prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# --------------------------------------------------------------------------------------------- # MIT License # Copyright (c) 2020, Solace Corporation, <NAME> (<EMAIL>) # --------------------------------------------------------------------------------------------- import array as arr import json from .broker_series import BrokerSeries from .common_base import CommonBase from .constants import * from ._constants import * from .latency_broker_latency_series import LatencyBrokerLatencySeries from .latency_node_latency_series import LatencyNodeLatencySeries from .ping_series import PingSeries from .run_meta import RunMeta from .run import Run import numpy as np import pandas as pd CHECK_PASSING_MD="**<span style='color:green'>passing</span>**" CHECK_FAILING_MD="**<span style='color:red'>failing</span>**" d_latency_percentile = { # k_latency_00_05th : 0.005, # k_latency_01_th : 0.01, # k_latency_00_5th : 0.05, # k_latency_10th : 0.10, # k_latency_25th : 0.25, # k_latency_50th : 0.5, # k_latency_75th : 0.75, k_latency_90th : 0.90, k_latency_95th : 0.95, k_latency_99th : 0.99, k_latency_99_5th : 0.995, k_latency_99_9th : 0.999, # k_latency_99_95th : 0.9995, # k_latency_99_99th : 0.9999, # k_latency_99_995th : 0.99995, # k_latency_99_999th : 0.99999, } class RunAnalytics(): def __init__(self, run): self.run = run def _export_broker_metric_by_consumer_as_dataframe(self, broker_metric, conversion_function=None): client_connection_details_series = self.run.broker_series.getSeriesOfListOfClientConnectionDetails() client_list=self.run.run_meta.getConsumerNamesAsDict() for client_connection_details_sample in client_connection_details_series: for client_connection_detail in client_connection_details_sample["client_connection_details"]: client_name = self.run.run_meta.composeDisplayClientName(client_connection_detail['clientName']) if client_name in client_list: if conversion_function: value = conversion_function(client_connection_detail[broker_metric]) else: value = client_connection_detail[broker_metric] client_list[client_name].append(value) return pd.DataFrame( data=client_list ) def export_broker_txQueueByteCount_by_consumer_as_dataframe(self): return self._export_broker_metric_by_consumer_as_dataframe('txQueueByteCount') def export_broker_smoothedRoundTripTime_by_consumer_as_dataframe(self): def convert2Micros(value): return value / 1000 return self._export_broker_metric_by_consumer_as_dataframe('smoothedRoundTripTime', convert2Micros) def export_broker_timedRetransmitCount_by_consumer_as_dataframe(self): return self._export_broker_metric_by_consumer_as_dataframe('timedRetransmitCount') def export_broker_uptime_by_consumer_as_dataframe(self): return self._export_broker_metric_by_consumer_as_dataframe('uptime') def export_broker_node_distinct_latencies_as_dataframe(self, col_name:str ="run"): return pd.DataFrame(data={col_name: self.run.export_broker_node_distinct_latencies()}) def export_latency_node_distinct_latencies_as_dataframe(self, col_name:str ="run"): return pd.DataFrame(data={col_name: self.run.export_latency_node_distinct_latencies()}) def export_latency_node_series_latencies_metrics_as_dataframe(self): return pd.DataFrame(data=self.export_latency_node_series_latencies_metrics()) def export_broker_node_series_latencies_metrics_as_dataframe(self): return pd.DataFrame(data=self.export_broker_node_series_latencies_metrics()) def export_broker_node_series_latencies_metrics(self): result = dict() #quantiles percentiles = list(d_latency_percentile.values()) lat_dict =self.run.export_broker_node_distinct_latencies_per_sample() for key, value in lat_dict.items(): tmp_df = pd.DataFrame(data={"sample":value}) tmp_quantiles = tmp_df['sample'].quantile(q=percentiles) #self.add_to_dict(result,k_latency_minimum, tmp_df['sample'].min()) #self.add_to_dict(result,k_latency_maximum, tmp_df['sample'].max()) self.add_to_dict(result,k_latency_average, tmp_df['sample'].mean()) for map_key,map_percentile in d_latency_percentile.items(): self.add_to_dict(result,map_key, tmp_quantiles[map_percentile]) return result def export_latency_node_series_latencies_metrics(self): result = dict() #quantiles percentiles = list(d_latency_percentile.values()) lat_dict =self.run.export_latency_node_distinct_latencies_per_sample() for key, value in lat_dict.items(): tmp_df = pd.DataFrame(data={"sample":value}) tmp_quantiles = tmp_df['sample'].quantile(q=percentiles) #self.add_to_dict(result,k_latency_minimum, tmp_df['sample'].min()) #self.add_to_dict(result,k_latency_maximum, tmp_df['sample'].max()) self.add_to_dict(result,k_latency_average, tmp_df['sample'].mean()) for map_key,map_percentile in d_latency_percentile.items(): self.add_to_dict(result,map_key, tmp_quantiles[map_percentile]) return result def export_combined_all_distinct_latencies_metrics(self) -> dict: """ Calculates metrics (min, max, mean, percentiles) for broker and latency nodes :return: dict ['metrics"]['latency-node']['broker-node'] """ percentiles = list(d_latency_percentile.values()) ln_latencies = self.run.export_latency_node_distinct_latencies() bn_latencies = self.run.export_broker_node_distinct_latencies() tmp_df = pd.DataFrame(data={"latencies":ln_latencies}) tmp_quantiles = tmp_df['latencies'].quantile(q=percentiles) list_metrics = [k_latency_minimum,k_latency_average] list_metrics += list(d_latency_percentile.keys()) list_metrics.append(k_latency_maximum) list_latency_node = list() list_latency_node.append(tmp_df['latencies'].min()) list_latency_node.append(tmp_df['latencies'].mean()) for map_key,map_percentile in d_latency_percentile.items(): list_latency_node.append(tmp_quantiles[map_percentile]) list_latency_node.append(tmp_df['latencies'].max()) tmp_df =
pd.DataFrame(data={"latencies":bn_latencies})
pandas.DataFrame
import warnings warnings.simplefilter('ignore', UserWarning) from binance.client import Client import pandas as pd import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure import matplotlib.animation as animation from matplotlib import style import matplotlib.pyplot as plt import tkinter as tk from tkinter import ttk import requests import sqlite3 from bs4 import BeautifulSoup import webbrowser def popupmsg(msg): popup = tk.Tk() popup.wm_title("!") windowWidth = popup.winfo_reqwidth() windowHeight = popup.winfo_reqheight() positionRight = int(popup.winfo_screenwidth() / 2 - windowWidth / 2) positionDown = int(popup.winfo_screenheight() / 2 - windowHeight / 2) popup.geometry("+{}+{}".format(positionRight, positionDown)) label = ttk.Label(popup, text=msg, font=("Verdana", 12), takefocus=True, anchor='center', wraplength=400, justify=tk.CENTER) label.pack(side="top", fill="x", pady=15, padx=50) B1 = ttk.Button(popup, text="Okay", command=popup.destroy) B1.pack(pady=10) popup.mainloop() class LoginPage: def __init__(self, master): global client self.master = master self.frame = tk.Frame(self.master) self.master.configure(padx=60, pady=20) self.db = sqlite3.connect('UserKeys.db') self.cur = self.db.cursor() self.cur.execute('CREATE TABLE IF NOT EXISTS keys (api_key text, api_secret text)') self.db.commit() self.db.close() self.top_label = tk.Label(self.master, text='Please sign in!', padx=10, pady=10) self.api_key_label = tk.Label(self.master, text='Api Key: ', padx=7, pady=10) self.api_key_entry = ttk.Entry(self.master, width=30) self.api_secret_label = tk.Label(self.master, text='Api Secret: ', padx=10, pady=10) self.api_secret_entry = ttk.Entry(self.master, width=30, show='*') self.var = tk.IntVar() self.remember_checkmark = tk.Checkbutton(self.master, text='Remember me', pady=10, variable=self.var) self.submit_butt = tk.Button(self.master, text='Submit', width=10, padx=7, pady=5, relief='groove', command=lambda: [self.add_keys(), self.new_window()]) self.db = sqlite3.connect('UserKeys.db') self.cur = self.db.cursor() self.cur.execute('SELECT * FROM keys') self.the_keys001 = self.cur.fetchall() for k in self.the_keys001: api_key22 = k[0] api_secret22 = k[1] self.api_key_entry.insert(0, api_key22) self.api_secret_entry.insert(0, api_secret22) client = Client(api_key22, api_secret22, {'timeout': 20}) self.db.commit() self.db.close() self.layout() def layout(self): self.top_label.grid(row=0, columnspan=2) self.api_key_label.grid(row=1, column=0) self.api_key_entry.grid(row=1, column=1) self.api_secret_label.grid(row=2, column=0) self.api_secret_entry.grid(row=2, column=1) self.remember_checkmark.grid(row=3, columnspan=2) self.submit_butt.grid(row=4, columnspan=2) def exit_app(self): self.newWindow.destroy() self.newWindow.quit() def new_window(self): self.master.withdraw() self.newWindow = tk.Toplevel(self.master) self.newWindow.protocol("WM_DELETE_WINDOW", self.exit_app) self.newWindow.resizable(width=False, height=False) bb = MainApplication(self.newWindow) def add_keys(self): global client db = sqlite3.connect('UserKeys.db') cur = db.cursor() if self.var.get() == 1: cur.execute('DELETE FROM keys') db.commit() cur.execute('INSERT INTO keys VALUES (:api_key, :api_secret)', { 'api_key': self.api_key_entry.get(), 'api_secret': self.api_secret_entry.get() }) db.commit() cur.execute('SELECT * FROM keys') the_keys = cur.fetchall() for k in the_keys: api_key55 = k[0] api_secret55 = k[1] client = Client(api_key55, api_secret55, {'timeout': 20}) db.commit() else: api_key77 = self.api_key_entry.get() api_secret77 = self.api_secret_entry.get() client = Client(api_key77, api_secret77, {'timeout': 20}) db.close() interval = '1m' datetime_format = "%I:%M %p" limit = 60 symbol = 'BTCUSDT' buy_symbol_market = 'USDT' sell_symbol_market = 'BTC' style.use('custom_light_style.mpltstyle') class Header(tk.Frame): def __init__(self, parent, *args, **kwargs): tk.Frame.__init__(self, parent, *args, **kwargs) self.parent = parent self.frame1 = tk.LabelFrame(self.parent) self.testing_data = client.get_ticker(symbol=symbol) self.last_price_header = tk.Label(self.frame1, text='Last Price') self.change_header = tk.Label(self.frame1, text='24h Change') self.high_price_header = tk.Label(self.frame1, text='24h High') self.low_price_header = tk.Label(self.frame1, text='24h Low') self.volume_header = tk.Label(self.frame1, text='24h Volume') self.last_price_data = tk.Label(self.frame1, text='{}'.format(self.testing_data['lastPrice'])) self.change_data = tk.Label(self.frame1, text='{} / {}%'.format(self.testing_data['priceChange'], self.testing_data['priceChangePercent'])) self.high_price_data = tk.Label(self.frame1, text='{}'.format(self.testing_data['highPrice'])) self.low_price_data = tk.Label(self.frame1, text='{}'.format(self.testing_data['lowPrice'])) self.volume_price_data = tk.Label(self.frame1, text='{:,.2f}'.format(float(self.testing_data['volume']))) header_text_1 = [self.last_price_header, self.change_header, self.high_price_header, self.low_price_header, self.volume_header] header_text_2 = [self.last_price_data, self.change_data, self.high_price_data, self.low_price_data, self.volume_price_data] self.frame1.configure(bg='white') for f in header_text_1: f.configure(padx=20, font='Helvetica 8', bg='white', fg='#383838') for f in header_text_2: f.configure(font='Helvetica 9 bold', bg='#FFFFFF', fg='#000000') self.layout() def update_header_info(self): testing_data = client.get_ticker(symbol=symbol) if float(testing_data['lastPrice']) > 1: self.last_price_data['text'] = round(float(testing_data['lastPrice']), 4) self.change_data['text'] = '{} / {}%'.format(round(float(testing_data['priceChange']), 4), testing_data['priceChangePercent']) self.high_price_data['text'] = round(float(testing_data['highPrice']), 4) self.low_price_data['text'] = round(float(testing_data['lowPrice']), 4) else: self.last_price_data['text'] = testing_data['lastPrice'] self.change_data['text'] = '{} / {}%'.format(testing_data['priceChange'], testing_data['priceChangePercent']) self.high_price_data['text'] = testing_data['highPrice'] self.low_price_data['text'] = testing_data['lowPrice'] formatted_vol = '{:,.2f}'.format(float(testing_data['volume'])) self.volume_price_data['text'] = formatted_vol self.parent.after(20000, self.update_header_info) def layout(self): self.parent.grid() self.frame1.grid(row=0, columnspan=3) self.last_price_header.grid(row=0, column=0) self.change_header.grid(row=0, column=1) self.high_price_header.grid(row=0, column=2) self.low_price_header.grid(row=0, column=3) self.volume_header.grid(row=0, column=4) self.last_price_data.grid(row=1, column=0) self.change_data.grid(row=1, column=1) self.high_price_data.grid(row=1, column=2) self.low_price_data.grid(row=1, column=3) self.volume_price_data.grid(row=1, column=4) class Controls(tk.Frame): def __init__(self, parent, *args, **kwargs): tk.Frame.__init__(self, parent, *args, **kwargs) self.parent = parent self.main_frame = tk.Frame(self.parent) self.graph_frame = tk.LabelFrame(self.main_frame, borderwidth=5, text=' Graph Controls ', labelanchor='n', padx=5, pady=2) self.perf_frame = tk.LabelFrame(self.main_frame, borderwidth=5, text=' Top Performers ', labelanchor='n', pady=5, padx=11) self.news_frame = tk.LabelFrame(self.main_frame, borderwidth=5, text=' News ', labelanchor='n', pady=2, padx=6) self.btc_pairs = [] self.eth_pairs = [] self.usdt_pairs = [] self.list_of_syms = [] self.list_of_change = [] self.list_of_vol = [] self.learn_about = client.get_ticker() self.all_symbols = client.get_all_tickers() self.watch_list_list = sorted(self.learn_about, key=lambda i: float(i['priceChangePercent']), reverse=True)[0:7] for f in self.all_symbols: symbols = f['symbol'] if symbols.endswith('BTC'): self.btc_pairs += [symbols] if symbols.endswith('ETH'): self.eth_pairs += [symbols] if symbols.endswith('USDT'): self.usdt_pairs += [symbols] for i in range(0, 6): watchlist_sym = self.watch_list_list[i]['symbol'] self.list_of_syms += [watchlist_sym] watchlist_change = round(float(self.watch_list_list[i]['priceChangePercent']), 2) self.list_of_change += [watchlist_change] watchlist_vol = '{:,.0f}'.format(round(float(self.watch_list_list[i]['volume']), 0) / 1000) self.list_of_vol += [watchlist_vol] # Graph controls self.graph_controls_000 = ttk.Label(self.graph_frame, text="Interval:") self.graph_controls_001 = tk.Button(self.graph_frame, text="1h", command=lambda: self.button_changing(1)) self.graph_controls_002 = tk.Button(self.graph_frame, text="5h", command=lambda: self.button_changing(2)) self.graph_controls_003 = tk.Button(self.graph_frame, text="12h", command=lambda: self.button_changing(3)) self.graph_controls_004 = tk.Button(self.graph_frame, text="24h", command=lambda: self.button_changing(4)) self.graph_combobox1 = ttk.Combobox(self.graph_frame, values=['2h', '4h', '6h', '8h'], width=8, state='readonly') self.graph_combobox2 = ttk.Combobox(self.graph_frame, values=['7d', '30d', '3M', '6M', '1y'], width=8, state='readonly') self.graph_combobox1.set('2h') self.graph_combobox2.set('7d') self.graph_combobox1.bind('<<ComboboxSelected>>', self.changing_combobox) self.graph_combobox2.bind('<<ComboboxSelected>>', self.changing_combobox22) self.dark_mode_label = ttk.Label(self.graph_frame, text="Dark Mode:") self.dark_mode_button = tk.Button(self.graph_frame, text="ON", command=self.parent.dark_mode_on) self.dark_mode_button_off = tk.Button(self.graph_frame, text="OFF", command=self.parent.dark_mode_off) # Top Performers self.top_perf_button1 = tk.Button(self.perf_frame, text="{} +{}% {}k".format(self.list_of_syms[0], self.list_of_change[0], self.list_of_vol[0]), width=27, command=lambda: self.market_symbols(0), bg='#FFFFFF', fg='#000000', relief='raised') self.top_perf_button2 = tk.Button(self.perf_frame, text="{} +{}% {}k".format(self.list_of_syms[1], self.list_of_change[1], self.list_of_vol[1]), width=27, command=lambda: self.market_symbols(1), bg='#FFFFFF', fg='#000000', relief='raised') self.top_perf_button3 = tk.Button(self.perf_frame, text="{} +{}% {}k".format(self.list_of_syms[2], self.list_of_change[2], self.list_of_vol[2]), width=27, command=lambda: self.market_symbols(2), bg='#FFFFFF', fg='#000000', relief='raised') self.top_perf_button4 = tk.Button(self.perf_frame, text="{} +{}% {}k".format(self.list_of_syms[3], self.list_of_change[3], self.list_of_vol[3]), width=27, command=lambda: self.market_symbols(3), bg='#FFFFFF', fg='#000000', relief='raised') self.top_perf_button5 = tk.Button(self.perf_frame, text="{} +{}% {}k".format(self.list_of_syms[4], self.list_of_change[4], self.list_of_vol[4]), width=27, command=lambda: self.market_symbols(4), bg='#FFFFFF', fg='#000000', relief='raised') self.top_perf_button6 = tk.Button(self.perf_frame, text="{} +{}% {}k".format(self.list_of_syms[5], self.list_of_change[5], self.list_of_vol[5]), width=27, command=lambda: self.market_symbols(5), bg='#FFFFFF', fg='#000000', relief='raised') # News self.times = [] self.links = [] self.titles = [] self.url = 'https://www.coindesk.com/news' self.base = 'https://www.coindesk.com' self.req = requests.get(self.url) self.soup = BeautifulSoup(self.req.content, 'html.parser') self.main_listbox = tk.Listbox(self.news_frame, height=9, width=32, bg='white', fg='#000000', selectbackground='gray', activestyle='none') sby = tk.Scrollbar(self.news_frame, width=13) sbx = tk.Scrollbar(self.news_frame, orient=tk.HORIZONTAL, width=13) sby.grid(column=1, sticky='ns') sbx.grid(row=1, sticky='ew') self.main_listbox.config(yscrollcommand=sby.set) self.main_listbox.config(xscrollcommand=sbx.set) sby.config(command=self.main_listbox.yview) sbx.config(command=self.main_listbox.xview) self.main_listbox.bind('<Double-Button-1>', self.news_article_open) for h_four in self.soup.find_all('h4', {'class': 'heading'}): self.titles.append(h_four.text) for time in self.soup.find_all('time', {'class': 'time'}): self.times.append(time.text) for div in self.soup.find_all('div', {'class': 'text-content'}): self.links.append(self.base + (div.find('a').next_sibling['href'])) for i in range(9): for f in self.times, self.titles[10:19], self.links: self.main_listbox.insert(tk.END, f[i]) self.main_listbox.insert(tk.END, '---') self.layout() def market_symbols(self, id): global symbol, buy_symbol_market, sell_symbol_market symbol = self.list_of_syms[id] if self.list_of_syms[id].endswith('BTC'): buy_symbol_market = 'BTC' if self.list_of_syms[id].endswith('ETH'): buy_symbol_market = 'ETH' if self.list_of_syms[id].endswith('USDT'): buy_symbol_market = 'USDT' if self.list_of_syms[id] in self.btc_pairs: sell_symbol_market = self.list_of_syms[id].replace('BTC', '') if self.list_of_syms[id] in self.eth_pairs: sell_symbol_market = self.list_of_syms[id].replace('ETH', '') if self.list_of_syms[id] in self.usdt_pairs: sell_symbol_market = self.list_of_syms[id].replace('USDT', '') def button_changing(self, id): global interval, datetime_format, limit if id == 1: interval = '1m' datetime_format = "%I:%M %p" limit = 60 if id == 2: interval = '1m' datetime_format = "%I:%M %p" limit = 300 if id == 3: interval = '5m' datetime_format = "%I:%M %p" limit = 144 if id == 4: interval = '15m' datetime_format = "%I:%M %p" limit = 96 def changing_combobox(self, event): global interval, datetime_format, limit if self.graph_combobox1.get() == '2h': interval = '1m' datetime_format = "%I:%M %p" limit = 120 elif self.graph_combobox1.get() == '4h': interval = '1m' datetime_format = "%I:%M %p" limit = 240 elif self.graph_combobox1.get() == '6h': interval = '5m' datetime_format = "%I:%M %p" limit = 72 else: interval = '5m' datetime_format = "%I:%M %p" limit = 96 def changing_combobox22(self, event): global interval, datetime_format, limit if self.graph_combobox2.get() == '7d': interval = '2h' datetime_format = "%m/%d" limit = 84 elif self.graph_combobox2.get() == '30d': interval = '12h' datetime_format = "%m/%d" limit = 60 elif self.graph_combobox2.get() == '3M': interval = '1d' datetime_format = "%m/%d/%y" limit = 91 elif self.graph_combobox2.get() == '6M': interval = '3d' datetime_format = "%m/%d/%y" limit = 60 else: interval = '1w' datetime_format = "%m/%Y" limit = 52 def news_article_open(self, event): weblink = self.main_listbox.get(tk.ACTIVE) if weblink.startswith('https://'): webbrowser.open_new(weblink) def layout(self): self.parent.grid() self.main_frame.grid(row=1, column=0) self.graph_frame.grid() self.perf_frame.grid() self.news_frame.grid() # Graph controls layout self.graph_controls_000.grid(row=0) self.graph_controls_001.grid(row=0, column=1) self.graph_controls_002.grid(row=0, column=2) self.graph_controls_003.grid(row=1, column=1) self.graph_controls_004.grid(row=1, column=2) self.graph_combobox1.grid(row=2, column=1) self.graph_combobox2.grid(row=2, column=2) self.dark_mode_label.grid(row=3) self.dark_mode_button.grid(row=3, column=1) self.dark_mode_button_off.grid(row=3, column=2) # Top performers layout self.top_perf_button1.grid(row=1, columnspan=3) self.top_perf_button2.grid(row=2, columnspan=3) self.top_perf_button3.grid(row=3, columnspan=3) self.top_perf_button4.grid(row=4, columnspan=3) self.top_perf_button5.grid(row=5, columnspan=3) self.top_perf_button6.grid(row=6, columnspan=3) # News layout self.main_listbox.grid(row=0) class GraphContainer(tk.Frame): def __init__(self, parent, *args, **kwargs): tk.Frame.__init__(self, parent, *args, **kwargs) self.parent = parent self.draw_frame = tk.Frame(self.parent) self.fig = Figure(facecolor='#cccccc') self.a = self.fig.add_subplot(111) self.layout() def animate(self, i): kline_data = client.get_klines(symbol=symbol, interval=interval, limit=limit) animate_df = pd.DataFrame(kline_data).drop([7, 9, 10, 11], axis=1) animate_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Num of Trades'] animate_df[['Open', 'High', 'Low', 'Close', 'Volume']] = animate_df[ ['Open', 'High', 'Low', 'Close', 'Volume']].astype( float) animate_df['Open Time'] =
pd.to_datetime(animate_df['Open Time'], unit='ms')
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt import matplotlib import assignment2_helper as helper # Look pretty... # matplotlib.style.use('ggplot') plt.style.use('ggplot') # Do * NOT * alter this line, until instructed! scaleFeatures = True # file_path = "/Users/szabolcs/dev/git/DAT210x/Module4/Datasets/" file_name = "kidney_disease.csv" exclude_columns = ['id', 'classification'] #, 'rbc', 'pc', 'pcc', 'ba', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane'] df = pd.read_csv(file_path + file_name) labels = ['red' if i=='ckd' else 'green' for i in df.classification] df.drop(exclude_columns, axis=1, inplace=True) print(df.head()) df = pd.get_dummies(df, columns=["rbc"]) df = pd.get_dummies(df, columns=["pc"]) df = pd.get_dummies(df, columns=["pcc"]) df = pd.get_dummies(df, columns=["ba"]) df = pd.get_dummies(df, columns=["htn"]) df = pd.get_dummies(df, columns=["dm"]) df = pd.get_dummies(df, columns=["cad"]) df = pd.get_dummies(df, columns=["appet"]) df = pd.get_dummies(df, columns=["pe"]) df = pd.get_dummies(df, columns=["ane"]) df.pcv = pd.to_numeric(df.pcv, errors="coerce") df.wc =
pd.to_numeric(df.wc, errors="coerce")
pandas.to_numeric
# To add a new cell, type '#%%' # To add a new markdown cell, type '#%% [markdown]' #%% Change working directory from the workspace root to the ipynb file location. Turn this addition off with the DataScience.changeDirOnImportExport setting # ms-python.python added import os try: os.chdir(os.path.join(os.getcwd(), 'assessment')) print(os.getcwd()) except: pass #%% [markdown] # ### *IPCC SR15 scenario assessment* # # <img style="float: right; height: 120px; margin-top: 10px;" src="../_static/IIASA_logo.png"> # <img style="float: right; height: 100px;" src="../_static/IAMC_logo.jpg"> # # # Scenario categorization and indicators # # This notebook assigns the categorization by warming outcome and computes a range of descriptive indicators # for the scenario assessment of the IPCC's _"Special Report on Global Warming of 1.5°C"_. # It generates a `sr15_metadata_indicators.xlsx` spreadsheet, which is used in other notebooks for this assessment # for categorization and extracting descriptive indicators. # # ## Scenario ensemble data # # The scenario data used in this analysis can be accessed and downloaded at [https://data.ene.iiasa.ac.at/iamc-1.5c-explorer](https://data.ene.iiasa.ac.at/iamc-1.5c-explorer). # # Bibliographic details of the scenario ensemble and all studies that contributed scenarios to the ensemble # are included in this repository # as [Endnote (enl)](../bibliography/iamc_1.5c_scenario_data.enl), # [Reference Manager (ris)](../bibliography/iamc_1.5c_scenario_data.ris), # and [BibTex (bib)](../bibliography/iamc_1.5c_scenario_data.bib) format. # # ## License and recommended citation # # This notebook is licensed under the Apache License, Version 2.0. # # Please refer to the [README](../README.md) for the recommended citation of the scenario ensemble and the notebooks in this repository. # # *** #%% [markdown] # ## Import dependencies and define general notebook settings #%% import math import io import yaml import re import pandas as pd import numpy as np from IPython.display import display #%% [markdown] # ### Introduction and tutorial for the `pyam` package # # This notebook (and all other analysis notebooks in this repository) uses the `pyam` package, # an open-source Python package for IAM scenario analysis and visualization # ([https://software.ene.iiasa.ac.at/pyam/](http://software.ene.iiasa.ac.at/pyam/)). # # For an introduction of the notation and features of the `pyam` package, # please refer to [this tutorial](https://github.com/IAMconsortium/pyam/blob/master/doc/source/tutorials/pyam_first_steps.ipynb). # It will take you through the basic functions and options used here, # and provide further introduction and guidelines. #%% import pyam logger = pyam.logger() #%% [markdown] # ### Import Matplotlib and set figure layout defaults in line with SR1.5 guidelines #%% import matplotlib.pyplot as plt plt.style.use('style_sr15.mplstyle') #%% [markdown] # ## Import scenario snapshot and define auxiliary dictionaries # # This notebook only assigns indicator based on global timeseries data. # # The dictionary `meta_tables` is used to collect definitions # of categories and secondary scenario classification throughout this script. # These definitions are exported to the metadata/categorization Excel workbook # at the end of the script for completeness. # The dictionary `meta_docs` collects definitions used for the documentation tags # in the online scenario explorer. # # The dictionary `specs` collects lists and the run control specifications to be exported to JSON # and used by other notebooks for the SR1.5 scenario analysis. # # The `plotting_args` dictionary assigns the default plotting arguemnts in this notebook. #%% sr1p5 = pyam.IamDataFrame(data='../data/iamc15_scenario_data_world_r1.1.xlsx') #%% meta_tables = {} meta_docs = {} #%% specs = {} #%% plotting_args = {'color': 'category', 'linewidth': 0.2} specs['plotting_args'] = plotting_args #%% [markdown] # ## Verify completeness of scenario submissions for key variables # # Verify that every scenario except for *Shell Sky* and the historical reference scenarios reports CO2 Emissions in 2030. #%% sr1p5.require_variable(variable='Emissions|CO2', year=2030, exclude_on_fail=False) #%% [markdown] # ## Check MAGICC postprocessing prior to categorization # # Assign scenarios that could not be postprocessed by probabilistic MAGICC to respective categories: # - data not available for full century # - insufficient reporting of emission species # - reference scenario #%% sr1p5.set_meta(name='category', meta= 'uncategorized') #%% reference = sr1p5.filter(model='Reference') pd.DataFrame(index=reference.meta.index) #%% sr1p5.set_meta(meta='reference', name='category', index=reference) #%% no_climate_assessment = ( sr1p5.filter(category='uncategorized').meta.index .difference(sr1p5.filter(year=2100, variable='Emissions|CO2').meta.index) ) pd.DataFrame(index=no_climate_assessment) #%% sr1p5.set_meta(meta='no-climate-assessment', name='category', index=no_climate_assessment) #%% [markdown] # ## Categorization of scenarios # # This section applies the categorization of scenario as defined in Chapter 2 of the Special Report # for unique assignment of scenarios. # # The category specification as agreed upon at LAM 3 in Malmö is repeated here for easier reference. # # The term $P_{x°C}$ refers to the probability of exceeding warming of $x°C$ throughout the century in at least one year # and $P_{x°C}(y)$ refers to the probability of exceedance in a specific year $y$. # # |**Categories** |**Subcategories**|**Probability to exceed warming threshold**|**Acronym** |**Color** | # |---------------|-----------------|-------------------------------------------|-----------------|----------------| # | Below 1.5°C | Below 1.5°C (I) | $P_{1.5°C} \leq 0.34$ | Below 1.5C (I) | xkcd:baby blue | # | | Below 1.5°C (II)| $0.34 < P_{1.5°C} \leq 0.50$ | Below 1.5C (II) | | # | 1.5°C return with low OS | Lower 1.5°C return with low OS | $0.50 < P_{1.5°C} \leq 0.67$ and $P_{1.5°C}(2100) \leq 0.34$ |(Lower) 1.5C low OS | xkcd:bluish | # | | Higher 1.5°C return with low OS | $0.50 < P_{1.5°C} \leq 0.67$ and $0.34 < P_{1.5°C}(2100) \leq 0.50$ |(Higher) 1.5C low OS | | # | 1.5°C return with high OS | Lower 1.5°C return with high OS | $0.67 < P_{1.5°C}$ and $P_{1.5°C}(2100) \leq 0.34$ | (Lower) 1.5C high OS | xkcd:darkish blue | # | | Higher 1.5°C return with high OS | $0.67 < P_{1.5°C}$ and $0.34 < P_{1.5°C}(2100) \leq 0.50$ | (Higher) 1.5C high OS | | # | Lower 2.0°C | | $P_{2.0°C} \leq 0.34$ (excluding above) | Lower 2C | xkcd:orange | # | Higher 2.0°C | | $0.34 < P_{2.0°C} \leq 0.50$ (excluding above) | Higher 2C | xkcd:red | # | Above 2.0°C | | $P_{2.0°C} > 0.50$ for at least 1 year | Above 2C | darkgrey | #%% [markdown] # ### Category definitions to Excel # # The following dictionary repeats the category definitions from the table above # and saves them as a `pandas.DataFrame` to a dictionary `meta_tables`. # Throughout the notebook, this dictionary is used to collect definitions # of categories and secondary scenario classification. # These definitions are exported to the metadata/categorization Excel workbook # at the end of the script for easy reference. #%% dct = {'Categories of scenarios': ['Below 1.5°C', '', '1.5°C return with low overshoot', '', '1.5°C return with high overshoot', '', 'Lower 2.0°C', 'Higher 2.0°C', 'Above 2.0°C'], 'Subcategories': ['Below 1.5°C (I)', 'Below 1.5°C (II)', 'Lower 1.5°C return with low overshoot', 'Higher 1.5°C return with low overshoot', 'Lower 1.5°C return with high overshoot', 'Higher 1.5°C return with high overshoot', '', '', ''], 'Criteria for assignment to category': ['P1.5°C ≤ 0.34', '0.34 < P1.5°C ≤ 0.50', '0.50 < P1.5°C ≤ 0.67 and P1.5°C(2100) ≤ 0.34', '0.50 < P1.5°C ≤ 0.67 and 0.34 < P1.5°C(2100) ≤ 0.50', '0.67 < P1.5°C and P1.5°C(2100) ≤ 0.34', '0.67 < P1.5°C and 0.34 < P1.5°C(2100) ≤ 0.50', 'P2.0°C ≤ 0.34 (excluding above)', '0.34 < P2.0°C ≤ 0.50 (excluding above)', 'P2.0°C > 0.50 during at least 1 year' ], 'Acronym': ['Below 1.5C (I)', 'Below 1.5C (II)', 'Lower 1.5C low overshoot', 'Higher 1.5C low overshoot', 'Lower 1.5C high overshoot', 'Higher 1.5C high overshoot', 'Lower 2C', 'Higher 2C', 'Above 2C'], 'Color': ['xkcd:baby blue', '', 'xkcd:bluish', '', 'xkcd:darkish blue', '', 'xkcd:orange', 'xkcd:red', 'darkgrey'] } cols = ['Categories of scenarios', 'Subcategories', 'Criteria for assignment to category', 'Acronym', 'Color'] categories_doc = pd.DataFrame(dct)[cols] meta_tables['categories'] = categories_doc meta_docs['category'] = 'Categorization of scenarios by global warming impact' meta_docs['subcategory'] = 'Sub-categorization of scenarios by global warming impact' #%% other_cats = ['no-climate-assessment', 'reference'] cats = ['Below 1.5C', '1.5C low overshoot', '1.5C high overshoot', 'Lower 2C', 'Higher 2C', 'Above 2C'] all_cats = cats + other_cats subcats = dct['Acronym'] all_subcats = subcats + other_cats #%% specs['cats'] = cats specs['all_cats'] = all_cats specs['subcats'] = subcats specs['all_subcats'] = all_subcats #%% [markdown] # ### Subcategory assignment # # We first assign the subcategories, then aggregate those assignment to the main categories. # The categories assigned above to indicate reasons for non-processing by MAGICC are copied over to the subcategories. # # Keep in mind that setting a category will re-assign scenarios (in case they have already been assigned). # So in case of going back and forth in this notebook (i.e., not executing the cells in the correct order), # make sure to reset the categorization. #%% def warming_exccedance_prob(x): return 'AR5 climate diagnostics|Temperature|Exceedance Probability|{} °C|MAGICC6'.format(x) expected_warming = 'AR5 climate diagnostics|Temperature|Global Mean|MAGICC6|Expected value' median_warming = 'AR5 climate diagnostics|Temperature|Global Mean|MAGICC6|MED' #%% sr1p5.set_meta(meta=sr1p5['category'], name='subcategory') #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Below 1.5C (I)', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.34}}, color='xkcd:baby blue') #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Below 1.5C (II)', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.50}}, color='xkcd:baby blue') #%% [markdown] # To categorize by a variable using multiple filters (here: less than 66% probability of exceeding 1.5°C at any point during the century and less than 34% probability of exceeding that threshold in 2100) requires to perform the assignment in three steps - first, categorize to an intermediate `low OS` category and, in a second step, assign to the category in question. The third step resets all scenarios still categorized as intermediate after the second step back to `uncategorized`. #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='low overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.67}}) #%% pyam.categorize(sr1p5, exclude=False, subcategory='low overshoot', value='Lower 1.5C low overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.34, 'year': 2100}}, color='xkcd:bluish') #%% pyam.categorize(sr1p5, exclude=False, subcategory='low overshoot', value='Higher 1.5C low overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.50, 'year': 2100}}, color='xkcd:bluish') #%% [markdown] # Display scenarios that satisfy the `low overshoot` criterion # but are not assigned to `Lower 1.5C lower overshoot` or `Higher 1.5C lower overshoot`. # Then, reset them to uncategorized. #%% sr1p5.filter(subcategory='low overshoot').meta #%% sr1p5.set_meta(meta='uncategorized', name='subcategory', index=sr1p5.filter(subcategory='low overshoot')) #%% [markdown] # Determine all scenarios with a probability to exceed 1.5°C greater than 66% in any year throughout the century. # The function `categorize()` cannot be used for this selection, because it would either check for the criteria being true for all years or for a particular year. #%% df = sr1p5.filter(exclude=False, subcategory='uncategorized', variable=warming_exccedance_prob(1.5)).timeseries() sr1p5.set_meta(meta='high overshoot', name='subcategory', index=df[df.apply(lambda x: max(x), axis=1) > 0.66].index) #%% pyam.categorize(sr1p5, exclude=False, subcategory='high overshoot', value='Lower 1.5C high overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.34, 'year': 2100}}, color='xkcd:darkish blue') #%% pyam.categorize(sr1p5, exclude=False, subcategory='high overshoot', value='Higher 1.5C high overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.50, 'year': 2100}}, color='xkcd:darkish blue') #%% [markdown] # Reset scenarios that satisfy the `high overshoot` criterion # but are not assigned to `Lower 1.5C high overshoot` or `Higher 1.5C high overshoot`. #%% sr1p5.set_meta(meta='uncategorized', name='subcategory', index=sr1p5.filter(subcategory='high overshoot')) #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Lower 2C', name='subcategory', criteria={warming_exccedance_prob(2.0): {'up': 0.34}}, color='xkcd:orange') #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Higher 2C', name='subcategory', criteria={warming_exccedance_prob(2.0): {'up': 0.50}}, color='xkcd:red') #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Above 2C', name='subcategory', criteria={warming_exccedance_prob(2.0): {'up': 1.0}}, color='darkgrey') #%% [markdown] # ### Aggregation of subcategories to categories #%% rc = pyam.run_control() def assign_rc_color_from_sub(cat, sub): rc.update({'color': {'category': {cat: rc['color']['subcategory'][sub]}}}) #%% sr1p5.set_meta(meta='Below 1.5C', name='category', index=sr1p5.filter(subcategory=['Below 1.5C (I)', 'Below 1.5C (II)']).meta.index) assign_rc_color_from_sub('Below 1.5C', 'Below 1.5C (II)') #%% sr1p5.set_meta(meta='1.5C low overshoot', name='category', index=sr1p5.filter(subcategory=['Lower 1.5C low overshoot', 'Higher 1.5C low overshoot'])) assign_rc_color_from_sub('1.5C low overshoot', 'Lower 1.5C low overshoot') #%% sr1p5.set_meta(meta='1.5C high overshoot', name='category', index=sr1p5.filter(subcategory=['Lower 1.5C high overshoot', 'Higher 1.5C high overshoot'])) assign_rc_color_from_sub('1.5C high overshoot', 'Lower 1.5C high overshoot') #%% cats_non15 = ['Lower 2C', 'Higher 2C', 'Above 2C'] df_2c = sr1p5.filter(subcategory=cats_non15) sr1p5.set_meta(meta=df_2c['subcategory'], name='category') for c in cats_non15: assign_rc_color_from_sub(c, c) #%% [markdown] # ### Additional assessment of categorization # # Check whether there are any scenarios that return to 1.5°C by the end of the century and exceed the 2°C threshold with a likelyhood higher than 34% or 50% (i.e., the `Lower 2C` or the `Higher 2C` categories respectively). Having scenario categorized as `1.5C` but with a higher-than-50% probability of exceeding 2°C at some point in the century may need to be considered separately in subsequent assessment. #%% cats_15 = ['Below 1.5C', '1.5C low overshoot', '1.5C high overshoot'] specs['cats_15'] = cats_15 #%% cats_15_no_lo = ['Below 1.5C', '1.5C low overshoot'] specs['cats_15_no_lo'] = cats_15_no_lo #%% cats_2 = ['Lower 2C', 'Higher 2C'] specs['cats_2'] = cats_2 #%% df = sr1p5.filter(exclude=False, category=cats_15, variable=warming_exccedance_prob(2.0)).timeseries() ex_prob_2 = df.apply(lambda x: max(x)) #%% if max(ex_prob_2) > 0.34: logger.warning('The following 1.5C-scenarios are not `Lower 2C` scenarios:') display(df[df.apply(lambda x: max(x), axis=1) > 0.34]) #%% if max(ex_prob_2) > 0.50: logger.warning('The following 1.5C-scenarios are not `2C` scenarios:') display(df[df.apply(lambda x: max(x), axis=1) > 0.50]) #%% [markdown] # ### Counting and evaluation of scenario assignment categories # # Count the number of scenarios assigned to each category. # # This table is the basis for **Tables 2.1 and 2.A.11** in the SR1.5. #%% lst = sr1p5.meta.groupby(['category', 'subcategory']).count() ( lst .reindex(all_cats, axis='index', level=0) .reindex(all_subcats, axis='index', level=1) .rename(columns={'exclude': 'count'}) ) #%% [markdown] # Check whether any scenarios are still marked as `uncategorized`. This may be due to missing MAGICC postprocessing. #%% if any(sr1p5['category'] == 'uncategorized'): logger.warning('There are scenarios that are no yet categorized!') display(sr1p5.filter(category='uncategorized').meta) #%% [markdown] # ## Validation of Kyoto GHG emissions range (SAR-GWP100) # # Validate all scenarios whther aggregate Kyoto gases are outside the range as assessed by the Second Assessment Report (SAR) using the Global Warming Potential over 100 years (GWP100). These scenarios are excluded from some figures and tables in the assessment. #%% invalid_sar_gwp = sr1p5.validate(criteria={'Emissions|Kyoto Gases (SAR-GWP100)': {'lo': 44500, 'up': 53500, 'year':2010}}, exclude_on_fail=False) #%% name='Kyoto-GHG|2010 (SAR)' sr1p5.set_meta(meta='in range', name=name) sr1p5.set_meta(meta='exclude', name=name, index=invalid_sar_gwp) meta_docs[name] = 'Indicator whether 2010 Kyoto-GHG reported by the scenario (as assessed by IPCC SAR) are in the valid range' #%% [markdown] # ## Assignment of baseline scenarios # # This section assigns a `baseline` reference for scenarios from selected model intercomparison projects and indivitual submissions. #%% def set_baseline_reference(x): m, s = (x.name[0], x.name[1]) b = None if s.startswith('SSP') and not 'Baseline' in s: b = '{}Baseline'.format(s[0:5]) if s.startswith('CD-LINKS') and not 'NoPolicy' in s: b = '{}NoPolicy'.format(s[0:9]) if s.startswith('EMF33') and not 'Baseline' in s: b = '{}Baseline'.format(s[0:6]) if s.startswith('ADVANCE') and not 'NoPolicy' in s: b = '{}NoPolicy'.format(s[0:8]) if s.startswith('GEA') and not 'base' in s: b = '{}base'.format(s[0:8]) if s.startswith('TERL') and not 'Baseline' in s: b = s.replace('15D', 'Baseline').replace('2D', 'Baseline') if s.startswith('SFCM') and not 'Baseline' in s: b = s.replace('1p5Degree', 'Baseline').replace('2Degree', 'Baseline') if s.startswith('CEMICS') and not s == 'CEMICS-Ref': b = 'CEMICS-Ref' if s.startswith('SMP') and not 'REF' in s: if s.endswith('Def') or s.endswith('regul'): b = 'SMP_REF_Def' else: b = 'SMP_REF_Sust' if s.startswith('DAC'): b = 'BAU' # check that baseline scenario exists for specific model `m` if (m, b) in sr1p5.meta.index: return b # else (or if scenario name not in list above), return None return None #%% name = 'baseline' sr1p5.set_meta(sr1p5.meta.apply(set_baseline_reference, raw=True, axis=1), name) meta_docs[name] = 'Name of the respective baseline (or reference/no-policy) scenario' #%% [markdown] # ## Assignent of marker scenarios # # The following scenarios are used as marker throughout the analysis and visualization, cf. Figure 2.7 (SOD): # # |**Marker** |**Model & scenario name** |**Reference** | **Symbol** | # |------------|--------------------------------|-------------------------------|-----------------| # | *S1* | AIM/CGE 2.0 / SSP1-19 | Fujimori et al., 2017 | `white square` | # | *S2* | MESSAGE-GLOBIOM 1.0 / SSP2-19 | Fricko et al., 2017 | `yellow square` | # | *S5* | REMIND-MAgPIE 1.5 / SSP5-19 | Kriegler et al., 2017 | `black square` | # | *LED* | MESSAGEix-GLOBIOM 1.0 / LowEnergyDemand | Grubler et al., 2018 | `white circle` | #%% dct = {'Marker': ['S1', 'S2', 'S5', 'LED'], 'Model and scenario name': ['AIM/CGE 2.0 / SSP1-19', 'MESSAGE-GLOBIOM 1.0 / SSP2-19', 'REMIND-MAgPIE 1.5 / SSP5-19', 'MESSAGEix-GLOBIOM 1.0 / LowEnergyDemand'], 'Reference': ['Fujimori et al., 2017', 'Fricko et al., 2017', 'Kriegler et al., 2017', 'Grubler et al., 2018'], 'Symbol': ['white square', 'yellow square', 'black square', 'white circle'] } cols = ['Marker', 'Model and scenario name', 'Reference', 'Symbol'] markers_doc = pd.DataFrame(dct)[cols] meta_tables['marker scenarios'] = markers_doc meta_docs['marker'] = 'Illustrative pathways (marker scenarios)' #%% specs['marker'] = ['S1', 'S2', 'S5', 'LED'] #%% sr1p5.set_meta('', 'marker') rc.update({'marker': {'marker': {'': None}}}) #%% m = 'S1' sr1p5.set_meta(m, 'marker', sr1p5.filter(model='AIM/CGE 2.0', scenario='SSP1-19')) rc.update({'marker': {'marker': {m: 's'}}, 'c': {'marker': {m: 'white'}}, 'edgecolors': {'marker': {m: 'black'}}} ) #%% m = 'S2' sr1p5.set_meta(m, 'marker', sr1p5.filter(model='MESSAGE-GLOBIOM 1.0', scenario='SSP2-19')) rc.update({'marker': {'marker': {m: 's'}}, 'c': {'marker': {m: 'yellow'}}, 'edgecolors': {'marker': {m: 'black'}}}) #%% m = 'S5' sr1p5.set_meta(m, 'marker', sr1p5.filter(model='REMIND-MAgPIE 1.5', scenario='SSP5-19')) rc.update({'marker': {'marker': {m: 's'}}, 'c': {'marker': {m: 'black'}}, 'edgecolors': {'marker': {m: 'black'}}}) #%% m = 'LED' sr1p5.set_meta(m, 'marker', sr1p5.filter(model='MESSAGEix-GLOBIOM 1.0', scenario='LowEnergyDemand')) rc.update({'marker': {'marker': {m: 'o'}}, 'c': {'marker': {m: 'white'}}, 'edgecolors': {'marker': {m: 'black'}}}) #%% [markdown] # ## Visual analysis of emission and temperature pathways by category # # First, we plot all carbon dioxide emissions trajectories colored by category and the CO2 emissions from the AFOLU sector. Then, show the warming trajectories by category. #%% horizon = list(range(2000, 2020, 5)) + list(range(2020, 2101, 10)) df = sr1p5.filter(year=horizon) #%% df.filter(exclude=False, variable='Emissions|CO2').line_plot(**plotting_args, marker='marker') #%% df.filter(exclude=False, variable='Emissions|CO2|AFOLU').line_plot(**plotting_args, marker='marker') #%% df.filter(exclude=False, variable=expected_warming).line_plot(**plotting_args, marker='marker') #%% [markdown] # ## Import scientific references and publication status # The following block reads in an Excel table with the details of the scientific references for each scenario. # # The main cell of this section loops over all entries in this Excel table, filters for the relevant scenarios, # and assigns a short reference and the publication status. If multiple references are relevant for a scenario, the references are compiled, and the 'highest' publication status is written to the metadata. #%% ref_cols = ['project', 'model', 'scenario', 'reference', 'doi', 'bibliography'] #%% sr1p5.set_meta('undefined', 'reference') sr1p5.set_meta('unknown', 'project') #%% refs = pd.read_csv('../bibliography/scenario_references.csv', encoding='iso-8859-1') _refs = {'index': []} for i in ref_cols: _refs.update({i.title(): []}) #%% for cols in refs.iterrows(): c = cols[1] filters = {} # check that filters are defined if c.model is np.NaN and c.scenario is np.NaN: logger.warn('project `{}` on line {} has no filters assigned' .format(c.project, cols[0])) continue # filter for scenarios to apply the project and publication tags filters = {} for i in ['model', 'scenario']: if c[i] is not np.NaN: if ";" in c[i]: filters.update({i: re.sub(";", "", c[i]).split()}) else: filters.update({i: c[i]}) df = sr1p5.filter(**filters) if df.scenarios().empty: logger.warn('no scenarios satisfy filters for project `{}` on line {} ({})' .format(c.project, cols[0], filters)) continue # write to meta-tables dictionary _refs['index'].append(cols[0]) for i in ref_cols: _refs[i.title()].append(c[i]) sr1p5.meta.loc[df.meta.index, 'project'] = c['project'] for i in df.meta.index: r = c['reference'] sr1p5.meta.loc[i, 'reference'] = r if sr1p5.meta.loc[i, 'reference'] == 'undefined' else '{}; {}'.format(sr1p5.meta.loc[i, 'reference'], r) #%% cols = [i.title() for i in ref_cols] meta_tables['references'] =
pd.DataFrame(_refs)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import pytest from pandas.api.types import is_categorical_dtype from _helpers import assert_array_nan_equal from cellrank.tools import Lineage from cellrank.tools._utils import ( _one_hot, _process_series, _fuzzy_to_discrete, _merge_categorical_series, _series_from_one_hot_matrix, ) from cellrank.tools._colors import _map_names_and_colors class TestToolsUtils: def test_merge_not_categorical(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, np.nan, "d", "a"]) with pytest.raises(TypeError): _ = _merge_categorical_series(x, y) def test_merge_different_index(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, np.nan, "d", "a"], index=[5, 4, 3, 2, 1]).astype( "category" ) with pytest.raises(ValueError): _ = _merge_categorical_series(x, y) def test_merge_normal_run(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") expected = pd.Series(["b", "b", "a", "d", "a"]).astype("category") res = _merge_categorical_series(x, y, inplace=False) np.testing.assert_array_equal(res.values, expected.values) def test_merge_normal_run_inplace(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") expected = pd.Series(["b", "b", "a", "d", "a"]).astype("category") _ = _merge_categorical_series(x, y, inplace=True) assert _ is None np.testing.assert_array_equal(x.values, expected.values) def test_merge_normal_run_completely_different_categories(self): x = pd.Series(["a", "a", "a"]).astype("category") y = pd.Series(["b", "b", "b"]).astype("category") expected = pd.Series(["b", "b", "b"]).astype("category") res = _merge_categorical_series(x, y, inplace=False) np.testing.assert_array_equal(res.values, expected.values) np.testing.assert_array_equal(res.cat.categories.values, ["b"]) def test_merge_colors_not_colorlike(self): with pytest.raises(ValueError): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") colors_x = ["red", "foo"] _ = _merge_categorical_series(x, y, colors_old=colors_x, inplace=True) def test_merge_colors_wrong_number_of_colors(self): with pytest.raises(ValueError): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") colors_x = ["red"] _ = _merge_categorical_series(x, y, colors_old=colors_x, inplace=True) def test_merge_colors_wrong_dict(self): with pytest.raises(ValueError): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") colors_x = {"a": "red", "foo": "blue"} _ = _merge_categorical_series(x, y, colors_old=colors_x, inplace=True) def test_merge_colors_simple_old(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") colors_x = ["red", "blue"] colors_merged = _merge_categorical_series( x, y, colors_old=colors_x, inplace=True ) np.testing.assert_array_equal(colors_merged, ["red", "blue", "#4daf4a"]) def test_merge_colors_simple_old_no_inplace(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") expected = pd.Series(["b", "b", "a", "d", "a"]).astype("category") colors_x = ["red", "blue"] merged, colors_merged = _merge_categorical_series( x, y, colors_old=colors_x, inplace=False ) np.testing.assert_array_equal(merged.values, expected.values) np.testing.assert_array_equal(colors_merged, ["red", "blue", "#4daf4a"]) def test_merge_colors_simple_new(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") colors_y = ["red", "blue", "green"] colors_merged = _merge_categorical_series( x, y, colors_new=colors_y, inplace=True ) np.testing.assert_array_equal(colors_merged, ["#e41a1c", "#377eb8", "green"]) def test_merge_colors_both(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") colors_x = ["red", "blue"] colors_y = ["green", "yellow", "black"] colors_merged = _merge_categorical_series( x, y, colors_old=colors_x, colors_new=colors_y, inplace=True ) np.testing.assert_array_equal(colors_merged, ["red", "blue", "black"]) def test_merge_colors_both_overwrite(self): x =
