prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# coding: utf-8 # In[1]: # This code can be downloaded as a Python script and run as: # python full_vs_EM_any_dataset.py random_state dataset_name test_proportion val_proportion M_method M_alpha M_beta # test_proportion: The test proportion is from all the available true labels # val_proportion: The validation proportion is from the remaining training proportion with the true labels def is_interactive(): import __main__ as main return not hasattr(main, '__file__') import sys import argparse import numpy import matplotlib import os import glob import pandas import keras from keras import backend as K import matplotlib.pyplot as plt from sklearn.preprocessing import label_binarize from sklearn.utils import shuffle from wlc.WLweakener import computeM, generateWeak, weak_to_index, binarizeWeakLabels from experiments.visualizations import plot_history from experiments.visualizations import plot_multilabel_scatter cmap = plt.cm.get_cmap('tab20') from experiments.utils import compute_friedmanchisquare from experiments.utils import rankings_to_latex dataset_name = 'mnist' def statistical_tests(table, filename): # Friedman test ftest = compute_friedmanchisquare(table) df_rankings = pandas.DataFrame(table.rank(axis=1).mean(axis=0).sort_index()).T with open(filename + '.tex', 'w') as tf: tf.write('''\\centering\n\\caption{{Average rankings. Friedman test {:.2f}, p-value {:.2e}}}\n'''.format(ftest.statistic, ftest.pvalue) + df_rankings.to_latex(float_format='%.2f', column_format='c'*(1 + df_rankings.shape[1]))) def generate_summary(errorbar=True, zoom=False): cmap = plt.cm.get_cmap('tab20') from cycler import cycler default_cycler = (cycler(color=['darkred', 'forestgreen', 'darkblue', 'violet', 'darkorange', 'saddlebrown']) + cycler(linestyle=['-', '--', '-.', '-', '--', '-.']) + cycler(marker=['o', 'v', 'x', '*', '+', '.']) + cycler(lw=[2, 1.8, 1.6, 1.4, 1.2, 1])) plt.rcParams['figure.figsize'] = (5, 2.5) plt.rcParams["figure.dpi"] = 100 plt.rc('lines', linewidth=1) plt.rc('axes', prop_cycle=default_cycler) files_list = glob.glob("./Example_13*summary.csv") print('List of files to aggregate') print(files_list) list_ = [] for file_ in files_list: df =
pandas.read_csv(file_,index_col=0, header=None, quotechar='"')
pandas.read_csv
import pandas as pd import datetime def formatTopStocks(top): top_data = {"code": [], "name": [], "increase": [], "price": [], "totalCirculationValue": [], "volume": [], "mainNet": [], "mainBuy": [], "mainSell": [], "concept": []} for t in top: top_data['code'].append(t[0]) top_data['name'].append(t[1]) top_data['increase'].append(t[3]) top_data['price'].append(t[2]) top_data['totalCirculationValue'].append(t[7]) top_data['volume'].append(t[4]) top_data['mainNet'].append(t[10]) top_data['mainBuy'].append(t[8]) top_data['mainSell'].append(t[9]) top_data['concept'].append(t[12]) df = pd.DataFrame(top_data) return df def plateData(data:list): date_time = [] price = [] volume = [] date = str(datetime.datetime.now().date()) for d in data: date_time.append(date + ' ' + d[0]) price.append(d[1]) volume.append(d[3]) data = {"time": date_time, "price": price, "volume": volume} df = pd.DataFrame(data) return df def topPlateFormat(data:list): topData = {"codes": [], "names": [], "increase": [], "rateOfIncrease": [], "mainNet": [], "mainBuy": [], "mainSell": [], "totalCirculationValue": []} for d in data: topData["codes"].append(d[0]) topData["names"].append(d[1]) topData["increase"].append(d[3]) topData["rateOfIncrease"].append(d[4]) topData["mainNet"].append(d[6]) topData["mainBuy"].append(d[7]) topData["mainSell"].append(d[8]) topData["totalCirculationValue"].append(d[10]) df =
pd.DataFrame(topData)
pandas.DataFrame
""" An example of how to extract timeseries data from point locations using WRF data stored in AWS. Assumes that the `wrf-ak-ar5` S3 bucket is mounted at `~/wrf-ak-ar5` Authors: <NAME> (<EMAIL>), SNAP """ import netCDF4 # prevent occasional obscure HDF5 issue with file locking on CentOS # Setup logger to print to STDOUT import logging import sys log = logging.getLogger() log.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) log.addHandler(handler) def extract_data(): """ Open data set, perform extraction, save CSV. """ log.info('Loading dataset...') dataset = xr.open_dataset('~/wrf-ak-ar5/hourly/GFDL-CM3/historical/t2/t2_hourly_wrf_GFDL-CM3_historical_1971.nc') log.info('Dataset loaded, processing...') res = 20000 # grid resolution for WRF data # get an affine transform to make the point lookups faster affine_dataset = rasterio.transform.from_origin( dataset.xc.min()-(res/2), dataset.yc.max()+(res/2), res, res) # point locations we are going to extract from the NetCDF file # these locations are in WGS1984 EPSG:4326 location = { 'Fairbanks' : (-147.716, 64.8378), 'Greely' : (-145.6076, 63.8858), 'Whitehorse' : (-135.074, 60.727), 'Coldfoot' : (-150.1772, 67.2524) } # reproject the points to the wrf-polar-stereo using geopandas location = { location_name:Point(lng_lat) for location_name, lng_lat in location.items() } dataframe =
pd.Series(location)
pandas.Series
# Libraries ########################################################################################################### import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn import preprocessing import random from sklearn.metrics import roc_curve, roc_auc_score # Functions ########################################################################################################### def apply_z_score(df, columns, index): # Scale RNAseq data using z-scores df = preprocessing.StandardScaler().fit_transform(df) df = pd.DataFrame(df, columns=columns, index=index) return df def normalize_data(df, columns, index): df = preprocessing.MinMaxScaler().fit_transform(df) df =
pd.DataFrame(df, columns=columns, index=index)
pandas.DataFrame
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import pytest import numpy as np import pandas import matplotlib import modin.pandas as pd import io from modin.pandas.test.utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, test_data_values, test_data_keys, create_test_dfs, test_data, ) from modin.config import NPartitions NPartitions.put(4) # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") @pytest.mark.parametrize("method", ["items", "iteritems", "iterrows"]) def test_items_iteritems_iterrows(method): data = test_data["float_nan_data"] modin_df, pandas_df = pd.DataFrame(data), pandas.DataFrame(data) for modin_item, pandas_item in zip( getattr(modin_df, method)(), getattr(pandas_df, method)() ): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("name", [None, "NotPandas"]) def test_itertuples_name(name): data = test_data["float_nan_data"] modin_df, pandas_df = pd.DataFrame(data), pandas.DataFrame(data) modin_it_custom = modin_df.itertuples(name=name) pandas_it_custom = pandas_df.itertuples(name=name) for modin_row, pandas_row in zip(modin_it_custom, pandas_it_custom): np.testing.assert_equal(modin_row, pandas_row) def test_itertuples_multiindex(): data = test_data["int_data"] modin_df, pandas_df = pd.DataFrame(data), pandas.DataFrame(data) new_idx = pd.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))] ) modin_df.columns = new_idx pandas_df.columns = new_idx modin_it_custom = modin_df.itertuples() pandas_it_custom = pandas_df.itertuples() for modin_row, pandas_row in zip(modin_it_custom, pandas_it_custom): np.testing.assert_equal(modin_row, pandas_row) def test___iter__(): modin_df = pd.DataFrame(test_data_values[0]) pandas_df = pandas.DataFrame(test_data_values[0]) modin_iterator = modin_df.__iter__() # Check that modin_iterator implements the iterator interface assert hasattr(modin_iterator, "__iter__") assert hasattr(modin_iterator, "next") or hasattr(modin_iterator, "__next__") pd_iterator = pandas_df.__iter__() assert list(modin_iterator) == list(pd_iterator) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___contains__(request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) result = False key = "Not Ex<PASSWORD>" assert result == modin_df.__contains__(key) assert result == (key in modin_df) if "empty_data" not in request.node.name: result = True key = pandas_df.columns[0] assert result == modin_df.__contains__(key) assert result == (key in modin_df) def test__options_display(): frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 102)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) pandas.options.display.max_rows = 10 pandas.options.display.max_columns = 10 x = repr(pandas_df) pd.options.display.max_rows = 5 pd.options.display.max_columns = 5 y = repr(modin_df) assert x != y pd.options.display.max_rows = 10 pd.options.display.max_columns = 10 y = repr(modin_df) assert x == y # test for old fixed max values pandas.options.display.max_rows = 75 pandas.options.display.max_columns = 75 x = repr(pandas_df) pd.options.display.max_rows = 75 pd.options.display.max_columns = 75 y = repr(modin_df) assert x == y def test___finalize__(): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).__finalize__(None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___copy__(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy, pandas_df_copy = modin_df.__copy__(), pandas_df.__copy__() df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___deepcopy__(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy, pandas_df_copy = ( modin_df.__deepcopy__(), pandas_df.__deepcopy__(), ) df_equals(modin_df_copy, pandas_df_copy) def test___repr__(): frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 100)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 99)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 101)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 102)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) # ___repr___ method has a different code path depending on # whether the number of rows is >60; and a different code path # depending on the number of columns is >20. # Previous test cases already check the case when cols>20 # and rows>60. The cases that follow exercise the other three # combinations. # rows <= 60, cols > 20 frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(10, 100)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) # rows <= 60, cols <= 20 frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(10, 10)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) # rows > 60, cols <= 20 frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(100, 10)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) # Empty pandas_df = pandas.DataFrame(columns=["col{}".format(i) for i in range(100)]) modin_df = pd.DataFrame(columns=["col{}".format(i) for i in range(100)]) assert repr(pandas_df) == repr(modin_df) # From Issue #1705 string_data = """"time","device_id","lat","lng","accuracy","activity_1","activity_1_conf","activity_2","activity_2_conf","activity_3","activity_3_conf" "2016-08-26 09:00:00.206",2,60.186805,24.821049,33.6080017089844,"STILL",75,"IN_VEHICLE",5,"ON_BICYCLE",5 "2016-08-26 09:00:05.428",5,60.192928,24.767222,5,"WALKING",62,"ON_BICYCLE",29,"RUNNING",6 "2016-08-26 09:00:05.818",1,60.166382,24.700443,3,"WALKING",75,"IN_VEHICLE",5,"ON_BICYCLE",5 "2016-08-26 09:00:15.816",1,60.166254,24.700671,3,"WALKING",75,"IN_VEHICLE",5,"ON_BICYCLE",5 "2016-08-26 09:00:16.413",5,60.193055,24.767427,5,"WALKING",85,"ON_BICYCLE",15,"UNKNOWN",0 "2016-08-26 09:00:20.578",3,60.152996,24.745216,3.90000009536743,"STILL",69,"IN_VEHICLE",31,"UNKNOWN",0""" pandas_df = pandas.read_csv(io.StringIO(string_data)) modin_df = pd.read_csv(io.StringIO(string_data)) assert repr(pandas_df) == repr(modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_inplace_series_ops(data): pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) if len(modin_df.columns) > len(pandas_df.columns): col0 = modin_df.columns[0] col1 = modin_df.columns[1] pandas_df[col1].dropna(inplace=True) modin_df[col1].dropna(inplace=True) df_equals(modin_df, pandas_df) pandas_df[col0].fillna(0, inplace=True) modin_df[col0].fillna(0, inplace=True) df_equals(modin_df, pandas_df) def test___setattr__(): pandas_df = pandas.DataFrame([1, 2, 3]) modin_df = pd.DataFrame([1, 2, 3]) pandas_df.new_col = [4, 5, 6] modin_df.new_col = [4, 5, 6] df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_isin(data): pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) val = [1, 2, 3, 4] pandas_result = pandas_df.isin(val) modin_result = modin_df.isin(val) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_constructor(data): pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) df_equals(pandas_df, modin_df) pandas_df = pandas.DataFrame({k: pandas.Series(v) for k, v in data.items()}) modin_df = pd.DataFrame({k: pd.Series(v) for k, v in data.items()}) df_equals(pandas_df, modin_df) @pytest.mark.parametrize( "data", [ np.arange(1, 10000, dtype=np.float32), [ pd.Series([1, 2, 3], dtype="int32"), pandas.Series([4, 5, 6], dtype="int64"), np.array([7, 8, 9], dtype=np.float32), ], pandas.Categorical([1, 2, 3, 4, 5]), ], ) def test_constructor_dtypes(data): md_df, pd_df = create_test_dfs(data) df_equals(md_df, pd_df) def test_constructor_columns_and_index(): modin_df = pd.DataFrame( [[1, 1, 10], [2, 4, 20], [3, 7, 30]], index=[1, 2, 3], columns=["id", "max_speed", "health"], ) pandas_df = pandas.DataFrame( [[1, 1, 10], [2, 4, 20], [3, 7, 30]], index=[1, 2, 3], columns=["id", "max_speed", "health"], ) df_equals(modin_df, pandas_df) df_equals(pd.DataFrame(modin_df), pandas.DataFrame(pandas_df)) df_equals( pd.DataFrame(modin_df, columns=["max_speed", "health"]), pandas.DataFrame(pandas_df, columns=["max_speed", "health"]), ) df_equals( pd.DataFrame(modin_df, index=[1, 2]), pandas.DataFrame(pandas_df, index=[1, 2]), ) df_equals( pd.DataFrame(modin_df, index=[1, 2], columns=["health"]), pandas.DataFrame(pandas_df, index=[1, 2], columns=["health"]), ) df_equals( pd.DataFrame(modin_df.iloc[:, 0], index=[1, 2, 3]), pandas.DataFrame(pandas_df.iloc[:, 0], index=[1, 2, 3]), ) df_equals( pd.DataFrame(modin_df.iloc[:, 0], columns=["NO_EXIST"]),
pandas.DataFrame(pandas_df.iloc[:, 0], columns=["NO_EXIST"])
pandas.DataFrame
import os import subprocess import pandas as pd import time import numpy as np from typing import List, Union, Tuple import re import itertools from shutil import copyfile import csv from remote_que.logger import logger from remote_que.config import QUE_FILE_HEADER, QUE_FILE_HEADER_TYPE from remote_que.config import DEFAULT_EDITOR, QUE_FILE_HELP from remote_que.config import get_que_file from remote_que.config import get_started_file, get_running_file, get_crash_file, get_lock_file from remote_que.config import get_finished_file, get_crash_start_file from remote_que.config import DEFAULT_RESOURCE from remote_que.utils import check_if_process_is_running from remote_que.resource_management import ResourceAvailability from remote_que.run_process import SingleMachineSlot STATE_QUE = 0 STATE_CRASHED_START = 1 STATE_CRASHED = 1 STATE_STARTED = 1 STATE_RUNNING = 1 STATE_FINISHED = 1 def write_que_data(results_folder: str, que_data: pd.DataFrame) -> bool: que_file = get_que_file(results_folder) lock_file = get_lock_file(results_folder) # Must have lock to write if not os.path.isfile(lock_file): return False os.remove(lock_file) que_data.to_csv(que_file, index=False) # Generate new lock file with open(lock_file, "w") as f: f.write(str(time.time())) return True def edit_que_data(results_folder: str): # First remove lock file if it exists (to block QueManager from reading new procs) que_file = get_que_file(results_folder) lock_file = get_lock_file(results_folder) if os.path.isfile(lock_file): os.remove(lock_file) else: return 1234 # -- Can open que file for edit now. # If que does not exist, write header file if not os.path.isfile(que_file): with open(que_file, "w") as f: f.write(QUE_FILE_HEADER) original_que = read_remote_que(results_folder) # Open default editor return_code = subprocess.call(f"{DEFAULT_EDITOR} {que_file}", shell=True) if return_code == 0: # Try read row by row and validate, log not working rows and remove try: que_data = read_remote_que(results_folder) except Exception: return_code = 666 if return_code != 0: logger.warning(f"[ERROR] An exception occurred when writing or reading QUE FILE " f"(@ {que_file}). - Current edited file was writen (@ {que_file}_failed)\n" f"--- REVERTING TO PREVIOUS QUE FILE ---\n" f"[ERROR] Fix que file! (error code: {return_code})") logger.info(QUE_FILE_HELP) # Write current failed file to failed & rewrite old file copyfile(que_file, que_file + "_failed") # Write back old csv file original_que.to_csv(que_file, index=False) else: # Validate que data. It was just written # TODO validate data # Run match special pattern and interpret multiply = [] for que_idx, data in que_data.iterrows(): cmd = data["shell_command"] repl_data = [] splits = [] split = cmd while True: match = re.search(r"\[{([^}]*)}\]", split) if match is None: break interp = eval(match[1]) if not isinstance(interp, list): interp = [interp] repl_data.append(interp) span = match.span() splits.append(split[:span[0]]) split = split[span[1]:] if len(repl_data) <= 0: continue cmds = [] for combination in itertools.product(*repl_data): new_cmd = "" for i, sp in enumerate(combination): new_cmd += splits[i] + str(sp) if len(combination) < len(splits): new_cmd += splits[-1] cmds.append(new_cmd) multiply.append((que_idx, cmds)) # Append new commands for que_idx, cmds in multiply: for new_cmd in cmds: new_idx = len(que_data) que_data.loc[new_idx] = que_data.loc[que_idx] que_data.loc[new_idx, "shell_command"] = new_cmd # Remove multiplied indexes for que_idx, _ in multiply: que_data = que_data.drop(que_idx) for que_idx, data in que_data.iterrows(): # Allocate new id to newly added command if data["command_id"] == 0: que_data.loc[que_idx, "command_id"] = int(time.time() * 1000) time.sleep(0.1) # Write preprocessed new data que_data.to_csv(que_file, index=False) logger.info(f"[DONE] New que saved! Here is the que sorted by priority:\n" f"{que_data.sort_values('que_priority')}\n\n") # Generate new lock file with open(lock_file, "w") as f: f.write(str(time.time())) return return_code == 0 def read_remote_que(results_folder: str) -> pd.DataFrame: que_file = get_que_file(results_folder) return_code = 0 if not os.path.isfile(que_file): return_code = 9 else: header_columns = set(QUE_FILE_HEADER.split(",")) # read and validate line by line csv que no_columns = len(header_columns) try: # Read text lines with open(que_file, "r") as f: que_lines = f.readlines() correct_lines = [] correct_lines_data = [] blacklisted_lines = [] columns = None for line in que_lines: csv_interpret = list(csv.reader([line]))[0] if columns is None: if len(csv_interpret) == no_columns: columns = csv_interpret else: # File is corrupt from header -> must delete all blacklisted_lines = que_file break continue # Validate types valid = True line_data = [] for i, (k, v) in enumerate(QUE_FILE_HEADER_TYPE.items()): if v != str: r = None try: r = eval(csv_interpret[i]) except Exception as e: pass if not isinstance(r, v): valid = False break line_data.append(r) else: line_data.append(csv_interpret[i]) if valid: correct_lines.append(line) correct_lines_data.append(line_data) else: blacklisted_lines.append(line) # Write blacklisted lines to crash_starts if len(blacklisted_lines) > 0: write_lines = "\n".join(blacklisted_lines) + "\n" logger.warning(f"Cannot read lines: \n{write_lines}") with open(get_crash_start_file(results_folder), "a") as f: f.writelines(blacklisted_lines) que_data =
pd.DataFrame(correct_lines_data, columns=columns)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) with pytest.raises(TypeError, match=msg): td2[0] - dt2 result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "cannot (add|subtract)" with pytest.raises(TypeError, match=msg): td1 - dt1 with pytest.raises(TypeError, match=msg): td2 - dt2 class TestDatetimeIndexArithmetic: # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_addsub_int(self, tz_naive_fixture, one): # Variants of `one` for #19012 tz = tz_naive_fixture rng = date_range("2000-01-01 09:00", freq="H", periods=10, tz=tz) msg = "Addition/subtraction of integers" with pytest.raises(TypeError, match=msg): rng + one with pytest.raises(TypeError, match=msg): rng += one with pytest.raises(TypeError, match=msg): rng - one with pytest.raises(TypeError, match=msg): rng -= one # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("freq", ["H", "D"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("freq", ["W", "M", "MS", "Q"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_non_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_no_freq(self, int_holder): # GH#19959 dti = DatetimeIndex(["2016-01-01", "NaT", "2017-04-05 06:07:08"]) other = int_holder([9, 4, -1]) msg = "|".join( ["cannot subtract DatetimeArray from", "Addition/subtraction of integers"] ) assert_invalid_addsub_type(dti, other, msg) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = "cannot subtract .*TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi.values - dti def test_dti_isub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # isub with TimedeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) # DTA.__isub__ GH#43904 dta = dti._data.copy() dta -= tdi tm.assert_datetime_array_equal(dta, expected._data) out = dti._data.copy() np.subtract(out, tdi, out=out) tm.assert_datetime_array_equal(out, expected._data) msg = "cannot subtract .* from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract DatetimeArray from ndarray" with pytest.raises(TypeError, match=msg): tdi.values -= dti msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi._values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. @pytest.mark.parametrize( "addend", [ datetime(2011, 1, 1), DatetimeIndex(["2011-01-01", "2011-01-02"]), DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize("US/Eastern"), np.datetime64("2011-01-01"), Timestamp("2011-01-01"), ], ids=lambda x: type(x).__name__, ) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_add_datetimelike_and_dtarr(self, box_with_array, addend, tz): # GH#9631 dti = DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize(tz) dtarr = tm.box_expected(dti, box_with_array) msg = "cannot add DatetimeArray and" assert_cannot_add(dtarr, addend, msg) # ------------------------------------------------------------- def test_dta_add_sub_index(self, tz_naive_fixture): # Check that DatetimeArray defers to Index classes dti = date_range("20130101", periods=3, tz=tz_naive_fixture) dta = dti.array result = dta - dti expected = dti - dti tm.assert_index_equal(result, expected) tdi = result result = dta + tdi expected = dti + tdi tm.assert_index_equal(result, expected) result = dta - tdi expected = dti - tdi tm.assert_index_equal(result, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range("20130101", periods=3) dti_tz = date_range("20130101", periods=3).tz_localize("US/Eastern") dti_tz2 = date_range("20130101", periods=3).tz_localize("UTC") expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) msg = "DatetimeArray subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dti_tz - dti with pytest.raises(TypeError, match=msg): dti - dti_tz with pytest.raises(TypeError, match=msg): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range("20130101", periods=3) dti2 = date_range("20130101", periods=4) msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(["2012-01-01", np.nan, "2012-01-03"]) dti2 = DatetimeIndex(["2012-01-02", "2012-01-03", np.nan]) expected = TimedeltaIndex(["1 days", np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) # ------------------------------------------------------------------- # TODO: Most of this block is moved from series or frame tests, needs # cleanup, box-parametrization, and de-duplication @pytest.mark.parametrize("op", [operator.add, operator.sub]) def test_timedelta64_equal_timedelta_supported_ops(self, op, box_with_array): ser = Series( [ Timestamp("20130301"), Timestamp("20130228 23:00:00"), Timestamp("20130228 22:00:00"), Timestamp("20130228 21:00:00"), ] ) obj = box_with_array(ser) intervals = ["D", "h", "m", "s", "us"] def timedelta64(*args): # see casting notes in NumPy gh-12927 return np.sum(list(starmap(np.timedelta64, zip(args, intervals)))) for d, h, m, s, us in product(*([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(obj, nptd) rhs = op(obj, pytd) tm.assert_equal(lhs, rhs) def test_ops_nat_mixed_datetime64_timedelta64(self): # GH#11349 timedelta_series = Series([NaT, Timedelta("1s")]) datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]") nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]") # subtraction tm.assert_series_equal( datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta ) tm.assert_series_equal( datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp ) tm.assert_series_equal( -single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp ) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta, ) tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( -single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) msg = "cannot subtract a datelike" with pytest.raises(TypeError, match=msg): timedelta_series - single_nat_dtype_datetime # addition tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp, ) def test_ufunc_coercions(self): idx = date_range("2011-01-01", periods=3, freq="2D", name="x") delta = np.timedelta64(1, "D") exp = date_range("2011-01-02", periods=3, freq="2D", name="x") for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" exp = date_range("2010-12-31", periods=3, freq="2D", name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" # When adding/subtracting an ndarray (which has no .freq), the result # does not infer freq idx = idx._with_freq(None) delta = np.array( [np.timedelta64(1, "D"), np.timedelta64(2, "D"), np.timedelta64(3, "D")] ) exp = DatetimeIndex(["2011-01-02", "2011-01-05", "2011-01-08"], name="x") for result in [idx + delta, np.add(idx, delta)]: tm.assert_index_equal(result, exp) assert result.freq == exp.freq exp =
DatetimeIndex(["2010-12-31", "2011-01-01", "2011-01-02"], name="x")
pandas.DatetimeIndex
import builtins from io import StringIO import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna import pandas._testing as tm import pandas.core.nanops as nanops from pandas.util import _test_decorators as td @pytest.fixture( params=[np.int32, np.int64, np.float32, np.float64], ids=["np.int32", "np.int64", "np.float32", "np.float64"], ) def numpy_dtypes_for_minmax(request): """ Fixture of numpy dtypes with min and max values used for testing cummin and cummax """ dtype = request.param min_val = ( np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min ) max_val = ( np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max ) return (dtype, min_val, max_val) @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]}) result = aa.groupby("nn").max() assert "ss" in result result = aa.groupby("nn").max(numeric_only=False) assert "ss" in result result = aa.groupby("nn").min() assert "ss" in result result = aa.groupby("nn").min(numeric_only=False) assert "ss" in result def test_min_date_with_nans(): # GH26321 dates = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d" ).dt.date df = pd.DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates}) result = df.groupby("b", as_index=False)["c"].min()["c"] expected = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d" ).dt.date tm.assert_series_equal(result, expected) result = df.groupby("b")["c"].min() expected.index.name = "b" tm.assert_series_equal(result, expected) def test_intercept_builtin_sum(): s = Series([1.0, 2.0, np.nan, 3.0]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))" assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal( result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname)), ) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False)
tm.assert_frame_equal(result, expected, check_dtype=False)
pandas._testing.assert_frame_equal
""" Utility functions for working with DataFrames """ import pandas as pd import numpy as np TEST_DF = pd.DataFrame([1,2,3]) def date_splitter(df): df[:5] df['year'] = df['date'].dt.year df['month'] = df['date'].dt.month df['day'] = df['date'].dt.day df['hour'] = df['date'].dt.hour df['minute'] = df['date'].dt.minute df_new=
pd.DataFrame(df)
pandas.DataFrame
from pydrive.auth import GoogleAuth import io from pydrive.drive import GoogleDrive import datetime from datetime import timedelta import email, smtplib, ssl from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import pandas as pd import pytz gauth = GoogleAuth() # get previous auth credentials if available. This prevents the need to re-auth the script with Google. # If there is no credentials.txt, then a webserver and browser launches to perform the Auth with Google. gauth.LoadCredentialsFile("credentials.txt") if gauth.credentials is None: gauth.LocalWebserverAuth() elif gauth.access_token_expired: gauth.Refresh() else: gauth.Authorize() gauth.SaveCredentialsFile("credentials.txt") drive = GoogleDrive(gauth) # get the file lists and information from the follwoing folders. folder1 = drive.ListFile({'q': "'--folderid--' in parents and trashed=false"}).GetList() folder2 = drive.ListFile({'q': "'--folderid--' in parents and trashed=false"}).GetList() folder3 = drive.ListFile({'q': "'--folderid--' in parents and trashed=false"}).GetList() # Create dataframes from the dicts created by reading the folder contents df1 = pd.DataFrame.from_dict(folder1) df2 = pd.DataFrame.from_dict(folder2) df3 = pd.DataFrame.from_dict(folder3) new = pd.concat([df1,df2,df3], axis = 0, sort = False) new.reset_index() new['modifiedDate']=
pd.to_datetime(new['modifiedDate'])
pandas.to_datetime
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import integrate import pandas as pd import pdb class Evaluator: def __init__(self, gold_standard_file = None, sep='\t', interaction_label='regulator-target', node_list=None, subnet_dict=None): if (gold_standard_file is None) and (subnet_dict is not None): self.gs_flat = pd.Series(subnet_dict['true_edges']) self.full_list = pd.Series(subnet_dict['edges']) elif gold_standard_file is not None: self.gs_file = gold_standard_file self.gs_data = pd.read_csv(gold_standard_file, sep=sep, header=None) self.gs_data.columns = ['regulator','target','exists'] self.gs_data['regulator-target'] = list(zip(self.gs_data.regulator, self.gs_data.target)) self.interaction_label = interaction_label self.gs_flat = self.gs_data[self.gs_data['exists'] > 0]['regulator-target'] self.gs_neg = self.gs_data[self.gs_data['exists'] == 0]['regulator-target'] #ecoli has a unique gold standard file if 'ecoli' in self.gs_file: self.regulators = ["G"+str(x) for x in range(1,335)] self.targets = ["G"+str(x) for x in range(1,4512)] self.full_list = tuple(map(tuple,self.possible_edges(np.array(self.regulators),np.array(self.targets)))) elif 'omranian' in self.gs_file: with open('../../data/invitro/omranian_parsed_tf_list.tsv', 'r') as f: self.regulators = f.read().splitlines() with open('../../data/invitro/omranian_all_genes_list.tsv', 'r') as f: self.targets = f.read().splitlines() self.full_list = tuple(map(tuple, self.possible_edges(np.array(self.regulators), np.array(self.targets)))) elif 'dream5' in self.gs_file: with open('../../data/dream5/insilico_transcription_factors.tsv', 'r') as f: self.regulators = f.read().splitlines() fp = '../../data/dream5/insilico_timeseries.tsv' df = pd.read_csv(fp, sep='\t') geneids = df.columns.tolist() geneids.pop(0) self.targets = geneids self.full_list = tuple(map(tuple, self.possible_edges(np.array(self.regulators), np.array(self.targets)))) elif node_list: all_regulators = np.array(list(set(node_list))) self.full_list = tuple(map(tuple,self.possible_edges(all_regulators,all_regulators))) else: #more robust version of defining the full list all_regulators = self.gs_data['regulator'].unique().tolist() all_targets = self.gs_data['target'].unique().tolist() all_regulators.extend(all_targets) all_regulators = np.array(list(set(all_regulators))) self.full_list = tuple(map(tuple,self.possible_edges(all_regulators, all_regulators))) #remove self edges self.full_list = [ x for x in self.full_list if x[0] != x[1] ] self.full_list = pd.Series(self.full_list) def possible_edges(self,parents, children): """ Create a list of all the possible edges between parents and children :param parents: array labels for parents :param children: array labels for children :return: array, length = parents * children array of parent, child combinations for all possible edges """ parent_index = range(len(parents)) child_index = range(len(children)) a, b = np.meshgrid(parent_index, child_index) parent_list = parents[a.flatten()] child_list = children[b.flatten()] possible_edge_list = np.array(list(zip(parent_list, child_list))) return possible_edge_list def create_link_list(self,df, w): parent_names = df.index.values child_names = df.columns.values edges = self.possible_edges(parent_names, child_names) parents = edges[:, 0] children = edges[:, 1] directed_edges = df.values.flatten() all_edges = np.abs(directed_edges) ll_array = [parents, children, list(zip(parents, children)), directed_edges, all_edges, w] link_list =
pd.DataFrame(ll_array)
pandas.DataFrame
import os import pandas as pd def bea_use(data_dir): from .parse import bea_use data_dir = os.path.join(data_dir, "windc_2_0_1", "BEA", "IO") df = [] for i in dir(bea_use): if callable(getattr(bea_use, i)): df.append(getattr(bea_use, i)(data_dir)) df =
pd.concat(df, ignore_index=True)
pandas.concat
from re import split import joblib import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report from sklearn.tree import DecisionTreeClassifier from sb_capstone.shaping import ( _simplify_gender, _transform_age_group, _transform_generation, _explode_membership_date, _extract_age_bins, _transform_gender ) select_model = joblib.load("../models/select_offer.pkl") receive_model = joblib.load("../models/receive_offer.pkl") def train_receive_offer(data, file): """Trains data to create model to determine if a customer will receive an offer. Args: data (pandas.DataFrame): Data to train model on. file (str): File to save model to. Returns: str: File where the model is saved. dict: Classification report. """ y = data.purchased X = data.drop(columns=["purchased"]) X_train, X_test, y_train, y_test = train_test_split(X, y) clf = DecisionTreeClassifier(criterion="gini", splitter="random") clf.fit(X_train, y_train) y_pred = clf.predict(X_test) score = classification_report(y_test, y_pred, zero_division=True, output_dict=True) joblib.dump(clf, file) return file, score def train_select_offer(data, file): """Trains data to create model to determine which offers to show to a customer. Args: data (pandas.DataFrame): Data to train model on. file (str): File to save model to. Returns: str: File where the model is saved. dict: Classification report. """ y_cols = np.arange(1, 11).astype(str).tolist() y = data[y_cols] X = data[data.columns[~data.columns.isin(y_cols)]] X_train, X_test, y_train, y_test = train_test_split(X, y) clf = MultiOutputClassifier( DecisionTreeClassifier(criterion="gini", splitter="random"), ) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) score = classification_report(y_test, y_pred, zero_division=True, output_dict=True) joblib.dump(clf, file) return file, score def _convert_for_select(profile): """Convert profile to be fed into the select model. Args: profile (pandas.DataFrame): Profile to convert. Returns: pandas.DataFrame: Converted profile. """ without_profile = profile[profile.age.isna()].reset_index(drop=True) profile = profile[~profile.age.isna()].reset_index(drop=True) profile = _simplify_gender( _explode_membership_date(profile)) return profile, without_profile def select_offer(profile, model = select_model, default_offers = []): """Predict which offers to show to a customer. Args: profile (pandas.DataFrame): Profile to predict offers for. model (sklearn.model_selection.Model): Model to use to predict offers. default_offers (list): Default offers to show to a customer who are anonymous. Returns: pandas.DataFrame: Profile with offers. """ profile, without_profile = _convert_for_select(profile) offer_cols = np.arange(1, 11).astype(str).tolist() profile[offer_cols] = np.zeros(10, dtype=int).tolist() if len(profile) > 0: cols = [ "gender", "age", "income", "membership_year", "membership_month", "membership_day" ] y = pd.DataFrame(model.predict(profile[cols]), columns=offer_cols) profile[offer_cols] = y profile = profile[["id"] + offer_cols] profile = pd.melt(profile, id_vars="id", value_vars=np.arange(1, 11).astype(str).tolist(), var_name="recommended_offers") profile = profile[profile.value == 1] profile = profile.groupby("id").agg({"recommended_offers": lambda x: x.tolist()}).reset_index() without_profile["recommended_offers"] = [default_offers] * without_profile.shape[0] without_profile = without_profile[["id", "recommended_offers"]] results =
pd.concat([profile, without_profile])
pandas.concat
from single_bet_type_analyzer import SingleBetTypeAnalyzer from dask.distributed import Client, LocalCluster import pandas as pd class EnsembleBetAnalyzer: def __init__(self, cluster=None, live=True, offline=True, headless=True): if cluster is None: self.cluster = LocalCluster(processes=False) else: self.cluster = cluster self.client = Client(self.cluster) # futures = [ # self.client.submit(SingleBetTypeAnalyzer, 'calcio', '1x2', self.cluster), # self.client.submit(SingleBetTypeAnalyzer, 'calcio', 'uo1.5', self.cluster), # self.client.submit(SingleBetTypeAnalyzer, 'calcio', 'uo2.5', self.cluster), # self.client.submit(SingleBetTypeAnalyzer, 'calcio', 'uo3.5', self.cluster), # self.client.submit(SingleBetTypeAnalyzer, 'calcio', 'uo4.5', self.cluster), # self.client.submit(SingleBetTypeAnalyzer, 'basket', '12', self.cluster), # self.client.submit(SingleBetTypeAnalyzer, 'tennis', '12', self.cluster), # ] # self.analyzers = [f.result() for f in futures] self.analyzers = [ SingleBetTypeAnalyzer('calcio', '1x2', self.cluster, live=live, offline=offline, headless=headless), # SingleBetTypeAnalyzer('calcio', 'uo1.5', self.cluster, live=live, offline=offline, headless=headless), SingleBetTypeAnalyzer('calcio', 'uo2.5', self.cluster, live=live, offline=offline, headless=headless), # SingleBetTypeAnalyzer('calcio', 'uo3.5', self.cluster, live=live, offline=offline, headless=headless), # SingleBetTypeAnalyzer('calcio', 'uo4.5', self.cluster, live=live, offline=offline, headless=headless), # SingleBetTypeAnalyzer('basket', '12', self.cluster, live=live, offline=offline, headless=headless), SingleBetTypeAnalyzer('tennis', '12', self.cluster, live=live, offline=offline, headless=headless), ] def close(self): [analyzer.close() for analyzer in self.analyzers] self.client.close() self.cluster.close() def analyze_bets(self): results = [analyzer.analyze_bets() for analyzer in self.analyzers] df =
pd.concat(results)
pandas.concat
#!/usr/bin/env python import copy import gzip import logging import multiprocessing import os import random import time import traceback from collections import defaultdict import numpy as np import pandas as pd import pysam from Bio import SeqIO from numba import jit from tqdm import tqdm import inStrain.logUtils import inStrain.profile.fasta import inStrain.controller global i2o global v2o i2o = {'nm':0, 'insert_distance':1, 'mapq':2, 'length':3, 'reads':4, 'start':5, 'stop':6} v2o = {'min_read_ani':0, 'max_insert':1, 'min_insert':2, 'min_mapq':3} class Controller(): def main_from_profile(self, ISP, bam, **kwargs): ''' The main method when called from the "profile" module Args: ISP = pre-initialized inStrain profile bam = location of .bam file args = the rest of the command line arguments Returns: Ridc = dictionary of read -> mismatches RR = pandas dataframe describing filtering ''' detailed_report = kwargs.get('detailed_mapping_info', False) # Set up and parse .fasta file inStrain.logUtils.log_checkpoint("FilterReads", "load_fasta", "start") fasta_db, scaff2sequence, s2l = inStrain.profile.fasta.load_fasta(**kwargs) scaffolds = list(fasta_db['scaffold'].unique()) inStrain.logUtils.log_checkpoint("FilterReads", "load_fasta", "end") inStrain.controller.patch_mp_connection_bpo_17560() # Filter the reads and store read reports if detailed_report: Rdic, RR, dRR = load_paired_reads(bam, scaffolds, **kwargs) # Store and delete the detailed report ISP.store('detailed_mapping_info', dRR, 'pandas', "Details report on reads") del dRR else: Rdic, RR = load_paired_reads(bam, scaffolds, **kwargs) # Return the Rdic and ReadReport return Rdic, RR, fasta_db, scaff2sequence, s2l def main(self, args): ''' The main method when called explicitly (as its own module) ''' bam = args.bam vargs = vars(args) del vargs['bam'] detailed_report = vargs.get('detailed_mapping_info', False) generate_sam = vargs.get('generate_sam', False) out_folder = vargs.get('output', False) # Set up the output folder if not os.path.isdir(out_folder): os.mkdir(out_folder) # Set up .fasta file FAdb, s2s = load_fasta(args.fasta) # Get the paired reads scaffolds = list(FAdb['scaffold'].unique()) if detailed_report: Rdic, RR, dRR = load_paired_reads(bam, scaffolds, **vargs) else: Rdic, RR = load_paired_reads(bam, scaffolds, **vargs) dRR = None # Make a .sam if generate_sam: print("The ability to make .sam files is not finished yet; sorry!") # Save results self.write_results(out_folder, RR, dRR, **vargs) def write_results(self, out_folder, RR, dRR, **kwargs): ''' Save the results in a folder for the filter_reads module ''' assert os.path.isdir(out_folder) RR_loc = os.path.join(out_folder, 'mapping_info.csv') write_mapping_info(RR, RR_loc, **kwargs) if dRR is not None: RR_loc = os.path.join(out_folder, 'detailed_mapping_info.csv') dRR.to_csv(RR_loc, index=False, sep='\t') def read_profile_worker(read_cmd_queue, read_result_queue, bam, single_thread=False): ''' Worker to filter reads ''' # Apply patch inStrain.controller.patch_mp_connection_bpo_17560() # Initilize the .bam file bam_init = samfile = pysam.AlignmentFile(bam) while True: if not single_thread: cmds = read_cmd_queue.get(True) else: try: cmds = read_cmd_queue.get(timeout=5) except: return dicts, log = scaffold_profile_wrapper(cmds, bam_init) read_result_queue.put((dicts, log)) # Clean up memory for d in dicts: del d del log del dicts def load_paired_reads(bam, scaffolds, **kwargs): ''' Load paired reads to be profiled You have this method do a lot of things because all of these things take lots of RAM, and you want them all to be cleared as soon as possible Return a dictionary of results. Some things that could be in it are: pair2infoF: A filtered dictionary of read name to number of mismatches RR: A summary read reaport RR_detailed: A detailed read report ''' # Parse the kwargs detailed_report = kwargs.get('detailed_mapping_info', False) priority_reads_loc = kwargs.get('priority_reads', None) # Establish tallys to keep track of numbers tallys = {} # Get the pairs inStrain.logUtils.log_checkpoint("FilterReads", "get_paired_reads_multi", "start") scaff2pair2info = get_paired_reads_multi(bam, scaffolds, **kwargs) inStrain.logUtils.log_checkpoint("FilterReads", "get_paired_reads_multi", "end") if detailed_report: dRR = make_detailed_mapping_info(scaff2pair2info) # Handle paired-read filtering inStrain.logUtils.log_checkpoint("FilterReads", "paired_reads", "start") priority_reads = load_priority_reads(priority_reads_loc) scaff2pair2info = paired_read_filter(scaff2pair2info, priority_reads_set=priority_reads, tallys=tallys, **kwargs) inStrain.logUtils.log_checkpoint("FilterReads", "paired_reads", "end") # Filter and make the report inStrain.logUtils.log_checkpoint("FilterReads", "filter_reads", "start") scaff2pair2infoF, RR = filter_scaff2pair2info(scaff2pair2info, tallys, priority_reads_set=priority_reads, **kwargs) inStrain.logUtils.log_checkpoint("FilterReads", "filter_reads", "end") if detailed_report: return scaff2pair2infoF, RR, dRR else: return scaff2pair2infoF, RR def filter_scaff2pair2info(scaff2pair2info, tallys={}, priority_reads_set=set(), **kwargs): ''' Filter scaff2pair2info and generate a read report ''' # Set up priority reads assert type(kwargs.get('priority_reads', 'none')) != type(set()) priority_reads = priority_reads_set assert type(priority_reads) == type(set()), type(priority_reads) #item2order, to make it easier to read i2o = {'nm':0, 'insert_distance':1, 'mapq':2, 'length':3, 'reads':4, 'start':5, 'stop':6} # Calculate max insert max_insert_relative = kwargs.get('max_insert_relative', 3) median_insert = np.median([value[i2o['insert_distance']] for scaff, pair2info \ in scaff2pair2info.items() for pair, value in pair2info.items()\ if value[i2o['reads']] == 2]) max_insert = median_insert * max_insert_relative # Get filter values values = {} values['min_mapq'] = kwargs.get('min_mapq', 2) values['max_insert'] = max_insert values['min_insert'] = kwargs.get('min_insert', 50) values['min_read_ani'] = kwargs.get('min_read_ani', 0.97) values['pairing_filter'] = kwargs.get('pairing_filter', 'paired_only') # Set up the filtered dictionary scaff2pair2mm = {} # Make tallys for individual scaffolds table = defaultdict(list) for scaff, pair2info in scaff2pair2info.items(): # Do the tallys if scaff not in tallys: tallys[scaff] = defaultdict(int) # Initialize some columns for c in ["pass_pairing_filter", "pass_min_read_ani", "pass_max_insert", "pass_min_insert", "pass_min_mapq", "filtered_pairs", "filtered_singletons", "filtered_priority_reads"]: tallys[scaff][c] = 0 scaff2pair2mm[scaff] = {} for pair, info in pair2info.items(): update_tallys(tallys, pair, info, values, scaff, scaff2pair2mm, priority_reads) # Make into a table table['scaffold'].append(scaff) for key, value in tallys[scaff].items(): table[key].append(value) if len(pair2info.keys()) > 0: # Do the means for i, att in enumerate(['mistmaches', 'insert_distance', 'mapq_score', 'pair_length']): table['mean_' + att].append(np.mean([info[i] for pair, info in pair2info.items()])) table['mean_PID'].append(np.mean([(1 - (float(info[i2o['nm']]) / float(info[i2o['length']]))) for pair, info in pair2info.items()])) # Do a the medians table['median_insert'].append(np.median([info[i2o['insert_distance']] for pair, info in pair2info.items()])) else: for att in ['mistmaches', 'insert_distance', 'mapq_score', 'pair_length']: table['mean_' + att].append(np.nan) table['mean_PID'].append(np.nan) table['median_insert'].append(np.nan) try: Adb = pd.DataFrame(table) except: for k, v in table.items(): print(k, len(v)) assert False # Make tallys for all scaffolds table = defaultdict(list) table['scaffold'].append('all_scaffolds') CAdb = Adb[Adb['pass_pairing_filter'] > 0] total_reads = CAdb['pass_pairing_filter'].sum() for c in list(Adb.columns): if c == 'scaffold': pass elif c.startswith('mean_'): table[c].append(sum([v * m for v, m in zip(CAdb[c], CAdb['pass_pairing_filter'])])/total_reads) elif c.startswith('median_'): table[c].append(sum([v * m for v, m in zip(CAdb[c], CAdb['pass_pairing_filter'])])/total_reads) else: table[c].append(int(CAdb[c].sum())) adb = pd.DataFrame(table) # Concat Rdb = pd.concat([adb, Adb]).reset_index(drop=True) return scaff2pair2mm, Rdb # def update_tallys(tallys, pair, info, values, scaffold, scaff2pair2mm, priority_reads): # ''' # The meat of filter_scaff2pair2info # ''' # # Evaluate this pair # tallys[scaffold]['pass_pairing_filter'] += 1 # f_results = evaluate_pair(info, values) # # # Tally the results for what filteres passed # for name, index in v2o.items(): # tallys[scaffold]['pass_' + name] += f_results[index] # # # Tally the results for if the whole pair passed # if f_results.sum() == 4: # tallys[scaffold]['filtered_pairs'] += 1 # scaff2pair2mm[scaffold][pair] = info[0] # # if info[i2o['reads']] == 1: # tallys[scaffold]['filtered_singletons'] += 1 # # if pair in priority_reads: # tallys[scaffold]['filtered_priority_reads'] += 1 # # # i2o = {'nm':0, 'insert_distance':1, 'mapq':2, 'length':3, 'reads':4, 'start':5, 'stop':6} # v2o = {'min_read_ani':0, 'max_insert':1, 'min_insert':2, 'min_mapq':3} # def evaluate_pair(info, values): # ''' # Return a list of the filters that this pair passes and fails # Argumnets: # info: np array listing info about this pair in the i2o order # values: dictionary listing the filters to use when evaluting this pair # Returns: # f_resilts: np array listing which filters pass (1) and fail (0) in v2o order # ''' # # Initialize results for this pair # f_results = np.zeros(4) # # # Handle PID # PID = 1 - (float(info[i2o['nm']]) / float(info[i2o['length']])) # if PID > values['min_read_ani']: # f_results[v2o['min_read_ani']] = 1 # # # Handle mapQ # if info[i2o['mapq']] > values['min_mapq']: # f_results[v2o['min_mapq']] = 1 # # # If this is a pair check insert distance: # if ((info[i2o['reads']] == 2) & (info[i2o['insert_distance']] != -1)): # if info[i2o['insert_distance']] > values['min_insert']: # f_results[v2o['min_insert']] = 1 # if info[i2o['insert_distance']] < values['max_insert']: # f_results[v2o['max_insert']] = 1 # # # Otherwise give those a pass # else: # f_results[v2o['min_insert']] = 1 # f_results[v2o['max_insert']] = 1 # # return f_results def update_tallys(tallys, pair, info, values, scaffold, scaff2pair2mm, priority_reads): ''' The meat of filter_scaff2pair2info ''' # Evaluate this pair tallys[scaffold]['pass_pairing_filter'] += 1 f_results = evaluate_pair(info, np.zeros(4), values['min_read_ani'], values['min_mapq'], values['min_insert'], values['max_insert']) # Tally the results for what filteres passed for name, index in v2o.items(): tallys[scaffold]['pass_' + name] += f_results[index] # Tally the results for if the whole pair passed if f_results.sum() == 4: tallys[scaffold]['filtered_pairs'] += 1 scaff2pair2mm[scaffold][pair] = info[0] if info[i2o['reads']] == 1: tallys[scaffold]['filtered_singletons'] += 1 if pair in priority_reads: tallys[scaffold]['filtered_priority_reads'] += 1 @jit(nopython=True) def evaluate_pair(info, f_results, min_read_ani, min_mapq, min_insert, max_insert): ''' Return a list of the filters that this pair passes and fails Argumnets: info: np array listing info about this pair in the i2o order values: dictionary listing the filters to use when evaluting this pair Returns: f_resilts: np array listing which filters pass (1) and fail (0) in v2o order i2o = {'nm':0, 'insert_distance':1, 'mapq':2, 'length':3, 'reads':4, 'start':5, 'stop':6} v2o = {'min_read_ani':0, 'max_insert':1, 'min_insert':2, 'min_mapq':3} ''' # Initialize results for this pair #f_results = np.zeros(4) # Handle PID PID = 1 - (float(info[0]) / float(info[3])) if PID > min_read_ani: f_results[0] = 1 # Handle mapQ if info[2] > min_mapq: f_results[3] = 1 # If this is a pair check insert distance: if ((info[4] == 2) & (info[1] != -1)): if info[1] > min_insert: f_results[2] = 1 if info[1] < max_insert: f_results[1] = 1 # Otherwise give those a pass else: f_results[1] = 1 f_results[2] = 1 return f_results def load_priority_reads(file_loc): ''' Loads a file of reads and returns a set of their names ''' # is it None? if file_loc is None: return set() # Is it zipped? if file_loc[-3:] == '.gz': reader = gzip.open(file_loc, 'rt') else: reader = open(file_loc, 'r') # Figure out the type for line in reader.readlines(): if line[0] == '@': TYPE = 'fastq' else: TYPE = 'list' break reader.close() if file_loc[-3:] == '.gz': reader = gzip.open(file_loc, 'rt') else: reader = open(file_loc, 'r') reads = set() if TYPE == 'fastq': for line in reader.readlines(): if line[0] != '@': continue reads.add(line[1:].strip()) elif TYPE == 'list': for line in reader.readlines(): reads.add(line.strip()) reader.close() return reads def paired_read_filter(scaff2pair2info, priority_reads_set=set(), tallys=None, **kwargs): ''' Filter scaff2pair2info to keep / remove paired / unpaired reads ''' assert type(kwargs.get('priority_reads', 'none')) != type(set()) priority_reads = priority_reads_set pairing_filter = kwargs.get('pairing_filter', 'paired_only') scaff2pair2infoF = {} pair2scaffold = {} assert type(priority_reads) == type(set()), type(priority_reads) for scaff, p2i in scaff2pair2info.items(): # Initilize this scaffold scaff2pair2infoF[scaff] = {} if tallys is not None: tallys[scaff] = defaultdict(int) for v in ['unfiltered_reads', 'unfiltered_pairs', 'unfiltered_singletons', 'unfiltered_priority_reads']: tallys[scaff][v] = 0 for p, i in p2i.items(): # Update tallys; info[4] = number of reads if tallys is not None: tallys[scaff]['unfiltered_reads'] += i[4] if i[4] == 2: tallys[scaff]['unfiltered_pairs'] += 1 if i[4] == 1: tallys[scaff]['unfiltered_singletons'] += 1 if p in priority_reads: tallys[scaff]['unfiltered_priority_reads'] += 1 # Determine if it's going to make it into the final set if pairing_filter == 'paired_only': if ((i[4] == 2) | (p in priority_reads)): scaff2pair2infoF[scaff][p] = i elif pairing_filter == 'non_discordant': # Add it if it's not already in there if ((p not in pair2scaffold) | (p in priority_reads)): scaff2pair2infoF[scaff][p] = i pair2scaffold[p] = scaff # If it is already in there, that means its concordant, so delete it else: del scaff2pair2infoF[pair2scaffold[p]][p] elif pairing_filter == 'all_reads': if p in pair2scaffold: # Average the pairs mi = _merge_info(i, scaff2pair2infoF[pair2scaffold[p]][p]) scaff2pair2infoF[scaff][p] = mi scaff2pair2infoF[pair2scaffold[p]][p] = mi else: pair2scaffold[p] = scaff scaff2pair2infoF[scaff][p] = i else: logging.error("Do not know paired read filter \"{0}\"; crashing now".format(pairing_filter)) raise Exception return scaff2pair2infoF def _merge_info(i1, i2): #{'nm':0, 'insert_distance':1, 'mapq':2, 'length':3, 'reads':4, 'start':5, 'stop':6} return np.array([i1[0] + i2[0], -2, max([i1[2] + i2[2]]), i1[3] + i2[3], i1[4] + i2[4], -1, -1], dtype="int64") def make_detailed_mapping_info(scaff2pair2info, pairTOinfo=None, version=2): ''' Make a detailed pandas dataframe from pair2info ''' if pairTOinfo is None: pairTOinfo = dict() if version == 2: i2o = {'mm':0, 'insert_dist':1, 'mapq':2, 'length':3, 'reads':4, 'start':5, 'stop':6} elif version == 1: i2o = {'mm':0, 'insert_dist':1, 'mapq':2, 'length':3,} keepers = pairTOinfo.keys() report_keepers = (len(keepers) > 0) table = defaultdict(list) for scaff, pair2info in scaff2pair2info.items(): for pair, array in pair2info.items(): table['read_pair'].append(pair) table['scaffold'].append(scaff) if report_keepers: table['pass_filters'].append(pair in keepers) for item, location in i2o.items(): table[item].append(array[location]) return pd.DataFrame(table) def load_fasta(fasta_file): ''' Load the sequences to be profiled Return a table listing scaffold name, start, end ''' # PROFILE ALL SCAFFOLDS IN THE .FASTA FILE scaff2sequence = SeqIO.to_dict(SeqIO.parse(fasta_file, "fasta")) # set up .fasta file s2l = {s:len(scaff2sequence[s]) for s in list(scaff2sequence.keys())} # Get scaffold2length Fdb = pd.DataFrame(list(s2l.items()), columns=['scaffold', 'end']) Fdb['start'] = 0 return Fdb, scaff2sequence # also return s2l - alexcc 5/9/2019: Nah, make it scaff2sequence (s2s) (M.O. 6/10/19) def filter_paired_reads_dict2(pair2info, **kwargs): ''' Filter the dictionary of paired reads, end with read -> mm ''' i2o = {'nm':0, 'insert_distance':1, 'mapq':2, 'length':3, 'reads':4, 'start':5, 'stop':6} # Get kwargs min_read_ani = kwargs.get('min_read_ani', 0.97) max_insert_relative = kwargs.get('max_insert_relative', 3) min_insert = kwargs.get('min_insert', 50) min_mapq = kwargs.get('min_mapq', 2) # Get max insert max_insert = np.median([value[1] for key, value in pair2info.items() if value[i2o['reads']] == 2]) * max_insert_relative # Return dictionary of pairs return {copy.deepcopy(key):copy.deepcopy(value[0]) for key, value in pair2info.items() if _evaluate_pair2(value, min_read_ani=min_read_ani, max_insert=max_insert, min_insert=min_insert, min_mapq=min_mapq)} def makeFilterReport2(scaff2pair2info, pairTOinfo=False, priority_reads_set=None, **kwargs): ''' Make a scaffold-level report on when reads are filtered using get_paired_reads_multi2 If you've already filtered out pairs as you'd like, pass in pairTOinfo ''' if priority_reads_set is None: priority_reads_set = set() assert type(kwargs.get('priority_reads', 'none')) != type(set()) priority_reads = priority_reads_set profile_scaffolds = kwargs.get('scaffold_level_mapping_info', None) #item2order i2o = {'nm':0, 'insert_distance':1, 'mapq':2, 'length':3, 'reads':4, 'start':5, 'stop':6} # Calculate max insert max_insert_relative = kwargs.get('max_insert_relative', 3) median_insert = np.median([value[i2o['insert_distance']] for scaff, pair2info in scaff2pair2info.items() for pair, value in pair2info.items() if value[i2o['reads']] == 2]) max_insert = median_insert * max_insert_relative # Get values values = {} values['min_read_ani'] = kwargs.get('min_read_ani', 0.97) values['max_insert'] = max_insert values['min_insert'] = kwargs.get('min_insert', 50) values['min_mapq'] = kwargs.get('min_mapq', 2) # Make report on all scaffolds logging.debug('running on all reads') table = defaultdict(list) table['scaffold'].append('all_scaffolds') table['unfiltered_reads'].append(sum([value[i2o['reads']] for scaff, pair2info in scaff2pair2info.items() for pair, value in pair2info.items()])) table['unfiltered_pairs'].append(len([True for scaff, pair2info in scaff2pair2info.items() for pair, value in pair2info.items() if value[i2o['reads']] == 2])) table['unfiltered_singletons'].append(len([True for scaff, pair2info in scaff2pair2info.items() for pair, value in pair2info.items() if (value[i2o['reads']] == 1)])) table['unfiltered_priority_reads'].append(len([True for scaff, pair2info in scaff2pair2info.items() for pair, value in pair2info.items() if (pair in priority_reads)])) if pairTOinfo != False: keepers = set(pairTOinfo.keys()) infos = [info for scaff, pair2info in scaff2pair2info.items() for pair, info in pair2info.items() if pair in keepers] table['pass_pairing_filter'].append(len(infos)) else: infos = [info for scaff, pair2info in scaff2pair2info.items() for pair, info in pair2info.items()] for att, v in values.items(): kwargs={att:v} table['pass_' + att].append(len([True for info in infos if (_evaluate_pair2(info, **kwargs))])) table['filtered_pairs'].append(len([True for info in infos if (_evaluate_pair2(info, **values))])) table['filtered_singletons'].append(len([True for info in infos if ((info[i2o['reads']] == 1) & (_evaluate_pair2(info, **values)))])) table['filtered_priority_reads'].append(len([True for scaff, pair2info in scaff2pair2info.items() for pair, info in pair2info.items() if ((pair in priority_reads) & (_evaluate_pair2(info, **values)))])) for i, att in enumerate(['mistmaches', 'insert_distance', 'mapq_score', 'pair_length']): table['mean_' + att].append(np.mean([info[i] for info in infos])) table['median_insert'].append(np.median([info[i2o['insert_distance']] for info in infos])) table['mean_PID'].append(np.mean([(1 - (float(info[i2o['nm']]) / float(info[i2o['length']]))) for info in infos])) Adb = pd.DataFrame(table) table = defaultdict(list) logging.debug('running on individual scaffolds') for scaff, pair2info in scaff2pair2info.items(): table['scaffold'].append(scaff) if pairTOinfo != False: #keepers = set(pairTOinfo.keys()) This is calculated above; dont need twice infos = [info for pair, info in pair2info.items() if pair in keepers] table['pass_pairing_filter'].append(len(infos)) else: infos = [info for pair, info in pair2info.items()] table['filtered_pairs'].append(len([True for info in infos if (_evaluate_pair2(info, **values))])) if profile_scaffolds == True: table['unfiltered_reads'].append(sum([value[i2o['reads']] for pair, value in pair2info.items()])) table['unfiltered_pairs'].append(len([True for pair, value in pair2info.items() if value[i2o['reads']] == 2])) table['unfiltered_singletons'].append(len([True for pair, info in pair2info.items() if (info[i2o['reads']] == 1)])) table['unfiltered_priority_reads'].append(len([True for pair, info in pair2info.items() if (pair in priority_reads)])) for att, v in values.items(): kwargs={att:v} table['pass_' + att].append(len([True for info in infos if (_evaluate_pair2(info, **kwargs))])) table['filtered_singletons'].append(len([True for info in infos if ((info[i2o['reads']] == 1) & (_evaluate_pair2(info, **values)))])) table['filtered_priority_reads'].append(len([True for pair, info in pair2info.items() if ((pair in priority_reads) & (_evaluate_pair2(info, **values)))])) for i, att in enumerate(['mistmaches', 'insert_distance', 'mapq_score', 'pair_length']): table['mean_' + att].append(np.mean([info[i] for pair, info in pair2info.items()])) table['median_insert'].append(np.median([value[1] for key, value in pair2info.items()])) table['mean_PID'].append(np.mean([(1 - (float(info[i2o['nm']]) / float(info[i2o['length']]))) for pair, info in pair2info.items()])) Sdb =
pd.DataFrame(table)
pandas.DataFrame
""" Created on Wed Feb 27 15:12:14 2019 @author: cwhanse """ import numpy as np import pandas as pd from pandas.testing import assert_series_equal from datetime import datetime import pytz import pytest from solarforecastarbiter.validation import validator import pvlib from pvlib.location import Location @pytest.fixture def irradiance_QCRad(): output = pd.DataFrame( columns=['ghi', 'dhi', 'dni', 'solar_zenith', 'dni_extra', 'ghi_limit_flag', 'dhi_limit_flag', 'dni_limit_flag', 'consistent_components', 'diffuse_ratio_limit'], data=np.array([[-100, 100, 100, 30, 1370, 0, 1, 1, 0, 0], [100, -100, 100, 30, 1370, 1, 0, 1, 0, 0], [100, 100, -100, 30, 1370, 1, 1, 0, 0, 1], [1000, 100, 900, 0, 1370, 1, 1, 1, 1, 1], [1000, 200, 800, 15, 1370, 1, 1, 1, 1, 1], [1000, 200, 800, 60, 1370, 0, 1, 1, 0, 1], [1000, 300, 850, 80, 1370, 0, 0, 1, 0, 1], [1000, 500, 800, 90, 1370, 0, 0, 1, 0, 1], [500, 100, 1100, 0, 1370, 1, 1, 1, 0, 1], [1000, 300, 1200, 0, 1370, 1, 1, 1, 0, 1], [500, 600, 100, 60, 1370, 1, 1, 1, 0, 0], [500, 600, 400, 80, 1370, 0, 0, 1, 0, 0], [500, 500, 300, 80, 1370, 0, 0, 1, 1, 1], [0, 0, 0, 93, 1370, 1, 1, 1, 0, 0]])) dtypes = ['float64', 'float64', 'float64', 'float64', 'float64', 'bool', 'bool', 'bool', 'bool', 'bool'] for (col, typ) in zip(output.columns, dtypes): output[col] = output[col].astype(typ) return output def test_check_ghi_limits_QCRad(irradiance_QCRad): expected = irradiance_QCRad ghi_out_expected = expected['ghi_limit_flag'] ghi_out = validator.check_ghi_limits_QCRad(expected['ghi'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(ghi_out, ghi_out_expected) def test_check_dhi_limits_QCRad(irradiance_QCRad): expected = irradiance_QCRad dhi_out_expected = expected['dhi_limit_flag'] dhi_out = validator.check_dhi_limits_QCRad(expected['dhi'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(dhi_out, dhi_out_expected) def test_check_dni_limits_QCRad(irradiance_QCRad): expected = irradiance_QCRad dni_out_expected = expected['dni_limit_flag'] dni_out = validator.check_dni_limits_QCRad(expected['dni'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(dni_out, dni_out_expected) def test_check_irradiance_limits_QCRad(irradiance_QCRad): expected = irradiance_QCRad ghi_out_expected = expected['ghi_limit_flag'] ghi_out, dhi_out, dni_out = validator.check_irradiance_limits_QCRad( expected['solar_zenith'], expected['dni_extra'], ghi=expected['ghi']) assert_series_equal(ghi_out, ghi_out_expected) assert dhi_out is None assert dni_out is None dhi_out_expected = expected['dhi_limit_flag'] ghi_out, dhi_out, dni_out = validator.check_irradiance_limits_QCRad( expected['solar_zenith'], expected['dni_extra'], ghi=expected['ghi'], dhi=expected['dhi']) assert_series_equal(dhi_out, dhi_out_expected) dni_out_expected = expected['dni_limit_flag'] ghi_out, dhi_out, dni_out = validator.check_irradiance_limits_QCRad( expected['solar_zenith'], expected['dni_extra'], dni=expected['dni']) assert_series_equal(dni_out, dni_out_expected) def test_check_irradiance_consistency_QCRad(irradiance_QCRad): expected = irradiance_QCRad cons_comp, diffuse = validator.check_irradiance_consistency_QCRad( expected['ghi'], expected['solar_zenith'], expected['dni_extra'], expected['dhi'], expected['dni']) assert_series_equal(cons_comp, expected['consistent_components']) assert_series_equal(diffuse, expected['diffuse_ratio_limit']) @pytest.fixture def weather(): output = pd.DataFrame(columns=['air_temperature', 'wind_speed', 'relative_humidity', 'extreme_temp_flag', 'extreme_wind_flag', 'extreme_rh_flag'], data=np.array([[-40, -5, -5, 0, 0, 0], [10, 10, 50, 1, 1, 1], [140, 55, 105, 0, 0, 0]])) dtypes = ['float64', 'float64', 'float64', 'bool', 'bool', 'bool'] for (col, typ) in zip(output.columns, dtypes): output[col] = output[col].astype(typ) return output def test_check_temperature_limits(weather): expected = weather result_expected = expected['extreme_temp_flag'] result = validator.check_temperature_limits(expected['air_temperature']) assert_series_equal(result, result_expected) def test_check_wind_limits(weather): expected = weather result_expected = expected['extreme_wind_flag'] result = validator.check_wind_limits(expected['wind_speed']) assert_series_equal(result, result_expected) def test_check_rh_limits(weather): expected = weather data = expected['relative_humidity'] result_expected = expected['extreme_rh_flag'] result = validator.check_rh_limits(data) result.name = 'extreme_rh_flag' assert_series_equal(result, result_expected) def test_check_ac_power_limits(): index = pd.date_range( start='20200401 0700', freq='2h', periods=6, tz='UTC') power = pd.Series([0, -0.1, 0.1, 1, 1.1, -0.1], index=index) day_night = pd.Series([0, 0, 0, 1, 1, 1], index=index, dtype='bool') capacity = 1. expected = pd.Series([1, 0, 0, 1, 0, 0], index=index).astype(bool) out = validator.check_ac_power_limits(power, day_night, capacity) assert_series_equal(out, expected) def test_check_dc_power_limits(): index = pd.date_range( start='20200401 0700', freq='2h', periods=6, tz='UTC') power = pd.Series([0, -0.1, 0.1, 1, 1.3, -0.1], index=index) day_night = pd.Series([0, 0, 0, 1, 1, 1], index=index, dtype='bool') capacity = 1. expected = pd.Series([1, 0, 0, 1, 0, 0], index=index).astype(bool) out = validator.check_dc_power_limits(power, day_night, capacity) assert_series_equal(out, expected) def test_check_limits(): # testing with input type Series expected = pd.Series(data=[True, False]) data = pd.Series(data=[3, 2]) result = validator._check_limits(val=data, lb=2.5) assert_series_equal(expected, result) result = validator._check_limits(val=data, lb=3, lb_ge=True) assert_series_equal(expected, result) data = pd.Series(data=[3, 4]) result = validator._check_limits(val=data, ub=3.5) assert_series_equal(expected, result) result = validator._check_limits(val=data, ub=3, ub_le=True) assert_series_equal(expected, result) result = validator._check_limits(val=data, lb=3, ub=4, lb_ge=True, ub_le=True) assert all(result) result = validator._check_limits(val=data, lb=3, ub=4) assert not any(result) with pytest.raises(ValueError): validator._check_limits(val=data) @pytest.fixture def location(): return Location(latitude=35.05, longitude=-106.5, altitude=1619, name="Albuquerque", tz="MST") @pytest.fixture def times(): MST = pytz.timezone('MST') return pd.date_range(start=datetime(2018, 6, 15, 12, 0, 0, tzinfo=MST), end=datetime(2018, 6, 15, 13, 0, 0, tzinfo=MST), freq='10T') def test_check_ghi_clearsky(mocker, location, times): clearsky = location.get_clearsky(times) # modify to create test conditions ghi = clearsky['ghi'].copy() ghi.iloc[0] *= 0.5 ghi.iloc[-1] *= 2.0 clear_times = np.tile(True, len(times)) clear_times[-1] = False expected = pd.Series(index=times, data=clear_times) result = validator.check_ghi_clearsky(ghi, clearsky['ghi']) assert_series_equal(result, expected) def test_check_poa_clearsky(mocker, times): dt = pd.date_range(start=datetime(2019, 6, 15, 12, 0, 0), freq='15T', periods=5) poa_global = pd.Series(index=dt, data=[800, 1000, 1200, -200, np.nan]) poa_clearsky = pd.Series(index=dt, data=1000) result = validator.check_poa_clearsky(poa_global, poa_clearsky) expected = pd.Series(index=dt, data=[True, True, False, True, False]) assert_series_equal(result, expected) result = validator.check_poa_clearsky(poa_global, poa_clearsky, kt_max=1.2) expected = pd.Series(index=dt, data=[True, True, True, True, False]) assert_series_equal(result, expected) def test_check_day_night(): MST = pytz.timezone('MST') times = [datetime(2018, 6, 15, 12, 0, 0, tzinfo=MST), datetime(2018, 6, 15, 22, 0, 0, tzinfo=MST)] expected = pd.Series(data=[True, False], index=times) solar_zenith = pd.Series(data=[11.8, 114.3], index=times) result = validator.check_day_night(solar_zenith)
assert_series_equal(result, expected)
pandas.testing.assert_series_equal
import datetime from collections import OrderedDict import numpy as np import pandas as pd import pytest from kartothek.core.common_metadata import make_meta, read_schema_metadata from kartothek.core.dataset import DatasetMetadata from kartothek.core.uuid import gen_uuid from kartothek.io.eager import ( create_empty_dataset_header, store_dataframes_as_dataset, write_single_partition, ) from kartothek.io.testing.write import * # noqa: F40 from kartothek.io_components.metapartition import MetaPartition def _store_dataframes(dfs, **kwargs): # Positional arguments in function but `None` is acceptable input for kw in ("dataset_uuid", "store"): if kw not in kwargs: kwargs[kw] = None return store_dataframes_as_dataset(dfs=dfs, **kwargs) @pytest.fixture() def bound_store_dataframes(): return _store_dataframes def test_write_single_partition(store_factory, mock_uuid, metadata_version): create_empty_dataset_header( store=store_factory(), schema=
pd.DataFrame({"col": [1]})
pandas.DataFrame
#! /usr/bin/env python3 """ Copyright 2021 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # # Classify applications into 104 classes given their raw code. # # The representation (graph) is created from IR. # import os import sys import glob import pandas as pd import pickle as pk os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from stellargraph import StellarDiGraph from absl import app, flags, logging from yacos.info import compy as R from yacos.info.compy.extractors import LLVMDriver def extract_graph_data(graph, graph_type): """Extract edges, nodes and embeddings.""" nodes = {} #nodes['word2vec'] = graph.get_nodes_word2vec_embeddings('ir') nodes['histogram'] = graph.get_nodes_histogram_embeddings('ir') nodes['inst2vec'] = graph.get_nodes_inst2vec_embeddings() nodes['ir2vec'] = graph.get_nodes_ir2vec_embeddings() nodes['opcode'] = graph.get_nodes_opcode_embeddings() edges = graph.get_edges_str_dataFrame() return edges, nodes def execute(argv): """Extract a graph representation.""" del argv FLAGS = flags.FLAGS # Verify datset directory. if not os.path.isdir(FLAGS.dataset_directory): logging.error('Dataset directory {} does not exist.'.format( FLAGS.dataset_directory) ) sys.exit(1) """Extract the representation from the source code.""" # Instantiate the LLVM driver. driver = LLVMDriver() # Define the builder builder = R.LLVMGraphBuilder(driver) # Define the visitor visitors = { # CFG 'cfg_call': R.LLVMCFGCallVisitor, 'cfg_call_nr': R.LLVMCFGCallNoRootVisitor, 'cfg_call_compact_me': R.LLVMCFGCallCompactMultipleEdgesVisitor, 'cfg_call_compact_se': R.LLVMCFGCallCompactSingleEdgeVisitor, 'cfg_call_compact_me_nr': R.LLVMCFGCallCompactMultipleEdgesNoRootVisitor, 'cfg_call_compact_se_nr': R.LLVMCFGCallCompactSingleEdgeNoRootVisitor, # CDFG 'cdfg_call': R.LLVMCDFGCallVisitor, 'cdfg_call_nr': R.LLVMCDFGCallNoRootVisitor, 'cdfg_call_compact_me': R.LLVMCDFGCallCompactMultipleEdgesVisitor, 'cdfg_call_compact_se': R.LLVMCDFGCallCompactSingleEdgeVisitor, 'cdfg_call_compact_me_nr': R.LLVMCDFGCallCompactMultipleEdgesNoRootVisitor, 'cdfg_call_compact_se_nr': R.LLVMCDFGCallCompactSingleEdgeNoRootVisitor, # CDFG PLUS 'cdfg_plus': R.LLVMCDFGPlusVisitor, 'cdfg_plus_nr': R.LLVMCDFGPlusNoRootVisitor, # PROGRAML 'programl': R.LLVMProGraMLVisitor, 'programl_nr': R.LLVMProGraMLNoRootVisitor } folders = [ os.path.join(FLAGS.dataset_directory, subdir) for subdir in os.listdir(FLAGS.dataset_directory) if os.path.isdir(os.path.join(FLAGS.dataset_directory, subdir)) ] idx = FLAGS.dataset_directory.rfind('/') last_folder = FLAGS.dataset_directory[idx+1:] # Load data from all folders for folder in folders: sources = glob.glob('{}/*.ll'.format(folder)) for source in sources: try: extractionInfo = builder.ir_to_info(source) graph = builder.info_to_representation(extractionInfo, visitors[FLAGS.graph]) edges, nodes_data = extract_graph_data(graph, FLAGS.graph) except Exception: logging.error('Error {}.'.format(source)) continue for feat, feat_data in nodes_data.items(): indexes = [] embeddings = [] for idx, _, emb in feat_data: indexes.append(idx) embeddings.append(emb) nodes =
pd.DataFrame(embeddings, index=indexes)
pandas.DataFrame
# Haybaler # <NAME>, Nov 2020 - April 2021 # Combine your Wochenende .bam.txt or reporting output from multiple samples into one matrix per stat. # Usage: bash run_haybaler.sh import pandas as pd import click import os import re version = "0.30 - April 2021" # changelog # 0.30 read all samples in one call. Filter out taxa with values below a readcount and RPMM limit # 0.23 improve file input and arg handling # 0.22 bugfix, correct gc_ref and chr_length for new chromosomes # 0.21 fix ordering problems # 0.20 add find_order and sort_new functions, so taxa with highest readcounts come first # 0.11 add heatmap prep and R scripts # 0.10 initial commits, improvements, testing def read_csv(filename, filepath): return pd.read_csv(filepath + '/' + filename, decimal=",", index_col=0) def txt_to_df(filename, filepath): with open(filepath + '/' + filename) as infile, open('tmp.csv', 'w') as outfile: # add column names (not given in txt.file), save new file as temp outfile outfile.write("species,chr_length,read_count,unmapped_read_segments\n") # replace tabs with comma(tab separated to comma separated) for line in infile: outfile.write(" ".join(line.split()).replace(' ', ',')) outfile.write("\n") file = pd.read_csv("tmp.csv", decimal=",", index_col=0) if os.path.exists("tmp.csv"): # del tmp file outfile os.remove("tmp.csv") del file['unmapped_read_segments'] # unneeded column? return file def join_dfs(file, name, path, column, input_name): sample = (input_name[:input_name.find(".")]) # shorten sample name sub_df = file[[column]].copy() # new df with just the wanted column sub_df = sub_df.rename(columns={column: sample}) # rename column to sample name if os.path.isfile(path + "/" + column + "_" + name): # if the file for the wanted stat already exists old = pd.read_csv(path + "/" + column + "_" + name, decimal=",", index_col=0, sep='\t') old.fillna(0.0, inplace=True) if sample not in old.columns: # no double samples new_chr = [ chromosome for chromosome in file.index if chromosome not in old.index ] # get a df with the chr_length and gc_ref from the new chromosomes if 'gc_ref' in file: new_chr_df = file.loc[new_chr, ['chr_length', 'gc_ref']] else: new_chr_df = file.loc[new_chr, ['chr_length']] old = old.append(new_chr_df) # append the df with chr_length and gc_ref to the old df new = pd.concat([old, sub_df], axis=1, sort=False) # add the new column to the old df if 'gc_ref' not in new and 'gc_ref' in file: gc = file[['gc_ref']].copy() new = pd.concat([new, gc], axis=1, sort=False) tmp = new['gc_ref'].to_list() del new['gc_ref'] new.insert(1, 'gc_ref', tmp) else: new = old else: if 'gc_ref' in file: new = file[['chr_length', 'gc_ref', column]].copy() else: new = file[['chr_length', column]].copy() new = new.rename(columns={column: sample}) new.fillna(0.0, inplace=True) new = new.astype(float) new = new.round(2) return new # calculate in which order the organisms should be in the output files. # the organism with the most read count in all samples should come first def find_order(df): samples = [ column for column in df.columns if column not in ['chr_length', 'gc_ref'] ] sum_organisms = [] # list of the sum form all samples for each organism (row sums) for organism in df.index: tmp_organism = [float(df.at[organism, column]) for column in samples] sum_organisms.append(sum(tmp_organism)) df['sum_organisms'] = sum_organisms # add a column with the sums to the df df = df.sort_values(by='sum_organisms', ascending=False) # sort the df by the sums df = df.drop(['sum_organisms'], axis=1) # delete the column with the sums order = df.index return df, order # sort the new df so it fits the previous calculated order def sort_new(df, order): order_df = pd.DataFrame(index=order) # create an empty order_df with just the right orderer organisms as index return
pd.concat([order_df, df], axis=1, sort=False)
pandas.concat
import numpy as np from numpy.fft import fft, ifft # from: http://www.mirzatrokic.ca/FILES/codes/fracdiff.py # small modification: wrapped 2**np.ceil(...) around int() # https://github.com/SimonOuellette35/FractionalDiff/blob/master/question2.py _default_thresh = 1e-4 def get_weights(d, size): """Expanding window fraction difference weights.""" w = [1.0] for k in range(1, size): w_ = -w[-1] / k * (d - k + 1) w.append(w_) w = np.array(w[::-1]).reshape(-1, 1) return w import numba @numba.njit def get_weights_ffd(d, thres, lim=99999): """Fixed width window fraction difference weights. Set lim to be large if you want to only stop at thres. Set thres to be zero if you want to ignore it. """ w = [1.0] k = 1 for i in range(1, lim): w_ = -w[-1] / k * (d - k + 1) if abs(w_) < thres: break w.append(w_) k += 1 w = np.array(w[::-1]).reshape(-1, 1) return w def frac_diff_ffd(x, d, thres=_default_thresh, lim=None): assert isinstance(x, np.ndarray) assert x.ndim == 1 if lim is None: lim = len(x) w, out = _frac_diff_ffd(x, d, lim, thres=thres) # print(f'weights is shape {w.shape}') return out # this method was not faster # def frac_diff_ffd_stride_tricks(x, d, thres=_default_thresh): # """d is any positive real""" # assert isinstance(x, np.ndarray) # w = get_weights_ffd(d, thres, len(x)) # width = len(w) - 1 # output = np.empty(len(x)) # output[:width] = np.nan # output[width:] = np.dot(np.lib.stride_tricks.as_strided(x, (len(x) - width, len(w)), (x.itemsize, x.itemsize)), w[:,0]) # return output @numba.njit def _frac_diff_ffd(x, d, lim, thres=_default_thresh): """d is any positive real""" w = get_weights_ffd(d, thres, lim) width = len(w) - 1 output = [] output.extend([np.nan] * width) # the first few entries *were* zero, should be nan? for i in range(width, len(x)): output.append(np.dot(w.T, x[i - width: i + 1])[0]) return w, np.array(output) def fast_frac_diff(x, d): """expanding window version using fft form""" assert isinstance(x, np.ndarray) T = len(x) np2 = int(2 ** np.ceil(np.log2(2 * T - 1))) k = np.arange(1, T) b = (1,) + tuple(np.cumprod((k - d - 1) / k)) z = (0,) * (np2 - T) z1 = b + z z2 = tuple(x) + z dx = ifft(fft(z1) * fft(z2)) return np.real(dx[0:T]) # TESTS def test_all(): for d in [0.3, 1, 1.5, 2, 2.5]: test_fast_frac_diff_equals_fracDiff_original_impl(d=d) test_frac_diff_ffd_equals_original_impl(d=d) # test_frac_diff_ffd_equals_prado_original(d=d) # his implementation is busted for fractional d # def test_frac_diff_ffd_equals_prado_original(d=3): # # ignore this one for now as Prado's version does not work # from .prado_orig import fracDiff_FFD_prado_original # import pandas as pd # # x = np.random.randn(100) # a = frac_diff_ffd(x, d, thres=_default_thresh) # b = fracDiff_FFD_prado_original(pd.DataFrame(x), d, thres=_default_thresh) # b = np.squeeze(b.values) # a = a[d:] # something wrong with the frac_diff_ffd gives extra entries of zero # assert np.allclose(a, b) # # return locals() def test_frac_diff_ffd_equals_original_impl(d=3): from .prado_orig import fracDiff_FFD_original_impl import pandas as pd x = np.random.randn(100) a = frac_diff_ffd(x, d, thres=_default_thresh) b = fracDiff_FFD_original_impl(
pd.DataFrame(x)
pandas.DataFrame
import bct import numpy as np import pandas as pd from my_settings import (source_folder, results_path) subjects = [ "0008", "0009", "0010", "0012", "0013", "0014", "0015", "0016", "0019", "0020", "0021", "0022" ] ge_data_all = pd.DataFrame() lambda_data_all =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ @brief test log(time=10s) """ import unittest import pandas from pyquickhelper.pycode import ExtTestCase from lightmlrestapi.args.encrypt_helper import encrypt_passwords, load_passwords class TestEncrypt(ExtTestCase): def test_encrypt_passwords(self): users = [('login', 'pwd'), ('login2', 'pwd2')] enc = encrypt_passwords(users) self.assertEqual(len(enc), 2) self.assertEqual(enc[0][0], users[0][0]) self.assertIsInstance(enc[0][1], str) df =
pandas.DataFrame(users, columns=["aa", "bb"])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Functions for Hydra - learning ddGoffset values for free energy perturbations. """ # TF-related imports & some settings to reduce TF verbosity: import os os.environ["CUDA_VISIBLE_DEVICES"]="1" # current workstation contains 4 GPUs; exclude 1st import tensorflow as tf from tensorflow import keras tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) # hyperparameter optimisation: import skopt from skopt import gp_minimize, forest_minimize from skopt.space import Real, Categorical, Integer from skopt.plots import plot_convergence from skopt.plots import plot_objective, plot_evaluations from tensorflow.python.keras import backend as K from skopt.utils import use_named_args # featurisation: from mordred import Calculator, descriptors from rdkit import Chem from rdkit.Chem import AllChem, rdmolfiles # general imports: import pandas as pd import numpy as np import csv import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from datetime import datetime from sklearn import preprocessing, decomposition from sklearn.model_selection import train_test_split from scipy import stats from tqdm import tqdm import glob import pickle # global startpoint for SKOPT optimisation: startpoint_error = np.inf ################################################### ################################################### ###################### UTILS ###################### ################################################### ################################################### def retrieveMoleculePDB(ligand_path): """ Returns RDKit molecule objects for requested path PDB file. -- args ligand_path (str): path leading to molecule pdb file -- returns RDKit molecule object """ mol = rdmolfiles.MolFromPDBFile( ligand_path, sanitize=True ) return mol def readHDF5Iterable(path_to_trainingset, chunksize): """ Read in a training set using pandas' HDF5 utility --args path_to_trainingset (str): path to training set (HDF5) to read from chunksize (int): number of items to read in per increment (recommended 5000 for large datasets) --returns training_set (iterable) """ training_set = pd.DataFrame() # use chunksize to save memory during reading: training_set_iterator = pd.read_hdf(path_to_trainingset, chunksize=chunksize) return training_set_iterator ################################################### ################################################### ################## FEATURISERS #################### ################################################### ################################################### ################################################### ### Molecular properties: ### ### ### def computeLigMolProps( transfrm_path="transformations/", working_dir="features/MOLPROPS/", target_columns=None, verbose=False): """ Compute molecular properties for the molecules in given transfrm_path and write to file. --args transfrm_path (str): path to directory containing ligand files working_dir (str): path to directory to pickle into verbose (bool): whether or not to print featurisation info to stdout --returns molprops_set (pandas dataframe): set of molecules with molecular properties """ mol_paths = glob.glob(transfrm_path+"*") # generate RDKit mol objects from paths: mols_rdkit = [ retrieveMoleculePDB(mol) for mol in mol_paths ] # generate molecule name from paths for indexing: mols_names = [ mol.replace(transfrm_path, "").split(".")[0] for mol in mol_paths ] # generate all descriptors available in mordred: calc = Calculator(descriptors, ignore_3D=False) print("Computing molecular properties:") molprops_set = calc.pandas(mols_rdkit) # remove columns with bools or strings (not fit for subtraction protocol): if target_columns is not None: # if variable is input the function is handling a testset and must # keep the same columns as train dataset: molprops_set = molprops_set[target_columns] else: # if making a training dataset, decide which columns to retain: molprops_set = molprops_set.select_dtypes(include=["float64", "int64"]) molprops_set.index = mols_names # pickle dataframe to specified directory: molprops_set.to_pickle(working_dir+"molprops.pickle") if verbose: print(molprops_set) return molprops_set def computePertMolProps( perturbation_paths, molprops_set=None, free_path="SOLVATED/", working_dir="features/MOLPROPS/"): """ Read featurised FEP molecules and generate matches based on user input perturbations. Writes each perturbation features by appending it to the features.csv file. --args perturbation_paths (list): nested list of shape [[A~B],[C~D]] with strings describing the perturbations. These combinations will be used to make pairwise extractions from molprops_set. molprops_set (pandas dataframe; optional): dataframe object that contains the featurised FEP dataset. If None, will attempt to pickle from working_dir free_path (str): path to directory containing perturbation directories working_dir (str): path to directory to pickle dataset from --returns None """ # test if input is there: if molprops_set is None: try: molprops_set = pd.read_pickle(working_dir+"molprops.pickle") except FileNotFoundError: print("Unable to load pickle file with per-ligand molprop data in absence of molprops_set function input.") # clean slate featurised perturbations dataset; write column names: open(working_dir+"featurised_molprops.h5", "w").close() store = pd.HDFStore(working_dir+"featurised_molprops.h5") # write list of column names to file for future testset feature generation:
pd.DataFrame(molprops_set.columns)
pandas.DataFrame
from numpy import dot, reshape, zeros, identity, ravel, full from numpy.linalg import inv, LinAlgError import pandas as pd from sstspack import DynamicLinearGaussianModel from sstspack.Utilities import jacobian from sstspack.DynamicLinearGaussianModelClass import EPSILON class ExtendedDynamicModel(DynamicLinearGaussianModel): """""" expected_columns = ("Z_fn", "H_fn", "T_fn", "R_fn", "Q_fn") estimation_columns = [ "Z", "Z_prime", "H", "T", "T_prime", "R", "Q", "a_hat_initial", "V_initial", "Z_hat", "Z_hat_prime", "H_hat", "T_hat", "T_hat_prime", "R_hat", "Q_hat", "a_hat_prior", "a_hat_posterior", "P_hat_prior", "P_hat_posterior", "v_hat", "F_hat_inverse", "K_hat", "L_hat", "r_hat", "N_hat", "r0_hat", "r1_hat", "N0_hat", "N1_hat", "N2_hat", "F1_hat", "F2_hat", "L0_hat", "L1_hat", "K0_hat", "K1_hat", "P_hat_infinity_prior", "P_hat_infinity_posterior", "P_hat_star_prior", "P_hat_star_posterior", "F_hat_infinity", "F_hat_star", "M_hat_infinity", "M_hat_star", ] + DynamicLinearGaussianModel.estimation_columns def __init__( self, y_series, model_design_df, a_prior_initial=None, P_prior_initial=None, diffuse_states=None, validate_input=True, ): """""" self.column_redirects = {} self.initial_smoother_run = False DynamicLinearGaussianModel.__init__( self, y_series, model_design_df, a_prior_initial, P_prior_initial, diffuse_states, validate_input, ) def __getattr__(self, name): """""" if name in ["c", "d"]: return pd.Series([full((1, 1), 0)] * len(self.index), index=self.index) if name in self.column_redirects: name = self.column_redirects[name] return DynamicLinearGaussianModel.__getattr__(self, name) def _add_column_redirects(self): """""" if not self.initial_smoother_run: self.column_redirects = { # state terms "a_hat": "a_hat_initial", "V": "V_initial", # model terms "Z": "Z_prime", "T": "T_prime", # estimation terms "K": "K_hat", "L": "L_hat", "r": "r_hat", "N": "N_hat", "r_final": "r_hat_final", "N_final": "N_hat_final", "r0": "r0_hat", "r1": "r1_hat", "N0": "N0_hat", "N1": "N1_hat", "N2": "N2_hat", "r0_final": "r0_hat_final", "r1_final": "r1_hat_final", "N0_final": "N0_hat_final", "N1_final": "N1_hat_final", "N2_final": "N2_hat_final", } else: self.column_redirects = { # state terms "a_prior": "a_hat_prior", "a_posterior": "a_hat_posterior", "P_prior": "P_hat_prior", "P_posterior": "P_hat_posterior", "P_infinity_prior": "P_hat_infinity_prior", "P_infinity_posterior": "P_hat_infinity_posterior", "P_star_prior": "P_hat_star_prior", "P_star_posterior": "P_hat_star_posterior", # model terms "Z": "Z_hat_prime", "H": "H_hat", "T": "T_hat_prime", "R": "R_hat", "Q": "Q_hat", # estimation terms "v": "v_hat", "F_inverse": "F_hat_inverse", "F_infinity": "F_hat_infinity", "F_star": "F_hat_star", "M_infinity": "M_hat_infinity", "M_star": "M_hat_star", "F1": "F1_hat", "F2": "F2_hat", "K0": "K0_hat", "K1": "K1_hat", "L0": "L0_hat", "L1": "L1_hat", } def _initialise_model_data(self, a_prior_initial): """""" self._m = a_prior_initial.shape[0] for idx in self.index: self.Z[idx] = self.Z_fn[idx](a_prior_initial) self.H[idx] = self.H_fn[idx](a_prior_initial) self.T[idx] = self.T_fn[idx](a_prior_initial) self.R[idx] = self.R_fn[idx](a_prior_initial) self.Q[idx] = self.Q_fn[idx](a_prior_initial) self._add_column_redirects() def _verification_columns(self, p, idx): """""" return { "Z": (p[idx], 1), "H": (p[idx], p[idx]), "T": (self.m, 1), "R": (self.m, self.r_eta), "Q": (self.r_eta, self.r_eta), } def _prediction_error(self, key): """""" if self.initial_smoother_run: return self.y[key] - self.model_data_df.Z_hat[key] return self.y[key] - self.model_data_df.Z[key] def _non_missing_F(self, key): """""" self._initialise_data_fn(key) return DynamicLinearGaussianModel._non_missing_F(self, key) def _diffuse_filter_posterior_recursion_step(self, key): """""" self._initialise_state_fn(key) return DynamicLinearGaussianModel._diffuse_filter_posterior_recursion_step( self, key ) def _filter_posterior_recursion_step(self, key): """""" self._initialise_state_fn(key) return DynamicLinearGaussianModel._filter_posterior_recursion_step(self, key) def _initialise_data_fn(self, key): """""" if not self.initial_smoother_run: self.model_data_df.Z[key] = self.Z_fn[key](self.a_prior[key]) if "Z_prime_fn" in self.model_data_df.columns: self.Z_prime[key] = self.Z_prime_fn[key](self.a_prior[key]) else: self.Z_prime[key] = reshape( jacobian(self.Z_fn[key], self.a_prior[key], h=1e-10), (self.p[key], self.m), ) self.H[key] = self.H_fn[key](self.a_prior[key]) else: self.model_data_df.Z_hat[key] = self.Z_fn[key](self.a_hat_prior[key]) if "Z_prime_fn" in self.model_data_df.columns: self.Z_hat_prime[key] = self.Z_prime_fn[key](self.a_hat_prior[key]) else: self.Z_hat_prime[key] = reshape( jacobian(self.Z_fn[key], self.a_hat_initial[key], h=1e-10), (self.p[key], self.m), ) self.H_hat[key] = self.H_fn[key](self.a_hat_initial[key]) def _initialise_state_fn(self, key): """""" if not self.initial_smoother_run: self.model_data_df["T"][key] = self.T_fn[key](self.a_posterior[key]) if "T_prime_fn" in self.model_data_df.columns: self.T_prime[key] = self.T_prime_fn[key](self.a_posterior[key]) else: self.T_prime[key] = reshape( jacobian(self.T_fn[key], self.a_posterior[key], h=1e-10), (self.m, self.m), ) self.R[key] = self.R_fn[key](self.a_posterior[key]) self.Q[key] = self.Q_fn[key](self.a_posterior[key]) else: self.T_hat[key] = self.T_fn[key](self.a_hat_initial[key]) if "T_prime_fn" in self.model_data_df.columns: self.T_hat_prime[key] = self.T_prime_fn[key](self.a_hat_initial[key]) else: self.T_hat_prime[key] = reshape( jacobian(self.T_fn[key], self.a_hat_initial[key], h=1e-10), (self.m, self.m), ) self.R_hat[key] = self.R_fn[key](self.a_hat_initial[key]) self.Q_hat[key] = self.Q_fn[key](self.a_hat_initial[key]) def aggregate_field(self, field, mask=None): """""" data = [] for idx in self.index: Z = mask if Z is None: Z = self.Z_prime[idx] value = dot(Z, self.model_data_df.loc[idx, field]) if value.shape == (1, 1): value = value[0, 0] data.append(value) return
pd.Series(data, index=self.index)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 26 19:28:36 2019 @author: github.com/sahandv """ import sys import gc from tqdm import tqdm import pandas as pd import numpy as np import re from sciosci.assets import text_assets as kw from sciosci.assets import keyword_dictionaries as kd import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize tqdm.pandas() nltk.download('wordnet') nltk.download('punkt') # ============================================================================= # Read data and Initialize # ============================================================================= year_from = 0 year_to = 2021 MAKE_SENTENCE_CORPUS = False MAKE_SENTENCE_CORPUS_ADVANCED_KW = False MAKE_SENTENCE_CORPUS_ADVANCED = False MAKE_REGULAR_CORPUS = True GET_WORD_FREQ_IN_SENTENCE = False PROCESS_KEYWORDS = False stops = ['a','an','we','result','however','yet','since','previously','although','propose','proposed','this','...'] nltk.download('stopwords') stop_words = list(set(stopwords.words("english")))+stops data_path_rel = '/mnt/16A4A9BCA4A99EAD/GoogleDrive/Data/Corpus/KPRIS/kpris_data.csv' # data_path_rel = '/mnt/6016589416586D52/Users/z5204044/GoogleDrive/GoogleDrive/Data/Corpus/AI 4k/scopus_4k.csv' # data_path_rel = '/mnt/6016589416586D52/Users/z5204044/GoogleDrive/GoogleDrive/Data/AI ALL 1900-2019 - reformat' # data_path_rel = '/mnt/6016589416586D52/Users/z5204044/GoogleDrive/GoogleDrive/Data/Corpus/AI 300/merged - scopus_v2_relevant wos_v1_relevant - duplicate doi removed - abstract corrected - 05 Aug 2019.csv' data_full_relevant = pd.read_csv(data_path_rel) # data_full_relevant = data_full_relevant[['dc:title','authkeywords','abstract','year']] # data_full_relevant.columns = ['TI','DE','AB','PY'] sample = data_full_relevant.sample(4) root_dir = '/mnt/16A4A9BCA4A99EAD/GoogleDrive/Data/Corpus/KPRIS/' subdir = 'clean/' # no_lemmatization_no_stopwords gc.collect() data_full_relevant['PY'] = 2018 data_full_relevant['AB'] = data_full_relevant['abstract'] data_full_relevant['TI'] = '' data_full_relevant['DE'] = np.nan data_full_relevant['ID'] = '' data_full_relevant['SO'] = '' # data_wrong = data_full_relevant[data_full_relevant['AB'].str.contains("abstract available")].index data_wrong = list(data_wrong) data_full_relevant = data_full_relevant.drop(data_wrong,axis=0) # ============================================================================= # Initial Pre-Processing : # Following tags requires WoS format. Change them otherwise. # ============================================================================= data_filtered = data_full_relevant.copy() data_filtered = data_filtered[pd.notnull(data_filtered['PY'])] data_filtered = data_filtered[data_filtered['PY'].astype('int')>year_from-1] data_filtered = data_filtered[data_filtered['PY'].astype('int')<year_to] # Remove columns without keywords/abstract list data_with_keywords = data_filtered[pd.notnull(data_filtered['DE'])] data_with_abstract = data_filtered[pd.notnull(data_filtered['AB'])] # Remove special chars and strings from abstracts data_with_abstract['AB'] = data_with_abstract['AB'].progress_apply(lambda x: kw.find_and_remove_c(x) if pd.notnull(x) else np.nan).str.lower() data_with_abstract['AB'] = data_with_abstract['AB'].progress_apply(lambda x: kw.find_and_remove_term(x,'et al.') if pd.notnull(x) else np.nan) data_with_abstract['AB'] = data_with_abstract['AB'].progress_apply(lambda x: kw.find_and_remove_term(x,'eg.') if pd.notnull(x) else np.nan) data_with_abstract['AB'] = data_with_abstract['AB'].progress_apply(lambda x: kw.find_and_remove_term(x,'ie.') if pd.notnull(x) else np.nan) data_with_abstract['AB'] = data_with_abstract['AB'].progress_apply(lambda x: kw.find_and_remove_term(x,'vs.') if pd.notnull(x) else np.nan) data_with_abstract['AB'] = data_with_abstract['AB'].progress_apply(lambda x: kw.find_and_remove_term(x,'ieee') if pd.notnull(x) else np.nan) data_with_abstract['AB'] = data_with_abstract['AB'].progress_apply(lambda x: kw.find_and_remove_term(x,'fig.','figure') if pd.notnull(x) else np.nan) # Remove numbers from abstracts to eliminate decimal points and other unnecessary data # gc.collect() abstracts = [] for abstract in tqdm(data_with_abstract['AB'].values.tolist()): numbers = re.findall(r"[-+]?\d*\.\d+|\d+", abstract) for number in numbers: abstract = kw.find_and_remove_term(abstract,number) abstracts.append(abstract) data_with_abstract['AB'] = abstracts.copy() del abstracts source_list = pd.DataFrame(data_with_abstract['SO'].values.tolist(),columns=['source']) source_list.to_csv(root_dir+subdir+str(year_from)+'-'+str(year_to-1)+' corpus sources',index=False) # Save year indices to disk for further use year_list = pd.DataFrame(data_with_abstract['PY'].values.tolist(),columns=['year']) year_list.to_csv(root_dir+subdir+str(year_from)+'-'+str(year_to-1)+' corpus years',index=False) # Save year indices to disk for further use gc.collect() # ============================================================================= # Sentence maker # ============================================================================= if MAKE_SENTENCE_CORPUS is True: thesaurus = pd.read_csv('data/thesaurus/thesaurus_for_ai_keyword_with_() (training).csv') thesaurus = thesaurus.fillna('') print("\nSentence maker and thesaurus matching. \nThis will take some time...") data_with_abstract['AB_no_c'] = data_with_abstract['AB'].apply(lambda x: kw.find_and_remove_c(x) if pd.notnull(x) else np.nan) sentence_corpus = [] for index,row in tqdm(data_with_abstract.iterrows(),total=data_with_abstract.shape[0]): words = re.split('( |\\n|\.|\?|!|:|;|,|_|\[|\])',row['AB_no_c'].lower()) new_words = [] year = row['PY'] flag_word_removed = False for w_idx,word in enumerate(words): if flag_word_removed is True: if word==' ': flag_word_removed = False continue if word in thesaurus['alt'].values.tolist(): word_old = word buffer_word = word word = thesaurus[thesaurus['alt']==word]['original'].values.tolist()[0] # print("changed '",word_old,"' to '",word,"'.") new_words.append(word) row = ''.join(new_words) sentences = re.split('(\. |\? |\\n)',row) sentences = [i+j for i,j in zip(sentences[0::2], sentences[1::2])] for sentence_n in sentences: sentence_corpus.append([index,sentence_n,year]) sentence_corpus = pd.DataFrame(sentence_corpus,columns=['article_index','sentence','year']) sentence_corpus.to_csv(root_dir+subdir+str(year_from)+'-'+str(year_to-1)+' corpus sentences abstract-title',index=False,header=True) gc.collect() # ============================================================================= # Sentence maker -- Advanced -- # ============================================================================= if MAKE_SENTENCE_CORPUS_ADVANCED is True: data_with_abstract['TI_AB'] = data_with_abstract.TI.map(str) + ". " + data_with_abstract.AB data_fresh = data_with_abstract[['TI_AB','PY']].copy() data_fresh['TI_AB'] = data_fresh['TI_AB'].str.lower() del data_with_abstract gc.collect() data_tmp = data_fresh[1:10] data_fresh[-2:-1] print("\nSentence extraction") sentences = [] years = [] indices = [] for index,row in tqdm(data_fresh.iterrows(),total=data_fresh.shape[0]): abstract_str = row['TI_AB'] year = row['PY'] abstract_sentences = re.split('\. |\? |\\n',abstract_str) length = len(abstract_sentences) sentences.extend(abstract_sentences) years.extend([year for x in range(length)]) indices.extend([index for x in range(length)]) print("\nTokenizing") tmp = [] for sentence in tqdm(sentences): tmp.append(word_tokenize(sentence)) sentences = tmp.copy() del tmp print("\nString pre processing for abstracts: lower and strip") sentences = [list(map(str.lower, x)) for x in sentences] sentences = [list(map(str.strip, x)) for x in sentences] tmp = [] print("\nString pre processing for abstracts: lemmatize and stop word removal") for string_list in tqdm(sentences, total=len(sentences)): tmp_list = [kw.string_pre_processing(x,stemming_method='None',lemmatization='DEF',stop_word_removal=True,stop_words_extra=stops,verbose=False,download_nltk=False) for x in string_list] tmp.append(tmp_list) sentences = tmp.copy() del tmp gc.collect() tmp = [] print("\nString pre processing for abstracts: null word removal") for string_list in tqdm(sentences, total=len(sentences)): tmp.append([x for x in string_list if x!='']) sentences = tmp.copy() del tmp print("\nThesaurus matching") sentences = kw.thesaurus_matching(sentences,thesaurus_file='data/thesaurus/thesaurus_for_ai_keyword_with_() (training).csv') print("\nStitiching tokens") tmp = [] for words in tqdm(sentences, total=len(sentences)): tmp.append(' '.join(words)) sentences = tmp.copy() del tmp print("\nGB to US") tmp = [] for sentence in tqdm(sentences, total=len(sentences)): tmp.append(kw.replace_british_american(sentence,kd.gb2us)) sentences = tmp.copy() del tmp sentence_df = pd.DataFrame(indices,columns=['article_index']) sentence_df['sentence'] = sentences sentence_df['year'] = years sentence_df.to_csv(root_dir+subdir+str(year_from)+'-'+str(year_to-1)+' corpus sentences abstract-title',index=False,header=True) # ============================================================================= # Keyword Extractor # ============================================================================= if MAKE_SENTENCE_CORPUS_ADVANCED_KW is True: data_with_abstract['TI_AB'] = data_with_abstract.AB data_fresh = data_with_abstract[['TI_AB','PY']].copy() data_fresh['TI_AB'] = data_fresh['TI_AB'].str.lower() del data_with_abstract gc.collect() data_tmp = data_fresh[1:10] data_fresh[-2:-1] print("\nSentence extraction") sentences = [] years = [] indices = [] for index,row in tqdm(data_fresh.iterrows(),total=data_fresh.shape[0]): abstract_str = row['TI_AB'] year = row['PY'] abstract_sentences = re.split('\\n',abstract_str) length = len(abstract_sentences) sentences.extend(abstract_sentences) years.extend([year for x in range(length)]) indices.extend([index for x in range(length)]) print("\nTokenizing") tmp = [] for sentence in tqdm(sentences): tmp.append(word_tokenize(sentence)) sentences = tmp.copy() del tmp print("\nString pre processing for abstracts: lower and strip") sentences = [list(map(str.lower, x)) for x in sentences] sentences = [list(map(str.strip, x)) for x in sentences] tmp = [] print("\nString pre processing for abstracts: lemmatize and stop word removal") for string_list in tqdm(sentences, total=len(sentences)): tmp_list = [kw.string_pre_processing(x,stemming_method='None',lemmatization='DEF',stop_word_removal=True,stop_words_extra=stops,verbose=False,download_nltk=False) for x in string_list] tmp.append(tmp_list) sentences = tmp.copy() del tmp gc.collect() tmp = [] print("\nString pre processing ") for string_list in tqdm(sentences, total=len(sentences)): string_tmp = [] for token in string_list: if token == '': string_tmp.append(' | ') else: string_tmp.append(token) tmp.append(string_tmp) sentences = tmp.copy() del tmp tmp = [] print("\nString pre processing for abstracts: null word removal") for string_list in tqdm(sentences, total=len(sentences)): tmp.append([x for x in string_list if x!='']) sentences = tmp.copy() del tmp print("\nThesaurus matching") sentences = kw.thesaurus_matching(sentences,thesaurus_file='data/thesaurus/thesaurus_for_ai_keyword_with_() (testing).csv') print("\nStitiching tokens") tmp = [] for words in tqdm(sentences, total=len(sentences)): tmp.append(' '.join(words)) sentences = tmp.copy() del tmp print("\nGB to US") tmp = [] for sentence in tqdm(sentences, total=len(sentences)): tmp.append(kw.replace_british_american(sentence,kd.gb2us)) sentences = tmp.copy() del tmp sentence_df = pd.DataFrame(indices,columns=['article_index']) sentence_df['sentence'] = sentences sentence_df['year'] = years sentence_df.to_csv(root_dir+subdir+str(year_from)+'-'+str(year_to-1)+' corpus sentences abstract-title',index=False,header=True) if MAKE_REGULAR_CORPUS is False: sys.exit('Did not continue to create normal corpus. If you want a corpus, set it to True at init section.') # ============================================================================= # Get word frequency in sentence corpus -- OPTIONAL # ============================================================================= if GET_WORD_FREQ_IN_SENTENCE is True: import pandas as pd import numpy as np from tqdm import tqdm file = root_dir+subdir+str(year_from)+'-'+str(year_to-1)+' corpus abstract-title'#'/mnt/6016589416586D52/Users/z5204044/GoogleDrive/GoogleDrive/Data/corpus/AI ALL/1900-2019 corpus sentences abstract-title' file = pd.read_csv(file) size = 500000 unique = [] for data_start_point in tqdm(np.arange(0,file.shape[0],size)): if data_start_point+size<file.shape[0]: end_point = data_start_point+size else: end_point = file.shape[0]-1 # print(data_start_point,end_point) str_split = list(file.sentence[data_start_point:end_point].str.split()) str_flat = pd.DataFrame([item for sublist in str_split for item in sublist]) str_flat.columns = ['words'] str_flat.head() unique = unique+list(str_flat.words.unique()) unique = pd.DataFrame(unique) unique.columns = ['words'] unique = list(unique.words.unique()) len(unique) # ============================================================================= # Tokenize (Author Keywords and Abstracts+Titles) # ============================================================================= abstracts = [] keywords = [] keywords_index = [] abstracts_pure = [] data_with_abstract['ID'] = '' data_with_abstract['DE'] = '' data_with_abstract['TI'] = '' for index,paper in tqdm(data_with_abstract.iterrows(),total=data_with_abstract.shape[0]): keywords_str = paper['DE'] keywords_index_str = paper['ID'] abstract_str = paper['AB'] title_str = paper['TI'] abstract_dic = word_tokenize(title_str+' '+abstract_str) abstract_dic_pure = abstract_dic.copy() if pd.notnull(paper['DE']): keywords_dic = word_tokenize(keywords_str) keywords.append(keywords_str.split(';')) abstract_dic.extend(keywords_dic) else: keywords.append([]) if pd.notnull(paper['ID']): keywords_index.append(keywords_index_str.split(';')) else: keywords_index.append([]) abstracts.append(abstract_dic) abstracts_pure.append(abstract_dic_pure) # Add to main df. Not necessary data_with_abstract['AB_split'] = abstracts_pure data_with_abstract['AB_KW_split'] = abstracts # ============================================================================= # Strip and lowe case # ============================================================================= abstracts_pure = [list(map(str.strip, x)) for x in abstracts_pure] abstracts_pure = [list(map(str.lower, x)) for x in abstracts_pure] abstracts = [list(map(str.strip, x)) for x in abstracts] abstracts = [list(map(str.lower, x)) for x in abstracts] keywords = [list(map(str.strip, x)) for x in keywords] keywords = [list(map(str.lower, x)) for x in keywords] keywords_index = [list(map(str.strip, x)) for x in keywords_index] keywords_index = [list(map(str.lower, x)) for x in keywords_index] # ============================================================================= # Pre Process # ============================================================================= tmp_data = [] print("\nString pre processing for ababstracts_purestracts") for string_list in tqdm(abstracts, total=len(abstracts)): tmp_list = [kw.string_pre_processing(x,stemming_method='None',lemmatization='DEF',stop_word_removal=True,stop_words_extra=stops,verbose=False,download_nltk=False) for x in string_list] tmp_data.append(tmp_list) abstracts = tmp_data.copy() del tmp_data tmp_data = [] for string_list in tqdm(abstracts_pure, total=len(abstracts_pure)): tmp_list = [kw.string_pre_processing(x,stemming_method='None',lemmatization=False,stop_word_removal=True,stop_words_extra=stops,verbose=False,download_nltk=False) for x in string_list] tmp_data.append(tmp_list) abstracts_pure = tmp_data.copy() del tmp_data if PROCESS_KEYWORDS is True: print("\nString pre processing for keywords") tmp_data = [] for string_list in tqdm(keywords, total=len(keywords)): tmp_list = [] for string in string_list: tmp_sub_list = string.split() tmp_list.append(' '.join([kw.string_pre_processing(x,stemming_method='None',lemmatization=False,stop_word_removal=True,stop_words_extra=stops,verbose=False,download_nltk=False) for x in tmp_sub_list])) tmp_data.append(tmp_list) keywords = tmp_data.copy() del tmp_data tmp_data = [] for string_list in tqdm(keywords_index, total=len(keywords_index)): tmp_list = [] for string in string_list: tmp_sub_list = string.split() tmp_list.append(' '.join([kw.string_pre_processing(x,stemming_method='None',lemmatization=False,stop_word_removal=True,stop_words_extra=stops,verbose=False,download_nltk=False) for x in tmp_sub_list])) tmp_data.append(tmp_list) keywords_index = tmp_data.copy() del tmp_data #tmp_data = [] #for string_list in tqdm(keywords, total=len(keywords)): # tmp_list = [] # for sub_string_list in string_list: # tmp_list.append(' '.join(sub_string_list)) # tmp_data.append(tmp_list) #keywords = tmp_data.copy() #del tmp_data # ============================================================================= # Clean-up dead words # ============================================================================= tmp_data = [] for string_list in tqdm(abstracts, total=len(abstracts)): tmp_data.append([x for x in string_list if x!='']) abstracts = tmp_data.copy() del tmp_data tmp_data = [] for string_list in tqdm(abstracts_pure, total=len(abstracts_pure)): tmp_data.append([x for x in string_list if x!='']) abstracts_pure = tmp_data.copy() del tmp_data tmp_data = [] for string_list in tqdm(keywords, total=len(keywords)): tmp_data.append([x for x in string_list if x!='']) keywords = tmp_data.copy() del tmp_data tmp_data = [] for string_list in tqdm(keywords_index, total=len(keywords_index)): tmp_data.append([x for x in string_list if x!='']) keywords_index = tmp_data.copy() del tmp_data # ============================================================================= # Break-down abstracts again # ============================================================================= tmp_data = [] for abstract in tqdm(abstracts): words = [] for word in abstract: words = words+word.split() tmp_data.append(words) abstracts = tmp_data.copy() del tmp_data tmp_data = [] for abstract in tqdm(abstracts_pure): words = [] for word in abstract: words = words+word.split() tmp_data.append(words) abstracts_pure = tmp_data.copy() del tmp_data # ============================================================================= # Thesaurus matching # ============================================================================= print("\nThesaurus matching") abstracts_backup = abstracts.copy() abstracts_pure_backup = abstracts_pure.copy() keywords_backup = keywords.copy() keywords_index_backup = keywords_index.copy() abstracts = abstracts_backup.copy() abstracts_pure = abstracts_pure_backup.copy() keywords = keywords_backup.copy() keywords_index = keywords_index_backup.copy() abstracts = kw.thesaurus_matching(abstracts,thesaurus_file='data/thesaurus/thesaurus_for_ai_keyword_with_() (testing).csv') abstracts_pure = kw.thesaurus_matching(abstracts_pure,thesaurus_file='data/thesaurus/thesaurus_for_ai_keyword_with_() (testing).csv') if PROCESS_KEYWORDS is True: keywords = kw.thesaurus_matching(keywords) keywords_index = kw.thesaurus_matching(keywords_index) # ============================================================================= # Term to string corpus for co-word analysis # ============================================================================= print("\nTerm to string corpus") corpus_abstract = [] for words in tqdm(abstracts, total=len(abstracts)): corpus_abstract.append(' '.join(words)) corpus_abstract_pure = [] for words in tqdm(abstracts_pure, total=len(abstracts_pure)): corpus_abstract_pure.append(' '.join(words)) corpus_keywords = [] for words in tqdm(keywords, total=len(keywords)): corpus_keywords.append(';'.join(words)) corpus_keywords_index = [] for words in tqdm(keywords_index, total=len(keywords_index)): corpus_keywords_index.append(';'.join(words)) # ============================================================================= # Remove substrings : # be careful with this one! It might remove parts of a string or half of a word # ============================================================================= thesaurus = pd.read_csv('data/thesaurus/to_remove.csv') thesaurus['alt'] = '' thesaurus = thesaurus.values.tolist() print("\nRemoving substrings") corpus_abstract_tr = [] for paragraph in tqdm(corpus_abstract, total=len(corpus_abstract)): paragraph = kw.filter_string(paragraph,thesaurus) corpus_abstract_tr.append(paragraph) corpus_abstract_pure_tr = [] for paragraph in tqdm(corpus_abstract_pure, total=len(corpus_abstract_pure)): paragraph = kw.filter_string(paragraph,thesaurus) corpus_abstract_pure_tr.append(paragraph) corpus_keywords_tr = [] for paragraph in tqdm(corpus_keywords, total=len(corpus_keywords)): paragraph = kw.filter_string(paragraph,thesaurus) corpus_keywords_tr.append(paragraph) corpus_keywords_index_tr = [] for paragraph in tqdm(corpus_keywords_index, total=len(corpus_keywords_index)): paragraph = kw.filter_string(paragraph,thesaurus) corpus_keywords_index_tr.append(paragraph) # ============================================================================= # Final clean-up (double space and leading space) # ============================================================================= tmp_data = [] for paragraph in tqdm(corpus_abstract, total=len(corpus_abstract)): paragraph = ' '.join(paragraph.split()) tmp_data.append(paragraph) corpus_abstract = tmp_data.copy() del tmp_data tmp_data = [] for paragraph in tqdm(corpus_abstract_tr, total=len(corpus_abstract_tr)): paragraph = ' '.join(paragraph.split()) tmp_data.append(paragraph) corpus_abstract_tr = tmp_data.copy() del tmp_data tmp_data = [] for paragraph in tqdm(corpus_abstract_pure, total=len(corpus_abstract_pure)): paragraph = ' '.join(paragraph.split()) tmp_data.append(paragraph) corpus_abstract_pure = tmp_data.copy() del tmp_data tmp_data = [] for paragraph in tqdm(corpus_abstract_pure_tr, total=len(corpus_abstract_pure_tr)): paragraph = ' '.join(paragraph.split()) tmp_data.append(paragraph) corpus_abstract_pure_tr = tmp_data.copy() del tmp_data tmp_data = [] for paragraph in tqdm(corpus_keywords, total=len(corpus_keywords)): paragraph = ' '.join(paragraph.split(' ')) paragraph = ';'.join(paragraph.split(';')) tmp_data.append(paragraph) corpus_keywords = tmp_data.copy() del tmp_data tmp_data = [] for paragraph in tqdm(corpus_keywords_tr, total=len(corpus_keywords_tr)): paragraph = ' '.join(paragraph.split(' ')) paragraph = ';'.join(paragraph.split(';')) tmp_data.append(paragraph) corpus_keywords_tr = tmp_data.copy() del tmp_data tmp_data = [] for paragraph in tqdm(corpus_keywords_index, total=len(corpus_keywords_index)): paragraph = ' '.join(paragraph.split(' ')) paragraph = ';'.join(paragraph.split(';')) tmp_data.append(paragraph) corpus_keywords_index = tmp_data.copy() del tmp_data tmp_data = [] for paragraph in tqdm(corpus_keywords_index_tr, total=len(corpus_keywords_index_tr)): paragraph = ' '.join(paragraph.split(' ')) paragraph = ';'.join(paragraph.split(';')) tmp_data.append(paragraph) corpus_keywords_index_tr = tmp_data.copy() del tmp_data # ============================================================================= # Write to disk # ============================================================================= corpus_abstract = pd.DataFrame(corpus_abstract,columns=['words']) corpus_abstract_tr = pd.DataFrame(corpus_abstract_tr,columns=['words']) corpus_abstract_pure =
