DATA_PATH, RANDOM_STATE, LABEL_COLUMNS from utils import load_hparams_and_model, train_model_from_experiment ''' This script should be run after an experiment is done in main.py file. After entering the experiment id, all hyperparameters and model architecture will be loaded from experiment directory and model will be retrained on the wholde training set. The submission file will be created and saved to submissions directory. If available, test set labels will be used for model evaluation, i.e. for estimating model performance on the test set. Evaluation results will be saved to evaluations directory. ''' SAVE_TRAINED_MODEL = True # set to True if you want to save a model from which a submission file was created TEST_DATA_LABELS_PATH = 'test_data/test_labels.csv' # set this variable to None if test labels aren't available def load_test_labels(file_path, label_columns): data_frame =
pd.read_csv(file_path)
pandas.read_csv
import datetime, time from sklearn.linear_model import LinearRegression import numpy as np def predictTemperature(startDate, endDate, temparature, n): p = int(len(temparature) / 24) x = [] for i in range(1, ((24 * p) + 1)): x.append(i) y = temparature lm = LinearRegression() lm.fit(np.asarray(x).reshape(-1, 1), y) f = x[-1] + 1 z = [] for i in range(24 * n): z.append(f) f += 1 return lm.predict(np.asarray(z).reshape(-1, 1)).tolist() import datetime from sklearn.linear_model import LinearRegression import pandas as pd import random # predict temperature method def predictTemperature(startDate, endDate, temps, n): startDate = datetime.datetime.strptime(startDate, "%Y-%m-%d") endDate = datetime.datetime.strptime(endDate, "%Y-%m-%d") endDate = endDate + datetime.timedelta(days=1) dates = [] # create datetime objects between start and end dates while startDate < endDate: dates.append(startDate) startDate = startDate + datetime.timedelta(hours=1) # create 24*n test data dates testdates = [endDate + datetime.timedelta(hours=x) for x in range(24 * n)] X_test =
pd.DataFrame(testdates, columns=['datetime'])
pandas.DataFrame
from datetime import timedelta import numpy as np import pytest from pandas._libs import iNaT import pandas as pd from pandas import ( Categorical, DataFrame, Index, IntervalIndex, NaT, Series, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesMissingData: def test_categorical_nan_equality(self): cat = Series(Categorical(["a", "b", "c", np.nan])) exp = Series([True, True, True, False]) res = cat == cat tm.assert_series_equal(res, exp) def test_categorical_nan_handling(self): # NaNs are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) tm.assert_index_equal(s.cat.categories, Index(["a", "b"])) tm.assert_numpy_array_equal( s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8) ) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected =
DataFrame({"A": expected})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # python3 d_speed_size.py : test speed/compression for folder 'corpus' # python3 d_speed_size.py indir : test speed/compression for folder 'indir' import os import sys import stat import time import shutil import ntpath import subprocess import pandas as pd def _cmp( exe, fnm, lvl, opts=' -f -k -', ): """ compress file 'fnm' using executable 'exe' Parameters ---------- exe : str name of compression executable fnm : str name of file to be compressed lvl : int compression level opts : str command line options for executable (default, ' -f -k -') """ env = os.environ cmd = exe + opts + str(lvl) + ' "' + fnm + '"' subprocess.call(cmd, shell=True) def test_cmp( exe='gzip', indir='', repeats=1, ext='.gz', opts=' -q -f -k -', max_level=9, ): """ compress all files in folder 'indir' using executable 'exe' Parameters ---------- exe : str name of compression executable indir : str name of folder with files to compress repeats : int how many times is each file compressed. More is slower but better timing accuracy ext : str extension for files created by exe (default, '.gz') opts : str command line options for executable (default, ' -f -k -') max_level : int maximum compression level to test (default 9) """ if not os.path.exists(exe) and not shutil.which(exe): print('Skipping test: Unable to find "' + exe + '"') return () if len(indir) < 1: indir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'corpus') if not os.path.isdir(indir): print('Run a_compile.py first: Unable to find "' + indir +'"') sys.exit() meth = ntpath.basename(exe) print('Method\tLevel\tms\tmb/s\t%') for lvl in range(1, max_level + 1): t0 = time.time() size = 0 nsize = 0 for rep in range(repeats): for f in os.listdir(indir): if not os.path.isfile(os.path.join(indir, f)): continue if f.startswith('.'): continue if not f.endswith('.zst') and not f.endswith('.gz') \ and not f.endswith('.bz2'): fnm = os.path.join(indir, f) _cmp(exe, fnm, lvl, opts) if rep > 0: continue size = size + os.stat(fnm).st_size nsize = nsize + os.stat(fnm + ext).st_size size = size * repeats nsize = nsize * repeats seconds = time.time() - t0 # bytes_per_mb = 1024**2 bytes_per_mb = 1000000 speed = size / bytes_per_mb / seconds print('{}\t{}\t{:.0f}\t{:.0f}\t{:.2f}'.format(meth, lvl, seconds * 1000, speed, nsize / size * 100)) row_df =
pd.DataFrame([[meth, nsize / size * 100, speed, lvl]])
pandas.DataFrame
# Copyright (c) 2021 <NAME>. All rights reserved. # This code is licensed under Apache 2.0 with Commons Clause license (see LICENSE.md for details) """Custom pandas accessors for signals data. Methods can be accessed as follows: * `SignalsSRAccessor` -> `pd.Series.vbt.signals.*` * `SignalsDFAccessor` -> `pd.DataFrame.vbt.signals.*` ```python-repl >>> import pandas as pd >>> import vectorbt as vbt >>> # vectorbt.signals.accessors.SignalsAccessor.pos_rank >>> pd.Series([False, True, True, True, False]).vbt.signals.pos_rank() 0 0 1 1 2 2 3 3 4 0 dtype: int64 ``` The accessors extend `vectorbt.generic.accessors`. !!! note The underlying Series/DataFrame should already be a signal series. Input arrays should be `np.bool_`. Grouping is only supported by the methods that accept the `group_by` argument. Accessors do not utilize caching. Run for the examples below: ```python-repl >>> import vectorbt as vbt >>> import numpy as np >>> import pandas as pd >>> from numba import njit >>> from datetime import datetime >>> mask = pd.DataFrame({ ... 'a': [True, False, False, False, False], ... 'b': [True, False, True, False, True], ... 'c': [True, True, True, False, False] ... }, index=pd.Index([ ... datetime(2020, 1, 1), ... datetime(2020, 1, 2), ... datetime(2020, 1, 3), ... datetime(2020, 1, 4), ... datetime(2020, 1, 5) ... ])) >>> mask a b c 2020-01-01 True True True 2020-01-02 False False True 2020-01-03 False True True 2020-01-04 False False False 2020-01-05 False True False ``` ## Stats !!! hint See `vectorbt.generic.stats_builder.StatsBuilderMixin.stats` and `SignalsAccessor.metrics`. ```python-repl >>> mask.vbt.signals.stats(column='a') Start 2020-01-01 00:00:00 End 2020-01-05 00:00:00 Period 5 days 00:00:00 Total 1 Rate [%] 20 First Index 2020-01-01 00:00:00 Last Index 2020-01-01 00:00:00 Norm Avg Index [-1, 1] -1 Distance: Min NaT Distance: Max NaT Distance: Mean NaT Distance: Std NaT Total Partitions 1 Partition Rate [%] 100 Partition Length: Min 1 days 00:00:00 Partition Length: Max 1 days 00:00:00 Partition Length: Mean 1 days 00:00:00 Partition Length: Std NaT Partition Distance: Min NaT Partition Distance: Max NaT Partition Distance: Mean NaT Partition Distance: Std NaT Name: a, dtype: object ``` We can pass another signal array to compare this array with: ```python-repl >>> mask.vbt.signals.stats(column='a', settings=dict(other=mask['b'])) Start 2020-01-01 00:00:00 End 2020-01-05 00:00:00 Period 5 days 00:00:00 Total 1 Rate [%] 20 Total Overlapping 1 Overlapping Rate [%] 33.3333 First Index 2020-01-01 00:00:00 Last Index 2020-01-01 00:00:00 Norm Avg Index [-1, 1] -1 Distance -> Other: Min 0 days 00:00:00 Distance -> Other: Max 0 days 00:00:00 Distance -> Other: Mean 0 days 00:00:00 Distance -> Other: Std NaT Total Partitions 1 Partition Rate [%] 100 Partition Length: Min 1 days 00:00:00 Partition Length: Max 1 days 00:00:00 Partition Length: Mean 1 days 00:00:00 Partition Length: Std NaT Partition Distance: Min NaT Partition Distance: Max NaT Partition Distance: Mean NaT Partition Distance: Std NaT Name: a, dtype: object ``` We can also return duration as a floating number rather than a timedelta: ```python-repl >>> mask.vbt.signals.stats(column='a', settings=dict(to_timedelta=False)) Start 2020-01-01 00:00:00 End 2020-01-05 00:00:00 Period 5 Total 1 Rate [%] 20 First Index 2020-01-01 00:00:00 Last Index 2020-01-01 00:00:00 Norm Avg Index [-1, 1] -1 Distance: Min NaN Distance: Max NaN Distance: Mean NaN Distance: Std NaN Total Partitions 1 Partition Rate [%] 100 Partition Length: Min 1 Partition Length: Max 1 Partition Length: Mean 1 Partition Length: Std NaN Partition Distance: Min NaN Partition Distance: Max NaN Partition Distance: Mean NaN Partition Distance: Std NaN Name: a, dtype: object ``` `SignalsAccessor.stats` also supports (re-)grouping: ```python-repl >>> mask.vbt.signals.stats(column=0, group_by=[0, 0, 1]) Start 2020-01-01 00:00:00 End 2020-01-05 00:00:00 Period 5 days 00:00:00 Total 4 Rate [%] 40 First Index 2020-01-01 00:00:00 Last Index 2020-01-05 00:00:00 Norm Avg Index [-1, 1] -0.25 Distance: Min 2 days 00:00:00 Distance: Max 2 days 00:00:00 Distance: Mean 2 days 00:00:00 Distance: Std 0 days 00:00:00 Total Partitions 4 Partition Rate [%] 100 Partition Length: Min 1 days 00:00:00 Partition Length: Max 1 days 00:00:00 Partition Length: Mean 1 days 00:00:00 Partition Length: Std 0 days 00:00:00 Partition Distance: Min 2 days 00:00:00 Partition Distance: Max 2 days 00:00:00 Partition Distance: Mean 2 days 00:00:00 Partition Distance: Std 0 days 00:00:00 Name: 0, dtype: object ``` ## Plots !!! hint See `vectorbt.generic.plots_builder.PlotsBuilderMixin.plots` and `SignalsAccessor.subplots`. This class inherits subplots from `vectorbt.generic.accessors.GenericAccessor`. """ import warnings import numpy as np import pandas as pd from vectorbt import _typing as tp from vectorbt.base import reshape_fns from vectorbt.base.array_wrapper import ArrayWrapper from vectorbt.generic import nb as generic_nb from vectorbt.generic import plotting from vectorbt.generic.accessors import GenericAccessor, GenericSRAccessor, GenericDFAccessor from vectorbt.generic.ranges import Ranges from vectorbt.records.mapped_array import MappedArray from vectorbt.root_accessors import register_dataframe_vbt_accessor, register_series_vbt_accessor from vectorbt.signals import nb from vectorbt.utils import checks from vectorbt.utils.colors import adjust_lightness from vectorbt.utils.config import merge_dicts, Config from vectorbt.utils.decorators import class_or_instancemethod from vectorbt.utils.template import RepEval __pdoc__ = {} class SignalsAccessor(GenericAccessor): """Accessor on top of signal series. For both, Series and DataFrames. Accessible through `pd.Series.vbt.signals` and `pd.DataFrame.vbt.signals`.""" def __init__(self, obj: tp.SeriesFrame, **kwargs) -> None: checks.assert_dtype(obj, np.bool_) GenericAccessor.