pd.Series(["a", "b", np.nan, "b", np.nan])
pandas.Series
""" MIT License Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pandas as pd import numpy as np import sys, os, site, zipfile, math, time, json, io import googlemaps, urllib, shapely, shutil, requests import xml.etree.ElementTree as ET from glob import glob from urllib.error import HTTPError from urllib.request import URLError from http.client import IncompleteRead from zipfile import BadZipFile from tqdm import tqdm, trange from warnings import warn ########################### ### IMPORT PROJECT PATH ### import pvvm.settings revmpath = pvvm.settings.revmpath datapath = pvvm.settings.datapath apikeys = pvvm.settings.apikeys nsrdbparams = pvvm.settings.nsrdbparams ##################### ### Imports from pvvm import pvvm.toolbox import pvvm.io ####################### ### DICTS AND LISTS ### ####################### isos = ['CAISO', 'ERCOT', 'MISO', 'PJM', 'NYISO', 'ISONE'] resolutionlmps = { ('CAISO', 'da'): 60, ('CAISO', 'rt'): 5, ('ERCOT', 'da'): 60, ('ERCOT', 'rt'): 5, ('MISO', 'da'): 60, ('MISO', 'rt'): 60, ('PJM', 'da'): 60, ('PJM', 'rt'): 60, ('NYISO', 'da'): 60, ('NYISO', 'rt'): 5, ('ISONE', 'da'): 60, ('ISONE', 'rt'): 60, } ################ ### DOWNLOAD ### ################ ############### ### General use def constructpayload(**kwargs): out = [] for kwarg in kwargs: out.append('{}={}'.format(kwarg, kwargs[kwarg])) stringout = '&'.join(out) return stringout def constructquery(urlstart, **kwargs): out = '{}{}'.format(urlstart, constructpayload(**kwargs)) return out def stampify(date, interval=pd.Timedelta('1H')): datetime = pd.Timestamp(date) if interval == pd.Timedelta('1H'): dateout = '{}{:02}{:02}T{:02}'.format( datetime.year, datetime.month, datetime.day, datetime.hour) elif interval == pd.Timedelta('1D'): dateout = '{}{:02}{:02}'.format( datetime.year, datetime.month, datetime.day) return dateout def download_file_series(urlstart, urlend, fileseries, filepath, overwrite=False, sleeptime=60, numattempts=200, seriesname=True): """ Example ------- You want to download a list of files at urls = [ 'http://www.test.com/foo001.csv', 'http://www.test.com/foo002.csv']. Then: urlstart = 'http://www.test.com/foo' urlend = '.csv' fileseries = ['001', '002'] If you want the files to be named 'foo001.csv', use seriesname=False If you want the files to be named '001.csv', use seriesname=True """ filepath = pvvm.toolbox.pathify(filepath, make=True) ### Make lists of urls, files to download, and filenames urls = [(urlstart + file + urlend) for file in fileseries] todownload = [os.path.basename(url) for url in urls] if seriesname == True: filenames = [os.path.basename(file) + urlend for file in fileseries] else: filenames = todownload ### Get the list of downloaded files downloaded = [os.path.basename(file) for file in glob(filepath + '*')] ### Remake the list if overwrite == False if overwrite == False: filestodownload = [] urlstodownload = [] fileseriesnames = [] for i in range(len(filenames)): if filenames[i] not in downloaded: filestodownload.append(todownload[i]) urlstodownload.append(urls[i]) fileseriesnames.append(filenames[i]) elif overwrite == True: filestodownload = todownload urlstodownload = urls fileseriesnames = filenames ### Download the files for i in trange(len(urlstodownload)): ### Attempt the download attempts = 0 while attempts < numattempts: try: urllib.request.urlretrieve( urlstodownload[i], filepath + fileseriesnames[i]) break except (HTTPError, IncompleteRead, EOFError) as err: print(urlstodownload[i]) print(filestodownload[i]) print('Rebuffed on attempt # {} at {} by "{}".' 'Will retry in {} seconds.'.format( attempts, pvvm.toolbox.nowtime(), err, sleeptime)) attempts += 1 time.sleep(sleeptime) ########################### ### Geographic manipulation def rowlatlon2x(row): latrad = row['latitude'] * math.pi / 180 lonrad = row['longitude'] * math.pi / 180 x = math.cos(latrad) * math.cos(lonrad) return x def rowlatlon2y(row): latrad = row['latitude'] * math.pi / 180 lonrad = row['longitude'] * math.pi / 180 y = math.cos(latrad) * math.sin(lonrad) return y def rowlatlon2z(row): latrad = row['latitude'] * math.pi / 180 z = math.sin(latrad) return z ############ ### ISO LMPs """ Note: These scripts worked as of early 2018, but MISO, PJM, and NYISO have since changed their websites, and CAISO has removed data prior to 20150303. Scripts are included here for documentary purposes and as a resource for future data collection, but are unlikely to work given ISO website changes. """ def download_caiso_lmp_allnodes(market, start, filepathout, product='LMP', numattempts=200, waittime=10): urlstart = 'http://oasis.caiso.com/oasisapi/GroupZip?' columnsout = [ 'INTERVALSTARTTIME_GMT', 'NODE', 'MW', 'OPR_DT', 'OPR_HR', 'OPR_INTERVAL'] if market in ['RTM', 'HASP', 'RTPD']: interval = pd.Timedelta('1H') elif market in ['DAM', 'RUC']: interval =
pd.Timedelta('1D')
pandas.Timedelta
"""Defines the clustering algorithms and handles running them. Primarily used for analysis and instance space generation. """ from collections import defaultdict from pathlib import Path from itertools import zip_longest import warnings import inspect import numpy as np import pandas as pd import sklearn.cluster import sklearn.mixture from sklearn.metrics import adjusted_rand_score from scipy.spatial.distance import pdist, squareform import hawks.utils import hawks.problem_features warnings.filterwarnings( action='ignore', category=FutureWarning, module="sklearn" ) def define_cluster_algs(seed): """Defines some default clustering algorithms. Currently uses four simple algorithms: average-linkage, GMM, K-Means++, and single-linkage. Args: seed (int): Random seed given to the algorithms. ``int`` is generally fine, but depends on the algorithm implementation. Returns: dict: A dict where each key is the name of the algorithm, with ``"class"`` as a callable to create (and fit) the model, any ``"kwargs"`` it needs, and ``"k_multiplier"`` if anything other than the true number of clusters is desired. .. todo:: Extend functionality for arbitrary clustering algorithms """ cluster_algs = { "Average-Linkage": { "class": getattr(sklearn.cluster, "AgglomerativeClustering"), "kwargs": { "linkage": "average", "n_clusters": None }, "k_multiplier": None }, "Average-Linkage (2K)": { "class": getattr(sklearn.cluster, "AgglomerativeClustering"), "kwargs": { "linkage": "average", "n_clusters": None }, "k_multiplier": 2.0 }, "GMM": { "class": getattr(sklearn.mixture, "GaussianMixture"), "kwargs": { "n_components": None, "random_state": seed, "n_init": 3 }, "k_multiplier": None }, "K-Means++": { "class": getattr(sklearn.cluster, "KMeans"), "kwargs": { "n_clusters": None, "random_state": seed, "n_init": 10 }, "k_multiplier": None }, "Single-Linkage": { "class": getattr(sklearn.cluster, "AgglomerativeClustering"), "kwargs": { "linkage": "single", "n_clusters": None }, "k_multiplier": None }, "Single-Linkage (2K)": { "class": getattr(sklearn.cluster, "AgglomerativeClustering"), "kwargs": { "linkage": "single", "n_clusters": None }, "k_multiplier": 2.0 } } return cluster_algs def extract_datasets(generator=None, datasets=None, label_sets=None): # Something needs to be given if generator is None and datasets is None: raise ValueError(f"No generator or datasets have been given - there's nothing to evaluate!") # Extract the datasets and labels from the generator if generator is not None: # Create local references to datasets and label_sets datasets, label_sets, configs = generator.get_best_dataset(return_config=True) # Get a flat list of the config id for each one of the datasets config_nums = np.arange( len(configs) ).repeat( generator.full_config["hawks"]["num_runs"] ).tolist() # Otherwise just set the config number to be None's else: config_nums = [None]*len(datasets) # Test for unequal number of datasets and label sets if len(datasets) != len(label_sets): raise ValueError("The number of datasets is not equal to the number of labels") return datasets, label_sets, config_nums def setup_folder(save_folder, generator): # Prioritize a given save folder if save_folder is not None: base_folder = Path(save_folder) # Or use the generator's folder elif generator is not None and generator.base_folder is not None: base_folder = generator.base_folder # Use current date in cwd as last resort else: base_folder = Path.cwd() / f"clustering_{hawks.utils.get_date()}" return base_folder def analyse_datasets(generator=None, datasets=None, label_sets=None, cluster_subset=None, feature_subset=None, seed=None, source="HAWKS", prev_df=None, clustering=True, feature_space=True, save=True, save_folder=None, filename="dataset_analysis"): """Function to analyze the datasets, either by their :py:mod:`~hawks.problem_features`, clustering algorithm performance, or both. Args: generator (:class:`~hawks.generator.BaseGenerator`, optional): HAWKS generator instance (that contains datasets). Defaults to None. datasets (list, optional): A list of the datasets to be examined. Defaults to None. label_sets (list, optional): A list of labels that match the list of datasets. Defaults to None. cluster_subset (list, optional): A list of clustering algorithms to use. Defaults to None, where all default clustering algorithms (specified in :func:`~hawks.analysis.define_cluster_algs`) are used. feature_subset (list, optional): A list of problem features to use. Defaults to None, where all problem features (specified in :mod:`~hawks.problem_features`) are used. seed (int, optional): Random seed number. Defaults to None, where it is randomly selected. source (str, optional): Name of the set of datasets. Useful for organizing/analyzing/plotting results. Defaults to "HAWKS". prev_df (:py:class:`~pandas.DataFrame`, optional): Pass in a previous DataFrame, with which the results are added to. Defaults to None, creating a blank DataFrame. clustering (bool, optional): Whether to run clustering algorithms on the datasets or not. Defaults to True. feature_space (bool, optional): Whether to run the problem features on the datasets or not. Defaults to True. save (bool, optional): Whether to save the results or not. Defaults to True. save_folder (str, :class:`pathlib.Path`, optional): Where to save the results. Defaults to None, where the location of the :class:`~hawks.generator.BaseGenerator` is used. If no :class:`~hawks.generator.BaseGenerator` instance was given, create a folder in the working directory. filename (str, optional): Name of the CSV file to be saved. Defaults to "dataset_analysis". Returns: (tuple): 2-element tuple containing: :py:class:`~pandas.DataFrame`: DataFrame with results for each dataset. :py:class:`pathlib.Path`: The path to the folder where the results are saved. """ if clustering is False and feature_space is False: raise ValueError("At least one of `clustering` or `feature_space` must be selected, otherwise there is nothing to do") # Extract the datasets datasets, label_sets, config_nums = extract_datasets( generator=generator, datasets=datasets, label_sets=label_sets ) # Setup the save folder if save or save_folder is not None: base_folder = setup_folder(save_folder, generator) # If a path is given for the save folder, assume saving is wanted save = True else: base_folder = None # Initialize the dataframe df = pd.DataFrame() # Provided seed has priority, then seed from generator if seed is None and generator is not None: seed = generator.seed_num # Otherwise random seed, but raise warning due to unreliable reproducibility elif seed is None and generator is None: seed = np.random.randint(100) warnings.warn( message=f"No seed was provided, using {seed} instead", category=UserWarning ) # Setup and run feature space functions if feature_space: # Get the functions from problem_features.py (not imported) feature_funcs = dict( [func_tup for func_tup in inspect.getmembers(hawks.problem_features, inspect.isfunction) if func_tup[1].__module__ == "hawks.problem_features"] ) # If a feature subset has been given, remove those functions if feature_subset is not None: feature_dict = {} for feature_name in feature_subset: try: feature_dict[feature_name] = feature_funcs[feature_name] except KeyError as e: raise Exception(f"{feature_name} cannot be found, must be in: {feature_funcs.keys()}") from e else: feature_dict = feature_funcs feature_df = run_feature_space(datasets, label_sets, config_nums, feature_dict, df, source) # Setup and run clustering algorithms if clustering: # Get the defined clustering algs cluster_algs = define_cluster_algs(seed) # If a subset of algorithms is given, then select only those if cluster_subset is not None: alg_dict = {} for alg_name in cluster_subset: try: alg_dict[alg_name] = cluster_algs[alg_name] except KeyError as e: raise Exception(f"{alg_name} cannot be found, must be in: {cluster_algs.keys()}") from e else: alg_dict = cluster_algs # Run the clustering algorithms cluster_df = run_clustering(datasets, label_sets, config_nums, alg_dict, df, source) # Join the dataframes if need be if feature_space and clustering: # Need to merge on source and dataset number # Use concat to handle when config_num may be undefined (rather than pd.merge) final_df = pd.concat([cluster_df, feature_df], axis=1) final_df = final_df.loc[:, ~final_df.columns.duplicated()] elif feature_space: final_df = feature_df elif clustering: final_df = cluster_df if prev_df is not None: final_df = prev_df.append( final_df, ignore_index=True, sort=False ) # Save the full dataframe if save: base_folder.mkdir(parents=True, exist_ok=True) hawks.utils.df_to_csv( df=final_df, path=base_folder, filename=filename ) return final_df, base_folder def run_clustering(datasets, label_sets, config_nums, alg_dict, df, source): """Function to actually run the clustering algorithms and add results to the DataFrame. Args: datasets (list, optional): A list of the datasets to be examined. Defaults to None. label_sets (list, optional): A list of labels that match the list of datasets. Defaults to None. config_nums (list): A list of the config numbers (only relevant for HAWKS, not external datasets). Allows linking of datasets to parameter configuration. alg_dict (dict): Dictionary of the clustering algorithms. Defined in :func:`~hawks.analysis.define_cluster_algs`. df (:py:class:`~pandas.DataFrame`): DataFrame to add the results to. source (str): Name of the set of datasets. Returns: :py:class:`~pandas.DataFrame`: DataFrame with the clustering results. """ # Loop over the datasets for dataset_num, (data, labels, config_num) in enumerate(zip_longest(datasets, label_sets, config_nums)): # Create the defaultdict res_dict = defaultdict(list) # Add the constants to the dict res_dict["source"].append(source) res_dict["config_num"].append(config_num) res_dict["dataset_num"].append(dataset_num) # Add some extra general info about the dataset here res_dict["num_examples"].append(int(data.shape[0])) res_dict["num_clusters"].append(int(np.unique(labels).shape[0])) # Loop over the dict of clustering algorithms for name, d in alg_dict.items(): # Add in the number of clusters d["kwargs"] = determine_num_clusters(name, d["kwargs"], d["k_multiplier"], labels) # Increment the seed to avoid pattern in datasets if "random_state" in d["kwargs"]: d["kwargs"]["random_state"] += 1 # Pass the kwargs to the relevant algorithm class alg = d["class"](**d["kwargs"]) # Run the algorithm alg.fit(data) # Predict labels and compare if we have the truth if labels is not None: # import pdb; pdb.set_trace() # Obtain labels for this algorithm on this dataset if hasattr(alg, "labels_"): labels_pred = alg.labels_.astype(np.int) else: labels_pred = alg.predict(data) ari_score = adjusted_rand_score(labels, labels_pred) # No labels, so just set scores to NaN else: ari_score = np.nan # Add the cluster name and scores res_dict[f"c_{name}"].append(ari_score) # Calculate evaluation metrics and add to df # Not particularly efficient df = df.append(
pd.DataFrame.from_dict(res_dict)
pandas.DataFrame.from_dict
#To Do Baranski: # -Build the Events # -- Muss ich noch ausbauen, dass nicht nur die States sondern auch die Transitions mit zusatzinfos gespeichert werden (Laenge, Step) # -- Dafuer baue ich eine eigene Unterfunktion # -Print the Events im 3d Raum # -Clustering # --Hier nehme ich KMeans, muss eben aus der Dokumentation raus lesen wie hoeherdimensionale Daten ausgelesen werden # --Auch GMM mal probieren. -> Das austesten wie viele Schritte es gibt wird interessant # Ggf kann man dann noch eine Restgruppe festlegen und das muessen dann die ueberlagerten sein. # --Ggf ist Ward Clustering eine wesentlich bessere Idee (Insbesondere auch Moeglichkeit Connectivity Matrix zu setzen) # # -Print Events mit Clustering # -Die FHMMs bilden # -- abschreiben aus Matlab # -Die Ablaeufe bilden # -- abschreiben aus Matlab # Das Events raus rechnen baue ich am Besten in den Training Step. Wie Preprocessing. # => Obwohl das natuerlich nur einen einzelnen Datensatz Sinn macht # Kommentare zu Vgl mit sklearn: # 1. kwargs ist dort eher verboten (siehe BaseEstimator Doku) # 2. Es gibt eine Score Funktion # Die ist in dem Beispiel in NilmTK nur von aussen ergaenzt ueber diese Predict Hilfsfunktion # In sklearn in Mixins beschrieben. Aber in Doku falsch wuerde ich sagen, dass ALLE estimators score() haben. # General packages from __future__ import print_function, division from collections import OrderedDict, deque import numpy as np import pickle import os import sys from itertools import product # Packages for data handling and machine learning import pandas as pd import matplotlib.pyplot as plt from sklearn_pandas import DataFrameMapper import sklearn.preprocessing, sklearn.decomposition, sklearn.linear_model, sklearn.pipeline, sklearn.metrics from sklearn.feature_extraction.text import CountVectorizer from sklearn.cluster import KMeans, AgglomerativeClustering import sklearn.metrics # Packages from nilmtk from nilmtk.disaggregate import UnsupervisedDisaggregator from nilmtk.feature_detectors.cluster import hart85_means_shift_cluster from nilmtk.feature_detectors.steady_states import find_steady_states_transients # Fix the seed for repeatability of experiments SEED = 42 np.random.seed(SEED) class CustomBaranski(UnsupervisedDisaggregator): """ Customized Baranski Algorithm. Allows multiple states per machine and additionally supports multiple states. Erweiterungen die in NILM Eval unterschlagen wurden: 1. Die hochfrequenten events werden zusammen genommen (Das stand ja auch schon im Paper Seite 2) 2. Die Erweiterung ist dann eben, dass man komplexe Events mit beruecksichtigt. Siehe das Nachfolgepaper. Probleme denen ich mich direkt stellen kann, die in Matlab auch nicht geloest wurden: 1. Ueber die Zeit koennen sich die Anlagen veraendern -> Wenn ich alles betrachte ist mir das ja im Prinzip egal. -> Das ist mir ja im Prinzip egal! 2. Grosse Datenmengen: Es ist mit Problemen ueber mehrere Jahre 3 phasig zu rechnen. -> Der Featurespace ist DEUTLICH kleiner -> Ansaetze wiederholende Pattern zu erkennen => Komplexitaet Suchalgorithmus Datenstruktur: Alle Events in eine Reihe schreiben, Attributes ---------- model : dict Mal noch nichts. """ #region All disaggregator functions which are not used at the moment def export_model(self, filename): raise NotImplementedError("Muss ich ggf noch mal von den anderen Klassen herkopieren.") def import_model(self, filename): raise NotImplementedError("Muss ich ggf noch mal von den anderen Klassen herkopieren.") #endregion #region Used disaggregator functions def __init__(self): self.MODEL_NAME = "BARANSKI" self.cols = [("power", "active")] self.noise_level = 70 self.state_threshold = 15 self.max_num_clusters = 12 # from matlab project def train(self, metergroup, **load_kwargs): """ Gets a site meter and trains the model based on it. Goes chunkwise through the dataset and returns the events. In the end does a clustering for identifying the events. For signature description see basic class: It should get a sitemeter for unsupervised learning. Parameters ---------- metergroup : a nilmtk.MeterGroup object For custom baranski (is unsupervised), this is a single site meter. """ # Go through all parts and extract events events = [] # 1. Get Events (Das ist ja schon vorhanden) -> Das sollte ich ausbauen -> GetSignatures # -> man separiert in die verschiedenen moeglichen Signaturen # --> Einen Separator als Oberklasse, Dann mehrere Separatoren fuer die einzelnen Typen an Effekt # -Rising Spike: # -Rising Spike: # -Pulse # -Fluctuation # -Quick Vibrate # -Gradual Falling # -Flatt # --> Man arbeitet mit Verdeckung: Event, verdeckt wenn RaisingSpike, FallingSpike, verdeckt wenn Pulse # # --> Jede Signatur hat eigene spezielle Eigenschaften # --> Einige sollten eine Wildcard beinhalten # Ich will hier ein 3d Pandas aufbauen #events = self._load_if_available() #if not events is None: # self.events = events # return events = pd.DataFrame() for i, elec in enumerate(metergroup.all_meters()): print("Find Events for " + str(elec.metadata)) transitions = find_steady_states_transients( elec, cols=self.cols, state_threshold=self.state_threshold, noise_level=self.noise_level, **load_kwargs)[1] # Mark as on- or off-event transitions['type'] = transitions >= 0 transitions['meter'] = elec events = events.append(transitions) events.index.rename('time', inplace=True) events.set_index(['type', 'meter'], append=True, inplace=True) events = events.reorder_levels([2,1,0]) events.sort_index(inplace=True) # Hier vielleicht noch die Kombinationen finden self.events = events #self._save(events) # 2. Cluster the events using different cluster methodologies (Zuweisung passiert automatisch) # Ah es gibt doch ein predict: Und zwar elemente Clustern zuweisen clusters = None #self. _load_if_available(what='cluster') if clusters is None: for curGroup, groupEvents in events.groupby(['meter','type']): centroids, assignments = self._cluster_events(groupEvents, max_num_clusters=self.max_num_clusters, method='kmeans') events.loc[curGroup,'cluster'] = assignments #self._save(events, 'cluster') else: pass #events = clusters self.model = events def train_on_chunk(self, chunk): """ This function is actually not needed as the chunkwise processing is included inside the find_steady_states_transients function. This function goes through the power line and already identifies the events. For signature description see basic class: Only gets the chunk from the sitemeter, as it is unsupervised. Parameters ---------- chunk : pd.DataFrame where each column represents a disaggregated appliance meter : ElecMeter for this chunk """ pass def disaggregate(self, mains, output_datastore, **load_kwargs): """Disaggregate mains according to the model learnt previously. At the moment not used as we use the predict function in the main script. Parameters ---------- mains : nilmtk.ElecMeter or nilmtk.MeterGroup => In facts the 3 phases output_datastore : instance of nilmtk.DataStore subclass For storing power predictions from disaggregation algorithm. => Wird in einem 2. Step benutzt **load_kwargs : key word arguments Passed to `mains.power_series(**kwargs)` """ # 3. Generate Finite State Machines (Test whether clustering fits) # 4. Bildender Sequenzen fuer jede State machine for meter, content in clusters.groupby(level=0): length = [] for type, innerContent in content.groupby(level=1): length.append(len(innerContent.reset_index().cluster.unique())) if len(set(length)) > 1 : raise Exeption("different amount of clusters") clusters['appliance'] =
pd.Series()
pandas.Series
# -*- coding: utf-8 -*- """ Firt code created on Tue Aug 14 14:59:13 2018 @author: <NAME> - <EMAIL> CARS Functions to read the input files from input folder: activity_data emissions_factor fleet_mix temporal_profile This functions will read the input data """ import os, sys, time, matplotlib, glob, fnmatch import xarray as xr import pandas as pd import geopandas as gpd import numpy as np import datetime as dt from shapely.geometry import Polygon from scipy.optimize import curve_fit import matplotlib.pyplot as plt import matplotlib.patches as mpatches from netCDF4 import Dataset from mpl_toolkits.basemap import Basemap import cartopy.crs as ccrs import geopandas.tools import shapely from shapely.geometry import * total_start_time = time.time() case_name = 'Seoul_1x1km' home_dir = 'C:/Users/pedruzzi/OneDrive - University of North Carolina at Chapel Hill/0000_EUA_IE/001_mobile_source_inventory/CARS_source_code' src_dir = home_dir+'/src' input_dir = home_dir+'/input' inter_dir = home_dir+'/intermediate' output_dir = home_dir+'/output_seoul' if not os.path.exists(home_dir+'/intermediate'): print('*** intermediate directory does not exist: Creating a new one') os.makedirs(home_dir+'/intermediate/') #fleet_mix_file = 'age_distribution.csv' fleet_mix_Age_file = 'Seoul_age_distribution_2015.csv' #''age_distribution_Activity_Data_Seoul_2017.csv' #' Emis_Factor_list = ['gasoline.csv','diesel.csv','cng.csv','lpg.csv'] #EF_Gasoline_file = 'gasoline.csv' #EF_Diesel_file = 'diesel.csv' #EF_CNG_file = 'cng.csv' #EF_LPG_file = 'lpg.csv' avg_SPD_Dist_file = 'avgSpeedDistribution_rev_00.csv' ambient_temp = 15.0 plot_24 = 'no '#'yes' link_shape = '/shapes'+'/GIS Korea Road Link Activity Data'+ \ '/shape_seoul'+'/seoul_eup_links_Avg_VKT_UTM52N.shp' link_shape_att = ['link_id' , 'EMD_CD' , 'EMD_ENG_NM', 'EMD_KOR_NM', 'road_type', 'speed', 'length_2', 'Avg_VKT'] # #link_shape = '/shapes/GIS Korea Road Link Activity Data'+ \ # '/shape_seoul/seoul_eup_road_by_county_UTM52N.shp' #link_shape_att = ['LINK_ID' , 'EMD_CD' , 'EMD_ENG_NM', 'ROAD_NAME', # 'ROAD_RANK', 'MAX_SPD', 'length_2', 'Avg_VKT'] county_shape = '/shapes/GIS Korea Road Link Activity Data'+ \ '/shape_seoul/seoul_eup_UTM52N.shp' #link_shape = '/shapes/GIS Korea Road Link Activity Data'+ \ # '/shape_soul_gyeonggi/soul_gyeonggi_Links_UTM52N.shp' #link_shape_att = ['link_id' , 'EMD_CD' , 'EMD_ENG_NM', 'EMD_ENG_NM', # 'link_type', 'speed', 'length',] # #county_shape = '/shapes/GIS Korea Road Link Activity Data'+ \ # '/shape_soul_gyeonggi/soul_gyeonggi_eup_UTM52N.shp' temporal_profile_folder = input_dir+'/temporal_profile' temporal_profile_file = 'temporal_profile_SK.csv' temporal_cross_ref_file = 'temporal_cross_ref_SK.csv' temp = np.asarray([.0094, .0060, .0050, .0065, .0126, .0347, .0591, .0605, .0558, .0545, .0536, .0532, .0538, .0539, .0559, .0569, .0580, .0611, .0586, .0525, .0495,.0419, .0308, .0162]) grid_size = 1000 activity_file = 'seoul_2017.csv' #'seoul_gyeonggi_AD.csv' #'seoul_all.csv' # #'activity_data.csv' class EmissionFactor_table: def __init__(self, dataframe, name ): self.dataframe = dataframe self.name = name.split('.')[0] class Activity_Data_table: def __init__(self, dataframe, vhc_name, years): self.data = dataframe self.fullname = vhc_name self.years = years class Roads_Grid_table: def __init__(self, grid_dataframe, surrogate, roads_df): self.grid = grid_dataframe self.surrogate = surrogate self.roads_df = roads_df class EF_Grid_table: def __init__(self, EF_dataframe, EF_years, VHC_fullname_EF, Fuel_EF, Polls_EF): self.data = EF_dataframe self.EF_years = EF_years self.EF_fullname = VHC_fullname_EF self.EF_fuels = Fuel_EF self.EF_polls = Polls_EF class EF_Speed_Distribution: def __init__(self, SPD_dataframe, Speeds, Speed_Bins): self.data = SPD_dataframe self.spd = Speeds self.spd_bins = Speed_Bins class Emissions_table: def __init__(self, County_Emissions, Road_Emissions, County_Emissions_GeoRef, County, Years): self.county_emis = County_Emissions self.road_emis = Road_Emissions self.county_geo = County_Emissions_GeoRef self.county = County self.years = Years # ============================================================================= # Function to read the Fleet Mix # ============================================================================= def read_flet_mix(input_dir, fleet_mix_file, sep = ';'): #sep = ';' name = '{0}{1}{2}'.format(input_dir,'/age_distribuition/',fleet_mix_file) if os.path.exists(name) == True: print ('') print ('Reading Fleet Mix ...') print (name) fleet_mix = pd.read_csv(name, sep = sep).fillna(0) # fleet_mix['Name'] = fleet_mix.Vehicle.str.cat(vhc_type[['Types','Fuel']], sep=' ') else: print ('') print('*** ERROR ABORT ***: Fleet Mix file "" ', fleet_mix_file, ' "" does not exist!') sys.exit('CARS preProcessor can not read fleet mix file') return fleet_mix # ============================================================================= FM = read_flet_mix(input_dir,fleet_mix_Age_file) year_FM = [int(i) for i in list(FM.columns[4:])] vhc_type = FM.loc[:,['Vehicle','Types','Fuel']] vhc_type['Name'] = vhc_type.Vehicle.str.cat(vhc_type[['Types','Fuel']], sep=' ') # ============================================================================= # Function to read the temporal profile # ============================================================================= def read_temporal_profile(input_dir, temporal_profile_file, sep = ';'): name = '{0}{1}{2}'.format(input_dir,'/temporal_profile/',temporal_profile_file) if os.path.exists(name) == True: print ('') print ('Reading Temporal profile ...') print (name) TP = pd.read_csv(name, sep = sep).fillna(np.nan) else: print ('') print('*** ERROR ABORT ***: Temporal Profile ', temporal_profile_file, ' "" does not exist!') sys.exit('CARS preProcessor can not read Temporal profile') return TP TP = read_temporal_profile(input_dir,temporal_profile_file) # ============================================================================= # Function to read the temporal profile cross reference # ============================================================================= def read_temporal_Cross_ref(input_dir, temporal_cross_ref_file, sep = ';'): name = '{0}{1}{2}'.format(input_dir,'/temporal_profile/',temporal_cross_ref_file) if os.path.exists(name) == True: print ('') print ('Reading Temporal Cross reference ...') print (name) TPCR = pd.read_csv(name, sep = sep).fillna(np.nan) else: print ('') print('*** ERROR ABORT ***: Temporal Profile cross reference ', temporal_cross_ref_file, ' "" does not exist!') sys.exit('CARS preProcessor can not read Temporal Profile cross reference') return TPCR TPCR = read_temporal_Cross_ref(input_dir, temporal_cross_ref_file) # ============================================================================= # Function to read the Speed average distribution # ============================================================================= def read_avgSpeedDistribution(input_dir, avg_Speed_Distribution_file, sep = ';'): start_time = time.time() input_dir = input_dir spd_file = 'avgSpeedDistribution_rev_00.csv' #avg_Speed_Distribution_file #ef_file #['gasoline.csv'] # sep = ';' final_df = pd.DataFrame() name = '{0}{1}{2}'.format(input_dir,'/emissions_factor/',spd_file) if os.path.exists(name) == True: print ('') print ('Reading Average Speed Distribution table ...') print (name) ASD = pd.read_csv(name, sep = sep).fillna(np.nan) else: print ('') print('*** ERROR ABORT ***: Temporal Profile cross reference ', temporal_cross_ref_file, ' "" does not exist!') sys.exit('CARS preProcessor can not read Temporal Profile cross reference') out_spd_bins = pd.DataFrame({'spd_bins': [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]}) out_spd = pd.DataFrame({'spd': list(ASD.Speed)}) return EF_Speed_Distribution(ASD, out_spd, out_spd_bins) avgSpeedDist = read_avgSpeedDistribution(input_dir, avg_SPD_Dist_file, sep = ';') # ============================================================================= # Function to read the Activity Data # ============================================================================= def read_activity_data_csv_SK(input_dir, ad_file, sep = ';'): start_time = time.time() ad_file = ad_file # ad_file = activity_file # sep = ',' name = '{0}{1}{2}'.format(input_dir,'/activity_data/',ad_file) if os.path.exists(name) == True: print ('') print ('Reading Activity Data table ...') print (name) activity_data = (pd.read_csv(name, sep = sep, encoding = 'utf-8')).fillna(0) activity_data.loc[:,'Vehicle'] = activity_data.loc[:,'Vehicle'].str.lower() activity_data.loc[:,'Fuel'] = activity_data.loc[:,'Fuel'].str.lower() activity_data.loc[:,'Types'] = activity_data.loc[:,'Types'].str.lower() activity_data = activity_data.rename(columns={'Region_code' : 'region_cd'}) activity_data.loc[:,'Manufacture_date'] = (activity_data.loc[:,'Manufacture_date'] / 10000).astype(int) activity_data['FullName'] = activity_data.Vehicle.str.cat(activity_data[['Types','Fuel']], sep='_') ## gasoline_correction = (activity_data.loc[activity_data.Fuel == 'gasoline','Daily_VKT']) * 3 #mutiplying the gasoline VKT by 3 as BH asked ## activity_data.loc[activity_data.Fuel == 'gasoline','Daily_VKT'] = gasoline_correction sedan_correction = (activity_data.loc[(activity_data.Vehicle == 'sedan'),'Daily_VKT']) * 3 activity_data.loc[(activity_data.Vehicle == 'sedan'),'Daily_VKT'] = sedan_correction suv_correction = (activity_data.loc[(activity_data.Vehicle == 'suv'), 'Daily_VKT']) * 3 activity_data.loc[(activity_data.Vehicle == 'suv'), 'Daily_VKT'] = suv_correction grouped = activity_data.groupby(['Manufacture_date','region_cd','FullName']).sum() grouped = grouped.unstack().fillna(0) grouped.columns = [x[1] for x in grouped.columns] grouped.reset_index(inplace=True) grouped.columns = grouped.columns.str.lower() grouped = grouped.sort_values(by=['region_cd','manufacture_date']).reset_index(drop=True) vhc_names = pd.DataFrame({'vhc_name' : list(activity_data.FullName.unique())}) vhc_years = pd.DataFrame({'vhc_years' : list(grouped.manufacture_date.unique())}) out_table = Activity_Data_table(grouped, vhc_names,vhc_years) else: print('*** ERROR ABORT ***: Emissions Factor file "" ', ad_file, ' "" does not exist!') sys.exit('CARS preProcessor can not read Emissions Factor file') run_time = ((time.time() - start_time)) print("--- %f seconds ---" % (run_time)) print("--- %f minutes ---" % (run_time/60)) print("--- %f Hours ---" % (run_time/3600)) return out_table ## ============================================================================= AD_SK = read_activity_data_csv_SK(input_dir, activity_file, sep = ',') # ============================================================================= # Function to read link level shapefile # ============================================================================= def roads_grid_surrogate_inf(input_dir, file_name, Link_ID_attr, Region_Code, Region_Name, RD_name_attr, RD_type_attr, Speed_attr, Link_length, VKT_attr, Unit_meters = True): start_time = time.time() Link_ID_attr = Link_ID_attr Region_CD = Region_Code Region_NM = Region_Name RD_name_attr = RD_name_attr RD_type_attr = RD_type_attr Speed_attr = Speed_attr Link_length = Link_length VKT_attr = VKT_attr file_name = link_shape shp_file = '{0}{1}'.format(input_dir,file_name) if os.path.exists(shp_file) == True: print ('') print ('Reading Link Shapefile ...') print (shp_file) prj_file = shp_file.replace('.shp', '.prj') prj = [l.strip() for l in open(prj_file,'r')][0] lnk_shp = gpd.read_file(shp_file) out_roads = lnk_shp.loc[:,['geometry',Link_ID_attr, Region_CD, Region_NM, RD_name_attr, RD_type_attr, Speed_attr, Link_length, VKT_attr]] number_links = np.arange(0,len(out_roads)) # changing the name of columns to keep a standard out_roads = out_roads.rename(columns={Link_ID_attr : 'link_id'}) out_roads = out_roads.rename(columns={Region_CD : 'region_cd'}) out_roads = out_roads.rename(columns={Region_NM : 'region_nm'}) out_roads = out_roads.rename(columns={RD_name_attr : 'road_name'}) out_roads = out_roads.rename(columns={RD_type_attr : 'road_type'}) out_roads = out_roads.rename(columns={Speed_attr : 'max_speed'}) out_roads = out_roads.rename(columns={Link_length : 'link_length'}) out_roads = out_roads.rename(columns={VKT_attr : 'vkt_avg'}) out_roads['number_links'] = number_links out_roads['activity_data'] = (out_roads['link_length'] * 0.0).astype(float) out_roads['region_cd'] = out_roads['region_cd'].astype(int) out_roads['road_type'] = out_roads['road_type'].astype(int) out_roads['link_id'] = out_roads['link_id'].astype(np.int64) out_roads['max_speed'] = out_roads['max_speed'].astype(float) out_roads['link_length'] = out_roads['link_length'].astype(float) out_roads['number_links'] = out_roads['number_links'].astype(int) out_roads['geometry_BKP'] = out_roads.geometry out_roads['geometry'] = out_roads.buffer(0.1) out_roads['total_area'] = out_roads.area out_roads['link_split_total'] = (out_roads['link_length'] * 0.0).astype(float) out_roads['link_split_county'] = (out_roads['link_length'] * 0.0).astype(float) out_roads['vkt_split_county'] = (out_roads['link_length'] * 0.0).astype(float) reduc = 0.6 #60% reduction as BH asked rt = {101 : 80 *reduc, 102 : 60 *reduc, 103 : 60 *reduc, 104 : 50 *reduc, #60% reduction as BH asked 105 : 30 *reduc, 106 : 30 *reduc, 107 : 30 *reduc, 108 : 30 *reduc} for igeocd in out_roads.region_cd.unique(): aux_split_county = out_roads.link_length.loc[out_roads.region_cd == igeocd].values / \ (out_roads.link_length.loc[out_roads.region_cd == igeocd]).sum() out_roads.loc[out_roads.region_cd == igeocd, ['link_split_county']] = aux_split_county vkt_split_county = out_roads.vkt_avg.loc[out_roads.region_cd == igeocd].values / \ (out_roads.vkt_avg.loc[out_roads.region_cd == igeocd]).sum() out_roads.loc[out_roads.region_cd == igeocd, ['vkt_split_county']] = vkt_split_county aux_split_total = out_roads.link_length.values / out_roads.link_length.sum() out_roads.loc[:,['link_split_total']] = aux_split_total for key, ispd in rt.items(): out_roads.loc[(out_roads.loc[:,'road_type'] == key),'max_speed'] = ispd # Creating grid roads_bounds = out_roads.bounds xmin = roads_bounds.minx.min() - grid_size xmax = roads_bounds.maxx.max() + grid_size ymin = roads_bounds.miny.min() - grid_size ymax = roads_bounds.maxy.max() + grid_size cols = int(abs(xmax - xmin) / grid_size) rows = int(abs(ymax - ymin) / grid_size) print(cols,rows) lat_list = (np.arange(ymin,ymax,grid_size)) lon_list = (np.arange(xmin,xmax,grid_size)) polygons = [] grid_row = [] grid_col = [] for j in range(0,rows): yini = lat_list[j] yfin = lat_list[j+1] for i in range(0,cols): grid_row.append(j+1) grid_col.append(i+1) xini = lon_list[i] xfin = lon_list[i+1] polygons.append(Polygon([(xini, yini), (xfin, yini), (xfin, yfin), (xini, yfin), (xini, yini)])) crs = out_roads.crs #{'init': 'epsg:4326'} grid_ID = [x for x in range (1,len(polygons)+1)] grid = gpd.GeoDataFrame({'geometry':polygons, 'grid_id':grid_ID, 'row':grid_row, 'col':grid_col}, crs=crs) grid.crs = crs # exporting grid as shapefile grid.to_file(filename = output_dir+'/grid_{0}.shp'.format(case_name), driver='ESRI Shapefile',crs_wkt=prj) #creating the surrogate surrogate = gpd.overlay(out_roads, grid, how='intersection').reset_index(drop=True) surrogate['split_area'] = surrogate.area surrogate['weight_factor'] = surrogate.area / surrogate.total_area #total_area attibute is comming from roads dataframe surrogate = surrogate.loc[:,['geometry', 'link_id', 'region_cd', 'link_length', 'total_area', 'split_area', 'grid_id','row', 'col', 'weight_factor']] surrogate.to_file(filename = output_dir+'/road_grid_surrogate_{0}.shp'.format(case_name), driver='ESRI Shapefile',crs_wkt=prj) out_roads = out_roads.drop(columns=['geometry']) out_roads = out_roads.rename(columns={'geometry_BKP': 'geometry'}).set_geometry('geometry') else: print('*** ERROR ABORT ***: Shapefile "" ', shp_file, ' "" does not exist!') sys.exit('CARS preProcessor can not read link Shapefile file') run_time = ((time.time() - start_time)) print("--- %f seconds ---" % (run_time)) print("--- %f minutes ---" % (run_time/60)) print("--- %f Hours ---" % (run_time/3600)) return Roads_Grid_table(grid, surrogate, out_roads) # ============================================================================= roads_RGS = roads_grid_surrogate_inf(input_dir,link_shape, link_shape_att[0], link_shape_att[1],link_shape_att[2], link_shape_att[3],link_shape_att[4], link_shape_att[5],link_shape_att[6], link_shape_att[7], Unit_meters = True ) # ============================================================================= # Function to read link level shapefile # ============================================================================= def processing_County_shape(input_dir, file_name, Region_CD, Region_name_attr, Region_name_attr_SK): start_time = time.time() Region_Geocode = Region_CD Region_name_attr = Region_name_attr Region_name_attr_SK = Region_name_attr_SK # Link_ID_attr = 'LINK_ID' # RD_name_attr = 'ROAD_NAME' # RD_type_attr = 'ROAD_RANK' # Activity_data_attr = 'SHAPE_STLe' # Speed_attr = 'MAX_SPD' # Link_length = 'SHAPE_STLe' # file_name = link_shape cnty_file = '{0}{1}'.format(input_dir,file_name) if os.path.exists(cnty_file) == True: print ('') print ('Reading Link Shapefile to get bounds to create the GRID...') print (cnty_file) cnty_shp = gpd.read_file(cnty_file) cnty_shp = cnty_shp.rename(columns={Region_Geocode : 'region_cd'}) cnty_shp = cnty_shp.rename(columns={Region_name_attr : 'region_nm'}) cnty_shp = cnty_shp.rename(columns={Region_name_attr_SK : 'region_nm_SK'}) out_cnty = cnty_shp.loc[:,['geometry','region_cd','region_nm', 'region_name_SK']] out_cnty['region_cd'] = out_cnty['region_cd'].astype(int) else: print('*** ERROR ABORT ***: Shapefile "" ', cnty_file, ' "" does not exist!') sys.exit('CARS preProcessor can not read county Shapefile file') run_time = ((time.time() - start_time)) print("--- %f seconds ---" % (run_time)) print("--- %f minutes ---" % (run_time/60)) print("--- %f Hours ---" % (run_time/3600)) return out_cnty # ============================================================================= county_df = processing_County_shape(input_dir, county_shape, 'EMD_CD', 'EMD_ENG_NM', 'EMD_KOR_NM') # ============================================================================= # Function to read the emissions factor from South Korea* (*particular case) # ============================================================================= def read_emissions_factor_SK(input_dir, EmisFactor_list, sep = ';'): start_time = time.time() input_dir = input_dir ef_list = EmisFactor_list #ef_file #['gasoline.csv'] # # sep = ';' final_EF =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # ------------------------------------------------------------------- # **TD DSA 2021 de <NAME> - rapport de <NAME>** # ------------------------- ------------------------------------- # # Un dernier Essai : BERT # Après avoir utilisé directement les modèles préentrainé, je souhaitais essayer d'ajuster véritablement un modèle de Deep Learning. # # J'ai alors trouvé un article sur `medium` présentant une telle adaptation : # source : https://scottmduda.medium.com/fine-tuning-language-models-for-sentiment-analysis-91db72396549 # # github : https://github.com/dontmindifiduda/financial_statement_sentiment_analysis/ # La logique consiste à aller chercher un modèle préentrainé sur HuggingFace. Ici trous variantes sont testées : # # - `BERT` : le modèle de référence de l'encodage bidirectionnel initialement publié par Google # - `DistilBERT` : la version allégée de `BERT` pour des performances a priori comparables # - `RoBERTa` : la variante de Facebook de `BERT` renonçant à l'objectif de prédiction de la phrase suivante et ayant été entraîné avec plus de données et des séquences d'apprentissage plus longues # # In[1]: import numpy as np import pandas as pd import os import re import time import datetime import string import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from collections import Counter, defaultdict import transformers from transformers import BertModel, BertTokenizer, DistilBertTokenizer, RobertaModel, RobertaTokenizer from transformers import AutoConfig, AutoModel, AdamW, get_linear_schedule_with_warmup import torch from torch import nn, optim from torch.utils.data import Dataset, random_split, DataLoader, RandomSampler, SequentialSampler from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.preprocessing import LabelEncoder from sklearn.metrics import f1_score, accuracy_score, confusion_matrix, classification_report import mlflow import gc # ## Chargement des données # In[2]: # On Importe les données #df df_train=pd.read_parquet('/mnt/data/interim/df_train.gzip') df_val=pd.read_parquet('/mnt/data/interim/df_val.gzip') df_test=pd.read_parquet('/mnt/data/interim/df_test.gzip') #X X_train=
pd.read_parquet('/mnt/data/interim/X_train.gzip')