pd.DataFrame(corpus_abstract_pure,columns=['words'])
pandas.DataFrame
import json import pandas as pd import random import os import pyproj import numpy as np import geopandas as gpd from pathlib import Path from datetime import datetime from copy import deepcopy from shapely.geometry import Point from shapely.ops import transform from sklearn.preprocessing import OneHotEncoder # load config file with open(Path(os.path.dirname(os.path.realpath(__file__)), '../config.json')) as f: config = json.load(f) class DataLoader: """ Loads the combined HVP dataset containing POI data and URA land use data and performs data preparation. """ def __init__(self): """ Initialises the class object by loading the combined HVP dataset containing POI data and URA land use data. """ print('Loading batch data...') batch1 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_1.xlsx')) batch2 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_2.xlsx')) batch3 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_3.xlsx')) batch4 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_4.xlsx')) batch5 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_5.xlsx')) batch6 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_6.xlsx')) batch7 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_7.xlsx')) batch8 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_8.xlsx')) self.data = pd.concat([batch1, batch2, batch3, batch4, batch5, batch6, batch7, batch8], ignore_index=True) def check_stop_order(self, data): """ Checks if the stops made by each driver is in chronological order. Parameters: data: pd.Dataframe Contains the combined HVP dataset. """ for driver_id in data['DriverID'].unique(): driver_data = deepcopy(data[data['DriverID'] == driver_id].reset_index(drop=True)) unix_time = np.array([datetime.strptime(time_str, '%Y-%m-%d %H-%M-%S').timestamp() for time_str in driver_data['StartTime'].tolist()]) time_diff = unix_time[1:] - unix_time[:-1] if len(driver_data) > 1: assert np.any(time_diff < 0.0) def _buffer_in_meters(self, lng, lat, radius): """ Converts a latitude, longitude coordinate pair into a buffer with user-defined radius.s :param lng: float Contains the longitude information. :param lat: float Contains the latitude information. :param radius: float Contains the buffer radius in metres. :return: buffer_latlng: Polygon Contains the buffer. """ proj_meters = pyproj.CRS('EPSG:3414') # EPSG for Singapore proj_latlng = pyproj.CRS('EPSG:4326') project_to_metres = pyproj.Transformer.from_crs(proj_latlng, proj_meters, always_xy=True).transform project_to_latlng = pyproj.Transformer.from_crs(proj_meters, proj_latlng, always_xy=True).transform pt_meters = transform(project_to_metres, Point(lng, lat)) buffer_meters = pt_meters.buffer(radius) buffer_latlng = transform(project_to_latlng, buffer_meters) return buffer_latlng def _extract_other_driver_activities(self, driver_data, other_driver_data): """ Extracts the activity information performed by other drivers in the same area. Parameters: driver_data: pd.Dataframe Contains the combined HVP dataset for a particular driver. other_driver_data: pd.Dataframe Contains the combined HVP dataset for the other drivers. Return: driver: pd.Dataframe Contains the combined HVP dataset for a particular driver + past activities of other drivers """ other_driver_activities = pd.DataFrame() driver_data = gpd.GeoDataFrame(driver_data, geometry=gpd.points_from_xy(driver_data['StopLon'], driver_data['StopLat'])) other_driver_data = gpd.GeoDataFrame(other_driver_data, geometry=gpd.points_from_xy(other_driver_data['StopLon'], other_driver_data['StopLat'])) for i in range(len(driver_data)): # create 100m circular buffer around stop buffer = self._buffer_in_meters(driver_data.loc[i, 'StopLon'], driver_data.loc[i, 'StopLat'], 50.0) nearby_stops = other_driver_data[other_driver_data.intersects(buffer)].reset_index(drop=True) if len(nearby_stops) == 0: other_driver_activities = other_driver_activities.append(pd.Series(dtype=object), ignore_index=True) else: activity_cols = [col for col in nearby_stops.columns if ('Activity.' in col) and ('MappedActivity.' not in col) and ('Other.' not in col)] mapped_activity_cols = [col for col in nearby_stops.columns if ('MappedActivity.' in col) and ('Other.' not in col)] # calculate distribution of activities conducted near the stop summed_activity = nearby_stops.sum()[activity_cols] normalised_activity = (summed_activity) / (summed_activity.sum() + 1e-9) # calculate distribution of mapped activities conducted near the stop summed_mapped_activity = nearby_stops.sum()[mapped_activity_cols] normalised_mapped_activity = (summed_mapped_activity) / (summed_mapped_activity.sum() + 1e-9) # merge original and mapped activity types conducted by other drivers other_driver_activities = other_driver_activities.append(pd.concat([normalised_activity, normalised_mapped_activity]).T, ignore_index=True) assert len(driver_data) == len(other_driver_activities) other_driver_activities_cols = ['Other.{}'.format(column) for column in other_driver_activities.columns] other_driver_activities.columns = other_driver_activities_cols driver_data = pd.concat([driver_data, other_driver_activities], axis=1) driver_data.fillna(0, inplace=True) return driver_data def _extract_past_activities(self, data): """ Extracts past activities performed by each driver. Parameters: data: pd.Dataframe Contains the combined HVP dataset. Return: new_data: pd.DataFrame Contains the combined HVP dataset with past activities performed by each driver """ assert type(data) == gpd.GeoDataFrame new_data = pd.DataFrame() # extract unix time of each stop data['StopUnixTime'] = [datetime.strptime(time_str, '%Y-%m-%d %H-%M-%S').timestamp() for time_str in data['StartTime'].tolist()] for driver_id in data['DriverID'].unique(): driver_data = deepcopy(data[data['DriverID'] == driver_id].reset_index(drop=True)) past_activities = pd.DataFrame() for i in range(len(driver_data)): # create 100m circular buffer around stop buffer = self._buffer_in_meters(driver_data.loc[i, 'StopLon'], driver_data.loc[i, 'StopLat'], 50.0) nearby_stops = driver_data[driver_data.intersects(buffer)].reset_index(drop=True) nearby_stops = nearby_stops[nearby_stops['StopUnixTime'] < driver_data.loc[i, 'StopUnixTime']].reset_index(drop=True) if len(nearby_stops) == 0: past_activities = past_activities.append(pd.Series({'Activity.Shift': 0}), ignore_index=True) else: activity_cols = [col for col in nearby_stops.columns if ('Activity.' in col) and ('MappedActivity.' not in col) and ('Other.' not in col)] mapped_activity_cols = [col for col in nearby_stops.columns if ('MappedActivity.' in col) and ('Other.' not in col)] # calculate distribution of activities conducted near the stop summed_activity = nearby_stops.sum()[activity_cols] normalised_activity = (summed_activity) / (summed_activity.sum() + 1e-9) # calculate distribution of mapped activities conducted near the stop summed_mapped_activity = nearby_stops.sum()[mapped_activity_cols] normalised_mapped_activity = (summed_mapped_activity) / (summed_mapped_activity.sum() + 1e-9) past_activities = past_activities.append(pd.concat([normalised_activity, normalised_mapped_activity]).T, ignore_index=True) assert len(driver_data) == len(past_activities) past_activities_cols = ['Past.{}'.format(column) for column in past_activities.columns] past_activities.columns = past_activities_cols driver_data = pd.concat([driver_data, past_activities], axis=1) driver_data.fillna(0, inplace=True) new_data = pd.concat([new_data, driver_data], ignore_index=True) new_data.fillna(0, inplace=True) return new_data def _one_hot_encoding(self, train_col, test_col, feature_name): """ Performs one hot encoding of a particular column for both training and test datasets. Parameters: train_col: pd.Series Contains the column to be one-hot-encoded from the training dataset. test_col: pd.Series Contains the column to be one-hot-encoded from the test dataset. feature_name: str Contains the name of the feature to be one-hot-encoded. Return: train_onehot_df: pd.Dataframe Contains the one-hot-encoded dataframe of the column in the training dataset. test_onehot_df: pd.Dataframe Contains the one-hot-encoded dataframe of the column in the test dataset. """ encoder = OneHotEncoder(sparse=False) encoder.fit(np.array(pd.concat([train_col, test_col], ignore_index=True)).reshape(-1, 1)) train_onehot_df = pd.DataFrame(encoder.transform(np.array(train_col).reshape(-1, 1)), columns=['{}.{}'.format(feature_name, cat.replace('X_', '')) for cat in encoder.get_feature_names(['X'])]) test_onehot_df = pd.DataFrame(encoder.transform(np.array(test_col).reshape(-1, 1)), columns=['{}.{}'.format(feature_name, cat.replace('X_', '')) for cat in encoder.get_feature_names(['X'])]) return train_onehot_df, test_onehot_df def _extract_last_activity(self, data): """ Extracts last activity information. Parameters: data: pd.DataFrame Contains the verified stops information. Return: data: pd.DataFrame Contains the verified stops information with last activity information. """ activity_cols = [col for col in list(data.columns) if "MappedActivity." in col] activity_array = data[activity_cols].values last_activity_array = np.zeros(activity_array.shape) last_activity_array[1:, :] = activity_array[:-1, :] last_activity_df = pd.DataFrame(last_activity_array, columns=[col.replace("MappedActivity", "LastActivity") for col in activity_cols]) data = pd.concat([data, last_activity_df], axis=1) return data def train_test_split(self, test_ratio=0.25): """ Performs train test split on the combined HVP dataset and performs feature extraction. Parameters: test_ratio: float Contains the ratio for the test dataset. Return: train_data: pd.Dataframe Contains the training dataset after feature extraction. test_data: pd.Dataframe Contains the test dataset after feature extraction. """ # check local directory and load cache if available print('Performing train test split...') if (os.path.exists(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'train_data.xlsx'))) and \ (os.path.exists(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'test_data.xlsx'))): train_data = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'train_data.xlsx')) test_data = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'test_data.xlsx')) return train_data, test_data # extract last activity information print("Extract last activity information...") self.data = self._extract_last_activity(self.data) # perform train test split driver_id = self.data['DriverID'].unique() random.shuffle(driver_id) test_id = driver_id[:int(len(driver_id) * test_ratio)] train_id = driver_id[int(len(driver_id) * test_ratio):] train_data = self.data[self.data['DriverID'].isin(train_id)].reset_index(drop=True) test_data = self.data[self.data['DriverID'].isin(test_id)].reset_index(drop=True) # perform one hot encoding print('Performing one hot encoding...') train_vehtype, test_vehtype = self._one_hot_encoding(train_data['VehicleType'], test_data['VehicleType'], 'VehicleType') train_dayofweek, test_dayofweek = self._one_hot_encoding(train_data['DayOfWeekStr'], test_data['DayOfWeekStr'], 'DayOfWeek') train_landuse, test_landuse = self._one_hot_encoding(train_data['MappedLandUseType'], test_data['MappedLandUseType'], 'LandUse') assert len(train_vehtype) == len(train_data) assert len(train_dayofweek) == len(train_data) assert len(train_landuse) == len(train_data) assert len(test_vehtype) == len(test_data) assert len(test_dayofweek) == len(test_data) assert len(test_landuse) == len(test_data) train_data =
pd.concat([train_data, train_vehtype, train_dayofweek, train_landuse], axis=1)
pandas.concat
import pandas as pd import pytest import woodwork as ww from pandas.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) from evalml.pipelines.components import LabelEncoder def test_label_encoder_init(): encoder = LabelEncoder() assert encoder.parameters == {"positive_label": None} assert encoder.random_seed == 0 def test_label_encoder_fit_transform_y_is_None(): X = pd.DataFrame({}) y = pd.Series(["a", "b"]) encoder = LabelEncoder() with pytest.raises(ValueError, match="y cannot be None"): encoder.fit(X) encoder.fit(X, y) with pytest.raises(ValueError, match="y cannot be None"): encoder.inverse_transform(None) def test_label_encoder_transform_y_is_None(): X = pd.DataFrame({}) y = pd.Series(["a", "b"]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X) assert_frame_equal(X, X_t) assert y_t is None def test_label_encoder_fit_transform_with_numeric_values_does_not_encode(): X = pd.DataFrame({}) # binary y = pd.Series([0, 1, 1, 1, 0]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y, y_t) # multiclass X = pd.DataFrame({}) y = pd.Series([0, 1, 1, 2, 0, 2]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y, y_t) def test_label_encoder_fit_transform_with_numeric_values_needs_encoding(): X = pd.DataFrame({}) # binary y = pd.Series([2, 1, 2, 1]) y_expected = pd.Series([1, 0, 1, 0]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) # multiclass y = pd.Series([0, 1, 1, 3, 0, 3]) y_expected = pd.Series([0, 1, 1, 2, 0, 2]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) def test_label_encoder_fit_transform_with_categorical_values(): X = pd.DataFrame({}) # binary y = pd.Series(["b", "a", "b", "b"]) y_expected = pd.Series([1, 0, 1, 1]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) # multiclass y = pd.Series(["c", "a", "b", "c", "d"]) y_expected = pd.Series([2, 0, 1, 2, 3]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) def test_label_encoder_fit_transform_equals_fit_and_transform(): X = pd.DataFrame({}) y = pd.Series(["a", "b", "c", "a"]) encoder = LabelEncoder() X_fit_transformed, y_fit_transformed = encoder.fit_transform(X, y) encoder_duplicate = LabelEncoder() encoder_duplicate.fit(X, y) X_transformed, y_transformed = encoder_duplicate.transform(X, y) assert_frame_equal(X_fit_transformed, X_transformed) assert_series_equal(y_fit_transformed, y_transformed) def test_label_encoder_inverse_transform(): X = pd.DataFrame({}) y = pd.Series(["a", "b", "c", "a"]) y_expected = ww.init_series(y) encoder = LabelEncoder() _, y_fit_transformed = encoder.fit_transform(X, y) y_inverse_transformed = encoder.inverse_transform(y_fit_transformed) assert_series_equal(y_expected, y_inverse_transformed) y_encoded = pd.Series([1, 0, 2, 1]) y_expected = ww.init_series(pd.Series(["b", "a", "c", "b"])) y_inverse_transformed = encoder.inverse_transform(y_encoded) assert_series_equal(y_expected, y_inverse_transformed) def test_label_encoder_with_positive_label_multiclass_error(): y = pd.Series(["a", "b", "c", "a"]) encoder = LabelEncoder(positive_label="a") with pytest.raises( ValueError, match="positive_label should only be set for binary classification targets", ): encoder.fit(None, y) def test_label_encoder_with_positive_label_missing_from_input(): y = pd.Series(["a", "b", "a"]) encoder = LabelEncoder(positive_label="z") with pytest.raises( ValueError, match="positive_label was set to `z` but was not found in the input target data.", ): encoder.fit(None, y) @pytest.mark.parametrize( "y, positive_label, y_encoded_expected", [ ( pd.Series([True, False, False, True]), False, pd.Series([0, 1, 1, 0]), ), # boolean ( pd.Series([True, False, False, True]), True, pd.Series([1, 0, 0, 1]), ), # boolean ( pd.Series([0, 1, 1, 0]), 0, pd.Series([1, 0, 0, 1]), ), # int, 0 / 1, encoding should flip ( pd.Series([0, 1, 1, 0]), 1, pd.Series([0, 1, 1, 0]), ), # int, 0 / 1, encoding should not change ( pd.Series([6, 2, 2, 6]), 6, pd.Series([1, 0, 0, 1]), ), # ints, not 0 / 1, encoding should not change ( pd.Series([6, 2, 2, 6]), 2, pd.Series([0, 1, 1, 0]), ), # ints, not 0 / 1, encoding should flip (pd.Series(["b", "a", "a", "b"]), "a", pd.Series([0, 1, 1, 0])), # categorical (pd.Series(["b", "a", "a", "b"]), "b", pd.Series([1, 0, 0, 1])), # categorical ], ) def test_label_encoder_with_positive_label(y, positive_label, y_encoded_expected): encoder = LabelEncoder(positive_label=positive_label) _, y_fit_transformed = encoder.fit_transform(None, y) assert_series_equal(y_encoded_expected, y_fit_transformed) y_inverse_transformed = encoder.inverse_transform(y_fit_transformed) assert_series_equal(ww.init_series(y), y_inverse_transformed) def test_label_encoder_with_positive_label_fit_different_from_transform(): encoder = LabelEncoder(positive_label="a") y = pd.Series(["a", "b", "b", "a"]) encoder.fit(None, y) with pytest.raises(ValueError, match="y contains previously unseen labels"): encoder.transform(None, pd.Series(["x", "y", "x"])) @pytest.mark.parametrize("use_positive_label", [True, False]) def test_label_encoder_transform_does_not_have_all_labels(use_positive_label): encoder = LabelEncoder(positive_label="a" if use_positive_label else None) y = pd.Series(["a", "b", "b", "a"]) encoder.fit(None, y) expected = ( pd.Series([1, 1, 1, 1]) if use_positive_label else pd.Series([0, 0, 0, 0]) ) _, y_transformed = encoder.transform(None, pd.Series(["a", "a", "a", "a"])) assert_series_equal(expected, y_transformed) def test_label_encoder_with_positive_label_with_custom_indices(): encoder = LabelEncoder(positive_label="a") y = pd.Series(["a", "b", "a"]) encoder.fit(None, y) y_with_custom_indices = pd.Series(["b", "a", "a"], index=[5, 6, 7]) _, y_transformed = encoder.transform(None, y_with_custom_indices)
assert_index_equal(y_with_custom_indices.index, y_transformed.index)
pandas.testing.assert_index_equal
""" Python 3.9 дополнительная функция для более привлекательной визуализации доски Название файла visualize_board_c4.py Version: 0.1 Author: <NAME> Date: 2021-12-20 """ #!/usr/bin/env python import matplotlib.pyplot as plt from matplotlib.table import Table import pandas as pd import numpy as np def view_board(np_data, fmt='{:s}', bkg_colors=['pink', 'pink']): data =
pd.DataFrame(np_data, columns=['0','1','2','3','4','5','6'])
pandas.DataFrame
import numpy as np import pandas as pd from powersimdata.design.mimic_grid import mimic_generation_capacity from powersimdata.input.grid import Grid from powersimdata.network.model import area_to_loadzone from powersimdata.scenario.scenario import Scenario def _check_solar_fraction(solar_fraction): """Checks that the solar_fraction is between 0 and 1, or is None. :param float scale_fraction: desired solar fraction for new capacity. :raises TypeError: if type is not int, float, or None. :raises ValueError: if value is not between 0 and 1. """ if solar_fraction is None: pass elif isinstance(solar_fraction, (int, float)): if not (0 <= solar_fraction <= 1): raise ValueError("solar_fraction must be between 0 and 1") else: raise TypeError("solar_fraction must be int/float or None") def _apply_zone_scale_factor_to_ct(ct, fuel, zone_id, scale_factor): """Applies a zone scaling factor to a change table, creating internal change table structure as necessary. New keys are added, existing keys are multiplied. :param dict ct: a dictionary of scale factors, with structure matching ct from powersimdata.input.change_table.ChangeTable. :param str fuel: the fuel to be scaled. :param int zone_id: the zone_id to be scaled. :param int/float scale_factor: how much the zone should be scaled up by. """ if fuel not in ct: ct[fuel] = {} if "zone_id" not in ct[fuel]: ct[fuel]["zone_id"] = {} if zone_id not in ct[fuel]["zone_id"]: ct[fuel]["zone_id"][zone_id] = scale_factor else: ct[fuel]["zone_id"][zone_id] *= scale_factor def load_targets_from_csv(filename, drop_ignored=True): """Interprets a CSV file as a set of targets, ensuring that required columns are present, and filling in default values for optional columns. :param str filename: filepath to targets csv. :param bool drop_ignored: if True, drop all ignored columns from output. :return: (*pandas.DataFrame*) -- DataFrame of targets from csv file :raises TypeError: if filename is not a string :raises ValueError: if one or more required columns is missing. """ # Constants mandatory_columns = { "region_name", "ce_target_fraction", } optional_column_defaults = { "allowed_resources": "solar, wind", "external_ce_addl_historical_amount": 0, "solar_percentage": np.nan, "area_type": np.nan, } # Validate input if not isinstance(filename, str): raise TypeError("filename must be a str") # Interpret as object so that we can fillna() with a mixed-type dict raw_targets = pd.read_csv(filename).astype(object) raw_columns = set(raw_targets.columns) if not mandatory_columns <= raw_columns: missing_columns = mandatory_columns - raw_columns raise ValueError(f'Missing columns: {", ".join(missing_columns)}') raw_targets.set_index("region_name", inplace=True) # Report which columns are used vs. unused ignored_columns = raw_columns - mandatory_columns - optional_column_defaults.keys() print(f"ignoring: {ignored_columns}") if drop_ignored: raw_targets.drop(ignored_columns, axis=1, inplace=True) for column in optional_column_defaults.keys(): # Fill optional columns that are missing entirely if column not in raw_columns: raw_targets[column] = np.nan # Fill any empty cells within optional columns raw_targets.fillna(value=optional_column_defaults, inplace=True) return raw_targets def _make_zonename2target(grid, targets): """Creates a dictionary of {zone_name: target_name} pairs. :param powersimdata.input.grid.Grid grid: Grid instance defining the set of zones. :param pandas.DataFrame targets: a dataframe used to look up constituent zones. :return: (*dict*) -- a dictionary of {zone_name: target_name} pairs. :raises ValueError: if a zone is not present in any target areas, or if a zone is present in more than one target area. """ grid_model = grid.grid_model target_zones = { target_name: area_to_loadzone(grid_model, target_name) if pd.isnull(targets.loc[target_name, "area_type"]) else area_to_loadzone( grid_model, target_name, targets.loc[target_name, "area_type"] ) for target_name in targets.index.tolist() } # Check for any collisions zone_sets = target_zones.values() if len(set.union(*zone_sets)) != sum([len(t) for t in zone_sets]): zone_sets_list = [zone for _set in zone_sets for zone in _set] duplicates = {zone for zone in zone_sets_list if zone_sets_list.count(zone) > 1} error_areas = { zone: {area for area, zone_set in target_zones.items() if zone in zone_set} for zone in duplicates } error_msgs = [f"{k} within: {', '.join(v)}" for k, v in error_areas.items()] raise ValueError(f"Zone(s) within multiple area! {'; '.join(error_msgs)}") zonename2target = {} for target_name, zone_set in target_zones.items(): # Filter out parts of states not in the interconnect(s) in this Grid filtered_zone_set = zone_set & set(grid.zone2id.keys()) zonename2target.update({zone: target_name for zone in filtered_zone_set}) untargetted_zones = set(grid.zone2id.keys()) - set(zonename2target.keys()) if len(untargetted_zones) > 0: err_msg = f"Targets do not cover all load zones. Missing: {untargetted_zones}" raise ValueError(err_msg) return zonename2target def _get_scenario_length(scenario): """Get the number of hours in a scenario. :param powersimdata.scenario.scenario.Scenario scenario: A Scenario instance. :return: (*int*) -- the number of hours in the scenario. """ if not isinstance(scenario, Scenario): raise TypeError("next_scenario must be a Scenario object") if scenario.state.name == "create": start_ts = pd.Timestamp(scenario.state.builder.start_date) end_ts = pd.Timestamp(scenario.state.builder.end_date) else: start_ts =
pd.Timestamp(scenario.info["start_date"])
pandas.Timestamp
import os import logging import json import numpy as np import pandas as pd import matplotlib.pyplot as plt from prophet import Prophet from sklearn import metrics # gcp cloud function deploy failed due to import sklearn... from models.model_abc import Model # https://github.com/facebook/prophet/issues/223 class suppress_stdout_stderr(object): ''' A context manager for doing a "deep suppression" of stdout and stderr in Python, i.e. will suppress all print, even if the print originates in a compiled C/Fortran sub-function. This will not suppress raised exceptions, since exceptions are printed to stderr just before a script exits, and after the context manager has exited (at least, I think that is why it lets exceptions through). ''' def __init__(self): # Open a pair of null files self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] # Save the actual stdout (1) and stderr (2) file descriptors. self.save_fds = (os.dup(1), os.dup(2)) def __enter__(self): # Assign the null pointers to stdout and stderr. os.dup2(self.null_fds[0], 1) os.dup2(self.null_fds[1], 2) def __exit__(self, *_): # Re-assign the real stdout/stderr back to (1) and (2) os.dup2(self.save_fds[0], 1) os.dup2(self.save_fds[1], 2) # Close the null files os.close(self.null_fds[0]) os.close(self.null_fds[1]) class LibFBProphet(Model): enable_plot = False train_ratio = 0.9 def __init__(self): logging.getLogger('fbprophet').setLevel(logging.WARNING) # data = { # 'args': { # 'using_regressors': ['Open', 'High', 'Low', 'Volume'] # 'forecast_periods': 30 # use for run_predict # 'training_ratio': 0.9 # use for run_validate # } # 'target_data': { # 'name': 'name' # 'data': obj # dataframe # 'file_path': '{data path}' # use it if no data key # 'type': 'stock' # stock or market # }, # 'feature_data': [ # { # 'using_regressors': ['Open', 'High', 'Low', 'Volume'] # 'name': 'name' # 'data': obj # dataframe # 'file_path': '{data path}' # use it if no data key # 'type': 'stock' # stock or market # } # ] # } @staticmethod def __load_data(target_or_feature_data): if 'data' not in target_or_feature_data: if target_or_feature_data['type'] == 'stock': return pd.read_json(target_or_feature_data['file_path'], orient='records') elif target_or_feature_data['type'] == 'market': with open(target_or_feature_data['file_path'], 'r', encoding='utf-8') as f: market_data = json.loads(f.read()) market_data_records = json.dumps(market_data['data']) return pd.read_json(market_data_records, orient='records') else: logging.error('not support data type') return None def run_validate(self, data): logging.debug(data['args']) if 'enable_plot' in data['args']: self.enable_plot = data['args']['enable_plot'] if 'train_ratio' in data['args']: self.train_ratio = data['args']['train_ratio'] using_regressors = data['args']['using_regressors'] name = data['target_data']['name'] # load target_data with df df_data = LibFBProphet.__load_data(data['target_data']) for feature_data in data['feature_data']: df_feat_data = LibFBProphet.__load_data(feature_data) for col in df_feat_data.columns: if col in feature_data['using_regressors']: new_col_name = 'feat_' + feature_data['name'] + '_' + col using_regressors.append(new_col_name) df_feat_data.rename(columns={col: new_col_name}, inplace=True) df_data = df_data.merge(df_feat_data, on='Date', how='left').dropna() # reverse data order from latest start -> oldest start df = df_data[::-1] df.rename(columns={'Date': 'ds', 'Close': 'y'}, inplace=True) train_size = int(df.shape[0] * self.train_ratio) train_data = df[0:train_size] test_data = df[train_size:df.shape[0]] forecast_with_org_data = self.__run_model(train_data, using_regressors, df.shape[0] - train_size, name) if self.enable_plot: plt.show() logging.info("MSE: {}".format( metrics.mean_squared_error(forecast_with_org_data['yhat'][train_size:df.shape[0]], test_data['y']))) logging.info("MAE: {}".format( metrics.mean_absolute_error(forecast_with_org_data['yhat'][train_size:df.shape[0]], test_data['y']))) return NotImplemented def run_predict(self, data): logging.debug(data['args']) if 'enable_plot' in data['args']: self.enable_plot = data['args']['enable_plot'] using_regressors = data['args']['using_regressors'] forecast_periods = data['args']['forecast_periods'] name = data['target_data']['name'] # load target_data with df df_data = LibFBProphet.__load_data(data['target_data']) for feature_data in data['feature_data']: df_feat_data = LibFBProphet.__load_data(feature_data) for col in df_feat_data.columns: if col in feature_data['using_regressors']: new_col_name = 'feat_' + feature_data['name'] + '_' + col using_regressors.append(new_col_name) df_feat_data.rename(columns={col: new_col_name}, inplace=True) df_data = df_data.merge(df_feat_data, on='Date', how='left').dropna() # reverse data order from latest start -> oldest start df = df_data[::-1] df.rename(columns={'Date': 'ds', 'Close': 'y'}, inplace=True) forecast_with_org_data = self.__run_model(df, using_regressors, forecast_periods, name) if self.enable_plot: plt.show() # rename final_forecast = forecast_with_org_data.reset_index() final_forecast.rename( columns={'ds': 'Date', 'y': 'Close', 'yhat': 'Predict', 'yhat_upper': 'Predict_Upper', 'yhat_lower': 'Predict_Lower', 'trend': 'Trend', 'trend_upper': 'Trend_Upper', 'trend_lower': 'Trend_Lower'}, inplace=True) return final_forecast def __run_model(self, df_data, using_regressors, forecast_periods, name): m = Prophet() df_log = df_data.copy() df_log['y'] = np.log(df_data['y']) regressors = {} for r in using_regressors: if r in df_data.columns.values: o = LibFBProphet.__predict_single_var_future(df_data[['ds', r]].copy(), r, forecast_periods) regressors[name + '_' + r] = pd.concat([df_data[r], o], ignore_index=True) df_log[name + '_' + r] = np.log(df_data[r]) m.add_regressor(name + '_' + r) with suppress_stdout_stderr(): m.fit(df_log) future = m.make_future_dataframe(periods=forecast_periods) for r in using_regressors: if r in df_data.columns.values: future[name + '_' + r] = np.log(regressors[name + '_' + r]) forecast = m.predict(future) logging.debug(forecast) logging.debug(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()) train_close = pd.DataFrame(df_data[['ds', 'y']]).set_index('ds') forecast_with_org_data = forecast.set_index('ds').join(train_close) forecast_with_org_data = forecast_with_org_data[['y', 'yhat', 'yhat_upper', 'yhat_lower', 'trend', 'trend_upper', 'trend_lower']] forecast_with_org_data['yhat'] = np.exp(forecast_with_org_data.yhat) forecast_with_org_data['yhat_upper'] = np.exp(forecast_with_org_data.yhat_upper) forecast_with_org_data['yhat_lower'] = np.exp(forecast_with_org_data.yhat_lower) if self.enable_plot: m.plot(forecast) m.plot_components(forecast) forecast_with_org_data[['y', 'yhat', 'yhat_upper', 'yhat_lower']].plot(figsize=(8, 6)) return forecast_with_org_data @staticmethod def __predict_single_var_future(df_data, header_name, forecast_periods): df_data.rename(columns={header_name: 'y'}, inplace=True) df_log = df_data.copy() df_log['y'] = np.log(df_data['y']) m = Prophet() with suppress_stdout_stderr(): m.fit(df_log) future = m.make_future_dataframe(periods=forecast_periods) forecast = m.predict(future) logging.debug(forecast.head()) logging.debug(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()) df_close =
pd.DataFrame(df_data[['ds', 'y']])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from tqdm.auto import tqdm from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.model_selection import KFold, StratifiedKFold, GroupKFold from sklearn.metrics import roc_auc_score import lightgbm as lgb from catboost import CatBoostClassifier import warnings warnings.filterwarnings('ignore') # Feature Engineering Func def trans_issueDate(issueDate): year, month, day = issueDate.split('-') return int(year)*12 + int(month) def get_issueDate_day(issueDate): year, month, day = issueDate.split('-') return int(day) def trans_earliesCreditLine(earliesCreditLine): month_dict = {"Jan":1, "Feb":2, "Mar":3, "Apr":4, "May":5, "Jun":6, \ "Jul":7, "Aug":8, "Sep":9, "Oct":10, "Nov":11, "Dec":12} month, year = earliesCreditLine.split('-') month = month_dict[month] return int(year)*12 + month def trans_employmentLength_num(employmentLength): if employmentLength=='10+ years': return 15 elif employmentLength=='< 1 year': return 0 else: return str(employmentLength)[:2] employmentLength_dict = {'1 year':1,'10+ years':10,'2 years':2,'3 years':3,'4 years':4, '5 years':5,'6 years':6,'7 years':7,'8 years':8,'9 years':9,'< 1 year':0} cate_features = [ 'term', 'grade', 'subGrade', 'employmentTitle', 'employmentLength', 'homeOwnership', 'verificationStatus', 'purpose', 'delinquency_2years', 'earliesCreditLine', 'postCode', 'regionCode', 'title', 'issueDate', # bins_10 'loanAmnt_bin', 'annualIncome_bin', # bins_100 'interestRate_bin', 'dti_bin', 'installment_bin', 'revolBal_bin', 'revolUtil_bin' ] def gen_new_feats(train, test): train['earliesCreditLine'] = train['earliesCreditLine'].apply(lambda x: trans_earliesCreditLine(x)) test['earliesCreditLine'] = test['earliesCreditLine'].apply(lambda x: trans_issueDate(x)) # Step 1: concat train & test -> data data = pd.concat([train, test]) # Step 2.1 : Feature Engineering Part 1 print('LabelEncoder...') encoder = LabelEncoder() data['grade'] = encoder.fit_transform(data['grade']) data['subGrade'] = encoder.fit_transform(data['subGrade']) data['postCode'] = encoder.fit_transform(data['postCode']) data['employmentTitle'] = encoder.fit_transform(data['employmentTitle']) print('generate new features...') # data['employmentLength'] = data['employmentLength'].apply(lambda x: trans_employmentLength_num(x)) data['employmentLength'] = data['employmentLength'].apply(lambda x: x if x not in employmentLength_dict else employmentLength_dict[x]) data['issueDate_Day'] = data['issueDate'].apply(lambda x: get_issueDate_day(x)) data['issueDate'] = data['issueDate'].apply(lambda x: trans_issueDate(x)) data['date_Diff'] = data['issueDate'] - data['earliesCreditLine'] # 本次贷款距离上次的时间 data['debt'] = data['dti'] * data['annualIncome'] data['acc_ratio'] = data['openAcc'] / (data['openAcc'] + 0.1) data['revolBal_annualIncome_r'] = data['revolBal'] / (data['annualIncome'] + 0.1) data['revolTotal'] = 100*data['revolBal'] / (100 - data['revolUtil']) data['pubRec_openAcc_r'] = data['pubRec'] / (data['openAcc'] + 0.1) data['pubRec_totalAcc_r'] = data['pubRec'] / (data['totalAcc'] + 0.1) # step2.2: Binning print('Binning...') bin_nums = 10 bin_labels = [i for i in range(bin_nums)] binning_features = ['loanAmnt', 'annualIncome'] for f in binning_features: data['{}_bin'.format(f)] = pd.qcut(data[f], bin_nums, labels=bin_labels).astype(np.float64) bin_nums = 50 bin_labels = [i for i in range(bin_nums)] binning_features = ['interestRate', 'dti', 'installment', 'revolBal','revolUtil'] for f in binning_features: data['{}_bin'.format(f)] = pd.qcut(data[f], bin_nums, labels=bin_labels).astype(np.float64) for f in cate_features: data[f] = data[f].fillna(0).astype('int') return data[data['isDefault'].notnull()], data[data['isDefault'].isnull()] def gen_target_encoding_feats(train, test, encode_cols, target_col, n_fold=10): '''生成target encoding特征''' # for training set - cv tg_feats = np.zeros((train.shape[0], len(encode_cols))) kfold = StratifiedKFold(n_splits=n_fold, random_state=2021, shuffle=True) for _, (train_index, val_index) in enumerate(kfold.split(train[encode_cols], train[target_col])): df_train, df_val = train.iloc[train_index], train.iloc[val_index] for idx, col in enumerate(encode_cols): target_mean_dict = df_train.groupby(col)[target_col].mean() df_val[f'{col}_mean_target'] = df_val[col].map(target_mean_dict) tg_feats[val_index, idx] = df_val[f'{col}_mean_target'].values for idx, encode_col in enumerate(encode_cols): train[f'{encode_col}_mean_target'] = tg_feats[:, idx] # for testing set for col in encode_cols: target_mean_dict = train.groupby(col)[target_col].mean() test[f'{col}_mean_target'] = test[col].map(target_mean_dict).astype(np.float64) return train, test encoding_cate_features = [ 'term', 'grade', 'subGrade', 'employmentTitle', 'employmentLength', 'homeOwnership', 'verificationStatus', 'purpose', 'delinquency_2years', 'earliesCreditLine', 'postCode', 'regionCode', 'title', 'issueDate', # bins_10 'loanAmnt_bin', 'annualIncome_bin', # bins_100 'interestRate_bin', 'dti_bin', 'installment_bin', 'revolBal_bin','revolUtil_bin' ] TRAIN_FEAS = [ #'id', 'loanAmnt', 'term', 'interestRate', 'installment', 'grade', 'subGrade', 'employmentTitle', 'employmentLength', 'homeOwnership', 'annualIncome', 'verificationStatus', 'issueDate', 'purpose', 'postCode', 'regionCode', 'dti', 'delinquency_2years', 'ficoRangeLow', # 'ficoRangeHigh', 'openAcc', 'pubRec', 'pubRecBankruptcies', 'revolBal', 'revolUtil', 'totalAcc', 'initialListStatus', 'applicationType', 'earliesCreditLine', 'title', 'policyCode', 'n0', 'n1', 'n2', 'n3', 'n4', 'n5', 'n6', 'n7', 'n8', 'n9', 'n10', 'n11', 'n12', 'n13', 'n14', 'issueDate_Day', 'date_Diff','debt', 'acc_ratio', 'revolBal_annualIncome_r', 'revolTotal','pubRec_openAcc_r', 'pubRec_totalAcc_r', 'loanAmnt_bin','annualIncome_bin', 'interestRate_bin', 'dti_bin', 'installment_bin', 'revolBal_bin', 'revolUtil_bin', 'term_mean_target', 'grade_mean_target', 'subGrade_mean_target', 'employmentTitle_mean_target', 'employmentLength_mean_target', 'homeOwnership_mean_target', 'verificationStatus_mean_target', 'purpose_mean_target', 'delinquency_2years_mean_target', 'earliesCreditLine_mean_target', 'postCode_mean_target', 'regionCode_mean_target', 'title_mean_target', 'issueDate_mean_target', 'loanAmnt_bin_mean_target', 'annualIncome_bin_mean_target', 'interestRate_bin_mean_target', 'dti_bin_mean_target', 'installment_bin_mean_target', 'revolBal_bin_mean_target', 'revolUtil_bin_mean_target' ] cate_features=[ # 'term', # 'grade', # 'subGrade', # 'employmentTitle', # 'employmentLength', # 'homeOwnership', # 'verificationStatus', # 'purpose', # 'delinquency_2years', # 'earliesCreditLine', # 'postCode', # 'regionCode', # 'title', # 'issueDate', # 'loanAmnt_bin', # 'annualIncome_bin', # 'interestRate_bin', # 'dti_bin', # 'installment_bin', # 'revolBal_bin', # 'revolUtil_bin' ] seed0=2021 lgb_param = { 'objective': 'binary', # 自定义 'metric':'auc', 'boosting_type': 'gbdt', # 'max_bin':100, # 'min_data_in_leaf':500, 'learning_rate': 0.05, 'subsample': 0.82, 'subsample_freq': 1, 'feature_fraction': 0.88, 'lambda_l1': 6.1, 'lambda_l2': 1.3, 'max_depth':13, 'min_child_weight': 18.5, 'min_data_in_leaf': 97, 'min_gain_to_split': 0.057, 'num_leaves':24, # 'categorical_column':[0], # stock_id 'seed':seed0, 'feature_fraction_seed': seed0, 'bagging_seed': seed0, 'drop_seed': seed0, 'data_random_seed': seed0, 'n_jobs':-1, # 'device':'cuda', 'verbose': -1} cat_params = { 'iterations': 50000, # 3000 'depth':6, 'l2_leaf_reg':5, 'learning_rate': 0.02, # 0.05 'loss_function':'CrossEntropy', 'eval_metric': 'AUC', 'task_type':'GPU', 'random_seed': 2021, "early_stopping_rounds": 200, 'verbose':100, # 'logging_level': 'Silent', 'use_best_model': True, } def train_and_evaluate_lgb(train, test, params, split_seed): # Hyperparammeters (just basic) features = TRAIN_FEAS print('features num: ', len(features)) print('cate features num: ', len(cate_features)) y = train['isDefault'] oof_predictions = np.zeros(train.shape[0]) test_predictions = np.zeros(test.shape[0]) kfold = KFold(n_splits = 5, random_state = split_seed, shuffle = True) for fold, (trn_ind, val_ind) in enumerate(kfold.split(train)): print(f'Training fold {fold + 1}') x_train, x_val = train.iloc[trn_ind], train.iloc[val_ind] y_train, y_val = y.iloc[trn_ind], y.iloc[val_ind] train_dataset = lgb.Dataset(x_train[features], y_train) val_dataset = lgb.Dataset(x_val[features], y_val) model = lgb.train(params = params, num_boost_round = 10000, # 1000 categorical_feature=cate_features, train_set = train_dataset, valid_sets = [train_dataset, val_dataset], verbose_eval = 200, early_stopping_rounds=150, # 50 ) # Add predictions to the out of folds array oof_predictions[val_ind] = model.predict(x_val[features]) # Predict the test set test_predictions += model.predict(test[features]) / 5 score = roc_auc_score(y, oof_predictions) print(f'Our out of folds roc_auc is {score}') return test_predictions def train_and_evaluate_cat(train, test, params, split_seed): # Hyperparammeters (just basic) y = train['isDefault'] features = TRAIN_FEAS oof_predictions = np.zeros(train.shape[0]) test_predictions = np.zeros(test.shape[0]) nsplits = 5 kfold = KFold(n_splits = nsplits, random_state = split_seed, shuffle = True) for fold, (trn_ind, val_ind) in enumerate(kfold.split(train)): print(f'Training fold {fold + 1}') x_train, x_val = train[features].iloc[trn_ind], train[features].iloc[val_ind] y_train, y_val = y.iloc[trn_ind], y.iloc[val_ind] model = CatBoostClassifier(**params) model.fit(x_train, y_train, eval_set=(x_val,y_val), # eval_set=(test[:150000][features],test_a_tgt), cat_features=cate_features, use_best_model=True, verbose=200 ) # Add predictions to the out of folds array oof_predictions[val_ind] = model.predict_proba(x_val[features])[:,1] # Predict the test set # test_predictions += model.predict_proba(test[features])[:,1] / nsplits test_predictions += model.predict_proba(test[features])[:,1] / nsplits score = roc_auc_score(y, oof_predictions) print(f'Our out of folds roc_auc is {score}') return test_predictions if __name__ == '__main__': # loading_data print('data loading...') train = pd.read_csv('data/train.csv') test =
pd.read_csv('data/test_a.csv')
pandas.read_csv
import pandas as pd import os from sklearn.metrics.pairwise import linear_kernel from sklearn.feature_extraction.text import TfidfVectorizer from recommend.models import Product, ProductTag, Estimate PATH = os.getenv('FILE_PATH') def make_user_tag_raw_string(user_id): tags = '' for estimate in Estimate.objects.all().filter(user_id=user_id).order_by('-estimate_rate')[:5]: prod = estimate.prod for product_tag in ProductTag.objects.all().filter(prod=prod): tag = product_tag.tag.tag_text tags += tag + ' ' return tags def make_rec(): products =
pd.DataFrame(columns=['id', 'category', 'raw_tag'])
pandas.DataFrame
from ms_learn_crawler import * import calendar import time import pandas as pd import pickle import os data_month = 1 data_year = 2022 f = open("portfolio.config", "r") portfolio_urls = f.readlines() cert_info = {} all_cert_lp_info = pd.DataFrame() all_cert_module_info = pd.DataFrame() crawler = ms_learn_crawler() ## Get all the LP info for each cert cert_lp_pickle_file_name = "../data/"+str(data_month)+"-"+str(data_year)+"-all_cert_lp_info.pkl" if(os.path.exists(cert_lp_pickle_file_name)): #read from file to avoid reprocessing with open(cert_lp_pickle_file_name, 'rb') as file: # Call load method to deserialze all_cert_lp_info = pickle.load(file) else: # do the processing for cert in portfolio_urls: learn_uids = crawler.get_learn_paths_for_cert(cert) if len(learn_uids)>0: lp_metadata = crawler.get_learn_path_metadata(learn_uids) df = pd.DataFrame(lp_metadata, columns = ['LearningPathUid', 'LiveUrl','TotalModules']) last_slash = cert.rfind("/") cert_name = cert[last_slash+1:] df['Certification'] = cert_name.strip() if all_cert_lp_info.size == 0: all_cert_lp_info = df else: all_cert_lp_info =
pd.concat([all_cert_lp_info,df],sort=False)
pandas.concat
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # turn off pink warning boxes import warnings warnings.filterwarnings("ignore") #----------------------------------------------------------------------------- def clean_flood(flood): '''Drops unneeded columns from the med center flooding df Makes sure DateTime is in DateTime format''' # drop the columns flood = flood.drop(columns=['LAT', 'LONG', 'Zone', 'SensorStatus', 'AlertTriggered', 'Temp_C', 'Temp_F', 'Vendor']) # Set to date time format flood.DateTime = pd.to_datetime(flood.DateTime) flood = flood.rename(columns={"DateTime": "datetime", "DistToWL_ft": "sensor_to_water_feet", "DistToWL_m": "sensor_to_water_meters", "DistToDF_ft": "sensor_to_ground_feet", "DistToDF_m": "sensor_to_ground_meters"}) # replae -999 with 0 flood["sensor_to_ground_feet"].replace({-999:13.5006561680}, inplace=True) flood["sensor_to_ground_meters"].replace({-999:4.115}, inplace=True) #flood = flood.replace(to_replace=-999, value=0) # create new features for flood depth flood['flood_depth_feet'] = flood.sensor_to_ground_feet - flood.sensor_to_water_feet flood['flood_depth_meters'] = flood.sensor_to_ground_meters - flood.sensor_to_water_meters # Create new alert def flood_alert(c): if 0 < c['flood_depth_feet'] < 0.66667: return 'No Risk' elif 0.66667 < c['flood_depth_feet'] < 1.08333: return 'Minor Risk' elif 1.08333 < c['flood_depth_feet'] < 2.16667: return 'Moderate Risk' elif 2.16667 < c['flood_depth_feet']: return 'Major Risk !' else: return 'No Alert' flood['flood_alert'] = flood.apply(flood_alert, axis=1) flood = flood[(flood.sensor_to_water_feet != -999)] # return new df return flood #----------------------------------------------------------------------------- def clean_air(air): '''Drops unneeded columns from the air quality df then handles the nulls in alert triggered column set to date time format''' # drop the colums air = air.drop(columns=['LAT', 'LONG', 'Zone', 'Sensor_id', 'SensorModel', 'SensorStatus', 'Vendor']) # replace nulls in ALertTriggered to None air.fillna("None", inplace = True) # set to date time format air.DateTime = pd.to_datetime(air.DateTime) # rename features air = air.rename(columns={"DateTime": "datetime", "AlertTriggered":"alert_triggered"}) air = air.replace(to_replace=-999, value=0) # create time series features air['dates'] = pd.to_datetime(air['datetime']).dt.date air['time'] = pd.to_datetime(air['datetime']).dt.time air['hour'] = pd.to_datetime(air['datetime']).dt.hour air['weekday'] = pd.to_datetime(air['datetime']).dt.weekday # make all CO bins air['AQI_CO'] = pd.cut(air.CO, bins = [-1,4.5,9.5,12.5,15.5,30.5,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) CO_24hr = air.groupby('dates', as_index=False)['CO'].mean() CO_24hr = CO_24hr.rename(columns={'CO':'CO_24hr'}) air = air.merge(CO_24hr, on = 'dates', how ='left') air['AQI_CO_24hr'] = pd.cut(air.CO_24hr, bins = [-1,4.5,9.5,12.5,15.5,30.5,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) air['AQI_pm2_5'] = pd.cut(air.Pm2_5, bins = [-1,12.1,35.5,55.5,150.5,250.5,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) pm_25_24hr = air.groupby('dates', as_index=False)['Pm2_5'].mean() pm_25_24hr = pm_25_24hr.rename(columns={'Pm2_5':'Pm_25_24hr'}) air = air.merge(pm_25_24hr, on = 'dates', how ='left') air['AQI_pm_25_24hr'] = pd.cut(air.Pm_25_24hr, bins = [-1,12.1,35.5,55.5,150.5,250.5,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) air['AQI_pm10'] = pd.cut(air.Pm10, bins = [-1,55,154,255,355,425,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) pm_10_24hr = air.groupby('dates', as_index=False)['Pm10'].mean() pm_10_24hr = pm_10_24hr.rename(columns={'Pm10':'Pm_10_24hr'}) air = air.merge(pm_10_24hr, on = 'dates', how ='left') air['AQI_pm10_24hr'] = pd.cut(air.Pm_10_24hr, bins = [-1,55,154,255,355,425,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) return air #----------------------------------------------------------------------------- def wrangle_weather(weather): ''' This function will drop unneccessary columns, change datetime to a pandas datetime datatype, and rename columns to be more readable to return a clean dataframe. ''' #read csv and turn into pandas dataframe sa_weather = pd.read_csv('SA_weather.csv') # concat sa date and time sa_weather['Date_Time'] = sa_weather['Date'] + ' ' + sa_weather['Time'] # put into date time format sa_weather.Date_Time = pd.to_datetime(sa_weather.Date_Time) # round to nearest hour sa_weather['DateTime'] = sa_weather['Date_Time'].dt.round('60min') # set sa weather index sa_weather = sa_weather.set_index('DateTime') # drop old datetime sa_weather = sa_weather.drop(columns=['Date_Time', 'Temp', 'Humidity', 'Barometer']) # rename sa_weather = sa_weather.rename(columns={"Time": "time", "Date": "date", "Weather": "weather", "Wind": "wind", "Visibility": "visibility"}) #drop columns we will not be using weather.drop(columns=[ 'Sensor_id', 'Vendor', 'SensorModel', 'LAT', 'LONG', 'Zone', 'AlertTriggered', 'SensorStatus'], inplace=True) #rename columns to be more readable weather = weather.rename(columns={"DateTime": "datetime", "Temp_C": "celsius", "Temp_F": "farenheit", "Humidity": "humidity", "DewPoint_C": "dewpoint_celsius", "DewPoint_F": "dewpoint_farenheit", "Pressure_Pa": "pressure"}) #change datetime to pandas datetime object weather.datetime = pd.to_datetime(weather.datetime) # round to hour weather['DateTime'] = weather['datetime'].dt.round('60min') # set index weather = weather.set_index('DateTime') # join the 2 df's weather = weather.join(sa_weather, how='right') # repalce -999 weather = weather.replace(to_replace=-999, value=0) # drop nulls weather.dropna(inplace = True) #return clean weather df return weather #----------------------------------------------------------------------------- def wrangle_sound(df): ''' This function drops unnecessary columns and converts the 'DateTime' column to a datetime object ''' # Drops unnecessary columns df = df.drop(columns = ['SensorStatus', 'AlertTriggered', 'Zone', 'LONG', 'LAT', 'SensorModel', 'Vendor', 'Sensor_id']) # Converts to datetime df['DateTime'] = pd.to_datetime(df.DateTime) # make noise level feature df['how_loud'] = pd.cut(df.NoiseLevel_db, bins = [-1,46,66,81,101,4000], labels = ['Normal', 'Moderate', 'Loud', "Very Loud", "Extremely Loud"]) def sound_alert(c): if c['NoiseLevel_db'] > 80: return 'Minor Risk' elif c['NoiseLevel_db'] > 120: return 'Major Risk' else: return 'No Alert' df['sound_alert'] = df.apply(sound_alert, axis=1) return df #----------------------------------------------------------------------------- def full_daily_downtown_COSA_dataframe(): ''' This function takes in all COSA dataframes, averages them by day, then joins them all together using the day as a primary key ''' # Pulls sound CSV and sets datetime as index, then orders it df = pd.read_csv('downtown_sound.csv') sound_df = wrangle_sound(df) sound_df = sound_df.set_index('DateTime') sound_df = sound_df.sort_index() # Pulls flood CSV and sets datetime as index flood = pd.read_csv('downtown_flood.csv') flood_df = clean_flood(flood) flood_df = flood_df.set_index('datetime') # Pulls weather CSV weather = pd.read_csv('downtown_weather.csv') weather_df = wrangle_weather(weather) # Pulls air CSV, sets datetime column to datetime object, sets it as an index, then sorts it air = pd.read_csv('downtown_air.csv') air_df = clean_air(air) air_df.datetime = pd.to_datetime(air_df.datetime) air_df = air_df.set_index('datetime') air_df = air_df.sort_index() # Resamples each dataframe by the day using mean, and drops unnecessary columns from air_df weather_day_df = weather_df.resample('D', on='datetime').mean() flood_day_df = flood_df.resample('D').mean() sound_day_df = sound_df.resample('D').mean() air_day_df = air_df.resample('D').mean().drop(columns = ['hour', 'weekday', 'CO_24hr', 'Pm_25_24hr', 'Pm_10_24hr', 'SO2', 'O3', 'NO2']) # Creating series for each pollutant air2_5 = air_df.drop(air_df.columns.difference(['Pm2_5', 'AQI_pm2_5']), 1) air10 = air_df.drop(air_df.columns.difference(['Pm10', 'AQI_pm10']), 1) airCO = air_df.drop(air_df.columns.difference(['CO', 'AQI_CO']), 1) # Pull most hazardous levels of pollution for each day series2_5 = air2_5.resample('D').max().rename(columns = {'AQI_pm2_5': 'most_hazardous_pm2.5_level'})['most_hazardous_pm2.5_level'] series10 = air10.resample('D').max().rename(columns = {'AQI_pm10': 'most_hazardous_pm10_level'})['most_hazardous_pm10_level'] seriesCO = airCO.resample('D').max().rename(columns = {'AQI_CO': 'most_hazardous_CO_level'})['most_hazardous_CO_level'] # Joins the series together in a dataframe hazards = pd.DataFrame(series2_5).join(series10).join(seriesCO) # Joins the resampled dataframes together df = weather_day_df.join(air_day_df).join(hazards).join(sound_day_df).join(flood_day_df) # Rounds numbers in specific columns df = df.round({'celsius': 2, 'farenheit': 2, 'humidity': 2, 'dewpoint_celsius': 2, 'dewpoint_farenheit': 2, 'pressure': 2, 'NoiseLevel_db': 2, 'sensor_to_water_feet': 2, 'sensor_to_water_meters': 2, 'sensor_to_ground_feet': 2, 'sensor_to_ground_meters': 2, 'flood_depth_feet': 2, 'flood_depth_meters': 2}) # Create AQI for CO df['AQI_CO'] = pd.cut(df.CO, bins = [-1,4.5,9.5,12.5,15.5,30.5,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) # create AQi for pm 2.5 df['AQI_pm2_5'] = pd.cut(df.Pm2_5, bins = [-1,12.1,35.5,55.5,150.5,250.5,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) # create AQI for pm 10 df['AQI_pm10'] = pd.cut(df.Pm10, bins = [-1,55,154,255,355,425,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) return df #----------------------------------------------------------------------------- def full_daily_medcenter_COSA_dataframe(): ''' This function takes in all COSA dataframes, averages them by day, then joins them all together using the day as a primary key ''' # Pulls sound CSV and sets datetime as index, then orders it df = pd.read_csv('med_center_sound.csv') sound_df = wrangle_sound(df) sound_df = sound_df.set_index('DateTime') sound_df = sound_df.sort_index() # Pulls flood CSV and sets datetime as index flood = pd.read_csv('med_center_flood.csv') flood_df = clean_flood(flood) flood_df = flood_df.set_index('datetime') # Pulls weather CSV weather = pd.read_csv('med_center_weather.csv') weather_df = wrangle_weather(weather) # Pulls air CSV, sets datetime column to datetime object, sets it as an index, then sorts it air = pd.read_csv('med_center_air.csv') air_df = clean_air(air) air_df.datetime = pd.to_datetime(air_df.datetime) air_df = air_df.set_index('datetime') air_df = air_df.sort_index() # Resamples each dataframe by the day using mean, and drops unnecessary columns from air_df weather_day_df = weather_df.resample('D', on='datetime').mean() flood_day_df = flood_df.resample('D').mean() sound_day_df = sound_df.resample('D').mean() air_day_df = air_df.resample('D').mean().drop(columns = ['hour', 'weekday', 'CO_24hr', 'Pm_25_24hr', 'Pm_10_24hr', 'SO2', 'O3', 'NO2']) # Creating series for each pollutant air2_5 = air_df.drop(air_df.columns.difference(['Pm2_5', 'AQI_pm2_5']), 1) air10 = air_df.drop(air_df.columns.difference(['Pm10', 'AQI_pm10']), 1) airCO = air_df.drop(air_df.columns.difference(['CO', 'AQI_CO']), 1) # Pull most hazardous levels of pollution for each day series2_5 = air2_5.resample('D').max().rename(columns = {'AQI_pm2_5': 'most_hazardous_pm2.5_level'})['most_hazardous_pm2.5_level'] series10 = air10.resample('D').max().rename(columns = {'AQI_pm10': 'most_hazardous_pm10_level'})['most_hazardous_pm10_level'] seriesCO = airCO.resample('D').max().rename(columns = {'AQI_CO': 'most_hazardous_CO_level'})['most_hazardous_CO_level'] # Joins the series together in a dataframe hazards = pd.DataFrame(series2_5).join(series10).join(seriesCO) # Joins the resampled dataframes together df = weather_day_df.join(air_day_df).join(hazards).join(sound_day_df).join(flood_day_df) # Rounds numbers in specific columns df = df.round({'celsius': 2, 'farenheit': 2, 'humidity': 2, 'dewpoint_celsius': 2, 'dewpoint_farenheit': 2, 'pressure': 2, 'NoiseLevel_db': 2, 'sensor_to_water_feet': 2, 'sensor_to_water_meters': 2, 'sensor_to_ground_feet': 2, 'sensor_to_ground_meters': 2, 'flood_depth_feet': 2, 'flood_depth_meters': 2}) # Create AQI for CO df['AQI_CO'] = pd.cut(df.CO, bins = [-1,4.5,9.5,12.5,15.5,30.5,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) # create AQi for pm 2.5 df['AQI_pm2_5'] = pd.cut(df.Pm2_5, bins = [-1,12.1,35.5,55.5,150.5,250.5,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) # create AQI for pm 10 df['AQI_pm10'] = pd.cut(df.Pm10, bins = [-1,55,154,255,355,425,4000], labels = ['Good', 'Moderate', 'Unhealthy for Sensitive Groups', "Unhealthy", "Very Unhealthy", 'Hazardous']) return df #----------------------------------------------------------------------------- def full_daily_brooks_COSA_dataframe(): ''' This function takes in all COSA dataframes, averages them by day, then joins them all together using the day as a primary key ''' # Pulls sound CSV and sets datetime as index, then orders it df =
pd.read_csv('brooks_sound.csv')
pandas.read_csv
from typing import Dict, List import pandas as pd import pytest from ruamel.yaml import YAML import great_expectations.exceptions as ge_exceptions from great_expectations.core.batch import ( Batch, BatchDefinition, BatchRequest, PartitionDefinition, ) from great_expectations.data_context.util import instantiate_class_from_config from great_expectations.datasource.new_datasource import Datasource yaml = YAML() @pytest.fixture def basic_datasource_with_runtime_data_connector(): basic_datasource: Datasource = instantiate_class_from_config( yaml.load( f""" class_name: Datasource execution_engine: class_name: PandasExecutionEngine data_connectors: test_runtime_data_connector: module_name: great_expectations.datasource.data_connector class_name: RuntimeDataConnector runtime_keys: - pipeline_stage_name - airflow_run_id - custom_key_0 """, ), runtime_environment={"name": "my_datasource"}, config_defaults={"module_name": "great_expectations.datasource"}, ) return basic_datasource def test_basic_datasource_runtime_data_connector_self_check( basic_datasource_with_runtime_data_connector, ): report = basic_datasource_with_runtime_data_connector.self_check() assert report == { "execution_engine": { "caching": True, "module_name": "great_expectations.execution_engine.pandas_execution_engine", "class_name": "PandasExecutionEngine", "discard_subset_failing_expectations": False, "boto3_options": {}, }, "data_connectors": { "count": 1, "test_runtime_data_connector": { "class_name": "RuntimeDataConnector", "data_asset_count": 0, "example_data_asset_names": [], "data_assets": {}, "unmatched_data_reference_count": 0, "example_unmatched_data_references": [], }, }, } def test_basic_datasource_runtime_data_connector_error_checking( basic_datasource_with_runtime_data_connector, ): test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) # Test for an unknown datasource with pytest.raises(ValueError): # noinspection PyUnusedLocal batch_list: List[ Batch ] = basic_datasource_with_runtime_data_connector.get_batch_list_from_batch_request( batch_request=BatchRequest( datasource_name="non_existent_datasource", data_connector_name="test_runtime_data_connector", data_asset_name="my_data_asset", ) ) # Test for an unknown data_connector with pytest.raises(ValueError): # noinspection PyUnusedLocal batch_list: List[ Batch ] = basic_datasource_with_runtime_data_connector.get_batch_list_from_batch_request( batch_request=BatchRequest( datasource_name=basic_datasource_with_runtime_data_connector.name, data_connector_name="non_existent_data_connector", data_asset_name="my_data_asset", ) ) # Test for illegal absence of partition_request when batch_data is specified with pytest.raises(ge_exceptions.DataConnectorError): # noinspection PyUnusedLocal batch_list: List[ Batch ] = basic_datasource_with_runtime_data_connector.get_batch_list_from_batch_request( batch_request=BatchRequest( datasource_name=basic_datasource_with_runtime_data_connector.name, data_connector_name="test_runtime_data_connector", data_asset_name="my_data_asset", batch_data=test_df, partition_request=None, ) ) # Test for illegal nullity of partition_request["partition_identifiers"] when batch_data is specified partition_request: dict = {"partition_identifiers": None} with pytest.raises(ge_exceptions.DataConnectorError): # noinspection PyUnusedLocal batch_list: List[ Batch ] = basic_datasource_with_runtime_data_connector.get_batch_list_from_batch_request( batch_request=BatchRequest( datasource_name=basic_datasource_with_runtime_data_connector.name, data_connector_name="test_runtime_data_connector", data_asset_name="my_data_asset", batch_data=test_df, partition_request=partition_request, ) ) # Test for illegal falsiness of partition_request["partition_identifiers"] when batch_data is specified partition_request: dict = {"partition_identifiers": {}} with pytest.raises(ge_exceptions.DataConnectorError): # noinspection PyUnusedLocal batch_list: List[ Batch ] = basic_datasource_with_runtime_data_connector.get_batch_list_from_batch_request( batch_request=BatchRequest( datasource_name=basic_datasource_with_runtime_data_connector.name, data_connector_name="test_runtime_data_connector", data_asset_name="my_data_asset", batch_data=test_df, partition_request=partition_request, ) ) def test_partition_request_and_runtime_keys_success_all_keys_present( basic_datasource_with_runtime_data_connector, ): test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) partition_request: dict partition_request = { "batch_identifiers": { "pipeline_stage_name": "core_processing", "airflow_run_id": 1234567890, "custom_key_0": "custom_value_0", } } # Verify that all keys in partition_request are acceptable as runtime_keys (using batch count). batch_request: dict = { "datasource_name": basic_datasource_with_runtime_data_connector.name, "data_connector_name": "test_runtime_data_connector", "data_asset_name": "IN_MEMORY_DATA_ASSET", "batch_data": test_df, "partition_request": partition_request, "limit": None, } batch_request: BatchRequest = BatchRequest(**batch_request) batch_list: List[ Batch ] = basic_datasource_with_runtime_data_connector.get_batch_list_from_batch_request( batch_request=batch_request ) assert len(batch_list) == 1 def test_partition_request_and_runtime_keys_error_illegal_keys( basic_datasource_with_runtime_data_connector, ): test_df: pd.DataFrame =
pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
pandas.DataFrame
import pytz import pytest import dateutil import warnings import numpy as np from datetime import timedelta from itertools import product import pandas as pd import pandas._libs.tslib as tslib import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas.core.indexes.datetimes import cdate_range from pandas import (DatetimeIndex, PeriodIndex, Series, Timestamp, Timedelta, date_range, TimedeltaIndex, _np_version_under1p10, Index, datetime, Float64Index, offsets, bdate_range) from pandas.tseries.offsets import BMonthEnd, CDay, BDay from pandas.tests.test_base import Ops START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setup_method(self, method): super(TestDatetimeIndexOps, self).setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: pytest.raises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 pytest.raises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) assert idx1.is_monotonic # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.min() == Timestamp('2011-01-01', tz=tz) assert idx.max() == Timestamp('2011-01-03', tz=tz) assert idx.argmin() == 0 assert idx.argmax() == 2 for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) assert pd.isna(getattr(obj, op)()) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') assert np.min(dr) == Timestamp('2016-01-15 00:00:00', freq='D') assert np.max(dr) == Timestamp('2016-01-20 00:00:00', freq='D') errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, errmsg, np.min, dr, out=0) tm.assert_raises_regex(ValueError, errmsg, np.max, dr, out=0) assert np.argmin(dr) == 0 assert np.argmax(dr) == 5 if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex( ValueError, errmsg, np.argmin, dr, out=0) tm.assert_raises_regex( ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) assert elt.round(freq='H') == expected_elt msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assert_raises_regex(ValueError, msg): rng.round(freq='foo') with tm.assert_raises_regex(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assert_raises_regex(ValueError, msg, rng.round, freq='M') tm.assert_raises_regex(ValueError, msg, elt.round, freq='M') # GH 14440 & 15578 index = pd.DatetimeIndex(['2016-10-17 12:00:00.0015'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.002000'], tz=tz) tm.assert_index_equal(result, expected) for freq in ['us', 'ns']: tm.assert_index_equal(index, index.round(freq)) index = pd.DatetimeIndex(['2016-10-17 12:00:00.00149'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001000'], tz=tz) tm.assert_index_equal(result, expected) index = pd.DatetimeIndex(['2016-10-17 12:00:00.001501031']) result = index.round('10ns') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001501030']) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(): ts = '2016-10-17 12:00:00.001501031' pd.DatetimeIndex([ts]).round('1010ns') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assert_raises_regex(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() assert result == expected def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) assert result == expected def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() assert result == expected def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [
pd.offsets.Hour(2)
pandas.offsets.Hour
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest from copy import deepcopy import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt.utils.random_ import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.portfolio['attach_call_seq'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_execute_order_nb(): # Errors, ignored and rejected orders with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(-100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.nan, 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.inf, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.nan, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., np.nan, 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., -10., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., np.nan, 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., -100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, -10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=0)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=-10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=np.nan)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., np.nan, 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., -10., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 10., 0., 100., 10., 1100., 0, 0), nb.order_nb(0, 10)) assert exec_state == ExecuteOrderState(cash=100.0, position=10.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(15, 10, max_size=10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=1.)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100, 0., np.inf, np.nan, 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(100, 10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-200, 10, direction=Direction.LongOnly, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, fixed_fees=1000)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=180.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=909.0, position=-100.0, debt=900.0, free_cash=-891.0) assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=7.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=125.0, position=-2.5, debt=25.0, free_cash=75.0) assert_same_tuple(order_result, OrderResult( size=7.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-2.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=-2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-7.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-10.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(150., -5., 0., 150., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=300.0, position=-20.0, debt=150.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=50.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(1000., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 17.5, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=850.0, position=3.571428571428571, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.571428571428571, price=17.5, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 100, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=37.5, position=-4.375, debt=43.75, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=0.625, price=100.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 10., 0., -50., 10., 100., 0, 0), nb.order_nb(-20, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=150.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 1., 0., -50., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=10.0, position=0.0, debt=0.0, free_cash=-40.0) assert_same_tuple(order_result, OrderResult( size=1.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., -100., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=-100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-20, 10, fees=0.1, slippage=0.1, fixed_fees=1., lock_cash=True)) assert exec_state == ExecuteOrderState(cash=80.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_both(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='both', **kwargs) def from_orders_longonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='longonly', **kwargs) def from_orders_shortonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_both().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1), (8, 2, 0, 100.0, 1.0, 0.0, 0), (9, 2, 1, 100.0, 2.0, 0.0, 1), (10, 2, 3, 50.0, 4.0, 0.0, 0), (11, 2, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 2, 0, 100.0, 1.0, 0.0, 1), (5, 2, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_both(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 198.01980198019803, 2.02, 0.0, 1), (2, 0, 3, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 1), (2, 0, 3, 49.504950495049506, 4.04, 0.0, 0), (3, 0, 4, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 0), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 1), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 1, 3, 1.0, 4.0, 0.4, 1), (7, 1, 4, 1.0, 5.0, 0.5, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 2.0, 0), (10, 2, 3, 1.0, 4.0, 4.0, 1), (11, 2, 4, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 1, 3, 1.0, 4.0, 0.1, 1), (7, 1, 4, 1.0, 5.0, 0.1, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 1.0, 0), (10, 2, 3, 1.0, 4.0, 1.0, 1), (11, 2, 4, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_both(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 1, 3, 1.0, 3.6, 0.0, 1), (7, 1, 4, 1.0, 5.5, 0.0, 0), (8, 2, 0, 1.0, 0.0, 0.0, 1), (9, 2, 1, 1.0, 4.0, 0.0, 0), (10, 2, 3, 1.0, 0.0, 0.0, 1), (11, 2, 4, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_both(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_both(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.5, 4.0, 0.0, 1), (3, 0, 4, 0.5, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0), (8, 2, 0, 1.0, 1.0, 0.0, 1), (9, 2, 1, 1.0, 2.0, 0.0, 0), (10, 2, 3, 1.0, 4.0, 0.0, 1), (11, 2, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_both(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 1, 3, 1.0, 4.0, 0.0, 0), (6, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 3, 1.0, 4.0, 0.0, 0), (5, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_lock_cash(self): pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [143.12812469365747, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-49.5, -49.5] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [94.6034702480149, 47.54435839623566] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [49.5, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [1.4312812469365748, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-96.16606313106556, -96.16606313106556] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [0.4699090272918124, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [98.06958012596222, 98.06958012596222] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = from_orders_both(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 1000., 2., 0., 1), (2, 0, 3, 500., 4., 0., 0), (3, 0, 4, 1000., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 200., 2., 0., 1), (6, 1, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-6600.0, 0.0] ]) ) pf = from_orders_longonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 100., 2., 0., 1), (2, 0, 3, 50., 4., 0., 0), (3, 0, 4, 50., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 100., 2., 0., 1), (6, 1, 3, 50., 4., 0., 0), (7, 1, 4, 50., 5., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [200.0, 200.0], [200.0, 200.0], [0.0, 0.0], [250.0, 250.0] ]) ) pf = from_orders_shortonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1000., 1., 0., 1), (1, 0, 1, 550., 2., 0., 0), (2, 0, 3, 1000., 4., 0., 1), (3, 0, 4, 800., 5., 0., 0), (4, 1, 0, 100., 1., 0., 1), (5, 1, 1, 100., 2., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [-900.0, 0.0], [-900.0, 0.0], [-900.0, 0.0], [-4900.0, 0.0], [-3989.6551724137926, 0.0] ]) ) def test_allow_partial(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 1, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0), (4, 1, 0, 1000.0, 1.0, 0.0, 1), (5, 1, 3, 1000.0, 4.0, 0.0, 1), (6, 1, 4, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_orders_both(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 1, 0.0, 100.0, 0.0, 0.0, 2.0, 200.0, -np.inf, 2.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 2.0, 200.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 0, 0, 2, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, 3.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 0, 0, 3, 400.0, -100.0, 200.0, 0.0, 4.0, 0.0, np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 0, 0, 4, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, -np.inf, 5.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_orders_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_value(self): record_arrays_close( from_orders_both(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.25, 4.0, 0.0, 1), (3, 0, 4, 0.2, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_target_amount(self): record_arrays_close( from_orders_both(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=75., size_type='targetamount', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_both(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 1, 2, 8.333333333333332, 3.0, 0.0, 0), (8, 1, 3, 4.166666666666668, 4.0, 0.0, 0), (9, 1, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 25.0, 2.0, 0.0, 0), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 0), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 0), (4, 0, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0), (2, 0, 1, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 2, 1, 25.0, 2.0, 0.0, 0), (5, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (6, 1, 2, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (9, 1, 3, 4.166666666666668, 4.0, 0.0, 1), (10, 2, 3, 4.166666666666668, 4.0, 0.0, 1), (11, 0, 4, 2.5, 5.0, 0.0, 1), (12, 1, 4, 2.5, 5.0, 0.0, 1), (13, 2, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 1, 2, 6.25, 3.0, 0.0, 0), (8, 1, 3, 2.34375, 4.0, 0.0, 0), (9, 1, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 37.5, 2.0, 0.0, 0), (2, 0, 2, 6.25, 3.0, 0.0, 0), (3, 0, 3, 2.34375, 4.0, 0.0, 0), (4, 0, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_update_value(self): record_arrays_close( from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=False).order_records, from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=True).order_records ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=False).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.9465661198057499, 2.02, 0.019120635620076154, 0), (4, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (5, 1, 2, 0.018558300554959377, 3.0300000000000002, 0.0005623165068152705, 0), (6, 0, 3, 0.00037870218456959037, 3.96, 1.4996606508955778e-05, 1), (7, 1, 3, 0.0003638525743521767, 4.04, 1.4699644003827875e-05, 0), (8, 0, 4, 7.424805112066224e-06, 4.95, 3.675278530472781e-07, 1), (9, 1, 4, 7.133664827307231e-06, 5.05, 3.6025007377901643e-07, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=True).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.7303208018821721, 2.02, 0.014752480198019875, 0), (4, 2, 1, 0.21624531792357785, 2.02, 0.0043681554220562635, 0), (5, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (6, 1, 2, 0.009608602243410758, 2.9699999999999998, 0.00028537548662929945, 1), (7, 2, 2, 0.02779013180558861, 3.0300000000000002, 0.0008420409937093393, 0), (8, 0, 3, 0.0005670876809631409, 3.96, 2.2456672166140378e-05, 1), (9, 1, 3, 0.00037770350099464167, 3.96, 1.4957058639387809e-05, 1), (10, 2, 3, 0.0009077441794302741, 4.04, 3.6672864848982974e-05, 0), (11, 0, 4, 1.8523501267964093e-05, 4.95, 9.169133127642227e-07, 1), (12, 1, 4, 1.2972670177191503e-05, 4.95, 6.421471737709794e-07, 1), (13, 2, 4, 3.0261148547590434e-05, 5.05, 1.5281880016533242e-06, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0), (5, 1, 0, 50., 1., 0., 1), (6, 1, 1, 12.5, 2., 0., 1), (7, 1, 2, 4.16666667, 3., 0., 1), (8, 1, 3, 1.5625, 4., 0., 1), (9, 1, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 1, 12.5, 2., 0., 1), (2, 0, 2, 4.16666667, 3., 0., 1), (3, 0, 3, 1.5625, 4., 0., 1), (4, 0, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 1, 0, 2.50000000e+01, 1., 0., 0), (2, 2, 0, 1.25000000e+01, 1., 0., 0), (3, 0, 1, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 2, 1, 7.81250000e-01, 2., 0., 0), (6, 0, 2, 2.60416667e-01, 3., 0., 0), (7, 1, 2, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 0, 3, 2.44140625e-02, 4., 0., 0), (10, 1, 3, 1.22070312e-02, 4., 0., 0), (11, 2, 3, 6.10351562e-03, 4., 0., 0), (12, 0, 4, 2.44140625e-03, 5., 0., 0), (13, 1, 4, 1.22070312e-03, 5., 0., 0), (14, 2, 4, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_both(close=price_wide) _ = from_orders_both(close=price_wide, max_orders=9) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_both(close=price_wide, log=True) _ = from_orders_both(close=price_wide, log=True, max_logs=15) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, log=True, max_logs=14) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='both', **kwargs) def from_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='shortonly', **kwargs) def from_ls_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, False, exits, False, **kwargs) def from_ls_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, False, False, **kwargs) def from_ls_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, False, False, entries, exits, **kwargs) class TestFromSignals: @pytest.mark.parametrize( "test_ls", [False, True], ) def test_one_column(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_ls", [False, True], ) def test_multiple_columns(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 200., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 100., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0), (2, 1, 0, 100., 1., 0., 1), (3, 1, 3, 50., 4., 0., 0), (4, 2, 0, 100., 1., 0., 1), (5, 2, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_custom_signal_func(self): @njit def signal_func_nb(c, long_num_arr, short_num_arr): long_num = nb.get_elem_nb(c, long_num_arr) short_num = nb.get_elem_nb(c, short_num_arr) is_long_entry = long_num > 0 is_long_exit = long_num < 0 is_short_entry = short_num > 0 is_short_exit = short_num < 0 return is_long_entry, is_long_exit, is_short_entry, is_short_exit pf_base = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), entries=pd.Series([True, False, False, False, False]), exits=pd.Series([False, False, True, False, False]), short_entries=pd.Series([False, True, False, True, False]), short_exits=pd.Series([False, False, False, False, True]), size=1, upon_opposite_entry='ignore' ) pf = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), signal_func_nb=signal_func_nb, signal_args=(vbt.Rep('long_num_arr'), vbt.Rep('short_num_arr')), broadcast_named_args=dict( long_num_arr=pd.Series([1, 0, -1, 0, 0]), short_num_arr=pd.Series([0, 1, 0, 1, -1]) ), size=1, upon_opposite_entry='ignore' ) record_arrays_close( pf_base.order_records, pf.order_records ) def test_amount(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 2.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_value(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 0.3125, 4.0, 0.0, 1), (2, 1, 4, 0.1775, 5.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception): _ = from_signals_both(size=0.5, size_type='percent') record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1), (2, 0, 4, 25., 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close', accumulate=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 0), (2, 0, 3, 62.5, 4.0, 0.0, 1), (3, 0, 4, 27.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 3, 37.5, 4., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 25., 1., 0., 0), (2, 2, 0, 12.5, 1., 0., 0), (3, 0, 3, 50., 4., 0., 1), (4, 1, 3, 25., 4., 0., 1), (5, 2, 3, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 3, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 0, 3, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 3, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_signals_both(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.8, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.4, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.4, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_both(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.1, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_both(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 2.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 1.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 0.9, 0.0, 1), (3, 1, 3, 1.0, 4.4, 0.0, 0), (4, 2, 0, 1.0, 0.0, 0.0, 1), (5, 2, 3, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_both(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_both(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 0, 4, 0.5, 5.0, 0.0, 1), (3, 1, 0, 1.0, 1.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 3, 0.5, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_both(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_both(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1), (2, 1, 3, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 3, 275.0, 4.0, 0.0, 0), (2, 1, 0, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_both(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_both(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_signals_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 3, 0.0, 100.0, 0.0, 0.0, 4.0, 400.0, -np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 800.0, -100.0, 400.0, 0.0, 4.0, 400.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_accumulate(self): record_arrays_close( from_signals_both(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 3.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 1.0, 4.0, 0.0, 1), (8, 2, 4, 1.0, 5.0, 0.0, 1), (9, 3, 0, 1.0, 1.0, 0.0, 0), (10, 3, 1, 1.0, 2.0, 0.0, 0), (11, 3, 3, 1.0, 4.0, 0.0, 1), (12, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 2.0, 4.0, 0.0, 1), (5, 2, 0, 1.0, 1.0, 0.0, 0), (6, 2, 3, 1.0, 4.0, 0.0, 1), (7, 3, 0, 1.0, 1.0, 0.0, 0), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 3, 1.0, 4.0, 0.0, 1), (10, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 1, 1.0, 2.0, 0.0, 1), (4, 1, 3, 2.0, 4.0, 0.0, 0), (5, 2, 0, 1.0, 1.0, 0.0, 1), (6, 2, 3, 1.0, 4.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 1), (9, 3, 3, 1.0, 4.0, 0.0, 0), (10, 3, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_long_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_long_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 1, 1.0, 2.0, 0.0, 0), (5, 2, 2, 1.0, 3.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 0), (8, 5, 1, 1.0, 2.0, 0.0, 0), (9, 5, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_short_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_short_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 1, 1.0, 2.0, 0.0, 1), (5, 2, 2, 1.0, 3.0, 0.0, 0), (6, 3, 1, 1.0, 2.0, 0.0, 1), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 5, 1, 1.0, 2.0, 0.0, 1), (9, 5, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_dir_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_dir_conflict=[[ 'ignore', 'long', 'short', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 1, 1.0, 2.0, 0.0, 0), (6, 2, 2, 1.0, 3.0, 0.0, 1), (7, 3, 1, 1.0, 2.0, 0.0, 0), (8, 3, 2, 1.0, 3.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 1), (11, 5, 1, 1.0, 2.0, 0.0, 0), (12, 5, 2, 1.0, 3.0, 0.0, 1), (13, 6, 1, 1.0, 2.0, 0.0, 1), (14, 6, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_opposite_entry(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False] ]), exits=pd.DataFrame([ [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True] ]), size=1., upon_opposite_entry=[[ 'ignore', 'ignore', 'close', 'close', 'closereduce', 'closereduce', 'reverse', 'reverse', 'reversereduce', 'reversereduce' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 1, 1.0, 2.0, 0.0, 1), (4, 2, 2, 1.0, 3.0, 0.0, 0), (5, 3, 0, 1.0, 1.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 4, 0, 1.0, 1.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 0), (11, 5, 0, 1.0, 1.0, 0.0, 1), (12, 5, 1, 1.0, 2.0, 0.0, 0), (13, 5, 2, 1.0, 3.0, 0.0, 1), (14, 6, 0, 1.0, 1.0, 0.0, 0), (15, 6, 1, 2.0, 2.0, 0.0, 1), (16, 6, 2, 2.0, 3.0, 0.0, 0), (17, 7, 0, 1.0, 1.0, 0.0, 1), (18, 7, 1, 2.0, 2.0, 0.0, 0), (19, 7, 2, 2.0, 3.0, 0.0, 1), (20, 8, 0, 1.0, 1.0, 0.0, 0), (21, 8, 1, 2.0, 2.0, 0.0, 1), (22, 8, 2, 2.0, 3.0, 0.0, 0), (23, 9, 0, 1.0, 1.0, 0.0, 1), (24, 9, 1, 2.0, 2.0, 0.0, 0), (25, 9, 2, 2.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(**kwargs, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 2, 1.0, 3.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 1, 1.0, 2.0, 0.0, 1), (6, 2, 2, 1.0, 3.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 2, 1.0, 3.0, 0.0, 1), (10, 4, 0, 1.0, 1.0, 0.0, 0), (11, 4, 1, 1.0, 2.0, 0.0, 1), (12, 4, 2, 1.0, 3.0, 0.0, 0), (13, 5, 0, 1.0, 1.0, 0.0, 1), (14, 5, 1, 1.0, 2.0, 0.0, 0), (15, 5, 2, 1.0, 3.0, 0.0, 1), (16, 6, 0, 1.0, 1.0, 0.0, 0), (17, 6, 1, 2.0, 2.0, 0.0, 1), (18, 6, 2, 2.0, 3.0, 0.0, 0), (19, 7, 0, 1.0, 1.0, 0.0, 1), (20, 7, 1, 2.0, 2.0, 0.0, 0), (21, 7, 2, 2.0, 3.0, 0.0, 1), (22, 8, 0, 1.0, 1.0, 0.0, 0), (23, 8, 1, 1.0, 2.0, 0.0, 1), (24, 8, 2, 1.0, 3.0, 0.0, 0), (25, 9, 0, 1.0, 1.0, 0.0, 1), (26, 9, 1, 1.0, 2.0, 0.0, 0), (27, 9, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_both(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 3, 1.0, 4.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 3, 2.0, 4.0, 0.0, 1), (3, 2, 0, 1.0, 1.0, 0.0, 0), (4, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 0.25, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 0.5, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_both(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by,
pd.Int64Index([0, 0, 1], dtype='int64')
pandas.Int64Index
""" Copyright 2021 Novartis Institutes for BioMedical Research Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd import janitor import janitor.chemistry # nn stuff import torch # chem stuff import rdkit.Chem as Chem from rdkit import DataStructs, RDLogger from rdkit.Chem import AllChem from torch.utils import data lg = RDLogger.logger() lg.setLevel(RDLogger.CRITICAL) def normalize_morgans(morgans): anscombe = np.sqrt(morgans + (3.0 / 8.0)) * 2 max_count = 30 max_count = np.sqrt(max_count + (3.0 / 8.0)) * 2 normalized = anscombe / max_count return normalized class MorgansDataset(data.Dataset): def __init__(self, morgans: pd.DataFrame, targets: pd.DataFrame): """ Create a Morgans dataset for use with PyTorch. targets and morgans must be pandas DataFrames respectively and they must be indexed by structure IDs. Assumes that the targets, and morgans are indexed identically. """ # assert len(targets) == len( # morgans # ), "morgans and targets must be of the same length." # assert ((targets.index == morgans.index).all()); self.targets = targets self.morgans = morgans self.list_IDs = morgans.index # for real testing the dataset is constructed without a target??? Right ... def __len__(self): """Return the total number of samples""" return len(self.list_IDs) def __getitem__(self, index): """Generates one sample of data The index passed by the torch generator is an integer which we have to remap to our own internal index ... """ # Load data and get target structure_id = self.list_IDs[index] normalized = normalize_morgans(self.morgans.loc[structure_id].values) X = torch.from_numpy(normalized).float() if self.targets is not None: y = torch.from_numpy(np.array(self.targets.loc[structure_id])).float() else: y = torch.tensor(-1).float() # return a dummy variable return X, y def preprocess_redux(assay_data, binary_fp=False, filter_mols=True, n_atoms_filter=50, convert_to_pac50=False, drop_qualified = True, convert_fps_to_numpy = False): toxdata = assay_data if drop_qualified: toxdata = toxdata.dropnotnull("qualifier") toxdata = toxdata.transform_column("val", np.log10) toxdata = toxdata.remove_columns(["qualifier"]) toxdata = toxdata.replace([np.inf, -np.inf], np.nan).dropna(subset=["val"]) if convert_to_pac50: toxdata["val"] = (toxdata["val"] - 6) * -1 n_dropped = len(assay_data) - len(toxdata) print(n_dropped) morgans = {} mols = {} for idx in toxdata.index: smiles = toxdata.smiles.loc[idx] try: mol = Chem.MolFromSmiles(smiles) except: print(smiles) print("[ERROR] Could not create mol") continue try: if binary_fp: fp_array = AllChem.GetMorganFingerprint(mol, 2) # TODO SOMETIMES THIS IS NEEDED if convert_fps_to_numpy: fp = AllChem.GetMorganFingerprintAsBitVect(mol,2,nBits=1024) fp_array = np.zeros((0,), dtype=np.int8) DataStructs.ConvertToNumpyArray(fp, fp_array) else: fp = AllChem.GetHashedMorganFingerprint( mol, radius=3, nBits=2048, useChirality=True ) #fp = AllChem.GetHashedMorganFingerprint( # mol, radius=2, nBits=1024, useChirality=True #) fp_array = np.zeros((0,), dtype=np.int8) DataStructs.ConvertToNumpyArray(fp, fp_array) morgans[idx] = fp_array mols[idx] = mol # don't add the molecule if the FP cannot be computed except: print("[ERROR] Could not create fingerprint") continue morgans_df =
pd.DataFrame.from_dict(morgans, orient="index")
pandas.DataFrame.from_dict
import xml.etree.ElementTree as ET import warnings import pandas as pd import sys, os import configparser import numpy as np import glob from ..utils import XmlDictConfig, XmlListConfig pd.set_option('mode.chained_assignment', None) MAPPING_EVENT = { '0':'Unknown', '1': 'central_apnea', '2': 'obstructive_apnea', '3': 'mixed_apnea', '4': 'desat', '5': 'respiratory_artefact', '6': 'spo2_artefact', '7': 'arousal_t1', '8': 'arousal_t2', '9': 'arousal_t3', '10': 'arousal_t4', '11': 'arousal_t5', '12': 'limb_left', '13':'limb_right', '14':'bradycardia', '15':'tachycardia', '16': 'tco2_artifact', '17': 'etco2_artifact', '18': 'distal_ph_artifact', '19': 'distal_ph_event', '20': 'proximal_ph_artifact', '21': 'proximal_ph_event', '22': 'blood_pressure_artifact', '23': 'body_temp_artifact', '24': 'unsure_resp_event', '25': 'resp_paradox', '26': 'periodic_breathing', '27': 'PLM_episode', '28': 'heart_rate_artifact', '29': 'obstructive_hypopnea', '30': 'central_hypopnea', '31': 'mixed_hypopnea', '32': 'RERA', '33': 'snore_event', '34': 'user_event_1', '35': 'user_event_2', '36': 'user_event_3', '37': 'user_event_4', '38': 'user_event_5', '39': 'user_resp_event_1', '40': 'user_resp_event_2', '41': 'user_resp_event_3', '42': 'user_resp_event_4', '43': 'user_resp_event_5', '44': 'delta_wave', '45': 'spindles', '46': 'left_eye_movement', '47': 'left_eye_movement_anti_phase', '48': 'left_eye_movement_phase', '49': 'right_eye_movement', '50': 'right_eye_movement_anti_phase', '51': 'right_eye_movement_phase', '52': 'PTT_event', '53': 'PTT_artifact', '54': 'asystole', '55': 'wide_complex_tachycardia', '56': 'narrow_complex_tachycardia', '57': 'atrial_fibrilation', '58': 'bruxism', '59': 'SMA', '60': 'TMA', '61': 'rythmic_movement', '62': 'ECG_artifact', '63': 'CAP_A1', '64': 'CAP_A2', '65': 'CAP_A3', '66': 'PES_artifact', '67': 'CPAP_artifact', '68': 'user_event_6', '69': 'user_event_7', '70': 'user_event_8', '71': 'user_event_9', '72': 'user_event_10', '73': 'user_event_11', '74': 'user_event_12', '75': 'user_event_13', '76': 'user_event_14', '77': 'user_event_15', '78':'transient_muscle_activity', '79':'hypnagogic_foot_tremor', '80': 'hypnagogic_foot_tremor_burst_left', '81': 'hypnagogic_foot_tremor_burst_right', '82': 'excessive_fragmentary_myolonus', '83': 'alternating_leg_muscle_activation', '84': 'rythmic_movement_burst', '85': 'hyperventilation', '86': 'excessive_fragment_myolonus_burst_left', '87': 'excessive_fragment_myolonus_burst_right', '88': 'hypoventilation', } def cpm_list_event(): event_list = [val for _,val in MAPPING_EVENT.items()] return event_list def _read_epoch_data(folder): """ Read PROCESS.ADV file in the compumedics folder. Compumedics automatically run some epochs level analysis when recording (or maybe when closing file?) such as spindles detection etc.. which is then saved in Process.ADV file. Returns ------- epochdata : pd.DataFrame 30-seconds epoch-level of summary data (e.g. heart rate) Notes ------ Some parameters (e.g. U15) have not yet been figured out. """ process_file = os.path.join(folder, 'PROCESS.ADV') n = np.fromfile(process_file, dtype=np.int16) number_of_epochs = n[0] other_data = np.reshape(n[1:], (number_of_epochs, -1)) columns_names = ['Artifact', 'DeltaL', 'DeltaM', 'DeltaH', 'ThetaD', 'ThetaA', 'Alpha', 'Sigma', 'Beta', 'U10', 'Spindles', 'MeanSAO2', 'MinSAO2', 'MaxSAO2', 'U15', 'U16', 'Sound', 'REM', 'EMGamp', 'U20', 'CPAP', 'U22', 'HR', 'U24', 'U25', 'Posture', 'U27', 'U28', 'U29', 'U30', 'KC', 'U32', 'U33'] epochdata =
pd.DataFrame(data=other_data, columns=columns_names)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @author : microfat # @time : 08/05/20 22:13:22 # @File : parseData.py import re import unicodedata import pandas as pd from bs4 import BeautifulSoup from lxml import etree from urllib.parse import urlparse from gne import GeneralNewsExtractor from pyhanlp import HanLP extractor = GeneralNewsExtractor() class ParseData: def __init__(self): pass def get_city_code(self, source): soup = BeautifulSoup(source, 'lxml') city_dict = {} for group in soup.find('div', {'id':'work_position_click_center_right'})\ .find_all('div', {'class':'work_position_click_center_right_list de d3'})[3:]: group_dict = {} for city_source in group.find_all('em'): city_name = city_source.text city_code = city_source['data-value'] group_dict[city_code] = city_name city_dict = {**city_dict, **group_dict} return city_dict def get_indtype_code(self, source): soup = BeautifulSoup(source, 'lxml') indtype_dict = {} indtype_key_dict = {} indtype_value_dict = {} for key_source in soup.find('ul', {'id':'indtype_click_center_left'})\ .find_all('li'): indtype_key_key = key_source['data-value'] indtype_key_value = key_source.text indtype_key_dict[indtype_key_key] = indtype_key_value for group in soup.find('div', {'id':'indtype_click_center_right'})\ .find_all('div', {'class':'indtype_click_center_right_list de d3'}): group_list = [] for indtype_source in group.find_all('em'): indtype_key = indtype_source['data-navigation'] indtype_value = indtype_source['data-value'] indtype_value_value = indtype_source.text group_list.append(indtype_value) indtype_value_key = indtype_value indtype_value_dict[indtype_value_key] = indtype_value_value indtype_dict[indtype_key] = group_list return indtype_dict, indtype_key_dict, indtype_value_dict def get_province_code(self, source): soup = BeautifulSoup(source, 'lxml') province_dict = {} for province_source in soup.find('div', {'id':'work_position_click_center_right'})\ .find('div', {'id':'work_position_click_center_right_list_030000'})\ .find_all('em'): province_name = province_source.text province_code = province_source['data-value'] province_dict[province_code] = province_name return province_dict def get_page_num(self, source): page_num = int(source.json()['total_page']) return page_num def get_job_num(self, source): job_num = len(source.json()['engine_search_result']) return job_num def get_job_info(self, source): df =
pd.DataFrame()
pandas.DataFrame
"""Perform classical functional region delimitation.""" import logging from typing import Any, List, Tuple, Optional, TypeVar import numpy as np import pandas as pd class EvaluatorInterface: """Objects that evaluate fitness of regions.""" def feed(self, interactions: pd.Series, unit_props: pd.DataFrame) -> None: raise NotImplementedError def eval_all(self, regions: pd.Series, cores: pd.Series) -> pd.DataFrame: raise NotImplementedError def get_required_properties(self) -> List[str]: raise NotImplementedError def get_criteria(self) -> List[str]: raise NotImplementedError class PropertylessEvaluator(EvaluatorInterface): name: str = NotImplemented def feed(self, interactions: pd.Series, unit_props: pd.DataFrame) -> None: pass def eval_all(self, regions: pd.Series, cores: pd.Series) -> pd.DataFrame: return pd.DataFrame(self._compute(regions, cores).rename(self.name)) def get_required_properties(self) -> List[str]: return [] def get_criteria(self) -> List[str]: return [self.name] def _compute(self, regions: pd.Series, cores: pd.Series) -> pd.Series: raise NotImplementedError class ConstantEvaluator(PropertylessEvaluator): """Evaluate all regions as 1.""" name = 'constant' def _compute(self, regions: pd.Series, cores: pd.Series) -> pd.Series: return pd.Series(1, index=regions.unique()) class UnitCountEvaluator(PropertylessEvaluator): """Evaluate regions by count of units.""" name = 'unit_count' def _compute(self, regions: pd.Series, cores: pd.Series) -> pd.Series: return regions.value_counts(sort=False) class SourceFlowSumEvaluator(PropertylessEvaluator): """Evaluate regions by summing the magnitude of outgoing interactions.""" name = 'sourceflow_sum' flowsums: pd.Series def feed(self, interactions: pd.Series, unit_props: pd.DataFrame) -> None: self.flowsums = interactions.groupby(level=0).sum() def _compute(self, regions: pd.Series, cores: pd.Series) -> pd.Series: return self.flowsums.groupby(regions).sum() class PropertySumEvaluator(EvaluatorInterface): """Evaluate regions by summing a property of their constituent units.""" prop: pd.Series def __init__(self, criterion): self.criterion = criterion def feed(self, interactions: pd.Series, unit_props: pd.DataFrame) -> None: try: self.prop = unit_props[self.criterion] except KeyError as err: raise LookupError(f'{self.criterion} unit property not specified') from err def eval_all(self, regions: pd.Series, cores: pd.Series) -> pd.DataFrame: return pd.DataFrame(self.prop.groupby(regions).sum().rename(self.criterion)) def get_required_properties(self) -> List[str]: return [self.criterion] def get_criteria(self) -> List[str]: return [self.criterion] class HinterlandSumEvaluator(PropertySumEvaluator): """Evaluate regions by summing a property of their non-core units.""" PREFIX = 'hinterland_' def eval_all(self, regions: pd.Series, cores: pd.Series) -> pd.DataFrame: return pd.DataFrame( self.prop.groupby(regions).sum().sub( self.prop[cores.index][cores].groupby(regions).sum(), fill_value=0 ).astype(self.prop.dtype).rename(self.PREFIX + self.criterion) ) class CompoundEvaluator(EvaluatorInterface): """Evaluate regions by multiple values or criteria.""" def __init__(self, subevals: List[EvaluatorInterface]): self.subevals = subevals def feed(self, interactions: pd.Series, unit_props: pd.DataFrame) -> None: for subeval in self.subevals: subeval.feed(interactions, unit_props) def eval_all(self, regions: pd.Series, cores: pd.Series) -> pd.DataFrame: evaluations = self.subevals[0].eval_all(regions, cores) for subeval in self.subevals[1:]: subevaluation = subeval.eval_all(regions, cores) for col in subevaluation.columns: evaluations[col] = subevaluation[col] return evaluations def get_required_properties(self) -> List[str]: return list(set( prop for subeval in self.subevals for prop in subeval.get_required_properties() )) def get_criteria(self) -> List[str]: crits = [] for subeval in self.subevals: for crit in subeval.get_criteria(): if crit not in crits: crits.append(crit) return crits PROPERTYLESS_EVALUATORS = { c.name: c for c in PropertylessEvaluator.__subclasses__() } def create_evaluator(criterion: List[str] = []) -> EvaluatorInterface: if not criterion: return ConstantEvaluator() elif len(criterion) > 1: return CompoundEvaluator([create_evaluator([critname]) for critname in criterion]) else: criterion = criterion[0] if criterion in PROPERTYLESS_EVALUATORS: return PROPERTYLESS_EVALUATORS[criterion]() elif criterion.startswith(HinterlandSumEvaluator.PREFIX): return HinterlandSumEvaluator(criterion[len(HinterlandSumEvaluator.PREFIX):]) else: return PropertySumEvaluator(criterion) class VerifierInterface: """Objects that verify that the evaluation of a region is good enough.""" def verify(self, value: Any) -> bool: raise NotImplementedError class YesmanVerifier(VerifierInterface): """Always make all regions pass the criterion.""" @staticmethod def verify(value: Any) -> bool: return True class MinimumVerifier(VerifierInterface): """Only allow those regions with an evaluation at least the given value.""" def __init__(self, threshold: float): self.threshold = threshold def verify(self, value: float) -> bool: return value >= self.threshold class CompoundAndVerifier(VerifierInterface): """Allow only those regions that satisfy all partial verifications.""" def __init__(self, partials: List[VerifierInterface]): self.partials = partials def verify(self, *args) -> bool: return all( partial.verify(value) for partial, value in zip(self.partials, args) ) class TargeterInterface: pass ID = TypeVar('ID') class InteractionTargeter: """Select aggregation targets for units based on largest interaction.""" interactions: pd.Series def __init__(self, source_core: bool = True, target_core: bool = True): self.source_core = source_core self.target_core = target_core def feed(self, interactions: pd.Series, unit_props: pd.DataFrame) -> None: self.interactions = interactions def target(self, units: ID, regions: pd.Series, cores: pd.Series) -> ID: """Select a target for a single unit.""" strengths = self._get_strengths(units, regions, cores) if strengths.empty: return np.nan else: return strengths.groupby(level=1).sum().idxmax() def targets(self, units: pd.Index, regions: pd.Series, cores: pd.Series) -> pd.Series: """Select targets for multiple units.""" strengths = self._get_strengths(units, regions, cores) if strengths.empty: return
pd.Series(np.nan, index=units)
pandas.Series
# # This script takes all the model outputs and creates a dataframe with the final abundance of every species for every physics # More useful than the final abundances. # from numpy.core.fromnumeric import compress import pandas as pd from glob import glob from uclchem import read_output_file,check_abunds from multiprocessing import Pool from os import remove def read_last_abunds(data_file): a=read_output_file(data_file) if (a["Time"].max()>9.99e5): a=a.iloc[-1,5:-2].reset_index() a.columns=["Species","Abundance"] a["outputFile"]=data_file a["Conserve C"]=check_conserve(data_file) else: a=pd.DataFrame() return a def check_conserve(data_file): a=read_output_file(data_file) result=check_abunds("C",a) result=(result.iloc[0]-result.iloc[-1])/result.iloc[0] return abs(result)<0.01 def remover(file_name): try: remove(file_name) except: pass phase="three_phase" models=pd.read_csv(f"data/{phase}/models.csv") #not all completed! models=models[models["outputFile"].isin(glob(f"data/{phase}/models/*"))] with Pool(63) as pool: a=pool.map(read_last_abunds,models["outputFile"].values) a=pd.concat(list(a)) models=models.merge(a,on="outputFile") models=models.dropna() models.to_hdf(f"data/{phase}/final_abunds.hdf",key="df",mode="w") completed=models["outputFile"].unique() bad_c=list(models.loc[models["Conserve C"]==False,"outputFile"].unique()) models=
pd.read_csv(f"data/{phase}/models.csv")
pandas.read_csv