__init__(self, obj, **kwargs) @property def sr_accessor_cls(self) -> tp.Type["SignalsSRAccessor"]: """Accessor class for `pd.Series`.""" return SignalsSRAccessor @property def df_accessor_cls(self) -> tp.Type["SignalsDFAccessor"]: """Accessor class for `pd.DataFrame`.""" return SignalsDFAccessor # ############# Overriding ############# # def bshift(self, *args, fill_value: bool = False, **kwargs) -> tp.SeriesFrame: """`vectorbt.generic.accessors.GenericAccessor.bshift` with `fill_value=False`.""" return GenericAccessor.bshift(self, *args, fill_value=fill_value, **kwargs) def fshift(self, *args, fill_value: bool = False, **kwargs) -> tp.SeriesFrame: """`vectorbt.generic.accessors.GenericAccessor.fshift` with `fill_value=False`.""" return GenericAccessor.fshift(self, *args, fill_value=fill_value, **kwargs) @classmethod def empty(cls, *args, fill_value: bool = False, **kwargs) -> tp.SeriesFrame: """`vectorbt.base.accessors.BaseAccessor.empty` with `fill_value=False`.""" return GenericAccessor.empty(*args, fill_value=fill_value, dtype=np.bool_, **kwargs) @classmethod def empty_like(cls, *args, fill_value: bool = False, **kwargs) -> tp.SeriesFrame: """`vectorbt.base.accessors.BaseAccessor.empty_like` with `fill_value=False`.""" return GenericAccessor.empty_like(*args, fill_value=fill_value, dtype=np.bool_, **kwargs) # ############# Generation ############# # @classmethod def generate(cls, shape: tp.RelaxedShape, choice_func_nb: tp.ChoiceFunc, *args, pick_first: bool = False, **kwargs) -> tp.SeriesFrame: """See `vectorbt.signals.nb.generate_nb`. `**kwargs` will be passed to pandas constructor. ## Example Generate random signals manually: ```python-repl >>> @njit ... def choice_func_nb(from_i, to_i, col): ... return col + from_i >>> pd.DataFrame.vbt.signals.generate((5, 3), ... choice_func_nb, index=mask.index, columns=mask.columns) a b c 2020-01-01 True False False 2020-01-02 False True False 2020-01-03 False False True 2020-01-04 False False False 2020-01-05 False False False ``` """ checks.assert_numba_func(choice_func_nb) if not isinstance(shape, tuple): shape = (shape, 1) elif isinstance(shape, tuple) and len(shape) == 1: shape = (shape[0], 1) result = nb.generate_nb(shape, pick_first, choice_func_nb, *args) if cls.is_series(): if shape[1] > 1: raise ValueError("Use DataFrame accessor") return pd.Series(result[:, 0], **kwargs) return pd.DataFrame(result, **kwargs) @classmethod def generate_both(cls, shape: tp.RelaxedShape, entry_choice_func_nb: tp.Optional[tp.ChoiceFunc] = None, entry_args: tp.ArgsLike = None, exit_choice_func_nb: tp.Optional[tp.ChoiceFunc] = None, exit_args: tp.ArgsLike = None, entry_wait: int = 1, exit_wait: int = 1, entry_pick_first: bool = True, exit_pick_first: bool = True, **kwargs) -> tp.Tuple[tp.SeriesFrame, tp.SeriesFrame]: """See `vectorbt.signals.nb.generate_enex_nb`. `**kwargs` will be passed to pandas constructor. ## Example Generate entry and exit signals one after another. Each column increment the number of ticks to wait before placing the exit signal. ```python-repl >>> @njit ... def entry_choice_func_nb(from_i, to_i, col, temp_idx_arr): ... temp_idx_arr[0] = from_i ... return temp_idx_arr[:1] # array with one signal >>> @njit ... def exit_choice_func_nb(from_i, to_i, col, temp_idx_arr): ... wait = col ... temp_idx_arr[0] = from_i + wait ... if temp_idx_arr[0] < to_i: ... return temp_idx_arr[:1] # array with one signal ... return temp_idx_arr[:0] # empty array >>> temp_idx_arr = np.empty((1,), dtype=np.int_) # reuse memory >>> en, ex = pd.DataFrame.vbt.signals.generate_both( ... (5, 3), ... entry_choice_func_nb, (temp_idx_arr,), ... exit_choice_func_nb, (temp_idx_arr,), ... index=mask.index, columns=mask.columns) >>> en a b c 2020-01-01 True True True 2020-01-02 False False False 2020-01-03 True False False 2020-01-04 False True False 2020-01-05 True False True >>> ex a b c 2020-01-01 False False False 2020-01-02 True False False 2020-01-03 False True False 2020-01-04 True False True 2020-01-05 False False False ``` """ checks.assert_not_none(entry_choice_func_nb) checks.assert_not_none(exit_choice_func_nb) checks.assert_numba_func(entry_choice_func_nb) checks.assert_numba_func(exit_choice_func_nb) if entry_args is None: entry_args = () if exit_args is None: exit_args = () if not isinstance(shape, tuple): shape = (shape, 1) elif isinstance(shape, tuple) and len(shape) == 1: shape = (shape[0], 1) result1, result2 = nb.generate_enex_nb( shape, entry_wait, exit_wait, entry_pick_first, exit_pick_first, entry_choice_func_nb, entry_args, exit_choice_func_nb, exit_args ) if cls.is_series(): if shape[1] > 1: raise ValueError("Use DataFrame accessor") return pd.Series(result1[:, 0], **kwargs), pd.Series(result2[:, 0], **kwargs) return pd.DataFrame(result1, **kwargs), pd.DataFrame(result2, **kwargs) def generate_exits(self, exit_choice_func_nb: tp.ChoiceFunc, *args, wait: int = 1, until_next: bool = True, skip_until_exit: bool = False, pick_first: bool = False, wrap_kwargs: tp.KwargsLike = None) -> tp.SeriesFrame: """See `vectorbt.signals.nb.generate_ex_nb`. ## Example Fill all space after signals in `mask`: ```python-repl >>> @njit ... def exit_choice_func_nb(from_i, to_i, col, temp_range): ... return temp_range[from_i:to_i] >>> temp_range = np.arange(mask.shape[0]) # reuse memory >>> mask.vbt.signals.generate_exits(exit_choice_func_nb, temp_range) a b c 2020-01-01 False False False 2020-01-02 True True False 2020-01-03 True False False 2020-01-04 True True True 2020-01-05 True False True ``` """ checks.assert_numba_func(exit_choice_func_nb) exits = nb.generate_ex_nb( self.to_2d_array(), wait, until_next, skip_until_exit, pick_first, exit_choice_func_nb, *args ) return self.wrapper.wrap(exits, group_by=False, **merge_dicts({}, wrap_kwargs)) # ############# Filtering ############# # @class_or_instancemethod def clean(cls_or_self, *args, entry_first: bool = True, broadcast_kwargs: tp.KwargsLike = None, wrap_kwargs: tp.KwargsLike = None) -> tp.MaybeTuple[tp.SeriesFrame]: """Clean signals. If one array passed, see `SignalsAccessor.first`. If two arrays passed, entries and exits, see `vectorbt.signals.nb.clean_enex_nb`.""" if not isinstance(cls_or_self, type): args = (cls_or_self.obj, *args) if len(args) == 1: obj = args[0] if not isinstance(obj, (pd.Series, pd.DataFrame)): wrapper = ArrayWrapper.from_shape(np.asarray(obj).shape) obj = wrapper.wrap(obj) return obj.vbt.signals.first(wrap_kwargs=wrap_kwargs) elif len(args) == 2: if broadcast_kwargs is None: broadcast_kwargs = {} entries, exits = reshape_fns.broadcast(*args, **broadcast_kwargs) entries_out, exits_out = nb.clean_enex_nb( reshape_fns.to_2d_array(entries), reshape_fns.to_2d_array(exits), entry_first ) return ( ArrayWrapper.from_obj(entries).wrap(entries_out, group_by=False, **merge_dicts({}, wrap_kwargs)), ArrayWrapper.from_obj(exits).wrap(exits_out, group_by=False, **merge_dicts({}, wrap_kwargs)) ) else: raise ValueError("Either one or two arrays must be passed") # ############# Random ############# # @classmethod def generate_random(cls, shape: tp.RelaxedShape, n: tp.Optional[tp.ArrayLike] = None, prob: tp.Optional[tp.ArrayLike] = None, pick_first: bool = False, seed: tp.Optional[int] = None, **kwargs) -> tp.SeriesFrame: """Generate signals randomly. If `n` is set, see `vectorbt.signals.nb.generate_rand_nb`. If `prob` is set, see `vectorbt.signals.nb.generate_rand_by_prob_nb`. `n` should be either a scalar or an array that will broadcast to the number of columns. `prob` should be either a single number or an array that will broadcast to match `shape`. `**kwargs` will be passed to pandas constructor. ## Example For each column, generate a variable number of signals: ```python-repl >>> pd.DataFrame.vbt.signals.generate_random((5, 3), n=[0, 1, 2], ... seed=42, index=mask.index, columns=mask.columns) a b c 2020-01-01 False False True 2020-01-02 False False True 2020-01-03 False False False 2020-01-04 False True False 2020-01-05 False False False ``` For each column and time step, pick a signal with 50% probability: ```python-repl >>> pd.DataFrame.vbt.signals.generate_random((5, 3), prob=0.5, ... seed=42, index=mask.index, columns=mask.columns) a b c 2020-01-01 True True True 2020-01-02 False True False 2020-01-03 False False False 2020-01-04 False False True 2020-01-05 True False True ``` """ flex_2d = True if not isinstance(shape, tuple): flex_2d = False shape = (shape, 1) elif isinstance(shape, tuple) and len(shape) == 1: flex_2d = False shape = (shape[0], 1) if n is not None and prob is not None: raise ValueError("Either n or prob should be set, not both") if n is not None: n = np.broadcast_to(n, shape[1]) result = nb.generate_rand_nb(shape, n, seed=seed) elif prob is not None: prob = np.broadcast_to(prob, shape) result = nb.generate_rand_by_prob_nb(shape, prob, pick_first, flex_2d, seed=seed) else: raise ValueError("At least n or prob should be set") if cls.is_series(): if shape[1] > 1: raise ValueError("Use DataFrame accessor") return
pd.Series(result[:, 0], **kwargs)
pandas.Series
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/7/8 22:08 Desc: 金十数据中心-经济指标-美国 https://datacenter.jin10.com/economic """ import json import time import pandas as pd import demjson import requests from akshare.economic.cons import ( JS_USA_NON_FARM_URL, JS_USA_UNEMPLOYMENT_RATE_URL, JS_USA_EIA_CRUDE_URL, JS_USA_INITIAL_JOBLESS_URL, JS_USA_CORE_PCE_PRICE_URL, JS_USA_CPI_MONTHLY_URL, JS_USA_LMCI_URL, JS_USA_ADP_NONFARM_URL, JS_USA_GDP_MONTHLY_URL, ) # 东方财富-美国-未决房屋销售月率 def macro_usa_phs(): """ 未决房屋销售月率 http://data.eastmoney.com/cjsj/foreign_0_5.html :return: 未决房屋销售月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { 'type': 'GJZB', 'sty': 'HKZB', 'js': '({data:[(x)],pages:(pc)})', 'p': '1', 'ps': '2000', 'mkt': '0', 'stat': '5', 'pageNo': '1', 'pageNum': '1', '_': '1625474966006' } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json['data']]) temp_df.columns = [ '时间', '前值', '现值', '发布日期', ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) return temp_df # 金十数据中心-经济指标-美国-经济状况-美国GDP def macro_usa_gdp_monthly(): """ 美国国内生产总值(GDP)报告, 数据区间从20080228-至今 https://datacenter.jin10.com/reportType/dc_usa_gdp :return: pandas.Series 2008-02-28 0.6 2008-03-27 0.6 2008-04-30 0.9 2008-06-26 1 2008-07-31 1.9 ... 2019-06-27 3.1 2019-07-26 2.1 2019-08-29 2 2019-09-26 2 2019-10-30 0 """ t = time.time() res = requests.get( JS_USA_GDP_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国国内生产总值(GDP)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "53", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "gdp" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国CPI月率报告 def macro_usa_cpi_monthly(): """ 美国CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_cpi https://cdn.jin10.com/dc/reports/dc_usa_cpi_all.js?v=1578741110 :return: 美国CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_CPI_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国居民消费价格指数(CPI)(月环比)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "9", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "cpi_monthly" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国核心CPI月率报告 def macro_usa_core_cpi_monthly(): """ 美国核心CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_core_cpi https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v=1578740570 :return: 美国核心CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心CPI月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "6", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_core_cpi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国个人支出月率报告 def macro_usa_personal_spending(): """ 美国个人支出月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_personal_spending https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v=1578741327 :return: 美国个人支出月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国个人支出月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "35", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_personal_spending" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国零售销售月率报告 def macro_usa_retail_sales(): """ 美国零售销售月率报告, 数据区间从19920301-至今 https://datacenter.jin10.com/reportType/dc_usa_retail_sales