pandas.read_parquet
from typing import Any from typing import Dict from typing import List from typing import Tuple from typing import Union import numpy as np import pandas as pd from sid.config import DTYPE_VIRUS_STRAIN def prepare_virus_strain_factors( virus_strains: Dict[str, List[str]], params: pd.DataFrame ) -> Dict[str, Union[List[str], np.ndarray]]: """Prepare the information on virus strains and factors for infectiousness. This function recreates the dictionary to not change the original value in partialed function and adds the factors. The ``contagiousness_factor`` explains how contagious a virus strain is, in comparison to the base strain. The ``immunity_resistance_factor`` explains how well the immunity level guards from (re)infection, dependent on the strain. The infection probability is multiplied with: (1 - (1 - immunity_resistance_factor) * immunity), so that higher values reduce the effect of immunity. """ if len(virus_strains["names"]) == 1: contagiousness_factor = np.ones(1) immunity_resistance_factor = np.zeros(1) else: factors = np.array( [ params.loc[ ( "virus_strain", name, ["contagiousness_factor", "immunity_resistance_factor"], ), "value", ] for name in virus_strains["names"] ] ) if (factors < 0).any(): raise ValueError("Factors of 'virus_strains' cannot be smaller than 0.") contagiousness_factor, immunity_resistance_factor = factors.T contagiousness_factor = contagiousness_factor / contagiousness_factor.max() new_virus_strains = { "names": virus_strains["names"], "contagiousness_factor": contagiousness_factor, "immunity_resistance_factor": immunity_resistance_factor, } return new_virus_strains def combine_first_factorized_infections( first: np.ndarray, second: np.ndarray ) -> np.ndarray: """Combine factorized infections where the first has precedence.""" combined = second.copy() combined[first >= 0] = first[first >= 0] return combined def categorize_factorized_infections( factorized_infections: Union[pd.Series, np.ndarray], virus_strains: Dict[str, Any] ) -> pd.Series: """Convert factorized infections with virus strains to a categorical.""" return pd.Series( pd.Categorical( factorized_infections, categories=range(-1, len(virus_strains["names"])) ) .rename_categories(["not_infected"] + virus_strains["names"]) .remove_categories("not_infected") ) def factorize_initial_infections( infections: pd.DataFrame, virus_strains: Dict[str, Any] ) -> pd.DataFrame: """Factorize multiple boolean or categorical infections.""" all_columns_boolean = (infections.dtypes == np.bool).all() only_one_virus = len(virus_strains["names"]) == 1 all_columns_categorical = (infections.dtypes == "category").all() if (all_columns_boolean and only_one_virus) or all_columns_categorical: factorized_infections =
pd.DataFrame(index=infections.index)
pandas.DataFrame
from flask import Blueprint, request, jsonify, make_response, url_for from flask.views import MethodView from io import StringIO from marshmallow import ValidationError import pandas as pd from sfa_api import spec from sfa_api.utils import storage from sfa_api.schema import (ObservationSchema, ObservationLinksSchema, ObservationValueSchema, ObservationPostSchema) class AllObservationsView(MethodView): def get(self, *args): """ --- summary: List observations. description: List all observations that the user has access to. tags: - Observations responses: 200: description: A list of observations content: application/json: schema: type: array items: $ref: '#/components/schemas/ObservationMetadata' 401: $ref: '#/components/responses/401-Unauthorized' """ observations = storage.list_observations() return ObservationSchema(many=True).jsonify(observations) def post(self, *args): """ --- summary: Create observation. tags: - Observations description: Create a new Observation by posting metadata. requestBody: description: JSON respresentation of an observation. required: True content: application/json: schema: $ref: '#/components/schemas/ObservationDefinition' responses: 201: description: Observation created successfully content: application/json: schema: $ref: '#/components/schemas/ObservationMetadata' 400: $ref: '#/components/responses/400-BadRequest' 401: $ref: '#/components/responses/401-Unauthorized' """ data = request.get_json() try: observation = ObservationPostSchema().loads(data) except ValidationError as err: return jsonify(err.messages), 400 else: obs_id = storage.store_observation(observation) response = make_response('Observation created.', 201) response.headers['Location'] = url_for('observations.single', obs_id=obs_id) return response class ObservationView(MethodView): def get(self, obs_id, **kwargs): """ --- summary: Get Observation options. description: List options available for Observation. tags: - Observations responses: 200: description: Observation options retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/ObservationLinks' 400: $ref: '#/components/responses/400-BadRequest' 401: $ref: '#/components/responses/401-Unauthorized' 404: $ref: '#/components/responses/404-NotFound' """ observation = storage.read_observation(obs_id) if observation is None: return 404 return ObservationLinksSchema().jsonify(observation) def delete(self, obs_id, *args): """ --- summary: Delete observation. description: Delete an Observation, including its values and metadata. tags: - Observations parameters: - $ref: '#/components/parameters/obs_id' responses: 200: description: Observation deleted successfully. 401: $ref: '#/components/responses/401-Unauthorized' 404: $ref: '#/components/responses/404-NotFound' """ deletion_result = storage.delete_observation(obs_id) return deletion_result class ObservationValuesView(MethodView): def get(self, obs_id, *args): """ --- summary: Get Observation data. description: Get the timeseries values from the Observation entry. tags: - Observations parameters: - $ref: '#/components/parameters/obs_id' responses: 200: content: application/json: schema: type: array items: $ref: '#/components/schemas/ObservationValue' 401: $ref: '#/components/responses/401-Unauthorized' 404: $ref: '#/components/responses/404-NotFound' """ errors = [] start = request.args.get('start', None) end = request.args.get('end', None) if start is not None: try: start = pd.Timestamp(start) except ValueError: errors.append('Invalid start date format') if end is not None: try: end =
pd.Timestamp(end)
pandas.Timestamp
import os import numpy as np from openpyxl import load_workbook import pandas as pd import pytest from geochem_dataset.excel import Dataset from geochem_dataset.excel.dataclasses import Document from geochem_dataset.excel.exceptions import IntegrityError from helpers.utils import xlref, xlrowref, xlcolref TEST_FILE_NAME = 'DOCUMENT.xlsx' TEST_SHEET_NAME = 'DOCUMENT' TEST_COLUMNS = ('RECOMMENDED_CITATION',) TEST_DATA = [ ('A test citation',) ] ERROR_MESSAGES = { 'missing_worksheet': 'Worksheet {worksheet} is missing from workbook {workbook}', 'missing_columns': 'Worksheet {workbook}::{worksheet} is missing columns: {column_names}', 'extra_columns': 'Worksheet {workbook}::{worksheet} has extra columns: {column_names}', 'too_few_rows': 'Worksheet {workbook}::{worksheet} has too few rows (min is {min_rows} and max is {max_rows})', 'too_many_rows': 'Worksheet {workbook}::{worksheet} has too many rows (min is {min_rows} and max is {max_rows})', } class TestDocuments: def test_documents(self, dataset_path): # Build expected expected_documents = [Document(*args) for args in TEST_DATA] # Assert with Dataset(dataset_path) as dataset: documents = list(dataset.documents) assert documents == expected_documents def test_documents_with_empty_file(self, dataset_path): # Modify documents file document_path = dataset_path / TEST_FILE_NAME os.truncate(document_path, 0) # Assert with pytest.raises(ValueError) as excinfo: with Dataset(dataset_path) as dataset: pass def test_documents_with_missing_sheet(self, dataset_path): # Modify documents_path = dataset_path / TEST_FILE_NAME wb = load_workbook(documents_path) ws = wb[TEST_SHEET_NAME] ws.title = "Skittles" wb.save(documents_path) # Expected expected_error_msg_kwargs = { 'workbook': TEST_FILE_NAME, 'worksheet': TEST_SHEET_NAME, } # Assert with pytest.raises(IntegrityError) as excinfo: with Dataset(dataset_path) as dataset: pass assert excinfo.value.args[0] == ERROR_MESSAGES['missing_worksheet'].format(**expected_error_msg_kwargs) def test_documents_with_missing_columns(self, dataset_path): document_path = dataset_path / TEST_FILE_NAME with pd.ExcelWriter(document_path) as writer: df =
pd.DataFrame()
pandas.DataFrame
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import io import json import numpy as np import pytest import pyarrow as pa from pyarrow.fs import LocalFileSystem, SubTreeFileSystem from pyarrow.tests.parquet.common import ( parametrize_legacy_dataset, parametrize_legacy_dataset_not_supported) from pyarrow.util import guid from pyarrow.vendored.version import Version try: import pyarrow.parquet as pq from pyarrow.tests.parquet.common import (_read_table, _test_dataframe, _write_table) except ImportError: pq = None try: import pandas as pd import pandas.testing as tm from pyarrow.tests.parquet.common import (_roundtrip_pandas_dataframe, alltypes_sample) except ImportError: pd = tm = None @pytest.mark.pandas def test_pandas_parquet_custom_metadata(tempdir): df = alltypes_sample(size=10000) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) assert b'pandas' in arrow_table.schema.metadata _write_table(arrow_table, filename, version='2.6', coerce_timestamps='ms') metadata = pq.read_metadata(filename).metadata assert b'pandas' in metadata js = json.loads(metadata[b'pandas'].decode('utf8')) assert js['index_columns'] == [{'kind': 'range', 'name': None, 'start': 0, 'stop': 10000, 'step': 1}] @pytest.mark.pandas def test_merging_parquet_tables_with_different_pandas_metadata(tempdir): # ARROW-3728: Merging Parquet Files - Pandas Meta in Schema Mismatch schema = pa.schema([ pa.field('int', pa.int16()), pa.field('float', pa.float32()), pa.field('string', pa.string()) ]) df1 = pd.DataFrame({ 'int': np.arange(3, dtype=np.uint8), 'float': np.arange(3, dtype=np.float32), 'string': ['ABBA', 'EDDA', 'ACDC'] }) df2 = pd.DataFrame({ 'int': [4, 5], 'float': [1.1, None], 'string': [None, None] }) table1 = pa.Table.from_pandas(df1, schema=schema, preserve_index=False) table2 = pa.Table.from_pandas(df2, schema=schema, preserve_index=False) assert not table1.schema.equals(table2.schema, check_metadata=True) assert table1.schema.equals(table2.schema) writer = pq.ParquetWriter(tempdir / 'merged.parquet', schema=schema) writer.write_table(table1) writer.write_table(table2) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_column_multiindex(tempdir, use_legacy_dataset): df = alltypes_sample(size=10) df.columns = pd.MultiIndex.from_tuples( list(zip(df.columns, df.columns[::-1])), names=['level_1', 'level_2'] ) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) assert arrow_table.schema.pandas_metadata is not None _write_table(arrow_table, filename, version='2.6', coerce_timestamps='ms') table_read = pq.read_pandas( filename, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_2_0_roundtrip_read_pandas_no_index_written( tempdir, use_legacy_dataset ): df = alltypes_sample(size=10000) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df, preserve_index=False) js = arrow_table.schema.pandas_metadata assert not js['index_columns'] # ARROW-2170 # While index_columns should be empty, columns needs to be filled still. assert js['columns'] _write_table(arrow_table, filename, version='2.6', coerce_timestamps='ms') table_read = pq.read_pandas( filename, use_legacy_dataset=use_legacy_dataset) js = table_read.schema.pandas_metadata assert not js['index_columns'] read_metadata = table_read.schema.metadata assert arrow_table.schema.metadata == read_metadata df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) # TODO(dataset) duplicate column selection actually gives duplicate columns now @pytest.mark.pandas @parametrize_legacy_dataset_not_supported def test_pandas_column_selection(tempdir, use_legacy_dataset): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16) }) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) _write_table(arrow_table, filename) table_read = _read_table( filename, columns=['uint8'], use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df[['uint8']], df_read) # ARROW-4267: Selection of duplicate columns still leads to these columns # being read uniquely. table_read = _read_table( filename, columns=['uint8', 'uint8'], use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df[['uint8']], df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_native_file_roundtrip(tempdir, use_legacy_dataset): df = _test_dataframe(10000) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version='2.6') buf = imos.getvalue() reader = pa.BufferReader(buf) df_read = _read_table( reader, use_legacy_dataset=use_legacy_dataset).to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_read_pandas_column_subset(tempdir, use_legacy_dataset): df = _test_dataframe(10000) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version='2.6') buf = imos.getvalue() reader = pa.BufferReader(buf) df_read = pq.read_pandas( reader, columns=['strings', 'uint8'], use_legacy_dataset=use_legacy_dataset ).to_pandas() tm.assert_frame_equal(df[['strings', 'uint8']], df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_empty_roundtrip(tempdir, use_legacy_dataset): df = _test_dataframe(0) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version='2.6') buf = imos.getvalue() reader = pa.BufferReader(buf) df_read = _read_table( reader, use_legacy_dataset=use_legacy_dataset).to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas def test_pandas_can_write_nested_data(tempdir): data = { "agg_col": [ {"page_type": 1}, {"record_type": 1}, {"non_consecutive_home": 0}, ], "uid_first": "1001" } df = pd.DataFrame(data=data) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() # This succeeds under V2 _write_table(arrow_table, imos) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_pyfile_roundtrip(tempdir, use_legacy_dataset): filename = tempdir / 'pandas_pyfile_roundtrip.parquet' size = 5 df = pd.DataFrame({ 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, 'strings': ['foo', 'bar', None, 'baz', 'qux'] }) arrow_table = pa.Table.from_pandas(df) with filename.open('wb') as f: _write_table(arrow_table, f, version="1.0") data = io.BytesIO(filename.read_bytes()) table_read = _read_table(data, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_configuration_options(tempdir, use_legacy_dataset): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0 }) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) for use_dictionary in [True, False]: _write_table(arrow_table, filename, version='2.6', use_dictionary=use_dictionary) table_read = _read_table( filename, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) for write_statistics in [True, False]: _write_table(arrow_table, filename, version='2.6', write_statistics=write_statistics) table_read = _read_table(filename, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) for compression in ['NONE', 'SNAPPY', 'GZIP', 'LZ4', 'ZSTD']: if (compression != 'NONE' and not pa.lib.Codec.is_available(compression)): continue _write_table(arrow_table, filename, version='2.6', compression=compression) table_read = _read_table( filename, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas def test_spark_flavor_preserves_pandas_metadata(): df = _test_dataframe(size=100) df.index = np.arange(0, 10 * len(df), 10) df.index.name = 'foo' result = _roundtrip_pandas_dataframe(df, {'version': '2.0', 'flavor': 'spark'}) tm.assert_frame_equal(result, df) @pytest.mark.pandas @parametrize_legacy_dataset def test_index_column_name_duplicate(tempdir, use_legacy_dataset): data = { 'close': { pd.Timestamp('2017-06-30 01:31:00'): 154.99958999999998, pd.Timestamp('2017-06-30 01:32:00'): 154.99958999999998, }, 'time': { pd.Timestamp('2017-06-30 01:31:00'): pd.Timestamp( '2017-06-30 01:31:00' ), pd.Timestamp('2017-06-30 01:32:00'): pd.Timestamp( '2017-06-30 01:32:00' ), } } path = str(tempdir / 'data.parquet') dfx = pd.DataFrame(data).set_index('time', drop=False) tdfx = pa.Table.from_pandas(dfx) _write_table(tdfx, path) arrow_table = _read_table(path, use_legacy_dataset=use_legacy_dataset) result_df = arrow_table.to_pandas() tm.assert_frame_equal(result_df, dfx) @pytest.mark.pandas @parametrize_legacy_dataset def test_multiindex_duplicate_values(tempdir, use_legacy_dataset): num_rows = 3 numbers = list(range(num_rows)) index = pd.MultiIndex.from_arrays( [['foo', 'foo', 'bar'], numbers], names=['foobar', 'some_numbers'], ) df = pd.DataFrame({'numbers': numbers}, index=index) table = pa.Table.from_pandas(df) filename = tempdir / 'dup_multi_index_levels.parquet' _write_table(table, filename) result_table = _read_table(filename, use_legacy_dataset=use_legacy_dataset) assert table.equals(result_table) result_df = result_table.to_pandas() tm.assert_frame_equal(result_df, df) @pytest.mark.pandas @parametrize_legacy_dataset def test_backwards_compatible_index_naming(datadir, use_legacy_dataset): expected_string = b"""\ carat cut color clarity depth table price x y z 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" expected = pd.read_csv(io.BytesIO(expected_string), sep=r'\s{2,}', index_col=None, header=0, engine='python') table = _read_table( datadir / 'v0.7.1.parquet', use_legacy_dataset=use_legacy_dataset) result = table.to_pandas() tm.assert_frame_equal(result, expected) @pytest.mark.pandas @parametrize_legacy_dataset def test_backwards_compatible_index_multi_level_named( datadir, use_legacy_dataset ): expected_string = b"""\ carat cut color clarity depth table price x y z 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" expected = pd.read_csv( io.BytesIO(expected_string), sep=r'\s{2,}', index_col=['cut', 'color', 'clarity'], header=0, engine='python' ).sort_index() table = _read_table(datadir / 'v0.7.1.all-named-index.parquet', use_legacy_dataset=use_legacy_dataset) result = table.to_pandas() tm.assert_frame_equal(result, expected) @pytest.mark.pandas @parametrize_legacy_dataset def test_backwards_compatible_index_multi_level_some_named( datadir, use_legacy_dataset ): expected_string = b"""\ carat cut color clarity depth table price x y z 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" expected = pd.read_csv( io.BytesIO(expected_string), sep=r'\s{2,}', index_col=['cut', 'color', 'clarity'], header=0, engine='python' ).sort_index() expected.index = expected.index.set_names(['cut', None, 'clarity']) table = _read_table(datadir / 'v0.7.1.some-named-index.parquet', use_legacy_dataset=use_legacy_dataset) result = table.to_pandas() tm.assert_frame_equal(result, expected) @pytest.mark.pandas @parametrize_legacy_dataset def test_backwards_compatible_column_metadata_handling( datadir, use_legacy_dataset ): expected = pd.DataFrame( {'a': [1, 2, 3], 'b': [.1, .2, .3], 'c': pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')}) expected.index = pd.MultiIndex.from_arrays( [['a', 'b', 'c'], pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')], names=['index', None]) path = datadir / 'v0.7.1.column-metadata-handling.parquet' table = _read_table(path, use_legacy_dataset=use_legacy_dataset) result = table.to_pandas() tm.assert_frame_equal(result, expected) table = _read_table( path, columns=['a'], use_legacy_dataset=use_legacy_dataset) result = table.to_pandas() tm.assert_frame_equal(result, expected[['a']].reset_index(drop=True)) @pytest.mark.pandas @parametrize_legacy_dataset def test_categorical_index_survives_roundtrip(use_legacy_dataset): # ARROW-3652, addressed by ARROW-3246 df = pd.DataFrame([['a', 'b'], ['c', 'd']], columns=['c1', 'c2']) df['c1'] = df['c1'].astype('category') df = df.set_index(['c1']) table = pa.Table.from_pandas(df) bos = pa.BufferOutputStream() pq.write_table(table, bos) ref_df = pq.read_pandas( bos.getvalue(), use_legacy_dataset=use_legacy_dataset).to_pandas() assert isinstance(ref_df.index, pd.CategoricalIndex) assert ref_df.index.equals(df.index) @pytest.mark.pandas @parametrize_legacy_dataset def test_categorical_order_survives_roundtrip(use_legacy_dataset): # ARROW-6302 df = pd.DataFrame({"a": pd.Categorical( ["a", "b", "c", "a"], categories=["b", "c", "d"], ordered=True)}) table = pa.Table.from_pandas(df) bos = pa.BufferOutputStream() pq.write_table(table, bos) contents = bos.getvalue() result = pq.read_pandas( contents, use_legacy_dataset=use_legacy_dataset).to_pandas() tm.assert_frame_equal(result, df) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_categorical_na_type_row_groups(use_legacy_dataset): # ARROW-5085 df = pd.DataFrame({"col": [None] * 100, "int": [1.0] * 100}) df_category = df.astype({"col": "category", "int": "category"}) table = pa.Table.from_pandas(df) table_cat = pa.Table.from_pandas(df_category) buf = pa.BufferOutputStream() # it works pq.write_table(table_cat, buf, version='2.6', chunk_size=10) result = pq.read_table( buf.getvalue(), use_legacy_dataset=use_legacy_dataset) # Result is non-categorical assert result[0].equals(table[0]) assert result[1].equals(table[1]) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_categorical_roundtrip(use_legacy_dataset): # ARROW-5480, this was enabled by ARROW-3246 # Have one of the categories unobserved and include a null (-1) codes = np.array([2, 0, 0, 2, 0, -1, 2], dtype='int32') categories = ['foo', 'bar', 'baz'] df = pd.DataFrame({'x': pd.Categorical.from_codes( codes, categories=categories)}) buf = pa.BufferOutputStream() pq.write_table(pa.table(df), buf) result = pq.read_table( buf.getvalue(), use_legacy_dataset=use_legacy_dataset).to_pandas() assert result.x.dtype == 'category' assert (result.x.cat.categories == categories).all() tm.assert_frame_equal(result, df) @pytest.mark.pandas @parametrize_legacy_dataset def test_write_to_dataset_pandas_preserve_extensiondtypes( tempdir, use_legacy_dataset ): # ARROW-8251 - preserve pandas extension dtypes in roundtrip if Version(pd.__version__) < Version("1.0.0"): pytest.skip("__arrow_array__ added to pandas in 1.0.0") df = pd.DataFrame({'part': 'a', "col": [1, 2, 3]}) df['col'] = df['col'].astype("Int64") table = pa.table(df) pq.write_to_dataset( table, str(tempdir / "case1"), partition_cols=['part'], use_legacy_dataset=use_legacy_dataset ) result = pq.read_table( str(tempdir / "case1"), use_legacy_dataset=use_legacy_dataset ).to_pandas() tm.assert_frame_equal(result[["col"]], df[["col"]]) pq.write_to_dataset( table, str(tempdir / "case2"), use_legacy_dataset=use_legacy_dataset ) result = pq.read_table( str(tempdir / "case2"), use_legacy_dataset=use_legacy_dataset ).to_pandas() tm.assert_frame_equal(result[["col"]], df[["col"]]) pq.write_table(table, str(tempdir / "data.parquet")) result = pq.read_table( str(tempdir / "data.parquet"), use_legacy_dataset=use_legacy_dataset ).to_pandas()
tm.assert_frame_equal(result[["col"]], df[["col"]])
pandas.testing.assert_frame_equal
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, doc, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.array_algos.transforms import shift from pandas.core.arrays.base import ExtensionArray, _extension_array_shared_docs from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = np.dtype("O") if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) @property def codes(self) -> np.ndarray: """ The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") fill_value = self._validate_fill_value(fill_value) codes = shift(codes.copy(), periods, axis=0, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def _validate_fill_value(self, fill_value): """ Convert a user-facing fill_value to a representation to use with our underlying ndarray, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : int Raises ------ ValueError """ if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) return fill_value def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self) -> "Categorical": """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, (np.ndarray, Categorical, ABCSeries)): # We get ndarray or Categorical if called via Series.fillna, # where it will unwrap another aligned Series before getting here mask = ~algorithms.isin(value, self.categories) if not isna(value[mask]).all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.copy() codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if allow_fill: # convert user-provided `fill_value` to codes fill_value = self._validate_fill_value(fill_value) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` See Also -------- pandas.unique CategoricalIndex.unique Series.unique Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list("baabc")).unique() [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list("baabc"), categories=list("abc")).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical( ... list("baabc"), categories=list("abc"), ordered=True ... ).unique() [b, a, c] Categories (3, object): [a < b < c] """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 2, 3, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() # build a dict of (to replace -> value) pairs if is_list_like(to_replace): # if to_replace is list-like and value is scalar replace_dict = {replace_value: value for replace_value in to_replace} else: # if both to_replace and value are scalar replace_dict = {to_replace: value} # other cases, like if both to_replace and value are list-like or if # to_replace is a dict, are handled separately in NDFrame for replace_value, new_value in replace_dict.items(): if new_value == replace_value: continue if replace_value in cat.categories: if
isna(new_value)
pandas.core.dtypes.missing.isna
import numpy as np import pandas as pd import matplotlib.pyplot as plt """ Use extract_amplitudes_and_phase to extract amplitude and phase for a periodic frequency with desired frequencies to extract given (in cycles per hour) by constitfreq Can be used to predict tide """ #NOTE not working exactly: leaves a random global phase shift for some reason #Better to use optimisetides.py def extract_amplitudes_and_phase(data, constitfreq, num_constits = 7): """LEAST SQUARES EXTRACTION OF TIDAL CONSTITUENT AMPLITUDE AND PHASE FOR GIVEN OBSERVATIONS data: 2D arraylike, column 1 is time (units of hour) and column 2 is water level constitfreq: 1D arraylike of desired frequencies (in cycles per hour) ie the constituents num_constituents: the number of constituents to extract amplitude and phase data for Returns: DataFrame """ if np.mod(len(data),2)==0: #remove last observation if even number of observations supplied data=data[0:-1] T = data[:,0] #water levels H = data[:,1] #measurement times (units of hour) freqs = constitfreq[0:num_constits+1].copy() #desired constituents (read from top of list down) num_N = int(len(H)/2 - 0.5) Nvals = np.arange(-num_N,num_N+1) # a cycle (-N, -N+1, -N+2 .... N-1, N) for use later num_M = num_constits t0 = T[num_N] #midpoint time observation of set deltaT = T[1]-T[0] A = np.zeros((2*num_N+1,2*num_M+1)) #big badboy matrix for i in range(2*num_N+1): #construct matrix A lx = [np.cos(2*np.pi*freqs[j]*Nvals[i]*deltaT) for j in range(1,len(freqs))] ly = [np.sin(2*np.pi*freqs[j]*Nvals[i]*deltaT) for j in range(1,len(freqs))] A[i,:] = [1] + lx + ly # now we solve (A^T*A)Z = (A^T)H where Z = (x0,x1,...,xM,y1,y2,....,yM) ATH = np.dot(A.T,H) ATA = np.dot(A.T,A) Z = np.linalg.solve(ATA,ATH) #the resulting Z = (x0,x1,...,xM,y1,y2,....,yM) # where xj = Rjcos(phij - freqj*t0) # yj = Rjsin(phij - freqj*t0) # and Rj and phij are unknown (now known) amplitude and phase for each constituent X = Z[1:num_M+1] Y = Z[num_M+1::] amplitudes = [Z[0]]+[np.sqrt(X[i]**2+Y[i]**2) for i in range(num_M)] phases = [0]+[np.mod(np.arcsin(X[i]/amplitudes[i+1])+2*np.pi*freqs[i+1]*t0,2*np.pi) for i in range(num_M)] return pd.DataFrame(np.c_[amplitudes,freqs,phases],columns = ['amplitudes','freqs','phases']) def import_tide_constituents(filename='tide_constituents.csv'): """ reads a csv file with the tidal constituents frequency (cycle per hour) in a column names frequency """ constits = pd.read_csv(filename) constits = constits['frequency'].values constits = np.hstack((0,constits)) # add 0 as a constituent return constits def import_tide_csv_qldopendata(filename): """Imports file and converts date to a pd.datetime column filename points to a csv file downloaded from https://www.msq.qld.gov.au/Tides/Open-data returns a 2d array [time, water level] with time in epoch hours """ tides = pd.read_csv(filename,sep=' ',header=None,engine='python') tides.columns=['input_datetime','swl'] tides['input_datetime']=tides['input_datetime'].apply(lambda x: str(x)) tides['input_datetime']=tides['input_datetime'].apply(lambda x: '0'+x if len(x)==11 else x) tides['date']=
pd.to_datetime(tides['input_datetime'],format='%d%m%Y%H%M')
pandas.to_datetime
import pandas as pd import os # 在CVDP场景下,为每个项目生成干净的训练集测试集,噪音的训练集测试集 if __name__ == "__main__": list_projectName = ["shiro","maven","flume","mahout","calcite","pdfbox","iotdb","tika"]; # "snoring_labels"用于读取snoring时间节点,以生成对应时间的数据集 # 读取路径 path_common = "D:/workspace/DataFolder/labels_MASZZ/"; path_common_versionReleaseDate = path_common + "versionReleaseDate/"; # 读取文件名 read_fileName_versionReleaseDate = "releaseDate.csv"; # 存储路径 path_saved_common = "D:/workspace/DataFolder/data_csv/dataset_new/"; # 存储文件名,除去项目名外的文件名 fileName_train_clean = "_train_clean.csv"; fileName_train_noise = "_train_noise.csv"; fileName_test_clean = "_test_clean.csv"; fileName_test_noise = "_test_noise.csv"; for i_projectName in list_projectName: #获得打鼾时间点对应的版本标签 path_versionReleaseDate = path_common_versionReleaseDate + i_projectName + '/' + read_fileName_versionReleaseDate; df_versionReleaseDate = pd.read_csv(path_versionReleaseDate); #===分别在截止时间点前(打鼾噪音数据集)和最新时间点(即干净数据集),收集缺陷标签===# print(i_projectName); index_cutoff_train = df_versionReleaseDate[df_versionReleaseDate['cutoff']=='train'].index[0]; index_cutoff_test = df_versionReleaseDate[df_versionReleaseDate['cutoff']=='test'].index[0]; df_targetVersions_train = df_versionReleaseDate[index_cutoff_train+1:] df_targetVersions_train = df_targetVersions_train.reset_index(drop=True) df_targetVersions_test = df_versionReleaseDate[index_cutoff_test+1:index_cutoff_train+1] df_targetVersions_test = df_targetVersions_test.reset_index(drop=True) #读取路径 path_train_clean = "%s/groundtruth_labels/mappingBugsToVersions/%s/"%(path_common,i_projectName); path_test_clean = "%s/groundtruth_labels/mappingBugsToVersions/%s/"%(path_common,i_projectName); path_train_noise = "%s/snoringTrain_labels/mappingBugsToVersions/%s/"%(path_common,i_projectName); path_test_noise = "%s/snoringTest_labels/mappingBugsToVersions/%s/"%(path_common,i_projectName); #读取目标版本的标签,生成训练集 df_train_clean_all = pd.DataFrame(); df_train_noise_all =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python #Configuration items import numpy as np import pandas as pd ###################### #Character Sheet Items class Ab_Sco: def __init__(self, Str, Dex, Con, Int, Wis, Cha): self.Str = Str self.Dex = Dex self.Con = Con self.Int = Int self.Wis = Wis self.Cha = Cha Ability_Scores = Ab_Sco(0, 0, 0, 0, 0, 0) Size = "" Level = 1 Class = "" Race = "" class Background: def __init__(self, trait, ideal, bond, flaw): self.trait = trait self.ideal = ideal self.bond = bond self.flaw = flaw bg = Background("", "", "", "") Alignment = "" Exp = 0 Prof_Bonus = 0 #Format: [IsProficient, Score] SaveThrow = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]] #Format: [Name, IsProficient, Score] Skills = [["Acrobatics", 0, 0],["Animal Handling", 0, 0],["Arcana", 0, 0],["Athletics", 0, 0],["Deception", 0, 0],["History", 0, 0],["Insight", 0, 0],["Intimidation", 0, 0],["Investigation", 0, 0],["Medicine", 0, 0],["Nature", 0, 0],["Perception", 0, 0],["Performance", 0, 0],["Persuasion", 0, 0],["Religion", 0, 0],["Sleight of Hand", 0, 0],["Stealth", 0, 0],["Survival", 0, 0]] #Passive_Percept = 0 #Passive Perception is just 10 + perception mod --> can be calculated on the fly AC = 0 Initiative = 0 Speed = 0 Max_HP = 0 #No need to calculate current/temp --> generating characters default to max hp Hit_Die_Type = "" Hit_Die_Num = 0 Equipment = pd.DataFrame(columns=['Name']) class Currency: def __init__(self, cp, sp, ep, gp, pp): self.cp = cp self.sp = sp self.ep = ep self.gp = gp self.pp = pp Money = Currency(0, 0, 0, 0, 0) class Proficiencies: def __init__(self, armor, weapon, language, tool): self.armor = armor self.weapon = weapon self.language = language self.tool = tool Prof = Proficiencies([], [], [], []) Features = pd.DataFrame(columns=['Name', 'Desc']) Spells0 = pd.DataFrame(columns=['Prep', 'Name']) Spells1 = pd.DataFrame(columns=['Prep', 'Name']) Spells2 = pd.DataFrame(columns=['Prep', 'Name']) Spells3 = pd.DataFrame(columns=['Prep', 'Name']) Spells4 = pd.DataFrame(columns=['Prep', 'Name']) Spells5 = pd.DataFrame(columns=['Prep', 'Name']) Spells6 = pd.DataFrame(columns=['Prep', 'Name']) Spells7 = pd.DataFrame(columns=['Prep', 'Name']) Spells8 = pd.DataFrame(columns=['Prep', 'Name']) Spells9 =
pd.DataFrame(columns=['Prep', 'Name'])
pandas.DataFrame
import pathlib import datetime import time import uuid import pandas as pd import numpy as np import simpy import dill as pickle import openclsim.model def save_logs(simulation, location, file_prefix): # todo add code to LogSaver to allow adding a file_prefix to each file site_logs = list(simulation.sites.values()) equipment_logs = list(simulation.equipment.values()) activity_logs = [ activity["activity_log"] for activity in simulation.activities.values() ] logsaver = LogSaver( site_logs, equipment_logs, activity_logs, location=location, file_prefix=file_prefix, overwrite=True, append_to_existing=False, ) logsaver.save_all_logs() class ToSave: """ Class that defines objects that have to be saved. data_type is the object type: ship, site, crane, etc. data: is the dictionary that is used to fill the data_type """ def __init__(self, data_type, data, *args, **kwargs): # This is the case for activities if data_type == openclsim.model.Activity: self.data_type = "Activity" self.data = { "name": data["name"], "id": data["id"], "mover": data["mover"].name, "loader": data["loader"].name, "unloader": data["unloader"].name, "origin": data["origin"].name, "destination": data["destination"].name, "stop_event": None, # data["stop_event"], "start_event": None, } # data["start_event"] # This is the case for equipment and sites elif type(data_type) == type: self.data_type = [] for subclass in data_type.__mro__: if ( subclass.__module__ == "openclsim.core" and subclass.__name__ not in ["Identifiable", "Log", "SimpyObject"] ): self.data_type.append(subclass.__name__) self.data = data self.data["env"] = None class SimulationSave: """ SimulationSave allows save all obtained data. Environment: The simpy environment Activities: List element with 'ToSave' classes of all unique activities Equipment: List element with 'ToSave' classes of all unique pieces of equipment Sites: List element with 'ToSave' classes of all unique sites """ def __init__(self, environment, activities, equipment, sites, *args, **kwargs): """ Initialization """ # Generate unique ID for the simulation self.id = str(uuid.uuid1()) # Save the environment # assert type(environment) == simpy.core.Environment self.simulation_start = environment.now # Save all properties assert type(activities) == list self.activities = activities assert type(equipment) == list self.equipment = equipment assert type(sites) == list self.sites = sites # Save the initialization properties self.init = self.init_properties @property def init_properties(self): """ Save all properties of the simulation """ return { "ID": self.id, "Simulation start": self.simulation_start, "Activities": self.activities, "Equipment": self.equipment, "Sites": self.sites, } def save_ini_file(self, filename, location=""): """ For all items of the simulation, save the properties and generate an initialization file. This file should be a JSON format and readable to start a new simulation. If location is "", the init will be saved in the current working directory. """ # assure location is a path location = pathlib.Path(location) file_name = location / (filename + ".pkl") with open(file_name, "wb") as file: pickle.dump(self.init, file) class SimulationOpen: """ SimulationOpen allows to define simulations from .pkl files. If location is "", the init will be saved in the current working directory. """ def __init__(self, file_name): """ Initialization """ self.simulation = self.open_ini_file(file_name) def open_ini_file(self, file_name): """ For all items of the simulation, save the properties and generate an initialization file. This file should be a JSON format and readable to start a new simulation. If location is "", the init will be saved in the current working directory. """ with open(file_name, "rb") as file: return pickle.load(file) def extract_files(self): environment = simpy.Environment( initial_time=self.simulation["Simulation start"] ) environment.epoch = time.mktime( datetime.datetime.fromtimestamp( self.simulation["Simulation start"] ).timetuple() ) sites = [] equipment = [] for site in self.simulation["Sites"]: site_object = openclsim.model.get_class_from_type_list( "Site", site.data_type ) site.data["env"] = environment sites.append(site_object(**site.data)) for ship in self.simulation["Equipment"]: ship_object = openclsim.model.get_class_from_type_list( "Ship", ship.data_type ) ship.data["env"] = environment equipment.append(ship_object(**ship.data)) activities = [] for activity in self.simulation["Activities"]: data = activity.data mover = [i for i in equipment if i.name == data["mover"]][0] loader = [i for i in equipment if i.name == data["loader"]][0] unloader = [i for i in equipment if i.name == data["unloader"]][0] origin = [i for i in sites if i.name == data["origin"]][0] destination = [i for i in sites if i.name == data["destination"]][0] activities.append( openclsim.model.Activity( env=environment, # The simpy environment defined in the first cel name=data["name"], # We are moving soil ID=data["id"], # The id origin=origin, # We originate from the from_site destination=destination, # And therefore travel to the to_site loader=loader, # The benefit of a TSHD, all steps can be done mover=mover, # The benefit of a TSHD, all steps can be done unloader=unloader, ) ) # The benefit of a TSHD, all steps can be done return sites, equipment, activities, environment class LogSaver: """ LogSaver allow saving all logs as .csv files. Objects should be a list containing the activities, sites and equipment. The ID could be the ID that is saved to the .pkl file, entering an ID is optional. If location is "", the files will be saved in the current working directory. """ def __init__( self, sites, equipment, activities, simulation_id="", simulation_name="", location="", file_prefix="", overwrite=False, append_to_existing=True, ): """ Initialization """ # Save all properties assert type(activities) == list self.activities = activities assert type(equipment) == list self.equipment = equipment assert type(sites) == list self.sites = sites # Save simulation id and simulation name self.id = simulation_id if simulation_id else str(uuid.uuid1()) self.name = simulation_name if simulation_name else self.id # Define location to save files self.location = location if len(self.location) != 0 and self.location[-1] != "/": self.location += "/" self.location += file_prefix # Finally save all items self.overwrite = overwrite self.append_to_existing = append_to_existing def save_all_logs(self): """ Save all logs to a specified location. If location is "", the logs will be saved in the current working directory. A file is saved with unique events -- events.csv A file is saved with unique location objects -- locations.csv A file is saved with unique equipment objects -- equipment.csv A file is saved with unique activity objects -- activities.csv A file is saved with unique simulations -- simulations.csv A file is saved with equipment logs -- equipment_log.csv A file is saved with energy use -- energy_use.csv A file is saved with dredging spill info -- dredging_spill.csv A file is saved with simulation properties -- generic_results.csv """ # First get all unique properties # Obtain information on simulations simulation_dict = {"SimulationID": [], "SimulationName": []} self.get_unique_properties("simulations", simulation_dict) # Obtain information on activities activity_dict = { "ActivityID": [], "ActivityName": [], "EquipmentID": [], "ActivityFunction": [], } self.get_unique_properties("activities", activity_dict) # Obtain information on equipment equipment_dict = {"EquipmentID": [], "EquipmentName": []} self.get_unique_properties("equipment", equipment_dict) # Obtain information on locations location_dict = { "LocationID": [], "LocationName": [], "Longitude": [], "Latitude": [], } self.get_unique_properties("location", location_dict) # Obtain information on events event_dict = {"EventID": [], "EventName": []} self.get_unique_properties("events", event_dict) # Continue with obtaining the logs, energy use and dredging spill self.get_equipment_log() self.get_energy() self.get_spill() self.get_results() # Save all as csv files self.generic_results.to_csv(self.location + "generic_results.csv", index=False) self.dredging_spill.to_csv(self.location + "dredging_spill.csv", index=False) self.energy_use.to_csv(self.location + "energy_use.csv", index=False) self.equipment_log.to_csv(self.location + "equipment_log.csv", index=False) self.unique_events.to_csv(self.location + "events.csv", index=False) self.unique_activities.to_csv(self.location + "activities.csv", index=False) self.unique_equipment.to_csv(self.location + "equipment.csv", index=False) self.unique_locations.to_csv(self.location + "locations.csv", index=False) self.unique_simulations.to_csv(self.location + "simulations.csv", index=False) def get_unique_properties(self, object_type, object_dict): """ Obtain unique properties for the given list """ if self.append_to_existing: try: unique_df = pd.read_csv(self.location + object_type + ".csv") except FileNotFoundError: unique_df = pd.DataFrame.from_dict(object_dict) else: unique_df = pd.DataFrame.from_dict(object_dict) if object_type == "simulations": self.unique_simulations = self.append_dataframe( unique_df, self, "Simulation" ) elif object_type == "activities": for activity in self.activities: unique_df = self.append_dataframe(unique_df, activity, "Activity") self.unique_activities = unique_df elif object_type == "equipment": for piece in self.equipment: unique_df = self.append_dataframe(unique_df, piece, "Equipment") self.unique_equipment = unique_df elif object_type == "events": for piece in self.equipment: unique_df = self.event_dataframe(unique_df, piece) self.unique_events = unique_df elif object_type == "location": for site in self.sites: unique_df = self.append_dataframe(unique_df, site, "Location") self.unique_locations = unique_df def append_dataframe(self, existing_df, object_id, object_type): """ Check if dataframe is alfready filled with information, if not append. If it is filled with similar values, raise an error unless self.overwrite == True. """ if object_id.id not in list(existing_df[object_type + "ID"]): if object_type != "Location" and object_type != "Activity": existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, }, ignore_index=True, ) elif object_type == "Activity": # lookup the equipment # TODO: clean this up, it's now not filled in for move activities loader_id = "" if hasattr(object_id, "loader"): loader_id = object_id.loader.id existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "EquipmentID": loader_id, "ActivityFunction": "Loader", }, ignore_index=True, ) mover_id = "" if hasattr(object_id, "mover"): mover_id = object_id.mover.id existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "EquipmentID": mover_id, "ActivityFunction": "Mover", }, ignore_index=True, ) unloader_id = "" if hasattr(object_id, "unloader"): unloader_id = object_id.unloader.id existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "EquipmentID": unloader_id, "ActivityFunction": "Unloader", }, ignore_index=True, ) elif object_type == "Location": existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "Longitude": object_id.geometry.x, "Latitude": object_id.geometry.y, }, ignore_index=True, ) elif self.overwrite == True: existing_df = existing_df[existing_df[object_type + "ID"] != object_id.id] if object_type != "Location": existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, }, ignore_index=True, ) else: existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "Longitude": object_id.geometry.x, "Latitude": object_id.geometry.y, }, ignore_index=True, ) else: raise KeyError( "Simulation ID or simulation name already exist. " + "If you wish to overwrite the existing data, set overwrite to True" ) return existing_df def event_dataframe(self, existing_df, piece): """ Check if dataframe is alfready filled with information, if not append. If it is filled with similar values, raise an error unless self.overwrite == True. """ log = pd.DataFrame.from_dict(piece.log) events = list(log["Message"].unique()) for event in events: if "start" in event or "stop" in event: event = event.replace(" start", "") event = event.replace(" stop", "") if event not in list(existing_df["EventName"]): existing_df = existing_df.append( {"EventID": str(uuid.uuid1()), "EventName": event}, ignore_index=True, ) return existing_df def get_equipment_log(self): """ Create a dataframe from all equipment logs """ object_dict = { "SimulationID": [], "ObjectID": [], "EventID": [], "ActivityID": [], "LocationID": [], "EventStart": [], "EventStop": [], } try: unique_df = pd.read_csv(self.location + "equipment_log.csv") except FileNotFoundError: unique_df = pd.DataFrame.from_dict(object_dict) for piece in self.equipment: object_log = pd.DataFrame.from_dict(piece.log) for i, message in enumerate(object_log["Message"]): for j, event in enumerate(self.unique_events["EventName"]): if message == event + " start": object_dict["SimulationID"].append(self.id) object_dict["ObjectID"].append(piece.id) object_dict["EventID"].append(self.unique_events["EventID"][j]) object_dict["ActivityID"].append(object_log["ActivityID"][i]) object_dict["EventStart"].append(object_log["Timestamp"][i]) x, y = object_log["Geometry"][i].x, object_log["Geometry"][i].y for k, LocationID in enumerate( self.unique_locations["LocationID"] ): if ( x == self.unique_locations["Longitude"][k] and y == self.unique_locations["Latitude"][k] ): object_dict["LocationID"].append(LocationID) elif message == event + " stop": object_dict["EventStop"].append(object_log["Timestamp"][i]) # Create durations column object_df = pd.DataFrame.from_dict(object_dict) durations = object_df["EventStop"] - object_df["EventStart"] durations_days = [] for event in durations: durations_days.append(event.total_seconds() / 3600 / 24) object_df["EventDuration"] = durations_days # Check if combination of simulation ID and object ID already exists if len(unique_df["SimulationID"]) == 0: unique_df = object_df elif not (unique_df["SimulationID"] == self.id).any(): unique_df = pd.concat([unique_df, object_df], ignore_index=True) elif self.overwrite == True: drop_rows = [] for i, row in enumerate(unique_df["SimulationID"] == self.id): if row == True: drop_rows.append(i) unique_df = unique_df.drop(drop_rows, axis=0) unique_df = pd.concat([unique_df, object_df], ignore_index=True) else: raise KeyError( "Simulation ID or simulation name already exist. " + "If you wish to overwrite the existing data, set overwrite to True" ) self.equipment_log = unique_df def get_spill(self): """ Obtain a log of all dreding spill """ object_dict = { "SimulationID": [], "ObjectID": [], "EventID": [], "ActivityID": [], "LocationID": [], "SpillStart": [], "SpillStop": [], "SpillDuration": [], "Spill": [], } try: unique_df = pd.read_csv(self.location + "dredging_spill.csv") except FileNotFoundError: unique_df = pd.DataFrame.from_dict(object_dict) for piece in self.equipment: object_log =