""" test date_range, bdate_range construction from the convenience range functions """ from datetime import datetime, time, timedelta import numpy as np import pytest import pytz from pytz import timezone from pandas._libs.tslibs import timezones from pandas._libs.tslibs.offsets import BDay, CDay, DateOffset, MonthEnd, prefix_mapping from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td import pandas as pd from pandas import DatetimeIndex, Timestamp, bdate_range, date_range, offsets import pandas._testing as tm from pandas.core.arrays.datetimes import generate_range START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestTimestampEquivDateRange: # Older tests in TestTimeSeries constructed their `stamp` objects # using `date_range` instead of the `Timestamp` constructor. # TestTimestampEquivDateRange checks that these are equivalent in the # pertinent cases. def test_date_range_timestamp_equiv(self): rng = date_range("20090415", "20090519", tz="US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_dateutil(self): rng = date_range("20090415", "20090519", tz="dateutil/US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="dateutil/US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_explicit_pytz(self): rng = date_range("20090415", "20090519", tz=pytz.timezone("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=pytz.timezone("US/Eastern"), freq="D") assert ts == stamp @td.skip_if_windows_python_3 def test_date_range_timestamp_equiv_explicit_dateutil(self): from pandas._libs.tslibs.timezones import dateutil_gettz as gettz rng = date_range("20090415", "20090519", tz=gettz("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=gettz("US/Eastern"), freq="D") assert ts == stamp def test_date_range_timestamp_equiv_from_datetime_instance(self): datetime_instance = datetime(2014, 3, 4) # build a timestamp with a frequency, since then it supports # addition/subtraction of integers timestamp_instance = date_range(datetime_instance, periods=1, freq="D")[0] ts = Timestamp(datetime_instance, freq="D") assert ts == timestamp_instance def test_date_range_timestamp_equiv_preserve_frequency(self): timestamp_instance = date_range("2014-03-05", periods=1, freq="D")[0] ts = Timestamp("2014-03-05", freq="D") assert timestamp_instance == ts class TestDateRanges: def test_date_range_nat(self): # GH#11587 msg = "Neither `start` nor `end` can be NaT" with pytest.raises(ValueError, match=msg): date_range(start="2016-01-01", end=pd.NaT, freq="D") with pytest.raises(ValueError, match=msg): date_range(start=pd.NaT, end="2016-01-01", freq="D") def test_date_range_multiplication_overflow(self): # GH#24255 # check that overflows in calculating `addend = periods * stride` # are caught with tm.assert_produces_warning(None): # we should _not_ be seeing a overflow RuntimeWarning dti = date_range(start="1677-09-22", periods=213503, freq="D") assert dti[0] == Timestamp("1677-09-22") assert len(dti) == 213503 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("1969-05-04", periods=200000000, freq="30000D") def test_date_range_unsigned_overflow_handling(self): # GH#24255 # case where `addend = periods * stride` overflows int64 bounds # but not uint64 bounds dti = date_range(start="1677-09-22", end="2262-04-11", freq="D") dti2 = date_range(start=dti[0], periods=len(dti), freq="D") assert dti2.equals(dti) dti3 = date_range(end=dti[-1], periods=len(dti), freq="D") assert dti3.equals(dti) def test_date_range_int64_overflow_non_recoverable(self): # GH#24255 # case with start later than 1970-01-01, overflow int64 but not uint64 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(start="1970-02-01", periods=106752 * 24, freq="H") # case with end before 1970-01-01, overflow int64 but not uint64 with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1969-11-14", periods=106752 * 24, freq="H") def test_date_range_int64_overflow_stride_endpoint_different_signs(self): # cases where stride * periods overflow int64 and stride/endpoint # have different signs start = Timestamp("2262-02-23") end = Timestamp("1969-11-14") expected = date_range(start=start, end=end, freq="-1H") assert expected[0] == start assert expected[-1] == end dti = date_range(end=end, periods=len(expected), freq="-1H") tm.assert_index_equal(dti, expected) start2 = Timestamp("1970-02-01") end2 = Timestamp("1677-10-22") expected2 = date_range(start=start2, end=end2, freq="-1H") assert expected2[0] == start2 assert expected2[-1] == end2 dti2 = date_range(start=start2, periods=len(expected2), freq="-1H") tm.assert_index_equal(dti2, expected2) def test_date_range_out_of_bounds(self): # GH#14187 msg = "Cannot generate range" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("2016-01-01", periods=100000, freq="D") with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1763-10-12", periods=100000, freq="D") def test_date_range_gen_error(self): rng = date_range("1/1/2000 00:00", "1/1/2000 00:18", freq="5min") assert len(rng) == 4 @pytest.mark.parametrize("freq", ["AS", "YS"]) def test_begin_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-01-01", "2014-01-01", "2015-01-01", "2016-01-01", "2017-01-01"], freq=freq, ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["A", "Y"]) def test_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-31"], freq=freq ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["BA", "BY"]) def test_business_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-30"], freq=freq ) tm.assert_index_equal(rng, exp) def test_date_range_negative_freq(self): # GH 11018 rng = date_range("2011-12-31", freq="-2A", periods=3) exp = DatetimeIndex(["2011-12-31", "2009-12-31", "2007-12-31"], freq="-2A") tm.assert_index_equal(rng, exp) assert rng.freq == "-2A" rng = date_range("2011-01-31", freq="-2M", periods=3) exp = DatetimeIndex(["2011-01-31", "2010-11-30", "2010-09-30"], freq="-2M") tm.assert_index_equal(rng, exp) assert rng.freq == "-2M" def test_date_range_bms_bug(self): # #1645 rng = date_range("1/1/2000", periods=10, freq="BMS") ex_first = Timestamp("2000-01-03") assert rng[0] == ex_first def test_date_range_normalize(self): snap = datetime.today() n = 50 rng = date_range(snap, periods=n, normalize=False, freq="2D") offset = timedelta(2) values = DatetimeIndex([snap + i * offset for i in range(n)], freq=offset) tm.assert_index_equal(rng, values) rng = date_range("1/1/2000 08:15", periods=n, normalize=False, freq="B") the_time = time(8, 15) for val in rng: assert val.time() == the_time def test_date_range_fy5252(self): dr = date_range( start="2013-01-01", periods=2, freq=offsets.FY5253(startingMonth=1, weekday=3, variation="nearest"), ) assert dr[0] == Timestamp("2013-01-31") assert dr[1] == Timestamp("2014-01-30") def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) msg = ( "Of the four parameters: start, end, periods, and " "freq, exactly three must be specified" ) with pytest.raises(ValueError, match=msg): date_range(start, end, periods=10, freq="s") def test_date_range_convenience_periods(self): # GH 20808 result = date_range("2018-04-24", "2018-04-27", periods=3) expected = DatetimeIndex( ["2018-04-24 00:00:00", "2018-04-25 12:00:00", "2018-04-27 00:00:00"], freq=None, ) tm.assert_index_equal(result, expected) # Test if spacing remains linear if tz changes to dst in range result = date_range( "2018-04-01 01:00:00", "2018-04-01 04:00:00", tz="Australia/Sydney", periods=3, ) expected = DatetimeIndex( [ Timestamp("2018-04-01 01:00:00+1100", tz="Australia/Sydney"), Timestamp("2018-04-01 02:00:00+1000", tz="Australia/Sydney"), Timestamp("2018-04-01 04:00:00+1000", tz="Australia/Sydney"), ] ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "start,end,result_tz", [ ["20180101", "20180103", "US/Eastern"], [datetime(2018, 1, 1), datetime(2018, 1, 3), "US/Eastern"], [Timestamp("20180101"), Timestamp("20180103"), "US/Eastern"], [ Timestamp("20180101", tz="US/Eastern"), Timestamp("20180103", tz="US/Eastern"), "US/Eastern", ], [ Timestamp("20180101", tz="US/Eastern"), Timestamp("20180103", tz="US/Eastern"), None, ], ], ) def test_date_range_linspacing_tz(self, start, end, result_tz): # GH 20983 result = date_range(start, end, periods=3, tz=result_tz) expected = date_range("20180101", periods=3, freq="D", tz="US/Eastern") tm.assert_index_equal(result, expected) def test_date_range_businesshour(self): idx = DatetimeIndex( [ "2014-07-04 09:00", "2014-07-04 10:00", "2014-07-04 11:00", "2014-07-04 12:00", "2014-07-04 13:00", "2014-07-04 14:00", "2014-07-04 15:00", "2014-07-04 16:00", ], freq="BH", ) rng = date_range("2014-07-04 09:00", "2014-07-04 16:00", freq="BH") tm.assert_index_equal(idx, rng) idx = DatetimeIndex(["2014-07-04 16:00", "2014-07-07 09:00"], freq="BH") rng = date_range("2014-07-04 16:00", "2014-07-07 09:00", freq="BH") tm.assert_index_equal(idx, rng) idx = DatetimeIndex( [ "2014-07-04 09:00", "2014-07-04 10:00", "2014-07-04 11:00", "2014-07-04 12:00", "2014-07-04 13:00", "2014-07-04 14:00", "2014-07-04 15:00", "2014-07-04 16:00", "2014-07-07 09:00", "2014-07-07 10:00", "2014-07-07 11:00", "2014-07-07 12:00", "2014-07-07 13:00", "2014-07-07 14:00", "2014-07-07 15:00", "2014-07-07 16:00", "2014-07-08 09:00", "2014-07-08 10:00", "2014-07-08 11:00", "2014-07-08 12:00", "2014-07-08 13:00", "2014-07-08 14:00", "2014-07-08 15:00", "2014-07-08 16:00", ], freq="BH", ) rng = date_range("2014-07-04 09:00", "2014-07-08 16:00", freq="BH") tm.assert_index_equal(idx, rng) def test_range_misspecified(self): # GH #1095 msg = ( "Of the four parameters: start, end, periods, and " "freq, exactly three must be specified" ) with pytest.raises(ValueError, match=msg): date_range(start="1/1/2000") with pytest.raises(ValueError, match=msg): date_range(end="1/1/2000") with pytest.raises(ValueError, match=msg): date_range(periods=10) with pytest.raises(ValueError, match=msg): date_range(start="1/1/2000", freq="H") with pytest.raises(ValueError, match=msg): date_range(end="1/1/2000", freq="H") with pytest.raises(ValueError, match=msg): date_range(periods=10, freq="H") with pytest.raises(ValueError, match=msg): date_range() def test_compat_replace(self): # https://github.com/statsmodels/statsmodels/issues/3349 # replace should take ints/longs for compat result = date_range( Timestamp("1960-04-01 00:00:00", freq="QS-JAN"), periods=76, freq="QS-JAN" ) assert len(result) == 76 def test_catch_infinite_loop(self): offset = offsets.DateOffset(minute=5) # blow up, don't loop forever msg = "Offset <DateOffset: minute=5> did not increment date" with pytest.raises(ValueError, match=msg): date_range(datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) @pytest.mark.parametrize("periods", (1, 2)) def test_wom_len(self, periods): # https://github.com/pandas-dev/pandas/issues/20517 res = date_range(start="20110101", periods=periods, freq="WOM-1MON") assert len(res) == periods def test_construct_over_dst(self): # GH 20854 pre_dst = Timestamp("2010-11-07 01:00:00").tz_localize( "US/Pacific", ambiguous=True ) pst_dst = Timestamp("2010-11-07 01:00:00").tz_localize( "US/Pacific", ambiguous=False ) expect_data = [ Timestamp("2010-11-07 00:00:00", tz="US/Pacific"), pre_dst, pst_dst, ] expected = DatetimeIndex(expect_data, freq="H") result = date_range(start="2010-11-7", periods=3, freq="H", tz="US/Pacific") tm.assert_index_equal(result, expected) def test_construct_with_different_start_end_string_format(self): # GH 12064 result = date_range( "2013-01-01 00:00:00+09:00", "2013/01/01 02:00:00+09:00", freq="H" ) expected = DatetimeIndex( [ Timestamp("2013-01-01 00:00:00+09:00"), Timestamp("2013-01-01 01:00:00+09:00"), Timestamp("2013-01-01 02:00:00+09:00"), ], freq="H", ) tm.assert_index_equal(result, expected) def test_error_with_zero_monthends(self): msg = r"Offset <0 \* MonthEnds> did not increment date" with pytest.raises(ValueError, match=msg): date_range("1/1/2000", "1/1/2001", freq=MonthEnd(0)) def test_range_bug(self): # GH #770 offset = DateOffset(months=3) result = date_range("2011-1-1", "2012-1-31", freq=offset) start = datetime(2011, 1, 1) expected = DatetimeIndex([start + i * offset for i in range(5)], freq=offset) tm.assert_index_equal(result, expected) def test_range_tz_pytz(self): # see gh-2906 tz = timezone("US/Eastern") start = tz.localize(datetime(2011, 1, 1)) end = tz.localize(datetime(2011, 1, 3)) dr = date_range(start=start, periods=3) assert dr.tz.zone == tz.zone assert dr[0] == start assert dr[2] == end dr = date_range(end=end, periods=3) assert dr.tz.zone == tz.zone assert dr[0] == start assert dr[2] == end dr = date_range(start=start, end=end) assert dr.tz.zone == tz.zone assert dr[0] == start assert dr[2] == end @pytest.mark.parametrize( "start, end", [ [ Timestamp(datetime(2014, 3, 6), tz="US/Eastern"), Timestamp(datetime(2014, 3, 12), tz="US/Eastern"), ], [ Timestamp(datetime(2013, 11, 1), tz="US/Eastern"), Timestamp(datetime(2013, 11, 6), tz="US/Eastern"), ], ], ) def test_range_tz_dst_straddle_pytz(self, start, end): dr = date_range(start, end, freq="D") assert dr[0] == start assert dr[-1] == end assert np.all(dr.hour == 0) dr = date_range(start, end, freq="D", tz="US/Eastern") assert dr[0] == start assert dr[-1] == end assert np.all(dr.hour == 0) dr = date_range( start.replace(tzinfo=None), end.replace(tzinfo=None), freq="D", tz="US/Eastern", ) assert dr[0] == start assert dr[-1] == end assert np.all(dr.hour == 0) def test_range_tz_dateutil(self): # see gh-2906 # Use maybe_get_tz to fix filename in tz under dateutil. from pandas._libs.tslibs.timezones import maybe_get_tz tz = lambda x: maybe_get_tz("dateutil/" + x) start = datetime(2011, 1, 1, tzinfo=tz("US/Eastern")) end = datetime(2011, 1, 3, tzinfo=tz("US/Eastern")) dr = date_range(start=start, periods=3) assert dr.tz == tz("US/Eastern") assert dr[0] == start assert dr[2] == end dr = date_range(end=end, periods=3) assert dr.tz == tz("US/Eastern") assert dr[0] == start assert dr[2] == end dr = date_range(start=start, end=end) assert dr.tz == tz("US/Eastern") assert dr[0] == start assert dr[2] == end @pytest.mark.parametrize("freq", ["1D", "3D", "2M", "7W", "3H", "A"]) def test_range_closed(self, freq): begin = datetime(2011, 1, 1) end = datetime(2014, 1, 1) closed = date_range(begin, end, closed=None, freq=freq) left = date_range(begin, end, closed="left", freq=freq) right = date_range(begin, end, closed="right", freq=freq) expected_left = left expected_right = right if end == closed[-1]: expected_left = closed[:-1] if begin == closed[0]: expected_right = closed[1:] tm.assert_index_equal(expected_left, left) tm.assert_index_equal(expected_right, right) def test_range_closed_with_tz_aware_start_end(self): # GH12409, GH12684 begin = Timestamp("2011/1/1", tz="US/Eastern") end = Timestamp("2014/1/1", tz="US/Eastern") for freq in ["1D", "3D", "2M", "7W", "3H", "A"]: closed = date_range(begin, end, closed=None, freq=freq) left = date_range(begin, end, closed="left", freq=freq) right = date_range(begin, end, closed="right", freq=freq) expected_left = left expected_right = right if end == closed[-1]: expected_left = closed[:-1] if begin == closed[0]: expected_right = closed[1:] tm.assert_index_equal(expected_left, left) tm.assert_index_equal(expected_right, right) begin = Timestamp("2011/1/1") end = Timestamp("2014/1/1") begintz = Timestamp("2011/1/1", tz="US/Eastern") endtz = Timestamp("2014/1/1", tz="US/Eastern") for freq in ["1D", "3D", "2M", "7W", "3H", "A"]: closed = date_range(begin, end, closed=None, freq=freq, tz="US/Eastern") left = date_range(begin, end, closed="left", freq=freq, tz="US/Eastern") right = date_range(begin, end, closed="right", freq=freq, tz="US/Eastern") expected_left = left expected_right = right if endtz == closed[-1]: expected_left = closed[:-1] if begintz == closed[0]: expected_right = closed[1:] tm.assert_index_equal(expected_left, left) tm.assert_index_equal(expected_right, right) @pytest.mark.parametrize("closed", ["right", "left", None]) def test_range_closed_boundary(self, closed): # GH#11804 right_boundary = date_range( "2015-09-12", "2015-12-01", freq="QS-MAR", closed=closed ) left_boundary = date_range( "2015-09-01", "2015-09-12", freq="QS-MAR", closed=closed ) both_boundary = date_range( "2015-09-01", "2015-12-01", freq="QS-MAR", closed=closed ) expected_right = expected_left = expected_both = both_boundary if closed == "right": expected_left = both_boundary[1:] if closed == "left": expected_right = both_boundary[:-1] if closed is None: expected_right = both_boundary[1:] expected_left = both_boundary[:-1] tm.assert_index_equal(right_boundary, expected_right) tm.assert_index_equal(left_boundary, expected_left) tm.assert_index_equal(both_boundary, expected_both) def test_years_only(self): # GH 6961 dr = date_range("2014", "2015", freq="M") assert dr[0] == datetime(2014, 1, 31) assert dr[-1] == datetime(2014, 12, 31) def test_freq_divides_end_in_nanos(self): # GH 10885 result_1 = date_range("2005-01-12 10:00", "2005-01-12 16:00", freq="345min") result_2 = date_range("2005-01-13 10:00", "2005-01-13 16:00", freq="345min") expected_1 = DatetimeIndex( ["2005-01-12 10:00:00", "2005-01-12 15:45:00"], dtype="datetime64[ns]", freq="345T", tz=None, ) expected_2 = DatetimeIndex( ["2005-01-13 10:00:00", "2005-01-13 15:45:00"], dtype="datetime64[ns]", freq="345T", tz=None, ) tm.assert_index_equal(result_1, expected_1) tm.assert_index_equal(result_2, expected_2) def test_cached_range_bug(self): rng = date_range("2010-09-01 05:00:00", periods=50, freq=DateOffset(hours=6)) assert len(rng) == 50 assert rng[0] == datetime(2010, 9, 1, 5) def test_timezone_comparaison_bug(self): # smoke test start = Timestamp("20130220 10:00", tz="US/Eastern") result = date_range(start, periods=2, tz="US/Eastern") assert len(result) == 2 def test_timezone_comparaison_assert(self): start = Timestamp("20130220 10:00", tz="US/Eastern") msg = "Inferred time zone not equal to passed time zone" with pytest.raises(AssertionError, match=msg): date_range(start, periods=2, tz="Europe/Berlin") def test_negative_non_tick_frequency_descending_dates(self, tz_aware_fixture): # GH 23270 tz = tz_aware_fixture result = date_range(start="2011-06-01", end="2011-01-01", freq="-1MS", tz=tz) expected = date_range(end="2011-06-01", start="2011-01-01", freq="1MS", tz=tz)[ ::-1 ] tm.assert_index_equal(result, expected) class TestDateRangeTZ: """Tests for date_range with timezones""" def test_hongkong_tz_convert(self): # GH#1673 smoke test dr = date_range("2012-01-01", "2012-01-10", freq="D", tz="Hongkong") # it works! dr.hour @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_date_range_span_dst_transition(self, tzstr): # GH#1778 # Standard -> Daylight Savings Time dr = date_range("03/06/2012 00:00", periods=200, freq="W-FRI", tz="US/Eastern") assert (dr.hour == 0).all() dr = date_range("2012-11-02", periods=10, tz=tzstr) result = dr.hour expected = pd.Index([0] * 10) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_date_range_timezone_str_argument(self, tzstr): tz = timezones.maybe_get_tz(tzstr) result = date_range("1/1/2000", periods=10, tz=tzstr) expected = date_range("1/1/2000", periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_date_range_with_fixedoffset_noname(self): from pandas.tests.indexes.datetimes.test_timezones import fixed_off_no_name off = fixed_off_no_name start = datetime(2012, 3, 11, 5, 0, 0, tzinfo=off) end = datetime(2012, 6, 11, 5, 0, 0, tzinfo=off) rng = date_range(start=start, end=end) assert off == rng.tz idx = pd.Index([start, end]) assert off == idx.tz @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_date_range_with_tz(self, tzstr): stamp = Timestamp("3/11/2012 05:00", tz=tzstr) assert stamp.hour == 5 rng = date_range("3/11/2012 04:00", periods=10, freq="H", tz=tzstr) assert stamp == rng[1] class TestGenRangeGeneration: def test_generate(self): rng1 = list(generate_range(START, END, offset=BDay())) rng2 = list(generate_range(START, END, offset="B")) assert rng1 == rng2 def test_generate_cday(self): rng1 = list(generate_range(START, END, offset=CDay())) rng2 = list(generate_range(START, END, offset="C")) assert rng1 == rng2 def test_1(self): rng = list(generate_range(start=datetime(2009, 3, 25), periods=2)) expected = [datetime(2009, 3, 25), datetime(2009, 3, 26)] assert rng == expected def test_2(self): rng = list(generate_range(start=datetime(2008, 1, 1), end=datetime(2008, 1, 3))) expected = [datetime(2008, 1, 1), datetime(2008, 1, 2), datetime(2008, 1, 3)] assert rng == expected def test_3(self): rng = list(generate_range(start=datetime(2008, 1, 5), end=datetime(2008, 1, 6))) expected = [] assert rng == expected def test_precision_finer_than_offset(self): # GH#9907 result1 = date_range( start="2015-04-15 00:00:03", end="2016-04-22 00:00:00", freq="Q" ) result2 = date_range( start="2015-04-15 00:00:03", end="2015-06-22 00:00:04", freq="W" ) expected1_list = [ "2015-06-30 00:00:03", "2015-09-30 00:00:03", "2015-12-31 00:00:03", "2016-03-31 00:00:03", ] expected2_list = [ "2015-04-19 00:00:03", "2015-04-26 00:00:03", "2015-05-03 00:00:03", "2015-05-10 00:00:03", "2015-05-17 00:00:03", "2015-05-24 00:00:03", "2015-05-31 00:00:03", "2015-06-07 00:00:03", "2015-06-14 00:00:03", "2015-06-21 00:00:03", ] expected1 = DatetimeIndex( expected1_list, dtype="datetime64[ns]", freq="Q-DEC", tz=None ) expected2 = DatetimeIndex( expected2_list, dtype="datetime64[ns]", freq="W-SUN", tz=None ) tm.assert_index_equal(result1, expected1) tm.assert_index_equal(result2, expected2) dt1, dt2 = "2017-01-01", "2017-01-01" tz1, tz2 = "US/Eastern", "Europe/London" @pytest.mark.parametrize( "start,end", [ (Timestamp(dt1, tz=tz1), Timestamp(dt2)), (Timestamp(dt1), Timestamp(dt2, tz=tz2)), (Timestamp(dt1, tz=tz1), Timestamp(dt2, tz=tz2)), (Timestamp(dt1, tz=tz2), Timestamp(dt2, tz=tz1)), ], ) def test_mismatching_tz_raises_err(self, start, end): # issue 18488 msg = "Start and end cannot both be tz-aware with different timezones" with pytest.raises(TypeError, match=msg): date_range(start, end) with pytest.raises(TypeError, match=msg): date_range(start, end, freq=BDay()) class TestBusinessDateRange: def test_constructor(self): bdate_range(START, END, freq=BDay()) bdate_range(START, periods=20, freq=BDay()) bdate_range(end=START, periods=20, freq=BDay()) msg = "periods must be a number, got B" with pytest.raises(TypeError, match=msg): date_range("2011-1-1", "2012-1-1", "B") with pytest.raises(TypeError, match=msg): bdate_range("2011-1-1", "2012-1-1", "B") msg = "freq must be specified for bdate_range; use date_range instead" with pytest.raises(TypeError, match=msg): bdate_range(START, END, periods=10, freq=None) def test_misc(self): end = datetime(2009, 5, 13) dr = bdate_range(end=end, periods=20) firstDate = end - 19 * BDay() assert len(dr) == 20 assert dr[0] == firstDate assert dr[-1] == end def test_date_parse_failure(self): badly_formed_date = "2007/100/1" msg = "could not convert string to Timestamp" with pytest.raises(ValueError, match=msg): Timestamp(badly_formed_date) with pytest.raises(ValueError, match=msg): bdate_range(start=badly_formed_date, periods=10) with pytest.raises(ValueError, match=msg): bdate_range(end=badly_formed_date, periods=10) with pytest.raises(ValueError, match=msg): bdate_range(badly_formed_date, badly_formed_date) def test_daterange_bug_456(self): # GH #456 rng1 = bdate_range("12/5/2011", "12/5/2011") rng2 = bdate_range("12/2/2011", "12/5/2011") assert rng2._data.freq == BDay() result = rng1.union(rng2) assert isinstance(result, DatetimeIndex) @pytest.mark.parametrize("closed", ["left", "right"]) def test_bdays_and_open_boundaries(self, closed): # GH 6673 start = "2018-07-21" # Saturday end = "2018-07-29" # Sunday result = date_range(start, end, freq="B", closed=closed) bday_start = "2018-07-23" # Monday bday_end = "2018-07-27" # Friday expected = date_range(bday_start, bday_end, freq="D") tm.assert_index_equal(result, expected) # Note: we do _not_ expect the freqs to match here def test_bday_near_overflow(self): # GH#24252 avoid doing unnecessary addition that _would_ overflow start = Timestamp.max.floor("D").to_pydatetime() rng = date_range(start, end=None, periods=1, freq="B") expected = DatetimeIndex([start], freq="B") tm.assert_index_equal(rng, expected) def test_bday_overflow_error(self): # GH#24252 check that we get OutOfBoundsDatetime and not OverflowError msg = "Out of bounds nanosecond timestamp" start =
Timestamp.max.floor("D")
pandas.Timestamp.max.floor
import copy import random import numpy as np import pandas as pd import pytest from scipy import sparse import sklearn.datasets import sklearn.model_selection from autosklearn.data.feature_validator import FeatureValidator # Fixtures to be used in this class. By default all elements have 100 datapoints @pytest.fixture def input_data_featuretest(request): if request.param == 'numpy_categoricalonly_nonan': return np.random.randint(10, size=(100, 10)) elif request.param == 'numpy_numericalonly_nonan': return np.random.uniform(10, size=(100, 10)) elif request.param == 'numpy_mixed_nonan': return np.column_stack([ np.random.uniform(10, size=(100, 3)), np.random.randint(10, size=(100, 3)), np.random.uniform(10, size=(100, 3)), np.random.randint(10, size=(100, 1)), ]) elif request.param == 'numpy_string_nonan': return np.array([ ['a', 'b', 'c', 'a', 'b', 'c'], ['a', 'b', 'd', 'r', 'b', 'c'], ]) elif request.param == 'numpy_categoricalonly_nan': array = np.random.randint(10, size=(100, 10)).astype('float') array[50, 0:5] = np.nan return array elif request.param == 'numpy_numericalonly_nan': array = np.random.uniform(10, size=(100, 10)).astype('float') array[50, 0:5] = np.nan # Somehow array is changed to dtype object after np.nan return array.astype('float') elif request.param == 'numpy_mixed_nan': array = np.column_stack([ np.random.uniform(10, size=(100, 3)), np.random.randint(10, size=(100, 3)), np.random.uniform(10, size=(100, 3)), np.random.randint(10, size=(100, 1)), ]) array[50, 0:5] = np.nan return array elif request.param == 'numpy_string_nan': return np.array([ ['a', 'b', 'c', 'a', 'b', 'c'], [np.nan, 'b', 'd', 'r', 'b', 'c'], ]) elif request.param == 'pandas_categoricalonly_nonan': return pd.DataFrame([ {'A': 1, 'B': 2}, {'A': 3, 'B': 4}, ], dtype='category') elif request.param == 'pandas_numericalonly_nonan': return pd.DataFrame([ {'A': 1, 'B': 2}, {'A': 3, 'B': 4}, ], dtype='float') elif request.param == 'pandas_mixed_nonan': frame = pd.DataFrame([ {'A': 1, 'B': 2}, {'A': 3, 'B': 4}, ], dtype='category') frame['B'] = pd.to_numeric(frame['B']) return frame elif request.param == 'pandas_categoricalonly_nan': return pd.DataFrame([ {'A': 1, 'B': 2, 'C': np.nan}, {'A': 3, 'C': np.nan}, ], dtype='category') elif request.param == 'pandas_numericalonly_nan': return pd.DataFrame([ {'A': 1, 'B': 2, 'C': np.nan}, {'A': 3, 'C': np.nan}, ], dtype='float') elif request.param == 'pandas_mixed_nan': frame = pd.DataFrame([ {'A': 1, 'B': 2, 'C': 8}, {'A': 3, 'B': 4}, ], dtype='category') frame['B'] = pd.to_numeric(frame['B']) return frame elif request.param == 'pandas_string_nonan': return pd.DataFrame([ {'A': 1, 'B': 2}, {'A': 3, 'B': 4}, ], dtype='string') elif request.param == 'list_categoricalonly_nonan': return [ ['a', 'b', 'c', 'd'], ['e', 'f', 'c', 'd'], ] elif request.param == 'list_numericalonly_nonan': return [ [1, 2, 3, 4], [5, 6, 7, 8] ] elif request.param == 'list_mixed_nonan': return [ ['a', 2, 3, 4], ['b', 6, 7, 8] ] elif request.param == 'list_categoricalonly_nan': return [ ['a', 'b', 'c', np.nan], ['e', 'f', 'c', 'd'], ] elif request.param == 'list_numericalonly_nan': return [ [1, 2, 3, np.nan], [5, 6, 7, 8] ] elif request.param == 'list_mixed_nan': return [ ['a', np.nan, 3, 4], ['b', 6, 7, 8] ] elif 'sparse' in request.param: # We expect the names to be of the type sparse_csc_nonan sparse_, type_, nan_ = request.param.split('_') if 'nonan' in nan_: data = np.ones(3) else: data = np.array([1, 2, np.nan]) # Then the type of sparse row_ind = np.array([0, 1, 2]) col_ind = np.array([1, 2, 1]) if 'csc' in type_: return sparse.csc_matrix((data, (row_ind, col_ind))) elif 'csr' in type_: return sparse.csr_matrix((data, (row_ind, col_ind))) elif 'coo' in type_: return sparse.coo_matrix((data, (row_ind, col_ind))) elif 'bsr' in type_: return sparse.bsr_matrix((data, (row_ind, col_ind))) elif 'lil' in type_: return sparse.lil_matrix((data)) elif 'dok' in type_: return sparse.dok_matrix(np.vstack((data, data, data))) elif 'dia' in type_: return sparse.dia_matrix(np.vstack((data, data, data))) else: ValueError("Unsupported indirect fixture {}".format(request.param)) elif 'openml' in request.param: _, openml_id = request.param.split('_') X, y = sklearn.datasets.fetch_openml(data_id=int(openml_id), return_X_y=True, as_frame=True) return X else: ValueError("Unsupported indirect fixture {}".format(request.param)) # Actual checks for the features @pytest.mark.parametrize( 'input_data_featuretest', ( 'numpy_categoricalonly_nonan', 'numpy_numericalonly_nonan', 'numpy_mixed_nonan', 'numpy_categoricalonly_nan', 'numpy_numericalonly_nan', 'numpy_mixed_nan', 'pandas_categoricalonly_nonan', 'pandas_numericalonly_nonan', 'pandas_mixed_nonan', 'pandas_numericalonly_nan', 'list_numericalonly_nonan', 'list_numericalonly_nan', 'sparse_bsr_nonan', 'sparse_bsr_nan', 'sparse_coo_nonan', 'sparse_coo_nan', 'sparse_csc_nonan', 'sparse_csc_nan', 'sparse_csr_nonan', 'sparse_csr_nan', 'sparse_dia_nonan', 'sparse_dia_nan', 'sparse_dok_nonan', 'sparse_dok_nan', 'sparse_lil_nonan', 'sparse_lil_nan', 'openml_40981', # Australian ), indirect=True ) def test_featurevalidator_supported_types(input_data_featuretest): validator = FeatureValidator() validator.fit(input_data_featuretest, input_data_featuretest) transformed_X = validator.transform(input_data_featuretest) if sparse.issparse(input_data_featuretest): assert sparse.issparse(transformed_X) else: assert isinstance(transformed_X, np.ndarray) assert np.shape(input_data_featuretest) == np.shape(transformed_X) assert np.issubdtype(transformed_X.dtype, np.number) assert validator._is_fitted @pytest.mark.parametrize( 'input_data_featuretest', ( 'list_categoricalonly_nonan', 'list_categoricalonly_nan', 'list_mixed_nonan', 'list_mixed_nan', ), indirect=True ) def test_featurevalidator_unsupported_list(input_data_featuretest): validator = FeatureValidator() with pytest.raises(ValueError, match=r".*has invalid type object. Cast it to a valid dtype.*"): validator.fit(input_data_featuretest) @pytest.mark.parametrize( 'input_data_featuretest', ( 'numpy_string_nonan', 'numpy_string_nan', ), indirect=True ) def test_featurevalidator_unsupported_numpy(input_data_featuretest): validator = FeatureValidator() with pytest.raises(ValueError, match=r".*When providing a numpy array.*not supported."): validator.fit(input_data_featuretest) @pytest.mark.parametrize( 'input_data_featuretest', ( 'pandas_categoricalonly_nan', 'pandas_mixed_nan', 'openml_179', # adult workclass has NaN in columns ), indirect=True ) def test_featurevalidator_unsupported_pandas(input_data_featuretest): validator = FeatureValidator() with pytest.raises(ValueError, match=r"Categorical features in a dataframe.*missing/NaN"): validator.fit(input_data_featuretest) @pytest.mark.parametrize( 'input_data_featuretest', ( 'numpy_categoricalonly_nonan', 'numpy_mixed_nonan', 'numpy_categoricalonly_nan', 'numpy_mixed_nan', 'pandas_categoricalonly_nonan', 'pandas_mixed_nonan', 'list_numericalonly_nonan', 'list_numericalonly_nan', 'sparse_bsr_nonan', 'sparse_bsr_nan', 'sparse_coo_nonan', 'sparse_coo_nan', 'sparse_csc_nonan', 'sparse_csc_nan', 'sparse_csr_nonan', 'sparse_csr_nan', 'sparse_dia_nonan', 'sparse_dia_nan', 'sparse_dok_nonan', 'sparse_dok_nan', 'sparse_lil_nonan', ), indirect=True ) def test_featurevalidator_fitontypeA_transformtypeB(input_data_featuretest): """ Check if we can fit in a given type (numpy) yet transform if the user changes the type (pandas then) This is problematic only in the case we create an encoder """ validator = FeatureValidator() validator.fit(input_data_featuretest, input_data_featuretest) if isinstance(input_data_featuretest, pd.DataFrame): complementary_type = input_data_featuretest.to_numpy() elif isinstance(input_data_featuretest, np.ndarray): complementary_type = pd.DataFrame(input_data_featuretest) elif isinstance(input_data_featuretest, list): complementary_type = pd.DataFrame(input_data_featuretest) elif sparse.issparse(input_data_featuretest): complementary_type = sparse.csr_matrix(input_data_featuretest.todense()) else: raise ValueError(type(input_data_featuretest)) transformed_X = validator.transform(complementary_type) assert np.shape(input_data_featuretest) == np.shape(transformed_X) assert np.issubdtype(transformed_X.dtype, np.number) assert validator._is_fitted def test_featurevalidator_get_columns_to_encode(): """ Makes sure that encoded columns are returned by _get_columns_to_encode whereas numerical columns are not returned """ validator = FeatureValidator() df = pd.DataFrame([ {'int': 1, 'float': 1.0, 'category': 'one', 'bool': True}, {'int': 2, 'float': 2.0, 'category': 'two', 'bool': False}, ]) for col in df.columns: df[col] = df[col].astype(col) enc_columns, feature_types = validator._get_columns_to_encode(df) assert enc_columns == ['category', 'bool'] assert feature_types == ['numerical', 'numerical', 'categorical', 'categorical'] def test_features_unsupported_calls_are_raised(): """ Makes sure we raise a proper message to the user, when providing not supported data input or using the validator in a way that is not expected """ validator = FeatureValidator() with pytest.raises(ValueError, match=r"Auto-sklearn does not support time"): validator.fit( pd.DataFrame({'datetime': [pd.Timestamp('20180310')]}) ) with pytest.raises(ValueError, match="has invalid type object"): validator.fit( pd.DataFrame({'string': ['foo']}) ) with pytest.raises(ValueError, match=r"Auto-sklearn only supports.*yet, the provided input"): validator.fit({'input1': 1, 'input2': 2}) with pytest.raises(ValueError, match=r"has unsupported dtype string"): validator.fit(
pd.DataFrame([{'A': 1, 'B': 2}], dtype='string')
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Retrieve bikeshare stations metadata.""" # pylint: disable=invalid-name from io import BytesIO from typing import Dict, List from urllib.request import urlopen from zipfile import ZipFile import geopandas as gpd import pandas as pd import pandera as pa import requests ch_essentials_schema = pa.DataFrameSchema( columns={ "ID": pa.Column(pa.Int), "NAME": pa.Column(pd.StringDtype()), "POI_LATITUDE": pa.Column( pa.Float64, nullable=True, ), "POI_LONGITUDE": pa.Column( pa.Float64, nullable=True, ), }, index=pa.Index(pa.Int), ) poi_schema = pa.DataFrameSchema( columns={ "ID": pa.Column(pa.Int, unique=True), "ADDRESS_INFO": pa.Column(pd.StringDtype()), "NAME": pa.Column(pd.StringDtype(), unique=True), "CATEGORY": pa.Column(pd.StringDtype()), "PHONE": pa.Column(pd.StringDtype()), "EMAIL": pa.Column(pd.StringDtype()), "WEBSITE": pa.Column(pd.StringDtype()), "GEOID": pa.Column(pa.Float, nullable=True), "RECEIVED_DATE": pa.Column(pd.StringDtype()), "ADDRESS_POINT_ID": pa.Column(pa.Float, nullable=True), "LINEAR_NAME_FULL": pa.Column(pd.StringDtype()), "ADDRESS_FULL": pa.Column(pd.StringDtype()), "POSTAL_CODE": pa.Column(pd.StringDtype()), "MUNICIPALITY": pa.Column(pd.StringDtype()), "CITY": pa.Column(pd.StringDtype()), "PLACE_NAME": pa.Column(pd.StringDtype()), "GENERAL_USE_CODE": pa.Column(pa.Float, nullable=True), "CENTRELINE": pa.Column(pa.Float, nullable=True), "LO_NUM": pa.Column(pa.Float, nullable=True), "LO_NUM_SUF": pa.Column(pd.StringDtype()), "HI_NUM": pa.Column(pd.StringDtype()), "HI_NUM_SUF": pa.Column(pd.StringDtype()), "LINEAR_NAME_ID": pa.Column(pa.Float, nullable=True), "WARD": pa.Column(pd.StringDtype()), "WARD_2003": pa.Column(pa.Float, nullable=True), "WARD_2018": pa.Column(pa.Float, nullable=True), "MI_PRINX": pa.Column(pa.Float, nullable=True), "ATTRACTION": pa.Column(pd.StringDtype(), unique=True), "MAP_ACCESS": pa.Column(pd.StringDtype()), "POI_LONGITUDE": pa.Column(pa.Float, unique=False), "POI_LATITUDE": pa.Column(pa.Float, unique=False), }, index=pa.Index(pa.Int), ) gdf_schema = pa.DataFrameSchema( columns={ "AREA_ID": pa.Column(pa.Int), "AREA_SHORT_CODE": pa.Column(pd.StringDtype()), "AREA_LONG_CODE": pa.Column(pd.StringDtype()), "AREA_NAME": pa.Column(pd.StringDtype()), "Shape__Area": pa.Column(pa.Float64), # "Shape__Length": pa.Column(pa.Float64), # "LATITUDE": pa.Column(pd.StringDtype(), nullable=True), "AREA_LATITUDE": pa.Column(pa.Float64), # "LONGITUDE": pa.Column(pd.StringDtype(), nullable=True), "AREA_LONGITUDE": pa.Column(pa.Float64), }, index=pa.Index(pa.Int), ) pub_trans_locations_schema = pa.DataFrameSchema( columns={ "stop_id": pa.Column(pa.Int), "stop_code": pa.Column(pa.Int), "stop_name": pa.Column(pd.StringDtype()), "stop_desc": pa.Column(pd.StringDtype(), nullable=True), "lat": pa.Column(pa.Float64), "lon": pa.Column(pa.Float64), "zone_id": pa.Column(pa.Float64, nullable=True), "stop_url": pa.Column(pd.StringDtype(), nullable=True), "location_type": pa.Column(pa.Float64, nullable=True), "parent_station": pa.Column(pa.Float64, nullable=True), "stop_timezone": pa.Column(pa.Float64, nullable=True), "wheelchair_boarding": pa.Column(pa.Int), }, index=pa.Index(pa.Int), ) coll_univ_schema = pa.DataFrameSchema( columns={ "institution_id": pa.Column(pa.Int), "institution_name": pa.Column(pd.StringDtype()), "lat": pa.Column(pa.Float64), "lon": pa.Column(pa.Float64), }, index=pa.Index(pa.Int), ) def get_lat_long(row): """Get latitude and longitude.""" return row["coordinates"] @pa.check_output(poi_schema) def get_poi_data(url: str, poi_params: Dict) -> pd.DataFrame: """Get points of interest within city boundaries.""" poi_dtypes_dict = dict( ADDRESS_INFO=pd.StringDtype(), NAME=pd.StringDtype(), CATEGORY=pd.StringDtype(), PHONE=pd.StringDtype(), EMAIL=pd.StringDtype(), WEBSITE=pd.StringDtype(), RECEIVED_DATE=pd.StringDtype(), LINEAR_NAME_FULL=pd.StringDtype(), ADDRESS_FULL=pd.StringDtype(), POSTAL_CODE=pd.StringDtype(), MUNICIPALITY=pd.StringDtype(), CITY=pd.StringDtype(), PLACE_NAME=pd.StringDtype(), LO_NUM_SUF=pd.StringDtype(), HI_NUM=pd.StringDtype(), HI_NUM_SUF=pd.StringDtype(), WARD=pd.StringDtype(), ATTRACTION=pd.StringDtype(), MAP_ACCESS=pd.StringDtype(), ) package = requests.get(url, params=poi_params).json() poi_url = package["result"]["resources"][0]["url"] df =
pd.read_csv(poi_url)
pandas.read_csv
"""Convenience methods for data visualization - matplotlib, seaborn, statsmodels, pandas Author: <NAME> License: MIT """ import numpy as np import scipy import pandas as pd from pandas import DataFrame, Series import wget import os import re import time import requests import calendar from datetime import datetime from pandas.api.types import is_list_like, is_datetime64_any_dtype from pandas.api.types import is_integer_dtype, is_string_dtype, is_numeric_dtype from pandas.api import types from numpy.ma import masked_invalid as valid import matplotlib.pyplot as plt import seaborn as sns from matplotlib import dates as mdates from matplotlib import colors, cm from matplotlib.lines import Line2D from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() # for date formatting in plots try: from settings import ECHO except: ECHO = False # plt.style.use('ggplot') def row_formatted(df, formats={}, width=None): """Apply display formats by row index, and set row index width Examples -------- row_formatted(prices, formats={'vwap': '{:.0f}', 'mid': '{:.3f}'}) """ out = df.apply(lambda x: x.map(formats.get(x.name,'{}').format), axis=1) if width: out.index = out.index.str.slice(0, width) return out def plot_bands(mean, stderr, width=1.96, x=None, ylabel=None, xlabel=None, c="b", loc='best', legend=None, ax=None, fontsize=10, title=None, hline=None, vline=None): """Line plot a series with confidence bands""" ax = ax or plt.gca() if x is None: x = np.arange(len(mean)) # x-axis is event day number if hline is not None: if not is_list_like(hline): hline = [hline] for line in hline: ax.axhline(line, linestyle=':', color='g') if vline is not None: if not is_list_like(vline): vline = [vline] for line in vline: ax.axvline(line, linestyle=':', color='g') ax.plot(x, mean, ls='-', c=c) ax.fill_between(x, mean-(width*np.array(stderr)), mean+(width*np.array(stderr)), alpha=0.3, color=c) if legend: ax.legend(legend, loc=loc, fontsize=fontsize) ax.set_title(title, fontsize=fontsize+4) ax.set_ylabel(ylabel, fontsize=fontsize+2) ax.set_xlabel(xlabel, fontsize=fontsize+2) def plot_scatter(x, y, labels=None, ax=None, xlabel=None, ylabel=None, c=None, cmap=None, alpha=0.75, edgecolor=None, s=10, marker=None, title='', abline=True, fontsize=12): """Scatter plot, optionally with abline slope and point labels Parameters ---------- x : Series or array-like to plot on horizontal axis y : Series or array-like to plot on horizontal axis labels : Series or array-like of str, default is None annotate plotted points with text ax : matplotlib axes object, optional from plt.subplots() or plt.gca(), default is None xlabel : str, optional horizontal axis label, default is x.name else None ylabel : str, optional vertical axis label, default is y.name else None title : str, optional title of plot, default is '' abline : bool, default None plot abline if True, or 45-degree if False, If None, do not plot slope s : numeric, default 10 marker area size """ if ax is None: ax = plt.gca() ax.cla() ax.clear() if c is not None and cmap is not None: cmin = min(c) cmax = max(c) norm = colors.Normalize(cmin - (cmax-cmin)/2, cmax) c = cm.ScalarMappable(norm=norm, cmap=cmap).to_rgba(c) cmap = None cax = ax.scatter(x, y, marker=marker, s=s, c=c, alpha=alpha, edgecolor=edgecolor, cmap=cmap) #cmap=plt.cm.get_cmap('tab10', 3) if abline is not None: xmin, xmax, ymin, ymax = ax.axis() if abline: # plot fitted slope f = ~(np.isnan(x) | np.isnan(y)) slope, intercept = np.polyfit(list(x[f]), list(y[f]), 1) y_pred = [slope * i + intercept for i in list(x[f])] ax.plot(x[f], y_pred, 'g-') else: # plot 45-degree line bottom_left, top_right = min(xmin, ymin), max(xmax, ymax) ax.plot([bottom_left, top_right], [bottom_left, top_right], 'g-') xlabel = xlabel or (x.name if hasattr(x, 'name') else None) ylabel = ylabel or (y.name if hasattr(y, 'name') else None) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=fontsize) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=fontsize) if labels is not None: for t, xt, yt in zip(labels, x, y): plt.text(xt * 1.01, yt * 1.01, t, fontsize=fontsize) ax.set_title(title, fontsize=fontsize+4) mfc = cax.get_fc()[0] return Line2D([0], [0], marker=marker, mfc=mfc, ms=10, ls='', c=mfc) def plot_hist(*args, kde=True, hist=False, bins=None, pdf=scipy.stats.norm.pdf, ax=None, title='', xlabel='', ylabel='density', fontsize=12): """Histogram bar plot with target density""" ax = ax or plt.gca() ax=plt.gca() for arg in args: frame = DataFrame(arg) for col in frame.columns: y = frame[col].notnull().values sns.distplot(frame[col][y], kde=kde, hist=hist, bins=bins, label=col, ax=ax) if pdf: if not types.is_list_like(pdf): pdf = [pdf] if isinstance(pdf, dict): labels = list(pdf.keys()) pdf = list(pdf.values()) else: labels = None pdf = list(pdf) bx = ax.twinx() if args else ax bx.yaxis.set_tick_params(rotation=0, labelsize=fontsize) x= np.linspace(*plt.xlim(), 100) for i, p in enumerate(pdf): bx.plot(x, p(x), label=labels[i] if labels else None, color=f"C{len(args)+i}") if labels: bx.legend(labels, loc='center right') ax.legend(loc='center left') ax.xaxis.set_tick_params(rotation=0, labelsize=fontsize) ax.yaxis.set_tick_params(rotation=0, labelsize=fontsize) ax.set_title(title, fontsize=fontsize+4) ax.set_ylabel(ylabel, fontsize=fontsize+4) ax.set_xlabel(xlabel, fontsize=fontsize+4) def plot_bar(y, ax=None, labels=None, xlabel=None, ylabel=None, fontsize=12, title='', legend=None, loc='best', labelsize=8, rotation=0): """Bar plot with annotated points""" ax = ax or plt.gca() bars = list(np.ravel(y.plot.bar(ax=ax, width=0.8).containers, order='F')) ax.set_title(title, fontsize=fontsize+4) ax.xaxis.set_tick_params(rotation=0, labelsize=fontsize) ax.yaxis.set_tick_params(rotation=0, labelsize=fontsize) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=fontsize+2) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=fontsize+2) if legend is not None: ax.legend(legend, loc) elif loc is not None: ax.legend(loc=loc) if labels is not None: for pt, freq in zip(bars, np.ravel(labels)): ax.annotate(str(freq), fontsize=labelsize, xy=(pt.get_x() + pt.get_width() / 2, pt.get_height()), xytext=(0, 3), textcoords="offset points", ha='center', va='bottom', rotation=rotation) def plot_date(y1, y2=None, ax=None, xmin=0, xmax=99999999, fontsize=12, label1=None, label2=None, legend1=None, legend2=None, cn=0, loc1='upper left', loc2='upper right', ls1='-', ls2='-', hlines=[], vlines=[], vspans=[], marker=None, rescale=False, yscale=False, title='', points=None, **kwargs): """Line plot with int date on x-axis, and primary and secondary y-dataframes Parameters ---------- y1 : DataFrame to plot on primary y-axis y2 : DataFrame, optional to plot on secondary y-axis (default is None) ax : matplotlib axes object, optional from plt.subplots() or plt.gca(), default is None cn : int, default is 0 to cycle through CN colors starting at N=cn xmin : int, optional minimum of x-axis date range (default is auto) xmax : int, optional maximum of x-axis date range (default is auto) hlines : list of int (default = []) y-axis points where to place horizontal lines vlines : list of int (default = []) x-axis points where to place vertical lines vspans : list of int tuples (default = []) vertical regions to highlight """ ax = ax or plt.gca() ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y%m%d')) if y1 is not None: y1 = DataFrame(y1) y1 = y1.loc[(y1.index >= xmin) & (y1.index <= xmax)] base = y1.loc[max(y1.notna().idxmax()),:] if rescale else 1 #sns.lineplot(x = pd.to_datetime(y1.index[f], format='%Y%m%d'), #y = y1.loc[f], ax=ax) for ci, c in enumerate(y1.columns): f = y1.loc[:,c].notnull().values ax.plot(pd.to_datetime(y1.index[f], format='%Y%m%d'), y1.loc[f,c] / (base[c] if rescale else 1), marker=marker, linestyle=ls1, color=f'C{ci+cn}') if points is not None: ax.scatter(pd.to_datetime(points.index, format='%Y%m%d'), points, marker='o', color='r') if len(y1.columns) > 1 or legend1: ax.set_ylabel('') ax.legend(legend1 or y1.columns, fontsize=fontsize, loc=loc1) if label1: ax.set_ylabel(label1, fontsize=fontsize+2) if y2 is not None: y2 = DataFrame(y2) y2 = y2.loc[(y2.index >= xmin) & (y2.index <= xmax)] base = y2.loc[max(y2.notna().idxmax()),:] if rescale else 1 bx = ax.twinx() for cj, c in enumerate(y2.columns): g = y2.loc[:,c].notnull().values bx.plot(pd.to_datetime(y2.index[g], format='%Y%m%d'), y2.loc[g, c] / (base[c] if rescale else 1), marker=marker, linestyle=ls2, color=f"C{ci+cj+cn+1}") if yscale: amin, amax = ax.get_ylim() bmin, bmax = bx.get_ylim() ax.set_ylim(min(amin, bmin), max(amax, bmax)) if len(y2.columns) > 1 or legend2: bx.set_ylabel('') bx.legend(legend2 or y2.columns, fontsize=fontsize, loc=loc2) if label2: bx.set_ylabel(label2, fontsize=fontsize+2) for hline in hlines: plt.axhline(hline, linestyle='-.', color='y') for vline in vlines: plt.axvline(pd.to_datetime(vline, format='%Y%m%d'), ls='-.', color='y') for vspan in vspans: plt.axvspan(*([pd.to_datetime(v, format='%Y%m%d') for v in vspan]), alpha=0.5, color='grey') ax.xaxis.set_tick_params(rotation=0, labelsize=fontsize) ax.yaxis.set_tick_params(rotation=0, labelsize=fontsize) plt.title(title, fontsize=fontsize+4) open_t = pd.to_datetime('1900-01-01T09:30') close_t = pd.to_datetime('1900-01-01T16:00') def plot_time(y1, y2=None, ax= None, xmin=open_t, xmax=close_t, marker=None, title='', loc1=None, loc2=None, legend1=None, legend2=None, fontsize=12, **kwargs): """Plot lines with time on x-axis, and primary and secondary y-axis Parameters ---------- y1 : DataFrame to plot on left axis y2: DataFrame or None to plot on right axis ax : axis matplotlib axes object to plot in xmin : datetime or None, default is '1900-01-01T09:30' left-most x-axis time, None to include all xmax : datetime, or None, default is '1900-01-01T16:00' right-most x-axis time, None to include all marker : str, default is None style of market to plot title : str, default is '' text to display as title loc1, loc2 : str, default is None locations to place legend/s legend1, legend2 : list of str, default is None labels to display in legend """ ax = ax or plt.gca() ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) cn = 0 # to cycle through matplotlib 'CN' color palette left =
DataFrame(y1)
pandas.DataFrame
# ------------------- Graphical User Interface for Network Analysis ------------------- # # Libraries import warnings warnings.filterwarnings("ignore") from graph_tool.all import * import graph_tool.all as gt import ipywidgets as widgets import matplotlib.pyplot as plt import numpy as np from IPython.display import clear_output import seaborn as sns from ipywidgets import * import rpy2.robjects.packages as rpackages from rpy2.robjects.packages import importr import rpy2 import rpy2.robjects as robjects from rpy2.robjects.vectors import StrVector import pandas as pd from IPython.utils import io import random import numpy as np # Libraries for Download button import base64 import hashlib from typing import Callable import ipywidgets from IPython.display import HTML, display # Installing R packages utils = rpackages.importr('utils') with io.capture_output() as captured: utils.install_packages('poweRlaw', repos="https://cloud.r-project.org") x = rpackages.importr('poweRlaw') # Creating a My_Network class to hold functions for all network analysis methods class My_Network: def __init__(self, file_name): # Network class is initialized through the file upload if ".csv" in file_name: self.G = graph_tool.load_graph_from_csv(file_name) if ".graphml" in file_name: self.G = graph_tool.load_graph(file_name) def prepare_the_network(self): """ Network preparation includes: 1) Making it undirected 2) Removal of parallel edges if they are present 3) Extraction of the largest connected component that is treated as the final ready-to-use network (all other components are removed). """ self.G.set_directed(False) # 1) graph_tool.stats.remove_parallel_edges(self.G) # 2) # 3) comp, hist = graph_tool.topology.label_components(self.G) label = gt.label_largest_component(self.G) to_remove = [] for v in self.G.vertices(): if label[v]==0: to_remove.append(v) for v in reversed(sorted(to_remove)): self.G.remove_vertex(v) """ The following functions are responsible for calculation of centrality measures and clustering coefficient. It is done by generating a corresponding map of the form: node <---> value of the measure. """ def create_degree_distribution_map(self): my_map = self.G.degree_property_map("total") return my_map def create_betweenness_distribution_map(self): v_betweeness_map, e_betweenness_map = graph_tool.centrality.betweenness(self.G) my_map = v_betweeness_map return my_map def create_closeness_distribution_map(self): my_map = graph_tool.centrality.closeness(self.G) return my_map def create_eigenvector_distribution_map(self): eigen_value, v_eigen_map = graph_tool.centrality.eigenvector(self.G) my_map = v_eigen_map return my_map def create_clustering_map(self): my_map = graph_tool.clustering.local_clustering(self.G) return my_map def create_random_map(self): # Corresponds to the generation of the random ranking of the nodes. Each number is assesed a random place in the ranking. # Its position is saved within the vertex property map as it is done for other metrics. r = self.G.new_vertex_property("double") indexes = np.arange(self.G.num_vertices()) np.random.shuffle(indexes) r.a = indexes return r def plot_map_histogram(self, my_map, measure_name, block = True): """ plot_map_histogram function contains a code for the plot generation using matplotlib library given the graph-tool map for the measure of interest. """ # General settings: plt.style.use('seaborn-whitegrid') fig, ax = plt.subplots(constrained_layout=True, figsize=(5, 5)) FONT = 15 # Preparing the data: my_map = my_map.fa # Extraction of the map's values - now the normal pythonic list is obtained as the representation of the measure's values. # Calculating basic statistics: to_calculate_statistics = list(my_map) avg = round(np.mean(to_calculate_statistics),4) std = round(np.std(to_calculate_statistics),2) # Creating the histogram: n=15 a = ax.hist(my_map, bins=n, facecolor="lightblue",weights=np.zeros_like(my_map) + 1. / len(my_map)) bins_mean = [0.5 * (a[1][j] + a[1][j+1]) for j in range(n)] sticks_to_mark = ([], []) for k in range(len(a[0])): if a[0][k] == 0: pass else: sticks_to_mark[0].append(bins_mean[k]) sticks_to_mark[1].append(a[0][k]) ax.plot(sticks_to_mark[0], sticks_to_mark[1], "b+") ax.set_xlabel("Value", fontsize = FONT) ax.set_ylabel("Fraction of nodes", fontsize = FONT) ax.set_title(measure_name +" histogram \n Mean value: " + str(avg)+ ", Std: "+ str(std), fontsize = FONT) plt.show(block=block) return fig, ax def hubs_impact_check(self): """ hubs_impact_check function is used for the evaluation of hubs and low-degree nodes' contribution to the number of links present in the graph. This is done by extracting all the possible values of the degree (1) and then looping over them (2). Within the loop for each degree number all nodes with the degree below or equal to it are extracted to form the subnetwork (3). The number of links and nodes in the subnetwork is divided by the corresponding total numbers in the network (4) to evaluate the contribution of the following degree groups. """ largest_N = self.G.num_vertices() largest_E = self.G.num_edges() degrees = self.G.get_total_degrees(self.G.get_vertices()) Ns = [] Es = [] degrees_set = list(set(degrees)) # 1) degrees_set.sort() degrees_map = self.G.degree_property_map("total") for degree in degrees_set: # 2) cut = degree u = gt.GraphView(self.G, vfilt = lambda v: degrees_map[v]<=cut) # 3) current_N = u.num_vertices()/largest_N current_E = u.num_edges()/largest_E # 4) Ns.append(current_N) Es.append(current_E) return Ns, Es, degrees_set def plot_hubs_impact1(self, degrees_set, Es, block = True): #to use it first need to execute hubs_impact_check """ Plot_hubs_impact1 requires data that is generated by hubs_impact_check function. It generates the plot that represents how the following degree groups contribute to the number of links present in the whole network. """ # Plot settings: FONT = 15 plt.style.use('seaborn-whitegrid') plt.figure(figsize=(5,5)) plt.xticks(fontsize=FONT-3) plt.yticks(fontsize=FONT-3) plt.xlabel("K", fontsize= FONT) plt.ylabel("$L_K/L$", fontsize= FONT) plt.title("Relation between K and subnetworks' links\n sizes; $s_1$", fontsize= FONT) # Plotting the data plt.plot(degrees_set, Es, "o", markersize=4, color="royalblue") plt.show(block = block) def plot_hubs_impact2(self, degrees_set, Es, Ns, block = True): """ Plot_hubs_impact2 requires data that is generated by hubs_impact_check function. It generates the plot that represents how the following percentages of the total number of nodes contribute to the total number of links present in the whole network. """ # Plot settings: FONT=15 plt.style.use('seaborn-whitegrid') plt.figure(figsize=(5,5)) sns.set_context("paper", rc={"font.size":FONT,"axes.titlesize":FONT,"axes.labelsize":FONT, "xtick.labelsize":FONT-3, "ytick.labelsize":FONT-3, "legend.fontsize":FONT-3, "legend.titlesize":FONT-3}) # Plotting the data fig = sns.scatterplot(x= Ns, y=Es, hue=np.log(degrees_set), palette="dark:blue_r") fig.set(xlabel='$N_K/N$', ylabel='$L_K/L$', title="Relation between subnetworks' nodes\nand links sizes; $s_2$") plt.legend(title="Log(K)", loc ="upper left", title_fontsize=FONT-3) plt.show(block = block) def calculate_assortativity_value(self): # Calculation of the degree correlation coefficient: return gt.assortativity(self.G, "total")[0] def plot_ANND(self, normed = False, errorbar = True, block = True): """ plot_ANND generates Average Nearest Neighbour Degree plot that represents the mixing patterns between different groups of the nodes. Each group consists of the nodes of the same degree. """ # Plot settings: FONT = 15 plt.style.use('seaborn-whitegrid') fig = plt.figure(figsize=(5,5)) plt.xlabel("Source degree (k)", fontsize = FONT) plt.ylabel("$<k_{nn}(k)>$", fontsize = FONT) title = "Average degree of\n the nearest neighbours" if normed == False else "Normed average degree of\n the nearest neighbours" plt.title(title, fontsize = FONT) # Calculating correlation vectors for ANND plot h = gt.avg_neighbor_corr(self.G, "total", "total") x = h[2][:-1] y = h[0] error = h[1]# yerr argument # Taking into account "normed" parameter: if normed == True: N = self.G.num_vertices() x = [i/N for i in x] y = [i/N for i in y] error = [i/N for i in error] # Taking into account "errobar" parameter and plotting if errorbar == True: plt.errorbar(x, y, error, fmt="o", color="royalblue", markersize=4) else: plt.plot(x, y, "o", color="royalblue", markersize=4) plt.show(block=block) def one_node_cascade(self, fraction_to_fail, initial_node): """ one_node_cascade executes failure cascade simulation with the starting failure point equal to the provided initial node (1). Failure cascade algorithm requires going constantly through the network and checking the nodes's statuses (2). The current state of the node is changed to FAILED if the fraction of node's neighbours that have FAILED statuses exceeds or is equal to fraction_to_fail number (3). Looping over the network finishes when no new FAILED status has been introduced during the iteration (4). The output of the function is the number of nodes with the FAILED status at the end of the simulation (5). """ # Initializing a vector that represents statuses: gprop = self.G.new_vertex_property("bool") gprop[initial_node] = True #1) go_on=True while go_on == True: #2) go_on=False #4 assume no new FAILED status in the upcoming iteration for v in self.G.get_vertices(): #2) if gprop[v] == 0: # check current node status failures = gprop.a[self.G.get_all_neighbors(v)] # extract statuses of all the node's neighbours if sum(failures)/len(failures) >= fraction_to_fail: gprop[v]=1 #3 go_on=True # have had new FAILED status, must continue looping cascade_size = sum(gprop.a)/len(gprop.a) #5) return (initial_node, cascade_size) def cascade_all_nodes(self, fraction_to_fail = 0.25): """ cascade_all_nodes runs failure cascade simulation (one_node_cascade) for each of the network's nodes to evaluate distribution of the final cascade sizes. It returns a dictionary in which each node is assigned a value of the cascade size that it generated. """ nodes_numbers = [] cascade_sizes =[] for v in self.G.get_vertices(): # Take each node i, c = self.one_node_cascade(fraction_to_fail, v) # Run for it failure cascade nodes_numbers.append(v) cascade_sizes.append(c) zip_iterator = zip(nodes_numbers, cascade_sizes) # Get pairs of elements. dictionary_names_cascade = dict(zip_iterator) # Return dicitionary node_number:cascade_size return dictionary_names_cascade def plot_cascade(self, dictionary_names_cascade, fraction_to_fail): """ plot_cascade generates a histogram for the results of the cascade_all_nodes function. It shows the distribution of the failure cascade sizes in the network. """ # Plot settings: FONT = 15 plt.style.use('seaborn-whitegrid') plt.figure(figsize=(5,5)) plt.title("Cascade size histogram C="+ str(fraction_to_fail), fontsize= FONT) plt.xlabel("Value", fontsize= FONT) plt.ylabel("Fraction of nodes", fontsize= FONT) # Data transformation for the histogram: cascade_sizes = list(dictionary_names_cascade.values()) unique, counts = np.unique(cascade_sizes, return_counts=True) cascade_sizes_counts = dict(zip(unique, counts)) possible_cascade_sizes, counts = zip(*cascade_sizes_counts.items()) fractions = [i/sum(counts) for i in counts] # Plotting: plt.plot(possible_cascade_sizes, fractions,"*", color="royalblue",markersize=4) plt.show(block=True) def robustness_evaluation(self, map_G, step = 1): """ robustness_evaluation performs the robustness measurements according to the provided map_G. Robustness measurements are performed by sorting the nodes according to the map_G values (1). Then subsequent fractions of the nodes are taken according to the sorted pattern (2) and removed from the network using the filtering option in graph-tool (3). In such a way new subgraphs that contain only not filtered-out (removed) nodes and edges between them are generated (4). The largest component sizes of such subnetworks are calculated and returned. """ largest_N = self.G.num_vertices() largest_E = self.G.num_edges() giant_component_size = [] vertices_to_remove = map_G.a.argsort()[::-1] # 1) f_previous = 0 # settings for a vector that represents whether a node should be taken or not when performing network filtering gprop = self.G.new_vertex_property("bool") self.G.vertex_properties["no_removal"] = gprop for v in self.G.vertices(): self.G.properties[("v","no_removal")][v] = True for fraction in range(0,100,step): f = fraction/100 new_to_remove = vertices_to_remove[int(f_previous*largest_N):int(f*largest_N)] # 2) adding new nodes to be filtered """ In order to reduce computational costs the filtering statuses are added subsequently. In other words in the first iteration x nodes, equal to f_previous*largest_N, should be filtered (removed), so x nodes have no_removal = False. In new iteration x+y (int(f*largest_N)) nodes should be added the filtered status. However, already x nodes have no_removal = False, therefore only nodes from the range int(f_previous*largest_N):int(f*largest_N) must change no_removal = False. """ for node in new_to_remove: self.G.properties[("v","no_removal")][node] = False # 3) f_previous = f sub = GraphView(self.G, gprop) # 4) comp, hist = graph_tool.topology.label_components(sub) #5) giant_component_size.append(max(hist)) return giant_component_size #5) def robustness_random_evaluation(self, N=10): """ Performs robustness assesment in terms of the random failures. It generates N times the random map corresponding to the random order of the nodes. According to the map, in each iteration the removal is performed and the corresponding largest component sizes are measured. """ giant_component_sizes = [self.robustness_evaluation(self.create_random_map()) for i in range(N)] mean_gcs = np.array(giant_component_sizes).mean(axis=0) return list(mean_gcs) def plot_robustness(self, metrics_results, step = 1, block = False): """ plot_robustness generates the plots for the data generated by the robustness_evaluation function. """ # Plot settings: FONT = 15 fraction = [i/100 for i in range(0,100,step)] plt.figure(figsize = (5,5)) plt.style.use('seaborn-whitegrid') plot_metric_labels = {"Degree": ["--*", "#D81B60"] , "Betweenness centrality": ["--o", "#1E88E5"], "Closeness centrality" : ["--+","#FFC107"], "Eigenvector centrality": ["--^", "#004D40"], "Random failures":["--1", "black"]} plt.xlabel("Fraction of nodes removed", fontsize = FONT) plt.ylabel("Largest component size", fontsize = FONT) plt.title("Robustness of the network", fontsize = FONT) #Plotting: for i in metrics_results: data, metric_name = i data = [i/max(data) for i in data] plt.plot(fraction, data, plot_metric_labels[metric_name][0], label= metric_name, color=plot_metric_labels[metric_name][1], linewidth = 1, markersize = 7) plt.legend() plt.show(block=False) def powerlaw(self, cutoff = False): """ powerlaw function adjust the power law distribution according to the Maximum likelihood method for the network's degree sequence. The calculations are performed with the usage of poweRlaw library from R package and as the output the value of the adjusted alpha parameter is returned. The adjustment is performed for all values from the degree sequence that are larger or equal to the cutoff value. If cutoff == False then the cutoff is adjsuted automatically by optimizing the Kolomogrov distance between the fitted power law and the data. """ robjects.r(''' powerlaws <- function(degrees, cutoff = FALSE){ degrees = as.integer(degrees) #print(degrees) # Set powerlaw object my_powerlaw = displ$new(degrees) # Estimate alpha value est = estimate_pars(my_powerlaw) # Estimate cutoff value as the one that minimizes Kolomogrov distance between the data and distribution model if (cutoff == FALSE){ est2 = estimate_xmin(my_powerlaw) my_powerlaw$setXmin(est2) est = estimate_pars(my_powerlaw) my_powerlaw$setPars(est$pars) } else{ my_powerlaw$setXmin(cutoff) est = estimate_pars(my_powerlaw) my_powerlaw$setPars(est$pars) } # Calculate likelihood of the model likelihood = dist_ll(my_powerlaw) # Calculate percentage of data covered by the powerlaw percentage = length(degrees[which(degrees>=my_powerlaw$xmin)])/length(degrees) #print(degrees[which(degrees>=my_powerlaw$xmin)]) # Data for plotting the results data = plot(my_powerlaw) fit = lines(my_powerlaw) return(list(data, fit, my_powerlaw$xmin, my_powerlaw$pars, percentage, likelihood, my_powerlaw)) #return(c(my_powerlaw$xmin, my_powerlaw$pars)) #statistical_test = bootstrap_p(m, no_of_sims = 1000, threads = 2) #p_value = statistical_test$p }''') # Make R funtion available for python: powerlaw = robjects.globalenv['powerlaws'] # Prepare the degree sequence: degree_map = self.create_degree_distribution_map().fa degree_map = degree_map.tolist() # Perform calculations: power_law_result = powerlaw(degree_map, cutoff) plotting_data = (power_law_result[0][0], power_law_result[0][1], power_law_result[1][0], power_law_result[1][1]) kmin = power_law_result[2][0] alpha = power_law_result[3][0] percentage = power_law_result[4][0] likelihood = power_law_result[5][0] my_powerlaw = power_law_result[6] return (kmin, alpha, percentage, likelihood, plotting_data, my_powerlaw) def bootstrap_powerlaw(self, my_powerlaw, N=100): """ bootstrap_powerlaw calculates the p-value for H0: degree sequence comes from the power law distirbution with parameters: estimated alpha and cutoff; H1: It does not come. The test is performed according to bootstrap_p function from poweRlaw package that simulates N times the data from the distirbution and calculates how many times the distance between the theoretical and simulational distributions was larger or equal to the one for the degree sequence. """ robjects.r(''' assess_p_value <- function(my_powerlaw, N){ statistical_test = bootstrap_p(my_powerlaw, no_of_sims = N, threads = 2) return(statistical_test$p) }''') p_value = robjects.globalenv['assess_p_value'] p = p_value(my_powerlaw, N)[0] return p def plot_powerlaw(self, plotting_data, block = False): """ plot_powerlaw function visualises the power law fit and the data on the log log scale. """ FONT = 15 # Data preparation: datax = plotting_data[0] datay = plotting_data[1] fitx = plotting_data[2] fity = plotting_data[3] # Plot settings: plt.figure(figsize =(5,5)) plt.style.use('seaborn-whitegrid') plt.xlabel("log k", fontsize = FONT) plt.ylabel("log P(X<k)", fontsize = FONT) plt.title("Power law fit", fontsize = FONT) # Plotting: plt.plot(np.log(datax), np.log(datay), "o", markersize=4, color="#1E88E5") plt.plot(np.log(fitx), np.log(fity), linewidth = 3, color = "#FFC107") plt.show(block = block) # Defining additional ipywidget that will perform data download after button hitting - DownloadButton class DownloadButton(ipywidgets.Button): """ Download button with dynamic content The content is generated using a callback when the button is clicked. It is defined as an extension of "button" class in ipywidgets (source: https://stackoverflow.com/questions/61708701/how-to-download-a-file-using-ipywidget-button). """ def __init__(self, filename: str, contents: Callable[[], str], **kwargs): super(DownloadButton, self).__init__(**kwargs) self.filename = filename self.contents = contents self.on_click(self.__on_click) def __on_click(self, b): contents: bytes = self.contents().encode('utf-8') b64 = base64.b64encode(contents) payload = b64.decode() digest = hashlib.md5(contents).hexdigest() # bypass browser cache id = f'dl_{digest}' display(HTML(f""" <html> <body> <a id="{id}" download="{self.filename}" href="data:text/csv;base64,{payload}" download> </a> <script> (function download() {{ document.getElementById('{id}').click(); }})() </script> </body> </html> """)) # Graphical User Interface: class GUI_for_network_analysis: def __init__(self): # Initializing the variables and the GUI elements: self.G = None self.initial_info = widgets.HTML(value = "<b><font color='#555555';font size =5px;font family='Helvetica'>ETNA: Extensive Tool for Network Analysis</b>") self.instruction_header = widgets.HTML(value = "<b><font color='#555555';font size =4px;font family='Helvetica'>Instruction:</b>") self.instruction = widgets.HTML(value = "<b><font color='#555555';font size =2.5px;font family='Helvetica'>1. Provide file name with with .graphml or .csv extension. <br>2. Hit 'Prepare the network' button (Parallel links and nodes not from the largest component will be removed. Network is also set as undirected). <br>3. Choose the tab of interest. <br>4. Adjust method settings if present.<br>5. Run the method by hitting the tab's 'Run button'. The calculations will be performed and the appropriate plot will be displayed on the right.<br>6. If you want to run a new analysis for a new network hit ' ETNA' button. </b>") self.file_name_textbox = widgets.Text(value='Provide file name here', placeholder='Type something', description='Network:', disabled=False, align_items='center', layout=Layout(width='40%')#, height='10px') ) self.button_graph_preparation = widgets.Button(value=False, description='Prepare the network', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='40%', height='20%'), style= {'button_color':'#FFAAA7'} ) self.links_nodes_number_info = widgets.Label(value="") self.label_centrality = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Histograms of centrality measures</b>") self.centrality_choice = widgets.Dropdown( options=['Choose from the list','Degree', 'Betweenness centrality', 'Closeness centrality', 'Eigenvector centrality', "Clustering coefficient"], description='Measure: ', disabled=False, layout=Layout(width='90%') ) self.button_centrality = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.centrality_out = widgets.Output() self.info_mini = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Minimum: </b>") self.info_mini_value = widgets.Label(value = "") self.info_maxi = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Maximum: </b>") self.info_maxi_value = widgets.Label(value = "") self.info_avg = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Average: </b>") self.info_avg_value = widgets.Label(value = "") self.info_std = widgets.HTML(value="<b><font color='black';font size =2px;font family='Helvetica'>Standard deviation: </b>") self.info_std_value = widgets.Label(value = "") self.button_assortativity = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) #można zrobić pogrubione (działa) , "font_weight":"bold" dodać do stylu self.label_corr_value = widgets.Label(value = "") #było " " self.label_ANND_plot = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Assortativity examination: Average Nearest Neighbour Degree (ANND) plot and degree correlation coefficient</b>") self.label_ANND_plot_settings = widgets.Label(value = "ANND plot settings:") self.ANND_plot_settings_normed = widgets.Checkbox(value=False, description='Normed ANND', disabled=False, indent=False) self.ANND_plot_settings_errorbar = widgets.Checkbox(value=False, description='Errorbars', disabled=False, indent=False) self.assortativity_out = widgets.Output() self.hubs_impact_choice = widgets.Dropdown( options=['Choose from the list','s1', 's2'], description='Measure: ', disabled=False, layout=Layout(width='90%') ) self.hubs_impact_button = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.label_hubs_impact = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Plots of s1 and s2</b>") #self.label_hubs_impact_explain = widgets.Label(value = "Hubs impact examination consists of creating subnetworks.. i tutaj walnąć ten ładny matematyczny zapis z mgr") self.hubs_impact_out = widgets.Output() self.button_robustness = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.robustness_degree = widgets.Checkbox(value=True, description='Degree', disabled=False, indent=False) self.robustness_betweenness = widgets.Checkbox(value=False, description='Betweennness centrality', disabled=False, indent=False) self.robustness_closeness = widgets.Checkbox(value=False, description='Closeness centrality', disabled=False, indent=False) self.robustness_eigenvector = widgets.Checkbox(value=False, description='Eigenvector centrality', disabled=False, indent=False) self.robustness_random = widgets.Checkbox(value=False, description='Random failures', disabled=False, indent=False) self.label_robustness_info = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Examination of the network robustness</b>") self.label_robustness_settings = widgets.Label(value = "Choose metrics for the network robustness examination:") self.robustness_out = widgets.Output() self.robustness_random_label = widgets.Label(value = "Number of Monte Carlo repetitions for random failures") self.robustness_random_value = widgets.IntSlider(value = 10, min=0, max=1000, step=10, description='', disabled=False, continuous_update=False, orientation='horizontal', readout=True ) self.cascade_info = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Simulation of failure cascade</b>") self.button_cascade = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.cascade_fraction_to_fail = widgets.FloatSlider(value=0.25, min=0, max=1, step=0.05, description='', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='.2f') self.cascade_fraction_to_fail_label = widgets.Label(value = "Failure fraction") self.cascade_out = widgets.Output() self.label_powerlaw = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Fitting power law to the degree sequence using Maximum Likelihood estimator</b>") self.powerlaw_settings = widgets.HTML(value = "Settings:") self.powerlaw_pvalue = widgets.Checkbox(value=False, description='Calculate p-value', disabled=False, indent=False) self.bootstrap_settings_label = widgets.Label(value = "Number of simulations for bootstrap") self.bootstrap_settings = widgets.IntSlider(value=100, min=50, max=1000, step=50, description='', disabled=False, continuous_update=False, orientation='horizontal', readout=True ) self.bootstrap_settings.layout.visibility = 'hidden' self.bootstrap_settings_label.layout.visibility = 'hidden' self.cutoff_settings = widgets.Checkbox(value=True, description='Cutoff value according to Kolomogrov distance', disabled=False, indent=False) self.cutoff_label = widgets.Label(value = "Cutoff value") self.cutoff_label.layout.visibility = 'hidden' self.cutoff = widgets.IntSlider(value = 1, min=1, max=100, step=1, description='', disabled=False, continuous_update=False, orientation='horizontal', readout=True ) self.cutoff.layout.visibility = 'hidden' self.pvalue_label = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>P-value:</b>") self.pvalue_value = widgets.Label(value="") self.pvalue_label.layout.visibility = 'hidden' self.pvalue_value.layout.visibility = 'hidden' self.powerlaw_button = widgets.Button(value=False, description='Run', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='90%', height='20%'), style= {'button_color':'#98DDCA'} ) self.powerlaw_out = widgets.Output() self.restart_button = widgets.Button(value=False, description='Restart ETNA', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Description', icon='check', # (FontAwesome names without the `fa-` prefix) layout=Layout(width='40%', height='100%'), style= {'button_color':'#FFD3B4'} ) self.error_info = widgets.HTML(value = " ") self.plot_label = widgets.HTML(value = "Plot and info") self.download_button = DownloadButton(filename='data.csv', contents=lambda: f'', description='Download data') self.download_button.layout.visibility = 'hidden' self.download_button.layout.width = '90%' self.download_button.style.button_color = '#D5ECC2' self.dataframe = None def button_graph_preparation_click(self, button): """ Defines what to do when the graph preparation button is clicked. """ self.clear() # Error handling: if self.file_name_textbox.value == "" or self.file_name_textbox.value == 'Provide file name here': self.file_name_textbox.value = "No file name provided. Provide file name here." return None if ".graphml" not in self.file_name_textbox.value and ".csv" not in self.file_name_textbox.value: self.file_name_textbox.value = "Incorrect file name. File must have .graphml or .csv extension." return None self.button_graph_preparation.description = "Preparing..." self.error_info.value = " " # Graph upload from the file: self.G = My_Network(self.file_name_textbox.value) # Graph preparation - removal of the parallel edges, non-connected components etc.: self.G.prepare_the_network() self.button_graph_preparation.description = "Network is ready! Now choose the tool below." self.button_graph_preparation.style.button_color = '#D5ECC2' self.links_nodes_number_info.value = "Number of nodes: "+str(self.G.G.num_vertices())+", Number of links: " + str(self.G.G.num_edges()) def centrality_button_click(self, b): """ Binds the centrality measure button from the centrality tab with the appropriate map (1), plot generation (2) and statistics calculations (3). """ self.clear() with self.centrality_out: if self.centrality_choice.value == "Choose from the list": pass else: # 1): if self.error() == True: return None else: centrality_choices_functions = {'Degree':self.G.create_degree_distribution_map, 'Betweenness centrality':self.G.create_betweenness_distribution_map, 'Closeness centrality': self.G.create_closeness_distribution_map, 'Eigenvector centrality':self.G.create_eigenvector_distribution_map, "Clustering coefficient": self.G.create_clustering_map} my_map = centrality_choices_functions[self.centrality_choice.value]() fig, ax = self.G.plot_map_histogram(my_map, self.centrality_choice.value) # 2) self.retrieve_data(my_map, "Centrality and clustering") my_map = list(my_map.fa) # 3) self.info_mini_value.value = str(min(my_map)) self.info_maxi_value.value = str(max(my_map)) self.info_avg_value.value = str(round(np.mean(my_map),4)) self.info_std_value.value = str(round(np.std(my_map),4)) self.info_mini = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Minimum: </b>") self.info_maxi = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Maximum: </b>") self.info_avg = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Average: </b>") self.info_std = widgets.HTML(value="<b><font color='black';font size =2px;font family='Helvetica'>Standard deviation: </b>") display(VBox(children = [ HBox(children= [self.info_mini, self.info_mini_value]), HBox(children= [self.info_maxi, self.info_maxi_value]), HBox(children= [self.info_avg, self.info_avg_value]), HBox(children= [self.info_std, self.info_std_value]) ])) def assortativity_button_click(self, b): """ Binds the assortativity button with the ANND plot generation (1) and degree correlation calculations (2). """ self.clear() if self.error() == True: return None else: corr_value = round(self.G.calculate_assortativity_value(),3) corr_meaning = "assortative" if corr_value>0 else "disassortative" self.label_corr_value.value = "Degree correlation coefficient equals " + str(corr_value)+". Graph has "+ corr_meaning +' mixing patterns with regards to the degree.' # 2 with self.assortativity_out: self.assortativity_out.clear_output() self.G.plot_ANND(normed = self.ANND_plot_settings_normed.value, errorbar = self.ANND_plot_settings_errorbar.value, block = False) # 1 def hubs_impact_choice_plot(self, b): """ Binds the hubs impact button with the hubs impact plot generation. Data is firstly calculated by calling hubs_impact check function (1) and then plotted (2). """ self.clear() with self.hubs_impact_out: if self.hubs_impact_choice.value == "Choose from the list": pass else: if self.error() == True: return None else: if self.hubs_impact_choice.value == "s1": Ns, Es, degrees_set = self.G.hubs_impact_check() # 1 self.G.plot_hubs_impact1(degrees_set, Es, block = False) # 2 if self.hubs_impact_choice.value == "s2": Ns, Es, degrees_set = self.G.hubs_impact_check() # 1 self.G.plot_hubs_impact2(degrees_set, Es, Ns, block = False) # 2 def cascade_button_click(self, b): """ Binds the cascade button with fialure cascade simulation performance (1), plotting (2) and the statistics calculations (3). """ self.clear() if self.error() == True: return None else: # Button settings: self.button_cascade.style.button_color = '#FFAAA7' self.button_cascade.description = "Running..." # Data generation: cascade_data = self.G.cascade_all_nodes(fraction_to_fail = self.cascade_fraction_to_fail.value) # 1) self.retrieve_data(cascade_data, "Cascade") with self.cascade_out: self.cascade_out.clear_output() self.G.plot_cascade(cascade_data, fraction_to_fail = self.cascade_fraction_to_fail.value) # 2) # 3): self.info_mini_value.value = str(min(cascade_data.values())) self.info_maxi_value.value = str(max(cascade_data.values())) self.info_avg_value.value = str(round(np.mean(list(cascade_data.values())),4)) self.info_std_value.value = str(round(np.std(list(cascade_data.values())),4)) self.info_mini = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Minimum: </b>") self.info_maxi = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Maximum: </b>") self.info_avg = widgets.HTML(value = "<b><font color='black';font size =2px;font family='Helvetica'>Average: </b>") self.info_std = widgets.HTML(value="<b><font color='black';font size =2px;font family='Helvetica'>Standard deviation: </b>") display(VBox(children = [ HBox(children= [self.info_mini, self.info_mini_value]), HBox(children= [self.info_maxi, self.info_maxi_value]), HBox(children= [self.info_avg, self.info_avg_value]), HBox(children= [self.info_std, self.info_std_value]) ])) self.button_cascade.description = "Run failure cascade simulation" self.button_cascade.style.button_color = '#98DDCA' def robustness_button_click(self, b): """ Binds robustness button with the robustness button with the reboustness examination. In the call the data is generated (1) and then plotted (2). """ self.clear() if self.error() == True: return None else: self.button_robustness.style.button_color = '#FFAAA7' self.button_robustness.description = "Running..." metrics_to_run = {self.robustness_degree:[self.G.create_degree_distribution_map, "Degree"], self.robustness_betweenness:[self.G.create_betweenness_distribution_map, "Betweenness centrality"] , self.robustness_closeness:[self.G.create_closeness_distribution_map, 'Closeness centrality'], self.robustness_eigenvector:[self.G.create_eigenvector_distribution_map,'Eigenvector centrality'], self.robustness_random:[]} results_to_plot = [] for metric in metrics_to_run.keys(): if metric.value == True: if metric == self.robustness_random: results = self.G.robustness_random_evaluation(N=self.robustness_random_value.value) results_to_plot.append([results, "Random failures"]) else: [function, metric_name] = metrics_to_run[metric] map_G = function() results = self.G.robustness_evaluation(map_G) # 1 results_to_plot.append([results, metric_name]) self.retrieve_data(results_to_plot, "Robustness") with self.robustness_out: self.robustness_out.clear_output() self.G.plot_robustness(results_to_plot, block=True) # 2 self.button_robustness.description = "Run" self.button_robustness.style.button_color = '#98DDCA' def robustness_random_true(self, b): """ Function for handling the robustness settings for random failures. It makes visible the bar for the adjustment of the number of Mone Carlo repetitions if the random failures measurements are chosen . """ if self.robustness_random.value == True: self.robustness_random_label.layout.visibility = 'visible' self.robustness_random_value.layout.visibility = 'visible' else: self.robustness_random_label.layout.visibility = 'hidden' self.robustness_random_value.layout.visibility = 'hidden' def powerlaw_button_click(self, b): """ Binds the powerlaw button with the power law adjustment to the degree sequence. Parameters are calculated (1), the fit is plotted (2) and the statistics are calculated (3). """ self.clear() if self.error() == True: return None else: pvalue = "Not calculated" self.powerlaw_button.description = "Running..." self.powerlaw_button.style.button_color = '#FFAAA7' cutoff = self.cutoff.value if self.cutoff_settings.value == False else False (kmin, alpha, percentage, likelihood, plotting_data, my_powerlaw) = self.G.powerlaw(cutoff) # 1) if self.powerlaw_pvalue.value == True: # calculate also p-value N = self.bootstrap_settings.value pvalue = self.G.bootstrap_powerlaw(my_powerlaw, N) pvalue = str(round(pvalue, 4)) self.pvalue_label.layout.visibility = 'visible' self.pvalue_value.layout.visibility = 'visible' with self.powerlaw_out: self.powerlaw_out.clear_output() self.G.plot_powerlaw(plotting_data, block = True) # 2) # 3: self.info_mini.value = "<b><font color='black';font size =2px;font family='Helvetica'>Cutoff: </b>" self.info_mini_value.value = str(kmin) self.info_maxi.value = "<b><font color='black';font size =2px;font family='Helvetica'>Power law parameter alpha: </b>" self.info_maxi_value.value = str(round(alpha,4)) if alpha>3 or alpha<2: self.info_maxi_value.value+= ", ANOMALOUS REGIME!, standard: 2<alpha<3" self.info_avg.value = "<b><font color='black';font size =2px;font family='Helvetica'>Percentage of data covered: </b>" self.info_avg_value.value = str(round(percentage*100,4)) self.info_std.value = "<b><font color='black';font size =2px;font family='Helvetica'>Likelihood: </b>" self.info_std_value.value = str(round(likelihood,4)) self.pvalue_value.value = pvalue display(VBox(children = [ HBox(children= [self.info_mini, self.info_mini_value]), HBox(children= [self.info_maxi, self.info_maxi_value]), HBox(children= [self.info_std, self.info_std_value]), HBox(children= [self.info_avg, self.info_avg_value]), HBox(children= [self.pvalue_label, self.pvalue_value]) ])) self.powerlaw_button.description = "Run" self.powerlaw_button.style.button_color = '#98DDCA' def powerlaw_pvalue_true(self, b): """ Function for handling the powerlaw settings. It makes visible the bootstrap settings if the pvalue is to be assesed (pvalue checkbox is True). """ if self.powerlaw_pvalue.value == True: self.bootstrap_settings.layout.visibility = 'visible' self.bootstrap_settings_label.layout.visibility = "visible" else: self.bootstrap_settings.layout.visibility = 'hidden' self.bootstrap_settings_label.layout.visibility = "hidden" def powerlaw_cutoff(self, b): """ Function for handling the powerlaw settings. It makes visible the cutoff choice bar if the default option for cutoff adjustment using the Kolomogrov distance is not chosen. """ if self.cutoff_settings.value == False: self.cutoff_label.layout.visibility = "visible" self.cutoff.layout.visibility = 'visible' if self.error(return_message = False) == True: return None else: degree_values = self.G.create_degree_distribution_map().fa self.cutoff.min = min(degree_values) self.cutoff.max = max(degree_values) self.cutoff.value = self.cutoff.min else: self.cutoff_label.layout.visibility = "hidden" self.cutoff.layout.visibility = 'hidden' def display(self): """ Displays all the elements of the GUI in the appropriate order to form the interface. """ display(self.initial_info) display(self.instruction_header) display(self.instruction) preparation = VBox(children = [self.file_name_textbox, self.button_graph_preparation, self.links_nodes_number_info], layout = Layout(width = "100%")) display(preparation) tabs_preparation = self.tabs outs = VBox(children = [self.centrality_out, self.hubs_impact_out, self.assortativity_out, self.label_corr_value, self.robustness_out, self.cascade_out, self.powerlaw_out, self.download_button ]) # self.clustering_out all = HBox(children = [tabs_preparation, outs]) display(all) display(self.error_info) display(self.restart_button) def bind(self): """ Binds buttons and other interactivities with the corresponding action functions. """ # Bind prepare graph button with the preparation function: self.button_graph_preparation.on_click(self.button_graph_preparation_click) # Bind centrality choice button with the centrality examination and centrality tab self.button_centrality.on_click(self.centrality_button_click) self.tab_centrality = VBox(children=[self.label_centrality, self.centrality_choice, self.button_centrality]) # Bind hubs_impact button with the plot generation and hubs_impact tab self.hubs_impact_button.on_click(self.hubs_impact_choice_plot) self.tab_hubs_impact = VBox(children=[self.label_hubs_impact, self.hubs_impact_choice, self.hubs_impact_button]) # Bind assortativity button with the assortativity examination and assortativity tab self.button_assortativity.on_click(self.assortativity_button_click) self.tab_assortativity = VBox(children=[self.label_ANND_plot, self.label_ANND_plot_settings, self.ANND_plot_settings_errorbar, self.ANND_plot_settings_normed, self.button_assortativity ]) # Bind robustness button with the robustness examination and robustness tab self.robustness_random_results = interactive_output(self.robustness_random_true, {"b":self.robustness_random}) #interactive_output(self.robustness_random, {"b":self.robustness_random_true}) self.button_robustness.on_click(self.robustness_button_click) self.robustness = VBox(children=[self.label_robustness_info, self.label_robustness_settings, self.robustness_degree, self.robustness_betweenness, self.robustness_closeness, self.robustness_eigenvector, self.robustness_random, self.robustness_random_results, self.robustness_random_label, self.robustness_random_value, self.button_robustness]) # Bind cascade button with the failure cascade examination and cascade tab self.button_cascade.on_click(self.cascade_button_click) self.tab_cascade = VBox(children=[self.cascade_info, HBox(children = [self.cascade_fraction_to_fail_label, self.cascade_fraction_to_fail]), self.button_cascade]) # Bind powerlaw button with the powerlaw examination, bind powerlaw settings with the corresponding actions, add all to the powerlaw tab self.powerlaw_button.on_click(self.powerlaw_button_click) self.powerlaw_bootstrap = interactive_output(self.powerlaw_pvalue_true, {'b':self.powerlaw_pvalue}) self.powerlaw_cutoff = interactive_output(self.powerlaw_cutoff, {'b':self.cutoff_settings}) self.tab_powerlaw = VBox(children = [self.label_powerlaw, self.powerlaw_settings, self.powerlaw_pvalue, self.powerlaw_bootstrap, self.bootstrap_settings_label, self.bootstrap_settings, self.powerlaw_cutoff, self.cutoff_settings, self.cutoff_label, self.cutoff, self.powerlaw_button]) # Joining tabs in the GUI self.tabs = widgets.Accordion(children = [self.tab_centrality, self.tab_powerlaw, self.tab_hubs_impact, self.tab_assortativity, self.robustness, self.tab_cascade], layout=Layout(width='40%', min_width = "300px", ), selected_index = None) #self.tab_clustering bylo kiedys, #layout in_height='500px',max_height='500px', display='flex'align_items='stretch' # Additional tabs' settings self.tabs.set_title(0, '> Centrality and clusterization ') self.tabs.set_title(1, '> Power law fitting') self.tabs.set_title(2, '> Subnetworks: s1 and s2') self.tabs.set_title(3, '> Assortativity') self.tabs.set_title(4, '> Robustenss') self.tabs.set_title(5, '> Failure cascade') # Bind restart button with the restart function self.restart_button.on_click(self.gui_restart) def gui_restart(self,b): """ Sets everything to the initial settings by cleaning the output widgets, fixing colors, bringing original texts to the labels and buttons. """ self.G = None self.file_name_textbox.value = "Provide file name here" self.button_graph_preparation.description = "Prepare the graph" self.button_graph_preparation.style.button_color = "#FFAAA7" self.links_nodes_number_info.value = "" self.centrality_choice.value = "Choose from the list" self.centrality_out.clear_output() #self.clustering_out.clear_output() self.hubs_impact_choice.value = "Choose from the list" self.hubs_impact_out.clear_output() self.label_corr_value.value = "" self.ANND_plot_settings_normed.value = False self.ANND_plot_settings_errorbar.value = False self.assortativity_out.clear_output() self.cascade_fraction_to_fail.value = 0.25 self.cascade_out.clear_output() self.robustness_degree.value = False self.robustness_betweenness.value = False self.robustness_closeness.value = False self.robustness_eigenvector.value = False self.robustness_random.value = False self.robustness_out.clear_output() self.powerlaw_pvalue.value = False self.cutoff_settings.value = True self.powerlaw_out.clear_output() #self.data_preview.clear_output() #self.data_preview_button.layout.visibility = 'hidden' self.download_button.layout.visibility = 'hidden' def error(self, return_message = True): """ Used for error handling - checks if the file is provided in the appropriate format. This functions is called always before running any of the methods in the GUI. """ if self.G == None or self.file_name_textbox.value == "No file name provided. Provide file name here." or self.file_name_textbox.value == "": if return_message==True: self.error_info.value = "<b><font color='#FFAAA7';font size =3px;font family='Helvetica'>Cannot use the method. Provide file name and prepare the network first.</b>" return True def clear(self): """ Clears the outputs. Used to make previous plots and statistics disappear from the GUI when the new method is called. This functions is called always before running any of the methods in the GUI. """ self.centrality_out.clear_output() self.hubs_impact_out.clear_output() self.assortativity_out.clear_output() self.robustness_out.clear_output() #self.clustering_out.clear_output() self.cascade_out.clear_output() self.powerlaw_out.clear_output() self.label_corr_value.value = "" #self.data_preview.clear_output() #self.data_preview_button.layout.visibility = 'hidden' self.download_button.layout.visibility = 'hidden' def retrieve_data(self, data, method): """ Used to gather the data from the method functions so that it is downloadable. Called in 3 cases - when the robustness, cascade or Centrality and clustering methods are chosen. """ if method == "Centrality and clustering": my_map = data my_map_values = my_map.a[self.G.G.get_vertices()] nodes = self.G.G.get_vertices() self.dataframe = pd.DataFrame({"NodeIndex":nodes, "MeasureValue": my_map_values}) #self.data_preview_button.layout.visibility = 'visible' self.download_button.layout.visibility = 'visible' self.dataframe = self.dataframe.to_csv() self.download_button.contents = lambda: self.dataframe if method == "Robustness": results_to_plot = data dataframe = {} for row in results_to_plot: dataframe[row[1]] = row[0] self.dataframe =
pd.DataFrame(dataframe)
pandas.DataFrame
import os import pytz from collections import namedtuple from datetime import datetime, timedelta import requests from dotenv import load_dotenv import pandas as pd from tensorflow.keras.models import load_model import numpy as np # Named tuple for aid in the data parse fields = ['date', 'open', 'close', 'high', 'low', 'vols'] TickerData = namedtuple('TickerData', fields) def last_close(): est = pytz.timezone('US/Eastern') utc = pytz.utc # TIME_FORMAT = '%H:%M:%S' # DATE_FORMAT = '%Y-%m-%d' est_time_now = datetime.now(tz=utc).astimezone(est) est_date = est_time_now.replace(hour=0, minute=0, second=0, microsecond=0) market_open = est_date + timedelta(hours=9.5) market_close = est_date + timedelta(hours=16) if est_time_now > market_open and est_time_now < market_close: # print('Stock Market Is Open') last_record_date = est_date + timedelta(days=-1) else: # print('Stock Market Is Closed') if est_time_now < market_open: last_record_date = est_date + timedelta(days=-1) else: last_record_date = est_date return last_record_date def get_stock_data(stock_symbol, start_date, end_date): project_dir = os.getcwd() env_file = os.path.join(project_dir, '.env') load_dotenv(dotenv_path=env_file,verbose=True) TIINGO_API_KEY = os.getenv("TIINGO_API_KEY") assert TIINGO_API_KEY """ Make an REST API call to the tiingo API to get historic stock data Parameters ---------- stock_symbol : str US stock market symbol start_date : str yyyy-mm-dd formated date that begins time series end_date : str yyyy-mm-dd formated date that ends the time series returns ------- response : request.response The response object to be parsed """ base_url = f'https://api.tiingo.com/tiingo/daily/{stock_symbol}/prices?' payload = { 'token':TIINGO_API_KEY, 'startDate':start_date, 'endDate':end_date } response = requests.get(base_url, params=payload) return response def parse_json(response): """ Parameters ---------- response : requests.response object The response object to be parsed Returns ------- records : list list of named tuples that represent the ticker data """ json_response = response.json() records = [] for json_object in json_response: d = json_object['date'] o = json_object['open'] c = json_object['close'] h = json_object['high'] l = json_object['low'] v = json_object['volume'] ticker_data = TickerData(d, o, c, h, l, v) records.append(ticker_data) return records def model_path(debug=False): project_dir = os.getcwd() models_dir = os.path.join(project_dir,'models') model_path = os.path.join(models_dir,'lstm_forecast.h5') if debug: print(model_path) try: assert os.path.exists(model_path) except AssertionError as e: print('----'*20) print('INVALID FILE PATH FOR MODEL ---> {}'.format(model_path)) print('----'*20) model_path = None return model_path def market_predict(): est = pytz.timezone('US/Eastern') ticker = 'SPY' end_date = last_close().astimezone(est) start_date = end_date + timedelta(days=-175) # print(start_date.strftime(r'%Y-%m-%d')) # print(end_date.strftime(r'%Y-%m-%d')) response = get_stock_data( ticker, start_date.strftime(r'%Y-%m-%d'), end_date.strftime(r'%Y-%m-%d')) records = parse_json(response) df = pd.DataFrame(records) # ---------------Fix the date to be UTC equivalent of EST Stock Market Close utc = pytz.utc est = pytz.timezone('US/Eastern') date_format='%Y-%m-%d' # Convert datestring to datetime tz-naive df['date'] = pd.to_datetime(df['date'], format=date_format, exact=False).dt.tz_localize(None) # add 16 hours to tz-naive datetime df['date'] = df['date'] + pd.DateOffset(hours=16) # localize 1600 to est timezone df['date'] = df['date'].dt.tz_localize(est) # convert EDT to UTC time df['date'] = df['date'].dt.tz_convert(utc) # --------------------------------------------------------------------------- df.set_index('date', inplace=True) df['vols_adj'] = np.log(df['vols'])*10 df['pred_close'] =np.nan # select features to feed into prediction features = ['close', 'open', 'high', 'low','vols_adj'] # Select most recent 120 trading days df_feature_predict = df.iloc[-120:, :] df_feature_predict.reset_index(inplace=True) # 1x60 array df_feature_predict = df_feature_predict[features] dataset = df_feature_predict.values # normalization values for close, open, high, low, vols_adj durring training of the model # if the model is retrained, these numbers will need to be updated data_mean = [292.17135583, 292.21083333, 293.55247083, 290.60442333, 180.37830249] data_std = [6.18969688, 6.25379573, 5.93148516, 6.41236015, 3.51395123] dataset_norm = (dataset - data_mean)/data_std X_test = dataset_norm.reshape(1, 120, 5) # print('Loading Keras Model: {}'.format(model_path())) model = load_model(model_path()) pred = model.predict(X_test) assert pred.shape == (1,60) # prediction data pred_denormalized = pred * data_std[0] + data_mean[0] # prepare the date index to associate with the prediction data _, days = pred.shape dates = [] for i in range(days): date = last_close() + timedelta(days=i+1) dates.append(date) # prepare an empty array that will hold prediction data x=np.zeros((60,6)) x.fill(np.nan) # place pred close values in the last column of numpy array x[:,5]=pred_denormalized #covnert numpy array to a dataframe df1=pd.DataFrame(x) df1.columns = ['close', 'open', 'high', 'low', 'vols','pred_close'] # print('df1\n',df1.head()) # create the dates dataframe that will be associated with the prediction idx1=pd.DataFrame(dates) idx1.columns = ['date'] # print('idx1\n',idx1.head()) # concatenate the dates with the prediction values df2 = pd.concat([idx1, df1], axis = 1) df2.set_index('date', inplace=True) # print('df\n', df.head()) # print('df2\n', df2.head()) # combine data from 3rd parth api with predict data, order by datetime index df3 = pd.concat([df, df2], sort=True) # print('df3\n',df3.head()) # reset index, provide access to date column for processing df3.reset_index(inplace=True) # print('df3\n',df3.head()) # process date column to seconds from epoch df4 = dt_to_epoch(df3) # print('df4\n',df4.head()) # select data for return df5 = df4[['date','close','pred_close']] # print('df5\n',df5.head()) return df5.to_json(orient='records') def market_data(): est = pytz.timezone('US/Eastern') ticker = 'SPY' end_date = last_close().astimezone(est) start_date = end_date + timedelta(days=-300) # print(start_date.strftime(r'%Y-%m-%d')) # print(end_date.strftime(r'%Y-%m-%d')) response = get_stock_data( ticker, start_date.strftime(r'%Y-%m-%d'), end_date.strftime(r'%Y-%m-%d')) records = parse_json(response) df = pd.DataFrame(records) # ---------------Fix the date to be UTC equivalent of EST Stock Market Close utc = pytz.utc est = pytz.timezone('US/Eastern') date_format='%Y-%m-%d' # Convert datestring to datetime tz-naive df['date'] = pd.to_datetime(df['date'], format=date_format, exact=False).dt.tz_localize(None) # add 16 hours to tz-naive datetime df['date'] = df['date'] + pd.DateOffset(hours=16) # localize 1600 to est timezone df['date'] = df['date'].dt.tz_localize(est) # convert EDT to UTC time df['date'] = df['date'].dt.tz_convert(utc) # --------------------------------------------------------------------------- df2 = dt_to_epoch(df) return df2[['date','close']].to_json(orient='records') def dt_to_epoch(df): est = pytz.timezone('US/Eastern') utc = pytz.utc x = df['date'].astype('str').to_list() date_rows = [] for row in x: '''Pull out only the YYYYMMDD part of the timestamp''' date_rows.append(row[:10]) df_date =
pd.DataFrame(date_rows)
pandas.DataFrame
#!/usr/bin/python # -*- coding: UTF-8 -*- import json import numpy as np from IPython import embed import os from collections import OrderedDict import pandas as pd from warnings import warn def sigm_tf(x): return 1./(1 + np.exp(-1 * x)) #def sigm(x): # return 2./(1 + np.exp(-2 * x)) - 1 def flatten(l): return [item for sublist in l for item in sublist] class QuaLiKizMultiNN(): def __init__(self, nns): self._nns = nns feature_names = nns[0] for nn in self._nns: if len(nn._target_names) == 1: name = nn._target_names[0] else: NotImplementedError('Multitarget not implemented yet') if np.all(nn._feature_names.ne(feature_names)): Exception('Supplied NNs have different feature names') if np.any(self._feature_min > self._feature_max): raise Exception('Feature min > feature max') self._target_min = pd.concat( [nn._target_min for nn in self._nns]) self._target_max = pd.concat( [nn._target_max for nn in self._nns]) @property def _target_names(self): targets = [] for nn in self._nns: targets.extend(list(nn._target_names)) return targets def get_output(self, input, output_pandas=True, clip_low=True, clip_high=True, low_bound=None, high_bound=None, **kwargs): results =
pd.DataFrame()
pandas.DataFrame
from abc import abstractmethod from itertools import chain from pathlib import Path from typing import List, Union, Dict, Callable import pandas as pd import json class AdapterError(Exception): pass class NoValidSourcesError(AdapterError): pass class BaseTransformer: """ The base transformer class. Should not be instantiated directly. """ # TODO: init should take the configuration kwargs def __init__(self, transpose: bool = False, concat_on_axis: Union[int, str] = None, columns: List[Union[str, int]] = None, skip_errors: bool = False, rename: Union[Callable, Dict[str, str]] = None, **kwargs): """ Initialize the transformer. :param transpose: whether to transpose the resulting matrix. :param concat_on_axis: whether to concatenate data along some axis. :param columns: column names. :param skip_errors: whether to skip input files if an error is encountered. :param rename: a dict or function suitable for passing to the Pandas rename function. :param kwargs: optional keyword arguments to pass to reader. """ self.transpose = transpose self.concat_on_axis = concat_on_axis self.columns = columns self.skip_errors = skip_errors self.rename = rename self.passed_kwargs = kwargs @abstractmethod def transform(self, source_files: List[Path]) -> pd.DataFrame: """ Run the actual transformation. :param source_files: the source files containing the data. :return: a data frame. """ raise NotImplementedError @abstractmethod def _build_data_frame(self, source_files: List[Path]) -> pd.DataFrame: """ Construct a data frame from the list of inpute files. :param source_files: the source files containing the data. :return: a data frame. """ raise NotImplementedError class DelimitedTableTransformer(BaseTransformer): """ A transformer that changes the input data into a delimited table. """ def __init__(self, transpose: bool = False, concat_on_axis: Union[str, int] = None, columns: List[Union[str, int]] = None, skip_errors: bool = False, rename: Union[Callable, Dict[str, str]] = None, **kwargs): """ Initialize the transformer. :param transpose: whether to transpose the resulting data. :param concat_on_axis: whether to concatenate the data along an axis. :param columns: list of column names. :param skip_errors: whether to skip errors. :param rename: a dict or function suitable for passing to the Pandas rename function. :param kwargs: keyword arguments to be passed to the reader. """ super(DelimitedTableTransformer, self).__init__( transpose, concat_on_axis, columns, skip_errors, rename, **kwargs) self.reader_kwargs = { 'comment': None, 'names': None, 'delimiter': None, 'header': 'infer', 'dtype': None, 'index_col': None, 'parse_dates': None, 'skiprows': None, 'iterator': True, 'chunksize': 50000 } self.reader_kwargs.update(self.passed_kwargs) def _build_data_frame(self, source_files: List[Path]): """ Build a data frame from a list of source files. All kwargs set at initialization are passed to the CSV reader. :param source_files: a list of source files to read data from. :return: a Pandas data frame. """ data_frames = [pd.read_csv(source_file, **self.reader_kwargs) for source_file in source_files] # for the special case where every file is a column. this assumes all data can fit into memory # TODO: replace this with dask stuff so that things can be lazily concatenated if self.concat_on_axis: df = pd.concat(data_frames, axis=self.concat_on_axis) yield df else: df_chain = chain(*data_frames) for chunk in df_chain: if self.transpose: yield chunk.transpose() else: yield chunk def transform(self, source_files: List[Path]) -> pd.DataFrame: """ Transform the data contained in the list of source files to something else. By default simply returns the data frame consisting of the raw data. :param source_files: a list of source files. :return: a Pandas data frame. """ for df in self._build_data_frame(source_files): yield df class JsonTableTransformer(BaseTransformer): def __init__(self, record_path: Union[List[str], str] = None, transpose: bool = False, concat_on_axis: Union[str, int] = None, columns: List[Union[str, int]] = None, skip_errors: bool = False, rename: Union[Callable, Dict[str, str]] = None, **kwargs): super(JsonTableTransformer, self).__init__( transpose, concat_on_axis, columns, skip_errors, rename, **kwargs) self.record_path = record_path self.reader_kwargs = { 'orient': None, 'typ': 'frame', 'dtype': None, 'convert_axes': None, 'convert_dates': True, 'keep_default_dates': True, 'precise_float': False, 'date_unit': None, 'encoding': None, 'lines': False, 'chunksize': None, 'compression': 'infer', 'nrows': None, 'storage_options': None } self.reader_kwargs.update(self.passed_kwargs) @staticmethod def _extract_data(filename: Union[Path, str], record_path: Union[List[str], str], serialize: bool = True) -> Union[dict, list, str]: with open(filename, 'r') as f: data: dict = json.load(f) if type(record_path) is str: if serialize: return json.dumps(data[record_path]) else: return data[record_path] elif type(record_path) is list: for item in record_path: data = data[item] if serialize: return json.dumps(data) else: return data else: raise TypeError('record_path must be a list or a string') def _build_data_frame(self, source_files: List[Path]) -> pd.DataFrame: # we're assuming any single json file can fit into memory here because we need to be able to # access its internals to extract data from it for source_file in source_files: try: if not self.record_path: df = pd.read_json(source_file, **self.reader_kwargs) df._source_file = source_file else: data = self._extract_data(source_file, self.record_path) df = pd.read_json(data, **self.reader_kwargs) df._source_file = source_file yield df.transpose() if self.transpose else df except Exception as ex: if self.skip_errors: print(f'skipping {source_file} due to error: {ex}') yield
pd.DataFrame()
pandas.DataFrame
import itertools import numpy as np import pandas as pd try: from ortools.graph import pywrapgraph except ModuleNotFoundError: print('Could not import ortools') # import networkx as nx from .loading import subset2vec, vec2subset, compressSubsets __all__ = ['DenseICSDist', 'pwICSDist', 'decomposeDist', 'getDecomposed'] """Formulating polyfunctionality distance as a min cost flow problem""" def pwICSDist(cdf, magCol='pctpos', cyCol='cytokine', indexCols=['ptid', 'visitday', 'tcellsub', 'antigen'], factor=100000): """Compute all pairwise ICS distances among samples indicated by index columns. Parameters ---------- cdf : pd.DataFrame Contains one row per cell population, many rows per sample. magCol : str Column containing the magnitude which should add up to 1 for all rows in a sample cyCol : str Column containing the marker combination for the row. E.g. IFNg+IL2-TNFa+ indexCols : list List of columns that make each sample uniquely identifiable factor : int Since cost-flow estimates are based on integers, its effectively the number of decimal places to be accurate to. Default 1e5 means magCol is multiplied by 1e5 before rounding to int. Returns ------- dmatDf : pd.DataFrame Symetric pairwise distance matrix with hierarchical columns/index of indexCols""" cdf = cdf.set_index(indexCols + [cyCol])[magCol].unstack(indexCols).fillna(0) n = cdf.shape[1] dmat = np.zeros((n, n)) tab = [] for i in range(n): for j in range(n): if i <= j: d = DenseICSDist(cdf.iloc[:,i], cdf.iloc[:,j], factor=factor) dmat[i, j] = d dmat[j, i] = d dmatDf = pd.DataFrame(dmat, columns=cdf.columns, index=cdf.columns) return dmatDf def DenseICSDist(freq1, freq2, factor=100000, verbose=False, tabulate=False): """Compute a positive, symetric distance between two frequency distributions, where each node of the distribution can be related to every other node based on marker combination (e.g. IFNg+IL2-TNFa-). Uses a cost-flow optimization approach to finding the minimum dist/cost to move probability density from one node (marker combination) to another, to have the effect of turning freq1 into freq2. Parameters ---------- freq1, freq2 : pd.Series Frequency distribution that should sum to one, with identical indices containing all marker combinations factor : int Since cost-flow estimates are based on integers, its effectively the number of decimal places to be accurate to. Default 1e5 means magCol is multiplied by 1e5 before rounding to int. verbose : bool Print all cost-flow arcs. Useful for debugging. tabulate : bool Optionally return a tabulation of all the cost-flows. Returns ------- cost : float Total distance between distributions in probability units. costtab : np.ndarray [narcs x nmarkers + 1] Tabulation of the all the required flows to have freq1 == freq2 Each row is an arc. First nmarker columns indicate the costs between the two nodes and last colum is the cost-flow/distance along that arc.""" nodeLabels = freq1.index.tolist() nodeVecs = [subset2vec(m) for m in nodeLabels] markers = nodeLabels[0].replace('-', '+').split('+')[:-1] nmarkers = len(markers) # nodes = list(range(len(nodeLabels))) if nmarkers == 1: flow = freq1[markers[0] + '+'] - freq2[markers[0] + '+'] if tabulate: return np.abs(flow), np.zeros((0,nmarkers+1)) else: return np.abs(flow) def _cost(n1, n2): """Hamming distance between two node labels""" return int(np.sum(np.abs(np.array(nodeVecs[n1]) - np.array(nodeVecs[n2])))) diffv = freq1/freq1.sum() - freq2/freq2.sum() diffv = (diffv * factor).astype(int) extra = diffv.sum() if extra > 0: for i in range(extra): diffv[i] -= 1 elif extra < 0: for i in range(-extra): diffv[i] += 1 assert diffv.sum() == 0 posNodes = np.nonzero(diffv > 0)[0] negNodes = np.nonzero(diffv < 0)[0] if len(posNodes) == 0: """Returns None when freq1 - freq2 is 0 for every subset/row""" if tabulate: return 0, np.zeros((0,nmarkers+1)) else: return 0 """Creates a dense network connecting all sources and sinks with cost/distance specified by how many functions differ TODO: Could this instead be a sparse network connecting function combinations that only differ by 1? Cells have to move multiple times along the network then. This may minimize to the same solution??""" tmp = np.array([o for o in itertools.product(posNodes, negNodes)]) startNodes = tmp[:,0].tolist() endNodes = tmp[:,1].tolist() """Set capacity to max possible""" capacities = diffv[startNodes].tolist() costs = [_cost(n1,n2) for n1,n2 in zip(startNodes, endNodes)] supplies = diffv.tolist() """Instantiate a SimpleMinCostFlow solver.""" min_cost_flow = pywrapgraph.SimpleMinCostFlow() """Add each arc.""" for i in range(len(startNodes)): min_cost_flow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], costs[i]) """Add node supplies.""" for i in range(len(supplies)): min_cost_flow.SetNodeSupply(i, supplies[i]) """Find the minimum cost flow""" res = min_cost_flow.SolveMaxFlowWithMinCost() if res != min_cost_flow.OPTIMAL: if verbose: print('No optimal solution found.') if tabulate: return np.nan, None else: return np.nan if verbose: print('Minimum cost:', min_cost_flow.OptimalCost()) print('') print(' Arc Flow / Capacity Cost') for i in range(min_cost_flow.NumArcs()): cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i) print('%1s -> %1s %3s / %3s %3s' % ( min_cost_flow.Tail(i), min_cost_flow.Head(i), min_cost_flow.Flow(i), min_cost_flow.Capacity(i), cost)) cost = min_cost_flow.OptimalCost()/factor if tabulate: costtab = np.zeros((tmp.shape[0], nmarkers+1)) for arci in range(min_cost_flow.NumArcs()): hVec = nodeVecs[min_cost_flow.Head(arci)] tVec = nodeVecs[min_cost_flow.Tail(arci)] costtab[arci, :nmarkers] = hVec - tVec costtab[arci, nmarkers] = min_cost_flow.Flow(arci) / factor return cost, costtab else: return cost def decomposeDist(freq1, freq2, ICSDist=DenseICSDist, maxways=3, factor=100000, compressCache=None): """Compute decomposed distances between freq1 and freq2. The decomposition includes distances based on marginal/one-way marker combinations, two-way combinations, etc. up to maxways-way interactions. Effectively this means compressing freq1/freq2 into lower-order representations and computing the distances. The lower-order approximations will have distances that are less than or equal to the total distance. Parameters ---------- freq1, freq2 : pd.Series Frequency distribution that should sum to one, with identical indices containing all marker combinations ICSDist : function Function for computing the ICSDistance. Could conceivably work for different distance functions because it works by marginalizing the input distributions and does not rely on tabulation. maxways : int Indicates the maximum order of interactions (e.g. 3 means allowing for three-way marker combinations) factor : int Since cost-flow estimates are based on integers, its effectively the number of decimal places to be accurate to. Default 1e5 means magCol is multiplied by 1e5 before rounding to int. Returns ------- ctDf : pd.DataFrame Decomposition of the distance with columns: markers, distance, nmarkers""" nodeLabels = freq1.index.tolist() nodeVecs = [subset2vec(m) for m in nodeLabels] markers = nodeLabels[0].replace('-', '+').split('+')[:-1] nmarkers = len(markers) def _prepFreq(freq): tmp = freq.reset_index() tmp.columns = ['cytokine', 'freq'] tmp.loc[:, 'ptid'] = 0 return tmp tmp1 = _prepFreq(freq1) tmp2 = _prepFreq(freq2) costs = [] markerCombs = [] for nwaysi in range(min(nmarkers, maxways)): icombs = [d for d in itertools.combinations(np.arange(nmarkers), nwaysi+1)] """Number of times each marker appears in all decompositions""" norm_factor = np.sum([0 in cyi for cyi in icombs]) for cyi in icombs: cy = tuple((markers[i] for i in cyi)) if compressCache is None: cfreq1 = compressSubsets(tmp1, subset=cy, indexCols=['ptid'], magCols=['freq'], nsubCols=None).set_index('cytokine')['freq'] cfreq2 = compressSubsets(tmp2, subset=cy, indexCols=['ptid'], magCols=['freq'], nsubCols=None).set_index('cytokine')['freq'] else: cfreq1, cfreq2 = compressCache[cy] cost = ICSDist(cfreq1, cfreq2, factor=factor) costs.append(cost / norm_factor) markerCombs.append(cy) ctDf = pd.DataFrame({'markers':['|'.join(mc) for mc in markerCombs], 'distance':costs, 'nmarkers':[len(mc) for mc in markerCombs]}) return ctDf def pwDecomposeDist(cdf, magCol='pctpos', cyCol='cytokine', indexCols=['ptid', 'visitday', 'tcellsub', 'antigen'], factor=100000, maxways=3): """Compute all pairwise ICS distances among samples indicated by index columns. Distance is decomposed into marginal and higher-order interactions. Parameters ---------- cdf : pd.DataFrame Contains one row per cell population, many rows per sample. magCol : str Column containing the magnitude which should add up to 1 for all rows in a sample cyCol : str Column containing the marker combination for the row. E.g. IFNg+IL2-TNFa+ indexCols : list List of columns that make each sample uniquely identifiable factor : int Since cost-flow estimates are based on integers, its effectively the number of decimal places to be accurate to. Default 1e5 means magCol is multiplied by 1e5 before rounding to int. maxways : int Specify the degree of higher-order interactions evaluated in the decomposition Returns ------- decompDf : pd.DataFrame Accounting of costs-flows/distances decomposed into one-way, two-way and three-way interactions""" """Do all the cytokine compressions once, upfront for efficiency""" markers = cdf[cyCol].iloc[0].replace('-', '+').split('+')[:-1] nmarkers = len(markers) compressed = {} norm_factor = {} for nwaysi in range(min(nmarkers, maxways)): icombs = [d for d in itertools.combinations(np.arange(nmarkers), nwaysi+1)] """Number of times each marker appears in all decompositions""" norm_factor[nwaysi+1] = np.sum([0 in cyi for cyi in icombs]) for cyi in icombs: cy = tuple((markers[i] for i in cyi)) tmp = compressSubsets(cdf, markerCol=cyCol, subset=cy, indexCols=indexCols, magCols=[magCol], nsubCols=None) compressed[cy] = tmp.set_index(indexCols + [cyCol])[magCol].unstack(indexCols).fillna(0) cdf = cdf.set_index(indexCols + [cyCol])[magCol].unstack(indexCols).fillna(0) metadata = cdf.columns.tolist() n = cdf.shape[1] tab = [] for i in range(n): for j in range(n): if i <= j: dec = decomposeDist(cdf.iloc[:,i], cdf.iloc[:,j], DenseICSDist, maxways=maxways, factor=factor, compressCache={cy: [compressed[cy].iloc[:, ii] for ii in [i,j]] for cy in compressed.keys()}) dec.loc[:, 'samp_i'] = i dec.loc[:, 'samp_j'] = j tab.append(dec) decompDf = pd.concat(tab, axis=0) return decompDf def getDecomposed(decompDf, index, nway): """Pull-out a square, symetric, positive distance matrix from the decomposed distance DataFrame Parameters ---------- decompDf : pd.DataFrame Output from decomposeDist, containing several longform distance matrices index : pd.MultiIndex or other array From the pairwise distance matrix for which this is a decomposition nway : int Order of interactions for which a distance matrix will be extracted from the decompDf Returns ------- dmatDf : pd.DataFrame Symetric pairwise distance matrix with hierarchical columns/index of indexCols""" tmp = decompDf.loc[decompDf['nmarkers'] == nway].groupby(['samp_i', 'samp_j'])['distance'].agg(np.sum).unstack('samp_j') lower_i = np.tril_indices(tmp.values.shape[0], k=-1) tmp.values[lower_i] = tmp.values.T[lower_i] tmp.columns = index tmp.index = index return tmp _eg_3cytokine = ['IFNg-IL2-TNFa-', 'IFNg+IL2-TNFa-', 'IFNg-IL2+TNFa-', 'IFNg-IL2-TNFa+', 'IFNg+IL2+TNFa-', 'IFNg+IL2-TNFa+', 'IFNg-IL2+TNFa+', 'IFNg+IL2+TNFa+'] _eg_2cytokine = ['IFNg-IL2-', 'IFNg+IL2-', 'IFNg-IL2+', 'IFNg+IL2+'] def _example_data(): freq1 = pd.Series(np.zeros(len(cytokine)), index=_eg_3cytokine) freq2 = pd.Series(np.zeros(len(cytokine)), index=_eg_3cytokine) freq1['IFNg+IL2-TNFa+'] = 0.5 freq1['IFNg+IL2+TNFa-'] = 0.5 freq2['IFNg+IL2+TNFa+'] = 1 return freq1, freq2 def _test_decompose_pair(): freq1 = pd.Series(np.zeros(len(_eg_2cytokine)), index=_eg_2cytokine) freq1['IFNg-IL2-'] = 1 freq2 = freq1.copy() freq2['IFNg+IL2+'] += 0.1 freq2['IFNg-IL2-'] = 0.9 cost, costtab = DenseICSDist(freq1, freq2, factor=100000) ctDf = decomposeDist(freq1, freq2, DenseICSDist) def _test_decompose_pair_interaction(): freq1 =
pd.Series([0.1, 0.4, 0.4, 0.1], index=_eg_2cytokine)
pandas.Series
from functools import reduce import numpy as np import pandas as pd import pyprind from .enums import * class Backtest: """Backtest runner class.""" def __init__(self, allocation, initial_capital=1_000_000, shares_per_contract=100): assets = ('stocks', 'options', 'cash') total_allocation = sum(allocation.get(a, 0.0) for a in assets) self.allocation = {} for asset in assets: self.allocation[asset] = allocation.get(asset, 0.0) / total_allocation self.initial_capital = initial_capital self.stop_if_broke = True self.shares_per_contract = shares_per_contract self._stocks = [] self._options_strategy = None self._stocks_data = None self._options_data = None @property def stocks(self): return self._stocks @stocks.setter def stocks(self, stocks): assert np.isclose(sum(stock.percentage for stock in stocks), 1.0, atol=0.000001), 'Stock percentages must sum to 1.0' self._stocks = list(stocks) return self @property def options_strategy(self): return self._options_strategy @options_strategy.setter def options_strategy(self, strat): self._options_strategy = strat @property def stocks_data(self): return self._stocks_data @stocks_data.setter def stocks_data(self, data): self._stocks_schema = data.schema self._stocks_data = data @property def options_data(self): return self._options_data @options_data.setter def options_data(self, data): self._options_schema = data.schema self._options_data = data def run(self, rebalance_freq=0, monthly=False, sma_days=None): """Runs the backtest and returns a `pd.DataFrame` of the orders executed (`self.trade_log`) Args: rebalance_freq (int, optional): Determines the frequency of portfolio rebalances. Defaults to 0. monthly (bool, optional): Iterates through data monthly rather than daily. Defaults to False. Returns: pd.DataFrame: Log of the trades executed. """ assert self._stocks_data, 'Stock data not set' assert all(stock.symbol in self._stocks_data['symbol'].values for stock in self._stocks), 'Ensure all stocks in portfolio are present in the data' assert self._options_data, 'Options data not set' assert self._options_strategy, 'Options Strategy not set' assert self._options_data.schema == self._options_strategy.schema option_dates = self._options_data['date'].unique() stock_dates = self.stocks_data['date'].unique() assert np.array_equal(stock_dates, option_dates), 'Stock and options dates do not match (check that TZ are equal)' self._initialize_inventories() self.current_cash = self.initial_capital self.trade_log = pd.DataFrame() self.balance = pd.DataFrame({ 'total capital': self.current_cash, 'cash': self.current_cash }, index=[self.stocks_data.start_date - pd.Timedelta(1, unit='day')]) if sma_days: self.stocks_data.sma(sma_days) dates = pd.DataFrame(self.options_data._data[['quotedate', 'volume']]).drop_duplicates('quotedate').set_index('quotedate') rebalancing_days = pd.to_datetime( dates.groupby(pd.Grouper(freq=str(rebalance_freq) + 'BMS')).apply(lambda x: x.index.min()).values) if rebalance_freq else [] data_iterator = self._data_iterator(monthly) bar = pyprind.ProgBar(len(stock_dates), bar_char='█') for date, stocks, options in data_iterator: if (date in rebalancing_days): previous_rb_date = rebalancing_days[rebalancing_days.get_loc(date) - 1] if rebalancing_days.get_loc(date) != 0 else date self._update_balance(previous_rb_date, date) self._rebalance_portfolio(date, stocks, options, sma_days) bar.update() # Update balance for the period between the last rebalancing day and the last day self._update_balance(rebalancing_days[-1], self.stocks_data.end_date) self.balance['options capital'] = self.balance['calls capital'] + self.balance['puts capital'] self.balance['stocks capital'] = sum(self.balance[stock.symbol] for stock in self._stocks) self.balance['stocks capital'].iloc[0] = 0 self.balance['options capital'].iloc[0] = 0 self.balance[ 'total capital'] = self.balance['cash'] + self.balance['stocks capital'] + self.balance['options capital'] self.balance['% change'] = self.balance['total capital'].pct_change() self.balance['accumulated return'] = (1.0 + self.balance['% change']).cumprod() return self.trade_log def _initialize_inventories(self): """Initialize empty stocks and options inventories.""" columns = pd.MultiIndex.from_product( [[l.name for l in self._options_strategy.legs], ['contract', 'underlying', 'expiration', 'type', 'strike', 'cost', 'order']]) totals =
pd.MultiIndex.from_product([['totals'], ['cost', 'qty', 'date']])
pandas.MultiIndex.from_product