https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v=1578741528 :return: 美国零售销售月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国零售销售月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "39", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_retail_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国进口物价指数报告 def macro_usa_import_price(): """ 美国进口物价指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_import_price https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v=1578741716 :return: 美国进口物价指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国进口物价指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "18", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_import_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国出口价格指数报告 def macro_usa_export_price(): """ 美国出口价格指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_export_price https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v=1578741832 :return: 美国出口价格指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国出口价格指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "79", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_export_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-LMCI def macro_usa_lmci(): """ 美联储劳动力市场状况指数报告, 数据区间从20141006-至今 https://datacenter.jin10.com/reportType/dc_usa_lmci https://cdn.jin10.com/dc/reports/dc_usa_lmci_all.js?v=1578742043 :return: 美联储劳动力市场状况指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_LMCI_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美联储劳动力市场状况指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "93", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "lmci" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国失业率报告 def macro_usa_unemployment_rate(): """ 美国失业率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_unemployment_rate https://cdn.jin10.com/dc/reports/dc_usa_unemployment_rate_all.js?v=1578821511 :return: 获取美国失业率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_UNEMPLOYMENT_RATE_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国失业率"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "47", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "unemployment_rate" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国挑战者企业裁员人数报告 def macro_usa_job_cuts(): """ 美国挑战者企业裁员人数报告, 数据区间从19940201-至今 https://datacenter.jin10.com/reportType/dc_usa_job_cuts https://cdn.jin10.com/dc/reports/dc_usa_job_cuts_all.js?v=1578742262 :return: 美国挑战者企业裁员人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_job_cuts_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国挑战者企业裁员人数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "78", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_job_cuts" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国非农就业人数报告 def macro_usa_non_farm(): """ 美国非农就业人数报告, 数据区间从19700102-至今 https://datacenter.jin10.com/reportType/dc_nonfarm_payrolls https://cdn.jin10.com/dc/reports/dc_nonfarm_payrolls_all.js?v=1578742490 :return: 美国非农就业人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_NON_FARM_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国非农就业人数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "33", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "non_farm" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国ADP就业人数报告 def macro_usa_adp_employment(): """ 美国ADP就业人数报告, 数据区间从20010601-至今 https://datacenter.jin10.com/reportType/dc_adp_nonfarm_employment https://cdn.jin10.com/dc/reports/dc_adp_nonfarm_employment_all.js?v=1578742564 :return: 美国ADP就业人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_ADP_NONFARM_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ADP就业人数(万人)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "1", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "adp" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国核心PCE物价指数年率报告 def macro_usa_core_pce_price(): """ 美国核心PCE物价指数年率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_core_pce_price https://cdn.jin10.com/dc/reports/dc_usa_core_pce_price_all.js?v=1578742641 :return: 美国核心PCE物价指数年率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_CORE_PCE_PRICE_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心PCE物价指数年率"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "80", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "core_pce_price" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国实际个人消费支出季率初值报告 def macro_usa_real_consumer_spending(): """ 美国实际个人消费支出季率初值报告, 数据区间从20131107-至今 https://datacenter.jin10.com/reportType/dc_usa_real_consumer_spending https://cdn.jin10.com/dc/reports/dc_usa_real_consumer_spending_all.js?v=1578742802 :return: 美国实际个人消费支出季率初值报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_real_consumer_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国实际个人消费支出季率初值报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "81", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_real_consumer_spending" return temp_df # 金十数据中心-经济指标-美国-贸易状况-美国贸易帐报告 def macro_usa_trade_balance(): """ 美国贸易帐报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_trade_balance https://cdn.jin10.com/dc/reports/dc_usa_trade_balance_all.js?v=1578742911 :return: 美国贸易帐报告-今值(亿美元) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_trade_balance_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国贸易帐报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(亿美元)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "42", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_trade_balance" return temp_df # 金十数据中心-经济指标-美国-贸易状况-美国经常帐报告 def macro_usa_current_account(): """ 美国经常帐报告, 数据区间从20080317-至今 https://datacenter.jin10.com/reportType/dc_usa_current_account https://cdn.jin10.com/dc/reports/dc_usa_current_account_all.js?v=1578743012 :return: 美国经常帐报告-今值(亿美元) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_current_account_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国经常账报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(亿美元)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "12", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_current_account" return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-贝克休斯钻井报告 def macro_usa_rig_count(): """ 贝克休斯钻井报告, 数据区间从20080317-至今 https://datacenter.jin10.com/reportType/dc_rig_count_summary https://cdn.jin10.com/dc/reports/dc_rig_count_summary_all.js?v=1578743203 :return: 贝克休斯钻井报告-当周 :rtype: pandas.Series """ t = time.time() params = { "_": t } res = requests.get("https://cdn.jin10.com/data_center/reports/baker.json", params=params) temp_df = pd.DataFrame(res.json().get("values")).T big_df = pd.DataFrame() big_df["钻井总数_钻井数"] = temp_df["钻井总数"].apply(lambda x: x[0]) big_df["钻井总数_变化"] = temp_df["钻井总数"].apply(lambda x: x[1]) big_df["美国石油钻井_钻井数"] = temp_df["美国石油钻井"].apply(lambda x: x[0]) big_df["美国石油钻井_变化"] = temp_df["美国石油钻井"].apply(lambda x: x[1]) big_df["混合钻井_钻井数"] = temp_df["混合钻井"].apply(lambda x: x[0]) big_df["混合钻井_变化"] = temp_df["混合钻井"].apply(lambda x: x[1]) big_df["美国天然气钻井_钻井数"] = temp_df["美国天然气钻井"].apply(lambda x: x[0]) big_df["美国天然气钻井_变化"] = temp_df["美国天然气钻井"].apply(lambda x: x[1]) big_df = big_df.astype("float") return big_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国个人支出月率报告 # 金十数据中心-经济指标-美国-产业指标-制造业-美国生产者物价指数(PPI)报告 def macro_usa_ppi(): """ 美国生产者物价指数(PPI)报告, 数据区间从20080226-至今 https://datacenter.jin10.com/reportType/dc_usa_ppi https://cdn.jin10.com/dc/reports/dc_usa_ppi_all.js?v=1578743628 :return: 美国生产者物价指数(PPI)报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ppi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国生产者物价指数(PPI)报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "37", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ppi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国核心生产者物价指数(PPI)报告 def macro_usa_core_ppi(): """ 美国核心生产者物价指数(PPI)报告, 数据区间从20080318-至今 https://datacenter.jin10.com/reportType/dc_usa_core_ppi https://cdn.jin10.com/dc/reports/dc_usa_core_ppi_all.js?v=1578743709 :return: 美国核心生产者物价指数(PPI)报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_core_ppi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心生产者物价指数(PPI)报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "7", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_core_ppi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国API原油库存报告 def macro_usa_api_crude_stock(): """ 美国API原油库存报告, 数据区间从20120328-至今 https://datacenter.jin10.com/reportType/dc_usa_api_crude_stock https://cdn.jin10.com/dc/reports/dc_usa_api_crude_stock_all.js?v=1578743859 :return: 美国API原油库存报告-今值(万桶) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_api_crude_stock_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国API原油库存报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万桶)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "69", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_api_crude_stock" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国Markit制造业PMI初值报告 def macro_usa_pmi(): """ 美国Markit制造业PMI初值报告, 数据区间从20120601-至今 https://datacenter.jin10.com/reportType/dc_usa_pmi https://cdn.jin10.com/dc/reports/dc_usa_pmi_all.js?v=1578743969 :return: 美国Markit制造业PMI初值报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国Markit制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "74", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国ISM制造业PMI报告 def macro_usa_ism_pmi(): """ 美国ISM制造业PMI报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_ism_pmi https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v=1578744071 :return: 美国ISM制造业PMI报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "28", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国工业产出月率报告 def macro_usa_industrial_production(): """ 美国工业产出月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_industrial_production https://cdn.jin10.com/dc/reports/dc_usa_industrial_production_all.js?v=1578744188 :return: 美国工业产出月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_industrial_production_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国工业产出月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "20", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_industrial_production" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国耐用品订单月率报告 def macro_usa_durable_goods_orders(): """ 美国耐用品订单月率报告, 数据区间从20080227-至今 https://datacenter.jin10.com/reportType/dc_usa_durable_goods_orders https://cdn.jin10.com/dc/reports/dc_usa_durable_goods_orders_all.js?v=1578744295 :return: 美国耐用品订单月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_durable_goods_orders_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国耐用品订单月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "13", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_durable_goods_orders" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国工厂订单月率报告 def macro_usa_factory_orders(): """ 美国工厂订单月率报告, 数据区间从19920401-至今 https://datacenter.jin10.com/reportType/dc_usa_factory_orders https://cdn.jin10.com/dc/reports/dc_usa_factory_orders_all.js?v=1578744385 :return: 美国工厂订单月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_factory_orders_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国工厂订单月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "16", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_factory_orders" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国Markit服务业PMI初值报告 def macro_usa_services_pmi(): """ 美国Markit服务业PMI初值报告, 数据区间从20120701-至今 https://datacenter.jin10.com/reportType/dc_usa_services_pmi https://cdn.jin10.com/dc/reports/dc_usa_services_pmi_all.js?v=1578744503 :return: 美国Markit服务业PMI初值报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_services_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国Markit服务业PMI初值报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "89", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_services_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国商业库存月率报告 