pd.DataFrame.from_dict(piece.log)
pandas.DataFrame.from_dict
""" training.py ================= Description: Author: Usage: """ import sklearn import numpy import os import csv import sys import random import ast import SimpleITK as sitk from sklearn.externals import joblib from sklearn.ensemble import RandomForestClassifier import pandas as pd import json from .vesselness import compute_absolute_eigen_values def get_list_of_features(): """ This function... :return: """ from ..workflow import get_local_file_location _file = open( get_local_file_location(os.path.join("maclearn", "data_order.json")), "rb" ) features = json.load(_file) _file.close() return features def remove_keys_from_array(array, keys): """ This function... :param array: :param keys: :return: """ for key in keys: array.remove(key) return array def mask_with_abc_image(image, abc_image): """ This function... :param image: :param abc_image: :return: """ abc_mask = get_brainmask(abc_image) masked_image = sitk.Mask(image, abc_mask) return masked_image def binary_close(image, amount=1): """ This function... :param image: :param amount: :return: """ image = sitk.BinaryErode(image, amount) image = sitk.BinaryDilate(image, amount) return image def get_brainmask(abc_image): """ This function... :param abc_image: :return: """ exclude_image = abc_image < 0 exclude_codes = [5, 11, 12, 30] for code in exclude_codes: exclude_image = exclude_image + (abc_image == code) exclude_image = binary_close(exclude_image, 2) brainmask = abc_image * (exclude_image == 0) > 0 return brainmask def masked_image_array(image, mask): """ This function... :param image: :param mask: :return: """ return image_array(sitk.Mask(image, mask)) def mask_array_with_image(array, mask_image): """ This function... :param array: :param mask_image: :return: """ mask_array = image_array(mask_image) array[numpy.where(mask_array == 0)] = 0 return array def mask_data_with_image(data, mask_image): """ This function... :param data: :param mask_image: :return: """ for i, array in enumerate(data): data[i] = mask_array_with_image(array, mask_image) return data def linear_array_from_image_file(image_file): """ This function... :param image_file: :return: """ image = sitk.ReadImage(image_file) return image_array(image) def image_array(image): """ Returns the 1D array of the numpy matrix :param image: :return: """ a = sitk.GetArrayFromImage(image) a1D = a.reshape(a.size) return a1D def data_by_region( data, wmtargets, wmlabelmap, wmlabels, gmtargets, gmlabelmap, gmlabels ): """ Takes in an label map image and devides the data and targets into specified regions. Regoins are specified by a label list. :param data: :param wmtargets: :param wmlabelmap: :param wmlabels: :param gmtargets: :param gmlabelmap: :param gmlabels: :return: """ columns = [data] keys = ["Features", "WMRegions", "GMRegions", "Targets"] wmregions = list() for i, label in enumerate(wmlabels): wmregions.append(pd.Series(wmlabelmap == label)) df_wm = pd.concat(wmregions, axis=1, keys=wmlabels) gmregions = list() for i, label in enumerate(gmlabels): gmregions.append(pd.Series(gmlabelmap == label)) df_gm =
pd.concat(gmregions, axis=1, keys=gmlabels)
pandas.concat
# Script to compare neighborhoods from two city locations # import package import os import pandas as pd # library for data analysis from bs4 import BeautifulSoup # library to parse web pages import requests # library to handle requests import csv import folium # map rendering library from sklearn.cluster import KMeans import numpy as np # Matplotlib and associated plotting modules import matplotlib.cm as cm import matplotlib.colors as colors import json import logging # logging module import argparse import matplotlib.pyplot as plt # from bokeh.io import export_png, export_svgs # from bokeh.models import ColumnDataSource, DataTable, TableColumn # credentials are stored in a separate file and not committed from credentials import CLIENT_ID, CLIENT_SECRET, VERSION, LIMIT logger = logging.getLogger() def return_most_common_venues(row, num_top_venues): """ Function to sort venues in descending order :param row: Pandas row :param num_top_venues: Number of rows to sort by :return: """ row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] # def save_df_as_image(df, path): # """ # Save a DataFrame as a nice image # :param df: The dataFrame # :param path: Filename to save to # :return: # """ # source = ColumnDataSource(df) # df_columns = [df.index.name] # df_columns.extend(df.columns.values) # columns_for_table = [] # for column in df_columns: # columns_for_table.append(TableColumn(field=column, title=column)) # # data_table = DataTable(source=source, columns=columns_for_table, height_policy="auto", width_policy="auto", # index_position=None) # export_png(data_table, filename=path) class ProcessLocation: """ Class to process location and save a map of the resulting clusters """ def __init__(self, location, kclusters=10, num_top_venues=5): """ :param str location: location to get information about :param int kclusters: Number of clusters :param int num_top_venues: Number of venues to group """ self.location = location self.coordinate_data = {} self.kclusters = kclusters self.num_top_venues = num_top_venues self.rainbow = [] self.url = None self.longitude = [] self.latitude = [] self.data_from_wikipedia = [] self.df = None self.grouped_df = None self.nearby_venues = None self.neighborhoods_venues_sorted = None self.map_clusters = None self.read_local_coordinates_file() self.set_rainbow() def read_local_coordinates_file(self): """ read local coordinate geospatial CSV file and write data into a dictionary :return dict: dictionary of postal codes and coordinates """ with open('Geospatial_Coordinates.csv') as in_file: data = csv.DictReader(in_file) for row in data: self.coordinate_data[row['Postal Code']] = {'longitude': row['Longitude'], 'latitude': row['Latitude']} return self.coordinate_data def set_rainbow(self): """ set the colour scheme for the clusters :return: """ x = np.arange(self.kclusters) ys = [i + x + (i * x) ** 2 for i in range(self.kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) self.rainbow = [colors.rgb2hex(i) for i in colors_array] def get_coordinates(self, postal_code): """ get the longitude and latitude for a given postal code :param str postal_code: postal code :return: longitude and latitude or None, None is postal code is not present """ ret = self.coordinate_data.get(postal_code, {}) latitude = ret.get('latitude') longitude = ret.get('longitude') return longitude, latitude def get_data_from_wikipedia(self): """ parse wikipedia page for a given URL - set by self.get_url method :return: """ self.get_url() if self.url: req = requests.get(self.url) soup = BeautifulSoup(req.content, 'html.parser') # logging.info(soup.prettify()) table = soup.find('table', attrs={'class': 'wikitable sortable'}) table_body = table.find('tbody') # logging.info(table_body) # get the headers of the table and store in a list table_headers = [] headers = table_body.find_all('th') for header in headers: header_value = header.get_text().strip() table_headers.append(header_value) # get the rows of the table rows = table_body.find_all('tr') for row in rows: row_data = {} cells = row.find_all('td') for position, cell in enumerate(cells): value = cell.get_text().strip() key = table_headers[position] # add the value to a dictionary row_data[key] = value # check that there is some data and that Borough is not unassigned if row_data and row_data.get('Borough', '') != 'Not assigned': if 'Neighbourhood' in row_data: row_data['Neighborhood'] = row_data.pop('Neighbourhood') self.data_from_wikipedia.append(row_data) def load_data_into_dataframe(self): """ Loads data from wikipedia into a Pandas dataframe :return: """ if self.data_from_wikipedia: self.df = pd.DataFrame(self.data_from_wikipedia) # rename the postal code heading self.df.rename(columns={"Postal Code": "PostalCode"}, inplace=True) def add_coordinates(self): """ Adds coordinates (longitude, latitude) to data from wikipedia :return: """ self.longitude = [] self.latitude = [] for index, row in self.df.iterrows(): postal_code = row.get('PostalCode') row_long, row_lat = self.get_coordinates(postal_code=postal_code) self.longitude.append(float(row_long)) self.latitude.append(float(row_lat)) self.df['Latitude'] = self.latitude self.df['Longitude'] = self.longitude def get_nearby_venues(self, radius=500): """ Get nearby venues from Foursquare :param int radius: radius to get nearby venues :return: """ names = self.df['Neighborhood'] latitudes = self.df['Latitude'] longitudes = self.df['Longitude'] venues_list = [] for name, lat, lng in zip(names, latitudes, longitudes): url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}&section=food'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # logging.info(url) results = requests.get(url).json()["response"]['groups'][0]['items'] venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) self.nearby_venues =
pd.DataFrame([item for venue_list in venues_list for item in venue_list])
pandas.DataFrame
# coding: utf-8 # In[ ]: __author__ = '<NAME>' # get_ipython().magic('matplotlib notebook') # from IPython.display import set_matplotlib_formats # set_matplotlib_formats('png', 'pdf') # from IPython.display import Image # from IPython.display import Math import os import sys import shutil import gdal import pickle import numpy as np import matplotlib.pyplot as plt import datetime as dt import flopy as fp import pandas as pd import geopandas as gp import scipy.stats as ss import scipy.optimize as so from scipy.interpolate import UnivariateSpline # from ipywidgets import interact, Dropdown # from IPython.display import display # In[ ]: homes = ['../Models'] fig_dir = '../Figures' mfpth = '../executables/MODFLOW-NWT_1.0.9/bin/MODFLOW-NWT_64.exe' mp_exe_name = '../executables/modpath.6_0/bin/mp6.exe' mf_start_date_str = '01/01/1900' mp_release_date_str = '01/01/2020' num_surf_layers = 3 num_depth_groups = 5 por = 0.20 dir_list = [] mod_list = [] i = 0 for home in homes: if os.path.exists(home): for dirpath, dirnames, filenames in os.walk(home): for f in filenames: if os.path.splitext(f)[-1] == '.nam': mod = os.path.splitext(f)[0] mod_list.append(mod) dir_list.append(dirpath) i += 1 print(' {} models read'.format(i)) # ## Read and process tracer input file from TracerLPM # In[ ]: # read input tracers tracer_input_raw = pd.read_excel('../data/tracer input/Copy of TracerLPM_V_1_0B.xlsm', skiprows=3, sheetname='StoredTracerData', header=0) col_list = ['Tracer', 'CFC-12', 'CFC-11', 'CFC-13', 'SF6', '3H', 'NO3-N'] tr_list = ['CFC-12', 'CFC-11', 'CFC-13', 'SF6', '3H', 'NO3-N'] tracer_input_df = tracer_input_raw.loc[:, col_list].copy() # delete garbage header rows tracer_input_df = tracer_input_df.iloc[3:, :] # delete blank rows tracer_input_df.dropna(axis=0, how='any', inplace=True) # make sure all the tracer data is numeric for col in col_list: tracer_input_df[col] =
pd.to_numeric(tracer_input_df[col])
pandas.to_numeric
import pandas as pd import numpy as np from scipy.special import boxcox1p from scipy.stats import boxcox_normmax from scipy.stats import skew from sklearn.preprocessing import RobustScaler from sklearn.pipeline import make_pipeline from sklearn.linear_model import Ridge, Lasso, ElasticNet from mlxtend.regressor import StackingCVRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor # Load The Data TRAIN_FILE_PATH = 'C:/Users/ahlaw/Downloads/train.csv' TEST_FILE_PATH = 'C:/Users/ahlaw/Downloads/test.csv' training_data = pd.read_csv(TRAIN_FILE_PATH) test_data =
pd.read_csv(TEST_FILE_PATH)
pandas.read_csv
from openpyxl import Workbook from openpyxl.cell.cell import Cell from openpyxl.styles import Alignment, Font, PatternFill, Border, Side from openpyxl.utils.dataframe import dataframe_to_rows from verifica_autores import em_lista_autores, trata_exceçoes from grafico import Graficos, Graficos_Anais_Periodicos import pandas as pd import re import os from valores import ND from PyscopusModified import ScopusModified class ExcelFile(Workbook): def __init__(self, relatorios, autores, todos, artppg, medias, indicadores, indicadores_geral, lista_egressos, lista_alunos, excecoes, per_a1_a4, per_a1_a4_ae, periodicos, anais, periodicos_metricas, anais_metricas): super(ExcelFile, self).__init__() self.relatorios = relatorios self.autores = autores self.todos = todos self.artppg = artppg self.medias = medias self.indicadores = indicadores self.indicadores_geral = indicadores_geral self.lista_egressos = lista_egressos self.lista_alunos = lista_alunos self.excecoes = excecoes self.per_a1_a4 = per_a1_a4 self.per_a1_a4_ae = per_a1_a4_ae self.periodicos = periodicos self.anais = anais self.periodicos_metricas = periodicos_metricas self.anais_metricas = anais_metricas for pos, egresso in enumerate(self.lista_egressos): self.lista_egressos[pos].name = trata_exceçoes(egresso.name.strip()) for pos, aluno in enumerate(self.lista_alunos): self.lista_alunos[pos].name = trata_exceçoes(aluno.name.strip()) self.add_info() # self.altera_autores() self.aplica_estilo() # self.converte_valores() self.aplica_dimensoes() self.aplica_cores() self.aplica_filtros() def styled_cells(self, data, ws, pinta=True): for c in data: c = Cell(ws, column="A", row=1, value=c) if c.value != None and str(c.value) != "nan": if c.value == "Porcentagem alunos/egressos": c.value = "Porcentagem" if data[0] in ["Periódicos", "A1-A4", "A1", "A2", "A3", "A4", "Irestrito"]: c.font = Font(color='FFFAFA') c.fill = PatternFill(fill_type='solid', start_color='00B050', end_color='00B050') elif data[0] != "Outros" and data[0] != "Número médio de docentes" and pinta == True: c.fill = PatternFill(fill_type='solid', start_color='FFFFCC', end_color='FFFFCC') if c.value in ["Tipo/Qualis", "Quantidade", "Porcentagem", "Quantidade com alunos/egressos", "Índice", "Acumulado", "Média por docente", "Número médio de docentes", "Nome Periódico", "Qualis 2019/ISSN Impresso", "Qualis 2019/ISSN Online", "Métrica", "Qtd.", "Qtd. %"]: c.font = Font(bold=True) if c.value != "Número médio de docentes": bd = Side(border_style="thin", color="000000") c.border = Border(left=bd, top=bd, right=bd, bottom=bd) c.alignment = Alignment(horizontal='center', vertical='center') yield c def add_info(self): ws = self.active # Primeiro sheet ws.title = 'Parâmetros' ws.append(["Estrato", "Peso"]) estratos = ["A1", "A2", "A3", "A4", "B1", "B2", "B3", "B4", ] pesos = [1.000, 0.875, 0.750, 0.625, 0.500, 0.200, 0.100, 0.050, ] for pos, estrato in enumerate(estratos): ws.append([estrato, pesos[pos]]) ws.append([None, None]) ws.append(self.styled_cells(["Número médio de docentes"], ws)) ws.append(["ND", ND]) ws = self.create_sheet("Autores") for row in dataframe_to_rows(self.autores, index=False, header=True): ws.append(row) lista_autores = [] for pos, autor in enumerate(self.relatorios["Author"]): if autor.split(" ")[0] not in lista_autores: lista_autores.append(autor.split(" ")[0]) else: encontrou = False for autor2 in self.relatorios["Author"]: if autor2.split(" ")[0] == autor.split(" ")[0] and encontrou == False: encontrou = True for pos, autor3 in enumerate(lista_autores): if autor3 == autor2.split(" ")[0]: lista_autores[pos] = f"{autor2.split(' ')[0]} {autor2.split(' ')[1]}" lista_autores.append(f"{autor.split(' ')[0]} {autor.split(' ')[1]}") indicadores_copy = [] for tabela in self.indicadores: indicadores_copy.append(tabela.copy()) for pos, tabela in enumerate(indicadores_copy): lista_nome = [] for i in range(len(tabela.index)): lista_nome.append(lista_autores[pos]) tabela["Nome Autor"] = lista_nome indicadores_copy[pos] = tabela indicadores_copy =
pd.concat(indicadores_copy, ignore_index=True, sort=False)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'chengzhi' """ tqsdk.ta 模块包含了一批常用的技术指标计算函数 """ import numpy as np import pandas as pd import numba from tqsdk import ta_func def ATR(df, n): """平均真实波幅""" new_df =
pd.DataFrame()
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import operator import string import numpy as np import pandas as pd import pytest import cudf from cudf.core._compat import PANDAS_GE_110 from cudf.testing._utils import ( NUMERIC_TYPES, assert_eq, assert_exceptions_equal, ) @pytest.fixture def pd_str_cat(): categories = list("abc") codes = [0, 0, 1, 0, 1, 2, 0, 1, 1, 2] return pd.Categorical.from_codes(codes, categories=categories) def test_categorical_basic(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) cudf_cat = cudf.Index(cat) pdsr = pd.Series(cat, index=["p", "q", "r", "s", "t"]) sr = cudf.Series(cat, index=["p", "q", "r", "s", "t"]) assert_eq(pdsr.cat.codes, sr.cat.codes, check_dtype=False) # Test attributes assert_eq(pdsr.cat.categories, sr.cat.categories) assert pdsr.cat.ordered == sr.cat.ordered np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.to_array() ) string = str(sr) expect_str = """ p a q a r b s c t a """ assert all(x == y for x, y in zip(string.split(), expect_str.split())) assert_eq(cat.codes, cudf_cat.codes.to_array()) def test_categorical_integer(): if not PANDAS_GE_110: pytest.xfail(reason="pandas >=1.1 required") cat = pd.Categorical(["a", "_", "_", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) np.testing.assert_array_equal( cat.codes, sr.cat.codes.astype(cat.codes.dtype).fillna(-1).to_array() ) assert sr.null_count == 2 np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.astype(pdsr.cat.codes.dtype).fillna(-1).to_array(), ) string = str(sr) expect_str = """ 0 a 1 <NA> 2 <NA> 3 c 4 a dtype: category Categories (3, object): ['a', 'b', 'c'] """ assert string.split() == expect_str.split() def test_categorical_compare_unordered(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) # test equal out = sr == sr assert out.dtype == np.bool_ assert type(out[0]) == np.bool_ assert np.all(out.to_array()) assert np.all(pdsr == pdsr) # test inequality out = sr != sr assert not np.any(out.to_array()) assert not np.any(pdsr != pdsr) assert not pdsr.cat.ordered assert not sr.cat.ordered # test using ordered operators assert_exceptions_equal( lfunc=operator.lt, rfunc=operator.lt, lfunc_args_and_kwargs=([pdsr, pdsr],), rfunc_args_and_kwargs=([sr, sr],), ) def test_categorical_compare_ordered(): cat1 = pd.Categorical( ["a", "a", "b", "c", "a"], categories=["a", "b", "c"], ordered=True ) pdsr1 = pd.Series(cat1) sr1 = cudf.Series(cat1) cat2 = pd.Categorical( ["a", "b", "a", "c", "b"], categories=["a", "b", "c"], ordered=True ) pdsr2 = pd.Series(cat2) sr2 = cudf.Series(cat2) # test equal out = sr1 == sr1 assert out.dtype == np.bool_ assert type(out[0]) == np.bool_ assert np.all(out.to_array()) assert np.all(pdsr1 == pdsr1) # test inequality out = sr1 != sr1 assert not np.any(out.to_array()) assert not np.any(pdsr1 != pdsr1) assert pdsr1.cat.ordered assert sr1.cat.ordered # test using ordered operators np.testing.assert_array_equal(pdsr1 < pdsr2, (sr1 < sr2).to_array()) np.testing.assert_array_equal(pdsr1 > pdsr2, (sr1 > sr2).to_array()) def test_categorical_binary_add(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([pdsr, pdsr],), rfunc_args_and_kwargs=([sr, sr],), expected_error_message="Series of dtype `category` cannot perform " "the operation: add", ) def test_categorical_unary_ceil(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_exceptions_equal( lfunc=getattr, rfunc=sr.ceil, lfunc_args_and_kwargs=([pdsr, "ceil"],), check_exception_type=False, expected_error_message="Series of dtype `category` cannot " "perform the operation: ceil", ) def test_categorical_element_indexing(): """ Element indexing to a cat column must give the underlying object not the numerical index. """ cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_eq(pdsr, sr) assert_eq(pdsr.cat.codes, sr.cat.codes, check_dtype=False) def test_categorical_masking(): """ Test common operation for getting a all rows that matches a certain category. """ cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) # check scalar comparison expect_matches = pdsr == "a" got_matches = sr == "a" np.testing.assert_array_equal( expect_matches.values, got_matches.to_array() ) # mask series expect_masked = pdsr[expect_matches] got_masked = sr[got_matches] assert len(expect_masked) == len(got_masked) assert len(expect_masked) == got_masked.valid_count assert_eq(got_masked, expect_masked) def test_df_cat_set_index(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) got = df.set_index("a") pddf = df.to_pandas(nullable_pd_dtype=False) expect = pddf.set_index("a") assert_eq(got, expect) def test_df_cat_sort_index(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) got = df.set_index("a").sort_index() expect = df.to_pandas(nullable_pd_dtype=False).set_index("a").sort_index() assert_eq(got, expect) def test_cat_series_binop_error(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) dfa = df["a"] dfb = df["b"] # lhs is a categorical assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([dfa, dfb],), rfunc_args_and_kwargs=([dfa, dfb],), check_exception_type=False, expected_error_message="Series of dtype `category` cannot " "perform the operation: add", ) # if lhs is a numerical assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([dfb, dfa],), rfunc_args_and_kwargs=([dfb, dfa],), check_exception_type=False, expected_error_message="'add' operator not supported", ) @pytest.mark.parametrize("num_elements", [10, 100, 1000]) def test_categorical_unique(num_elements): # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice( list(string.ascii_letters + string.digits), num_elements ), dtype="category", ) ) # gdf gdf = cudf.DataFrame() gdf["a"] = cudf.Series.from_categorical(pd_cat) gdf_unique_sorted = np.sort(gdf["a"].unique().to_pandas()) # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_unique_sorted = np.sort(pdf["a"].unique()) # verify np.testing.assert_array_equal(pdf_unique_sorted, gdf_unique_sorted) @pytest.mark.parametrize("nelem", [20, 50, 100]) def test_categorical_unique_count(nelem): # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice( list(string.ascii_letters + string.digits), nelem ), dtype="category", ) ) # gdf gdf = cudf.DataFrame() gdf["a"] = cudf.Series.from_categorical(pd_cat) gdf_unique_count = gdf["a"].nunique() # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_unique = pdf["a"].unique() # verify assert gdf_unique_count == len(pdf_unique) def test_categorical_empty(): cat = pd.Categorical([]) pdsr = pd.Series(cat) sr = cudf.Series(cat) np.testing.assert_array_equal(cat.codes, sr.cat.codes.to_array()) # Test attributes assert_eq(pdsr.cat.categories, sr.cat.categories) assert pdsr.cat.ordered == sr.cat.ordered np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.to_array() ) def test_categorical_set_categories(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) psr = pd.Series(cat) sr = cudf.Series.from_categorical(cat) # adding category expect = psr.cat.set_categories(["a", "b", "c", "d"]) got = sr.cat.set_categories(["a", "b", "c", "d"]) assert_eq(expect, got) # removing category expect = psr.cat.set_categories(["a", "b"]) got = sr.cat.set_categories(["a", "b"]) assert_eq(expect, got) def test_categorical_set_categories_preserves_order(): series = pd.Series([1, 0, 0, 0, 2]).astype("category") # reassigning categories should preserve element ordering assert_eq( series.cat.set_categories([1, 2]), cudf.Series(series).cat.set_categories([1, 2]), ) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_as_ordered(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(False)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(False)) assert cd_sr.cat.ordered is False assert cd_sr.cat.ordered == pd_sr.cat.ordered pd_sr_1 = pd_sr.cat.as_ordered(inplace=inplace) cd_sr_1 = cd_sr.cat.as_ordered(inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert cd_sr_1.cat.ordered is True assert cd_sr_1.cat.ordered == pd_sr_1.cat.ordered assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_as_unordered(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(True)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(True)) assert cd_sr.cat.ordered is True assert cd_sr.cat.ordered == pd_sr.cat.ordered pd_sr_1 = pd_sr.cat.as_unordered(inplace=inplace) cd_sr_1 = cd_sr.cat.as_unordered(inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert cd_sr_1.cat.ordered is False assert cd_sr_1.cat.ordered == pd_sr_1.cat.ordered assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("from_ordered", [True, False]) @pytest.mark.parametrize("to_ordered", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_reorder_categories( pd_str_cat, from_ordered, to_ordered, inplace ): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(from_ordered)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(from_ordered)) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) kwargs = dict(ordered=to_ordered, inplace=inplace) pd_sr_1 = pd_sr.cat.reorder_categories(list("cba"), **kwargs) cd_sr_1 = cd_sr.cat.reorder_categories(list("cba"), **kwargs) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert_eq(pd_sr_1, cd_sr_1) assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_add_categories(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy()) cd_sr = cudf.Series(pd_str_cat.copy()) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) pd_sr_1 = pd_sr.cat.add_categories(["d"], inplace=inplace) cd_sr_1 = cd_sr.cat.add_categories(["d"], inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert "d" in pd_sr_1.cat.categories.to_list() assert "d" in cd_sr_1.cat.categories.to_pandas().to_list() assert_eq(pd_sr_1, cd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_remove_categories(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy()) cd_sr = cudf.Series(pd_str_cat.copy()) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) pd_sr_1 = pd_sr.cat.remove_categories(["a"], inplace=inplace) cd_sr_1 = cd_sr.cat.remove_categories(["a"], inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert "a" not in pd_sr_1.cat.categories.to_list() assert "a" not in cd_sr_1.cat.categories.to_pandas().to_list() assert_eq(pd_sr_1, cd_sr_1) # test using ordered operators assert_exceptions_equal( lfunc=cd_sr.to_pandas().cat.remove_categories, rfunc=cd_sr.cat.remove_categories, lfunc_args_and_kwargs=([["a", "d"]], {"inplace": inplace}), rfunc_args_and_kwargs=([["a", "d"]], {"inplace": inplace}), expected_error_message="removals must all be in old categories", ) def test_categorical_dataframe_slice_copy(): pdf = pd.DataFrame({"g": pd.Series(["a", "b", "z"], dtype="category")}) gdf = cudf.from_pandas(pdf) exp = pdf[1:].copy() gdf = gdf[1:].copy() assert_eq(exp, gdf) @pytest.mark.parametrize( "data", [ pd.Series([1, 2, 3, 89]), pd.Series([1, 2, 3, 89, 3, 1, 89], dtype="category"), pd.Series(["1", "2", "3", "4", "5"], dtype="category"), pd.Series(["1.0", "2.5", "3.001", "9"], dtype="category"), pd.Series(["1", "2", "3", None, "4", "5"], dtype="category"), pd.Series(["1.0", "2.5", "3.001", None, "9"], dtype="category"), pd.Series(["a", "b", "c", "c", "b", "a", "b", "b"]), pd.Series(["aa", "b", "c", "c", "bb", "bb", "a", "b", "b"]), pd.Series([1, 2, 3, 89, None, np.nan, np.NaN], dtype="float64"), pd.Series([1, 2, 3, 89], dtype="float64"), pd.Series([1, 2.5, 3.001, 89], dtype="float64"), pd.Series([None, None, None]),
pd.Series([], dtype="float64")
pandas.Series
from unittest import TestCase import sklearn_pmml_model from sklearn_pmml_model.naive_bayes import PMMLGaussianNB from sklearn.naive_bayes import GaussianNB import pandas as pd import numpy as np from os import path from io import StringIO BASE_DIR = path.dirname(sklearn_pmml_model.__file__) class TestNaiveBayes(TestCase): def test_invalid_model(self): with self.assertRaises(Exception) as cm: PMMLGaussianNB(pmml=StringIO(""" <PMML xmlns="http://www.dmg.org/PMML-4_4" version="4.4"> <DataDictionary> <DataField name="Class" optype="categorical" dataType="string"> <Value value="setosa"/> <Value value="versicolor"/> <Value value="virginica"/> </DataField> </DataDictionary> <MiningSchema> <MiningField name="Class" usageType="target"/> </MiningSchema> </PMML> """)) assert str(cm.exception) == 'PMML model does not contain NaiveBayesModel.' def test_unsupported_distribution(self): with self.assertRaises(Exception) as cm: PMMLGaussianNB(pmml=StringIO(""" <PMML xmlns="http://www.dmg.org/PMML-4_3" version="4.3"> <DataDictionary> <DataField name="Class" optype="categorical" dataType="string"> <Value value="setosa"/> <Value value="versicolor"/> <Value value="virginica"/> </DataField> <DataField name="a" optype="continuous" dataType="double"/> </DataDictionary> <NaiveBayesModel> <MiningSchema> <MiningField name="Class" usageType="target"/> </MiningSchema> <BayesInputs> <BayesInput fieldName="a"> <TargetValueStats> <TargetValueStat value="setosa"> <PoissonDistribution mean="2.80188679245283"/> </TargetValueStat> </TargetValueStats> </BayesInput> </BayesInputs> </NaiveBayesModel> </PMML> """)) assert str(cm.exception) == 'Distribution "PoissonDistribution" not implemented, or not supported by scikit-learn' class TestGaussianNBIntegration(TestCase): def setUp(self): df = pd.read_csv(path.join(BASE_DIR, '../models/categorical-test.csv')) Xte = df.iloc[:, 1:] Xte =
pd.get_dummies(Xte, prefix_sep='')
pandas.get_dummies
import os, os.path import pandas as pd from requests.auth import HTTPBasicAuth from tqdm.auto import tqdm import requests import time import datetime from apikeys import key def currency_pair_exists(currency_pair): ''' Check if currenct pair exists :param str currency_pair: Currency pair (ex btcusd) ''' url = f"https://www.bitstamp.net/api/v2/ohlc/{currency_pair}/?step=60&limit=1" headers = {"Accept": "application/json"} auth = HTTPBasicAuth('apikey', key.apikey) response = requests.get(url, headers=headers , auth=auth) if response.text == "": return False try: response.json()["data"] except TypeError: return False return True def get_data(currency_pair, end=None, start=None, step=60, limit=1000): ''' Get bitstamp historic data :param str currency_pair: Currency pair (ex btcusd) :param str end: Final date :param int step: Seconds step, 60, 180, 300, 900, 1800, 3600, 7200, 14400, 21600, 43200, 86400, 259200 :param int limit: How many steps ''' if end: end = int(time.mktime(datetime.datetime.strptime(end, "%d/%m/%Y %H %M %S").timetuple())) else: end = int(datetime.datetime.now().timestamp()) url = f"https://www.bitstamp.net/api/v2/ohlc/{currency_pair}/?step={step}&limit={limit}&end={end}" if start: url = f"https://www.bitstamp.net/api/v2/ohlc/{currency_pair}/?step={step}&limit={limit}&start={start}" headers = {"Accept": "application/json"} auth = HTTPBasicAuth('apikey', key.apikey) return requests.get(url, headers=headers , auth=auth) def check_availability(currency_pair): ''' Return first and last available dates on dataset for currency_pair and dataset if available :param str currency_pair: Currency pair (ex btcusd) :raise ValueError: if currency_pair not in database ''' path = f"database/{currency_pair}.pkl" if not os.path.isfile(path): raise ValueError("Currency pair not found in the database") df = pd.read_pickle(path) return df.index[0], df.index[-1], df def populate_dataset(currency_pair, step=60, limit=1000, n_requests=100): ''' Populate dataset for currency_pair :param str currency_pair: Currency pair (ex btcusd) :param int step: Seconds step, 60, 180, 300, 900, 1800, 3600, 7200, 14400, 21600, 43200, 86400, 259200 :param int limit: How many steps :param int n_requests: How many requests, max 8000 per 10 minutes ''' if not currency_pair_exists(currency_pair): raise ValueError("This currency pair is not available to download.") if not os.path.isdir('database'): if os.path.isdir('../database'): os.chdir("..") else: raise FileNotFoundError("Can't find database folder, you are in the wrong folder.") try: start, _, old_df = check_availability(currency_pair) except ValueError: print("Currency pair not found in the database, creating new dataset...") start = datetime.datetime.strptime("15/02/2021", "%d/%m/%Y") old_df = pd.DataFrame([]) datas = [get_data( currency_pair=currency_pair, step=step, limit=limit, end=(start - datetime.timedelta(seconds=step*limit)*i).strftime("%d/%m/%Y %H %M %S")) for i in tqdm(range(n_requests))] df = pd.concat([pd.DataFrame(data.json()["data"]["ohlc"]) for data in reversed(datas)]).astype(float) df.timestamp = df.timestamp.astype(int) df.index =
pd.to_datetime(df.timestamp, unit='s')
pandas.to_datetime
import pytest from pandas._libs.tslibs.frequencies import INVALID_FREQ_ERR_MSG, _period_code_map from pandas.errors import OutOfBoundsDatetime from pandas import Period, Timestamp, offsets class TestFreqConversion: """Test frequency conversion of date objects""" @pytest.mark.parametrize("freq", ["A", "Q", "M", "W", "B", "D"]) def test_asfreq_near_zero(self, freq): # GH#19643, GH#19650 per = Period("0001-01-01", freq=freq) tup1 = (per.year, per.hour, per.day) prev = per - 1 assert prev.ordinal == per.ordinal - 1 tup2 = (prev.year, prev.month, prev.day) assert tup2 < tup1 def test_asfreq_near_zero_weekly(self): # GH#19834 per1 = Period("0001-01-01", "D") + 6 per2 = Period("0001-01-01", "D") - 6 week1 = per1.asfreq("W") week2 = per2.asfreq("W") assert week1 != week2 assert week1.asfreq("D", "E") >= per1 assert week2.asfreq("D", "S") <= per2 def test_to_timestamp_out_of_bounds(self): # GH#19643, used to incorrectly give Timestamp in 1754 per = Period("0001-01-01", freq="B") msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): per.to_timestamp() def test_asfreq_corner(self): val = Period(freq="A", year=2007) result1 = val.asfreq("5t") result2 = val.asfreq("t") expected = Period("2007-12-31 23:59", freq="t") assert result1.ordinal == expected.ordinal assert result1.freqstr == "5T" assert result2.ordinal == expected.ordinal assert result2.freqstr == "T" def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq="A", year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq="Q", year=2007, quarter=1) ival_A_to_Q_end = Period(freq="Q", year=2007, quarter=4) ival_A_to_M_start = Period(freq="M", year=2007, month=1) ival_A_to_M_end = Period(freq="M", year=2007, month=12) ival_A_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_A_to_W_end = Period(freq="W", year=2007, month=12, day=31) ival_A_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_A_to_B_end = Period(freq="B", year=2007, month=12, day=31) ival_A_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_A_to_D_end = Period(freq="D", year=2007, month=12, day=31) ival_A_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq="H", year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_A_to_T_end = Period( freq="Min", year=2007, month=12, day=31, hour=23, minute=59 ) ival_A_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_A_to_S_end = Period( freq="S", year=2007, month=12, day=31, hour=23, minute=59, second=59 ) ival_AJAN_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq="D", year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq="D", year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq="D", year=2006, month=12, day=1) assert ival_A.asfreq("Q", "S") == ival_A_to_Q_start assert ival_A.asfreq("Q", "e") == ival_A_to_Q_end assert ival_A.asfreq("M", "s") == ival_A_to_M_start assert ival_A.asfreq("M", "E") == ival_A_to_M_end assert ival_A.asfreq("W", "S") == ival_A_to_W_start assert ival_A.asfreq("W", "E") == ival_A_to_W_end assert ival_A.asfreq("B", "S") == ival_A_to_B_start assert ival_A.asfreq("B", "E") == ival_A_to_B_end assert ival_A.asfreq("D", "S") == ival_A_to_D_start assert ival_A.asfreq("D", "E") == ival_A_to_D_end assert ival_A.asfreq("H", "S") == ival_A_to_H_start assert ival_A.asfreq("H", "E") == ival_A_to_H_end assert ival_A.asfreq("min", "S") == ival_A_to_T_start assert ival_A.asfreq("min", "E") == ival_A_to_T_end assert ival_A.asfreq("T", "S") == ival_A_to_T_start assert ival_A.asfreq("T", "E") == ival_A_to_T_end assert ival_A.asfreq("S", "S") == ival_A_to_S_start assert ival_A.asfreq("S", "E") == ival_A_to_S_end assert ival_AJAN.asfreq("D", "S") == ival_AJAN_to_D_start assert ival_AJAN.asfreq("D", "E") == ival_AJAN_to_D_end assert ival_AJUN.asfreq("D", "S") == ival_AJUN_to_D_start assert ival_AJUN.asfreq("D", "E") == ival_AJUN_to_D_end assert ival_ANOV.asfreq("D", "S") == ival_ANOV_to_D_start assert ival_ANOV.asfreq("D", "E") == ival_ANOV_to_D_end assert ival_A.asfreq("A") == ival_A def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq="Q", year=2007, quarter=1) ival_Q_end_of_year = Period(freq="Q", year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq="A", year=2007) ival_Q_to_M_start = Period(freq="M", year=2007, month=1) ival_Q_to_M_end = Period(freq="M", year=2007, month=3) ival_Q_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq="W", year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq="B", year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq="D", year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq="H", year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_Q_to_T_end = Period( freq="Min", year=2007, month=3, day=31, hour=23, minute=59 ) ival_Q_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_Q_to_S_end = Period( freq="S", year=2007, month=3, day=31, hour=23, minute=59, second=59 ) ival_QEJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq="D", year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq="D", year=2006, month=9, day=30) assert ival_Q.asfreq("A") == ival_Q_to_A assert ival_Q_end_of_year.asfreq("A") == ival_Q_to_A assert ival_Q.asfreq("M", "S") == ival_Q_to_M_start assert ival_Q.asfreq("M", "E") == ival_Q_to_M_end assert ival_Q.asfreq("W", "S") == ival_Q_to_W_start assert ival_Q.asfreq("W", "E") == ival_Q_to_W_end assert ival_Q.asfreq("B", "S") == ival_Q_to_B_start assert ival_Q.asfreq("B", "E") == ival_Q_to_B_end assert ival_Q.asfreq("D", "S") == ival_Q_to_D_start assert ival_Q.asfreq("D", "E") == ival_Q_to_D_end assert ival_Q.asfreq("H", "S") == ival_Q_to_H_start assert ival_Q.asfreq("H", "E") == ival_Q_to_H_end assert ival_Q.asfreq("Min", "S") == ival_Q_to_T_start assert ival_Q.asfreq("Min", "E") == ival_Q_to_T_end assert ival_Q.asfreq("S", "S") == ival_Q_to_S_start assert ival_Q.asfreq("S", "E") == ival_Q_to_S_end assert ival_QEJAN.asfreq("D", "S") == ival_QEJAN_to_D_start assert ival_QEJAN.asfreq("D", "E") == ival_QEJAN_to_D_end assert ival_QEJUN.asfreq("D", "S") == ival_QEJUN_to_D_start assert ival_QEJUN.asfreq("D", "E") == ival_QEJUN_to_D_end assert ival_Q.asfreq("Q") == ival_Q def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq="M", year=2007, month=1) ival_M_end_of_year = Period(freq="M", year=2007, month=12) ival_M_end_of_quarter = Period(freq="M", year=2007, month=3) ival_M_to_A = Period(freq="A", year=2007) ival_M_to_Q = Period(freq="Q", year=2007, quarter=1) ival_M_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_M_to_W_end = Period(freq="W", year=2007, month=1, day=31) ival_M_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_M_to_B_end = Period(freq="B", year=2007, month=1, day=31) ival_M_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_M_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_M_to_H_start =
Period(freq="H", year=2007, month=1, day=1, hour=0)
pandas.Period
# util.py from __future__ import print_function from collections import Mapping, OrderedDict import datetime import itertools import random import warnings import pandas as pd np = pd.np from scipy import integrate from matplotlib import pyplot as plt import seaborn from scipy.optimize import minimize from scipy.signal import correlate from titlecase import titlecase from pug.nlp.util import listify, fuzzy_get, make_timestamp def dropna(x): """Delete all NaNs and and infinities in a sequence of real values Returns: list: Array of all values in x that are between -inf and +inf, exclusive """ return [x_i for x_i in listify(x) if float('-inf') < x_i < float('inf')] def rms(x): """"Root Mean Square" Arguments: x (seq of float): A sequence of numerical values Returns: The square root of the average of the squares of the values math.sqrt(sum(x_i**2 for x_i in x) / len(x)) or return (np.array(x) ** 2).mean() ** 0.5 >>> rms([0, 2, 4, 4]) 3.0 """ try: return (np.array(x) ** 2).mean() ** 0.5 except: x = np.array(dropna(x)) invN = 1.0 / len(x) return (sum(invN * (x_i ** 2) for x_i in x)) ** .5 def rmse(target, prediction, relative=False, percent=False): """Root Mean Square Error This seems like a simple formula that you'd never need to create a function for. But my mistakes on coding challenges have convinced me that I do need it, as a reminder of important tweaks, if nothing else. >>> rmse([0, 1, 4, 3], [2, 1, 0, -1]) 3.0 >>> rmse([0, 1, 4, 3], [2, 1, 0, -1], relative=True) # doctest: +ELLIPSIS 1.2247... >>> rmse([0, 1, 4, 3], [2, 1, 0, -1], percent=True) # doctest: +ELLIPSIS 122.47... """ relative = relative or percent prediction = pd.np.array(prediction) target = np.array(target) err = prediction - target if relative: denom = target # Avoid ZeroDivisionError: divide by prediction rather than target where target==0 denom[denom == 0] = prediction[denom == 0] # If the prediction and target are both 0, then the error is 0 and should be included in the RMSE # Otherwise, the np.isinf() below would remove all these zero-error predictions from the array. denom[(denom == 0) & (target == 0)] = 1 err = (err / denom) err = err[(~ np.isnan(err)) & (~ np.isinf(err))] return 100 * rms(err) if percent else rms(err) def blended_rolling_apply(series, window=2, fun=pd.np.mean): new_series = pd.Series(np.fromiter((fun(series[:i + 1]) for i in range(window - 1)), type(series.values[0])), index=series.index[:window - 1]).append( pd.rolling_apply(series.copy(), window, fun)[window - 1:]) assert len(series) == len(new_series), ( "blended_rolling_apply should always return a series of the same length!\n" " len(series) = {0} != {1} = len(new_series".format(len(series), len(new_series))) assert not any(np.isnan(val) or val is None for val in new_series) return new_series def rolling_latch(series, period=31, decay=1.0): # FIXME: implement recursive exponential decay filter rather than the nonrecursive, deratring done here return blended_rolling_apply(series, period, lambda val: decay *
pd.np.max(val)