import unittest import os import tempfile from collections import namedtuple from blotter import blotter from pandas.util.testing import assert_frame_equal, assert_series_equal, \ assert_dict_equal import pandas as pd import numpy as np class TestBlotter(unittest.TestCase): def setUp(self): cdir = os.path.dirname(__file__) self.prices = os.path.join(cdir, 'data/prices') self.rates = os.path.join(cdir, 'data/rates/daily_interest_rates.csv') self.log = os.path.join(cdir, 'data/events.log') self.meta_log = os.path.join(cdir, 'data/meta_data.log') def tearDown(self): pass def assertEventsEqual(self, evs1, evs2): if len(evs1) != len(evs2): raise(ValueError("Event lists length mismatch")) for ev1, ev2 in zip(evs1, evs2): self.assertEqual(ev1.type, ev2.type) assert_dict_equal(ev1.data, ev2.data) def assertEventTypes(self, evs1, evs2): msg = "Event lists length mismatch\n\nLeft:\n%s \nRight:\n%s" left_msg = "" for ev in evs1: left_msg += str(ev) + "\n" right_msg = "" for ev in evs2: right_msg += ev.type + "\n" msg = msg % (left_msg, right_msg) if len(evs1) != len(evs2): raise(ValueError(msg)) for ev1, ev2 in zip(evs1, evs2): if ev1.type is not ev2.type: raise(ValueError(msg)) def assertDictDataFrameEqual(self, dict1, dict2): self.assertEqual(dict1.keys(), dict2.keys()) for key in dict1.keys(): try: assert_frame_equal(dict1[key], dict2[key]) except AssertionError as e: e.args = (("\nfor key %s\n" % key) + e.args[0],) raise e def make_blotter(self): blt = blotter.Blotter(self.prices, self.rates) return blt def test_get_actions(self): actions = [(pd.Timedelta("16h"), "PNL"), (pd.Timedelta("16h"), "INTEREST")] old_ts = pd.Timestamp("2017-01-04T10:30") new_ts = pd.Timestamp("2017-01-06T10:30") ac_ts = blotter.Blotter._get_actions(old_ts, new_ts, actions) idx = pd.DatetimeIndex([pd.Timestamp("2017-01-04T16:00"), pd.Timestamp("2017-01-04T16:00"), pd.Timestamp("2017-01-05T16:00"), pd.Timestamp("2017-01-05T16:00")]) ac_ts_ex = pd.Series(["PNL", "INTEREST", "PNL", "INTEREST"], index=idx) assert_series_equal(ac_ts, ac_ts_ex) def test_get_actions_weekend_filter(self): actions = [(pd.Timedelta("16h"), "PNL"), (pd.Timedelta("16h"), "INTEREST")] old_ts = pd.Timestamp("2017-01-06T10:30") new_ts = pd.Timestamp("2017-01-09T16:30") ac_ts = blotter.Blotter._get_actions(old_ts, new_ts, actions) idx = pd.DatetimeIndex([pd.Timestamp("2017-01-06T16:00"), pd.Timestamp("2017-01-06T16:00"), pd.Timestamp("2017-01-09T16:00"), pd.Timestamp("2017-01-09T16:00")]) ac_ts_ex = pd.Series(["PNL", "INTEREST", "PNL", "INTEREST"], index=idx) assert_series_equal(ac_ts, ac_ts_ex) def test_trade_undefined_instrument(self): blt = self.make_blotter() ts = pd.Timestamp('2016-12-10T08:30:00') instr = 'CLZ6' qty = 1 price = 48.56 def make_trade(): blt._trade(ts, instr, qty, price) self.assertRaises(KeyError, make_trade) def test_get_meta_data(self): blt = blt = blotter.Blotter(self.prices, self.rates, base_ccy="USD") # currency of instrument defaults to base ccy of blotter when not given blt.define_generic("CL", margin=0.1, multiplier=100, commission=2.5, isFX=False) meta = namedtuple('metadata', ['ccy', 'margin', 'multiplier', 'commission', 'isFX']) metadata_exp = meta("USD", 0.1, 100, 2.5, False) metadata = blt._gnrc_meta["CL"] self.assertEqual(metadata, metadata_exp) def test_get_holdings_empty(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') hlds = blt.get_holdings_value(ts) assert_series_equal(hlds, pd.Series()) def test_get_holdings_value_no_fx_conversion(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = 1 price = 0 blt.define_generic("SXM", "ZAR", 0.1, 1, 2.5) blt.map_instrument("SXM", "SXMZ15") blt._trade(ts, 'SXMZ15', qty, price) def no_fx(): return blt.get_holdings_value(ts) self.assertRaises(KeyError, no_fx) def test_get_holdings_timestamp_before(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-05T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 blt.define_generic("ES", "USD", 0.1, 100, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price) ts = pd.Timestamp('2015-08-04T00:00:00') def get_holdings(): blt.get_holdings_value(ts) self.assertRaises(ValueError, get_holdings) def test_get_holdings_base_ccy(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 blt.define_generic("ES", "USD", 0.1, 100, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') hlds = blt.get_holdings_value(ts) hlds_exp = pd.Series([2082.73 * 100], index=['ESZ15']) assert_series_equal(hlds, hlds_exp) def test_get_holds_AUD_instr_AUDUSD_fxrate(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'APZ15' qty = 1 price = 5200 blt.define_generic("AP", "AUD", 0.1, 1, 2.5) blt.map_instrument("AP", "APZ15") blt._trade(ts, instr, qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') hlds = blt.get_holdings_value(ts) hlds_exp = pd.Series([5283 * 0.73457], index=['APZ15']) assert_series_equal(hlds, hlds_exp) def test_get_holds_CAD_instr_USDCAD_fxrate(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'SXMZ15' qty = 1 price = 802.52 blt.define_generic("SXM", "CAD", 0.1, 1, 2.5) blt.map_instrument("SXM", "SXMZ15") blt._trade(ts, instr, qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') hlds = blt.get_holdings_value(ts) hlds_exp = pd.Series([795.95 / 1.3183], index=['SXMZ15']) assert_series_equal(hlds, hlds_exp) def test_get_instruments_empty(self): blt = self.make_blotter() blt.connect_market_data() instrs = blt.get_instruments() assert_series_equal(instrs, pd.Series()) def test_get_instruments_multiplier(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 blt.define_generic("ES", "USD", 0.1, 100, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price) instrs = blt.get_instruments() instrs_exp = pd.Series([qty], index=['ESZ15']) assert_series_equal(instrs, instrs_exp) def test_get_instruments_two_ccy(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr1 = 'ESZ15' instr2 = 'CLZ15' qty = 1 price = 2081 blt.define_generic("ES", "USD", 0.1, 100, 2.5) blt.map_instrument("ES", "ESZ15") blt.define_generic("CL", "CAD", 0.1, 1, 2.5) blt.map_instrument("CL", "CLZ15") blt._trade(ts, instr1, qty, price) blt._trade(ts, instr2, qty, price) instrs = blt.get_instruments() instrs_exp = pd.Series([qty, qty], index=['CLZ15', 'ESZ15']) assert_series_equal(instrs, instrs_exp) def test_get_trades_one_future_base_to_base(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 mid_price = 2080.75 blt.define_generic("ES", "USD", 0.1, 50, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price, mid_price) trades = blt.get_trades() cols = ['instrument', 'quantity', 'multiplier', 'price', 'ntc_price', 'ccy', 'fx_to_base'] exp_trades = pd.DataFrame([[instr, 1, 50, price, mid_price, "USD", 1.0]], index=[ts], columns=cols) exp_trades.index.name = 'timestamp' assert_frame_equal(trades, exp_trades) def test_get_trades_one_future_with_mid_price_fx(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 mid_price = 2080.75 blt.define_generic("ES", "CAD", 0.1, 50, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price, mid_price) trades = blt.get_trades() cols = ['instrument', 'quantity', 'multiplier', 'price', 'ntc_price', 'ccy', 'fx_to_base'] exp_trades = pd.DataFrame([[instr, 1, 50, price, mid_price, "CAD", 1 / 1.3125]], index=[ts], columns=cols) exp_trades.index.name = 'timestamp' assert_frame_equal(trades, exp_trades) def test_get_trades_two_futures(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price1 = 2081 mid_price1 = 2080.75 price2 = 2083 mid_price2 = 2082.75 blt.define_generic("ES", "USD", 0.1, 50, 2.5) blt.map_instrument("ES", "ESZ15") blt.map_instrument("ES", "ESF16") blt._trade(ts, instr, qty, price1, mid_price1) blt._trade(ts, instr, qty, price2, mid_price2) trades = blt.get_trades() cols = ['instrument', 'quantity', 'multiplier', 'price', 'ntc_price', 'ccy', 'fx_to_base'] data = [[instr, 1, 50, price1, mid_price1, "USD", 1.0], [instr, 1, 50, price2, mid_price2, "USD", 1.0]] exp_trades = pd.DataFrame(data, index=[ts, ts], columns=cols) exp_trades.index.name = 'timestamp' assert_frame_equal(trades, exp_trades) def test_create_unknown_event(self): blt = self.make_blotter() ts = pd.Timestamp('2015-08-03T00:00:00') def create_unknown(): return blt.create_events(ts, "NotAllowed") self.assertRaises(NotImplementedError, create_unknown) def test_dispatch_unknown_event(self): blt = self.make_blotter() ev = blotter._Event("NotAnEvent", {"timestamp": pd.Timestamp('2015-01-01')}) def dispatch_unknown(): blt.dispatch_events([ev]) self.assertRaises(NotImplementedError, dispatch_unknown) def test_create_interest_event(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-03T00:00:00') blt._holdings.update_cash(ts, "AUD", 1000000) blt._holdings.update_cash(ts, "JPY", 1000000) ts = pd.Timestamp('2015-08-04T00:00:00') evs = blt.create_events(ts, "INTEREST") irates = pd.read_csv(self.rates, index_col=0, parse_dates=True) aud_int = irates.loc[ts, "AUD"] / 365 * 1000000 jpy_int = irates.loc[ts, "JPY"] / 365 * 1000000 evs_exp = [blotter._Event("INTEREST", {"timestamp": ts, "ccy": "AUD", "quantity": aud_int}), blotter._Event("INTEREST", {"timestamp": ts, "ccy": "JPY", "quantity": jpy_int})] self.assertEventsEqual(evs, evs_exp) def test_create_interest_event_no_rate(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-03T00:00:00') # No ZAR data blt._holdings.update_cash(ts, "ZAR", 1000000) ts = pd.Timestamp('2015-08-04T00:00:00') def get_interest(): return blt.create_events(ts, "INTEREST") self.assertRaises(KeyError, get_interest) def test_create_interest_weekend_event(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-06T00:00:00') blt._holdings.update_cash(ts, "AUD", 1000000) blt._holdings.update_cash(ts, "JPY", 1000000) ts = pd.Timestamp('2015-08-07T00:00:00') evs = blt.create_events(ts, "INTEREST") irates = pd.read_csv(self.rates, index_col=0, parse_dates=True) aud_int = irates.loc[ts, "AUD"] / 365 * 3 * 1000000 jpy_int = irates.loc[ts, "JPY"] / 365 * 3 * 1000000 evs_exp = [blotter._Event("INTEREST", {"timestamp": ts, "ccy": "AUD", "quantity": aud_int}), blotter._Event("INTEREST", {"timestamp": ts, "ccy": "JPY", "quantity": jpy_int})] self.assertEventsEqual(evs, evs_exp) def test_create_margin_event(self): blt = blotter.Blotter(self.prices, self.rates, base_ccy="USD", margin_charge=0.015) blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = 1 price = 0 blt.define_generic("SXM", "CAD", 0.1, 1, 2.5) blt.map_instrument("SXM", "SXMZ15") blt.define_generic("ES", "USD", 0.05, 1, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, 'SXMZ15', qty, price) blt._trade(ts, "ESZ15", qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') ev = blt.create_events(ts, "MARGIN") rates = pd.read_csv(self.rates, index_col=0, parse_dates=True) es_fp = os.path.join(self.prices, 'ESZ15.csv') es = pd.read_csv(es_fp, index_col=0, parse_dates=True) sxm_fp = os.path.join(self.prices, 'SXMZ15.csv') sxm = pd.read_csv(sxm_fp, index_col=0, parse_dates=True) usdcad_fp = os.path.join(self.prices, 'USDCAD.csv') usdcad = pd.read_csv(usdcad_fp, index_col=0, parse_dates=True) es_notional = es.loc[ts].values * qty * 0.05 sxm_notional = sxm.loc[ts].values * qty * 0.1 / usdcad.loc[ts].values notnl = float(es_notional + sxm_notional) quantity = notnl * (rates.loc[ts, "USD"] + 0.015) / 365 ev_exp = [blotter._Event("INTEREST", {"timestamp": ts, "ccy": "USD", "quantity": quantity})] self.assertEventsEqual(ev, ev_exp) def test_create_short_margin_event(self): blt = blotter.Blotter(self.prices, self.rates, base_ccy="USD", margin_charge=0.015) blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = -1 price = 0 blt.define_generic("ES", "USD", 0.05, 1, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, "ESZ15", qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') ev = blt.create_events(ts, "MARGIN") rates = pd.read_csv(self.rates, index_col=0, parse_dates=True) es_fp = os.path.join(self.prices, 'ESZ15.csv') es = pd.read_csv(es_fp, index_col=0, parse_dates=True) es_notional = float(es.loc[ts].values * np.abs(qty) * 0.05) quantity = es_notional * (rates.loc[ts, "USD"] + 0.015) / 365 ev_exp = [blotter._Event("INTEREST", {"timestamp": ts, "ccy": "USD", "quantity": quantity})] self.assertEventsEqual(ev, ev_exp) def test_create_pnl_event(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = 1 price = 0 blt.define_generic("SXM", "CAD", 0.1, 1, 2.5) blt.map_instrument("SXM", "SXMZ15") blt.define_generic("ES", "USD", 0.05, 1, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, 'SXMZ15', qty, price) blt._trade(ts, "ESZ15", qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') ev = blt.create_events(ts, "PNL") es_fp = os.path.join(self.prices, 'ESZ15.csv') es = pd.read_csv(es_fp, index_col=0, parse_dates=True) sxm_fp = os.path.join(self.prices, 'SXMZ15.csv') sxm = pd.read_csv(sxm_fp, index_col=0, parse_dates=True) prices = pd.concat([es.loc[ts], sxm.loc[ts]], axis=0) ev_exp = [blotter._Event("PNL", {"timestamp": ts, "prices": prices})] self.assertEventsEqual(ev, ev_exp) def test_create_pnl_event_no_price(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = 1 price = 0 # No price info for BBBZ15 blt.define_generic("BBB", "CAD", 0.1, 1, 2.5) blt.map_instrument("BBB", "BBBZ15") blt._trade(ts, 'BBBZ15', qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') def no_price(): return blt.create_events(ts, "PNL") self.assertRaises(KeyError, no_price) def test_closed_position_pnl_event(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = 1 price = 0 blt.define_generic("ES", "USD", 0.05, 1, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, "ESZ15", qty, price) ts =
pd.Timestamp('2015-08-05T00:00:00')
pandas.Timestamp
import ast import csv import sys, os from pandas import DataFrame, to_datetime from PyQt5 import uic from PyQt5.QtChart import QChartView, QValueAxis, QBarCategoryAxis, QBarSet, QBarSeries, QChart from PyQt5.QtCore import QFile, QTextStream, Qt from PyQt5.QtGui import QPainter from PyQt5.QtWidgets import QApplication, QComboBox, QHeaderView, QLineEdit, QMainWindow, QPushButton, QTableWidget, QTableView,QTableWidgetItem, QMessageBox, QFileDialog from client.charts import Piechart, Barchart from client.datahandler import DataHandler from client.logs import PandasModel from modules.Processor import ProcessData from modules.Parser import export_to_file class MainWindow(QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) #Load the UI Page uic.loadUi('client/main.ui', self) # upload self.actionUpload.triggered.connect(self.upload) # Exit self.actionExit.triggered.connect(self.exit) self.df = None self.searchdata = None # Export Protocols and IP self.actionSummary.triggered.connect(self.Summary) # Exporting table details self.actionTableDetails.triggered.connect(self.TableDetails) def popup(self): ''' Popup Dialog to request file to be uploaded ''' msgBox = QMessageBox() msgBox.setIcon(QMessageBox.Information) msgBox.setWindowTitle("New File") msgBox.setText("Upload New File to Analyze.") msgBox.setStandardButtons(QMessageBox.Open) msgBox.buttonClicked.connect(self.upload) msgBox.exec() def upload(self): ''' Uploads file to application ''' fileName, _ = QFileDialog.getOpenFileName(None, "Select File", "", "Log Files (*.csv *.tsv *.json *.xls *.xlsx)") if fileName is not '': proc = ProcessData(fileName) proc.parse() data = proc.analyse() self.df = DataFrame.from_dict(data) self.display() else: self.showMessageBox("File Not Uploaded", "File Not Uploaded Successfully") def display(self): ''' Calls the data processor DataHandler and displays the result ''' if self.df is not None: self.data = DataHandler(self.df) QApplication.processEvents() # self.summary = self.data.getSummary() self.chartseries = self.data.getSeries() # Displays Charts and Tables self.displaychart("attackchart", self.chartseries, "Attack Types") self.displaytable("datatable", self.df) self.displaytop("topip", self.data.getTopIPs(), ['IP Addresses', 'Count']) self.displaytop("topports", self.data.getTopProtocols(), ['Protocol : Port', 'Count']) QApplication.processEvents() # Search Fields and Buttons self.isatksearch = self.findChild(QComboBox, "isAtk") self.ipsearch = self.findChild(QLineEdit, "ipaddr") self.protocolsearch = self.findChild(QLineEdit, "protocol") self.portsearch = self.findChild(QLineEdit, "port") self.atksearch = self.findChild(QLineEdit, "atk") self.timesearch = self.findChild(QLineEdit, "time") self.searchbtn = self.findChild(QPushButton, "searchbtn") self.searchbtn.clicked.connect(self.search) self.clearbtn = self.findChild(QPushButton, "clearbtn") self.clearbtn.clicked.connect(self.clear) QApplication.processEvents() self.bargraph() QApplication.processEvents() def bargraph(self): ''' Processes and Creates Bar Graph. ''' self.barchart = self.findChild(QChartView, "attackgraph") bardata = self.data.getBar() chartobj = Barchart(bardata) chartseries = chartobj.getSeries() # create QChart object and add data chart = QChart() chart.addSeries(chartseries) chart.setTitle("Attacks Over the Past 12 Months") chart.setAnimationOptions(QChart.SeriesAnimations) axisX = QBarCategoryAxis() axisX.append(chartobj.getKeys()) chart.addAxis(axisX, Qt.AlignBottom) axisY = QValueAxis() axisY.setRange(0, chartobj.getMax()) chart.addAxis(axisY, Qt.AlignLeft) chart.legend().setVisible(False) self.barchart.setChart(chart) def clear(self): ''' Clears Search Form ''' self.isatksearch.setCurrentIndex(0) self.ipsearch.clear() self.protocolsearch.clear() self.portsearch.clear() self.atksearch.clear() self.timesearch.clear() self.pdmdl.clear() self.searchdata = None self.logtable.setModel(self.pdmdl) def displaychart(self, widgetname, chartseries, title): ''' Displays PieChart ------------------ widgetname : str of widget to call in .ui file chartseries: PyQT Series to be displayed on chart title: str of title to be header of chart ''' self.piechart = self.findChild(QChartView, widgetname) chartdata = Piechart(chartseries, title).create() self.piechart.setChart(chartdata) self.piechart.setRenderHint(QPainter.Antialiasing) def displaytop(self, widgetname, data, header): ''' Displays Top IP/Protocols Table Parameters ------------------ widgetname : str of widget to call in .ui file data: dict of top ip/protocol data to display title: str of title to be header of chart ''' table = self.findChild(QTableWidget, widgetname) table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) table.verticalHeader().setSectionResizeMode(QHeaderView.ResizeToContents) table.setColumnCount(2) table.setRowCount(5) table.setHorizontalHeaderLabels(header) index = 0 for k,v in data.items(): table.setItem(int(index),0, QTableWidgetItem(k)) table.setItem(int(index),1, QTableWidgetItem(str(v))) index += 1 def displaytable(self, widgetname, data): ''' Displays Log Table Parameters ------------------ widgetname: str of widget to call in .ui file data: Pandas Dataframe ''' self.logtable = self.findChild(QTableView, widgetname) self.logtable.setSortingEnabled(True) self.pdmdl = PandasModel(data) self.logtable.setModel(self.pdmdl) self.logtable.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.logtable.verticalHeader().setSectionResizeMode(QHeaderView.Stretch) def search(self): ''' Checks Search Form to be sent to table ''' # get searchquery as dictionary searchquery = {'IsAtk': self.isatksearch.currentText(), 'IP': self.ipsearch.text(), 'Protocol': self.protocolsearch.text(), 'Port': self.portsearch.text(), 'Atk': self.atksearch.text(), 'Time': self.timesearch.text()} # check if search query is not empty searchquery = {k: v for k, v in searchquery.items() if v != ''} atk = {'Yes': 1, 'No':0} if searchquery.get('IsAtk', None) == '-': del searchquery['IsAtk'] elif searchquery.get('IsAtk', None) != None: searchquery['IsAtk'] = atk[searchquery['IsAtk']] # check if the searchquery is empty if bool(searchquery) is True: self.searchdata = self.pdmdl.search(searchquery) if self.searchdata is not None: self.logtable.setModel(PandasModel(self.searchdata, search=True)) else: self.clear() else: self.clear() def Summary(self): ''' Exports summary ''' protocol = self.data.getTopProtocols() ip = self.data.getTopIPs() fileName = QFileDialog.getSaveFileName(self, "Save File", "", "Log Files (*.csv *.tsv *.json *.xls *.xlsx)") if fileName[0]: export_data = [x + y for x, y in zip(protocol.items(), ip.items())] export_dataframe = ['Protocol & Ports','Counts','IP Address','Counts'] export_dataframe = DataFrame(export_data, columns=export_dataframe) export_to_file(fileName[0], export_dataframe) self.showMessageBox('File Exported',"File Exported successfully") else: self.showMessageBox('File not Exported',"File not Exported successfully") def TableDetails(self): ''' Exports table data ''' fileName = QFileDialog.getSaveFileName(self, "Save File", "", "Log Files (*.csv *.tsv *.json *.xls *.xlsx)") if self.searchdata is None: exportdata = self.data.getData() formatteddata = exportdata.transpose() formatteddata['IsAtk'] = formatteddata['IsAtk'].map({1:'Yes', 0:'No'}) # Changes 1 and 0 to Yes and No for table formatteddata['Time'] =
to_datetime(formatteddata['Time'],unit='s')
pandas.to_datetime
from sklearn.metrics import classification_report from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import LabelEncoder from sklearn.metrics import accuracy_score import torch.nn as nn import torch.utils.data as data from torch.utils.data import Dataset import torchvision.transforms as transforms import torchvision.datasets as datasets from Common_Function_ import * import torch.multiprocessing from models.MesoNet4_forEnsemble import MesoInception4 as MesoNet from PIL import Image torch.multiprocessing.set_sharing_strategy('file_system') GPU = '1,2' os.environ["CUDA_VISIBLE_DEVICES"] = GPU device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu") calculate = False EPOCHS = 50 BATCH_SIZE = 64 VALID_RATIO = 0.3 N_IMAGES = 100 START_LR = 1e-5 END_LR = 10 NUM_ITER = 100 PATIENCE_EARLYSTOP=10 pretrained_size = 224 pretrained_means = [0.4489, 0.3352, 0.3106]#[0.485, 0.456, 0.406] pretrained_stds= [0.2380, 0.1965, 0.1962]#[0.229, 0.224, 0.225] class CustumDataset(Dataset): def __init__(self, data, target, data_2=None, target_2=None, transform=None): self.data = data self.target = target self.data_video = data_2 self.target_video = target_2 self.transform = transform if self.data_video: self.len_data2 = len(self.data_video) print(self.len_data2) print(len(self.data_video)) print(len(self.data)) assert (self.len_data2 == len(self.target) == len(self.target_video) == len(self.data) == len(self.data_video)) def __len__(self): return len(self.target) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() path = self.data[idx] img = Image.open(path) img = img.convert('RGB') if self.transform: img = self.transform(img) if self.data_video: path_video = self.data[idx] img_video = Image.open(path_video) img_video = img_video.convert('RGB') if self.transform: img_video = self.transform(img_video) return img, self.target[idx], img_video, self.target_video[idx] train_transforms = transforms.Compose([ transforms.Resize((pretrained_size,pretrained_size)), transforms.RandomHorizontalFlip(0.5), # transforms.RandomCrop(pretrained_size, padding = 10), transforms.ToTensor(), transforms.Normalize(mean = pretrained_means, std = pretrained_stds) ]) test_transforms = transforms.Compose([ transforms.Resize((pretrained_size,pretrained_size)), transforms.ToTensor(), transforms.Normalize(mean = pretrained_means, std = pretrained_stds) ]) #### def getnum_of_files(path): _dict = {} for (a,b,c) in os.walk(path): if not b: _dict[a.split('/')[-1]] = len(c) return _dict #### test_dir = ["/media/data1/mhkim/FAKEVV_hasam/test/SPECTOGRAMS/real_A_fake_others", "/media/data1/mhkim/FAKEVV_hasam/test/FRAMES/real_A_fake_others"] list_test = [datasets.ImageFolder(root = test_dir[0],transform = None), datasets.ImageFolder(root = test_dir[1],transform = None)] print(len(list_test[0].targets)) print(len(list_test[1].targets)) #test list_glob_testpath = [list_test[1].samples[i][0] for i in range(len(list_test[1].samples))] list_targets_testpath = [list_test[1].targets[i] for i in range(len(list_test[1].targets))] list_num_test = getnum_of_files(test_dir[1]) list_glob_testpath_video=[]; list_targets_testpath_video=[] for i in range(len(list_test[0].samples)): _str = list_test[0].samples[i][0].split('/')[-2] num_repeat = int(list_num_test[_str]) list_glob_testpath_video += [list_test[0].samples[i][0]] * num_repeat list_targets_testpath_video += [list_test[0].targets[i]] * num_repeat i = i + num_repeat assert(list_targets_testpath_video == list_targets_testpath) test_data = CustumDataset(list_glob_testpath, list_targets_testpath, list_glob_testpath_video, list_targets_testpath_video, test_transforms) print(f'Number of testing examples: {len(test_data)}') pretrained_size = 224 pretrained_means = [0.4489, 0.3352, 0.3106]#[0.485, 0.456, 0.406] pretrained_stds= [0.2380, 0.1965, 0.1962]#[0.229, 0.224, 0.225] models = [MesoNet(), MesoNet()] MODELS_NAME = 'MesoInception4' # checkpoinsts for model loaders : [VIDEO(A&B), FRAME(A&C)] list_checkpoint = [torch.load(f'/home/mhkim/DFVV/PRETRAINING/{MODELS_NAME}_realA_fakeB.pt')['state_dict'], torch.load(f'/home/mhkim/DFVV/PRETRAINING/{MODELS_NAME}_realA_fakeC.pt')['state_dict']] models[0].load_state_dict(list_checkpoint[0]) models[1].load_state_dict(list_checkpoint[1]) enc = OneHotEncoder(sparse=False) y_true = np.zeros((0, 2), dtype=np.int8) y_pred = np.zeros((0, 2), dtype=np.int8) models[0].eval() models[1].eval() test_iterator = data.DataLoader(test_data, shuffle = True, batch_size = BATCH_SIZE) def count(x): return x.value_counts().sort_values(ascending=False).index[0] import pandas as pd df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd '''The first task is to read the json file as a Pandas DataFrame and delete the rows which contain invalid values in the attributes of “points” and “price”.''' df = pd.read_json('datasets//wine.json') df = df.dropna(subset=['points', 'price']) '''what are the 10 varieties of wine which receives the highest number of reviews?''' dfTop10MostReviews = df['variety'].value_counts()[:10] print("Q1:") print(dfTop10MostReviews) print('\n') '''which varieties of wine having the average price less than 20, with the average points at least 90?''' averagePoints = df.groupby('variety', as_index=False)['points'].mean() averagePoints = averagePoints.loc[averagePoints['points']>=90] averagePrice = df.groupby('variety', as_index=False)['price'].mean() averagePrice = averagePrice.loc[averagePrice['price']<20] q2 =
pd.merge(averagePrice, averagePoints, on='variety')
pandas.merge
import collections import os import traceback from datetime import datetime, timedelta import pandas as pd from openpyxl.styles import PatternFill import config from openpyxl import load_workbook import numpy as np import xlrd def get_date_index(date, dates_values, lookback_index=0): if isinstance(dates_values[0], str): dates_values = [datetime.strptime(x, '%Y-%m-%d') for x in dates_values] elif isinstance(dates_values[0], np.datetime64): dates_values = [x.astype('M8[ms]').astype('O') for x in dates_values] if len(dates_values) > 1: if dates_values[0] > dates_values[1]: # if dates decreasing rightwards or downwards date_index = next((index for (index, item) in enumerate(dates_values) if item < date), 0) # adjusted_lookback = date_item - lookback_period # lookback_index = next(( # index for (index, item) in enumerate(dates_values[date_index:]) if item <= adjusted_lookback), 0) return date_index + lookback_index else: # if dates increasing rightwards or downwards date_index = next((index for (index, item) in enumerate(dates_values) if item > date), -1) # adjusted_lookback = date_item - lookback_period # lookback_index = next(( # index for (index, item) in enumerate(dates_values[date_index:]) if item > adjusted_lookback), -1) return date_index - lookback_index # TODO Fix lookback index is a date here, convert before calling method else: return 0 def slice_series_dates(series, from_date, to_date): date_idx_from = get_date_index(from_date, series.index) date_idx_to = get_date_index(to_date, series.index) return series[date_idx_from:date_idx_to] def save_into_csv(filename, df, sheet_name='Sheet1', startrow=None, overwrite_sheet=False, concat=False, **to_excel_kwargs): # ignore [engine] parameter if it was passed if 'engine' in to_excel_kwargs: to_excel_kwargs.pop('engine') writer =
pd.ExcelWriter(filename, engine='openpyxl')
pandas.ExcelWriter
import copy import os from functools import partial from pathlib import Path from typing import List, Tuple import hydra import matplotlib.pyplot as plt import numpy as np import pandas as pd import pytorch_lightning as pl import scipy import torch from hydra.utils import get_original_cwd from omegaconf import DictConfig, OmegaConf from sklearn.neighbors import KDTree from src.dataset.datamodule import GsdcDatamodule, interpolate_vel from src.dataset.utils import get_groundtruth from src.modeling.pl_model import LitModel from src.postprocess.metric import print_metric from src.postprocess.postporcess import (apply_kf_smoothing, filter_outlier, mean_with_other_phones) from src.postprocess.visualize import add_distance_diff from src.utils.util import set_random_seed pd.set_option("display.max_rows", 100) SEED = 42 def check_test_df(path_a, path_b): df_a = pd.read_csv(path_a) df_b = pd.read_csv(path_b) df_a = df_a.rename(columns={"latDeg": "latDeg_gt", "lngDeg": "lngDeg_gt"}) df = pd.merge(df_a, df_b, on=["phone", "millisSinceGpsEpoch"]) met_df = print_metric(df=df) return met_df def load_dataset(is_test: bool = True) -> Tuple[pd.DataFrame, pd.DataFrame]: data_dir = Path( get_original_cwd(), "../input/google-smartphone-decimeter-challenge" ) fname = "test" if is_test else "train" df =
pd.read_csv(data_dir / f"baseline_locations_{fname}.csv")
pandas.read_csv
import pandas as pd import numpy as np import warnings from dateutil.parser import parse import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = 'Times New Roman' import seaborn as sns sns.set_style('whitegrid') ### 一、数据清洗 option_contract = pd.read_excel('option_contract.xlsx') #### 获取期权合约数据, # 剔除华泰柏瑞的信息,以及多余的列:'kind', 'name', 'exercise_type’ ##剔除华泰柏瑞的信息 list_name = list(option_contract.name) del_rows = [i for i in range(len(list_name)) if '华泰柏瑞' in list_name[i]] option_contract_2 = option_contract.drop(del_rows) ##剔除多余的列:'kind', 'name', 'exercise_type’ option_contract_3 = option_contract_2.drop(['kind', 'name', 'exercise_type'] \ , axis=1) #### 插入一列,列名为'ttm',代表存续期,以天为单位表示, # 并保留存续期大于30天的期权合约 ##插入一列,列名为'ttm' option_contract_3['ttm'] = pd.Series(pd.to_datetime(option_contract_3['maturity_date']) \ - pd.to_datetime(option_contract_3['list_date'])) ##以天为单位表示 option_contract_3['ttm'] = option_contract_3['ttm']. \ map(lambda x: x.days) ##保留存续期大于30天的期权合约 df = option_contract_3.drop(option_contract_3[option_contract_3.ttm <= 30].index) #### 剔除到期日在2019年之后的期权合约, # 并将剩下所有的maturity_date储存在一个新的容器里, ##生成一个新的DataFrame,储存到期日在2020年以前所有的期权合约 df_2 = df.drop(df[df.maturity_date >= '2020-1-1'].index) ##将剩下所有的maturity_date储存在一个新的序列maturity_date_cleaned里 maturity_date_cleaned = df_2.maturity_date.value_counts().sort_index().index #### 生成一个新的options列表,列表中每个元素用以储存每个到期日的所有期权合约 options = [df_2[df_2.maturity_date == i] for i in maturity_date_cleaned] #### 读取price_start和price end数据 # price_strat储存着每月第一个交易日所有期权的收盘价 # price_end储存着每月到期日所有期权的收盘价 price_start = pd.read_excel('price_start.xlsx') price_end = pd.read_excel('price_end.xlsx') ##获得每月第一个交易日据具体日期 start_date = price_start.trade_date.value_counts().sort_index().index # 把用int数字表示的日期转化为真正的日期形式 price_start['Date_True'] = pd.Series([parse(str(y)) for y in list(price_start.trade_date)]) ##获得每月到期日具体日期 end_date = price_end.trade_date.value_counts().sort_index().index # 把用int数字表示的日期转化为真正的日期形式 ls = pd.Series([parse(str(y)) for y in list(price_end.trade_date)]) price_end['Date_True'] = ls ####搜集每个price_strat和price_end中所有日期标的资产的收盘价, # 整理成excel文件并读取 ETF_start =
pd.read_excel('50ETF_Start.xlsx')
pandas.read_excel
# Import Module import PyPDF2 from PyPDF2.utils import PdfReadError import pdfx from urlextract import URLExtract import requests import fitz import click import argparse import os from urllib.parse import urlparse, ParseResult from fpdf import FPDF import gspread import pandas as pd from gspread_dataframe import get_as_dataframe, set_with_dataframe #import pdb;pdb.set_trace() # Parse args parser = argparse.ArgumentParser(description='Description of your program') parser.add_argument('-p','--path', help='Localization of the files', default= "./CitationSaver/") parser.add_argument('-d','--destination', help='Destination of the URLs extract', default= "./URLs/") parser.add_argument('-a','--afterprocessed', help='Destination of the files processed', default= "./Processed/") parser.add_argument('-w','--pathwarc', help='Destination of the WARCs for each file', default= "./WARCs/") parser.add_argument('-j','--pathjson', help='Destination of the json file with google service key', default= "JSON") parser.add_argument('-k','--key', help='Key Google Spreadsheet', default= "KEY") parser.add_argument('-ws','--worksheet', help='Worksheet Google Spreadsheet', default= "WORKSHEET") args = vars(parser.parse_args()) #Connect gspread gc = gspread.service_account(filename=args['pathjson']) sh = gc.open_by_key(args['key']) worksheet = sh.worksheet(args['worksheet']) #Transform worksheet to pandas dataframe df = get_as_dataframe(worksheet) #Global variable with the URLs check for each document list_urls_check = [] # Extract URLs from text def extract_url(text, list_urls): extractor = URLExtract() urls = extractor.find_urls(text) for url in urls: url = url.replace(",", "") if "http" in url: url = url[url.find('http'):] if url not in list_urls: list_urls.append(url) # Check if the URLs is available def check_url(scheme, netloc, path, url_parse, output): url_parse = ParseResult(scheme, netloc, path, *url_parse[3:]) response = requests.head(url_parse.geturl()) if str(response.status_code).startswith("2") or str(response.status_code).startswith("3"): output.write(url_parse.geturl()+"\n") list_urls_check.append(url_parse.geturl()) else: url_parse = ParseResult("https", netloc, path, *url_parse[3:]) response = requests.head(url_parse.geturl()) if str(response.status_code).startswith("2") or str(response.status_code).startswith("3"): output.write(url_parse.geturl()+"\n") list_urls_check.append(url_parse.geturl()) def check_pdf(file_name, file): try: pdf = PyPDF2.PdfFileReader(file_name) return True except PdfReadError: return False def extract_urls_pdf(file, file_name, list_urls): #First method: PyPDF2 # Open File file pdfFileObject = open(file_name, 'rb') pdfReader = PyPDF2.PdfFileReader(pdfFileObject) # Iterate through all pages for page_number in range(pdfReader.numPages): pageObject = pdfReader.getPage(page_number) # Extract text from page pdf_text = pageObject.extractText() extract_url(pdf_text, list_urls) if not list_urls: #Update GoogleSheet update_google_sheet(file, "", "", "", "Problem using PyPDF2 process", True) # CLose the PDF pdfFileObject.close() #Second method: PDFx # Read PDF File pdf = pdfx.PDFx(file_name) # Get list of URL json = pdf.get_references_as_dict() if len(json) != 0: for elem in json['url']: if elem not in list_urls: list_urls.append(elem) else: #Update GoogleSheet update_google_sheet(file, "", "", "", "Problem using PDFx process", True) #Third method: fitz # Load PDF with fitz.open(file_name) as doc: text = "" for page in doc: text += page.getText().strip()#.replace("\n", "") text = ' '.join(text.split()) extract_url(text, list_urls) def check_urls(list_urls, output_file): urls_to_google_sheet = [] if list_urls != []: # Process the URLs with open(output_file, 'w') as output: # Remove mailto links links = [url for url in list_urls if "mailto:" not in url] for elem in links: #Remove trash at the end of the URLs if elem.endswith(";") or elem.endswith(".") or elem.endswith(")") or elem.endswith("/"): elem = elem[:-1] url_parse = urlparse(elem, 'http') #URL parse scheme = url_parse.scheme netloc = url_parse.netloc or url_parse.path path = url_parse.path if url_parse.netloc else '' if not netloc.startswith('www.'): netloc = 'www.' + netloc try: #Check if URL check_url(scheme, netloc, path, url_parse, output) except: continue #else: #do something def update_google_sheet(file, path_output, list_urls, list_urls_check, note, error): #Get the index from the file being processed in the google sheet index = df.index[df['File Name CitationSaver System']==file].tolist() if not error: #Check if columns are empty for the present row if pd.isnull(df.at[index[0], 'Results URLs File Path']) and pd.isnull(df.at[index[0], 'Results URLs without check']) and
pd.isnull(df.at[index[0], 'Results URLs with check'])
pandas.isnull
# -*- coding: utf-8 -*- """ Get input data from Excel files, and calculate epidemiological parameters """ import os import numpy as np import pandas as pd import datetime as dt from . import param_parser from .get_initial_state import InitialModelState from datetime import datetime def aggregate_params_and_data(yaml_fp): """Aggregates all run parameters. Reads from a config YAML file at `yaml_fp`, and calls SEIR_get_data to retrieve demographic data. Returns a dictionary of aggregated parameters. """ config = param_parser.load(yaml_fp, validate=False) # -------------Get data/params from get_data/params ---------------- # handling of legacy param names, formatted as: # [old name which is still supported, new name] legacy_conversions = tuple([ ['sd_date', 'c_reduction_date'], ['DATA_FOLDER', 'data_folder'], ['CITY', 'city'], ]) for conversion in legacy_conversions: old_name = conversion[0] new_name = conversion[1] if new_name not in config: assert old_name in config, "config YAML has no field " + \ "`{}` (formerly known as `{}`)".format(new_name, old_name) config[new_name] = config[old_name] # get demographics, school calendar, and transmission data from Excel files AgeGroupDict, metro_pop, school_calendar, \ time_begin, FallStartDate, Phi, symp_h_ratio_overall, \ symp_h_ratio, hosp_f_ratio = SEIR_get_data(config=config) config.update({ "AgeGroupDict": AgeGroupDict, 'metro_pop': metro_pop, 'school_calendar': school_calendar, 'time_begin': time_begin, 'FallStartDate': FallStartDate, 'phi': Phi, #initial_state': config['initial_state'], 'initial_i': config['I0'], 'symp_h_ratio_overall': symp_h_ratio_overall, 'symp_h_ratio': symp_h_ratio, 'hosp_f_ratio': hosp_f_ratio }) # -------------Get initial state of model -------------------------- ## -- get initial state of compartments # todo: SEIR model should take a new arg "init_type" that explicitly states whether to initialize every compartment or just infected # todo: currently the type of initialization is inferred from the instance type of "initial_i" -- that is sure to break at some point init_state = InitialModelState(config['total_time'], config['interval_per_day'], config['n_age'], config['n_risk'], config['I0'], metro_pop) compartments = init_state.initialize() # todo: more graceful and transparent override of user config specified start date # todo: perhaps in param_parser we can check that time_begin_sim is None if a I0 is a file path if init_state.start_day: print('Start date as specified in the config file is overridden by initialization from a deterministic solution.') print('The new start date is {}'.format(init_state.start_day)) date_begin = init_state.start_day config['time_begin_sim'] = datetime.strftime(date_begin, '%Y%m%d') # return datetime to its expected string format # todo: we should re-save this config to reflect the updated start time # ------------- Update config with revised initial conditions ------- config['initial_state'] = compartments config['t_offset'] = init_state.offset return config def SEIR_get_data(config): """ Gets input data from Excel files. Takes a configuration dictionary `config` that must minimally contain the following keys: :data_folder: str, path of Excel files :city: str, name of city simulated :n_age: int, number of age groups :n_risk: int, number of risk groups """ # ingest from configuration dictionary data_folder = config['data_folder'] city = config['city'] n_age = config['n_age'] n_risk = config['n_risk'] H_RELATIVE_RISK_IN_HIGH = config['H_RELATIVE_RISK_IN_HIGH'] D_RELATIVE_RISK_IN_HIGH = config['D_RELATIVE_RISK_IN_HIGH'] HIGH_RISK_RATIO = config['HIGH_RISK_RATIO'] H_FATALITY_RATIO = config['H_FATALITY_RATIO'] INFECTION_FATALITY_RATIO = config['INFECTION_FATALITY_RATIO'] OVERALL_H_RATIO = config['OVERALL_H_RATIO'] ASYMP_RATE = config['ASYMP_RATE'] age_group_dict = config['age_group_dict'] # ------------------------------ us_population_filename = 'US_pop_UN.csv' population_filename = '{}_Population_{}_age_groups.csv' population_filename_dict = {} for key in age_group_dict.keys(): population_filename_dict[key] = population_filename.format(city, str(key)) school_calendar_filename = '{}_School_Calendar.csv'.format(city) contact_matrix_all_filename_dict = {5: 'ContactMatrixAll_5AgeGroups.csv', 3: 'ContactMatrixAll_3AgeGroups.csv'} contact_matrix_school_filename_dict = {5: 'ContactMatrixSchool_5AgeGroups.csv', 3: 'ContactMatrixSchool_3AgeGroups.csv'} contact_matrix_work_filename_dict = {5: 'ContactMatrixWork_5AgeGroups.csv', 3: 'ContactMatrixWork_3AgeGroups.csv'} contact_matrix_home_filename_dict = {5: 'ContactMatrixHome_5AgeGroups.csv', 3: 'ContactMatrixHome_3AgeGroups.csv'} ## Load data # Population in US df_US = pd.read_csv(data_folder + us_population_filename, index_col=False) GroupPaperPop = df_US.groupby('GroupPaper')['Value'].sum().reset_index(name='GroupPaperPop') GroupCOVIDPop = df_US.groupby('GroupCOVID')['Value'].sum().reset_index(name='GroupCOVIDPop') df_US = pd.merge(df_US, GroupPaperPop) df_US = pd.merge(df_US, GroupCOVIDPop) # Calculate age specific and risk group specific symptomatic hospitalization ratio df_US['Overall_H_Ratio'] = df_US['GroupPaper'].map(OVERALL_H_RATIO) / 100. df_US['YHR_paper'] = df_US['Overall_H_Ratio'] / (1 - ASYMP_RATE) df_US['YHN_1yr'] = df_US['YHR_paper'] * df_US['Value'] GroupCOVID_YHN = df_US.groupby('GroupCOVID')['YHN_1yr'].sum().reset_index(name='GroupCOVID_YHN') df_US = pd.merge(df_US, GroupCOVID_YHN) df_US['YHR'] = df_US['GroupCOVID_YHN'] / df_US['GroupCOVIDPop'] df_US['GroupCOVIDHighRiskRatio'] = df_US['GroupCOVID'].map(HIGH_RISK_RATIO) / 100. df_US['YHR_low'] = df_US['YHR'] /(1 - df_US['GroupCOVIDHighRiskRatio'] + \ H_RELATIVE_RISK_IN_HIGH * df_US['GroupCOVIDHighRiskRatio']) df_US['YHR_high'] = H_RELATIVE_RISK_IN_HIGH * df_US['YHR_low'] # Calculate age specific and risk group specific hospitalized fatality ratio df_US['I_Fatality_Ratio'] = df_US['GroupPaper'].map(INFECTION_FATALITY_RATIO) / 100. df_US['YFN_1yr'] = df_US['I_Fatality_Ratio'] * df_US['Value'] / (1 - ASYMP_RATE) GroupCOVID_YFN = df_US.groupby('GroupCOVID')['YFN_1yr'].sum().reset_index(name='GroupCOVID_YFN') df_US = pd.merge(df_US, GroupCOVID_YFN) df_US['YFR'] = df_US['GroupCOVID_YFN'] / df_US['GroupCOVIDPop'] df_US['YFR_low'] = df_US['YFR'] / (1 - df_US['GroupCOVIDHighRiskRatio'] + \ D_RELATIVE_RISK_IN_HIGH * df_US['GroupCOVIDHighRiskRatio']) df_US['YFR_high'] = D_RELATIVE_RISK_IN_HIGH * df_US['YFR_low'] df_US['HFR'] = df_US['YFR'] / df_US['YHR'] df_US['HFR_low'] = df_US['YFR_low'] / df_US['YHR_low'] df_US['HFR_high'] = df_US['YFR_high'] / df_US['YHR_high'] df_US_dict = df_US[['GroupCOVID', 'YHR', 'YHR_low', 'YHR_high', \ 'HFR_low', 'HFR_high']].drop_duplicates().set_index('GroupCOVID').to_dict() Symp_H_Ratio_dict = df_US_dict['YHR'] Symp_H_Ratio_L_dict = df_US_dict['YHR_low'] Symp_H_Ratio_H_dict = df_US_dict['YHR_high'] Hosp_F_Ratio_L_dict = df_US_dict['HFR_low'] Hosp_F_Ratio_H_dict = df_US_dict['HFR_high'] Symp_H_Ratio = np.array([Symp_H_Ratio_dict[i] for i in age_group_dict[n_age]]) Symp_H_Ratio_w_risk = np.array([[Symp_H_Ratio_L_dict[i] for i in age_group_dict[n_age]], \ [Symp_H_Ratio_H_dict[i] for i in age_group_dict[n_age]]]) Hosp_F_Ratio_w_risk = np.array([[Hosp_F_Ratio_L_dict[i] for i in age_group_dict[n_age]], \ [Hosp_F_Ratio_H_dict[i] for i in age_group_dict[n_age]]]) df = pd.read_csv(data_folder + population_filename_dict[n_age], index_col=False) pop_metro = np.zeros(shape=(n_age, n_risk)) for r in range(n_risk): pop_metro[:, r] = df.loc[df['RiskGroup'] == r, age_group_dict[n_age]].values.reshape(-1) # Transmission adjustment multiplier per day and per metropolitan area df_school_calendar = pd.read_csv(data_folder + school_calendar_filename, index_col=False) school_calendar = df_school_calendar['Calendar'].values.reshape(-1) school_calendar_start_date = dt.datetime.strptime(np.str(df_school_calendar['Date'][0]), '%m/%d/%y') df_school_calendar_aug = df_school_calendar[df_school_calendar['Date'].str[0].astype(int) >= 8] fall_start_date = df_school_calendar_aug[df_school_calendar_aug['Calendar'] == 1].Date.to_list()[0] fall_start_date = '20200' + fall_start_date.split('/')[0] + fall_start_date.split('/')[1] # Contact matrix phi_all = pd.read_csv(data_folder + contact_matrix_all_filename_dict[n_age], header=None).values phi_school =
pd.read_csv(data_folder + contact_matrix_school_filename_dict[n_age], header=None)
pandas.read_csv
from elasticsearch import Elasticsearch import os import pandas as pd from typing import List, Dict, Callable, Any, Union, Tuple from copy import deepcopy import numpy as np import re pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) ES_SERVER = None HOST = "localhost" PORT = "9200" eINDEX = "phd" eDOC = "lifelong" def flatten_dict(dd, separator='.', prefix=''): if isinstance(dd, dict): new_d = { prefix + separator + str(k) if prefix else str(k): v for kk, vv in dd.items() for k, v in flatten_dict(vv, separator, str(kk)).items() } return new_d elif isinstance(dd, list): if len(dd) > 0: if isinstance(dd[0], dict): new_d = { prefix + separator + str(k) if prefix else str(k): v for kk, vv in enumerate(dd) for k, v in flatten_dict(vv, separator, str(kk)).items() } return new_d new_d = {prefix: dd} return new_d def is_numeric(vv): if vv is None: return False try: a = float(vv) except Exception as e: return False return True def get_type_string(vv): s = str(type(float)) return s.replace("<class '", "").replace("'>", "") def flatten_dict_keys(dd, separator='.', prefix=''): """ Transform complex data recursive to unique keys """ if isinstance(dd, dict): all_k = set() for kk, vv in dd.items(): k_name = "[_]" if is_numeric(kk) else kk all_k.update(flatten_dict_keys(vv, separator=separator, prefix=f"{prefix}{k_name}{separator}")) return all_k elif isinstance(dd, list): if len(dd) > 0: if isinstance(dd[0], dict): all_k = set() for vv in dd: all_k.update(flatten_dict_keys(vv, separator=separator, prefix=f"{prefix}[_]{separator}")) return all_k else: return set([f"{prefix}[{get_type_string(dd)}]"]) return set([f"{prefix}<{get_type_string(dd)}>"]) else: return set([f"{prefix}<{get_type_string(dd)}>"]) def get_complex_key_recursive(dd: Dict, key: List[str], sep: str = ".", sit: str = "[_]") -> Dict: """ Get 1 complex key recursive """ if len(key) < 1: return dd if re.match("\[.*\]", key[0]): if isinstance(dd, dict): res = {} for kk, vv in dd.items(): res[kk] = get_complex_key_recursive(vv, key[1:], sep=sep, sit=sit) return res else: res = {} for kk, vv in enumerate(dd): res[kk] = get_complex_key_recursive(vv, key[1:], sep=sep, sit=sit) return res kk = key[0] while kk not in dd and not re.match("\[.*\]", key[0]): key = key[1:] if len(key) > 0: kk += sep + key[0] else: break if kk not in dd: return None return {kk: get_complex_key_recursive(dd[kk], key[1:], sep=sep, sit=sit)} def rem_complex_key_recursive(dd: Dict, key: List[str], sep: str = ".", sit: str = "[_]"): """ Inplace Remove recursive complex key """ if re.match("\[.*\]", key[0]): if isinstance(dd, dict): for kk, vv in dd.items(): rem_complex_key_recursive(vv, key[1:], sep=sep, sit=sit) else: for kk, vv in enumerate(dd): rem_complex_key_recursive(vv, key[1:], sep=sep, sit=sit) kk = key[0] while kk not in dd and not re.match("\[.*\]", key[0]): key = key[1:] if len(key) > 0: kk += sep + key[0] else: break if kk not in dd: return if len(key) > 1: rem_complex_key_recursive(dd[kk], key[1:], sep=sep, sit=sit) else: dd.pop(kk) def multi_index_df_to_dict(df, level=0) -> Dict: if level > 0: d = {} it = df.index.levels[0] if hasattr(df.index, "levels") else df.index for idx in it: d[idx] = multi_index_df_to_dict(df.loc[idx], level=level-1) return d elif isinstance(df, pd.DataFrame): d = {} for idx, df_select in df.groupby(level=[0]): d[idx] = df_select[0][0] return d else: return df[0] def exclude_dict_complex_keys(data: Dict, exclude_keys: List[str], separator: str =".", siterator: str ="[_]") -> Dict: """ Returns new dictionary without the specified complex keys """ data = deepcopy(data) for key in exclude_keys: key = key.split(".") if key[-1].startswith("<") and key[-1].endswith(">"): key = key[:-1] rem_complex_key_recursive(data, key, sep=separator, sit=siterator) return data def include_dict_complex_keys(data: Dict, include_keys: List[str], smart_group: Union[int, List[int]] = 0, separator: str =".", siterator: str ="[_]"): """ get only included keys from dictionary. """ ret = {} smart_groups = smart_group if isinstance(smart_groups, list): assert len(smart_groups) == len(include_keys), "Len of smart_group must equal include_keys" else: smart_groups = [smart_group] * len(include_keys) for orig_key, smart_group in zip(include_keys, smart_groups): key = orig_key.split(".") if re.match("\[.*\]", key[-1]) or re.match("<.*>", key[-1]): key = key[:-1] key_data = get_complex_key_recursive(data, key, sep=separator, sit=siterator) if smart_group > 0: flat_data = flatten_dict(key_data) if not np.any(flat_data.values()): continue df = pd.DataFrame([x.split(separator) for x in flat_data.keys()]) max_cl = df.columns.max() df["values"] = flat_data.values() df["common"] = "" common = [] variable = [] for i in range(max_cl+1): if len(df[i].unique()) == 1: df["common"] += df[i] + separator common.append(i) else: variable.append(i) df = df.drop(common, axis=1) for col in df.columns: if is_numeric(df.loc[0, col]) and col != "values": df.loc[:, col] = df[col].apply(lambda x: int(float(x))) # Merge common columns index_col = [df["common"].values] + [df[x].values for x in variable] index = pd.MultiIndex.from_arrays(index_col, names=range(len(index_col))) df_index = pd.DataFrame(df["values"].values, index=index) # Only if smart group > 1 drop indexes group = 1 index_level = len(index.levels) - 2 while group < smart_group and index_level >= 0: index_tuple = [] values = [] for date, new_df in df_index.groupby(level=index_level): values.append(new_df[0].values) index_tuple.append(new_df.index.values[0][:-1]) index = pd.MultiIndex.from_tuples(index_tuple) df_index = pd.DataFrame([0] * len(values), index=index) df_index.loc[:, 0] =
pd.Series(values)
pandas.Series
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import os.path import unittest import pandas as pd import pandas.io.common import biom import skbio import qiime2 from pandas.util.testing import assert_frame_equal, assert_series_equal from q2_types.feature_table import BIOMV210Format from q2_types.feature_data import ( TaxonomyFormat, HeaderlessTSVTaxonomyFormat, TSVTaxonomyFormat, DNAFASTAFormat, DNAIterator, PairedDNAIterator, PairedDNASequencesDirectoryFormat, AlignedDNAFASTAFormat, DifferentialFormat, AlignedDNAIterator ) from q2_types.feature_data._transformer import ( _taxonomy_formats_to_dataframe, _dataframe_to_tsv_taxonomy_format) from qiime2.plugin.testing import TestPluginBase # NOTE: these tests are fairly high-level and mainly test the transformer # interfaces for the three taxonomy file formats. More in-depth testing for # border cases, errors, etc. are in `TestTaxonomyFormatsToDataFrame` and # `TestDataFrameToTSVTaxonomyFormat` below, which test the lower-level helper # functions utilized by the transformers. class TestTaxonomyFormatTransformers(TestPluginBase): package = 'q2_types.feature_data.tests' def test_taxonomy_format_to_dataframe_with_header(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.DataFrame, filename=os.path.join('taxonomy', '3-column.tsv')) assert_frame_equal(obs, exp) def test_taxonomy_format_to_dataframe_without_header(self): # Bug identified in https://github.com/qiime2/q2-types/issues/107 index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) columns = ['Taxon', 'Unnamed Column 1', 'Unnamed Column 2'] exp = pd.DataFrame([['k__Foo; p__Bar', 'some', 'another'], ['k__Foo; p__Baz', 'column', 'column!']], index=index, columns=columns, dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.DataFrame, filename=os.path.join('taxonomy', 'headerless.tsv')) assert_frame_equal(obs, exp) def test_taxonomy_format_to_series_with_header(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.Series(['k__Foo; p__Bar', 'k__Foo; p__Baz'], index=index, name='Taxon', dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.Series, filename=os.path.join('taxonomy', '3-column.tsv'))
assert_series_equal(obs, exp)
pandas.util.testing.assert_series_equal
#!/usr/bin/python # -*- coding: utf-8 -*- """ Data Analysis IEEE-CIS Fraud Detection dataset. (https://www.kaggle.com/c/ieee-fraud-detection). ############### TF Version: 1.13.1/Python Version: 3.7 ############### """ import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt input_dir = os.getcwd() + "\\ieee-fraud-detection" print(os.listdir(input_dir)) # import data [index_col指定哪一列数据作为行索引,返回DataFrame] train_tran = pd.read_csv(input_dir + "\\train_transaction.csv", index_col="TransactionID") train_iden = pd.read_csv(input_dir + "\\train_identity.csv", index_col="TransactionID") # tests_tran = pd.read_csv(input_dir + "\\test_transaction.csv", index_col="TransactionID") # tests_iden = pd.read_csv(input_dir + "\\test_identity.csv", index_col="TransactionID") train = train_tran.merge(train_iden, how="left", left_index=True, right_index=True) # tests = tests_tran.merge(tests_iden, how="left", left_index=True, right_index=True) plt_show = 0 if plt_show: print(train.shape) # (590540, 433) print(train.head(5)) # print(tests.shape) # (506691, 432) # print(tests.head(5)) y_train = train["isFraud"].copy() x_train = train.drop("isFraud", axis=1) # x_tests = tests.copy() plt_show = 1 if plt_show: print(y_train.shape) # (590540,) # print(y_train.head(5)) print(x_train.shape) # (590540, 432) # print(x_train.head(5)) # print(x_tests.shape) # (506691, 432) # ============================================================================= # ============================================================================= # explore data [describe single variables] # Categorical => isFraud/ProductCD/DeviceType——Fig_1.png # isFraud==>极不平衡[0:569877,1:20663],正样本比例3.5%左右 # isFraud极不平衡[0/1],ProductCD不平衡[W/H/C/S/R] # DeviceType=desktop:mobile=86:56 [76% for null values] # ProductCD: W/C类别欺诈样本数量最多, C/S类别欺诈比例最高 # DeviceType: mobile/desktop欺诈样本数量接近,但mobile类别欺诈比例较高 plt_show = 1 if plt_show: isFraud_cnt = 0 if isFraud_cnt: # isFraud数量统计 train_feat = pd.DataFrame() train_feat["isFraud"] = train["isFraud"] feat1 = train_feat[train_feat["isFraud"] == 1] feat2 = train_feat[train_feat["isFraud"] == 0] print(train_feat.shape) print(feat1.shape) print(feat2.shape) isFraud_cnt = 0 if isFraud_cnt: # ProductCD数量统计 train_feat =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Aug 26 18:17:30 2015 @author: <NAME> """ import pandas import numpy import scipy.stats import seaborn import matplotlib.pyplot as plt data = pandas.read_csv('gapminder.csv', low_memory=False) # new code setting variables you will be working with to numeric data['Alcoholuse'] = pandas.to_numeric(data['Alcoholuse'], errors='coerce') data['Income'] = pandas.to_numeric(data['Income'], errors='coerce') data['suicideper100th'] =
pandas.to_numeric(data['suicideper100th'], errors='coerce')
pandas.to_numeric
import demoDay21_recsys_music.hyj.gen_cf_data_hyj as gen import demoDay21_recsys_music.hyj.config_hyj as conf import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression #显示所有列
pd.set_option('display.max_columns', None)
pandas.set_option
import time import os import io import json import shutil import zipfile import pathlib import pandas as pd import boto3 import datetime import botocore from dateutil.parser import parse s3 = boto3.client('s3') lookoutmetrics_client = boto3.client( "lookoutmetrics") def lambda_handler(event, context): #Function to format the date given by the event def datetime_from_string(s): try: dt = datetime.datetime.fromisoformat(s.split("[")[0]) except ValueError: dt = datetime.datetime.strptime(s.split("[")[0], "%Y-%m-%dT%H:%MZ") return dt #Function to update the metricValue_AnomalyScore csv in the case that one already exists def update_Anomaly_CSV(event,key,bucket,obj,response): print('object exist') #Reading the existing file original_df = pd.read_csv(obj.get("Body"), index_col=False) file2 = original_df.to_dict('list') #getting the needed data metricList = response['MetricList'] dimensionList = response['DimensionList'] metricName = event['impactedMetric']['metricName'] #Column names generator data2={} data2['key']=[] data2['Timestamp'] =[] for i in dimensionList: data2[i]=[] # data2[i]=[] for i in metricList: data2[i['MetricName']+'AnomalyMetricValue']=[] data2[i['MetricName']+'GroupScore']=[] #Data collection from the event for the CSV for i in event['impactedMetric']['relevantTimeSeries']: for a in i['dimensions']: data2[a['dimensionName']].append(a['dimensionValue']) data2[metricName+'AnomalyMetricValue'].append(i['metricValue']) data2[metricName+'GroupScore'].append(event['anomalyScore']) data2['Timestamp'].append(start_time) nRow=len(data2['Timestamp']) nDimension = len(dimensionList) #key generator i=0 while i<nRow: value='' for a in dimensionList: value+=str(data2[a][i]) value= str(data2['Timestamp'][i])+value data2['key'].append(value) i=i+1 c=0 #Checking if the data is already in the original file and ammend the empty spaces and add the data for n in data2['key']: if n in file2['key']: where=file2['key'].index(n) file2[metricName+'AnomalyMetricValue'][where] = data2[metricName+'AnomalyMetricValue'][c] file2[metricName+'GroupScore'][where] =data2[metricName+'GroupScore'][c] else: file2['key'].append(data2['key'][c]) for i in dimensionList: file2[i].append(data2[i][c]) file2[metricName+'AnomalyMetricValue'].append(data2[metricName+'AnomalyMetricValue'][c]) file2[metricName+'GroupScore'].append(data2[metricName+'GroupScore'][c]) file2['Timestamp'].append(dateTime) c+=1 df = pd.DataFrame.from_dict(data=file2, orient='index') df2 = df.transpose() with io.StringIO() as filename: df2.to_csv(filename, index=False, encoding='utf-8', date_format='%Y-%m-%d %H:%M:%S') response = s3.put_object( Bucket=bucket, Key=key, Body=filename.getvalue() ) print('updated Anomaly csv saved') #If the metricValue_AnomalyScore file does not exist it will create one def generate_Anomaly_CSV(event,key,bucket,response): #getting the needed data metricList = response['MetricList'] dimensionList = response['DimensionList'] metricName = event['impactedMetric']['metricName'] pd.options.mode.use_inf_as_na = True #Column names generator data2={} data2['key']=[] data2['Timestamp'] =[] for i in dimensionList: data2[i]=[] data2[i]=[] for i in metricList: data2[i['MetricName']+'AnomalyMetricValue']=[] data2[i['MetricName']+'GroupScore']=[] #Data collection for the CSV for i in event['impactedMetric']['relevantTimeSeries']: for a in i['dimensions']: data2[a['dimensionName']].append(a['dimensionValue']) data2[metricName+'AnomalyMetricValue'].append(i['metricValue']) data2[metricName+'GroupScore'].append(event['anomalyScore']) data2['Timestamp'].append(start_time) nRow=len(data2['Timestamp']) #key generator i=0 while i<nRow: value='' for a in dimensionList: value+=str(data2[a][i]) value= str(data2['Timestamp'][i])+value data2['key'].append(value) i+=1 df = pd.DataFrame.from_dict(data=data2, orient='index') df2 = df.transpose() with io.StringIO() as filename: df2.to_csv(filename, index=False, encoding='utf-8', date_format='%Y-%m-%d %H:%M:%S') response = s3.put_object( Bucket=bucket, Key=key, Body=filename.getvalue() ) print('Anomaly csv saved in', key) #Checks if the metricValue_AnomalyScore file already exists def Anomaly_CSV_Check(event,key,bucket,response): try: obj = s3.get_object(Bucket=bucket,Key=key) except botocore.exceptions.ClientError as e: if e.response['Error']['Code']=='404' or e.response['Error']['Code']=='NoSuchKey': print('the Anomaly csv file does not exist and we will generate the very first file now') generate_Anomaly_CSV(event,key,bucket,response) else: print('something else happened') print('error is', e.response) raise else: update_Anomaly_CSV(event,key,bucket,obj,response) #Updates the dimensionContributions csv file if it exists def update_Dimension_CSV(event,key,obj,bucket): print('object exist') original_df = pd.read_csv(obj.get("Body"), index_col=False) file = original_df.to_dict('list') #Column Titles generation data = {} data ['Timestamp'] =[] data['metricName'] =[] data['dimensionName'] =[] data['dimensionValue'] =[] data['valueContribution'] =[] #Data collection for the CSV for i in event['impactedMetric']['dimensionContribution']: for a in i['dimensionValueContributions']: data['Timestamp'].append(start_time) data['dimensionName'].append(i['dimensionName']) data['dimensionValue'].append(a['dimensionValue']) data['valueContribution'].append(a['valueContribution']) data['metricName'].append(event['impactedMetric']['metricName']) df=
pd.DataFrame(data=data)
pandas.DataFrame
from flask import Flask, jsonify, request, render_template, Blueprint import logging import pandas as pd import sys import json import time import boto3 import decouple from io import StringIO import urllib from flaskext.markdown import Markdown from flask_misaka import Misaka logging.basicConfig(level=logging.INFO) logger=logging.getLogger(__name__) logger.info('Starting wormcells-de...') flask_app = Flask(__name__) # set proper loggin levels for gunicorn, taken from: # https://medium.com/@trstringer/logging-flask-and-gunicorn-the-manageable-way-2e6f0b8beb2f if __name__ != '__main__': gunicorn_logger = logging.getLogger('gunicorn.error') flask_app.logger.setLevel(gunicorn_logger.level) Misaka(flask_app, math_explicit = True) tables = Blueprint('tables', __name__, url_prefix='/tables') # df with the number of cells of each label in each dataset df = pd.read_csv(flask_app.open_resource('df.csv')) # to render the table titles better we replace underscores with spaces, # use non breaking hyphens (&#8209;) and say batch1 instead of just 1 df_nice_names = df.copy() df_nice_names.columns = df_nice_names.columns.str.replace('_',' ') df_nice_names.columns = df_nice_names.columns.str.replace('cho-1 1','cho-1 batch1') df_nice_names.columns = df_nice_names.columns.str.replace('cho-1 2','cho-1 batch2') df_nice_names.columns = df_nice_names.columns.str.replace('unc-47 2','unc-47 batch2') df_nice_names.columns = df_nice_names.columns.str.replace('unc-47 1','unc-47 batch1') df_nice_names.columns = df_nice_names.columns.str.replace('-','&#8209;') # same for cell type names # df_nice_names['Cell Type']= df_nice_names['Cell Type'].str.replace('_',' ') # convert df to dict for sending as json to datatables dict_df = df_nice_names.to_dict(orient='records') # convert column names into dict for sending as json to datatables columns = [{"data": item, "title": item} for item in df_nice_names.columns] #### datatables #### @tables.route("/", methods=['GET']) def clientside_table_content(): return jsonify({'data': dict_df, 'columns': columns}) flask_app.register_blueprint(tables) @flask_app.route("/") def clientside_table(): return render_template("clientside_table.html") #### @flask_app.route("/test") def test(): return render_template("test.html") # @flask_app.route("/") # def index(): # logger.info('Got a request for index!') # return render_template("index.html") @flask_app.route('/submit', methods=['POST', 'GET']) def receive_submission(): logger.info('Got a submission!') # answer is a dict of json strings containing selected row and column index numbers answer = request.form.to_dict(flat=False) print(answer) print(df.head()) #first try is in case submission is from table form try: # need to convert the json strings to dict, then to a data frame # data1 is the selection for the first group, data2 for the second data1 = json.loads(answer['data1'][0]) data1_df = pd.DataFrame.from_dict(data1[0]) print(data1_df) data2 = json.loads(answer['data2'][0]) data2_df = pd.DataFrame.from_dict(data2[0]) # now map the index number to experiment name and cell type name group1_df = pd.DataFrame() group1_df['cell_type1'] = data1_df['row'].map(df['Cell Type']) group1_df['experiment1'] = data1_df['column'].map(pd.Series(df.columns.values)) print(group1_df) group2_df = pd.DataFrame() group2_df['cell_type2'] = data2_df['row'].map(df['Cell Type']) group2_df['experiment2'] = data2_df['column'].map(
pd.Series(df.columns.values)
pandas.Series
# ____ ____ # / /\/ / # /___/ \ / Copyright (c) 2021, Xilinx®. # \ \ \/ Author: <NAME> <<EMAIL>> # \ \ # / / # /___/ /\ # \ \ / \ # \___\/\___\ # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tabnanny import verbose from turtle import width from launch import LaunchDescription import bt2 import sys import datetime import os from wasabi import color from typing import List, Optional, Tuple, Union import pandas as pd import numpy as np import pprint from bokeh.plotting.figure import figure, Figure from bokeh.plotting import output_notebook from bokeh.io import show from bokeh.layouts import row from bokeh.models import ColumnDataSource, DatetimeTickFormatter, PrintfTickFormatter, Legend, Segment from bokeh.models.annotations import Label # color("{:02x}".format(x), fg=16, bg="green") # debug = True # debug flag, set to True if desired def get_change(first, second): """ Get change in percentage between two values """ if first == second: return 0 try: return (abs(first - second) / second) * 100.0 except ZeroDivisionError: return float("inf") def add_durations_to_figure( figure: Figure, segment_type: str, durations: List[Union[Tuple[datetime.datetime, datetime.datetime]]], color: str, line_width: int = 60, legend_label: Optional[str] = None, ) -> None: for duration in durations: duration_begin, duration_end, _ = duration base_kwargs = dict() if legend_label: base_kwargs['legend_label'] = legend_label figure.line( x=[duration_begin, duration_end], y=[segment_type, segment_type], color=color, line_width=line_width, **base_kwargs, ) def add_markers_to_figure( figure: Figure, segment_type: str, times: List[datetime.datetime], color: str, line_width: int = 60, legend_label: Optional[str] = None, size: int = 30, marker_type: str = 'diamond', ) -> None: for time in times: base_kwargs = dict() if legend_label: base_kwargs['legend_label'] = legend_label if marker_type == 'diamond': figure.diamond( x=[time], y=[segment_type], fill_color=color, line_color=color, size=size, **base_kwargs, ) elif marker_type == 'plus': figure.plus( x=[time], y=[segment_type], fill_color=color, line_color=color, size=size, **base_kwargs, ) else: assert False, 'invalid marker_type value' def msgsets_from_trace(tracename): global target_chain # Create a trace collection message iterator from the first command-line # argument. msg_it = bt2.TraceCollectionMessageIterator(tracename) # Iterate the trace messages and pick ros2 ones image_pipeline_msgs = [] for msg in msg_it: # `bt2._EventMessageConst` is the Python type of an event message. if type(msg) is bt2._EventMessageConst: # An event message holds a trace event. event = msg.event # Only check `sched_switch` events. if ("ros2" in event.name): image_pipeline_msgs.append(msg) # Form sets with each pipeline image_pipeline_msg_sets = [] new_set = [] # used to track new complete sets chain_index = 0 # track where in the chain we are so far vpid_chain = -1 # used to track a set and differentiate from other callbacks # NOTE: NOT CODED FOR MULTIPLE NODES RUNNING CONCURRENTLY # this classification is going to miss the initial matches because # "ros2:callback_start" will not be associated with the target chain and it won't stop # being considered until a "ros2:callback_end" of that particular process is seen for index in range(len(image_pipeline_msgs)): # first one if chain_index == 0 and image_pipeline_msgs[index].event.name == target_chain[chain_index]: new_set.append(image_pipeline_msgs[index]) vpid_chain = image_pipeline_msgs[index].event.common_context_field.get("vpid") chain_index += 1 # print(color("Found: " + str(image_pipeline_msgs[index].event.name) + " - " + str([x.event.name for x in new_set]), fg="blue")) # last one elif image_pipeline_msgs[index].event.name == target_chain[chain_index] and target_chain[chain_index] == target_chain[-1] and \ new_set[-1].event.name == target_chain[-2] and \ image_pipeline_msgs[index].event.common_context_field.get("vpid") == vpid_chain: new_set.append(image_pipeline_msgs[index]) image_pipeline_msg_sets.append(new_set) # print(color("Found: " + str(image_pipeline_msgs[index].event.name) + " - " + str([x.event.name for x in new_set]), fg="blue")) chain_index = 0 # restart new_set = [] # restart # match elif image_pipeline_msgs[index].event.name == target_chain[chain_index] and \ image_pipeline_msgs[index].event.common_context_field.get("vpid") == vpid_chain: new_set.append(image_pipeline_msgs[index]) chain_index += 1 # print(color("Found: " + str(image_pipeline_msgs[index].event.name), fg="green")) # altered order elif image_pipeline_msgs[index].event.name in target_chain and \ image_pipeline_msgs[index].event.common_context_field.get("vpid") == vpid_chain: new_set.append(image_pipeline_msgs[index]) # print(color("Altered order: " + str([x.event.name for x in new_set]) + ", restarting", fg="red")) chain_index = 0 # restart new_set = [] # restart return image_pipeline_msg_sets def msgsets_from_trace_concurrent(tracename): global target_chain # NOTE: considered chains of "ros2:rclcpp_publish" roughly # Create a trace collection message iterator from the first command-line # argument. msg_it = bt2.TraceCollectionMessageIterator(tracename) # Iterate the trace messages and pick ros2 ones image_pipeline_msgs = [] for msg in msg_it: # `bt2._EventMessageConst` is the Python type of an event message. if type(msg) is bt2._EventMessageConst: # An event message holds a trace event. event = msg.event # Only check `sched_switch` events. if ("ros2" in event.name): image_pipeline_msgs.append(msg) # Form sets with each pipeline image_pipeline_msg_sets = [] candidates = {} # dict of sets (vpid as key) being considered as candicates to be complete # NOTE: # - vpid remains the same for all Components in an executor, even if multithreaded # - vtid changes for each component in a multithreaded executor for trace in image_pipeline_msgs: vtid = trace.event.common_context_field.get("vtid") if trace.event.name == target_chain[0]: if (vtid in candidates) and (candidates[vtid][-1].event.name == target_chain[-1]): # account for chained traces, use "ros2:callback_end" # print(color("Continuing: " + str(trace.event.name), fg="green")) candidates[vtid].append(trace) elif vtid in candidates: # print(color("Already a set, re-starting: " + str(trace.event.name) + " - " \ # + str([x.event.name for x in candidates[vtid]]) , fg="yellow")) candidates[vtid] = [trace] # already a set existing (pop and) re-start else: candidates[vtid] = [trace] # new set # print(color("New: " + str(trace.event.name) + " - " + \ # str([x.event.name for x in candidates[vtid]]), fg="blue")) elif (trace.event.name in target_chain) and (vtid in candidates): if len(candidates[vtid]) >= 9 and (trace.event.name in target_chain[9:]): trace_index = target_chain[9:].index(trace.event.name) + 9 expected_index = target_chain[9:].index(candidates[vtid][-1].event.name) + 1 + 9 elif len(candidates[vtid]) >= 9: # print(color("Skipping: " + str(trace.event.name), fg="yellow")) continue # skip else: trace_index = target_chain.index(trace.event.name) expected_index = target_chain.index(candidates[vtid][-1].event.name) + 1 # Account for chains of callbacks if trace.event.name == target_chain[-1] and candidates[vtid][-1].event.name == target_chain[0]: if len(candidates[vtid]) > 1: candidates[vtid] = candidates[vtid][:-1] # pop last start and continue looking # print(color("Chain of callbacks, popping: " + str(trace.event.name) , fg="yellow")) else: candidates.pop(vtid) # print(color("Chain of callbacks while starting, popping: " + str(trace.event.name) , fg="yellow")) elif trace_index == expected_index: candidates[vtid].append(trace) # print(color("Found: " + str(trace.event.name), fg="green")) if trace.event.name == target_chain[-1] and candidates[vtid][-2].event.name == target_chain[-2] \ and len(candidates[vtid]) == len(target_chain): # last one image_pipeline_msg_sets.append(candidates[vtid]) # print(color("complete set!", fg="pink")) candidates.pop(vtid) else: if trace.event.name == "ros2:rclcpp_publish" or \ trace.event.name == "ros2:rcl_publish" or \ trace.event.name == "ros2:rmw_publish": # print(color("Potential chain of publish: " + str(trace.event.name) + ", skipping" , fg="yellow")) pass else: candidates[vtid].append(trace) # print(color("Altered order: " + str([x.event.name for x in candidates[vtid]]) + ", discarding", fg="red")) candidates.pop(vtid) else: # print(color("Skipped: " + str(trace.event.name), fg="grey")) pass return image_pipeline_msg_sets def barplot_all(image_pipeline_msg_sets, title="Barplot"): global target_chain global target_chain_dissambiguous image_pipeline_msg_sets_ns = [] for set_index in range(len(image_pipeline_msg_sets)): aux_set = [] target_chain_ns = [] for msg_index in range(len(image_pipeline_msg_sets[set_index])): target_chain_ns.append(image_pipeline_msg_sets[set_index][msg_index].default_clock_snapshot.ns_from_origin) init_ns = target_chain_ns[0] for msg_index in range(len(image_pipeline_msg_sets[set_index])): aux_set.append((target_chain_ns[msg_index] - init_ns)/1e6) image_pipeline_msg_sets_ns.append(aux_set) df = pd.DataFrame(image_pipeline_msg_sets_ns) df.columns = target_chain_dissambiguous import plotly.express as px # pd.set_option("display.max_rows", None, "display.max_columns", None) # print(df) fig = px.box( df, points="all", template="plotly_white", title=title, ) fig.update_xaxes(title_text = "Trace event") fig.update_yaxes(title_text = "Milliseconds") fig.show() def traces(msg_set): global target_chain_colors_fg_bokeh global segment_types global target_chain_marker global target_chain global target_chain_layer fig = figure( title='Image pipeline tracing', x_axis_label=f'Milliseconds', y_range=segment_types, plot_width=2000, plot_height=600, ) fig.title.align = 'center' fig.title.text_font_size = '20px' # fig.xaxis[0].formatter = DatetimeTickFormatter(milliseconds = ['%3Nms']) fig.xaxis[0].formatter = PrintfTickFormatter(format="%f ms") fig.xaxis[0].ticker.desired_num_ticks = 20 fig.xaxis[0].axis_label_text_font_size = '30px' fig.yaxis[0].major_label_text_font_size = '25px' target_chain_ns = [] for msg_index in range(len(msg_set)): target_chain_ns.append(msg_set[msg_index].default_clock_snapshot.ns_from_origin) init_ns = target_chain_ns[0] print("1") # draw durations ## rclcpp callbacks - rectify callback_start = (target_chain_ns[0] - init_ns)/1e6 callback_end = (target_chain_ns[8] - init_ns)/1e6 duration = callback_end - callback_start add_durations_to_figure( fig, target_chain_layer[0], [(callback_start, callback_start + duration, duration)], 'lightgray' ) ## rclcpp callbacks - resize callback_start = (target_chain_ns[9] - init_ns)/1e6 callback_end = (target_chain_ns[17] - init_ns)/1e6 duration = callback_end - callback_start add_durations_to_figure( fig, target_chain_layer[0], [(callback_start, callback_start + duration, duration)], 'lightgray' ) ## rectify callback callback_start = (target_chain_ns[1] - init_ns)/1e6 callback_end = (target_chain_ns[7] - init_ns)/1e6 duration = callback_end - callback_start add_durations_to_figure( fig, target_chain_layer[1], [(callback_start, callback_start + duration, duration)], 'whitesmoke' ) ## rectify op callback_start = (target_chain_ns[2] - init_ns)/1e6 callback_end = (target_chain_ns[3] - init_ns)/1e6 duration = callback_end - callback_start add_durations_to_figure( fig, target_chain_layer[1], [(callback_start, callback_start + duration, duration)], 'seashell' ) ## resize callback callback_start = (target_chain_ns[10] - init_ns)/1e6 callback_end = (target_chain_ns[16] - init_ns)/1e6 duration = callback_end - callback_start add_durations_to_figure( fig, target_chain_layer[1], [(callback_start, callback_start + duration, duration)], 'whitesmoke' ) ## resize op callback_start = (target_chain_ns[11] - init_ns)/1e6 callback_end = (target_chain_ns[12] - init_ns)/1e6 duration = callback_end - callback_start add_durations_to_figure( fig, target_chain_layer[1], [(callback_start, callback_start + duration, duration)], 'seashell' ) print("2") for msg_index in range(len(msg_set)): # add_markers_to_figure(fig, msg_set[msg_index].event.name, [(target_chain_ns[msg_index] - init_ns)/1e6], 'blue', marker_type='plus', legend_label='timing') print("marker ms: " + str((target_chain_ns[msg_index] - init_ns)/1e6)) add_markers_to_figure( fig, target_chain_layer[msg_index], [(target_chain_ns[msg_index] - init_ns)/1e6], target_chain_colors_fg_bokeh[msg_index], marker_type=target_chain_marker[msg_index], # legend_label=msg_set[msg_index].event.name, legend_label=target_chain_dissambiguous[msg_index], size=10, ) if "image_proc_resize_init" in msg_set[msg_index].event.name: label = Label( x= (target_chain_ns[msg_index] - init_ns)/1e6, y=target_chain_label_layer[msg_index], x_offset=0, y_offset=-90, text=target_chain_dissambiguous[msg_index].split(":")[-1] ) elif "image_proc_rectify_init" in msg_set[msg_index].event.name: label = Label( x= (target_chain_ns[msg_index] - init_ns)/1e6, y=target_chain_label_layer[msg_index], x_offset=0, y_offset=-100, text=target_chain_dissambiguous[msg_index].split(":")[-1] ) elif "image_proc_rectify_fini" in msg_set[msg_index].event.name: label = Label( x= (target_chain_ns[msg_index] - init_ns)/1e6, y=target_chain_label_layer[msg_index], x_offset=-60, y_offset=-50, text=target_chain_dissambiguous[msg_index].split(":")[-1] ) elif "image_proc_rectify_cb_fini" in msg_set[msg_index].event.name: label = Label( x= (target_chain_ns[msg_index] - init_ns)/1e6, y=target_chain_label_layer[msg_index], x_offset=-30, y_offset=-50, text=target_chain_dissambiguous[msg_index].split(":")[-1] ) elif "callback_start" in msg_set[msg_index].event.name: label = Label( x= (target_chain_ns[msg_index] - init_ns)/1e6, y=target_chain_label_layer[msg_index], x_offset=-30, y_offset=-90, text=target_chain_dissambiguous[msg_index].split(":")[-1] ) elif "image_proc_resize_fini" in msg_set[msg_index].event.name: label = Label( x= (target_chain_ns[msg_index] - init_ns)/1e6, y=target_chain_label_layer[msg_index], x_offset=20, y_offset=-50, text=target_chain_dissambiguous[msg_index].split(":")[-1] ) else: label = Label( x= (target_chain_ns[msg_index] - init_ns)/1e6, y=target_chain_label_layer[msg_index], x_offset=-30, y_offset=-30, text=target_chain_dissambiguous[msg_index].split(":")[-1] ) fig.add_layout(label) # hack legend to the right fig.legend.location = "right" new_legend = fig.legend[0] fig.legend[0] = None fig.add_layout(new_legend, 'right') show(fig) def barchart_data(image_pipeline_msg_sets): """Converts a tracing message list into its corresponding relative (to the previous tracepoint) latency list in millisecond units. Args: image_pipeline_msg_sets ([type]): [description] Returns: list: list of relative latencies, in ms """ image_pipeline_msg_sets_ns = [] for set_index in range(len(image_pipeline_msg_sets)): aux_set = [] target_chain_ns = [] for msg_index in range(len(image_pipeline_msg_sets[set_index])): target_chain_ns.append(image_pipeline_msg_sets[set_index][msg_index].default_clock_snapshot.ns_from_origin) for msg_index in range(len(image_pipeline_msg_sets[set_index])): if msg_index == 0: previous = target_chain_ns[0] else: previous = target_chain_ns[msg_index - 1] aux_set.append((target_chain_ns[msg_index] - previous)/1e6) image_pipeline_msg_sets_ns.append(aux_set) return image_pipeline_msg_sets_ns def print_timeline(image_pipeline_msg_sets): global target_chain global target_chain_colors_fg for msg_set in image_pipeline_msg_sets: if len(msg_set) != len(target_chain): print(color("Not a complete set: " + str([x.event.name for x in msg_set]), fg="red")) pass else: target_chain_ns = [] for msg_index in range(len(msg_set)): target_chain_ns.append(msg_set[msg_index].default_clock_snapshot.ns_from_origin) init_ns = target_chain_ns[0] fixed_target_chain_ns = [init_ns] + target_chain_ns # stringout = color("raw image → " + msg_set[0].event.name + " → ") stringout = color("raw image ") for msg_index in range(len(msg_set)): stringout +=" → " + color(msg_set[msg_index].event.name + \ " ({} ms) ".format((fixed_target_chain_ns[msg_index + 1] - fixed_target_chain_ns[msg_index])/1e6), fg=target_chain_colors_fg[msg_index], bg="black") # stringout += " → " + msg_set[msg_index].event.name + \ # " ({} ms) ".format((fixed_target_chain_ns[msg_index + 1] - fixed_target_chain_ns[msg_index])/1e6) stringout += color("total " + \ " ({} ms) ".format((target_chain_ns[-1] - target_chain_ns[0])/1e6), fg="black", bg="white") print(stringout) def rms(list): return np.sqrt(np.mean(np.array(list)**2)) def mean(list): return np.mean(np.array(list)) def max(list): return np.max(np.array(list)) def min(list): return np.min(np.array(list)) def rms_sets(image_pipeline_msg_sets, indices=None): """ Root-Mean-Square (RMS) (in the units provided) for a given number of time trace sets. NOTE: last value of the lists should not include the total :param: image_pipeline_msg_sets, list of lists, each containing the time traces :param: indices, list of indices to consider on each set which will be summed for rms. By default, sum of all values on each set. """ if indices: with_indices_sets = [] for set in image_pipeline_msg_sets: indices_sum = 0 for i in indices: indices_sum += set[i] with_indices_sets.append(indices_sum) return rms(with_indices_sets) else: total_in_sets = [sum(set) for set in image_pipeline_msg_sets] return rms(total_in_sets) def mean_sets(image_pipeline_msg_sets, indices=None): if indices: with_indices_sets = [] for set in image_pipeline_msg_sets: indices_sum = 0 for i in indices: indices_sum += set[i] with_indices_sets.append(indices_sum) return mean(with_indices_sets) else: total_in_sets = [sum(set) for set in image_pipeline_msg_sets] return mean(total_in_sets) def max_sets(image_pipeline_msg_sets, indices=None): if indices: with_indices_sets = [] for set in image_pipeline_msg_sets: indices_sum = 0 for i in indices: indices_sum += set[i] with_indices_sets.append(indices_sum) return max(with_indices_sets) else: total_in_sets = [sum(set) for set in image_pipeline_msg_sets] return max(total_in_sets) def min_sets(image_pipeline_msg_sets, indices=None): if indices: with_indices_sets = [] for set in image_pipeline_msg_sets: indices_sum = 0 for i in indices: indices_sum += set[i] with_indices_sets.append(indices_sum) return min(with_indices_sets) else: total_in_sets = [sum(set) for set in image_pipeline_msg_sets] return min(total_in_sets) def print_timeline_average(image_pipeline_msg_sets): """ Doing averages may lead to negative numbers while substracting the previous average. This is only useful to get an intuition of the totals. """ global target_chain global target_chain_colors_fg image_pipeline_msg_sets_ns = [] for msg_set in image_pipeline_msg_sets: if len(msg_set) != len(target_chain): print(color("Not a complete set: " + str([x.event.name for x in msg_set]), fg="red")) pass else: target_chain_ns = [] final_target_chain_ns = [] for msg_index in range(len(msg_set)): target_chain_ns.append(msg_set[msg_index].default_clock_snapshot.ns_from_origin) init_ns = target_chain_ns[0] fixed_target_chain_ns = [init_ns] + target_chain_ns for msg_index in range(len(msg_set)): final_target_chain_ns.append((fixed_target_chain_ns[msg_index + 1] - fixed_target_chain_ns[msg_index])) final_target_chain_ns.append((fixed_target_chain_ns[-1] - fixed_target_chain_ns[0])) # total image_pipeline_msg_sets_ns.append(final_target_chain_ns) image_pipeline_msg_ns_average = [sum(x) / len(x) for x in zip(*image_pipeline_msg_sets_ns)] # print(image_pipeline_msg_ns_average) stringout = color("raw image ") for msg_index in range(len(image_pipeline_msg_ns_average[:-1])): stringout +=" → " + color(image_pipeline_msg_sets[0][msg_index].event.name + \ " ({} ms) ".format((image_pipeline_msg_ns_average[msg_index + 1] - image_pipeline_msg_ns_average[msg_index])/1e6), fg=target_chain_colors_fg[msg_index], bg="black") stringout += color("total " + \ " ({} ms) ".format((image_pipeline_msg_ns_average[-1] - image_pipeline_msg_ns_average[0])/1e6), fg="black", bg="white") print(stringout) def statistics(image_pipeline_msg_sets_ms, verbose=False): global target_chain_dissambiguous mean_ = mean_sets(image_pipeline_msg_sets_ms) rms_ = rms_sets(image_pipeline_msg_sets_ms) min_ = min_sets(image_pipeline_msg_sets_ms) max_ = max_sets(image_pipeline_msg_sets_ms) mean_accelerators = mean_sets(image_pipeline_msg_sets_ms, [ target_chain_dissambiguous.index("ros2_image_pipeline:image_proc_rectify_fini"), target_chain_dissambiguous.index("ros2_image_pipeline:image_proc_resize_fini"), ] ) rms_accelerators = rms_sets(image_pipeline_msg_sets_ms, [ target_chain_dissambiguous.index("ros2_image_pipeline:image_proc_rectify_fini"), target_chain_dissambiguous.index("ros2_image_pipeline:image_proc_resize_fini"), ] ) max_accelerators = max_sets(image_pipeline_msg_sets_ms, [ target_chain_dissambiguous.index("ros2_image_pipeline:image_proc_rectify_fini"), target_chain_dissambiguous.index("ros2_image_pipeline:image_proc_resize_fini"), ] ) min_accelerators = min_sets(image_pipeline_msg_sets_ms, [ target_chain_dissambiguous.index("ros2_image_pipeline:image_proc_rectify_fini"), target_chain_dissambiguous.index("ros2_image_pipeline:image_proc_resize_fini"), ] ) if verbose: print(color("mean: " + str(mean_), fg="yellow")) print("rms: " + str(rms_)) print("min: " + str(min_)) print(color("max: " + str(max_), fg="red")) print(color("mean accelerators: " + str(mean_accelerators), fg="yellow")) print("rms accelerators: " + str(rms_accelerators)) print("min accelerators: " + str(min_accelerators)) print(color("max accelerators: " + str(max_accelerators), fg="red")) return [mean_accelerators, rms_accelerators, max_accelerators, min_accelerators, mean_, rms_, max_, min_] def table(list_sets, list_sets_names): """ Creates a markdown table from a list of sets NOTE: assumes base is always the first set in list_sets, which is then used to calculate % of change. """ list_statistics = [] # generate statistics for sets in list_sets: list_statistics.append(statistics(sets)) # Add name to each statistics list for stat_list_index in range(len(list_statistics)): list_statistics[stat_list_index].insert(0, list_sets_names[stat_list_index]) # add headers list_statistics.insert(0, ["---", "---", "---", "---", "---", "---", "---", "---", "---",]) list_statistics.insert(0, [ " ", "Accel. Mean", "Accel. RMS", "Accel. Max ", "Accel. Min", "Mean", "RMS", "Max", "Min"]) baseline = list_statistics[2] # baseline for % length_list = [len(row) for row in list_statistics] column_width = max(length_list) count = 0 for row in list_statistics: row_str = " | " if count == 2: for element_index in range(len(row)): if type(row[element_index]) != str: if row[element_index] > baseline[element_index]: row_str += "**{:.2f}** ms".format(row[element_index]) + " (:small_red_triangle_down: `" \ + "{:.2f}".format(get_change(row[element_index], baseline[element_index])) + "`%) | " else: row_str += "**{:.2f}** ms".format(row[element_index]) + " (`" \ + "{:.2f}".format(get_change(row[element_index], baseline[element_index])) + "`%) | " else: row_str += row[element_index] + " | " else: for element_index in range(len(row)): if type(row[element_index]) != str: if row[element_index] > baseline[element_index]: row_str += "{:.2f} ms".format(row[element_index]) + " (:small_red_triangle_down: `" \ + "{:.2f}".format(get_change(row[element_index], baseline[element_index])) + "`%) | " else: row_str += "{:.2f} ms".format(row[element_index]) + " (`" \ + "{:.2f}".format(get_change(row[element_index], baseline[element_index])) + "`%) | " else: row_str += row[element_index] + " | " count += 1 print(row_str) # if count == 2: # row = "|" + "|".join("**{:.2f}** ms".format(row[element_index]) + " (`" # + "{:.2f}".format(get_change(row[element_index], baseline[element_index])) + "`%)" # if type(row[element_index]) != str # else row[element_index] # for element_index in range(len(row))) + "|" # else: # row = "|" + "|".join("{:.2f} ms".format(row[element_index]) + " (`" # + "{:.2f}".format(get_change(row[element_index], baseline[element_index])) + "`%)" # if type(row[element_index]) != str else row[element_index] # for element_index in range(len(row))) + "|" # count += 1 # print(row) def generate_launch_description(): return LaunchDescription() ############################## ############################## # targeted chain of messages for tracing target_chain = [ "ros2:callback_start", "ros2_image_pipeline:image_proc_rectify_cb_init", "ros2_image_pipeline:image_proc_rectify_init", "ros2_image_pipeline:image_proc_rectify_fini", "ros2:rclcpp_publish", "ros2:rcl_publish", "ros2:rmw_publish", "ros2_image_pipeline:image_proc_rectify_cb_fini", "ros2:callback_end", "ros2:callback_start", "ros2_image_pipeline:image_proc_resize_cb_init", "ros2_image_pipeline:image_proc_resize_init", "ros2_image_pipeline:image_proc_resize_fini", "ros2:rclcpp_publish", "ros2:rcl_publish", "ros2:rmw_publish", "ros2_image_pipeline:image_proc_resize_cb_fini", "ros2:callback_end", ] target_chain_dissambiguous = [ "ros2:callback_start", "ros2_image_pipeline:image_proc_rectify_cb_init", "ros2_image_pipeline:image_proc_rectify_init", "ros2_image_pipeline:image_proc_rectify_fini", "ros2:rclcpp_publish", "ros2:rcl_publish", "ros2:rmw_publish", "ros2_image_pipeline:image_proc_rectify_cb_fini", "ros2:callback_end", "ros2:callback_start (2)", "ros2_image_pipeline:image_proc_resize_cb_init", "ros2_image_pipeline:image_proc_resize_init", "ros2_image_pipeline:image_proc_resize_fini", "ros2:rclcpp_publish (2)", "ros2:rcl_publish (2)", "ros2:rmw_publish (2)", "ros2_image_pipeline:image_proc_resize_cb_fini", "ros2:callback_end (2)", ] target_chain_colors_fg = [ "blue", "yellow", "red", "red", "blue", "blue", "blue", "yellow", "blue", "blue", "yellow", "red", "red", "blue", "blue", "blue", "yellow", "blue", ] # target_chain_colors_fg_bokeh = [ # "lightgray", # "silver", # "darkgray", # "gray", # "dimgray", # "lightslategray", # "slategray", # "darkslategray", # "black", # "burlywood", # "tan", # "rosybrown", # "sandybrown", # "goldenrod", # "darkgoldenrod", # "peru", # "chocolate", # "saddlebrown", # # "blue", # # "blueviolet", # # "brown", # # "burlywood", # # "cadetblue", # # "chartreuse", # # "chocolate", # # "coral", # # "cornflowerblue", # ] target_chain_colors_fg_bokeh = [ "lightsalmon", "salmon", "darksalmon", "lightcoral", "indianred", "crimson", "firebrick", "darkred", "red", "lavender", "thistle", "plum", "fuchsia", "mediumorchid", "mediumpurple", "darkmagenta", "indigo", "mediumslateblue", ] target_chain_layer = [ "rclcpp", "userland", "userland", "userland", "rclcpp", "rcl", "rmw", "userland", "rclcpp", "rclcpp", "userland", "userland", "userland", "rclcpp", "rcl", "rmw", "userland", "rclcpp", ] target_chain_label_layer = [ # associated with the layer 3, 4, 4, 4, 3, 2, 1, 4, 3, 3, 4, 4, 4, 3, 2, 1, 4, 3, ] target_chain_marker = [ "diamond", "plus", "plus", "plus", "plus", "plus", "plus", "plus", "diamond", "diamond", "plus", "plus", "plus", "plus", "plus", "plus", "plus", "diamond", ] # For some reason it seems to be displayed in the reverse order on the Y axis segment_types = [ "rmw", "rcl", "rclcpp", "userland" ] # # #################### # # print timing pipeline # # #################### # # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize_fpga") # # # print(len(image_pipeline_msg_sets)) # # # print_timeline(image_pipeline_msg_sets) # all timelines # # print_timeline([image_pipeline_msg_sets[-1]]) # timeline of last message # # # print_timeline_average(image_pipeline_msg_sets) # timeline of averages, NOTE only totals are of interest # target_chain = [ # "ros2:callback_start", # "ros2_image_pipeline:image_proc_rectify_cb_init", # "ros2_image_pipeline:image_proc_rectify_init", # "ros2_image_pipeline:image_proc_rectify_fini", # "ros2:rclcpp_publish", # "ros2:rcl_publish", # "ros2:rmw_publish", # "ros2_image_pipeline:image_proc_rectify_cb_fini", # "ros2:callback_end", # ] # target_chain_colors_fg = [ # "blue", # "yellow", # "red", # "red", # "blue", # "blue", # "blue", # "yellow", # "blue", # ] # # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize_fpga_integrated") # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize_fpga_integrated_250_node") # # print(len(image_pipeline_msg_sets)) # # print_timeline(image_pipeline_msg_sets) # all timelines # # print_timeline([image_pipeline_msg_sets[-1]]) # timeline of last message # print_timeline(image_pipeline_msg_sets[-10:]) # timeline of last 10 messages # # print_timeline_average(image_pipeline_msg_sets) # timeline of averages, NOTE only totals are of interest ###################### # draw tracepoints ###################### # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize") # msg_set = image_pipeline_msg_sets[-1] # traces(msg_set) # ###################### # # draw barplot all data # ###################### # # # NOTE: Discard first few # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize") # barplot_all(image_pipeline_msg_sets[10:], title="image_pipeline in CPU") # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize_fpga") # barplot_all(image_pipeline_msg_sets[10:], title="image_pipeline in FPGA") # # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize_stress") # # barplot_all(image_pipeline_msg_sets[10:], title="image_pipeline in CPU and with stress") # # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize_fpga_stress") # # barplot_all(image_pipeline_msg_sets[10:], title="image_pipeline in FPGA and with stress") # target_chain = [ # "ros2:callback_start", # "ros2_image_pipeline:image_proc_rectify_cb_init", # "ros2_image_pipeline:image_proc_rectify_init", # "ros2_image_pipeline:image_proc_rectify_fini", # "ros2:rclcpp_publish", # "ros2:rcl_publish", # "ros2:rmw_publish", # "ros2_image_pipeline:image_proc_rectify_cb_fini", # "ros2:callback_end", # # "ros2:callback_start", # # "ros2_image_pipeline:image_proc_resize_cb_init", # # "ros2_image_pipeline:image_proc_resize_init", # # "ros2_image_pipeline:image_proc_resize_fini", # # "ros2:rclcpp_publish", # # "ros2:rcl_publish", # # "ros2:rmw_publish", # # "ros2_image_pipeline:image_proc_resize_cb_fini", # # "ros2:callback_end", # ] # target_chain_dissambiguous = target_chain # target_chain_colors_fg = [ # "blue", # "yellow", # "red", # "red", # "blue", # "blue", # "blue", # "yellow", # "blue", # # "blue", # # "yellow", # # "red", # # "red", # # "blue", # # "blue", # # "blue", # # "yellow", # # "blue", # ] # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_rectify_resize_fpga_integrated") # barplot_all(image_pipeline_msg_sets[10:], title="image_pipeline integrated @ 250 MHz in FPGA") # target_chain = [ # "ros2:callback_start", "ros2_image_pipeline:image_proc_resize_cb_init", # "ros2_image_pipeline:image_proc_resize_init", "ros2_image_pipeline:image_proc_resize_fini", # "ros2:rclcpp_publish", "ros2:rcl_publish", "ros2:rmw_publish", # "ros2_image_pipeline:image_proc_resize_cb_fini", "ros2:callback_end", # ] # target_chain_dissambiguous = target_chain # image_pipeline_msg_sets = msgsets_from_trace_concurrent(str(os.environ["HOME"]) + "/.ros/tracing/trace_test2") # barplot_all(image_pipeline_msg_sets[10:], title="image_pipeline, streams @ 250 MHz in FPGA") # ###################### # # draw bar charts # ###################### #/////////////////// # Data sources #/////////////////// # # NOTE: Discard first few discard_count = 10 image_pipeline_msg_sets_ms_cpu = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize")[discard_count:]) image_pipeline_msg_sets_ms_fpga = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga")[discard_count:]) # image_pipeline_msg_sets_ms_fpga_streamlined = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_streamlined")[discard_count:]) # image_pipeline_msg_sets_ms_fpga_streamlined_xrt = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_streamlined_xrt")[discard_count:]) image_pipeline_msg_sets_ms_cpu_stress = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_stress")[discard_count:]) image_pipeline_msg_sets_ms_fpga_stress = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_stress")[discard_count:]) target_chain = [ "ros2:callback_start", "ros2_image_pipeline:image_proc_rectify_cb_init", "ros2_image_pipeline:image_proc_rectify_init", "ros2_image_pipeline:image_proc_rectify_fini", "ros2:rclcpp_publish", "ros2:rcl_publish", "ros2:rmw_publish", "ros2_image_pipeline:image_proc_rectify_cb_fini", "ros2:callback_end", ] image_pipeline_msg_sets_ms_fpga_integrated = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_integrated")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated)): image_pipeline_msg_sets_ms_fpga_integrated[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] image_pipeline_msg_sets_ms_fpga_integrated_xrt = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_integrated_xrt")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_xrt)): image_pipeline_msg_sets_ms_fpga_integrated_xrt[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] image_pipeline_msg_sets_ms_fpga_integrated_streamlined = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_integrated_streamlined")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_streamlined)): image_pipeline_msg_sets_ms_fpga_integrated_streamlined[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] image_pipeline_msg_sets_ms_fpga_integrated_streamlined_xrt = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_integrated_streamlined_xrt")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_streamlined_xrt)): image_pipeline_msg_sets_ms_fpga_integrated_streamlined_xrt[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # stress image_pipeline_msg_sets_ms_fpga_integrated_stress = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_integrated_stress")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_stress)): image_pipeline_msg_sets_ms_fpga_integrated_stress[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] image_pipeline_msg_sets_ms_fpga_integrated_xrt_stress = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_integrated_xrt_stress")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_xrt_stress)): image_pipeline_msg_sets_ms_fpga_integrated_xrt_stress[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # image_pipeline_msg_sets_ms_fpga_integrated_streamlined_stress = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_integrated_streamlined_stress")[discard_count:]) # # fix data of "*_integrated" to align with dimensions of the rest # for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_streamlined_stress)): # image_pipeline_msg_sets_ms_fpga_integrated_streamlined_stress[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] image_pipeline_msg_sets_ms_fpga_integrated_streamlined_xrt_stress = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_integrated_streamlined_xrt_stress")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_streamlined_xrt_stress)): image_pipeline_msg_sets_ms_fpga_integrated_streamlined_xrt_stress[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] target_chain = [ "ros2:callback_start", "ros2_image_pipeline:image_proc_resize_cb_init", "ros2_image_pipeline:image_proc_resize_init", "ros2_image_pipeline:image_proc_resize_fini", "ros2:rclcpp_publish", "ros2:rcl_publish", "ros2:rmw_publish", "ros2_image_pipeline:image_proc_resize_cb_fini", "ros2:callback_end", ] image_pipeline_msg_sets_ms_fpga_streamlined = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_streamlined")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_streamlined)): image_pipeline_msg_sets_ms_fpga_streamlined[i_set] = [0, 0, 0, 0, 0, 0, 0, 0, 0] + image_pipeline_msg_sets_ms_fpga_streamlined[i_set] image_pipeline_msg_sets_ms_fpga_streamlined_xrt = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ + "/.ros/tracing/trace_rectify_resize_fpga_streamlined_xrt")[discard_count:]) # fix data of "*_integrated" to align with dimensions of the rest for i_set in range(len(image_pipeline_msg_sets_ms_fpga_streamlined_xrt)): image_pipeline_msg_sets_ms_fpga_streamlined_xrt[i_set] = [0, 0, 0, 0, 0, 0, 0, 0, 0] + image_pipeline_msg_sets_ms_fpga_streamlined_xrt[i_set] # image_pipeline_msg_sets_ms_fpga_integrated = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_integrated")[discard_count:]) # # fix data of "*_integrated" to align with dimensions of the rest # for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated)): # image_pipeline_msg_sets_ms_fpga_integrated[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # image_pipeline_msg_sets_ms_fpga_integrated_200 = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_integrated_200")[discard_count:]) # # fix data of "*_integrated" to align with dimensions of the rest # for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_200)): # image_pipeline_msg_sets_ms_fpga_integrated_200[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # image_pipeline_msg_sets_ms_fpga_integrated_250 = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_integrated_250")[discard_count:]) # # fix data of "*_integrated" to align with dimensions of the rest # for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_250)): # image_pipeline_msg_sets_ms_fpga_integrated_250[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # image_pipeline_msg_sets_ms_fpga_integrated_250_stress = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_integrated_250_stress")[discard_count:]) # # fix data of "*_integrated" to align with dimensions of the rest # for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_250_stress)): # image_pipeline_msg_sets_ms_fpga_integrated_250_stress[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # image_pipeline_msg_sets_ms_fpga_integrated_250_xrt = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_integrated_250_xrt")[discard_count:]) # # fix data of "*_integrated" to align with dimensions of the rest # for i_set in range(len(image_pipeline_msg_sets_ms_fpga_integrated_250_xrt)): # image_pipeline_msg_sets_ms_fpga_integrated_250_xrt[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # image_pipeline_msg_sets_ms_fpga_streamlined = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_integrated_streamlined")[discard_count:]) # # fix data of "*_integrated" to align with dimensions of the rest # for i_set in range(len(image_pipeline_msg_sets_ms_fpga_streamlined)): # image_pipeline_msg_sets_ms_fpga_streamlined[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # image_pipeline_msg_sets_ms_fpga_streamlined_xrt = barchart_data(msgsets_from_trace_concurrent(str(os.environ["HOME"]) \ # + "/.ros/tracing/trace_rectify_resize_fpga_integrated_streamlined_xrt")[discard_count:]) # # fix data of "*_integrated" to align with dimensions of the rest # for i_set in range(len(image_pipeline_msg_sets_ms_fpga_streamlined_xrt)): # image_pipeline_msg_sets_ms_fpga_streamlined_xrt[i_set] += [0, 0, 0, 0, 0, 0, 0, 0, 0] # #/////////////////// # # Markdown Table results # #/////////////////// # table( # [ # # full pipeline # image_pipeline_msg_sets_ms_cpu, # image_pipeline_msg_sets_ms_fpga, # # # integrated # image_pipeline_msg_sets_ms_fpga_integrated, # # image_pipeline_msg_sets_ms_fpga_integrated_xrt, # # streamlined # image_pipeline_msg_sets_ms_fpga_streamlined, # image_pipeline_msg_sets_ms_fpga_streamlined_xrt, # # # integrated, streamlined # # image_pipeline_msg_sets_ms_fpga_integrated_streamlined, # # image_pipeline_msg_sets_ms_fpga_integrated_streamlined_xrt, # # # # # full pipeline stress # # image_pipeline_msg_sets_ms_cpu, # # image_pipeline_msg_sets_ms_fpga, # # # image_pipeline_msg_sets_ms_fpga_streamlined, # # # image_pipeline_msg_sets_ms_fpga_streamlined_xrt, # # # integrated stress # # image_pipeline_msg_sets_ms_fpga_integrated, # # image_pipeline_msg_sets_ms_fpga_integrated_xrt, # # # integrated, streamlined stress # # # image_pipeline_msg_sets_ms_fpga_integrated_streamlined, # # image_pipeline_msg_sets_ms_fpga_integrated_streamlined_xrt, # ], # [ # # full pipeline # "CPU **baseline**", # "FPGA @ 250 MHz", # # # integrated # "FPGA, integrated @ 250 MHz", # # "FPGA, integrated, XRT @ 250 MHz", # # streamlined # "FPGA, streams (resize) @ 250 MHz", # "FPGA, streams (resize), XRT @ 250 MHz", # # # integrated, streamlined # # "FPGA, integrated, streams @ 250 MHz", # # "FPGA, integrated, streams, XRT @ 250 MHz", # # # # # full pipeline stress # # "CPU **baseline**", # # "FPGA @ 250 MHz", # # # "FPGA, streams @ 250 MHz", # # # "FPGA, streams, XRT @ 250 MHz", # # # integrated stress # # "FPGA, integrated @ 250 MHz", # # "FPGA, integrated, XRT @ 250 MHz", # # # integrated, streamlined stress # # # "FPGA, integrated, streams @ 250 MHz", # # "FPGA, integrated, streams, XRT @ 250 MHz", # ] # ) #/////////////////// # Plot, either averages or latest, etc #/////////////////// # # plot latest values # df_cpu = pd.DataFrame(image_pipeline_msg_sets_ms_cpu[-1:]) # pick the latest one # df_fpga = pd.DataFrame(image_pipeline_msg_sets_ms_fpga[-1:]) # pick the latest one # df = pd.concat([df_cpu, df_fpga], ignore_index=True) # df.columns = target_chain_dissambiguous # substrates = pd.DataFrame({'substrate': ["CPU","FPGA"]}) # df = df.join(substrates) # plot averages df_cpu_mean =
pd.DataFrame(image_pipeline_msg_sets_ms_cpu)
pandas.DataFrame
from millify import millify import altair as alt import pandas as pd import streamlit as st from pandas.tseries import offsets from urllib.parse import urlparse from . import utils import streamlit.components.v1 as components ### SUmmary stats from coingecko def get_cg_summary_data(coin_choice, df): score_cols = [ "coingecko_score", "developer_score", "community_score", "liquidity_score", "public_interest_score", ] coin_choice_df = df.loc[df.name == coin_choice] genesis_date = coin_choice_df["genesis_date"].values[0] last_updated = coin_choice_df["last_updated"].values[0] contract_address = coin_choice_df["contract_address"].values[0] coingecko_rank = coin_choice_df["coingecko_rank"].values[0] market_cap_rank = coin_choice_df["market_cap_rank"].values[0] sentiment_votes_up_percentage = coin_choice_df[ "sentiment_votes_up_percentage" ].values[0] sentiment_votes_down_percentage = coin_choice_df[ "sentiment_votes_down_percentage" ].values[0] # st.markdown("## Market Cap Rank") st.metric( label="Market Cap Rank", value=f"#{market_cap_rank}", ) st.metric( label="CoinGecko Rank", value=f"#{coingecko_rank}", ) # st.markdown( # f"<h1>Market Cap Rank #{market_cap_rank}</h1><h1>CoinGecko Rank #{coingecko_rank}</h1>", # unsafe_allow_html=True, # ) get_market_data(coin_choice, df) st.markdown( f'<h1>CoinGecko Sentiment<br><span style="color: green;">{sentiment_votes_up_percentage}%</span> <span style="color: red;"> {sentiment_votes_down_percentage}%</span></h1>', unsafe_allow_html=True, ) for col in score_cols: st.markdown( f"<p class='small-font'><strong>{col.replace('_', ' ').capitalize()}</strong>: {coin_choice_df[col].values[0]:.2f}%</p>", # noqa: E501 unsafe_allow_html=True, ) if not pd.isna(coin_choice_df["contract_address"].values[0]): st.markdown( f'<h1>Contract Address {contract_address} <a href="https://etherscan.io/address/{contract_address}">Etherscan</a></h1>', unsafe_allow_html=True, ) ##### Market Data def get_market_data(coin_choice, df): market_data_json = df.loc[df.name == coin_choice, "market_data"].values[0] market_cap = market_data_json["market_cap"] current_price = market_data_json["current_price"] circulating_supply = market_data_json["circulating_supply"] max_supply = market_data_json["max_supply"] mc_change_percentage_24h = market_data_json[ "market_cap_change_percentage_24h_in_currency" ] price_change_percentage_24h = market_data_json[ "price_change_percentage_24h_in_currency" ] # text = f"#### Market Cap {market_cap['usd']}\n#### Total Supply {circulating_supply}\n#### Current Price {current_price['usd']}\n#### Price Change 24h {price_change_percentage_24h['usd']}\n" # market_stats = { # "market_cap": (f"${market_cap['usd']:,}", "💰"), # "current_price": (f"${current_price['usd']:,}", "🤑"), # "circulating_supply": (f"{circulating_supply:,}", "💩"), # "price_change_percentage_24h": ( # f"{price_change_percentage_24h['usd']:.0}%", # "%", # ), # } st.metric( label="Market Cap", value=f"${millify(market_cap['usd'])} 💰", # value=f"${market_cap['usd']:,}", delta=f"MC Change 24h {mc_change_percentage_24h['usd']:.0}%", delta_color="normal", ) st.metric( label="Current Price", value=f"${current_price['usd']:,} 🤑", delta=f"Price Change 24h {price_change_percentage_24h['usd']:.0}%", delta_color="normal", ) if max_supply: st.metric( label="Circulating Supply", value=f"{millify(circulating_supply, precision = 3)} 💩", delta=f"Max Supply {millify(max_supply, precision = 3)}", delta_color="off", ) # for stat in market_stats.items(): # st.markdown( # f"<p class='small-font'>{stat[1][1]} <strong>{stat[0]}</strong>: {stat[1][0]}</p>", # noqa: E501 # unsafe_allow_html=True, # ) ####### SOCIALS def get_community_data(coin_choice, df): market_data_json = df.loc[df.name == coin_choice, "community_data"].values[0] market_data_json = {k: v if v else 0 for (k, v) in market_data_json.items()} resp = { # "Facebook Likes": (f"{market_data_json['facebook_likes']:,}", "💬"), "Twitter Followers": (f"{market_data_json['twitter_followers']:,}", "💬"), "Reddit Average posts 48h": ( f"{market_data_json['reddit_average_posts_48h']:,}", "💬", ), "Reddit Average Comments 48h": ( f"{market_data_json['reddit_average_comments_48h']:,}", "💬", ), "Reddit Subscribers": (f"{market_data_json['reddit_subscribers']:,}", "💬"), "Reddit Accounts Active 48h": ( f"{market_data_json['reddit_accounts_active_48h']:,}", "💬", ), "Telegram User Count": ( f"{market_data_json['telegram_channel_user_count']:,}", "💬", ), } for stat in resp.items(): st.markdown( f"<p class='small-font'>{stat[1][1]} <strong>{stat[0]}</strong>: {stat[1][0]}</p>", # noqa: E501 unsafe_allow_html=True, ) def get_social_links_data(coin_choice, df): """Gets Social media links from coingecko df""" links_json = df.loc[df.name == coin_choice, "links"].values[0] homepage = links_json.get("homepage")[0] twitter_screen_name = links_json.get("twitter_screen_name") twitter_link = f"https://twitter.com/{twitter_screen_name}" subreddit_url = links_json.get("subreddit_url") gitlinks = links_json.get("repos_url").get("github", [""]) google = f"https://www.google.com/search?q={coin_choice}" return { "twitter": twitter_screen_name, "github": gitlinks, "reddit": subreddit_url, "homepage": homepage, "google": google, } def make_clickable(val): return f'<a target="_blank" href="{val}">{val}</a>' def get_repo_stats_aggregates(coin_choice, data): repo_link_choice = data.loc[ data.name == coin_choice, "github_repos_complete" ].values[0] import re pd.set_option("display.max_colwidth", -1) repo_link_choice = [re.sub("\.git", "", i) for i in repo_link_choice] repo_paths = [f"'{str(urlparse(path).path)[1:]}'" for path in repo_link_choice] repo_paths_dict = { f"{str(urlparse(path).path)[1:]}": path for path in repo_link_choice } df = utils.get_coin_multiple_repos_stats(repo_paths) df_agg = df.groupby(by=["repo_path"]).sum() df_agg = df_agg.apply(lambda x: pd.to_numeric(x, downcast="integer")) df_agg.sort_values(by="stargazer_size", ascending=False, inplace=True) df_agg["url"] = df_agg.index.map(repo_paths_dict) df_agg.reset_index(inplace=True) # st.write(df_agg.index) # st.write(repo_paths_dict.keys()) cell_hover = { # for row hover use <tr> instead of <td> "selector": "td:hover", "props": [("background-color", "#ffffb3")], } index_names = { "selector": ".index_name", "props": "font-style: monospace; color: darkgrey; font-weight:normal;", } headers = { "selector": "th:not(.index_name)", "props": "background-color: #000066; color: white;", } df_agg_styled = ( df_agg.style.format( { "stargazer_size": "{:,}", "additions": lambda x: f"{millify(x)}", "deletions": lambda x: f"{millify(x)}", "total_commits": "{:,}", "url": make_clickable, } ) # .background_gradient( # axis=0, # cmap="YlOrRd", # subset=["additions", "deletions", "total_commits"], # ) .bar( subset=[ "stargazer_size", ], color="#a69232", ) .bar(subset=["additions"], color="#308a20") .bar(subset=["deletions"], color="#bd352b") .bar(subset=["total_commits"], color="#2fc3d6") .set_table_styles([cell_hover, index_names, headers]) .set_properties(**{"background-color": "#a3d3d9", "font-family": "monospace"}) ) # st.dataframe(df_agg, height=600) # st.markdown(df_agg.to_html(), unsafe_allow_html=True) # st.experimental_show(df_agg) components.html(df_agg_styled.to_html(), height=600, scrolling=True) # Data download button download_data = utils.convert_df(df_agg) st.download_button( label="Download data as CSV", data=download_data, file_name="repo_stats_aggregates.csv", mime="text/csv", ) # download_url = utils.convert_df(df_agg) # st.markdown(download_url, unsafe_allow_html=True) def get_repo_stats_history(coin_choice, data): # links_dict = get_social_links_data(coin_choice, data) # repo_link_choice = ( # links_dict["github"] # if isinstance(links_dict["github"], list) # else list(links_dict["github"]) # ) repo_link_choice = data.loc[ data.name == coin_choice, "github_repos_complete" ].values[0] import re repo_link_choice = [re.sub("\.git", "", i) for i in repo_link_choice] repo_paths = [f"'{str(urlparse(path).path)[1:]}'" for path in repo_link_choice] df = utils.get_coin_multiple_repos_stats(repo_paths[:100]) return df def get_social_links_html(coin_choice, df): """Produces HTML for UI: Social media links from coingecko df""" HtmlFile = open("./components/social_links.html", "r", encoding="utf-8") source_code = HtmlFile.read() links_dict = get_social_links_data(coin_choice, df) github_html = "".join( [f'<a href={link} class ="fa fa-github"></a>' for link in links_dict["github"]] ) links_html = f'<body><a href="{links_dict["homepage"]}" class="fa fa-rss"></a><a href="{links_dict["twitter"]}" class="fa fa-twitter"></a><a href="{links_dict["google"]}" class="fa fa-google"></a><a href="{links_dict["reddit"]}" class="fa fa-reddit"></a>{github_html}</body></html>' return "</html> " + source_code + links_html def get_donate_button(): HtmlFile = open("./components/donate_eth.html", "r", encoding="utf-8") source_code = HtmlFile.read() return source_code ######## GITHUB def get_git_bar(data, container): with container: st.write(plot_cum_commits(data)) contributors = data["author"].unique().tolist() contributors.insert(0, None) # Manually add default # Filters contributor = st.selectbox("Select Contributor", contributors, index=0) start = st.date_input("Start Date", value=min(data["committed_on"])) end = st.date_input("End Date", value=max(data["committed_on"])) # Data download button if st.button("Download Data"): download_url = utils.download_data(data) st.markdown(download_url, unsafe_allow_html=True) return start, end, contributor def get_repo_source(): """Gets repo path (remote or uploaded file) and displays relevant UI""" input_type = st.sidebar.radio( "Input type input (.json/repo link)", ("Local .json", "Repo Link") ) if input_type == "Local .json": repo_source = st.sidebar.file_uploader("Add your file here") elif input_type == "Repo Link": repo_source = st.sidebar.text_input("Add repo URL here", key="repo_url") return repo_source def plot_top_contributors(data): """Plots top n contributors in a vertical histogram""" bars = ( alt.Chart(data[:30]) .mark_bar() .encode( x=alt.X("n_commits", title="N. Commits"), y=alt.Y("author", sort="-x", title=""), tooltip=[ alt.Tooltip("author", title="Author"), alt.Tooltip("n_commits", title="N. Commits", format=",.0f"), ], ) .properties(width=850, height=430, title="Top 30 Contributors") ) text = bars.mark_text(align="left", baseline="middle", dx=3).encode( text="n_commits:Q" ) return bars + text def plot_daily_contributions(data): """Plots daily commits in a bar chart""" agg = ( data.groupby(pd.Grouper(key="committed_on", freq="1D"))["hash"] .count() .reset_index() ) plot = ( alt.Chart(agg) .mark_bar() .encode( x=alt.X("committed_on", title="Date"), y=alt.Y("hash", title="Commits", axis=alt.Axis(grid=False)), tooltip=[ alt.Tooltip("committed_on", title="Date"), alt.Tooltip("hash", title="Commits"), ], ) .properties(height=170, width=850, title="Daily Changes") ) return plot def plot_inserts_deletions(data): """Plots daily lines added/deleted in a bar chart""" agg = data.copy() agg["lines_deleted"] = -agg["lines_deleted"] agg = ( agg.groupby(pd.Grouper(key="committed_on", freq="1D"))[ ["lines_added", "lines_deleted"] ] .sum() .reset_index() .melt(id_vars="committed_on") ) plot = ( alt.Chart(agg) .mark_bar() .encode( x=alt.X("committed_on", title="Date"), y=alt.Y("value", title=""), color=alt.condition( alt.datum.value > 0, alt.value("green"), alt.value("red") ), tooltip=[ alt.Tooltip("committed_on", title="Date"), alt.Tooltip("value", title="Lines Changed", format=",.0f"), alt.Tooltip("variable"), ], ) ).properties(height=170, width=850, title="Daily Lines Added/Removed") return plot def plot_cum_commits(data): """Plots cumulative commits for sidebar plot""" added_commits_cumsum = ( data.groupby(