def macro_usa_business_inventories(): """ 美国商业库存月率报告, 数据区间从19920301-至今 https://datacenter.jin10.com/reportType/dc_usa_business_inventories https://cdn.jin10.com/dc/reports/dc_usa_business_inventories_all.js?v=1578744618 :return: 美国商业库存月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_business_inventories_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国商业库存月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "4", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_business_inventories" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国ISM非制造业PMI报告 def macro_usa_ism_non_pmi(): """ 美国ISM非制造业PMI报告, 数据区间从19970801-至今 https://datacenter.jin10.com/reportType/dc_usa_ism_non_pmi https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v=1578744693 :return: 美国ISM非制造业PMI报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM非制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "29", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_non_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国NAHB房产市场指数报告 def macro_usa_nahb_house_market_index(): """ 美国NAHB房产市场指数报告, 数据区间从19850201-至今 https://datacenter.jin10.com/reportType/dc_usa_nahb_house_market_index https://cdn.jin10.com/dc/reports/dc_usa_nahb_house_market_index_all.js?v=1578744817 :return: 美国NAHB房产市场指数报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_nahb_house_market_index_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国NAHB房产市场指数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "31", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_nahb_house_market_index" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋开工总数年化报告 def macro_usa_house_starts(): """ 美国新屋开工总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_house_starts https://cdn.jin10.com/dc/reports/dc_usa_house_starts_all.js?v=1578747388 :return: 美国新屋开工总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_house_starts_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国新屋开工总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "17", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_house_starts" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋销售总数年化报告 def macro_usa_new_home_sales(): """ 美国新屋销售总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_new_home_sales https://cdn.jin10.com/dc/reports/dc_usa_new_home_sales_all.js?v=1578747501 :return: 美国新屋销售总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_new_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国新屋销售总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "32", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_new_home_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国营建许可总数报告 def macro_usa_building_permits(): """ 美国营建许可总数报告, 数据区间从20080220-至今 https://datacenter.jin10.com/reportType/dc_usa_building_permits https://cdn.jin10.com/dc/reports/dc_usa_building_permits_all.js?v=1578747599 :return: 美国营建许可总数报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_building_permits_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国营建许可总数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "3", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_building_permits" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋销售总数年化报告 def macro_usa_exist_home_sales(): """ 美国成屋销售总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_exist_home_sales https://cdn.jin10.com/dc/reports/dc_usa_exist_home_sales_all.js?v=1578747703 :return: 美国成屋销售总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_exist_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国成屋销售总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "15", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_exist_home_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国FHFA房价指数月率报告 def macro_usa_house_price_index(): """ 美国FHFA房价指数月率报告, 数据区间从19910301-至今 https://datacenter.jin10.com/reportType/dc_usa_house_price_index https://cdn.jin10.com/dc/reports/dc_usa_house_price_index_all.js?v=1578747781 :return: 美国FHFA房价指数月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_house_price_index_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国FHFA房价指数月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "51", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_house_price_index" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国S&P/CS20座大城市房价指数年率报告 def macro_usa_spcs20(): """ 美国S&P/CS20座大城市房价指数年率报告, 数据区间从20010201-至今 https://datacenter.jin10.com/reportType/dc_usa_spcs20 https://cdn.jin10.com/dc/reports/dc_usa_spcs20_all.js?v=1578747873 :return: 美国S&P/CS20座大城市房价指数年率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_spcs20_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国S&P/CS20座大城市房价指数年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "52", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_spcs20" temp_df = temp_df.astype(float) return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋签约销售指数月率报告 def macro_usa_pending_home_sales(): """ 美国成屋签约销售指数月率报告, 数据区间从20010301-至今 https://datacenter.jin10.com/reportType/dc_usa_pending_home_sales https://cdn.jin10.com/dc/reports/dc_usa_pending_home_sales_all.js?v=1578747959 :return: 美国成屋签约销售指数月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_pending_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国成屋签约销售指数月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index =
pd.to_datetime(date_list)
pandas.to_datetime
import argparse import json import logging import os import sys from functools import partial import fiona import geopandas as gpd import numpy as np import pandas as pd from tqdm.auto import tqdm from hiector.utils.aws_utils import LocalFile, get_filesystem stdout_handler = logging.StreamHandler(sys.stdout) handlers = [stdout_handler] logging.basicConfig( level=logging.INFO, format="[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s", handlers=handlers ) LOGGER = logging.getLogger(__name__) parser = argparse.ArgumentParser(description="Compute normalization factors") parser.add_argument("--config", type=str, help="Path to config file with execution parameters", required=True) args = parser.parse_args() statistic_mapping = { "mean": np.mean, "median": np.median, "min": np.min, "max": np.max, "perc1": partial(np.percentile, q=1), "perc5": partial(np.percentile, q=5), "perc95": partial(np.percentile, q=95), "perc99": partial(np.percentile, q=99), } def compute_norm_stats(config): filesystem = get_filesystem(config["bucket_name"], config["aws_profile"]) LOGGER.info("Opening the file descriptor the the samples file.") with LocalFile(config["samples_file"], mode="r", filesystem=filesystem) as f: layers = fiona.listlayers(f.path) layers_to_read = [x for x in layers if int(x.split("_")[1]) in config["scales"]] LOGGER.info(f"Reading and concatenating layers: {layers_to_read}") gdf = pd.concat([gpd.read_file(f.path, layer=layer) for layer in layers_to_read]) if "query" in config: gdf = gdf.query(config["query"]) gdf = gdf.sample(frac=config["fraction"], replace=False) sampled = [] LOGGER.info("Sampling images...") for image_name in tqdm(gdf.NAME.values): imgpath = os.path.join(config["data_dir"], "images", f"{image_name}.npy") imgs = np.load(filesystem.openbin(imgpath, "rb")) sampled.append(imgs[np.newaxis, ...]) sampled = np.concatenate(sampled) rows = [] LOGGER.info("Calculating statistics...") for ( statistic_name, statistic_f, ) in statistic_mapping.items(): rows.append( { "modality": config["modality"], "statistic": statistic_name, "B": statistic_f(sampled[..., 0]), "G": statistic_f(sampled[..., 1]), "R": statistic_f(sampled[..., 2]), "N": statistic_f(sampled[..., 3]), } ) rows =
pd.DataFrame(rows)
pandas.DataFrame
""" Initial setup of the brightway2 project. Creates project, imports databases and generates some useful data. Should be run first. """ from pathlib import Path import pickle import json import numpy as np import pandas as pd from brightway2 import * from .utils import missing_useful_files, _check_result_dir def setup_project(project_name, database_name, result_dir, database_dir=None, overwrite_project=False, overwrite_database=False, save_det_lci=True, force_write_common_files=False, default_bw2setup=True): """ Create project, import databases and generate common files as required Parameters ----------- project_name : str Name of the brightway2 project in which to import data. If project does not exist, it will be created. database_name : str Name of the existing LCI database or to give to the LCI database being imported. result_dir : str Path to the directory where data used or generated by bw2preagg is saved. database_dir : str, default=None Path to directory with ecoSpold2 data to be imported, None if LCI database is not to be imported (i.e. if it exists already). overwrite_project : bool, default=False If True, then the existing project with the name project_name is deleted first, and all data is reimported for a clean slate import. overwrite_database : bool, default=False If True, then the existing LCI database with name database_name in the brightway2 project is deleted first, and LCI data is reimported force_write_common_files : bool, default=True If True, then the common files are generated even if they already exist at given location save_det_lci : bool, default=True If True, deterministic LCI arrays are saved in the deterministic subfolder of the result_dir default_bw2setup: bool, default=True If True, run bw2setup to include default elementary flows and LCIA methods Returns ------- None """ # Delete project on demand if overwrite_project and project_name in projects: print("Deleting preexisting project") projects.delete_project(project_name, delete_dir=True) # Create new project or switch to existing project projects.set_current(project_name) # Setup new project, if necessary if default_bw2setup: bw2setup() # Import LCI database, if necessary if not overwrite_database and database_name in databases: print("Importing of {} not necessary".format(database_name)) pass else: importer = _prepare_import(database_dir, database_name) print("Importing {}".format(database_name)) if database_name in databases and overwrite_database: print("Deleting {}".format(database_name)) Database(database_name).delete() Database(database_name).deregister() importer.write_database() result_dir = Path(result_dir) result_dir.mkdir(parents=True, exist_ok=True) # Generate common data if missing_useful_files(result_dir) \ or force_write_common_files\ or save_det_lci: sacrificial_lca = get_sacrificial_LCA(database_name) if missing_useful_files(result_dir) or force_write_common_files: _generate_common_files(result_dir, database_name, sacrificial_lca) if save_det_lci: with open(result_dir / 'common_files' / 'ordered_activity_codes.json', "r") as f: activity_codes = json.load(f) _save_det_lci(result_dir, activity_codes, database_name, sacrificial_lca) def _prepare_import(database_dir, database_name): """Check ecoSpolds can be imported Returns SingleOutputEcospold2Importer with strategies applied it is possible to write the data Will raise an error if something prevents it. """ if not database_name: raise ValueError( "Cannot overwrite LCI database without database_name" ) if not Path(database_dir).is_dir(): raise ValueError( "database_dir does not exist, cannot import LCI data" ) db_importer = SingleOutputEcospold2Importer(database_dir, database_name) db_importer.apply_strategies() if not db_importer.statistics()[2] == 0: raise ValueError( "{} unlinked exchanges when trying to import database".format( db_importer.statistics()[2] ) ) return db_importer def _generate_common_files(result_dir, database_name, sacrificial_lca): """Generate and save common files used in subsequent steps""" print("\nGenerating