pandas.np.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp = pd.DataFrame(data['temp']) sma1 = SMA(temp,20,1) sma2 = SMA(pd.DataFrame(data['close_std']),20,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2']) alpha.columns = ['alpha23'] return alpha @timer def alpha24(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis=1 ,join = 'inner' ) temp = data['Close'] - data['close_delay'] temp = pd.DataFrame(temp) alpha = SMA(temp,5,1) alpha.columns = ['alpha24'] return alpha @timer def alpha25(self): close = self.close close_delta = Delta(close,7) ret = self.ret r1 = Rank(close_delta) r3 = Rank(Sum(ret,250)) volume = self.volume volume_mean = Mean(pd.DataFrame(volume['Vol']),20) volume_mean.columns = ['volume_mean'] data = pd.concat([volume,volume_mean],axis = 1,join = 'inner') temp0 = pd.DataFrame(data['Vol']/data['volume_mean']) temp = DecayLinear(temp0,9) r2 = Rank(temp) rank = pd.concat([r1,r2,r3],axis = 1, join = 'inner') rank.columns = ['r1','r2','r3'] alpha = pd.DataFrame(-1 * rank['r1'] * (1 - rank['r2']) * rank['r3']) alpha.columns = ['alpha25'] return alpha @timer def alpha26(self): close = self.close vwap = self.vwap close_mean7 = Mean(close,7) close_mean7.columns = ['close_mean7'] close_delay5 = Delay(close,5) close_delay5.columns = ['close_delay5'] data = pd.concat([vwap,close_delay5],axis = 1,join = 'inner') corr = Corr(data,230) corr.columns = ['corr'] data_temp = pd.concat([corr,close_mean7,close],axis = 1,join = 'inner') alpha = data_temp['close_mean7'] - data_temp['Close'] + data_temp['corr'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha26'] return alpha @timer def alpha27(self): """ uncompleted """ close = self.close close_delay3 = Delay(close,3) close_delay6 = Delay(close,6) data = pd.concat([close,close_delay3,close_delay6],axis = 1,join = 'inner') data.columns = ['close','close_delay3','close_delay6'] temp1 = pd.DataFrame((data['close'] - data['close_delay3'])/data['close_delay3'] * 100) temp2 = pd.DataFrame((data['close'] - data['close_delay6'])/data['close_delay6'] * 100) data_temp = pd.concat([temp1,temp2],axis = 1,join = 'inner') data_temp.columns = ['temp1','temp2'] temp = pd.DataFrame(data_temp['temp1'] + data_temp['temp2']) alpha = DecayLinear(temp,12) alpha.columns = ['alpha27'] return alpha @timer def alpha28(self): close = self.close low = self.low high = self.high low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['Close','low_min','high_max'] temp1 = pd.DataFrame((data['Close'] - data['low_min']) /(data['high_max'] - data['low_min'])) sma1 = SMA(temp1,3,1) sma2 = SMA(sma1,3,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] * 2 - sma['sma2'] * 3) alpha.columns = ['alpha28'] return alpha @timer def alpha29(self): close = self.close volume = self.volume close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha29'] return alpha @timer def alpha30(self): close = self.close close_delay = Delay(close,1) @timer def alpha31(self): close = self.close close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha31'] return alpha @timer def alpha32(self): volume = self.volume high = self.high r1 = Rank(volume) r2 = Rank(high) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,3) r = Rank(corr) alpha = -1 * Sum(r,3) alpha.columns = ['alpha32'] return alpha @timer def alpha33(self): low = self.low volume = self.volume ret = self.ret low_min = TsMin(low,5) low_min_delay = Delay(low_min,5) data1 = pd.concat([low_min,low_min_delay],axis = 1,join = 'inner') data1.columns = ['low_min','low_min_delay'] ret_sum240 = Sum(ret,240) ret_sum20 = Sum(ret,20) ret_temp = pd.concat([ret_sum240,ret_sum20],axis = 1, join = 'inner') ret_temp.columns = ['ret240','ret20'] temp1 = pd.DataFrame(data1['low_min_delay'] - data1['low_min']) temp2 = pd.DataFrame((ret_temp['ret240'] - ret_temp['ret20'])/220) r_temp2 = Rank(temp2) r_volume = TsRank(volume,5) temp = pd.concat([temp1,r_temp2,r_volume],axis = 1,join = 'inner') temp.columns = ['temp1','r_temp2','r_volume'] alpha = temp['temp1'] * temp['r_temp2'] * temp['r_volume'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha33'] return alpha @timer def alpha34(self): close = self.close close_mean = Mean(close,12) close_mean.columns = ['close_mean'] data = pd.concat([close,close_mean],axis = 1, join = 'inner') alpha = pd.DataFrame(data['close_mean']/data['Close']) alpha.columns = ['alpha34'] return alpha @timer def alpha35(self): volume = self.volume Open = self.open open_delay = Delay(Open,1) open_delay.columns = ['open_delay'] open_linear = DecayLinear(Open,17) open_linear.columns = ['open_linear'] open_delay_temp = DecayLinear(open_delay,15) r1 = Rank(open_delay_temp) data = pd.concat([Open,open_linear],axis = 1,join = 'inner') Open_temp = data['Open'] * 0.65 + 0.35 * data['open_linear'] rank = pd.concat([volume,Open_temp],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,7) r2 = Rank(-1 * corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = Cross_min(pd.DataFrame(r['r1']),pd.DataFrame(r['r2'])) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha35'] return alpha @timer def alpha36(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,6) temp = Sum(corr,2) alpha = Rank(temp) alpha.columns = ['alpha36'] return alpha @timer def alpha37(self): Open = self.open ret = self.ret open_sum = Sum(Open,5) ret_sum = Sum(ret,5) data = pd.concat([open_sum,ret_sum],axis = 1,join = 'inner') data.columns = ['open_sum','ret_sum'] temp = data['open_sum'] * data['ret_sum'] temp_delay = Delay(temp,10) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] alpha = -1 * Rank(pd.DataFrame(data_temp['temp'] - data_temp['temp_delay'])) alpha.columns = ['alpha37'] return alpha @timer def alpha38(self): high = self.high high_mean = Mean(high,20) high_delta = Delta(high,2) data = pd.concat([high,high_mean,high_delta],axis = 1,join = 'inner') data.columns = ['high','high_mean','high_delta'] data['alpha'] = -1 * data['high_delta'] data['alpha'][data['high_mean'] >= data['high']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha38'] return alpha @timer def alpha39(self): close = self.close Open = self.open vwap = self.vwap volume = self.volume close_delta2 = Delta(close,2) close_delta2_decay = DecayLinear(close_delta2,8) r1 = Rank(close_delta2_decay) price_temp = pd.concat([vwap,Open],axis = 1,join = 'inner') price = pd.DataFrame(price_temp['Vwap'] * 0.3 + price_temp['Open'] * 0.7) volume_mean = Mean(volume,180) volume_mean_sum = Sum(volume_mean,37) rank = pd.concat([price,volume_mean_sum],axis = 1,join = 'inner') corr = Corr(rank,14) corr_decay = DecayLinear(corr,12) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns = ['alpha39'] return alpha @timer def alpha40(self): close = self.close volume = self.volume close_delay = Delay(close,1) data = pd.concat([close,volume,close_delay],axis = 1, join = 'inner') data.columns = ['close','volume','close_delay'] data['temp1'] = data['volume'] data['temp2'] = data['volume'] data['temp1'][data['close'] <= data['close_delay']] = 0 data['temp2'][data['close'] > data['close_delay']] = 0 s1 = Sum(pd.DataFrame(data['temp1']),26) s2 = Sum(pd.DataFrame(data['temp2']),26) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha40'] return alpha @timer def alpha41(self): vwap = self.vwap vwap_delta = Delta(vwap,3) vwap_delta_max = TsMax(vwap_delta,5) alpha = -1 * Rank(vwap_delta_max) alpha.columns = ['alpha41'] return alpha @timer def alpha42(self): high = self.high volume = self.volume high_std = STD(high,10) r1 = Rank(high_std) data = pd.concat([high,volume],axis = 1,join = 'inner') corr = Corr(data,10) r = pd.concat([r1,corr],axis = 1,join = 'inner') r.columns = ['r1','corr'] alpha = pd.DataFrame(-1 * r['r1'] * r['corr']) alpha.columns = ['alpha42'] return alpha @timer def alpha43(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,6) alpha.columns = ['alpha43'] return alpha @timer def alpha44(self): volume = self.volume vwap = self.vwap low = self.low volume_mean = Mean(volume,10) rank = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(rank,7) corr_decay = DecayLinear(corr,6) r1 = TsRank(corr_decay,4) vwap_delta = Delta(vwap,3) vwap_delta_decay = DecayLinear(vwap_delta,10) r2 = TsRank(vwap_delta_decay,15) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha44'] return alpha @timer def alpha45(self): volume = self.volume vwap = self.vwap close = self.close Open = self.open price = pd.concat([close,Open],axis = 1,join = 'inner') price['price'] = price['Close'] * 0.6 + price['Open'] * 0.4 price_delta = Delta(pd.DataFrame(price['price']),1) r1 = Rank(price_delta) volume_mean = Mean(volume,150) data = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr = Corr(data,15) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha45'] return alpha @timer def alpha46(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close,close_mean3,close_mean6,close_mean12,close_mean24],axis = 1,join = 'inner') data.columns = ['c','c3','c6','c12','c24'] alpha = (data['c3'] + data['c6'] + data['c12'] + data['c24'])/(4 * data['c']) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha46'] return alpha @timer def alpha47(self): close = self.close low = self.low high = self.high high_max = TsMax(high,6) low_min = TsMin(low,6) data = pd.concat([high_max,low_min,close],axis = 1,join = 'inner') data.columns = ['high_max','low_min','close'] temp = pd.DataFrame((data['high_max'] - data['close'])/(data['high_max'] - \ data['low_min']) * 100) alpha = SMA(temp,9,1) alpha.columns = ['alpha47'] return alpha @timer def alpha48(self): close = self.close volume = self.volume temp1 = Delta(close,1) temp1_delay1 = Delay(temp1,1) temp1_delay2 = Delay(temp1,2) data = pd.concat([temp1,temp1_delay1,temp1_delay2],axis = 1,join = 'inner') data.columns = ['temp1','temp1_delay1','temp1_delay2'] temp2 = pd.DataFrame(np.sign(data['temp1']) + np.sign(data['temp1_delay1']) \ + np.sign(data['temp1_delay2'])) volume_sum5 = Sum(volume,5) volume_sum20 = Sum(volume,20) data_temp = pd.concat([temp2,volume_sum5,volume_sum20],axis = 1,join = 'inner') data_temp.columns = ['temp2','volume_sum5','volume_sum20'] temp3 = pd.DataFrame(data_temp['temp2'] * data_temp['volume_sum5']/\ data_temp['volume_sum20']) alpha = -1 * Rank(temp3) alpha.columns = ['alpha48'] return alpha @timer def alpha49(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 0 price['temp'][price['sum'] < price['sum_delay']] = 1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha49'] return alpha @timer def alpha50(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = -1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha50'] return alpha @timer def alpha51(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = 0 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha51'] return alpha @timer def alpha52(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') data['sum_delay'] = Delay(pd.DataFrame((data['High'] + data['Low'] + data['Close'])/3),1) temp1 = pd.DataFrame(data['High'] - data['sum_delay']) temp1.columns = ['high_diff'] temp2 = pd.DataFrame(data['sum_delay'] - data['Low']) temp2.columns = ['low_diff'] temp1['max'] = temp1['high_diff'] temp1['max'][temp1['high_diff'] < 0 ] = 0 temp2['max'] = temp2['low_diff'] temp2['max'][temp2['low_diff'] < 0 ] = 0 temp1_sum = Sum(pd.DataFrame(temp1['max']),26) temp2_sum = Sum(pd.DataFrame(temp2['max']),26) alpha_temp = pd.concat([temp1_sum,temp2_sum],axis = 1,join = 'inner') alpha_temp.columns = ['s1','s2'] alpha = pd.DataFrame(alpha_temp['s1']/alpha_temp['s2'] * 100) alpha.columns = ['alpha52'] return alpha @timer def alpha53(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,12) alpha = count/12.0 * 100 alpha.columns = ['alpha53'] return alpha @timer def alpha54(self): Open = self.open close = self.close data = pd.concat([Open,close], axis = 1, join = 'inner') data.columns = ['close','open'] temp = pd.DataFrame(data['close'] - data['open']) temp_abs = pd.DataFrame(np.abs(temp)) df = pd.concat([temp,temp_abs], axis = 1, join= 'inner') df.columns = ['temp','abs'] std = STD(pd.DataFrame(df['temp'] + df['abs']),10) corr = Corr(data,10) data1 = pd.concat([corr,std],axis = 1, join = 'inner') data1.columns = ['corr','std'] alpha = Rank(pd.DataFrame(data1['corr'] + data1['std'])) * -1 alpha.columns = ['alpha54'] return alpha @timer def alpha55(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] tep = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha = Sum(tep,20) alpha.columns = ['alpha55'] return alpha @timer def alpha56(self): low = self.low high = self.high volume = self.volume Open = self.open open_min = TsMin(Open,12) data1 = pd.concat([Open,open_min], axis = 1, join = 'inner') data1.columns = ['open','open_min'] r1 = Rank(pd.DataFrame(data1['open'] - data1['open_min'])) volume_mean = Mean(volume,40) volume_mean_sum= Sum(volume_mean,19) data2 = pd.concat([high,low],axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) rank = pd.concat([temp,volume_mean_sum],axis = 1 , join = 'inner') rank.columns = ['temp','volume_mean_sum'] corr = Corr(rank,13) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] >= r['r2']] = 1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha56'] return alpha @timer def alpha57(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data['close'] - data['low_min'])/(data['high_max'] \ - data['low_min']) * 100) alpha = SMA(temp,3,1) alpha.columns = ['alpha57'] return alpha @timer def alpha58(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,20) alpha = count/20.0 * 100 alpha.columns = ['alpha58'] return alpha @timer def alpha59(self): low = self.low high = self.high close = self.close close_delay = Delay(close,1) max_temp = pd.concat([high,close_delay],axis = 1,join = 'inner') min_temp = pd.concat([low,close_delay],axis = 1,join = 'inner') max_temp1 = pd.DataFrame(np.max(max_temp,axis = 1)) min_temp1 = pd.DataFrame(np.min(min_temp,axis = 1)) data = pd.concat([close,close_delay,max_temp1,min_temp1],axis = 1,join = 'inner') data.columns = ['close','close_delay','max','min'] data['max'][data['close'] > data['close_delay']] = 0 data['min'][data['close'] <= data['close_delay']] = 0 alpha = pd.DataFrame(data['max'] + data['min']) alpha.columns = ['alpha59'] return alpha @timer def alpha60(self): low = self.low high = self.high close = self.close volume = self.volume data = pd.concat([low,high,close,volume],axis = 1,join = 'inner') temp = pd.DataFrame((2 * data['Close'] - data['Low'] - data['High'])/(data['Low'] + \ data['High']) * data['Vol']) alpha = Sum(temp,20) alpha.columns = ['alpha60'] return alpha @timer def alpha61(self): low = self.low volume = self.volume vwap = self.vwap vwap_delta = Delta(vwap,1) vwap_delta_decay = DecayLinear(vwap_delta,12) r1 = Rank(vwap_delta_decay) volume_mean = Mean(volume,80) data = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(data,8) corr_decay = DecayLinear(corr,17) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) * -1) alpha.columns = ['alpha61'] return alpha @timer def alpha62(self): high = self.high volume = self.volume volume_r = Rank(volume) data = pd.concat([high,volume_r],axis = 1,join = 'inner') alpha = -1 * Corr(data,5) alpha.columns = ['alpha62'] return alpha @timer def alpha63(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),6,1) sma2 = SMA(pd.DataFrame(data['abs']),6,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha63'] return alpha @timer def alpha64(self): vwap = self.vwap volume = self.volume close = self.close vwap_r = Rank(vwap) volume_r = Rank(volume) data1 = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr1 = Corr(data1,4) corr1_decay = DecayLinear(corr1,4) r1 = Rank(corr1_decay) close_mean = Mean(close,60) close_r = Rank(close) close_mean_r = Rank(close_mean) data2 = pd.concat([close_r,close_mean_r],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_max = TsMax(corr2,13) corr2_max_decay = DecayLinear(corr2_max,14) r2 = Rank(corr2_max_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) *-1) alpha.columns = ['alpha64'] return alpha @timer def alpha65(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = pd.DataFrame(data['close_mean']/data['close']) alpha.columns = ['alpha65'] return alpha @timer def alpha66(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha66'] return alpha @timer def alpha67(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),24,1) sma2 = SMA(pd.DataFrame(data['abs']),24,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha67'] return alpha @timer def alpha68(self): high = self.high volume = self.volume low = self.low data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['sum']= (data['High'] + data['Low'])/2 data['sum_delta'] = Delta(pd.DataFrame(data['sum']),1) temp = data['sum_delta'] * (data['High'] - data['Low'])/data['Vol'] alpha = SMA(pd.DataFrame(temp),15,2) alpha.columns = ['alpha68'] return alpha @timer def alpha69(self): high = self.high low = self.low Open = self.open dtm = DTM(Open,high) dbm = DBM(Open,low) dtm_sum = Sum(dtm,20) dbm_sum = Sum(dbm,20) data = pd.concat([dtm_sum,dbm_sum],axis = 1, join = 'inner') data.columns = ['dtm','dbm'] data['temp1'] = (data['dtm'] - data['dbm'])/data['dtm'] data['temp2'] = (data['dtm'] - data['dbm'])/data['dbm'] data['temp1'][data['dtm'] <= data['dbm']] = 0 data['temp2'][data['dtm'] >= data['dbm']] = 0 alpha = pd.DataFrame(data['temp1'] + data['temp2']) alpha.columns = ['alpha69'] return alpha @timer def alpha70(self): amount = self.amt alpha= STD(amount,6) alpha.columns = ['alpha70'] return alpha @timer def alpha71(self): close = self.close close_mean = Mean(close,24) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha71'] return alpha @timer def alpha72(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),15,1) alpha.columns = ['alpha72'] return alpha @timer def alpha73(self): vwap = self.vwap volume = self.volume close = self.close data1 = pd.concat([close,volume],axis = 1,join = 'inner') corr1 = Corr(data1,10) corr1_decay = DecayLinear(DecayLinear(corr1,16),4) r1 = TsRank(corr1_decay,5) volume_mean = Mean(volume,30) data2 = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1,join ='inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns= ['alpha73'] return alpha @timer def alpha74(self): vwap = self.vwap volume = self.volume low = self.low volume_mean = Mean(volume,40) volume_mean_sum = Sum(volume_mean,20) data1 = pd.concat([low,vwap],axis = 1,join = 'inner') data_sum = Sum(pd.DataFrame(data1['Low'] * 0.35 + data1['Vwap'] * 0.65),20) data = pd.concat([volume_mean_sum,data_sum],axis = 1,join = 'inner') corr = Corr(data,7) r1 = Rank(corr) vwap_r = Rank(vwap) volume_r = Rank(volume) data_temp = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr2 = Corr(data_temp,6) r2 = Rank(corr2) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha74'] return alpha @timer def alpha75(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1.columns = ['close','open'] data1['temp'] = 1 data1['temp'][data1['close'] <= data1['open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2.columns = ['close','open'] data2['tep'] = 1 data2['tep'][data2['close'] > data2['open']] = 0 temp = data1['temp'].unstack() tep = data2['tep'].unstack() tep1 = repmat(tep,1,np.size(temp,1)) data3 = temp * tep1 temp_result = data3.rolling(50,min_periods = 50).sum() tep_result = tep.rolling(50,min_periods = 50).sum() tep2_result = np.matlib.repmat(tep_result,1,np.size(temp,1)) result = temp_result/tep2_result alpha = pd.DataFrame(result.stack()) alpha.columns = ['alpha75'] return alpha @timer def alpha76(self): volume = self.volume close = self.close close_delay = Delay(close,1) data = pd.concat([volume,close,close_delay],axis = 1,join = 'inner') data.columns = ['volume','close','close_delay'] temp = pd.DataFrame(np.abs((data['close']/data['close_delay'] -1 )/data['volume'])) temp_std = STD(temp,20) temp_mean = Mean(temp,20) data_temp = pd.concat([temp_std,temp_mean],axis = 1,join = 'inner') data_temp.columns = ['std','mean'] alpha = pd.DataFrame(data_temp['std']/data_temp['mean']) alpha.columns = ['alpha76'] return alpha @timer def alpha77(self): vwap = self.vwap volume = self.volume low = self.low high = self.high data = pd.concat([high,low,vwap],axis = 1,join = 'inner') temp = pd.DataFrame((data['High'] + data['Low'])/2 - data['Vwap']) temp_decay = DecayLinear(temp,20) r1 = Rank(temp_decay) temp1 = pd.DataFrame((data['High'] + data['Low'])/2) volume_mean = Mean(volume,40) data2 = pd.concat([temp1,volume_mean],axis = 1,join = 'inner') corr = Corr(data2,3) corr_decay = DecayLinear(corr,6) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.min(r,axis = 1)) alpha.columns = ['alpha77'] return alpha @timer def alpha78(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') temp = pd.DataFrame((data['Low'] + data['High'] + data['Close'])/3) temp.columns = ['temp'] temp_mean = Mean(temp,12) temp_mean.columns = ['temp_mean'] temp2 = pd.concat([temp,temp_mean],axis = 1,join = 'inner') tmp = pd.DataFrame(temp2['temp'] - temp2['temp_mean']) data1 = pd.concat([close,temp_mean],axis = 1,join = 'inner') temp_abs = pd.DataFrame(np.abs(data1['Close'] - data1['temp_mean'])) temp_abs_mean = Mean(temp_abs,12) df = pd.concat([tmp,temp_abs_mean],axis = 1,join = 'inner') df.columns = ['df1','df2'] alpha = pd.DataFrame(df['df1']/(df['df2'] * 0.015)) alpha.columns = ['alpha78'] return alpha @timer def alpha79(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),12,1) sma2 = SMA(pd.DataFrame(data['abs']),12,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha79'] return alpha @timer def alpha80(self): volume = self.volume volume_delay = Delay(volume,5) volume_delay.columns = ['volume_delay'] data = pd.concat([volume,volume_delay],axis = 1,join = 'inner') alpha = (data['Vol'] - data['volume_delay'])/data['volume_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha80'] return alpha @timer def alpha81(self): volume = self.volume alpha = SMA(volume,21,2) alpha.columns = ['alpha81'] return alpha @timer def alpha82(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),20,1) alpha.columns = ['alpha82'] return alpha @timer def alpha83(self): high = self.high volume = self.volume high_r = Rank(high) volume_r = Rank(volume) data = pd.concat([high_r,volume_r],axis = 1,join = 'inner') corr = Corr(data,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha83'] return alpha @timer def alpha84(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,20) alpha.columns = ['alpha84'] return alpha @timer def alpha85(self): close = self.close volume = self.volume volume_mean = Mean(volume,20) close_delta = Delta(close,7) data1 = pd.concat([volume,volume_mean],axis = 1,join = 'inner') data1.columns = ['volume','volume_mean'] temp1 = pd.DataFrame(data1['volume']/data1['volume_mean']) r1 = TsRank(temp1,20) r2 = TsRank(-1 * close_delta,8) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha85'] return alpha @timer def alpha86(self): close = self.close close_delay20 = Delay(close,20) close_delay10 = Delay(close,20) data = pd.concat([close,close_delay20,close_delay10],axis = 1,join = 'inner') data.columns = ['close','close_delay20','close_delay10'] temp = pd.DataFrame((data['close_delay20'] - data['close_delay10'])/10 - \ (data['close_delay10'] - data['close'])/10) close_delta = Delta(close,1) * -1 data_temp = pd.concat([close_delta,temp],axis = 1,join = 'inner') data_temp.columns = ['close_delta','temp'] data_temp['close_delta'][data_temp['temp'] > 0.25]= -1 data_temp['close_delta'][data_temp['temp'] < 0]= 1 alpha = pd.DataFrame(data_temp['close_delta']) alpha.columns = ['alpha86'] return alpha @timer def alpha87(self): vwap = self.vwap high = self.high low = self.low Open = self.open vwap_delta = Delta(vwap,4) vwap_delta_decay = DecayLinear(vwap_delta,7) r1 = Rank(vwap_delta_decay) data = pd.concat([low,high,vwap,Open], axis = 1, join = 'inner') temp = pd.DataFrame((data['Low'] * 0.1 + data['High'] * 0.9 - data['Vwap'])/\ (data['Open'] - 0.5 * (data['Low'] + data['High']))) temp_decay = DecayLinear(temp,11) r2 = TsRank(temp_decay,7) r = pd.concat([r1,r2], axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(-1 * (r['r1'] + r['r2'])) alpha.columns = ['alpha87'] return alpha @timer def alpha88(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delta'] alpha = (data['close'] - data['close_delta'])/data['close_delta'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha88'] return alpha @timer def alpha89(self): close = self.close sma1 = SMA(close,13,2) sma2 = SMA(close,27,2) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3],axis = 1, join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(2 *(data['temp'] - data['sma'])) alpha.columns = ['alpha89'] return alpha @timer def alpha90(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2], axis = 1, join = 'inner') corr = Corr(rank,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha90'] return alpha @timer def alpha91(self): close = self.close volume = self.volume low = self.low close_max = TsMax(close,5) data1 = pd.concat([close,close_max], axis = 1,join = 'inner') data1.columns = ['close','close_max'] r1 = Rank(pd.DataFrame(data1['close'] - data1['close_max'])) volume_mean = Mean(volume,40) data2 = pd.concat([volume_mean,low], axis = 1, join = 'inner') corr = Corr(data2,5) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha91'] return alpha @timer def alpha92(self): volume = self.volume vwap = self.vwap close = self.close data = pd.concat([close,vwap],axis = 1, join = 'inner') data['price'] = data['Close'] * 0.35 + data['Vwap'] * 0.65 price_delta = Delta(pd.DataFrame(data['price']),2) price_delta_decay = DecayLinear(price_delta,3) r1 = Rank(price_delta_decay) volume_mean = Mean(volume,180) rank = pd.concat([volume_mean,close],axis = 1,join = 'inner') corr = Corr(rank,13) temp = pd.DataFrame(np.abs(corr)) temp_decay = DecayLinear(temp,5) r2 = TsRank(temp_decay,15) r = pd.concat([r1,r2],axis = 1, join = 'inner') alpha = pd.DataFrame(-1 * np.max(r, axis = 1)) alpha.columns = ['alpha92'] return alpha @timer def alpha93(self): low = self.low Open = self.open open_delay = Delay(Open,1) data = pd.concat([low,Open,open_delay],axis = 1,join = 'inner') data.columns = ['low','open','open_delay'] temp1 = pd.DataFrame(data['open'] - data['low']) temp2 = pd.DataFrame(data['open'] - data['open_delay']) data_temp = pd.concat([temp1,temp2],axis = 1 ,join = 'inner') temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) temp_max.columns = ['max'] data2 = pd.concat([data,temp_max],axis = 1,join = 'inner') data2['temp'] = data2['max'] data2['temp'][data2['open'] >= data2['open_delay']] = 0 alpha = Sum(pd.DataFrame(data2['temp']),20) alpha.columns = ['alpha93'] return alpha @timer def alpha94(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,30) alpha.columns = ['alpha94'] return alpha @timer def alpha95(self): amt = self.amt alpha = STD(amt,20) alpha.columns = ['alpha95'] return alpha @timer def alpha96(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = ( data['close'] - data['low_min'])/(data['high_max'] - data['low_min']) * 100 alpha_temp = SMA(pd.DataFrame(temp),3,1) alpha = SMA(alpha_temp,3,1) alpha.columns = ['alpha96'] return alpha @timer def alpha97(self): volume = self.volume alpha = STD(volume,10) alpha.columns = ['alpha97'] return alpha @timer def alpha98(self): close = self.close close_mean = Mean(close,100) close_mean_delta = Delta(close_mean,100) close_delay = Delay(close,100) data = pd.concat([close_mean_delta,close_delay],axis = 1,join = 'inner') data.columns = ['delta','delay'] temp = pd.DataFrame(data['delta']/ data['delay']) close_delta = Delta(close,3) close_min = TsMin(close,100) data_temp = pd.concat([close,close_delta,close_min,temp],axis = 1,join = 'inner') data_temp.columns = ['close','close_delta','close_min','temp'] data_temp['diff'] = (data_temp['close'] - data_temp['close_min']) * -1 data_temp['diff'][data_temp['temp'] < 0.05] = 0 data_temp['close_delta'] = data_temp['close_delta'] * -1 data_temp['close_delta'][data_temp['temp'] >= 0.05]= 0 alpha = pd.DataFrame(data_temp['close_delta'] + data_temp['diff']) alpha.columns = ['alpha98'] return alpha @timer def alpha99(self): close = self.close volume = self.volume r1 = Rank(close) r2 = Rank(volume) r = pd.concat([r1,r2],axis = 1,join = 'inner') cov = Cov(r,5) alpha = -1 * Rank(cov) alpha.columns = ['alpha99'] return alpha @timer def alpha100(self): volume = self.volume alpha = STD(volume,20) alpha.columns = ['alpha100'] return alpha @timer def alpha101(self): close = self.close volume = self.volume high = self.high vwap = self.vwap volume_mean = Mean(volume,30) volume_mean_sum = Sum(volume_mean,37) data1 = pd.concat([close,volume_mean_sum], axis = 1, join = 'inner') corr1 = Corr(data1,15) r1 = Rank(corr1) data2 = pd.concat([high,vwap],axis = 1, join = 'inner') temp = pd.DataFrame(data2['High'] * 0.1 + data2['Vwap'] * 0.9) temp_r = Rank(temp) volume_r = Rank(volume) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,11) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] < r['r2']] = -1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha101'] return alpha @timer def alpha102(self): volume = self.volume temp = Delta(volume,1) temp.columns = ['temp'] temp['max'] = temp['temp'] temp['max'][temp['temp'] < 0 ] = 0 temp['abs'] = np.abs(temp['temp']) sma1 = SMA(pd.DataFrame(temp['max']),6,1) sma2 = SMA(pd.DataFrame(temp['abs']),6,1) sma = pd.concat([sma1,sma2], axis = 1 ,join ='inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/ sma['sma2'] * 100) alpha.columns = ['alpha102'] return alpha @timer def alpha103(self): low = self.low lowday = Lowday(low,20) alpha = (20 - lowday)/20.0 * 100 alpha.columns = ['alpha103'] return alpha @timer def alpha104(self): close = self.close volume = self.volume high = self.high data = pd.concat([high,volume], axis = 1, join = 'inner') corr = Corr(data,5) corr_delta = Delta(corr,5) close_std = STD(close,20) r1 = Rank(close_std) temp = pd.concat([corr_delta,r1], axis = 1, join = 'inner') temp.columns = ['delta','r'] alpha = pd.DataFrame(-1 * temp['delta'] * temp['r']) alpha.columns = ['alpha104'] return alpha @timer def alpha105(self): volume = self.volume Open = self.open volume_r = Rank(volume) open_r = Rank(Open) rank = pd.concat([volume_r,open_r],axis = 1, join = 'inner') alpha = -1 * Corr(rank,10) alpha.columns = ['alpha105'] return alpha @timer def alpha106(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] alpha = pd.DataFrame(data['close'] - data['close_delay']) alpha.columns = ['alpha106'] return alpha @timer def alpha107(self): Open = self.open high = self.high close = self.close low = self.low high_delay = Delay(high,1) close_delay = Delay(close,1) low_delay = Delay(low,1) data = pd.concat([high_delay,close_delay,low_delay,Open], axis = 1, join = 'inner') data.columns = ['high_delay','close_delay','low_delay','open'] r1 = Rank(pd.DataFrame(data['open'] - data['high_delay'])) r2 = Rank(pd.DataFrame(data['open'] - data['close_delay'])) r3 = Rank(pd.DataFrame(data['open'] - data['low_delay'])) alpha = -1 * r1 * r2 * r3 alpha.columns = ['alpha107'] return alpha @timer def alpha108(self): high = self.high volume = self.volume vwap = self.vwap high_min = TsMin(high,2) data1 = pd.concat([high,high_min], axis = 1, join = 'inner') data1.columns = ['high','high_min'] r1 = Rank(pd.DataFrame(data1['high'] - data1['high_min'])) volume_mean = Mean(volume,120) rank = pd.concat([vwap,volume_mean],axis = 1, join = 'inner') corr = Corr(rank,6) r2 = Rank(corr) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = r['r1'] * r['r2'] * -1 alpha.columns = ['alpha108'] return alpha @timer def alpha109(self): high = self.high low = self.low data = pd.concat([high,low],axis = 1, join = 'inner') temp = SMA(pd.DataFrame(data['High'] - data['Low']),10,2) sma = SMA(temp,10,2) sma_temp = pd.concat([temp,sma],axis = 1, join = 'inner') sma_temp.columns = ['temp','sma'] alpha = pd.DataFrame(sma_temp['temp']/sma_temp['sma']) alpha.columns = ['alpha109'] return alpha @timer def alpha110(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([high,low,close_delay], axis = 1, join = 'inner') data['max1'] = data['High'] - data['close_delay'] data['max2'] = data['close_delay'] - data['Low'] data['max1'][data['max1'] < 0] = 0 data['max2'][data['max2'] < 0] = 0 s1 = Sum(pd.DataFrame(data['max1']),20) s2 = Sum(pd.DataFrame(data['max2']),20) s = pd.concat([s1,s2], axis = 1 , join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2']) alpha.columns = ['alpha110'] return alpha @timer def alpha111(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') temp = pd.DataFrame(data['Vol'] * (2 * data['Close'] - data['Low'] - data['High'])\ /(data['High'] - data['Low'])) sma1 = SMA(temp,11,2) sma2 = SMA(temp,4,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] - sma['sma2']) alpha.columns = ['alpha111'] return alpha @timer def alpha112(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close, close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = 1 data['temp'][data['close'] > data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha112'] return alpha @timer def alpha113(self): close = self.close volume = self.volume close_delay = Delay(close,5) close_delay_mean = Mean(close_delay,20) data1 = pd.concat([close,volume],axis = 1, join = 'inner') corr = Corr(data1,2) r1 = Rank(close_delay_mean) data2 = pd.concat([r1,corr], axis = 1, join = 'inner') data2.columns = ['r1','corr'] r1 = pd.DataFrame(data2['r1'] * data2['corr']) close_sum5 = Sum(close,5) close_sum20 = Sum(close,20) data3 = pd.concat([close_sum5,close_sum20],axis = 1, join = 'inner') corr2 = Corr(data3,2) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha113'] return alpha @timer def alpha114(self): close = self.close high = self.high low = self.low volume = self.volume vwap = self.vwap close_mean = Mean(close,5) data = pd.concat([high,low,close_mean], axis = 1, join = 'inner') data.columns = ['high','low','close_mean'] temp = pd.DataFrame(data['high'] - data['low'] / data['close_mean']) temp_delay = Delay(temp,2) r1 = TsRank(temp_delay,5) temp1 = pd.concat([temp,vwap,close], axis = 1, join = 'inner') temp1.columns = ['temp','vwap','close'] tep = pd.DataFrame(temp1['temp']/(temp1['vwap'] - temp1['close'])) r2 = TsRank(volume,5) data2 = pd.concat([r2,tep], axis = 1, join = 'inner') data2.columns = ['r2','tep'] tep1 = pd.DataFrame(data2['r2']/data2['tep']) r3 = TsRank(tep1,5) r = pd.concat([r1,r3],axis = 1, join = 'inner') r.columns = ['r1','r3'] alpha = pd.DataFrame(r['r1'] + r['r3']) alpha.columns = ['alpha114'] return alpha @timer def alpha115(self): high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,30) price = pd.concat([high,low], axis = 1, join = 'inner') price.columns = ['high','low'] price_temp = price['high'] * 0.9 + price['low'] * 0.1 data = pd.concat([price_temp,volume_mean],axis = 1, join = 'inner') corr = Corr(data,10) r1 = Rank(corr) data2 = pd.concat([high,low], axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) temp_r = TsRank(temp,4) volume_r = TsRank(volume,10) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,7) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha115'] return alpha @timer def alpha116(self): close = self.close alpha = RegResi(0,close,None,20) alpha.columns = ['alpha116'] return alpha @timer def alpha117(self): high = self.high low = self.low close = self.close volume = self.volume ret = self.ret r1 = TsRank(volume,32) data1 = pd.concat([close,high,low],axis = 1, join = 'inner') r2 = TsRank(pd.DataFrame(data1['Close'] + data1['High'] - data1['Low']),16) r3 = TsRank(ret,32) r = pd.concat([r1,r2,r3], axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(r['r1'] * (1 - r['r2']) * (1 - r['r3'])) alpha.columns = ['alpha117'] return alpha @timer def alpha118(self): high = self.high low = self.low Open = self.open data = pd.concat([high,low,Open], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame(data['High'] - data['Open']),20) s2 = Sum(pd.DataFrame(data['Open'] - data['Low']),20) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha118'] return alpha @timer def alpha119(self): Open = self.open volume = self.volume vwap = self.vwap volume_mean = Mean(volume,5) volume_mean_sum = Sum(volume_mean,26) data1 = pd.concat([vwap,volume_mean_sum],axis = 1, join = 'inner') corr1 = Corr(data1,5) corr1_decay = DecayLinear(corr1,7) r1 = Rank(corr1_decay) open_r = Rank(Open) volume_mean2 = Mean(volume,15) volume_mean2_r = Rank(volume_mean2) data2 = pd.concat([open_r, volume_mean2_r], axis = 1, join = 'inner') corr2 = Corr(data2,21) corr2_min = TsMin(corr2,9) corr2_min_r = TsRank(corr2_min,7) corr_min_r_decay = DecayLinear(corr2_min_r,8) r2 = Rank(corr_min_r_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha119'] return alpha @timer def alpha120(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close], axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vwap'] - data['Close'])) r2 = Rank(pd.DataFrame(data['Vwap'] + data['Close'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha120'] return alpha @timer def alpha121(self): vwap = self.vwap volume = self.volume vwap_r = TsRank(vwap,20) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,2) data = pd.concat([vwap_r,volume_mean_r], axis = 1, join = 'inner') corr= Corr(data,18) temp = TsRank(corr,3) vwap_min = TsMin(vwap,12) data2 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data2.columns = ['vwap','vwap_min'] rank = Rank(pd.DataFrame(data2['vwap'] - data2['vwap_min'])) data3 = pd.concat([rank,temp],axis = 1, join = 'inner') data3.columns = ['rank','temp'] alpha = pd.DataFrame(np.power(data3['rank'],data3['temp']) * -1) alpha.columns = ['alpha121'] return alpha @timer def alpha122(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close_ln,13,2) sma1 = SMA(temp1,13,2) sma2 = SMA(sma1,13,2) sma3 = SMA(sma2,13,2) sma3_delay = Delay(sma3,1) data = pd.concat([sma3,sma3_delay],axis = 1, join = 'inner') data.columns = ['sma','sma_delay'] alpha = pd.DataFrame(data['sma']/data['sma_delay']) alpha.columns = ['alpha122'] return alpha @timer def alpha123(self): volume = self.volume high = self.high low = self.low data1 = pd.concat([high,low], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame((data1['High'] + data1['Low'])/2),20) volume_mean = Mean(volume,60) s2 = Sum(volume_mean,20) data2 = pd.concat([s1,s2], axis = 1, join = 'inner') corr1 = Corr(data2,9) data3 = pd.concat([low,volume], axis = 1, join = 'inner') corr2 = Corr(data3,6) corr1_r = Rank(corr1) corr2_r = Rank(corr2) data = pd.concat([corr1_r,corr2_r], axis = 1, join = 'inner') data.columns = ['r1','r2'] data['alpha'] = -1 data['alpha'][data['r1'] >= data['r2']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha123'] return alpha @timer def alpha124(self): close = self.close vwap = self.vwap close_max = TsMax(close,30) close_max_r = Rank(close_max) close_max_r_decay = DecayLinear(close_max_r,2) close_max_r_decay.columns = ['decay'] data = pd.concat([close,vwap,close_max_r_decay], axis = 1, join ='inner') alpha = pd.DataFrame((data['Close'] - data['Vwap'])/data['decay']) alpha.columns = ['alpha124'] return alpha @timer def alpha125(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,80) data1 = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr1 = Corr(data1,17) data2 = pd.concat([close,vwap], axis = 1, join = 'inner') temp2 = pd.DataFrame(0.5*(data2['Close'] + data2['Vwap'])) temp2_delta = Delta(temp2,3) corr1_decay = DecayLinear(corr1,20) r1 = Rank(corr1_decay) temp2_delta_decay = DecayLinear(temp2_delta,16) r2 = Rank(temp2_delta_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha125'] return alpha @timer def alpha126(self): close = self.close high = self.high low = self.low data = pd.concat([close,high,low], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] + data['High'] + data['Low'])/3) alpha.columns = ['alpha126'] return alpha @timer def alpha127(self): close = self.close close_max = TsMax(close,12) data = pd.concat([close,close_max], axis = 1, join = 'inner') data.columns = ['close','close_max'] alpha = pd.DataFrame((data['close'] - data['close_max'])/data['close_max']) alpha.columns = ['alpha127'] return alpha @timer def alpha128(self): close = self.close high = self.high low = self.low volume = self.volume data = pd.concat([close,high,low,volume], axis = 1, join = 'inner') data['temp1'] = (data['Close'] + data['Low'] + data['High'])/3 data['temp2'] = data['temp1'] * data['Vol'] data['temp3'] = data['temp1'] * data['Vol'] temp_delay = Delay(pd.DataFrame(data['temp1']),1) temp_delay.columns = ['temp_decay'] data = pd.concat([data,temp_delay], axis = 1, join = 'inner') data['temp2'][data['temp1'] < data['temp_decay']] = 0 data['temp3'][data['temp1'] > data['temp_decay']] = 0 s1 = Sum(pd.DataFrame(data['temp2']),14) s2 = Sum(pd.DataFrame(data['temp3']),14) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(100 - 100/(1+ s['s1']/s['s2'])) alpha.columns = ['alpha128'] return alpha @timer def alpha129(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['abs'] = np.abs(data['close'] - data['close_delay']) data['temp'] = data['abs'] data['temp'][data['close'] < data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha129'] return alpha @timer def alpha130(self): close = self.close high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,40) data1 = pd.concat([high,low],axis = 1, join = 'inner') temp1 = pd.DataFrame((data1['High'] + data1['Low'])/2) rank1 = pd.concat([temp1,volume_mean], axis = 1, join = 'inner') corr = Corr(rank1,9) close_r = Rank(close) volume_r = Rank(volume) data2 = pd.concat([close_r,volume_r],axis = 1, join = 'inner') corr2 = Corr(data2,7) corr_decay = DecayLinear(corr,10) r1 = Rank(corr_decay) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha130'] return alpha @timer def alpha131(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,50) data1 = pd.concat([close,volume_mean], axis = 1, join = 'inner') corr = Corr(data1,18) vwap_delta = Delta(vwap,1) temp2 = TsRank(corr,18) data2 = pd.concat([vwap_delta,temp2],axis = 1, join = 'inner') data2.columns = ['vwap_delta','temp2'] temp3 = np.power(data2['vwap_delta'],data2['temp2']) alpha = Rank(pd.DataFrame(temp3)) alpha.columns = ['alpha131'] return alpha @timer def alpha132(self): amt = self.amt alpha = Mean(amt,20) alpha.columns = ['alpha132'] return alpha @timer def alpha133(self): low = self.low high = self.high highday = Highday(high,20) lowday = Lowday(low,20) data = pd.concat([highday,lowday],axis = 1, join = 'inner') data.columns = ['highday','lowday'] alpha = (20 - data['highday']/20.0) * 100 - (20 - data['lowday']/20.0) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha133'] return alpha @timer def alpha134(self): close = self.close volume = self.volume close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,volume,close_delay], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] - data['close_delay'])/data['close_delay']) alpha.columns = ['alpha134'] return alpha @timer def alpha135(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1 , join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) alpha = SMA(temp_delay,20,1) alpha.columns = ['alpha135'] return alpha @timer def alpha136(self): volume = self.volume Open = self.open ret = self.ret ret_delta = Delta(ret,3) ret_delta_r = Rank(ret_delta) data = pd.concat([Open,volume],axis = 1, join = 'inner') corr = Corr(data,10) data_temp = pd.concat([ret_delta_r,corr],axis = 1, join = 'inner') data_temp.columns = ['ret_delta','corr'] alpha = pd.DataFrame(-1 * data_temp['ret_delta'] * data_temp['corr']) alpha.columns = ['alpha136'] return alpha @timer def alpha137(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] alpha = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha.columns = ['alpha137'] return alpha @timer def alpha138(self): vwap = self.vwap volume = self.volume low = self.low data1 = pd.concat([low,vwap], axis = 1, join = 'inner') temp1 = pd.DataFrame(data1['Low'] * 0.7 + data1['Vwap'] * 0.3) temp1_delta = Delta(temp1,3) temp1_delta_decay = DecayLinear(temp1_delta,20) r1 = Rank(temp1_delta_decay) low_r = TsRank(low,8) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,17) data2 = pd.concat([low_r,volume_mean_r],axis = 1, join = 'inner') corr = Corr(data2,5) corr_r = TsRank(corr,19) corr_r_decay = DecayLinear(corr_r,16) r2 = TsRank(corr_r_decay,7) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha138'] return alpha @timer def alpha139(self): Open = self.open volume = self.volume data = pd.concat([Open,volume], axis = 1, join = 'inner') alpha = -1 * Corr(data,10) alpha.columns = ['alpha139'] return alpha @timer def alpha140(self): Open = self.open volume = self.volume high = self.high low = self.low close = self.close open_r = Rank(Open) low_r = Rank(low) high_r = Rank(high) close_r = Rank(close) data1 = pd.concat([open_r,low_r,high_r,close_r],axis = 1, join = 'inner') data1.columns = ['open_r','low_r','high_r','close_r'] temp = pd.DataFrame(data1['open_r'] + data1['low_r'] - \ (data1['high_r'] + data1['close_r'])) close_r_temp = TsRank(close,8) volume_mean = Mean(volume,70) volume_mean_r = TsRank(volume_mean,20) data2 = pd.concat([close_r_temp,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data2,8) temp_decay = DecayLinear(temp,8) r1 = Rank(temp_decay) corr_decay = DecayLinear(corr,7) r2 = TsRank(corr_decay,3) r = pd.concat([r1,r2], axis = 1, join = 'inner') alpha = pd.DataFrame(np.min(r)) alpha.columns = ['alpha140'] return alpha @timer def alpha141(self): volume = self.volume high = self.high volume_mean = Mean(volume,15) high_r = Rank(high) volume_mean_r = Rank(volume_mean) data = pd.concat([high_r,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data,9) alpha = -1 * Rank(corr) alpha.columns = ['alpha141'] return alpha @timer def alpha142(self): close = self.close volume = self.volume close_r = TsRank(close,10) r1 = Rank(close_r) close_delta = Delta(close,1) close_delta_delta = Delta(close_delta,1) r2 = Rank(close_delta_delta) volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['v','v_m'] temp = pd.DataFrame(data['v']/data['v_m']) temp_r = TsRank(temp,5) r3 = Rank(temp_r) r = pd.concat([r1,r2,r3],axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(- 1* r['r1'] * r['r2'] * r['r3']) alpha.columns= ['alpha142'] return alpha @timer def alpha143(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] - data['close_delay'])/data['close_delay']) temp.columns= ['temp'] data_temp = pd.concat([data,temp],axis = 1, join = 'inner') data_temp['temp'][data_temp['close'] <= data_temp['close_delay']] = 1 temp_unstack = data_temp['temp'].unstack() temp_unstack.iloc[0,:] = 1 df = np.cumprod(temp_unstack,axis = 0) alpha = df.stack() alpha.columns = ['alpha143'] return alpha @timer def alpha144(self): close = self.close amt = self.amt close_delay = Delay(close,1) data = pd.concat([close,close_delay,amt], axis = 1, join = 'inner') data.columns = ['close','close_delay','amt'] data['temp'] = np.abs(data['close']/data['close_delay'] - 1)/data['amt'] data['sign'] = 1 data['sign'][data['close'] >= data['close_delay']] = 0 tep1 = Sum(pd.DataFrame(data['sign'] * data['temp']),20) tep2 = Count(0,pd.DataFrame(data['close_delay']),pd.DataFrame(data['close']),20) data2 = pd.concat([tep1,tep2], axis = 1, join = 'inner') data2.columns = ['tep1','tep2'] alpha = pd.DataFrame(data2['tep1']/data2['tep2']) alpha.columns = ['alpha144'] return alpha @timer def alpha145(self): volume = self.volume volume_mean9 = Mean(volume,9) volume_mean26 = Mean(volume,26) volume_mean12 = Mean(volume,12) data = pd.concat([volume_mean9,volume_mean26,volume_mean12], axis = 1, join = 'inner') data.columns = ['m9','m26','m12'] alpha = pd.DataFrame((data['m9'] - data['m26'])/data['m12'] * 100) alpha.columns = ['alpha145'] return alpha @timer def alpha146(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] -data['close_delay'])/data['close_delay']) sma1 = SMA(temp,61,2) data2 = pd.concat([temp,sma1], axis = 1, join = 'inner') data2.columns = ['temp1','sma1'] data2['temp2'] = data2['temp1'] - data2['sma1'] temp2_mean = Mean(pd.DataFrame(data2['temp2']),20) sma2 = SMA(pd.DataFrame(data2['temp1'] - data2['temp2']),61,2) data_temp = pd.concat([temp2_mean,pd.DataFrame(data2['temp2']),sma2], axis = 1 , join = 'inner') data_temp.columns = ['temp2_mean','temp2','sma2'] alpha = data_temp['temp2_mean'] * data_temp['temp2'] / data_temp['sma2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha146'] return alpha @timer def alpha147(self): close = self.close close_mean = Mean(close,12) alpha = RegBeta(0,close_mean,None,12) alpha.columns = ['alpha147'] return alpha @timer def alpha148(self): Open = self.open volume = self.volume volume_mean = Mean(volume,60) volume_mean_s = Sum(volume_mean,9) data = pd.concat([Open,volume_mean_s],axis = 1, join = 'inner') corr = Corr(data,6) r1 = Rank(corr) open_min = TsMin(Open,14) data2 = pd.concat([Open,open_min], axis = 1, join = 'inner') data2.columns = ['open','open_min'] r2 = Rank(pd.DataFrame(data2['open'] - data2['open_min'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = -1 r['alpha'][r['r1'] > r['r2']] = 0 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha148'] return alpha @timer def alpha149(self): close = self.close close_index = self.close_index close_delay = Delay(close,1) close_index_delay = Delay(close_index,1) data_index = pd.concat([close_index,close_index_delay], axis = 1, join = 'inner') data_index.columns = ['close','close_delay'] data_index['delta'] = data_index['close']/data_index['close_delay'] - 1 data_index['judge'] = 1 data_index['judge'][data_index['close'] >= data_index['close_delay']] = 0 data_index['delta'][data_index['judge'] == 0] = np.nan # index_delta_unstack = index_delta_unstack.dropna() data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['delta'] = data['close'] / data['close_delay'] - 1 df1 = pd.DataFrame(data['delta']) df2 = pd.DataFrame(data_index['delta']) alpha = RegBeta(1,df1,df2,252) alpha.columns = ['alpha149'] return alpha @timer def alpha150(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') alpha = (data['Close'] + data['High'] + data['Low'])/3 * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha150'] return alpha @timer def alpha151(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close'] - data['close_delay']) alpha = SMA(temp,20,1) alpha.columns = ['alpha151'] return alpha @timer def alpha152(self): close = self.close close_delay = Delay(close,9) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) sma1 = SMA(temp_delay,9,1) sma1_delay = Delay(sma1,1) sma1_delay_mean1 = Mean(sma1_delay,12) sma1_delay_mean2 = Mean(sma1_delay,26) data_temp = pd.concat([sma1_delay_mean1,sma1_delay_mean2],axis = 1, join = 'inner') data_temp.columns = ['m1','m2'] alpha = SMA(pd.DataFrame(data_temp['m1'] - data_temp['m2']),9,1) alpha.columns = ['alpha152'] return alpha @timer def alpha153(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close_mean3, close_mean6, close_mean12, close_mean24], axis = 1 ,join ='inner') alpha = pd.DataFrame(np.mean(data, axis = 1)) alpha.columns = ['alpha153'] return alpha @timer def alpha154(self): volume = self.volume vwap = self.vwap volume_mean = Mean(volume,180) data = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr = Corr(data,18) vwap_min = TsMin(vwap,16) data1 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data1.columns = ['vwap','vwap_min'] temp = pd.DataFrame(data1['vwap'] - data1['vwap_min']) data_temp = pd.concat([corr,temp], axis = 1, join = 'inner') data_temp.columns = ['corr','temp'] data_temp['alpha'] = 1 data_temp['alpha'][data_temp['corr'] >= data_temp['temp']] = 0 alpha = pd.DataFrame(data_temp['alpha']) alpha.columns = ['alpha154'] return alpha @timer def alpha155(self): volume = self.volume sma1 = SMA(volume,13,2) sma2 = SMA(volume,26,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3], axis = 1 ,join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(data['temp'] - data['sma']) alpha.columns = ['alpha155'] return alpha @timer def alpha156(self): vwap = self.vwap Open = self.open low = self.low vwap_delta = Delta(vwap,5) vwap_delta_decay = DecayLinear(vwap_delta,3) r1 = Rank(vwap_delta_decay) data1 = pd.concat([Open,low],axis = 1, join = 'inner') temp = -1 * Delta(pd.DataFrame(data1['Open'] * 0.15 + data1['Low'] * 0.85),2) temp_decay = DecayLinear(temp,3) r2 = Rank(temp_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(- 1 *np.max(r, axis = 1)) alpha.columns = ['alpha156'] return alpha @timer def alpha157(self): close = self.close ret = self.ret close_delta = Delta(close,5) close_delta_r = Rank(Rank(close_delta) * -1) r1 = TsMin(close_delta_r,2) ret_delay = Delay(-1 * ret,6) r2 = TsRank(ret_delay,5) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] temp = pd.DataFrame(r['r1'] + r['r2']) alpha = TsMin(temp,5) alpha.columns = ['alpha157'] return alpha @timer def alpha158(self): high = self.high low = self.low close = self.close temp = SMA(close,15,2) temp.columns = ['temp'] data = pd.concat([high,low,close,temp],axis = 1 , join = 'inner') alpha =(data['High'] + data['Low'] - 2 * data['temp'] )/data['Close'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha158'] return alpha @timer def alpha159(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) data1 = pd.concat([low,close_delay],axis = 1, join = 'inner') data2 = pd.concat([high, close_delay], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.min(data1,axis = 1)) temp2= pd.DataFrame(np.max(data2,axis = 1)) temp = pd.concat([temp1,temp2], axis = 1 ,join = 'inner') temp.columns = ['temp1','temp2'] temp1_sum6 = Sum(temp1,6) temp1_sum12 = Sum(temp1,12) temp1_sum24 = Sum(temp1,24) tep = pd.DataFrame(temp['temp2'] - temp['temp1']) s6 = Sum(tep,6) s12 = Sum(tep,12) s24 = Sum(tep,24) data3 = pd.concat([temp1_sum6,temp1_sum12,temp1_sum24,s6,s12,s24], axis = 1 ,join = 'inner') data3.columns = ['ts6','ts12','ts24','s6','s12','s24'] temp3 = pd.DataFrame(data3['ts6']/data3['s6'] * 12 * 24 + data3['ts12']/data3['s12'] * 6 * 24 \ + data3['ts24']/data3['s24'] * 6 * 24) alpha = temp3 / (6*12 + 6*24 + 12*24) * 100 alpha.columns = ['alpha159'] return alpha @timer def alpha160(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_std','close_delay'] data['close_std'][data['close'] >= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data['close_std']),20,1) alpha.columns = ['alpha160'] return alpha @timer def alpha161(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data1 = pd.concat([high,low],axis = 1 , join = 'inner') diff = pd.DataFrame(data1['High'] - data1['Low']) data2 = pd.concat([close_delay,high], axis = 1, join ='inner') abs1 = pd.DataFrame(np.abs(data2['close_delay'] - data2['High'])) data3 = pd.concat([diff,abs1], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.max(data3,axis = 1)) data4 = pd.concat([close_delay,low],axis = 1, join = 'inner') temp2 = pd.DataFrame(np.abs(data4['close_delay'] -data4['Low'])) data = pd.concat([temp1,temp2],axis =1 , join = 'inner') data.columns = ['temp1','temp2'] temp = pd.DataFrame(np.max(data, axis = 1)) alpha = Mean(temp,12) alpha.columns = ['alpha161'] return alpha @timer def alpha162(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['max']= data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) temp1 = SMA(pd.DataFrame(data['max']),12,1) temp2 = SMA(pd.DataFrame(data['abs']),12,1) data1 = pd.concat([temp1,temp2], axis = 1, join = 'inner') data1.columns = ['temp1','temp2'] tep = pd.DataFrame(data1['temp1']/data1['temp2']) temp3 = TsMin(tep,12) temp4 = TsMax(tep,12) data_temp = pd.concat([tep,temp3,temp4], axis = 1, join = 'inner') data_temp.columns = ['tep','temp3','temp4'] alpha = (data_temp['tep'] - data_temp['temp3']/data_temp['temp4']) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha162'] return alpha @timer def alpha163(self): low = self.low high = self.high volume = self.volume ret = self.ret vwap = self.vwap volume_mean = Mean(volume,20) data = pd.concat([high,low,vwap,ret,volume_mean],axis = 1, join = 'inner') data.columns = ['high','low','vwap','ret','volume_mean'] temp = pd.DataFrame(-1 *data['ret'] * data['volume_mean'] *data['vwap'] * \ (data['high'] - data['low'])) alpha = Rank(temp) alpha.columns = ['alpha163'] return alpha @timer def alpha164(self): close = self.close high = self.high low = self.low close_delay = Delay(close,1) data = pd.concat([close,high,low,close_delay],axis = 1, join = 'inner') data.columns = ['close','high','low','close_delay'] data['temp'] = 1/(data['close'] - data['close_delay']) data_min = TsMin(pd.DataFrame(data['temp']),12) data_min.columns = ['min'] data2 = pd.concat([data,data_min],axis = 1, join = 'inner') data2['tep'] = data2['temp'] - data2['min']/(data2['high'] - data2['low']) data2['tep'][data['close'] <= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data2['tep']) * 100,13,2) alpha.columns = ['alpha164'] return alpha @timer def alpha165(self): close = self.close close_mean = Mean(close,48) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame(data['close'] - data['close_mean']) temp_sum = Sum(temp,48) temp_sum_min = TsMin(temp_sum,48) temp_sum_max = TsMax(temp_sum,48) close_std = STD(close,48) data_temp = pd.concat([temp_sum_min,temp_sum_max,close_std], axis = 1, join = 'inner') data_temp.columns = ['min','max','std'] alpha = (data_temp['max'] - data_temp['min'])/data_temp['std'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha165'] return alpha @timer def alpha166(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_mean = Mean(temp,20) data1 = pd.concat([temp,temp_mean], axis = 1, join = 'inner') data1.columns = ['temp','temp_mean'] temp2 = Sum(pd.DataFrame(data1['temp'] - data1['temp_mean']),20) * 20 * 19 temp3 = Sum(temp,20) * 19 * 18 data2 = pd.concat([temp2,temp3], axis = 1, join = 'inner') data2.columns = ['temp2','temp3'] alpha = np.power(data2['temp2'],1.5)/np.power(data2['temp3'],1.5) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha166'] return alpha @timer def alpha167(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = data['close'] - data['close_delay'] data['temp'][data['close'] <= data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha167'] return alpha @timer def alpha168(self): volume = self.volume volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['volume','volume_mean'] alpha = data['volume']/data['volume_mean'] * -1 alpha.columns = ['alpha168'] return alpha @timer def alpha169(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp1 = pd.DataFrame(data['close'] - data['close_delay']) sma = SMA(temp1,9,1) temp2 = Delay(sma,1) temp2_mean12 = Mean(temp2,12) temp2_mean26 = Mean(temp2,26) data2 = pd.concat([temp2_mean12,temp2_mean26], axis = 1, join ='inner') data2.columns = ['mean1','mean2'] alpha = SMA(pd.DataFrame(data2['mean1'] - data2['mean2']),10,1) alpha.columns = ['alpha169'] return alpha @timer def alpha170(self): close = self.close high = self.high volume = self.volume vwap = self.vwap volume_mean = Mean(volume,20) data1 = pd.concat([high,close,volume,volume_mean], axis = 1, join = 'inner') data1.columns =['high','close','volume','volume_mean'] temp1 = pd.DataFrame(data1['high']/data1['close'] * data1['volume']/data1['volume_mean']) r1 = Rank(temp1) high_mean = Mean(high,5) vwap_delay = Delay(vwap,5) data2 = pd.concat([high,close,high_mean], axis = 1, join = 'inner') data2.columns = ['high','close','high_mean'] temp2 = pd.DataFrame((data2['high'] - data2['close'])/data2['high_mean']) temp2_r = Rank(temp2) data3 = pd.concat([vwap,vwap_delay], axis = 1, join = 'inner') data3.columns = ['vwap','vwap_delay'] temp3 = pd.DataFrame(data3['vwap'] - data3['vwap_delay']) temp3_r = Rank(temp3) rank = pd.concat([temp2_r,temp3_r], axis = 1, join = 'inner') rank.columns = ['r1','r2'] r2 = pd.DataFrame(rank['r1'] - rank['r2']) data_temp = pd.concat([r1,r2],axis = 1, join = 'inner') data_temp.columns = ['r1','r2'] alpha = pd.DataFrame(data_temp['r1'] * data_temp['r2']) alpha.columns = ['alpha170'] return alpha @timer def alpha171(self): high = self.high close = self.close low = self.low Open = self.open data = pd.concat([high,close,low,Open],axis = 1, join = 'inner') alpha = -1 * (data['Low'] - data['Close']) * np.power(data['Open'],5)/\ ((data['Close'] - data['High']) * np.power(data['Close'],5)) alpha.columns = ['alpha171'] return alpha @timer def alpha172(self): high = self.high low = self.low hd = HD(high) ld = LD(low) data = pd.concat([hd,ld],axis = 1, join = 'inner') data.columns = ['hd','ld'] data['temp'] = 0 data['temp'][((data['hd'] > data['ld'])& (data['hd'] > 0)) | \ ((data['ld'] > data['hd'])& (data['ld'] > 0))] = 1 alpha = Mean(
pd.DataFrame(data['temp'])
pandas.DataFrame
import pandas as pd import sys import numpy as np import pymysql from xlrd import open_workbook import xlrd # To store the old data temporarily #df2 =df.copy(deep=True) # Data frame to store the old data File_path = r"C:/Users/karthikais/Documents/Application_monitoring/App_monitoring.xlsx" old=
pd.read_excel(File_path, sheetname='Last_Update_status')
pandas.read_excel
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda: Series([1, 2, 3]).cat) self.assertRaises(AttributeError, lambda: Series(['a', 'b', 'c']).cat) self.assertRaises(AttributeError, lambda: Series(np.arange(5.)).cat) self.assertRaises(AttributeError, lambda: Series([Timestamp('20130101')]).cat) # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = np.array([1, 2, 3]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype='int8') tm.assert_series_equal(s.cat.codes, exp_codes) self.assertEqual(s.cat.ordered, True) s = s.cat.as_unordered() self.assertEqual(s.cat.ordered, False) s.cat.as_ordered(inplace=True) self.assertEqual(s.cat.ordered, True) # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) s = s.cat.set_categories(["c", "b", "a"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c" ])) exp_categories = np.array(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"]) s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: def f(): s.set_categories([4, 3, 2, 1]) self.assertRaises(Exception, f) # right: s.cat.set_categories([4,3,2,1]) def test_series_functions_no_warnings(self): df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_assignment_to_dataframe(self): # assignment df = DataFrame({'value': np.array( np.random.randint(0, 10000, 100), dtype='int32')}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df['D'] = d str(df) result = df.dtypes expected = Series( [np.dtype('int32'), com.CategoricalDtype()], index=['value', 'D']) tm.assert_series_equal(result, expected) df['E'] = s str(df) result = df.dtypes expected = Series([np.dtype('int32'), com.CategoricalDtype(), com.CategoricalDtype()], index=['value', 'D', 'E']) tm.assert_series_equal(result, expected) result1 = df['D'] result2 = df['E'] self.assertTrue(result1._data._block.values.equals(d)) # sorting s.name = 'E' self.assertTrue(result2.sort_index().equals(s.sort_index())) cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = pd.DataFrame(pd.Series(cat)) def test_describe(self): # Categoricals should not show up together with numerical columns result = self.cat.describe() self.assertEqual(len(result.columns), 1) # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = pd.Series(pd.Categorical(["a", "b", "c", "c"])) df3 = pd.DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) res = df3.describe() self.assert_numpy_array_equal(res["cat"].values, res["s"].values) def test_repr(self): a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") self.assertEqual(exp, a.__unicode__()) a = pd.Series(pd.Categorical(["a", "b"] * 25)) exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "dtype: category\nCategories (2, object): [a, b]") with option_context("display.max_rows", 5): self.assertEqual(exp, repr(a)) levs = list("abcdefghijklmnopqrstuvwxyz") a = pd.Series(pd.Categorical( ["a", "b"], categories=levs, ordered=True)) exp = u("0 a\n1 b\n" + "dtype: category\n" "Categories (26, object): [a < b < c < d ... w < x < y < z]") self.assertEqual(exp, a.__unicode__()) def test_categorical_repr(self): c = pd.Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_ordered(self): c = pd.Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) # TODO(wesm): exceeding 80 characters in the console is not good # behavior exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]""") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]") self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) def test_categorical_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_series_repr(self): s = pd.Series(pd.Categorical([1, 2, 3])) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10))) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0, 1, 2, 3, ..., 6, 7, 8, 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_ordered(self): s = pd.Series(pd.Categorical([1, 2, 3], ordered=True)) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10), ordered=True)) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 < 8 days 01:00:00 < 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_index_repr(self): idx = pd.CategoricalIndex(pd.Categorical([1, 2, 3])) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" self.assertEqual(repr(idx), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10))) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_ordered(self): i = pd.CategoricalIndex(pd.Categorical([1, 2, 3], ordered=True)) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10), ordered=True)) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx), ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period(self): # test all length idx = pd.period_range('2011-01-01 09:00', freq='H', periods=1) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=2) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=3) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx))) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_frame(self): # normal DataFrame dt = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') p = pd.period_range('2011-01', freq='M', periods=5) df = pd.DataFrame({'dt': dt, 'p': p}) exp = """ dt p 0 2011-01-01 09:00:00-05:00 2011-01 1 2011-01-01 10:00:00-05:00 2011-02 2 2011-01-01 11:00:00-05:00 2011-03 3 2011-01-01 12:00:00-05:00 2011-04 4 2011-01-01 13:00:00-05:00 2011-05""" df = pd.DataFrame({'dt': pd.Categorical(dt), 'p': pd.Categorical(p)}) self.assertEqual(repr(df), exp) def test_info(self): # make sure it works n = 2500 df = DataFrame({'int64': np.random.randint(100, size=n)}) df['category'] = Series(np.array(list('abcdefghij')).take( np.random.randint(0, 10, size=n))).astype('category') df.isnull() df.info() df2 = df[df['category'] == 'd'] df2.info() def test_groupby_sort(self): # http://stackoverflow.com/questions/23814368/sorting-pandas-categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') res = self.cat.groupby(['value_group'])['value_group'].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = pd.CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_min_max(self): # unordered cats have no min/max cat = Series(Categorical(["a", "b", "c", "d"], ordered=False)) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Series(Categorical(["a", "b", "c", "d"], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Series(Categorical(["a", "b", "c", "d"], categories=[ 'd', 'c', 'b', 'a'], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Series(Categorical( [np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a' ], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") cat = Series(Categorical( [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) def test_mode(self): s = Series(Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5, 1], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([], categories=[5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) def test_value_counts(self): s = pd.Series(pd.Categorical( ["a", "b", "c", "c", "c", "b"], categories=["c", "a", "b", "d"])) res = s.value_counts(sort=False) exp = Series([3, 1, 2, 0], index=pd.CategoricalIndex(["c", "a", "b", "d"])) tm.assert_series_equal(res, exp) res = s.value_counts(sort=True) exp = Series([3, 2, 1, 0], index=pd.CategoricalIndex(["c", "b", "a", "d"])) tm.assert_series_equal(res, exp) def test_value_counts_with_nan(self): # https://github.com/pydata/pandas/issues/9443 s = pd.Series(["a", "b", "a"], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) s = pd.Series(["a", "b", None, "a", None, None], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) # When we aren't sorting by counts, and np.nan isn't a # category, it should be last. tm.assert_series_equal( s.value_counts(dropna=False, sort=False), pd.Series([2, 1, 3], index=pd.CategoricalIndex(["a", "b", np.nan]))) with tm.assert_produces_warning(FutureWarning): s = pd.Series(pd.Categorical( ["a", "b", "a"], categories=["a", "b", np.nan])) tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1, 0], index=pd.CategoricalIndex(["a", "b", np.nan]))) with tm.assert_produces_warning(FutureWarning): s = pd.Series(pd.Categorical( ["a", "b", None, "a", None, None], categories=["a", "b", np.nan ])) tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) def test_groupby(self): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c" ], categories=["a", "b", "c", "d"], ordered=True) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) expected = DataFrame({'a': Series( [1, 2, 4, np.nan], index=pd.CategoricalIndex( ['a', 'b', 'c', 'd'], name='b'))}) result = data.groupby("b").mean() tm.assert_frame_equal(result, expected) raw_cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) raw_cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": raw_cat1, "B": raw_cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A") exp_idx = pd.CategoricalIndex(['a', 'b', 'z'], name='A') expected = DataFrame({'values': Series([3, 7, np.nan], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # multiple groupers gb = df.groupby(['A', 'B']) expected = DataFrame({'values': Series( [1, 2, np.nan, 3, 4, np.nan, np.nan, np.nan, np.nan ], index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y']], names=['A', 'B']))}) result = gb.sum() tm.assert_frame_equal(result, expected) # multiple groupers with a non-cat df = df.copy() df['C'] = ['foo', 'bar'] * 2 gb = df.groupby(['A', 'B', 'C']) expected = DataFrame({'values': Series( np.nan, index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y'], ['foo', 'bar'] ], names=['A', 'B', 'C']))}).sortlevel() expected.iloc[[1, 2, 7, 8], 0] = [1, 2, 3, 4] result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name) g = x.groupby(['person_id']) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[['person_name']]) result = x.drop_duplicates('person_name') expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates('person_name').iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name='person_id') expected['person_name'] = expected['person_name'].astype('object') tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c).transform(sum) tm.assert_series_equal(result, df['a'], check_names=False) self.assertTrue(result.name is None) tm.assert_series_equal( df.a.groupby(c).transform(lambda xs: np.sum(xs)), df['a']) tm.assert_frame_equal(df.groupby(c).transform(sum), df[['a']]) tm.assert_frame_equal( df.groupby(c).transform(lambda xs: np.max(xs)), df[['a']]) # Filter tm.assert_series_equal(df.a.groupby(c).filter(np.all), df['a']) tm.assert_frame_equal(df.groupby(c).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c).transform(sum) tm.assert_series_equal(result, df['a'], check_names=False) self.assertTrue(result.name is None) tm.assert_series_equal( df.a.groupby(c).transform(lambda xs: np.sum(xs)), df['a']) tm.assert_frame_equal(df.groupby(c).transform(sum), df[['a']]) tm.assert_frame_equal( df.groupby(c).transform(lambda xs: np.sum(xs)), df[['a']]) # GH 9603 df = pd.DataFrame({'a': [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4]) result = df.groupby(c).apply(len) expected = pd.Series([1, 0, 0, 0], index=pd.CategoricalIndex(c.values.categories)) expected.index.name = 'a' tm.assert_series_equal(result, expected) def test_pivot_table(self): raw_cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) raw_cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": raw_cat1, "B": raw_cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B']) expected = Series([1, 2, np.nan, 3, 4, np.nan, np.nan, np.nan, np.nan], index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y']], names=['A', 'B']), name='values') tm.assert_series_equal(result, expected) def test_count(self): s = Series(Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) result = s.count() self.assertEqual(result, 2) def test_sort(self): c = Categorical(["a", "b", "b", "a"], ordered=False) cat = Series(c) # 9816 deprecated with tm.assert_produces_warning(FutureWarning): c.order() # sort in the categories order expected = Series( Categorical(["a", "a", "b", "b"], ordered=False), index=[0, 3, 1, 2]) result = cat.sort_values() tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "c", "b", "d"], ordered=True)) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(res.__array__(), exp) cat = Series(Categorical(["a", "c", "b", "d"], categories=[ "a", "b", "c", "d"], ordered=True)) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"]) self.assert_numpy_array_equal(res.__array__(), exp) raw_cat1 = Categorical(["a", "b", "c", "d"], categories=["a", "b", "c", "d"], ordered=False) raw_cat2 = Categorical(["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True) s = ["a", "b", "c", "d"] df = DataFrame({"unsort": raw_cat1, "sort": raw_cat2, "string": s, "values": [1, 2, 3, 4]}) # Cats must be sorted in a dataframe res = df.sort_values(by=["string"], ascending=False) exp = np.array(["d", "c", "b", "a"]) self.assert_numpy_array_equal(res["sort"].values.__array__(), exp) self.assertEqual(res["sort"].dtype, "category") res = df.sort_values(by=["sort"], ascending=False) exp = df.sort_values(by=["string"], ascending=True) self.assert_numpy_array_equal(res["values"], exp["values"]) self.assertEqual(res["sort"].dtype, "category") self.assertEqual(res["unsort"].dtype, "category") # unordered cat, but we allow this df.sort_values(by=["unsort"], ascending=False) # multi-columns sort # GH 7848 df = DataFrame({"id": [6, 5, 4, 3, 2, 1], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df["grade"] = pd.Categorical(df["raw_grade"], ordered=True) df['grade'] = df['grade'].cat.set_categories(['b', 'e', 'a']) # sorts 'grade' according to the order of the categories result = df.sort_values(by=['grade']) expected = df.iloc[[1, 2, 5, 0, 3, 4]] tm.assert_frame_equal(result, expected) # multi result = df.sort_values(by=['grade', 'id']) expected = df.iloc[[2, 1, 5, 4, 3, 0]] tm.assert_frame_equal(result, expected) # reverse cat = Categorical(["a", "c", "c", "b", "d"], ordered=True) res = cat.sort_values(ascending=False) exp_val = np.array(["d", "c", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) # some NaN positions cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='last') exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='first') exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='first') exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='last') exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) def test_slicing(self): cat = Series(Categorical([1, 2, 3, 4])) reversed = cat[::-1] exp = np.array([4, 3, 2, 1]) self.assert_numpy_array_equal(reversed.__array__(), exp) df = DataFrame({'value': (np.arange(100) + 1).astype('int64')}) df['D'] = pd.cut(df.value, bins=[0, 25, 50, 75, 100]) expected = Series([11, '(0, 25]'], index=['value', 'D'], name=10) result = df.iloc[10] tm.assert_series_equal(result, expected) expected = DataFrame({'value': np.arange(11, 21).astype('int64')}, index=np.arange(10, 20).astype('int64')) expected['D'] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100]) result = df.iloc[10:20] tm.assert_frame_equal(result, expected) expected = Series([9, '(0, 25]'], index=['value', 'D'], name=8) result = df.loc[8] tm.assert_series_equal(result, expected) def test_slicing_and_getting_ops(self): # systematically test the slicing operations: # for all slicing ops: # - returning a dataframe # - returning a column # - returning a row # - returning a single value cats = pd.Categorical( ["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"]) idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 2, 3, 4, 5, 6, 7] df = pd.DataFrame({"cats": cats, "values": values}, index=idx) # the expected values cats2 = pd.Categorical(["b", "c"], categories=["a", "b", "c"]) idx2 = pd.Index(["j", "k"]) values2 = [3, 4] # 2:4,: | "j":"k",: exp_df = pd.DataFrame({"cats": cats2, "values": values2}, index=idx2) # :,"cats" | :,0 exp_col = pd.Series(cats, index=idx, name='cats') # "j",: | 2,: exp_row = pd.Series(["b", 3], index=["cats", "values"], dtype="object", name="j") # "j","cats | 2,0 exp_val = "b" # iloc # frame res_df = df.iloc[2:4, :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.iloc[2, :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.iloc[2, 0] self.assertEqual(res_val, exp_val) # loc # frame res_df = df.loc["j":"k", :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.loc["j", :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.loc[:, "cats"] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.loc["j", "cats"] self.assertEqual(res_val, exp_val) # ix # frame # res_df = df.ix["j":"k",[0,1]] # doesn't work? res_df = df.ix["j":"k", :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.ix["j", :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.ix[:, "cats"] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.ix["j", 0] self.assertEqual(res_val, exp_val) # iat res_val = df.iat[2, 0] self.assertEqual(res_val, exp_val) # at res_val = df.at["j", "cats"] self.assertEqual(res_val, exp_val) # fancy indexing exp_fancy = df.iloc[[2]] res_fancy = df[df["cats"] == "b"] tm.assert_frame_equal(res_fancy, exp_fancy) res_fancy = df[df["values"] == 3] tm.assert_frame_equal(res_fancy, exp_fancy) # get_value res_val = df.get_value("j", "cats") self.assertEqual(res_val, exp_val) # i : int, slice, or sequence of integers res_row = df.iloc[2] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) res_df = df.iloc[slice(2, 4)] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_df = df.iloc[[2, 3]] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) res_df = df.iloc[:, slice(0, 2)] tm.assert_frame_equal(res_df, df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_df = df.iloc[:, [0, 1]] tm.assert_frame_equal(res_df, df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) def test_slicing_doc_examples(self): # GH 7918 cats = Categorical( ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c"]) idx = Index(["h", "i", "j", "k", "l", "m", "n", ]) values = [1, 2, 2, 2, 3, 4, 5] df = DataFrame({"cats": cats, "values": values}, index=idx) result = df.iloc[2:4, :] expected = DataFrame( {"cats": Categorical( ['b', 'b'], categories=['a', 'b', 'c']), "values": [2, 2]}, index=['j', 'k']) tm.assert_frame_equal(result, expected) result = df.iloc[2:4, :].dtypes expected = Series(['category', 'int64'], ['cats', 'values']) tm.assert_series_equal(result, expected) result = df.loc["h":"j", "cats"] expected = Series(Categorical(['a', 'b', 'b'], categories=['a', 'b', 'c']), index=['h', 'i', 'j'], name='cats') tm.assert_series_equal(result, expected) result = df.ix["h":"j", 0:1] expected = DataFrame({'cats': Series( Categorical( ['a', 'b', 'b'], categories=['a', 'b', 'c']), index=['h', 'i', 'j'])}) tm.assert_frame_equal(result, expected) def test_assigning_ops(self): # systematically test the assigning operations: # for all slicing ops: # for value in categories and value not in categories: # - assign a single value -> exp_single_cats_value # - assign a complete row (mixed values) -> exp_single_row # assign multiple rows (mixed values) (-> array) -> exp_multi_row # assign a part of a column with dtype == categorical -> # exp_parts_cats_col # assign a part of a column with dtype != categorical -> # exp_parts_cats_col cats = pd.Categorical( ["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"]) idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 1, 1, 1, 1, 1, 1] orig = pd.DataFrame({"cats": cats, "values": values}, index=idx) # the expected values # changed single row cats1 = pd.Categorical( ["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx1 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values1 = [1, 1, 2, 1, 1, 1, 1] exp_single_row = pd.DataFrame( {"cats": cats1, "values": values1}, index=idx1) # changed multiple rows cats2 = pd.Categorical( ["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx2 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values2 = [1, 1, 2, 2, 1, 1, 1] exp_multi_row = pd.DataFrame( {"cats": cats2, "values": values2}, index=idx2) # changed part of the cats column cats3 = pd.Categorical( ["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx3 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values3 = [1, 1, 1, 1, 1, 1, 1] exp_parts_cats_col = pd.DataFrame( {"cats": cats3, "values": values3}, index=idx3) # changed single value in cats col cats4 = pd.Categorical( ["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx4 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values4 = [1, 1, 1, 1, 1, 1, 1] exp_single_cats_value = pd.DataFrame( {"cats": cats4, "values": values4}, index=idx4) # iloc # ############### # - assign a single value -> exp_single_cats_value df = orig.copy() df.iloc[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.iloc[df.index == "j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.iloc[2, 0] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.iloc[2, :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.iloc[2, :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.iloc[2:4, :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.iloc[2:4, :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.iloc[2:4, 0] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.iloc[2:4, 0] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.iloc[2:4, 0] = ["c", "c"] # loc # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.loc["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.loc[df.index == "j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.loc["j", "cats"] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.loc["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.loc["j", :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.loc["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.loc["j":"k", :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.loc["j":"k", "cats"] = ["c", "c"] # ix # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.ix["j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.ix[df.index == "j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.ix["j", 0] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.ix["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.ix["j", :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.ix["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.ix["j":"k", :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.ix["j":"k", 0] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.ix["j":"k", 0] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.ix["j":"k", 0] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.ix["j":"k", 0] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.ix["j":"k", 0] = ["c", "c"] # iat df = orig.copy() df.iat[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.iat[2, 0] = "c" self.assertRaises(ValueError, f) # at # - assign a single value -> exp_single_cats_value df = orig.copy() df.at["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.at["j", "cats"] = "c" self.assertRaises(ValueError, f) # fancy indexing catsf = pd.Categorical( ["a", "a", "c", "c", "a", "a", "a"], categories=["a", "b", "c"]) idxf = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) valuesf = [1, 1, 3, 3, 1, 1, 1] df = pd.DataFrame({"cats": catsf, "values": valuesf}, index=idxf) exp_fancy = exp_multi_row.copy() exp_fancy["cats"].cat.set_categories(["a", "b", "c"], inplace=True) df[df["cats"] == "c"] = ["b", 2] tm.assert_frame_equal(df, exp_multi_row) # set_value df = orig.copy() df.set_value("j", "cats", "b") tm.assert_frame_equal(df, exp_single_cats_value) def f(): df = orig.copy() df.set_value("j", "cats", "c") self.assertRaises(ValueError, f) # Assigning a Category to parts of a int/... column uses the values of # the Catgorical df = pd.DataFrame({"a": [1, 1, 1, 1, 1], "b": ["a", "a", "a", "a", "a"]}) exp = pd.DataFrame({"a": [1, "b", "b", 1, 1], "b": ["a", "a", "b", "b", "a"]}) df.loc[1:2, "a"] = pd.Categorical(["b", "b"], categories=["a", "b"]) df.loc[2:3, "b"] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp) # Series orig = Series(pd.Categorical(["b", "b"], categories=["a", "b"])) s = orig.copy() s[:] = "a" exp = Series(pd.Categorical(["a", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[1] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[s.index > 0] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[[False, True]] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s.index = ["x", "y"] s["y"] = "a" exp = Series( pd.Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"]) tm.assert_series_equal(s, exp) # ensure that one can set something to np.nan s = Series(Categorical([1, 2, 3])) exp = Series(Categorical([1, np.nan, 3])) s[1] = np.nan tm.assert_series_equal(s, exp) def test_comparisons(self): tests_data = [(list("abc"), list("cba"), list("bbb")), ([1, 2, 3], [3, 2, 1], [2, 2, 2])] for data, reverse, base in tests_data: cat_rev = pd.Series(pd.Categorical(data, categories=reverse, ordered=True)) cat_rev_base = pd.Series(pd.Categorical(base, categories=reverse, ordered=True)) cat = pd.Series(pd.Categorical(data, ordered=True)) cat_base = pd.Series(pd.Categorical( base, categories=cat.cat.categories, ordered=True)) s = Series(base) a = np.array(base) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = Series([True, False, False]) tm.assert_series_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = Series([False, False, True]) tm.assert_series_equal(res_rev, exp_rev) res = cat > cat_base exp = Series([False, False, True]) tm.assert_series_equal(res, exp) scalar = base[1] res = cat > scalar exp = Series([False, False, True]) exp2 = cat.values > scalar tm.assert_series_equal(res, exp) tm.assert_numpy_array_equal(res.values, exp2) res_rev = cat_rev > scalar exp_rev = Series([True, False, False]) exp_rev2 = cat_rev.values > scalar tm.assert_series_equal(res_rev, exp_rev) tm.assert_numpy_array_equal(res_rev.values, exp_rev2) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) # categorical cannot be compared to Series or numpy array, and also # not the other way around self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # unequal comparison should raise for unordered cats cat = Series(Categorical(list("abc"))) def f(): cat > "b" self.assertRaises(TypeError, f) cat = Series(Categorical(list("abc"), ordered=False)) def f(): cat > "b" self.assertRaises(TypeError, f) # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = Series(Categorical(list("abc"), ordered=True)) self.assertRaises(TypeError, lambda: cat < "d") self.assertRaises(TypeError, lambda: cat > "d") self.assertRaises(TypeError, lambda: "d" < cat) self.assertRaises(TypeError, lambda: "d" > cat) self.assert_series_equal(cat == "d", Series([False, False, False])) self.assert_series_equal(cat != "d", Series([True, True, True])) # And test NaN handling... cat = Series(Categorical(["a", "b", "c", np.nan])) exp = Series([True, True, True, False]) res = (cat == cat) tm.assert_series_equal(res, exp) def test_cat_equality(self): # GH 8938 # allow equality comparisons a = Series(list('abc'), dtype="category") b = Series(list('abc'), dtype="object") c = Series(['a', 'b', 'cc'], dtype="object") d = Series(list('acb'), dtype="object") e = Categorical(list('abc')) f = Categorical(list('acb')) # vs scalar self.assertFalse((a == 'a').all()) self.assertTrue(((a != 'a') == ~(a == 'a')).all()) self.assertFalse(('a' == a).all()) self.assertTrue((a == 'a')[0]) self.assertTrue(('a' == a)[0]) self.assertFalse(('a' != a)[0]) # vs list-like self.assertTrue((a == a).all()) self.assertFalse((a != a).all()) self.assertTrue((a == list(a)).all()) self.assertTrue((a == b).all()) self.assertTrue((b == a).all()) self.assertTrue(((~(a == b)) == (a != b)).all()) self.assertTrue(((~(b == a)) == (b != a)).all()) self.assertFalse((a == c).all()) self.assertFalse((c == a).all()) self.assertFalse((a == d).all()) self.assertFalse((d == a).all()) # vs a cat-like self.assertTrue((a == e).all()) self.assertTrue((e == a).all()) self.assertFalse((a == f).all()) self.assertFalse((f == a).all()) self.assertTrue(((~(a == e) == (a != e)).all())) self.assertTrue(((~(e == a) == (e != a)).all())) self.assertTrue(((~(a == f) == (a != f)).all())) self.assertTrue(((~(f == a) == (f != a)).all())) # non-equality is not comparable self.assertRaises(TypeError, lambda: a < b) self.assertRaises(TypeError, lambda: b < a) self.assertRaises(TypeError, lambda: a > b) self.assertRaises(TypeError, lambda: b > a) def test_concat(self): cat = pd.Categorical(["a", "b"], categories=["a", "b"]) vals = [1, 2] df = pd.DataFrame({"cats": cat, "vals": vals}) cat2 = pd.Categorical(["a", "b", "a", "b"], categories=["a", "b"]) vals2 = [1, 2, 1, 2] exp = pd.DataFrame({"cats": cat2, "vals": vals2}, index=pd.Index([0, 1, 0, 1])) res = pd.concat([df, df]) tm.assert_frame_equal(exp, res) # Concat should raise if the two categoricals do not have the same # categories cat3 = pd.Categorical(["a", "b"], categories=["a", "b", "c"]) vals3 = [1, 2] df_wrong_categories = pd.DataFrame({"cats": cat3, "vals": vals3}) def f(): pd.concat([df, df_wrong_categories]) self.assertRaises(ValueError, f) # GH 7864 # make sure ordering is preserverd df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df["grade"] = pd.Categorical(df["raw_grade"]) df['grade'].cat.set_categories(['e', 'a', 'b']) df1 = df[0:3] df2 = df[3:] self.assert_numpy_array_equal(df['grade'].cat.categories, df1['grade'].cat.categories) self.assert_numpy_array_equal(df['grade'].cat.categories, df2['grade'].cat.categories) dfx = pd.concat([df1, df2]) dfx['grade'].cat.categories self.assert_numpy_array_equal(df['grade'].cat.categories, dfx['grade'].cat.categories) def test_concat_preserve(self): # GH 8641 # series concat not preserving category dtype s = Series(list('abc'), dtype='category') s2 = Series(list('abd'), dtype='category') def f(): pd.concat([s, s2]) self.assertRaises(ValueError, f) result = pd.concat([s, s], ignore_index=True) expected = Series(list('abcabc')).astype('category') tm.assert_series_equal(result, expected) result = pd.concat([s, s]) expected = Series( list('abcabc'), index=[0, 1, 2, 0, 1, 2]).astype('category') tm.assert_series_equal(result, expected) a = Series(np.arange(6, dtype='int64')) b = Series(list('aabbca')) df2 = DataFrame({'A': a, 'B': b.astype('category', categories=list('cab'))}) result = pd.concat([df2, df2]) expected = DataFrame({'A': pd.concat([a, a]), 'B': pd.concat([b, b]).astype( 'category', categories=list('cab'))}) tm.assert_frame_equal(result, expected) def test_categorical_index_preserver(self): a = Series(np.arange(6, dtype='int64')) b = Series(list('aabbca')) df2 = DataFrame({'A': a, 'B': b.astype('category', categories=list( 'cab'))}).set_index('B') result = pd.concat([df2, df2]) expected = DataFrame({'A': pd.concat([a, a]), 'B': pd.concat([b, b]).astype( 'category', categories=list( 'cab'))}).set_index('B') tm.assert_frame_equal(result, expected) # wrong catgories df3 = DataFrame({'A': a, 'B': b.astype('category', categories=list( 'abc'))}).set_index('B') self.assertRaises(TypeError, lambda: pd.concat([df2, df3])) def test_append(self): cat = pd.Categorical(["a", "b"], categories=["a", "b"]) vals = [1, 2] df = pd.DataFrame({"cats": cat, "vals": vals}) cat2 = pd.Categorical(["a", "b", "a", "b"], categories=["a", "b"]) vals2 = [1, 2, 1, 2] exp = pd.DataFrame({"cats": cat2, "vals": vals2}, index=pd.Index([0, 1, 0, 1])) res = df.append(df) tm.assert_frame_equal(exp, res) # Concat should raise if the two categoricals do not have the same # categories cat3 = pd.Categorical(["a", "b"], categories=["a", "b", "c"]) vals3 = [1, 2] df_wrong_categories = pd.DataFrame({"cats": cat3, "vals": vals3}) def f(): df.append(df_wrong_categories) self.assertRaises(ValueError, f) def test_merge(self): # GH 9426 right = DataFrame({'c': {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e'}, 'd': {0: 'null', 1: 'null', 2: 'null', 3: 'null', 4: 'null'}}) left = DataFrame({'a': {0: 'f', 1: 'f', 2: 'f', 3: 'f', 4: 'f'}, 'b': {0: 'g', 1: 'g', 2: 'g', 3: 'g', 4: 'g'}}) df = pd.merge(left, right, how='left', left_on='b', right_on='c') # object-object expected = df.copy() # object-cat cright = right.copy() cright['d'] = cright['d'].astype('category') result = pd.merge(left, cright, how='left', left_on='b', right_on='c') tm.assert_frame_equal(result, expected) # cat-object cleft = left.copy() cleft['b'] = cleft['b'].astype('category') result = pd.merge(cleft, cright, how='left', left_on='b', right_on='c') tm.assert_frame_equal(result, expected) # cat-cat cright = right.copy() cright['d'] = cright['d'].astype('category') cleft = left.copy() cleft['b'] = cleft['b'].astype('category') result = pd.merge(cleft, cright, how='left', left_on='b', right_on='c') tm.assert_frame_equal(result, expected) def test_repeat(self): # GH10183 cat = pd.Categorical(["a", "b"], categories=["a", "b"]) exp = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b"]) res = cat.repeat(2) self.assert_categorical_equal(res, exp) def test_na_actions(self): cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) vals = ["a", "b", np.nan, "d"] df = pd.DataFrame({"cats": cat, "vals": vals}) cat2 = pd.Categorical([1, 2, 3, 3], categories=[1, 2, 3]) vals2 = ["a", "b", "b", "d"] df_exp_fill = pd.DataFrame({"cats": cat2, "vals": vals2}) cat3 =
pd.Categorical([1, 2, 3], categories=[1, 2, 3])
pandas.Categorical