pd.Grouper(key="committed_on", freq="1D")
pandas.Grouper
import concurrent import os import re import shutil import xml.etree.ElementTree as ET # TODO do we have this as requirement? from concurrent.futures import as_completed from concurrent.futures._base import as_completed from pathlib import Path import ffmpeg import pandas as pd import webrtcvad from audio_korpora_pipeline.baseobjects import FileHandlingObject from audio_korpora_pipeline.inputadapter.audiosplit.splitter import Splitter from audio_korpora_pipeline.metamodel.mediasession import MediaAnnotationBundle, \ MediaAnnotationBundleWithoutTranscription, WrittenResource, MediaFile, \ MediaSessionActor, Sex, \ MediaSessionActors, MediaSession class Adapter(FileHandlingObject): def __init__(self, config): super(Adapter, self).__init__() def toMetamodel(self) -> MediaSession: raise NotImplementedError("Please use a subclass") def skipAlreadyProcessedFiles(self): skip = self.config['global']['skipAlreadyProcessedFiles'] if not (skip): self.logger.warn("No config setting for skipAlreadyProcessedFiles set. Assuming True") return True return skip class UntranscribedMediaSplittingAdapter(Adapter): AUDIO_SPLIT_AGRESSIVENESS = 3 # webrtcvad 1 (low), 3 (max) ADAPTERNAME = "MediaSplittingAdapter" mediaAnnotationBundles = [] mediaSessionActors = set() # using a set so we don't have duplets def __init__(self, config): super(UntranscribedMediaSplittingAdapter, self).__init__(config=config) self.config = config self.mediaSessionActors.add(MediaSessionActor("UNKNOWN", Sex.UNKNOWN, None)) def _splitMonoRawAudioToVoiceSectionsThread(self, file, outputpath): self.logger.debug("Splitting file into chunks: {}".format(self._getFilenameWithExtension(file))) splitter = Splitter() vad = webrtcvad.Vad(int(self.AUDIO_SPLIT_AGRESSIVENESS)) basename = self._getFilenameWithoutExtension(file) audiochunkPathsForThisfile = [] try: audio, sample_rate = splitter.read_wave(file) frames = splitter.frame_generator(30, audio, sample_rate) frames = list(frames) segments = splitter.vad_collector(sample_rate, 30, 300, vad, frames) for i, segment in enumerate(segments): path = os.path.join(outputpath, basename + '_chunk_{:05d}.wav'.format(i)) self.logger.debug("Write chunk {} of file {}".format(i, file)) splitter.write_wave(path, segment, sample_rate) audiochunkPathsForThisfile.append(path) # write staging complete file stagingPath = os.path.join(outputpath, basename + ".stagingComplete") with open(stagingPath, 'a'): os.utime(stagingPath, None) self.logger.debug("Finished splitting file {}".format(file)) except Exception as excep: self.logger.warn("Could split file into chunks {}. Skipping".format(file), exc_info=excep) return (False, str(file), []) # returning an empty list, as no success here return (True, str(file), audiochunkPathsForThisfile) def _convertMediafileToMonoAudioThread(self, filenumber, totalNumberOfFiles, singleFilepathToProcess, outputPath): self.logger.debug( "Processing file {}/{} on path {}".format(filenumber + 1, totalNumberOfFiles, singleFilepathToProcess)) nextFilename = os.path.join(outputPath, self._getFilenameWithoutExtension(singleFilepathToProcess) + ".wav") try: (ffmpeg .input(singleFilepathToProcess) .output(nextFilename, format='wav', acodec='pcm_s16le', ac=1, ar='16k') .overwrite_output() .run() ) except ffmpeg.Error as ffmpgError: self.logger.warn("Ffmpeg rose an error", exc_info=ffmpgError) self.logger.warn("Due to error of ffmpeg skipped file {}".format(singleFilepathToProcess)) return (False, str(singleFilepathToProcess), str(nextFilename)) except Exception as e: self.logger.warn("Got an error while using ffmpeg for file {}".format(singleFilepathToProcess), exc_info=e) return (False, str(singleFilepathToProcess), str(nextFilename)) return (True, str(singleFilepathToProcess), str(nextFilename)) def createMediaSession(self, bundles): session = MediaSession(self.ADAPTERNAME, self.mediaSessionActors, bundles) return session def createMediaAnnotationBundles(self, audiochunks): annotationBundles = [] for index, filepath in enumerate(audiochunks): bundle = MediaAnnotationBundleWithoutTranscription(identifier=filepath) # we do not have any written ressources bundle.setMediaFile(filepath) annotationBundles.append(bundle) return annotationBundles def splitAudioToChunks(self, filesToChunk, outputPath): if ((filesToChunk == None) or (len(filesToChunk) == 0)): self.logger.info("Nothing to split, received empty wav-filenamelist") return [] successfullyChunkedFiles = [] with concurrent.futures.ThreadPoolExecutor(max_workers=None) as executor: futures = [] for filenumber, file in enumerate(filesToChunk): futures.append( executor.submit(self._splitMonoRawAudioToVoiceSectionsThread, file, outputPath)) for future in as_completed(futures): if (future.result()[0] == False): self.logger.warning("Couldnt split audiofile {}, removing from list".format(future.result()[1])) else: successfullyChunkedFiles.extend(future.result()[2]) self.logger.debug("Splitting Audio is done {}".format(future.result())) self.logger.debug("Finished splitting {} wav files".format(len(filesToChunk))) return successfullyChunkedFiles def determineWavFilesToChunk(self, baseFilesToChunk, stagingChunkPath): allStageIndicatorFilesFullpath = set(self._getAllMediaFilesInBasepath(stagingChunkPath, {".stagingComplete"})) allExistingChunkedFilesFullpath = set(self._getAllMediaFilesInBasepath(stagingChunkPath, {".wav"})) allStageIndicatorFilesDictionary = self._toFilenameDictionary(allStageIndicatorFilesFullpath) allBaseFilesDictionary = self._toFilenameDictionary(baseFilesToChunk) stagingCompleteCorrectKeys = set(allBaseFilesDictionary.keys()).intersection( set(allStageIndicatorFilesDictionary.keys())) stagingIncompleteCorrectKeys = set(allBaseFilesDictionary.keys()).difference( set(allStageIndicatorFilesDictionary.keys())) stagingComplete = [] for fullpath in allExistingChunkedFilesFullpath: if any(self._getFilenameWithoutExtension(fullpath).startswith(cm) for cm in stagingCompleteCorrectKeys): stagingComplete.append(fullpath) stagingIncomplete = [allBaseFilesDictionary[key] for key in stagingIncompleteCorrectKeys] self.logger.debug("Got {} files not yet chunked".format(len(stagingIncomplete))) self.logger.debug("Got {} files chunked".format(len(stagingComplete))) return stagingIncomplete, stagingComplete def convertMediaFilesToMonoAudio(self, filesToProcess, outputpath, adapterName): if (filesToProcess == None or len(filesToProcess) == 0): self.logger.debug("No files to convert for {}, skipping".format(adapterName)) return [] successfulFilenames = [] with concurrent.futures.ThreadPoolExecutor(max_workers=None) as executor: futures = [] for filenumber, currentFile in enumerate(filesToProcess): futures.append( executor.submit(self._convertMediafileToMonoAudioThread, filenumber, len(filesToProcess), currentFile, outputpath)) for future in as_completed(futures): if (future.result()[0] == False): self.logger.warning("Couldnt process audiofile {}, removing from list".format(future.result()[1])) else: successfulFilenames.append(future.result()[2]) self.logger.debug("Processing Audio is done {} for Converter {}".format(future.result(), adapterName)) return successfulFilenames def _toFilenameDictionary(self, list): if (list == None or len(list) == 0): self.logger.debug("Got nothing in list, returning empty dictionary") return dict() listDict = dict() for fullpath in list: listDict[self._getFilenameWithoutExtension(fullpath)] = fullpath self.logger.debug("Created dictionary of files of length {}".format(len(listDict))) return listDict def determineFilesToConvertToMonoFromGivenLists(self, alreadyStagedFiles, originalFiles, adaptername): dictionaryOfOriginalFilepaths = self._toFilenameDictionary(originalFiles) dictionaryOfStagedFilepaths = self._toFilenameDictionary(alreadyStagedFiles) notYetProcessedKeys = set(dictionaryOfOriginalFilepaths.keys()).difference(set(dictionaryOfStagedFilepaths.keys())) alreadyProcessedKeys = set(dictionaryOfOriginalFilepaths.keys()).intersection( set(dictionaryOfStagedFilepaths.keys())) fullpathsToNotYetProcessed = [dictionaryOfOriginalFilepaths[key] for key in notYetProcessedKeys] fullpathsProcessed = [dictionaryOfStagedFilepaths[key] for key in alreadyProcessedKeys] self.logger.debug("Got {} files not yet processed for corpus {}".format(len(notYetProcessedKeys), adaptername)) self.logger.debug("Got {} files already processed for corpus {}".format(len(alreadyProcessedKeys), adaptername)) return fullpathsToNotYetProcessed, fullpathsProcessed def _preprocess_workflow_with_splitting(self, filesAlreadyProcessed, filesToProcess, monoPath, chunkPath, adaptername): filesSuccessfullyProcessed = self.convertMediaFilesToMonoAudio(filesToProcess, monoPath, adaptername) baseFilesToChunk = [] baseFilesToChunk = baseFilesToChunk + filesSuccessfullyProcessed + filesAlreadyProcessed # split mono audio to chunks filesToChunk, filesAlreadyChunked = self.determineWavFilesToChunk(baseFilesToChunk, chunkPath) filesSuccessfullyChunked = self.splitAudioToChunks(filesToChunk, chunkPath) # add chunks to media session mediaBundleFiles = [] + filesSuccessfullyChunked + filesAlreadyChunked mediaAnnotationbundles = self.createMediaAnnotationBundles(mediaBundleFiles) mediaSession = self.createMediaSession(mediaAnnotationbundles) return mediaSession class UntranscribedVideoAdapter(UntranscribedMediaSplittingAdapter): ADAPTERNAME = "UntranscribedVideoAdapter" def __init__(self, config): super(UntranscribedVideoAdapter, self).__init__(config=config) self.config = config def toMetamodel(self): self.logger.debug("Untranscribed Video Korpus") # convert video to mono audio filesToProcess, filesAlreadyProcessed = self._determineVideoFilesToConvertToMono() return self._preprocess_workflow_with_splitting(filesAlreadyProcessed, filesToProcess, self._validateStagingMonoPath(), self._validateStagingChunksPath(), self.ADAPTERNAME) def _validateKorpusPath(self): korpus_path = self.config['untranscribed_videos_input_adapter']['korpus_path'] if not os.path.isdir(korpus_path): raise IOError("Could not read korpus path" + korpus_path) return korpus_path def _validateStagingMonoPath(self): workdir = self.config['global']['workdir'] if not os.path.isdir(workdir): raise IOError("Could not read workdir path" + workdir) workdir = Path(workdir).joinpath("untranscribed_video_staging_mono") workdir.mkdir(parents=True, exist_ok=True) return str(workdir) def _validateStagingChunksPath(self): workdir = self.config['global']['workdir'] if not os.path.isdir(workdir): raise IOError("Could not read workdir path" + workdir) workdir = Path(workdir).joinpath("untranscribed_video_staging_chunks") workdir.mkdir(parents=True, exist_ok=True) return str(workdir) def _determineVideoFilesToConvertToMono(self): originalFiles = set(self._getAllMediaFilesInBasepath(self._validateKorpusPath(), {".mp4"})) alreadyStagedFiles = set(self._getAllMediaFilesInBasepath(self._validateStagingMonoPath(), {".wav"})) self.logger.debug("Got {} original untranscribed mp4 files to process".format(len(originalFiles))) return self.determineFilesToConvertToMonoFromGivenLists(alreadyStagedFiles, originalFiles, self.ADAPTERNAME) class ChJugendspracheAdapter(UntranscribedMediaSplittingAdapter): ADAPTERNAME = "CHJugendspracheAdapter" def __init__(self, config): super(ChJugendspracheAdapter, self).__init__(config=config) self.config = config def toMetamodel(self): self.logger.debug("CH-Jugendsprache Korpus") # convert audio to mono audio filesToProcess, filesAlreadyProcessed = self._determineChJugendspracheFilesToConvertToMono() return self._preprocess_workflow_with_splitting(filesAlreadyProcessed, filesToProcess, self._validateStagingMonoPath(), self._validateStagingChunksPath(), self.ADAPTERNAME) def _determineChJugendspracheFilesToConvertToMono(self): originalFiles = set(self._getAllMediaFilesInBasepath(self._validateKorpusPath(), {".WAV", ".wav"})) alreadyStagedFiles = set(self._getAllMediaFilesInBasepath(self._validateStagingMonoPath(), {".wav"})) self.logger.debug("Got {} original jugendsprache files to process".format(len(originalFiles))) return self.determineFilesToConvertToMonoFromGivenLists(alreadyStagedFiles, originalFiles, self.ADAPTERNAME) def _validateStagingMonoPath(self): workdir = self.config['global']['workdir'] if not os.path.isdir(workdir): raise IOError("Could not read workdir path" + workdir) workdir = Path(workdir).joinpath("ch_jugensprache_staging_mono") workdir.mkdir(parents=True, exist_ok=True) return str(workdir) def _validateStagingChunksPath(self): workdir = self.config['global']['workdir'] if not os.path.isdir(workdir): raise IOError("Could not read workdir path" + workdir) workdir = Path(workdir).joinpath("ch_jugensprache_staging_chunks") workdir.mkdir(parents=True, exist_ok=True) return str(workdir) def _validateKorpusPath(self): korpus_path = self.config['ch_jugendsprache_input_adapter']['korpus_path'] if not os.path.isdir(korpus_path): raise IOError("Could not read korpus path" + korpus_path) return korpus_path class ArchimobAdapter(UntranscribedMediaSplittingAdapter): """ ArchimobAdapter """ ADAPTERNAME = "Archimob" def __init__(self, config): super(ArchimobAdapter, self).__init__(config=config) self.config = config def _validateKorpusPath(self): korpus_path = self.config['archimob_input_adapter']['korpus_path'] if not os.path.isdir(korpus_path): raise IOError("Could not read korpus path" + korpus_path) return korpus_path def _transcription_pause_tag_symbol(self): symbol = self.config['archimob_input_adapter']['transcription_pause_tag_symbol'] if not symbol: self.logger.warn("No symbol for transcription pause tag configured, falling back to default, which is '@'-Symbol") symbol = '@' return symbol def _transcription_vocal_tag_symbol(self): symbol = self.config['archimob_input_adapter']['transcription_vocal_tag_symbol'] if not symbol: self.logger.warn("No symbol for transcription pause tag configured, falling back to default, which is '#'-Symbol") symbol = '#' return symbol def _validateWorkdir(self): workdir = self.config['global']['workdir'] if not os.path.isdir(workdir): raise IOError("Could not read workdir path" + workdir) workdir = Path(workdir).joinpath("archimob_staging") workdir.mkdir(parents=True, exist_ok=True) return str(workdir) def _determineArchimobFilesToProcess(self): originalFiles = set(self._getAllMediaFilesInBasepath(self._validateKorpusPath(), {".wav"})) originalFiles = self._fixOriginalDatasetFlawsIfNecessary(originalFiles) alreadyStagedFiles = set(self._getAllMediaFilesInBasepath(self._validateWorkdir(), {".wav"})) self.logger.debug("Got {} original archimob files to process".format(len(originalFiles))) return self.determineFilesToConvertToMonoFromGivenLists(alreadyStagedFiles, originalFiles, self.ADAPTERNAME) def toMetamodel(self): self.logger.debug("Archimob V2 Korpus") # convert chunks to mono audio filesToProcess, filesAlreadyProcessed = self._determineArchimobFilesToProcess() filesSuccessfullyProcessed = self.convertMediaFilesToMonoAudio(filesToProcess, self._validateWorkdir(), self.ADAPTERNAME) filesForMediaBundle = [] filesForMediaBundle = filesForMediaBundle + filesSuccessfullyProcessed + filesAlreadyProcessed # add chunks to media session mediaAnnotationbundles = self.createMediaAnnotationBundles(filesForMediaBundle) mediaSession = self.createMediaSession(mediaAnnotationbundles) return mediaSession def createMediaSession(self, bundles): actors = self._createMediaSessionActorsFromBundles(bundles) session = MediaSession(self.ADAPTERNAME, actors, bundles) return session def createMediaAnnotationBundles(self, filesForMediaBundle): allXmlOriginalTranscriptionFiles = self._archimobOriginalTranscriptionFiles(self._validateKorpusPath()) transcriptionsPerSpeaker = self._extract(allXmlOriginalTranscriptionFiles) mediaFilesAndTranscription = self._onlyTranscriptionsWithMediaFilesAndViceVersa(transcriptionsPerSpeaker, filesForMediaBundle) mediaAnnotationBundles = self._createActualMediaAnnotationBundles(mediaFilesAndTranscription) return mediaAnnotationBundles def _fixOriginalDatasetFlawsIfNecessary(self, originalFiles): # As of Archimobe release V2 there are some minor flaws in the data, which are treated sequentially if (self._fixForDuplicateWavs1063Necessary(originalFiles)): originalFiles = self._fixForDuplicateWavs1063(originalFiles) if (self._fixForWrongFilenames1082Necessary(originalFiles)): originalFiles = self._fixForWrongFilenames1082(originalFiles) return originalFiles def _fixForDuplicateWavs1063Necessary(self, originalFiles): # This flaw is simply, that within 1063 there exists another folder 1063 containing all files again existingPathsForDoubled1063 = list( filter(lambda file: os.path.sep + "1063" + os.path.sep + "1063" + os.path.sep in file, originalFiles)) fixNecessary = len(existingPathsForDoubled1063) > 0 self.logger.info("Found {} files of speaker 1063 which are duplicates. They will be ignored".format( len(existingPathsForDoubled1063))) return fixNecessary def _fixForDuplicateWavs1063(self, originalFiles): # fix is simply by removing the files in question from list pathsWithout1063duplicates = list( filter(lambda file: not (os.path.sep + "1063" + os.path.sep + "1063" + os.path.sep in file), originalFiles)) originalFiles = pathsWithout1063duplicates return originalFiles def _fixForWrongFilenames1082Necessary(self, originalFiles): regexForFindingWrongNames = "(^\d{4}_\d)(d\d{4}_.*\.wav)" # like 1082_2d1082_2_TLI_3.wav onlyFilenames = [os.path.basename(filename) for filename in originalFiles] for filename in onlyFilenames: m = re.search(regexForFindingWrongNames, filename) if (not (m is None)): return True return False def _fixForWrongFilenames1082(self, originalFiles): fixedFiles = originalFiles.copy() regexForFindingWrongFullpaths = "(.*\\" + os.path.sep + ")(\d{4}_\d)(d\d{4}_.*\.wav)" # like /home/somebody/files/1082/1082_2d1082_2_TLI_3.wav for filename in originalFiles: m = re.search(regexForFindingWrongFullpaths, filename) if (not (m is None)): newFilename = m.group(1) + m.group(3) self.logger.debug( "Fix 1082: Renaming file {} from {} to {}".format(m.group(2) + m.group(3), filename, newFilename)) try: shutil.move(filename, newFilename) fixedFiles.append(newFilename) except Exception as inst: self.logger.warn( "Could not move file {} to {}, skipping and just removing from usable filenames".format(filename, newFilename), exc_info=inst) fixedFiles.remove(filename) return fixedFiles def _archimobOriginalTranscriptionFiles(self, path): xmlOriginalFiles = list(Path(path).glob("**/*.xml")) self.logger.debug("Found {} original xml files for archimob".format(len(xmlOriginalFiles))) return xmlOriginalFiles def _extract(self, allXmlOriginalTranscriptionFiles): transcriptionsPerSpeaker = [] with concurrent.futures.ThreadPoolExecutor(max_workers=None) as executor: futures = [] for filenumber, file in enumerate(allXmlOriginalTranscriptionFiles): futures.append(executor.submit(self._extractSingleXmlFileThread, file)) for future in as_completed(futures): if (future.result()[0] == False): self.logger.warning("Couldnt extract metadata for file {}, removing from list".format(future.result()[1])) else: transcriptionsPerSpeaker.append( (future.result()[1], future.result()[2])) # tuple of original file and transcription dataframe self.logger.debug("Extracting metadata for speaker finished {}".format(future.result())) self.logger.debug("Finished metadata extraction for all {} xml files".format(len(allXmlOriginalTranscriptionFiles))) return transcriptionsPerSpeaker def _extractSingleXmlFileThread(self, xmlFile): namespaceprefix = "{http://www.tei-c.org/ns/1.0}" try: tree = ET.parse(xmlFile) root = tree.getroot() ch_datacolumns = pd.DataFrame(columns=['Filename', 'transcript']) transcriptionForSpeaker =
pd.DataFrame(columns=ch_datacolumns.columns)
pandas.DataFrame
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso = pd.read_json(v12_iso_json) tm.assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range("20000101", periods=10, freq="H") df_mixed = DataFrame( OrderedDict( float_1=[ -0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536, ], int_1=[ 19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365, ], str_1=[ "78c608f1", "64a99743", "13d2ff52", "ca7f4af2", "97236474", "bde7e214", "1a6bde47", "b1190be5", "7a669144", "8d64d068", ], float_2=[ -0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348, ], str_2=[ "14f04af9", "d085da90", "4bcfac83", "81504caf", "2ffef4a9", "08e2f5c4", "07e1af03", "addbd4a7", "1f6a09ba", "4bfc4d87", ], int_2=[ 86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025, ], ), index=index, ) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype("unicode") df_roundtrip = pd.read_json(df_mixed.to_json(orient="split"), orient="split") tm.assert_frame_equal( df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, by_blocks=True, check_exact=True, ) def test_frame_nonprintable_bytes(self): # GH14256: failing column caused segfaults, if it is not the last one class BinaryThing: def __init__(self, hexed): self.hexed = hexed self.binary = bytes.fromhex(hexed) def __str__(self) -> str: return self.hexed hexed = "574b4454ba8c5eb4f98a8f45" binthing = BinaryThing(hexed) # verify the proper conversion of printable content df_printable = DataFrame({"A": [binthing.hexed]}) assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' # check if non-printable content throws appropriate Exception df_nonprintable = DataFrame({"A": [binthing]}) msg = "Unsupported UTF-8 sequence length when encoding string" with pytest.raises(OverflowError, match=msg): df_nonprintable.to_json() # the same with multiple columns threw segfaults df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) with pytest.raises(OverflowError): df_mixed.to_json() # default_handler should resolve exceptions for non-string types result = df_nonprintable.to_json(default_handler=str) expected = f'{{"A":{{"0":"{hexed}"}}}}' assert result == expected assert ( df_mixed.to_json(default_handler=str) == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' ) def test_label_overflow(self): # GH14256: buffer length not checked when writing label result = pd.DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' assert result == expected def test_series_non_unique_index(self): s = Series(["a", "b"], index=[1, 1]) msg = "Series index must be unique for orient='index'" with pytest.raises(ValueError, match=msg): s.to_json(orient="index") tm.assert_series_equal( s, read_json(s.to_json(orient="split"), orient="split", typ="series") ) unser = read_json(s.to_json(orient="records"), orient="records", typ="series") tm.assert_numpy_array_equal(s.values, unser.values) def test_series_default_orient(self, string_series): assert string_series.to_json() == string_series.to_json(orient="index") @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_simple(self, orient, numpy, string_series): data = string_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = string_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [False, None]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_object(self, orient, numpy, dtype, object_series): data = object_series.to_json(orient=orient) result = pd.read_json( data, typ="series", orient=orient, numpy=numpy, dtype=dtype ) expected = object_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_empty(self, orient, numpy, empty_series): data = empty_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = empty_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) else: expected.index = expected.index.astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series): data = datetime_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = datetime_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [np.float64, np.int]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_numeric(self, orient, numpy, dtype): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) data = s.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = s.copy() if orient in ("values", "records"): expected = expected.reset_index(drop=True) tm.assert_series_equal(result, expected) def test_series_to_json_except(self): s = Series([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): s.to_json(orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", precise_float=True) tm.assert_series_equal(result, s, check_index_type=False) def test_series_with_dtype(self): # GH 21986 s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", dtype=np.int64) expected = Series([4] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (True, Series(["2000-01-01"], dtype="datetime64[ns]")), (False, Series([946684800000])), ], ) def test_series_with_dtype_datetime(self, dtype, expected): s = Series(["2000-01-01"], dtype="datetime64[ns]") data = s.to_json() result = pd.read_json(data, typ="series", dtype=dtype) tm.assert_series_equal(result, expected) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) tm.assert_frame_equal( result, df, check_index_type=False, check_column_type=False ) def test_typ(self): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") result = read_json(s.to_json(), typ=None) tm.assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) def test_path(self, float_frame): with tm.ensure_clean("test.json") as path: for df in [ float_frame, self.intframe, self.tsframe, self.mixed_frame, ]: df.to_json(path) read_json(path) def test_axis_dates(self, datetime_series): # frame json = self.tsframe.to_json() result = read_json(json) tm.assert_frame_equal(result, self.tsframe) # series json = datetime_series.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, datetime_series, check_names=False) assert result.name is None def test_convert_dates(self, datetime_series): # frame df = self.tsframe.copy() df["date"] = Timestamp("20130101") json = df.to_json() result = read_json(json) tm.assert_frame_equal(result, df) df["foo"] = 1.0 json = df.to_json(date_unit="ns") result = read_json(json, convert_dates=False) expected = df.copy() expected["date"] = expected["date"].values.view("i8") expected["foo"] = expected["foo"].astype("int64") tm.assert_frame_equal(result, expected) # series ts = Series(Timestamp("20130101"), index=datetime_series.index) json = ts.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, ts) @pytest.mark.parametrize("date_format", ["epoch", "iso"]) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize( "date_typ", [datetime.date, datetime.datetime, pd.Timestamp] ) def test_date_index_and_values(self, date_format, as_object, date_typ): data = [date_typ(year=2020, month=1, day=1), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) result = ser.to_json(date_format=date_format) if date_format == "epoch": expected = '{"1577836800000":1577836800000,"null":null}' else: expected = ( '{"2020-01-01T00:00:00.000Z":"2020-01-01T00:00:00.000Z","null":null}' ) if as_object: expected = expected.replace("}", ',"a":"a"}') assert result == expected @pytest.mark.parametrize( "infer_word", [ "trade_time", "date", "datetime", "sold_at", "modified", "timestamp", "timestamps", ], ) def test_convert_dates_infer(self, infer_word): # GH10747 from pandas.io.json import dumps data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}] expected = DataFrame( [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word] ) result = read_json(dumps(data))[["id", infer_word]] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_frame(self, date, date_unit): df = self.tsframe.copy() df["date"] = Timestamp(date) df.iloc[1, df.columns.get_loc("date")] = pd.NaT df.iloc[5, df.columns.get_loc("date")] = pd.NaT if date_unit: json = df.to_json(date_format="iso", date_unit=date_unit) else: json = df.to_json(date_format="iso") result = read_json(json) expected = df.copy() expected.index = expected.index.tz_localize("UTC") expected["date"] = expected["date"].dt.tz_localize("UTC") tm.assert_frame_equal(result, expected) def test_date_format_frame_raises(self): df = self.tsframe.copy() msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): df.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_series(self, date, date_unit, datetime_series): ts = Series(Timestamp(date), index=datetime_series.index) ts.iloc[1] = pd.NaT ts.iloc[5] = pd.NaT if date_unit: json = ts.to_json(date_format="iso", date_unit=date_unit) else: json = ts.to_json(date_format="iso") result = read_json(json, typ="series") expected = ts.copy() expected.index = expected.index.tz_localize("UTC") expected = expected.dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_date_format_series_raises(self, datetime_series): ts = Series(Timestamp("20130101 20:43:42.123"), index=datetime_series.index) msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): ts.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_date_unit(self, unit): df = self.tsframe.copy() df["date"] = Timestamp("20130101 20:43:42") dl = df.columns.get_loc("date") df.iloc[1, dl] = Timestamp("19710101 20:43:42") df.iloc[2, dl] = Timestamp("21460101 20:43:42") df.iloc[4, dl] = pd.NaT json = df.to_json(date_format="epoch", date_unit=unit) # force date unit result = read_json(json, date_unit=unit) tm.assert_frame_equal(result, df) # detect date unit result = read_json(json, date_unit=None) tm.assert_frame_equal(result, df) def test_weird_nested_json(self): # this used to core dump the parser s = r"""{ "status": "success", "data": { "posts": [ { "id": 1, "title": "A blog post", "body": "Some useful content" }, { "id": 2, "title": "Another blog post", "body": "More content" } ] } }""" read_json(s) def test_doc_example(self): dfj2 = DataFrame(np.random.randn(5, 2), columns=list("AB")) dfj2["date"] = Timestamp("20130101") dfj2["ints"] = range(5) dfj2["bools"] = True dfj2.index = pd.date_range("20130101", periods=5) json = dfj2.to_json() result =
read_json(json, dtype={"ints": np.int64, "bools": np.bool_})
pandas.read_json
import pytest import d6tflow import sklearn, sklearn.datasets, sklearn.svm, sklearn.linear_model import pandas as pd import numpy as np # define workflow class TaskGetData(d6tflow.tasks.TaskPqPandas): # save dataframe as parquet def run(self): ds = sklearn.datasets.load_breast_cancer() df_train =
pd.DataFrame(ds.data, columns=ds.feature_names)
pandas.DataFrame
from datetime import datetime from decimal import Decimal import numpy as np import pytest import pytz from pandas.compat import is_platform_little_endian from pandas import CategoricalIndex, DataFrame, Index, Interval, RangeIndex, Series import pandas._testing as tm class TestFromRecords: def test_from_records_with_datetimes(self): # this may fail on certain platforms because of a numpy issue # related GH#6140 if not is_platform_little_endian(): pytest.skip("known failure of test on non-little endian") # construction with a null in a recarray # GH#6140 expected = DataFrame({"EXPIRY": [datetime(2005, 3, 1, 0, 0), None]}) arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [("EXPIRY", "<M8[ns]")] try: recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) except (ValueError): pytest.skip("known failure of numpy rec array creation") result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) # coercion should work too arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [("EXPIRY", "<M8[m]")] recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) def test_from_records_sequencelike(self): df = DataFrame( { "A": np.array(np.random.randn(6), dtype=np.float64), "A1": np.array(np.random.randn(6), dtype=np.float64), "B": np.array(np.arange(6), dtype=np.int64), "C": ["foo"] * 6, "D": np.array([True, False] * 3, dtype=bool), "E": np.array(np.random.randn(6), dtype=np.float32), "E1": np.array(np.random.randn(6), dtype=np.float32), "F": np.array(np.arange(6), dtype=np.int32), } ) # this is actually tricky to create the recordlike arrays and # have the dtypes be intact blocks = df._to_dict_of_blocks() tuples = [] columns = [] dtypes = [] for dtype, b in blocks.items(): columns.extend(b.columns) dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns]) for i in range(len(df.index)): tup = [] for _, b in blocks.items(): tup.extend(b.iloc[i].values) tuples.append(tuple(tup)) recarray = np.array(tuples, dtype=dtypes).view(np.recarray) recarray2 = df.to_records() lists = [list(x) for x in tuples] # tuples (lose the dtype info) result = DataFrame.from_records(tuples, columns=columns).reindex( columns=df.columns ) # created recarray and with to_records recarray (have dtype info) result2 = DataFrame.from_records(recarray, columns=columns).reindex( columns=df.columns ) result3 = DataFrame.from_records(recarray2, columns=columns).reindex( columns=df.columns ) # list of tupels (no dtype info) result4 = DataFrame.from_records(lists, columns=columns).reindex( columns=df.columns ) tm.assert_frame_equal(result, df, check_dtype=False) tm.assert_frame_equal(result2, df) tm.assert_frame_equal(result3, df) tm.assert_frame_equal(result4, df, check_dtype=False) # tuples is in the order of the columns result = DataFrame.from_records(tuples) tm.assert_index_equal(result.columns, RangeIndex(8)) # test exclude parameter & we are casting the results here (as we don't # have dtype info to recover) columns_to_test = [columns.index("C"), columns.index("E1")] exclude = list(set(range(8)) - set(columns_to_test)) result = DataFrame.from_records(tuples, exclude=exclude) result.columns = [columns[i] for i in sorted(columns_to_test)] tm.assert_series_equal(result["C"], df["C"]) tm.assert_series_equal(result["E1"], df["E1"].astype("float64")) # empty case result = DataFrame.from_records([], columns=["foo", "bar", "baz"]) assert len(result) == 0 tm.assert_index_equal(result.columns, Index(["foo", "bar", "baz"])) result = DataFrame.from_records([]) assert len(result) == 0 assert len(result.columns) == 0 def test_from_records_dictlike(self): # test the dict methods df = DataFrame( { "A": np.array(np.random.randn(6), dtype=np.float64), "A1": np.array(np.random.randn(6), dtype=np.float64), "B": np.array(np.arange(6), dtype=np.int64), "C": ["foo"] * 6, "D": np.array([True, False] * 3, dtype=bool), "E": np.array(np.random.randn(6), dtype=np.float32), "E1": np.array(np.random.randn(6), dtype=np.float32), "F": np.array(np.arange(6), dtype=np.int32), } ) # columns is in a different order here than the actual items iterated # from the dict blocks = df._to_dict_of_blocks() columns = [] for dtype, b in blocks.items(): columns.extend(b.columns) asdict = {x: y for x, y in df.items()} asdict2 = {x: y.values for x, y in df.items()} # dict of series & dict of ndarrays (have dtype info) results = [] results.append(DataFrame.from_records(asdict).reindex(columns=df.columns)) results.append( DataFrame.from_records(asdict, columns=columns).reindex(columns=df.columns) ) results.append( DataFrame.from_records(asdict2, columns=columns).reindex(columns=df.columns) ) for r in results: tm.assert_frame_equal(r, df) def test_from_records_with_index_data(self): df = DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) data = np.random.randn(10) df1 = DataFrame.from_records(df, index=data) tm.assert_index_equal(df1.index, Index(data)) def test_from_records_bad_index_column(self): df = DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) # should pass df1 = DataFrame.from_records(df, index=["C"]) tm.assert_index_equal(df1.index, Index(df.C)) df1 = DataFrame.from_records(df, index="C") tm.assert_index_equal(df1.index, Index(df.C)) # should fail msg = r"Shape of passed values is \(10, 3\), indices imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame.from_records(df, index=[2]) with pytest.raises(KeyError, match=r"^2$"): DataFrame.from_records(df, index=2) def test_from_records_non_tuple(self): class Record: def __init__(self, *args): self.args = args def __getitem__(self, i): return self.args[i] def __iter__(self): return iter(self.args) recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)] tups = [tuple(rec) for rec in recs] result = DataFrame.from_records(recs) expected = DataFrame.from_records(tups) tm.assert_frame_equal(result, expected) def test_from_records_len0_with_columns(self): # GH#2633 result = DataFrame.from_records([], index="foo", columns=["foo", "bar"]) expected = Index(["bar"]) assert len(result) == 0 assert result.index.name == "foo" tm.assert_index_equal(result.columns, expected) def test_from_records_series_list_dict(self): # GH#27358 expected = DataFrame([[{"a": 1, "b": 2}, {"a": 3, "b": 4}]]).T data = Series([[{"a": 1, "b": 2}], [{"a": 3, "b": 4}]]) result = DataFrame.from_records(data) tm.assert_frame_equal(result, expected) def test_from_records_series_categorical_index(self): # GH#32805 index = CategoricalIndex( [Interval(-20, -10), Interval(-10, 0), Interval(0, 10)] ) series_of_dicts = Series([{"a": 1}, {"a": 2}, {"b": 3}], index=index) frame = DataFrame.from_records(series_of_dicts, index=index) expected = DataFrame( {"a": [1, 2, np.NaN], "b": [np.NaN, np.NaN, 3]}, index=index ) tm.assert_frame_equal(frame, expected) def test_frame_from_records_utc(self): rec = {"datum": 1.5, "begin_time": datetime(2006, 4, 27, tzinfo=pytz.utc)} # it works DataFrame.from_records([rec], index="begin_time") def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=("i4,f4,a10")) arr[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) tm.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2)) # wrong length msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame.from_records(arr, index=index[:-1]) indexed_frame = DataFrame.from_records(arr, index="f1") # what to do? records = indexed_frame.to_records() assert len(records.dtype.names) == 3 records = indexed_frame.to_records(index=False) assert len(records.dtype.names) == 2 assert "index" not in records.dtype.names def test_from_records_nones(self): tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)] df = DataFrame.from_records(tuples, columns=["a", "b", "c", "d"]) assert np.isnan(df["c"][0]) def test_from_records_iterator(self): arr = np.array( [(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5.0, 5.0, 6, 6), (7.0, 7.0, 8, 8)], dtype=[ ("x", np.float64), ("u", np.float32), ("y", np.int64), ("z", np.int32), ], ) df = DataFrame.from_records(iter(arr), nrows=2) xp = DataFrame( { "x": np.array([1.0, 3.0], dtype=np.float64), "u": np.array([1.0, 3.0], dtype=np.float32), "y": np.array([2, 4], dtype=np.int64), "z": np.array([2, 4], dtype=np.int32), } ) tm.assert_frame_equal(df.reindex_like(xp), xp) # no dtypes specified here, so just compare with the default arr = [(1.0, 2), (3.0, 4), (5.0, 6), (7.0, 8)] df = DataFrame.from_records(iter(arr), columns=["x", "y"], nrows=2) tm.assert_frame_equal(df, xp.reindex(columns=["x", "y"]), check_dtype=False) def test_from_records_tuples_generator(self): def tuple_generator(length): for i in range(length): letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" yield (i, letters[i % len(letters)], i / length) columns_names = ["Integer", "String", "Float"] columns = [ [i[j] for i in tuple_generator(10)] for j in range(len(columns_names)) ] data = {"Integer": columns[0], "String": columns[1], "Float": columns[2]} expected = DataFrame(data, columns=columns_names) generator = tuple_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_lists_generator(self): def list_generator(length): for i in range(length): letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" yield [i, letters[i % len(letters)], i / length] columns_names = ["Integer", "String", "Float"] columns = [ [i[j] for i in list_generator(10)] for j in range(len(columns_names)) ] data = {"Integer": columns[0], "String": columns[1], "Float": columns[2]} expected = DataFrame(data, columns=columns_names) generator = list_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_columns_not_modified(self): tuples = [(1, 2, 3), (1, 2, 3), (2, 5, 3)] columns = ["a", "b", "c"] original_columns = list(columns) df = DataFrame.from_records(tuples, columns=columns, index="a") # noqa assert columns == original_columns def test_from_records_decimal(self): tuples = [(Decimal("1.5"),), (Decimal("2.5"),), (None,)] df = DataFrame.from_records(tuples, columns=["a"]) assert df["a"].dtype == object df = DataFrame.from_records(tuples, columns=["a"], coerce_float=True) assert df["a"].dtype == np.float64 assert np.isnan(df["a"].values[-1]) def test_from_records_duplicates(self): result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)], columns=["a", "b", "a"]) expected = DataFrame([(1, 2, 3), (4, 5, 6)], columns=["a", "b", "a"]) tm.assert_frame_equal(result, expected) def test_from_records_set_index_name(self): def create_dict(order_id): return { "order_id": order_id, "quantity": np.random.randint(1, 10), "price": np.random.randint(1, 10), } documents = [create_dict(i) for i in range(10)] # demo missing data documents.append({"order_id": 10, "quantity": 5}) result = DataFrame.from_records(documents, index="order_id") assert result.index.name == "order_id" # MultiIndex result = DataFrame.from_records(documents, index=["order_id", "quantity"]) assert result.index.names == ("order_id", "quantity") def test_from_records_misc_brokenness(self): # GH#2179 data = {1: ["foo"], 2: ["bar"]} result = DataFrame.from_records(data, columns=["a", "b"]) exp = DataFrame(data, columns=["a", "b"])
tm.assert_frame_equal(result, exp)
pandas._testing.assert_frame_equal
from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd import numpy as np import gensim import gensim.downloader as api import pickle def dummy_fun(doc): return doc ''' Abstract class for that wraps around vectorizers. ''' class VectorizerClassBase(): model = None default_pickle_path = None def print_debug_info(self): raise NotImplementedError def load(self, pickle_path=None): ''' Loads model from pickle file. :param pickle_path: File to load from. If None, loads from default path. ''' file_path = self.default_pickle_path if pickle_path is None else pickle_path self.model = pickle.load(open(file_path, 'rb')) def save(self, pickle_path=None): ''' Saves model to pickle file :param pickle_path: File to save to. If None, saves to default path. ''' file_path = self.default_pickle_path if pickle_path is None else pickle_path pickle.dump(self.model, open(file_path, 'wb+')) def fit(self, df, column_to_fit_on='clean_text'): ''' Fits vectorizer on dataframe df. :param df: Pandas Dataframe containing examples. column_to_fit_on: name of column in df containing examples. ''' raise NotImplementedError def run(self, df, column_to_run_on='clean_text',label_columns=[]): ''' Runs vectorizer on dataframe df. :param df: Pandas Dataframe containing examples. :param column_to_run_on: name of column in df containing examples. :param label_columns: names of column containing human labels to copy into output df. If None, does nothing. :return: dataframe containing embedded data. ''' raise NotImplementedError class Word2VecVectorizerClass(VectorizerClassBase): pickle_path = "./saved_vectorizers/Word2Vec_vectorizer.pkl" words_found = 0 words_not_found = 0 words_not_found_list = [] # TODO(Renu): figure out if model can pickled def load(self): raise NotImplementedError # TODO(Renu): figure out if model can pickled def save(self): raise NotImplementedError def get_avg_word2vec(self,doc): ''' Returns average of word2vec embeddings for document doc. :param doc: list of words in document :return: vector holding average of word2vec embeddings ''' word_vectors = [] for word in doc: try: vector = self.model.get_vector(word) word_vectors.append(vector) self.words_found += 1 except KeyError: self.words_not_found += 1 self.words_not_found_list.append(word) return np.mean(word_vectors, axis=0) def fit(self, df, column_to_fit_on='clean_text'): path = api.load('word2vec-google-news-300', return_path=True) self.model = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) def run(self, df, column_to_run_on='clean_text', label_columns=[]): # reinitialize counters self.words_found = 0 self.words_not_found = 0 self.words_not_found_list = [] list_of_averages = df[column_to_run_on].apply(lambda doc: self.get_avg_word2vec(doc)).to_list() final_df = pd.DataFrame(list_of_averages) for label_column in label_columns: final_df[label_column] = df[label_column].to_list() return final_df def print_debug_info(self): print("words not found ", self.words_not_found) print("words found ", self.words_found) print("% of words not found ", (self.words_not_found / (self.words_not_found + self.words_found)) * 100) class TfIdfVectorizerClass(VectorizerClassBase): pickle_path = "./saved_vectorizers/TfIdf_vectorizer.pkl" def fit(self, df, column_to_fit_on='clean_text'): self.model = TfidfVectorizer( analyzer='word', tokenizer=dummy_fun, preprocessor=dummy_fun, token_pattern=None, min_df=5) docs = df[column_to_fit_on].to_list() self.model.fit(docs) def run(self, df, column_to_run_on='clean_text', label_columns=[]): docs = df[column_to_run_on].to_list() sparse_vectors = self.model.transform(docs) flattened_vectors = [sparse_vector.toarray().flatten() for sparse_vector in sparse_vectors] final_df =
pd.DataFrame(flattened_vectors)
pandas.DataFrame
import numpy as np import pandas as pd import pytest from etna.datasets.tsdataset import TSDataset from etna.models.linear import ElasticMultiSegmentModel from etna.models.linear import ElasticPerSegmentModel from etna.models.linear import LinearMultiSegmentModel from etna.models.linear import LinearPerSegmentModel from etna.transforms.datetime_flags import DateFlagsTransform from etna.transforms.lags import LagTransform @pytest.fixture def ts_with_categoricals(random_seed) -> TSDataset: periods = 100 df1 = pd.DataFrame({"timestamp": pd.date_range("2020-01-01", periods=periods)}) df1["segment"] = "segment_1" df1["target"] = np.random.uniform(10, 20, size=periods) df1["cat_feature"] = "x" df2 = pd.DataFrame({"timestamp": pd.date_range("2020-01-01", periods=periods)}) df2["segment"] = "segment_2" df2["target"] = np.random.uniform(-15, 5, size=periods) df1["cat_feature"] = "y" df = pd.concat([df1, df2]).reset_index(drop=True) df = TSDataset.to_dataset(df) ts = TSDataset(df, freq="D") return ts def linear_segments_by_parameters(alpha_values, intercept_values): dates = pd.date_range(start="2020-02-01", freq="D", periods=210) x = np.arange(210) train, test = [], [] for i in range(3): train.append(pd.DataFrame()) test.append(pd.DataFrame()) train[i]["timestamp"], test[i]["timestamp"] = dates[:-7], dates[-7:] train[i]["segment"], test[i]["segment"] = f"segment_{i}", f"segment_{i}" alpha = alpha_values[i] intercept = intercept_values[i] target = x * alpha + intercept train[i]["target"], test[i]["target"] = target[:-7], target[-7:] train_df_all =
pd.concat(train, ignore_index=True)
pandas.concat
from __future__ import division # brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) from ..ted_exe import Ted test = {} class TestTed(unittest.TestCase): """ Unit tests for TED model. """ print("ted unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for ted unit tests. :return: """ pass def tearDown(self): """ Teardown routine for ted unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_ted_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty ted object ted_empty = Ted(df_empty, df_empty) return ted_empty def test_daily_app_flag(self): """ :description generates a daily flag to denote whether a pesticide is applied that day or not (1 - applied, 0 - anot applied) :param num_apps; number of applications :param app_interval; number of days between applications :NOTE in TED model there are two application scenarios per simulation (one for a min/max exposure scenario) (this is why the parameters are passed in) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='bool') result = pd.Series([[]], dtype='bool') expected_results = [[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]] try: # internal model constants ted_empty.num_simulation_days = 366 # input varialbles that change per simulation ted_empty.num_apps_min = pd.Series([3, 5, 1]) ted_empty.app_interval_min = pd.Series([3, 7, 1]) for i in range (3): result[i] = ted_empty.daily_app_flag(ted_empty.num_apps_min[i], ted_empty.app_interval_min[i]) np.array_equal(result[i],expected_results[i]) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_drift_parameters(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_method; application method (aerial/ground/airblast) :param boom_hgt; height of boom (low/high) - 'NA' if not ground application :param drop_size; droplet spectrum for application (see list below for aerial/ground - 'NA' if airblast) :param param_a (result[i][0]; parameter a for spray drift distance calculation :param param_b (result[i][1]; parameter b for spray drift distance calculation :param param_c (result[i][2]; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series(9*[[0.,0.,0.]], dtype='float') expected_results = [[0.0292,0.822,0.6539],[0.043,1.03,0.5],[0.0721,1.0977,0.4999],[0.1014,1.1344,0.4999], [1.0063,0.9998,1.0193],[5.5513,0.8523,1.0079],[0.1913,1.2366,1.0552], [2.4154,0.9077,1.0128],[0.0351,2.4586,0.4763]] try: # input variable that change per simulation ted_empty.app_method_min = pd.Series(['aerial','aerial','aerial','aerial','ground','ground','ground','ground','airblast']) ted_empty.boom_hgt_min = pd.Series(['','','','','low','low','high','high','']) ted_empty.droplet_spec_min = pd.Series(['very_fine_to_fine','fine_to_medium','medium_to_coarse','coarse_to_very_coarse', 'very_fine_to_fine','fine_to_medium-coarse','very_fine_to_fine','fine_to_medium-coarse','']) for i in range (9): # test that the nine combinations are accessed result[i][0], result[i][1], result[i][2] = ted_empty.set_drift_parameters(ted_empty.app_method_min[i], ted_empty.boom_hgt_min[i], ted_empty.droplet_spec_min[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range (9): tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_drift_distance_calc(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_rate_frac; fraction of active ingredient application rate equivalent to the health threshold of concern :param param_a; parameter a for spray drift distance calculation :param param_b; parameter b for spray drift distance calculation :param param_c; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [302.050738, 11.484378, 0.0] try: # internal model constants ted_empty.max_distance_from_source = 1000. # input variable that is internally specified from among options param_a = pd.Series([0.0292, 0.1913, 0.0351], dtype='float') param_b = pd.Series([0.822, 1.2366, 2.4586], dtype='float') param_c = pd.Series([0.6539, 1.0522, 0.4763], dtype='float') # internally calculated variables app_rate_frac = pd.Series([0.1,0.25,0.88], dtype='float') for i in range(3): result[i] = ted_empty.drift_distance_calc(app_rate_frac[i], param_a[i], param_b[i], param_c[i], ted_empty.max_distance_from_source) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ :description unittest for function conc_timestep: :param conc_ini; initial concentration for day (actually previous day concentration) :param half_life; halflife of pesiticde representing either foliar dissipation halflife or aerobic soil metabolism halflife (days) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [9.803896e-4, 0.106066, 1.220703e-3] try: # input variable that is internally specified from among options half_life = pd.Series([35., 2., .1]) # internally calculated variables conc_ini = pd.Series([1.e-3, 0.15, 1.25]) result = ted_empty.conc_timestep(conc_ini, half_life) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_canopy_air(self): """ :description calculates initial (1st application day) air concentration of pesticide within plant canopy (ug/mL) :param application rate; active ingredient application rate (lbs a.i./acre) :param mass_pest; mass of pesticide on treated field (mg) :param volume_air; volume of air in 1 hectare to a height equal to the height of the crop canopy :param biotransfer_factor; the volume_based biotransfer factor; function of Henry's las constant and Log Kow NOTE: this represents Eq 24 (and supporting eqs 25,26,27) of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [1.152526e-7, 1.281910e-5, 7.925148e-8] try: # internal model constants ted_empty.hectare_to_acre = 2.47105 ted_empty.gms_to_mg = 1000. ted_empty.lbs_to_gms = 453.592 ted_empty.crop_hgt = 1. #m ted_empty.hectare_area = 10000. #m2 ted_empty.m3_to_liters = 1000. ted_empty.mass_plant = 25000. # kg/hectare ted_empty.density_plant = 0.77 #kg/L # input variables that change per simulation ted_empty.log_kow = pd.Series([2., 4., 6.], dtype='float') ted_empty.log_unitless_hlc = pd.Series([-5., -3., -4.], dtype='float') ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre for i in range(3): #let's do 3 iterations result[i] = ted_empty.conc_initial_canopy_air(i, ted_empty.app_rate_min[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_soil_h2o(self): """ :description calculates initial (1st application day) concentration in soil pore water or surface puddles(ug/L) :param application rate; active ingredient application rate (lbs a.i./acre) :param soil_depth :param soil_bulk_density; kg/L :param porosity; soil porosity :param frac_org_cont_soil; fraction organic carbon in soil :param app_rate_conv; conversion factor used to convert units of application rate (lbs a.i./acre) to (ug a.i./mL) :NOTE this represents Eq 3 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' (the depth of water in this equation is assumed to be 0.0 and therefore not included here) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [5.067739e-3, 1.828522, 6.13194634] try: # internal model constants ted_empty.app_rate_conv1 = 11.2 ted_empty.soil_depth = 2.6 # cm ted_empty.soil_porosity = 0.35 ted_empty.soil_bulk_density = 1.5 # kg/L ted_empty.soil_foc = 0.015 ted_empty.h2o_depth_soil = 0.0 ted_empty.h2o_depth_puddles = 1.3 # internally specified variable ted_empty.water_type = pd.Series(["puddles", "pore_water", "puddles"]) # input variables that change per simulation ted_empty.koc = pd.Series([1.e-3, 0.15, 1.25]) ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre for i in range(3): #let's do 3 iterations result[i] = ted_empty.conc_initial_soil_h2o(i, ted_empty.app_rate_min[i], ted_empty.water_type[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_plant(self): """ :description calculates initial (1st application day) dietary based EEC (residue concentration) from pesticide application (mg/kg-diet for food items including short/tall grass, broadleaf plants, seeds/fruit/pods, and above ground arthropods) :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [1.5e-2, 22.5, 300.] try: # input variables that change per simulation ted_empty.food_multiplier = pd.Series([15., 150., 240.]) ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre result = ted_empty.conc_initial_plant(ted_empty.app_rate_min, ted_empty.food_multiplier) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_dietary_intake(self): """ :description generates pesticide intake via consumption of diet containing pesticide for animals (mammals, birds, amphibians, reptiles) :param a1; coefficient of allometric expression :param b1; exponent of allometric expression :param body_wgt; body weight of species (g) :param frac_h2o; fraction of water in food item # this represents Eqs 6 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [8.050355, 3.507997, 64.92055] try: # internally specified parameters a1 = pd.Series([.398, .013, .621], dtype='float') b1 = pd.Series([.850, .773, .564], dtype='float') # variables from external database body_wgt = pd.Series([10., 120., 450.], dtype='float') frac_h2o = pd.Series([0.65, 0.85, 0.7], dtype='float') result = ted_empty.animal_dietary_intake(a1, b1, body_wgt, frac_h2o) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_dietary_dose(self): """ :description generates pesticide dietary-based dose for animals (mammals, birds, amphibians, reptiles) :param body_wgt; body weight of species (g) :param frac_h2o; fraction of water in food item :param food_intake_rate; ingestion rate of food item (g/day-ww) :param food_pest_conc; pesticide concentration in food item (mg a.i./kg) # this represents Eqs 5 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [3.e-4, 3.45e-2, 4.5] try: # variables from external database body_wgt = pd.Series([10., 120., 450.], dtype='float') # internally calculated variables food_intake_rate = pd.Series([3., 12., 45.], dtype='float') food_pest_conc = pd.Series([1.e-3, 3.45e-1, 4.50e+1], dtype='float') result = ted_empty.animal_dietary_dose(body_wgt, food_intake_rate, food_pest_conc) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_plant_timeseries(self): """ :description generates annual timeseries of daily pesticide residue concentration (EECs) for a food item :param i; simulation number/index :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :param daily_flag; daily flag denoting if pesticide is applied (0 - not applied, 1 - applied) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application #expected results generated by running OPP spreadsheet with appropriate inputs :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [[2.700000E+00,2.578072E+00,2.461651E+00,5.050487E+00,4.822415E+00,4.604642E+00,7.096704E+00, 6.776228E+00,6.470225E+00,6.178040E+00,5.899049E+00,5.632658E+00,5.378296E+00,5.135421E+00, 4.903513E+00,4.682078E+00,4.470643E+00,4.268756E+00,4.075986E+00,3.891921E+00,3.716168E+00, 3.548352E+00,3.388114E+00,3.235112E+00,3.089020E+00,2.949525E+00,2.816329E+00,2.689148E+00, 2.567710E+00,2.451757E+00,2.341039E+00,2.235322E+00,2.134378E+00,2.037993E+00,1.945961E+00, 1.858084E+00,1.774176E+00,1.694057E+00,1.617556E+00,1.544510E+00,1.474762E+00,1.408164E+00, 1.344574E+00,1.283855E+00,1.225878E+00,1.170520E+00,1.117661E+00,1.067189E+00,1.018997E+00, 9.729803E-01,9.290420E-01,8.870880E-01,8.470285E-01,8.087781E-01,7.722549E-01,7.373812E-01, 7.040822E-01,6.722870E-01,6.419276E-01,6.129392E-01,5.852598E-01,5.588304E-01,5.335945E-01, 5.094983E-01,4.864901E-01,4.645210E-01,4.435440E-01,4.235143E-01,4.043890E-01,3.861275E-01, 3.686906E-01,3.520411E-01,3.361435E-01,3.209638E-01,3.064696E-01,2.926299E-01,2.794152E-01, 2.667973E-01,2.547491E-01,2.432451E-01,2.322605E-01,2.217720E-01,2.117571E-01,2.021945E-01, 1.930637E-01,1.843453E-01,1.760206E-01,1.680717E-01,1.604819E-01,1.532348E-01,1.463150E-01, 1.397076E-01,1.333986E-01,1.273746E-01,1.216225E-01,1.161303E-01,1.108860E-01,1.058786E-01, 1.010973E-01,9.653187E-02,9.217264E-02,8.801028E-02,8.403587E-02,8.024095E-02,7.661739E-02, 7.315748E-02,6.985380E-02,6.669932E-02,6.368728E-02,6.081127E-02,5.806513E-02,5.544300E-02, 5.293928E-02,5.054863E-02,4.826593E-02,4.608632E-02,4.400514E-02,4.201794E-02,4.012047E-02, 3.830870E-02,3.657874E-02,3.492690E-02,3.334966E-02,3.184364E-02,3.040563E-02,2.903256E-02, 2.772150E-02,2.646964E-02,2.527431E-02,2.413297E-02,2.304316E-02,2.200257E-02,2.100897E-02, 2.006024E-02,1.915435E-02,1.828937E-02,1.746345E-02,1.667483E-02,1.592182E-02,1.520282E-02, 1.451628E-02,1.386075E-02,1.323482E-02,1.263716E-02,1.206648E-02,1.152158E-02,1.100128E-02, 1.050448E-02,1.003012E-02,9.577174E-03,9.144684E-03,8.731725E-03,8.337415E-03,7.960910E-03, 7.601408E-03,7.258141E-03,6.930375E-03,6.617410E-03,6.318579E-03,6.033242E-03,5.760790E-03, 5.500642E-03,5.252242E-03,5.015059E-03,4.788587E-03,4.572342E-03,4.365863E-03,4.168707E-03, 3.980455E-03,3.800704E-03,3.629070E-03,3.465187E-03,3.308705E-03,3.159289E-03,3.016621E-03, 2.880395E-03,2.750321E-03,2.626121E-03,2.507530E-03,2.394294E-03,2.286171E-03,2.182931E-03, 2.084354E-03,1.990228E-03,1.900352E-03,1.814535E-03,1.732594E-03,1.654353E-03,1.579645E-03, 1.508310E-03,1.440198E-03,1.375161E-03,1.313061E-03,1.253765E-03,1.197147E-03,1.143086E-03, 1.091466E-03,1.042177E-03,9.951138E-04,9.501760E-04,9.072676E-04,8.662969E-04,8.271763E-04, 7.898223E-04,7.541552E-04,7.200988E-04,6.875803E-04,6.565303E-04,6.268824E-04,5.985734E-04, 5.715428E-04,5.457328E-04,5.210884E-04,4.975569E-04,4.750880E-04,4.536338E-04,4.331484E-04, 4.135881E-04,3.949112E-04,3.770776E-04,3.600494E-04,3.437901E-04,3.282651E-04,3.134412E-04, 2.992867E-04,2.857714E-04,2.728664E-04,2.605442E-04,2.487784E-04,2.375440E-04,2.268169E-04, 2.165742E-04,2.067941E-04,1.974556E-04,1.885388E-04,1.800247E-04,1.718951E-04,1.641326E-04, 1.567206E-04,1.496433E-04,1.428857E-04,1.364332E-04,1.302721E-04,1.243892E-04,1.187720E-04, 1.134085E-04,1.082871E-04,1.033970E-04,9.872779E-05,9.426940E-05,9.001235E-05,8.594753E-05, 8.206628E-05,7.836030E-05,7.482167E-05,7.144285E-05,6.821660E-05,6.513605E-05,6.219461E-05, 5.938600E-05,5.670423E-05,5.414355E-05,5.169852E-05,4.936390E-05,4.713470E-05,4.500617E-05, 4.297377E-05,4.103314E-05,3.918015E-05,3.741084E-05,3.572142E-05,3.410830E-05,3.256803E-05, 3.109731E-05,2.969300E-05,2.835211E-05,2.707178E-05,2.584926E-05,2.468195E-05,2.356735E-05, 2.250309E-05,2.148688E-05,2.051657E-05,1.959007E-05,1.870542E-05,1.786071E-05,1.705415E-05, 1.628401E-05,1.554865E-05,1.484650E-05,1.417606E-05,1.353589E-05,1.292463E-05,1.234097E-05, 1.178368E-05,1.125154E-05,1.074344E-05,1.025829E-05,9.795037E-06,9.352709E-06,8.930356E-06, 8.527075E-06,8.142006E-06,7.774326E-06,7.423250E-06,7.088028E-06,6.767944E-06,6.462315E-06, 6.170487E-06,5.891838E-06,5.625772E-06,5.371721E-06,5.129143E-06,4.897519E-06,4.676355E-06, 4.465178E-06,4.263538E-06,4.071003E-06,3.887163E-06,3.711625E-06,3.544014E-06,3.383972E-06, 3.231157E-06,3.085243E-06,2.945919E-06,2.812886E-06,2.685860E-06,2.564571E-06,2.448759E-06, 2.338177E-06,2.232589E-06,2.131769E-06,2.035502E-06,1.943582E-06,1.855813E-06,1.772007E-06, 1.691986E-06,1.615579E-06,1.542622E-06,1.472959E-06,1.406443E-06,1.342930E-06,1.282286E-06, 1.224380E-06,1.169089E-06,1.116294E-06,1.065884E-06,1.017751E-06,9.717908E-07,9.279063E-07, 8.860035E-07,8.459930E-07,8.077893E-07,7.713109E-07,7.364797E-07,7.032215E-07,6.714651E-07, 6.411428E-07,6.121898E-07,5.845443E-07,5.581472E-07,5.329422E-07,5.088754E-07,4.858954E-07, 4.639531E-07,4.430018E-07], [5.500000E+01,5.349602E+01,5.203317E+01,5.061032E+01,4.922638E+01,4.788028E+01,4.657099E+01, 1.002975E+02,9.755487E+01,9.488722E+01,9.229253E+01,8.976878E+01,8.731405E+01,8.492644E+01, 1.376041E+02,1.338413E+02,1.301814E+02,1.266216E+02,1.231591E+02,1.197913E+02,1.165156E+02, 1.683295E+02,1.637265E+02,1.592494E+02,1.548947E+02,1.506591E+02,1.465394E+02,1.425322E+02, 1.936347E+02,1.883397E+02,1.831896E+02,1.781802E+02,1.733079E+02,1.685688E+02,1.639593E+02, 1.594758E+02,1.551149E+02,1.508733E+02,1.467476E+02,1.427348E+02,1.388317E+02,1.350354E+02, 1.313428E+02,1.277512E+02,1.242579E+02,1.208600E+02,1.175551E+02,1.143406E+02,1.112139E+02, 1.081728E+02,1.052148E+02,1.023377E+02,9.953925E+01,9.681734E+01,9.416987E+01,9.159479E+01, 8.909012E+01,8.665395E+01,8.428439E+01,8.197963E+01,7.973789E+01,7.755746E+01,7.543664E+01, 7.337382E+01,7.136741E+01,6.941587E+01,6.751769E+01,6.567141E+01,6.387562E+01,6.212894E+01, 6.043002E+01,5.877756E+01,5.717028E+01,5.560696E+01,5.408638E+01,5.260739E+01,5.116884E+01, 4.976962E+01,4.840867E+01,4.708493E+01,4.579739E+01,4.454506E+01,4.332697E+01,4.214220E+01, 4.098981E+01,3.986895E+01,3.877873E+01,3.771832E+01,3.668691E+01,3.568371E+01,3.470793E+01, 3.375884E+01,3.283571E+01,3.193781E+01,3.106447E+01,3.021501E+01,2.938878E+01,2.858514E+01, 2.780348E+01,2.704319E+01,2.630369E+01,2.558442E+01,2.488481E+01,2.420434E+01,2.354247E+01, 2.289870E+01,2.227253E+01,2.166349E+01,2.107110E+01,2.049491E+01,1.993447E+01,1.938936E+01, 1.885916E+01,1.834346E+01,1.784185E+01,1.735397E+01,1.687942E+01,1.641785E+01,1.596891E+01, 1.553224E+01,1.510751E+01,1.469439E+01,1.429257E+01,1.390174E+01,1.352160E+01,1.315185E+01, 1.279221E+01,1.244241E+01,1.210217E+01,1.177123E+01,1.144935E+01,1.113627E+01,1.083174E+01, 1.053555E+01,1.024745E+01,9.967237E+00,9.694682E+00,9.429580E+00,9.171728E+00,8.920927E+00, 8.676983E+00,8.439711E+00,8.208926E+00,7.984453E+00,7.766118E+00,7.553753E+00,7.347195E+00, 7.146286E+00,6.950870E+00,6.760798E+00,6.575924E+00,6.396105E+00,6.221203E+00,6.051084E+00, 5.885617E+00,5.724674E+00,5.568133E+00,5.415872E+00,5.267774E+00,5.123727E+00,4.983618E+00, 4.847341E+00,4.714790E+00,4.585864E+00,4.460463E+00,4.338492E+00,4.219855E+00,4.104463E+00, 3.992226E+00,3.883059E+00,3.776876E+00,3.673597E+00,3.573143E+00,3.475435E+00,3.380399E+00, 3.287962E+00,3.198052E+00,3.110601E+00,3.025542E+00,2.942808E+00,2.862337E+00,2.784066E+00, 2.707936E+00,2.633887E+00,2.561863E+00,2.491809E+00,2.423670E+00,2.357395E+00,2.292932E+00, 2.230232E+00,2.169246E+00,2.109928E+00,2.052232E+00,1.996113E+00,1.941529E+00,1.888438E+00, 1.836799E+00,1.786571E+00,1.737718E+00,1.690200E+00,1.643981E+00,1.599026E+00,1.555301E+00, 1.512771E+00,1.471404E+00,1.431169E+00,1.392033E+00,1.353968E+00,1.316944E+00,1.280932E+00, 1.245905E+00,1.211835E+00,1.178698E+00,1.146466E+00,1.115116E+00,1.084623E+00,1.054964E+00, 1.026116E+00,9.980566E-01,9.707647E-01,9.442191E-01,9.183994E-01,8.932857E-01,8.688588E-01, 8.450998E-01,8.219905E-01,7.995131E-01,7.776504E-01,7.563855E-01,7.357021E-01,7.155843E-01, 6.960166E-01,6.769840E-01,6.584718E-01,6.404659E-01,6.229523E-01,6.059176E-01,5.893488E-01, 5.732330E-01,5.575579E-01,5.423115E-01,5.274819E-01,5.130579E-01,4.990283E-01,4.853824E-01, 4.721095E-01,4.591997E-01,4.466428E-01,4.344294E-01,4.225499E-01,4.109952E-01,3.997565E-01, 3.888252E-01,3.781927E-01,3.678510E-01,3.577921E-01,3.480083E-01,3.384920E-01,3.292359E-01, 3.202329E-01,3.114761E-01,3.029588E-01,2.946744E-01,2.866165E-01,2.787790E-01,2.711557E-01, 2.637410E-01,2.565290E-01,2.495142E-01,2.426912E-01,2.360548E-01,2.295998E-01,2.233214E-01, 2.172147E-01,2.112749E-01,2.054976E-01,1.998783E-01,1.944126E-01,1.890964E-01,1.839255E-01, 1.788961E-01,1.740041E-01,1.692460E-01,1.646180E-01,1.601165E-01,1.557381E-01,1.514794E-01, 1.473372E-01,1.433082E-01,1.393895E-01,1.355779E-01,1.318705E-01,1.282645E-01,1.247571E-01, 1.213456E-01,1.180274E-01,1.147999E-01,1.116607E-01,1.086073E-01,1.056375E-01,1.027488E-01, 9.993914E-02,9.720630E-02,9.454818E-02,9.196276E-02,8.944803E-02,8.700207E-02,8.462300E-02, 8.230898E-02,8.005823E-02,7.786904E-02,7.573970E-02,7.366860E-02,7.165412E-02,6.969474E-02, 6.778893E-02,6.593524E-02,6.413224E-02,6.237854E-02,6.067279E-02,5.901369E-02,5.739996E-02, 5.583036E-02,5.430367E-02,5.281874E-02,5.137440E-02,4.996957E-02,4.860315E-02,4.727409E-02, 4.598138E-02,4.472402E-02,4.350104E-02,4.231150E-02,4.115449E-02,4.002912E-02,3.893452E-02, 3.786985E-02,3.683430E-02,3.582706E-02,3.484737E-02,3.389447E-02,3.296762E-02,3.206612E-02, 3.118927E-02,3.033640E-02,2.950685E-02,2.869998E-02,2.791518E-02,2.715184E-02,2.640937E-02, 2.568720E-02,2.498478E-02,2.430157E-02,2.363705E-02,2.299069E-02,2.236201E-02,2.175052E-02, 2.115575E-02,2.057724E-02,2.001456E-02,1.946726E-02,1.893493E-02,1.841715E-02,1.791353E-02, 1.742368E-02,1.694723E-02], [3.000000E+02,2.941172E+02,2.883497E+02,2.826954E+02,2.771519E+02,2.717171E+02,2.663889E+02, 2.611652E+02,2.560439E+02,2.510230E+02,2.461006E+02,2.412747E+02,2.365435E+02,2.319050E+02, 2.273575E+02,2.228991E+02,2.185282E+02,2.142430E+02,2.100418E+02,2.059231E+02,2.018850E+02, 1.979262E+02,1.940450E+02,1.902399E+02,1.865094E+02,1.828520E+02,1.792664E+02,1.757511E+02, 1.723048E+02,1.689260E+02,1.656134E+02,1.623658E+02,1.591820E+02,1.560605E+02,1.530002E+02, 1.500000E+02,1.470586E+02,1.441749E+02,1.413477E+02,1.385759E+02,1.358585E+02,1.331944E+02, 1.305826E+02,1.280219E+02,1.255115E+02,1.230503E+02,1.206374E+02,1.182717E+02,1.159525E+02, 1.136787E+02,1.114496E+02,1.092641E+02,1.071215E+02,1.050209E+02,1.029615E+02,1.009425E+02, 9.896309E+01,9.702249E+01,9.511994E+01,9.325469E+01,9.142602E+01,8.963322E+01,8.787556E+01, 8.615238E+01,8.446298E+01,8.280671E+01,8.118292E+01,7.959098E+01,7.803025E+01,7.650012E+01, 7.500000E+01,7.352930E+01,7.208743E+01,7.067384E+01,6.928797E+01,6.792927E+01,6.659722E+01, 6.529129E+01,6.401097E+01,6.275575E+01,6.152515E+01,6.031868E+01,5.913587E+01,5.797625E+01, 5.683937E+01,5.572479E+01,5.463206E+01,5.356076E+01,5.251046E+01,5.148076E+01,5.047126E+01, 4.948155E+01,4.851124E+01,4.755997E+01,4.662735E+01,4.571301E+01,4.481661E+01,4.393778E+01, 4.307619E+01,4.223149E+01,4.140336E+01,4.059146E+01,3.979549E+01,3.901512E+01,3.825006E+01, 3.750000E+01,3.676465E+01,3.604372E+01,3.533692E+01,3.464398E+01,3.396464E+01,3.329861E+01, 3.264565E+01,3.200548E+01,3.137788E+01,3.076258E+01,3.015934E+01,2.956793E+01,2.898813E+01, 2.841969E+01,2.786239E+01,2.731603E+01,2.678038E+01,2.625523E+01,2.574038E+01,2.523563E+01, 2.474077E+01,2.425562E+01,2.377998E+01,2.331367E+01,2.285651E+01,2.240830E+01,2.196889E+01, 2.153809E+01,2.111575E+01,2.070168E+01,2.029573E+01,1.989774E+01,1.950756E+01,1.912503E+01, 1.875000E+01,1.838232E+01,1.802186E+01,1.766846E+01,1.732199E+01,1.698232E+01,1.664931E+01, 1.632282E+01,1.600274E+01,1.568894E+01,1.538129E+01,1.507967E+01,1.478397E+01,1.449406E+01, 1.420984E+01,1.393120E+01,1.365801E+01,1.339019E+01,1.312762E+01,1.287019E+01,1.261781E+01, 1.237039E+01,1.212781E+01,1.188999E+01,1.165684E+01,1.142825E+01,1.120415E+01,1.098445E+01, 1.076905E+01,1.055787E+01,1.035084E+01,1.014787E+01,9.948872E+00,9.753781E+00,9.562515E+00, 9.375000E+00,9.191162E+00,9.010929E+00,8.834230E+00,8.660996E+00,8.491159E+00,8.324653E+00, 8.161412E+00,8.001371E+00,7.844469E+00,7.690644E+00,7.539835E+00,7.391984E+00,7.247031E+00, 7.104921E+00,6.965598E+00,6.829007E+00,6.695094E+00,6.563808E+00,6.435095E+00,6.308907E+00, 6.185193E+00,6.063905E+00,5.944996E+00,5.828418E+00,5.714127E+00,5.602076E+00,5.492223E+00, 5.384524E+00,5.278936E+00,5.175420E+00,5.073933E+00,4.974436E+00,4.876890E+00,4.781258E+00, 4.687500E+00,4.595581E+00,4.505464E+00,4.417115E+00,4.330498E+00,4.245580E+00,4.162326E+00, 4.080706E+00,4.000686E+00,3.922235E+00,3.845322E+00,3.769918E+00,3.695992E+00,3.623516E+00, 3.552461E+00,3.482799E+00,3.414504E+00,3.347547E+00,3.281904E+00,3.217548E+00,3.154454E+00, 3.092597E+00,3.031953E+00,2.972498E+00,2.914209E+00,2.857063E+00,2.801038E+00,2.746111E+00, 2.692262E+00,2.639468E+00,2.587710E+00,2.536966E+00,2.487218E+00,2.438445E+00,2.390629E+00, 2.343750E+00,2.297790E+00,2.252732E+00,2.208558E+00,2.165249E+00,2.122790E+00,2.081163E+00, 2.040353E+00,2.000343E+00,1.961117E+00,1.922661E+00,1.884959E+00,1.847996E+00,1.811758E+00, 1.776230E+00,1.741400E+00,1.707252E+00,1.673774E+00,1.640952E+00,1.608774E+00,1.577227E+00, 1.546298E+00,1.515976E+00,1.486249E+00,1.457105E+00,1.428532E+00,1.400519E+00,1.373056E+00, 1.346131E+00,1.319734E+00,1.293855E+00,1.268483E+00,1.243609E+00,1.219223E+00,1.195314E+00, 1.171875E+00,1.148895E+00,1.126366E+00,1.104279E+00,1.082625E+00,1.061395E+00,1.040582E+00, 1.020176E+00,1.000171E+00,9.805587E-01,9.613305E-01,9.424794E-01,9.239979E-01,9.058789E-01, 8.881152E-01,8.706998E-01,8.536259E-01,8.368868E-01,8.204760E-01,8.043869E-01,7.886134E-01, 7.731492E-01,7.579882E-01,7.431245E-01,7.285523E-01,7.142658E-01,7.002595E-01,6.865278E-01, 6.730654E-01,6.598670E-01,6.469274E-01,6.342416E-01,6.218045E-01,6.096113E-01,5.976572E-01, 5.859375E-01,5.744476E-01,5.631831E-01,5.521394E-01,5.413123E-01,5.306975E-01,5.202908E-01, 5.100882E-01,5.000857E-01,4.902793E-01,4.806652E-01,4.712397E-01,4.619990E-01,4.529395E-01, 4.440576E-01,4.353499E-01,4.268129E-01,4.184434E-01,4.102380E-01,4.021935E-01,3.943067E-01, 3.865746E-01,3.789941E-01,3.715622E-01,3.642761E-01,3.571329E-01,3.501297E-01,3.432639E-01, 3.365327E-01,3.299335E-01,3.234637E-01,3.171208E-01,3.109023E-01,3.048056E-01,2.988286E-01, 2.929687E-01,2.872238E-01,2.815915E-01,2.760697E-01,2.706561E-01,2.653487E-01,2.601454E-01, 2.550441E-01,2.500429E-01,2.451397E-01,2.403326E-01,2.356198E-01,2.309995E-01,2.264697E-01, 2.220288E-01,2.176749E-01]] try: # internal model constants ted_empty.num_simulation_days = 366 # internally specified variable (from internal database) food_multiplier = pd.Series([15., 110., 240.]) # input variables that change per simulation ted_empty.foliar_diss_hlife = pd.Series([15., 25., 35.]) ted_empty.app_rate_min = pd.Series([0.18, 0.5, 1.25]) # lbs a.i./acre # application scenarios generated from 'daily_app_flag' tests and reused here daily_flag = pd.Series([[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]], dtype='bool') for i in range(3): result[i] = ted_empty.daily_plant_timeseries(i, ted_empty.app_rate_min[i], food_multiplier[i], daily_flag[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_soil_h2o_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil pore water and surface puddles :param i; simulation number/index :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :param daily_flag; daily flag denoting if pesticide is applied (0 - not applied, 1 - applied) :param water_type; type of water (pore water or surface puddles) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [[2.235571E-02,2.134616E-02,2.038220E-02,4.181749E-02,3.992908E-02,3.812594E-02, 5.875995E-02,5.610644E-02,5.357277E-02,5.115350E-02,4.884349E-02,4.663780E-02, 4.453171E-02,4.252073E-02,4.060056E-02,3.876711E-02,3.701645E-02,3.534484E-02, 3.374873E-02,3.222469E-02,3.076947E-02,2.937997E-02,2.805322E-02,2.678638E-02, 2.557675E-02,2.442175E-02,2.331890E-02,2.226586E-02,2.126037E-02,2.030028E-02, 1.938355E-02,1.850822E-02,1.767242E-02,1.687436E-02,1.611234E-02,1.538474E-02, 1.468999E-02,1.402661E-02,1.339319E-02,1.278838E-02,1.221087E-02,1.165945E-02, 1.113293E-02,1.063018E-02,1.015014E-02,9.691777E-03,9.254112E-03,8.836211E-03, 8.437182E-03,8.056172E-03,7.692368E-03,7.344993E-03,7.013305E-03,6.696596E-03, 6.394188E-03,6.105437E-03,5.829725E-03,5.566464E-03,5.315091E-03,5.075070E-03, 4.845888E-03,4.627056E-03,4.418105E-03,4.218591E-03,4.028086E-03,3.846184E-03, 3.672497E-03,3.506653E-03,3.348298E-03,3.197094E-03,3.052718E-03,2.914863E-03, 2.783232E-03,2.657546E-03,2.537535E-03,2.422944E-03,2.313528E-03,2.209053E-03, 2.109295E-03,2.014043E-03,1.923092E-03,1.836248E-03,1.753326E-03,1.674149E-03, 1.598547E-03,1.526359E-03,1.457431E-03,1.391616E-03,1.328773E-03,1.268768E-03, 1.211472E-03,1.156764E-03,1.104526E-03,1.054648E-03,1.007022E-03,9.615460E-04, 9.181242E-04,8.766632E-04,8.370745E-04,7.992735E-04,7.631796E-04,7.287156E-04, 6.958080E-04,6.643864E-04,6.343838E-04,6.057361E-04,5.783820E-04,5.522632E-04, 5.273239E-04,5.035108E-04,4.807730E-04,4.590621E-04,4.383316E-04,4.185372E-04, 3.996368E-04,3.815898E-04,3.643578E-04,3.479040E-04,3.321932E-04,3.171919E-04, 3.028680E-04,2.891910E-04,2.761316E-04,2.636619E-04,2.517554E-04,2.403865E-04, 2.295310E-04,2.191658E-04,2.092686E-04,1.998184E-04,1.907949E-04,1.821789E-04, 1.739520E-04,1.660966E-04,1.585960E-04,1.514340E-04,1.445955E-04,1.380658E-04, 1.318310E-04,1.258777E-04,1.201933E-04,1.147655E-04,1.095829E-04,1.046343E-04, 9.990919E-05,9.539745E-05,9.108945E-05,8.697600E-05,8.304830E-05,7.929798E-05, 7.571701E-05,7.229775E-05,6.903290E-05,6.591548E-05,6.293885E-05,6.009663E-05, 5.738276E-05,5.479145E-05,5.231715E-05,4.995459E-05,4.769873E-05,4.554473E-05, 4.348800E-05,4.152415E-05,3.964899E-05,3.785850E-05,3.614887E-05,3.451645E-05, 3.295774E-05,3.146942E-05,3.004831E-05,2.869138E-05,2.739572E-05,2.615858E-05, 2.497730E-05,2.384936E-05,2.277236E-05,2.174400E-05,2.076208E-05,1.982449E-05, 1.892925E-05,1.807444E-05,1.725822E-05,1.647887E-05,1.573471E-05,1.502416E-05, 1.434569E-05,1.369786E-05,1.307929E-05,1.248865E-05,1.192468E-05,1.138618E-05, 1.087200E-05,1.038104E-05,9.912247E-06,9.464626E-06,9.037219E-06,8.629112E-06, 8.239435E-06,7.867356E-06,7.512079E-06,7.172845E-06,6.848931E-06,6.539644E-06, 6.244324E-06,5.962341E-06,5.693091E-06,5.436000E-06,5.190519E-06,4.956124E-06, 4.732313E-06,4.518609E-06,4.314556E-06,4.119718E-06,3.933678E-06,3.756039E-06, 3.586423E-06,3.424465E-06,3.269822E-06,3.122162E-06,2.981170E-06,2.846545E-06, 2.718000E-06,2.595260E-06,2.478062E-06,2.366156E-06,2.259305E-06,2.157278E-06, 2.059859E-06,1.966839E-06,1.878020E-06,1.793211E-06,1.712233E-06,1.634911E-06, 1.561081E-06,1.490585E-06,1.423273E-06,1.359000E-06,1.297630E-06,1.239031E-06, 1.183078E-06,1.129652E-06,1.078639E-06,1.029929E-06,9.834195E-07,9.390098E-07, 8.966056E-07,8.561164E-07,8.174555E-07,7.805405E-07,7.452926E-07,7.116364E-07, 6.795000E-07,6.488149E-07,6.195154E-07,5.915391E-07,5.648262E-07,5.393195E-07, 5.149647E-07,4.917097E-07,4.695049E-07,4.483028E-07,4.280582E-07,4.087278E-07, 3.902703E-07,3.726463E-07,3.558182E-07,3.397500E-07,3.244074E-07,3.097577E-07, 2.957696E-07,2.824131E-07,2.696598E-07,2.574824E-07,2.458549E-07,2.347525E-07, 2.241514E-07,2.140291E-07,2.043639E-07,1.951351E-07,1.863231E-07,1.779091E-07, 1.698750E-07,1.622037E-07,1.548789E-07,1.478848E-07,1.412065E-07,1.348299E-07, 1.287412E-07,1.229274E-07,1.173762E-07,1.120757E-07,1.070145E-07,1.021819E-07, 9.756757E-08,9.316157E-08,8.895455E-08,8.493750E-08,8.110186E-08,7.743943E-08, 7.394239E-08,7.060327E-08,6.741494E-08,6.437059E-08,6.146372E-08,5.868811E-08, 5.603785E-08,5.350727E-08,5.109097E-08,4.878378E-08,4.658079E-08,4.447727E-08, 4.246875E-08,4.055093E-08,3.871971E-08,3.697119E-08,3.530163E-08,3.370747E-08, 3.218529E-08,3.073186E-08,2.934406E-08,2.801893E-08,2.675364E-08,2.554549E-08, 2.439189E-08,2.329039E-08,2.223864E-08,2.123438E-08,2.027546E-08,1.935986E-08, 1.848560E-08,1.765082E-08,1.685373E-08,1.609265E-08,1.536593E-08,1.467203E-08, 1.400946E-08,1.337682E-08,1.277274E-08,1.219595E-08,1.164520E-08,1.111932E-08, 1.061719E-08,1.013773E-08,9.679929E-09,9.242799E-09,8.825409E-09,8.426867E-09, 8.046324E-09,7.682965E-09,7.336014E-09,7.004732E-09,6.688409E-09,6.386371E-09, 6.097973E-09,5.822598E-09,5.559659E-09,5.308594E-09,5.068866E-09,4.839964E-09, 4.621399E-09,4.412704E-09,4.213434E-09,4.023162E-09,3.841482E-09,3.668007E-09], [9.391514E-02,8.762592E-02,8.175787E-02,7.628279E-02,7.117436E-02,6.640803E-02, 6.196088E-02,1.517267E-01,1.415660E-01,1.320858E-01,1.232404E-01,1.149873E-01, 1.072870E-01,1.001023E-01,1.873139E-01,1.747700E-01,1.630662E-01,1.521461E-01, 1.419574E-01,1.324509E-01,1.235811E-01,2.092203E-01,1.952095E-01,1.821369E-01, 1.699397E-01,1.585594E-01,1.479411E-01,1.380340E-01,2.227054E-01,2.077915E-01, 1.938763E-01,1.808930E-01,1.687791E-01,1.574765E-01,1.469307E-01,1.370912E-01, 1.279106E-01,1.193449E-01,1.113527E-01,1.038957E-01,9.693814E-02,9.044648E-02, 8.438955E-02,7.873824E-02,7.346537E-02,6.854562E-02,6.395532E-02,5.967242E-02, 5.567634E-02,5.194786E-02,4.846907E-02,4.522324E-02,4.219478E-02,3.936912E-02, 3.673269E-02,3.427281E-02,3.197766E-02,2.983621E-02,2.783817E-02,2.597393E-02, 2.423454E-02,2.261162E-02,2.109739E-02,1.968456E-02,1.836634E-02,1.713640E-02, 1.598883E-02,1.491811E-02,1.391909E-02,1.298697E-02,1.211727E-02,1.130581E-02, 1.054869E-02,9.842280E-03,9.183172E-03,8.568202E-03,7.994415E-03,7.459053E-03, 6.959543E-03,6.493483E-03,6.058634E-03,5.652905E-03,5.274347E-03,4.921140E-03, 4.591586E-03,4.284101E-03,3.997208E-03,3.729527E-03,3.479771E-03,3.246741E-03, 3.029317E-03,2.826453E-03,2.637174E-03,2.460570E-03,2.295793E-03,2.142051E-03, 1.998604E-03,1.864763E-03,1.739886E-03,1.623371E-03,1.514658E-03,1.413226E-03, 1.318587E-03,1.230285E-03,1.147896E-03,1.071025E-03,9.993019E-04,9.323816E-04, 8.699428E-04,8.116854E-04,7.573292E-04,7.066131E-04,6.592934E-04,6.151425E-04, 5.739482E-04,5.355126E-04,4.996509E-04,4.661908E-04,4.349714E-04,4.058427E-04, 3.786646E-04,3.533066E-04,3.296467E-04,3.075712E-04,2.869741E-04,2.677563E-04, 2.498255E-04,2.330954E-04,2.174857E-04,2.029213E-04,1.893323E-04,1.766533E-04, 1.648233E-04,1.537856E-04,1.434871E-04,1.338782E-04,1.249127E-04,1.165477E-04, 1.087429E-04,1.014607E-04,9.466615E-05,8.832664E-05,8.241167E-05,7.689281E-05, 7.174353E-05,6.693908E-05,6.245637E-05,5.827385E-05,5.437143E-05,5.073034E-05, 4.733308E-05,4.416332E-05,4.120584E-05,3.844640E-05,3.587176E-05,3.346954E-05, 3.122818E-05,2.913693E-05,2.718571E-05,2.536517E-05,2.366654E-05,2.208166E-05, 2.060292E-05,1.922320E-05,1.793588E-05,1.673477E-05,1.561409E-05,1.456846E-05, 1.359286E-05,1.268258E-05,1.183327E-05,1.104083E-05,1.030146E-05,9.611601E-06, 8.967941E-06,8.367385E-06,7.807046E-06,7.284232E-06,6.796428E-06,6.341292E-06, 5.916635E-06,5.520415E-06,5.150730E-06,4.805801E-06,4.483971E-06,4.183692E-06, 3.903523E-06,3.642116E-06,3.398214E-06,3.170646E-06,2.958317E-06,2.760208E-06, 2.575365E-06,2.402900E-06,2.241985E-06,2.091846E-06,1.951762E-06,1.821058E-06, 1.699107E-06,1.585323E-06,1.479159E-06,1.380104E-06,1.287682E-06,1.201450E-06, 1.120993E-06,1.045923E-06,9.758808E-07,9.105289E-07,8.495535E-07,7.926615E-07, 7.395793E-07,6.900519E-07,6.438412E-07,6.007251E-07,5.604963E-07,5.229616E-07, 4.879404E-07,4.552645E-07,4.247768E-07,3.963307E-07,3.697897E-07,3.450260E-07, 3.219206E-07,3.003625E-07,2.802482E-07,2.614808E-07,2.439702E-07,2.276322E-07, 2.123884E-07,1.981654E-07,1.848948E-07,1.725130E-07,1.609603E-07,1.501813E-07, 1.401241E-07,1.307404E-07,1.219851E-07,1.138161E-07,1.061942E-07,9.908269E-08, 9.244741E-08,8.625649E-08,8.048015E-08,7.509063E-08,7.006204E-08,6.537019E-08, 6.099255E-08,5.690806E-08,5.309710E-08,4.954134E-08,4.622371E-08,4.312824E-08, 4.024007E-08,3.754532E-08,3.503102E-08,3.268510E-08,3.049627E-08,2.845403E-08, 2.654855E-08,2.477067E-08,2.311185E-08,2.156412E-08,2.012004E-08,1.877266E-08, 1.751551E-08,1.634255E-08,1.524814E-08,1.422702E-08,1.327427E-08,1.238534E-08, 1.155593E-08,1.078206E-08,1.006002E-08,9.386329E-09,8.757755E-09,8.171274E-09, 7.624068E-09,7.113507E-09,6.637137E-09,6.192668E-09,5.777963E-09,5.391030E-09, 5.030009E-09,4.693165E-09,4.378877E-09,4.085637E-09,3.812034E-09,3.556754E-09, 3.318569E-09,3.096334E-09,2.888982E-09,2.695515E-09,2.515005E-09,2.346582E-09, 2.189439E-09,2.042819E-09,1.906017E-09,1.778377E-09,1.659284E-09,1.548167E-09, 1.444491E-09,1.347758E-09,1.257502E-09,1.173291E-09,1.094719E-09,1.021409E-09, 9.530086E-10,8.891884E-10,8.296421E-10,7.740835E-10,7.222454E-10,6.738788E-10, 6.287512E-10,5.866456E-10,5.473597E-10,5.107046E-10,4.765043E-10,4.445942E-10, 4.148211E-10,3.870417E-10,3.611227E-10,3.369394E-10,3.143756E-10,2.933228E-10, 2.736798E-10,2.553523E-10,2.382521E-10,2.222971E-10,2.074105E-10,1.935209E-10, 1.805614E-10,1.684697E-10,1.571878E-10,1.466614E-10,1.368399E-10,1.276762E-10, 1.191261E-10,1.111486E-10,1.037053E-10,9.676043E-11,9.028068E-11,8.423485E-11, 7.859390E-11,7.333070E-11,6.841996E-11,6.383808E-11,5.956303E-11,5.557428E-11, 5.185263E-11,4.838022E-11,4.514034E-11,4.211743E-11,3.929695E-11,3.666535E-11, 3.420998E-11,3.191904E-11,2.978152E-11,2.778714E-11,2.592632E-11,2.419011E-11, 2.257017E-11,2.105871E-11,1.964847E-11,1.833267E-11,1.710499E-11,1.595952E-11], [1.172251E-01,1.132320E-01,1.093749E-01,1.056492E-01,1.020504E-01,9.857420E-02, 9.521640E-02,9.197298E-02,8.884005E-02,8.581383E-02,8.289069E-02,8.006713E-02, 7.733975E-02,7.470528E-02,7.216054E-02,6.970249E-02,6.732817E-02,6.503472E-02, 6.281940E-02,6.067954E-02,5.861257E-02,5.661601E-02,5.468746E-02,5.282461E-02, 5.102521E-02,4.928710E-02,4.760820E-02,4.598649E-02,4.442002E-02,4.290691E-02, 4.144535E-02,4.003357E-02,3.866988E-02,3.735264E-02,3.608027E-02,3.485124E-02, 3.366408E-02,3.251736E-02,3.140970E-02,3.033977E-02,2.930629E-02,2.830801E-02, 2.734373E-02,2.641230E-02,2.551260E-02,2.464355E-02,2.380410E-02,2.299325E-02, 2.221001E-02,2.145346E-02,2.072267E-02,2.001678E-02,1.933494E-02,1.867632E-02, 1.804014E-02,1.742562E-02,1.683204E-02,1.625868E-02,1.570485E-02,1.516989E-02, 1.465314E-02,1.415400E-02,1.367187E-02,1.320615E-02,1.275630E-02,1.232178E-02, 1.190205E-02,1.149662E-02,1.110501E-02,1.072673E-02,1.036134E-02,1.000839E-02, 9.667469E-03,9.338160E-03,9.020068E-03,8.712811E-03,8.416021E-03,8.129340E-03, 7.852425E-03,7.584943E-03,7.326572E-03,7.077002E-03,6.835933E-03,6.603076E-03, 6.378151E-03,6.160888E-03,5.951025E-03,5.748312E-03,5.552503E-03,5.363364E-03, 5.180668E-03,5.004196E-03,4.833735E-03,4.669080E-03,4.510034E-03,4.356406E-03, 4.208010E-03,4.064670E-03,3.926212E-03,3.792471E-03,3.663286E-03,3.538501E-03, 3.417966E-03,3.301538E-03,3.189075E-03,3.080444E-03,2.975513E-03,2.874156E-03, 2.776251E-03,2.681682E-03,2.590334E-03,2.502098E-03,2.416867E-03,2.334540E-03, 2.255017E-03,2.178203E-03,2.104005E-03,2.032335E-03,1.963106E-03,1.896236E-03, 1.831643E-03,1.769250E-03,1.708983E-03,1.650769E-03,1.594538E-03,1.540222E-03, 1.487756E-03,1.437078E-03,1.388126E-03,1.340841E-03,1.295167E-03,1.251049E-03, 1.208434E-03,1.167270E-03,1.127508E-03,1.089101E-03,1.052003E-03,1.016168E-03, 9.815531E-04,9.481178E-04,9.158214E-04,8.846252E-04,8.544916E-04,8.253845E-04, 7.972689E-04,7.701110E-04,7.438782E-04,7.185389E-04,6.940629E-04,6.704205E-04, 6.475836E-04,6.255245E-04,6.042168E-04,5.836350E-04,5.637542E-04,5.445507E-04, 5.260013E-04,5.080838E-04,4.907766E-04,4.740589E-04,4.579107E-04,4.423126E-04, 4.272458E-04,4.126923E-04,3.986344E-04,3.850555E-04,3.719391E-04,3.592695E-04, 3.470314E-04,3.352103E-04,3.237918E-04,3.127622E-04,3.021084E-04,2.918175E-04, 2.818771E-04,2.722753E-04,2.630006E-04,2.540419E-04,2.453883E-04,2.370295E-04, 2.289554E-04,2.211563E-04,2.136229E-04,2.063461E-04,1.993172E-04,1.925277E-04, 1.859695E-04,1.796347E-04,1.735157E-04,1.676051E-04,1.618959E-04,1.563811E-04, 1.510542E-04,1.459087E-04,1.409386E-04,1.361377E-04,1.315003E-04,1.270209E-04, 1.226941E-04,1.185147E-04,1.144777E-04,1.105782E-04,1.068115E-04,1.031731E-04, 9.965861E-05,9.626387E-05,9.298477E-05,8.981737E-05,8.675786E-05,8.380257E-05, 8.094794E-05,7.819056E-05,7.552710E-05,7.295437E-05,7.046928E-05,6.806884E-05, 6.575016E-05,6.351047E-05,6.134707E-05,5.925736E-05,5.723884E-05,5.528908E-05, 5.340573E-05,5.158653E-05,4.982930E-05,4.813194E-05,4.649239E-05,4.490868E-05, 4.337893E-05,4.190128E-05,4.047397E-05,3.909528E-05,3.776355E-05,3.647719E-05, 3.523464E-05,3.403442E-05,3.287508E-05,3.175523E-05,3.067354E-05,2.962868E-05, 2.861942E-05,2.764454E-05,2.670286E-05,2.579327E-05,2.491465E-05,2.406597E-05, 2.324619E-05,2.245434E-05,2.168946E-05,2.095064E-05,2.023699E-05,1.954764E-05, 1.888178E-05,1.823859E-05,1.761732E-05,1.701721E-05,1.643754E-05,1.587762E-05, 1.533677E-05,1.481434E-05,1.430971E-05,1.382227E-05,1.335143E-05,1.289663E-05, 1.245733E-05,1.203298E-05,1.162310E-05,1.122717E-05,1.084473E-05,1.047532E-05, 1.011849E-05,9.773820E-06,9.440888E-06,9.119297E-06,8.808660E-06,8.508605E-06, 8.218770E-06,7.938809E-06,7.668384E-06,7.407170E-06,7.154855E-06,6.911134E-06, 6.675716E-06,6.448316E-06,6.228663E-06,6.016492E-06,5.811548E-06,5.613585E-06, 5.422366E-06,5.237660E-06,5.059247E-06,4.886910E-06,4.720444E-06,4.559648E-06, 4.404330E-06,4.254302E-06,4.109385E-06,3.969404E-06,3.834192E-06,3.703585E-06, 3.577428E-06,3.455567E-06,3.337858E-06,3.224158E-06,3.114332E-06,3.008246E-06, 2.905774E-06,2.806793E-06,2.711183E-06,2.618830E-06,2.529623E-06,2.443455E-06, 2.360222E-06,2.279824E-06,2.202165E-06,2.127151E-06,2.054693E-06,1.984702E-06, 1.917096E-06,1.851793E-06,1.788714E-06,1.727784E-06,1.668929E-06,1.612079E-06, 1.557166E-06,1.504123E-06,1.452887E-06,1.403396E-06,1.355592E-06,1.309415E-06, 1.264812E-06,1.221728E-06,1.180111E-06,1.139912E-06,1.101082E-06,1.063576E-06, 1.027346E-06,9.923511E-07,9.585480E-07,9.258963E-07,8.943569E-07,8.638918E-07, 8.344645E-07,8.060396E-07,7.785829E-07,7.520615E-07,7.264435E-07,7.016982E-07, 6.777958E-07,6.547076E-07,6.324058E-07,6.108638E-07,5.900555E-07,5.699560E-07, 5.505412E-07,5.317878E-07,5.136731E-07,4.961755E-07,4.792740E-07,4.629482E-07, 4.471784E-07,4.319459E-07,4.172322E-07,4.030198E-07,3.892914E-07,3.760307E-07]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.app_rate_conv1 = 11.2 ted_empty.h2o_depth_puddles = 1.3 ted_empty.soil_depth = 2.6 ted_empty.soil_porosity = 0.4339623 ted_empty.soil_bulk_density = 1.5 ted_empty.h2o_depth_soil = 0.0 ted_empty.soil_foc = 0.015 # internally specified variable water_type = ['puddles', 'pore_water', 'puddles'] # input variables that change per simulation ted_empty.aerobic_soil_meta_hlife = pd.Series([15., 10., 20.], dtype='float') ted_empty.koc = pd.Series([1500., 1000., 2000.], dtype='float') ted_empty.app_rate_min = pd.Series([0.18, 0.5, 1.25]) # lbs a.i./acre # application scenarios generated from 'daily_app_flag' tests and reused here daily_flag = pd.Series([[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]], dtype='bool') for i in range(3): result[i] = ted_empty.daily_soil_h2o_timeseries(i, ted_empty.app_rate_min[i], daily_flag[i], water_type[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_plant_dew_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in dew that resides on broad leaf plants :param i; simulation number/index :param blp_conc; daily values of pesticide concentration in broad leaf plant dew :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application #this represents Eq 11 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([[]], dtype='float') expected_results = [[6.201749E+00,6.080137E+00,5.960909E+00,5.844019E+00,5.729422E+00,5.617071E+00, 5.506924E+00,1.160069E+01,1.137320E+01,1.115018E+01,1.093153E+01,1.071717E+01, 1.050702E+01,1.030098E+01,1.630073E+01,1.598109E+01,1.566771E+01,1.536047E+01, 1.505926E+01,1.476396E+01,1.447445E+01,2.039236E+01,1.999248E+01,1.960044E+01, 1.921609E+01,1.883927E+01,1.846984E+01,1.810766E+01,2.395433E+01,2.348460E+01, 2.302408E+01,2.257259E+01,2.212996E+01,2.169600E+01,2.127056E+01,2.085346E+01, 2.044453E+01,2.004363E+01,1.965059E+01,1.926525E+01,1.888747E+01,1.851710E+01, 1.815399E+01,1.779800E+01,1.744899E+01,1.710683E+01,1.677137E+01,1.644250E+01, 1.612007E+01,1.580396E+01,1.549406E+01,1.519023E+01,1.489236E+01,1.460033E+01, 1.431403E+01,1.403334E+01,1.375815E+01,1.348836E+01,1.322386E+01,1.296455E+01, 1.271032E+01,1.246108E+01,1.221673E+01,1.197717E+01,1.174230E+01,1.151204E+01, 1.128630E+01,1.106498E+01,1.084800E+01,1.063528E+01,1.042673E+01,1.022227E+01, 1.002181E+01,9.825293E+00,9.632625E+00,9.443735E+00,9.258549E+00,9.076994E+00, 8.899000E+00,8.724496E+00,8.553414E+00,8.385687E+00,8.221249E+00,8.060035E+00, 7.901982E+00,7.747029E+00,7.595115E+00,7.446179E+00,7.300164E+00,7.157013E+00, 7.016668E+00,6.879075E+00,6.744181E+00,6.611932E+00,6.482276E+00,6.355162E+00, 6.230541E+00,6.108364E+00,5.988583E+00,5.871150E+00,5.756021E+00,5.643149E+00, 5.532490E+00,5.424001E+00,5.317640E+00,5.213364E+00,5.111133E+00,5.010907E+00, 4.912646E+00,4.816312E+00,4.721867E+00,4.629274E+00,4.538497E+00,4.449500E+00, 4.362248E+00,4.276707E+00,4.192843E+00,4.110624E+00,4.030017E+00,3.950991E+00, 3.873515E+00,3.797557E+00,3.723090E+00,3.650082E+00,3.578506E+00,3.508334E+00, 3.439538E+00,3.372090E+00,3.305966E+00,3.241138E+00,3.177581E+00,3.115271E+00, 3.054182E+00,2.994291E+00,2.935575E+00,2.878010E+00,2.821574E+00,2.766245E+00, 2.712001E+00,2.658820E+00,2.606682E+00,2.555567E+00,2.505454E+00,2.456323E+00, 2.408156E+00,2.360934E+00,2.314637E+00,2.269249E+00,2.224750E+00,2.181124E+00, 2.138353E+00,2.096422E+00,2.055312E+00,2.015009E+00,1.975496E+00,1.936757E+00, 1.898779E+00,1.861545E+00,1.825041E+00,1.789253E+00,1.754167E+00,1.719769E+00, 1.686045E+00,1.652983E+00,1.620569E+00,1.588791E+00,1.557635E+00,1.527091E+00, 1.497146E+00,1.467788E+00,1.439005E+00,1.410787E+00,1.383122E+00,1.356000E+00, 1.329410E+00,1.303341E+00,1.277783E+00,1.252727E+00,1.228162E+00,1.204078E+00, 1.180467E+00,1.157319E+00,1.134624E+00,1.112375E+00,1.090562E+00,1.069177E+00, 1.048211E+00,1.027656E+00,1.007504E+00,9.877478E-01,9.683787E-01,9.493894E-01, 9.307724E-01,9.125205E-01,8.946266E-01,8.770835E-01,8.598844E-01,8.430226E-01, 8.264914E-01,8.102845E-01,7.943953E-01,7.788177E-01,7.635455E-01,7.485729E-01, 7.338938E-01,7.195026E-01,7.053936E-01,6.915612E-01,6.780002E-01,6.647050E-01, 6.516705E-01,6.388917E-01,6.263634E-01,6.140808E-01,6.020390E-01,5.902334E-01, 5.786593E-01,5.673121E-01,5.561875E-01,5.452810E-01,5.345884E-01,5.241054E-01, 5.138280E-01,5.037522E-01,4.938739E-01,4.841893E-01,4.746947E-01,4.653862E-01, 4.562603E-01,4.473133E-01,4.385417E-01,4.299422E-01,4.215113E-01,4.132457E-01, 4.051422E-01,3.971976E-01,3.894088E-01,3.817728E-01,3.742864E-01,3.669469E-01, 3.597513E-01,3.526968E-01,3.457806E-01,3.390001E-01,3.323525E-01,3.258353E-01, 3.194458E-01,3.131817E-01,3.070404E-01,3.010195E-01,2.951167E-01,2.893296E-01, 2.836561E-01,2.780937E-01,2.726405E-01,2.672942E-01,2.620527E-01,2.569140E-01, 2.518761E-01,2.469370E-01,2.420947E-01,2.373473E-01,2.326931E-01,2.281301E-01, 2.236566E-01,2.192709E-01,2.149711E-01,2.107557E-01,2.066229E-01,2.025711E-01, 1.985988E-01,1.947044E-01,1.908864E-01,1.871432E-01,1.834735E-01,1.798756E-01, 1.763484E-01,1.728903E-01,1.695000E-01,1.661762E-01,1.629176E-01,1.597229E-01, 1.565908E-01,1.535202E-01,1.505098E-01,1.475584E-01,1.446648E-01,1.418280E-01, 1.390469E-01,1.363202E-01,1.336471E-01,1.310264E-01,1.284570E-01,1.259380E-01, 1.234685E-01,1.210473E-01,1.186737E-01,1.163466E-01,1.140651E-01,1.118283E-01, 1.096354E-01,1.074856E-01,1.053778E-01,1.033114E-01,1.012856E-01,9.929941E-02, 9.735221E-02,9.544319E-02,9.357161E-02,9.173673E-02,8.993782E-02,8.817420E-02, 8.644516E-02,8.475002E-02,8.308812E-02,8.145882E-02,7.986146E-02,7.829542E-02, 7.676010E-02,7.525488E-02,7.377918E-02,7.233241E-02,7.091402E-02,6.952344E-02, 6.816012E-02,6.682355E-02,6.551318E-02,6.422850E-02,6.296902E-02,6.173424E-02, 6.052367E-02,5.933684E-02,5.817328E-02,5.703253E-02,5.591416E-02,5.481772E-02, 5.374278E-02,5.268891E-02,5.165572E-02,5.064278E-02,4.964970E-02,4.867610E-02, 4.772160E-02,4.678580E-02,4.586836E-02,4.496891E-02,4.408710E-02,4.322258E-02, 4.237501E-02,4.154406E-02,4.072941E-02,3.993073E-02,3.914771E-02,3.838005E-02, 3.762744E-02,3.688959E-02,3.616621E-02,3.545701E-02,3.476172E-02,3.408006E-02, 3.341177E-02,3.275659E-02,3.211425E-02,3.148451E-02,3.086712E-02,3.026183E-02], [3.487500E-01,3.419112E-01,3.352066E-01,3.286334E-01,3.221891E-01,3.158711E-01, 3.096771E-01,6.523545E-01,6.395622E-01,6.270208E-01,6.147253E-01,6.026709E-01, 5.908529E-01,5.792667E-01,9.166576E-01,8.986825E-01,8.810599E-01,8.637828E-01, 8.468446E-01,8.302385E-01,8.139580E-01,1.000000E+00,1.000000E+00,1.000000E+00, 1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00, 1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00, 1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00, 1.000000E+00,1.000000E+00,9.812289E-01,9.619876E-01,9.431236E-01,9.246296E-01, 9.064981E-01,8.887223E-01,8.712950E-01,8.542094E-01,8.374589E-01,8.210368E-01, 8.049368E-01,7.891525E-01,7.736777E-01,7.585063E-01,7.436325E-01,7.290503E-01, 7.147541E-01,7.007382E-01,6.869971E-01,6.735255E-01,6.603181E-01,6.473697E-01, 6.346751E-01,6.222295E-01,6.100280E-01,5.980657E-01,5.863380E-01,5.748403E-01, 5.635680E-01,5.525168E-01,5.416823E-01,5.310602E-01,5.206465E-01,5.104369E-01, 5.004275E-01,4.906145E-01,4.809938E-01,4.715618E-01,4.623148E-01,4.532491E-01, 4.443611E-01,4.356475E-01,4.271047E-01,4.187294E-01,4.105184E-01,4.024684E-01, 3.945762E-01,3.868388E-01,3.792532E-01,3.718162E-01,3.645251E-01,3.573770E-01, 3.503691E-01,3.434986E-01,3.367628E-01,3.301591E-01,3.236848E-01,3.173376E-01, 3.111148E-01,3.050140E-01,2.990329E-01,2.931690E-01,2.874201E-01,2.817840E-01, 2.762584E-01,2.708411E-01,2.655301E-01,2.603232E-01,2.552184E-01,2.502138E-01, 2.453072E-01,2.404969E-01,2.357809E-01,2.311574E-01,2.266245E-01,2.221806E-01, 2.178237E-01,2.135523E-01,2.093647E-01,2.052592E-01,2.012342E-01,1.972881E-01, 1.934194E-01,1.896266E-01,1.859081E-01,1.822626E-01,1.786885E-01,1.751845E-01, 1.717493E-01,1.683814E-01,1.650795E-01,1.618424E-01,1.586688E-01,1.555574E-01, 1.525070E-01,1.495164E-01,1.465845E-01,1.437101E-01,1.408920E-01,1.381292E-01, 1.354206E-01,1.327651E-01,1.301616E-01,1.276092E-01,1.251069E-01,1.226536E-01, 1.202485E-01,1.178905E-01,1.155787E-01,1.133123E-01,1.110903E-01,1.089119E-01, 1.067762E-01,1.046824E-01,1.026296E-01,1.006171E-01,9.864406E-02,9.670971E-02, 9.481329E-02,9.295406E-02,9.113129E-02,8.934426E-02,8.759227E-02,8.587464E-02, 8.419069E-02,8.253976E-02,8.092121E-02,7.933439E-02,7.777869E-02,7.625350E-02, 7.475822E-02,7.329225E-02,7.185504E-02,7.044600E-02,6.906460E-02,6.771029E-02, 6.638253E-02,6.508081E-02,6.380461E-02,6.255344E-02,6.132681E-02,6.012423E-02, 5.894523E-02,5.778935E-02,5.665613E-02,5.554514E-02,5.445593E-02,5.338809E-02, 5.234118E-02,5.131480E-02,5.030855E-02,4.932203E-02,4.835485E-02,4.740664E-02, 4.647703E-02,4.556564E-02,4.467213E-02,4.379614E-02,4.293732E-02,4.209535E-02, 4.126988E-02,4.046060E-02,3.966720E-02,3.888935E-02,3.812675E-02,3.737911E-02, 3.664613E-02,3.592752E-02,3.522300E-02,3.453230E-02,3.385514E-02,3.319126E-02, 3.254040E-02,3.190231E-02,3.127672E-02,3.066340E-02,3.006211E-02,2.947261E-02, 2.889467E-02,2.832807E-02,2.777257E-02,2.722797E-02,2.669404E-02,2.617059E-02, 2.565740E-02,2.515427E-02,2.466101E-02,2.417743E-02,2.370332E-02,2.323851E-02, 2.278282E-02,2.233606E-02,2.189807E-02,2.146866E-02,2.104767E-02,2.063494E-02, 2.023030E-02,1.983360E-02,1.944467E-02,1.906338E-02,1.868955E-02,1.832306E-02, 1.796376E-02,1.761150E-02,1.726615E-02,1.692757E-02,1.659563E-02,1.627020E-02, 1.595115E-02,1.563836E-02,1.533170E-02,1.503106E-02,1.473631E-02,1.444734E-02, 1.416403E-02,1.388629E-02,1.361398E-02,1.334702E-02,1.308529E-02,1.282870E-02, 1.257714E-02,1.233051E-02,1.208871E-02,1.185166E-02,1.161926E-02,1.139141E-02, 1.116803E-02,1.094903E-02,1.073433E-02,1.052384E-02,1.031747E-02,1.011515E-02, 9.916799E-03,9.722337E-03,9.531688E-03,9.344777E-03,9.161532E-03,8.981880E-03, 8.805750E-03,8.633075E-03,8.463786E-03,8.297816E-03,8.135101E-03,7.975577E-03, 7.819180E-03,7.665851E-03,7.515528E-03,7.368153E-03,7.223668E-03,7.082017E-03, 6.943143E-03,6.806992E-03,6.673511E-03,6.542647E-03,6.414350E-03,6.288569E-03, 6.165254E-03,6.044357E-03,5.925831E-03,5.809629E-03,5.695705E-03,5.584016E-03, 5.474517E-03,5.367165E-03,5.261918E-03,5.158735E-03,5.057576E-03,4.958400E-03, 4.861168E-03,4.765844E-03,4.672389E-03,4.580766E-03,4.490940E-03,4.402875E-03, 4.316538E-03,4.231893E-03,4.148908E-03,4.067550E-03,3.987788E-03,3.909590E-03, 3.832926E-03,3.757764E-03,3.684077E-03,3.611834E-03,3.541008E-03,3.471571E-03, 3.403496E-03,3.336755E-03,3.271324E-03,3.207175E-03,3.144284E-03,3.082627E-03, 3.022178E-03,2.962915E-03,2.904814E-03,2.847853E-03,2.792008E-03,2.737258E-03, 2.683583E-03,2.630959E-03,2.579368E-03,2.528788E-03,2.479200E-03,2.430584E-03, 2.382922E-03,2.336194E-03,2.290383E-03,2.245470E-03,2.201438E-03,2.158269E-03, 2.115946E-03,2.074454E-03,2.033775E-03,1.993894E-03,1.954795E-03,1.916463E-03, 1.878882E-03,1.842038E-03,1.805917E-03,1.770504E-03,1.735786E-03,1.701748E-03], [8.718750E-02,8.547781E-02,8.380164E-02,8.215834E-02,8.054726E-02,7.896778E-02, 7.741927E-02,1.630886E-01,1.598906E-01,1.567552E-01,1.536813E-01,1.506677E-01, 1.477132E-01,1.448167E-01,2.291644E-01,2.246706E-01,2.202650E-01,2.159457E-01, 2.117111E-01,2.075596E-01,2.034895E-01,2.866867E-01,2.810649E-01,2.755534E-01, 2.701500E-01,2.648525E-01,2.596589E-01,2.545672E-01,3.367628E-01,3.301591E-01, 3.236848E-01,3.173376E-01,3.111148E-01,3.050140E-01,2.990329E-01,3.803565E-01, 3.728980E-01,3.655857E-01,3.584167E-01,3.513884E-01,3.444979E-01,3.377425E-01, 4.183071E-01,4.101043E-01,4.020624E-01,3.941782E-01,3.864486E-01,3.788706E-01, 3.714412E-01,3.641575E-01,3.570166E-01,3.500157E-01,3.431521E-01,3.364231E-01, 3.298260E-01,3.233583E-01,3.170175E-01,3.108010E-01,3.047063E-01,2.987312E-01, 2.928733E-01,2.871302E-01,2.814998E-01,2.759797E-01,2.705680E-01,2.652623E-01, 2.600606E-01,2.549610E-01,2.499614E-01,2.450598E-01,2.402543E-01,2.355431E-01, 2.309242E-01,2.263959E-01,2.219565E-01,2.176040E-01,2.133369E-01,2.091535E-01, 2.050522E-01,2.010312E-01,1.970891E-01,1.932243E-01,1.894353E-01,1.857206E-01, 1.820787E-01,1.785083E-01,1.750078E-01,1.715760E-01,1.682115E-01,1.649130E-01, 1.616792E-01,1.585087E-01,1.554005E-01,1.523532E-01,1.493656E-01,1.464367E-01, 1.435651E-01,1.407499E-01,1.379899E-01,1.352840E-01,1.326311E-01,1.300303E-01, 1.274805E-01,1.249807E-01,1.225299E-01,1.201272E-01,1.177715E-01,1.154621E-01, 1.131980E-01,1.109782E-01,1.088020E-01,1.066685E-01,1.045768E-01,1.025261E-01, 1.005156E-01,9.854456E-02,9.661216E-02,9.471765E-02,9.286030E-02,9.103937E-02, 8.925414E-02,8.750392E-02,8.578802E-02,8.410577E-02,8.245651E-02,8.083959E-02, 7.925437E-02,7.770024E-02,7.617659E-02,7.468281E-02,7.321833E-02,7.178256E-02, 7.037495E-02,6.899494E-02,6.764199E-02,6.631557E-02,6.501516E-02,6.374025E-02, 6.249035E-02,6.126495E-02,6.006358E-02,5.888577E-02,5.773106E-02,5.659899E-02, 5.548911E-02,5.440101E-02,5.333424E-02,5.228838E-02,5.126304E-02,5.025780E-02, 4.927228E-02,4.830608E-02,4.735883E-02,4.643015E-02,4.551968E-02,4.462707E-02, 4.375196E-02,4.289401E-02,4.205289E-02,4.122825E-02,4.041979E-02,3.962719E-02, 3.885012E-02,3.808829E-02,3.734141E-02,3.660916E-02,3.589128E-02,3.518747E-02, 3.449747E-02,3.382099E-02,3.315779E-02,3.250758E-02,3.187013E-02,3.124517E-02, 3.063247E-02,3.003179E-02,2.944289E-02,2.886553E-02,2.829949E-02,2.774456E-02, 2.720050E-02,2.666712E-02,2.614419E-02,2.563152E-02,2.512890E-02,2.463614E-02, 2.415304E-02,2.367941E-02,2.321507E-02,2.275984E-02,2.231353E-02,2.187598E-02, 2.144701E-02,2.102644E-02,2.061413E-02,2.020990E-02,1.981359E-02,1.942506E-02, 1.904415E-02,1.867070E-02,1.830458E-02,1.794564E-02,1.759374E-02,1.724873E-02, 1.691050E-02,1.657889E-02,1.625379E-02,1.593506E-02,1.562259E-02,1.531624E-02, 1.501590E-02,1.472144E-02,1.443276E-02,1.414975E-02,1.387228E-02,1.360025E-02, 1.333356E-02,1.307210E-02,1.281576E-02,1.256445E-02,1.231807E-02,1.207652E-02, 1.183971E-02,1.160754E-02,1.137992E-02,1.115677E-02,1.093799E-02,1.072350E-02, 1.051322E-02,1.030706E-02,1.010495E-02,9.906796E-03,9.712530E-03,9.522073E-03, 9.335351E-03,9.152291E-03,8.972820E-03,8.796868E-03,8.624367E-03,8.455249E-03, 8.289446E-03,8.126895E-03,7.967532E-03,7.811293E-03,7.658119E-03,7.507948E-03, 7.360721E-03,7.216382E-03,7.074873E-03,6.936139E-03,6.800126E-03,6.666780E-03, 6.536048E-03,6.407880E-03,6.282226E-03,6.159035E-03,6.038260E-03,5.919853E-03, 5.803769E-03,5.689960E-03,5.578384E-03,5.468995E-03,5.361751E-03,5.256611E-03, 5.153532E-03,5.052474E-03,4.953398E-03,4.856265E-03,4.761037E-03,4.667676E-03, 4.576145E-03,4.486410E-03,4.398434E-03,4.312184E-03,4.227624E-03,4.144723E-03, 4.063448E-03,3.983766E-03,3.905647E-03,3.829059E-03,3.753974E-03,3.680361E-03, 3.608191E-03,3.537437E-03,3.468070E-03,3.400063E-03,3.333390E-03,3.268024E-03, 3.203940E-03,3.141113E-03,3.079517E-03,3.019130E-03,2.959927E-03,2.901884E-03, 2.844980E-03,2.789192E-03,2.734497E-03,2.680876E-03,2.628305E-03,2.576766E-03, 2.526237E-03,2.476699E-03,2.428133E-03,2.380518E-03,2.333838E-03,2.288073E-03, 2.243205E-03,2.199217E-03,2.156092E-03,2.113812E-03,2.072362E-03,2.031724E-03, 1.991883E-03,1.952823E-03,1.914530E-03,1.876987E-03,1.840180E-03,1.804096E-03, 1.768718E-03,1.734035E-03,1.700031E-03,1.666695E-03,1.634012E-03,1.601970E-03, 1.570556E-03,1.539759E-03,1.509565E-03,1.479963E-03,1.450942E-03,1.422490E-03, 1.394596E-03,1.367249E-03,1.340438E-03,1.314153E-03,1.288383E-03,1.263119E-03, 1.238350E-03,1.214066E-03,1.190259E-03,1.166919E-03,1.144036E-03,1.121602E-03, 1.099609E-03,1.078046E-03,1.056906E-03,1.036181E-03,1.015862E-03,9.959415E-04, 9.764117E-04,9.572648E-04,9.384935E-04,9.200902E-04,9.020478E-04,8.843592E-04, 8.670174E-04,8.500157E-04,8.333474E-04,8.170060E-04,8.009850E-04,7.852782E-04, 7.698794E-04,7.547825E-04,7.399817E-04,7.254711E-04,7.112450E-04,6.972980E-04]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.frac_pest_on_surface = 0.62 ted_empty.density_h2o = 1.0 ted_empty.mass_wax = 0.012 # input variables that change per simulation ted_empty.solubility = pd.Series([145., 1., 20.], dtype='float') ted_empty.log_kow = pd.Series([2.75, 4., 5.], dtype='float') # internally calculated variables blp_conc = pd.Series([[6.750000E+01,6.617637E+01,6.487869E+01,6.360646E+01,6.235917E+01,6.113635E+01,5.993750E+01, 1.262622E+02,1.237862E+02,1.213589E+02,1.189791E+02,1.166460E+02,1.143586E+02,1.121161E+02, 1.774176E+02,1.739385E+02,1.705277E+02,1.671838E+02,1.639054E+02,1.606913E+02,1.575403E+02, 2.219510E+02,2.175987E+02,2.133317E+02,2.091484E+02,2.050471E+02,2.010263E+02,1.970843E+02, 2.607196E+02,2.556070E+02,2.505947E+02,2.456807E+02,2.408631E+02,2.361399E+02,2.315093E+02, 2.269696E+02,2.225188E+02,2.181554E+02,2.138775E+02,2.096835E+02,2.055717E+02,2.015406E+02, 1.975885E+02,1.937139E+02,1.899153E+02,1.861912E+02,1.825401E+02,1.789606E+02,1.754513E+02, 1.720108E+02,1.686377E+02,1.653309E+02,1.620888E+02,1.589104E+02,1.557942E+02,1.527392E+02, 1.497441E+02,1.468077E+02,1.439289E+02,1.411065E+02,1.383395E+02,1.356267E+02,1.329672E+02, 1.303598E+02,1.278035E+02,1.252974E+02,1.228404E+02,1.204315E+02,1.180699E+02,1.157547E+02, 1.134848E+02,1.112594E+02,1.090777E+02,1.069387E+02,1.048417E+02,1.027859E+02,1.007703E+02, 9.879424E+01,9.685694E+01,9.495764E+01,9.309558E+01,9.127003E+01,8.948028E+01,8.772563E+01, 8.600538E+01,8.431887E+01,8.266543E+01,8.104441E+01,7.945518E+01,7.789711E+01,7.636959E+01, 7.487203E+01,7.340384E+01,7.196443E+01,7.055325E+01,6.916975E+01,6.781337E+01,6.648359E+01, 6.517989E+01,6.390175E+01,6.264868E+01,6.142018E+01,6.021576E+01,5.903497E+01,5.787733E+01, 5.674239E+01,5.562971E+01,5.453884E+01,5.346937E+01,5.242087E+01,5.139293E+01,5.038514E+01, 4.939712E+01,4.842847E+01,4.747882E+01,4.654779E+01,4.563501E+01,4.474014E+01,4.386281E+01, 4.300269E+01,4.215943E+01,4.133271E+01,4.052220E+01,3.972759E+01,3.894855E+01,3.818480E+01, 3.743602E+01,3.670192E+01,3.598222E+01,3.527663E+01,3.458487E+01,3.390669E+01,3.324180E+01, 3.258994E+01,3.195088E+01,3.132434E+01,3.071009E+01,3.010788E+01,2.951748E+01,2.893866E+01, 2.837119E+01,2.781485E+01,2.726942E+01,2.673468E+01,2.621043E+01,2.569646E+01,2.519257E+01, 2.469856E+01,2.421424E+01,2.373941E+01,2.327389E+01,2.281751E+01,2.237007E+01,2.193141E+01, 2.150135E+01,2.107972E+01,2.066636E+01,2.026110E+01,1.986379E+01,1.947428E+01,1.909240E+01, 1.871801E+01,1.835096E+01,1.799111E+01,1.763831E+01,1.729244E+01,1.695334E+01,1.662090E+01, 1.629497E+01,1.597544E+01,1.566217E+01,1.535504E+01,1.505394E+01,1.475874E+01,1.446933E+01, 1.418560E+01,1.390743E+01,1.363471E+01,1.336734E+01,1.310522E+01,1.284823E+01,1.259629E+01, 1.234928E+01,1.210712E+01,1.186970E+01,1.163695E+01,1.140875E+01,1.118503E+01,1.096570E+01, 1.075067E+01,1.053986E+01,1.033318E+01,1.013055E+01,9.931897E+00,9.737138E+00,9.546199E+00, 9.359004E+00,9.175480E+00,8.995554E+00,8.819157E+00,8.646218E+00,8.476671E+00,8.310449E+00, 8.147486E+00,7.987719E+00,7.831085E+00,7.677522E+00,7.526970E+00,7.379371E+00,7.234666E+00, 7.092799E+00,6.953713E+00,6.817355E+00,6.683671E+00,6.552608E+00,6.424116E+00,6.298143E+00, 6.174640E+00,6.053559E+00,5.934852E+00,5.818474E+00,5.704377E+00,5.592517E+00,5.482852E+00, 5.375336E+00,5.269929E+00,5.166589E+00,5.065275E+00,4.965948E+00,4.868569E+00,4.773100E+00, 4.679502E+00,4.587740E+00,4.497777E+00,4.409578E+00,4.323109E+00,4.238336E+00,4.155225E+00, 4.073743E+00,3.993859E+00,3.915542E+00,3.838761E+00,3.763485E+00,3.689686E+00,3.617333E+00, 3.546399E+00,3.476857E+00,3.408678E+00,3.341835E+00,3.276304E+00,3.212058E+00,3.149071E+00, 3.087320E+00,3.026779E+00,2.967426E+00,2.909237E+00,2.852188E+00,2.796259E+00,2.741426E+00, 2.687668E+00,2.634965E+00,2.583295E+00,2.532638E+00,2.482974E+00,2.434285E+00,2.386550E+00, 2.339751E+00,2.293870E+00,2.248889E+00,2.204789E+00,2.161555E+00,2.119168E+00,2.077612E+00, 2.036872E+00,1.996930E+00,1.957771E+00,1.919380E+00,1.881743E+00,1.844843E+00,1.808667E+00, 1.773200E+00,1.738428E+00,1.704339E+00,1.670918E+00,1.638152E+00,1.606029E+00,1.574536E+00, 1.543660E+00,1.513390E+00,1.483713E+00,1.454618E+00,1.426094E+00,1.398129E+00,1.370713E+00, 1.343834E+00,1.317482E+00,1.291647E+00,1.266319E+00,1.241487E+00,1.217142E+00,1.193275E+00, 1.169876E+00,1.146935E+00,1.124444E+00,1.102395E+00,1.080777E+00,1.059584E+00,1.038806E+00, 1.018436E+00,9.984649E-01,9.788856E-01,9.596902E-01,9.408713E-01,9.224214E-01,9.043333E-01, 8.865998E-01,8.692142E-01,8.521694E-01,8.354589E-01,8.190760E-01,8.030145E-01,7.872678E-01, 7.718300E-01,7.566949E-01,7.418565E-01,7.273092E-01,7.130471E-01,6.990647E-01,6.853565E-01, 6.719170E-01,6.587411E-01,6.458236E-01,6.331594E-01,6.207436E-01,6.085712E-01,5.966374E-01, 5.849378E-01,5.734675E-01,5.622221E-01,5.511973E-01,5.403887E-01,5.297920E-01,5.194031E-01, 5.092179E-01,4.992324E-01,4.894428E-01,4.798451E-01,4.704356E-01,4.612107E-01,4.521666E-01, 4.432999E-01,4.346071E-01,4.260847E-01,4.177294E-01,4.095380E-01,4.015072E-01,3.936339E-01, 3.859150E-01,3.783474E-01,3.709283E-01,3.636546E-01,3.565236E-01,3.495323E-01,3.426782E-01, 3.359585E-01,3.293706E-01], [6.750000E+01,6.617637E+01,6.487869E+01,6.360646E+01,6.235917E+01,6.113635E+01,5.993750E+01, 1.262622E+02,1.237862E+02,1.213589E+02,1.189791E+02,1.166460E+02,1.143586E+02,1.121161E+02, 1.774176E+02,1.739385E+02,1.705277E+02,1.671838E+02,1.639054E+02,1.606913E+02,1.575403E+02, 2.219510E+02,2.175987E+02,2.133317E+02,2.091484E+02,2.050471E+02,2.010263E+02,1.970843E+02, 2.607196E+02,2.556070E+02,2.505947E+02,2.456807E+02,2.408631E+02,2.361399E+02,2.315093E+02, 2.269696E+02,2.225188E+02,2.181554E+02,2.138775E+02,2.096835E+02,2.055717E+02,2.015406E+02, 1.975885E+02,1.937139E+02,1.899153E+02,1.861912E+02,1.825401E+02,1.789606E+02,1.754513E+02, 1.720108E+02,1.686377E+02,1.653309E+02,1.620888E+02,1.589104E+02,1.557942E+02,1.527392E+02, 1.497441E+02,1.468077E+02,1.439289E+02,1.411065E+02,1.383395E+02,1.356267E+02,1.329672E+02, 1.303598E+02,1.278035E+02,1.252974E+02,1.228404E+02,1.204315E+02,1.180699E+02,1.157547E+02, 1.134848E+02,1.112594E+02,1.090777E+02,1.069387E+02,1.048417E+02,1.027859E+02,1.007703E+02, 9.879424E+01,9.685694E+01,9.495764E+01,9.309558E+01,9.127003E+01,8.948028E+01,8.772563E+01, 8.600538E+01,8.431887E+01,8.266543E+01,8.104441E+01,7.945518E+01,7.789711E+01,7.636959E+01, 7.487203E+01,7.340384E+01,7.196443E+01,7.055325E+01,6.916975E+01,6.781337E+01,6.648359E+01, 6.517989E+01,6.390175E+01,6.264868E+01,6.142018E+01,6.021576E+01,5.903497E+01,5.787733E+01, 5.674239E+01,5.562971E+01,5.453884E+01,5.346937E+01,5.242087E+01,5.139293E+01,5.038514E+01, 4.939712E+01,4.842847E+01,4.747882E+01,4.654779E+01,4.563501E+01,4.474014E+01,4.386281E+01, 4.300269E+01,4.215943E+01,4.133271E+01,4.052220E+01,3.972759E+01,3.894855E+01,3.818480E+01, 3.743602E+01,3.670192E+01,3.598222E+01,3.527663E+01,3.458487E+01,3.390669E+01,3.324180E+01, 3.258994E+01,3.195088E+01,3.132434E+01,3.071009E+01,3.010788E+01,2.951748E+01,2.893866E+01, 2.837119E+01,2.781485E+01,2.726942E+01,2.673468E+01,2.621043E+01,2.569646E+01,2.519257E+01, 2.469856E+01,2.421424E+01,2.373941E+01,2.327389E+01,2.281751E+01,2.237007E+01,2.193141E+01, 2.150135E+01,2.107972E+01,2.066636E+01,2.026110E+01,1.986379E+01,1.947428E+01,1.909240E+01, 1.871801E+01,1.835096E+01,1.799111E+01,1.763831E+01,1.729244E+01,1.695334E+01,1.662090E+01, 1.629497E+01,1.597544E+01,1.566217E+01,1.535504E+01,1.505394E+01,1.475874E+01,1.446933E+01, 1.418560E+01,1.390743E+01,1.363471E+01,1.336734E+01,1.310522E+01,1.284823E+01,1.259629E+01, 1.234928E+01,1.210712E+01,1.186970E+01,1.163695E+01,1.140875E+01,1.118503E+01,1.096570E+01, 1.075067E+01,1.053986E+01,1.033318E+01,1.013055E+01,9.931897E+00,9.737138E+00,9.546199E+00, 9.359004E+00,9.175480E+00,8.995554E+00,8.819157E+00,8.646218E+00,8.476671E+00,8.310449E+00, 8.147486E+00,7.987719E+00,7.831085E+00,7.677522E+00,7.526970E+00,7.379371E+00,7.234666E+00, 7.092799E+00,6.953713E+00,6.817355E+00,6.683671E+00,6.552608E+00,6.424116E+00,6.298143E+00, 6.174640E+00,6.053559E+00,5.934852E+00,5.818474E+00,5.704377E+00,5.592517E+00,5.482852E+00, 5.375336E+00,5.269929E+00,5.166589E+00,5.065275E+00,4.965948E+00,4.868569E+00,4.773100E+00, 4.679502E+00,4.587740E+00,4.497777E+00,4.409578E+00,4.323109E+00,4.238336E+00,4.155225E+00, 4.073743E+00,3.993859E+00,3.915542E+00,3.838761E+00,3.763485E+00,3.689686E+00,3.617333E+00, 3.546399E+00,3.476857E+00,3.408678E+00,3.341835E+00,3.276304E+00,3.212058E+00,3.149071E+00, 3.087320E+00,3.026779E+00,2.967426E+00,2.909237E+00,2.852188E+00,2.796259E+00,2.741426E+00, 2.687668E+00,2.634965E+00,2.583295E+00,2.532638E+00,2.482974E+00,2.434285E+00,2.386550E+00, 2.339751E+00,2.293870E+00,2.248889E+00,2.204789E+00,2.161555E+00,2.119168E+00,2.077612E+00, 2.036872E+00,1.996930E+00,1.957771E+00,1.919380E+00,1.881743E+00,1.844843E+00,1.808667E+00, 1.773200E+00,1.738428E+00,1.704339E+00,1.670918E+00,1.638152E+00,1.606029E+00,1.574536E+00, 1.543660E+00,1.513390E+00,1.483713E+00,1.454618E+00,1.426094E+00,1.398129E+00,1.370713E+00, 1.343834E+00,1.317482E+00,1.291647E+00,1.266319E+00,1.241487E+00,1.217142E+00,1.193275E+00, 1.169876E+00,1.146935E+00,1.124444E+00,1.102395E+00,1.080777E+00,1.059584E+00,1.038806E+00, 1.018436E+00,9.984649E-01,9.788856E-01,9.596902E-01,9.408713E-01,9.224214E-01,9.043333E-01, 8.865998E-01,8.692142E-01,8.521694E-01,8.354589E-01,8.190760E-01,8.030145E-01,7.872678E-01, 7.718300E-01,7.566949E-01,7.418565E-01,7.273092E-01,7.130471E-01,6.990647E-01,6.853565E-01, 6.719170E-01,6.587411E-01,6.458236E-01,6.331594E-01,6.207436E-01,6.085712E-01,5.966374E-01, 5.849378E-01,5.734675E-01,5.622221E-01,5.511973E-01,5.403887E-01,5.297920E-01,5.194031E-01, 5.092179E-01,4.992324E-01,4.894428E-01,4.798451E-01,4.704356E-01,4.612107E-01,4.521666E-01, 4.432999E-01,4.346071E-01,4.260847E-01,4.177294E-01,4.095380E-01,4.015072E-01,3.936339E-01, 3.859150E-01,3.783474E-01,3.709283E-01,3.636546E-01,3.565236E-01,3.495323E-01,3.426782E-01, 3.359585E-01,3.293706E-01], [1.687500E+02,1.654409E+02,1.621967E+02,1.590161E+02,1.558979E+02,1.528409E+02,1.498438E+02, 3.156554E+02,3.094656E+02,3.033972E+02,2.974477E+02,2.916150E+02,2.858966E+02,2.802903E+02, 4.435440E+02,4.348464E+02,4.263193E+02,4.179594E+02,4.097635E+02,4.017283E+02,3.938506E+02, 5.548775E+02,5.439967E+02,5.333292E+02,5.228710E+02,5.126178E+02,5.025657E+02,4.927107E+02, 6.517989E+02,6.390175E+02,6.264868E+02,6.142018E+02,6.021576E+02,5.903497E+02,5.787733E+02, 7.361739E+02,7.217380E+02,7.075851E+02,6.937098E+02,6.801066E+02,6.667701E+02,6.536952E+02, 8.096266E+02,7.937503E+02,7.781854E+02,7.629256E+02,7.479651E+02,7.332980E+02,7.189184E+02, 7.048209E+02,6.909998E+02,6.774497E+02,6.641653E+02,6.511414E+02,6.383730E+02,6.258549E+02, 6.135822E+02,6.015503E+02,5.897542E+02,5.781895E+02,5.668516E+02,5.557359E+02,5.448383E+02, 5.341544E+02,5.236799E+02,5.134109E+02,5.033432E+02,4.934729E+02,4.837962E+02,4.743093E+02, 4.650084E+02,4.558898E+02,4.469501E+02,4.381857E+02,4.295931E+02,4.211691E+02,4.129102E+02, 4.048133E+02,3.968752E+02,3.890927E+02,3.814628E+02,3.739826E+02,3.666490E+02,3.594592E+02, 3.524104E+02,3.454999E+02,3.387249E+02,3.320827E+02,3.255707E+02,3.191865E+02,3.129274E+02, 3.067911E+02,3.007751E+02,2.948771E+02,2.890947E+02,2.834258E+02,2.778680E+02,2.724191E+02, 2.670772E+02,2.618400E+02,2.567054E+02,2.516716E+02,2.467365E+02,2.418981E+02,2.371546E+02, 