common files") common_files_dir = Path(result_dir)/'common_files' common_files_dir.mkdir(exist_ok=True, parents=True) # Activity codes db = Database(database_name) activity_codes = [act.key[1] for act in db] activity_codes.sort() with open(common_files_dir/'ordered_activity_codes.json', "w") as f: json.dump(activity_codes, f, indent=4) sacrificial_lca.lci() # Save various attributes for eventual reuse in interpretation # LCA dicts, used to identify matrix coordinates with open(common_files_dir/'product_dict.pickle', "wb") as f: pickle.dump(sacrificial_lca.product_dict, f) with open(common_files_dir/'bio_dict.pickle', "wb") as f: pickle.dump(sacrificial_lca.biosphere_dict, f) with open(common_files_dir/'activity_dict.pickle', "wb") as f: pickle.dump(sacrificial_lca.activity_dict, f) # A matrix values, as coo with open(common_files_dir / "A_as_coo_scipy.pickle", "wb") as f: pickle.dump(sacrificial_lca.technosphere_matrix.tocoo(), f) df = pd.DataFrame( columns=['row', 'col', 'value'], data=np.concatenate( [ sacrificial_lca.technosphere_matrix.tocoo().row.reshape(-1, 1), sacrificial_lca.technosphere_matrix.tocoo().col.reshape(-1, 1), sacrificial_lca.technosphere_matrix.tocoo().data.reshape(-1, 1) ], axis=1) ) df.to_excel(common_files_dir / "A_as_coo.xlsx") # B matrix values, as coo with open(common_files_dir / "B_as_coo_scipy.pickle", "wb") as f: pickle.dump(sacrificial_lca.biosphere_matrix.tocoo(), f) df = pd.DataFrame( columns=['row', 'col', 'value'], data=np.concatenate( [ sacrificial_lca.biosphere_matrix.tocoo().row.reshape(-1, 1), sacrificial_lca.biosphere_matrix.tocoo().col.reshape(-1, 1), sacrificial_lca.biosphere_matrix.tocoo().data.reshape(-1, 1) ], axis=1) ) df.to_excel(common_files_dir / "B_as_coo.xlsx") # A row and col descriptions df = pd.DataFrame(columns=[ 'index', 'activity name', 'location', 'ecoinvent activity uuid', 'activity brightway2 code', 'reference product name', 'reference product amount', 'reference product unit', 'ecoinvent product uuid', 'CPC', 'EcoSpold01Categories', 'ISIC rev.4 ecoinvent', ] ) db_loaded = Database(database_name).load() rev_product_dict = {v:k for k, v in sacrificial_lca.product_dict.items()} for index in rev_product_dict: assert sacrificial_lca.activity_dict[rev_product_dict[index]]==index act_key = rev_product_dict[index] act = db_loaded[act_key] classifications = {c[0]: c[1] for c in act['classifications']} data = [ index, act['name'], act['location'], act['filename'][0:36], act_key[1], act['reference product'], act['production amount'], act['unit'], act['filename'][37: 37+36], classifications.get('CPC', ''), classifications.get('EcoSpold01Categories', ''), classifications.get('ISIC rev.4 ecoinvent', ''), ] df.loc[index] = data df = df.set_index('index') df.to_excel(common_files_dir / "technosphere_description.xlsx") db_loaded = None df = None # B row and col descriptions df = pd.DataFrame(columns=[ 'index', 'name', 'unit', 'compartment', 'subcompartment', 'type', 'ecoinvent uuid', 'brightway2 code', ] ) db_loaded = Database('biosphere3').load() rev_bio_dict = {v:k for k, v in sacrificial_lca.biosphere_dict.items()} for index in rev_bio_dict: act_key = rev_bio_dict[index] act = db_loaded[act_key] cats = act['categories'] subcat = cats[1] if len(cats) == 2 else "" data = [ index, act['name'], act['unit'], cats[0], subcat, act['type'], act['code'], act_key[1] ] df.loc[index] = data df = df.set_index('index') df.to_excel(common_files_dir / "biosphere_description.xlsx") db_loaded = None df = None # CFs good_methods = [m for m in methods if "obsolete" not in str(m)] cfs = np.zeros(shape=(len(sacrificial_lca.biosphere_dict), len(good_methods))) for i, m in enumerate(good_methods): sacrificial_lca.switch_method(m) cfs[:, i] = sacrificial_lca.characterization_matrix.sum(axis=1).ravel() np.save(str(common_files_dir / "cfs.npy"), cfs) df =
pd.DataFrame(columns=good_methods, data=cfs)
pandas.DataFrame
# This script preps the data for a paper on the impact of COVID on ultramarathoning # Importing required modules import pandas as pd import numpy as np import datetime # Specifiying your username username = '' # Reading in the race data and results data data =
pd.read_csv('C:/Users/' + username + '/Documents/Data/ultraCOVID/raw_results_data.csv')
pandas.read_csv
import pandas as pd import pybedtools import xarray as xr import numpy as np import dask import warnings import joblib import subprocess import pathlib import yaml import pyBigWig from pybedtools import BedTool from concurrent.futures import ProcessPoolExecutor, as_completed from .region_ds_utilities import update_region_ds_config from .utilities import determine_engine, obj_to_str, write_ordered_chunks import os from ALLCools.utilities import parse_chrom_size os.environ["NUMEXPR_MAX_THREADS"] = "16" def _bigwig_over_bed(bed: pd.DataFrame, path, value_type="mean", dtype="float32"): with pyBigWig.open(path, "r") as bw: def _region_stat(row, t=value_type): chrom, start, end, *_ = row try: value = bw.stats(chrom, start, end, type=t)[0] except RuntimeError: # happens when the region has error or chrom not exist in bw # let user decide what happen, here just return nan value = np.NaN return value values = bed.apply(_region_stat, t=value_type, axis=1) values = values.astype(dtype) return values def _region_bed_sorted(bed_path, g, bed_sorted): chrom_sizes = parse_chrom_size(g) bed_df = pd.read_csv(bed_path, sep="\t", index_col=None, header=None) # select chroms that exist in g bed_df = bed_df.loc[bed_df.iloc[:, 0].isin(chrom_sizes.keys())] bed = BedTool.from_dataframe(bed_df) if bed_sorted: return bed else: return bed.sort(g=g) def _bed_intersection(bed: pybedtools.BedTool, path, g, region_index, bed_sorted): with warnings.catch_warnings(): warnings.simplefilter("ignore") query_bed = _region_bed_sorted(path, g, bed_sorted) try: df = bed.intersect( query_bed, wa=True, f=0.2, g=g, sorted=True ).to_dataframe() if df.shape[0] == 0: regions_idx = pd.Series([]) else: regions_idx = df["name"] except pd.errors.EmptyDataError: regions_idx = pd.Series([]) regions = pd.Index(regions_idx.values) bool_series = pd.Series(region_index.isin(regions), index=region_index) query_bed.delete_temporary_history(ask=False) return bool_series def _annotate_by_bigwigs_worker( dataset_path, region_dim, chrom_size_path, track_paths, output_path, dim, slop, value_type, dtype, **kwargs, ): len(kwargs) # set dask scheduler to allow multiprocessing with dask.config.set(scheduler="sync"): # Open region ds again inside the worker function region_ds = RegionDS.open( path=dataset_path, region_dim=region_dim, chrom_size_path=chrom_size_path ) # get dmr region bed and bigwig files dmr_bed = region_ds.get_bed( with_id=False, bedtools=False, slop=slop, chrom_size_path=chrom_size_path ) # iterate each bigwig total_values = {} for sample, bigwig_path in track_paths.items(): values = _bigwig_over_bed( bed=dmr_bed, path=bigwig_path, value_type=value_type, dtype=dtype ) total_values[sample] = values total_values = pd.DataFrame(total_values) total_values.columns.name = dim total_values.index.name = region_dim ds = xr.Dataset({f"{region_dim}_{dim}_da": total_values}) ds.to_zarr(output_path, mode="w") return output_path def _annotate_by_beds_worker( dataset_path, region_dim, chrom_size_path, slop, track_paths, dtype, dim, output_path, bed_sorted, **kwargs, ): len(kwargs) # set dask scheduler to allow multiprocessing with dask.config.set(scheduler="sync"): # Open region ds again inside the worker function region_ds = RegionDS.open( path=dataset_path, region_dim=region_dim, chrom_size_path=chrom_size_path ) # get dmr region bed dmr_bed = region_ds.get_bed( with_id=True, bedtools=True, slop=slop, chrom_size_path=chrom_size_path ).sort(g=chrom_size_path) total_values = {} for sample, bed_path in track_paths.items(): values = _bed_intersection( bed=dmr_bed, path=bed_path, bed_sorted=bed_sorted, g=chrom_size_path, region_index=region_ds.get_index(region_ds.region_dim), ) total_values[sample] = values.astype(dtype) total_values = pd.DataFrame(total_values) total_values.columns.name = dim ds = xr.Dataset({f"{region_dim}_{dim}_da": total_values}) ds.to_zarr(output_path, mode="w") dmr_bed.delete_temporary_history(ask=False) return output_path def _fisher_exact(row, alternative="two-sided"): from scipy.stats import fisher_exact oddsratio, p = fisher_exact(row.values.reshape((2, 2)), alternative=alternative) value = pd.Series({"oddsratio": oddsratio, "p": p}) return value class RegionDS(xr.Dataset): __slots__ = () def __init__(self, dataset, region_dim=None, location=None, chrom_size_path=None): super().__init__( data_vars=dataset.data_vars, coords=dataset.coords, attrs=dataset.attrs ) self.region_dim = region_dim self.location = location self.chrom_size_path = chrom_size_path return @property def region_dim(self): return self.attrs.get("region_dim") @region_dim.setter def region_dim(self, region_dim): if region_dim is not None: if region_dim not in self.dims: raise KeyError( f"{region_dim} does not occur in dimension names: {list(self.dims.keys())}" ) self.attrs["region_dim"] = region_dim else: return @property def chrom_size_path(self): return self.attrs.get("chrom_size_path") @chrom_size_path.setter def chrom_size_path(self, chrom_size_path): if chrom_size_path is not None: chrom_size_path = pathlib.Path(chrom_size_path).absolute() if not chrom_size_path.exists(): raise FileNotFoundError(str(chrom_size_path)) self.attrs["chrom_size_path"] = str(chrom_size_path) else: return @property def location(self): return self.attrs.get("region_ds_location") @location.setter def location(self, path): if path is not None: location = pathlib.Path(path).absolute() self.attrs["region_ds_location"] = str(location) location.mkdir(exist_ok=True, parents=True) else: return @classmethod def from_bed( cls, bed, location, chrom_size_path, region_dim="region", sort_bed=True ): """ Create empty RegionDS from a bed file. Parameters ---------- bed location region_dim chrom_size_path sort_bed Returns ------- """ # sort bed based on chrom_size_path if isinstance(bed, (str, pathlib.PosixPath)): if sort_bed: bed = BedTool(bed).sort(g=chrom_size_path).to_dataframe() else: bed = BedTool(bed) else: bed = bed n_cols = bed.shape[1] if n_cols == 3: bed.index = bed.index.map(lambda i: f"{region_dim}_{i}") elif n_cols == 4: bed.set_index(bed.columns[3], inplace=True) else: raise ValueError( "bed file need to be either 3 columns (chrom, start, end) " "or 4 columns (chrom, start, end, name)" ) bed.index.name = region_dim bed.columns = ["chrom", "start", "end"] ds = xr.Dataset({}) region_dim = bed.index.name for k, v in bed.items(): key = f"{region_dim}_{k}" ds.coords[key] = v if ds.coords[key].dtype == "object": ds.coords[key] = ds.coords[key].astype(str) location = pathlib.Path(location).absolute() location.mkdir(exist_ok=True, parents=True) region_ds = cls( ds, region_dim=region_dim, location=location, chrom_size_path=chrom_size_path, ) region_ds.save() return region_ds @classmethod def open( cls, path, region_dim=None, use_regions=None, split_large_chunks=True, chrom_size_path=None, select_dir=None, engine="zarr", ): if isinstance(path, (str, pathlib.PosixPath)): _path = pathlib.Path(path).absolute() if _path.is_dir(): # check if this is a RegionDS dir that contains multiple datasets region_ds_file = _path / ".ALLCools" if region_ds_file.exists(): with open(region_ds_file) as f: region_ds_config = yaml.load(f, yaml.SafeLoader) if region_dim is None: region_dim = region_ds_config["region_dim"] print(f"Using {region_dim} as region_dim") # only open datasets having the region_dim # other datasets will not be opened # e.g, when region_dim == 'dmr', dms dataset will