import pickle import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import scipy.stats as scp_stats import pandas as pd import matplotlib matplotlib.rcParams.update({'font.size': 15}) def box_plot_data(tot_df, label, units, type_order, type_color, y_lim_top, out_fig_name): # Drop NaN elements. tmp_df = tot_df[tot_df[label].notnull()] # Arrange data into a list of numpy arrays. type_data = [] for type_key in type_order: type_data.append(tmp_df[tmp_df['type']==type_key][label].values) fig, ax = plt.subplots(figsize = (7, 5)) box = ax.boxplot(type_data, patch_artist=True, sym='c.') # notch=True for patch, color in zip(box['boxes'], [type_color[type_key] for type_key in type_order]): patch.set_facecolor(color) for i, type_key in enumerate(type_order): ax.errorbar([i+1], [type_data[i].mean()], yerr=[type_data[i].std() / np.sqrt(1.0 * type_data[i].size)], marker='o', ms=8, color='k', linewidth=2, capsize=5, markeredgewidth=2, ecolor='k', elinewidth=2) ind = np.where(type_data[i] > y_lim_top)[0] ax.annotate(u'$\u2191$'+'\n%d/%d' % (ind.size, type_data[i].size), xy=(i+1.2, 1.0*y_lim_top), fontsize=12) ax.set_ylim((0.0, y_lim_top)) ax.set_xticks(range(1, len(type_order)+1)) ax.set_xticklabels(type_order) if (units == ''): ax.set_ylabel('%s' % (label)) else: ax.set_ylabel('%s (%s)' % (label, units)) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.tick_params(size=10) plt.savefig(out_fig_name, format='eps') plt.show() cell_db_path = '/allen/aibs/mat/antona/network/14-simulations/9-network/analysis/' # Decide which systems we are doing analysis for. sys_dict = {} # sys_dict['ll1'] = { 'cells_file': cell_db_path + '../build/ll1.csv', 'f_out': cell_db_path + 'Ori/ll1_rates.npy', 'f_out_pref': cell_db_path + 'Ori/ll1_pref_stat.csv'} # sys_dict['ll2'] = { 'cells_file': cell_db_path + '../build/ll2.csv', 'f_out': cell_db_path + 'Ori/ll2_rates.npy', 'f_out_pref': cell_db_path + 'Ori/ll2_pref_stat.csv'} # sys_dict['ll3'] = { 'cells_file': cell_db_path + '../build/ll3.csv', 'f_out': cell_db_path + 'Ori/ll3_rates.npy', 'f_out_pref': cell_db_path + 'Ori/ll3_pref_stat.csv'} #sys_dict['rl1'] = { 'cells_file': '../build/rl1.csv', 'f_out': 'Ori/rl1_rates.npy', 'f_out_pref': 'Ori/rl1_pref_stat.csv'} #sys_dict['rl2'] = { 'cells_file': '../build/rl2.csv', 'f_out': 'Ori/rl2_rates.npy', 'f_out_pref': 'Ori/rl2_pref_stat.csv'} #sys_dict['rl3'] = { 'cells_file': '../build/rl3.csv', 'f_out': 'Ori/rl3_rates.npy', 'f_out_pref': 'Ori/rl3_pref_stat.csv'} #sys_dict['lr1'] = { 'cells_file': '../build/lr1.csv', 'f_out': 'Ori/lr1_rates.npy', 'f_out_pref': 'Ori/lr1_pref_stat.csv'} #sys_dict['lr2'] = { 'cells_file': '../build/lr2.csv', 'f_out': 'Ori/lr2_rates.npy', 'f_out_pref': 'Ori/lr2_pref_stat.csv'} #sys_dict['lr3'] = { 'cells_file': '../build/lr3.csv', 'f_out': 'Ori/lr3_rates.npy', 'f_out_pref': 'Ori/lr3_pref_stat.csv'} #sys_dict['rr1'] = { 'cells_file': '../build/rr1.csv', 'f_out': 'Ori/rr1_rates.npy', 'f_out_pref': 'Ori/rr1_pref_stat.csv'} #sys_dict['rr2'] = { 'cells_file': '../build/rr2.csv', 'f_out': 'Ori/rr2_rates.npy', 'f_out_pref': 'Ori/rr2_pref_stat.csv'} #sys_dict['rr3'] = { 'cells_file': '../build/rr3.csv', 'f_out': 'Ori/rr3_rates.npy', 'f_out_pref': 'Ori/rr3_pref_stat.csv'} #sys_dict['ll2_TF4Hz'] = { 'cells_file': '../build/ll2.csv', 'f_out': 'Ori/ll2_rates_4Hz.npy', 'f_out_pref': 'Ori/ll2_pref_stat_4Hz.csv' } # sys_dict['ll1_LIF'] = { 'cells_file': cell_db_path + '../build/ll1.csv', 'f_out': '../analysis_intFire1/analysis_ll/Ori/ll1_rates.npy', 'f_out_pref': '../analysis_intFire1/analysis_ll/Ori/ll1_pref_stat.csv'} # sys_dict['ll2_LIF'] = { 'cells_file': cell_db_path + '../build/ll2.csv', 'f_out': '../analysis_intFire1/analysis_ll/Ori/ll2_rates.npy', 'f_out_pref': '../analysis_intFire1/analysis_ll/Ori/ll2_pref_stat.csv'} # sys_dict['ll3_LIF'] = { 'cells_file': cell_db_path + '../build/ll3.csv', 'f_out': '../analysis_intFire1/analysis_ll/Ori/ll3_rates.npy', 'f_out_pref': '../analysis_intFire1/analysis_ll/Ori/ll3_pref_stat.csv'} #sys_dict['rl1_LIF'] = { 'cells_file': '../build/rl1.csv', 'f_out': 'Ori_LIF/rl1_rates.npy', 'f_out_pref': 'Ori_LIF/rl1_pref_stat.csv'} #sys_dict['rl2_LIF'] = { 'cells_file': '../build/rl2.csv', 'f_out': 'Ori_LIF/rl2_rates.npy', 'f_out_pref': 'Ori_LIF/rl2_pref_stat.csv'} #sys_dict['rl3_LIF'] = { 'cells_file': '../build/rl3.csv', 'f_out': 'Ori_LIF/rl3_rates.npy', 'f_out_pref': 'Ori_LIF/rl3_pref_stat.csv'} #sys_dict['lr1_LIF'] = { 'cells_file': '../build/lr1.csv', 'f_out': 'Ori_LIF/lr1_rates.npy', 'f_out_pref': 'Ori_LIF/lr1_pref_stat.csv'} #sys_dict['lr2_LIF'] = { 'cells_file': '../build/lr2.csv', 'f_out': 'Ori_LIF/lr2_rates.npy', 'f_out_pref': 'Ori_LIF/lr2_pref_stat.csv'} #sys_dict['lr3_LIF'] = { 'cells_file': '../build/lr3.csv', 'f_out': 'Ori_LIF/lr3_rates.npy', 'f_out_pref': 'Ori_LIF/lr3_pref_stat.csv'} #sys_dict['rr1_LIF'] = { 'cells_file': '../build/rr1.csv', 'f_out': 'Ori_LIF/rr1_rates.npy', 'f_out_pref': 'Ori_LIF/rr1_pref_stat.csv'} #sys_dict['rr2_LIF'] = { 'cells_file': '../build/rr2.csv', 'f_out': 'Ori_LIF/rr2_rates.npy', 'f_out_pref': 'Ori_LIF/rr2_pref_stat.csv'} #sys_dict['rr3_LIF'] = { 'cells_file': '../build/rr3.csv', 'f_out': 'Ori_LIF/rr3_rates.npy', 'f_out_pref': 'Ori_LIF/rr3_pref_stat.csv'} sys_dict['ll1_LIF'] = { 'cells_file': cell_db_path + '../build/ll1.csv', 'f_out': '../analysis_intFire4/analysis_ll/Ori/ll1_rates.npy', 'f_out_pref': '../analysis_intFire4/analysis_ll/Ori/ll1_pref_stat.csv'} sys_dict['ll2_LIF'] = { 'cells_file': cell_db_path + '../build/ll2.csv', 'f_out': '../analysis_intFire4/analysis_ll/Ori/ll2_rates.npy', 'f_out_pref': '../analysis_intFire4/analysis_ll/Ori/ll2_pref_stat.csv'} sys_dict['ll3_LIF'] = { 'cells_file': cell_db_path + '../build/ll3.csv', 'f_out': '../analysis_intFire4/analysis_ll/Ori/ll3_rates.npy', 'f_out_pref': '../analysis_intFire4/analysis_ll/Ori/ll3_pref_stat.csv'} # result_fig_prefix = 'Ori/new_Ori_bio_ll' # result_fig_prefix = 'Ori/new_Ori_lif1_ll' result_fig_prefix = 'Ori/new_Ori_lif4_ll' result_fig_CV_ori = result_fig_prefix + '_CV_ori.eps' result_fig_DSI = result_fig_prefix + '_DSI.eps' type_color = {'Scnn1a': 'darkorange', 'Rorb': 'red', 'Nr5a1': 'magenta', 'PV1': 'blue', 'PV2': 'cyan', 'AnL4E': 'gray', 'AwL4E': 'gray', 'AnI': 'gray', 'AwI': 'gray'} type_order = ['Scnn1a', 'Rorb', 'Nr5a1', 'AnL4E', 'AwL4E', 'PV1', 'PV2', 'AnI', 'AwI'] # Read files with OSI and DSI from simulations. sim_df = pd.DataFrame() for sys_name in sys_dict.keys(): tmp_df = pd.read_csv(sys_dict[sys_name]['f_out_pref'], sep=' ') cells_df = pd.read_csv(sys_dict[sys_name]['cells_file'], sep=' ') cells_df_1 = pd.DataFrame() cells_df_1['id'] = cells_df['index'].values cells_df_1['type'] = cells_df['type'].values tmp_df = pd.merge(tmp_df, cells_df_1, on='id', how='inner') # Combine dataframes from all systems into one file. sim_df =
pd.concat([sim_df, tmp_df], axis=0)
pandas.concat
""" 2018 <NAME> train_models_given_z.py This script will loop through different combinations of latent space dimensionality, train a distinct model, and save associated decoder weights and z matrices. The script will need to pull appropriate hyperparameters from respective files after several initial sweeps testing various hyperparameter combinations with different z dimensionality. The script will fit several different compression algorithms and output results. The results include the weight matrices and z matrices of the models with the lowest reconstruction loss. The total stability of reconstruction losses are represented through the variability associated with each model after retraining several times given the argument for number of seeds. We also report the determinants of correlation matrices for all iterations. These values measure the stability of either latent space (z) matrices or weight matrices across several rounds of fitting. In this case, as the determinants approach zero, the more stable solutions are. Usage: python run_model_with_input_dimensions.py With required command line arguments: --num_components The z dimensionality we're testing --param_config A tsv file (param by z dimension) indicating the specific parameter combination for the z dimension --out_dir The directory to store the output files And optional command line arguments --num_seeds The number of specific models to generate default: 5 """ import os import argparse import numpy as np import pandas as pd from tybalt.data_models import DataModel def get_lowest_loss(matrix_list, reconstruction_df, algorithms=['pca', 'ica', 'nmf', 'dae', 'vae']): """ Determine the specific model with the lowest loss using reconstruction cost Arguments: matrix_list - list of matrices (either weight or z matrices) reconstruction_df - pandas DataFrame (seed by reconstruction error) algorithms - which algorithms to consider Output: Single matrix of the "best" alternative matrices by lowest recon error """ final_matrix_list = [] for alg in algorithms: # Get lowest reconstruction error across iterations for an algorithm min_recon_subset = reconstruction_df.loc[:, alg].idxmin() # subset the matrix to the minimum loss best_matrix = matrix_list[min_recon_subset] # Extract the algorithm specific columns from the concatenated matrix use_cols = best_matrix.columns.str.startswith(alg) best_matrix_subset = best_matrix.loc[:, use_cols] # Build the final matrix that will eventually be output final_matrix_list.append(best_matrix_subset) return
pd.concat(final_matrix_list, axis=1)
pandas.concat
from typing import List import pandas as pd import plotly.graph_objs as go from plotly.subplots import make_subplots import streamlit as st CLOSE_MATCH_DIFF = 10 COLORS = ['#EC7063', '#AF7AC5', '#5DADE2', '#48C9B0', '#F9E79F', '#E59866', '#F06292', '#58D68D', '#AED6F1', '#F8BBD0', '#6488EA', '#76424E', '#E4CBFF', '#FEF69E', '#BCECAC', '#13EAC9'] COLORS += COLORS MARKERS = ['circle', 'square', 'diamond', 'cross', 'x', 'triangle-up', 'triangle-down', 'triangle-left', 'triangle-right', 'pentagon', 'star', 'star-diamond', 'diamond-tall', 'diamond-wide', 'hourglass'] MARKERS += MARKERS[::-1] class schedule: def __init__(self, wide: pd.DataFrame): self.long =
pd.melt(wide, id_vars=['Week'], var_name='Player', value_name='Vs')
pandas.melt
from app import app from bokeh.embed import components from bokeh.plotting import figure, show from bokeh.resources import INLINE from bokeh.models import ColumnDataSource, HoverTool from bokeh.palettes import brewer from bokeh.models import NumeralTickFormatter from flask import render_template, flash, redirect, url_for, request, jsonify, session from flask_login import current_user, login_user, logout_user, login_required from datetime import datetime from app.db import get_db, query from app.plot import vbar, vbar_stack, line, multiline import numpy as np import pandas as pd import math @app.route('/customer', methods=['GET', 'POST']) @login_required def customer(): ''' Render order page ''' date_start = request.form.get('date_start', '2018-01-01') date_end = request.form.get('date_end', '2018-01-31') if request.form.get('time_frame') is None: time_frame = 'date' else: time_frame = request.form.get('time_frame') time_dict = {'date': 'date', 'ww': 'week', 'mon': 'month', 'q': 'quarter'} # Active customer number trend act_data = get_customer_trend(date_start, date_end, time_frame) act_js, act_div = line(act_data, time_dict[time_frame], 'customer_number', 'number') # Order number by geo for each category geo_data = get_num_order_by_geo(date_start, date_end) geo_js, geo_div = vbar_stack(geo_data, 'category', 'order_number', 'number', brewer['Spectral'][9], 1, 'northeast', 'east', 'southeast', 'north', 'south', 'west', 'southwest', 'northwest', 'middle') # Geo order trend geo_trend_data = get_geo_order_trend(date_start, date_end, time_frame) geo_trend_js, geo_trend_div = multiline(geo_trend_data, time_dict[time_frame], 'order_number', 'number', 'northeast', 'east', 'southeast', 'north', 'south', 'west', 'southwest', 'northwest', 'middle') # Repeat order (same prodcut > 2 times) repeat_data = get_repeat_order_by_time(date_start, date_end) repeat_js, repeat_div = vbar_stack(repeat_data, 'category', 'order_number', 'number', ["#3cba54", "#f4c20b"], 0.8, 'repeated', 'unrepeated') # Order number by gender for each category gender_data = get_num_order_by_gender_cat(date_start, date_end) gender_js, gender_div = vbar_stack(gender_data, 'category', 'order_number', 'number', ["#da3337", "#4986ec"], 0.8, 'female', 'male') # Customer state distribution for top 10 states customer_geo_data = get_customer_by_geo(date_start, date_end) customer_geo_js, customer_geo_div = vbar(customer_geo_data, 'state', 'number', 'number') # grab the static resources js_resources = INLINE.render_js() css_resources = INLINE.render_css() html = render_template( 'customer.html', act_js=act_js, act_div=act_div, customer_geo_js=customer_geo_js, customer_geo_div=customer_geo_div, repeat_js=repeat_js, repeat_div=repeat_div, gender_js=gender_js, gender_div=gender_div, geo_js=geo_js, geo_div=geo_div, geo_trend_js=geo_trend_js, geo_trend_div=geo_trend_div, js_resources=js_resources, css_resources=css_resources, date_start=date_start, date_end=date_end, ) return html def get_customer_trend(date_start, date_end, time_frame): """ Return the trend of active customer number in the time range """ time_dict = {'date': 'date', 'ww': 'week', 'mon': 'month', 'q': 'quarter'} if time_frame == 'date' or time_frame is None: # None is used for switch page default frame sql = f""" select salesdate, count(unique customerID) from sales where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') group by salesdate order by salesdate """ rows = query(sql) df = pd.DataFrame(columns=['date', 'customer_number']) for row in rows: df.loc[len(df), :] = row df['date'] = pd.to_datetime(df['date']) else: sql = f""" select to_char(salesdate, '{time_frame}'), count(unique customerID) from sales where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and salesdate is Not null group by to_char(salesdate, '{time_frame}') order by to_char(salesdate, '{time_frame}') """ rows = query(sql) df = pd.DataFrame(columns=[time_dict[time_frame], 'customer_number']) for row in rows: df.loc[len(df), :] = row return df def get_num_order_by_geo(date_start, date_end): """ Return the number of orders in different geo region for each category in time range. """ sql = f""" with geo_cat as (select count(salesID) as order_num, city.zipcode as zipcode, productcategory.name as category from customer, sales, product, productcategory, city where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and customer.customerID = sales.customerID and sales.productID = product.productID and product.categoryID = productcategory.categoryID and customer.city = city.cityID group by zipcode, productcategory.name) select category, sum(case when zipcode between 0 and 19999 then order_num else 0 end) as northeast, sum(case when zipcode between 20000 and 29999 then order_num else 0 end) as east, sum(case when zipcode between 30000 and 39999 then order_num else 0 end) as southeast, sum(case when zipcode between 40000 and 59999 then order_num else 0 end) as north, sum(case when zipcode between 70000 and 79999 then order_num else 0 end) as south, sum(case when zipcode between 84000 and 95000 then order_num else 0 end) as west, sum(case when zipcode between 95001 and 96999 then order_num else 0 end) as southwest, sum(case when zipcode between 97000 and 99999 then order_num else 0 end) as nouthwest, sum(case when zipcode between 60000 and 69999 or zipcode between 80000 and 83999 then order_num else 0 end) as middle from geo_cat group by category """ rows = query(sql) df = pd.DataFrame(columns=['category', 'northeast', 'east', 'southeast', 'north', 'south', 'west', 'southwest', 'northwest', 'middle']) for row in rows: df.loc[len(df), :] = row return df def get_geo_order_trend(date_start, date_end, time_frame): """ Return trend of order number in different geo region in time range. """ basis_dict = {'revenue': 'sum(sales.total)', 'order_number': 'count(sales.salesID)'} time_dict = {'date': 'date', 'ww': 'week', 'mon': 'month', 'q': 'quarter'} if time_frame == 'date' or time_frame is None: # None is used for switch page default frame sql = f''' select salesdate, sum(case when zipcode between 0 and 19999 then order_num else 0 end) as northeast, sum(case when zipcode between 20000 and 29999 then order_num else 0 end) as east, sum(case when zipcode between 30000 and 39999 then order_num else 0 end) as southeast, sum(case when zipcode between 40000 and 59999 then order_num else 0 end) as north, sum(case when zipcode between 70000 and 79999 then order_num else 0 end) as south, sum(case when zipcode between 84000 and 95000 then order_num else 0 end) as west, sum(case when zipcode between 95001 and 96999 then order_num else 0 end) as southwest, sum(case when zipcode between 97000 and 99999 then order_num else 0 end) as nouthwest, sum(case when zipcode between 60000 and 69999 or zipcode between 80000 and 83999 then order_num else 0 end) as middle from (select salesdate, count(salesID) as order_num, city.zipcode as zipcode from customer, sales, city where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and customer.customerID = sales.customerID and customer.city = city.cityID group by salesdate, zipcode) group by salesdate order by salesdate ''' rows = query(sql) df = pd.DataFrame(columns=['date', 'northeast', 'east', 'southeast', 'north', 'south', 'west', 'southwest', 'northwest', 'middle']) for row in rows: df.loc[len(df), :] = row df['date'] = pd.to_datetime(df['date']) else: sql = f''' select range, sum(case when zipcode between 0 and 19999 then order_num else 0 end) as northeast, sum(case when zipcode between 20000 and 29999 then order_num else 0 end) as east, sum(case when zipcode between 30000 and 39999 then order_num else 0 end) as southeast, sum(case when zipcode between 40000 and 59999 then order_num else 0 end) as north, sum(case when zipcode between 70000 and 79999 then order_num else 0 end) as south, sum(case when zipcode between 84000 and 95000 then order_num else 0 end) as west, sum(case when zipcode between 95001 and 96999 then order_num else 0 end) as southwest, sum(case when zipcode between 97000 and 99999 then order_num else 0 end) as nouthwest, sum(case when zipcode between 60000 and 69999 or zipcode between 80000 and 83999 then order_num else 0 end) as middle from (select to_char(salesdate, '{time_frame}') as range, count(salesID) as order_num, city.zipcode as zipcode from customer, sales, city where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and customer.customerID = sales.customerID and customer.city = city.cityID group by to_char(salesdate, '{time_frame}'), zipcode) group by range order by range ''' rows = query(sql) df = pd.DataFrame(columns=[time_dict[time_frame], 'northeast', 'east', 'southeast', 'north', 'south', 'west', 'southwest', 'northwest', 'middle']) for row in rows: df.loc[len(df), :] = row return df def get_repeat_order_by_time(date_start, date_end): """ Return the number of repeated purchases (same prodcut > 2 times) and the total number of orders for different category with the time range. """ sql = f""" with orders as (select sales.customerID as customer_id, productcategory.name as category, sales.salesID as salesID from customer, sales, product, productcategory where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and customer.customerID = sales.customerID and sales.productID = product.productID and product.categoryID = productcategory.categoryID) select avg(number_total), sum(number_repeat) as repeat, cat1 as category from (select count(salesID) as number_total, category as cat1 from orders group by category ) inner join (select count(salesID) as number_repeat, category as cat2 from orders group by customer_id, category having count(salesID) > 2 ) on cat1 = cat2 group by cat1 """ # the reason use avg(number_total) is after the group by, # for the same category, each row has same value for number_total rows = query(sql) df =
pd.DataFrame(columns=['total', 'repeated', 'category'])
pandas.DataFrame
# -*- coding: utf-8 -*- import sys, os import pandas as pd import openpyxl from openpyxl.styles import PatternFill import numpy as np from collections import defaultdict from scanner_map import searchKey, CertifiedManufacturerModelNameCTDict, CertifiedManufacturerCTDict, TrueManufacturerModelNameCTDict, TrueManufacturerCTDict from scanner_map import ScannerType, CertifiedManufacturerModelNameICADict, CertifiedManufacturerICADict, TrueManufacturerModelNameICADict, TrueManufacturerICADict from datetime import datetime from openpyxl.utils import get_column_letter from openpyxl.styles import Font, Color, Border, Side from openpyxl.styles.differential import DifferentialStyle from openpyxl.formatting import Rule def highlight_columns(sheet, columns=[], color='A5A5A5', offset=2): for col in columns: cell = sheet.cell(1, col+offset) cell.fill = PatternFill(start_color=color, end_color=color, fill_type = 'solid') return sheet def merge_defaultdicts(d,d1): for k,v in d1.items(): if (k in d): d[k].update(d1[k]) else: d[k] = d1[k] return d def covertDate(date_str): month_lookup = defaultdict(lambda: None, {'JAN':1, 'FEB':2, 'MAR':3, 'APR':4, 'MAY':5, 'JUN':6, 'JUL':7, 'AUG':8,'SEP':9, 'OCT':10,'NOV':11, 'DEC':12}) day = str(date_str[0:2]) month = str(month_lookup[date_str[2:5]]) year = date_str[5:9] s = year + month + day return datetime.strptime(s, '%Y%m%d') def checkModalities(modList0, modList1): for m0 in modList0: for m1 in modList1: if m0==m1: return True return False def splitScannerList(filepath_scanner): #filepath_scanner = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/scanner_correspondence_V05_manual.xlsx' df_scanner = pd.read_excel(filepath_scanner, 'linear', index_col=0) df_missing_CT = pd.DataFrame(columns=df_scanner.columns) df_missing_XA = pd.DataFrame(columns=df_scanner.columns) df_missing = df_scanner[(df_scanner['ECRF_MISSING']==True) & (df_scanner['ITT']!=2)] for index, row in df_missing.iterrows(): if 'DICOM XA' in row['ManualCheck']: df_missing_XA = df_missing_XA.append(row) if 'DICOM CT' in row['ManualCheck']: df_missing_CT = df_missing_CT.append(row) # Update CT sheet writer = pd.ExcelWriter(filepath_scanner, engine="openpyxl", mode="a") # Update CT sheet sheet_name = 'ECRF_MISSING_CT' workbook = writer.book df_missing_CT.to_excel(writer, sheet_name=sheet_name, index=False) sheet = workbook[sheet_name] # Update XA sheet sheet_name = 'ECRF_MISSING_XA' workbook = writer.book df_missing_XA.to_excel(writer, sheet_name=sheet_name, index=False) sheet = workbook[sheet_name] writer.save() # Read discharge data filepath_dicom = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/discharge_dicom_27082020_OT.xlsx' filepath_ecrf_study = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/ecrf_study_20200827.xlsx' filepath_scanner_old = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/scanner_correspondence_V04_manual.xlsx' filepath_scanner = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/scanner_correspondence.xlsx' df_dicom = pd.read_excel(filepath_dicom, 'linear', index_col=0) #df_dicom=df_dicom[0:1000] df_dicom.replace(to_replace=[np.nan], value='', inplace=True) df_ecrf = pd.read_excel(filepath_ecrf_study, 'Tabelle1') #df_ecrf=df_ecrf[0:1000] df_scanner_old = pd.read_excel(filepath_scanner_old, 'linear', index_col=0) df_scanner_old.replace(to_replace=[np.nan], value='', inplace=True) columns_scanner_rename=['PatientID', 'Site', 'ITT', 'RD_MB', '1. Date of CT', 'Date of ICA scan', 'Date of ICA scan 2', 'Date of staged PCI 1', 'Date of staged PCI 2', 'Date of staged PCI 3', 'duplicate entry', 'FFR', 'MRI_visite', 'Date of Echo', 'Date of PET', 'Date of SPECT:', 'Date of FU_CT-scan', 'Date cec_ct', 'Date pet ct', 'Date ldct', 'ldct 3m', 'ldct 6m', 'ldct 12m', 'Date FU ICA scan'] columns_scanner=['PatientID', 'Site', 'ITT', 'RD_MB', '1. Date of CT', '1. Date of CT StudyInstanceUID', 'Date of ICA scan', 'Date of ICA scan StudyInstanceUID', 'Date of ICA scan 2', 'Date of ICA scan 2 StudyInstanceUID', 'Date of staged PCI 1', 'Date of staged PCI 1 StudyInstanceUID', 'Date of staged PCI 2', 'Date of staged PCI 2 StudyInstanceUID', 'Date of staged PCI 3', 'Date of staged PCI 3 StudyInstanceUID', 'duplicate entry', 'FFR', 'FFR StudyInstanceUID', 'MRI_visite', 'Date of Echo', 'Date of Echo StudyInstanceUID', 'Date of PET', 'Date of PET StudyInstanceUID', 'Date of SPECT:', 'Date of SPECT: StudyInstanceUID', 'Date of FU_CT-scan', 'Date of FU_CT-scan StudyInstanceUID', 'Date cec_ct', 'Date cec_ct StudyInstanceUID', 'Date pet ct', 'Date pet ct StudyInstanceUID', 'Date ldct', 'Date ldct StudyInstanceUID', 'ldct 3m', 'ldct 3m StudyInstanceUID', 'ldct 6m', 'ldct 6m StudyInstanceUID', 'ldct 12m', 'ldct 12m StudyInstanceUID', 'Date FU ICA scan', 'Date FU ICA scan StudyInstanceUID'] columns_scanner_missing = [x for x in columns_scanner if x not in columns_scanner_rename] #columns_result = ['OK', 'DICOM_MISSING', 'ECRF_MISSING', 'DICOM_ECRF_MISMATCH'] columns_result = ['DICOM_MISSING', 'ECRF_MISSING', 'ECRF_MISSING_SeriesInstanceUID'] columns_ecrf=['Patient identifier', 'Centre name (mnpctrname)', 'ITT', 'RD_MB', '1. Date of CT', 'Date of ICA scan', 'Date of ICA scan 2', 'Date of staged PCI 1', 'Date of staged PCI 2', 'Date of staged PCI 3', 'duplicate entry ', 'FFR', 'MRI_visite', 'Date of Echo', 'Date of PET', 'Date of SPECT:', 'Date of FU_CT-scan:', 'Date cec_ct', 'Date pet ct', 'Date ldct:', 'ldct 3m', 'ldct 6m', 'ldct 12m', 'Date FU ICA scan:'] dates_required = ['1. Date of CT', 'Date of ICA scan', 'Date of ICA scan 2', 'Date of staged PCI 1', 'Date of staged PCI 2', 'Date of staged PCI 3'] modalities_required = defaultdict(lambda: None, {'1. Date of CT': ['CT'], 'Date of ICA scan': ['XA'], 'Date of ICA scan 2': ['XA'], 'Date of staged PCI 1': ['XA'], 'Date of staged PCI 2': ['XA'], 'Date of staged PCI 3': ['XA']}) dates_sidestudy = ['FFR','Date of Echo', 'Date of PET', 'Date of SPECT:', 'Date of FU_CT-scan', 'Date cec_ct', 'Date pet ct', 'Date ldct', 'ldct 3m', 'ldct 6m','ldct 12m', 'Date FU ICA scan'] modalities_sidestudy = defaultdict(lambda: None, {'FFR': ['XA'], 'Date of Echo': ['US'], 'Date of PET': ['CT','PT'], 'Date of SPECT:': ['CT','NM'], 'Date of FU_CT-scan': ['CT'], 'Date cec_ct': ['CT'], 'Date pet ct': ['PT'], 'Date ldct': ['CT'], 'ldct 3m': ['CT'], 'ldct 6m': ['CT'],'ldct 12m': ['CT'], 'Date FU ICA scan': ['XA']}) dates_all = dates_required + dates_sidestudy # f = 'H:/cloud/cloud_data/Projects/BIOQIC/08_Research/PACSServer/date.sas7bdat' # f = 'C:/Users/bernifoellmer/Downloads/SASVisualForecasting_sampledatasets/skinproduct_vfdemo.sas7bdat' # db = pd.read_sas(f) # Create dataframe with patient per line df_scanner =
pd.DataFrame()
pandas.DataFrame
# coding: utf-8 # # From Multilayer Networks to Deep Graphs # ## The Noordin Top Terrorist Data # ### Preprocessing # In[1]: # data i/o import os import subprocess import zipfile # for plots import matplotlib.pyplot as plt # the usual import numpy as np import pandas as pd import deepgraph as dg # notebook display # get_ipython().magic('matplotlib inline') # pd.options.display.max_rows = 10 # pd.set_option('expand_frame_repr', False) # ### Preprocessing the Nodes # In[2]: # zip file containing node attributes os.makedirs("tmp", exist_ok=True) get_nodes_zip = ("wget -O tmp/terrorist_nodes.zip " "https://sites.google.com/site/sfeverton18/" "research/appendix-1/Noordin%20Subset%20%28ORA%29.zip?" "attredirects=0&d=1") subprocess.call(get_nodes_zip.split()) # unzip zf = zipfile.ZipFile('tmp/terrorist_nodes.zip') zf.extract('Attributes.csv', path='tmp/') zf.close() # create node table v = pd.read_csv('tmp/Attributes.csv') v.rename(columns={'Unnamed: 0': 'Name'}, inplace=True) # create a copy of all nodes for each layer (i.e., create "node-layers") # there are 10 layers and 79 nodes on each layer v = pd.concat(10*[v]) # add "aspect" as column to v layer_names = ['Business', 'Communication', 'O Logistics', 'O Meetings', 'O Operations', 'O Training', 'T Classmates', 'T Friendship', 'T Kinship', 'T Soulmates'] layers = [[name]*79 for name in layer_names] layers = [item for sublist in layers for item in sublist] v['layer'] = layers # set unique node index v.reset_index(inplace=True) v.rename(columns={'index': 'V_N'}, inplace=True) # swap columns cols = list(v) cols[1], cols[10] = cols[10], cols[1] v = v[cols] # get rid of the attribute columns for demonstrational purposes, # will be inserted again later v, vinfo = v.iloc[:, :2], v.iloc[:, 2:] # ### Preprocessing the Edges # In[3]: # paj file containing edges for different layers get_paj = ("wget -O tmp/terrorists.paj " "https://sites.google.com/site/sfeverton18/" "research/appendix-1/Noordin%20Subset%20%28Pajek%29.paj?" "attredirects=0&d=1") subprocess.call(get_paj.split()) # get data blocks from paj file with open('tmp/terrorists.paj') as txtfile: comments = [] data = [] part = [] for line in txtfile: if line.startswith('*'): # comment lines comment = line comments.append(comment) if part: data.append(part) part = [] else: # vertices if comment.startswith('*Vertices') and len(line.split()) > 1: sublist = line.split('"') sublist = sublist[:2] + sublist[-1].split() part.append(sublist) # edges or partitions elif not line.isspace(): part.append(line.split()) # append last block data.append(part) # extract edge tables from data blocks ecomments = [] eparts = [] for i, c in enumerate(comments): if c.startswith('*Network'): del data[0] elif c.startswith('*Partition'): del data[0] elif c.startswith('*Vector'): del data[0] elif c.startswith('*Arcs') or c.startswith('*Edges'): ecomments.append(c) eparts.append(data.pop(0)) # layer data parts (indices found manually via comments) inds = [11, 10, 5, 6, 7, 8, 0, 1, 2, 3] eparts = [eparts[ind] for ind in inds] # convert to DataFrames layer_frames = [] for name, epart in zip(layer_names, eparts): frame = pd.DataFrame(epart, dtype=np.int16) # get rid of self-loops, bidirectional edges frame = frame[frame[0] < frame[1]] # rename columns frame.rename(columns={0: 's', 1: 't', 2: name}, inplace=True) frame['s'] -= 1 frame['t'] -= 1 layer_frames.append(frame) # set indices for i, e in enumerate(layer_frames): e['s'] += i*79 e['t'] += i*79 e.set_index(['s', 't'], inplace=True) # concat the layers e =
pd.concat(layer_frames)
pandas.concat
import pandas as pd import sys, os from collections import OrderedDict from viola.core.bedpe import Bedpe from viola.core.vcf import Vcf from typing import ( List, Optional, ) class MultiBedpe(Bedpe): """ A database-like object that contains information of multiple BEDPE files. In this class, main keys in most tables are "global id" instead of using "SV id" from SV callers. "global id" is unique ID of all the SV record across all the samples. """ _internal_attrs = [ "_df_id", "_df_patients", "_df_svpos", "_odict_df_info", "_ls_patients", "_ls_infokeys", "_odict_alltables", "_repr_config", "_sig_criteria" ] _internal_attrs_set = set(_internal_attrs) _repr_column_names = [ "id", "bp1", "bp2", "strand", "qual", "svtype", ] _repr_column_names_set = set(_repr_column_names) def __init__( self, ls_bedpe: List[Bedpe] = None, ls_patient_names: List[str] = None, direct_tables: Optional[List[pd.DataFrame]] = None ): if direct_tables is None: df_id, df_patients, df_svpos, odict_df_info = self.__init__from_ls_bedpe(ls_bedpe, ls_patient_names) self.__init__common(df_id, df_patients, df_svpos, odict_df_info) else: self.__init__common(*direct_tables) def __init__from_ls_bedpe(self, ls_bedpe, ls_patient_names): ls_df_id = [] ls_df_svpos = [] dict_ls_df_info = dict() ls_patient_id = [i for i in range(len(ls_patient_names))] df_patients = pd.DataFrame({'id': ls_patient_id, 'patients': ls_patient_names}) for bedpe, patient_id, patient_name in zip(ls_bedpe, ls_patient_id, ls_patient_names): df_svpos = bedpe.get_table('positions') df_id = df_svpos[['id']].copy() df_id['patient_id'] = patient_id df_id['global_id'] = str(patient_name) + '_' + df_id['id'].astype(str) df_id = df_id[['global_id', 'patient_id', 'id']] ls_df_id.append(df_id) df_svpos['id'] = str(patient_name) + '_' + df_svpos['id'].astype(str) ls_df_svpos.append(df_svpos) for key, value in bedpe._odict_df_info.items(): value = value.copy() value['id'] = str(patient_name) + '_' + value['id'].astype(str) if dict_ls_df_info.get(key) is None: dict_ls_df_info[key] = [value] else: dict_ls_df_info[key].append(value) df_concat_id = pd.concat(ls_df_id, ignore_index=True) df_concat_svpos = pd.concat(ls_df_svpos, ignore_index=True) odict_df_info = OrderedDict() for key, value in dict_ls_df_info.items(): odict_df_info[key] = pd.concat(value) return (df_concat_id, df_patients, df_concat_svpos, odict_df_info) def __init__common(self, df_id, df_patients, df_svpos, odict_df_info): self._df_id = df_id self._df_patients = df_patients self._ls_patients = df_patients['patients'].to_list() self._df_svpos = df_svpos self._odict_df_info = odict_df_info self._ls_infokeys = [x.lower() for x in odict_df_info.keys()] ls_keys = ['global_id', 'patients', 'positions'] + self._ls_infokeys ls_values = [df_id, df_patients, df_svpos] + list(odict_df_info.values()) self._odict_alltables = OrderedDict([(k, v) for k, v in zip(ls_keys, ls_values)]) self._repr_config = { 'info': None, } def filter_by_id(self, arrlike_id): """ filter_by_id(arrlike_id) Filter MultiBedpe object according to the list of SV ids. Return object is also an instance of the MultiBedpe object Parameters --------------- arrlike_id: list-like Global ids which you would like to keep. Returns --------------- MultiBedpe A MultiBedpe object with the SV id specified in the arrlike_id argument. All records associated with SV ids that are not in the arrlike_id will be discarded. """ df_global_id = self.get_table('global_id') out_global_id = df_global_id.loc[df_global_id['global_id'].isin(arrlike_id)].reset_index(drop=True) out_patients = self.get_table('patients') out_svpos = self._filter_by_id('positions', arrlike_id) out_odict_df_info = OrderedDict([(k, self._filter_by_id(k, arrlike_id)) for k in self._ls_infokeys]) return MultiBedpe(direct_tables=[out_global_id, out_patients, out_svpos, out_odict_df_info]) def classify_manual_svtype(self, definitions=None, ls_conditions=None, ls_names=None, ls_order=None, return_data_frame=True, exclude_empty_cases=False): """ classify_manual_svtype(definitions, ls_conditions, ls_names, ls_order=None, exclude_empty_cases=False) Classify SV records by user-defined criteria. A new INFO table named 'manual_sv_type' will be created. Parameters ------------ definitions: path_or_buf or str, default None Path to the file which specifies the definitions of custom SV classification. This argument is disabled when "ls_condition" is not None. If "default" is specified, the simple length-based SV classification will be employed. If "article" is specified, the same definition file which was used in the Viola publication will be reflected. Below is the links to each of definition file you can specify on this method. "default" -> https://github.com/dermasugita/Viola-SV/blob/master/examples/demo_sig/resources/definitions/sv_class_default.txt "article" -> https://github.com/dermasugita/Viola-SV/blob/master/examples/demo_sig/resources/definitions/sv_class_article.txt ls_conditions: List[callable] or List[str], default None List of definitions of custom SV classification. The data type of the elements in the list can be callable or SV ID (str). callable --> Functions that takes a self and returns a list of SV ID that satisfy the conditions of the SV class to be defined. SV ID --> Lists of SV ID that satisfy the conditions of the SV class to be defined. This argument is disabled when "definitions" is not None. ls_names: List[str], default None List of the names of the custom SV class corresponding to the "ls_conditions". This argument is disabled when "definitions" is not None. return_series: bool, default True Return counts of each custom SV class as a pd.Series. exclude_empty_cases: bool, default False If True, samples which have no SV record will be excluded. Returns --------- pd.DataFrame or None """ set_ids_current = set(self.ids) obj = self ls_ids = [] ls_result_names = [] if definitions is not None: if isinstance(definitions, str): if definitions == "default": d = os.path.dirname(sys.modules["viola"].__file__) definitions = os.path.join(d, "data/sv_class_default.txt") ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) elif definitions == "article": d = os.path.dirname(sys.modules["viola"].__file__) definitions = os.path.join(d, "data/sv_class_article.txt") ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) else: ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) else: ls_conditions, ls_names = self._parse_signature_definition_file(definitions) for cond, name in zip(ls_conditions, ls_names): obj = obj.filter_by_id(set_ids_current) if callable(cond): ids = cond(obj) else: ids = cond set_ids = set(ids) set_ids_intersection = set_ids_current & set_ids ls_ids += list(set_ids_intersection) ls_result_names += [name for i in range(len(set_ids_intersection))] set_ids_current = set_ids_current - set_ids_intersection ls_ids += list(set_ids_current) ls_result_names += ['others' for i in range(len(set_ids_current))] ls_zeros = [0 for i in range(len(self.ids))] df_result = pd.DataFrame({'id': ls_ids, 'value_idx': ls_zeros, 'manual_sv_type': ls_result_names}) self.add_info_table('manual_sv_type', df_result) if return_data_frame: if ls_order is None: pd_ind_reindex = pd.Index(ls_names + ['others']) else: pd_ind_reindex = pd.Index(ls_order) df_feature_counts = self.get_feature_count_as_data_frame(ls_order=pd_ind_reindex, exclude_empty_cases=exclude_empty_cases) return df_feature_counts def get_feature_count_as_data_frame(self, feature='manual_sv_type', ls_order=None, exclude_empty_cases=False): df_feature = self.get_table(feature) df_id = self.get_table('global_id') df_patients = self.get_table('patients') df_merged = pd.merge(df_feature, df_id, left_on='id', right_on='global_id') df_merged = df_merged.merge(df_patients, left_on='patient_id', right_on='id') df_feature_counts = df_merged.pivot_table('global_id', index='patients', columns=feature, aggfunc='count', fill_value=0) if not exclude_empty_cases: df_feature_counts = df_feature_counts.reindex(self._ls_patients, fill_value=0) if ls_order is not None: pd_ind_reindex = pd.Index(ls_order, name=feature) df_feature_counts = df_feature_counts.reindex(columns=pd_ind_reindex, fill_value=0) return df_feature_counts class MultiVcf(Vcf): """ A database-like object that contains information of multiple Vcf files. In this class, main keys in most tables are "global id" instead of using "SV id" from SV callers. "global id" is unique ID of all the SV record across all the samples. """ _internal_attrs = [ "_df_id", "_df_patients", "_df_svpos", "_odict_df_info", "_ls_patients", "_ls_infokeys", "_odict_alltables", "_repr_config", "_sig_criteria" ] _internal_attrs_set = set(_internal_attrs) _repr_column_names = [ "id", "bp1", "bp2", "strand", "qual", "svtype", ] _repr_column_names_set = set(_repr_column_names) def __init__( self, ls_vcf: List[Vcf] = None, ls_patient_names: List[str] = None, direct_tables: Optional[List[pd.DataFrame]] = None ): if direct_tables is None: df_id, df_patients, df_svpos, df_filters, odict_df_info, df_formats, odict_df_headers = self.__init__from_ls_vcf(ls_vcf, ls_patient_names) self.__init__common(df_id, df_patients, df_svpos, df_filters, odict_df_info, df_formats, odict_df_headers) else: self.__init__common(*direct_tables) def __init__from_ls_vcf(self, ls_vcf, ls_patient_names): ls_df_id = [] ls_df_svpos = [] ls_df_filters = [] odict_ls_df_info = OrderedDict() ls_df_formats = [] odict_ls_df_headers = OrderedDict() # Header Integration for vcf, patient_name in zip(ls_vcf, ls_patient_names): for key, value in vcf._odict_df_headers.items(): value = value.copy() if odict_ls_df_headers.get(key) is None: odict_ls_df_headers[key] = [value] else: odict_ls_df_headers[key].append(value) odict_df_headers = OrderedDict() for key, value in odict_ls_df_headers.items(): for idx, df in enumerate(value): if idx == 0: df_merged = df continue on = list(df_merged.columns) df_merged = df_merged.merge(df, how='outer', on=on) odict_df_headers[key] = df_merged # /Header Integration ls_patient_id = [i for i in range(len(ls_patient_names))] df_patients = pd.DataFrame({'id': ls_patient_id, 'patients': ls_patient_names}) for vcf, patient_id, patient_name in zip(ls_vcf, ls_patient_id, ls_patient_names): df_svpos = vcf.get_table('positions') df_filters = vcf.get_table('filters') df_formats = vcf.get_table('formats') df_id = df_svpos[['id']].copy() df_id['patient_id'] = patient_id df_id['global_id'] = str(patient_name) + '_' + df_id['id'].astype(str) df_id = df_id[['global_id', 'patient_id', 'id']] ls_df_id.append(df_id) df_svpos['id'] = str(patient_name) + '_' + df_svpos['id'].astype(str) ls_df_svpos.append(df_svpos) df_filters['id'] = str(patient_name) + '_' + df_filters['id'].astype(str) ls_df_filters.append(df_filters) df_formats['id'] = str(patient_name) + '_' + df_formats['id'].astype(str) ls_df_formats.append(df_formats) for info in odict_df_headers['infos_meta'].id: df_info_ = vcf._odict_df_info.get(info, None) if df_info_ is None: df_info = pd.DataFrame(columns=('id', 'value_idx', info.lower())) else: df_info = df_info_.copy() df_info['id'] = str(patient_name) + '_' + df_info['id'].astype(str) if odict_ls_df_info.get(info) is None: odict_ls_df_info[info] = [df_info] else: odict_ls_df_info[info].append(df_info) df_concat_id = pd.concat(ls_df_id, ignore_index=True) df_concat_svpos = pd.concat(ls_df_svpos, ignore_index=True) df_concat_filters = pd.concat(ls_df_filters, ignore_index=True) df_concat_formats = pd.concat(ls_df_formats, ignore_index=True) odict_df_info = OrderedDict() for key, value in odict_ls_df_info.items(): odict_df_info[key] = pd.concat(value) return (df_concat_id, df_patients, df_concat_svpos, df_concat_filters, odict_df_info, df_concat_formats, odict_df_headers) def __init__common(self, df_id, df_patients, df_svpos, df_filters, odict_df_info, df_formats, odict_df_headers = {}): self._df_id = df_id self._df_patients = df_patients self._df_svpos = df_svpos self._df_filters = df_filters self._odict_df_info = odict_df_info self._df_formats = df_formats self._odict_df_headers = odict_df_headers self._ls_patients = df_patients['patients'].to_list() self._ls_infokeys = [ x.lower() for x in odict_df_headers['infos_meta']['id'].tolist()] ls_keys = ['global_id', 'patients', 'positions', 'filters'] + self._ls_infokeys + ['formats'] + \ list(odict_df_headers.keys()) ls_values = [df_id, df_patients, df_svpos, df_filters] + list(odict_df_info.values()) + [df_formats] + list(odict_df_headers.values()) self._odict_alltables = OrderedDict([(k, v) for k, v in zip(ls_keys, ls_values)]) self._repr_config = { 'info': None, } def filter_by_id(self, arrlike_id): """ filter_by_id(arrlike_id) Filter MultiBedpe object according to the list of SV ids. Return object is also an instance of the MultiBedpe object Parameters --------------- arrlike_id: list-like Global ids which you would like to keep. Returns --------------- MultiBedpe A MultiBedpe object with the SV id specified in the arrlike_id argument. All records associated with SV ids that are not in the arrlike_id will be discarded. """ df_global_id = self.get_table('global_id') out_global_id = df_global_id.loc[df_global_id['global_id'].isin(arrlike_id)].reset_index(drop=True) out_patients = self.get_table('patients') out_svpos = self._filter_by_id('positions', arrlike_id) out_filters = self._filter_by_id('filters', arrlike_id) out_odict_df_info = OrderedDict([(k, self._filter_by_id(k, arrlike_id)) for k in self._ls_infokeys]) out_formats = self._filter_by_id('formats', arrlike_id) out_odict_df_headers = self._odict_df_headers.copy() return MultiVcf(direct_tables=[out_global_id, out_patients, out_svpos, out_filters, out_odict_df_info, out_formats, out_odict_df_headers]) def classify_manual_svtype(self, definitions=None, ls_conditions=None, ls_names=None, ls_order=None, return_data_frame=True, exclude_empty_cases=False): """ classify_manual_svtype(definitions, ls_conditions, ls_names, ls_order=None, exclude_empty_cases=False) Classify SV records by user-defined criteria. A new INFO table named 'manual_sv_type' will be created. Parameters ------------ definitions: path_or_buf or str, default None Path to the file which specifies the definitions of custom SV classification. This argument is disabled when "ls_condition" is not None. If "default" is specified, the simple length-based SV classification will be employed. If "article" is specified, the same definition file which was used in the Viola publication will be reflected. Below is the links to each of definition file you can specify on this method. "default" -> https://github.com/dermasugita/Viola-SV/blob/master/examples/demo_sig/resources/definitions/sv_class_default.txt "article" -> https://github.com/dermasugita/Viola-SV/blob/master/examples/demo_sig/resources/definitions/sv_class_article.txt ls_conditions: List[callable] or List[str], default None List of definitions of custom SV classification. The data type of the elements in the list can be callable or SV ID (str). callable --> Functions that takes a self and returns a list of SV ID that satisfy the conditions of the SV class to be defined. SV ID --> Lists of SV ID that satisfy the conditions of the SV class to be defined. This argument is disabled when "definitions" is not None. ls_names: List[str], default None List of the names of the custom SV class corresponding to the "ls_conditions". This argument is disabled when "definitions" is not None. return_series: bool, default True Return counts of each custom SV class as a pd.Series. exclude_empty_cases: bool, default False If True, samples which have no SV record will be excluded. Returns --------- pd.DataFrame or None """ set_ids_current = set(self.ids) obj = self ls_ids = [] ls_result_names = [] if definitions is not None: if isinstance(definitions, str): if definitions == "default": d = os.path.dirname(sys.modules["viola"].__file__) definitions = os.path.join(d, "data/sv_class_default.txt") ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) elif definitions == "article": d = os.path.dirname(sys.modules["viola"].__file__) definitions = os.path.join(d, "data/sv_class_article.txt") ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) else: ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) else: ls_conditions, ls_names = self._parse_signature_definition_file(definitions) for cond, name in zip(ls_conditions, ls_names): obj = obj.filter_by_id(set_ids_current) if callable(cond): ids = cond(obj) else: ids = cond set_ids = set(ids) set_ids_intersection = set_ids_current & set_ids ls_ids += list(set_ids_intersection) ls_result_names += [name for i in range(len(set_ids_intersection))] set_ids_current = set_ids_current - set_ids_intersection ls_ids += list(set_ids_current) ls_result_names += ['others' for i in range(len(set_ids_current))] ls_zeros = [0 for i in range(len(self.ids))] df_result = pd.DataFrame({'id': ls_ids, 'value_idx': ls_zeros, 'manual_sv_type': ls_result_names}) self.add_info_table('manual_sv_type', df_result, number=1, type_='String', description='Custom SV class defined by user') if return_data_frame: if ls_order is None: pd_ind_reindex =
pd.Index(ls_names + ['others'])
pandas.Index