2.325042E+02,2.279449E+02,2.234751E+02,2.190929E+02,2.147966E+02,2.105845E+02,2.064551E+02, 2.024067E+02,1.984376E+02,1.945463E+02,1.907314E+02,1.869913E+02,1.833245E+02,1.797296E+02, 1.762052E+02,1.727499E+02,1.693624E+02,1.660413E+02,1.627854E+02,1.595932E+02,1.564637E+02, 1.533956E+02,1.503876E+02,1.474386E+02,1.445474E+02,1.417129E+02,1.389340E+02,1.362096E+02, 1.335386E+02,1.309200E+02,1.283527E+02,1.258358E+02,1.233682E+02,1.209491E+02,1.185773E+02, 1.162521E+02,1.139725E+02,1.117375E+02,1.095464E+02,1.073983E+02,1.052923E+02,1.032276E+02, 1.012033E+02,9.921879E+01,9.727317E+01,9.536570E+01,9.349564E+01,9.166225E+01,8.986481E+01, 8.810261E+01,8.637497E+01,8.468121E+01,8.302067E+01,8.139268E+01,7.979662E+01,7.823186E+01, 7.669778E+01,7.519378E+01,7.371928E+01,7.227369E+01,7.085644E+01,6.946699E+01,6.810479E+01, 6.676929E+01,6.545999E+01,6.417636E+01,6.291790E+01,6.168412E+01,6.047453E+01,5.928866E+01, 5.812605E+01,5.698623E+01,5.586876E+01,5.477321E+01,5.369914E+01,5.264614E+01,5.161378E+01, 5.060166E+01,4.960939E+01,4.863658E+01,4.768285E+01,4.674782E+01,4.583112E+01,4.493240E+01, 4.405131E+01,4.318749E+01,4.234061E+01,4.151033E+01,4.069634E+01,3.989831E+01,3.911593E+01, 3.834889E+01,3.759689E+01,3.685964E+01,3.613684E+01,3.542822E+01,3.473350E+01,3.405239E+01, 3.338465E+01,3.272999E+01,3.208818E+01,3.145895E+01,3.084206E+01,3.023726E+01,2.964433E+01, 2.906302E+01,2.849312E+01,2.793438E+01,2.738661E+01,2.684957E+01,2.632307E+01,2.580689E+01, 2.530083E+01,2.480470E+01,2.431829E+01,2.384143E+01,2.337391E+01,2.291556E+01,2.246620E+01, 2.202565E+01,2.159374E+01,2.117030E+01,2.075517E+01,2.034817E+01,1.994916E+01,1.955796E+01, 1.917444E+01,1.879845E+01,1.842982E+01,1.806842E+01,1.771411E+01,1.736675E+01,1.702620E+01, 1.669232E+01,1.636500E+01,1.604409E+01,1.572947E+01,1.542103E+01,1.511863E+01,1.482217E+01, 1.453151E+01,1.424656E+01,1.396719E+01,1.369330E+01,1.342479E+01,1.316153E+01,1.290344E+01, 1.265042E+01,1.240235E+01,1.215915E+01,1.192071E+01,1.168695E+01,1.145778E+01,1.123310E+01, 1.101283E+01,1.079687E+01,1.058515E+01,1.037758E+01,1.017409E+01,9.974578E+00,9.778982E+00, 9.587222E+00,9.399223E+00,9.214910E+00,9.034211E+00,8.857056E+00,8.683374E+00,8.513098E+00, 8.346162E+00,8.182499E+00,8.022045E+00,7.864737E+00,7.710515E+00,7.559316E+00,7.411083E+00, 7.265756E+00,7.123279E+00,6.983596E+00,6.846652E+00,6.712393E+00,6.580767E+00,6.451722E+00, 6.325208E+00,6.201174E+00,6.079573E+00,5.960356E+00,5.843477E+00,5.728890E+00,5.616550E+00, 5.506413E+00,5.398436E+00,5.292576E+00,5.188792E+00,5.087043E+00,4.987289E+00,4.889491E+00, 4.793611E+00,4.699611E+00,4.607455E+00,4.517105E+00,4.428528E+00,4.341687E+00,4.256549E+00, 4.173081E+00,4.091249E+00,4.011022E+00,3.932369E+00,3.855257E+00,3.779658E+00,3.705541E+00, 3.632878E+00,3.561639E+00,3.491798E+00,3.423326E+00,3.356196E+00,3.290383E+00,3.225861E+00, 3.162604E+00,3.100587E+00,3.039787E+00,2.980178E+00,2.921739E+00,2.864445E+00,2.808275E+00, 2.753207E+00,2.699218E+00,2.646288E+00,2.594396E+00,2.543521E+00,2.493644E+00,2.444746E+00, 2.396806E+00,2.349806E+00,2.303727E+00,2.258553E+00,2.214264E+00,2.170844E+00,2.128275E+00, 2.086540E+00,2.045625E+00,2.005511E+00,1.966184E+00,1.927629E+00,1.889829E+00,1.852771E+00, 1.816439E+00,1.780820E+00,1.745899E+00,1.711663E+00,1.678098E+00,1.645192E+00,1.612931E+00, 1.581302E+00,1.550294E+00,1.519893E+00,1.490089E+00,1.460869E+00,1.432223E+00,1.404138E+00, 1.376603E+00,1.349609E+00]], dtype='float') for i in range(3): result[i] = ted_empty.daily_plant_dew_timeseries(i, blp_conc[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_soil_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil :param i; simulation number/index :param pore_h2o_conc; daily values of pesticide concentration in soil pore water :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([[]], dtype='float') expected_results = [[3.521818E+00,3.285972E+00,3.065920E+00,2.860605E+00,2.669039E+00,2.490301E+00,2.323533E+00, 5.689751E+00,5.308725E+00,4.953216E+00,4.621514E+00,4.312025E+00,4.023261E+00,3.753835E+00, 7.024270E+00,6.553876E+00,6.114982E+00,5.705480E+00,5.323401E+00,4.966909E+00,4.634290E+00, 7.845763E+00,7.320356E+00,6.830133E+00,6.372740E+00,5.945976E+00,5.547792E+00,5.176273E+00, 8.351451E+00,7.792179E+00,7.270360E+00,6.783486E+00,6.329216E+00,5.905368E+00,5.509903E+00, 8.662739E+00,8.082621E+00,7.541352E+00,7.036330E+00,6.565128E+00,6.125481E+00,5.715276E+00, 8.854359E+00,8.261409E+00,7.708167E+00,7.191974E+00,6.710349E+00,6.260977E+00,5.841698E+00, 5.450497E+00,5.085494E+00,4.744933E+00,4.427179E+00,4.130704E+00,3.854083E+00,3.595987E+00, 3.355175E+00,3.130489E+00,2.920849E+00,2.725249E+00,2.542747E+00,2.372467E+00,2.213590E+00, 2.065352E+00,1.927042E+00,1.797994E+00,1.677587E+00,1.565244E+00,1.460425E+00,1.362624E+00, 1.271373E+00,1.186233E+00,1.106795E+00,1.032676E+00,9.635209E-01,8.989968E-01,8.387936E-01, 7.826221E-01,7.302123E-01,6.813121E-01,6.356867E-01,5.931167E-01,5.533974E-01,5.163381E-01, 4.817604E-01,4.494984E-01,4.193968E-01,3.913111E-01,3.651061E-01,3.406561E-01,3.178434E-01, 2.965583E-01,2.766987E-01,2.581690E-01,2.408802E-01,2.247492E-01,2.096984E-01,1.956555E-01, 1.825531E-01,1.703280E-01,1.589217E-01,1.482792E-01,1.383494E-01,1.290845E-01,1.204401E-01, 1.123746E-01,1.048492E-01,9.782777E-02,9.127653E-02,8.516402E-02,7.946084E-02,7.413958E-02, 6.917468E-02,6.454226E-02,6.022005E-02,5.618730E-02,5.242460E-02,4.891388E-02,4.563827E-02, 4.258201E-02,3.973042E-02,3.706979E-02,3.458734E-02,3.227113E-02,3.011003E-02,2.809365E-02, 2.621230E-02,2.445694E-02,2.281913E-02,2.129100E-02,1.986521E-02,1.853490E-02,1.729367E-02, 1.613556E-02,1.505501E-02,1.404682E-02,1.310615E-02,1.222847E-02,1.140957E-02,1.064550E-02, 9.932605E-03,9.267448E-03,8.646835E-03,8.067782E-03,7.527507E-03,7.023412E-03,6.553075E-03, 6.114235E-03,5.704783E-03,5.322751E-03,4.966302E-03,4.633724E-03,4.323417E-03,4.033891E-03, 3.763753E-03,3.511706E-03,3.276538E-03,3.057118E-03,2.852392E-03,2.661376E-03,2.483151E-03, 2.316862E-03,2.161709E-03,2.016946E-03,1.881877E-03,1.755853E-03,1.638269E-03,1.528559E-03, 1.426196E-03,1.330688E-03,1.241576E-03,1.158431E-03,1.080854E-03,1.008473E-03,9.409384E-04, 8.779265E-04,8.191344E-04,7.642794E-04,7.130979E-04,6.653439E-04,6.207878E-04,5.792155E-04, 5.404272E-04,5.042364E-04,4.704692E-04,4.389633E-04,4.095672E-04,3.821397E-04,3.565490E-04, 3.326719E-04,3.103939E-04,2.896077E-04,2.702136E-04,2.521182E-04,2.352346E-04,2.194816E-04, 2.047836E-04,1.910699E-04,1.782745E-04,1.663360E-04,1.551970E-04,1.448039E-04,1.351068E-04, 1.260591E-04,1.176173E-04,1.097408E-04,1.023918E-04,9.553493E-05,8.913724E-05,8.316799E-05, 7.759848E-05,7.240194E-05,6.755340E-05,6.302955E-05,5.880865E-05,5.487041E-05,5.119590E-05, 4.776746E-05,4.456862E-05,4.158399E-05,3.879924E-05,3.620097E-05,3.377670E-05,3.151477E-05, 2.940432E-05,2.743520E-05,2.559795E-05,2.388373E-05,2.228431E-05,2.079200E-05,1.939962E-05, 1.810048E-05,1.688835E-05,1.575739E-05,1.470216E-05,1.371760E-05,1.279898E-05,1.194187E-05, 1.114216E-05,1.039600E-05,9.699809E-06,9.050242E-06,8.444175E-06,7.878693E-06,7.351081E-06, 6.858801E-06,6.399488E-06,5.970933E-06,5.571078E-06,5.197999E-06,4.849905E-06,4.525121E-06, 4.222087E-06,3.939347E-06,3.675540E-06,3.429400E-06,3.199744E-06,2.985467E-06,2.785539E-06, 2.599000E-06,2.424952E-06,2.262561E-06,2.111044E-06,1.969673E-06,1.837770E-06,1.714700E-06, 1.599872E-06,1.492733E-06,1.392769E-06,1.299500E-06,1.212476E-06,1.131280E-06,1.055522E-06, 9.848367E-07,9.188851E-07,8.573501E-07,7.999360E-07,7.463666E-07,6.963847E-07,6.497499E-07, 6.062381E-07,5.656401E-07,5.277609E-07,4.924183E-07,4.594426E-07,4.286751E-07,3.999680E-07, 3.731833E-07,3.481923E-07,3.248749E-07,3.031190E-07,2.828201E-07,2.638805E-07,2.462092E-07, 2.297213E-07,2.143375E-07,1.999840E-07,1.865917E-07,1.740962E-07,1.624375E-07,1.515595E-07, 1.414100E-07,1.319402E-07,1.231046E-07,1.148606E-07,1.071688E-07,9.999199E-08,9.329583E-08, 8.704809E-08,8.121874E-08,7.577976E-08,7.070502E-08,6.597011E-08,6.155229E-08,5.743032E-08, 5.358438E-08,4.999600E-08,4.664791E-08,4.352404E-08,4.060937E-08,3.788988E-08,3.535251E-08, 3.298506E-08,3.077615E-08,2.871516E-08,2.679219E-08,2.499800E-08,2.332396E-08,2.176202E-08, 2.030468E-08,1.894494E-08,1.767625E-08,1.649253E-08,1.538807E-08,1.435758E-08,1.339610E-08, 1.249900E-08,1.166198E-08,1.088101E-08,1.015234E-08,9.472470E-09,8.838127E-09,8.246264E-09, 7.694037E-09,7.178790E-09,6.698048E-09,6.249500E-09,5.830989E-09,5.440505E-09,5.076171E-09, 4.736235E-09,4.419064E-09,4.123132E-09,3.847018E-09,3.589395E-09,3.349024E-09,3.124750E-09, 2.915495E-09,2.720253E-09,2.538086E-09,2.368118E-09,2.209532E-09,2.061566E-09,1.923509E-09, 1.794697E-09,1.674512E-09], [3.544172E+00,3.306830E+00,3.085381E+00,2.878762E+00,2.685980E+00,2.506108E+00,2.338282E+00, 5.725866E+00,5.342422E+00,4.984656E+00,4.650848E+00,4.339395E+00,4.048799E+00,3.777663E+00, 7.068856E+00,6.595476E+00,6.153797E+00,5.741695E+00,5.357191E+00,4.998436E+00,4.663706E+00, 7.895563E+00,7.366821E+00,6.873487E+00,6.413190E+00,5.983718E+00,5.583006E+00,5.209129E+00, 8.404462E+00,7.841640E+00,7.316509E+00,6.826544E+00,6.369391E+00,5.942852E+00,5.544877E+00, 8.717725E+00,8.133925E+00,7.589220E+00,7.080993E+00,6.606800E+00,6.164363E+00,5.751554E+00, 8.910561E+00,8.313848E+00,7.757094E+00,7.237625E+00,6.752943E+00,6.300718E+00,5.878778E+00, 5.485094E+00,5.117774E+00,4.775052E+00,4.455281E+00,4.156924E+00,3.878547E+00,3.618812E+00, 3.376471E+00,3.150359E+00,2.939389E+00,2.742547E+00,2.558887E+00,2.387526E+00,2.227640E+00, 2.078462E+00,1.939274E+00,1.809406E+00,1.688236E+00,1.575180E+00,1.469695E+00,1.371273E+00, 1.279443E+00,1.193763E+00,1.113820E+00,1.039231E+00,9.696368E-01,9.047031E-01,8.441178E-01, 7.875898E-01,7.348473E-01,6.856367E-01,6.397217E-01,5.968815E-01,5.569101E-01,5.196155E-01, 4.848184E-01,4.523516E-01,4.220589E-01,3.937949E-01,3.674236E-01,3.428184E-01,3.198608E-01, 2.984407E-01,2.784550E-01,2.598077E-01,2.424092E-01,2.261758E-01,2.110295E-01,1.968974E-01, 1.837118E-01,1.714092E-01,1.599304E-01,1.492204E-01,1.392275E-01,1.299039E-01,1.212046E-01, 1.130879E-01,1.055147E-01,9.844872E-02,9.185591E-02,8.570459E-02,7.996521E-02,7.461018E-02, 6.961376E-02,6.495194E-02,6.060230E-02,5.654394E-02,5.275737E-02,4.922436E-02,4.592795E-02, 4.285230E-02,3.998261E-02,3.730509E-02,3.480688E-02,3.247597E-02,3.030115E-02,2.827197E-02, 2.637868E-02,2.461218E-02,2.296398E-02,2.142615E-02,1.999130E-02,1.865255E-02,1.740344E-02, 1.623798E-02,1.515057E-02,1.413599E-02,1.318934E-02,1.230609E-02,1.148199E-02,1.071307E-02, 9.995652E-03,9.326273E-03,8.701720E-03,8.118992E-03,7.575287E-03,7.067993E-03,6.594671E-03, 6.153045E-03,5.740994E-03,5.356537E-03,4.997826E-03,4.663136E-03,4.350860E-03,4.059496E-03, 3.787644E-03,3.533997E-03,3.297335E-03,3.076523E-03,2.870497E-03,2.678269E-03,2.498913E-03, 2.331568E-03,2.175430E-03,2.029748E-03,1.893822E-03,1.766998E-03,1.648668E-03,1.538261E-03, 1.435249E-03,1.339134E-03,1.249456E-03,1.165784E-03,1.087715E-03,1.014874E-03,9.469109E-04, 8.834991E-04,8.243338E-04,7.691307E-04,7.176243E-04,6.695671E-04,6.247282E-04,5.828920E-04, 5.438575E-04,5.074370E-04,4.734555E-04,4.417496E-04,4.121669E-04,3.845653E-04,3.588121E-04, 3.347836E-04,3.123641E-04,2.914460E-04,2.719288E-04,2.537185E-04,2.367277E-04,2.208748E-04, 2.060835E-04,1.922827E-04,1.794061E-04,1.673918E-04,1.561821E-04,1.457230E-04,1.359644E-04, 1.268592E-04,1.183639E-04,1.104374E-04,1.030417E-04,9.614133E-05,8.970304E-05,8.369589E-05, 7.809103E-05,7.286151E-05,6.798219E-05,6.342962E-05,5.918193E-05,5.521870E-05,5.152086E-05, 4.807067E-05,4.485152E-05,4.184795E-05,3.904551E-05,3.643075E-05,3.399109E-05,3.171481E-05, 2.959097E-05,2.760935E-05,2.576043E-05,2.403533E-05,2.242576E-05,2.092397E-05,1.952276E-05, 1.821538E-05,1.699555E-05,1.585741E-05,1.479548E-05,1.380467E-05,1.288022E-05,1.201767E-05, 1.121288E-05,1.046199E-05,9.761378E-06,9.107688E-06,8.497774E-06,7.928703E-06,7.397742E-06, 6.902337E-06,6.440108E-06,6.008833E-06,5.606440E-06,5.230993E-06,4.880689E-06,4.553844E-06, 4.248887E-06,3.964352E-06,3.698871E-06,3.451168E-06,3.220054E-06,3.004417E-06,2.803220E-06, 2.615497E-06,2.440345E-06,2.276922E-06,2.124443E-06,1.982176E-06,1.849435E-06,1.725584E-06, 1.610027E-06,1.502208E-06,1.401610E-06,1.307748E-06,1.220172E-06,1.138461E-06,1.062222E-06, 9.910879E-07,9.247177E-07,8.627921E-07,8.050135E-07,7.511042E-07,7.008050E-07,6.538742E-07, 6.100862E-07,5.692305E-07,5.311108E-07,4.955439E-07,4.623588E-07,4.313961E-07,4.025068E-07, 3.755521E-07,3.504025E-07,3.269371E-07,3.050431E-07,2.846153E-07,2.655554E-07,2.477720E-07, 2.311794E-07,2.156980E-07,2.012534E-07,1.877760E-07,1.752012E-07,1.634685E-07,1.525215E-07, 1.423076E-07,1.327777E-07,1.238860E-07,1.155897E-07,1.078490E-07,1.006267E-07,9.388802E-08, 8.760062E-08,8.173427E-08,7.626077E-08,7.115381E-08,6.638886E-08,6.194299E-08,5.779486E-08, 5.392451E-08,5.031334E-08,4.694401E-08,4.380031E-08,4.086713E-08,3.813038E-08,3.557691E-08, 3.319443E-08,3.097150E-08,2.889743E-08,2.696225E-08,2.515667E-08,2.347201E-08,2.190016E-08, 2.043357E-08,1.906519E-08,1.778845E-08,1.659721E-08,1.548575E-08,1.444871E-08,1.348113E-08, 1.257834E-08,1.173600E-08,1.095008E-08,1.021678E-08,9.532596E-09,8.894227E-09,8.298607E-09, 7.742874E-09,7.224357E-09,6.740563E-09,6.289168E-09,5.868001E-09,5.475039E-09,5.108392E-09, 4.766298E-09,4.447113E-09,4.149303E-09,3.871437E-09,3.612178E-09,3.370282E-09,3.144584E-09, 2.934001E-09,2.737519E-09,2.554196E-09,2.383149E-09,2.223557E-09,2.074652E-09,1.935719E-09, 1.806089E-09,1.685141E-09], [3.555456E+00,3.317358E+00,3.095204E+00,2.887928E+00,2.694532E+00,2.514087E+00,2.345726E+00, 5.744096E+00,5.359431E+00,5.000526E+00,4.665656E+00,4.353211E+00,4.061689E+00,3.789690E+00, 7.091362E+00,6.616475E+00,6.173389E+00,5.759976E+00,5.374248E+00,5.014350E+00,4.678554E+00, 7.920702E+00,7.390276E+00,6.895371E+00,6.433609E+00,6.002769E+00,5.600782E+00,5.225714E+00, 8.431220E+00,7.866606E+00,7.339803E+00,6.848279E+00,6.389670E+00,5.961773E+00,5.562531E+00, 8.745481E+00,8.159822E+00,7.613383E+00,7.103538E+00,6.627835E+00,6.183989E+00,5.769866E+00, 8.938931E+00,8.340318E+00,7.781792E+00,7.260668E+00,6.774443E+00,6.320779E+00,5.897495E+00, 5.502558E+00,5.134068E+00,4.790255E+00,4.469466E+00,4.170159E+00,3.890896E+00,3.630334E+00, 3.387221E+00,3.160389E+00,2.948748E+00,2.751279E+00,2.567034E+00,2.395127E+00,2.234733E+00, 2.085079E+00,1.945448E+00,1.815167E+00,1.693611E+00,1.580195E+00,1.474374E+00,1.375639E+00, 1.283517E+00,1.197564E+00,1.117366E+00,1.042540E+00,9.727239E-01,9.075835E-01,8.468054E-01, 7.900974E-01,7.371869E-01,6.878197E-01,6.417585E-01,5.987818E-01,5.586832E-01,5.212699E-01, 4.863620E-01,4.537918E-01,4.234027E-01,3.950487E-01,3.685934E-01,3.439098E-01,3.208792E-01, 2.993909E-01,2.793416E-01,2.606349E-01,2.431810E-01,2.268959E-01,2.117013E-01,1.975243E-01, 1.842967E-01,1.719549E-01,1.604396E-01,1.496955E-01,1.396708E-01,1.303175E-01,1.215905E-01, 1.134479E-01,1.058507E-01,9.876217E-02,9.214836E-02,8.597746E-02,8.021981E-02,7.484773E-02, 6.983540E-02,6.515873E-02,6.079525E-02,5.672397E-02,5.292534E-02,4.938108E-02,4.607418E-02, 4.298873E-02,4.010990E-02,3.742386E-02,3.491770E-02,3.257937E-02,3.039762E-02,2.836199E-02, 2.646267E-02,2.469054E-02,2.303709E-02,2.149437E-02,2.005495E-02,1.871193E-02,1.745885E-02, 1.628968E-02,1.519881E-02,1.418099E-02,1.323133E-02,1.234527E-02,1.151855E-02,1.074718E-02, 1.002748E-02,9.355966E-03,8.729425E-03,8.144841E-03,7.599406E-03,7.090496E-03,6.615667E-03, 6.172636E-03,5.759273E-03,5.373591E-03,5.013738E-03,4.677983E-03,4.364712E-03,4.072421E-03, 3.799703E-03,3.545248E-03,3.307833E-03,3.086318E-03,2.879636E-03,2.686796E-03,2.506869E-03, 2.338991E-03,2.182356E-03,2.036210E-03,1.899851E-03,1.772624E-03,1.653917E-03,1.543159E-03, 1.439818E-03,1.343398E-03,1.253435E-03,1.169496E-03,1.091178E-03,1.018105E-03,9.499257E-04, 8.863120E-04,8.269584E-04,7.715794E-04,7.199091E-04,6.716989E-04,6.267173E-04,5.847479E-04, 5.455891E-04,5.090526E-04,4.749629E-04,4.431560E-04,4.134792E-04,3.857897E-04,3.599545E-04, 3.358495E-04,3.133586E-04,2.923739E-04,2.727945E-04,2.545263E-04,2.374814E-04,2.215780E-04, 2.067396E-04,1.928949E-04,1.799773E-04,1.679247E-04,1.566793E-04,1.461870E-04,1.363973E-04, 1.272631E-04,1.187407E-04,1.107890E-04,1.033698E-04,9.644743E-05,8.998863E-05,8.396236E-05, 7.833966E-05,7.309348E-05,6.819863E-05,6.363157E-05,5.937036E-05,5.539450E-05,5.168490E-05, 4.822372E-05,4.499432E-05,4.198118E-05,3.916983E-05,3.654674E-05,3.409932E-05,3.181579E-05, 2.968518E-05,2.769725E-05,2.584245E-05,2.411186E-05,2.249716E-05,2.099059E-05,1.958491E-05, 1.827337E-05,1.704966E-05,1.590789E-05,1.484259E-05,1.384863E-05,1.292122E-05,1.205593E-05, 1.124858E-05,1.049530E-05,9.792457E-06,9.136686E-06,8.524829E-06,7.953947E-06,7.421295E-06, 6.924313E-06,6.460612E-06,6.027964E-06,5.624290E-06,5.247648E-06,4.896229E-06,4.568343E-06, 4.262415E-06,3.976973E-06,3.710647E-06,3.462156E-06,3.230306E-06,3.013982E-06,2.812145E-06, 2.623824E-06,2.448114E-06,2.284171E-06,2.131207E-06,1.988487E-06,1.855324E-06,1.731078E-06, 1.615153E-06,1.506991E-06,1.406072E-06,1.311912E-06,1.224057E-06,1.142086E-06,1.065604E-06, 9.942433E-07,9.276618E-07,8.655391E-07,8.075765E-07,7.534956E-07,7.030362E-07,6.559560E-07, 6.120286E-07,5.710428E-07,5.328018E-07,4.971217E-07,4.638309E-07,4.327695E-07,4.037883E-07, 3.767478E-07,3.515181E-07,3.279780E-07,3.060143E-07,2.855214E-07,2.664009E-07,2.485608E-07, 2.319155E-07,2.163848E-07,2.018941E-07,1.883739E-07,1.757591E-07,1.639890E-07,1.530071E-07, 1.427607E-07,1.332005E-07,1.242804E-07,1.159577E-07,1.081924E-07,1.009471E-07,9.418694E-08, 8.787953E-08,8.199450E-08,7.650357E-08,7.138036E-08,6.660023E-08,6.214021E-08,5.797886E-08, 5.409619E-08,5.047353E-08,4.709347E-08,4.393976E-08,4.099725E-08,3.825179E-08,3.569018E-08, 3.330011E-08,3.107010E-08,2.898943E-08,2.704810E-08,2.523677E-08,2.354674E-08,2.196988E-08, 2.049862E-08,1.912589E-08,1.784509E-08,1.665006E-08,1.553505E-08,1.449472E-08,1.352405E-08, 1.261838E-08,1.177337E-08,1.098494E-08,1.024931E-08,9.562946E-09,8.922544E-09,8.325028E-09, 7.767526E-09,7.247358E-09,6.762024E-09,6.309192E-09,5.886684E-09,5.492470E-09,5.124656E-09, 4.781473E-09,4.461272E-09,4.162514E-09,3.883763E-09,3.623679E-09,3.381012E-09,3.154596E-09, 2.943342E-09,2.746235E-09,2.562328E-09,2.390737E-09,2.230636E-09,2.081257E-09,1.941882E-09, 1.811840E-09,1.690506E-09]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.soil_foc = 0.015 # input variables that change per simulation ted_empty.koc = pd.Series([1000., 1500., 2000.], dtype='float') # internally calculated variables pore_h2o_conc = pd.Series([[2.347878E-01,2.190648E-01,2.043947E-01,1.907070E-01,1.779359E-01,1.660201E-01, 1.549022E-01,3.793167E-01,3.539150E-01,3.302144E-01,3.081009E-01,2.874683E-01, 2.682174E-01,2.502557E-01,4.682847E-01,4.369250E-01,4.076655E-01,3.803653E-01, 3.548934E-01,3.311273E-01,3.089527E-01,5.230509E-01,4.880237E-01,4.553422E-01, 4.248493E-01,3.963984E-01,3.698528E-01,3.450849E-01,5.567634E-01,5.194786E-01, 4.846907E-01,4.522324E-01,4.219478E-01,3.936912E-01,3.673269E-01,5.775159E-01, 5.388414E-01,5.027568E-01,4.690887E-01,4.376752E-01,4.083654E-01,3.810184E-01, 5.902906E-01,5.507606E-01,5.138778E-01,4.794649E-01,4.473566E-01,4.173985E-01, 3.894465E-01,3.633665E-01,3.390329E-01,3.163289E-01,2.951453E-01,2.753803E-01, 2.569389E-01,2.397325E-01,2.236783E-01,2.086992E-01,1.947233E-01,1.816832E-01, 1.695165E-01,1.581644E-01,1.475726E-01,1.376901E-01,1.284694E-01,1.198662E-01, 1.118392E-01,1.043496E-01,9.736164E-02,9.084162E-02,8.475823E-02,7.908222E-02, 7.378632E-02,6.884507E-02,6.423472E-02,5.993312E-02,5.591958E-02,5.217481E-02, 4.868082E-02,4.542081E-02,4.237911E-02,3.954111E-02,3.689316E-02,3.442254E-02, 3.211736E-02,2.996656E-02,2.795979E-02,2.608740E-02,2.434041E-02,2.271040E-02, 2.118956E-02,1.977056E-02,1.844658E-02,1.721127E-02,1.605868E-02,1.498328E-02, 1.397989E-02,1.304370E-02,1.217020E-02,1.135520E-02,1.059478E-02,9.885278E-03, 9.223290E-03,8.605634E-03,8.029341E-03,7.491640E-03,6.989947E-03,6.521851E-03, 6.085102E-03,5.677601E-03,5.297389E-03,4.942639E-03,4.611645E-03,4.302817E-03, 4.014670E-03,3.745820E-03,3.494973E-03,3.260926E-03,3.042551E-03,2.838801E-03, 2.648695E-03,2.471319E-03,2.305823E-03,2.151409E-03,2.007335E-03,1.872910E-03, 1.747487E-03,1.630463E-03,1.521276E-03,1.419400E-03,1.324347E-03,1.235660E-03, 1.152911E-03,1.075704E-03,1.003668E-03,9.364550E-04,8.737434E-04,8.152314E-04, 7.606378E-04,7.097001E-04,6.621737E-04,6.178299E-04,5.764556E-04,5.378521E-04, 5.018338E-04,4.682275E-04,4.368717E-04,4.076157E-04,3.803189E-04,3.548501E-04, 3.310868E-04,3.089149E-04,2.882278E-04,2.689261E-04,2.509169E-04,2.341137E-04, 2.184358E-04,2.038078E-04,1.901594E-04,1.774250E-04,1.655434E-04,1.544575E-04, 1.441139E-04,1.344630E-04,1.254584E-04,1.170569E-04,1.092179E-04,1.019039E-04, 9.507972E-05,8.871252E-05,8.277171E-05,7.722873E-05,7.205696E-05,6.723152E-05, 6.272922E-05,5.852844E-05,5.460896E-05,5.095196E-05,4.753986E-05,4.435626E-05, 4.138585E-05,3.861437E-05,3.602848E-05,3.361576E-05,3.136461E-05,2.926422E-05, 2.730448E-05,2.547598E-05,2.376993E-05,2.217813E-05,2.069293E-05,1.930718E-05, 1.801424E-05,1.680788E-05,1.568231E-05,1.463211E-05,1.365224E-05,1.273799E-05, 1.188497E-05,1.108906E-05,1.034646E-05,9.653592E-06,9.007119E-06,8.403940E-06, 7.841153E-06,7.316054E-06,6.826120E-06,6.368995E-06,5.942483E-06,5.544532E-06, 5.173232E-06,4.826796E-06,4.503560E-06,4.201970E-06,3.920576E-06,3.658027E-06, 3.413060E-06,3.184498E-06,2.971241E-06,2.772266E-06,2.586616E-06,2.413398E-06, 2.251780E-06,2.100985E-06,1.960288E-06,1.829014E-06,1.706530E-06,1.592249E-06, 1.485621E-06,1.386133E-06,1.293308E-06,1.206699E-06,1.125890E-06,1.050492E-06, 9.801441E-07,9.145068E-07,8.532650E-07,7.961244E-07,7.428103E-07,6.930666E-07, 6.466540E-07,6.033495E-07,5.629450E-07,5.252462E-07,4.900721E-07,4.572534E-07, 4.266325E-07,3.980622E-07,3.714052E-07,3.465333E-07,3.233270E-07,3.016747E-07, 2.814725E-07,2.626231E-07,2.450360E-07,2.286267E-07,2.133163E-07,1.990311E-07, 1.857026E-07,1.732666E-07,1.616635E-07,1.508374E-07,1.407362E-07,1.313116E-07, 1.225180E-07,1.143133E-07,1.066581E-07,9.951555E-08,9.285129E-08,8.663332E-08, 8.083174E-08,7.541868E-08,7.036812E-08,6.565578E-08,6.125901E-08,5.715667E-08, 5.332906E-08,4.975778E-08,4.642565E-08,4.331666E-08,4.041587E-08,3.770934E-08, 3.518406E-08,3.282789E-08,3.062950E-08,2.857834E-08,2.666453E-08,2.487889E-08, 2.321282E-08,2.165833E-08,2.020794E-08,1.885467E-08,1.759203E-08,1.641394E-08, 1.531475E-08,1.428917E-08,1.333227E-08,1.243944E-08,1.160641E-08,1.082916E-08, 1.010397E-08,9.427336E-09,8.796015E-09,8.206972E-09,7.657376E-09,7.144584E-09, 6.666133E-09,6.219722E-09,5.803206E-09,5.414582E-09,5.051984E-09,4.713668E-09, 4.398008E-09,4.103486E-09,3.828688E-09,3.572292E-09,3.333066E-09,3.109861E-09, 2.901603E-09,2.707291E-09,2.525992E-09,2.356834E-09,2.199004E-09,2.051743E-09, 1.914344E-09,1.786146E-09,1.666533E-09,1.554930E-09,1.450801E-09,1.353646E-09, 1.262996E-09,1.178417E-09,1.099502E-09,1.025872E-09,9.571720E-10,8.930730E-10, 8.332666E-10,7.774652E-10,7.254007E-10,6.768228E-10,6.314980E-10,5.892085E-10, 5.497509E-10,5.129358E-10,4.785860E-10,4.465365E-10,4.166333E-10,3.887326E-10, 3.627004E-10,3.384114E-10,3.157490E-10,2.946042E-10,2.748755E-10,2.564679E-10, 2.392930E-10,2.232683E-10,2.083167E-10,1.943663E-10,1.813502E-10,1.692057E-10, 1.578745E-10,1.473021E-10,1.374377E-10,1.282339E-10,1.196465E-10,1.116341E-10], [1.575188E-01,1.469702E-01,1.371280E-01,1.279450E-01,1.193769E-01,1.113826E-01, 1.039236E-01,2.544829E-01,2.374410E-01,2.215403E-01,2.067044E-01,1.928620E-01, 1.799466E-01,1.678961E-01,3.141714E-01,2.931323E-01,2.735021E-01,2.551865E-01, 2.380974E-01,2.221527E-01,2.072758E-01,3.509139E-01,3.274143E-01,3.054883E-01, 2.850307E-01,2.659430E-01,2.481336E-01,2.315169E-01,3.735316E-01,3.485173E-01, 3.251782E-01,3.034020E-01,2.830840E-01,2.641267E-01,2.464390E-01,3.874544E-01, 3.615078E-01,3.372987E-01,3.147108E-01,2.936356E-01,2.739717E-01,2.556246E-01, 3.960250E-01,3.695043E-01,3.447597E-01,3.216722E-01,3.001308E-01,2.800319E-01, 2.612790E-01,2.437820E-01,2.274566E-01,2.122245E-01,1.980125E-01,1.847522E-01, 1.723799E-01,1.608361E-01,1.500654E-01,1.400160E-01,1.306395E-01,1.218910E-01, 1.137283E-01,1.061123E-01,9.900624E-02,9.237609E-02,8.618994E-02,8.041805E-02, 7.503270E-02,7.000798E-02,6.531976E-02,6.094549E-02,5.686415E-02,5.305613E-02, 4.950312E-02,4.618804E-02,4.309497E-02,4.020903E-02,3.751635E-02,3.500399E-02, 3.265988E-02,3.047274E-02,2.843208E-02,2.652806E-02,2.475156E-02,2.309402E-02, 2.154748E-02,2.010451E-02,1.875817E-02,1.750200E-02,1.632994E-02,1.523637E-02, 1.421604E-02,1.326403E-02,1.237578E-02,1.154701E-02,1.077374E-02,1.005226E-02, 9.379087E-03,8.750998E-03,8.164970E-03,7.618186E-03,7.108019E-03,6.632016E-03, 6.187890E-03,5.773505E-03,5.386871E-03,5.026128E-03,4.689544E-03,4.375499E-03, 4.082485E-03,3.809093E-03,3.554009E-03,3.316008E-03,3.093945E-03,2.886753E-03, 2.693435E-03,2.513064E-03,2.344772E-03,2.187749E-03,2.041242E-03,1.904547E-03, 1.777005E-03,1.658004E-03,1.546972E-03,1.443376E-03,1.346718E-03,1.256532E-03, 1.172386E-03,1.093875E-03,1.020621E-03,9.522733E-04,8.885024E-04,8.290020E-04, 7.734862E-04,7.216882E-04,6.733589E-04,6.282660E-04,5.861929E-04,5.469374E-04, 5.103106E-04,4.761366E-04,4.442512E-04,4.145010E-04,3.867431E-04,3.608441E-04, 3.366794E-04,3.141330E-04,2.930965E-04,2.734687E-04,2.551553E-04,2.380683E-04, 2.221256E-04,2.072505E-04,1.933716E-04,1.804220E-04,1.683397E-04,1.570665E-04, 1.465482E-04,1.367343E-04,1.275777E-04,1.190342E-04,1.110628E-04,1.036253E-04, 9.668578E-05,9.021102E-05,8.416986E-05,7.853326E-05,7.327412E-05,6.836717E-05, 6.378883E-05,5.951708E-05,5.553140E-05,5.181263E-05,4.834289E-05,4.510551E-05, 4.208493E-05,3.926663E-05,3.663706E-05,3.418358E-05,3.189441E-05,2.975854E-05, 2.776570E-05,2.590631E-05,2.417144E-05,2.255276E-05,2.104246E-05,1.963331E-05, 1.831853E-05,1.709179E-05,1.594721E-05,1.487927E-05,1.388285E-05,1.295316E-05, 1.208572E-05,1.127638E-05,1.052123E-05,9.816657E-06,9.159265E-06,8.545896E-06, 7.973603E-06,7.439635E-06,6.941425E-06,6.476578E-06,6.042861E-06,5.638189E-06, 5.260616E-06,4.908328E-06,4.579632E-06,4.272948E-06,3.986802E-06,3.719817E-06, 3.470712E-06,3.238289E-06,3.021431E-06,2.819094E-06,2.630308E-06,2.454164E-06, 2.289816E-06,2.136474E-06,1.993401E-06,1.859909E-06,1.735356E-06,1.619145E-06, 1.510715E-06,1.409547E-06,1.315154E-06,1.227082E-06,1.144908E-06,1.068237E-06, 9.967004E-07,9.299543E-07,8.676781E-07,8.095723E-07,7.553576E-07,7.047736E-07, 6.575770E-07,6.135411E-07,5.724540E-07,5.341185E-07,4.983502E-07,4.649772E-07, 4.338390E-07,4.047861E-07,3.776788E-07,3.523868E-07,3.287885E-07,3.067705E-07, 2.862270E-07,2.670593E-07,2.491751E-07,2.324886E-07,2.169195E-07,2.023931E-07, 1.888394E-07,1.761934E-07,1.643943E-07,1.533853E-07,1.431135E-07,1.335296E-07, 1.245875E-07,1.162443E-07,1.084598E-07,1.011965E-07,9.441971E-08,8.809670E-08, 8.219713E-08,7.669263E-08,7.155676E-08,6.676481E-08,6.229377E-08,5.812215E-08, 5.422988E-08,5.059827E-08,4.720985E-08,4.404835E-08,4.109856E-08,3.834632E-08, 3.577838E-08,3.338241E-08,3.114689E-08,2.906107E-08,2.711494E-08,2.529913E-08, 2.360493E-08,2.202418E-08,2.054928E-08,1.917316E-08,1.788919E-08,1.669120E-08, 1.557344E-08,1.453054E-08,1.355747E-08,1.264957E-08,1.180246E-08,1.101209E-08, 1.027464E-08,9.586579E-09,8.944595E-09,8.345602E-09,7.786722E-09,7.265268E-09, 6.778735E-09,6.324783E-09,5.901232E-09,5.506044E-09,5.137321E-09,4.793290E-09, 4.472297E-09,4.172801E-09,3.893361E-09,3.632634E-09,3.389368E-09,3.162392E-09, 2.950616E-09,2.753022E-09,2.568660E-09,2.396645E-09,2.236149E-09,2.086400E-09, 1.946680E-09,1.816317E-09,1.694684E-09,1.581196E-09,1.475308E-09,1.376511E-09, 1.284330E-09,1.198322E-09,1.118074E-09,1.043200E-09,9.733402E-10,9.081585E-10, 8.473419E-10,7.905979E-10,7.376540E-10,6.882555E-10,6.421651E-10,5.991612E-10, 5.590372E-10,5.216001E-10,4.866701E-10,4.540793E-10,4.236709E-10,3.952990E-10, 3.688270E-10,3.441277E-10,3.210825E-10,2.995806E-10,2.795186E-10,2.608001E-10, 2.433351E-10,2.270396E-10,2.118355E-10,1.976495E-10,1.844135E-10,1.720639E-10, 1.605413E-10,1.497903E-10,1.397593E-10,1.304000E-10,1.216675E-10,1.135198E-10, 1.059177E-10,9.882474E-11,9.220674E-11,8.603193E-11,8.027063E-11,7.489515E-11], [1.185152E-01,1.105786E-01,1.031735E-01,9.626426E-02,8.981773E-02,8.380291E-02, 7.819088E-02,1.914699E-01,1.786477E-01,1.666842E-01,1.555219E-01,1.451070E-01, 1.353896E-01,1.263230E-01,2.363787E-01,2.205492E-01,2.057796E-01,1.919992E-01, 1.791416E-01,1.671450E-01,1.559518E-01,2.640234E-01,2.463425E-01,2.298457E-01, 2.144536E-01,2.000923E-01,1.866927E-01,1.741905E-01,2.810407E-01,2.622202E-01, 2.446601E-01,2.282760E-01,2.129890E-01,1.987258E-01,1.854177E-01,2.915160E-01, 2.719941E-01,2.537794E-01,2.367846E-01,2.209278E-01,2.061330E-01,1.923289E-01, 2.979644E-01,2.780106E-01,2.593931E-01,2.420223E-01,2.258148E-01,2.106926E-01, 1.965832E-01,1.834186E-01,1.711356E-01,1.596752E-01,1.489822E-01,1.390053E-01, 1.296965E-01,1.210111E-01,1.129074E-01,1.053463E-01,9.829159E-02,9.170929E-02, 8.556780E-02,7.983758E-02,7.449109E-02,6.950265E-02,6.484826E-02,6.050557E-02, 5.645369E-02,5.267316E-02,4.914579E-02,4.585465E-02,4.278390E-02,3.991879E-02, 3.724555E-02,3.475132E-02,3.242413E-02,3.025278E-02,2.822685E-02,2.633658E-02, 2.457290E-02,2.292732E-02,2.139195E-02,1.995939E-02,1.862277E-02,1.737566E-02, 1.621207E-02,1.512639E-02,1.411342E-02,1.316829E-02,1.228645E-02,1.146366E-02, 1.069597E-02,9.979697E-03,9.311387E-03,8.687831E-03,8.106033E-03,7.563196E-03, 7.056711E-03,6.584145E-03,6.143224E-03,5.731831E-03,5.347987E-03,4.989849E-03, 4.655693E-03,4.343915E-03,4.053016E-03,3.781598E-03,3.528356E-03,3.292072E-03, 3.071612E-03,2.865915E-03,2.673994E-03,2.494924E-03,2.327847E-03,2.171958E-03, 2.026508E-03,1.890799E-03,1.764178E-03,1.646036E-03,1.535806E-03,1.432958E-03, 1.336997E-03,1.247462E-03,1.163923E-03,1.085979E-03,1.013254E-03,9.453995E-04, 8.820889E-04,8.230181E-04,7.679030E-04,7.164788E-04,6.684984E-04,6.237311E-04, 5.819617E-04,5.429894E-04,5.066271E-04,4.726998E-04,4.410445E-04,4.115090E-04, 3.839515E-04,3.582394E-04,3.342492E-04,3.118655E-04,2.909808E-04,2.714947E-04, 2.533135E-04,2.363499E-04,2.205222E-04,2.057545E-04,1.919758E-04,1.791197E-04, 1.671246E-04,1.559328E-04,1.454904E-04,1.357474E-04,1.266568E-04,1.181749E-04, 1.102611E-04,1.028773E-04,9.598788E-05,8.955986E-05,8.356230E-05,7.796638E-05, 7.274521E-05,6.787368E-05,6.332838E-05,5.908747E-05,5.513056E-05,5.143863E-05, 4.799394E-05,4.477993E-05,4.178115E-05,3.898319E-05,3.637260E-05,3.393684E-05, 3.166419E-05,2.954373E-05,2.756528E-05,2.571931E-05,2.399697E-05,2.238996E-05, 2.089058E-05,1.949160E-05,1.818630E-05,1.696842E-05,1.583210E-05,1.477187E-05, 1.378264E-05,1.285966E-05,1.199848E-05,1.119498E-05,1.044529E-05,9.745798E-06, 9.093151E-06,8.484210E-06,7.916048E-06,7.385934E-06,6.891320E-06,6.429829E-06, 5.999242E-06,5.597491E-06,5.222644E-06,4.872899E-06,4.546575E-06,4.242105E-06, 3.958024E-06,3.692967E-06,3.445660E-06,3.214914E-06,2.999621E-06,2.798745E-06, 2.611322E-06,2.436449E-06,2.273288E-06,2.121052E-06,1.979012E-06,1.846483E-06, 1.722830E-06,1.607457E-06,1.499811E-06,1.399373E-06,1.305661E-06,1.218225E-06, 1.136644E-06,1.060526E-06,9.895060E-07,9.232417E-07,8.614150E-07,8.037286E-07, 7.499053E-07,6.996864E-07,6.528305E-07,6.091124E-07,5.683219E-07,5.302631E-07, 4.947530E-07,4.616209E-07,4.307075E-07,4.018643E-07,3.749526E-07,3.498432E-07, 3.264152E-07,3.045562E-07,2.841610E-07,2.651316E-07,2.473765E-07,2.308104E-07, 2.153537E-07,2.009321E-07,1.874763E-07,1.749216E-07,1.632076E-07,1.522781E-07, 1.420805E-07,1.325658E-07,1.236882E-07,1.154052E-07,1.076769E-07,1.004661E-07, 9.373816E-08,8.746080E-08,8.160381E-08,7.613905E-08,7.104024E-08,6.628289E-08, 6.184412E-08,5.770261E-08,5.383844E-08,5.023304E-08,4.686908E-08,4.373040E-08, 4.080190E-08,3.806952E-08,3.552012E-08,3.314144E-08,3.092206E-08,2.885130E-08, 2.691922E-08,2.511652E-08,2.343454E-08,2.186520E-08,2.040095E-08,1.903476E-08, 1.776006E-08,1.657072E-08,1.546103E-08,1.442565E-08,1.345961E-08,1.255826E-08, 1.171727E-08,1.093260E-08,1.020048E-08,9.517381E-09,8.880030E-09,8.285361E-09, 7.730515E-09,7.212826E-09,6.729804E-09,6.279130E-09,5.858635E-09,5.466300E-09, 5.100238E-09,4.758690E-09,4.440015E-09,4.142681E-09,3.865258E-09,3.606413E-09, 3.364902E-09,3.139565E-09,2.929318E-09,2.733150E-09,2.550119E-09,2.379345E-09, 2.220008E-09,2.071340E-09,1.932629E-09,1.803206E-09,1.682451E-09,1.569782E-09, 1.464659E-09,1.366575E-09,1.275060E-09,1.189673E-09,1.110004E-09,1.035670E-09, 9.663144E-10,9.016032E-10,8.412256E-10,7.848912E-10,7.323294E-10,6.832875E-10, 6.375298E-10,5.948363E-10,5.550019E-10,5.178351E-10,4.831572E-10,4.508016E-10, 4.206128E-10,3.924456E-10,3.661647E-10,3.416437E-10,3.187649E-10,2.974181E-10, 2.775009E-10,2.589175E-10,2.415786E-10,2.254008E-10,2.103064E-10,1.962228E-10, 1.830823E-10,1.708219E-10,1.593824E-10,1.487091E-10,1.387505E-10,1.294588E-10, 1.207893E-10,1.127004E-10,1.051532E-10,9.811140E-11,9.154117E-11,8.541093E-11, 7.969122E-11,7.435454E-11,6.937524E-11,6.472938E-11,6.039465E-11,5.635020E-11]], dtype='float') for i in range(3): result[i] = ted_empty.daily_soil_timeseries(i, pore_h2o_conc[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_soil_inv_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil invertebrates (earthworms) :param i; simulation number/index :param pore_h2o_conc; daily values of pesticide concentration in soil pore water :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application # this represents Eq 2 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([[]], dtype='float') expected_results = [[2.347878E+02,2.190648E+02,2.043947E+02,1.907070E+02,1.779359E+02,1.660201E+02, 1.549022E+02,3.793167E+02,3.539150E+02,3.302144E+02,3.081009E+02,2.874683E+02, 2.682174E+02,2.502557E+02,4.682847E+02,4.369250E+02,4.076655E+02,3.803653E+02, 3.548934E+02,3.311273E+02,3.089527E+02,5.230509E+02,4.880237E+02,4.553422E+02, 4.248493E+02,3.963984E+02,3.698528E+02,3.450849E+02,5.567634E+02,5.194786E+02, 4.846907E+02,4.522324E+02,4.219478E+02,3.936912E+02,3.673269E+02,5.775159E+02, 5.388414E+02,5.027568E+02,4.690887E+02,4.376752E+02,4.083654E+02,3.810184E+02, 5.902906E+02,5.507606E+02,5.138778E+02,4.794649E+02,4.473566E+02,4.173985E+02, 3.894465E+02,3.633665E+02,3.390329E+02,3.163289E+02,2.951453E+02,2.753803E+02, 2.569389E+02,2.397325E+02,2.236783E+02,2.086992E+02,1.947233E+02,1.816832E+02, 1.695165E+02,1.581644E+02,1.475726E+02,1.376901E+02,1.284694E+02,1.198662E+02, 1.118392E+02,1.043496E+02,9.736164E+01,9.084162E+01,8.475823E+01,7.908222E+01, 7.378632E+01,6.884507E+01,6.423472E+01,5.993312E+01,5.591958E+01,5.217481E+01, 4.868082E+01,4.542081E+01,4.237911E+01,3.954111E+01,3.689316E+01,3.442254E+01, 3.211736E+01,2.996656E+01,2.795979E+01,2.608740E+01,2.434041E+01,2.271040E+01, 2.118956E+01,1.977056E+01,1.844658E+01,1.721127E+01,1.605868E+01,1.498328E+01, 1.397989E+01,1.304370E+01,1.217020E+01,1.135520E+01,1.059478E+01,9.885278E+00, 9.223290E+00,8.605634E+00,8.029341E+00,7.491640E+00,6.989947E+00,6.521851E+00, 6.085102E+00,5.677601E+00,5.297389E+00,4.942639E+00,4.611645E+00,4.302817E+00, 4.014670E+00,3.745820E+00,3.494973E+00,3.260926E+00,3.042551E+00,2.838801E+00, 2.648695E+00,2.471319E+00,2.305823E+00,2.151409E+00,2.007335E+00,1.872910E+00, 1.747487E+00,1.630463E+00,1.521276E+00,1.419400E+00,1.324347E+00,1.235660E+00, 1.152911E+00,1.075704E+00,1.003668E+00,9.364550E-01,8.737434E-01,8.152314E-01, 7.606378E-01,7.097001E-01,6.621737E-01,6.178299E-01,5.764556E-01,5.378521E-01, 5.018338E-01,4.682275E-01,4.368717E-01,4.076157E-01,3.803189E-01,3.548501E-01, 3.310868E-01,3.089149E-01,2.882278E-01,2.689261E-01,2.509169E-01,2.341137E-01, 2.184358E-01,2.038078E-01,1.901594E-01,1.774250E-01,1.655434E-01,1.544575E-01, 1.441139E-01,1.344630E-01,1.254584E-01,1.170569E-01,1.092179E-01,1.019039E-01, 9.507972E-02,8.871252E-02,8.277171E-02,7.722873E-02,7.205696E-02,6.723152E-02, 6.272922E-02,5.852844E-02,5.460896E-02,5.095196E-02,4.753986E-02,4.435626E-02, 4.138585E-02,3.861437E-02,3.602848E-02,3.361576E-02,3.136461E-02,2.926422E-02, 2.730448E-02,2.547598E-02,2.376993E-02,2.217813E-02,2.069293E-02,1.930718E-02, 1.801424E-02,1.680788E-02,1.568231E-02,1.463211E-02,1.365224E-02,1.273799E-02, 1.188497E-02,1.108906E-02,1.034646E-02,9.653592E-03,9.007119E-03,8.403940E-03, 7.841153E-03,7.316054E-03,6.826120E-03,6.368995E-03,5.942483E-03,5.544532E-03, 5.173232E-03,4.826796E-03,4.503560E-03,4.201970E-03,3.920576E-03,3.658027E-03, 3.413060E-03,3.184498E-03,2.971241E-03,2.772266E-03,2.586616E-03,2.413398E-03, 2.251780E-03,2.100985E-03,1.960288E-03,1.829014E-03,1.706530E-03,1.592249E-03, 1.485621E-03,1.386133E-03,1.293308E-03,1.206699E-03,1.125890E-03,1.050492E-03, 9.801441E-04,9.145068E-04,8.532650E-04,7.961244E-04,7.428103E-04,6.930666E-04, 6.466540E-04,6.033495E-04,5.629450E-04,5.252462E-04,4.900721E-04,4.572534E-04, 4.266325E-04,3.980622E-04,3.714052E-04,3.465333E-04,3.233270E-04,3.016747E-04, 2.814725E-04,2.626231E-04,2.450360E-04,2.286267E-04,2.133163E-04,1.990311E-04, 1.857026E-04,1.732666E-04,1.616635E-04,1.508374E-04,1.407362E-04,1.313116E-04, 1.225180E-04,1.143133E-04,1.066581E-04,9.951555E-05,9.285129E-05,8.663332E-05, 8.083174E-05,7.541868E-05,7.036812E-05,6.565578E-05,6.125901E-05,5.715667E-05, 5.332906E-05,4.975778E-05,4.642565E-05,4.331666E-05,4.041587E-05,3.770934E-05, 3.518406E-05,3.282789E-05,3.062950E-05,2.857834E-05,2.666453E-05,2.487889E-05, 2.321282E-05,2.165833E-05,2.020794E-05,1.885467E-05,1.759203E-05,1.641394E-05, 1.531475E-05,1.428917E-05,1.333227E-05,1.243944E-05,1.160641E-05,1.082916E-05, 1.010397E-05,9.427336E-06,8.796015E-06,8.206972E-06,7.657376E-06,7.144584E-06, 6.666133E-06,6.219722E-06,5.803206E-06,5.414582E-06,5.051984E-06,4.713668E-06, 4.398008E-06,4.103486E-06,3.828688E-06,3.572292E-06,3.333066E-06,3.109861E-06, 2.901603E-06,2.707291E-06,2.525992E-06,2.356834E-06,2.199004E-06,2.051743E-06, 1.914344E-06,1.786146E-06,1.666533E-06,1.554930E-06,1.450801E-06,1.353646E-06, 1.262996E-06,1.178417E-06,1.099502E-06,1.025872E-06,9.571720E-07,8.930730E-07, 8.332666E-07,7.774652E-07,7.254007E-07,6.768228E-07,6.314980E-07,5.892085E-07, 5.497509E-07,5.129358E-07,4.785860E-07,4.465365E-07,4.166333E-07,3.887326E-07, 3.627004E-07,3.384114E-07,3.157490E-07,2.946042E-07,2.748755E-07,2.564679E-07, 2.392930E-07,2.232683E-07,2.083167E-07,1.943663E-07,1.813502E-07,1.692057E-07, 1.578745E-07,1.473021E-07,1.374377E-07,1.282339E-07,1.196465E-07,1.116341E-07], [2.347878E+01,2.190648E+01,2.043947E+01,1.907070E+01,1.779359E+01,1.660201E+01, 1.549022E+01,3.793167E+01,3.539150E+01,3.302144E+01,3.081009E+01,2.874683E+01, 2.682174E+01,2.502557E+01,4.682847E+01,4.369250E+01,4.076655E+01,3.803653E+01, 3.548934E+01,3.311273E+01,3.089527E+01,5.230509E+01,4.880237E+01,4.553422E+01, 4.248493E+01,3.963984E+01,3.698528E+01,3.450849E+01,5.567634E+01,5.194786E+01, 4.846907E+01,4.522324E+01,4.219478E+01,3.936912E+01,3.673269E+01,5.775159E+01, 5.388414E+01,5.027568E+01,4.690887E+01,4.376752E+01,4.083654E+01,3.810184E+01, 5.902906E+01,5.507606E+01,5.138778E+01,4.794649E+01,4.473566E+01,4.173985E+01, 3.894465E+01,3.633665E+01,3.390329E+01,3.163289E+01,2.951453E+01,2.753803E+01, 2.569389E+01,2.397325E+01,2.236783E+01,2.086992E+01,1.947233E+01,1.816832E+01, 1.695165E+01,1.581644E+01,1.475726E+01,1.376901E+01,1.284694E+01,1.198662E+01, 1.118392E+01,1.043496E+01,9.736164E+00,9.084162E+00,8.475823E+00,7.908222E+00, 7.378632E+00,6.884507E+00,6.423472E+00,5.993312E+00,5.591958E+00,5.217481E+00, 4.868082E+00,4.542081E+00,4.237911E+00,3.954111E+00,3.689316E+00,3.442254E+00, 3.211736E+00,2.996656E+00,2.795979E+00,2.608740E+00,2.434041E+00,2.271040E+00, 2.118956E+00,1.977056E+00,1.844658E+00,1.721127E+00,1.605868E+00,1.498328E+00, 1.397989E+00,1.304370E+00,1.217020E+00,1.135520E+00,1.059478E+00,9.885278E-01, 9.223290E-01,8.605634E-01,8.029341E-01,7.491640E-01,6.989947E-01,6.521851E-01, 6.085102E-01,5.677601E-01,5.297389E-01,4.942639E-01,4.611645E-01,4.302817E-01, 4.014670E-01,3.745820E-01,3.494973E-01,3.260926E-01,3.042551E-01,2.838801E-01, 2.648695E-01,2.471319E-01,2.305823E-01,2.151409E-01,2.007335E-01,1.872910E-01, 1.747487E-01,1.630463E-01,1.521276E-01,1.419400E-01,1.324347E-01,1.235660E-01, 1.152911E-01,1.075704E-01,1.003668E-01,9.364550E-02,8.737434E-02,8.152314E-02, 7.606378E-02,7.097001E-02,6.621737E-02,6.178299E-02,5.764556E-02,5.378521E-02, 5.018338E-02,4.682275E-02,4.368717E-02,4.076157E-02,3.803189E-02,3.548501E-02, 3.310868E-02,3.089149E-02,2.882278E-02,2.689261E-02,2.509169E-02,2.341137E-02, 2.184358E-02,2.038078E-02,1.901594E-02,1.774250E-02,1.655434E-02,1.544575E-02, 1.441139E-02,1.344630E-02,1.254584E-02,1.170569E-02,1.092179E-02,1.019039E-02, 9.507972E-03,8.871252E-03,8.277171E-03,7.722873E-03,7.205696E-03,6.723152E-03, 6.272922E-03,5.852844E-03,5.460896E-03,5.095196E-03,4.753986E-03,4.435626E-03, 4.138585E-03,3.861437E-03,3.602848E-03,3.361576E-03,3.136461E-03,2.926422E-03, 2.730448E-03,2.547598E-03,2.376993E-03,2.217813E-03,2.069293E-03,1.930718E-03, 1.801424E-03,1.680788E-03,1.568231E-03,1.463211E-03,1.365224E-03,1.273799E-03, 1.188497E-03,1.108906E-03,1.034646E-03,9.653592E-04,9.007119E-04,8.403940E-04, 7.841153E-04,7.316054E-04,6.826120E-04,6.368995E-04,5.942483E-04,5.544532E-04, 5.173232E-04,4.826796E-04,4.503560E-04,4.201970E-04,3.920576E-04,3.658027E-04, 3.413060E-04,3.184498E-04,2.971241E-04,2.772266E-04,2.586616E-04,2.413398E-04, 2.251780E-04,2.100985E-04,1.960288E-04,1.829014E-04,1.706530E-04,1.592249E-04, 1.485621E-04,1.386133E-04,1.293308E-04,1.206699E-04,1.125890E-04,1.050492E-04, 9.801441E-05,9.145068E-05,8.532650E-05,7.961244E-05,7.428103E-05,6.930666E-05, 6.466540E-05,6.033495E-05,5.629450E-05,5.252462E-05,4.900721E-05,4.572534E-05, 4.266325E-05,3.980622E-05,3.714052E-05,3.465333E-05,3.233270E-05,3.016747E-05, 2.814725E-05,2.626231E-05,2.450360E-05,2.286267E-05,2.133163E-05,1.990311E-05, 1.857026E-05,1.732666E-05,1.616635E-05,1.508374E-05,1.407362E-05,1.313116E-05, 1.225180E-05,1.143133E-05,1.066581E-05,9.951555E-06,9.285129E-06,8.663332E-06, 8.083174E-06,7.541868E-06,7.036812E-06,6.565578E-06,6.125901E-06,5.715667E-06, 5.332906E-06,4.975778E-06,4.642565E-06,4.331666E-06,4.041587E-06,3.770934E-06, 3.518406E-06,3.282789E-06,3.062950E-06,2.857834E-06,2.666453E-06,2.487889E-06, 2.321282E-06,2.165833E-06,2.020794E-06,1.885467E-06,1.759203E-06,1.641394E-06, 1.531475E-06,1.428917E-06,1.333227E-06,1.243944E-06,1.160641E-06,1.082916E-06, 1.010397E-06,9.427336E-07,8.796015E-07,8.206972E-07,7.657376E-07,7.144584E-07, 6.666133E-07,6.219722E-07,5.803206E-07,5.414582E-07,5.051984E-07,4.713668E-07, 4.398008E-07,4.103486E-07,3.828688E-07,3.572292E-07,3.333066E-07,3.109861E-07, 2.901603E-07,2.707291E-07,2.525992E-07,2.356834E-07,2.199004E-07,2.051743E-07, 1.914344E-07,1.786146E-07,1.666533E-07,1.554930E-07,1.450801E-07,1.353646E-07, 1.262996E-07,1.178417E-07,1.099502E-07,1.025872E-07,9.571720E-08,8.930730E-08, 8.332666E-08,7.774652E-08,7.254007E-08,6.768228E-08,6.314980E-08,5.892085E-08, 5.497509E-08,5.129358E-08,4.785860E-08,4.465365E-08,4.166333E-08,3.887326E-08, 3.627004E-08,3.384114E-08,3.157490E-08,2.946042E-08,2.748755E-08,2.564679E-08, 2.392930E-08,2.232683E-08,2.083167E-08,1.943663E-08,1.813502E-08,1.692057E-08, 1.578745E-08,1.473021E-08,1.374377E-08,1.282339E-08,1.196465E-08,1.116341E-08], [6.664600E-01,6.218291E-01,5.801871E-01,5.413337E-01,5.050822E-01,4.712584E-01, 4.396996E-01,1.076714E+00,1.004610E+00,9.373342E-01,8.745637E-01,8.159968E-01, 7.613519E-01,7.103665E-01,1.329255E+00,1.240239E+00,1.157184E+00,1.079691E+00, 1.007387E+00,9.399255E-01,8.769815E-01,1.484713E+00,1.385286E+00,1.292517E+00, 1.205961E+00,1.125202E+00,1.049850E+00,9.795450E-01,1.580408E+00,1.474573E+00, 1.375825E+00,1.283690E+00,1.197725E+00,1.117517E+00,1.042680E+00,1.639315E+00, 1.529535E+00,1.427107E+00,1.331538E+00,1.242369E+00,1.159171E+00,1.081545E+00, 1.675577E+00,1.563368E+00,1.458674E+00,1.360991E+00,1.269850E+00,1.184812E+00, 1.105468E+00,1.031439E+00,9.623662E-01,8.979194E-01,8.377884E-01,7.816842E-01, 7.293372E-01,6.804956E-01,6.349249E-01,5.924059E-01,5.527342E-01,5.157193E-01, 4.811831E-01,4.489597E-01,4.188942E-01,3.908421E-01,3.646686E-01,3.402478E-01, 3.174624E-01,2.962029E-01,2.763671E-01,2.578596E-01,2.405915E-01,2.244798E-01, 2.094471E-01,1.954211E-01,1.823343E-01,1.701239E-01,1.587312E-01,1.481015E-01, 1.381836E-01,1.289298E-01,1.202958E-01,1.122399E-01,1.047235E-01,9.771053E-02, 9.116714E-02,8.506195E-02,7.936561E-02,7.405073E-02,6.909178E-02,6.446491E-02, 6.014788E-02,5.611996E-02,5.236177E-02,4.885526E-02,4.558357E-02,4.253098E-02, 3.968280E-02,3.702537E-02,3.454589E-02,3.223245E-02,3.007394E-02,2.805998E-02, 2.618089E-02,2.442763E-02,2.279179E-02,2.126549E-02,1.984140E-02,1.851268E-02, 1.727294E-02,1.611623E-02,1.503697E-02,1.402999E-02,1.309044E-02,1.221382E-02, 1.139589E-02,1.063274E-02,9.920701E-03,9.256341E-03,8.636472E-03,8.058113E-03, 7.518486E-03,7.014995E-03,6.545222E-03,6.106908E-03,5.697947E-03,5.316372E-03, 4.960351E-03,4.628171E-03,4.318236E-03,4.029057E-03,3.759243E-03,3.507498E-03, 3.272611E-03,3.053454E-03,2.848973E-03,2.658186E-03,2.480175E-03,2.314085E-03, 2.159118E-03,2.014528E-03,1.879621E-03,1.753749E-03,1.636305E-03,1.526727E-03, 1.424487E-03,1.329093E-03,1.240088E-03,1.157043E-03,1.079559E-03,1.007264E-03, 9.398107E-04,8.768744E-04,8.181527E-04,7.633635E-04,7.122433E-04,6.645465E-04, 6.200438E-04,5.785213E-04,5.397795E-04,5.036321E-04,4.699053E-04,4.384372E-04, 4.090764E-04,3.816817E-04,3.561217E-04,3.322733E-04,3.100219E-04,2.892607E-04, 2.698897E-04,2.518160E-04,2.349527E-04,2.192186E-04,2.045382E-04,1.908409E-04, 1.780608E-04,1.661366E-04,1.550110E-04,1.446303E-04,1.349449E-04,1.259080E-04, 1.174763E-04,1.096093E-04,1.022691E-04,9.542044E-05,8.903041E-05,8.306831E-05, 7.750548E-05,7.231517E-05,6.747244E-05,6.295401E-05,5.873817E-05,5.480465E-05, 5.113455E-05,4.771022E-05,4.451521E-05,4.153416E-05,3.875274E-05,3.615758E-05, 3.373622E-05,3.147701E-05,2.936908E-05,2.740232E-05,2.556727E-05,2.385511E-05, 2.225760E-05,2.076708E-05,1.937637E-05,1.807879E-05,1.686811E-05,1.573850E-05, 1.468454E-05,1.370116E-05,1.278364E-05,1.192755E-05,1.112880E-05,1.038354E-05, 9.688185E-06,9.039396E-06,8.434055E-06,7.869251E-06,7.342271E-06,6.850581E-06, 6.391818E-06,5.963777E-06,5.564401E-06,5.191770E-06,4.844092E-06,4.519698E-06, 4.217027E-06,3.934626E-06,3.671136E-06,3.425291E-06,3.195909E-06,2.981889E-06, 2.782200E-06,2.595885E-06,2.422046E-06,2.259849E-06,2.108514E-06,1.967313E-06, 1.835568E-06,1.712645E-06,1.597955E-06,1.490944E-06,1.391100E-06,1.297942E-06, 1.211023E-06,1.129924E-06,1.054257E-06,9.836564E-07,9.177839E-07,8.563226E-07, 7.989773E-07,7.454722E-07,6.955501E-07,6.489712E-07,6.055115E-07,5.649622E-07, 5.271284E-07,4.918282E-07,4.588919E-07,4.281613E-07,3.994886E-07,3.727361E-07, 3.477751E-07,3.244856E-07,3.027558E-07,2.824811E-07,2.635642E-07,2.459141E-07, 2.294460E-07,2.140807E-07,1.997443E-07,1.863680E-07,1.738875E-07,1.622428E-07, 1.513779E-07,1.412406E-07,1.317821E-07,1.229571E-07,1.147230E-07,1.070403E-07, 9.987216E-08,9.318402E-08,8.694376E-08,8.112140E-08,7.568894E-08,7.062028E-08, 6.589105E-08,6.147853E-08,5.736149E-08,5.352016E-08,4.993608E-08,4.659201E-08, 4.347188E-08,4.056070E-08,3.784447E-08,3.531014E-08,3.294553E-08,3.073926E-08, 2.868075E-08,2.676008E-08,2.496804E-08,2.329600E-08,2.173594E-08,2.028035E-08, 1.892224E-08,1.765507E-08,1.647276E-08,1.536963E-08,1.434037E-08,1.338004E-08, 1.248402E-08,1.164800E-08,1.086797E-08,1.014018E-08,9.461118E-09,8.827535E-09, 8.236382E-09,7.684816E-09,7.170187E-09,6.690021E-09,6.242010E-09,5.824001E-09, 5.433985E-09,5.070088E-09,4.730559E-09,4.413768E-09,4.118191E-09,3.842408E-09, 3.585093E-09,3.345010E-09,3.121005E-09,2.912001E-09,2.716993E-09,2.535044E-09, 2.365279E-09,2.206884E-09,2.059095E-09,1.921204E-09,1.792547E-09,1.672505E-09, 1.560502E-09,1.456000E-09,1.358496E-09,1.267522E-09,1.182640E-09,1.103442E-09, 1.029548E-09,9.606020E-10,8.962733E-10,8.362526E-10,7.802512E-10,7.280002E-10, 6.792482E-10,6.337609E-10,5.913199E-10,5.517209E-10,5.147738E-10,4.803010E-10, 4.481367E-10,4.181263E-10,3.901256E-10,3.640001E-10,3.396241E-10,3.168805E-10]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.lipid_earthworm = 0.01 ted_empty.density_earthworm = 1.0 # input variables that change per simulation ted_empty.log_kow = pd.Series([5.0, 4.0, 2.75], dtype='float') # internally calculated variables pore_h2o_conc = pd.Series([[2.347878E-01,2.190648E-01,2.043947E-01,1.907070E-01,1.779359E-01,1.660201E-01, 1.549022E-01,3.793167E-01,3.539150E-01,3.302144E-01,3.081009E-01,2.874683E-01, 2.682174E-01,2.502557E-01,4.682847E-01,4.369250E-01,4.076655E-01,3.803653E-01, 3.548934E-01,3.311273E-01,3.089527E-01,5.230509E-01,4.880237E-01,4.553422E-01, 4.248493E-01,3.963984E-01,3.698528E-01,3.450849E-01,5.567634E-01,5.194786E-01, 4.846907E-01,4.522324E-01,4.219478E-01,3.936912E-01,3.673269E-01,5.775159E-01, 5.388414E-01,5.027568E-01,4.690887E-01,4.376752E-01,4.083654E-01,3.810184E-01, 5.902906E-01,5.507606E-01,5.138778E-01,4.794649E-01,4.473566E-01,4.173985E-01, 3.894465E-01,3.633665E-01,3.390329E-01,3.163289E-01,2.951453E-01,2.753803E-01, 2.569389E-01,2.397325E-01,2.236783E-01,2.086992E-01,1.947233E-01,1.816832E-01, 1.695165E-01,1.581644E-01,1.475726E-01,1.376901E-01,1.284694E-01,1.198662E-01, 1.118392E-01,1.043496E-01,9.736164E-02,9.084162E-02,8.475823E-02,7.908222E-02, 7.378632E-02,6.884507E-02,6.423472E-02,5.993312E-02,5.591958E-02,5.217481E-02, 4.868082E-02,4.542081E-02,4.237911E-02,3.954111E-02,3.689316E-02,3.442254E-02, 3.211736E-02,2.996656E-02,2.795979E-02,2.608740E-02,2.434041E-02,2.271040E-02, 2.118956E-02,1.977056E-02,1.844658E-02,1.721127E-02,1.605868E-02,1.498328E-02, 1.397989E-02,1.304370E-02,1.217020E-02,1.135520E-02,1.059478E-02,9.885278E-03, 9.223290E-03,8.605634E-03,8.029341E-03,7.491640E-03,6.989947E-03,6.521851E-03, 6.085102E-03,5.677601E-03,5.297389E-03,4.942639E-03,4.611645E-03,4.302817E-03, 4.014670E-03,3.745820E-03,3.494973E-03,3.260926E-03,3.042551E-03,2.838801E-03, 2.648695E-03,2.471319E-03,2.305823E-03,2.151409E-03,2.007335E-03,1.872910E-03, 1.747487E-03,1.630463E-03,1.521276E-03,1.419400E-03,1.324347E-03,1.235660E-03, 1.152911E-03,1.075704E-03,1.003668E-03,9.364550E-04,8.737434E-04,8.152314E-04, 7.606378E-04,7.097001E-04,6.621737E-04,6.178299E-04,5.764556E-04,5.378521E-04, 5.018338E-04,4.682275E-04,4.368717E-04,4.076157E-04,3.803189E-04,3.548501E-04, 3.310868E-04,3.089149E-04,2.882278E-04,2.689261E-04,2.509169E-04,2.341137E-04, 2.184358E-04,2.038078E-04,1.901594E-04,1.774250E-04,1.655434E-04,1.544575E-04, 1.441139E-04,1.344630E-04,1.254584E-04,1.170569E-04,1.092179E-04,1.019039E-04, 9.507972E-05,8.871252E-05,8.277171E-05,7.722873E-05,7.205696E-05,6.723152E-05, 6.272922E-05,5.852844E-05,5.460896E-05,5.095196E-05,4.753986E-05,4.435626E-05, 4.138585E-05,3.861437E-05,3.602848E-05,3.361576E-05,3.136461E-05,2.926422E-05, 2.730448E-05,2.547598E-05,2.376993E-05,2.217813E-05,2.069293E-05,1.930718E-05, 1.801424E-05,1.680788E-05,1.568231E-05,1.463211E-05,1.365224E-05,1.273799E-05, 1.188497E-05,1.108906E-05,1.034646E-05,9.653592E-06,9.007119E-06,8.403940E-06, 7.841153E-06,7.316054E-06,6.826120E-06,6.368995E-06,5.942483E-06,5.544532E-06, 5.173232E-06,4.826796E-06,4.503560E-06,4.201970E-06,3.920576E-06,3.658027E-06, 3.413060E-06,3.184498E-06,2.971241E-06,2.772266E-06,2.586616E-06,2.413398E-06, 2.251780E-06,2.100985E-06,1.960288E-06,1.829014E-06,1.706530E-06,1.592249E-06, 1.485621E-06,1.386133E-06,1.293308E-06,1.206699E-06,1.125890E-06,1.050492E-06, 9.801441E-07,9.145068E-07,8.532650E-07,7.961244E-07,7.428103E-07,6.930666E-07, 6.466540E-07,6.033495E-07,5.629450E-07,5.252462E-07,4.900721E-07,4.572534E-07, 4.266325E-07,3.980622E-07,3.714052E-07,3.465333E-07,3.233270E-07,3.016747E-07, 2.814725E-07,2.626231E-07,2.450360E-07,2.286267E-07,2.133163E-07,1.990311E-07, 1.857026E-07,1.732666E-07,1.616635E-07,1.508374E-07,1.407362E-07,1.313116E-07, 1.225180E-07,1.143133E-07,1.066581E-07,9.951555E-08,9.285129E-08,8.663332E-08, 8.083174E-08,7.541868E-08,7.036812E-08,6.565578E-08,6.125901E-08,5.715667E-08, 5.332906E-08,4.975778E-08,4.642565E-08,4.331666E-08,4.041587E-08,3.770934E-08, 3.518406E-08,3.282789E-08,3.062950E-08,2.857834E-08,2.666453E-08,2.487889E-08, 2.321282E-08,2.165833E-08,2.020794E-08,1.885467E-08,1.759203E-08,1.641394E-08, 1.531475E-08,1.428917E-08,1.333227E-08,1.243944E-08,1.160641E-08,1.082916E-08, 1.010397E-08,9.427336E-09,8.796015E-09,8.206972E-09,7.657376E-09,7.144584E-09, 6.666133E-09,6.219722E-09,5.803206E-09,5.414582E-09,5.051984E-09,4.713668E-09, 4.398008E-09,4.103486E-09,3.828688E-09,3.572292E-09,3.333066E-09,3.109861E-09, 2.901603E-09,2.707291E-09,2.525992E-09,2.356834E-09,2.199004E-09,2.051743E-09, 1.914344E-09,1.786146E-09,1.666533E-09,1.554930E-09,1.450801E-09,1.353646E-09, 1.262996E-09,1.178417E-09,1.099502E-09,1.025872E-09,9.571720E-10,8.930730E-10, 8.332666E-10,7.774652E-10,7.254007E-10,6.768228E-10,6.314980E-10,5.892085E-10, 5.497509E-10,5.129358E-10,4.785860E-10,4.465365E-10,4.166333E-10,3.887326E-10, 3.627004E-10,3.384114E-10,3.157490E-10,2.946042E-10,2.748755E-10,2.564679E-10, 2.392930E-10,2.232683E-10,2.083167E-10,1.943663E-10,1.813502E-10,1.692057E-10, 1.578745E-10,1.473021E-10,1.374377E-10,1.282339E-10,1.196465E-10,1.116341E-10], [2.347878E-01,2.190648E-01,2.043947E-01,1.907070E-01,1.779359E-01,1.660201E-01, 1.549022E-01,3.793167E-01,3.539150E-01,3.302144E-01,3.081009E-01,2.874683E-01, 2.682174E-01,2.502557E-01,4.682847E-01,4.369250E-01,4.076655E-01,3.803653E-01, 3.548934E-01,3.311273E-01,3.089527E-01,5.230509E-01,4.880237E-01,4.553422E-01, 4.248493E-01,3.963984E-01,3.698528E-01,3.450849E-01,5.567634E-01,5.194786E-01, 4.846907E-01,4.522324E-01,4.219478E-01,3.936912E-01,3.673269E-01,5.775159E-01, 5.388414E-01,5.027568E-01,4.690887E-01,4.376752E-01,4.083654E-01,3.810184E-01, 5.902906E-01,5.507606E-01,5.138778E-01,4.794649E-01,4.473566E-01,4.173985E-01, 3.894465E-01,3.633665E-01,3.390329E-01,3.163289E-01,2.951453E-01,2.753803E-01, 2.569389E-01,2.397325E-01,2.236783E-01,2.086992E-01,1.947233E-01,1.816832E-01, 1.695165E-01,1.581644E-01,1.475726E-01,1.376901E-01,1.284694E-01,1.198662E-01, 1.118392E-01,1.043496E-01,9.736164E-02,9.084162E-02,8.475823E-02,7.908222E-02, 7.378632E-02,6.884507E-02,6.423472E-02,5.993312E-02,5.591958E-02,5.217481E-02, 4.868082E-02,4.542081E-02,4.237911E-02,3.954111E-02,3.689316E-02,3.442254E-02, 3.211736E-02,2.996656E-02,2.795979E-02,2.608740E-02,2.434041E-02,2.271040E-02, 2.118956E-02,1.977056E-02,1.844658E-02,1.721127E-02,1.605868E-02,1.498328E-02, 1.397989E-02,1.304370E-02,1.217020E-02,1.135520E-02,1.059478E-02,9.885278E-03, 9.223290E-03,8.605634E-03,8.029341E-03,7.491640E-03,6.989947E-03,6.521851E-03, 6.085102E-03,5.677601E-03,5.297389E-03,4.942639E-03,4.611645E-03,4.302817E-03, 4.014670E-03,3.745820E-03,3.494973E-03,3.260926E-03,3.042551E-03,2.838801E-03, 2.648695E-03,2.471319E-03,2.305823E-03,2.151409E-03,2.007335E-03,1.872910E-03, 1.747487E-03,1.630463E-03,1.521276E-03,1.419400E-03,1.324347E-03,1.235660E-03, 1.152911E-03,1.075704E-03,1.003668E-03,9.364550E-04,8.737434E-04,8.152314E-04, 7.606378E-04,7.097001E-04,6.621737E-04,6.178299E-04,5.764556E-04,5.378521E-04, 5.018338E-04,4.682275E-04,4.368717E-04,4.076157E-04,3.803189E-04,3.548501E-04, 3.310868E-04,3.089149E-04,2.882278E-04,2.689261E-04,2.509169E-04,2.341137E-04, 2.184358E-04,2.038078E-04,1.901594E-04,1.774250E-04,1.655434E-04,1.544575E-04, 1.441139E-04,1.344630E-04,1.254584E-04,1.170569E-04,1.092179E-04,1.019039E-04, 9.507972E-05,8.871252E-05,8.277171E-05,7.722873E-05,7.205696E-05,6.723152E-05, 6.272922E-05,5.852844E-05,5.460896E-05,5.095196E-05,4.753986E-05,4.435626E-05, 4.138585E-05,3.861437E-05,3.602848E-05,3.361576E-05,3.136461E-05,2.926422E-05, 2.730448E-05,2.547598E-05,2.376993E-05,2.217813E-05,2.069293E-05,1.930718E-05, 1.801424E-05,1.680788E-05,1.568231E-05,1.463211E-05,1.365224E-05,1.273799E-05, 1.188497E-05,1.108906E-05,1.034646E-05,9.653592E-06,9.007119E-06,8.403940E-06, 7.841153E-06,7.316054E-06,6.826120E-06,6.368995E-06,5.942483E-06,5.544532E-06, 5.173232E-06,4.826796E-06,4.503560E-06,4.201970E-06,3.920576E-06,3.658027E-06, 3.413060E-06,3.184498E-06,2.971241E-06,2.772266E-06,2.586616E-06,2.413398E-06, 2.251780E-06,2.100985E-06,1.960288E-06,1.829014E-06,1.706530E-06,1.592249E-06, 1.485621E-06,1.386133E-06,1.293308E-06,1.206699E-06,1.125890E-06,1.050492E-06, 9.801441E-07,9.145068E-07,8.532650E-07,7.961244E-07,7.428103E-07,6.930666E-07, 6.466540E-07,6.033495E-07,5.629450E-07,5.252462E-07,4.900721E-07,4.572534E-07, 4.266325E-07,3.980622E-07,3.714052E-07,3.465333E-07,3.233270E-07,3.016747E-07, 2.814725E-07,2.626231E-07,2.450360E-07,2.286267E-07,2.133163E-07,1.990311E-07, 1.857026E-07,1.732666E-07,1.616635E-07,1.508374E-07,1.407362E-07,1.313116E-07, 1.225180E-07,1.143133E-07,1.066581E-07,9.951555E-08,9.285129E-08,8.663332E-08, 8.083174E-08,7.541868E-08,7.036812E-08,6.565578E-08,6.125901E-08,5.715667E-08, 5.332906E-08,4.975778E-08,4.642565E-08,4.331666E-08,4.041587E-08,3.770934E-08, 3.518406E-08,3.282789E-08,3.062950E-08,2.857834E-08,2.666453E-08,2.487889E-08, 2.321282E-08,2.165833E-08,2.020794E-08,1.885467E-08,1.759203E-08,1.641394E-08, 1.531475E-08,1.428917E-08,1.333227E-08,1.243944E-08,1.160641E-08,1.082916E-08, 1.010397E-08,9.427336E-09,8.796015E-09,8.206972E-09,7.657376E-09,7.144584E-09, 6.666133E-09,6.219722E-09,5.803206E-09,5.414582E-09,5.051984E-09,4.713668E-09, 4.398008E-09,4.103486E-09,3.828688E-09,3.572292E-09,3.333066E-09,3.109861E-09, 2.901603E-09,2.707291E-09,2.525992E-09,2.356834E-09,2.199004E-09,2.051743E-09, 1.914344E-09,1.786146E-09,1.666533E-09,1.554930E-09,1.450801E-09,1.353646E-09, 1.262996E-09,1.178417E-09,1.099502E-09,1.025872E-09,9.571720E-10,8.930730E-10, 8.332666E-10,7.774652E-10,7.254007E-10,6.768228E-10,6.314980E-10,5.892085E-10, 5.497509E-10,5.129358E-10,4.785860E-10,4.465365E-10,4.166333E-10,3.887326E-10, 3.627004E-10,3.384114E-10,3.157490E-10,2.946042E-10,2.748755E-10,2.564679E-10, 2.392930E-10,2.232683E-10,2.083167E-10,1.943663E-10,1.813502E-10,1.692057E-10, 1.578745E-10,1.473021E-10,1.374377E-10,1.282339E-10,1.196465E-10,1.116341E-10], [1.185152E-01,1.105786E-01,1.031735E-01,9.626426E-02,8.981773E-02,8.380291E-02, 7.819088E-02,1.914699E-01,1.786477E-01,1.666842E-01,1.555219E-01,1.451070E-01, 1.353896E-01,1.263230E-01,2.363787E-01,2.205492E-01,2.057796E-01,1.919992E-01, 1.791416E-01,1.671450E-01,1.559518E-01,2.640234E-01,2.463425E-01,2.298457E-01, 2.144536E-01,2.000923E-01,1.866927E-01,1.741905E-01,2.810407E-01,2.622202E-01, 2.446601E-01,2.282760E-01,2.129890E-01,1.987258E-01,1.854177E-01,2.915160E-01, 2.719941E-01,2.537794E-01,2.367846E-01,2.209278E-01,2.061330E-01,1.923289E-01, 2.979644E-01,2.780106E-01,2.593931E-01,2.420223E-01,2.258148E-01,2.106926E-01, 1.965832E-01,1.834186E-01,1.711356E-01,1.596752E-01,1.489822E-01,1.390053E-01, 1.296965E-01,1.210111E-01,1.129074E-01,1.053463E-01,9.829159E-02,9.170929E-02, 8.556780E-02,7.983758E-02,7.449109E-02,6.950265E-02,6.484826E-02,6.050557E-02, 5.645369E-02,5.267316E-02,4.914579E-02,4.585465E-02,4.278390E-02,3.991879E-02, 3.724555E-02,3.475132E-02,3.242413E-02,3.025278E-02,2.822685E-02,2.633658E-02, 2.457290E-02,2.292732E-02,2.139195E-02,1.995939E-02,1.862277E-02,1.737566E-02, 1.621207E-02,1.512639E-02,1.411342E-02,1.316829E-02,1.228645E-02,1.146366E-02, 1.069597E-02,9.979697E-03,9.311387E-03,8.687831E-03,8.106033E-03,7.563196E-03, 7.056711E-03,6.584145E-03,6.143224E-03,5.731831E-03,5.347987E-03,4.989849E-03, 4.655693E-03,4.343915E-03,4.053016E-03,3.781598E-03,3.528356E-03,3.292072E-03, 3.071612E-03,2.865915E-03,2.673994E-03,2.494924E-03,2.327847E-03,2.171958E-03, 2.026508E-03,1.890799E-03,1.764178E-03,1.646036E-03,1.535806E-03,1.432958E-03, 1.336997E-03,1.247462E-03,1.163923E-03,1.085979E-03,1.013254E-03,9.453995E-04, 8.820889E-04,8.230181E-04,7.679030E-04,7.164788E-04,6.684984E-04,6.237311E-04, 5.819617E-04,5.429894E-04,5.066271E-04,4.726998E-04,4.410445E-04,4.115090E-04, 3.839515E-04,3.582394E-04,3.342492E-04,3.118655E-04,2.909808E-04,2.714947E-04, 2.533135E-04,2.363499E-04,2.205222E-04,2.057545E-04,1.919758E-04,1.791197E-04, 1.671246E-04,1.559328E-04,1.454904E-04,1.357474E-04,1.266568E-04,1.181749E-04, 1.102611E-04,1.028773E-04,9.598788E-05,8.955986E-05,8.356230E-05,7.796638E-05, 7.274521E-05,6.787368E-05,6.332838E-05,5.908747E-05,5.513056E-05,5.143863E-05, 4.799394E-05,4.477993E-05,4.178115E-05,3.898319E-05,3.637260E-05,3.393684E-05, 3.166419E-05,2.954373E-05,2.756528E-05,2.571931E-05,2.399697E-05,2.238996E-05, 2.089058E-05,1.949160E-05,1.818630E-05,1.696842E-05,1.583210E-05,1.477187E-05, 1.378264E-05,1.285966E-05,1.199848E-05,1.119498E-05,1.044529E-05,9.745798E-06, 9.093151E-06,8.484210E-06,7.916048E-06,7.385934E-06,6.891320E-06,6.429829E-06, 5.999242E-06,5.597491E-06,5.222644E-06,4.872899E-06,4.546575E-06,4.242105E-06, 3.958024E-06,3.692967E-06,3.445660E-06,3.214914E-06,2.999621E-06,2.798745E-06, 2.611322E-06,2.436449E-06,2.273288E-06,2.121052E-06,1.979012E-06,1.846483E-06, 1.722830E-06,1.607457E-06,1.499811E-06,1.399373E-06,1.305661E-06,1.218225E-06, 1.136644E-06,1.060526E-06,9.895060E-07,9.232417E-07,8.614150E-07,8.037286E-07, 7.499053E-07,6.996864E-07,6.528305E-07,6.091124E-07,5.683219E-07,5.302631E-07, 4.947530E-07,4.616209E-07,4.307075E-07,4.018643E-07,3.749526E-07,3.498432E-07, 3.264152E-07,3.045562E-07,2.841610E-07,2.651316E-07,2.473765E-07,2.308104E-07, 2.153537E-07,2.009321E-07,1.874763E-07,1.749216E-07,1.632076E-07,1.522781E-07, 1.420805E-07,1.325658E-07,1.236882E-07,1.154052E-07,1.076769E-07,1.004661E-07, 9.373816E-08,8.746080E-08,8.160381E-08,7.613905E-08,7.104024E-08,6.628289E-08, 6.184412E-08,5.770261E-08,5.383844E-08,5.023304E-08,4.686908E-08,4.373040E-08, 4.080190E-08,3.806952E-08,3.552012E-08,3.314144E-08,3.092206E-08,2.885130E-08, 2.691922E-08,2.511652E-08,2.343454E-08,2.186520E-08,2.040095E-08,1.903476E-08, 1.776006E-08,1.657072E-08,1.546103E-08,1.442565E-08,1.345961E-08,1.255826E-08, 1.171727E-08,1.093260E-08,1.020048E-08,9.517381E-09,8.880030E-09,8.285361E-09, 7.730515E-09,7.212826E-09,6.729804E-09,6.279130E-09,5.858635E-09,5.466300E-09, 5.100238E-09,4.758690E-09,4.440015E-09,4.142681E-09,3.865258E-09,3.606413E-09, 3.364902E-09,3.139565E-09,2.929318E-09,2.733150E-09,2.550119E-09,2.379345E-09, 2.220008E-09,2.071340E-09,1.932629E-09,1.803206E-09,1.682451E-09,1.569782E-09, 1.464659E-09,1.366575E-09,1.275060E-09,1.189673E-09,1.110004E-09,1.035670E-09, 9.663144E-10,9.016032E-10,8.412256E-10,7.848912E-10,7.323294E-10,6.832875E-10, 6.375298E-10,5.948363E-10,5.550019E-10,5.178351E-10,4.831572E-10,4.508016E-10, 4.206128E-10,3.924456E-10,3.661647E-10,3.416437E-10,3.187649E-10,2.974181E-10, 2.775009E-10,2.589175E-10,2.415786E-10,2.254008E-10,2.103064E-10,1.962228E-10, 1.830823E-10,1.708219E-10,1.593824E-10,1.487091E-10,1.387505E-10,1.294588E-10, 1.207893E-10,1.127004E-10,1.051532E-10,9.811140E-11,9.154117E-11,8.541093E-11, 7.969122E-11,7.435454E-11,6.937524E-11,6.472938E-11,6.039465E-11,5.635020E-11]], dtype='float') for i in range(3): result[i] = ted_empty.daily_soil_inv_timeseries(i, pore_h2o_conc[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_animal_dose_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in animals (mammals, birds, amphibians, reptiles) :param a1; coefficient of allometric expression :param b1; exponent of allometrice expression :param body_wgt; body weight of species (g) :param frac_h2o; fraction of water in food item :param intake_food_conc; pesticide concentration in food item (daily mg a.i./kg) :param frac_retained; fraction of ingested food retained by animal (mammals, birds, reptiles/amphibians) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application # this represents Eqs 5&6 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([[]], dtype='float') expected_results = [[2.860270E+02,3.090209E+02,3.058215E+02,3.001105E+02,2.942541E+02,2.884869E+02,2.828301E+02, 5.633110E+02,5.808675E+02,5.723374E+02,5.614002E+02,5.504201E+02,5.396295E+02,5.290480E+02, 8.047008E+02,8.175238E+02,8.043529E+02,7.888661E+02,7.734255E+02,7.582619E+02,7.433932E+02, 1.014843E+03,1.023545E+03,1.006334E+03,9.868866E+02,9.675630E+02,9.485925E+02,9.299915E+02, 1.197782E+03,1.202897E+03,1.182169E+03,1.159274E+03,1.136569E+03,1.114285E+03,1.092435E+03, 1.357040E+03,1.359032E+03,1.335242E+03,1.309345E+03,1.283698E+03,1.258528E+03,1.233850E+03, 1.495682E+03,1.494955E+03,1.468500E+03,1.439990E+03,1.411781E+03,1.384100E+03,1.356959E+03, 1.330350E+03,1.304262E+03,1.278687E+03,1.253612E+03,1.229030E+03,1.204929E+03,1.181301E+03, 1.158137E+03,1.135426E+03,1.113161E+03,1.091333E+03,1.069932E+03,1.048952E+03,1.028382E+03, 1.008217E+03,9.884460E+02,9.690632E+02,9.500604E+02,9.314303E+02,9.131655E+02,8.952589E+02, 8.777034E+02,8.604922E+02,8.436185E+02,8.270756E+02,8.108572E+02,7.949568E+02,7.793682E+02, 7.640852E+02,7.491020E+02,7.344125E+02,7.200112E+02,7.058922E+02,6.920501E+02,6.784794E+02, 6.651748E+02,6.521312E+02,6.393433E+02,6.268061E+02,6.145148E+02,6.024646E+02,5.906506E+02, 5.790683E+02,5.677131E+02,5.565806E+02,5.456664E+02,5.349662E+02,5.244759E+02,5.141912E+02, 5.041083E+02,4.942230E+02,4.845316E+02,4.750302E+02,4.657152E+02,4.565828E+02,4.476295E+02, 4.388517E+02,4.302461E+02,4.218092E+02,4.135378E+02,4.054286E+02,3.974784E+02,3.896841E+02, 3.820426E+02,3.745510E+02,3.672063E+02,3.600056E+02,3.529461E+02,3.460250E+02,3.392397E+02, 3.325874E+02,3.260656E+02,3.196716E+02,3.134031E+02,3.072574E+02,3.012323E+02,2.953253E+02, 2.895342E+02,2.838566E+02,2.782903E+02,2.728332E+02,2.674831E+02,2.622379E+02,2.570956E+02, 2.520541E+02,2.471115E+02,2.422658E+02,2.375151E+02,2.328576E+02,2.282914E+02,2.238147E+02, 2.194259E+02,2.151231E+02,2.109046E+02,2.067689E+02,2.027143E+02,1.987392E+02,1.948420E+02, 1.910213E+02,1.872755E+02,1.836031E+02,1.800028E+02,1.764730E+02,1.730125E+02,1.696198E+02, 1.662937E+02,1.630328E+02,1.598358E+02,1.567015E+02,1.536287E+02,1.506161E+02,1.476627E+02, 1.447671E+02,1.419283E+02,1.391452E+02,1.364166E+02,1.337416E+02,1.311190E+02,1.285478E+02, 1.260271E+02,1.235557E+02,1.211329E+02,1.187576E+02,1.164288E+02,1.141457E+02,1.119074E+02, 1.097129E+02,1.075615E+02,1.054523E+02,1.033845E+02,1.013571E+02,9.936960E+01,9.742102E+01, 9.551065E+01,9.363775E+01,9.180157E+01,9.000140E+01,8.823652E+01,8.650626E+01,8.480992E+01, 8.314685E+01,8.151639E+01,7.991791E+01,7.835077E+01,7.681436E+01,7.530807E+01,7.383133E+01, 7.238354E+01,7.096414E+01,6.957258E+01,6.820830E+01,6.687078E+01,6.555948E+01,6.427390E+01, 6.301353E+01,6.177787E+01,6.056645E+01,5.937878E+01,5.821440E+01,5.707285E+01,5.595368E+01, 5.485647E+01,5.378076E+01,5.272616E+01,5.169223E+01,5.067857E+01,4.968480E+01,4.871051E+01, 4.775533E+01,4.681887E+01,4.590078E+01,4.500070E+01,4.411826E+01,4.325313E+01,4.240496E+01, 4.157343E+01,4.075820E+01,3.995895E+01,3.917538E+01,3.840718E+01,3.765404E+01,3.691566E+01, 3.619177E+01,3.548207E+01,3.478629E+01,3.410415E+01,3.343539E+01,3.277974E+01,3.213695E+01, 3.150677E+01,3.088894E+01,3.028322E+01,2.968939E+01,2.910720E+01,2.853642E+01,2.797684E+01, 2.742823E+01,2.689038E+01,2.636308E+01,2.584611E+01,2.533929E+01,2.484240E+01,2.435526E+01, 2.387766E+01,2.340944E+01,2.295039E+01,2.250035E+01,2.205913E+01,2.162656E+01,2.120248E+01, 2.078671E+01,2.037910E+01,1.997948E+01,1.958769E+01,1.920359E+01,1.882702E+01,1.845783E+01, 1.809588E+01,1.774104E+01,1.739314E+01,1.705208E+01,1.671770E+01,1.638987E+01,1.606848E+01, 1.575338E+01,1.544447E+01,1.514161E+01,1.484469E+01,1.455360E+01,1.426821E+01,1.398842E+01, 1.371412E+01,1.344519E+01,1.318154E+01,1.292306E+01,1.266964E+01,1.242120E+01,1.217763E+01, 1.193883E+01,1.170472E+01,1.147520E+01,1.125017E+01,1.102957E+01,1.081328E+01,1.060124E+01, 1.039336E+01,1.018955E+01,9.989738E+00,9.793846E+00,9.601794E+00,9.413509E+00,9.228916E+00, 9.047942E+00,8.870518E+00,8.696572E+00,8.526038E+00,8.358848E+00,8.194936E+00,8.034238E+00, 7.876691E+00,7.722234E+00,7.570806E+00,7.422347E+00,7.276799E+00,7.134106E+00,6.994210E+00, 6.857058E+00,6.722595E+00,6.590769E+00,6.461528E+00,6.334822E+00,6.210600E+00,6.088814E+00, 5.969416E+00,5.852359E+00,5.737598E+00,5.625087E+00,5.514783E+00,5.406641E+00,5.300620E+00, 5.196678E+00,5.094775E+00,4.994869E+00,4.896923E+00,4.800897E+00,4.706755E+00,4.614458E+00, 4.523971E+00,4.435259E+00,4.348286E+00,4.263019E+00,4.179424E+00,4.097468E+00,4.017119E+00, 3.938346E+00,3.861117E+00,3.785403E+00,3.711174E+00,3.638400E+00,3.567053E+00,3.497105E+00, 3.428529E+00,3.361298E+00,3.295385E+00,3.230764E+00,3.167411E+00,3.105300E+00,3.044407E+00, 2.984708E+00,2.926180E+00,2.868799E+00,2.812544E+00,2.757391E+00,2.703321E+00,2.650310E+00, 2.598339E+00,2.547387E+00], [4.583348E+01,4.951806E+01,4.900538E+01,4.809025E+01,4.715181E+01,4.622765E+01,4.532120E+01, 9.026597E+01,9.307926E+01,9.171236E+01,8.995977E+01,8.820030E+01,8.647120E+01,8.477560E+01, 1.289467E+02,1.310015E+02,1.288910E+02,1.264093E+02,1.239351E+02,1.215053E+02,1.191227E+02, 1.626202E+02,1.640147E+02,1.612568E+02,1.581405E+02,1.550440E+02,1.520042E+02,1.490235E+02, 1.919347E+02,1.927544E+02,1.894329E+02,1.857641E+02,1.821259E+02,1.785550E+02,1.750537E+02, 2.174545E+02,2.177737E+02,2.139616E+02,2.098118E+02,2.057021E+02,2.016689E+02,1.977143E+02, 2.396707E+02,2.395543E+02,2.353151E+02,2.307466E+02,2.262263E+02,2.217906E+02,2.174415E+02, 2.131776E+02,2.089973E+02,2.048990E+02,2.008811E+02,1.969419E+02,1.930800E+02,1.892938E+02, 1.855819E+02,1.819427E+02,1.783750E+02,1.748771E+02,1.714479E+02,1.680859E+02,1.647898E+02, 1.615584E+02,1.583904E+02,1.552844E+02,1.522394E+02,1.492541E+02,1.463273E+02,1.434579E+02, 1.406448E+02,1.378868E+02,1.351829E+02,1.325321E+02,1.299332E+02,1.273853E+02,1.248873E+02, 1.224384E+02,1.200374E+02,1.176836E+02,1.153759E+02,1.131134E+02,1.108953E+02,1.087208E+02, 1.065888E+02,1.044987E+02,1.024495E+02,1.004405E+02,9.847096E+01,9.654000E+01,9.464691E+01, 9.279094E+01,9.097137E+01,8.918748E+01,8.743857E+01,8.572395E+01,8.404295E+01,8.239492E+01, 8.077921E+01,7.919518E+01,7.764221E+01,7.611969E+01,7.462703E+01,7.316364E+01,7.172895E+01, 7.032239E+01,6.894341E+01,6.759147E+01,6.626604E+01,6.496660E+01,6.369265E+01,6.244367E+01, 6.121919E+01,6.001872E+01,5.884179E+01,5.768794E+01,5.655671E+01,5.544767E+01,5.436038E+01, 5.329440E+01,5.224933E+01,5.122475E+01,5.022027E+01,4.923548E+01,4.827000E+01,4.732346E+01, 4.639547E+01,4.548569E+01,4.459374E+01,4.371928E+01,4.286197E+01,4.202148E+01,4.119746E+01, 4.038960E+01,3.959759E+01,3.882110E+01,3.805985E+01,3.731352E+01,3.658182E+01,3.586447E+01, 3.516119E+01,3.447170E+01,3.379573E+01,3.313302E+01,3.248330E+01,3.184632E+01,3.122184E+01, 3.060960E+01,3.000936E+01,2.942090E+01,2.884397E+01,2.827836E+01,2.772384E+01,2.718019E+01, 2.664720E+01,2.612467E+01,2.561238E+01,2.511013E+01,2.461774E+01,2.413500E+01,2.366173E+01, 2.319774E+01,2.274284E+01,2.229687E+01,2.185964E+01,2.143099E+01,2.101074E+01,2.059873E+01, 2.019480E+01,1.979879E+01,1.941055E+01,1.902992E+01,1.865676E+01,1.829091E+01,1.793224E+01, 1.758060E+01,1.723585E+01,1.689787E+01,1.656651E+01,1.624165E+01,1.592316E+01,1.561092E+01, 1.530480E+01,1.500468E+01,1.471045E+01,1.442198E+01,1.413918E+01,1.386192E+01,1.359009E+01, 1.332360E+01,1.306233E+01,1.280619E+01,1.255507E+01,1.230887E+01,1.206750E+01,1.183086E+01, 1.159887E+01,1.137142E+01,1.114843E+01,1.092982E+01,1.071549E+01,1.050537E+01,1.029937E+01, 1.009740E+01,9.899397E+00,9.705276E+00,9.514962E+00,9.328379E+00,9.145455E+00,8.966118E+00, 8.790298E+00,8.617926E+00,8.448934E+00,8.283255E+00,8.120826E+00,7.961581E+00,7.805459E+00, 7.652399E+00,7.502340E+00,7.355224E+00,7.210992E+00,7.069589E+00,6.930959E+00,6.795047E+00, 6.661800E+00,6.531166E+00,6.403094E+00,6.277533E+00,6.154435E+00,6.033750E+00,5.915432E+00, 5.799434E+00,5.685711E+00,5.574217E+00,5.464910E+00,5.357747E+00,5.252685E+00,5.149683E+00, 5.048701E+00,4.949699E+00,4.852638E+00,4.757481E+00,4.664189E+00,4.572728E+00,4.483059E+00, 4.395149E+00,4.308963E+00,4.224467E+00,4.141628E+00,4.060413E+00,3.980791E+00,3.902730E+00, 3.826200E+00,3.751170E+00,3.677612E+00,3.605496E+00,3.534795E+00,3.465479E+00,3.397524E+00, 3.330900E+00,3.265583E+00,3.201547E+00,3.138767E+00,3.077217E+00,3.016875E+00,2.957716E+00, 2.899717E+00,2.842855E+00,2.787109E+00,2.732455E+00,2.678873E+00,2.626342E+00,2.574841E+00, 2.524350E+00,2.474849E+00,2.426319E+00,2.378740E+00,2.332095E+00,2.286364E+00,2.241530E+00, 2.197575E+00,2.154481E+00,2.112233E+00,2.070814E+00,2.030206E+00,1.990395E+00,1.951365E+00, 1.913100E+00,1.875585E+00,1.838806E+00,1.802748E+00,1.767397E+00,1.732740E+00,1.698762E+00, 1.665450E+00,1.632792E+00,1.600774E+00,1.569383E+00,1.538609E+00,1.508438E+00,1.478858E+00, 1.449859E+00,1.421428E+00,1.393554E+00,1.366228E+00,1.339437E+00,1.313171E+00,1.287421E+00, 1.262175E+00,1.237425E+00,1.213160E+00,1.189370E+00,1.166047E+00,1.143182E+00,1.120765E+00, 1.098787E+00,1.077241E+00,1.056117E+00,1.035407E+00,1.015103E+00,9.951976E-01,9.756824E-01, 9.565499E-01,9.377925E-01,9.194030E-01,9.013741E-01,8.836987E-01,8.663699E-01,8.493809E-01, 8.327250E-01,8.163958E-01,8.003868E-01,7.846917E-01,7.693044E-01,7.542188E-01,7.394290E-01, 7.249293E-01,7.107138E-01,6.967772E-01,6.831138E-01,6.697183E-01,6.565856E-01,6.437103E-01, 6.310876E-01,6.187123E-01,6.065798E-01,5.946851E-01,5.830237E-01,5.715909E-01,5.603824E-01, 5.493936E-01,5.386204E-01,5.280583E-01,5.177034E-01,5.075516E-01,4.975988E-01,4.878412E-01, 4.782749E-01,4.688963E-01,4.597015E-01,4.506870E-01,4.418493E-01,4.331849E-01,4.246904E-01, 4.163625E-01,4.081979E-01], [1.338207E+02,1.378876E+02,1.355183E+02,1.328776E+02,1.302728E+02,1.277182E+02,1.252138E+02, 2.565791E+02,2.582388E+02,2.535095E+02,2.485550E+02,2.436818E+02,2.389034E+02,2.342187E+02, 3.634465E+02,3.630106E+02,3.562267E+02,3.492581E+02,3.424102E+02,3.356958E+02,3.291130E+02, 4.564800E+02,4.542198E+02,4.456473E+02,4.369252E+02,4.283582E+02,4.199584E+02,4.117233E+02, 5.374704E+02,5.336219E+02,5.234925E+02,5.132438E+02,5.031803E+02,4.933133E+02,4.836397E+02, 6.079765E+02,6.027455E+02,5.912606E+02,5.796831E+02,5.683167E+02,5.571724E+02,5.462466E+02, 6.693557E+02,6.629211E+02,6.502562E+02,6.375218E+02,6.250212E+02,6.127650E+02,6.007490E+02, 5.889687E+02,5.774194E+02,5.660965E+02,5.549957E+02,5.441126E+02,5.334429E+02,5.229824E+02, 5.127270E+02,5.026728E+02,4.928157E+02,4.831519E+02,4.736775E+02,4.643890E+02,4.552826E+02, 4.463548E+02,4.376021E+02,4.290210E+02,4.206081E+02,4.123602E+02,4.042741E+02,3.963465E+02, 3.885744E+02,3.809547E+02,3.734844E+02,3.661606E+02,3.589804E+02,3.519411E+02,3.450397E+02, 3.382737E+02,3.316404E+02,3.251371E+02,3.187613E+02,3.125106E+02,3.063825E+02,3.003745E+02, 2.944844E+02,2.887097E+02,2.830483E+02,2.774979E+02,2.720563E+02,2.667214E+02,2.614912E+02, 2.563635E+02,2.513364E+02,2.464078E+02,2.415759E+02,2.368388E+02,2.321945E+02,2.276413E+02, 2.231774E+02,2.188010E+02,2.145105E+02,2.103041E+02,2.061801E+02,2.021371E+02,1.981733E+02, 1.942872E+02,1.904774E+02,1.867422E+02,1.830803E+02,1.794902E+02,1.759705E+02,1.725199E+02, 1.691368E+02,1.658202E+02,1.625685E+02,1.593807E+02,1.562553E+02,1.531912E+02,1.501873E+02, 1.472422E+02,1.443548E+02,1.415241E+02,1.387489E+02,1.360282E+02,1.333607E+02,1.307456E+02, 1.281818E+02,1.256682E+02,1.232039E+02,1.207880E+02,1.184194E+02,1.160973E+02,1.138207E+02, 1.115887E+02,1.094005E+02,1.072552E+02,1.051520E+02,1.030901E+02,1.010685E+02,9.908664E+01, 9.714361E+01,9.523868E+01,9.337111E+01,9.154016E+01,8.974511E+01,8.798527E+01,8.625993E+01, 8.456842E+01,8.291009E+01,8.128427E+01,7.969034E+01,7.812766E+01,7.659562E+01,7.509363E+01, 7.362109E+01,7.217742E+01,7.076207E+01,6.937447E+01,6.801408E+01,6.668036E+01,6.537280E+01, 6.409088E+01,6.283410E+01,6.160196E+01,6.039398E+01,5.920969E+01,5.804863E+01,5.691033E+01, 5.579435E+01,5.470026E+01,5.362762E+01,5.257601E+01,5.154503E+01,5.053426E+01,4.954332E+01, 4.857180E+01,4.761934E+01,4.668555E+01,4.577008E+01,4.487256E+01,4.399263E+01,4.312996E+01, 4.228421E+01,4.145504E+01,4.064214E+01,3.984517E+01,3.906383E+01,3.829781E+01,3.754681E+01, 3.681054E+01,3.608871E+01,3.538103E+01,3.468723E+01,3.400704E+01,3.334018E+01,3.268640E+01, 3.204544E+01,3.141705E+01,3.080098E+01,3.019699E+01,2.960485E+01,2.902431E+01,2.845516E+01, 2.789718E+01,2.735013E+01,2.681381E+01,2.628801E+01,2.577252E+01,2.526713E+01,2.477166E+01, 2.428590E+01,2.380967E+01,2.334278E+01,2.288504E+01,2.243628E+01,2.199632E+01,2.156498E+01, 2.114211E+01,2.072752E+01,2.032107E+01,1.992258E+01,1.953191E+01,1.914891E+01,1.877341E+01, 1.840527E+01,1.804436E+01,1.769052E+01,1.734362E+01,1.700352E+01,1.667009E+01,1.634320E+01, 1.602272E+01,1.570852E+01,1.540049E+01,1.509850E+01,1.480242E+01,1.451216E+01,1.422758E+01, 1.394859E+01,1.367506E+01,1.340690E+01,1.314400E+01,1.288626E+01,1.263357E+01,1.238583E+01, 1.214295E+01,1.190484E+01,1.167139E+01,1.144252E+01,1.121814E+01,1.099816E+01,1.078249E+01, 1.057105E+01,1.036376E+01,1.016053E+01,9.961292E+00,9.765957E+00,9.574453E+00,9.386704E+00, 9.202636E+00,9.022178E+00,8.845259E+00,8.671808E+00,8.501760E+00,8.335045E+00,8.171600E+00, 8.011360E+00,7.854262E+00,7.700245E+00,7.549248E+00,7.401212E+00,7.256078E+00,7.113791E+00, 6.974294E+00,6.837532E+00,6.703452E+00,6.572002E+00,6.443129E+00,6.316783E+00,6.192915E+00, 6.071476E+00,5.952418E+00,5.835694E+00,5.721260E+00,5.609069E+00,5.499079E+00,5.391245E+00, 5.285526E+00,5.181880E+00,5.080267E+00,4.980646E+00,4.882979E+00,4.787226E+00,4.693352E+00, 4.601318E+00,4.511089E+00,4.422629E+00,4.335904E+00,4.250880E+00,4.167523E+00,4.085800E+00, 4.005680E+00,3.927131E+00,3.850122E+00,3.774624E+00,3.700606E+00,3.628039E+00,3.556896E+00, 3.487147E+00,3.418766E+00,3.351726E+00,3.286001E+00,3.221564E+00,3.158392E+00,3.096457E+00, 3.035738E+00,2.976209E+00,2.917847E+00,2.860630E+00,2.804535E+00,2.749540E+00,2.695623E+00, 2.642763E+00,2.590940E+00,2.540133E+00,2.490323E+00,2.441489E+00,2.393613E+00,2.346676E+00, 2.300659E+00,2.255544E+00,2.211315E+00,2.167952E+00,2.125440E+00,2.083761E+00,2.042900E+00, 2.002840E+00,1.963566E+00,1.925061E+00,1.887312E+00,1.850303E+00,1.814020E+00,1.778448E+00, 1.743573E+00,1.709383E+00,1.675863E+00,1.643000E+00,1.610782E+00,1.579196E+00,1.548229E+00, 1.517869E+00,1.488104E+00,1.458924E+00,1.430315E+00,1.402267E+00,1.374770E+00,1.347811E+00, 1.321382E+00,1.295470E+00,1.270067E+00,1.245162E+00,1.220745E+00,1.196807E+00,1.173338E+00, 1.150330E+00,1.127772E+00]] try: # internal model constants ted_empty.num_simulation_days = 366 # internally specified variables a1 = pd.Series([.621, .621, .648], dtype='float') b1 = pd.Series([.564, .564, .651], dtype='float') # internally specified variables from external database body_wgt = pd.Series([15., 1000., 20.], dtype='float') frac_h2o = pd.Series([0.8, 0.8, 0.8], dtype='float') # input variables that change per simulation ted_empty.frac_retained_mamm = pd.Series([0.1, 0.1, 0.05], dtype='float') # internally calculated variables intake_food_conc = pd.Series([[3.000000E+02,2.941172E+02,2.883497E+02,2.826954E+02,2.771519E+02, 2.717171E+02,2.663889E+02,5.611652E+02,5.501611E+02,5.393727E+02, 5.287960E+02,5.184266E+02,5.082606E+02,4.982939E+02,7.885227E+02, 7.730602E+02,7.579010E+02,7.430390E+02,7.284684E+02,7.141836E+02, 7.001789E+02,9.864488E+02,9.671052E+02,9.481408E+02,9.295484E+02, 9.113205E+02,8.934501E+02,8.759300E+02,1.158754E+03,1.136031E+03, 1.113754E+03,1.091914E+03,1.070502E+03,1.049511E+03,1.028930E+03, 1.308754E+03,1.283090E+03,1.257929E+03,1.233262E+03,1.209078E+03, 1.185369E+03,1.162125E+03,1.439336E+03,1.411112E+03,1.383441E+03, 1.356312E+03,1.329716E+03,1.303641E+03,1.278077E+03,1.253015E+03, 1.228444E+03,1.204355E+03,1.180738E+03,1.157585E+03,1.134885E+03, 1.112631E+03,1.090813E+03,1.069423E+03,1.048452E+03,1.027892E+03, 1.007736E+03,9.879750E+02,9.686014E+02,9.496077E+02,9.309865E+02, 9.127304E+02,8.948323E+02,8.772852E+02,8.600822E+02,8.432165E+02, 8.266816E+02,8.104708E+02,7.945780E+02,7.789968E+02,7.637211E+02, 7.487450E+02,7.340626E+02,7.196681E+02,7.055558E+02,6.917203E+02, 6.781561E+02,6.648579E+02,6.518204E+02,6.390386E+02,6.265075E+02, 6.142220E+02,6.021775E+02,5.903692E+02,5.787924E+02,5.674426E+02, 5.563154E+02,5.454064E+02,5.347113E+02,5.242260E+02,5.139462E+02, 5.038680E+02,4.939875E+02,4.843007E+02,4.748039E+02,4.654933E+02, 4.563652E+02,4.474162E+02,4.386426E+02,4.300411E+02,4.216083E+02, 4.133408E+02,4.052354E+02,3.972890E+02,3.894984E+02,3.818606E+02, 3.743725E+02,3.670313E+02,3.598340E+02,3.527779E+02,3.458602E+02, 3.390781E+02,3.324289E+02,3.259102E+02,3.195193E+02,3.132537E+02, 3.071110E+02,3.010888E+02,2.951846E+02,2.893962E+02,2.837213E+02, 2.781577E+02,2.727032E+02,2.673557E+02,2.621130E+02,2.569731E+02, 2.519340E+02,2.469938E+02,2.421504E+02,2.374019E+02,2.327466E+02, 2.281826E+02,2.237081E+02,2.193213E+02,2.150205E+02,2.108041E+02, 2.066704E+02,2.026177E+02,1.986445E+02,1.947492E+02,1.909303E+02, 1.871863E+02,1.835157E+02,1.799170E+02,1.763890E+02,1.729301E+02, 1.695390E+02,1.662145E+02,1.629551E+02,1.597597E+02,1.566269E+02, 1.535555E+02,1.505444E+02,1.475923E+02,1.446981E+02,1.418607E+02, 1.390789E+02,1.363516E+02,1.336778E+02,1.310565E+02,1.284866E+02, 1.259670E+02,1.234969E+02,1.210752E+02,1.187010E+02,1.163733E+02, 1.140913E+02,1.118540E+02,1.096607E+02,1.075103E+02,1.054021E+02, 1.033352E+02,1.013089E+02,9.932225E+01,9.737460E+01,9.546514E+01, 9.359313E+01,9.175783E+01,8.995851E+01,8.819448E+01,8.646504E+01, 8.476951E+01,8.310723E+01,8.147755E+01,7.987983E+01,7.831343E+01, 7.677775E+01,7.527219E+01,7.379615E+01,7.234905E+01,7.093033E+01, 6.953943E+01,6.817580E+01,6.683892E+01,6.552825E+01,6.424328E+01, 6.298351E+01,6.174844E+01,6.053759E+01,5.935048E+01,5.818666E+01, 5.704565E+01,5.592702E+01,5.483033E+01,5.375514E+01,5.270103E+01, 5.166760E+01,5.065443E+01,4.966112E+01,4.868730E+01,4.773257E+01, 4.679657E+01,4.587891E+01,4.497926E+01,4.409724E+01,4.323252E+01, 4.238476E+01,4.155362E+01,4.073878E+01,3.993991E+01,3.915672E+01, 3.838888E+01,3.763609E+01,3.689807E+01,3.617452E+01,3.546516E+01, 3.476971E+01,3.408790E+01,3.341946E+01,3.276412E+01,3.212164E+01, 3.149175E+01,3.087422E+01,3.026879E+01,2.967524E+01,2.909333E+01, 2.852283E+01,2.796351E+01,2.741516E+01,2.687757E+01,2.635052E+01, 2.583380E+01,2.532721E+01,2.483056E+01,2.434365E+01,2.386629E+01, 2.339828E+01,2.293946E+01,2.248963E+01,2.204862E+01,2.161626E+01, 2.119238E+01,2.077681E+01,2.036939E+01,1.996996E+01,1.957836E+01, 1.919444E+01,1.881805E+01,1.844904E+01,1.808726E+01,1.773258E+01, 1.738486E+01,1.704395E+01,1.670973E+01,1.638206E+01,1.606082E+01, 1.574588E+01,1.543711E+01,1.513440E+01,1.483762E+01,1.454666E+01, 1.426141E+01,1.398176E+01,1.370758E+01,1.343878E+01,1.317526E+01, 1.291690E+01,1.266361E+01,1.241528E+01,1.217183E+01,1.193314E+01, 1.169914E+01,1.146973E+01,1.124481E+01,1.102431E+01,1.080813E+01, 1.059619E+01,1.038840E+01,1.018469E+01,9.984978E+00,9.789179E+00, 9.597219E+00,9.409024E+00,9.224518E+00,9.043631E+00,8.866291E+00, 8.692429E+00,8.521975E+00,8.354865E+00,8.191031E+00,8.030410E+00, 7.872938E+00,7.718555E+00,7.567199E+00,7.418810E+00,7.273332E+00, 7.130706E+00,6.990878E+00,6.853791E+00,6.719392E+00,6.587629E+00, 6.458450E+00,6.331803E+00,6.207641E+00,6.085913E+00,5.966571E+00, 5.849571E+00,5.734864E+00,5.622407E+00,5.512155E+00,5.404065E+00, 5.298095E+00,5.194202E+00,5.092347E+00,4.992489E+00,4.894590E+00, 4.798610E+00,4.704512E+00,4.612259E+00,4.521816E+00,4.433146E+00, 4.346214E+00,4.260988E+00,4.177432E+00,4.095515E+00,4.015205E+00, 3.936469E+00,3.859277E+00,3.783599E+00,3.709405E+00,3.636666E+00, 3.565353E+00,3.495439E+00,3.426895E+00,3.359696E+00,3.293814E+00, 3.229225E+00,3.165902E+00,3.103820E+00,3.042956E+00,2.983286E+00, 2.924785E+00,2.867432E+00,2.811203E+00,2.756077E+00,2.702032E+00, 2.649047E+00,2.597101E+00,2.546174E+00,2.496245E+00,2.447295E+00, 2.399305E+00], [3.000000E+02,2.941172E+02,2.883497E+02,2.826954E+02,2.771519E+02, 2.717171E+02,2.663889E+02,5.611652E+02,5.501611E+02,5.393727E+02, 5.287960E+02,5.184266E+02,5.082606E+02,4.982939E+02,7.885227E+02, 7.730602E+02,7.579010E+02,7.430390E+02,7.284684E+02,7.141836E+02, 7.001789E+02,9.864488E+02,9.671052E+02,9.481408E+02,9.295484E+02, 9.113205E+02,8.934501E+02,8.759300E+02,1.158754E+03,1.136031E+03, 1.113754E+03,1.091914E+03,1.070502E+03,1.049511E+03,1.028930E+03, 1.308754E+03,1.283090E+03,1.257929E+03,1.233262E+03,1.209078E+03, 1.185369E+03,1.162125E+03,1.439336E+03,1.411112E+03,1.383441E+03, 1.356312E+03,1.329716E+03,1.303641E+03,1.278077E+03,1.253015E+03, 1.228444E+03,1.204355E+03,1.180738E+03,1.157585E+03,1.134885E+03, 1.112631E+03,1.090813E+03,1.069423E+03,1.048452E+03,1.027892E+03, 1.007736E+03,9.879750E+02,9.686014E+02,9.496077E+02,9.309865E+02, 9.127304E+02,8.948323E+02,8.772852E+02,8.600822E+02,8.432165E+02, 8.266816E+02,8.104708E+02,7.945780E+02,7.789968E+02,7.637211E+02, 7.487450E+02,7.340626E+02,7.196681E+02,7.055558E+02,6.917203E+02, 6.781561E+02,6.648579E+02,6.518204E+02,6.390386E+02,6.265075E+02, 6.142220E+02,6.021775E+02,5.903692E+02,5.787924E+02,5.674426E+02, 5.563154E+02,5.454064E+02,5.347113E+02,5.242260E+02,5.139462E+02, 5.038680E+02,4.939875E+02,4.843007E+02,4.748039E+02,4.654933E+02, 4.563652E+02,4.474162E+02,4.386426E+02,4.300411E+02,4.216083E+02, 4.133408E+02,4.052354E+02,3.972890E+02,3.894984E+02,3.818606E+02, 3.743725E+02,3.670313E+02,3.598340E+02,3.527779E+02,3.458602E+02, 3.390781E+02,3.324289E+02,3.259102E+02,3.195193E+02,3.132537E+02, 3.071110E+02,3.010888E+02,2.951846E+02,2.893962E+02,2.837213E+02, 2.781577E+02,2.727032E+02,2.673557E+02,2.621130E+02,2.569731E+02, 2.519340E+02,2.469938E+02,2.421504E+02,2.374019E+02,2.327466E+02, 2.281826E+02,2.237081E+02,2.193213E+02,2.150205E+02,2.108041E+02, 2.066704E+02,2.026177E+02,1.986445E+02,1.947492E+02,1.909303E+02, 1.871863E+02,1.835157E+02,1.799170E+02,1.763890E+02,1.729301E+02, 1.695390E+02,1.662145E+02,1.629551E+02,1.597597E+02,1.566269E+02, 1.535555E+02,1.505444E+02,1.475923E+02,1.446981E+02,1.418607E+02, 1.390789E+02,1.363516E+02,1.336778E+02,1.310565E+02,1.284866E+02, 1.259670E+02,1.234969E+02,1.210752E+02,1.187010E+02,1.163733E+02, 1.140913E+02,1.118540E+02,1.096607E+02,1.075103E+02,1.054021E+02, 1.033352E+02,1.013089E+02,9.932225E+01,9.737460E+01,9.546514E+01, 9.359313E+01,9.175783E+01,8.995851E+01,8.819448E+01,8.646504E+01, 8.476951E+01,8.310723E+01,8.147755E+01,7.987983E+01,7.831343E+01, 7.677775E+01,7.527219E+01,7.379615E+01,7.234905E+01,7.093033E+01, 6.953943E+01,6.817580E+01,6.683892E+01,6.552825E+01,6.424328E+01, 6.298351E+01,6.174844E+01,6.053759E+01,5.935048E+01,5.818666E+01, 5.704565E+01,5.592702E+01,5.483033E+01,5.375514E+01,5.270103E+01, 5.166760E+01,5.065443E+01,4.966112E+01,4.868730E+01,4.773257E+01, 4.679657E+01,4.587891E+01,4.497926E+01,4.409724E+01,4.323252E+01, 4.238476E+01,4.155362E+01,4.073878E+01,3.993991E+01,3.915672E+01, 3.838888E+01,3.763609E+01,3.689807E+01,3.617452E+01,3.546516E+01, 3.476971E+01,3.408790E+01,3.341946E+01,3.276412E+01,3.212164E+01, 3.149175E+01,3.087422E+01,3.026879E+01,2.967524E+01,2.909333E+01, 2.852283E+01,2.796351E+01,2.741516E+01,2.687757E+01,2.635052E+01, 2.583380E+01,2.532721E+01,2.483056E+01,2.434365E+01,2.386629E+01, 2.339828E+01,2.293946E+01,2.248963E+01,2.204862E+01,2.161626E+01, 2.119238E+01,2.077681E+01,2.036939E+01,1.996996E+01,1.957836E+01, 1.919444E+01,1.881805E+01,1.844904E+01,1.808726E+01,1.773258E+01, 1.738486E+01,1.704395E+01,1.670973E+01,1.638206E+01,1.606082E+01, 1.574588E+01,1.543711E+01,1.513440E+01,1.483762E+01,1.454666E+01, 1.426141E+01,1.398176E+01,1.370758E+01,1.343878E+01,1.317526E+01, 1.291690E+01,1.266361E+01,1.241528E+01,1.217183E+01,1.193314E+01, 1.169914E+01,1.146973E+01,1.124481E+01,1.102431E+01,1.080813E+01, 1.059619E+01,1.038840E+01,1.018469E+01,9.984978E+00,9.789179E+00, 9.597219E+00,9.409024E+00,9.224518E+00,9.043631E+00,8.866291E+00, 8.692429E+00,8.521975E+00,8.354865E+00,8.191031E+00,8.030410E+00, 7.872938E+00,7.718555E+00,7.567199E+00,7.418810E+00,7.273332E+00, 7.130706E+00,6.990878E+00,6.853791E+00,6.719392E+00,6.587629E+00, 6.458450E+00,6.331803E+00,6.207641E+00,6.085913E+00,5.966571E+00, 5.849571E+00,5.734864E+00,5.622407E+00,5.512155E+00,5.404065E+00, 5.298095E+00,5.194202E+00,5.092347E+00,4.992489E+00,4.894590E+00, 4.798610E+00,4.704512E+00,4.612259E+00,4.521816E+00,4.433146E+00, 4.346214E+00,4.260988E+00,4.177432E+00,4.095515E+00,4.015205E+00, 3.936469E+00,3.859277E+00,3.783599E+00,3.709405E+00,3.636666E+00, 3.565353E+00,3.495439E+00,3.426895E+00,3.359696E+00,3.293814E+00, 3.229225E+00,3.165902E+00,3.103820E+00,3.042956E+00,2.983286E+00, 2.924785E+00,2.867432E+00,2.811203E+00,2.756077E+00,2.702032E+00, 2.649047E+00,2.597101E+00,2.546174E+00,2.496245E+00,2.447295E+00, 2.399305E+00], [1.175000E+02,1.151959E+02,1.129370E+02,1.107224E+02, 1.085512E+02,1.064225E+02,1.043356E+02,2.197897E+02,2.154797E+02, 2.112543E+02,2.071118E+02,2.030504E+02,1.990687E+02,1.951651E+02, 3.088380E+02,3.027819E+02,2.968445E+02,2.910236E+02,2.853168E+02, 2.797219E+02,2.742367E+02,3.863591E+02,3.787829E+02,3.713552E+02, 3.640731E+02,3.569339E+02,3.499346E+02,3.430726E+02,4.538452E+02, 4.449455E+02,4.362204E+02,4.276664E+02,4.192801E+02,4.110583E+02, 4.029977E+02,5.125952E+02,5.025435E+02,4.926889E+02,4.830276E+02, 4.735557E+02,4.642696E+02,4.551655E+02,5.637400E+02,5.526854E+02, 5.418476E+02,5.312223E+02,5.208053E+02,5.105927E+02,5.005803E+02, 4.907642E+02,4.811406E+02,4.717057E+02,4.624559E+02,4.533874E+02, 4.444967E+02,4.357804E+02,4.272350E+02,4.188572E+02,4.106437E+02, 4.025912E+02,3.946966E+02,3.869569E+02,3.793689E+02,3.719297E+02, 3.646364E+02,3.574861E+02,3.504760E+02,3.436034E+02,3.368655E+02, 3.302598E+02,3.237836E+02,3.174344E+02,3.112097E+02,3.051071E+02, 2.991241E+02,2.932585E+02,2.875079E+02,2.818700E+02,2.763427E+02, 2.709238E+02,2.656111E+02,2.604027E+02,2.552963E+02,2.502901E+02, 2.453821E+02,2.405703E+02,2.358529E+02,2.312279E+02,2.266937E+02, 2.222484E+02,2.178902E+02,2.136175E+02,2.094286E+02,2.053218E+02, 2.012956E+02,1.973483E+02,1.934784E+02,1.896844E+02,1.859648E+02, 1.823182E+02,1.787430E+02,1.752380E+02,1.718017E+02,1.684328E+02, 1.651299E+02,1.618918E+02,1.587172E+02,1.556049E+02,1.525535E+02, 1.495621E+02,1.466292E+02,1.437539E+02,1.409350E+02,1.381714E+02, 1.354619E+02,1.328056E+02,1.302013E+02,1.276482E+02,1.251451E+02, 1.226910E+02,1.202851E+02,1.179264E+02,1.156140E+02,1.133468E+02, 1.111242E+02,1.089451E+02,1.068088E+02,1.047143E+02,1.026609E+02, 1.006478E+02,9.867416E+01,9.673922E+01,9.484222E+01,9.298242E+01, 9.115910E+01,8.937152E+01,8.761900E+01,8.590085E+01,8.421638E+01, 8.256495E+01,8.094590E+01,7.935860E+01,7.780243E+01,7.627677E+01, 7.478103E+01,7.331462E+01,7.187696E+01,7.046750E+01,6.908568E+01, 6.773095E+01,6.640279E+01,6.510067E+01,6.382408E+01,6.257253E+01, 6.134552E+01,6.014257E+01,5.896321E+01,5.780698E+01,5.667342E+01, 5.556209E+01,5.447255E+01,5.340438E+01,5.235715E+01,5.133046E+01, 5.032390E+01,4.933708E+01,4.836961E+01,4.742111E+01,4.649121E+01, 4.557955E+01,4.468576E+01,4.380950E+01,4.295042E+01,4.210819E+01, 4.128248E+01,4.047295E+01,3.967930E+01,3.890121E+01,3.813839E+01, 3.739051E+01,3.665731E+01,3.593848E+01,3.523375E+01,3.454284E+01, 3.386547E+01,3.320139E+01,3.255033E+01,3.191204E+01,3.128627E+01, 3.067276E+01,3.007129E+01,2.948161E+01,2.890349E+01,2.833671E+01, 2.778105E+01,2.723628E+01,2.670219E+01,2.617858E+01,2.566523E+01, 2.516195E+01,2.466854E+01,2.418480E+01,2.371056E+01,2.324561E+01, 2.278977E+01,2.234288E+01,2.190475E+01,2.147521E+01,2.105410E+01, 2.064124E+01,2.023648E+01,1.983965E+01,1.945061E+01,1.906919E+01, 1.869526E+01,1.832865E+01,1.796924E+01,1.761688E+01,1.727142E+01, 1.693274E+01,1.660070E+01,1.627517E+01,1.595602E+01,1.564313E+01, 1.533638E+01,1.503564E+01,1.474080E+01,1.445175E+01,1.416836E+01, 1.389052E+01,1.361814E+01,1.335109E+01,1.308929E+01,1.283261E+01, 1.258098E+01,1.233427E+01,1.209240E+01,1.185528E+01,1.162280E+01, 1.139489E+01,1.117144E+01,1.095238E+01,1.073761E+01,1.052705E+01, 1.032062E+01,1.011824E+01,9.919825E+00,9.725304E+00,9.534596E+00, 9.347629E+00,9.164327E+00,8.984620E+00,8.808438E+00,8.635709E+00, 8.466368E+00,8.300348E+00,8.137583E+00,7.978010E+00,7.821566E+00, 7.668190E+00,7.517822E+00,7.370402E+00,7.225873E+00,7.084178E+00, 6.945261E+00,6.809069E+00,6.675547E+00,6.544644E+00,6.416307E+00, 6.290488E+00,6.167135E+00,6.046201E+00,5.927639E+00,5.811402E+00, 5.697443E+00,5.585720E+00,5.476188E+00,5.368803E+00,5.263524E+00, 5.160309E+00,5.059119E+00,4.959913E+00,4.862652E+00,4.767298E+00, 4.673814E+00,4.582164E+00,4.492310E+00,4.404219E+00,4.317855E+00, 4.233184E+00,4.150174E+00,4.068792E+00,3.989005E+00,3.910783E+00, 3.834095E+00,3.758911E+00,3.685201E+00,3.612936E+00,3.542089E+00, 3.472631E+00,3.404535E+00,3.337774E+00,3.272322E+00,3.208154E+00, 3.145244E+00,3.083567E+00,3.023101E+00,2.963819E+00,2.905701E+00, 2.848722E+00,2.792860E+00,2.738094E+00,2.684401E+00,2.631762E+00, 2.580155E+00,2.529559E+00,2.479956E+00,2.431326E+00,2.383649E+00, 2.336907E+00,2.291082E+00,2.246155E+00,2.202109E+00,2.158927E+00, 2.116592E+00,2.075087E+00,2.034396E+00,1.994503E+00,1.955392E+00, 1.917048E+00,1.879455E+00,1.842600E+00,1.806468E+00,1.771044E+00, 1.736315E+00,1.702267E+00,1.668887E+00,1.636161E+00,1.604077E+00, 1.572622E+00,1.541784E+00,1.511550E+00,1.481910E+00,1.452850E+00, 1.424361E+00,1.396430E+00,1.369047E+00,1.342201E+00,1.315881E+00, 1.290077E+00,1.264780E+00,1.239978E+00,1.215663E+00,1.191825E+00, 1.168454E+00,1.145541E+00,1.123078E+00,1.101055E+00,1.079464E+00, 1.058296E+00,1.037544E+00,1.017198E+00,9.972513E-01,9.776958E-01, 9.585238E-01,9.397277E-01]], dtype='float') for i in range(3): result[i] = ted_empty.daily_animal_dose_timeseries(a1[i], b1[i], body_wgt[i], frac_h2o[i], intake_food_conc[i], ted_empty.frac_retained_mamm[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_canopy_air_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil pore water and surface puddles :param i; simulation number/index :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :param daily_flag; daily flag denoting if pesticide is applied (0 - not applied, 1 - applied) :param water_type; type of water (pore water or surface puddles) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [[2.697542E-06,2.575726E-06,2.459410E-06,5.045889E-06,4.818025E-06,4.600451E-06, 7.090244E-06,6.770060E-06,6.464335E-06,6.172416E-06,5.893680E-06,5.627531E-06, 5.373400E-06,5.130746E-06,4.899050E-06,4.677817E-06,4.466574E-06,4.264871E-06, 4.072276E-06,3.888378E-06,3.712786E-06,3.545122E-06,3.385030E-06,3.232168E-06, 3.086208E-06,2.946840E-06,2.813765E-06,2.686700E-06,2.565373E-06,2.449525E-06, 2.338908E-06,2.233287E-06,2.132435E-06,2.036138E-06,1.944189E-06,1.856393E-06, 1.772561E-06,1.692515E-06,1.616084E-06,1.543104E-06,1.473420E-06,1.406883E-06, 1.343350E-06,1.282687E-06,1.224762E-06,1.169454E-06,1.116643E-06,1.066218E-06, 1.018069E-06,9.720946E-07,9.281964E-07,8.862805E-07,8.462575E-07,8.080419E-07, 7.715520E-07,7.367100E-07,7.034413E-07,6.716750E-07,6.413433E-07,6.123812E-07, 5.847271E-07,5.583217E-07,5.331088E-07,5.090345E-07,4.860473E-07,4.640982E-07, 4.431403E-07,4.231288E-07,4.040209E-07,3.857760E-07,3.683550E-07,3.517207E-07, 3.358375E-07,3.206716E-07,3.061906E-07,2.923635E-07,2.791609E-07,2.665544E-07, 2.545172E-07,2.430237E-07,2.320491E-07,2.215701E-07,2.115644E-07,2.020105E-07, 1.928880E-07,1.841775E-07,1.758603E-07,1.679188E-07,1.603358E-07,1.530953E-07, 1.461818E-07,1.395804E-07,1.332772E-07,1.272586E-07,1.215118E-07,1.160245E-07, 1.107851E-07,1.057822E-07,1.010052E-07,9.644400E-08,9.208875E-08,8.793017E-08, 8.395938E-08,8.016791E-08,7.654765E-08,7.309089E-08,6.979022E-08,6.663860E-08, 6.362931E-08,6.075591E-08,5.801227E-08,5.539253E-08,5.289110E-08,5.050262E-08, 4.822200E-08,4.604437E-08,4.396508E-08,4.197969E-08,4.008395E-08,3.827383E-08, 3.654544E-08,3.489511E-08,3.331930E-08,3.181466E-08,3.037796E-08,2.900614E-08, 2.769627E-08,2.644555E-08,2.525131E-08,2.411100E-08,2.302219E-08,2.198254E-08, 2.098985E-08,2.004198E-08,1.913691E-08,1.827272E-08,1.744755E-08,1.665965E-08, 1.590733E-08,1.518898E-08,1.450307E-08,1.384813E-08,1.322277E-08,1.262565E-08, 1.205550E-08,1.151109E-08,1.099127E-08,1.049492E-08,1.002099E-08,9.568457E-09, 9.136361E-09,8.723777E-09,8.329826E-09,7.953664E-09,7.594489E-09,7.251534E-09, 6.924067E-09,6.611387E-09,6.312827E-09,6.027750E-09,5.755547E-09,5.495635E-09, 5.247461E-09,5.010494E-09,4.784228E-09,4.568180E-09,4.361889E-09,4.164913E-09, 3.976832E-09,3.797245E-09,3.625767E-09,3.462033E-09,3.305693E-09,3.156414E-09, 3.013875E-09,2.877773E-09,2.747818E-09,2.623731E-09,2.505247E-09,2.392114E-09, 2.284090E-09,2.180944E-09,2.082456E-09,1.988416E-09,1.898622E-09,1.812884E-09, 1.731017E-09,1.652847E-09,1.578207E-09,1.506938E-09,1.438887E-09,1.373909E-09, 1.311865E-09,1.252624E-09,1.196057E-09,1.142045E-09,1.090472E-09,1.041228E-09, 9.942080E-10,9.493112E-10,9.064418E-10,8.655083E-10,8.264234E-10,7.891034E-10, 7.534688E-10,7.194433E-10,6.869544E-10,6.559327E-10,6.263118E-10,5.980286E-10, 5.710225E-10,5.452361E-10,5.206141E-10,4.971040E-10,4.746556E-10,4.532209E-10, 4.327542E-10,4.132117E-10,3.945517E-10,3.767344E-10,3.597217E-10,3.434772E-10, 3.279663E-10,3.131559E-10,2.990143E-10,2.855113E-10,2.726180E-10,2.603070E-10, 2.485520E-10,2.373278E-10,2.266104E-10,2.163771E-10,2.066058E-10,1.972759E-10, 1.883672E-10,1.798608E-10,1.717386E-10,1.639832E-10,1.565779E-10,1.495071E-10, 1.427556E-10,1.363090E-10,1.301535E-10,1.242760E-10,1.186639E-10,1.133052E-10, 1.081885E-10,1.033029E-10,9.863793E-11,9.418360E-11,8.993042E-11,8.586930E-11, 8.199158E-11,7.828897E-11,7.475357E-11,7.137782E-11,6.815451E-11,6.507676E-11, 6.213800E-11,5.933195E-11,5.665261E-11,5.409427E-11,5.165146E-11,4.931896E-11, 4.709180E-11,4.496521E-11,4.293465E-11,4.099579E-11,3.914449E-11,3.737678E-11, 3.568891E-11,3.407726E-11,3.253838E-11,3.106900E-11,2.966597E-11,2.832631E-11, 2.704714E-11,2.582573E-11,2.465948E-11,2.354590E-11,2.248260E-11,2.146733E-11, 2.049790E-11,1.957224E-11,1.868839E-11,1.784445E-11,1.703863E-11,1.626919E-11, 1.553450E-11,1.483299E-11,1.416315E-11,1.352357E-11,1.291287E-11,1.232974E-11, 1.177295E-11,1.124130E-11,1.073366E-11,1.024895E-11,9.786122E-12,9.344196E-12, 8.922227E-12,8.519314E-12,8.134595E-12,7.767250E-12,7.416493E-12,7.081576E-12, 6.761784E-12,6.456433E-12,6.164870E-12,5.886475E-12,5.620651E-12,5.366831E-12, 5.124474E-12,4.893061E-12,4.672098E-12,4.461114E-12,4.259657E-12,4.067298E-12, 3.883625E-12,3.708247E-12,3.540788E-12,3.380892E-12,3.228216E-12,3.082435E-12, 2.943237E-12,2.810325E-12,2.683416E-12,2.562237E-12,2.446530E-12,2.336049E-12, 2.230557E-12,2.129828E-12,2.033649E-12,1.941812E-12,1.854123E-12,1.770394E-12, 1.690446E-12,1.614108E-12,1.541218E-12,1.471619E-12,1.405163E-12,1.341708E-12, 1.281118E-12,1.223265E-12,1.168025E-12,1.115278E-12,1.064914E-12,1.016824E-12, 9.709062E-13,9.270617E-13,8.851971E-13,8.452230E-13,8.070541E-13,7.706088E-13, 7.358093E-13,7.025814E-13,6.708539E-13,6.405592E-13,6.116326E-13,5.840123E-13, 5.576392E-13,5.324571E-13,5.084122E-13,4.854531E-13,4.635308E-13,4.425985E-13], [1.747062E-05,1.699289E-05,1.652822E-05,1.607625E-05,1.563665E-05,1.520906E-05, 1.479317E-05,3.185927E-05,3.098808E-05,3.014071E-05,2.931651E-05,2.851485E-05, 2.773511E-05,2.697669E-05,4.370963E-05,4.251439E-05,4.135183E-05,4.022106E-05, 3.912122E-05,3.805144E-05,3.701093E-05,5.346948E-05,5.200736E-05,5.058521E-05, 4.920196E-05,4.785653E-05,4.654789E-05,4.527503E-05,6.150761E-05,5.982568E-05, 5.818974E-05,5.659854E-05,5.505085E-05,5.354548E-05,5.208128E-05,5.065711E-05, 4.927189E-05,4.792455E-05,4.661405E-05,4.533939E-05,4.409958E-05,4.289367E-05, 4.172074E-05,4.057989E-05,3.947023E-05,3.839091E-05,3.734111E-05,3.632002E-05, 3.532684E-05,3.436083E-05,3.342123E-05,3.250733E-05,3.161841E-05,3.075380E-05, 2.991284E-05,2.909487E-05,2.829927E-05,2.752543E-05,2.677274E-05,2.604064E-05, 2.532856E-05,2.463595E-05,2.396227E-05,2.330703E-05,2.266969E-05,2.204979E-05, 2.144684E-05,2.086037E-05,2.028994E-05,1.973511E-05,1.919546E-05,1.867056E-05, 1.816001E-05,1.766342E-05,1.718041E-05,1.671062E-05,1.625366E-05,1.580921E-05, 1.537690E-05,1.495642E-05,1.454744E-05,1.414964E-05,1.376271E-05,1.338637E-05, 1.302032E-05,1.266428E-05,1.231797E-05,1.198114E-05,1.165351E-05,1.133485E-05, 1.102489E-05,1.072342E-05,1.043019E-05,1.014497E-05,9.867557E-06,9.597728E-06, 9.335278E-06,9.080004E-06,8.831711E-06,8.590207E-06,8.355308E-06,8.126831E-06, 7.904603E-06,7.688451E-06,7.478210E-06,7.273718E-06,7.074818E-06,6.881356E-06, 6.693185E-06,6.510160E-06,6.332139E-06,6.158987E-06,5.990569E-06,5.826756E-06, 5.667423E-06,5.512447E-06,5.361709E-06,5.215093E-06,5.072486E-06,4.933779E-06, 4.798864E-06,4.667639E-06,4.540002E-06,4.415856E-06,4.295104E-06,4.177654E-06, 4.063416E-06,3.952301E-06,3.844226E-06,3.739105E-06,3.636859E-06,3.537409E-06, 3.440678E-06,3.346593E-06,3.255080E-06,3.166070E-06,3.079493E-06,2.995284E-06, 2.913378E-06,2.833712E-06,2.756224E-06,2.680855E-06,2.607546E-06,2.536243E-06, 2.466889E-06,2.399432E-06,2.333819E-06,2.270001E-06,2.207928E-06,2.147552E-06, 2.088827E-06,2.031708E-06,1.976151E-06,1.922113E-06,1.869552E-06,1.818429E-06, 1.768704E-06,1.720339E-06,1.673296E-06,1.627540E-06,1.583035E-06,1.539747E-06, 1.497642E-06,1.456689E-06,1.416856E-06,1.378112E-06,1.340427E-06,1.303773E-06, 1.268121E-06,1.233445E-06,1.199716E-06,1.166910E-06,1.135001E-06,1.103964E-06, 1.073776E-06,1.044413E-06,1.015854E-06,9.880754E-07,9.610564E-07,9.347762E-07, 9.092147E-07,8.843522E-07,8.601696E-07,8.366482E-07,8.137700E-07,7.915174E-07, 7.698733E-07,7.488211E-07,7.283445E-07,7.084279E-07,6.890559E-07,6.702136E-07, 6.518866E-07,6.340607E-07,6.167223E-07,5.998580E-07,5.834549E-07,5.675003E-07, 5.519819E-07,5.368880E-07,5.222067E-07,5.079270E-07,4.940377E-07,4.805282E-07, 4.673881E-07,4.546074E-07,4.421761E-07,4.300848E-07,4.183241E-07,4.068850E-07, 3.957587E-07,3.849367E-07,3.744105E-07,3.641723E-07,3.542140E-07,3.445280E-07, 3.351068E-07,3.259433E-07,3.170304E-07,3.083612E-07,2.999290E-07,2.917274E-07, 2.837501E-07,2.759910E-07,2.684440E-07,2.611034E-07,2.539635E-07,2.470188E-07, 2.402641E-07,2.336941E-07,2.273037E-07,2.210881E-07,2.150424E-07,2.091620E-07, 2.034425E-07,1.978794E-07,1.924683E-07,1.872053E-07,1.820861E-07,1.771070E-07, 1.722640E-07,1.675534E-07,1.629717E-07,1.585152E-07,1.541806E-07,1.499645E-07, 1.458637E-07,1.418751E-07,1.379955E-07,1.342220E-07,1.305517E-07,1.269817E-07, 1.235094E-07,1.201320E-07,1.168470E-07,1.136518E-07,1.105440E-07,1.075212E-07, 1.045810E-07,1.017212E-07,9.893968E-08,9.623416E-08,9.360264E-08,9.104307E-08, 8.855349E-08,8.613199E-08,8.377671E-08,8.148583E-08,7.925759E-08,7.709029E-08, 7.498225E-08,7.293186E-08,7.093753E-08,6.899774E-08,6.711100E-08,6.527584E-08, 6.349087E-08,6.175471E-08,6.006602E-08,5.842352E-08,5.682592E-08,5.527201E-08, 5.376060E-08,5.229051E-08,5.086062E-08,4.946984E-08,4.811708E-08,4.680132E-08, 4.552153E-08,4.427674E-08,4.306599E-08,4.188835E-08,4.074291E-08,3.962880E-08, 3.854515E-08,3.749113E-08,3.646593E-08,3.546877E-08,3.449887E-08,3.355550E-08, 3.263792E-08,3.174544E-08,3.087735E-08,3.003301E-08,2.921176E-08,2.841296E-08, 2.763601E-08,2.688030E-08,2.614526E-08,2.543031E-08,2.473492E-08,2.405854E-08, 2.340066E-08,2.276077E-08,2.213837E-08,2.153300E-08,2.094418E-08,2.037146E-08, 1.981440E-08,1.927257E-08,1.874556E-08,1.823296E-08,1.773438E-08,1.724944E-08, 1.677775E-08,1.631896E-08,1.587272E-08,1.543868E-08,1.501651E-08,1.460588E-08, 1.420648E-08,1.381800E-08,1.344015E-08,1.307263E-08,1.271516E-08,1.236746E-08, 1.202927E-08,1.170033E-08,1.138038E-08,1.106919E-08,1.076650E-08,1.047209E-08, 1.018573E-08,9.907199E-09,9.636286E-09,9.372782E-09,9.116482E-09,8.867192E-09, 8.624718E-09,8.388874E-09,8.159480E-09,7.936359E-09,7.719339E-09,7.508253E-09, 7.302939E-09,7.103240E-09,6.909002E-09,6.720075E-09,6.536314E-09,6.357578E-09, 6.183730E-09,6.014635E-09,5.850165E-09,5.690192E-09,5.534593E-09,5.383249E-09], [1.133578E-07,1.111350E-07,1.089557E-07,1.068191E-07,1.047245E-07,1.026709E-07, 1.006576E-07,9.868374E-08,9.674861E-08,9.485143E-08,9.299145E-08,9.116795E-08, 8.938020E-08,8.762751E-08,8.590918E-08,8.422456E-08,8.257297E-08,8.095376E-08, 7.936631E-08,7.780998E-08,7.628418E-08,7.478829E-08,7.332174E-08,7.188394E-08, 7.047434E-08,6.909238E-08,6.773752E-08,6.640923E-08,6.510699E-08,6.383028E-08, 6.257861E-08,6.135148E-08,6.014841E-08,5.896894E-08,5.781259E-08,5.667892E-08, 5.556749E-08,5.447784E-08,5.340956E-08,5.236223E-08,5.133544E-08,5.032879E-08, 4.934187E-08,4.837431E-08,4.742571E-08,4.649573E-08,4.558397E-08,4.469010E-08, 4.381375E-08,4.295459E-08,4.211228E-08,4.128648E-08,4.047688E-08,3.968315E-08, 3.890499E-08,3.814209E-08,3.739414E-08,3.666087E-08,3.594197E-08,3.523717E-08, 3.454619E-08,3.386876E-08,3.320462E-08,3.255349E-08,3.191514E-08,3.128930E-08, 3.067574E-08,3.007421E-08,2.948447E-08,2.890630E-08,2.833946E-08,2.778374E-08, 2.723892E-08,2.670478E-08,2.618112E-08,2.566772E-08,2.516439E-08,2.467093E-08, 2.418715E-08,2.371286E-08,2.324786E-08,2.279199E-08,2.234505E-08,2.190688E-08, 2.147730E-08,2.105614E-08,2.064324E-08,2.023844E-08,1.984158E-08,1.945250E-08, 1.907104E-08,1.869707E-08,1.833043E-08,1.797099E-08,1.761859E-08,1.727310E-08, 1.693438E-08,1.660231E-08,1.627675E-08,1.595757E-08,1.564465E-08,1.533787E-08, 1.503710E-08,1.474223E-08,1.445315E-08,1.416973E-08,1.389187E-08,1.361946E-08, 1.335239E-08,1.309056E-08,1.283386E-08,1.258220E-08,1.233547E-08,1.209358E-08, 1.185643E-08,1.162393E-08,1.139599E-08,1.117252E-08,1.095344E-08,1.073865E-08, 1.052807E-08,1.032162E-08,1.011922E-08,9.920788E-09,9.726248E-09,9.535522E-09, 9.348536E-09,9.165217E-09,8.985493E-09,8.809293E-09,8.636548E-09,8.467190E-09, 8.301154E-09,8.138373E-09,7.978785E-09,7.822326E-09,7.668935E-09,7.518552E-09, 7.371117E-09,7.226574E-09,7.084866E-09,6.945936E-09,6.809730E-09,6.676195E-09, 6.545279E-09,6.416930E-09,6.291098E-09,6.167734E-09,6.046788E-09,5.928214E-09, 5.811966E-09,5.697997E-09,5.586262E-09,5.476719E-09,5.369324E-09,5.264035E-09, 5.160810E-09,5.059610E-09,4.960394E-09,4.863124E-09,4.767761E-09,4.674268E-09, 4.582609E-09,4.492746E-09,4.404646E-09,4.318274E-09,4.233595E-09,4.150577E-09, 4.069187E-09,3.989392E-09,3.911163E-09,3.834467E-09,3.759276E-09,3.685559E-09, 3.613287E-09,3.542433E-09,3.472968E-09,3.404865E-09,3.338098E-09,3.272640E-09, 3.208465E-09,3.145549E-09,3.083867E-09,3.023394E-09,2.964107E-09,2.905983E-09, 2.848998E-09,2.793131E-09,2.738360E-09,2.684662E-09,2.632017E-09,2.580405E-09, 2.529805E-09,2.480197E-09,2.431562E-09,2.383880E-09,2.337134E-09,2.291304E-09, 2.246373E-09,2.202323E-09,2.159137E-09,2.116798E-09,2.075288E-09,2.034593E-09, 1.994696E-09,1.955581E-09,1.917234E-09,1.879638E-09,1.842779E-09,1.806644E-09, 1.771216E-09,1.736484E-09,1.702433E-09,1.669049E-09,1.636320E-09,1.604233E-09, 1.572775E-09,1.541933E-09,1.511697E-09,1.482054E-09,1.452991E-09,1.424499E-09, 1.396566E-09,1.369180E-09,1.342331E-09,1.316009E-09,1.290203E-09,1.264903E-09, 1.240099E-09,1.215781E-09,1.191940E-09,1.168567E-09,1.145652E-09,1.123187E-09, 1.101162E-09,1.079568E-09,1.058399E-09,1.037644E-09,1.017297E-09,9.973481E-10, 9.777907E-10,9.586168E-10,9.398189E-10,9.213897E-10,9.033218E-10,8.856082E-10, 8.682420E-10,8.512163E-10,8.345244E-10,8.181599E-10,8.021163E-10,7.863873E-10, 7.709667E-10,7.558485E-10,7.410268E-10,7.264957E-10,7.122496E-10,6.982828E-10, 6.845899E-10,6.711655E-10,6.580044E-10,6.451013E-10,6.324513E-10,6.200493E-10, 6.078905E-10,5.959701E-10,5.842835E-10,5.728261E-10,5.615933E-10,5.505808E-10, 5.397842E-10,5.291994E-10,5.188221E-10,5.086483E-10,4.986741E-10,4.888954E-10, 4.793084E-10,4.699095E-10,4.606948E-10,4.516609E-10,4.428041E-10,4.341210E-10, 4.256081E-10,4.172622E-10,4.090800E-10,4.010581E-10,3.931936E-10,3.854834E-10, 3.779243E-10,3.705134E-10,3.632479E-10,3.561248E-10,3.491414E-10,3.422949E-10, 3.355828E-10,3.290022E-10,3.225506E-10,3.162256E-10,3.100246E-10,3.039452E-10, 2.979851E-10,2.921418E-10,2.864130E-10,2.807966E-10,2.752904E-10,2.698921E-10, 2.645997E-10,2.594111E-10,2.543242E-10,2.493370E-10,2.444477E-10,2.396542E-10, 2.349547E-10,2.303474E-10,2.258304E-10,2.214020E-10,2.170605E-10,2.128041E-10, 2.086311E-10,2.045400E-10,2.005291E-10,1.965968E-10,1.927417E-10,1.889621E-10, 1.852567E-10,1.816239E-10,1.780624E-10,1.745707E-10,1.711475E-10,1.677914E-10, 1.645011E-10,1.612753E-10,1.581128E-10,1.550123E-10,1.519726E-10,1.489925E-10, 1.460709E-10,1.432065E-10,1.403983E-10,1.376452E-10,1.349461E-10,1.322999E-10, 1.297055E-10,1.271621E-10,1.246685E-10,1.222238E-10,1.198271E-10,1.174774E-10, 1.151737E-10,1.129152E-10,1.107010E-10,1.085302E-10,1.064020E-10,1.043156E-10, 1.022700E-10,1.002645E-10,9.829841E-11,9.637084E-11,9.448107E-11,9.262835E-11, 9.081196E-11,8.903120E-11,8.728535E-11,8.557374E-11,8.389569E-11,8.225054E-11]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.hectare_to_acre = 2.47105 ted_empty.gms_to_mg = 1000. ted_empty.lbs_to_gms = 453.592 ted_empty.crop_hgt = 1. # m ted_empty.hectare_area = 10000. # m2 ted_empty.m3_to_liters = 1000. ted_empty.mass_plant = 25000. # kg/hectare ted_empty.density_plant = 0.77 # kg/L # internally calculated variable (hlc in atm-m3/mol are 2.0e-7, 1.0e-5, 3.5e-6) ted_empty.log_unitless_hlc = pd.Series([-5.087265, -3.388295, -3.844227], dtype='float') # input variables that change per simulation ted_empty.log_kow = pd.Series([2.75, 4., 6.], dtype='float') ted_empty.foliar_diss_hlife = pd.Series([15., 25., 35.]) ted_empty.app_rate_min = pd.Series([0.18, 0.5, 1.25]) # lbs a.i./acre # application scenarios generated from 'daily_app_flag' tests and reused here daily_flag = pd.Series([[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]], dtype='bool') for i in range(3): result[i] = ted_empty.daily_canopy_air_timeseries(i, ted_empty.app_rate_min[i], daily_flag[i]) # tolerance set to 1e-3 instead of 1e-4 because precision in specifying constants between this code and the OPP TED spreadsheet npt.assert_allclose(result[i],expected_results[i],rtol=1e-3, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_max_drift_distance(self): """ :description sets the maximum distance from applicaiton source area for which spray drift calculations are calculated :param app_method; application method (aerial/ground/airblast) :param max_spray_drift_dist: maximum distance from applicaiton source area for which spray drift calculations are calculated (feet) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([2600., 1000., 1000.], dtype='float') result = pd.Series([], dtype='float') try: ted_empty.num_simulations = 3 # input variable that change per simulation ted_empty.app_method_min = pd.Series(['aerial', 'ground', 'airblast'], dtype='object') for i in range(ted_empty.num_simulations): result[i] = ted_empty.set_max_drift_distance(ted_empty.app_method_min[i]) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_max_respire_frac(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_method; application method (aerial/ground/airblast) :param drop_size; droplet spectrum for application (see list below for aerial/ground - 'NA' if airblast) :param max_respire_frac; volumetric fraction of droplet spectrum not exceeding the upper size liit of respired particles for birds :NOTE this represents specification from OPP TED Excel 'inputs' worksheet columns H & I rows 14 - 16 these values are used in the 'min/max rate doses' worksheet column S (while referenced here as the MAX of three values specified in the 'inputs' worksheet (one per application method) the MAX will always be the value associated with the application method specified for the simulation (i.e., the value specified below) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([0.28, 0.067, 0.028, 0.02, 0.28, 0.067, 0.28], dtype='float') result = pd.Series([], dtype='float') try: ted_empty.num_simulations = 7 # input variable that change per simulation ted_empty.app_method_min = pd.Series(['aerial', 'aerial','aerial','aerial', 'ground', 'ground', 'airblast'], dtype='object') ted_empty.droplet_spec_min = pd.Series(['very_fine_to_fine', 'fine_to_medium','medium_to_coarse','coarse_to_very_coarse', 'very_fine_to_fine', 'fine_to_medium-coarse', ' '], dtype='object') for i in range(ted_empty.num_simulations): result[i] = ted_empty.set_max_respire_frac(ted_empty.app_method_min[i], ted_empty.droplet_spec_min[i]) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_plant_risk_distance(self): """ :description calculates the distance from the source area that plant toxicity thresholds occur :NOTE represents columns C & D rows 32 to 51 in OPP TED Excel spreadsheet 'Plants' worksheet (only calculated if health risk value is present; if ratio of health risk value to applicatoin rate is greater than 1.0 then distance is set to 0.0 (i.e. at source area edge) if distance is greater than max spray drift distance then distance is set to max spray drift distance values for risk distances are not stored across simulations :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series(['nan', 0.0, 0.229889], dtype='float') result = pd.Series([], dtype='float') try: ted_empty.num_simulations = 3 # input variable that change per simulation health_to_app_ratio = pd.Series(['nan', 2.0, 0.5], dtype='float') param_a = pd.Series([0.0292, 0.1913, 5.5513], dtype='float') param_b = pd.Series([0.822, 1.2366, 0.8523], dtype='float') param_c = pd.Series([0.6539, 1.0552, 1.0079], dtype='float') ted_empty.max_distance_from_source =
pd.Series([1000., 2600., 1000.], dtype='float')
pandas.Series
import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_timedelta64_dtype from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import CategoricalIndex, Series, Timedelta, Timestamp import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, IntervalArray, PandasArray, PeriodArray, SparseArray, TimedeltaArray, ) class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, index_or_series, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_iterable_object_and_category( self, index_or_series, method, dtype, rdtype, obj ): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_map(self, index_or_series, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Series(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [
Timestamp("2011-01-01", tz="US/Eastern")
pandas.Timestamp
import pandas as pd import pytest from pandas.testing import assert_series_equal from long_duration_mdk import ( # calc_change_in_reserve, calc_benefit_reserve, calc_continuance, calc_discount, calc_interpolation, calc_pv, calc_pvfnb, ) def test_calc_continuance(): mortality_rate = pd.Series([0.01, 0.015, 0.02]) lapse_rate = pd.Series([0.2, 0.1, 0.05]) lives_ed = calc_continuance(mortality_rate, lapse_rate) assert_series_equal(lives_ed, ((1 - mortality_rate) * (1 - lapse_rate)).cumprod()) lives_bd = lives_ed.shift(1, fill_value=1) lives_md = calc_continuance(mortality_rate / 2, starting_duration=lives_bd) assert_series_equal(lives_md, lives_bd * (1 - mortality_rate / 2)) def test_calc_discount(): interest_rate = pd.Series([0.03, 0.04, 0.05]) v_ed = calc_discount(interest_rate) assert_series_equal(v_ed, pd.Series([0.970874, 0.933532, 0.889079])) v_md = calc_discount(interest_rate, t_adj=0.5) assert_series_equal(v_md, pd.Series([0.985329, 0.952020, 0.911034])) v_bd = calc_discount(interest_rate, t_adj=0) assert_series_equal(v_bd, pd.Series([1, 0.970874, 0.933532])) def test_calc_interpolation(): # test nonzero values val_0 = pd.Series([1, 2, 3]) val_1 = pd.Series([2, 3, 4]) wt_0 = pd.Series([0.5, 0.5, 0.5]) linear = calc_interpolation(val_0, val_1, wt_0, method="linear") assert_series_equal(linear, pd.Series([1.5, 2.5, 3.5])) log = calc_interpolation(val_0, val_1, wt_0, method="log-linear") assert_series_equal(log, pd.Series([1.414214, 2.449490, 3.464102])) # test one zero value val_0 = pd.Series([0, 1, 2]) val_1 = pd.Series([1, 2, 3]) wt_0 = pd.Series([0.5, 0.5, 0.5]) linear = calc_interpolation(val_0, val_1, wt_0, method="linear") assert_series_equal(linear, pd.Series([0.5, 1.5, 2.5])) log = calc_interpolation(val_0, val_1, wt_0, method="log-linear") assert_series_equal(log, pd.Series([0.414214, 1.449490, 2.464102])) # test two zero values val_0 = pd.Series([0, 0, 1]) val_1 = pd.Series([0, 1, 2]) wt_0 = pd.Series([0.5, 0.5, 0.5]) linear = calc_interpolation(val_0, val_1, wt_0, method="linear") assert_series_equal(linear, pd.Series([0, 0.5, 1.5])) log = calc_interpolation(val_0, val_1, wt_0, method="log-linear") assert_series_equal(log, pd.Series([0, 0.414214, 1.449490])) # test value less than zero val_0 =