not be opened. exclude_dir_name = [ k for k, v in region_ds_config["ds_region_dim"].items() if v != region_dim ] # add output_dir region_ds_location = pathlib.Path(path).absolute() # add chrom size path if exist if chrom_size_path is None: chrom_size_path = _path / "chrom_sizes.txt" if not chrom_size_path.exists(): chrom_size_path = None # read all sub dir as a RegionDS, then merge all the RegionDS together. datasets = [] for sub_dir_path in _path.iterdir(): if sub_dir_path.is_dir() and sub_dir_path.name[0] != ".": if select_dir is not None: if sub_dir_path.name not in select_dir: # not in select_dir list, skip continue if sub_dir_path.name in exclude_dir_name: # the dir do not have region_dim, skip continue if not (sub_dir_path / ".zattrs").exists(): # print(f'{sub_dir_path} does not seem to be a zarr storage, skipped') continue try: datasets.append( cls._open_single_dataset( path=sub_dir_path, region_dim=region_dim, split_large_chunks=split_large_chunks, engine=engine, ) ) except BaseException as e: print(f"An error raised when reading {sub_dir_path}.") raise e region_ds = cls( xr.merge(datasets), region_dim=region_dim, location=region_ds_location, chrom_size_path=chrom_size_path, ) else: # is dir, but is not RegionDS dir, could be just a zarr dir region_ds = cls._open_single_dataset( path=path, region_dim=region_dim, split_large_chunks=split_large_chunks, chrom_size_path=chrom_size_path, engine=engine, ) else: # dataset stored in other format, such as netcdf4 region_ds = cls._open_single_dataset( path=path, region_dim=region_dim, split_large_chunks=split_large_chunks, chrom_size_path=chrom_size_path, engine=engine, ) else: # could be a list of paths, open it as a single dataset path = list(path) region_ds = cls._open_single_dataset( path=path, region_dim=region_dim, split_large_chunks=split_large_chunks, chrom_size_path=chrom_size_path, engine=engine, ) if use_regions is not None: region_ds = region_ds.sel({region_dim: use_regions}) return region_ds @classmethod def _open_single_dataset( cls, path, region_dim, split_large_chunks=True, chrom_size_path=None, location=None, engine=None, ): """ Take one or multiple RegionDS file paths and create single RegionDS concatenated on region_dim Parameters ---------- path Single RegionDS path or RegionDS path pattern with wildcard or RegionDS path list region_dim Dimension name of regions split_large_chunks Split large dask array chunks if true Returns ------- RegionDS """ # print('opening', path) if region_dim is None: raise ValueError( "Please specify a region_dim name when open a normal xr.Dataset with RegionDS." ) if engine is None: engine = determine_engine(path) # if engine is None: # print(f'Open RegionDS with netcdf4 engine.') # else: # print(f'Open RegionDS with {engine} engine.') try: if (isinstance(path, str) and "*" not in path) or isinstance( path, pathlib.PosixPath ): ds = xr.open_dataset(path, engine=engine) else: with dask.config.set( **{"array.slicing.split_large_chunks": split_large_chunks} ): if isinstance(path, str): import glob path = sorted([p for p in glob.glob(path)]) ds = xr.open_mfdataset( path, parallel=False, combine="nested", concat_dim=region_dim, engine=engine, ) except Exception as e: print(f"Got error when opening {path}") print(f"Engine parameter is {engine}") raise e ds = cls( ds, region_dim=region_dim, location=location, chrom_size_path=chrom_size_path, ).squeeze() return ds def iter_index(self, chunk_size=100000, dim=None): if dim is None: dim = self.region_dim index = self.get_index(dim) for chunk_start in range(0, index.size, chunk_size): use_index = index[chunk_start: chunk_start + chunk_size] yield use_index def iter_array(self, chunk_size=100000, dim=None, da=None, load=False): if dim is None: dim = self.region_dim if da is None: da = f"{dim}_da" _da = self[da] assert dim in _da.dims for _index in self.iter_index(chunk_size=chunk_size, dim=dim): use_da = _da.sel({dim: _index}) if load: use_da.load() yield use_da def get_fasta( self, genome_fasta, output_path, slop=None, chrom_size_path=None, standardize_length=None, ): bed = self.get_bed( with_id=True, bedtools=True, slop=slop, chrom_size_path=chrom_size_path, standardize_length=standardize_length, ) bed.getfasta(fo=output_path, nameOnly=True, fi=genome_fasta) return def get_bed( self, with_id=True, bedtools=False, slop=None, chrom_size_path=None, standardize_length=None, ): if chrom_size_path is None: chrom_size_path = self.chrom_size_path # will be none if not exist region_dim = self.region_dim bed_df = pd.DataFrame( { "chrom": self.coords[f"{region_dim}_chrom"], "start": self.coords[f"{region_dim}_start"], "end": self.coords[f"{region_dim}_end"], } ) # standardize region length, used in motif enrichment analysis if standardize_length is not None: # standardize_length is an int number region_center = bed_df["start"] + (bed_df["end"] - bed_df["start"]) // 2 bed_df["start"] = region_center - 1 bed_df["end"] = region_center slop = ( standardize_length // 2 ) # use the bedtools slop to extend the center to standard length if with_id: bed_df["name"] = self.get_index(region_dim).tolist() bed = None if slop is not None and slop > 0: if chrom_size_path is None: raise ValueError("Must provide chrom_size_path when slop is not None.") with warnings.catch_warnings(): warnings.simplefilter("ignore") bed = BedTool.from_dataframe(bed_df).slop(b=slop, g=chrom_size_path) if not bedtools: bed_df = bed.to_dataframe() if bedtools: if bed is None: bed = BedTool.from_dataframe(bed_df) return bed else: bed_df.index = self.get_index(self.region_dim) return bed_df def _chunk_annotation_executor(self, annotation_function, cpu, save=True, **kwargs): chrom_size_path = kwargs["chrom_size_path"] dim = kwargs["dim"] chunk_size = kwargs["chunk_size"] # add back when submit jobs, use this to control parallel track_paths = kwargs.pop("track_paths") region_ds_path = self.location if region_ds_path is None: raise ValueError(f"Must have an on-disk location to annotate bigwigs.") if chrom_size_path is None: chrom_size_path = self.chrom_size_path region_dim = self.region_dim # deal with path chunk_dir_path = f"{region_ds_path}/.{region_dim}_{dim}_chunks" chunk_dir_path = pathlib.Path(chunk_dir_path) if chunk_dir_path.exists(): subprocess.run(f"rm -rf {chunk_dir_path}", shell=True) chunk_dir_path.mkdir(exist_ok=True) final_dir_path = f"{region_ds_path}/{region_dim}_{dim}" n_features = len(track_paths) if chunk_size == "auto": chunk_size = max(1, n_features // cpu // 2 + 1) print(f"Use chunk size {chunk_size}") other_kwargs = { "region_dim": region_dim, "dataset_path": region_ds_path, "chrom_size_path": chrom_size_path, } kwargs.update(other_kwargs) with ProcessPoolExecutor(cpu) as exe: futures = {} for i, chunk_start in enumerate(range(0, n_features, chunk_size)): output_path = f"{chunk_dir_path}/chunk_{i}.zarr" kwargs["output_path"] = output_path kwargs["track_paths"] = track_paths[ chunk_start: chunk_start + chunk_size ] future = exe.submit(annotation_function, **kwargs) futures[future] = i # time.sleep(1) chunks_to_write = {} for i, future in enumerate(as_completed(futures)): chunk_i = futures[future] output_path = future.result() chunks_to_write[chunk_i] = output_path if save: write_ordered_chunks( chunks_to_write=chunks_to_write, final_path=final_dir_path, append_dim=dim, engine="zarr", dtype=kwargs["dtype"], coord_dtypes=None, ) update_region_ds_config( self.location, new_dataset_dim={f"{region_dim}_{dim}": region_dim} ) # load the newly generated da only _ds = xr.open_zarr(final_dir_path) else: _ds = xr.open_mfdataset( [chunks_to_write[k] for k in sorted(chunks_to_write.keys())], concat_dim=dim, combine="nested", engine="zarr", ).load() self.update(_ds) subprocess.run(f"rm -rf {chunk_dir_path}", shell=True) return def annotate_by_bigwigs( self, bigwig_table, dim, slop=100, chrom_size_path=None, value_type="mean", chunk_size="auto", dtype="float32", cpu=1, save=True, ): if isinstance(bigwig_table, dict): track_paths = pd.Series(bigwig_table) elif isinstance(bigwig_table, pd.Series): track_paths = bigwig_table elif isinstance(bigwig_table, str) and bigwig_table.endswith("csv"): track_paths = pd.read_csv( bigwig_table, index_col=0, squeeze=True, header=None ) else: track_paths = pd.read_csv( bigwig_table, sep="\t", index_col=0, squeeze=True, header=None ) kwargs = dict( track_paths=track_paths, dim=dim, slop=slop, chrom_size_path=chrom_size_path, value_type=value_type, chunk_size=chunk_size, dtype=dtype, ) self._chunk_annotation_executor( _annotate_by_bigwigs_worker, cpu=cpu, save=save, **kwargs ) return def annotate_by_beds( self, bed_table, dim, slop=100, chrom_size_path=None, chunk_size="auto", dtype="bool", bed_sorted=True, cpu=1, save=True, ): bed_tmp = pathlib.Path( f"./pybedtools_tmp_{np.random.randint(0, 100000)}" ).absolute() bed_tmp.mkdir(exist_ok=True) default_tmp = pybedtools.helpers.get_tempdir() pybedtools.helpers.set_tempdir(str(bed_tmp)) if isinstance(bed_table, dict): track_paths = pd.Series(bed_table) elif isinstance(bed_table, pd.Series): track_paths = bed_table elif isinstance(bed_table, str) and bed_table.endswith("csv"): track_paths =
pd.read_csv(bed_table, index_col=0, squeeze=True, header=None)
pandas.read_csv
from __future__ import print_function import argparse import json import logging import os import pandas as pd import numpy as np import pickle as pkl from sagemaker_containers import entry_point from sagemaker_xgboost_container.data_utils import get_dmatrix import xgboost as xgb from xgboost.sklearn import XGBClassifier # how do we make sure we are using this from sklearn import metrics #Additional scklearn functions def CreateBalancedSampleWeights(y_train, largest_class_weight_coef): classes = y_train.unique() classes.sort() class_samples = np.bincount(y_train) total_samples = class_samples.sum() n_classes = len(class_samples) weights = total_samples / (n_classes * class_samples * 1.0) class_weight_dict = {key : value for (key, value) in zip(classes, weights)} class_weight_dict[classes[1]] = class_weight_dict[classes[1]] * largest_class_weight_coef sample_weights = [class_weight_dict[y] for y in y_train] return sample_weights def input_fn(request_body, request_content_type): """An input_fn that loads a numpy array""" if request_content_type == "text/csv": input_features =[] for i in request_body.split('\n'): # the first element is the id, the rest is payload if len(i) == 0: continue input_features.append([float(j) for j in i.split(",")]) return np.array(input_features) else: pass if __name__ == '__main__': parser = argparse.ArgumentParser() # Hyperparameters are described here parser.add_argument('--n_estimators', type=int, default=1000) parser.add_argument('--n_jobs', type=int, default=4) parser.add_argument('--max_depth', type=int, default=5) parser.add_argument('--learning_rate', type=float, default=0.01) parser.add_argument('--objective', type=str, default='multi:softmax') parser.add_argument('--subsample', type=float, default=1) parser.add_argument('--reg_lambda', type=float, default=0.1) parser.add_argument('--eval_metric', type=str, default='merror') #- looks like we don't include this in fact, worth checking later parser.add_argument('--colsample_bytree', type=float, default=1) parser.add_argument('--gamma', type=float, default=1) # SageMaker specific arguments. Defaults are set in the environment variables. parser.add_argument('--output_data_dir', type=str, default=os.environ.get('SM_OUTPUT_DATA_DIR')) parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR')) parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN']) parser.add_argument('--validation', type=str, default=os.environ['SM_CHANNEL_VALIDATION']) args = parser.parse_args() # Take the set of files and read them all into a single pandas dataframe input_files1 = [ os.path.join(args.train, file1) for file1 in os.listdir(args.train) ] if len(input_files1) == 0: raise ValueError(('There are no files in {}.\n' + 'This usually indicates that the channel was incorrectly specified,\n' + 'the data specification in S3 was incorrectly specified or the role specified\n' + 'does not have permission to access the data.').format(args.train)) raw_data1 = [
pd.read_csv(file1, header=None, engine='python')
pandas.read_csv
import pandas as pd from psycopg2 import extras import os import json import math from google.cloud import storage from payouts_config import BaseConfig import psycopg2 from calculate_email import send_mail from mail_to_foundation_acc import mail_to_foundation_accounts from datetime import datetime, timezone, timedelta from logger_util import logger from itertools import groupby import warnings import sys warnings.filterwarnings('ignore') connection_archive = psycopg2.connect( host=BaseConfig.POSTGRES_ARCHIVE_HOST, port=BaseConfig.POSTGRES_ARCHIVE_PORT, database=BaseConfig.POSTGRES_ARCHIVE_DB, user=BaseConfig.POSTGRES_ARCHIVE_USER, password=BaseConfig.POSTGRES_ARCHIVE_PASSWORD ) connection_payout = psycopg2.connect( host=BaseConfig.POSTGRES_PAYOUT_HOST, port=BaseConfig.POSTGRES_PAYOUT_PORT, database=BaseConfig.POSTGRES_PAYOUT_DB, user=BaseConfig.POSTGRES_PAYOUT_USER, password=BaseConfig.POSTGRES_PAYOUT_PASSWORD ) ERROR = 'Error: {0}' def get_gcs_client(): os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = BaseConfig.CREDENTIAL_PATH return storage.Client() def read_staking_json_list(): storage_client = get_gcs_client() bucket = storage_client.get_bucket(BaseConfig.GCS_BUCKET_NAME) staking_file_prefix = "staking-" blobs = storage_client.list_blobs(bucket, start_offset=staking_file_prefix) # convert to string file_dict_for_memory = dict() for blob in blobs: file_dict_for_memory[blob.name] = blob.updated sorted_list = [k for k, v in sorted(file_dict_for_memory.items(), key=lambda p: p[1], reverse=False)] recent_file = [list(i) for j, i in groupby(sorted_list, lambda a: a.split('-')[1])] recent_file = [recent[-1] for recent in recent_file] file_name_list_for_memory = [file for file in recent_file if str(file).endswith(".json")] return file_name_list_for_memory def get_last_processed_epoch_from_audit(): audit_query = '''select epoch_id from payout_audit_log where job_type='calculation' order by id desc limit 1''' last_epoch = 0 try: cursor = connection_payout.cursor() cursor.execute(audit_query) if cursor.rowcount > 0: data_count = cursor.fetchall() last_epoch = int(data_count[-1][-1]) except (Exception, psycopg2.DatabaseError) as error: logger.error(ERROR.format(error)) cursor.close() return -1 finally: cursor.close() return last_epoch # determine whether process can run now for given epoch number def can_run_job(next_epoch): next_epoch_end = (int(next_epoch+1) * 7140 * 3) + (100 * 3) next_job_time = BaseConfig.GENESIS_DATE + timedelta(minutes=next_epoch_end) next_job_time = next_job_time.replace(tzinfo=timezone.utc) next_job_time = next_job_time + timedelta(days=1) next_job_time= next_job_time.replace(hour=00, minute=30) current_time = datetime.now(timezone.utc) if next_job_time > current_time: result = False else: result = True return result # this will check audit log table, and will determine last processed epoch # if no entries found, default to first epoch def initialize(): result = 0 last_epoch = get_last_processed_epoch_from_audit() if can_run_job(last_epoch+1) : result = main(last_epoch + 1, True) else: result = last_epoch return result # for epoch 0 & epoch 1 # - have to use same staking ledger 'staking-1' # - blocks produced would be for epoch 0 & epoch 1 # - payment recieved would be for epoch 0 & epoch 1 def is_genesis_epoch(epoch_id): return True if int(epoch_id) <2 else False def read_staking_json_for_epoch(epoch_id): storage_client = get_gcs_client() bucket = storage_client.get_bucket(BaseConfig.GCS_BUCKET_NAME) if is_genesis_epoch(epoch_id): staking_file_prefix = "staking-1-" else: staking_file_prefix = "staking-" + str(epoch_id) blobs = storage_client.list_blobs(bucket, prefix=staking_file_prefix) # convert to string ledger_name = '' modified_staking_df = pd.DataFrame() file_to_read = read_staking_json_list() for blob in blobs: if blob.name in file_to_read: logger.info(blob.name) ledger_name = blob.name json_data_string = blob.download_as_string() json_data_dict = json.loads(json_data_string) staking_df =
pd.DataFrame(json_data_dict)
pandas.DataFrame
""" A strategy should always receive the tape to be modified and return the last line so can be feeded to the tape back in the main market_maker class """ from market_maker.utils import log import pandas as pd from market_maker.settings import settings from time import sleep import matplotlib.pyplot as plt logger = log.setup_custom_logger(__name__) pd.options.display.width = 300 # for pandas class Strategy: def __init__(self, exchange): self.exchange = exchange def check_contingent_limit(self): """ Check API limits. If a limit is reached no trades should be submitted. @return: True if the limit is reached, false otherwise """ #max_contingents = 10 max_contingents = 2 # max_stops = 10 # check for API limits open_position = self.exchange.get_position()['simpleCost'] # open_orders = self.exchange.get_num_open_orders() contingent_orders = self.exchange.get_num_contingent_orders() # check contingent orders limit to avoid being kicked our form the API # if (contingent_orders >= max_contingents) and (open_position != 0): # DEBUG: prevents any additional orders being added when there is an open position if (contingent_orders >= max_contingents): logger.info("Max contingent orders reached: {} ... System sleeping for {}s".format(contingent_orders, settings.LOOP_INTERVAL)) return True #elif open_position != 0: # logger.info("Open position detected of {} contracts. ... System sleeping for {}s".format(open_position, settings.LOOP_INTERVAL)) # return 'position' elif (contingent_orders < max_contingents) and open_position == 0: return False def check_open_position(self): position = self.exchange.get_position() if position['isOpen']: open_position = position['simpleCost'] return open_position else: return False def run_strategy(self): # Get latest quote (raw df line) """ INPUT : latest quote contains : askPrice askSize bidPrice bidSize symbol walletBalance marginBalance fundingRate fundingTimestamp indicativeFundingRate timestamp 2018-04-02 03:12:00+00:00 6938.0 4258 6937.5 70688 XBTUSD 3.13026403 3.13026403 -0.001697 2018-04-02 04:00:00+00:00 0.000967 -------------------------------------------------------------------------------------------------------------- """ # set defaults trade_side = False executed = False latest_quote = self.exchange.get_latest_quote_with_funding() current_time = latest_quote.index.tolist()[0] # extrapolate latest time logger.info('....executing run_strategy()') # check limites if not self.check_contingent_limit(): open_position = self.check_open_position() latest_quote_time =
pd.to_datetime(latest_quote.index)
pandas.to_datetime
import pandas as pd import numpy as np import pytest from model.calculatemoments import CalculateMoments @pytest.fixture def setup_mean_matrix1(): x1 = [1 for i in range(1000)] x2 = [2 for i in range(1000)] x3 = [3 for i in range(1000)] return
pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3})
pandas.DataFrame
#!/usr/bin/env python3 import argparse import copy import hashlib import itertools import math import multiprocessing import numpy as np import os import pandas as pd import pickle import random import time from multiprocessing import Pool import subprocess from collections import defaultdict from collections import Counter f_fields = ['hour', 'banner_pos', 'device_id', 'device_ip', 'device_model', 'device_conn_type', 'C14', 'C17', 'C20', 'C21', 'pub_id', 'pub_domain', 'pub_category', 'device_id_count', 'device_ip_count', 'user_count', 'smooth_user_hour_count', 'user_click_histroy'] def parse_args(): parser = argparse.ArgumentParser('Calculate group features and dump them to a specified file') parser.add_argument('train', type=str, help='csv file') parser.add_argument('valid', type=str, help='csv file') parser.add_argument('partition', type=str, help='site/app') parser.add_argument('g_field', type=str, help='specified the fields used to group instances') parser.add_argument('a_field', type=str, help='specified the fields considered in each group') parser.add_argument('--gc_begin', type=int, default=16, help='the index of the first column in group features') parser.add_argument('--max_occur', type=int, default=100, help='specified the maximum number of count features. Any feature with counts less than the value would be replaced with its count.') parser.add_argument('--max_sz_group', type=int, default=100, help='the upper limit of the size of each group') parser.add_argument('--max_nr_group_feats', type=int, default=2500, help='the maximum number of features among a group') return vars(parser.parse_args()) def hashstr(str, nr_bins=1e6): return int(hashlib.md5(str.encode('utf8')).hexdigest(), 16)%(nr_bins-1)+1 def vtform(v, partition, c, cnts, max_occur): pub_in_raw = {'pub_id': {'app': 'app_id', 'site': 'site_id'}, 'pub_domain': {'app': 'app_domain', 'site': 'site_domain'}, 'pub_category': {'app': 'app_category', 'site': 'site_category'}} if c in pub_in_raw: c = pub_in_raw[c][partition] if c != 'hour': if v in cnts[c]: if cnts[c][v] >= max_occur: return c+'-'+v else: return c+'-less-'+str(cnts[c][v]) else: return c+'-less' else: return c+'-'+v[-2:] def generate_feats(df, partition, a_field, gc_begin, max_occur, max_sz_group, max_nr_group_feats, tr_path, va_path): g_added = set(a_field.split(',')) & set(f_fields) col_fm_indices = {c:i+gc_begin for i, c in enumerate(g_added)} with open('fc.trva.r0.t2.pkl', 'rb') as fh: cnts = pickle.load(fh) with open(tr_path, 'wt') as f_tr, open(va_path, 'wt') as f_va: for gid, group in df.groupby('__kid__'): group_feats = dict() if len(group) < max_sz_group: for c in g_added: group_feats[c] = Counter(group[c].apply(lambda x: vtform(x, partition, c, cnts, max_occur))) c_norm = 1/math.sqrt(sum([w**2 for w in group_feats[c].values()]))/len(g_added) for v, w in group_feats[c].items(): group_feats[c][v] = w*c_norm gf_str = '' for c, vws in group_feats.items(): for v, w in vws.items(): gf_str += ' {0}:{1}:{2:.5f}'.format(col_fm_indices[c], int(hashstr('group-'+v)), w) for rid, row in group.iterrows(): feats_str = row['id'] + gf_str if row['__src__'] == '__tr__': f_tr.write(feats_str+'\n') elif row['__src__'] == '__va__': f_va.write(feats_str+'\n') def cat(combined, names): if os.path.exists(combined): os.remove(combined) for name in names: cmd = 'cat {0} >> {1}'.format(name, combined) p = subprocess.Popen(cmd, shell=True) p.communicate() def delete(names): for name in names: cmd = 'rm {0}'.format(name) p = subprocess.Popen(cmd, shell=True) p.communicate() def get_pid_table(df, col, sz_chunk): return df.groupby(col)['id'].count().cumsum().apply(lambda x: int(x/sz_chunk)) if __name__ == '__main__': args = parse_args() spec = '.T_{max_occur}.gins_{max_sz_group}.gfeat_{max_nr_group_feats}.gby_{g_field}.add_{a_field}'.format( max_occur=args['max_occur'], max_sz_group=args['max_sz_group'], max_nr_group_feats=args['max_nr_group_feats'], g_field=args['g_field'], a_field=args['a_field']) # loading start = time.time() tr = pd.read_csv(args['train'], dtype=str) tr['__src__'] = '__tr__' va = pd.read_csv(args['valid'], dtype=str) va['__src__'] = '__va__' trva =