pd.Series([-1, 0, 1])
pandas.Series
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False), Series({'A': 1, 'B': 3, 'C': 3})) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal(df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series([1.0], index=['A']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_excludeds_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series() tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize( "meth", ['sem', 'var', 'std']) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a number in str format df1.loc[0, 'foo'] = '100' df2 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a non-number str df2.loc[0, 'foo'] = 'a' result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs('bar') tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == 'bar' @pytest.mark.parametrize("dropna, expected", [ (True, {'A': [12], 'B': [10.0], 'C': [1.0], 'D': ['a'], 'E': Categorical(['a'], categories=['a']), 'F': to_datetime(['2000-1-2']), 'G': to_timedelta(['1 days'])}), (False, {'A': [12], 'B': [10.0], 'C': [np.nan], 'D': np.array([np.nan], dtype=object), 'E':
Categorical([np.nan], categories=['a'])
pandas.Categorical
# -*- coding: utf-8 -*- """toxic.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1hd60tjRhTRN0wo5TbhlP9fzp8xnoEU43 """ from google.colab import drive drive.mount('/content/drive') import pandas as pd, numpy as np from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer train =
pd.read_csv('/content/drive/My Drive/datasets/hatekeyword.csv')
pandas.read_csv
""" @author: ravi """ import yfinance from pandas import DataFrame, read_csv from stockkit.general import config, Methods from os import path, mkdir, makedirs class DataSource(object): def __init__(self, name): self.name = name def get_historic_prices(self, ticker, period): pass def _write_to_file(self): pass def _read_from_file(self): pass class GoogleFinance(DataSource): def __init__(self): super().__init__("google") def get_historic_prices(self, ticker, period): pass class YahooFinance(DataSource): def __init__(self): super().__init__("yahoo") self.downloaded_data =
DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # E N E R G Y S Y S T E M # ============================================================================== """ * File name: energySystem.py * Last edited: 2020-06-14 * Created by: <NAME> (TU Berlin) The EnergySystem class is aristopy's main model container. An instance of the EnergySystem class holds the modeled components, the overall pyomo model and the results of the optimization. The EnergySystem class provides features to built and solve the optimization problem, manipulate the associated component models, and process the results of the optimization. The implemented class methods are: * :meth:`cluster <aristopy.energySystem.EnergySystem.cluster>`: Perform clustering of the implemented time series data * :meth:`declare_model <aristopy.energySystem.EnergySystem.declare_model>`: Declare the pyomo optimization model * :meth:`optimize <aristopy.energySystem.EnergySystem.optimize>`: Call the main optimization routine * :meth:`relax_integrality <aristopy.energySystem.EnergySystem.relax_integrality>`: Relax the integrality of binary variables * :meth:`edit_component_variables <aristopy.energySystem.EnergySystem.edit_component_variables>`: Edit properties of component variables, e.g., change bounds or domains * :meth:`reset_component_variables <aristopy.energySystem.EnergySystem.reset_component_variables>`: Reset component variables after applying changes, e.g., relaxation * :meth:`export_component_configuration <aristopy.energySystem.EnergySystem.export_component_configuration>`, :meth:`import_component_configuration <aristopy.energySystem.EnergySystem.import_component_configuration>`,: Export and import configurations, i.e. component existences and capacities * :meth:`add_design_integer_cut_constraint <aristopy.energySystem.EnergySystem.add_design_integer_cut_constraint>`: Create integer-cut-constraints to exclude the current design solution from the solution space and enforce a new design in subsequent model runs * :meth:`add_variable <aristopy.energySystem.EnergySystem.add_variable>`, :meth:`add_constraint <aristopy.energySystem.EnergySystem.add_constraint>`, :meth:`add_objective_function_contribution <aristopy.energySystem.EnergySystem.add_objective_function_contribution>`: Add variables, constraints and objective function contributions directly to the main pyomo model, outside of the component declaration """ import os import time import json from collections import OrderedDict import pandas as pd import pyomo.environ as pyo import pyomo.network as network import pyomo.opt as opt from tsam.timeseriesaggregation import TimeSeriesAggregation from aristopy import utils, logger class EnergySystem: def __init__(self, number_of_time_steps=8760, hours_per_time_step=1, interest_rate=0.05, economic_lifetime=20, logging=None): """ Initialize an instance of the EnergySystem class. :param number_of_time_steps: Number of considered time steps for modeling the dispatch problem. With "hours_per_time_step" the share of the modeled year can be calculated. In this way, the cost of each time step is scaled and included in the objective function. |br| *Default: 8760* :type number_of_time_steps: int (>0) :param hours_per_time_step: Number of hours per modeled time step. |br| *Default: 1* :type hours_per_time_step: int (>0) :param interest_rate: Value to calculate the present value factor of a cost rate that occurs in the future. |br| *Default: 0.05 (corresponds to 5%)* :type interest_rate: float, int (>=0) :param economic_lifetime: Years to consider for calculating the net present value of an investment with annual incoming and outgoing cash flows. |br| *Default: 20* :type economic_lifetime: int (>0) :param logging: Specify the behavior of the logging by setting an own Logger class instance. User can decide where to log (file/console) and what to log (see description of aristopy "Logger"). |br| *Default: None (display minimal logging in the console)* :type logging: None or instance of aristopy's "Logger" class """ # Check user input: utils.check_energy_system_input( number_of_time_steps, hours_per_time_step, interest_rate, economic_lifetime, logging) # ********************************************************************** # Logging # ********************************************************************** # If no logger instance is passed to the "logging" keyword a default # logger is initialized. This will only display errors on the console. # Otherwise the passed logger instance is used and a logger for the # instance of the energy system class is initialized on "self.log" if logging is None: self.logger = logger.Logger(default_log_handler='stream', default_log_level='ERROR') else: self.logger = logging self.log = self.logger.get_logger(self) # ********************************************************************** # Time and clustering # ********************************************************************** self.number_of_time_steps = number_of_time_steps self.hours_per_time_step = hours_per_time_step self.number_of_years = number_of_time_steps * hours_per_time_step/8760.0 # Initialization: Overwritten if 'cluster' function is called self.periods = [0] self.periods_order = [0] self.period_occurrences = [1] self.number_of_time_steps_per_period = number_of_time_steps self.inter_period_time_steps = [0, 1] # one before & after only period # Flag 'is_data_clustered' indicates if the function 'cluster' has been # called before. The flag is reset to False if new components are added. self.is_data_clustered = False # 'typical_periods' is altered by function 'cluster' to an array ranging # from 0 to number_of_typical_periods-1. self.typical_periods = [0] # Stores the instance of the time series aggregation (if performed) self.tsa_instance = None # ********************************************************************** # Economics # ********************************************************************** # The economic criterion net present value represents the objective # function value to be maximized. Hence, a present value factor (pvf) is # required to calculate the present value of an annuity. The global # parameters interest rate and economic lifetime of the energy system # investment are used to this end. self.pvf = sum(1 / (1 + interest_rate)**n for n in range(1, economic_lifetime+1)) # ********************************************************************** # Optimization # ********************************************************************** # The parameter 'model' holds the pyomo ConcreteModel instance with # sets, parameters, variables, constraints and the objective function. # It is None during initialization and changed when the functions # 'optimize', or 'declare_model' are called. # Before the model instance is optimized, a solver instance is assigned # to the "solver" attribute. It also stores basic results of the run. # The "is_model_declared" flag indicates if the model instance is # already declared. # The "is_persistent_model_declared" flag states if the model has been # declared and assigned to a persistent solver instance. self.model = None self.run_info = {'solver_name': '', 'time_limit': None, 'optimization_specs': '', 'model_build_time': 0, 'model_solve_time': 0, 'upper_bound': 0, 'lower_bound': 0, 'sense': '', 'solver_status': '', 'termination_condition': ''} self.solver = None self.is_model_declared = False self.is_persistent_model_declared = False # ********************************************************************** # Components # ********************************************************************** # 'components' is a dictionary {component name: component object itself} # in which all components of the EnergySystem instance are stored. # The pyomo block model object (stored variables and constraints) of a # component instance can be accessed via its "block" attribute. self.components = {} # The 'component_connections' is a dict that stores the connections of # the component instances of the energy system model. It is formed from # the specified inlets and outlets and the connecting commodity: # {arc_name: [source instance, destination instance, commodity_name]} self.component_connections = {} # 'component_configuration' is a pandas Dataframe to store basic # information about the availability and capacity of the modelled # components. It is used to export / import the configuration results. self.component_configuration = pd.DataFrame( index=[utils.BI_EX, utils.BI_MODULE_EX, utils.CAP]) # DataFrames and dictionaries to store additionally added pyomo objects # (variables and constraints) and objective function contributions. self.added_constraints = pd.DataFrame(index=['has_time_set', 'alternative_set', 'rule']) self.added_variables = pd.DataFrame(index=['domain', 'has_time_set', 'alternative_set', 'init', 'ub', 'lb', 'pyomo']) self.added_objective_function_contributions = {} self.added_obj_contributions_results = {} self.log.info('Initializing EnergySystem completed!') def __repr__(self): # Define class format for printing and logging return '<EnSys: "id=%s..%s">' % (hex(id(self))[:3], hex(id(self))[-3:]) def add_variable(self, var): """ Function to manually add pyomo variables to the main pyomo model (ConcreteModel: model) of the energy system instance via instances of aristopy's Var class. The attributes of the variables are stored in DataFrame "added_variables" and later initialized during the call of function 'optimize', or 'declare_model'. :param var: Instances of aristopy's Var class (single or in list) """ self.log.info('Call of function "add_variable"') # Check the correctness of the user input var_list = utils.check_add_vars_input(var) for v in var_list: # Wrap everything up in a pandas Series series = pd.Series({'has_time_set': v.has_time_set, 'alternative_set': v.alternative_set, 'domain': v.domain, 'init': v.init, 'ub': v.ub, 'lb': v.lb, 'pyomo': None}) # Add the Series with new name to DataFrame "added_variables" self.added_variables[v.name] = series def add_constraint(self, rule, name=None, has_time_set=True, alternative_set=None): """ Function to manually add constraints to the main pyomo model after the instance has been created. The attributes are stored in the DataFrame 'added_constraints' and later initialized during the call of function 'optimize', or 'declare_model'. :param rule: A Python function that specifies the constraint with a equality or inequality expression. The rule must hold at least two arguments: First the energy system instance it is added to (in most cases: self), second the ConcreteModel of the instance (model). Additional arguments represent sets (e.g., time). :type rule: function :param name: Name (identifier) of the added constraint. The rule name is used if no name is specified. |br| *Default: None* :type name: str :param has_time_set: Is True if the time set of the energy system model is also a set of the added constraint. |br| *Default: True* :type has_time_set: bool :param alternative_set: Alternative constraint sets can be added here via iterable Python objects (e.g. list). |br| *Default: None* """ self.log.info('Call of function "add_constraint"') # Check the correctness of the user input utils.check_add_constraint(rule, name, has_time_set, alternative_set) # The rule name is used as constraint identifier if no name is given if name is None: name = rule.__name__ # Put everything together in a pandas Series series = pd.Series({'has_time_set': has_time_set, 'alternative_set': alternative_set, 'rule': rule}) # Add the Series to the DataFrame "added_constraints" self.added_constraints[name] = series def add_objective_function_contribution(self, rule, name=None): """ Additional objective function contributions can be added with this method. The method requires a Python function input that takes the main pyomo model (ConcreteModel: model) and returns a single (scalar) value. :param rule: A Python function returning a scalar value which is added to the objective function of the model instance. The rule must hold exactly two arguments: The energy system instance it is added to (in most cases: self), second the ConcreteModel of the instance (model). :type rule: function :param name: Name (identifier) of the added objective function contribution. The rule name is used if no name is specified. |br| *Default: None* :type name: str """ self.log.info('Call of function "add_objective_function_contribution"') # Check the input: assert isinstance(name, (str, type(None))), '"name" should be a string!' if not callable(rule): raise TypeError('The "rule" needs to hold a callable object!') if name is None: name = rule.__name__ # Add the rule and the name to a dictionary of the EnergySystem instance self.added_objective_function_contributions[name] = rule def cluster(self, number_of_typical_periods=4, number_of_time_steps_per_period=24, cluster_method='hierarchical', **kwargs): """ Method for the aggregation and clustering of time series data. First, the time series data and their respective weights are collected from all components and split into pieces with equal length of 'number_of_time_steps_per_period'. Subsequently, a clustering method is called and each period is assigned to one of 'number_of_typical_periods' typical periods. The clustered data is later stored in the components. The package `tsam <https://github.com/FZJ-IEK3-VSA/tsam>`_ (time series aggregation module) is used to perform the clustering. The clustering algorithm can be controlled by adding required keyword arguments (using 'kwargs' parameter). To learn more about tsam and possible keyword arguments see the package `documentation <https://tsam.readthedocs.io/en/latest/index.html>`_. :param number_of_typical_periods: Number of typical periods to be clustered. |br| *Default: 4* :type number_of_typical_periods: int (>0) :param number_of_time_steps_per_period: Number of time steps per period |br| *Default: 24* :type number_of_time_steps_per_period: int (>0) :param cluster_method: Name of the applied clustering method (e.g., 'k_means'). See the tsam documentation for all possible options. |br| *Default: 'hierarchical'* :type cluster_method: str """ # Check input arguments utils.check_cluster_input(number_of_typical_periods, number_of_time_steps_per_period, self.number_of_time_steps) time_start = time.time() self.log.info('Start clustering with %s typical periods and %s time ' 'steps per period.' % (number_of_typical_periods, number_of_time_steps_per_period)) # Get time series data and their respective weights from all components # and collect them in two dictionaries time_series_data, time_series_weights = {}, {} for comp in self.components.values(): if comp.number_in_group == 1: # Add only once per group data, weights = comp.get_time_series_data_for_aggregation() time_series_data.update(data) time_series_weights.update(weights) # Convert data dictionary to pandas DataFrame time_series_data = pd.DataFrame.from_dict(time_series_data) # Specific index is not relevant, but tsam requires a uniform index time_series_data.index = \ pd.date_range('2050-01-01 00:30:00', periods=self.number_of_time_steps, freq=(str(self.hours_per_time_step) + 'H'), tz='Europe/Berlin') # Reindex axis for reproducibility of TimeSeriesAggregation results time_series_data = time_series_data.reindex( sorted(time_series_data.columns), axis=1) # Set up instance of tsam's TimeSeriesAggregation class and cluster data self.tsa_instance = TimeSeriesAggregation( timeSeries=time_series_data, noTypicalPeriods=number_of_typical_periods, hoursPerPeriod= number_of_time_steps_per_period * self.hours_per_time_step, clusterMethod=cluster_method, weightDict=time_series_weights, **kwargs) # Store clustered time series data in the components data =
pd.DataFrame.from_dict(self.tsa_instance.clusterPeriodDict)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- import pandas as pd import sqlalchemy as sql ''' @author:<NAME> @version:0.0.1 ''' """ Copyright © 2020 <copyright holders> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # 数据输出类,输出各形式的数据,写入数据到文件系统或消息队列或数据库中 class output(object): def to_csv(self,df,path,encoding): try: df.to_csv(path,encoding=encoding) print("successed save file to %s",path) except: print("save file error") def to_mysql(self,df,tablename,databasename,host,port,user,password): try: con = self.__get_con(host,user,password,port,databasename) df.to_sql(name=tablename,con=con) print('save to mysql successed') except: print('save to mysql has error') def to_json(self,df): try: res = df.to_json() return res except: print('to json error') df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Project : PyCoA Date : april 2020 - march 2021 Authors : <NAME>, <NAME>, <NAME> Copyright ©pycoa.fr License: See joint LICENSE file Module : coa.geo About : ------- Geo classes within the PyCoA framework. GeoManager class provides translations between naming normalisations of countries. It's based on the pycountry module. GeoInfo class allow to add new fields to a pandas DataFrame about statistical information for countries. GeoRegion class helps returning list of countries in a specified region GeoCountry manages information for a single country. """ import inspect # for debug purpose import warnings import pycountry as pc import pycountry_convert as pcc import pandas as pd import geopandas as gpd import shapely.geometry as sg import shapely.affinity as sa import shapely.ops as so import bs4 from coa.tools import verb,kwargs_test,get_local_from_url,dotdict,tostdstring from coa.error import * # --------------------------------------------------------------------- # --- GeoManager class ------------------------------------------------ # --------------------------------------------------------------------- class GeoManager(): """GeoManager class definition. No inheritance from any other class. It should raise only CoaError and derived exceptions in case of errors (see pycoa.error) """ _list_standard=['iso2', # Iso2 standard, default 'iso3', # Iso3 standard 'name', # Standard name ( != Official, caution ) 'num'] # Numeric standard _list_db=[None,'jhu','worldometers','owid','opencovid19national','spfnational'] # first is default _list_output=['list','dict','pandas'] # first is default _standard = None # currently used normalisation standard def __init__(self,standard=_list_standard[0]): """ __init__ member function, with default definition of the used standard. To get the current default standard, see get_list_standard()[0]. """ verb("Init of GeoManager() from "+str(inspect.stack()[1])) self.set_standard(standard) self._gr=GeoRegion() def get_GeoRegion(self): """ return the GeoRegion local instance """ return self._gr def get_region_list(self): """ return the list of region via the GeoRegion instance """ return self._gr.get_region_list() def get_list_standard(self): """ return the list of supported standard name of countries. First one is default for the class """ return self._list_standard def get_list_output(self): """ return supported list of output type. First one is default for the class """ return self._list_output def get_list_db(self): """ return supported list of database name for translation of country names to standard. """ return self._list_db def get_standard(self): """ return current standard use within the GeoManager class """ return self._standard def set_standard(self,standard): """ set the working standard type within the GeoManager class. The standard should meet the get_list_standard() requirement """ if not isinstance(standard,str): raise CoaTypeError('GeoManager error, the standard argument' ' must be a string') if standard not in self.get_list_standard(): raise CoaKeyError('GeoManager.set_standard error, "'+\ standard+' not managed. Please see '\ 'get_list_standard() function') self._standard=standard return self.get_standard() def to_standard(self, w, **kwargs): """Given a list of string of locations (countries), returns a normalised list according to the used standard (defined via the setStandard() or __init__ function. Current default is iso2. Arguments ----------------- first arg -- w, list of string of locations (or single string) to convert to standard one output -- 'list' (default), 'dict' or 'pandas' db -- database name to help conversion. Default : None, meaning best effort to convert. Known database : jhu, wordometer... See get_list_db() for full list of known db for standardization interpret_region -- Boolean, default=False. If yes, the output should be only 'list'. """ kwargs_test(kwargs,['output','db','interpret_region'],'Bad args used in the to_standard() function.') output=kwargs.get('output',self.get_list_output()[0]) if output not in self.get_list_output(): raise CoaKeyError('Incorrect output type. See get_list_output()' ' or help.') db=kwargs.get('db',self.get_list_db()[0]) if db not in self.get_list_db(): raise CoaDbError('Unknown database "'+db+'" for translation to ' 'standardized location names. See get_list_db() or help.') interpret_region=kwargs.get('interpret_region',False) if not isinstance(interpret_region,bool): raise CoaTypeError('The interpret_region argument is a boolean, ' 'not a '+str(type(interpret_region))) if interpret_region==True and output!='list': raise CoaKeyError('The interpret_region True argument is incompatible ' 'with non list output option.') if isinstance(w,str): w=[w] elif not isinstance(w,list): raise CoaTypeError('Waiting for str, list of str or pandas' 'as input of get_standard function member of GeoManager') w=[v.title() for v in w] # capitalize first letter of each name w0=w.copy() if db: w=self.first_db_translation(w,db) n=[] # will contain standardized name of countries (if possible) #for c in w: while len(w)>0: c=w.pop(0) if type(c)==int: c=str(c) elif type(c)!=str: raise CoaTypeError('Locations should be given as ' 'strings or integers only') if (c in self._gr.get_region_list()) and interpret_region == True: w=self._gr.get_countries_from_region(c)+w else: if len(c)==0: n1='' #None else: try: n0=pc.countries.lookup(c) except LookupError: try: if c.startswith('Owid_'): nf=['owid_*'] n1='OWID_*' else: nf=pc.countries.search_fuzzy(c) if len(nf)>1: warnings.warn('Caution. More than one country match the key "'+\ c+'" : '+str([ (k.name+', ') for k in nf])+\ ', using first one.\n') n0=nf[0] except LookupError: raise CoaLookupError('No country match the key "'+c+'". Error.') except Exception as e1: raise CoaNotManagedError('Not managed error '+type(e1)) except Exception as e2: raise CoaNotManagedError('Not managed error'+type(e1)) if n0 != 'owid_*': if self._standard=='iso2': n1=n0.alpha_2 elif self._standard=='iso3': n1=n0.alpha_3 elif self._standard=='name': n1=n0.name elif self._standard=='num': n1=n0.numeric else: raise CoaKeyError('Current standard is '+self._standard+\ ' which is not managed. Error.') n.append(n1) if output=='list': return n elif output=='dict': return dict(zip(w0, n)) elif output=='pandas': return pd.DataFrame({'inputname':w0,self._standard:n}) else: return None # should not be here def first_db_translation(self,w,db): """ This function helps to translate from country name to standard for specific databases. It's the first step before final translation. One can easily add some database support adding some new rules for specific databases """ translation_dict={} # Caution : keys need to be in title mode, i.e. first letter capitalized if db=='jhu': translation_dict.update({\ "Congo (Brazzaville)":"Republic of the Congo",\ "Congo (Kinshasa)":"COD",\ "Korea, South":"KOR",\ "Taiwan*":"Taiwan",\ "Laos":"LAO",\ "West Bank And Gaza":"PSE",\ "Burma":"Myanmar",\ "Iran":"IRN",\ "<NAME>":"",\ "Ms Zaandam":"",\ "Summer Olympics 2020":"",\ "Micronesia":"FSM",\ }) # last two are names of boats elif db=='worldometers': translation_dict.update({\ "Dr Congo":"COD",\ "Congo":"COG",\ "Iran":"IRN",\ "South Korea":"KOR",\ "North Korea":"PRK",\ "Czech Republic (Czechia)":"CZE",\ "Laos":"LAO",\ "Sao Tome & Principe":"STP",\ "Channel Islands":"JEY",\ "St. Vincent & Grenadines":"VCT",\ "U.S. Virgin Islands":"VIR",\ "Saint Kitts & Nevis":"KNA",\ "Faeroe Islands":"FRO",\ "Caribbean Netherlands":"BES",\ "Wallis & Futuna":"WLF",\ "Saint Pierre & Miquelon":"SPM",\ "Sint Maarten":"SXM",\ } ) elif db=='owid': translation_dict.update({\ "Bonaire Sint Eustatius And Saba":"BES",\ "Cape Verde":"CPV",\ "Democratic Republic Of Congo":"COD",\ "Faeroe Islands":"FRO",\ "Laos":"LAO",\ "South Korea":"KOR",\ "Swaziland":"SWZ",\ "United States Virgin Islands":"VIR",\ "Iran":"IRN",\ "Micronesia (Country)":"FSM",\ "Northern Cyprus":"CYP",\ "Curacao":"CUW",\ "Faeroe Islands":"FRO",\ "Vatican":"VAT" }) return [translation_dict.get(k,k) for k in w] # --------------------------------------------------------------------- # --- GeoInfo class --------------------------------------------------- # --------------------------------------------------------------------- class GeoInfo(): """GeoInfo class definition. No inheritance from any other class. It should raise only CoaError and derived exceptions in case of errors (see pycoa.error) """ _list_field={\ 'continent_code':'pycountry_convert (https://pypi.org/project/pycountry-convert/)',\ 'continent_name':'pycountry_convert (https://pypi.org/project/pycountry-convert/)' ,\ 'country_name':'pycountry_convert (https://pypi.org/project/pycountry-convert/)' ,\ 'population':'https://www.worldometers.info/world-population/population-by-country/',\ 'area':'https://www.worldometers.info/world-population/population-by-country/',\ 'fertility':'https://www.worldometers.info/world-population/population-by-country/',\ 'median_age':'https://www.worldometers.info/world-population/population-by-country/',\ 'urban_rate':'https://www.worldometers.info/world-population/population-by-country/',\ #'geometry':'https://github.com/johan/world.geo.json/',\ 'geometry':'http://thematicmapping.org/downloads/world_borders.php and https://github.com/johan/world.geo.json/',\ 'region_code_list':'https://en.wikipedia.org/w/index.php?title=List_of_countries_by_United_Nations_geoscheme&oldid=1008989486',\ #https://en.wikipedia.org/wiki/List_of_countries_by_United_Nations_geoscheme',\ 'region_name_list':'https://en.wikipedia.org/w/index.php?title=List_of_countries_by_United_Nations_geoscheme&oldid=1008989486',\ #https://en.wikipedia.org/wiki/List_of_countries_by_United_Nations_geoscheme',\ 'capital':'https://en.wikipedia.org/w/index.php?title=List_of_countries_by_United_Nations_geoscheme&oldid=1008989486',\ #https://en.wikipedia.org/wiki/List_of_countries_by_United_Nations_geoscheme',\ 'flag':'https://github.com/linssen/country-flag-icons/blob/master/countries.json',\ } _data_geometry = pd.DataFrame() _data_population =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime, time, timedelta from pandas.compat import range import sys import os import nose import numpy as np from pandas import Index, DatetimeIndex, Timestamp, Series, date_range, period_range import pandas.tseries.frequencies as frequencies from pandas.tseries.tools import to_datetime import pandas.tseries.offsets as offsets from pandas.tseries.period import PeriodIndex import pandas.compat as compat from pandas.compat import is_platform_windows import pandas.util.testing as tm from pandas import Timedelta def test_to_offset_multiple(): freqstr = '2h30min' freqstr2 = '2h 30min' result = frequencies.to_offset(freqstr) assert(result == frequencies.to_offset(freqstr2)) expected = offsets.Minute(150) assert(result == expected) freqstr = '2h30min15s' result = frequencies.to_offset(freqstr) expected = offsets.Second(150 * 60 + 15) assert(result == expected) freqstr = '2h 60min' result = frequencies.to_offset(freqstr) expected = offsets.Hour(3) assert(result == expected) freqstr = '15l500u' result = frequencies.to_offset(freqstr) expected = offsets.Micro(15500) assert(result == expected) freqstr = '10s75L' result = frequencies.to_offset(freqstr) expected = offsets.Milli(10075) assert(result == expected) freqstr = '2800N' result = frequencies.to_offset(freqstr) expected = offsets.Nano(2800) assert(result == expected) # malformed try: frequencies.to_offset('2h20m') except ValueError: pass else: assert(False) def test_to_offset_negative(): freqstr = '-1S' result = frequencies.to_offset(freqstr) assert(result.n == -1) freqstr = '-5min10s' result = frequencies.to_offset(freqstr) assert(result.n == -310) def test_to_offset_leading_zero(): freqstr = '00H 00T 01S' result = frequencies.to_offset(freqstr) assert(result.n == 1) freqstr = '-00H 03T 14S' result = frequencies.to_offset(freqstr) assert(result.n == -194) def test_to_offset_pd_timedelta(): # Tests for #9064 td = Timedelta(days=1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(86401) assert(expected==result) td = Timedelta(days=-1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(-86399) assert(expected==result) td = Timedelta(hours=1, minutes=10) result = frequencies.to_offset(td) expected = offsets.Minute(70) assert(expected==result) td = Timedelta(hours=1, minutes=-10) result = frequencies.to_offset(td) expected = offsets.Minute(50) assert(expected==result) td = Timedelta(weeks=1) result = frequencies.to_offset(td) expected = offsets.Day(7) assert(expected==result) td1 = Timedelta(hours=1) result1 = frequencies.to_offset(td1) result2 = frequencies.to_offset('60min') assert(result1 == result2) td = Timedelta(microseconds=1) result = frequencies.to_offset(td) expected = offsets.Micro(1) assert(expected == result) td = Timedelta(microseconds=0) tm.assertRaises(ValueError, lambda: frequencies.to_offset(td)) def test_anchored_shortcuts(): result = frequencies.to_offset('W') expected = frequencies.to_offset('W-SUN') assert(result == expected) result1 = frequencies.to_offset('Q') result2 = frequencies.to_offset('Q-DEC') expected = offsets.QuarterEnd(startingMonth=12) assert(result1 == expected) assert(result2 == expected) result1 = frequencies.to_offset('Q-MAY') expected = offsets.QuarterEnd(startingMonth=5) assert(result1 == expected) def test_get_rule_month(): result = frequencies._get_rule_month('W') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Week()) assert(result == 'DEC') result = frequencies._get_rule_month('D') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Day()) assert(result == 'DEC') result =
frequencies._get_rule_month('Q')
pandas.tseries.frequencies._get_rule_month
import functools import numpy as np import scipy import scipy.linalg import scipy import scipy.sparse as sps import scipy.sparse.linalg as spsl import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings import logging import tables as tb import os import sandy import pytest pd.options.display.float_format = '{:.5e}'.format __author__ = "<NAME>" __all__ = [ "CategoryCov", "EnergyCov", "triu_matrix", "corr2cov", "random_corr", "random_cov", "sample_distribution", ] S = np.array([[1, 1, 1], [1, 2, 1], [1, 3, 1]]) var = np.array([[0, 0, 0], [0, 2, 0], [0, 0, 3]]) minimal_covtest = pd.DataFrame( [[9437, 2, 1e-2, 9437, 2, 1e-2, 0.02], [9437, 2, 2e5, 9437, 2, 2e5, 0.09], [9437, 2, 1e-2, 9437, 102, 1e-2, 0.04], [9437, 2, 2e5, 9437, 102, 2e5, 0.05], [9437, 102, 1e-2, 9437, 102, 1e-2, 0.01], [9437, 102, 2e5, 9437, 102, 2e5, 0.01]], columns=["MAT", "MT", "E", "MAT1", "MT1", 'E1', "VAL"] ) def cov33csv(func): def inner(*args, **kwargs): key = "<KEY>" kw = kwargs.copy() if key in kw: if kw[key]: print(f"found argument '{key}', ignore oher arguments") out = func( *args, index_col=[0, 1, 2], header=[0, 1, 2], ) out.index.names = ["MAT", "MT", "E"] out.columns.names = ["MAT", "MT", "E"] return out else: del kw[key] out = func(*args, **kw) return out return inner class _Cov(np.ndarray): """Covariance matrix treated as a `numpy.ndarray`. Methods ------- corr extract correlation matrix corr2cov produce covariance matrix given correlation matrix and standard deviation array eig get covariance matrix eigenvalues and eigenvectors get_L decompose and extract lower triangular matrix sampling draw random samples """ def __new__(cls, arr): obj = np.ndarray.__new__(cls, arr.shape, float) obj[:] = arr[:] if not obj.ndim == 2: raise sandy.Error("covariance matrix must have two dimensions") if not np.allclose(obj, obj.T): raise sandy.Error("covariance matrix must be symmetric") if (np.diag(arr) < 0).any(): raise sandy.Error("covariance matrix must have positive variances") return obj @staticmethod def _up2down(self): U = np.triu(self) L = np.triu(self, 1).T C = U + L return C def eig(self): """ Extract eigenvalues and eigenvectors. Returns ------- `Pandas.Series` real part of eigenvalues sorted in descending order `np.array` matrix of eigenvectors """ E, V = scipy.linalg.eig(self) E, V = E.real, V.real return E, V def corr(self): """Extract correlation matrix. .. note:: zeros on the covariance matrix diagonal are translated into zeros also on the the correlation matrix diagonal. Returns ------- `sandy.formats.utils.Cov` correlation matrix """ std = np.sqrt(np.diag(self)) with np.errstate(divide='ignore', invalid='ignore'): coeff = np.true_divide(1, std) coeff[~ np.isfinite(coeff)] = 0 # -inf inf NaN corr = np.multiply(np.multiply(self.T, coeff).T, coeff) return self.__class__(corr) def _reduce_size(self): """ Reduces the size of the matrix, erasing the null values. Returns ------- nonzero_idxs : numpy.ndarray The indices of the diagonal that are not null. cov_reduced : sandy.core.cov._Cov The reduced matrix. """ nonzero_idxs = np.flatnonzero(np.diag(self)) cov_reduced = self[nonzero_idxs][:, nonzero_idxs] return nonzero_idxs, cov_reduced @classmethod def _restore_size(cls, nonzero_idxs, cov_reduced, dim): """ Restore the size of the matrix Parameters ---------- nonzero_idxs : numpy.ndarray The indices of the diagonal that are not null. cov_reduced : sandy.core.cov._Cov The reduced matrix. dim : int Dimension of the original matrix. Returns ------- cov : sandy.core.cov._Cov Matrix of specified dimensions. """ cov = _Cov(np.zeros((dim, dim))) for i, ni in enumerate(nonzero_idxs): cov[ni, nonzero_idxs] = cov_reduced[i] return cov def sampling(self, nsmp, seed=None): """ Extract random samples from the covariance matrix, either using the cholesky or the eigenvalue decomposition. Parameters ---------- nsmp : `int` number of samples seed : `int` seed for the random number generator (default is `None`) Returns ------- `np.array` 2D array of random samples with dimension `(self.shape[0], nsmp)` """ dim = self.shape[0] np.random.seed(seed=seed) y = np.random.randn(dim, nsmp) nonzero_idxs, cov_reduced = self._reduce_size() L_reduced = cov_reduced.get_L() L = self.__class__._restore_size(nonzero_idxs, L_reduced, dim) samples = np.array(L.dot(y)) return samples def get_L(self): """ Extract lower triangular matrix `L` for which `L*L^T == self`. Returns ------- `np.array` lower triangular matrix """ try: L = scipy.linalg.cholesky( self, lower=True, overwrite_a=False, check_finite=False ) except np.linalg.linalg.LinAlgError: E, V = self.eig() E[E <= 0] = 0 Esqrt = np.diag(np.sqrt(E)) M = V.dot(Esqrt) Q, R = scipy.linalg.qr(M.T) L = R.T return L class CategoryCov(): """ Properties ---------- data covariance matrix as a dataframe size first dimension of the covariance matrix Methods ------- corr2cov create a covariance matrix given a correlation matrix and a standard deviation vector from_stack create a covariance matrix from a stacked `pd.DataFrame` from_stdev construct a covariance matrix from a stdev vector from_var construct a covariance matrix from a variance vector get_corr extract correlation matrix from covariance matrix get_eig extract eigenvalues and eigenvectors from covariance matrix get_L extract lower triangular matrix such that $C=L L^T$ get_std extract standard deviations from covariance matrix invert calculate the inverse of the matrix sampling extract perturbation coefficients according to chosen distribution and covariance matrix """ def __repr__(self): return self.data.__repr__() def __init__(self, *args, **kwargs): self.data = pd.DataFrame(*args, **kwargs) @property def data(self): """ Covariance matrix as a dataframe. Attributes ---------- index : `pandas.Index` or `pandas.MultiIndex` indices columns : `pandas.Index` or `pandas.MultiIndex` columns values : `numpy.array` covariance values as `float` Returns ------- `pandas.DataFrame` covariance matrix Notes ----- ..note :: In the future, another tests will be implemented to check that the covariance matrix is symmetric and have positive variances. Examples -------- >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array[1]) >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array([[1, 2], [2, -4]])) >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array([[1, 2], [3, 4]])) """ return self._data @data.setter def data(self, data): self._data = pd.DataFrame(data, dtype=float) if not len(data.shape) == 2 and data.shape[0] == data.shape[1]: raise TypeError("Covariance matrix must have two dimensions") if not (np.diag(data) >= 0).all(): raise TypeError("Covariance matrix must have positive variance") sym_limit = 10 # Round to avoid numerical fluctuations if not (data.values.round(sym_limit) == data.values.T.round(sym_limit)).all(): raise TypeError("Covariance matrix must be symmetric") @property def size(self): return self.data.values.shape[0] def get_std(self): """ Extract standard deviations. Returns ------- `pandas.Series` 1d array of standard deviations Examples -------- >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).get_std() 0 1.00000e+00 1 1.00000e+00 Name: STD, dtype: float64 """ cov = self.to_sparse().diagonal() std = np.sqrt(cov) return pd.Series(std, index=self.data.index, name="STD") def get_eig(self, tolerance=None): """ Extract eigenvalues and eigenvectors. Parameters ---------- tolerance : `float`, optional, default is `None` replace all eigenvalues smaller than a given tolerance with zeros. The replacement condition is implemented as: .. math:: $$ \frac{e_i}{e_{MAX}} < tolerance $$ Then, a `tolerance=1e-3` will replace all eigenvalues 1000 times smaller than the largest eigenvalue. A `tolerance=0` will replace all negative eigenvalues. Returns ------- `Pandas.Series` array of eigenvalues `pandas.DataFrame` matrix of eigenvectors Notes ----- .. note:: only the real part of the eigenvalues is preserved .. note:: the discussion associated to the implementeation of this algorithm is available [here](https://github.com/luca-fiorito-11/sandy/discussions/135) Examples -------- Extract eigenvalues of correlation matrix. >>> sandy.CategoryCov([[1, 0.4], [0.4, 1]]).get_eig()[0] 0 1.40000e+00 1 6.00000e-01 Name: EIG, dtype: float64 Extract eigenvectors of correlation matrix. >>> sandy.CategoryCov([[1, 0.4], [0.4, 1]]).get_eig()[1] 0 1 0 7.07107e-01 -7.07107e-01 1 7.07107e-01 7.07107e-01 Extract eigenvalues of covariance matrix. >>> sandy.CategoryCov([[0.1, 0.1], [0.1, 1]]).get_eig()[0] 0 8.90228e-02 1 1.01098e+00 Name: EIG, dtype: float64 Set up a tolerance. >>> sandy.CategoryCov([[0.1, 0.1], [0.1, 1]]).get_eig(tolerance=0.1)[0] 0 0.00000e+00 1 1.01098e+00 Name: EIG, dtype: float64 Test with negative eigenvalues. >>> sandy.CategoryCov([[1, 2], [2, 1]]).get_eig()[0] 0 3.00000e+00 1 -1.00000e+00 Name: EIG, dtype: float64 Replace negative eigenvalues. >>> sandy.CategoryCov([[1, 2], [2, 1]]).get_eig(tolerance=0)[0] 0 3.00000e+00 1 0.00000e+00 Name: EIG, dtype: float64 Check output size. >>> cov = sandy.CategoryCov.random_cov(50, seed=11) >>> assert cov.get_eig()[0].size == cov.data.shape[0] == 50 >>> sandy.CategoryCov([[1, 0.2, 0.1], [0.2, 2, 0], [0.1, 0, 3]]).get_eig()[0] 0 9.56764e-01 1 2.03815e+00 2 3.00509e+00 Name: EIG, dtype: float64 Real test on H1 file >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> ek = sandy.energy_grids.CASMO12 >>> err = endf6.get_errorr(ek_errorr=ek, err=1) >>> cov = err.get_cov() >>> cov.get_eig()[0].sort_values(ascending=False).head(7) 0 3.66411e-01 1 7.05311e-03 2 1.55346e-03 3 1.60175e-04 4 1.81374e-05 5 1.81078e-06 6 1.26691e-07 Name: EIG, dtype: float64 >>> assert not (cov.get_eig()[0] >= 0).all() >>> assert (cov.get_eig(tolerance=0)[0] >= 0).all() """ E, V = scipy.linalg.eig(self.data) E = pd.Series(E.real, name="EIG") V = pd.DataFrame(V.real) if tolerance is not None: E[E/E.max() < tolerance] = 0 return E, V def get_corr(self): """ Extract correlation matrix. Returns ------- df : :obj: `CetgoryCov` correlation matrix Examples -------- >>> sandy.CategoryCov([[4, 2.4],[2.4, 9]]).get_corr() 0 1 0 1.00000e+00 4.00000e-01 1 4.00000e-01 1.00000e+00 """ cov = self.data.values with np.errstate(divide='ignore', invalid='ignore'): coeff = np.true_divide(1, self.get_std().values) coeff[~ np.isfinite(coeff)] = 0 # -inf inf NaN corr = np.multiply(np.multiply(cov, coeff).T, coeff) df = pd.DataFrame( corr, index=self.data.index, columns=self.data.columns, ) return self.__class__(df) def invert(self, rows=None): """ Method for calculating the inverse matrix. Parameters ---------- tables : `bool`, optional Option to use row calculation for matrix calculations. The default is False. rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `CategoryCov` The inverse matrix. Examples -------- >>> S = sandy.CategoryCov(np.diag(np.array([1, 2, 3]))) >>> S.invert() 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 >>> S = sandy.CategoryCov(np.diag(np.array([0, 2, 3]))) >>> S.invert() 0 1 2 0 0.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 >>> S = sandy.CategoryCov(np.diag(np.array([0, 2, 3]))) >>> S.invert(rows=1) 0 1 2 0 0.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 """ index = self.data.index columns = self.data.columns M_nonzero_idxs, M_reduce = reduce_size(self.data) cov = sps.csc_matrix(M_reduce.values) rows_ = cov.shape[0] if rows is None else rows data = sparse_tables_inv(cov, rows=rows_) M_inv = restore_size(M_nonzero_idxs, data, len(self.data)) M_inv = M_inv.reindex(index=index, columns=columns).fillna(0) return self.__class__(M_inv) def log2norm_cov(self, mu): """ Transform covariance matrix to the one of the underlying normal distribution. Parameters ---------- mu : iterable The desired mean values of the target lognormal distribution. Returns ------- `CategoryCov` of the underlying normal covariance matrix Examples -------- >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> cov.log2norm_cov(pd.Series(np.ones(cov.data.shape[0]), index=cov.data.index)) A B C A 2.19722e+00 1.09861e+00 1.38629e+00 B 1.09861e+00 2.39790e+00 1.60944e+00 C 1.38629e+00 1.60944e+00 2.07944e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = pd.Series([1, 2, .5], index=["A", "B", "C"]) >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = [1, 2, .5] >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = np.array([1, 2, .5]) >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 Notes ----- ..notes:: Reference for the equation is 10.1016/j.nima.2012.06.036 .. math:: $$ cov(lnx_i, lnx_j) = \ln\left(\frac{cov(x_i,x_j)}{<x_i>\cdot<x_j>}+1\right) $$ """ mu_ = np.diag(1 / pd.Series(mu)) mu_ = pd.DataFrame(mu_, index=self.data.index, columns=self.data.index) return self.__class__(np.log(self.sandwich(mu_).data + 1)) def log2norm_mean(self, mu): """ Transform mean values to the mean values of the undelying normal distribution. Parameters ---------- mu : iterable The target mean values. Returns ------- `pd.Series` of the underlyig normal distribution mean values Examples -------- >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = pd.Series(np.ones(cov.data.shape[0]), index=cov.data.index) >>> cov.log2norm_mean(mu) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> cov.log2norm_mean([1, 1, 1]) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = np.ones(cov.data.shape[0]) >>> cov.log2norm_mean(mu) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 Reindexing example """ mu_ = pd.Series(mu) mu_.index = self.data.index return np.log(mu_**2 / np.sqrt(np.diag(self.data) + mu_**2)) def sampling(self, nsmp, seed=None, rows=None, pdf='normal', tolerance=None, relative=True): """ Extract perturbation coefficients according to chosen distribution with covariance from given covariance matrix. See note for non-normal distribution sampling. The samples' mean will be 1 or 0 depending on `relative` kwarg. Parameters ---------- nsmp : `int` number of samples. seed : `int`, optional, default is `None` seed for the random number generator (by default use `numpy` dafault pseudo-random number generator). rows : `int`, optional, default is `None` option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. pdf : `str`, optional, default is 'normal' random numbers distribution. Available distributions are: * `'normal'` * `'uniform'` * `'lognormal'` tolerance : `float`, optional, default is `None` replace all eigenvalues smaller than a given tolerance with zeros. relative : `bool`, optional, default is `True` flag to switch between relative and absolute covariance matrix handling * `True`: samples' mean will be 1 * `False`: samples' mean will be 0 Returns ------- `sandy.Samples` object containing samples Notes ----- .. note:: sampling with uniform distribution is performed on diagonal covariance matrix, neglecting all correlations. .. note:: sampling with lognormal distribution gives a set of samples with mean=1 as lognormal distribution can not have mean=0. Therefore, `relative` parameter does not apply to it. Examples -------- Draw 3 sets of samples using custom seed: >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11) 0 1 0 -7.49455e-01 -2.13159e+00 1 1.28607e+00 1.10684e+00 2 1.48457e+00 9.00879e-01 >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11, rows=1) 0 1 0 -7.49455e-01 -2.13159e+00 1 1.28607e+00 1.10684e+00 2 1.48457e+00 9.00879e-01 >>> sample = sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(1000000, seed=11) >>> sample.data.cov() 0 1 0 9.98662e-01 3.99417e-01 1 3.99417e-01 9.98156e-01 Small negative eigenvalue: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, tolerance=0) 0 1 0 2.74945e+00 5.21505e+00 1 7.13927e-01 1.07147e+00 2 5.15435e-01 1.64683e+00 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, tolerance=0).data.cov() 0 1 0 9.98662e-01 -1.99822e-01 1 -1.99822e-01 2.99437e+00 Sampling with different `pdf`: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, pdf='uniform', tolerance=0) 0 1 0 -1.07578e-01 2.34960e+00 1 -6.64587e-01 5.21222e-01 2 8.72585e-01 9.12563e-01 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(3, seed=11, pdf='lognormal', tolerance=0) 0 1 0 3.03419e+00 1.57919e+01 1 5.57248e-01 4.74160e-01 2 4.72366e-01 6.50840e-01 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0).data.cov() 0 1 0 1.00042e+00 -1.58806e-03 1 -1.58806e-03 3.00327e+00 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0).data.cov() 0 1 0 1.00219e+00 1.99199e-01 1 1.99199e-01 3.02605e+00 `relative` kwarg usage: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=True).data.mean(axis=0) 0 1.00014e+00 1 9.99350e-01 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=False).data.mean(axis=0) 0 1.41735e-04 1 -6.49679e-04 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=True).data.mean(axis=0) 0 9.98106e-01 1 9.99284e-01 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).data.mean(axis=0) 0 -1.89367e-03 1 -7.15929e-04 dtype: float64 Lognormal distribution sampling indeoendency from `relative` kwarg >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=True).data.mean(axis=0) 0 9.99902e-01 1 9.99284e-01 dtype: float64 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=False).data.mean(axis=0) 0 9.99902e-01 1 9.99284e-01 dtype: float64 """ dim = self.data.shape[0] pdf_ = pdf if pdf != 'lognormal' else 'normal' y = sample_distribution(dim, nsmp, seed=seed, pdf=pdf_) - 1 y = sps.csc_matrix(y) # the covariance matrix to decompose is created depending on the chosen # pdf if pdf == 'uniform': to_decompose = self.__class__(np.diag(np.diag(self.data))) elif pdf == 'lognormal': ones = np.ones(self.data.shape[0]) to_decompose = self.log2norm_cov(ones) else: to_decompose = self L = sps.csr_matrix(to_decompose.get_L(rows=rows, tolerance=tolerance)) samples = pd.DataFrame(L.dot(y).toarray(), index=self.data.index, columns=list(range(nsmp))) if pdf == 'lognormal': # mean value of lognormally sampled distributions will be one by # defaul samples = np.exp(samples.add(self.log2norm_mean(ones), axis=0)) elif relative: samples += 1 return sandy.Samples(samples.T) @classmethod def from_var(cls, var): """ Construct the covariance matrix from the variance vector. Parameters ---------- var : 1D iterable Variance vector. Returns ------- `CategoryCov` Object containing the covariance matrix. Example ------- >>> S = pd.Series(np.array([0, 2, 3]), index=pd.Index([1, 2, 3])) >>> cov = sandy.CategoryCov.from_var(S) >>> cov 1 2 3 1 0.00000e+00 0.00000e+00 0.00000e+00 2 0.00000e+00 2.00000e+00 0.00000e+00 3 0.00000e+00 0.00000e+00 3.00000e+00 >>> assert type(cov) is sandy.CategoryCov >>> S = sandy.CategoryCov.from_var((1, 2, 3)) >>> S 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 2.00000e+00 0.00000e+00 2 0.00000e+00 0.00000e+00 3.00000e+00 >>> assert type(S) is sandy.CategoryCov >>> assert type(sandy.CategoryCov.from_var([1, 2, 3])) is sandy.CategoryCov """ var_ = pd.Series(var) cov_values = sps.diags(var_.values).toarray() cov = pd.DataFrame(cov_values, index=var_.index, columns=var_.index) return cls(cov) @classmethod def from_stdev(cls, std): """ Construct the covariance matrix from the standard deviation vector. Parameters ---------- std : `pandas.Series` Standard deviations vector. Returns ------- `CategoryCov` Object containing the covariance matrix. Example ------- >>> S = pd.Series(np.array([0, 2, 3]), index=pd.Index([1, 2, 3])) >>> cov = sandy.CategoryCov.from_stdev(S) >>> cov 1 2 3 1 0.00000e+00 0.00000e+00 0.00000e+00 2 0.00000e+00 4.00000e+00 0.00000e+00 3 0.00000e+00 0.00000e+00 9.00000e+00 >>> assert type(cov) is sandy.CategoryCov >>> S = sandy.CategoryCov.from_stdev((1, 2, 3)) >>> S 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 4.00000e+00 0.00000e+00 2 0.00000e+00 0.00000e+00 9.00000e+00 >>> assert type(S) is sandy.CategoryCov >>> assert type(sandy.CategoryCov.from_stdev([1, 2, 3])) is sandy.CategoryCov """ std_ = pd.Series(std) var = std_ * std_ return cls.from_var(var) @classmethod def from_stack(cls, data_stack, index, columns, values, rows=10000000, kind='upper'): """ Create a covariance matrix from a stacked dataframe. Parameters ---------- data_stack : `pd.Dataframe` Stacked dataframe. index : 1D iterable, optional Index of the final covariance matrix. columns : 1D iterable, optional Columns of the final covariance matrix. values : `str`, optional Name of the column where the values are located. rows : `int`, optional Number of rows to take into account into each loop. The default is 10000000. kind : `str`, optional Select if the stack data represents upper or lower triangular matrix. The default is 'upper. Returns ------- `sandy.CategoryCov` Covarinace matrix. Examples -------- If the stack data represents the covariance matrix: >>> S = pd.DataFrame(np.array([[1, 1, 1], [1, 2, 1], [1, 1, 1]])) >>> S = S.stack().reset_index().rename(columns = {'level_0': 'dim1', 'level_1': 'dim2', 0: 'cov'}) >>> S = S[S['cov'] != 0] >>> sandy.CategoryCov.from_stack(S, index=['dim1'], columns=['dim2'], values='cov', kind='all') dim2 0 1 2 dim1 0 1.00000e+00 1.00000e+00 1.00000e+00 1 1.00000e+00 2.00000e+00 1.00000e+00 2 1.00000e+00 1.00000e+00 1.00000e+00 If the stack data represents only the upper triangular part of the covariance matrix: >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL').data >>> test_1 MAT1 9437 MT1 2 102 E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT MT E 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL', rows=1).data >>> test_2 MAT1 9437 MT1 2 102 E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT MT E 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> assert (test_1 == test_2).all().all() If the stack data represents only the lower triangular part of the covariance matrix: >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower").data >>> test_1 MAT 9437 MT 2 102 E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT1 MT1 E1 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower", rows=1).data >>> test_2 MAT 9437 MT 2 102 E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT1 MT1 E1 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> assert (test_1 == test_2).all().all() """ cov = segmented_pivot_table(data_stack, rows=rows, index=index, columns=columns, values=values) if kind == 'all': return cls(cov) else: return triu_matrix(cov, kind=kind) def _gls_Vy_calc(self, S, rows=None): """ 2D calculated output using .. math:: $$ S\cdot V_{x_{prior}}\cdot S.T $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `pd.DataFrame` Covariance matrix `Vy_calc` calculated using S.dot(Vx_prior).dot(S.T) Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> cov._gls_Vy_calc(S) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 >>> cov._gls_Vy_calc(S, rows=1) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 """ index = pd.DataFrame(S).index S_ = pd.DataFrame(S).values rows_ = S_.shape[0] if rows is None else rows Vy_calc = sparse_tables_dot_multiple([S_, self.data.values, S_.T], rows=rows_) return pd.DataFrame(Vy_calc, index=index, columns=index) def _gls_G(self, S, Vy_extra=None, rows=None): """ 2D calculated output using .. math:: $$ S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}} $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). Vy_extra : 2D iterable, optional. 2D covariance matrix for y_extra (MXM). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `pd.DataFrame` Covariance matrix `G` calculated using S.dot(Vx_prior).dot(S.T) + Vy_extra Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = np.diag(pd.Series([1, 1])) >>> cov._gls_G(S, Vy) 0 1 0 6.00000e+00 1.10000e+01 1 1.10000e+01 2.60000e+01 >>> cov._gls_G(S, Vy, rows=1) 0 1 0 6.00000e+00 1.10000e+01 1 1.10000e+01 2.60000e+01 >>> cov._gls_G(S) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 >>> cov._gls_G(S, rows=1) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 """ # GLS_sensitivity: Vy_calc = self._gls_Vy_calc(S, rows=rows) if Vy_extra is not None: # Data in a appropriate format Vy_extra_ = sandy.CategoryCov(Vy_extra).data index = pd.DataFrame(Vy_extra).index Vy_extra_ = Vy_extra_.values Vy_calc = Vy_calc.reindex(index=index, columns=index).fillna(0).values # Calculations: Vy_calc = sps.csr_matrix(Vy_calc) Vy_extra_ = sps.csr_matrix(Vy_extra_) # G calculation G = Vy_calc + Vy_extra_ G = pd.DataFrame(G.toarray(), index=index, columns=index) else: G = Vy_calc return G def _gls_G_inv(self, S, Vy_extra=None, rows=None): """ 2D calculated output using .. math:: $$ \left(S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}}\right)^{-1} $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). Vy_extra : 2D iterable, optional 2D covariance matrix for y_extra (MXM). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `pd.DataFrame` Covariance matrix `G_inv` calculated using (S.dot(Vx_prior).dot(S.T) + Vy_extra)^-1 Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = np.diag(pd.Series([1, 1])) >>> cov._gls_G_inv(S, Vy) 0 1 0 7.42857e-01 -3.14286e-01 1 -3.14286e-01 1.71429e-01 >>> cov._gls_G_inv(S, Vy, rows=1) 0 1 0 7.42857e-01 -3.14286e-01 1 -3.14286e-01 1.71429e-01 >>> cov._gls_G_inv(S) 0 1 0 6.25000e+00 -2.75000e+00 1 -2.75000e+00 1.25000e+00 >>> cov._gls_G_inv(S, rows=1) 0 1 0 6.25000e+00 -2.75000e+00 1 -2.75000e+00 1.25000e+00 """ if Vy_extra is not None: index = pd.DataFrame(Vy_extra).index G = self._gls_G(S, Vy_extra=Vy_extra, rows=rows).values else: index = pd.DataFrame(S).index G = self._gls_Vy_calc(S, rows=rows).values G_inv = sandy.CategoryCov(G).invert(rows=rows).data.values return pd.DataFrame(G_inv, index=index, columns=index) def _gls_general_sensitivity(self, S, Vy_extra=None, rows=None, threshold=None): """ Method to obtain general sensitivity according to GLS .. math:: $$ V_{x_{prior}}\cdot S.T \cdot \left(S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}}\right)^{-1} $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). Vy_extra : 2D iterable 2D covariance matrix for y_extra (MXM). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. threshold : `int`, optional threshold to avoid numerical fluctuations. The default is None. Returns ------- `GLS` GLS sensitivity for a given Vy_extra and S. Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = np.diag(pd.Series([1, 1])) >>> cov._gls_general_sensitivity(S, Vy) 0 1 0 -2.00000e-01 2.00000e-01 1 2.28571e-01 5.71429e-02 >>> S = pd.DataFrame([[1, 2], [3, 4]], index=[1, 2],columns=[3, 4]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = pd.DataFrame([[1, 0], [0, 1]], index=[1, 2], columns=[1, 2]) >>> cov._gls_general_sensitivity(S, Vy_extra=Vy) 1 2 3 -2.00000e-01 2.00000e-01 4 2.28571e-01 5.71429e-02 >>> cov._gls_general_sensitivity(S, Vy_extra=Vy, rows=1) 1 2 3 -2.00000e-01 2.00000e-01 4 2.28571e-01 5.71429e-02 >>> cov._gls_general_sensitivity(S) 1 2 3 -2.00000e+00 1.00000e+00 4 1.50000e+00 -5.00000e-01 >>> cov._gls_general_sensitivity(S, rows=1) 1 2 3 -2.00000e+00 1.00000e+00 4 1.50000e+00 -5.00000e-01 """ index = pd.DataFrame(S).columns columns = pd.DataFrame(S).index S_ =
pd.DataFrame(S)
pandas.DataFrame
from contextlib import nullcontext as does_not_raise from functools import partial import pandas as pd from pandas.testing import assert_series_equal from solarforecastarbiter import datamodel from solarforecastarbiter.reference_forecasts import persistence from solarforecastarbiter.conftest import default_observation import pytest def load_data_base(data, observation, data_start, data_end): # slice doesn't care about closed or interval label # so here we manually adjust start and end times if 'instant' in observation.interval_label: pass elif observation.interval_label == 'ending': data_start += pd.Timedelta('1s') elif observation.interval_label == 'beginning': data_end -=
pd.Timedelta('1s')
pandas.Timedelta
""" Market Data Provider. This module contains implementations of the DataProvider abstract class, which defines methods by which market information can be requested and presented. """ from abc import abstractmethod from io import StringIO import os import pathlib import time from typing import Any, Dict import pandas as pd import requests class DataProvider: """ Abstract class defining the DataProvider API. """ @abstractmethod def intraday(self, day: pd.Timestamp): """ Gets the intraday data for a given day. """ @abstractmethod def daily(self, year: pd.Timestamp): """ Gets the yearly data for a given +year+. """ @abstractmethod def weekly(self): """ Returns a frame containing all weekly data+. """ @abstractmethod def monthly(self): """ Returns a frame containing all monthly data. """ @abstractmethod def first(self) -> pd.Timestamp: """ Returns the earliest date for which all types of data are available. """ @abstractmethod def latest(self) -> pd.Timestamp: """ Returns the latest date for which all types of data are available. """ def access_all(self): """ Simulates accesses of all kinds. Designed to allow caching implementations to perform all of their caching up front. """ class AVDataProvider(DataProvider): """ An implementation of DataProvider which uses the AlphaVantage API. """ def __init__(self, ticker: str, *, reqs_per_minute: int = 5, cache: str = "cache", local_cache_size: int = 10, **kwargs: Dict[str, Any]): """ Init function. +reqs_per_minute+ is the number of requests allowed per minute. +ticker+ provides the ticker symbol for the underlying FD. +cache+ provides a directory which the DataProvider can use to organize data. +local_cache_size+ is the total number of entries to keep on-hand to speed up repeated accesses. NOTE: This object assumes it is the only user of the API key at any given time, and will attempt the maximum number of accesses possible. """ self.ticker = ticker self.reqs_per_minute = reqs_per_minute self.cache = pathlib.Path(cache) self.local_cache_size = local_cache_size self._calls = [] self._local_cache = {} self._local_cache_history = [] # Ensure the cache is suitable if self.cache.exists() and not self.cache.is_dir(): raise RuntimeError("Cache must be a directory") self.cache.mkdir(exist_ok=True, parents=True) # Get AlphaVantage API key self.api_key = os.environ.get("SKINTBROKER_AV_API_KEY") if not self.api_key: raise RuntimeError("No AlphaVantage API key detected - please set " "SKINTBROKER_AV_API_KEY") def _check_local_cache(self, filename: pathlib.Path): """ Checks for data associated with a given +filename+ in the local cache. If found, return it, else return None. """ if str(filename) in self._local_cache: cache_entry = self._local_cache[str(filename)] if len(self._local_cache) == self.local_cache_size: self._local_cache_history.remove(str(filename)) self._local_cache_history.append(str(filename)) return cache_entry return None def _add_local_cache(self, filename: pathlib.Path, frame: pd.DataFrame): """ Adds a +frame+ associated with a given +filename+ to the local cache. If the cache is full, pops off the least recently accessed entry. """ # If necessary, purge the oldest item from the cache if len(self._local_cache) == self.local_cache_size: old_name = self._local_cache_history.pop(0) del self._local_cache[old_name] self._local_cache[str(filename)] = frame self._local_cache_history.append(str(filename)) def intraday(self, day: pd.Timestamp): """ Gets the intraday data for a given day. """ # TODO handle today data # First, check if the data is already cached cache_dir = self.cache/self.ticker/str(day.year)/str(day.month) csv = cache_dir/f"{day.day}_per_minute.csv" data = self._check_local_cache(csv) if data is not None: return data if cache_dir.exists() and csv.exists(): frame = pd.read_csv(csv, parse_dates=[0], infer_datetime_format=True, index_col='time') self._add_local_cache(csv, frame) return frame # Otherwise, download it. Intraday data is divided into 30-day # segments, so first determine just how far back to look. days = (_now().floor('d') - day.floor('d')).days - 1 month = (days // 30) % 12 + 1 year = (days // 360) + 1 params = {"function": "TIME_SERIES_INTRADAY_EXTENDED", "interval": "1min", "symbol": self.ticker, "slice": f"year{year}month{month}"} request_frame = self._api_request(**params) if request_frame.empty: return None # Cache all downloaded data - no point in wasting queries! grouper = pd.Grouper(freq='D') for date, group in request_frame.groupby(grouper): date_dir = self.cache/self.ticker/str(date.year)/str(date.month) date_csv = date_dir/f"{date.day}_per_minute.csv" if not date_csv.exists(): date_dir.mkdir(exist_ok=True, parents=True) group.to_csv(date_csv, index_label='time') # Try again. If there's still no data, there probably isn't any. if csv.exists(): frame = pd.read_csv(csv, parse_dates=[0], infer_datetime_format=True, index_col='time') self._add_local_cache(csv, frame) return frame return None def daily(self, year: pd.Timestamp): """ Gets the yearly data for a given +year+. """ # First, check if the data is already cached now = _now() cache_dir = self.cache/self.ticker/str(year.year) csv = cache_dir/"per_day.csv" data = self._check_local_cache(csv) if data is not None: return data if cache_dir.exists() and csv.exists(): frame = pd.read_csv(csv, parse_dates=[0], infer_datetime_format=True, index_col='time') # If the data is from this year yet it isn't today's data, # update anyway. if year.year != now.year or \ frame.index[0].dayofyear != now.dayofyear: self._add_local_cache(csv, frame) return frame # Update from remote params = {"function": "TIME_SERIES_DAILY", "symbol": self.ticker, "outputsize": "full"} request_frame = self._api_request(**params) # Cache all returned data grouper = pd.Grouper(freq='Y') for date, group in request_frame.groupby(grouper): date_dir = self.cache/self.ticker/str(date.year) date_csv = date_dir/"per_day.csv" # If the CSV is missing OR it's this year, then cache if not date_csv.exists() or date.year == now.year: date_dir.mkdir(exist_ok=True, parents=True) group.to_csv(date_csv, index_label='time') # Try again. If there's still no data, there probably isn't any. if csv.exists(): frame = pd.read_csv(csv, parse_dates=[0], infer_datetime_format=True, index_col='time') self._add_local_cache(csv, frame) return frame return None def weekly(self): """ Returns a frame containing all weekly data. """ # First, check if the data is already cached now = _now() cache_dir = self.cache/self.ticker csv = cache_dir/"per_week.csv" data = self._check_local_cache(csv) if data is not None: return data if cache_dir.exists() and csv.exists(): frame = pd.read_csv(csv, parse_dates=[0], infer_datetime_format=True, index_col='time') # If the data isn't recent, update if frame.index[0].week == now.week: self._add_local_cache(csv, frame) return frame # Update from remote # Set up call parameters params = {"function": "TIME_SERIES_WEEKLY_ADJUSTED", "symbol": self.ticker} request_frame = self._api_request(**params) # Cache returned data. if not cache_dir.exists(): cache_dir.mkdir(exist_ok=True, parents=True) request_frame.to_csv(csv, index_label='time') # Try again. If there's still no data, there probably isn't any. if csv.exists(): frame = pd.read_csv(csv, parse_dates=[0], infer_datetime_format=True, index_col='time') self._add_local_cache(csv, frame) return frame return None def monthly(self): """ Returns a frame containing all monthly data. """ # First, check if the data is already cached now = _now() cache_dir = self.cache/self.ticker csv = cache_dir/"per_month.csv" data = self._check_local_cache(csv) if data is not None: return data if cache_dir.exists() and csv.exists(): frame = pd.read_csv(csv, parse_dates=[0], infer_datetime_format=True, index_col='time') # If the data isn't recent, update if frame.index[0].month == now.month: self._add_local_cache(csv, frame) return frame # Update from remote # Set up call parameters params = {"function": "TIME_SERIES_MONTHLY_ADJUSTED", "symbol": self.ticker} request_frame = self._api_request(**params) # Cache returned data. if not cache_dir.exists(): cache_dir.mkdir(exist_ok=True, parents=True) request_frame.to_csv(csv, index_label='time') # Try again. If there's still no data, there probably isn't any. if csv.exists(): frame = pd.read_csv(csv, parse_dates=[0], infer_datetime_format=True, index_col='time') self._add_local_cache(csv, frame) return frame return None def _api_request(self, **kwargs: Dict[str, str]) -> pd.DataFrame: """ Performs an API request using the passed parameters. Returns a DataFrame or None. """ # Assemble the query site = "https://www.alphavantage.co/query?" params = [f"{key}={val}" for key, val in \ {**kwargs, "apikey": self.api_key, "datatype": "csv"}.items()] query = "&".join(params) # Perform call limit bookkeeping, and delay if needed. if len(self._calls) >= self.reqs_per_minute: oldest_call = self._calls.pop(0) to_wait = 60 - (_now() - oldest_call).seconds if to_wait >= 0: time.sleep(to_wait + 1) # Call the API and generate the dataframe print("Querying: " + site + query) response = requests.get(site + query) response.encoding = 'utf-8' index_label = 'time' if "INTRADAY" in kwargs["function"] \ else 'timestamp' frame = pd.read_csv(StringIO(response.text), parse_dates=[0], infer_datetime_format=True, index_col=index_label) # Record this call for future checks self._calls.append(_now()) return frame def first(self) -> pd.Timestamp: """ Returns the earliest date for which all types of data are available. """ # Based on the AlphaVantage system, it's reasonable to assume data # exists for two years back from today. Note that it's entirely # possible that cached data exists from even earlier, so a future # extension should search for it. return _now() - pd.Timedelta(720 - 1, unit='d') def latest(self) -> pd.Timestamp: """ Returns the latest date for which all types of data are available. """ # Yesterday is fine return _now() - pd.Timedelta(1, unit='d') def access_all(self) -> None: """ Simulates accesses of all kinds. Designed to allow caching implementations to perform all of their caching up front. """ # First, handle daily, weekly, and monthly entries for the last 20 # years. As this comes in one immense blob, just access that. now = _now() self.monthly() self.weekly() self.daily(now) # Then handle intraday for the last 2 years. days =
pd.date_range(end=now, freq='D', periods=360 * 2 - 1)
pandas.date_range
""" @author : <NAME> @date : 1-10-2021 Ensemble Learning is an often overshadowed and underestimated field of machine learning. Here we provide 2 algorithms central to the game - random forests and ensemble/voting classifier. Random Forests are very especially fast with parallel processing to fit multiple decision trees at the same time. """ import pandas as pd import numpy as np from multiprocessing import cpu_count from joblib import parallel_backend, delayed, Parallel import random import math import warnings warnings.filterwarnings("ignore", category=UserWarning) class RandomForest: """ Random Forests may seem intimidating but they are super simple. They are just a bunch of Decision Trees that are trained on different sets of the data. You give us the data, and we will create those different sets. You may choose for us to sample data with replacement or without, either way that's up to you. Keep in mind that because this is a bunch of Decision Trees, classification is only supported (avoid using decision trees for regression - it's range of predictions is limited.) The random forest will have each of its decision trees predict on data and just choose the most common prediction (not the average.) Enjoy this module - it's one of our best. """ def __init__(self, num_classifiers=20, max_branches=math.inf, min_samples=1, replacement=True, min_data=None): """ :param num_classifiers: Number of decision trees you want created. :param max_branches: Maximum number of branches each Decision Tree can have. :param min_samples: Minimum number of samples for a branch in any decision tree (in the forest) to split. :param replacement: Whether or not any of the data points in different chunks/sets of data can overlap. :param min_data: Minimum number of data there can be in any given data chunk. Each classifier is trained on a chunk of data, and if you want to make sure each chunk has 3 points for example you can set min_data = 3. It's default is 50% of the amount of data, the None is just a placeholder. """ from .decision_trees import DecisionTree self.DecisionTree = DecisionTree self.trees = [] self.num_classifiers = num_classifiers self.max_branches = max_branches self.min_samples = min_samples self.replacement = replacement self.min_data = min_data def fit(self, x_train, y_train): """ :param x_train: 2D training data :param y_train: 1D training labels :return: """ data, labels = np.array(x_train).tolist(), np.array(y_train).tolist() num_classifiers = self.num_classifiers max_branches = self.max_branches min_samples = self.min_samples replacement = self.replacement min_data = self.min_data # on default set min_data = 50% of your dataset if not min_data: min_data = round(0.5 * len(data)) # merge data and labels together [(d1, l1) .. (dN, lN)] data_and_labels = [ (data_point, label) for data_point, label in zip(data, labels) ] self.chunk_data, self.chunk_labels = [], [] if replacement: for classifier in range(num_classifiers): num_samples = min_data + random.randint(0, len(data) - min_data) data_and_labels_set = random.sample(data_and_labels, num_samples) self.chunk_data.append( [data_point for data_point, _ in data_and_labels_set] ) self.chunk_labels.append([label for _, label in data_and_labels_set]) else: """no replacement just use up all of the data here""" data_and_labels_df =
pd.DataFrame({"data": data, "labels": labels})
pandas.DataFrame
# Copyright 2019 Google Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #Adapted by <NAME> in November,2019 from this Colab notebook: #https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb. #Changes includes # - Reading our stressor data and parsing it properly # - reconfiguring the last layer to include N neurons corresponding to N categories # - correcting the probability output so that it follows [0,1] proper pattern # - better analysis with confusion matrix # - exporting to pb format for tensorflow serving api import os os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda-10.0/lib64' import sys print(sys.executable) from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit import pandas as pd import tensorflow as tf import tensorflow_hub as hub from datetime import datetime import matplotlib.pyplot as plt from sklearn.utils.multiclass import unique_labels from sklearn.metrics import f1_score,confusion_matrix,classification_report,accuracy_score import logging logging.basicConfig(stream=sys.stdout, level=logging.ERROR) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.max_colwidth', 1000) config = tf.ConfigProto() #config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 #config.gpu_options.visible_device_list="0" from tensorflow.python.client import device_lib device_lib.list_local_devices() import bert from bert import run_classifier_with_tfhub from bert import optimization from bert import tokenization from bert import modeling import numpy as np ############ Utils functions ################## def create_examples_prediction(df): """Creates examples for the training and dev sets.""" examples = [] for index, row in df.iterrows(): #labels = row[LABEL_HOT_VECTOR].strip('][').split(', ') #labels = [float(x) for x in labels] labels = list(row[label_list_text]) examples.append(labels) return
pd.DataFrame(examples)
pandas.DataFrame
import math import pandas as pd import numpy as np from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, SGDRegressor from sklearn.cross_validation import cross_val_score from sklearn.metrics import mean_squared_error from sklearn import svm def get_past_midfielders(): data = pd.read_csv('../resources/merged.csv', sep=',', encoding='utf-8', index_col=0) model = data[['player_id', 'name', 'season', 'pos', 'round', 'team_rank', 'opponent_team_rank', 'team_pot', 'opp_pot', 'concede_pot', 'opp_concede_pot', 'prev_points', 'form_points', 'total_points', 'long_form', 'ict_form']] MidfielderModal = model.loc[model['pos'] == 'Defender'] MidfielderModal.drop('pos', axis=1, inplace=True) MidfielderModal.sort_values(['season', 'round'], ascending=True, inplace=True) MidfielderModal.to_csv('../resources/predictions/MIDFIELDERS.csv', sep=',', encoding='utf-8') players = MidfielderModal[8587:] keys = MidfielderModal['round'] values = pd.cut(MidfielderModal['round'], 3, labels=[1, 2, 3]) dictionary = dict(zip(keys, values)) MidfielderModal['round'] = values X = MidfielderModal.drop(['total_points', 'season', 'player_id', 'name'], axis=1) y = MidfielderModal[['total_points']] X_train = X[:8586] X_test = X[8587:] y_train = y[:8586] y_test = y[8587:] regression_model = LinearRegression() regression_model.fit(X_train, y_train) score = regression_model.score(X_test, y_test) y_pred = regression_model.predict(X_test) testing = pd.concat([X_test, y_test], 1) testing['Predicted'] = np.round(y_pred, 1) testing['Prediction_Error'] = testing['total_points'] - testing['Predicted'] testing['player_id'] = 0 testing['name'] = 0 testing['player_id'] = players.player_id testing['name'] = players.name testing['round'] = 34 testing.to_csv('../resources/past/34_MIDS.csv', sep=',', encoding='utf-8') # get_past_midfielders() def merge(): one = pd.read_csv('../resources/predictions/30FOR.csv', sep=',', encoding='utf-8', index_col=0) two = pd.read_csv('../resources/predictions/31FOR.csv', sep=',', encoding='utf-8', index_col=0) three = pd.read_csv('../resources/predictions/32FOR.csv', sep=',', encoding='utf-8', index_col=0) four = pd.read_csv('../resources/predictions/33FOR.csv', sep=',', encoding='utf-8', index_col=0) five = pd.read_csv('../resources/predictions/34FOR.csv', sep=',', encoding='utf-8', index_col=0) dfarray = [one, two, three, four, five] MergedData =
pd.concat(dfarray)
pandas.concat
import pandas as pd import numpy as np from scipy.stats import mode from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error,r2_score from sklearn.ensemble import GradientBoostingRegressor #from sklearn import cross_validation, metrics pd.options.mode.chained_assignment = None from sklearn.externals import joblib test = pd.read_csv('Test.csv') train =
pd.read_csv('Train.csv')
pandas.read_csv
#%% # ANCHOR IMPORTS import sys import pandas as pd, numpy as np import pickle import re from sklearn import feature_extraction , feature_selection from scipy.sparse import csr_matrix, hstack from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import Normalizer from tqdm.autonotebook import trange, tqdm import swifter # Libraries for feature engineering. import string from collections import Counter # not necessary? #from nnsplit import NNSplit import spacy# .tokenizer.tokenize from spellchecker import SpellChecker # Other neat features. from nltk.metrics.distance import edit_distance from lexicalrichness import LexicalRichness import syllables import itertools import textstat # Stats from scipy.stats import chisquare #from statistics import mean #%% Get spacy docs and save them to data to speed up development. def get_docs(data, text_col='text_clean'): nlp = spacy.load('en_core_web_sm') nlp.enable_pipe("senter") data['docs'] = data[tect_col].apply(lambda x: nlp(x)) #%% def listify(series, feature_name=str): return [{feature_name: x[1]} for x in series.items()] #%% # Extract Baseline feature # Character trigrams (morphological/lexical/semantic?). def ngrams(train, test, params): """Extract character ngrams. Args: train (list): list of texts to fit the vectorizer. test (list): list of texts to transform to feature space. params (dict): parameters for the vectorizer construction Returns: [type]: [description] """ vectorizer = CountVectorizer(lowercase=params['ngrams']['lowercase'], ngram_range=params['ngrams']['size'], # experiment with ranges, e.g. ngram_range=(3,3) analyzer=params['ngrams']['type'], #, also try "char_wb" max_features=params['ngrams']['max_vocab']) # max_features=10000 # fit count vecotorizer to preprocessed tweets. #vectorizer.fit(train) # Transform into input vectors for train and test data. train_vectors = vectorizer.fit_transform(train) # using fit_transform due to better implementation. #train_vectors = vectorizer.transform(train) #.toarray() test_vectors = vectorizer.transform(test) #.toarray() # Inspect with vectorizer.get_feature_names() and .toarray() #inverse = vectorizer.inverse_transform(train) #feature_names = vectorizer.get_feature_names() #print(f'Train ({type(train_vectors)}) feature matrix has shape: {train_vectors.shape}') #print(f'Test ({type(test_vectors)}) feature matrix has shape: {test_vectors.shape}') #return vectorizer return vectorizer, train_vectors , test_vectors #return inverse #%% ANCHOR EXTRACT LIWC def parse_liwc(file, **args): """Parse a (left) aligned version of the LIWC lexicon. Args: file (str): filepath to lexcion (excel). Returns: DataFrame: df or dict """ df = pd.read_excel(file, skiprows=2) # Handling merged columns in file ### Adapted from https://stackoverflow.com/a/64179518 ### df.columns = df.columns.to_series()\ .replace('Unnamed:\s\d+', np.nan, regex=True).ffill().values # Multindex to represent multiple columns for some categories. df.columns = pd.MultiIndex.from_tuples([(x, y)for x, y in zip(df.columns, df.columns.to_series().groupby(level=0).cumcount())]) ### Accessed 26-04-2021 ### # d = data.to_dict(orient='list') ### Adapted from https://stackoverflow.com/a/50082926 # dm = data.melt() # data = dm.set_index(['variable', dm.groupby('variable').cumcount()]).sort_index()['value'].unstack(0) ### Accessed 26-04-2021 ### # Concat the terms by column. # d = dict() #d = {column: value for key, value in dd.items()} # for ki, wl in dd.items(): # nl = [] # k, i = ki # # for w in wl: # # if w not in nl: # # d[k].append(wl) # if k in d: # d[k].append(wl) # else: # d[k] = wl ### Solution from https://stackoverflow.com/a/48298420 ### # TODO experiment with not sorting the index? or reesrorting columns to mach the multiindex or just original df.columns. df = df.stack().sort_index(level=1).reset_index(drop=True) ### Accessed 26-04-2021 ### # Check that merged columns have the right number of terms. # sum(isinstance(x, str) for x in terms['Funct']) return df.to_dict(orient='list') #%% # Extract LIWC matches (lexical/semantic) def liwc_match(parsed, d, extract=False, text_col='text_clean'): """Search a corpus for matches against LIWC (2007) categories. Args: parsed (DataFrame): a pandas df with the all categories of LIWC prepared. d (str): a filepath to a pickle file with a corpus to search. extract (bool, optional): Switch specifying whether or not to return a Dict for feature extraction or feature inspection/analysis. Defaults to False. Returns: dict: a dict with {liwc_cat1...n : count} for each datapoint in the corpus OR a dict a, a dataFrame and a Series with results of searching the categories against the matches (absolute counts per datapoint (as dict and DF) totals per category (Series)). """ # load data to search. # Could do Series.count(regex) or df[clean_text] -> (joined) list? if isinstance(d, pd.DataFrame) == False: # the ... analysis case. data = pd.read_pickle(d) text = list(d) # a single row/tweet? if extract == True: # The extract case data = d text = data[text_col] # Dict for search results. results = dict() pats = dict() # save patterns to dict for debugging. # Loop through category-termlist pairs. for cat, terms in tqdm(parsed.items()): # Remove nans from term lists. terms = [term.strip(' ') for term in terms if isinstance(term, str)] # Compile re pattern from term list. #pat = re.compile('|'.join(terms), flags=re.MULTILINE) #pat = re.compile('|'.join( # [r'\b' + t[:-1] if t.endswith('*') else r'\b' + t + r'\b' for t in #terms])) ### Adapted from https://stackoverflow.com/a/65140193 ### pat = re.compile('|'.join([r'\b' + t[:-1] + r'\w*' if t.endswith('*') else r'\b' + t + r'\b' for t in terms]) , flags=re.MULTILINE | re.IGNORECASE) ### Accessed 27-04-2021 ### pats[cat] = pat #i, char = enumerate(j_terms) # for term in terms: # i = 0 # try: # pat = re.compile(term) # #print(pat, counter,'\n') # i +=1 # except: # print('error here:\n'.upper(),pat, i) # Aggregate matches per category into dict. storing tweet id's preserved in the source data. #results[cat] = pat.finditer(text.values) # For that, join values into list of lists -> re.match -> see below # results[cat][re.match(pat)] = re.finditer(pat, row_list) # if extract == True: You can't normalize since this isn't tokenized. # results[cat] = text.apply(lambda x: x.str.count(pat) / len(x)) # else: results[cat] = text.str.count(pat) #results[cat] = text.swifter.apply(lambda x: re.finditer(pat, x)) # Store results in DataFrame df_results = pd.DataFrame.from_dict(results) # Totals per category df_totals = df_results.sum().sort_values(ascending=False) if extract == True: # Export results to {index : {cat : count}...} for easy vectorization. results_per_row = df_results.to_dict(orient='records') # or orient='index'? -> DictVectorizer return results_per_row return {'results' : {'matches_dict' : results, 'matches_df' : df_results, 'matches_total': df_totals }, 'regex_pats' : pats } #%% def norm_freqs(data, expression, count_name=str, normalize=True, analyze=True): """Get frequencies (normalized = optional) of a regex pattern in a Series with one or more strings. Args: data (DataFrame): a dataframe with texts to extract frequencies from. expression (re.compile): a regex pattern to count occurrences of in each text. count_name (str, optional): a name for the counted feature. Defaults to str. normalize (bool, optional): [description]. Defaults to True. Returns: list: list of dicts with key = frequency name, value = frequency. """ # List to store frequencies # freqList = list() # Loop through each entry in the list of strings. # for e in stringList: # # Join to a regular string # text = ' '.join(e) # # Construct a dict for each entry with freuncies. # c = {count_name : len([char for char in text if char in expression])} # Get frequencies of a regex in a pandas column, normalize if set to True. c = data.apply(lambda x: len(re.findall( expression, x))/len(x) if normalize == True else len(re.findall(expression, x))) ### Adapted from https://stackoverflow.com/a/45452966 ### # Cast frequencies Series to list of dicts. cList = [{count_name: x[1]} for x in c.items()] ### Accessed 10-05-2021 ### if analyze == True: return cList else: return c def binary_freq(data, expression, feature_name=str, analyze=True): """Search data for occurrences of a binary feature as a regex. Args: data (pd.Series): a series with text instances. expression (re.compile): a regex or string to search for. feature_name (str, optional): a name for the feature to extract. Defaults to str. Returns: list: a list with a dict mapping feature name to 1 or 0 (true/false) based on occurrence in texts. """ b = data.str.contains(expression).astype(int) # cast bools to 0/1 if analyze == True: bList = [{feature_name: x[1]} for x in b.items()] return bList else: return b #%% ANCHOR extract character and word level features # Extract character-level features (lexical/morphological). def get_cl(data, text_col='text_clean', analyze=True): # 0. Cast data text col .to_list() # 1. Normalized punctation frequency. # # Using pandas instead of lists + counter + dicts. # df_results = pd.DataFrame({'text': textList}) # #p_pat = re.compile(r'[!"\$%&\'()*+,\-.\/:;=#@?\[\\\]^_`{|}~]*') # p_pat = re.compile(re.escape(string.punctuation)) # df_results['punct'] = df_results.text.str.count(p_pat) # the whole series #train['text_clean'].str.count(p_pat) df_punc_freq = data[text_col].apply(lambda x: len([char for char in ' '.join(x) if char in string.punctuation]) / len(' '.join(x))) #return punc_freq, df_punc_freq #df_punc_freq = pd.DataFrame.from_records(punc_freq) # Add to cl dict. #cl_results['punc_freq'] = punc_freq #2. Specific characters (also normalized) # 2.1 digits d_pat = re.compile(r'\d' , re.M) df_digits = norm_freqs(data[text_col], d_pat, count_name='digit_freq',normalize=True, analyze=False) #return df_digits # 2.2 Whitespace chars. ws_pat = re.compile(r' ', re.M) # NOTE just using actual whitespace instead of \s df_whitespaces = norm_freqs(data[text_col], ws_pat, count_name='whitespace_freq', normalize=True, analyze=False) # 2.3 tab characters NOTE Doesn't occur in either corpus. # tab_pat = re.compile(r'\t', re.M) # tabs = norm_freqs(data[text_col], tab_pat, count_name='tab_freqs', normalize=True) # 2.4 line break characters br_pat = re.compile(r'[\r\n\f]', re.M) df_lbreaks = norm_freqs(data[text_col], br_pat, count_name='line_break_freq', normalize=True, analyze=False) # 2.5 Upperchase chars (per all chars) up_pat = re.compile(r'[A-Z]', re.M) # Decide whether to be greedy about *all* uppercase chars or to be lazy (below). Also, @USER mentions are counted now. Can be excluded with \b(?!USER\b)[A-Z]. Try doing [^a-z\W] - caret negates the range of chars. #up_pat = re.compile(r'(?<![a-z])*[A-Z](?![a-z])*' , re.M) # Only count chars if they are not a one-off in the beginning of words. df_upchars = norm_freqs(data[text_col], up_pat, count_name= 'upper_char_freq', normalize=True, analyze=False) # 2.6 Special chars other than punctuation. NOTE Doesn't make much sense when using a full punctuaion set.. spc_pat = re.compile(r"[^a-z \.,!?':;\s]", re.M) df_spc = norm_freqs(data[text_col], spc_pat, count_name="special_characters", analyze=False) #3. Repeated characters (binary features) # NOTE if you want counts of each repeated char, consider just defining it with regexes and then using norm_freqs, normalize=False? # 3.1 question marks quest_pat = re.compile(r'\?{2,}', re.M) df_rep_quest = binary_freq(data[text_col] , quest_pat, feature_name='quest_rep', analyze=False) # 3.2 periods (ellipsis) per_pat = re.compile(r'\.{2,}', re.M) df_rep_per = binary_freq(data[text_col] , per_pat, feature_name='period_rep', analyze=False) # 3.3 exclamation marks excl_pat = re.compile(r'!{2,}', re.M) df_rep_excl = binary_freq(data[text_col] , excl_pat, feature_name='excl_rep', analyze=False) # 4 Contains equal signs eq_pat = re.compile(r'=', re.M) df_equals = binary_freq(data[text_col] , eq_pat , feature_name='equals', analyze=False) # 5 Quotes in chars #quotes = data[text_col].apply(lambda x: len(re.findall(quot_pat, x)) / len(x)) # per character --- works. #quotes_char = [{'quotes' : x[1]} for x in qoutes.items()] if analyze == True: #punc_freq = listify(df_punc_freq, feature_name='char_punc_freq') # new Alternative to punc_freq with dict comprehension. textList = data[text_col].to_list() ### Old approach to punc_freqs for analysis. cl_results = dict() # dict to store results. punc_freq = list() for e in textList: text = ' '.join(e) # Build dict with counts of all punct characters. # The first c example does it per punctuation character, the second for all. # Each count is normalized by total number of chars in the each string. # NOTE not using regexes here. Single quotes/apostrophes/contractions are counted as well. #c = {char:count/len(text) for char, count in Counter(text).items() #if char in string.punctuation} # This should generalize to regex matches. c = {'char_punc_freq': len([char for char in text if char in string.punctuation])/len(text)} punc_freq.append(c) digits = norm_freqs(data[text_col], d_pat, count_name='digit_freq',normalize=True) whitespaces = norm_freqs(data[text_col], ws_pat, count_name='whitespace_freq', normalize=True) lbreaks = norm_freqs(data[text_col], br_pat, count_name='line_break_freq', normalize=True) upchars = norm_freqs(data[text_col], up_pat, count_name= 'upper_char_freq', normalize=True) spc = norm_freqs(data[text_col], spc_pat, count_name="special_characters") rep_quest = binary_freq(data[text_col] , quest_pat, feature_name='quest_rep') rep_per = binary_freq(data[text_col] , per_pat, feature_name='period_rep') rep_excl = binary_freq(data[text_col] , excl_pat, feature_name='excl_rep') equals = binary_freq(data[text_col] , eq_pat , feature_name='equals') # Store results cl_results['char_punc_freq'] = punc_freq cl_results['digit_freq'] = digits cl_results['whitespace_freq'] = whitespaces #cl_results['tab_freq'] = tabs does not occur in either corpus. cl_results['linebreak_freq'] = lbreaks cl_results['uppercased_char_freq'] = upchars cl_results['special_char_freq'] = spc cl_results['repeated_questionmark'] = rep_quest cl_results['repeated_periods'] = rep_per cl_results['repeated_exclamation'] = rep_excl cl_results['contains_equals'] = equals return cl_results #punc_freq # (punc_freq , cl_results) # Store results as df for much easier vectorization... else: cl_results_df = pd.DataFrame() cl_results_df['char_punc_freq'] = df_punc_freq #✅ #pd.concat(cl_results_df) # Store results cl_results_df['digit_freq'] = df_digits #✅ cl_results_df['whitespace_freq'] = df_whitespaces #✅ #cl_results['tab_freq'] = tabs does not occur in either corpus. cl_results_df['linebreak_freq'] = df_lbreaks #✅ cl_results_df['uppercased_char_freq'] = df_upchars #✅ cl_results_df['special_char_freq'] = df_spc #✅ cl_results_df['repeated_questionmark'] = df_rep_quest #✅ cl_results_df['repeated_periods'] = df_rep_per #✅ cl_results_df['repeated_exclamation'] = df_rep_excl #✅ cl_results_df['contains_equals'] = df_equals #✅ return cl_results_df #%% # Debugging # test_df = train.iloc[:50,:] # test = get_cl(test_df, text_col='text_clean', analyze=False) # Extract word-level features (lexical/morphological) def get_wl(data, text_col='text_clean', analyze=False, docs=[]): # SpaCy pipe for rule based sentence splitting. #blank_nlp = spacy.blank('en') # spacy.load('en_core_web_sm') # sentencizer = blank_nlp.add_pipe("sentencizer") # morphologizer = blank_nlp.add_pipe('morphologizer') # blank_nlp.initialize() # # print(nlp.pipe_names) print('Configuring spacy for word level') nlp = spacy.load('en_core_web_sm', disable=["lemmatizer", 'ner']) # disable parser in favor of senter and sentencizer due to speed https://spacy.io/models nlp.disable_pipe("parser") nlp.enable_pipe("senter") # Load spellchecker spell = SpellChecker() # load exceptions to spellchecker (Twitter, covid specifc) try: spell.word_frequency.load_text_file('./utils/spell_additions.txt') except: pass # 1 Get lengths (total/avg words, sentence) # rewrite features as attributes of Lengths objects? # class Lengths: # def __init__(self, first_feat, second_feat): # pass #textList = data[text_col].to_list() wl_results = dict() # print('TOKENIZING WORD-LEVEL FEATURES') # data to docs if len(docs) <= 0: docs = data[text_col].swifter.apply(lambda x: nlp(x)) #assert len(docs) == len(data[text_col]) # get list of sentences. sents_c = docs.apply(lambda x: [s for s in x.sents]) # Words only (including numbers and @mentions) sents_w = docs.apply(lambda x: [[t.text for t in s if\ t.is_punct == False and t.is_space == False]\ for s in x.sents]) # list of *word* tokens in entire tweet. toks = docs.apply(lambda x: [t.text for t in x if t.is_punct == False and\ t.is_space == False]) # could have used data['tokens_clean] # alphabetic tokens only. (for spell checking) toks_alpha = docs.apply(lambda x: [t.text for t in x if t.is_alpha == True]) # Debugging getting empty lists of alphabetic tokens. #return pd.DataFrame({'tokens' : toks, 'alpha_tokens': toks_alpha}) toks_morph = docs.apply( lambda x: [t for t in x if t.is_alpha == True]) # print('\n GETTING WORD-LEVEL FEATURES') # 1.1 total length of tweet in words # c = {'total_words' : int} # for doc in docs: w_total_series = toks.map(len) # 1.2 avg word length awl = toks.apply(lambda x: sum(len(w) for w in x) / len(x)) # build dict with keys from list contained in feature_params value for lexical features > word_level. Check if they are there and populate them with the dicts below accordingly. Else don't. # 1.3.1 avg sentence length (words) asl_w = sents_w.apply(lambda x: sum(len(s) for s in x) / len(x)) # 1.3.2 avg sentence length (characters) #asl_c = apply(lambda x: sum([len(''.join(s.text)) for s in x])) asl_c = sents_c.apply(lambda x: sum(len(''.join(s.text)) for s in x) / len(x)) # 2.1 number of uppercased words. uws = toks_alpha.apply(lambda x: len([t for t in x if t.isupper() == True]) / len(x) if len(x) > 0 else 0.0) # 2.2 number of short words # use len of token <=3 sws = toks_alpha.apply(lambda x: len([t for t in x if len(t) <=3]) / len(x) if len(x) > 0 else 0.0) # 2.3 number of elongated words # use regex \b\w{3,}\b elw_pat = re.compile(r'(\w)\1{2,}', re.M) elws = toks_alpha.apply(lambda x: len([t for t in x if elw_pat.search(t)]) / len(x) if len(x) > 0 else 0.0) # 2.4 number of number-like tokens (both digits and numerals) nss = docs.apply(lambda x: len([t for t in x if t.like_num == True]) / len(x)) # 2.5 frequency of specific verb tenses pst = toks_morph.apply(lambda x: [t.morph for t in x if t.morph.get('Tense') == ['Past']]).map(len).divide(toks_alpha.map(len)) prs = toks_morph.apply(lambda x: [t.morph for t in x if t.morph.get('Tense') == ['Pres']]).map(len).divide(toks_alpha.map(len)) #NOTE using series.divide instead for if/else check with regular might give a problem with vectorizers. adj_pos = toks_morph.apply(lambda x: [t.morph for t in x if t.morph.get('Degree') == ['Pos']]).map(len).divide(toks_alpha.map(len)) adj_c_s = toks_morph.apply(lambda x: [t.morph for t in x if t.morph.get('Degree') == ['Cmp'] or t.morph.get('Degree') == ['Sup']]).map(len).divide(toks_alpha.map(len)) # Here you could add future tense, mood etc. # 2.6 Frequency of OOV words (according to spaCy model) # token.is_oov # 3. Frequencies of emotes/jis. e = data['emotes'].apply(lambda x: len(x[0] + x[1])).divide(toks.map(len)) # normalized by tokens. # 4. Non-standard spelling. Reconsider including this. It mostly captures proper names and acronyms if it has to be this fast. sc = toks_alpha.apply(lambda x: spell.unknown(x)).map(len).divide(toks_alpha.map(len)) # 5. number of quoted words # NOTE normalized by words (in match / in tweet) quot_pat = re.compile(r"(\".+?\"|\B'.+?'\B)") # should this be quot_pat = re.compile(r("\".+?\"|\B'.+?'\B")) # #quotes = data[text_col].apply(lambda x: re.findall(quot_pat, x).split(' ')).map(len).divide(toks_alpha.map(len)) # per word (split on whitespace). print('Tokenizing quote spans') quotes = data[text_col].swifter.apply(lambda x: [t for t in nlp(' '.join(re.findall(quot_pat, x))) if t.text.isalnum()]).map(len).divide(toks.map(len)) #return pd.DataFrame({'org_text': data[text_col],'alpha_toks': toks_alpha, 'quoted_toks' : quotes, 'quoted_lens' : quotes_lens}) #quotes = data[text_col].apply(lambda x: re.findall(quot_pat, x)).map(len).divide(toks_alpha.map(len)) # not finished. need to tokenize matches. #quotes = sents_c.apply(lambda x: len([re.findall(quot_pat, s) for s in x]) / len(x))# per sentence - doesn't work. # 6. Vocab richness/complexity # 6.1 Type-token ratio. tt = toks_alpha.apply(lambda x: len(set(x)) / len(x) if len(x) > 0 else 0.0) # could use Counter instead of set() # 6.2.1 Hapax legomena ### Adapted from https://stackoverflow.com/a/1801676 ### hlg = toks_alpha.apply(lambda x: len([word for word, count in Counter(map(str.lower, x)).items() if count == 1]) / len(x) if len(x) > 0 else 0.0) # could also lower with list comprehension. ### accessed 13-05-2021 ### # 6.2.2 Hapax dislegomena (words that occur twice only) hdlg = toks_alpha.apply(lambda x: len([word for word, count in Counter(map(str.lower, x)).items() if count == 2]) / len(x) if len(x) > 0 else 0.0) # Here you would implement complexity measures #- Brunet's W Measure #- Yule's K Characteristic #- Honore's R Measure #- Sichel's S Measure #- Simpson's Diversity Index # 7. syllable frequencies #NOTE this is averaged/normalized syllable frequncies. NOTE the syllables docs suggest using cmudict for accuracy over speed. sfr = toks_alpha.apply(lambda x: sum([syllables.estimate(w) for w in x]) / len(x) if len(x) > 0 else 0.0) # could also use statistics.mean for all of these averages.. # 8. Readability # Flesch-Kincaid reading ease fk = data[text_col].apply(lambda x: textstat.flesch_reading_ease(x)) # # 8.1 Automated Readability Index # ari = data[text_col].swifter.apply(lambda x: textstat.automated_readability_index(x)) # r_ari = listify(ari, feature_name='automated_readability_index') # # 8.2 Coleman-Liau index # cli = data[text_col].swifter.apply(lambda x: textstat.coleman_liau_index(x)) # r_cli = listify(cli, feature_name='coleman_liau_index') # # 8.3 Dale Chall Readability Index # dci = data[text_col].swifter.apply(lambda x: textstat.dale_chall_readability_score(x)) # r_dci = listify(dci, feature_name='dale_chall_index') # # 8.4 Gunning Fog Index # gfi = data[text_col].swifter.apply(lambda x: textstat.gunning_fog(x)) # r_gfi = listify(gfi, feature_name='gunning_fog_index') # 8.5 Consensus based on all tests in textstat. # consensus = data[text_col].swifter.apply(lambda x: textstat.text_standard(x, float_output=True)) # r_consensus = listify(consensus, feature_name='readability_consensus_score') # Could add basic sentiment with doc.token.sentiment? # Store results TODO store each list of dicts in separate dict on the same level. # wl_results = { # {'length_features' : w_total, w_len_avg, asl_w, asl_c}, # {'specific_w_frequencies' : upper_ws, shortws, elongws, nums, past_freq, pres_freq, adj_positives, adj_cmp_sup ,ems}, # {'nonstandard_spelling' : s_check}, # {'words_in_quotes' : quot_ws}, # {'richess/complexity' : ttr, hlgs, hldgs}, # {'syllable frequencies' : syl_freq}, # {'readability' : r_fk, r_ari, r_cli, r_dci, r_gfi, r_consensus} # } # print('\nSTORING RESULTS') # print('DONE') if analyze == True: w_total = [{'len_total_words': x[1]} for x in toks.map(len).items()] w_len_avg = [{'avg_word_length' : x[1]} for x in awl.items()] asl_w_avg = [{'avg_sent_len_words': x[1]} for x in asl_w.items()] asl_c_avg = [{'avg_sent_len_chars' : x[1]} for x in asl_c.items()] # move this to character level. upper_ws = [{'upper_words': x[1]} for x in uws.items()] shortws = [{'short_words': x[1]} for x in sws.items()] elongws = [{'elongated_words' : x[1]} for x in elws.items()] nums = listify(nss, feature_name='numerical_tokens_frequency') past_freq = listify(pst, feature_name = 'past_tense_frequency') pres_freq = listify(prs, feature_name='present_tense_frequency') adj_positives = listify(adj_pos, feature_name='positive_adjectives') adj_cmp_sup = listify(adj_c_s, feature_name='comp_and_sup_adjectives') ems = [{'emote_frequencies': x[1]} for x in e.items()] s_check = [{'nonstandard_words': x[1]} for x in sc.items()] quot_ws = listify(quotes, feature_name = 'quotes_in_words') ttr = [{'type-token_ratio': x[1]} for x in tt.items()] hlgs = listify(hlg, feature_name= 'hapax_legomena') hdlgs = listify(hdlg, feature_name='hapax_dislegomena') syl_freq = [{'avg_syllable_freq': x[1]} for x in sfr.items()] r_flk = [{'flesch_kincaid_reading_ease' : x[1]} for x in fk.items()] # Store results in dict. wl_results['total_word_len'] = w_total wl_results['avg_word_len'] = w_len_avg wl_results['avg_sentence_len_words'] = asl_w_avg wl_results['avg_sentence_len_chars'] = asl_c_avg wl_results['uppercased_words'] = upper_ws wl_results['short_words'] = shortws wl_results['elongated_words'] = elongws wl_results['numberlike_tokens'] = nums wl_results['past_tense_words'] = past_freq wl_results['present_tense_words'] = pres_freq wl_results['positive_adjectives'] = adj_positives wl_results['comp_and_sup_adjectives'] = adj_cmp_sup wl_results['emotes'] = ems wl_results['nonstandard_spelling'] = s_check # exclude? wl_results['quoted_words'] = quot_ws wl_results['type_token_ratio'] = ttr wl_results['hapax_legomena'] = hlgs wl_results['hapax_dislegomena'] = hdlgs wl_results['syllable_freqs'] = syl_freq #takes too long? wl_results['readability_flesch_kincaid'] = r_flk # wl_results['readability_ari'] = r_ari # wl_results['readability_coleman_liau'] = r_cli # wl_results['readability_dale_chall'] = r_dci # wl_results['readability_gunning_fog'] = r_gfi #wl_results['readability_consensus'] = r_consensus return wl_results else: # Build dataframe wl_results_df = pd.DataFrame() wl_results_df['total_word_len'] = w_total_series #✅ wl_results_df['avg_word_len'] = awl #✅ wl_results_df['avg_sentence_len_words'] = asl_w #✅ wl_results_df['avg_sentence_len_chars'] = asl_c #✅ wl_results_df['uppercased_words'] = uws #✅ wl_results_df['short_words'] = sws #✅ wl_results_df['elongated_words'] = elws #✅ wl_results_df['numberlike_tokens'] = nss #✅ wl_results_df['past_tense_words'] = pst #✅ wl_results_df['present_tense_words'] = prs #✅ wl_results_df['positive_adjectives'] = adj_pos #✅ wl_results_df['comp_and_sup_adjectives'] = adj_c_s #✅ wl_results_df['emotes'] = e #✅ wl_results_df['nonstandard_spelling'] = sc #✅ wl_results_df['quoted_words'] = quotes # ✅ wl_results_df['type_token_ratio'] = tt #✅ wl_results_df['hapax_legomena'] = hlg #✅ wl_results_df['hapax_dislegomena'] = hdlg #✅ wl_results_df['syllable_freqs'] = sfr #✅ wl_results_df['readability_flesch_kincaid'] = fk #✅ return wl_results_df #return get_wl(data)#get_cl(data) , get_wl(data) #%% # Debugging # test_df = train.iloc[:50, :] # test = get_wl(test_df, analyze=False) # %% #%% # Extract sentence-level features (syntactic) def get_sl(data, text_col = 'text_clean',cv=None , train=False, analyze=False): # load spacy model. print('Loading spacy model') nlp = spacy.load('en_core_web_sm') nlp.enable_pipe("senter") #TODO Added senter to get_sl while passing on docs for speed. # For POS tags, you could map a pos tag sequence/vector to the tweet. # Initialize CounVectorizer for pos ngrams. store pos tags in separate column and transform with sklearn-pandas per column instead. if train == True: cv = CountVectorizer(analyzer='word', ngram_range=(1,3)) else: cv = cv # Retoknize the text docs = data[text_col].swifter.apply(lambda x: nlp(x)) #toks = docs.apply(lambda x: [t.text for t in x]) # not used. #return pd.DataFrame({'docs' : docs.map(len) , 'toks': toks.map(len)}) # Frequencies # 1.1 frequencies of stop words (i.e. function words) sts = docs.apply(lambda x: len([t.text for t in x if t.is_stop == True]) / len(x)) # normalized by all tokens (including numbers and punct.) # 1.2 frequencies of punctuation pnct = docs.apply(lambda x: len([t.text for t in x if t.is_punct == True]) / len(x)) # 1.3 Frequencies of roots (normalized by total number of words in tweet). rts = docs.apply(lambda x: len([(t, t.dep_) for t in [t for t in x if t.is_space == False] if t.dep_ == 'ROOT']) / len(x)) # This still includes number-like tokens, punctuation and mentions, since these are relevant in the dependency trees. Normalization could account for whitespaces, but doesn't have to. # 3. POS frequencies. # Extract pos tags:count (use Counter) pos = docs.apply(lambda x: [t.pos_ for t in x if t.text.isalnum() == True]) pos_freq = docs.apply(lambda x: {p:c/len([t for t in x if t.text.isalnum() == True]) for p, c in Counter([t.pos_ for t in x if t.text.isalnum() == True ]).items()}) # normalized by alphanumeric tokens (since punctuation frequencies are captured separately). #pos_freq = [{k:v} for k, v in pfreq.items()] #return pd.DataFrame({'text' : data[text_col] , 'tokens' : toks, 'pos' : pos}) # 4. POS ngrams (n=uni-bi-tri) - TODO move to ngrams # join pos tags into strings for CountVectorizer -> return as special case. Do a type check in the lookup or vectorize function that just passes the matrix on. OR pass on POS strings to vectorize in the vectorize function? #print('fit/transforming posgrams') pgrams = pos.str.join(' ').to_list() if train == True: pgram_matrix = cv.fit_transform(pgrams) #return cv, pgram_matrix else: pgram_matrix = cv.transform(pgrams) # Sketch of countvectorizing pos ngrams. #cv.fit_transform(test.str.join(sep=' ').to_list()) # This works. consider how to get pos ngrams and still make them interpretable in the corpora - e.g. most frequent triplets? Does that even really tell you anthing? You could Counter or use a pandas method to get most frequent combination? # {k:v for k, v in Counter(cv.get_feature_names()).items()} # Note Counter has counter.most_common(n) # Could use nltk.util.ngrams(sequence, n) as suggested here https://stackoverflow.com/questions/11763613/python-list-of-ngrams-with-frequencies # 6. Sentiment? # sentis = docs.apply(lambda x: sum([t.sentiment for t in x])) # doesn't work. needs training? #return pd.DataFrame({'n_sents_spacy' : n_sents, 'n_sents_tstat' : n_sents_tstat}) if analyze == True: # Store results. stop_freq = listify(sts, feature_name='stopword_frequency') punct_freq = listify(pnct, feature_name='punctuation_freq') root_freq = listify(rts, feature_name='root_frequencies') syn_results = {'stopword_freq': stop_freq, 'syn_punc_freq' : punct_freq, 'root_freq': root_freq, 'pos_freq' : list(pos_freq), 'pos_ngrams' : pgram_matrix} return cv, syn_results else: syn_results_df = pd.DataFrame() syn_results_df['stopword_freq'] = sts syn_results_df['syn_punc_freq'] = pnct syn_results_df['root_freq'] = rts #syn_results_df['pos_freq'] = list(pos_freq) #syn_results_df['pos_ngrams'] = pgram_matrix return docs, cv, pgram_matrix, syn_results_df # To call on test data, remember to call it on the cv returning after calling it on the training data - call it 'train_cv' in model.py #%% # Debugging # test_df = train.iloc[:50,:] # test = get_sl(test_df, train=True, analyze=True) #%% ANCHOR testing get_syn # extract_feats(test_df, analyze=True, train=True) # NOTE when extracting in model.py, call twice instead of once. #train.columns.get_loc('text_clean') # test_df = train.iloc[:50, :] # versus list version: train_text[:20] # test = get_syn(test_df) # # val_test = get_lexical(train_text[:5]) #%% #%% # Extract document-level features (structural) def get_dl(data, text_col='text_clean', analyze=True, docs=[]): # 1. Number of sentences if len(docs) <= 0: print('Configuring spacy model for document level') nlp = spacy.load('en_core_web_sm', disable=['lemmatizer', 'parser','tagger','ner']) nlp.enable_pipe('senter') # this is the main diff between wl, sl and dl. docs = data[text_col].swifter.apply(lambda x: nlp(x)) ns = docs.apply(lambda x: len([s for s in x.sents])) #en_web_sm is not as accurate as blank or textstat. # ns = data[text_col].apply( # lambda x: textstat.sentence_count(x)) # 2. Number of user mentions - absolute counts. ms = data[text_col].str.count('@user', flags=re.I|re.M) # Could be expanded to include hashtags and urls in the future here. if analyze == True: n_sents = listify(ns, feature_name = 'number_of_sentences') ments = listify(ms, feature_name = 'number_of_mentions') struc_results = {'n_sents': n_sents, 'n_mentions': ments} # before skiping listify. #struc_results = {'n_sents' : ns, 'n_mentions' : ms} return struc_results else: struc_results_df = pd.DataFrame() struc_results_df['n_sents'] = ns #✅ struc_results_df['n_mentions'] = ms #✅ return struc_results_df #%% # Testing get_struc. #test = get_dl(test_df, analyze=False) #%% # ANCHOR function to lookup and get specific [{features: x.x}] from extraction funct. def feature_lookup(f_param_dict, extracted_features): feature_name1 = [{'feature_name' : 0.0}] for var in locals(): if var in f_param_dict['some_feature_cat1']: return locals()[var] # also look into dpath, dict-toolbox2 #%% # Test feature_lookup # t = {'some_feature_cat1': ['feature_name1', 'feature_name2']} # feature_lookup(t) #%% def conc_features(matrixList): # Concatenate feature vectors # pass a list or dict of matrices and do list/dict comprehension/unpacking? #combined_features = hstack([feature_vector1, feature_vector2], 'csr') combined_features = hstack(matrixList, 'csr') return combined_features #%% def d_vectorize(selected_feats, train=False, dv=None): # Old approach: Vectorize all generated lists of dicts (stored in a dict or list?). # if train == True: # dv = DictVectorizer() # #X = d.fit_transform(dictList) # # Either store as list. # dvList = [] # matList = [] # # Or in single dict # #matDict = dict() using dv as a key just overwrites the value since they are all identical. Nesting the dict just complicates things even more... # if train == True: # # Iterate through feature lists of dictionaries (lexical, syntactic, structural) # for feature_name, feat_list in selected_feats.items(): # #print(feature_name, feat_list) # #return # if feature_name == 'pos_ngrams': # Check for pos_ngrams (already vectorized) # matList.append(feat_list) # if pos_ngrams feat matrix, just append it. # #matDict[dv] = feat_list # continue # if train == True: # feat_matrix = dv.fit_transform(feat_list) # # NOTE storing each vectorizer # dvList.append(dv) # matList.append(feat_matrix) # # This is the test case # # The test case. transforming test data to fitted individual dvs. # if train == False: #iterate through each dv and all the feature lists. # feat_lists = [] # # this has to only fit once per feature dv-featurelist pair. # for feature_name, feat_list in selected_feats.items(): # if feature_name == 'pos_ngrams': # matList.append(feat_list) # continue # feat_lists.append(feat_list) # #return(feat_lists) # for dv, featList in list(zip(dvs, feat_lists)): # enable this to loop through both dvs and features. # #print(dv, featList) # feat_matrix = dv.transform(featList) # this needs to be passed its corresponding dv. if you store in zip/list, it should have the same, fixed order. but how to iterate? # matList.append(feat_matrix) # #matDict[dv] = feat_matrix # # Is LIWC a separate case? Should be the same as engineered features. # #return matDict#dv, matList #matDict.values() should be list of matrices equal to number of features. To be concatenated. # return dvList, matList # New approach - using dfs with selected features. # 1. Get list of dicts, row-wise from selected features DF. feats = selected_feats.to_dict('records') if train == True: dv = DictVectorizer() feats_vecs = dv.fit_transform(feats) return dv , feats_vecs else: feats_vecs = dv.transform(feats) return dv, feats_vecs #%% #### # test_df = train.iloc[:50,:] # sent_cv_train, extracted_train = extract_feats(test_df, text_col='text_clean', analyze=False, train=True, feature_pms=feature_params) # sent_cv_test, extracted_test = extract_feats(val.iloc[:50,:], text_col='text_clean', analyze=False, train=False, cv=sent_cv_train, feature_pms=feature_params) # train_dv, train_vecs = d_vectorize(train_selected_feats_df, train=True) # test_dv, test_vecs = d_vectorize(test_selected_feats_df, train=False, dv=train_dv) #### #test = d_vectorize(extracted_test, train=False, dvs=train_dvs) # Then d_vectorize LIWC matches. # Then concat all of the vectorized features. # Then fit model! #%% def extract_feats(data, text_col='text_clean', feature_pms=dict(), analyze=False, cv=None, train=False): # Data = dataframe - can be recast by child functions. # See if resetting data index speeds up extraction. data.reset_index(drop=True, inplace=True) # lowercase all @USER mentions. An artifact from preprocessing. data[text_col] = data[text_col].str.replace( '@USER', '@user') # , inplace=True) all_features_dict = dict() all_features_df_list = [] selected_features = dict() # 1. Call each of the extractor functions # 1.3 Sentence-level # TODO moved up to pass docs to other extraction functs for speed. print('Sentence level features') if analyze == True: docs = [] sent_cv, sent_lvl = get_sl( data, text_col=text_col, cv=cv, analyze=analyze, train=train) else: docs, sent_cv, pgram_matrix, sent_lvl = get_sl(data, text_col=text_col, cv=cv, analyze=analyze, train=train) # 1.1 Character-level (10 features) print('Character level features') char_lvl = get_cl(data, text_col=text_col, analyze=analyze) # 1.2 Word-level print('Word level features') word_lvl = get_wl(data, text_col=text_col, analyze=analyze, docs=docs) #sent_lvl = word_lvl.copy(deep=True) #return sent_lvl # if train == False: # sent_cv, sent_lvl = get_sl(data, text_col=text_col, analyze=analyze) # 1.4 Document-level print('Document level features') doc_lvl = get_dl(data, text_col=text_col, analyze=analyze, docs=docs) #return doc_lvl # Return all features if extracting for feature analysis. LIWC is analyzed separately. if analyze == True: # Store in dict all_features_dict['character_level'] = char_lvl all_features_dict['word_level'] = word_lvl all_features_dict['sentence_level'] = sent_lvl # Maybe pop pgrams matrix into separate var/container? all_features_dict['document_level'] = doc_lvl return sent_cv, all_features_dict # pass sent_cv on to analyze_feats from here. # Old approaches # Option 1 - extracting flat list (of n instances) (of dicts with n features) to vectorize in one go. # for feat_cat, feature_name in feature_pms['engineered'].items(): # if feat_cat in all_features.keys(): # selected_features[feat_cat] = all_features[feat_cat].values() # return selected_features # TODO how to make sure that all features align? Pandas? hstack before fitting? # Option 2 - extract individual lists of [{'feature1' : feature_value}... {'feature2' : feature_value}] for each feauture? # Iterate through features to pass on, given parameters in parameter dict. # Get a flat list of all desired target features. #target_feats = list(itertools.chain.from_iterable([fn for fn in feature_pms['engineered'].values()])) # Lookup and retrieve each feature from all_features and store in selected_features # Works, but return that awkward df with individual dicts. # for feat_level, feat_name in all_features.items():# outer level {'feature_level': 'feature_name': [{'feature' : feature_val}]} # for fn, fl in feat_name.items(): # if fn in target_feats: # selected_features[fn] = fl # Return selected features # 2. return selectively for classification if analyze == False: # Get a flat list of all desired target features. target_feats = list(itertools.chain.from_iterable([fn for fn in feature_pms['engineered'].values()])) #return char_lvl, word_lvl, sent_lvl, doc_lvl # Concatenate feature dfs for each level horizontally. #all_feats_df = pd.concat([char_lvl, word_lvl, sent_lvl, doc_lvl], axis=1, join='inner') # works. all_feats_df_list = [char_lvl, word_lvl, sent_lvl, doc_lvl] # Mitigating duplicate indeces in dfs.. [df.reset_index(inplace=True, drop=True) for df in all_feats_df_list] # 1.5 LIWC features # parsed_liwc is called in the main namespace. if feature_pms['liwc'] == True: liwc_feats = pd.DataFrame.from_records( liwc_match(parsed_liwc, data, extract=True)) #selected_features['liwc_counts'] = liwc_feats # store LIWC straight in selected_feats dict. # index liwc_feats with data.index liwc_feats.set_index(data.index, inplace=True) all_feats_df_list.append(liwc_feats) #return liwc_feats #return sent_cv, all_features # concat liwc features to df selected features. # Concat all feature dfs. #try: all_feats_df = pd.concat(all_feats_df_list, axis=1, join='inner') #print(all_feats_df) #except: # return all_feats_df_list# , [len(df) for df in all_feats_df_list] # Select columns from all features df unless they are pos_ngrams. could add pos_freqs here. # return all_feats_df 35+64=99 feats. selected_feats_df = all_feats_df[[fn for fn in target_feats if fn != 'pos_ngrams']] #return all_feats_df, target_feats return sent_cv, pgram_matrix, selected_feats_df #%% ANCHOR procedure for feature extraction. # test_df = train.iloc[:50,:] # #sent_cv, train_feats_df = extract_feats(test_df, feature_pms = feature_params, analyze=False, train=True) # # Parse LIWC # parsed_liwc = parse_liwc('../../../Data/LIWC2007dictionary poster.xls', text_col=text_col) # # This is just a test of extraction with liwc. # liwc_test = extract_feats(test_df, feature_pms = feature_params, analyze=False, train=True) # # Dict_vectorize-fit_transform train. # train_en_feat_vec = d_vectorize(train_selected_feats_df, train=True) # # Combine feature matrices: # also use ngrams in model.py. # train_feats_combined = conc_feat([train_pgram_matrix , train_en_feat_vec]) # # Extract test_feats # sent_cv, test_pgram_matrix, test_selected_feats_df = extract_feats(val.iloc[:50,], feature_pms= feature_params, analyze=False, train=False, cv=sent_cv) # # Dict_vectorize-transform test with train_dv. # test_en_feat_vec = d_vectorize(test_selected_feats_df, train=False) # -> concat pgram matrices and each selected feature df after dictvectorizing them. #### #analysis = analyze_feats(train_feats_dict) # analysis case #feats_for_vec = extract_feats(test_df, feature_pms=feature_params, analyze=False, train=True) # the train case # test = extract_feats(test_df, analyze=True, cv=train_cv, train=False) # test case #%% # analyze features TODO move to data_exploration def analyze_feats(featuresDict, resultpath='./exploring/feature_analysis/', cv=None): # This function is called on the complete output of all the extract functions. # Put all extracted features into a single dict. You then call vectorize and concat on that based on lookup either manual or via function. # LIWC is handled separately.. # 0. Append all lists of dicts (dictLists) to one flat list. featList = [] posfreqList = [] pgrams = None # Smarter solution : calculate stats directly on dict values in lists of dicts. statsDict = dict() #Loop through top level featDict for feat_level, feat_name in featuresDict.items(): #featList.append(pd.DataFrame(feat_name)) #print(feat_name.keys()) #Second level - individual feature names : ['feature' : int/flaot]. for feat, feat_value in feat_name.items(): #print( feat, type(feat_value)) # store pos features seperately. if feat == 'pos_freq': posfreqList.append(pd.DataFrame(feat_value)) continue if feat == 'pos_ngrams': pgrams = feat_value continue featList.append(pd.DataFrame(feat_value)) # Concat lists of extracted feature dataframes. featDF = pd.concat(featList, axis=1) #featDF = pd.DataFrame.from_records(featList) posfreqDF = pd.concat(posfreqList) # #return posfreqDF.mean().to_dict() #return featDF #return featDF, posfreqDF # Split features into binary and frequency-based # Get series of bools columnwise where any value is not a float and greater than 1. filter_cols = featDF.select_dtypes(exclude=float).gt(1).any(0) # Filter the featuresDF based on a list of the above indeces (i.e. column names) in from the series above. #binDF = featDF.select_dtypes(exclude = float).between(0, 1) binDF = featDF.loc[ : , filter_cols[filter_cols == False].index.tolist()] absoDF = featDF.loc[ : , filter_cols[filter_cols == True].index.tolist()] # absolute counts freqDF = featDF.select_dtypes(float) #return binDF #, absoDF, freqDF # Multindex # reformDict = {} # for outerKey, innerDict in featuresDict.items(): # for innerKey, values in innerDict.items(): # reformDict[(outerKey, # innerKey)] = [value for value in] # return reformDict #return binDF, absoDF , freqDF, posfreqDF # Write all the dfs to spreadsheet for easier visualization. writer = pd.ExcelWriter(resultpath, engine='xlsxwriter') binDF.to_excel(writer, sheet_name="binary_features") absoDF.to_excel(writer, sheet_name='absolute_features') freqDF.to_excel(writer, sheet_name="frequency_features") posfreqDF.to_excel(writer, sheet_name="pos_frequencies") #writer.save() # Get basic stats for each category of feature values. # Store results (binary, absolute and freq) # binary features - percentages of positives. bin_pcts = (binDF.sum().divide(len(binDF)) * 100) # Store in dict statsDict['binary_features (% positive)'] = bin_pcts.to_dict() # Write to sheet. bin_pcts.to_excel(writer, sheet_name = 'binary_percentages') # absolute count features - sum totals. abso_totals = absoDF.sum() # TODO change this to averages (e.g. average number of sentences etc..) statsDict['absolute_features (sum total)'] = abso_totals.to_dict() abso_totals.to_excel(writer, sheet_name = 'absolute_totals') # frequency features - means. freq_means = freqDF.mean() #.round(3) statsDict['frequency_features (average)'] = freq_means.to_dict() # mean of the normalized frequencies (rounded to 3 decimal points) - EXCLUDING POS frequencies.. freq_means.to_excel(writer, sheet_name = 'frequencies_mean') # POS frequencies posfreq_means = posfreqDF.mean() #.round(3) statsDict['pos_frequncies'] = posfreq_means.to_dict() posfreq_means.to_excel(writer, sheet_name = 'posfreq_means') # Analyzing ngrams ### Adatped from this excample https://gist.github.com/xiaoyu7016/73a2836298cfaef8212fd20a94736d56 ### # # Here you just store the pgrams in a df. pgram_freqs = pd.DataFrame(pgrams.sum(axis=0).T, index=cv.get_feature_names(), columns=['freq']).sort_values(by='freq', ascending=False)#.max(20).plot(kind='bar',title='posgrams') ### Acessed 19-05-2021 ### # Write pgrams to sheet in spreadsheet for inspection. pgram_freqs.to_excel(writer, sheet_name='pos_ngram_frequencies') # Save excel file. writer.save() # Return the results dictionary. return statsDict #%% #%% ANCHOR combining / concatenating features. #draft of how to use DictVectorizer on LIWC # Example of vectorizing dictionary counts. # dv = DictVectorizer(sparse=False) or sparse=True which yields sparse.csr. # D = [{'cat1' : 3, 'cat2': 0 ...} {'cat1': 0, 'cat2': 55}...] # X_train = dv.fit_transform(D) <- where D is the result of running the extract=True function on the training data. # This is where you would normalize either the dense numpy.ndarray or sparse.csr: # transformer = Normalizer().fit(X) # X_train = transformer.transform(X_train) # X_test = dv.fit(X_test) etc.. # Concatenate X (feature) arrays? ### https://stackoverflow.com/a/22710579 ### # - "Don't forget to normalize this with sklearn.preprocessing.Normalizer, and be aware that even after normalization, those text_length features are bound to dominate the other features in terms of scale" ### Accessed 28-04-2021 ### # Watch out for nan's in the resulting feature array? # https://stackoverflow.com/q/39437687 reports on this as a side-effect of using DictVectorizer. #%% # NOTE You probably want to wrap all of these in one extract_features function... #%% #%% if __name__ == "__main__": #%% # ANCHOR Read some data just to develop with to test with. train =