pd.concat([tr, va])
pandas.concat
# -*- coding: utf-8 -*- from datetime import timedelta from distutils.version import LooseVersion import numpy as np import pytest import pandas as pd import pandas.util.testing as tm from pandas import ( DatetimeIndex, Int64Index, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, timedelta_range ) from pandas.errors import NullFrequencyError @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture(params=['B', 'D']) def freq(request): return request.param class TestTimedeltaIndexArithmetic(object): # Addition and Subtraction Operations # ------------------------------------------------------------- # TimedeltaIndex.shift is used by __add__/__sub__ def test_tdi_shift_empty(self): # GH#9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) def test_tdi_shift_hours(self): # GH#9903 idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_tdi_shift_minutes(self): # GH#9903 idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_tdi_shift_int(self): # GH#8083 trange = pd.to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) result = trange.shift(1) expected = TimedeltaIndex(['1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00'], freq='D') tm.assert_index_equal(result, expected) def test_tdi_shift_nonstandard_freq(self): # GH#8083 trange = pd.to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) result = trange.shift(3, freq='2D 1s') expected = TimedeltaIndex(['6 days 01:00:03', '7 days 01:00:03', '8 days 01:00:03', '9 days 01:00:03', '10 days 01:00:03'], freq='D')
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
from PIL import Image import os from glob import glob import torch import pandas as pd import argparse import time import torchvision import torchvision.transforms as transforms from torch.utils.data import Dataset, DataLoader from util import create_params, flip from model import create_model from collections import OrderedDict from tqdm import tqdm normalize = transforms.Normalize(mean=[0.5754, 0.4529, 0.3986], std=[0.2715, 0.2423, 0.2354]) class FacialDataset_test(Dataset): def __init__(self, data_path, img_size): if not os.path.exists(data_path): raise Exception(f"[!] {self.data_path} not existed") self.imgs = [] self.transform = transforms.Compose([ transforms.Resize((img_size,img_size)), transforms.ToTensor(), normalize ]) self.age_path = sorted(glob(os.path.join(data_path, "*.*"))) for pth in self.age_path: img = pth self.imgs.append(img) def __getitem__(self, idx): image = self.transform(Image.open(self.imgs[idx])) return image def __len__(self): return len(self.age_path) def eval(): config = create_params() test_dataset = FacialDataset_test(config.data_dir+'/test', config.img_size) test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=1,shuffle=False) if not os.path.exists(os.path.join(config.save_dir, config.arch)): os.makedirs(os.path.join(config.save_dir, config.arch, 'best')) os.makedirs(os.path.join(config.save_dir, config.arch, 'latest')) print("Created directory ",str(os.path.join(config.save_dir, config.arch))) # load checkpoint checkpoint = None centroid = None if config.eval: checkpoint = torch.load(os.path.join(config.output_dir, config.arch, 'best','model_{}.pt'.format(config.trial))) if 'centroid' in checkpoint.keys(): centroid = checkpoint['centroid'] model = create_model(config) if torch.cuda.device_count() > 1: new_state_dict = OrderedDict() for k, v in checkpoint['state_dict'].items(): name = k[7:] # remove `module.` new_state_dict[name] = v model.load_state_dict(new_state_dict) else: model.load_state_dict(checkpoint['state_dict']) model.eval() if config.use_gpu and torch.cuda.is_available(): model = model.cuda() print('Make an evaluation csv file(best) for submission...') Category = [] for input in tqdm(test_loader): input = input.cuda() output = model(input) if config.arch == 'random_bin': est = (output * centroid.view(1,-1)).view(-1, config.M, config.N) y_hat = est.sum(dim=2) y_bar = y_hat.mean(dim=1) output = [y_bar.item()] elif config.arch == 'dldlv2': flipped = flip(input).cuda() output_flipped = model(flipped) output = [torch.sum(output*centroid, dim=1).item()/2 + torch.sum(output_flipped*centroid, dim=1).item()/2] else: output = [output.item()] Category = Category + output Id = list(range(0, len(Category))) samples = { 'Id': Id, 'Category': Category } df =
pd.DataFrame(samples, columns=['Id', 'Category'])
pandas.DataFrame
import pytest from mapping import mappings from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np from pandas.tseries.offsets import BDay @pytest.fixture def dates(): return pd.Series( [TS('2016-10-20'), TS('2016-11-21'), TS('2016-12-20')], index=['CLX16', 'CLZ16', 'CLF17'] ) def test_not_in_roll_one_generic_static_roller(dates): dt = dates.iloc[0] contract_dates = dates.iloc[0:2] sd, ed = (dt + BDay(-8), dt + BDay(-7)) timestamps = pd.date_range(sd, ed, freq='b') cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) midx = pd.MultiIndex.from_product([timestamps, ['CLX16']]) midx.names = ['date', 'contract'] cols = pd.Index([0], name='generic') wts_exp = pd.DataFrame([1.0, 1.0], index=midx, columns=cols) # with DatetimeIndex wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) # with tuple wts = mappings.roller(tuple(timestamps), contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) def test_not_in_roll_one_generic_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_non_numeric_column_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([["CL1"], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [("CL1", 'CLX16', 1.0, ts)] assert wts == wts_exp def test_finished_roll_pre_expiry_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-2) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-9, -8] transition = pd.DataFrame([[1.0, 0.0], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_filtering_front_contracts_static_transition(dates): # NOQA contract_dates = dates.iloc[0:2] ts = dates.iloc[1] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_roll_with_holiday(dates): contract_dates = dates.iloc[-2:] ts = pd.Timestamp("2016-11-17") cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) holidays = [np.datetime64("2016-11-18")] # the holiday moves the roll schedule up one day, since Friday is # excluded as a day wts = mappings.static_transition(ts, contract_dates, transition, holidays) wts_exp = [(0, 'CLZ16', 0.5, ts), (0, 'CLF17', 0.5, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_zero_weight_back_contract_no_contract_static_transition(dates): # NOQA contract_dates = dates.iloc[0:1] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_aggregate_weights(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list) idx = pd.MultiIndex.from_product([[ts], ["CLX16", "CLZ16"]], names=["date", "contract"]) cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_aggregate_weights_drop_date(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list, drop_date=True) idx = pd.Index(["CLX16", "CLZ16"], name="contract") cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_static_bad_transitions(dates): contract_dates = dates.iloc[[0]] ts = dates.iloc[0] + BDay(-8) # transition does not contain 'front' column cols = pd.MultiIndex.from_product([[0], ['not_front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) # transition does not sum to one across rows cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.0], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) # transition is not monotonic increasing in back transition = pd.DataFrame([[0.7, 0.3], [0.8, 0.2], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) def test_no_roll_date_two_generics_static_transition(dates): dt = dates.iloc[0] contract_dates = dates ts = dt + BDay(-8) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_not_in_roll_two_generics_static_roller(dates): dt = dates.iloc[0] contract_dates = dates.iloc[0:3] sd, ed = (dt + BDay(-8), dt + BDay(-7)) timestamps = pd.date_range(sd, ed, freq='b') cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=transition) midx = pd.MultiIndex.from_product([timestamps, ['CLX16', 'CLZ16']]) midx.names = ['date', 'contract'] cols = pd.Index([0, 1], name='generic') wts_exp = pd.DataFrame([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]], index=midx, columns=cols) assert_frame_equal(wts, wts_exp) def test_during_roll_two_generics_one_day_static_transition(dates): contract_dates = dates ts = dates.iloc[0] + BDay(-1) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 0.5, ts), (0, 'CLZ16', 0.5, ts), (1, 'CLZ16', 0.5, ts), (1, 'CLF17', 0.5, ts)] assert wts == wts_exp def test_invalid_contract_dates(): ts = [pd.Timestamp("2016-10-19")] cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-1, 0] trans = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) non_unique_index = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-11-21')], index=['instr1', 'instr1']) with pytest.raises(ValueError): mappings.roller(ts, non_unique_index, mappings.static_transition, transition=trans) non_unique_vals = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-10-20')], index=['instr1', 'instr2']) with pytest.raises(ValueError): mappings.roller(ts, non_unique_vals, mappings.static_transition, transition=trans) non_monotonic_vals = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-10-19')], index=['instr1', 'instr2']) with pytest.raises(ValueError): mappings.static_transition(ts[0], non_monotonic_vals, transition=trans) not_enough_vals = pd.Series([pd.Timestamp('2016-10-19')], index=['instr1']) with pytest.raises(IndexError): mappings.static_transition(ts[0], not_enough_vals, transition=trans) def test_during_roll_two_generics_one_day_static_roller(dates): dt = dates.iloc[0] contract_dates = dates timestamps = pd.DatetimeIndex([dt + BDay(-1)]) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) midx = pd.MultiIndex.from_product([timestamps, ['CLF17', 'CLX16', 'CLZ16']]) midx.names = ['date', 'contract'] cols = pd.Index([0, 1], name='generic') wts_exp = pd.DataFrame([[0, 0.5], [0.5, 0], [0.5, 0.5]], index=midx, columns=cols)
assert_frame_equal(wts, wts_exp)
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function import timeit __author__ = ['<NAME>'] __email__ = ['<EMAIL>'] __package__ = 'Gemm testing' NUM_REPEATS = 10 NUMBER = 500 def gemm_nn (N, M, K): SETUP_CODE = ''' import numpy as np np.random.seed(123) N, M, K = ({N}, {M}, {K}) a = np.random.uniform(low=0., high=1., size=(N, M)) b = np.random.uniform(low=0., high=1., size=(M, K)) '''.format(**{'N' : N, 'M' : M, 'K' : K }) TEST_CODE = ''' c = np.einsum('ij, jk -> ik', a, b, optimize=True) ''' times = timeit.repeat(setup=SETUP_CODE, stmt=TEST_CODE, repeat=NUM_REPEATS, number=NUMBER) return times def gemm_nt (N, M, K): SETUP_CODE = ''' import numpy as np np.random.seed(123) N, M, K = ({N}, {M}, {K}) a = np.random.uniform(low=0., high=1., size=(N, M)) b = np.random.uniform(low=0., high=1., size=(M, K)) bt = b.T '''.format(**{'N' : N, 'M' : M, 'K' : K }) TEST_CODE = ''' c = np.einsum('ij, kj -> ik', a, bt, optimize=True) ''' times = timeit.repeat(setup=SETUP_CODE, stmt=TEST_CODE, repeat=NUM_REPEATS, number=NUMBER) return times if __name__ == '__main__': import seaborn as sns import pylab as plt import pandas as pd import numpy as np N, M, K = (100, 200, 300) times_nn = gemm_nn(N, M, K) times_nt = gemm_nt(N, M, K) ref = np.asarray(times_nn) val = np.asarray(times_nt) times_nt = np.asarray(times_nt)/ref times_nn = np.asarray(times_nn)/ref times_nn = pd.DataFrame(data=times_nn, columns=['Times']) times_nn['Gemm'] = 'GEMM_NN' times_nt = pd.DataFrame(data=times_nt, columns=['Times']) times_nt['Gemm'] = 'GEMM_NT' data =
pd.concat((times_nn, times_nt), axis=0)
pandas.concat