pd.read_pickle('../../../Data/train/train.pkl')
pandas.read_pickle
# Library Imports from joblib import load import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.preprocessing import MinMaxScaler import streamlit as st import _pickle as pickle from random import sample from PIL import Image from scipy.stats import halfnorm # Loading the Profiles with open("refined_profiles.pkl",'rb') as fp: df = pickle.load(fp) with open("refined_cluster.pkl", 'rb') as fp: cluster_df = pickle.load(fp) with open("vectorized_refined.pkl", 'rb') as fp: vect_df = pickle.load(fp) # Loading the Classification Model model = load("refined_model.joblib") ## Helper Functions def string_convert(x): """ First converts the lists in the DF into strings """ if isinstance(x, list): return ' '.join(x) else: return x def vectorization(df, columns, input_df): """ Using recursion, iterate through the df until all the categories have been vectorized """ column_name = columns[0] # Checking if the column name has been removed already if column_name not in ['Bios', 'Movies','Religion', 'Music', 'Politics', 'Social Media', 'Sports']: return df, input_df # Encoding columns with respective values if column_name in ['Religion', 'Politics']: # Getting labels for the original df df[column_name.lower()] = df[column_name].cat.codes # Dictionary for the codes d = dict(enumerate(df[column_name].cat.categories)) d = {v: k for k, v in d.items()} # Getting labels for the input_df input_df[column_name.lower()] = d[input_df[column_name].iloc[0]] # Dropping the column names input_df = input_df.drop(column_name, 1) df = df.drop(column_name, 1) return vectorization(df, df.columns, input_df) # Vectorizing the other columns else: # Instantiating the Vectorizer vectorizer = CountVectorizer() # Fitting the vectorizer to the columns x = vectorizer.fit_transform(df[column_name].values.astype('U')) y = vectorizer.transform(input_df[column_name].values.astype('U')) # Creating a new DF that contains the vectorized words df_wrds = pd.DataFrame(x.toarray(), columns=vectorizer.get_feature_names()) y_wrds = pd.DataFrame(y.toarray(), columns=vectorizer.get_feature_names(), index=input_df.index) # Concating the words DF with the original DF new_df = pd.concat([df, df_wrds], axis=1) y_df = pd.concat([input_df, y_wrds], 1) # Dropping the column because it is no longer needed in place of vectorization new_df = new_df.drop(column_name, axis=1) y_df = y_df.drop(column_name, 1) return vectorization(new_df, new_df.columns, y_df) def scaling(df, input_df): """ Scales the new data with the scaler fitted from the previous data """ scaler = MinMaxScaler() scaler.fit(df) input_vect = pd.DataFrame(scaler.transform(input_df), index=input_df.index, columns=input_df.columns) return input_vect def top_ten(cluster, vect_df, input_vect): """ Returns the DataFrame containing the top 10 similar profiles to the new data """ des_cluster = vect_df[vect_df['Cluster #']==cluster[0]].drop('Cluster #', 1) des_cluster = des_cluster.append(input_vect, sort=False) user_n = input_vect.index[0] corr = des_cluster.T.corrwith(des_cluster.loc[user_n]) top_10_sim = corr.sort_values(ascending=False)[1:4] top_10 = df.loc[top_10_sim.index] top_10[top_10.columns[1:]] = top_10[top_10.columns[1:]] return top_10.astype('object') def example_bios(): """ Creates a list of random example bios from the original dataset """ st.write("-"*100) st.text("Some example Bios:\n(Try to follow the same format)") for i in sample(list(df.index), 3): st.text(df['Bios'].loc[i]) st.write("-"*100) # Creating a List for each Category p = {} movies = ['Adventure', 'Action', 'Drama', 'Comedy', 'Thriller', 'Horror', 'RomCom', 'Musical', 'Documentary'] p['Movies'] = [0.28, 0.21, 0.16, 0.14, 0.09, 0.06, 0.04, 0.01, 0.01] tv = ['Comedy', 'Drama', 'Action/Adventure', 'Suspense/Thriller', 'Documentaries', 'Crime/Mystery', 'News', 'SciFi', 'History'] p['TV'] = [0.30, 0.23, 0.12, 0.12, 0.09, 0.08, 0.03, 0.02, 0.01] religion = ['Catholic', 'Christian', 'Jewish', 'Muslim', 'Hindu', 'Buddhist', 'Spiritual', 'Other', 'Agnostic', 'Atheist'] p['Religion'] = [0.16, 0.16, 0.01, 0.19, 0.11, 0.05, 0.10, 0.09, 0.07, 0.06] music = ['Rock', 'HipHop', 'Pop', 'Country', 'Latin', 'EDM', 'Gospel', 'Jazz', 'Classical'] p['Music'] = [0.30, 0.23, 0.20, 0.10, 0.06, 0.04, 0.03, 0.02, 0.02] sports = ['Football', 'Baseball', 'Basketball', 'Hockey', 'Soccer', 'Other'] p['Sports'] = [0.34, 0.30, 0.16, 0.13, 0.04, 0.03] politics = ['Liberal', 'Progressive', 'Centrist', 'Moderate', 'Conservative'] p['Politics'] = [0.26, 0.11, 0.11, 0.15, 0.37] social = ['Facebook', 'Youtube', 'Twitter', 'Reddit', 'Instagram', 'Pinterest', 'LinkedIn', 'SnapChat', 'TikTok'] p['Social Media'] = [0.36, 0.27, 0.11, 0.09, 0.05, 0.03, 0.03, 0.03, 0.03] age = None # Lists of Names and the list of the lists categories = [movies, religion, music, politics, social, sports, age] names = ['Movies','Religion', 'Music', 'Politics', 'Social Media', 'Sports', 'Age'] combined = dict(zip(names, categories)) ## Interactive Section st.title("Machine Learning Model for Dating App Demo for AppSynergy") st.header("Finding a Partner with AI Using NaiveBayes, KNN and SVM") st.write("Use Machine Learning to Find the Top 3 Dating Profile Matches") image = Image.open('roshan_graffiti.png') st.image(image, use_column_width=True) new_profile =
pd.DataFrame(columns=df.columns, index=[df.index[-1]+1])
pandas.DataFrame
'''This file holds all relevant functions necessary for starting the data analysis. An object class for all account data is established, which will hold the raw data after import, the processed data and all subdata configuration necessary for plotting. The account data is provided through the account identification process in account_ident.py Necessary functions for holiday extraction, roundies calculation as well as merging and cashbook linkage are provided in the Accounts class Excel file is exported at the end exported.''' import datetime import locale import os import platform import numpy as np import pandas as pd from basefunctions import account_ident if platform.system() == 'Windows': locale.setlocale(locale.LC_ALL, 'German') FOLDER_SEP = '\\' elif platform.system() == 'Darwin': locale.setlocale(locale.LC_ALL, 'de_DE.utf-8') FOLDER_SEP = '/' else: locale.setlocale(locale.LC_ALL, 'de_DE.utf8') FOLDER_SEP = '/' #_______________________________________ read in longterm data for training machine learning algorithm _______________ def longtermdata_import(path, decrypt_success): if decrypt_success: longterm_data = pd.read_csv(path, sep=';', parse_dates=[0, 1]) else: empty_dataframe = {'time1':np.datetime64, 'time2':np.datetime64, 'act':str, 'text':str, 'val':float, 'month':str, 'cat':str, 'main cat':str, 'acc_name':str} longterm_data = pd.DataFrame(columns=empty_dataframe.keys()).astype(empty_dataframe) #extract saved account names in longterm_data saved_accnames = list(longterm_data['acc_name'].unique()) saved_dataframe = {} #stored dataframes from import for account_name in saved_accnames: #iterate through list with indices saved_dataframe[account_name] = longterm_data.loc[longterm_data['acc_name'] == account_name] #get saved dataframes return saved_dataframe def longterm_export(path, saved_dataframe):#needs to be outside class in case program is closed before data integration longterm_data = pd.DataFrame(columns=['time1', 'time2', 'act', 'text', 'val', 'month', 'cat', 'main cat', 'acc_name']) for account_name in saved_dataframe.keys(): account_name_concat = saved_dataframe[account_name] account_name_concat['acc_name'] = account_name #set account name in dataframe to be saved longterm_data =
pd.concat([longterm_data, account_name_concat])
pandas.concat
#!/usr/bin/python3 # RNANet statistics # Developed by <NAME> & <NAME>, 2021 # This file computes additional geometric measures over the produced dataset, # and estimates their distribtuions through Gaussian mixture models. # THIS FILE IS NOT SUPPOSED TO BE RUN DIRECTLY. import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats as st import Bio, glob, json, os, random, sqlite3, warnings from Bio.PDB.MMCIFParser import MMCIFParser from Bio.PDB.vectors import Vector, calc_angle, calc_dihedral from multiprocessing import Pool, Value from pandas.core.common import SettingWithCopyWarning from setproctitle import setproctitle from sklearn.mixture import GaussianMixture from tqdm import tqdm from RNAnet import init_with_tqdm, trace_unhandled_exceptions, warn, notify runDir = os.getcwd() # This dic stores the number laws to use in the GMM to estimate each parameter's distribution. # If you do not want to trust this data, you can use the --rescan-nmodes option. # GMMs will be trained between 1 and 8 modes and the best model will be kept. modes_data = { # bonded distances, all-atom, common to all. Some are also used for HiRE-RNA. "C1'-C2'":3, "C2'-C3'":2, "C2'-O2'":2, "C3'-O3'":2, "C4'-C3'":2, "C4'-O4'":2, "C5'-C4'":2, "O3'-P":3, "O4'-C1'":3, "O5'-C5'":3, "P-O5'":3, "P-OP1":2, "P-OP2":2, # bonded distances, all-atom, purines "C4-C5":3, "C4-N9":2, "N3-C4":2, "C2-N3":2, "C2-N2":5, "N1-C2":3, "C6-N1":3, "C6-N6":3, "C6-O6":3, "C5-C6":2, "N7-C5":3, "C8-N7":2, "N9-C8":4, "C1'-N9":2, # bonded distances, all-atom, pyrimidines "C4-O4":2, "C4-N4":2, "C2-N1":1, "C2-O2":3, "N3-C2":4, "C4-N3":4, "C5-C4":2, "C6-C5":3, "N1-C6":2, "C1'-N1":2, # torsions, all atom "Alpha":3, "Beta":2, "Delta":2, "Epsilon":2, "Gamma":3, "Xhi":3, "Zeta":3, # Pyle, distances "C1'-P":3, "C4'-P":3, "P-C1'":3, "P-C4'":3, # Pyle, angles "C1'-P°-C1'°":3, "P-C1'-P°":2, # Pyle, torsions "Eta":1, "Theta":1, "Eta'":1, "Theta'":1, "Eta''":4, "Theta''":3, # HiRE-RNA, distances "C4'-P":3, "C4'-C1'":3, "C1'-B1":3, "B1-B2":2, # HiRE-RNA, angles "P-O5'-C5'":2, "O5'-C5'-C4'":1, "C5'-C4'-P":2, "C5'-C4'-C1'":2, "C4'-P-O5'":2, "C4'-C1'-B1":2, "C1'-C4'-P":2, "C1'-B1-B2":2, # HiRE-RNA, torsions "P-O5'-C5'-C4'":3, "O5'-C5'-C4'-P°":3, "O5'-C5'-C4'-C1'":3, "C5'-C4'-P°-O5'°":3, "C5'-C4'-C1'-B1":2, "C4'-P°-O5'°-C5'°":3, "C4'-C1'-B1-B2":3, "C1'-C4'-P°-O5'°":3, # HiRE-RNA, basepairs "cWW_AA_tips_distance":3, "cWW_AA_C1'-B1-B1pair":1, "cWW_AA_B1-B1pair-C1'pair":1, "cWW_AA_C4'-C1'-B1-B1pair":2, "cWW_AA_B1-B1pair-C1'pair-C4'pair":3, "cWW_AA_alpha_1":2, "cWW_AA_alpha_2":3, "cWW_AA_dB1":3, "cWW_AA_dB2":3, "tWW_AA_tips_distance":1, "tWW_AA_C1'-B1-B1pair":1, "tWW_AA_B1-B1pair-C1'pair":1, "tWW_AA_C4'-C1'-B1-B1pair":2, "tWW_AA_B1-B1pair-C1'pair-C4'pair":3, "tWW_AA_alpha_1":2, "tWW_AA_alpha_2":1, "tWW_AA_dB1":1, "tWW_AA_dB2":2, "cWH_AA_tips_distance":3, "cWH_AA_C1'-B1-B1pair":2, "cWH_AA_B1-B1pair-C1'pair":2, "cWH_AA_C4'-C1'-B1-B1pair":2, "cWH_AA_B1-B1pair-C1'pair-C4'pair":2, "cWH_AA_alpha_1":1, "cWH_AA_alpha_2":2, "cWH_AA_dB1":3, "cWH_AA_dB2":2, "tWH_AA_tips_distance":3, "tWH_AA_C1'-B1-B1pair":1, "tWH_AA_B1-B1pair-C1'pair":3, "tWH_AA_C4'-C1'-B1-B1pair":2, "tWH_AA_B1-B1pair-C1'pair-C4'pair":2, "tWH_AA_alpha_1":1, "tWH_AA_alpha_2":3, "tWH_AA_dB1":2, "tWH_AA_dB2":1, "cHW_AA_tips_distance":1, "cHW_AA_C1'-B1-B1pair":2, "cHW_AA_B1-B1pair-C1'pair":2, "cHW_AA_C4'-C1'-B1-B1pair":3, "cHW_AA_B1-B1pair-C1'pair-C4'pair":2, "cHW_AA_alpha_1":2, "cHW_AA_alpha_2":2, "cHW_AA_dB1":3, "cHW_AA_dB2":2, "tHW_AA_tips_distance":4, "tHW_AA_C1'-B1-B1pair":2, "tHW_AA_B1-B1pair-C1'pair":2, "tHW_AA_C4'-C1'-B1-B1pair":2, "tHW_AA_B1-B1pair-C1'pair-C4'pair":2, "tHW_AA_alpha_1":2, "tHW_AA_alpha_2":1, "tHW_AA_dB1":2, "tHW_AA_dB2":1, "cWS_AA_tips_distance":2, "cWS_AA_C1'-B1-B1pair":2, "cWS_AA_B1-B1pair-C1'pair":2, "cWS_AA_C4'-C1'-B1-B1pair":2, "cWS_AA_B1-B1pair-C1'pair-C4'pair":1, "cWS_AA_alpha_1":2, "cWS_AA_alpha_2":2, "cWS_AA_dB1":2, "cWS_AA_dB2":1, "tWS_AA_tips_distance":2, "tWS_AA_C1'-B1-B1pair":2, "tWS_AA_B1-B1pair-C1'pair":2, "tWS_AA_C4'-C1'-B1-B1pair":3, "tWS_AA_B1-B1pair-C1'pair-C4'pair":1, "tWS_AA_alpha_1":2, "tWS_AA_alpha_2":2, "tWS_AA_dB1":2, "tWS_AA_dB2":3, "cSW_AA_tips_distance":3, "cSW_AA_C1'-B1-B1pair":3, "cSW_AA_B1-B1pair-C1'pair":2, "cSW_AA_C4'-C1'-B1-B1pair":1, "cSW_AA_B1-B1pair-C1'pair-C4'pair":2, "cSW_AA_alpha_1":2, "cSW_AA_alpha_2":2, "cSW_AA_dB1":1, "cSW_AA_dB2":1, "tSW_AA_tips_distance":3, "tSW_AA_C1'-B1-B1pair":3, "tSW_AA_B1-B1pair-C1'pair":3, "tSW_AA_C4'-C1'-B1-B1pair":2, "tSW_AA_B1-B1pair-C1'pair-C4'pair":2, "tSW_AA_alpha_1":2, "tSW_AA_alpha_2":2, "tSW_AA_dB1":2, "tSW_AA_dB2":2, "cHH_AA_tips_distance":4, "cHH_AA_C1'-B1-B1pair":2, "cHH_AA_B1-B1pair-C1'pair":3, "cHH_AA_C4'-C1'-B1-B1pair":3, "cHH_AA_B1-B1pair-C1'pair-C4'pair":3, "cHH_AA_alpha_1":2, "cHH_AA_alpha_2":3, "cHH_AA_dB1":3, "cHH_AA_dB2":1, "tHH_AA_tips_distance":2, "tHH_AA_C1'-B1-B1pair":2, "tHH_AA_B1-B1pair-C1'pair":2, "tHH_AA_C4'-C1'-B1-B1pair":3, "tHH_AA_B1-B1pair-C1'pair-C4'pair":1, "tHH_AA_alpha_1":2, "tHH_AA_alpha_2":2, "tHH_AA_dB1":2, "tHH_AA_dB2":2, "cSH_AA_tips_distance":2, "cSH_AA_C1'-B1-B1pair":2, "cSH_AA_B1-B1pair-C1'pair":1, "cSH_AA_C4'-C1'-B1-B1pair":3, "cSH_AA_B1-B1pair-C1'pair-C4'pair":2, "cSH_AA_alpha_1":2, "cSH_AA_alpha_2":2, "cSH_AA_dB1":4, "cSH_AA_dB2":1, "tSH_AA_tips_distance":2, "tSH_AA_C1'-B1-B1pair":1, "tSH_AA_B1-B1pair-C1'pair":2, "tSH_AA_C4'-C1'-B1-B1pair":2, "tSH_AA_B1-B1pair-C1'pair-C4'pair":2, "tSH_AA_alpha_1":2, "tSH_AA_alpha_2":3, "tSH_AA_dB1":2, "tSH_AA_dB2":2, "cHS_AA_tips_distance":3, "cHS_AA_C1'-B1-B1pair":2, "cHS_AA_B1-B1pair-C1'pair":2, "cHS_AA_C4'-C1'-B1-B1pair":2, "cHS_AA_B1-B1pair-C1'pair-C4'pair":1, "cHS_AA_alpha_1":2, "cHS_AA_alpha_2":2, "cHS_AA_dB1":1, "cHS_AA_dB2":4, "tHS_AA_tips_distance":4, "tHS_AA_C1'-B1-B1pair":2, "tHS_AA_B1-B1pair-C1'pair":2, "tHS_AA_C4'-C1'-B1-B1pair":2, "tHS_AA_B1-B1pair-C1'pair-C4'pair":1, "tHS_AA_alpha_1":2, "tHS_AA_alpha_2":1, "tHS_AA_dB1":2, "tHS_AA_dB2":1, "cSS_AA_tips_distance":6, "cSS_AA_C1'-B1-B1pair":3, "cSS_AA_B1-B1pair-C1'pair":3, "cSS_AA_C4'-C1'-B1-B1pair":2, "cSS_AA_B1-B1pair-C1'pair-C4'pair":2, "cSS_AA_alpha_1":3, "cSS_AA_alpha_2":3, "cSS_AA_dB1":3, "cSS_AA_dB2":5, "tSS_AA_tips_distance":5, "tSS_AA_C1'-B1-B1pair":1, "tSS_AA_B1-B1pair-C1'pair":1, "tSS_AA_C4'-C1'-B1-B1pair":2, "tSS_AA_B1-B1pair-C1'pair-C4'pair":1, "tSS_AA_alpha_1":3, "tSS_AA_alpha_2":1, "tSS_AA_dB1":4, "tSS_AA_dB2":2, "cWW_AC_tips_distance":2, "cWW_AC_C1'-B1-B1pair":1, "cWW_AC_B1-B1pair-C1'pair":2, "cWW_AC_C4'-C1'-B1-B1pair":2, "cWW_AC_B1-B1pair-C1'pair-C4'pair":2, "cWW_AC_alpha_1":1, "cWW_AC_alpha_2":2, "cWW_AC_dB1":3, "cWW_AC_dB2":3, "tWW_AC_tips_distance":2, "tWW_AC_C1'-B1-B1pair":3, "tWW_AC_B1-B1pair-C1'pair":2, "tWW_AC_C4'-C1'-B1-B1pair":3, "tWW_AC_B1-B1pair-C1'pair-C4'pair":3, "tWW_AC_alpha_1":3, "tWW_AC_alpha_2":2, "tWW_AC_dB1":4, "tWW_AC_dB2":3, "cWH_AC_tips_distance":5, "cWH_AC_C1'-B1-B1pair":2, "cWH_AC_B1-B1pair-C1'pair":2, "cWH_AC_C4'-C1'-B1-B1pair":1, "cWH_AC_B1-B1pair-C1'pair-C4'pair":2, "cWH_AC_alpha_1":2, "cWH_AC_alpha_2":2, "cWH_AC_dB1":4, "cWH_AC_dB2":4, "tWH_AC_tips_distance":8, "tWH_AC_C1'-B1-B1pair":1, "tWH_AC_B1-B1pair-C1'pair":2, "tWH_AC_C4'-C1'-B1-B1pair":2, "tWH_AC_B1-B1pair-C1'pair-C4'pair":3, "tWH_AC_alpha_1":2, "tWH_AC_alpha_2":2, "tWH_AC_dB1":3, "tWH_AC_dB2":3, "cHW_AC_tips_distance":2, "cHW_AC_C1'-B1-B1pair":2, "cHW_AC_B1-B1pair-C1'pair":2, "cHW_AC_C4'-C1'-B1-B1pair":3, "cHW_AC_B1-B1pair-C1'pair-C4'pair":2, "cHW_AC_alpha_1":2, "cHW_AC_alpha_2":3, "cHW_AC_dB1":2, "cHW_AC_dB2":5, "tHW_AC_tips_distance":3, "tHW_AC_C1'-B1-B1pair":2, "tHW_AC_B1-B1pair-C1'pair":3, "tHW_AC_C4'-C1'-B1-B1pair":3, "tHW_AC_B1-B1pair-C1'pair-C4'pair":2, "tHW_AC_alpha_1":2, "tHW_AC_alpha_2":2, "tHW_AC_dB1":3, "tHW_AC_dB2":3, "cWS_AC_tips_distance":3, "cWS_AC_C1'-B1-B1pair":2, "cWS_AC_B1-B1pair-C1'pair":1, "cWS_AC_C4'-C1'-B1-B1pair":2, "cWS_AC_B1-B1pair-C1'pair-C4'pair":1, "cWS_AC_alpha_1":2, "cWS_AC_alpha_2":1, "cWS_AC_dB1":1, "cWS_AC_dB2":1, "tWS_AC_tips_distance":4, "tWS_AC_C1'-B1-B1pair":2, "tWS_AC_B1-B1pair-C1'pair":1, "tWS_AC_C4'-C1'-B1-B1pair":2, "tWS_AC_B1-B1pair-C1'pair-C4'pair":2, "tWS_AC_alpha_1":3, "tWS_AC_alpha_2":1, "tWS_AC_dB1":3, "tWS_AC_dB2":2, "cSW_AC_tips_distance":6, "cSW_AC_C1'-B1-B1pair":2, "cSW_AC_B1-B1pair-C1'pair":2, "cSW_AC_C4'-C1'-B1-B1pair":2, "cSW_AC_B1-B1pair-C1'pair-C4'pair":2, "cSW_AC_alpha_1":3, "cSW_AC_alpha_2":2, "cSW_AC_dB1":2, "cSW_AC_dB2":3, "tSW_AC_tips_distance":5, "tSW_AC_C1'-B1-B1pair":1, "tSW_AC_B1-B1pair-C1'pair":2, "tSW_AC_C4'-C1'-B1-B1pair":1, "tSW_AC_B1-B1pair-C1'pair-C4'pair":2, "tSW_AC_alpha_1":1, "tSW_AC_alpha_2":2, "tSW_AC_dB1":2, "tSW_AC_dB2":3, "cHH_AC_tips_distance":5, "cHH_AC_C1'-B1-B1pair":2, "cHH_AC_B1-B1pair-C1'pair":2, "cHH_AC_C4'-C1'-B1-B1pair":2, "cHH_AC_B1-B1pair-C1'pair-C4'pair":1, "cHH_AC_alpha_1":3, "cHH_AC_alpha_2":3, "cHH_AC_dB1":3, "cHH_AC_dB2":4, "tHH_AC_tips_distance":4, "tHH_AC_C1'-B1-B1pair":1, "tHH_AC_B1-B1pair-C1'pair":2, "tHH_AC_C4'-C1'-B1-B1pair":2, "tHH_AC_B1-B1pair-C1'pair-C4'pair":3, "tHH_AC_alpha_1":2, "tHH_AC_alpha_2":2, "tHH_AC_dB1":4, "tHH_AC_dB2":3, "cSH_AC_tips_distance":3, "cSH_AC_C1'-B1-B1pair":1, "cSH_AC_B1-B1pair-C1'pair":3, "cSH_AC_C4'-C1'-B1-B1pair":1, "cSH_AC_B1-B1pair-C1'pair-C4'pair":2, "cSH_AC_alpha_1":1, "cSH_AC_alpha_2":1, "cSH_AC_dB1":2, "cSH_AC_dB2":6, "tSH_AC_tips_distance":8, "tSH_AC_C1'-B1-B1pair":3, "tSH_AC_B1-B1pair-C1'pair":2, "tSH_AC_C4'-C1'-B1-B1pair":1, "tSH_AC_B1-B1pair-C1'pair-C4'pair":2, "tSH_AC_alpha_1":2, "tSH_AC_alpha_2":3, "tSH_AC_dB1":1, "tSH_AC_dB2":2, "cHS_AC_tips_distance":4, "cHS_AC_C1'-B1-B1pair":1, "cHS_AC_B1-B1pair-C1'pair":1, "cHS_AC_C4'-C1'-B1-B1pair":2, "cHS_AC_B1-B1pair-C1'pair-C4'pair":1, "cHS_AC_alpha_1":1, "cHS_AC_alpha_2":1, "cHS_AC_dB1":3, "cHS_AC_dB2":2, "tHS_AC_tips_distance":8, "tHS_AC_C1'-B1-B1pair":1, "tHS_AC_B1-B1pair-C1'pair":2, "tHS_AC_C4'-C1'-B1-B1pair":2, "tHS_AC_B1-B1pair-C1'pair-C4'pair":2, "tHS_AC_alpha_1":1, "tHS_AC_alpha_2":1, "tHS_AC_dB1":1, "tHS_AC_dB2":1, "cSS_AC_tips_distance":2, "cSS_AC_C1'-B1-B1pair":2, "cSS_AC_B1-B1pair-C1'pair":2, "cSS_AC_C4'-C1'-B1-B1pair":1, "cSS_AC_B1-B1pair-C1'pair-C4'pair":1, "cSS_AC_alpha_1":2, "cSS_AC_alpha_2":1, "cSS_AC_dB1":1, "cSS_AC_dB2":5, "tSS_AC_tips_distance":5, "tSS_AC_C1'-B1-B1pair":2, "tSS_AC_B1-B1pair-C1'pair":2, "tSS_AC_C4'-C1'-B1-B1pair":1, "tSS_AC_B1-B1pair-C1'pair-C4'pair":2, "tSS_AC_alpha_1":2, "tSS_AC_alpha_2":2, "tSS_AC_dB1":3, "tSS_AC_dB2":5, "cWW_AG_tips_distance":3, "cWW_AG_C1'-B1-B1pair":1, "cWW_AG_B1-B1pair-C1'pair":1, "cWW_AG_C4'-C1'-B1-B1pair":2, "cWW_AG_B1-B1pair-C1'pair-C4'pair":2, "cWW_AG_alpha_1":1, "cWW_AG_alpha_2":1, "cWW_AG_dB1":1, "cWW_AG_dB2":1, "tWW_AG_tips_distance":5, "tWW_AG_C1'-B1-B1pair":1, "tWW_AG_B1-B1pair-C1'pair":1, "tWW_AG_C4'-C1'-B1-B1pair":2, "tWW_AG_B1-B1pair-C1'pair-C4'pair":2, "tWW_AG_alpha_1":2, "tWW_AG_alpha_2":2, "tWW_AG_dB1":2, "tWW_AG_dB2":3, "cWH_AG_tips_distance":4, "cWH_AG_C1'-B1-B1pair":1, "cWH_AG_B1-B1pair-C1'pair":1, "cWH_AG_C4'-C1'-B1-B1pair":2, "cWH_AG_B1-B1pair-C1'pair-C4'pair":2, "cWH_AG_alpha_1":3, "cWH_AG_alpha_2":1, "cWH_AG_dB1":2, "cWH_AG_dB2":1, "tWH_AG_tips_distance":3, "tWH_AG_C1'-B1-B1pair":1, "tWH_AG_B1-B1pair-C1'pair":1, "tWH_AG_C4'-C1'-B1-B1pair":2, "tWH_AG_B1-B1pair-C1'pair-C4'pair":2, "tWH_AG_alpha_1":2, "tWH_AG_alpha_2":1, "tWH_AG_dB1":2, "tWH_AG_dB2":1, "cHW_AG_tips_distance":2, "cHW_AG_C1'-B1-B1pair":2, "cHW_AG_B1-B1pair-C1'pair":1, "cHW_AG_C4'-C1'-B1-B1pair":2, "cHW_AG_B1-B1pair-C1'pair-C4'pair":1, "cHW_AG_alpha_1":1, "cHW_AG_alpha_2":2, "cHW_AG_dB1":2, "cHW_AG_dB2":2, "tHW_AG_tips_distance":3, "tHW_AG_C1'-B1-B1pair":2, "tHW_AG_B1-B1pair-C1'pair":2, "tHW_AG_C4'-C1'-B1-B1pair":2, "tHW_AG_B1-B1pair-C1'pair-C4'pair":2, "tHW_AG_alpha_1":2, "tHW_AG_alpha_2":2, "tHW_AG_dB1":2, "tHW_AG_dB2":2, "cWS_AG_tips_distance":1, "cWS_AG_C1'-B1-B1pair":3, "cWS_AG_B1-B1pair-C1'pair":1, "cWS_AG_C4'-C1'-B1-B1pair":1, "cWS_AG_B1-B1pair-C1'pair-C4'pair":1, "cWS_AG_alpha_1":2, "cWS_AG_alpha_2":2, "cWS_AG_dB1":2, "cWS_AG_dB2":1, "tWS_AG_tips_distance":6, "tWS_AG_C1'-B1-B1pair":1, "tWS_AG_B1-B1pair-C1'pair":2, "tWS_AG_C4'-C1'-B1-B1pair":2, "tWS_AG_B1-B1pair-C1'pair-C4'pair":1, "tWS_AG_alpha_1":2, "tWS_AG_alpha_2":2, "tWS_AG_dB1":1, "tWS_AG_dB2":3, "cSW_AG_tips_distance":4, "cSW_AG_C1'-B1-B1pair":1, "cSW_AG_B1-B1pair-C1'pair":2, "cSW_AG_C4'-C1'-B1-B1pair":1, "cSW_AG_B1-B1pair-C1'pair-C4'pair":2, "cSW_AG_alpha_1":1, "cSW_AG_alpha_2":2, "cSW_AG_dB1":3, "cSW_AG_dB2":1, "tSW_AG_tips_distance":7, "tSW_AG_C1'-B1-B1pair":3, "tSW_AG_B1-B1pair-C1'pair":2, "tSW_AG_C4'-C1'-B1-B1pair":2, "tSW_AG_B1-B1pair-C1'pair-C4'pair":2, "tSW_AG_alpha_1":2, "tSW_AG_alpha_2":2, "tSW_AG_dB1":3, "tSW_AG_dB2":3, "cHH_AG_tips_distance":2, "cHH_AG_C1'-B1-B1pair":2, "cHH_AG_B1-B1pair-C1'pair":4, "cHH_AG_C4'-C1'-B1-B1pair":3, "cHH_AG_B1-B1pair-C1'pair-C4'pair":2, "cHH_AG_alpha_1":2, "cHH_AG_alpha_2":3, "cHH_AG_dB1":1, "cHH_AG_dB2":2, "tHH_AG_tips_distance":8, "tHH_AG_C1'-B1-B1pair":3, "tHH_AG_B1-B1pair-C1'pair":3, "tHH_AG_C4'-C1'-B1-B1pair":3, "tHH_AG_B1-B1pair-C1'pair-C4'pair":2, "tHH_AG_alpha_1":3, "tHH_AG_alpha_2":3, "tHH_AG_dB1":1, "tHH_AG_dB2":2, "cSH_AG_tips_distance":5, "cSH_AG_C1'-B1-B1pair":2, "cSH_AG_B1-B1pair-C1'pair":2, "cSH_AG_C4'-C1'-B1-B1pair":2, "cSH_AG_B1-B1pair-C1'pair-C4'pair":2, "cSH_AG_alpha_1":3, "cSH_AG_alpha_2":1, "cSH_AG_dB1":1, "cSH_AG_dB2":3, "tSH_AG_tips_distance":5, "tSH_AG_C1'-B1-B1pair":2, "tSH_AG_B1-B1pair-C1'pair":2, "tSH_AG_C4'-C1'-B1-B1pair":2, "tSH_AG_B1-B1pair-C1'pair-C4'pair":3, "tSH_AG_alpha_1":2, "tSH_AG_alpha_2":4, "tSH_AG_dB1":3, "tSH_AG_dB2":2, "cHS_AG_tips_distance":1, "cHS_AG_C1'-B1-B1pair":3, "cHS_AG_B1-B1pair-C1'pair":1, "cHS_AG_C4'-C1'-B1-B1pair":3, "cHS_AG_B1-B1pair-C1'pair-C4'pair":1, "cHS_AG_alpha_1":2, "cHS_AG_alpha_2":3, "cHS_AG_dB1":1, "cHS_AG_dB2":2, "tHS_AG_tips_distance":6, "tHS_AG_C1'-B1-B1pair":1, "tHS_AG_B1-B1pair-C1'pair":2, "tHS_AG_C4'-C1'-B1-B1pair":2, "tHS_AG_B1-B1pair-C1'pair-C4'pair":2, "tHS_AG_alpha_1":1, "tHS_AG_alpha_2":2, "tHS_AG_dB1":2, "tHS_AG_dB2":1, "cSS_AG_tips_distance":2, "cSS_AG_C1'-B1-B1pair":2, "cSS_AG_B1-B1pair-C1'pair":2, "cSS_AG_C4'-C1'-B1-B1pair":2, "cSS_AG_B1-B1pair-C1'pair-C4'pair":1, "cSS_AG_alpha_1":2, "cSS_AG_alpha_2":1, "cSS_AG_dB1":2, "cSS_AG_dB2":4, "tSS_AG_tips_distance":4, "tSS_AG_C1'-B1-B1pair":3, "tSS_AG_B1-B1pair-C1'pair":1, "tSS_AG_C4'-C1'-B1-B1pair":2, "tSS_AG_B1-B1pair-C1'pair-C4'pair":1, "tSS_AG_alpha_1":2, "tSS_AG_alpha_2":1, "tSS_AG_dB1":2, "tSS_AG_dB2":4, "cWW_AU_tips_distance":3, "cWW_AU_C1'-B1-B1pair":1, "cWW_AU_B1-B1pair-C1'pair":2, "cWW_AU_C4'-C1'-B1-B1pair":3, "cWW_AU_B1-B1pair-C1'pair-C4'pair":2, "cWW_AU_alpha_1":3, "cWW_AU_alpha_2":1, "cWW_AU_dB1":4, "cWW_AU_dB2":2, "tWW_AU_tips_distance":3, "tWW_AU_C1'-B1-B1pair":3, "tWW_AU_B1-B1pair-C1'pair":3, "tWW_AU_C4'-C1'-B1-B1pair":2, "tWW_AU_B1-B1pair-C1'pair-C4'pair":2, "tWW_AU_alpha_1":3, "tWW_AU_alpha_2":2, "tWW_AU_dB1":3, "tWW_AU_dB2":2, "cWH_AU_tips_distance":5, "cWH_AU_C1'-B1-B1pair":2, "cWH_AU_B1-B1pair-C1'pair":2, "cWH_AU_C4'-C1'-B1-B1pair":2, "cWH_AU_B1-B1pair-C1'pair-C4'pair":2, "cWH_AU_alpha_1":1, "cWH_AU_alpha_2":3, "cWH_AU_dB1":3, "cWH_AU_dB2":3, "tWH_AU_tips_distance":6, "tWH_AU_C1'-B1-B1pair":1, "tWH_AU_B1-B1pair-C1'pair":3, "tWH_AU_C4'-C1'-B1-B1pair":2, "tWH_AU_B1-B1pair-C1'pair-C4'pair":2, "tWH_AU_alpha_1":2, "tWH_AU_alpha_2":2, "tWH_AU_dB1":1, "tWH_AU_dB2":3, "cHW_AU_tips_distance":3, "cHW_AU_C1'-B1-B1pair":3, "cHW_AU_B1-B1pair-C1'pair":3, "cHW_AU_C4'-C1'-B1-B1pair":2, "cHW_AU_B1-B1pair-C1'pair-C4'pair":2, "cHW_AU_alpha_1":1, "cHW_AU_alpha_2":2, "cHW_AU_dB1":2, "cHW_AU_dB2":2, "tHW_AU_tips_distance":3, "tHW_AU_C1'-B1-B1pair":2, "tHW_AU_B1-B1pair-C1'pair":2, "tHW_AU_C4'-C1'-B1-B1pair":2, "tHW_AU_B1-B1pair-C1'pair-C4'pair":2, "tHW_AU_alpha_1":2, "tHW_AU_alpha_2":1, "tHW_AU_dB1":1, "tHW_AU_dB2":4, "cWS_AU_tips_distance":2, "cWS_AU_C1'-B1-B1pair":1, "cWS_AU_B1-B1pair-C1'pair":1, "cWS_AU_C4'-C1'-B1-B1pair":2, "cWS_AU_B1-B1pair-C1'pair-C4'pair":1, "cWS_AU_alpha_1":2, "cWS_AU_alpha_2":2, "cWS_AU_dB1":2, "cWS_AU_dB2":5, "tWS_AU_tips_distance":2, "tWS_AU_C1'-B1-B1pair":2, "tWS_AU_B1-B1pair-C1'pair":2, "tWS_AU_C4'-C1'-B1-B1pair":2, "tWS_AU_B1-B1pair-C1'pair-C4'pair":1, "tWS_AU_alpha_1":2, "tWS_AU_alpha_2":2, "tWS_AU_dB1":3, "tWS_AU_dB2":4, "cSW_AU_tips_distance":2, "cSW_AU_C1'-B1-B1pair":3, "cSW_AU_B1-B1pair-C1'pair":2, "cSW_AU_C4'-C1'-B1-B1pair":2, "cSW_AU_B1-B1pair-C1'pair-C4'pair":2, "cSW_AU_alpha_1":3, "cSW_AU_alpha_2":2, "cSW_AU_dB1":2, "cSW_AU_dB2":3, "tSW_AU_tips_distance":3, "tSW_AU_C1'-B1-B1pair":2, "tSW_AU_B1-B1pair-C1'pair":3, "tSW_AU_C4'-C1'-B1-B1pair":3, "tSW_AU_B1-B1pair-C1'pair-C4'pair":2, "tSW_AU_alpha_1":2, "tSW_AU_alpha_2":1, "tSW_AU_dB1":3, "tSW_AU_dB2":4, "cHH_AU_tips_distance":6, "cHH_AU_C1'-B1-B1pair":2, "cHH_AU_B1-B1pair-C1'pair":1, "cHH_AU_C4'-C1'-B1-B1pair":2, "cHH_AU_B1-B1pair-C1'pair-C4'pair":1, "cHH_AU_alpha_1":2, "cHH_AU_alpha_2":2, "cHH_AU_dB1":1, "cHH_AU_dB2":2, "tHH_AU_tips_distance":8, "tHH_AU_C1'-B1-B1pair":3, "tHH_AU_B1-B1pair-C1'pair":3, "tHH_AU_C4'-C1'-B1-B1pair":3, "tHH_AU_B1-B1pair-C1'pair-C4'pair":2, "tHH_AU_alpha_1":3, "tHH_AU_alpha_2":3, "tHH_AU_dB1":1, "tHH_AU_dB2":3, "cSH_AU_tips_distance":5, "cSH_AU_C1'-B1-B1pair":1, "cSH_AU_B1-B1pair-C1'pair":3, "cSH_AU_C4'-C1'-B1-B1pair":3, "cSH_AU_B1-B1pair-C1'pair-C4'pair":2, "cSH_AU_alpha_1":2, "cSH_AU_alpha_2":1, "cSH_AU_dB1":4, "cSH_AU_dB2":4, "tSH_AU_tips_distance":5, "tSH_AU_C1'-B1-B1pair":3, "tSH_AU_B1-B1pair-C1'pair":1, "tSH_AU_C4'-C1'-B1-B1pair":1, "tSH_AU_B1-B1pair-C1'pair-C4'pair":2, "tSH_AU_alpha_1":3, "tSH_AU_alpha_2":3, "tSH_AU_dB1":3, "tSH_AU_dB2":4, "cHS_AU_tips_distance":2, "cHS_AU_C1'-B1-B1pair":3, "cHS_AU_B1-B1pair-C1'pair":1, "cHS_AU_C4'-C1'-B1-B1pair":2, "cHS_AU_B1-B1pair-C1'pair-C4'pair":2, "cHS_AU_alpha_1":2, "cHS_AU_alpha_2":2, "cHS_AU_dB1":1, "cHS_AU_dB2":3, "tHS_AU_tips_distance":2, "tHS_AU_C1'-B1-B1pair":2, "tHS_AU_B1-B1pair-C1'pair":2, "tHS_AU_C4'-C1'-B1-B1pair":2, "tHS_AU_B1-B1pair-C1'pair-C4'pair":3, "tHS_AU_alpha_1":3, "tHS_AU_alpha_2":2, "tHS_AU_dB1":3, "tHS_AU_dB2":3, "cSS_AU_tips_distance":3, "cSS_AU_C1'-B1-B1pair":2, "cSS_AU_B1-B1pair-C1'pair":2, "cSS_AU_C4'-C1'-B1-B1pair":1, "cSS_AU_B1-B1pair-C1'pair-C4'pair":2, "cSS_AU_alpha_1":3, "cSS_AU_alpha_2":2, "cSS_AU_dB1":1, "cSS_AU_dB2":4, "tSS_AU_tips_distance":5, "tSS_AU_C1'-B1-B1pair":2, "tSS_AU_B1-B1pair-C1'pair":1, "tSS_AU_C4'-C1'-B1-B1pair":3, "tSS_AU_B1-B1pair-C1'pair-C4'pair":2, "tSS_AU_alpha_1":2, "tSS_AU_alpha_2":3, "tSS_AU_dB1":3, "tSS_AU_dB2":8, "cWW_CA_tips_distance":2, "cWW_CA_C1'-B1-B1pair":2, "cWW_CA_B1-B1pair-C1'pair":1, "cWW_CA_C4'-C1'-B1-B1pair":2, "cWW_CA_B1-B1pair-C1'pair-C4'pair":2, "cWW_CA_alpha_1":1, "cWW_CA_alpha_2":2, "cWW_CA_dB1":1, "cWW_CA_dB2":1, "tWW_CA_tips_distance":4, "tWW_CA_C1'-B1-B1pair":2, "tWW_CA_B1-B1pair-C1'pair":2, "tWW_CA_C4'-C1'-B1-B1pair":3, "tWW_CA_B1-B1pair-C1'pair-C4'pair":2, "tWW_CA_alpha_1":2, "tWW_CA_alpha_2":1, "tWW_CA_dB1":4, "tWW_CA_dB2":2, "cWH_CA_tips_distance":3, "cWH_CA_C1'-B1-B1pair":3, "cWH_CA_B1-B1pair-C1'pair":2, "cWH_CA_C4'-C1'-B1-B1pair":2, "cWH_CA_B1-B1pair-C1'pair-C4'pair":3, "cWH_CA_alpha_1":3, "cWH_CA_alpha_2":2, "cWH_CA_dB1":5, "cWH_CA_dB2":2, "tWH_CA_tips_distance":5, "tWH_CA_C1'-B1-B1pair":1, "tWH_CA_B1-B1pair-C1'pair":1, "tWH_CA_C4'-C1'-B1-B1pair":2, "tWH_CA_B1-B1pair-C1'pair-C4'pair":2, "tWH_CA_alpha_1":3, "tWH_CA_alpha_2":1, "tWH_CA_dB1":3, "tWH_CA_dB2":2, "cHW_CA_tips_distance":2, "cHW_CA_C1'-B1-B1pair":2, "cHW_CA_B1-B1pair-C1'pair":2, "cHW_CA_C4'-C1'-B1-B1pair":2, "cHW_CA_B1-B1pair-C1'pair-C4'pair":2, "cHW_CA_alpha_1":2, "cHW_CA_alpha_2":2, "cHW_CA_dB1":4, "cHW_CA_dB2":2, "tHW_CA_tips_distance":2, "tHW_CA_C1'-B1-B1pair":2, "tHW_CA_B1-B1pair-C1'pair":2, "tHW_CA_C4'-C1'-B1-B1pair":2, "tHW_CA_B1-B1pair-C1'pair-C4'pair":2, "tHW_CA_alpha_1":2, "tHW_CA_alpha_2":2, "tHW_CA_dB1":6, "tHW_CA_dB2":2, "cWS_CA_tips_distance":2, "cWS_CA_C1'-B1-B1pair":2, "cWS_CA_B1-B1pair-C1'pair":2, "cWS_CA_C4'-C1'-B1-B1pair":2, "cWS_CA_B1-B1pair-C1'pair-C4'pair":1, "cWS_CA_alpha_1":2, "cWS_CA_alpha_2":2, "cWS_CA_dB1":4, "cWS_CA_dB2":2, "tWS_CA_tips_distance":5, "tWS_CA_C1'-B1-B1pair":3, "tWS_CA_B1-B1pair-C1'pair":1, "tWS_CA_C4'-C1'-B1-B1pair":3, "tWS_CA_B1-B1pair-C1'pair-C4'pair":2, "tWS_CA_alpha_1":3, "tWS_CA_alpha_2":1, "tWS_CA_dB1":1, "tWS_CA_dB2":1, "cSW_CA_tips_distance":1, "cSW_CA_C1'-B1-B1pair":1, "cSW_CA_B1-B1pair-C1'pair":1, "cSW_CA_C4'-C1'-B1-B1pair":1, "cSW_CA_B1-B1pair-C1'pair-C4'pair":2, "cSW_CA_alpha_1":1, "cSW_CA_alpha_2":3, "cSW_CA_dB1":1, "cSW_CA_dB2":1, "tSW_CA_tips_distance":3, "tSW_CA_C1'-B1-B1pair":2, "tSW_CA_B1-B1pair-C1'pair":2, "tSW_CA_C4'-C1'-B1-B1pair":1, "tSW_CA_B1-B1pair-C1'pair-C4'pair":1, "tSW_CA_alpha_1":2, "tSW_CA_alpha_2":3, "tSW_CA_dB1":3, "tSW_CA_dB2":1, "cHH_CA_tips_distance":5, "cHH_CA_C1'-B1-B1pair":2, "cHH_CA_B1-B1pair-C1'pair":1, "cHH_CA_C4'-C1'-B1-B1pair":3, "cHH_CA_B1-B1pair-C1'pair-C4'pair":1, "cHH_CA_alpha_1":2, "cHH_CA_alpha_2":1, "cHH_CA_dB1":1, "cHH_CA_dB2":2, "tHH_CA_tips_distance":1, "tHH_CA_C1'-B1-B1pair":2, "tHH_CA_B1-B1pair-C1'pair":2, "tHH_CA_C4'-C1'-B1-B1pair":3, "tHH_CA_B1-B1pair-C1'pair-C4'pair":3, "tHH_CA_alpha_1":2, "tHH_CA_alpha_2":1, "tHH_CA_dB1":3, "tHH_CA_dB2":5, "cSH_CA_tips_distance":3, "cSH_CA_C1'-B1-B1pair":1, "cSH_CA_B1-B1pair-C1'pair":3, "cSH_CA_C4'-C1'-B1-B1pair":2, "cSH_CA_B1-B1pair-C1'pair-C4'pair":1, "cSH_CA_alpha_1":1, "cSH_CA_alpha_2":1, "cSH_CA_dB1":2, "cSH_CA_dB2":3, "tSH_CA_tips_distance":2, "tSH_CA_C1'-B1-B1pair":1, "tSH_CA_B1-B1pair-C1'pair":2, "tSH_CA_C4'-C1'-B1-B1pair":2, "tSH_CA_B1-B1pair-C1'pair-C4'pair":2, "tSH_CA_alpha_1":3, "tSH_CA_alpha_2":2, "tSH_CA_dB1":6, "tSH_CA_dB2":4, "cHS_CA_tips_distance":2, "cHS_CA_C1'-B1-B1pair":2, "cHS_CA_B1-B1pair-C1'pair":2, "cHS_CA_C4'-C1'-B1-B1pair":1, "cHS_CA_B1-B1pair-C1'pair-C4'pair":1, "cHS_CA_alpha_1":1, "cHS_CA_alpha_2":2, "cHS_CA_dB1":2, "cHS_CA_dB2":2, "tHS_CA_tips_distance":3, "tHS_CA_C1'-B1-B1pair":2, "tHS_CA_B1-B1pair-C1'pair":1, "tHS_CA_C4'-C1'-B1-B1pair":2, "tHS_CA_B1-B1pair-C1'pair-C4'pair":2, "tHS_CA_alpha_1":3, "tHS_CA_alpha_2":3, "tHS_CA_dB1":2, "tHS_CA_dB2":1, "cSS_CA_tips_distance":7, "cSS_CA_C1'-B1-B1pair":2, "cSS_CA_B1-B1pair-C1'pair":2, "cSS_CA_C4'-C1'-B1-B1pair":1, "cSS_CA_B1-B1pair-C1'pair-C4'pair":1, "cSS_CA_alpha_1":3, "cSS_CA_alpha_2":3, "cSS_CA_dB1":3, "cSS_CA_dB2":1, "tSS_CA_tips_distance":5, "tSS_CA_C1'-B1-B1pair":2, "tSS_CA_B1-B1pair-C1'pair":2, "tSS_CA_C4'-C1'-B1-B1pair":2, "tSS_CA_B1-B1pair-C1'pair-C4'pair":1, "tSS_CA_alpha_1":2, "tSS_CA_alpha_2":2, "tSS_CA_dB1":4, "tSS_CA_dB2":2, "cWW_CC_tips_distance":3, "cWW_CC_C1'-B1-B1pair":1, "cWW_CC_B1-B1pair-C1'pair":1, "cWW_CC_C4'-C1'-B1-B1pair":2, "cWW_CC_B1-B1pair-C1'pair-C4'pair":2, "cWW_CC_alpha_1":1, "cWW_CC_alpha_2":2, "cWW_CC_dB1":2, "cWW_CC_dB2":2, "tWW_CC_tips_distance":6, "tWW_CC_C1'-B1-B1pair":3, "tWW_CC_B1-B1pair-C1'pair":3, "tWW_CC_C4'-C1'-B1-B1pair":3, "tWW_CC_B1-B1pair-C1'pair-C4'pair":3, "tWW_CC_alpha_1":2, "tWW_CC_alpha_2":2, "tWW_CC_dB1":6, "tWW_CC_dB2":3, "cWH_CC_tips_distance":4, "cWH_CC_C1'-B1-B1pair":2, "cWH_CC_B1-B1pair-C1'pair":2, "cWH_CC_C4'-C1'-B1-B1pair":2, "cWH_CC_B1-B1pair-C1'pair-C4'pair":1, "cWH_CC_alpha_1":1, "cWH_CC_alpha_2":3, "cWH_CC_dB1":3, "cWH_CC_dB2":2, "tWH_CC_tips_distance":1, "tWH_CC_C1'-B1-B1pair":1, "tWH_CC_B1-B1pair-C1'pair":3, "tWH_CC_C4'-C1'-B1-B1pair":2, "tWH_CC_B1-B1pair-C1'pair-C4'pair":1, "tWH_CC_alpha_1":3, "tWH_CC_alpha_2":1, "tWH_CC_dB1":3, "tWH_CC_dB2":3, "cHW_CC_tips_distance":4, "cHW_CC_C1'-B1-B1pair":3, "cHW_CC_B1-B1pair-C1'pair":2, "cHW_CC_C4'-C1'-B1-B1pair":1, "cHW_CC_B1-B1pair-C1'pair-C4'pair":2, "cHW_CC_alpha_1":2, "cHW_CC_alpha_2":2, "cHW_CC_dB1":2, "cHW_CC_dB2":3, "tHW_CC_tips_distance":2, "tHW_CC_C1'-B1-B1pair":1, "tHW_CC_B1-B1pair-C1'pair":3, "tHW_CC_C4'-C1'-B1-B1pair":3, "tHW_CC_B1-B1pair-C1'pair-C4'pair":2, "tHW_CC_alpha_1":2, "tHW_CC_alpha_2":2, "tHW_CC_dB1":3, "tHW_CC_dB2":3, "cWS_CC_tips_distance":3, "cWS_CC_C1'-B1-B1pair":2, "cWS_CC_B1-B1pair-C1'pair":2, "cWS_CC_C4'-C1'-B1-B1pair":1, "cWS_CC_B1-B1pair-C1'pair-C4'pair":1, "cWS_CC_alpha_1":2, "cWS_CC_alpha_2":3, "cWS_CC_dB1":2, "cWS_CC_dB2":1, "tWS_CC_tips_distance":5, "tWS_CC_C1'-B1-B1pair":2, "tWS_CC_B1-B1pair-C1'pair":2, "tWS_CC_C4'-C1'-B1-B1pair":2, "tWS_CC_B1-B1pair-C1'pair-C4'pair":1, "tWS_CC_alpha_1":2, "tWS_CC_alpha_2":2, "tWS_CC_dB1":2, "tWS_CC_dB2":2, "cSW_CC_tips_distance":3, "cSW_CC_C1'-B1-B1pair":2, "cSW_CC_B1-B1pair-C1'pair":2, "cSW_CC_C4'-C1'-B1-B1pair":2, "cSW_CC_B1-B1pair-C1'pair-C4'pair":1, "cSW_CC_alpha_1":3, "cSW_CC_alpha_2":2, "cSW_CC_dB1":2, "cSW_CC_dB2":2, "tSW_CC_tips_distance":5, "tSW_CC_C1'-B1-B1pair":1, "tSW_CC_B1-B1pair-C1'pair":2, "tSW_CC_C4'-C1'-B1-B1pair":1, "tSW_CC_B1-B1pair-C1'pair-C4'pair":2, "tSW_CC_alpha_1":1, "tSW_CC_alpha_2":2, "tSW_CC_dB1":3, "tSW_CC_dB2":2, "cHH_CC_tips_distance":5, "cHH_CC_C1'-B1-B1pair":1, "cHH_CC_B1-B1pair-C1'pair":1, "cHH_CC_C4'-C1'-B1-B1pair":1, "cHH_CC_B1-B1pair-C1'pair-C4'pair":1, "cHH_CC_alpha_1":2, "cHH_CC_alpha_2":1, "cHH_CC_dB1":7, "cHH_CC_dB2":7, "tHH_CC_tips_distance":5, "tHH_CC_C1'-B1-B1pair":3, "tHH_CC_B1-B1pair-C1'pair":2, "tHH_CC_C4'-C1'-B1-B1pair":3, "tHH_CC_B1-B1pair-C1'pair-C4'pair":2, "tHH_CC_alpha_1":1, "tHH_CC_alpha_2":3, "tHH_CC_dB1":5, "tHH_CC_dB2":5, "cSH_CC_tips_distance":3, "cSH_CC_C1'-B1-B1pair":2, "cSH_CC_B1-B1pair-C1'pair":2, "cSH_CC_C4'-C1'-B1-B1pair":2, "cSH_CC_B1-B1pair-C1'pair-C4'pair":2, "cSH_CC_alpha_1":3, "cSH_CC_alpha_2":2, "cSH_CC_dB1":5, "cSH_CC_dB2":2, "tSH_CC_tips_distance":5, "tSH_CC_C1'-B1-B1pair":2, "tSH_CC_B1-B1pair-C1'pair":1, "tSH_CC_C4'-C1'-B1-B1pair":2, "tSH_CC_B1-B1pair-C1'pair-C4'pair":2, "tSH_CC_alpha_1":3, "tSH_CC_alpha_2":1, "tSH_CC_dB1":4, "tSH_CC_dB2":2, "cHS_CC_tips_distance":3, "cHS_CC_C1'-B1-B1pair":2, "cHS_CC_B1-B1pair-C1'pair":2, "cHS_CC_C4'-C1'-B1-B1pair":2, "cHS_CC_B1-B1pair-C1'pair-C4'pair":2, "cHS_CC_alpha_1":3, "cHS_CC_alpha_2":2, "cHS_CC_dB1":2, "cHS_CC_dB2":2, "tHS_CC_tips_distance":5, "tHS_CC_C1'-B1-B1pair":3, "tHS_CC_B1-B1pair-C1'pair":1, "tHS_CC_C4'-C1'-B1-B1pair":2, "tHS_CC_B1-B1pair-C1'pair-C4'pair":3, "tHS_CC_alpha_1":1, "tHS_CC_alpha_2":2, "tHS_CC_dB1":4, "tHS_CC_dB2":4, "cSS_CC_tips_distance":5, "cSS_CC_C1'-B1-B1pair":2, "cSS_CC_B1-B1pair-C1'pair":2, "cSS_CC_C4'-C1'-B1-B1pair":2, "cSS_CC_B1-B1pair-C1'pair-C4'pair":1, "cSS_CC_alpha_1":1, "cSS_CC_alpha_2":3, "cSS_CC_dB1":1, "cSS_CC_dB2":3, "tSS_CC_tips_distance":5, "tSS_CC_C1'-B1-B1pair":2, "tSS_CC_B1-B1pair-C1'pair":2, "tSS_CC_C4'-C1'-B1-B1pair":3, "tSS_CC_B1-B1pair-C1'pair-C4'pair":2, "tSS_CC_alpha_1":3, "tSS_CC_alpha_2":2, "tSS_CC_dB1":2, "tSS_CC_dB2":1, "cWW_CG_tips_distance":5, "cWW_CG_C1'-B1-B1pair":2, "cWW_CG_B1-B1pair-C1'pair":1, "cWW_CG_C4'-C1'-B1-B1pair":2, "cWW_CG_B1-B1pair-C1'pair-C4'pair":2, "cWW_CG_alpha_1":2, "cWW_CG_alpha_2":3, "cWW_CG_dB1":2, "cWW_CG_dB2":2, "tWW_CG_tips_distance":3, "tWW_CG_C1'-B1-B1pair":1, "tWW_CG_B1-B1pair-C1'pair":2, "tWW_CG_C4'-C1'-B1-B1pair":2, "tWW_CG_B1-B1pair-C1'pair-C4'pair":2, "tWW_CG_alpha_1":2, "tWW_CG_alpha_2":1, "tWW_CG_dB1":1, "tWW_CG_dB2":4, "cWH_CG_tips_distance":3, "cWH_CG_C1'-B1-B1pair":1, "cWH_CG_B1-B1pair-C1'pair":1, "cWH_CG_C4'-C1'-B1-B1pair":2, "cWH_CG_B1-B1pair-C1'pair-C4'pair":2, "cWH_CG_alpha_1":2, "cWH_CG_alpha_2":1, "cWH_CG_dB1":4, "cWH_CG_dB2":2, "tWH_CG_tips_distance":4, "tWH_CG_C1'-B1-B1pair":2, "tWH_CG_B1-B1pair-C1'pair":1, "tWH_CG_C4'-C1'-B1-B1pair":2, "tWH_CG_B1-B1pair-C1'pair-C4'pair":3, "tWH_CG_alpha_1":2, "tWH_CG_alpha_2":1, "tWH_CG_dB1":3, "tWH_CG_dB2":2, "cHW_CG_tips_distance":3, "cHW_CG_C1'-B1-B1pair":2, "cHW_CG_B1-B1pair-C1'pair":2, "cHW_CG_C4'-C1'-B1-B1pair":1, "cHW_CG_B1-B1pair-C1'pair-C4'pair":2, "cHW_CG_alpha_1":1, "cHW_CG_alpha_2":2, "cHW_CG_dB1":2, "cHW_CG_dB2":2, "tHW_CG_tips_distance":5, "tHW_CG_C1'-B1-B1pair":1, "tHW_CG_B1-B1pair-C1'pair":2, "tHW_CG_C4'-C1'-B1-B1pair":1, "tHW_CG_B1-B1pair-C1'pair-C4'pair":2, "tHW_CG_alpha_1":3, "tHW_CG_alpha_2":2, "tHW_CG_dB1":4, "tHW_CG_dB2":3, "cWS_CG_tips_distance":2, "cWS_CG_C1'-B1-B1pair":1, "cWS_CG_B1-B1pair-C1'pair":1, "cWS_CG_C4'-C1'-B1-B1pair":2, "cWS_CG_B1-B1pair-C1'pair-C4'pair":1, "cWS_CG_alpha_1":1, "cWS_CG_alpha_2":2, "cWS_CG_dB1":2, "cWS_CG_dB2":3, "tWS_CG_tips_distance":2, "tWS_CG_C1'-B1-B1pair":3, "tWS_CG_B1-B1pair-C1'pair":1, "tWS_CG_C4'-C1'-B1-B1pair":2, "tWS_CG_B1-B1pair-C1'pair-C4'pair":1, "tWS_CG_alpha_1":2, "tWS_CG_alpha_2":1, "tWS_CG_dB1":2, "tWS_CG_dB2":4, "cSW_CG_tips_distance":7, "cSW_CG_C1'-B1-B1pair":1, "cSW_CG_B1-B1pair-C1'pair":2, "cSW_CG_C4'-C1'-B1-B1pair":2, "cSW_CG_B1-B1pair-C1'pair-C4'pair":3, "cSW_CG_alpha_1":1, "cSW_CG_alpha_2":2, "cSW_CG_dB1":1, "cSW_CG_dB2":3, "tSW_CG_tips_distance":4, "tSW_CG_C1'-B1-B1pair":1, "tSW_CG_B1-B1pair-C1'pair":2, "tSW_CG_C4'-C1'-B1-B1pair":3, "tSW_CG_B1-B1pair-C1'pair-C4'pair":2, "tSW_CG_alpha_1":1, "tSW_CG_alpha_2":2, "tSW_CG_dB1":7, "tSW_CG_dB2":2, "cHH_CG_tips_distance":1, "cHH_CG_C1'-B1-B1pair":1, "cHH_CG_B1-B1pair-C1'pair":2, "cHH_CG_C4'-C1'-B1-B1pair":3, "cHH_CG_B1-B1pair-C1'pair-C4'pair":2, "cHH_CG_alpha_1":1, "cHH_CG_alpha_2":2, "cHH_CG_dB1":4, "cHH_CG_dB2":1, "tHH_CG_tips_distance":8, "tHH_CG_C1'-B1-B1pair":2, "tHH_CG_B1-B1pair-C1'pair":2, "tHH_CG_C4'-C1'-B1-B1pair":3, "tHH_CG_B1-B1pair-C1'pair-C4'pair":2, "tHH_CG_alpha_1":2, "tHH_CG_alpha_2":3, "tHH_CG_dB1":3, "tHH_CG_dB2":4, "cSH_CG_tips_distance":5, "cSH_CG_C1'-B1-B1pair":1, "cSH_CG_B1-B1pair-C1'pair":2, "cSH_CG_C4'-C1'-B1-B1pair":2, "cSH_CG_B1-B1pair-C1'pair-C4'pair":2, "cSH_CG_alpha_1":1, "cSH_CG_alpha_2":2, "cSH_CG_dB1":6, "cSH_CG_dB2":4, "tSH_CG_tips_distance":5, "tSH_CG_C1'-B1-B1pair":1, "tSH_CG_B1-B1pair-C1'pair":2, "tSH_CG_C4'-C1'-B1-B1pair":2, "tSH_CG_B1-B1pair-C1'pair-C4'pair":1, "tSH_CG_alpha_1":1, "tSH_CG_alpha_2":3, "tSH_CG_dB1":2, "tSH_CG_dB2":3, "cHS_CG_tips_distance":4, "cHS_CG_C1'-B1-B1pair":2, "cHS_CG_B1-B1pair-C1'pair":2, "cHS_CG_C4'-C1'-B1-B1pair":3, "cHS_CG_B1-B1pair-C1'pair-C4'pair":2, "cHS_CG_alpha_1":2, "cHS_CG_alpha_2":3, "cHS_CG_dB1":5, "cHS_CG_dB2":2, "tHS_CG_tips_distance":4, "tHS_CG_C1'-B1-B1pair":1, "tHS_CG_B1-B1pair-C1'pair":2, "tHS_CG_C4'-C1'-B1-B1pair":3, "tHS_CG_B1-B1pair-C1'pair-C4'pair":1, "tHS_CG_alpha_1":1, "tHS_CG_alpha_2":1, "tHS_CG_dB1":3, "tHS_CG_dB2":2, "cSS_CG_tips_distance":1, "cSS_CG_C1'-B1-B1pair":2, "cSS_CG_B1-B1pair-C1'pair":1, "cSS_CG_C4'-C1'-B1-B1pair":2, "cSS_CG_B1-B1pair-C1'pair-C4'pair":1, "cSS_CG_alpha_1":1, "cSS_CG_alpha_2":2, "cSS_CG_dB1":3, "cSS_CG_dB2":3, "tSS_CG_tips_distance":5, "tSS_CG_C1'-B1-B1pair":2, "tSS_CG_B1-B1pair-C1'pair":2, "tSS_CG_C4'-C1'-B1-B1pair":1, "tSS_CG_B1-B1pair-C1'pair-C4'pair":2, "tSS_CG_alpha_1":1, "tSS_CG_alpha_2":2, "tSS_CG_dB1":1, "tSS_CG_dB2":2, "cWW_CU_tips_distance":4, "cWW_CU_C1'-B1-B1pair":1, "cWW_CU_B1-B1pair-C1'pair":1, "cWW_CU_C4'-C1'-B1-B1pair":2, "cWW_CU_B1-B1pair-C1'pair-C4'pair":2, "cWW_CU_alpha_1":1, "cWW_CU_alpha_2":1, "cWW_CU_dB1":1, "cWW_CU_dB2":1, "tWW_CU_tips_distance":1, "tWW_CU_C1'-B1-B1pair":2, "tWW_CU_B1-B1pair-C1'pair":2, "tWW_CU_C4'-C1'-B1-B1pair":2, "tWW_CU_B1-B1pair-C1'pair-C4'pair":2, "tWW_CU_alpha_1":1, "tWW_CU_alpha_2":2, "tWW_CU_dB1":2, "tWW_CU_dB2":1, "cWH_CU_tips_distance":5, "cWH_CU_C1'-B1-B1pair":2, "cWH_CU_B1-B1pair-C1'pair":2, "cWH_CU_C4'-C1'-B1-B1pair":2, "cWH_CU_B1-B1pair-C1'pair-C4'pair":2, "cWH_CU_alpha_1":3, "cWH_CU_alpha_2":2, "cWH_CU_dB1":3, "cWH_CU_dB2":1, "tWH_CU_tips_distance":1, "tWH_CU_C1'-B1-B1pair":2, "tWH_CU_B1-B1pair-C1'pair":2, "tWH_CU_C4'-C1'-B1-B1pair":3, "tWH_CU_B1-B1pair-C1'pair-C4'pair":2, "tWH_CU_alpha_1":3, "tWH_CU_alpha_2":3, "tWH_CU_dB1":5, "tWH_CU_dB2":2, "cHW_CU_tips_distance":3, "cHW_CU_C1'-B1-B1pair":2, "cHW_CU_B1-B1pair-C1'pair":2, "cHW_CU_C4'-C1'-B1-B1pair":1, "cHW_CU_B1-B1pair-C1'pair-C4'pair":3, "cHW_CU_alpha_1":2, "cHW_CU_alpha_2":2, "cHW_CU_dB1":1, "cHW_CU_dB2":3, "tHW_CU_tips_distance":8, "tHW_CU_C1'-B1-B1pair":1, "tHW_CU_B1-B1pair-C1'pair":1, "tHW_CU_C4'-C1'-B1-B1pair":3, "tHW_CU_B1-B1pair-C1'pair-C4'pair":2, "tHW_CU_alpha_1":1, "tHW_CU_alpha_2":2, "tHW_CU_dB1":3, "tHW_CU_dB2":3, "cWS_CU_tips_distance":4, "cWS_CU_C1'-B1-B1pair":1, "cWS_CU_B1-B1pair-C1'pair":2, "cWS_CU_C4'-C1'-B1-B1pair":3, "cWS_CU_B1-B1pair-C1'pair-C4'pair":2, "cWS_CU_alpha_1":3, "cWS_CU_alpha_2":2, "cWS_CU_dB1":4, "cWS_CU_dB2":2, "tWS_CU_tips_distance":5, "tWS_CU_C1'-B1-B1pair":3, "tWS_CU_B1-B1pair-C1'pair":1, "tWS_CU_C4'-C1'-B1-B1pair":2, "tWS_CU_B1-B1pair-C1'pair-C4'pair":2, "tWS_CU_alpha_1":2, "tWS_CU_alpha_2":1, "tWS_CU_dB1":3, "tWS_CU_dB2":5, "cSW_CU_tips_distance":3, "cSW_CU_C1'-B1-B1pair":2, "cSW_CU_B1-B1pair-C1'pair":2, "cSW_CU_C4'-C1'-B1-B1pair":2, "cSW_CU_B1-B1pair-C1'pair-C4'pair":3, "cSW_CU_alpha_1":3, "cSW_CU_alpha_2":3, "cSW_CU_dB1":2, "cSW_CU_dB2":4, "tSW_CU_tips_distance":7, "tSW_CU_C1'-B1-B1pair":2, "tSW_CU_B1-B1pair-C1'pair":2, "tSW_CU_C4'-C1'-B1-B1pair":2, "tSW_CU_B1-B1pair-C1'pair-C4'pair":2, "tSW_CU_alpha_1":2, "tSW_CU_alpha_2":2, "tSW_CU_dB1":2, "tSW_CU_dB2":2, "cHH_CU_tips_distance":6, "cHH_CU_C1'-B1-B1pair":2, "cHH_CU_B1-B1pair-C1'pair":1, "cHH_CU_C4'-C1'-B1-B1pair":2, "cHH_CU_B1-B1pair-C1'pair-C4'pair":3, "cHH_CU_alpha_1":1, "cHH_CU_alpha_2":1, "cHH_CU_dB1":2, "cHH_CU_dB2":4, "tHH_CU_tips_distance":5, "tHH_CU_C1'-B1-B1pair":3, "tHH_CU_B1-B1pair-C1'pair":2, "tHH_CU_C4'-C1'-B1-B1pair":2, "tHH_CU_B1-B1pair-C1'pair-C4'pair":1, "tHH_CU_alpha_1":2, "tHH_CU_alpha_2":2, "tHH_CU_dB1":2, "tHH_CU_dB2":2, "cSH_CU_tips_distance":5, "cSH_CU_C1'-B1-B1pair":2, "cSH_CU_B1-B1pair-C1'pair":2, "cSH_CU_C4'-C1'-B1-B1pair":2, "cSH_CU_B1-B1pair-C1'pair-C4'pair":1, "cSH_CU_alpha_1":1, "cSH_CU_alpha_2":1, "cSH_CU_dB1":4, "cSH_CU_dB2":2, "tSH_CU_tips_distance":5, "tSH_CU_C1'-B1-B1pair":2, "tSH_CU_B1-B1pair-C1'pair":3, "tSH_CU_C4'-C1'-B1-B1pair":2, "tSH_CU_B1-B1pair-C1'pair-C4'pair":2, "tSH_CU_alpha_1":3, "tSH_CU_alpha_2":3, "tSH_CU_dB1":4, "tSH_CU_dB2":2, "cHS_CU_tips_distance":2, "cHS_CU_C1'-B1-B1pair":1, "cHS_CU_B1-B1pair-C1'pair":2, "cHS_CU_C4'-C1'-B1-B1pair":2, "cHS_CU_B1-B1pair-C1'pair-C4'pair":2, "cHS_CU_alpha_1":1, "cHS_CU_alpha_2":2, "cHS_CU_dB1":2, "cHS_CU_dB2":4, "tHS_CU_tips_distance":8, "tHS_CU_C1'-B1-B1pair":2, "tHS_CU_B1-B1pair-C1'pair":1, "tHS_CU_C4'-C1'-B1-B1pair":2, "tHS_CU_B1-B1pair-C1'pair-C4'pair":2, "tHS_CU_alpha_1":2, "tHS_CU_alpha_2":2, "tHS_CU_dB1":3, "tHS_CU_dB2":4, "cSS_CU_tips_distance":5, "cSS_CU_C1'-B1-B1pair":2, "cSS_CU_B1-B1pair-C1'pair":2, "cSS_CU_C4'-C1'-B1-B1pair":1, "cSS_CU_B1-B1pair-C1'pair-C4'pair":1, "cSS_CU_alpha_1":2, "cSS_CU_alpha_2":3, "cSS_CU_dB1":6, "cSS_CU_dB2":1, "tSS_CU_tips_distance":5, "tSS_CU_C1'-B1-B1pair":2, "tSS_CU_B1-B1pair-C1'pair":3, "tSS_CU_C4'-C1'-B1-B1pair":2, "tSS_CU_B1-B1pair-C1'pair-C4'pair":2, "tSS_CU_alpha_1":3, "tSS_CU_alpha_2":3, "tSS_CU_dB1":7, "tSS_CU_dB2":2, "cWW_GA_tips_distance":5, "cWW_GA_C1'-B1-B1pair":1, "cWW_GA_B1-B1pair-C1'pair":1, "cWW_GA_C4'-C1'-B1-B1pair":2, "cWW_GA_B1-B1pair-C1'pair-C4'pair":2, "cWW_GA_alpha_1":1, "cWW_GA_alpha_2":1, "cWW_GA_dB1":2, "cWW_GA_dB2":1, "tWW_GA_tips_distance":6, "tWW_GA_C1'-B1-B1pair":1, "tWW_GA_B1-B1pair-C1'pair":1, "tWW_GA_C4'-C1'-B1-B1pair":1, "tWW_GA_B1-B1pair-C1'pair-C4'pair":2, "tWW_GA_alpha_1":2, "tWW_GA_alpha_2":2, "tWW_GA_dB1":1, "tWW_GA_dB2":2, "cWH_GA_tips_distance":2, "cWH_GA_C1'-B1-B1pair":1, "cWH_GA_B1-B1pair-C1'pair":1, "cWH_GA_C4'-C1'-B1-B1pair":3, "cWH_GA_B1-B1pair-C1'pair-C4'pair":2, "cWH_GA_alpha_1":2, "cWH_GA_alpha_2":1, "cWH_GA_dB1":2, "cWH_GA_dB2":2, "tWH_GA_tips_distance":7, "tWH_GA_C1'-B1-B1pair":1, "tWH_GA_B1-B1pair-C1'pair":2, "tWH_GA_C4'-C1'-B1-B1pair":1, "tWH_GA_B1-B1pair-C1'pair-C4'pair":2, "tWH_GA_alpha_1":2, "tWH_GA_alpha_2":2, "tWH_GA_dB1":1, "tWH_GA_dB2":6, "cHW_GA_tips_distance":4, "cHW_GA_C1'-B1-B1pair":2, "cHW_GA_B1-B1pair-C1'pair":2, "cHW_GA_C4'-C1'-B1-B1pair":2, "cHW_GA_B1-B1pair-C1'pair-C4'pair":3, "cHW_GA_alpha_1":1, "cHW_GA_alpha_2":2, "cHW_GA_dB1":1, "cHW_GA_dB2":4, "tHW_GA_tips_distance":3, "tHW_GA_C1'-B1-B1pair":2, "tHW_GA_B1-B1pair-C1'pair":1, "tHW_GA_C4'-C1'-B1-B1pair":2, "tHW_GA_B1-B1pair-C1'pair-C4'pair":2, "tHW_GA_alpha_1":1, "tHW_GA_alpha_2":2, "tHW_GA_dB1":3, "tHW_GA_dB2":1, "cWS_GA_tips_distance":6, "cWS_GA_C1'-B1-B1pair":3, "cWS_GA_B1-B1pair-C1'pair":2, "cWS_GA_C4'-C1'-B1-B1pair":2, "cWS_GA_B1-B1pair-C1'pair-C4'pair":1, "cWS_GA_alpha_1":2, "cWS_GA_alpha_2":3, "cWS_GA_dB1":3, "cWS_GA_dB2":4, "tWS_GA_tips_distance":5, "tWS_GA_C1'-B1-B1pair":3, "tWS_GA_B1-B1pair-C1'pair":2, "tWS_GA_C4'-C1'-B1-B1pair":1, "tWS_GA_B1-B1pair-C1'pair-C4'pair":1, "tWS_GA_alpha_1":2, "tWS_GA_alpha_2":2, "tWS_GA_dB1":2, "tWS_GA_dB2":5, "cSW_GA_tips_distance":4, "cSW_GA_C1'-B1-B1pair":1, "cSW_GA_B1-B1pair-C1'pair":1, "cSW_GA_C4'-C1'-B1-B1pair":1, "cSW_GA_B1-B1pair-C1'pair-C4'pair":1, "cSW_GA_alpha_1":1, "cSW_GA_alpha_2":2, "cSW_GA_dB1":1, "cSW_GA_dB2":2, "tSW_GA_tips_distance":2, "tSW_GA_C1'-B1-B1pair":1, "tSW_GA_B1-B1pair-C1'pair":2, "tSW_GA_C4'-C1'-B1-B1pair":1, "tSW_GA_B1-B1pair-C1'pair-C4'pair":2, "tSW_GA_alpha_1":1, "tSW_GA_alpha_2":3, "tSW_GA_dB1":2, "tSW_GA_dB2":2, "cHH_GA_tips_distance":3, "cHH_GA_C1'-B1-B1pair":2, "cHH_GA_B1-B1pair-C1'pair":2, "cHH_GA_C4'-C1'-B1-B1pair":2, "cHH_GA_B1-B1pair-C1'pair-C4'pair":2, "cHH_GA_alpha_1":2, "cHH_GA_alpha_2":3, "cHH_GA_dB1":2, "cHH_GA_dB2":3, "tHH_GA_tips_distance":3, "tHH_GA_C1'-B1-B1pair":3, "tHH_GA_B1-B1pair-C1'pair":2, "tHH_GA_C4'-C1'-B1-B1pair":2, "tHH_GA_B1-B1pair-C1'pair-C4'pair":2, "tHH_GA_alpha_1":1, "tHH_GA_alpha_2":2, "tHH_GA_dB1":3, "tHH_GA_dB2":2, "cSH_GA_tips_distance":1, "cSH_GA_C1'-B1-B1pair":2, "cSH_GA_B1-B1pair-C1'pair":2, "cSH_GA_C4'-C1'-B1-B1pair":2, "cSH_GA_B1-B1pair-C1'pair-C4'pair":2, "cSH_GA_alpha_1":1, "cSH_GA_alpha_2":2, "cSH_GA_dB1":2, "cSH_GA_dB2":1, "tSH_GA_tips_distance":3, "tSH_GA_C1'-B1-B1pair":1, "tSH_GA_B1-B1pair-C1'pair":1, "tSH_GA_C4'-C1'-B1-B1pair":2, "tSH_GA_B1-B1pair-C1'pair-C4'pair":2, "tSH_GA_alpha_1":2, "tSH_GA_alpha_2":2, "tSH_GA_dB1":2, "tSH_GA_dB2":7, "cHS_GA_tips_distance":5, "cHS_GA_C1'-B1-B1pair":3, "cHS_GA_B1-B1pair-C1'pair":3, "cHS_GA_C4'-C1'-B1-B1pair":3, "cHS_GA_B1-B1pair-C1'pair-C4'pair":2, "cHS_GA_alpha_1":2, "cHS_GA_alpha_2":2, "cHS_GA_dB1":3, "cHS_GA_dB2":4, "tHS_GA_tips_distance":5, "tHS_GA_C1'-B1-B1pair":3, "tHS_GA_B1-B1pair-C1'pair":1, "tHS_GA_C4'-C1'-B1-B1pair":3, "tHS_GA_B1-B1pair-C1'pair-C4'pair":2, "tHS_GA_alpha_1":2, "tHS_GA_alpha_2":1, "tHS_GA_dB1":1, "tHS_GA_dB2":2, "cSS_GA_tips_distance":4, "cSS_GA_C1'-B1-B1pair":3, "cSS_GA_B1-B1pair-C1'pair":2, "cSS_GA_C4'-C1'-B1-B1pair":1, "cSS_GA_B1-B1pair-C1'pair-C4'pair":1, "cSS_GA_alpha_1":2, "cSS_GA_alpha_2":1, "cSS_GA_dB1":1, "cSS_GA_dB2":1, "tSS_GA_tips_distance":4, "tSS_GA_C1'-B1-B1pair":1, "tSS_GA_B1-B1pair-C1'pair":1, "tSS_GA_C4'-C1'-B1-B1pair":1, "tSS_GA_B1-B1pair-C1'pair-C4'pair":1, "tSS_GA_alpha_1":1, "tSS_GA_alpha_2":2, "tSS_GA_dB1":5, "tSS_GA_dB2":2, "cWW_GC_tips_distance":5, "cWW_GC_C1'-B1-B1pair":1, "cWW_GC_B1-B1pair-C1'pair":2, "cWW_GC_C4'-C1'-B1-B1pair":2, "cWW_GC_B1-B1pair-C1'pair-C4'pair":2, "cWW_GC_alpha_1":2, "cWW_GC_alpha_2":1, "cWW_GC_dB1":2, "cWW_GC_dB2":3, "tWW_GC_tips_distance":3, "tWW_GC_C1'-B1-B1pair":1, "tWW_GC_B1-B1pair-C1'pair":2, "tWW_GC_C4'-C1'-B1-B1pair":2, "tWW_GC_B1-B1pair-C1'pair-C4'pair":2, "tWW_GC_alpha_1":1, "tWW_GC_alpha_2":2, "tWW_GC_dB1":3, "tWW_GC_dB2":4, "cWH_GC_tips_distance":7, "cWH_GC_C1'-B1-B1pair":2, "cWH_GC_B1-B1pair-C1'pair":2, "cWH_GC_C4'-C1'-B1-B1pair":2, "cWH_GC_B1-B1pair-C1'pair-C4'pair":1, "cWH_GC_alpha_1":2, "cWH_GC_alpha_2":2, "cWH_GC_dB1":2, "cWH_GC_dB2":3, "tWH_GC_tips_distance":5, "tWH_GC_C1'-B1-B1pair":1, "tWH_GC_B1-B1pair-C1'pair":1, "tWH_GC_C4'-C1'-B1-B1pair":2, "tWH_GC_B1-B1pair-C1'pair-C4'pair":2, "tWH_GC_alpha_1":3, "tWH_GC_alpha_2":3, "tWH_GC_dB1":2, "tWH_GC_dB2":2, "cHW_GC_tips_distance":4, "cHW_GC_C1'-B1-B1pair":1, "cHW_GC_B1-B1pair-C1'pair":1, "cHW_GC_C4'-C1'-B1-B1pair":2, "cHW_GC_B1-B1pair-C1'pair-C4'pair":2, "cHW_GC_alpha_1":1, "cHW_GC_alpha_2":1, "cHW_GC_dB1":3, "cHW_GC_dB2":4, "tHW_GC_tips_distance":5, "tHW_GC_C1'-B1-B1pair":2, "tHW_GC_B1-B1pair-C1'pair":2, "tHW_GC_C4'-C1'-B1-B1pair":2, "tHW_GC_B1-B1pair-C1'pair-C4'pair":2, "tHW_GC_alpha_1":2, "tHW_GC_alpha_2":2, "tHW_GC_dB1":2, "tHW_GC_dB2":4, "cWS_GC_tips_distance":8, "cWS_GC_C1'-B1-B1pair":1, "cWS_GC_B1-B1pair-C1'pair":1, "cWS_GC_C4'-C1'-B1-B1pair":2, "cWS_GC_B1-B1pair-C1'pair-C4'pair":2, "cWS_GC_alpha_1":2, "cWS_GC_alpha_2":1, "cWS_GC_dB1":2, "cWS_GC_dB2":1, "tWS_GC_tips_distance":2, "tWS_GC_C1'-B1-B1pair":1, "tWS_GC_B1-B1pair-C1'pair":1, "tWS_GC_C4'-C1'-B1-B1pair":3, "tWS_GC_B1-B1pair-C1'pair-C4'pair":2, "tWS_GC_alpha_1":2, "tWS_GC_alpha_2":1, "tWS_GC_dB1":4, "tWS_GC_dB2":5, "cSW_GC_tips_distance":4, "cSW_GC_C1'-B1-B1pair":2, "cSW_GC_B1-B1pair-C1'pair":3, "cSW_GC_C4'-C1'-B1-B1pair":1, "cSW_GC_B1-B1pair-C1'pair-C4'pair":2, "cSW_GC_alpha_1":3, "cSW_GC_alpha_2":2, "cSW_GC_dB1":3, "cSW_GC_dB2":2, "tSW_GC_tips_distance":2, "tSW_GC_C1'-B1-B1pair":1, "tSW_GC_B1-B1pair-C1'pair":3, "tSW_GC_C4'-C1'-B1-B1pair":1, "tSW_GC_B1-B1pair-C1'pair-C4'pair":2, "tSW_GC_alpha_1":2, "tSW_GC_alpha_2":2, "tSW_GC_dB1":4, "tSW_GC_dB2":2, "cHH_GC_tips_distance":1, "cHH_GC_C1'-B1-B1pair":3, "cHH_GC_B1-B1pair-C1'pair":1, "cHH_GC_C4'-C1'-B1-B1pair":2, "cHH_GC_B1-B1pair-C1'pair-C4'pair":1, "cHH_GC_alpha_1":2, "cHH_GC_alpha_2":2, "cHH_GC_dB1":3, "cHH_GC_dB2":3, "tHH_GC_tips_distance":8, "tHH_GC_C1'-B1-B1pair":2, "tHH_GC_B1-B1pair-C1'pair":1, "tHH_GC_C4'-C1'-B1-B1pair":2, "tHH_GC_B1-B1pair-C1'pair-C4'pair":2, "tHH_GC_alpha_1":3, "tHH_GC_alpha_2":1, "tHH_GC_dB1":6, "tHH_GC_dB2":3, "cSH_GC_tips_distance":8, "cSH_GC_C1'-B1-B1pair":2, "cSH_GC_B1-B1pair-C1'pair":3, "cSH_GC_C4'-C1'-B1-B1pair":1, "cSH_GC_B1-B1pair-C1'pair-C4'pair":3, "cSH_GC_alpha_1":2, "cSH_GC_alpha_2":2, "cSH_GC_dB1":5, "cSH_GC_dB2":4, "tSH_GC_tips_distance":4, "tSH_GC_C1'-B1-B1pair":1, "tSH_GC_B1-B1pair-C1'pair":2, "tSH_GC_C4'-C1'-B1-B1pair":1, "tSH_GC_B1-B1pair-C1'pair-C4'pair":4, "tSH_GC_alpha_1":1, "tSH_GC_alpha_2":2, "tSH_GC_dB1":2, "tSH_GC_dB2":3, "cHS_GC_tips_distance":5, "cHS_GC_C1'-B1-B1pair":2, "cHS_GC_B1-B1pair-C1'pair":2, "cHS_GC_C4'-C1'-B1-B1pair":2, "cHS_GC_B1-B1pair-C1'pair-C4'pair":2, "cHS_GC_alpha_1":3, "cHS_GC_alpha_2":1, "cHS_GC_dB1":2, "cHS_GC_dB2":5, "tHS_GC_tips_distance":5, "tHS_GC_C1'-B1-B1pair":2, "tHS_GC_B1-B1pair-C1'pair":2, "tHS_GC_C4'-C1'-B1-B1pair":2, "tHS_GC_B1-B1pair-C1'pair-C4'pair":3, "tHS_GC_alpha_1":2, "tHS_GC_alpha_2":2, "tHS_GC_dB1":2, "tHS_GC_dB2":2, "cSS_GC_tips_distance":2, "cSS_GC_C1'-B1-B1pair":2, "cSS_GC_B1-B1pair-C1'pair":2, "cSS_GC_C4'-C1'-B1-B1pair":1, "cSS_GC_B1-B1pair-C1'pair-C4'pair":1, "cSS_GC_alpha_1":2, "cSS_GC_alpha_2":3, "cSS_GC_dB1":3, "cSS_GC_dB2":3, "tSS_GC_tips_distance":5, "tSS_GC_C1'-B1-B1pair":2, "tSS_GC_B1-B1pair-C1'pair":2, "tSS_GC_C4'-C1'-B1-B1pair":1, "tSS_GC_B1-B1pair-C1'pair-C4'pair":2, "tSS_GC_alpha_1":2, "tSS_GC_alpha_2":3, "tSS_GC_dB1":2, "tSS_GC_dB2":1, "cWW_GG_tips_distance":3, "cWW_GG_C1'-B1-B1pair":1, "cWW_GG_B1-B1pair-C1'pair":1, "cWW_GG_C4'-C1'-B1-B1pair":2, "cWW_GG_B1-B1pair-C1'pair-C4'pair":1, "cWW_GG_alpha_1":1, "cWW_GG_alpha_2":2, "cWW_GG_dB1":2, "cWW_GG_dB2":2, "tWW_GG_tips_distance":4, "tWW_GG_C1'-B1-B1pair":1, "tWW_GG_B1-B1pair-C1'pair":1, "tWW_GG_C4'-C1'-B1-B1pair":2, "tWW_GG_B1-B1pair-C1'pair-C4'pair":2, "tWW_GG_alpha_1":2, "tWW_GG_alpha_2":2, "tWW_GG_dB1":1, "tWW_GG_dB2":2, "cWH_GG_tips_distance":2, "cWH_GG_C1'-B1-B1pair":2, "cWH_GG_B1-B1pair-C1'pair":2, "cWH_GG_C4'-C1'-B1-B1pair":2, "cWH_GG_B1-B1pair-C1'pair-C4'pair":2, "cWH_GG_alpha_1":2, "cWH_GG_alpha_2":2, "cWH_GG_dB1":4, "cWH_GG_dB2":3, "tWH_GG_tips_distance":2, "tWH_GG_C1'-B1-B1pair":1, "tWH_GG_B1-B1pair-C1'pair":2, "tWH_GG_C4'-C1'-B1-B1pair":2, "tWH_GG_B1-B1pair-C1'pair-C4'pair":2, "tWH_GG_alpha_1":2, "tWH_GG_alpha_2":2, "tWH_GG_dB1":2, "tWH_GG_dB2":3, "cHW_GG_tips_distance":3, "cHW_GG_C1'-B1-B1pair":2, "cHW_GG_B1-B1pair-C1'pair":2, "cHW_GG_C4'-C1'-B1-B1pair":2, "cHW_GG_B1-B1pair-C1'pair-C4'pair":2, "cHW_GG_alpha_1":1, "cHW_GG_alpha_2":1, "cHW_GG_dB1":2, "cHW_GG_dB2":2, "tHW_GG_tips_distance":4, "tHW_GG_C1'-B1-B1pair":2, "tHW_GG_B1-B1pair-C1'pair":2, "tHW_GG_C4'-C1'-B1-B1pair":1, "tHW_GG_B1-B1pair-C1'pair-C4'pair":2, "tHW_GG_alpha_1":2, "tHW_GG_alpha_2":2, "tHW_GG_dB1":1, "tHW_GG_dB2":4, "cWS_GG_tips_distance":2, "cWS_GG_C1'-B1-B1pair":1, "cWS_GG_B1-B1pair-C1'pair":1, "cWS_GG_C4'-C1'-B1-B1pair":2, "cWS_GG_B1-B1pair-C1'pair-C4'pair":1, "cWS_GG_alpha_1":2, "cWS_GG_alpha_2":2, "cWS_GG_dB1":4, "cWS_GG_dB2":3, "tWS_GG_tips_distance":8, "tWS_GG_C1'-B1-B1pair":3, "tWS_GG_B1-B1pair-C1'pair":2, "tWS_GG_C4'-C1'-B1-B1pair":3, "tWS_GG_B1-B1pair-C1'pair-C4'pair":2, "tWS_GG_alpha_1":1, "tWS_GG_alpha_2":1, "tWS_GG_dB1":1, "tWS_GG_dB2":3, "cSW_GG_tips_distance":1, "cSW_GG_C1'-B1-B1pair":1, "cSW_GG_B1-B1pair-C1'pair":1, "cSW_GG_C4'-C1'-B1-B1pair":1, "cSW_GG_B1-B1pair-C1'pair-C4'pair":2, "cSW_GG_alpha_1":2, "cSW_GG_alpha_2":2, "cSW_GG_dB1":2, "cSW_GG_dB2":2, "tSW_GG_tips_distance":5, "tSW_GG_C1'-B1-B1pair":3, "tSW_GG_B1-B1pair-C1'pair":2, "tSW_GG_C4'-C1'-B1-B1pair":3, "tSW_GG_B1-B1pair-C1'pair-C4'pair":2, "tSW_GG_alpha_1":1, "tSW_GG_alpha_2":3, "tSW_GG_dB1":2, "tSW_GG_dB2":1, "cHH_GG_tips_distance":4, "cHH_GG_C1'-B1-B1pair":1, "cHH_GG_B1-B1pair-C1'pair":1, "cHH_GG_C4'-C1'-B1-B1pair":2, "cHH_GG_B1-B1pair-C1'pair-C4'pair":3, "cHH_GG_alpha_1":1, "cHH_GG_alpha_2":2, "cHH_GG_dB1":2, "cHH_GG_dB2":3, "tHH_GG_tips_distance":8, "tHH_GG_C1'-B1-B1pair":2, "tHH_GG_B1-B1pair-C1'pair":2, "tHH_GG_C4'-C1'-B1-B1pair":2, "tHH_GG_B1-B1pair-C1'pair-C4'pair":3, "tHH_GG_alpha_1":2, "tHH_GG_alpha_2":2, "tHH_GG_dB1":2, "tHH_GG_dB2":3, "cSH_GG_tips_distance":2, "cSH_GG_C1'-B1-B1pair":2, "cSH_GG_B1-B1pair-C1'pair":1, "cSH_GG_C4'-C1'-B1-B1pair":1, "cSH_GG_B1-B1pair-C1'pair-C4'pair":2, "cSH_GG_alpha_1":2, "cSH_GG_alpha_2":1, "cSH_GG_dB1":1, "cSH_GG_dB2":1, "tSH_GG_tips_distance":2, "tSH_GG_C1'-B1-B1pair":2, "tSH_GG_B1-B1pair-C1'pair":2, "tSH_GG_C4'-C1'-B1-B1pair":2, "tSH_GG_B1-B1pair-C1'pair-C4'pair":2, "tSH_GG_alpha_1":2, "tSH_GG_alpha_2":2, "tSH_GG_dB1":1, "tSH_GG_dB2":2, "cHS_GG_tips_distance":2, "cHS_GG_C1'-B1-B1pair":1, "cHS_GG_B1-B1pair-C1'pair":2, "cHS_GG_C4'-C1'-B1-B1pair":2, "cHS_GG_B1-B1pair-C1'pair-C4'pair":1, "cHS_GG_alpha_1":1, "cHS_GG_alpha_2":2, "cHS_GG_dB1":1, "cHS_GG_dB2":2, "tHS_GG_tips_distance":2, "tHS_GG_C1'-B1-B1pair":2, "tHS_GG_B1-B1pair-C1'pair":2, "tHS_GG_C4'-C1'-B1-B1pair":2, "tHS_GG_B1-B1pair-C1'pair-C4'pair":1, "tHS_GG_alpha_1":2, "tHS_GG_alpha_2":3, "tHS_GG_dB1":2, "tHS_GG_dB2":1, "cSS_GG_tips_distance":2, "cSS_GG_C1'-B1-B1pair":2, "cSS_GG_B1-B1pair-C1'pair":2, "cSS_GG_C4'-C1'-B1-B1pair":1, "cSS_GG_B1-B1pair-C1'pair-C4'pair":1, "cSS_GG_alpha_1":2, "cSS_GG_alpha_2":3, "cSS_GG_dB1":3, "cSS_GG_dB2":5, "tSS_GG_tips_distance":2, "tSS_GG_C1'-B1-B1pair":3, "tSS_GG_B1-B1pair-C1'pair":2, "tSS_GG_C4'-C1'-B1-B1pair":2, "tSS_GG_B1-B1pair-C1'pair-C4'pair":1, "tSS_GG_alpha_1":1, "tSS_GG_alpha_2":3, "tSS_GG_dB1":3, "tSS_GG_dB2":2, "cWW_GU_tips_distance":2, "cWW_GU_C1'-B1-B1pair":2, "cWW_GU_B1-B1pair-C1'pair":2, "cWW_GU_C4'-C1'-B1-B1pair":2, "cWW_GU_B1-B1pair-C1'pair-C4'pair":1, "cWW_GU_alpha_1":3, "cWW_GU_alpha_2":2, "cWW_GU_dB1":4, "cWW_GU_dB2":3, "tWW_GU_tips_distance":2, "tWW_GU_C1'-B1-B1pair":3, "tWW_GU_B1-B1pair-C1'pair":2, "tWW_GU_C4'-C1'-B1-B1pair":2, "tWW_GU_B1-B1pair-C1'pair-C4'pair":3, "tWW_GU_alpha_1":2, "tWW_GU_alpha_2":2, "tWW_GU_dB1":3, "tWW_GU_dB2":3, "cWH_GU_tips_distance":2, "cWH_GU_C1'-B1-B1pair":1, "cWH_GU_B1-B1pair-C1'pair":2, "cWH_GU_C4'-C1'-B1-B1pair":1, "cWH_GU_B1-B1pair-C1'pair-C4'pair":2, "cWH_GU_alpha_1":2, "cWH_GU_alpha_2":4, "cWH_GU_dB1":3, "cWH_GU_dB2":1, "tWH_GU_tips_distance":8, "tWH_GU_C1'-B1-B1pair":1, "tWH_GU_B1-B1pair-C1'pair":2, "tWH_GU_C4'-C1'-B1-B1pair":2, "tWH_GU_B1-B1pair-C1'pair-C4'pair":2, "tWH_GU_alpha_1":2, "tWH_GU_alpha_2":2, "tWH_GU_dB1":3, "tWH_GU_dB2":1, "cHW_GU_tips_distance":4, "cHW_GU_C1'-B1-B1pair":2, "cHW_GU_B1-B1pair-C1'pair":1, "cHW_GU_C4'-C1'-B1-B1pair":2, "cHW_GU_B1-B1pair-C1'pair-C4'pair":2, "cHW_GU_alpha_1":2, "cHW_GU_alpha_2":2, "cHW_GU_dB1":3, "cHW_GU_dB2":3, "tHW_GU_tips_distance":1, "tHW_GU_C1'-B1-B1pair":3, "tHW_GU_B1-B1pair-C1'pair":1, "tHW_GU_C4'-C1'-B1-B1pair":2, "tHW_GU_B1-B1pair-C1'pair-C4'pair":3, "tHW_GU_alpha_1":3, "tHW_GU_alpha_2":1, "tHW_GU_dB1":2, "tHW_GU_dB2":5, "cWS_GU_tips_distance":2, "cWS_GU_C1'-B1-B1pair":1, "cWS_GU_B1-B1pair-C1'pair":1, "cWS_GU_C4'-C1'-B1-B1pair":1, "cWS_GU_B1-B1pair-C1'pair-C4'pair":2, "cWS_GU_alpha_1":3, "cWS_GU_alpha_2":3, "cWS_GU_dB1":2, "cWS_GU_dB2":3, "tWS_GU_tips_distance":4, "tWS_GU_C1'-B1-B1pair":3, "tWS_GU_B1-B1pair-C1'pair":1, "tWS_GU_C4'-C1'-B1-B1pair":3, "tWS_GU_B1-B1pair-C1'pair-C4'pair":2, "tWS_GU_alpha_1":1, "tWS_GU_alpha_2":2, "tWS_GU_dB1":3, "tWS_GU_dB2":3, "cSW_GU_tips_distance":2, "cSW_GU_C1'-B1-B1pair":2, "cSW_GU_B1-B1pair-C1'pair":2, "cSW_GU_C4'-C1'-B1-B1pair":2, "cSW_GU_B1-B1pair-C1'pair-C4'pair":2, "cSW_GU_alpha_1":1, "cSW_GU_alpha_2":2, "cSW_GU_dB1":3, "cSW_GU_dB2":2, "tSW_GU_tips_distance":3, "tSW_GU_C1'-B1-B1pair":1, "tSW_GU_B1-B1pair-C1'pair":2, "tSW_GU_C4'-C1'-B1-B1pair":2, "tSW_GU_B1-B1pair-C1'pair-C4'pair":2, "tSW_GU_alpha_1":1, "tSW_GU_alpha_2":2, "tSW_GU_dB1":5, "tSW_GU_dB2":1, "cHH_GU_tips_distance":5, "cHH_GU_C1'-B1-B1pair":2, "cHH_GU_B1-B1pair-C1'pair":3, "cHH_GU_C4'-C1'-B1-B1pair":2, "cHH_GU_B1-B1pair-C1'pair-C4'pair":2, "cHH_GU_alpha_1":2, "cHH_GU_alpha_2":2, "cHH_GU_dB1":5, "cHH_GU_dB2":3, "tHH_GU_tips_distance":5, "tHH_GU_C1'-B1-B1pair":2, "tHH_GU_B1-B1pair-C1'pair":1, "tHH_GU_C4'-C1'-B1-B1pair":1, "tHH_GU_B1-B1pair-C1'pair-C4'pair":2, "tHH_GU_alpha_1":2, "tHH_GU_alpha_2":1, "tHH_GU_dB1":8, "tHH_GU_dB2":2, "cSH_GU_tips_distance":3, "cSH_GU_C1'-B1-B1pair":1, "cSH_GU_B1-B1pair-C1'pair":2, "cSH_GU_C4'-C1'-B1-B1pair":3, "cSH_GU_B1-B1pair-C1'pair-C4'pair":2, "cSH_GU_alpha_1":2, "cSH_GU_alpha_2":1, "cSH_GU_dB1":2, "cSH_GU_dB2":2, "tSH_GU_tips_distance":2, "tSH_GU_C1'-B1-B1pair":2, "tSH_GU_B1-B1pair-C1'pair":2, "tSH_GU_C4'-C1'-B1-B1pair":1, "tSH_GU_B1-B1pair-C1'pair-C4'pair":1, "tSH_GU_alpha_1":2, "tSH_GU_alpha_2":3, "tSH_GU_dB1":3, "tSH_GU_dB2":3, "cHS_GU_tips_distance":8, "cHS_GU_C1'-B1-B1pair":1, "cHS_GU_B1-B1pair-C1'pair":1, "cHS_GU_C4'-C1'-B1-B1pair":2, "cHS_GU_B1-B1pair-C1'pair-C4'pair":2, "cHS_GU_alpha_1":1, "cHS_GU_alpha_2":1, "cHS_GU_dB1":4, "cHS_GU_dB2":3, "tHS_GU_tips_distance":5, "tHS_GU_C1'-B1-B1pair":4, "tHS_GU_B1-B1pair-C1'pair":2, "tHS_GU_C4'-C1'-B1-B1pair":2, "tHS_GU_B1-B1pair-C1'pair-C4'pair":1, "tHS_GU_alpha_1":2, "tHS_GU_alpha_2":1, "tHS_GU_dB1":1, "tHS_GU_dB2":3, "cSS_GU_tips_distance":2, "cSS_GU_C1'-B1-B1pair":3, "cSS_GU_B1-B1pair-C1'pair":2, "cSS_GU_C4'-C1'-B1-B1pair":2, "cSS_GU_B1-B1pair-C1'pair-C4'pair":2, "cSS_GU_alpha_1":2, "cSS_GU_alpha_2":1, "cSS_GU_dB1":3, "cSS_GU_dB2":4, "tSS_GU_tips_distance":5, "tSS_GU_C1'-B1-B1pair":2, "tSS_GU_B1-B1pair-C1'pair":2, "tSS_GU_C4'-C1'-B1-B1pair":1, "tSS_GU_B1-B1pair-C1'pair-C4'pair":3, "tSS_GU_alpha_1":2, "tSS_GU_alpha_2":2, "tSS_GU_dB1":2, "tSS_GU_dB2":6, "cWW_UA_tips_distance":4, "cWW_UA_C1'-B1-B1pair":2, "cWW_UA_B1-B1pair-C1'pair":2, "cWW_UA_C4'-C1'-B1-B1pair":1, "cWW_UA_B1-B1pair-C1'pair-C4'pair":2, "cWW_UA_alpha_1":2, "cWW_UA_alpha_2":2, "cWW_UA_dB1":2, "cWW_UA_dB2":7, "tWW_UA_tips_distance":2, "tWW_UA_C1'-B1-B1pair":1, "tWW_UA_B1-B1pair-C1'pair":2, "tWW_UA_C4'-C1'-B1-B1pair":2, "tWW_UA_B1-B1pair-C1'pair-C4'pair":1, "tWW_UA_alpha_1":2, "tWW_UA_alpha_2":1, "tWW_UA_dB1":6, "tWW_UA_dB2":1, "cWH_UA_tips_distance":3, "cWH_UA_C1'-B1-B1pair":3, "cWH_UA_B1-B1pair-C1'pair":3, "cWH_UA_C4'-C1'-B1-B1pair":3, "cWH_UA_B1-B1pair-C1'pair-C4'pair":2, "cWH_UA_alpha_1":2, "cWH_UA_alpha_2":3, "cWH_UA_dB1":4, "cWH_UA_dB2":3, "tWH_UA_tips_distance":3, "tWH_UA_C1'-B1-B1pair":2, "tWH_UA_B1-B1pair-C1'pair":1, "tWH_UA_C4'-C1'-B1-B1pair":2, "tWH_UA_B1-B1pair-C1'pair-C4'pair":2, "tWH_UA_alpha_1":1, "tWH_UA_alpha_2":2, "tWH_UA_dB1":3, "tWH_UA_dB2":2, "cHW_UA_tips_distance":5, "cHW_UA_C1'-B1-B1pair":1, "cHW_UA_B1-B1pair-C1'pair":1, "cHW_UA_C4'-C1'-B1-B1pair":3, "cHW_UA_B1-B1pair-C1'pair-C4'pair":1, "cHW_UA_alpha_1":1, "cHW_UA_alpha_2":1, "cHW_UA_dB1":3, "cHW_UA_dB2":1, "tHW_UA_tips_distance":7, "tHW_UA_C1'-B1-B1pair":3, "tHW_UA_B1-B1pair-C1'pair":2, "tHW_UA_C4'-C1'-B1-B1pair":1, "tHW_UA_B1-B1pair-C1'pair-C4'pair":2, "tHW_UA_alpha_1":3, "tHW_UA_alpha_2":3, "tHW_UA_dB1":2, "tHW_UA_dB2":1, "cWS_UA_tips_distance":1, "cWS_UA_C1'-B1-B1pair":2, "cWS_UA_B1-B1pair-C1'pair":3, "cWS_UA_C4'-C1'-B1-B1pair":2, "cWS_UA_B1-B1pair-C1'pair-C4'pair":1, "cWS_UA_alpha_1":2, "cWS_UA_alpha_2":2, "cWS_UA_dB1":3, "cWS_UA_dB2":4, "tWS_UA_tips_distance":5, "tWS_UA_C1'-B1-B1pair":1, "tWS_UA_B1-B1pair-C1'pair":2, "tWS_UA_C4'-C1'-B1-B1pair":2, "tWS_UA_B1-B1pair-C1'pair-C4'pair":1, "tWS_UA_alpha_1":1, "tWS_UA_alpha_2":3, "tWS_UA_dB1":1, "tWS_UA_dB2":1, "cSW_UA_tips_distance":2, "cSW_UA_C1'-B1-B1pair":1, "cSW_UA_B1-B1pair-C1'pair":1, "cSW_UA_C4'-C1'-B1-B1pair":2, "cSW_UA_B1-B1pair-C1'pair-C4'pair":2, "cSW_UA_alpha_1":2, "cSW_UA_alpha_2":3, "cSW_UA_dB1":3, "cSW_UA_dB2":3, "tSW_UA_tips_distance":2, "tSW_UA_C1'-B1-B1pair":1, "tSW_UA_B1-B1pair-C1'pair":2, "tSW_UA_C4'-C1'-B1-B1pair":1, "tSW_UA_B1-B1pair-C1'pair-C4'pair":1, "tSW_UA_alpha_1":2, "tSW_UA_alpha_2":2, "tSW_UA_dB1":3, "tSW_UA_dB2":2, "cHH_UA_tips_distance":4, "cHH_UA_C1'-B1-B1pair":1, "cHH_UA_B1-B1pair-C1'pair":1, "cHH_UA_C4'-C1'-B1-B1pair":1, "cHH_UA_B1-B1pair-C1'pair-C4'pair":2, "cHH_UA_alpha_1":2, "cHH_UA_alpha_2":2, "cHH_UA_dB1":5, "cHH_UA_dB2":2, "tHH_UA_tips_distance":4, "tHH_UA_C1'-B1-B1pair":2, "tHH_UA_B1-B1pair-C1'pair":2, "tHH_UA_C4'-C1'-B1-B1pair":2, "tHH_UA_B1-B1pair-C1'pair-C4'pair":2, "tHH_UA_alpha_1":2, "tHH_UA_alpha_2":3, "tHH_UA_dB1":3, "tHH_UA_dB2":1, "cSH_UA_tips_distance":4, "cSH_UA_C1'-B1-B1pair":1, "cSH_UA_B1-B1pair-C1'pair":1, "cSH_UA_C4'-C1'-B1-B1pair":2, "cSH_UA_B1-B1pair-C1'pair-C4'pair":2, "cSH_UA_alpha_1":2, "cSH_UA_alpha_2":2, "cSH_UA_dB1":3, "cSH_UA_dB2":2, "tSH_UA_tips_distance":2, "tSH_UA_C1'-B1-B1pair":2, "tSH_UA_B1-B1pair-C1'pair":2, "tSH_UA_C4'-C1'-B1-B1pair":3, "tSH_UA_B1-B1pair-C1'pair-C4'pair":2, "tSH_UA_alpha_1":3, "tSH_UA_alpha_2":2, "tSH_UA_dB1":4, "tSH_UA_dB2":1, "cHS_UA_tips_distance":5, "cHS_UA_C1'-B1-B1pair":2, "cHS_UA_B1-B1pair-C1'pair":2, "cHS_UA_C4'-C1'-B1-B1pair":2, "cHS_UA_B1-B1pair-C1'pair-C4'pair":2, "cHS_UA_alpha_1":2, "cHS_UA_alpha_2":2, "cHS_UA_dB1":1, "cHS_UA_dB2":3, "tHS_UA_tips_distance":5, "tHS_UA_C1'-B1-B1pair":2, "tHS_UA_B1-B1pair-C1'pair":2, "tHS_UA_C4'-C1'-B1-B1pair":3, "tHS_UA_B1-B1pair-C1'pair-C4'pair":1, "tHS_UA_alpha_1":3, "tHS_UA_alpha_2":3, "tHS_UA_dB1":2, "tHS_UA_dB2":7, "cSS_UA_tips_distance":2, "cSS_UA_C1'-B1-B1pair":2, "cSS_UA_B1-B1pair-C1'pair":2, "cSS_UA_C4'-C1'-B1-B1pair":2, "cSS_UA_B1-B1pair-C1'pair-C4'pair":1, "cSS_UA_alpha_1":1, "cSS_UA_alpha_2":1, "cSS_UA_dB1":2, "cSS_UA_dB2":1, "tSS_UA_tips_distance":5, "tSS_UA_C1'-B1-B1pair":1, "tSS_UA_B1-B1pair-C1'pair":3, "tSS_UA_C4'-C1'-B1-B1pair":2, "tSS_UA_B1-B1pair-C1'pair-C4'pair":3, "tSS_UA_alpha_1":2, "tSS_UA_alpha_2":2, "tSS_UA_dB1":4, "tSS_UA_dB2":4, "cWW_UC_tips_distance":3, "cWW_UC_C1'-B1-B1pair":1, "cWW_UC_B1-B1pair-C1'pair":2, "cWW_UC_C4'-C1'-B1-B1pair":2, "cWW_UC_B1-B1pair-C1'pair-C4'pair":2, "cWW_UC_alpha_1":2, "cWW_UC_alpha_2":1, "cWW_UC_dB1":1, "cWW_UC_dB2":2, "tWW_UC_tips_distance":4, "tWW_UC_C1'-B1-B1pair":2, "tWW_UC_B1-B1pair-C1'pair":2, "tWW_UC_C4'-C1'-B1-B1pair":2, "tWW_UC_B1-B1pair-C1'pair-C4'pair":2, "tWW_UC_alpha_1":3, "tWW_UC_alpha_2":1, "tWW_UC_dB1":1, "tWW_UC_dB2":4, "cWH_UC_tips_distance":2, "cWH_UC_C1'-B1-B1pair":2, "cWH_UC_B1-B1pair-C1'pair":2, "cWH_UC_C4'-C1'-B1-B1pair":2, "cWH_UC_B1-B1pair-C1'pair-C4'pair":4, "cWH_UC_alpha_1":2, "cWH_UC_alpha_2":3, "cWH_UC_dB1":3, "cWH_UC_dB2":3, "tWH_UC_tips_distance":4, "tWH_UC_C1'-B1-B1pair":3, "tWH_UC_B1-B1pair-C1'pair":2, "tWH_UC_C4'-C1'-B1-B1pair":3, "tWH_UC_B1-B1pair-C1'pair-C4'pair":1, "tWH_UC_alpha_1":4, "tWH_UC_alpha_2":1, "tWH_UC_dB1":4, "tWH_UC_dB2":2, "cHW_UC_tips_distance":5, "cHW_UC_C1'-B1-B1pair":2, "cHW_UC_B1-B1pair-C1'pair":2, "cHW_UC_C4'-C1'-B1-B1pair":1, "cHW_UC_B1-B1pair-C1'pair-C4'pair":2, "cHW_UC_alpha_1":2, "cHW_UC_alpha_2":2, "cHW_UC_dB1":2, "cHW_UC_dB2":6, "tHW_UC_tips_distance":2, "tHW_UC_C1'-B1-B1pair":2, "tHW_UC_B1-B1pair-C1'pair":2, "tHW_UC_C4'-C1'-B1-B1pair":3, "tHW_UC_B1-B1pair-C1'pair-C4'pair":2, "tHW_UC_alpha_1":2, "tHW_UC_alpha_2":4, "tHW_UC_dB1":4, "tHW_UC_dB2":4, "cWS_UC_tips_distance":4, "cWS_UC_C1'-B1-B1pair":2, "cWS_UC_B1-B1pair-C1'pair":2, "cWS_UC_C4'-C1'-B1-B1pair":2, "cWS_UC_B1-B1pair-C1'pair-C4'pair":2, "cWS_UC_alpha_1":3, "cWS_UC_alpha_2":2, "cWS_UC_dB1":3, "cWS_UC_dB2":2, "tWS_UC_tips_distance":4, "tWS_UC_C1'-B1-B1pair":2, "tWS_UC_B1-B1pair-C1'pair":1, "tWS_UC_C4'-C1'-B1-B1pair":2, "tWS_UC_B1-B1pair-C1'pair-C4'pair":2, "tWS_UC_alpha_1":2, "tWS_UC_alpha_2":1, "tWS_UC_dB1":3, "tWS_UC_dB2":2, "cSW_UC_tips_distance":4, "cSW_UC_C1'-B1-B1pair":1, "cSW_UC_B1-B1pair-C1'pair":2, "cSW_UC_C4'-C1'-B1-B1pair":2, "cSW_UC_B1-B1pair-C1'pair-C4'pair":2, "cSW_UC_alpha_1":2, "cSW_UC_alpha_2":3, "cSW_UC_dB1":3, "cSW_UC_dB2":6, "tSW_UC_tips_distance":5, "tSW_UC_C1'-B1-B1pair":1, "tSW_UC_B1-B1pair-C1'pair":2, "tSW_UC_C4'-C1'-B1-B1pair":3, "tSW_UC_B1-B1pair-C1'pair-C4'pair":1, "tSW_UC_alpha_1":2, "tSW_UC_alpha_2":2, "tSW_UC_dB1":2, "tSW_UC_dB2":1, "cHH_UC_tips_distance":5, "cHH_UC_C1'-B1-B1pair":2, "cHH_UC_B1-B1pair-C1'pair":1, "cHH_UC_C4'-C1'-B1-B1pair":2, "cHH_UC_B1-B1pair-C1'pair-C4'pair":2, "cHH_UC_alpha_1":1, "cHH_UC_alpha_2":3, "cHH_UC_dB1":7, "cHH_UC_dB2":3, "tHH_UC_tips_distance":5, "tHH_UC_C1'-B1-B1pair":1, "tHH_UC_B1-B1pair-C1'pair":1, "tHH_UC_C4'-C1'-B1-B1pair":2, "tHH_UC_B1-B1pair-C1'pair-C4'pair":3, "tHH_UC_alpha_1":2, "tHH_UC_alpha_2":2, "tHH_UC_dB1":8, "tHH_UC_dB2":8, "cSH_UC_tips_distance":5, "cSH_UC_C1'-B1-B1pair":2, "cSH_UC_B1-B1pair-C1'pair":2, "cSH_UC_C4'-C1'-B1-B1pair":2, "cSH_UC_B1-B1pair-C1'pair-C4'pair":1, "cSH_UC_alpha_1":2, "cSH_UC_alpha_2":3, "cSH_UC_dB1":5, "cSH_UC_dB2":3, "tSH_UC_tips_distance":2, "tSH_UC_C1'-B1-B1pair":1, "tSH_UC_B1-B1pair-C1'pair":1, "tSH_UC_C4'-C1'-B1-B1pair":2, "tSH_UC_B1-B1pair-C1'pair-C4'pair":1, "tSH_UC_alpha_1":2, "tSH_UC_alpha_2":2, "tSH_UC_dB1":2, "tSH_UC_dB2":7, "cHS_UC_tips_distance":5, "cHS_UC_C1'-B1-B1pair":2, "cHS_UC_B1-B1pair-C1'pair":2, "cHS_UC_C4'-C1'-B1-B1pair":1, "cHS_UC_B1-B1pair-C1'pair-C4'pair":3, "cHS_UC_alpha_1":3, "cHS_UC_alpha_2":2, "cHS_UC_dB1":6, "cHS_UC_dB2":7, "tHS_UC_tips_distance":5, "tHS_UC_C1'-B1-B1pair":3, "tHS_UC_B1-B1pair-C1'pair":2, "tHS_UC_C4'-C1'-B1-B1pair":2, "tHS_UC_B1-B1pair-C1'pair-C4'pair":3, "tHS_UC_alpha_1":3, "tHS_UC_alpha_2":1, "tHS_UC_dB1":5, "tHS_UC_dB2":7, "cSS_UC_tips_distance":5, "cSS_UC_C1'-B1-B1pair":2, "cSS_UC_B1-B1pair-C1'pair":1, "cSS_UC_C4'-C1'-B1-B1pair":3, "cSS_UC_B1-B1pair-C1'pair-C4'pair":1, "cSS_UC_alpha_1":3, "cSS_UC_alpha_2":3, "cSS_UC_dB1":8, "cSS_UC_dB2":5, "tSS_UC_tips_distance":5, "tSS_UC_C1'-B1-B1pair":2, "tSS_UC_B1-B1pair-C1'pair":1, "tSS_UC_C4'-C1'-B1-B1pair":3, "tSS_UC_B1-B1pair-C1'pair-C4'pair":3, "tSS_UC_alpha_1":3, "tSS_UC_alpha_2":1, "tSS_UC_dB1":8, "tSS_UC_dB2":7, "cWW_UG_tips_distance":3, "cWW_UG_C1'-B1-B1pair":2, "cWW_UG_B1-B1pair-C1'pair":3, "cWW_UG_C4'-C1'-B1-B1pair":2, "cWW_UG_B1-B1pair-C1'pair-C4'pair":2, "cWW_UG_alpha_1":2, "cWW_UG_alpha_2":3, "cWW_UG_dB1":4, "cWW_UG_dB2":3, "tWW_UG_tips_distance":2, "tWW_UG_C1'-B1-B1pair":1, "tWW_UG_B1-B1pair-C1'pair":1, "tWW_UG_C4'-C1'-B1-B1pair":2, "tWW_UG_B1-B1pair-C1'pair-C4'pair":2, "tWW_UG_alpha_1":3, "tWW_UG_alpha_2":3, "tWW_UG_dB1":3, "tWW_UG_dB2":4, "cWH_UG_tips_distance":2, "cWH_UG_C1'-B1-B1pair":1, "cWH_UG_B1-B1pair-C1'pair":2, "cWH_UG_C4'-C1'-B1-B1pair":2, "cWH_UG_B1-B1pair-C1'pair-C4'pair":2, "cWH_UG_alpha_1":2, "cWH_UG_alpha_2":2, "cWH_UG_dB1":2, "cWH_UG_dB2":2, "tWH_UG_tips_distance":1, "tWH_UG_C1'-B1-B1pair":2, "tWH_UG_B1-B1pair-C1'pair":2, "tWH_UG_C4'-C1'-B1-B1pair":2, "tWH_UG_B1-B1pair-C1'pair-C4'pair":2, "tWH_UG_alpha_1":2, "tWH_UG_alpha_2":2, "tWH_UG_dB1":6, "tWH_UG_dB2":2, "cHW_UG_tips_distance":2, "cHW_UG_C1'-B1-B1pair":2, "cHW_UG_B1-B1pair-C1'pair":2, "cHW_UG_C4'-C1'-B1-B1pair":1, "cHW_UG_B1-B1pair-C1'pair-C4'pair":2, "cHW_UG_alpha_1":1, "cHW_UG_alpha_2":2, "cHW_UG_dB1":4, "cHW_UG_dB2":4, "tHW_UG_tips_distance":1, "tHW_UG_C1'-B1-B1pair":2, "tHW_UG_B1-B1pair-C1'pair":1, "tHW_UG_C4'-C1'-B1-B1pair":2, "tHW_UG_B1-B1pair-C1'pair-C4'pair":2, "tHW_UG_alpha_1":3, "tHW_UG_alpha_2":2, "tHW_UG_dB1":6, "tHW_UG_dB2":3, "cWS_UG_tips_distance":2, "cWS_UG_C1'-B1-B1pair":4, "cWS_UG_B1-B1pair-C1'pair":2, "cWS_UG_C4'-C1'-B1-B1pair":3, "cWS_UG_B1-B1pair-C1'pair-C4'pair":2, "cWS_UG_alpha_1":2, "cWS_UG_alpha_2":2, "cWS_UG_dB1":2, "cWS_UG_dB2":2, "tWS_UG_tips_distance":5, "tWS_UG_C1'-B1-B1pair":2, "tWS_UG_B1-B1pair-C1'pair":2, "tWS_UG_C4'-C1'-B1-B1pair":2, "tWS_UG_B1-B1pair-C1'pair-C4'pair":2, "tWS_UG_alpha_1":2, "tWS_UG_alpha_2":1, "tWS_UG_dB1":3, "tWS_UG_dB2":5, "cSW_UG_tips_distance":2, "cSW_UG_C1'-B1-B1pair":2, "cSW_UG_B1-B1pair-C1'pair":3, "cSW_UG_C4'-C1'-B1-B1pair":2, "cSW_UG_B1-B1pair-C1'pair-C4'pair":1, "cSW_UG_alpha_1":2, "cSW_UG_alpha_2":2, "cSW_UG_dB1":3, "cSW_UG_dB2":2, "tSW_UG_tips_distance":4, "tSW_UG_C1'-B1-B1pair":1, "tSW_UG_B1-B1pair-C1'pair":1, "tSW_UG_C4'-C1'-B1-B1pair":2, "tSW_UG_B1-B1pair-C1'pair-C4'pair":3, "tSW_UG_alpha_1":2, "tSW_UG_alpha_2":2, "tSW_UG_dB1":2, "tSW_UG_dB2":2, "cHH_UG_tips_distance":5, "cHH_UG_C1'-B1-B1pair":3, "cHH_UG_B1-B1pair-C1'pair":2, "cHH_UG_C4'-C1'-B1-B1pair":2, "cHH_UG_B1-B1pair-C1'pair-C4'pair":2, "cHH_UG_alpha_1":2, "cHH_UG_alpha_2":3, "cHH_UG_dB1":4, "cHH_UG_dB2":5, "tHH_UG_tips_distance":5, "tHH_UG_C1'-B1-B1pair":2, "tHH_UG_B1-B1pair-C1'pair":2, "tHH_UG_C4'-C1'-B1-B1pair":2, "tHH_UG_B1-B1pair-C1'pair-C4'pair":3, "tHH_UG_alpha_1":3, "tHH_UG_alpha_2":2, "tHH_UG_dB1":3, "tHH_UG_dB2":2, "cSH_UG_tips_distance":5, "cSH_UG_C1'-B1-B1pair":1, "cSH_UG_B1-B1pair-C1'pair":2, "cSH_UG_C4'-C1'-B1-B1pair":2, "cSH_UG_B1-B1pair-C1'pair-C4'pair":2, "cSH_UG_alpha_1":2, "cSH_UG_alpha_2":2, "cSH_UG_dB1":3, "cSH_UG_dB2":4, "tSH_UG_tips_distance":5, "tSH_UG_C1'-B1-B1pair":2, "tSH_UG_B1-B1pair-C1'pair":1, "tSH_UG_C4'-C1'-B1-B1pair":2, "tSH_UG_B1-B1pair-C1'pair-C4'pair":1, "tSH_UG_alpha_1":3, "tSH_UG_alpha_2":1, "tSH_UG_dB1":2, "tSH_UG_dB2":2, "cHS_UG_tips_distance":3, "cHS_UG_C1'-B1-B1pair":2, "cHS_UG_B1-B1pair-C1'pair":3, "cHS_UG_C4'-C1'-B1-B1pair":2, "cHS_UG_B1-B1pair-C1'pair-C4'pair":4, "cHS_UG_alpha_1":2, "cHS_UG_alpha_2":3, "cHS_UG_dB1":3, "cHS_UG_dB2":4, "tHS_UG_tips_distance":7, "tHS_UG_C1'-B1-B1pair":1, "tHS_UG_B1-B1pair-C1'pair":3, "tHS_UG_C4'-C1'-B1-B1pair":2, "tHS_UG_B1-B1pair-C1'pair-C4'pair":1, "tHS_UG_alpha_1":2, "tHS_UG_alpha_2":3, "tHS_UG_dB1":2, "tHS_UG_dB2":1, "cSS_UG_tips_distance":2, "cSS_UG_C1'-B1-B1pair":2, "cSS_UG_B1-B1pair-C1'pair":2, "cSS_UG_C4'-C1'-B1-B1pair":2, "cSS_UG_B1-B1pair-C1'pair-C4'pair":2, "cSS_UG_alpha_1":1, "cSS_UG_alpha_2":2, "cSS_UG_dB1":2, "cSS_UG_dB2":3, "tSS_UG_tips_distance":5, "tSS_UG_C1'-B1-B1pair":2, "tSS_UG_B1-B1pair-C1'pair":2, "tSS_UG_C4'-C1'-B1-B1pair":1, "tSS_UG_B1-B1pair-C1'pair-C4'pair":2, "tSS_UG_alpha_1":2, "tSS_UG_alpha_2":2, "tSS_UG_dB1":3, "tSS_UG_dB2":4, "cWW_UU_tips_distance":1, "cWW_UU_C1'-B1-B1pair":2, "cWW_UU_B1-B1pair-C1'pair":3, "cWW_UU_C4'-C1'-B1-B1pair":3, "cWW_UU_B1-B1pair-C1'pair-C4'pair":2, "cWW_UU_alpha_1":2, "cWW_UU_alpha_2":2, "cWW_UU_dB1":2, "cWW_UU_dB2":1, "tWW_UU_tips_distance":3, "tWW_UU_C1'-B1-B1pair":2, "tWW_UU_B1-B1pair-C1'pair":2, "tWW_UU_C4'-C1'-B1-B1pair":2, "tWW_UU_B1-B1pair-C1'pair-C4'pair":2, "tWW_UU_alpha_1":2, "tWW_UU_alpha_2":2, "tWW_UU_dB1":4, "tWW_UU_dB2":5, "cWH_UU_tips_distance":2, "cWH_UU_C1'-B1-B1pair":2, "cWH_UU_B1-B1pair-C1'pair":2, "cWH_UU_C4'-C1'-B1-B1pair":3, "cWH_UU_B1-B1pair-C1'pair-C4'pair":3, "cWH_UU_alpha_1":2, "cWH_UU_alpha_2":3, "cWH_UU_dB1":3, "cWH_UU_dB2":5, "tWH_UU_tips_distance":3, "tWH_UU_C1'-B1-B1pair":2, "tWH_UU_B1-B1pair-C1'pair":2, "tWH_UU_C4'-C1'-B1-B1pair":2, "tWH_UU_B1-B1pair-C1'pair-C4'pair":2, "tWH_UU_alpha_1":3, "tWH_UU_alpha_2":3, "tWH_UU_dB1":2, "tWH_UU_dB2":2, "cHW_UU_tips_distance":1, "cHW_UU_C1'-B1-B1pair":2, "cHW_UU_B1-B1pair-C1'pair":3, "cHW_UU_C4'-C1'-B1-B1pair":1, "cHW_UU_B1-B1pair-C1'pair-C4'pair":3, "cHW_UU_alpha_1":2, "cHW_UU_alpha_2":2, "cHW_UU_dB1":3, "cHW_UU_dB2":4, "tHW_UU_tips_distance":3, "tHW_UU_C1'-B1-B1pair":3, "tHW_UU_B1-B1pair-C1'pair":2, "tHW_UU_C4'-C1'-B1-B1pair":2, "tHW_UU_B1-B1pair-C1'pair-C4'pair":2, "tHW_UU_alpha_1":2, "tHW_UU_alpha_2":3, "tHW_UU_dB1":2, "tHW_UU_dB2":2, "cWS_UU_tips_distance":5, "cWS_UU_C1'-B1-B1pair":1, "cWS_UU_B1-B1pair-C1'pair":1, "cWS_UU_C4'-C1'-B1-B1pair":2, "cWS_UU_B1-B1pair-C1'pair-C4'pair":3, "cWS_UU_alpha_1":2, "cWS_UU_alpha_2":1, "cWS_UU_dB1":2, "cWS_UU_dB2":1, "tWS_UU_tips_distance":3, "tWS_UU_C1'-B1-B1pair":2, "tWS_UU_B1-B1pair-C1'pair":2, "tWS_UU_C4'-C1'-B1-B1pair":3, "tWS_UU_B1-B1pair-C1'pair-C4'pair":2, "tWS_UU_alpha_1":2, "tWS_UU_alpha_2":2, "tWS_UU_dB1":3, "tWS_UU_dB2":3, "cSW_UU_tips_distance":5, "cSW_UU_C1'-B1-B1pair":1, "cSW_UU_B1-B1pair-C1'pair":3, "cSW_UU_C4'-C1'-B1-B1pair":2, "cSW_UU_B1-B1pair-C1'pair-C4'pair":3, "cSW_UU_alpha_1":2, "cSW_UU_alpha_2":3, "cSW_UU_dB1":1, "cSW_UU_dB2":4, "tSW_UU_tips_distance":6, "tSW_UU_C1'-B1-B1pair":3, "tSW_UU_B1-B1pair-C1'pair":1, "tSW_UU_C4'-C1'-B1-B1pair":2, "tSW_UU_B1-B1pair-C1'pair-C4'pair":2, "tSW_UU_alpha_1":1, "tSW_UU_alpha_2":2, "tSW_UU_dB1":3, "tSW_UU_dB2":3, "cHH_UU_tips_distance":5, "cHH_UU_C1'-B1-B1pair":1, "cHH_UU_B1-B1pair-C1'pair":1, "cHH_UU_C4'-C1'-B1-B1pair":3, "cHH_UU_B1-B1pair-C1'pair-C4'pair":2, "cHH_UU_alpha_1":2, "cHH_UU_alpha_2":2, "cHH_UU_dB1":1, "cHH_UU_dB2":5, "tHH_UU_tips_distance":5, "tHH_UU_C1'-B1-B1pair":2, "tHH_UU_B1-B1pair-C1'pair":3, "tHH_UU_C4'-C1'-B1-B1pair":1, "tHH_UU_B1-B1pair-C1'pair-C4'pair":3, "tHH_UU_alpha_1":2, "tHH_UU_alpha_2":4, "tHH_UU_dB1":4, "tHH_UU_dB2":5, "cSH_UU_tips_distance":5, "cSH_UU_C1'-B1-B1pair":1, "cSH_UU_B1-B1pair-C1'pair":3, "cSH_UU_C4'-C1'-B1-B1pair":2, "cSH_UU_B1-B1pair-C1'pair-C4'pair":2, "cSH_UU_alpha_1":3, "cSH_UU_alpha_2":2, "cSH_UU_dB1":2, "cSH_UU_dB2":5, "tSH_UU_tips_distance":5, "tSH_UU_C1'-B1-B1pair":2, "tSH_UU_B1-B1pair-C1'pair":1, "tSH_UU_C4'-C1'-B1-B1pair":3, "tSH_UU_B1-B1pair-C1'pair-C4'pair":3, "tSH_UU_alpha_1":1, "tSH_UU_alpha_2":1, "tSH_UU_dB1":1, "tSH_UU_dB2":5, "cHS_UU_tips_distance":7, "cHS_UU_C1'-B1-B1pair":2, "cHS_UU_B1-B1pair-C1'pair":2, "cHS_UU_C4'-C1'-B1-B1pair":2, "cHS_UU_B1-B1pair-C1'pair-C4'pair":2, "cHS_UU_alpha_1":2, "cHS_UU_alpha_2":2, "cHS_UU_dB1":3, "cHS_UU_dB2":2, "tHS_UU_tips_distance":5, "tHS_UU_C1'-B1-B1pair":1, "tHS_UU_B1-B1pair-C1'pair":2, "tHS_UU_C4'-C1'-B1-B1pair":2, "tHS_UU_B1-B1pair-C1'pair-C4'pair":1, "tHS_UU_alpha_1":1, "tHS_UU_alpha_2":2, "tHS_UU_dB1":4, "tHS_UU_dB2":1, "cSS_UU_tips_distance":5, "cSS_UU_C1'-B1-B1pair":2, "cSS_UU_B1-B1pair-C1'pair":2, "cSS_UU_C4'-C1'-B1-B1pair":2, "cSS_UU_B1-B1pair-C1'pair-C4'pair":3, "cSS_UU_alpha_1":2, "cSS_UU_alpha_2":2, "cSS_UU_dB1":6, "cSS_UU_dB2":4, "tSS_UU_tips_distance":8, "tSS_UU_C1'-B1-B1pair":1, "tSS_UU_B1-B1pair-C1'pair":1, "tSS_UU_C4'-C1'-B1-B1pair":2, "tSS_UU_B1-B1pair-C1'pair-C4'pair":1, "tSS_UU_alpha_1":1, "tSS_UU_alpha_2":2, "tSS_UU_dB1":3, "tSS_UU_dB2":4, } @trace_unhandled_exceptions def retrieve_angles(db, res): """ Retrieve torsion angles from RNANet.db and convert them to degrees """ # Retrieve angle values with sqlite3.connect(runDir + "/results/RNANet.db") as conn: conn.execute('pragma journal_mode=wal') df = pd.read_sql(f"""SELECT chain_id, nt_name, alpha, beta, gamma, delta, epsilon, zeta, chi FROM ( SELECT chain_id FROM chain JOIN structure ON chain.structure_id = structure.pdb_id WHERE chain.rfam_acc = 'unmappd' AND structure.resolution <= {res} AND issue = 0 ) AS c NATURAL JOIN nucleotide WHERE nt_name='A' OR nt_name='C' OR nt_name='G' OR nt_name='U';""", conn) # convert to degrees j = (180.0/np.pi) torsions = df.iloc[:, 0:2].merge( df.iloc[:, 2:9].applymap(lambda x: j*x if x <= np.pi else j*x-360.0, na_action='ignore'), left_index=True, right_index=True ) return torsions def retrieve_eta_theta(db, res): """ Retrieve pseudotorsions from RNANet.db and convert them to degrees """ # Retrieve angle values with sqlite3.connect(runDir + "/results/RNANet.db") as conn: conn.execute('pragma journal_mode=wal') df = pd.read_sql(f"""SELECT chain_id, nt_name, eta, theta, eta_prime, theta_prime, eta_base, theta_base FROM ( SELECT chain_id FROM chain JOIN structure ON chain.structure_id = structure.pdb_id WHERE chain.rfam_acc = 'unmappd' AND structure.resolution <= {res} AND issue = 0 ) AS c NATURAL JOIN nucleotide WHERE nt_name='A' OR nt_name='C' OR nt_name='G' OR nt_name='U';""", conn) # convert to degrees j = (180.0/np.pi) pseudotorsions = df.iloc[:, 0:2].merge( df.iloc[:, 2:8].applymap(lambda x: j*x if x <= np.pi else j*x-360.0, na_action='ignore'), left_index=True, right_index=True ) return pseudotorsions def get_euclidian_distance(L1, L2): """ Returns the distance between two points (coordinates in lists) """ if len(L1)*len(L2) == 0: return np.nan if len(L1) == 1: L1 = L1[0] if len(L2) == 1: L2 = L2[0] e = 0 for i in range(len(L1)): try: e += float(L1[i] - L2[i])**2 except TypeError: print("Terms: ", L1, L2) except IndexError: print("Terms: ", L1, L2) return np.sqrt(e) def get_flat_angle(L1, L2, L3): """ Returns the flat angles (in radians) defined by 3 points. L1, L2, L3 : lists of (x,y,z) coordinates Returns NaN if one of the lists is empty. """ if len(L1)*len(L2)*len(L3) == 0: return np.nan return calc_angle(Vector(L1[0]), Vector(L2[0]), Vector(L3[0]))*(180/np.pi) def get_torsion_angle(L1, L2, L3, L4): if len(L1)*len(L2)*len(L3)*len(L4) == 0: return np.nan return calc_dihedral(Vector(L1[0]), Vector(L2[0]), Vector(L3[0]), Vector(L4[0]))*(180/np.pi) def pos_b1(res): """ Returns the coordinates of virtual atom B1 (center of the first aromatic cycle) """ coordb1=[] somme_x_b1=0 somme_y_b1=0 somme_z_b1=0 moy_x_b1=0 moy_y_b1=0 moy_z_b1=0 #different cases #some residues have 2 aromatic cycles if res.get_resname() in ['A', 'G', '2MG', '7MG', 'MA6', '6IA', 'OMG' , '2MA', 'B9B', 'A2M', '1MA', 'E7G', 'P7G', 'B8W', 'B8K', 'BGH', '6MZ', 'E6G', 'MHG', 'M7A', 'M2G', 'P5P', 'G7M', '1MG', 'T6A', 'MIA', 'YG', 'YYG', 'I', 'DG', 'N79', '574', 'DJF', 'AET', '12A', 'ANZ', 'UY4'] : c=0 names=[] for atom in res : if (atom.get_fullname() in ['N9', 'C8', 'N7', 'C4', 'C5']) : c=c+1 names.append(atom.get_name()) coord=atom.get_vector() somme_x_b1=somme_x_b1+coord[0] somme_y_b1=somme_y_b1+coord[1] somme_z_b1=somme_z_b1+coord[2] else : c=c #calcul coord B1 if c != 0 : moy_x_b1=somme_x_b1/c moy_y_b1=somme_y_b1/c moy_z_b1=somme_z_b1/c coordb1.append(moy_x_b1) coordb1.append(moy_y_b1) coordb1.append(moy_z_b1) #others have only one cycle if res.get_resname() in ['C', 'U', 'AG9', '70U', '1RN', 'RSP', '3AU', 'CM0', 'U8U', 'IU', 'E3C', '4SU', '5HM', 'LV2', 'LHH', '4AC', 'CH', 'Y5P', '2MU', '4OC', 'B8T', 'JMH', 'JMC', 'DC', 'B9H', 'UR3', 'I4U', 'B8Q', 'P4U', 'OMU', 'OMC', '5MU', 'H2U', 'CBV', 'M1Y', 'B8N', '3TD', 'B8H'] : c=0 for atom in res : if (atom.get_fullname() in ['C6', 'N3', 'N1', 'C2', 'C4', 'C5']): c=c+1 coord=atom.get_vector() somme_x_b1=somme_x_b1+coord[0] somme_y_b1=somme_y_b1+coord[1] somme_z_b1=somme_z_b1+coord[2] #calcul coord B1 if c != 0 : moy_x_b1=somme_x_b1/c moy_y_b1=somme_y_b1/c moy_z_b1=somme_z_b1/c coordb1.append(moy_x_b1) coordb1.append(moy_y_b1) coordb1.append(moy_z_b1) if len(coordb1): return [coordb1] else: return [] def pos_b2(res): """ Returns the coordinates of virtual atom B2 (center of the second aromatic cycle, if exists) """ coordb2=[] somme_x_b2=0 somme_y_b2=0 somme_z_b2=0 moy_x_b2=0 moy_y_b2=0 moy_z_b2=0 if res.get_resname() in ['A', 'G', '2MG', '7MG', 'MA6', '6IA', 'OMG' , '2MA', 'B9B', 'A2M', '1MA', 'E7G', 'P7G', 'B8W', 'B8K', 'BGH', '6MZ', 'E6G', 'MHG', 'M7A', 'M2G', 'P5P', 'G7M', '1MG', 'T6A', 'MIA', 'YG', 'YYG', 'I', 'DG', 'N79', '574', 'DJF', 'AET', '12A', 'ANZ', 'UY4'] : #2 cycles aromatiques c=0 for atom in res : if atom.get_fullname() in ['C6', 'N3', 'N1', 'C2', 'C4', 'C5'] : c=c+1 coord=atom.get_vector() somme_x_b2=somme_x_b2+coord[0] somme_y_b2=somme_y_b2+coord[1] somme_z_b2=somme_z_b2+coord[2] #calcul coord B2 if c!=0 : moy_x_b2=somme_x_b2/c moy_y_b2=somme_y_b2/c moy_z_b2=somme_z_b2/c coordb2.append(moy_x_b2) coordb2.append(moy_y_b2) coordb2.append(moy_z_b2) if len(coordb2): return [coordb2] else: return [] @trace_unhandled_exceptions def measures_aa(name, s, thr_idx): """ Measures the distance between atoms linked by covalent bonds """ # do not recompute something already computed if os.path.isfile(runDir + "/results/geometry/all-atoms/distances/dist_atoms_" + name + ".csv"): return last_o3p = [] # o3 'of the previous nucleotide linked to the P of the current nucleotide l_common = [] l_purines = [] l_pyrimidines = [] setproctitle(f"RNANet statistics.py Worker {thr_idx+1} measure_aa_dists({name})") chain = next(s[0].get_chains()) # 1 chain per file residues = list(chain.get_residues()) pbar = tqdm(total=len(residues), position=thr_idx+1, desc=f"Worker {thr_idx+1}: {name} measure_aa_dists", unit="res", leave=False) pbar.update(0) for res in chain : # for residues A, G, C, U op3_p = [] p_op1 = [] p_op2 = [] p_o5p = [] o5p_c5p = [] c5p_c4p = [] c4p_o4p = [] o4p_c1p = [] c1p_c2p = [] c2p_o2p = [] c2p_c3p = [] c3p_o3p = [] c4p_c3p = [] # if res = A or G c1p_n9 = None n9_c8 = None c8_n7 = None n7_c5 = None c5_c6 = None c6_n1 = None n1_c2 = None c2_n3 = None n3_c4 = None c4_n9 = None c4_c5 = None # if res = G c6_o6 = None c2_n2 = None # if res = A c6_n6 = None # if res = C or U c1p_n1 = None n1_c6 = None c6_c5 = None c5_c4 = None c4_n3 = None n3_c2 = None c2_n1 = None c2_o2 = None # if res = C c4_n4 = None # if res = U c4_o4 = None last_o3p_p = None if res.get_resname()=='A' or res.get_resname()=='G' or res.get_resname()=='C' or res.get_resname()=='U' : # get the coordinates of the atoms atom_p = [ atom.get_coord() for atom in res if atom.get_name() == "P"] atom_op3 = [ atom.get_coord() for atom in res if "OP3" in atom.get_fullname() ] # OP3 belongs to previous nucleotide ! atom_op1 = [ atom.get_coord() for atom in res if "OP1" in atom.get_fullname() ] atom_op2 = [ atom.get_coord() for atom in res if "OP2" in atom.get_fullname() ] atom_o5p= [ atom.get_coord() for atom in res if "O5'" in atom.get_fullname() ] atom_c5p = [ atom.get_coord() for atom in res if "C5'" in atom.get_fullname() ] atom_c4p = [ atom.get_coord() for atom in res if "C4'" in atom.get_fullname() ] atom_o4p = [ atom.get_coord() for atom in res if "O4'" in atom.get_fullname() ] atom_c3p = [ atom.get_coord() for atom in res if "C3'" in atom.get_fullname() ] atom_o3p = [ atom.get_coord() for atom in res if "O3'" in atom.get_fullname() ] atom_c2p = [ atom.get_coord() for atom in res if "C2'" in atom.get_fullname() ] atom_o2p = [ atom.get_coord() for atom in res if "O2'" in atom.get_fullname() ] atom_c1p = [ atom.get_coord() for atom in res if "C1'" in atom.get_fullname() ] atom_n9 = [ atom.get_coord() for atom in res if "N9" in atom.get_fullname() ] atom_c8 = [ atom.get_coord() for atom in res if "C8" in atom.get_fullname() ] atom_n7 = [ atom.get_coord() for atom in res if "N7" in atom.get_fullname() ] atom_c5 = [ atom.get_coord() for atom in res if atom.get_name() == "C5"] atom_c6 = [ atom.get_coord() for atom in res if "C6" in atom.get_fullname() ] atom_o6 = [ atom.get_coord() for atom in res if "O6" in atom.get_fullname() ] atom_n6 = [ atom.get_coord() for atom in res if "N6" in atom.get_fullname() ] atom_n1 = [ atom.get_coord() for atom in res if "N1" in atom.get_fullname() ] atom_c2 = [ atom.get_coord() for atom in res if atom.get_name() == "C2"] atom_n2 = [ atom.get_coord() for atom in res if "N2" in atom.get_fullname() ] atom_o2 = [ atom.get_coord() for atom in res if atom.get_name() == "O2"] atom_n3 = [ atom.get_coord() for atom in res if "N3" in atom.get_fullname() ] atom_c4 = [ atom.get_coord() for atom in res if atom.get_name() == "C4" ] atom_n4 = [ atom.get_coord() for atom in res if "N4" in atom.get_fullname() ] atom_o4 = [ atom.get_coord() for atom in res if atom.get_name() == "O4"] if len(atom_op3): last_o3p_p = get_euclidian_distance(atom_op3, atom_p) # This nucleotide has an OP3 atom (likely the begining of a chain) else: last_o3p_p = get_euclidian_distance(last_o3p, atom_p) # link with the previous nucleotide p_op1 = get_euclidian_distance(atom_op1, atom_p) p_op2 = get_euclidian_distance(atom_op2, atom_p) p_o5p = get_euclidian_distance(atom_o5p, atom_p) o5p_c5p = get_euclidian_distance(atom_o5p, atom_c5p) c5p_c4p = get_euclidian_distance(atom_c5p, atom_c4p) c4p_o4p = get_euclidian_distance(atom_c4p, atom_o4p) c4p_c3p = get_euclidian_distance(atom_c4p, atom_c3p) o4p_c1p = get_euclidian_distance(atom_o4p, atom_c1p) c1p_c2p = get_euclidian_distance(atom_c1p, atom_c2p) c2p_o2p = get_euclidian_distance(atom_c2p, atom_o2p) c2p_c3p = get_euclidian_distance(atom_c2p, atom_c3p) c3p_o3p = get_euclidian_distance(atom_c3p, atom_o3p) last_o3p = atom_o3p # o3' of this residue becomes the previous o3' of the following # different cases for the aromatic cycles if res.get_resname()=='A' or res.get_resname()=='G': # compute the distances between atoms of aromatic cycles c1p_n9 = get_euclidian_distance(atom_c1p, atom_n9) n9_c8 = get_euclidian_distance(atom_n9, atom_c8) c8_n7 = get_euclidian_distance(atom_c8, atom_n7) n7_c5 = get_euclidian_distance(atom_n7, atom_c5) c5_c6 = get_euclidian_distance(atom_c5, atom_c6) c6_o6 = get_euclidian_distance(atom_c6, atom_o6) c6_n6 = get_euclidian_distance(atom_c6, atom_n6) c6_n1 = get_euclidian_distance(atom_c6, atom_n1) n1_c2 = get_euclidian_distance(atom_n1, atom_c2) c2_n2 = get_euclidian_distance(atom_c2, atom_n2) c2_n3 = get_euclidian_distance(atom_c2, atom_n3) n3_c4 = get_euclidian_distance(atom_n3, atom_c4) c4_n9 = get_euclidian_distance(atom_c4, atom_n9) c4_c5 = get_euclidian_distance(atom_c4, atom_c5) if res.get_resname()=='C' or res.get_resname()=='U' : c1p_n1 = get_euclidian_distance(atom_c1p, atom_n1) n1_c6 = get_euclidian_distance(atom_n1, atom_c6) c6_c5 = get_euclidian_distance(atom_c6, atom_c5) c5_c4 = get_euclidian_distance(atom_c5, atom_c4) c4_n3 = get_euclidian_distance(atom_c4, atom_n3) n3_c2 = get_euclidian_distance(atom_n3, atom_c2) c2_o2 = get_euclidian_distance(atom_c2, atom_o2) c2_n1 = get_euclidian_distance(atom_c2, atom_n1) c4_n4 = get_euclidian_distance(atom_c4, atom_n4) c4_o4 = get_euclidian_distance(atom_c4, atom_o4) l_common.append([res.get_resname(), last_o3p_p, p_op1, p_op2, p_o5p, o5p_c5p, c5p_c4p, c4p_o4p, c4p_c3p, o4p_c1p, c1p_c2p, c2p_o2p, c2p_c3p, c3p_o3p] ) l_purines.append([c1p_n9, n9_c8, c8_n7, n7_c5, c5_c6, c6_o6, c6_n6, c6_n1, n1_c2, c2_n2, c2_n3, n3_c4, c4_n9, c4_c5]) l_pyrimidines.append([c1p_n1, n1_c6, c6_c5, c5_c4, c4_n3, n3_c2, c2_o2, c2_n1, c4_n4, c4_o4]) pbar.update(1) df_comm = pd.DataFrame(l_common, columns=["Residue", "O3'-P", "P-OP1", "P-OP2", "P-O5'", "O5'-C5'", "C5'-C4'", "C4'-O4'", "C4'-C3'", "O4'-C1'", "C1'-C2'", "C2'-O2'", "C2'-C3'", "C3'-O3'"]) df_pur = pd.DataFrame(l_purines, columns=["C1'-N9", "N9-C8", "C8-N7", "N7-C5", "C5-C6", "C6-O6", "C6-N6", "C6-N1", "N1-C2", "C2-N2", "C2-N3", "N3-C4", "C4-N9", "C4-C5" ]) df_pyr = pd.DataFrame(l_pyrimidines, columns=["C1'-N1", "N1-C6", "C6-C5", "C5-C4", "C4-N3", "N3-C2", "C2-O2", "C2-N1", "C4-N4", "C4-O4"]) df = pd.concat([df_comm, df_pur, df_pyr], axis = 1) pbar.close() df.to_csv(runDir + "/results/geometry/all-atoms/distances/dist_atoms_" + name + ".csv") @trace_unhandled_exceptions def measures_pyle(name, s, thr_idx): """ Measures the distances and plane angles involving C1' and P atoms Saves the results in a dataframe """ # do not recompute something already computed if (os.path.isfile(runDir + '/results/geometry/Pyle/angles/flat_angles_pyle_' + name + '.csv') and os.path.isfile(runDir + "/results/geometry/Pyle/distances/distances_pyle_" + name + ".csv")): return l_dist = [] l_angl = [] last_p = [] last_c1p = [] last_c4p = [] setproctitle(f"RNANet statistics.py Worker {thr_idx+1} measures_pyle({name})") chain = next(s[0].get_chains()) for res in tqdm(chain, position=thr_idx+1, desc=f"Worker {thr_idx+1}: {name} measures_pyle", unit="res", leave=False): p_c1p_psuiv = np.nan c1p_psuiv_c1psuiv = np.nan if res.get_resname() not in ['ATP', 'CCC', 'A3P', 'A23', 'GDP', 'RIA', "2BA"] : atom_p = [ atom.get_coord() for atom in res if atom.get_name() == "P"] atom_c1p = [ atom.get_coord() for atom in res if "C1'" in atom.get_fullname() ] atom_c4p = [ atom.get_coord() for atom in res if "C4'" in atom.get_fullname() ] if len(atom_c1p) > 1: for atom in res: if "C1'" in atom.get_fullname(): print("\n", atom.get_fullname(), "-", res.get_resname(), "\n") p_c1p_psuiv = get_flat_angle(last_p, last_c1p, atom_p) c1p_psuiv_c1psuiv = get_flat_angle(last_c1p, atom_p, atom_c1p) c1p_psuiv = get_euclidian_distance(last_c1p, atom_p) p_c1p = get_euclidian_distance(atom_p, atom_c1p) c4p_psuiv = get_euclidian_distance(last_c4p, atom_p) p_c4p = get_euclidian_distance(atom_p, atom_c4p) last_p = atom_p last_c1p = atom_c1p last_c4p = atom_c4p l_dist.append([res.get_resname(), c1p_psuiv, p_c1p, c4p_psuiv, p_c4p]) l_angl.append([res.get_resname(), p_c1p_psuiv, c1p_psuiv_c1psuiv]) df = pd.DataFrame(l_dist, columns=["Residue", "C1'-P", "P-C1'", "C4'-P", "P-C4'"]) df.to_csv(runDir + "/results/geometry/Pyle/distances/distances_pyle_" + name + ".csv") df = pd.DataFrame(l_angl, columns=["Residue", "P-C1'-P°", "C1'-P°-C1'°"]) df.to_csv(runDir + "/results/geometry/Pyle/angles/flat_angles_pyle_"+name+".csv") @trace_unhandled_exceptions def measures_hrna(name, s, thr_idx): """ Measures the distance/angles between the atoms of the HiRE-RNA model linked by covalent bonds """ # do not recompute something already computed if (os.path.isfile(runDir + '/results/geometry/HiRE-RNA/distances/distances_HiRERNA '+name+'.csv') and os.path.isfile(runDir + '/results/geometry/HiRE-RNA/angles/angles_HiRERNA '+name+'.csv') and os.path.isfile(runDir + '/results/geometry/HiRE-RNA/torsions/torsions_HiRERNA '+name+'.csv')): return l_dist = [] l_angl = [] l_tors = [] last_c4p = [] last_c5p = [] last_c1p = [] last_o5p = [] setproctitle(f"RNANet statistics.py Worker {thr_idx+1} measures_hrna({name})") chain = next(s[0].get_chains()) residues=list(chain.get_residues()) for res in tqdm(chain, position=thr_idx+1, desc=f"Worker {thr_idx+1}: {name} measures_hrna", unit="res", leave=False): # distances p_o5p = None o5p_c5p = None c5p_c4p = None c4p_c1p = None c1p_b1 = None b1_b2 = None last_c4p_p = np.nan # angles p_o5p_c5p = None o5p_c5p_c4p = None c5p_c4p_c1p = None c4p_c1p_b1 = None c1p_b1_b2 = None lastc4p_p_o5p = None lastc5p_lastc4p_p = None lastc1p_lastc4p_p = None # torsions p_o5_c5_c4 = np.nan o5_c5_c4_c1 = np.nan c5_c4_c1_b1 = np.nan c4_c1_b1_b2 = np.nan o5_c5_c4_psuiv = np.nan c5_c4_psuiv_o5suiv = np.nan c4_psuiv_o5suiv_c5suiv = np.nan c1_c4_psuiv_o5suiv = np.nan if res.get_resname() not in ['ATP', 'CCC', 'A3P', 'A23', 'GDP', 'RIA', "2BA"] : # several phosphate groups, ignore atom_p = [ atom.get_coord() for atom in res if atom.get_name() == "P"] atom_o5p = [ atom.get_coord() for atom in res if "O5'" in atom.get_fullname() ] atom_c5p = [ atom.get_coord() for atom in res if "C5'" in atom.get_fullname() ] atom_c4p = [ atom.get_coord() for atom in res if "C4'" in atom.get_fullname() ] atom_c1p = [ atom.get_coord() for atom in res if "C1'" in atom.get_fullname() ] atom_b1 = pos_b1(res) # position b1 to be calculated, depending on the case atom_b2 = pos_b2(res) # position b2 to be calculated only for those with 2 cycles # Distances. If one of the atoms is empty, the euclidian distance returns NaN. last_c4p_p = get_euclidian_distance(last_c4p, atom_p) p_o5p = get_euclidian_distance(atom_p, atom_o5p) o5p_c5p = get_euclidian_distance(atom_o5p, atom_c5p) c5p_c4p = get_euclidian_distance(atom_c5p, atom_c4p) c4p_c1p = get_euclidian_distance(atom_c4p, atom_c1p) c1p_b1 = get_euclidian_distance(atom_c1p, atom_b1) b1_b2 = get_euclidian_distance(atom_b1, atom_b2) # flat angles. Same. lastc4p_p_o5p = get_flat_angle(last_c4p, atom_p, atom_o5p) lastc1p_lastc4p_p = get_flat_angle(last_c1p, last_c4p, atom_p) lastc5p_lastc4p_p = get_flat_angle(last_c5p, last_c4p, atom_p) p_o5p_c5p = get_flat_angle(atom_p, atom_o5p, atom_c5p) o5p_c5p_c4p = get_flat_angle(atom_o5p, atom_c5p, atom_c4p) c5p_c4p_c1p = get_flat_angle(atom_c5p, atom_c4p, atom_c1p) c4p_c1p_b1 = get_flat_angle(atom_c4p, atom_c1p, atom_b1) c1p_b1_b2 = get_flat_angle(atom_c1p, atom_b1, atom_b2) # torsions. Idem. p_o5_c5_c4 = get_torsion_angle(atom_p, atom_o5p, atom_c5p, atom_c4p) o5_c5_c4_c1 = get_torsion_angle(atom_o5p, atom_c5p, atom_c4p, atom_c1p) c5_c4_c1_b1 = get_torsion_angle(atom_c5p, atom_c4p, atom_c1p, atom_b1) c4_c1_b1_b2 = get_torsion_angle(atom_c4p, atom_c1p, atom_b1, atom_b2) o5_c5_c4_psuiv = get_torsion_angle(last_o5p, last_c5p, last_c4p, atom_p) c5_c4_psuiv_o5suiv = get_torsion_angle(last_c5p, last_c4p, atom_p, atom_o5p) c4_psuiv_o5suiv_c5suiv = get_torsion_angle(last_c4p, atom_p, atom_o5p, atom_c5p) c1_c4_psuiv_o5suiv = get_torsion_angle(last_c1p, last_c4p, atom_p, atom_o5p) last_c4p = atom_c4p last_c5p = atom_c5p last_c1p = atom_c1p last_o5p = atom_o5p l_dist.append([res.get_resname(), last_c4p_p, p_o5p, o5p_c5p, c5p_c4p, c4p_c1p, c1p_b1, b1_b2]) l_angl.append([res.get_resname(), lastc4p_p_o5p, lastc1p_lastc4p_p, lastc5p_lastc4p_p, p_o5p_c5p, o5p_c5p_c4p, c5p_c4p_c1p, c4p_c1p_b1, c1p_b1_b2]) l_tors.append([res.get_resname(), p_o5_c5_c4, o5_c5_c4_c1, c5_c4_c1_b1, c4_c1_b1_b2, o5_c5_c4_psuiv, c5_c4_psuiv_o5suiv, c4_psuiv_o5suiv_c5suiv, c1_c4_psuiv_o5suiv]) df = pd.DataFrame(l_dist, columns=["Residue", "C4'-P", "P-O5'", "O5'-C5'", "C5'-C4'", "C4'-C1'", "C1'-B1", "B1-B2"]) df.to_csv(runDir + '/results/geometry/HiRE-RNA/distances/distances_HiRERNA '+name+'.csv') df = pd.DataFrame(l_angl, columns=["Residue", "C4'-P-O5'", "C1'-C4'-P", "C5'-C4'-P", "P-O5'-C5'", "O5'-C5'-C4'", "C5'-C4'-C1'", "C4'-C1'-B1", "C1'-B1-B2"]) df.to_csv(runDir + '/results/geometry/HiRE-RNA/angles/angles_HiRERNA ' + name + ".csv") df=
pd.DataFrame(l_tors, columns=["Residue", "P-O5'-C5'-C4'", "O5'-C5'-C4'-C1'", "C5'-C4'-C1'-B1", "C4'-C1'-B1-B2", "O5'-C5'-C4'-P°", "C5'-C4'-P°-O5'°", "C4'-P°-O5'°-C5'°", "C1'-C4'-P°-O5'°"])
pandas.DataFrame
from __future__ import annotations import csv import logging import os import re from typing import TYPE_CHECKING from clevercsv.wrappers import read_dataframe import pandas as pd from boadata.core import DataObject from boadata.core.data_conversion import ChainConversion, IdentityConversion from .pandas_types import PandasDataFrameBase if TYPE_CHECKING: from typing import Optional from boadata.data.text_types import TextFile @DataObject.register_type() @IdentityConversion.enable_to("pandas_data_frame") @ChainConversion.enable_to("numpy_array", through="pandas_data_frame") class CSVFile(PandasDataFrameBase): type_name = "csv" def __to_text__(self, **kwargs) -> TextFile: constructor = DataObject.registered_types["text"] return constructor.from_uri(self.uri, source=self, **kwargs) @classmethod def accepts_uri(cls, uri: str) -> bool: return bool(re.search("\\.[tc]sv(\\.gz)?$", uri.lower())) @classmethod def _fallback_read(cls, uri: str, **kwargs) -> pd.DataFrame: with open(uri, "r") as fin: lines = [line for line in csv.reader(fin)] try: return pd.DataFrame(lines[1:], columns=lines[0]).infer_objects( # convert_numeric=True ) except: return pd.DataFrame(lines).infer_objects() # convert_numeric=True) @classmethod def from_uri(cls, uri: str, index_col=False, source: Optional[DataObject] = None, **kwargs) -> "CSVFile": if not "sep" in kwargs and re.search("\\.tsv(\\.gz)?", uri.lower()): kwargs["sep"] = "\\t" def _clever_csv_read(): return read_dataframe(uri, **kwargs) methods = { "clevercsv": _clever_csv_read, "pandas_c": lambda:
pd.read_csv(uri, index_col=index_col, **kwargs)
pandas.read_csv
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import Index, MultiIndex, Series, date_range, isna import pandas._testing as tm @pytest.fixture( params=[ "linear", "index", "values", "nearest", "slinear", "zero", "quadratic", "cubic", "barycentric", "krogh", "polynomial", "spline", "piecewise_polynomial", "from_derivatives", "pchip", "akima", "cubicspline", ] ) def nontemporal_method(request): """Fixture that returns an (method name, required kwargs) pair. This fixture does not include method 'time' as a parameterization; that method requires a Series with a DatetimeIndex, and is generally tested separately from these non-temporal methods. """ method = request.param kwargs = {"order": 1} if method in ("spline", "polynomial") else {} return method, kwargs @pytest.fixture( params=[ "linear", "slinear", "zero", "quadratic", "cubic", "barycentric", "krogh", "polynomial", "spline", "piecewise_polynomial", "from_derivatives", "pchip", "akima", "cubicspline", ] ) def interp_methods_ind(request): """Fixture that returns a (method name, required kwargs) pair to be tested for various Index types. This fixture does not include methods - 'time', 'index', 'nearest', 'values' as a parameterization """ method = request.param kwargs = {"order": 1} if method in ("spline", "polynomial") else {} return method, kwargs class TestSeriesInterpolateData: def test_interpolate(self, datetime_series, string_series): ts = Series(np.arange(len(datetime_series), dtype=float), datetime_series.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method="linear") tm.assert_series_equal(linear_interp, ts) ord_ts = Series( [d.toordinal() for d in datetime_series.index], index=datetime_series.index ).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method="time") tm.assert_series_equal(time_interp, ord_ts) def test_interpolate_time_raises_for_non_timeseries(self): # When method='time' is used on a non-TimeSeries that contains a null # value, a ValueError should be raised. non_ts = Series([0, 1, 2, np.NaN]) msg = "time-weighted interpolation only works on Series.* with a DatetimeIndex" with pytest.raises(ValueError, match=msg): non_ts.interpolate(method="time") @td.skip_if_no_scipy def test_interpolate_cubicspline(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) result = ser.reindex(new_index).interpolate(method="cubicspline")[1:3] tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interpolate_pchip(self): ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union( Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]) ).astype(float) interp_s = ser.reindex(new_index).interpolate(method="pchip") # does not blow up, GH5977 interp_s[49:51] @td.skip_if_no_scipy def test_interpolate_akima(self): ser = Series([10, 11, 12, 13]) # interpolate at new_index where `der` is zero expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="akima") tm.assert_series_equal(interp_s[1:3], expected) # interpolate at new_index where `der` is a non-zero int expected = Series( [11.0, 1.0, 1.0, 1.0, 12.0, 1.0, 1.0, 1.0, 13.0], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="akima", der=1) tm.assert_series_equal(interp_s[1:3], expected) @td.skip_if_no_scipy def test_interpolate_piecewise_polynomial(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="piecewise_polynomial") tm.assert_series_equal(interp_s[1:3], expected) @td.skip_if_no_scipy def test_interpolate_from_derivatives(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="from_derivatives") tm.assert_series_equal(interp_s[1:3], expected) @pytest.mark.parametrize( "kwargs", [ {}, pytest.param( {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy ), ], ) def test_interpolate_corners(self, kwargs): s = Series([np.nan, np.nan]) tm.assert_series_equal(s.interpolate(**kwargs), s) s = Series([], dtype=object).interpolate() tm.assert_series_equal(s.interpolate(**kwargs), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method="index") expected = s.copy() bad = isna(expected.values) good = ~bad expected = Series( np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad] ) tm.assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method="values") tm.assert_series_equal(other_result, result) tm.assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) msg = ( "time-weighted interpolation only works on Series or DataFrames " "with a DatetimeIndex" ) with pytest.raises(ValueError, match=msg): s.interpolate(method="time") @pytest.mark.parametrize( "kwargs", [ {}, pytest.param( {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy ), ], ) def test_nan_interpolate(self, kwargs): s = Series([0, 1, np.nan, 3]) result = s.interpolate(**kwargs) expected = Series([0.0, 1.0, 2.0, 3.0]) tm.assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1.0, 2.0, 3.0, 4.0], index=[1, 3, 5, 9]) tm.assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list("abcd")) result = s.interpolate() expected = Series([0.0, 1.0, 2.0, 2.0], index=list("abcd"))
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import pandas as pd import matplotlib.pyplot as plt import numpy as np import torch import seaborn as sns from mpl_toolkits import axes_grid1 def _im_plot( m, figsize, cmap, xlabels, ylabels, path, highlight_significant=False, vmin=None, vmax=None, ): fig = plt.figure(figsize=figsize) plt.clf() ax = fig.gca() res = ax.imshow( np.array(m), cmap=cmap, interpolation="nearest", vmin=vmin, vmax=vmax ) _add_colorbar(res) height, width = m.shape plt.xticks(range(width), xlabels, rotation=90) plt.yticks(range(height), ylabels, rotation=0) plt.tight_layout() if highlight_significant: # highlighting values 1 std away from mean significant = np.array( ((m - m.mean(dim=0)).abs() > m.std(dim=0)) & ((m - m.mean(dim=0)).abs() > 0.2) ) for x in range(width): for y in range(height): if significant[y][x]: ax.annotate( str("O"), xy=(x, y), horizontalalignment="center", verticalalignment="center", ) plt.savefig(path, format="png") def write_mixing_matrix(process): m = process.mixing_matrix client_names = [p.name for p in process.participants] _im_plot( m=m, figsize=(8, 8), cmap="BuGn", xlabels=client_names, ylabels=client_names, path=_get_path(process, "mixing_matrix"), ) def _get_layers_as_dict(process): local_weight_names = [ x for x in process.participants[0]._model.state_dict().keys() if x in process.config["local_layers"] ] images = {} for weight_name in local_weight_names: list_of_images = [] for p in process.participants: list_of_images.append(p._model.state_dict()[weight_name].cpu()) img = torch.stack(list_of_images, dim=0).flatten(1) images[weight_name] = img return images def _write_as_csv(weight_name, img, client_names, feature_names, logdir): df = pd.DataFrame(img.cpu().numpy(), columns=feature_names, index=client_names) df.to_csv(logdir + str(weight_name) + ".csv") def write_local_weights(process): images = _get_layers_as_dict(process) for weight_name in images.keys(): img = images[weight_name] if weight_name.endswith("_w"): # multiplicative vmin = -1 vmax = 3 cmap = "PuOr" else: # additive vmin = -1 vmax = 1 cmap = "PiYG" height, width = img.shape img_width = (width / 3) + 4 img_height = (height / 3) + 3 # axis labels client_names = [p.name for p in process.participants] feature_names = range(width) if width == len(process.fl_dataset.feature_names): feature_names = process.fl_dataset.feature_names _write_as_csv( weight_name, img, client_names, feature_names, process.config["logdir"] ) _im_plot( m=img, figsize=(img_width, img_height), cmap=cmap, xlabels=feature_names, ylabels=client_names, path=_get_path(process, weight_name), highlight_significant=True, vmin=vmin, vmax=vmax, ) def _get_path(process, name): return ( process.config["logdir"] + process.config["experiment_name"] + "-" + process.config["run_name"] + "-" + name + ".png" ) def _add_colorbar(im, aspect=20, pad_fraction=0.5, **kwargs): """Add a vertical color bar to an image plot.""" divider = axes_grid1.make_axes_locatable(im.axes) width = axes_grid1.axes_size.AxesY(im.axes, aspect=1.0 / aspect) pad = axes_grid1.axes_size.Fraction(pad_fraction, width) current_ax = plt.gca() cax = divider.append_axes("right", size=width, pad=pad) plt.sca(current_ax) return im.axes.figure.colorbar(im, cax=cax, **kwargs) def visualize_features(process): input_images = _get_layers_as_dict(process) bias = input_images["feature_b"] mult = input_images["feature_w"] combined_df = None for i, train_data in enumerate(process.fl_dataset.fl_train_datasets): original = pd.DataFrame( train_data.x.numpy(), columns=process.fl_dataset.feature_names, ) melted = original.melt(var_name="feature") melted["value"] = melted["value"] + np.random.normal( 0.0, 0.01, melted["value"].shape ) melted["name"] = process.fl_dataset.dataset_names[i] melted["type"] = "original" affine = (train_data.x.numpy() * mult[i].numpy()) + bias[i].numpy() affine = pd.DataFrame(affine, columns=process.fl_dataset.feature_names,) melted_affine = affine.melt(var_name="feature") melted_affine["value"] = melted_affine["value"] + np.random.normal( 0.0, 0.01, melted_affine["value"].shape ) melted_affine["name"] = process.fl_dataset.dataset_names[i] melted_affine["type"] = "transformed" combined = pd.concat([melted, melted_affine], axis=0) if combined_df is None: combined_df = combined else: combined_df = pd.concat([combined_df, combined], axis=0) plt.clf() sns.displot( combined_df, kind="kde", # hist x="value", col="feature", row="name", hue="type", multiple="layer", # fill, layer, stack, dodge height=2.5, aspect=1.0, bw_adjust=0.1, facet_kws={"sharex": "col", "sharey": False, "margin_titles": True}, ) plt.savefig( _get_path(process, "input-shift"), format="png", ) def write_n_samples(process): client_names = [p.name for p in process.participants] n_train_samples = [ p.dataset_loader.train_loader.n_samples for p in process.participants ] n_test_samples = [ p.dataset_loader.test_loader.n_samples for p in process.participants ] train =
pd.DataFrame(n_train_samples, index=client_names, columns=["value"])
pandas.DataFrame