from crop_model_en import Irrigation class Optimization(Irrigation): def __init__(self): super().__init__() self.year=None self.optimal_dates_irrigation = None self.num_process = 12 self.optimizer_counter = 0 self.container_of_mean_yields = [] self.container_of_mean_water_loss = [] self.container_of_irrigation_amount = [] self.irrigation_dates_for_many_years_optim = None def minimize_function_20_years_hpc(self, x): """ Minimize this to define optimal day for irrigation """ inputs_years = np.arange(self.NASA_start_year, self.NASA_start_year+20) #dates_irrigation = self.irrigation_dates(x) self.irrigation_dates_for_many_years_optim = self.irrigation_dates(x) pool = multiprocessing.Pool(processes=self.num_process) crop_sim_for_20_years = pool.map(self.crop_hpc_20_years, inputs_years) yield_of_crop_sim_for_20_years = [crop_sim_for_20_years[i]['TWSO'][-1] for i in range(len(crop_sim_for_20_years))] out = np.mean(yield_of_crop_sim_for_20_years) return -out def minimize_function_20_years(self, x): """ Minimize this to define optimal day for irrigation for 20 first years """ inputs_years = np.arange(self.NASA_start_year, self.NASA_start_year+20) #dates_irrigation = self.irrigation_dates(x) self.irrigation_dates_for_many_years_optim = self.irrigation_dates(x) crop_sim_for_20_years = [] for year in inputs_years: #change year from json-year to historical self.date_crop_start = self.year_changer(self.user_parameters['crop_start'],year) self.date_crop_end = self.year_changer(self.user_parameters['crop_end'],year) #convet dates from int to dt.datetime dates_irrigation = self.irrigation_dates(x) #Setup irrigation ammount amounts = [3. for _ in range(len(dates_irrigation))] dates_irrigation = [self.year_changer(obj, year) for obj in dates_irrigation] dates_npk, npk_list = self.user_parameters['npk_events'], self.user_parameters['npk'] dates_npk = [self.year_changer(obj, year) for obj in dates_npk] agromanagement = self.agromanager_writer(self.user_parameters['crop_name'], dates_irrigation, dates_npk, amounts, npk_list) self.load_model() self.run_simulation_manager(agromanagement) output = pd.DataFrame(self.output).set_index("day") crop_sim_for_20_years.append(output) #select only last day crop yield yield_of_crop_sim_for_20_years = [crop_sim_for_20_years[i]['TWSO'][-1] for i in range(len(crop_sim_for_20_years))] # calculate mean out = np.mean(yield_of_crop_sim_for_20_years) return -out def crop_hpc_20_years(self, year): self.date_crop_start = self.year_changer(self.user_parameters['crop_start'],year) self.date_crop_end = self.year_changer(self.user_parameters['crop_end'],year) ## main dif here, we use self.irrigation dates instead of user_parameters dates_irrigation = self.irrigation_dates_for_many_years_optim amounts = [3. for _ in range(len(dates_irrigation))] dates_irrigation = [self.year_changer(obj, year) for obj in dates_irrigation] dates_npk, npk_list = self.user_parameters['npk_events'], self.user_parameters['npk'] dates_npk = [self.year_changer(obj, year) for obj in dates_npk] agromanagement = self.agromanager_writer(self.user_parameters['crop_name'], dates_irrigation, dates_npk, amounts, npk_list) self.load_model() self.run_simulation_manager(agromanagement) output =
pd.DataFrame(self.output)
pandas.DataFrame
# # # # # # # # # # # # # # # # # # # # # # # # By <NAME> # # Version 0.0.1 # # # # # # # # # # # # # # # # # # # # # # # # import numpy as np from math import pi import pandas as pd from itertools import cycle from bokeh.plotting import figure from bokeh.tile_providers import get_provider from bokeh.models import Title, ColumnDataSource, Circle from bokeh.transform import cumsum from bokeh.palettes import brewer,all_palettes,Category20c from bokeh.transform import dodge import datetime ############################################################################### color_limits = ['#259B00','#CFE301','#FF5733','#900C3F'] hi_limits = np.array([0.25,0.5,0.75,1]) pkmn_colors = ['#78C850', # Grass '#F08030', # Fire '#6890F0', # Water '#A8B820', # Bug #'#A8A878', # Normal '#A040A0', # Poison '#F8D030', # Electric #'#E0C068', # Ground #'#EE99AC', # Fairy '#C03028', # Fighting '#F85888', # Psychic '#B8A038', # Rock '#705898', # Ghost '#98D8D8', # Ice '#7038F8', # Dragon ] pkmn_type_colors = cycle(pkmn_colors) def limit_color(val): color_id = np.where(hi_limits>val)[-1] color_id = color_id[0] color = color_limits[color_id] return color ### Plot Maps def Plot_Asset_Location(Data, TITLE,Index='HI',Factor=1): TOOLTIPS = [ #("Ranking", "$index"), ("Name", "@Name"), ("Substation", "@Loc"), #("Brand", "@Brand"), ("Year", "@Year"), ("HI", "@HI"), ("EL", "@EL"), #("RI", "@RI"), #("OI", "@OI"), ("Type", "@Type"), ] lat = Data.Loc_x lon = Data.Loc_y df = Data.copy() df['lat'] = lat df['lon'] = lon df['size'] = (1+np.exp(df[Index].values*4))*2 df['colors'] = [limit_color(i) for i in df[Index].values] #df = df.drop(['geometry'], axis=1) source = ColumnDataSource(df) x_min = np.amin(lat) #-8324909 x_max = np.amax(lat) #-8148798 y_min = np.amin(lon) #417040 y_max = np.amax(lon) #673868 fig = figure(x_range=(x_min,x_max), y_range=(y_min,y_max), x_axis_type="mercator", y_axis_type="mercator",tooltips=TOOLTIPS,sizing_mode='stretch_width') circle = Circle(x="lat", y="lon", size='size', fill_color='colors', fill_alpha=0.5, line_color=None) fig.add_tile(get_provider('CARTODBPOSITRON')) fig.add_glyph(source, circle) return fig # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Plot_Pie_Count(df,col,title="Pie Chart"): df1 = df.groupby([col]).count() df1['count'] = df1.iloc[:, 0] df1['angle'] = df1['count']/df1['count'].sum() * 2*pi n = len(df1) color_list = cycle(pkmn_colors) color = [next(color_list)for i in range(n)] df1['color'] = color # Choose color fig = Plot_Pie(df1,title="Pie Chart") return fig # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def Plot_Pie_Parm(df,df_porf,col,title="Pie Chart"): df1 = df.copy() df1 = df1.sort_values(by=[col],ascending=False) df1['count'] = df['Name'] df1['angle'] = df1[col]/df1[col].sum() * 2*pi df_data = pd.merge(df1, df_porf, on='Name',how='inner') # Choose color df_c = pd.DataFrame() df_c['Type'] = df_porf['Type'].unique() n = len(df_c) color_list = cycle(pkmn_colors) color = [next(color_list)for i in range(n)] df_c['color'] = color df_data =
pd.merge(df_data, df_c, on='Type',how='inner')
pandas.merge
""" Trading-Technical-Indicators (tti) python library File name: test_indicators_common.py tti.indicators package, Abstract class for common unit tests applicable for all the indicators. """ from abc import ABC, abstractmethod import pandas as pd import matplotlib.pyplot as plt import copy import numpy as np from tti.utils.exceptions import NotEnoughInputData, \ WrongTypeForInputParameter, WrongValueForInputParameter class TestIndicatorsCommon(ABC): # Definition of the abstract methods and properties @abstractmethod def assertRaises(self, *kwargs): raise NotImplementedError @abstractmethod def subTest(self, **kwargs): raise NotImplementedError @abstractmethod def assertEqual(self, *kwargs): raise NotImplementedError @abstractmethod def assertIn(self, *kwargs): raise NotImplementedError @property @abstractmethod def indicator(self): raise NotImplementedError @property @abstractmethod def indicator_input_arguments(self): raise NotImplementedError @property @abstractmethod def indicator_other_input_arguments(self): raise NotImplementedError @property @abstractmethod def indicator_minimum_required_data(self): raise NotImplementedError @property @abstractmethod def graph_file_name(self): raise NotImplementedError @property @abstractmethod def indicator_test_data_file_name(self): raise NotImplementedError @property @abstractmethod def mandatory_arguments_missing_cases(self): raise NotImplementedError @property @abstractmethod def arguments_wrong_type(self): raise NotImplementedError @property @abstractmethod def arguments_wrong_value(self): raise NotImplementedError @property @abstractmethod def required_input_data_columns(self): raise NotImplementedError @property @abstractmethod def ti_data_rows(self): raise NotImplementedError precision = 4 # Unit Tests # Validate indicators input arguments def test_mandatory_input_arguments_missing(self): for arguments_set in self.mandatory_arguments_missing_cases: with self.subTest(arguments_set=arguments_set): with self.assertRaises(TypeError): self.indicator(**arguments_set) def test_input_arguments_wrong_type(self): for arguments_set in self.arguments_wrong_type: with self.subTest(arguments_set=arguments_set): with self.assertRaises(WrongTypeForInputParameter): self.indicator(**arguments_set) def test_input_arguments_wrong_value(self): for arguments_set in self.arguments_wrong_value: with self.subTest(arguments_set=arguments_set): with self.assertRaises(WrongValueForInputParameter): self.indicator(**arguments_set) # Validate input argument: input_data def test_argument_input_data_wrong_index_type(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=1) with self.assertRaises(TypeError): self.indicator(df) def test_argument_input_data_required_column_missing(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) for missing_column in self.required_input_data_columns: with self.subTest( missing_column=missing_column): with self.assertRaises(ValueError): self.indicator(pd.DataFrame( df.drop(columns=[missing_column]))) def test_argument_input_data_values_wrong_type(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) df.iloc[0, :] = 'no-numeric' with self.assertRaises(ValueError): self.indicator(df) def test_argument_input_data_empty(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) with self.assertRaises(ValueError): self.indicator(pd.DataFrame(df[df.index >= '2032-01-01'])) # Validate input argument: fill_missing_values def test_argument_fill_missing_values_is_true(self): df = pd.read_csv('./data/missing_values_data.csv', parse_dates=True, index_col=0) df_expected_result = pd.read_csv( './data/missing_values_filled.csv', parse_dates=True, index_col=0 )[self.required_input_data_columns].round(self.precision) df_result = self.indicator( df, fill_missing_values=True, **self.indicator_input_arguments )._input_data[self.required_input_data_columns] pd.testing.assert_frame_equal(df_result, df_expected_result) def test_argument_fill_missing_values_is_false(self): df = pd.read_csv('./data/missing_values_data.csv', parse_dates=True, index_col=0) df_expected_result = pd.read_csv( './data/missing_values_data_sorted.csv', parse_dates=True, index_col=0)[self.required_input_data_columns].round( self.precision) df_result = self.indicator( df, fill_missing_values=False, **self.indicator_input_arguments )._input_data[self.required_input_data_columns] pd.testing.assert_frame_equal(df_result, df_expected_result) def test_argument_fill_missing_values_is_default_true(self): df = pd.read_csv('./data/missing_values_data.csv', parse_dates=True, index_col=0) df_expected_result = pd.read_csv( './data/missing_values_filled.csv', parse_dates=True, index_col=0 )[self.required_input_data_columns].round(self.precision) df_result = self.indicator( df, **self.indicator_input_arguments )._input_data[self.required_input_data_columns] pd.testing.assert_frame_equal(df_result, df_expected_result) # Validate indicator creation def test_validate_indicator_input_data_one_row(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) if self.indicator_minimum_required_data > 1: with self.assertRaises(NotEnoughInputData): self.indicator(df[df.index == '2000-02-01']) else: self.indicator(df[df.index == '2000-02-01']) def test_validate_indicator_less_than_required_input_data(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) if self.indicator_minimum_required_data != 1: with self.assertRaises(NotEnoughInputData): self.indicator( df.iloc[:self.indicator_minimum_required_data - 1], **self.indicator_input_arguments) else: pass def test_validate_indicator_exactly_required_input_data(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) self.indicator(df.iloc[:self.indicator_minimum_required_data], **self.indicator_input_arguments) def test_validate_indicator_full_data(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) df_expected_result = pd.read_csv(self.indicator_test_data_file_name, parse_dates=True, index_col=0).round(self.precision) df_result = self.indicator( df, **self.indicator_input_arguments)._ti_data pd.testing.assert_frame_equal(df_expected_result, df_result, check_dtype=False) def test_validate_indicator_full_data_default_arguments(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) self.indicator(df) def test_validate_indicator_full_data_other_arguments_values(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) for arguments_set in self.indicator_other_input_arguments: with self.subTest(arguments_set=arguments_set): self.indicator(df, **arguments_set) # Validate API def test_getTiGraph(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) indicator = self.indicator(df, **self.indicator_input_arguments) # Needs manual check of the produced graph self.assertEqual(indicator.getTiGraph(), plt) indicator.getTiGraph().savefig(self.graph_file_name) plt.close('all') def test_getTiData(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) df_expected_result = pd.read_csv(self.indicator_test_data_file_name, parse_dates=True, index_col=0).round(self.precision) pd.testing.assert_frame_equal( df_expected_result, self.indicator(df, **self.indicator_input_arguments).getTiData(), check_dtype=False) def test_getTiValue_specific(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) df_expected_result = pd.read_csv(self.indicator_test_data_file_name, parse_dates=True, index_col=0).round(self.precision) self.assertEqual(list(df_expected_result.loc['2009-10-19', :]), self.indicator(df, **self.indicator_input_arguments). getTiValue('2009-10-19')) def test_getTiValue_latest(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) df_expected_result = pd.read_csv(self.indicator_test_data_file_name, parse_dates=True, index_col=0).round(self.precision) # Adaptation for the pandas release 1.2.0, check github issue #20 expected_result = list(df_expected_result.iloc[-1]) actual_result = self.indicator(df, **self.indicator_input_arguments).\ getTiValue() for x, y in zip(expected_result, actual_result): try: self.assertAlmostEqual(x, y, places=4) except: self.assertAlmostEqual(x, y, places=3) def test_getTiSignal(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) self.assertIn(self.indicator( df, **self.indicator_input_arguments).getTiSignal(), [('buy', -1), ('hold', 0), ('sell', 1)]) def test_getTiSignal_minimum_required_data(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) self.assertIn( self.indicator(df.iloc[:self.indicator_minimum_required_data], **self.indicator_input_arguments).getTiSignal(), [('buy', -1), ('hold', 0), ('sell', 1)]) def test_getTiSimulation(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) ti = self.indicator(df, **self.indicator_input_arguments) orig_input_data = copy.deepcopy(ti._input_data) orig_ti_data = copy.deepcopy(ti._ti_data) simulation_data, statistics, graph = \ ti.getTiSimulation(df[['close']]) if str(self.indicator) == \ "<class 'tti.indicators._detrended_price_oscillator." + \ "DetrendedPriceOscillator'>": self.assertEqual(simulation_data.isnull().values[:-4].any(), False) self.assertEqual(statistics['number_of_trading_days'], 3165) else: self.assertEqual(simulation_data.isnull().values.any(), False) self.assertEqual(statistics['number_of_trading_days'], 3169) self.assertEqual(any(np.isnan(val) for val in statistics.values()), False) pd.testing.assert_frame_equal(ti._input_data, orig_input_data) pd.testing.assert_frame_equal(ti._ti_data, orig_ti_data) # Needs manual check of the produced graph self.assertEqual(graph, plt) graph.savefig('./figures/trading_simulation_graph_' + str(self.indicator).split('.')[-1][:-2] + '.png') plt.close('all') # Validate API for specific number of rows in calculated indicator def test_api_for_variable_ti_data_length(self): df = pd.read_csv('./data/sample_data.csv', parse_dates=True, index_col=0) for rows in self.ti_data_rows: with self.subTest(rows=rows): ti = self.indicator(
pd.DataFrame(df)
pandas.DataFrame
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert is_categorical_dtype(result.dtype) is True tm.assert_index_equal(result.cat.categories, pd.Index(["a", "b", "c"])) assert result.cat.ordered result = pd.Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) assert is_categorical_dtype(result.dtype) tm.assert_index_equal(result.cat.categories, pd.Index(["b", "a"])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series( "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) expected = Series( ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) tm.assert_series_equal(result, expected) def test_constructor_categorical_string(self): # GH 26336: the string 'category' maintains existing CategoricalDtype cdt = CategoricalDtype(categories=list("dabc"), ordered=True) expected = Series(list("abcabc"), dtype=cdt) # Series(Categorical, dtype='category') keeps existing dtype cat = Categorical(list("abcabc"), dtype=cdt) result = Series(cat, dtype="category") tm.assert_series_equal(result, expected) # Series(Series[Categorical], dtype='category') keeps existing dtype result = Series(result, dtype="category") tm.assert_series_equal(result, expected) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) right = pd.Series(pd.Categorical(["a", "b", np.nan], categories=["a", "b"])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0.0, np.nan, 2.0], index=index) tm.assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=float) tm.assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0, np.nan, 2], index=index, dtype=float) tm.assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, expected) data[0] = True data[2] = False index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([True, np.nan, False], index=index, dtype=object) tm.assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype="M8[ns]") result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") tm.assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ["a", "b", "c"] result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3,), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng = date_range("20090415", "20090519", freq="B") data = {k: 1 for k in rng} result = Series(data, index=rng) assert result.index is rng def test_constructor_default_index(self): s = Series([0, 1, 2]) tm.assert_index_equal(s.index, pd.Index(np.arange(3))) @pytest.mark.parametrize( "input", [ [1, 2, 3], (1, 2, 3), list(range(3)), pd.Categorical(["a", "b", "a"]), (i for i in range(3)), map(lambda x: x, range(3)), ], ) def test_constructor_index_mismatch(self, input): # GH 19342 # test that construction of a Series with an index of different length # raises an error msg = "Length of passed values is 3, index implies 4" with pytest.raises(ValueError, match=msg): Series(input, index=np.arange(4)) def test_constructor_numpy_scalar(self): # GH 19342 # construction with a numpy scalar # should not raise result = Series(np.array(100), index=np.arange(4), dtype="int64") expected = Series(100, index=np.arange(4), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_broadcast_list(self): # GH 19342 # construction with single-element container and index # should raise msg = "Length of passed values is 1, index implies 3" with pytest.raises(ValueError, match=msg): Series(["foo"], index=["a", "b", "c"]) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) assert isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1.0, 1.0, 8.0]), dtype="i8") assert s.dtype == np.dtype("i8") s = Series(np.array([1.0, 1.0, np.nan]), copy=True, dtype="i8") assert s.dtype == np.dtype("f8") def test_constructor_copy(self): # GH15125 # test dtype parameter has no side effects on copy=True for data in [[1.0], np.array([1.0])]: x = Series(data) y = pd.Series(x, copy=True, dtype=float) # copy=True maintains original data in Series tm.assert_series_equal(x, y) # changes to origin of copy does not affect the copy x[0] = 2.0 assert not x.equals(y) assert x[0] == 2.0 assert y[0] == 1.0 @pytest.mark.parametrize( "index", [ pd.date_range("20170101", periods=3, tz="US/Eastern"), pd.date_range("20170101", periods=3), pd.timedelta_range("1 day", periods=3), pd.period_range("2012Q1", periods=3, freq="Q"), pd.Index(list("abc")), pd.Int64Index([1, 2, 3]), pd.RangeIndex(0, 3), ], ids=lambda x: type(x).__name__, ) def test_constructor_limit_copies(self, index): # GH 17449 # limit copies of input s = pd.Series(index) # we make 1 copy; this is just a smoke test here assert s._mgr.blocks[0].values is not index def test_constructor_pass_none(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(None, index=range(5)) assert s.dtype == np.float64 s = Series(None, index=range(5), dtype=object) assert s.dtype == np.object_ # GH 7431 # inference on the index with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(index=np.array([None])) expected = Series(index=Index([None])) tm.assert_series_equal(s, expected) def test_constructor_pass_nan_nat(self): # GH 13467 exp = Series([np.nan, np.nan], dtype=np.float64) assert exp.dtype == np.float64 tm.assert_series_equal(Series([np.nan, np.nan]), exp) tm.assert_series_equal(Series(np.array([np.nan, np.nan])), exp) exp = Series([pd.NaT, pd.NaT]) assert exp.dtype == "datetime64[ns]" tm.assert_series_equal(Series([pd.NaT, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, pd.NaT])), exp) tm.assert_series_equal(Series([pd.NaT, np.nan]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, np.nan])), exp) tm.assert_series_equal(Series([np.nan, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([np.nan, pd.NaT])), exp) def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Series(["a", "b", "c"], dtype=float) def test_constructor_unsigned_dtype_overflow(self, uint_dtype): # see gh-15832 msg = "Trying to coerce negative values to unsigned integers" with pytest.raises(OverflowError, match=msg): Series([-1], dtype=uint_dtype) def test_constructor_coerce_float_fail(self, any_int_dtype): # see gh-15832 msg = "Trying to coerce float values to integers" with pytest.raises(ValueError, match=msg): Series([1, 2, 3.5], dtype=any_int_dtype) def test_constructor_coerce_float_valid(self, float_dtype): s = Series([1, 2, 3.5], dtype=float_dtype) expected = Series([1, 2, 3.5]).astype(float_dtype) tm.assert_series_equal(s, expected) def test_constructor_dtype_no_cast(self): # see gh-1572 s = Series([1, 2, 3]) s2 = Series(s, dtype=np.int64) s2[1] = 5 assert s[1] == 5 def test_constructor_datelike_coercion(self): # GH 9477 # incorrectly inferring on dateimelike looking when object dtype is # specified s = Series([Timestamp("20130101"), "NOV"], dtype=object) assert s.iloc[0] == Timestamp("20130101") assert s.iloc[1] == "NOV" assert s.dtype == object # the dtype was being reset on the slicing and re-inferred to datetime # even thought the blocks are mixed belly = "216 3T19".split() wing1 = "2T15 4H19".split() wing2 = "416 4T20".split() mat = pd.to_datetime("2016-01-22 2019-09-07".split()) df = pd.DataFrame({"wing1": wing1, "wing2": wing2, "mat": mat}, index=belly) result = df.loc["3T19"] assert result.dtype == object result = df.loc["216"] assert result.dtype == object def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [ np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None]), ]: result = Series(arr) assert result.dtype == "M8[ns]" def test_constructor_dtype_datetime64(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) assert isna(s).all() # in theory this should be all nulls, but since # we are not specifying a dtype is ambiguous s = Series(iNaT, index=range(5)) assert not isna(s).all() s = Series(np.nan, dtype="M8[ns]", index=range(5)) assert isna(s).all() s = Series([datetime(2001, 1, 2, 0, 0), iNaT], dtype="M8[ns]") assert isna(s[1]) assert s.dtype == "M8[ns]" s = Series([datetime(2001, 1, 2, 0, 0), np.nan], dtype="M8[ns]") assert isna(s[1]) assert s.dtype == "M8[ns]" # GH3416 dates = [ np.datetime64(datetime(2013, 1, 1)), np.datetime64(datetime(2013, 1, 2)), np.datetime64(datetime(2013, 1, 3)), ] s = Series(dates) assert s.dtype == "M8[ns]" s.iloc[0] = np.nan assert s.dtype == "M8[ns]" # GH3414 related expected = Series( [datetime(2013, 1, 1), datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]", ) result = Series(Series(dates).astype(np.int64) / 1000000, dtype="M8[ms]") tm.assert_series_equal(result, expected) result = Series(dates, dtype="datetime64[ns]") tm.assert_series_equal(result, expected) expected = Series( [pd.NaT, datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]" ) result = Series([np.nan] + dates[1:], dtype="datetime64[ns]") tm.assert_series_equal(result, expected) dts = Series(dates, dtype="datetime64[ns]") # valid astype dts.astype("int64") # invalid casting msg = r"cannot astype a datetimelike from \[datetime64\[ns\]\] to \[int32\]" with pytest.raises(TypeError, match=msg): dts.astype("int32") # ints are ok # we test with np.int64 to get similar results on # windows / 32-bit platforms result = Series(dts, dtype=np.int64) expected = Series(dts.astype(np.int64)) tm.assert_series_equal(result, expected) # invalid dates can be help as object result = Series([datetime(2, 1, 1)]) assert result[0] == datetime(2, 1, 1, 0, 0) result = Series([datetime(3000, 1, 1)]) assert result[0] == datetime(3000, 1, 1, 0, 0) # don't mix types result = Series([Timestamp("20130101"), 1], index=["a", "b"]) assert result["a"] == Timestamp("20130101") assert result["b"] == 1 # GH6529 # coerce datetime64 non-ns properly dates = date_range("01-Jan-2015", "01-Dec-2015", freq="M") values2 = dates.view(np.ndarray).astype("datetime64[ns]") expected = Series(values2, index=dates) for dtype in ["s", "D", "ms", "us", "ns"]: values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") result = Series(values1, dates) tm.assert_series_equal(result, expected) # GH 13876 # coerce to non-ns to object properly expected = Series(values2, index=dates, dtype=object) for dtype in ["s", "D", "ms", "us", "ns"]: values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") result = Series(values1, index=dates, dtype=object) tm.assert_series_equal(result, expected) # leave datetime.date alone dates2 = np.array([d.date() for d in dates.to_pydatetime()], dtype=object) series1 = Series(dates2, dates) tm.assert_numpy_array_equal(series1.values, dates2) assert series1.dtype == object # these will correctly infer a datetime s = Series([None, pd.NaT, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([np.nan, pd.NaT, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([pd.NaT, None, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([pd.NaT, np.nan, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" # tz-aware (UTC and other tz's) # GH 8411 dr = date_range("20130101", periods=3) assert Series(dr).iloc[0].tz is None dr = date_range("20130101", periods=3, tz="UTC") assert str(Series(dr).iloc[0].tz) == "UTC" dr = date_range("20130101", periods=3, tz="US/Eastern") assert str(Series(dr).iloc[0].tz) == "US/Eastern" # non-convertible s = Series([1479596223000, -1479590, pd.NaT]) assert s.dtype == "object" assert s[2] is pd.NaT assert "NaT" in str(s) # if we passed a NaT it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), pd.NaT]) assert s.dtype == "object" assert s[2] is pd.NaT assert "NaT" in str(s) # if we passed a nan it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), np.nan]) assert s.dtype == "object" assert s[2] is np.nan assert "NaN" in str(s) def test_constructor_with_datetime_tz(self): # 8260 # support datetime64 with tz dr = date_range("20130101", periods=3, tz="US/Eastern") s = Series(dr) assert s.dtype.name == "datetime64[ns, US/Eastern]" assert s.dtype == "datetime64[ns, US/Eastern]" assert is_datetime64tz_dtype(s.dtype) assert "datetime64[ns, US/Eastern]" in str(s) # export result = s.values assert isinstance(result, np.ndarray) assert result.dtype == "datetime64[ns]" exp = pd.DatetimeIndex(result) exp = exp.tz_localize("UTC").tz_convert(tz=s.dt.tz) tm.assert_index_equal(dr, exp) # indexing result = s.iloc[0] assert result == Timestamp( "2013-01-01 00:00:00-0500", tz="US/Eastern", freq="D" ) result = s[0] assert result == Timestamp( "2013-01-01 00:00:00-0500", tz="US/Eastern", freq="D" ) result = s[Series([True, True, False], index=s.index)] tm.assert_series_equal(result, s[0:2]) result = s.iloc[0:1] tm.assert_series_equal(result, Series(dr[0:1])) # concat result = pd.concat([s.iloc[0:1], s.iloc[1:]]) tm.assert_series_equal(result, s) # short str assert "datetime64[ns, US/Eastern]" in str(s) # formatting with NaT result = s.shift() assert "datetime64[ns, US/Eastern]" in str(result) assert "NaT" in str(result) # long str t = Series(date_range("20130101", periods=1000, tz="US/Eastern")) assert "datetime64[ns, US/Eastern]" in str(t) result = pd.DatetimeIndex(s, freq="infer") tm.assert_index_equal(result, dr) # inference s = Series( [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ] ) assert s.dtype == "datetime64[ns, US/Pacific]" assert lib.infer_dtype(s, skipna=True) == "datetime64" s = Series( [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Eastern"), ] ) assert s.dtype == "object" assert lib.infer_dtype(s, skipna=True) == "datetime" # with all NaT s = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]") expected = Series(pd.DatetimeIndex(["NaT", "NaT"], tz="US/Eastern")) tm.assert_series_equal(s, expected) @pytest.mark.parametrize("arr_dtype", [np.int64, np.float64]) @pytest.mark.parametrize("dtype", ["M8", "m8"]) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) def test_construction_to_datetimelike_unit(self, arr_dtype, dtype, unit): # tests all units # gh-19223 dtype = f"{dtype}[{unit}]" arr = np.array([1, 2, 3], dtype=arr_dtype) s = Series(arr) result = s.astype(dtype) expected = Series(arr.astype(dtype)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("arg", ["2013-01-01 00:00:00", pd.NaT, np.nan, None]) def test_constructor_with_naive_string_and_datetimetz_dtype(self, arg): # GH 17415: With naive string result = Series([arg], dtype="datetime64[ns, CET]") expected = Series(pd.Timestamp(arg)).dt.tz_localize("CET") tm.assert_series_equal(result, expected) def test_constructor_datetime64_bigendian(self): # GH#30976 ms = np.datetime64(1, "ms") arr = np.array([np.datetime64(1, "ms")], dtype=">M8[ms]") result = Series(arr) expected = Series([Timestamp(ms)]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("interval_constructor", [IntervalIndex, IntervalArray]) def test_construction_interval(self, interval_constructor): # construction from interval & array of intervals intervals = interval_constructor.from_breaks(np.arange(3), closed="right") result = Series(intervals) assert result.dtype == "interval[int64]" tm.assert_index_equal(Index(result.values), Index(intervals)) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_infer_interval(self, data_constructor): # GH 23563: consistent closed results in interval dtype data = [pd.Interval(0, 1), pd.Interval(0, 2), None] result = pd.Series(data_constructor(data)) expected = pd.Series(IntervalArray(data)) assert result.dtype == "interval[float64]" tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_interval_mixed_closed(self, data_constructor): # GH 23563: mixed closed results in object dtype (not interval dtype) data = [pd.Interval(0, 1, closed="both"), pd.Interval(0, 2, closed="neither")] result = Series(data_constructor(data)) assert result.dtype == object assert result.tolist() == data def test_construction_consistency(self): # make sure that we are not re-localizing upon construction # GH 14928 s = Series(pd.date_range("20130101", periods=3, tz="US/Eastern")) result = Series(s, dtype=s.dtype) tm.assert_series_equal(result, s) result = Series(s.dt.tz_convert("UTC"), dtype=s.dtype) tm.assert_series_equal(result, s) result = Series(s.values, dtype=s.dtype) tm.assert_series_equal(result, s) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_infer_period(self, data_constructor): data = [pd.Period("2000", "D"), pd.Period("2001", "D"), None] result = pd.Series(data_constructor(data)) expected = pd.Series(period_array(data)) tm.assert_series_equal(result, expected) assert result.dtype == "Period[D]" def test_constructor_period_incompatible_frequency(self): data = [pd.Period("2000", "D"), pd.Period("2001", "A")] result = pd.Series(data) assert result.dtype == object assert result.tolist() == data def test_constructor_periodindex(self): # GH7932 # converting a PeriodIndex when put in a Series pi = period_range("20130101", periods=5, freq="D") s = Series(pi) assert s.dtype == "Period[D]" expected = Series(pi.astype(object)) tm.assert_series_equal(s, expected) def test_constructor_dict(self): d = {"a": 0.0, "b": 1.0, "c": 2.0} result = Series(d, index=["b", "c", "d", "a"]) expected = Series([1, 2, np.nan, 0], index=["b", "c", "d", "a"]) tm.assert_series_equal(result, expected) pidx = tm.makePeriodIndex(100) d = {pidx[0]: 0, pidx[1]: 1} result = Series(d, index=pidx) expected = Series(np.nan, pidx, dtype=np.float64) expected.iloc[0] = 0 expected.iloc[1] = 1 tm.assert_series_equal(result, expected) def test_constructor_dict_list_value_explicit_dtype(self): # GH 18625 d = {"a": [[2], [3], [4]]} result = Series(d, index=["a"], dtype="object") expected = Series(d, index=["a"]) tm.assert_series_equal(result, expected) def test_constructor_dict_order(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6, else # order by value d = {"b": 1, "a": 0, "c": 2} result = Series(d) expected = Series([1, 0, 2], index=list("bac")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data,dtype", [ (Period("2020-01"), PeriodDtype("M")), (Interval(left=0, right=5), IntervalDtype("int64")), ( Timestamp("2011-01-01", tz="US/Eastern"), DatetimeTZDtype(tz="US/Eastern"), ), ], ) def test_constructor_dict_extension(self, data, dtype): d = {"a": data} result = Series(d, index=["a"]) expected = Series(data, index=["a"], dtype=dtype) assert result.dtype == dtype tm.assert_series_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float("nan")]) def test_constructor_dict_nan_key(self, value): # GH 18480 d = {1: "a", value: "b", float("nan"): "c", 4: "d"} result = Series(d).sort_values() expected = Series(["a", "b", "c", "d"], index=[1, value, np.nan, 4]) tm.assert_series_equal(result, expected) # MultiIndex: d = {(1, 1): "a", (2, np.nan): "b", (3, value): "c"} result = Series(d).sort_values() expected = Series( ["a", "b", "c"], index=Index([(1, 1), (2, np.nan), (3, value)]) ) tm.assert_series_equal(result, expected) def test_constructor_dict_datetime64_index(self): # GH 9456 dates_as_str = ["1984-02-19", "1988-11-06", "1989-12-03", "1990-03-15"] values = [42544017.198965244, 1234565, 40512335.181958228, -1] def create_data(constructor): return dict(zip((constructor(x) for x in dates_as_str), values)) data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, "%Y-%m-%d")) data_Timestamp = create_data(Timestamp) expected = Series(values, (Timestamp(x) for x in dates_as_str)) result_datetime64 = Series(data_datetime64) result_datetime = Series(data_datetime) result_Timestamp = Series(data_Timestamp) tm.assert_series_equal(result_datetime64, expected) tm.assert_series_equal(result_datetime, expected) tm.assert_series_equal(result_Timestamp, expected) def test_constructor_dict_tuple_indexer(self): # GH 12948 data = {(1, 1, None): -1.0} result = Series(data) expected = Series( -1.0, index=MultiIndex(levels=[[1], [1], [np.nan]], codes=[[0], [0], [-1]]) ) tm.assert_series_equal(result, expected) def test_constructor_mapping(self, non_dict_mapping_subclass): # GH 29788 ndm = non_dict_mapping_subclass({3: "three"}) result = Series(ndm) expected = Series(["three"], index=[3]) tm.assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) assert list(s) == data def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) assert tuple(s) == data def test_constructor_dict_of_tuples(self): data = {(1, 2): 3, (None, 5): 6} result = Series(data).sort_values() expected = Series([3, 6], index=MultiIndex.from_tuples([(1, 2), (None, 5)])) tm.assert_series_equal(result, expected) def test_constructor_set(self): values = {1, 2, 3, 4, 5} with pytest.raises(TypeError, match="'set' type is unordered"): Series(values) values = frozenset(values) with pytest.raises(TypeError, match="'frozenset' type is unordered"): Series(values) # https://github.com/pandas-dev/pandas/issues/22698 @pytest.mark.filterwarnings("ignore:elementwise comparison:FutureWarning") def test_fromDict(self): data = {"a": 0, "b": 1, "c": 2, "d": 3} series = Series(data) tm.assert_is_sorted(series.index) data = {"a": 0, "b": "1", "c": "2", "d": datetime.now()} series = Series(data) assert series.dtype == np.object_ data = {"a": 0, "b": "1", "c": "2", "d": "3"} series = Series(data) assert series.dtype == np.object_ data = {"a": "0", "b": "1"} series = Series(data, dtype=float) assert series.dtype == np.float64 def test_fromValue(self, datetime_series): nans = Series(np.NaN, index=datetime_series.index, dtype=np.float64) assert nans.dtype == np.float_ assert len(nans) == len(datetime_series) strings = Series("foo", index=datetime_series.index) assert strings.dtype == np.object_ assert len(strings) == len(datetime_series) d = datetime.now() dates = Series(d, index=datetime_series.index) assert dates.dtype == "M8[ns]" assert len(dates) == len(datetime_series) # GH12336 # Test construction of categorical series from value categorical = Series(0, index=datetime_series.index, dtype="category") expected = Series(0, index=datetime_series.index).astype("category") assert categorical.dtype == "category" assert len(categorical) == len(datetime_series) tm.assert_series_equal(categorical, expected) def test_constructor_dtype_timedelta64(self): # basic td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1)]) assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1), timedelta(days=2), np.timedelta64(1, "s")]) assert td.dtype == "timedelta64[ns]" # mixed with NaT td = Series([timedelta(days=1), NaT], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1), np.nan], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" td = Series([np.timedelta64(300000000), pd.NaT], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" # improved inference # GH5689 td = Series([np.timedelta64(300000000), NaT]) assert td.dtype == "timedelta64[ns]" # because iNaT is int, not coerced to timedelta td = Series([np.timedelta64(300000000), iNaT]) assert td.dtype == "object" td = Series([np.timedelta64(300000000), np.nan]) assert td.dtype == "timedelta64[ns]" td = Series([pd.NaT, np.timedelta64(300000000)]) assert td.dtype == "timedelta64[ns]" td = Series([np.timedelta64(1, "s")]) assert td.dtype == "timedelta64[ns]" # these are frequency conversion astypes # for t in ['s', 'D', 'us', 'ms']: # with pytest.raises(TypeError): # td.astype('m8[%s]' % t) # valid astype td.astype("int64") # invalid casting msg = r"cannot astype a timedelta from \[timedelta64\[ns\]\] to \[int32\]" with pytest.raises(TypeError, match=msg): td.astype("int32") # this is an invalid casting msg = "Could not convert object to NumPy timedelta" with pytest.raises(ValueError, match=msg): Series([timedelta(days=1), "foo"], dtype="m8[ns]") # leave as object here td = Series([timedelta(days=i) for i in range(3)] + ["foo"]) assert td.dtype == "object" # these will correctly infer a timedelta s = Series([None, pd.NaT, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([np.nan, pd.NaT, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([pd.NaT, None, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([pd.NaT, np.nan, "1 Day"]) assert s.dtype == "timedelta64[ns]" # GH 16406 def test_constructor_mixed_tz(self): s = Series([
Timestamp("20130101")
pandas.Timestamp
# %matplotlib inline import os, time, pickle, argparse import pandas as pd import torch import torch.nn as nn import numpy as np from scipy.stats import beta torch.set_printoptions(threshold=10000) np.set_printoptions(threshold=np.inf) parser = argparse.ArgumentParser(description='RSAutoML') parser.add_argument('--Train_Method', type=str, default='AutoML', help='options: AutoML, Supervised') parser.add_argument('--Val_Type', type=str, default='last_batch', help='options: last_batch, last_random') parser.add_argument('--Loss_Type', type=str, default='MSE_sigmoid', help='options: MSE_sigmoid MSE_no_sigmoid BCEWithLogitsLoss CrossEntropyLoss') parser.add_argument('--Data_Set', type=str, default='ml-20m', help='options: ml-20m ml-latest') parser.add_argument('--Dy_Emb_Num', type=int, default=2, help='options: 1, 2') args = parser.parse_args() Model_Gpu = torch.cuda.is_available() device = torch.device('cuda:0' if Model_Gpu else 'cpu') DATA_PATH = './data' DATA_SET = args.Data_Set Batch_Size = 500 # batch size LR_model = 0.001 # learning rate LR_darts = 0.0001 # learning rate Epoch = 1 # train epoch Beta_Beta = 20 # beta for Beta distribution H_alpha = 0 # for nn.KLDivLoss 0.001 if DATA_SET == 'ml-20m': Train_Size = 15000000 # training dataset size elif DATA_SET == 'ml-latest': Train_Size = 22000000 # training dataset size Test_Size = 5000000 # training dataset size Emb_Size = [2, 4, 8, 16, 64, 128] # 1,2,4,8,16,32,64,128,256,512 fixed_emb_size = sum(Emb_Size) Val_Type = args.Val_Type # last_batch last_random Dy_Emb_Num = args.Dy_Emb_Num Loss_Type = args.Loss_Type # MSE_sigmoid MSE_no_sigmoid BCEWithLogitsLoss CrossEntropyLoss print('\n****************************************************************************************\n') print('os.getpid(): ', os.getpid()) if torch.cuda.is_available(): print('torch.cuda: ', torch.cuda.is_available(), torch.cuda.current_device(), torch.cuda.device_count(), torch.cuda.get_device_name(0), torch.cuda.device(torch.cuda.current_device())) else: print('GPU is not available!!!') print('Train_Size: ', Train_Size) print('Test_Size: ', Test_Size) print('fixed_emb_size:', fixed_emb_size) print('Loss_Type: ', Loss_Type) print('Val_Type: ', Val_Type) print('Beta_Beta: ', Beta_Beta) print('H_alpha: ', H_alpha) print('LR_model: ', LR_model) print('LR_darts: ', LR_darts) print('\n****************************************************************************************\n') def load_data(): train_features, test_features, train_target, test_target \ = pickle.load(open('{}/{}_TrainTest_{}_{}.data'.format(DATA_PATH, DATA_SET, Train_Size, Output_Dim), mode='rb')) test_features, test_target = test_features[:Test_Size], test_target[:Test_Size] genome_scores_dict = pickle.load(open('./{}/{}_GenomeScoresDict.data'.format(DATA_PATH, DATA_SET), mode='rb')) train_feature_data =
pd.DataFrame(train_features, columns=['userId', 'movieId', 'user_frequency', 'movie_frequency'])
pandas.DataFrame
from copy import deepcopy import tempfile import numpy as np import pandas as pd import pytest from PIL import Image from Bio import SeqIO from Bio.Align import MultipleSeqAlignment from seqlike import SeqLike from seqlike.codon_tables import human_codon_table, human_codon_map, codon_table_to_codon_map from . import test_path # TODO: Turn this into a pytest fixture using Hypothesis. # We might need to refactor out the fixtures a bit. nt_seqs = [SeqLike(s, "nt") for s in SeqIO.parse(test_path / f"abs_nt_4.fasta", "fasta")] s = SeqLike(SeqIO.read(test_path / f"test.fa", "fasta"), seq_type="dna") s_aa = SeqLike(SeqIO.read(test_path / f"test.fa", "fasta"), seq_type="dna").aa() s_aa_with_codon_map = SeqLike( SeqIO.read(test_path / f"test.fa", "fasta"), codon_map=human_codon_map, seq_type="dna", ).aa() seqs = [deepcopy(s)] * 10 seqs_aa = [deepcopy(s_aa)] * 10 seqs_aa_with_codon_map = [deepcopy(s_aa_with_codon_map)] * 10 seqs_mixed = deepcopy(seqs) + deepcopy(seqs_aa) # ---- test list of seqs of various types --------- seqs_list = [ (seqs, "nt"), (seqs_aa, "aa"), (seqs_aa_with_codon_map, "aa"), pytest.param( seqs_mixed, None, marks=pytest.mark.xfail(reason="Not a homogeneous list of SeqLikes."), ), ] @pytest.mark.parametrize("seqs, _type", seqs_list) def test_init_and__type(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df, pd.DataFrame) assert df.seqs.seq._type == _type.upper() @pytest.mark.parametrize("seqs, _type", seqs_list) def test_write(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) # r+ is read-writable with tempfile.NamedTemporaryFile(mode="r+") as tempf: df["seqs"].seq.write(tempf, "fasta") # rewind file after writing tempf.seek(0) read_seqs = pd.Series(SeqLike(s, seq_type=_type) for s in SeqIO.parse(tempf, "fasta")) for seq1, seq2 in zip(read_seqs, df["seqs"]): assert str(seq1) == str(seq2) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_plot(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df.seqs.seq.plot(use_bokeh=False), Image.Image) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_align(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df.seqs.seq.align(), pd.Series) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_as_alignment(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df.seqs.seq.as_alignment(), MultipleSeqAlignment) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_as_counts(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) as_counts = df.seqs.seq.as_counts() assert isinstance(as_counts, np.ndarray) assert as_counts.shape == (max(len(s) for s in seqs), len(seqs[0].alphabet)) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_extend_ambiguous_counts(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) extended_counts = df.seqs.seq._extend_ambiguous_counts() assert isinstance(extended_counts, np.ndarray) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_consensus(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) consensus = df.seqs.seq.consensus() assert isinstance(consensus, SeqLike) assert len(consensus) == max(len(s) for s in seqs) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_degenerate(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) degenerate = df.seqs.seq.degenerate() assert isinstance(degenerate, SeqLike) assert len(degenerate) == max(len(s) for s in seqs) assert set(degenerate).issubset(set(df.seqs.seq.alphabet)) def test_consensus2(): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": nt_seqs}) consensus = df.seqs.seq.consensus() assert ( str(consensus) == "TCAATTGGGGGAGGAGCTCTGGTGGAGGCGGTAGCGGAGGCGGAGGGTCGGCTAGCCAAGTCCAATTGGTTGAATCTGGTGGTGGTGTTGTTCAACCAGGTGGTTCTTTGAGATTGTCTT" ) def test_degenerate2(): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": nt_seqs}) degenerate = df.seqs.seq.degenerate() assert ( str(degenerate) == "TCAATTGGGGGAGGAGCTCTSGTGGWGGCVGTAGCGGAGKCGGAGGKTCSGCWAGCCAAGTCCAATTGGTTGAATCTGGTGGTGGTGTTGTTCAACCAGGTGGTTCTTTGAGATTGTCTT" ) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_max_length(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert df.seqs.seq.max_length() == max(len(x) for x in seqs) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_get_seq_by_id(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert df.seqs.seq.get_seq_by_id(seqs[0].id) == seqs[0] @pytest.mark.parametrize("seqs, _type", seqs_list) def test__getitem__(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df.seqs.seq[:, :5], pd.Series) assert len(df.seqs.seq[:, :5]) == len(df) assert all([len(s) == 5 for s in df.seqs.seq[:, :5]]) assert isinstance(df.seqs.seq[:2, :], pd.Series) assert len(df.seqs.seq[:2, :]) == 2 assert isinstance(df.seqs.seq[0, :], SeqLike) assert isinstance(df.seqs.seq[0:1, :], pd.Series) assert len(df.seqs.seq[0:1, :]) == 1 assert isinstance(df.seqs.seq[:, 0], pd.Series) assert len(df.seqs.seq[:, 0]) == len(df) assert df.seqs.seq.alphabet == df.seqs[1:].seq.alphabet @pytest.mark.parametrize("seqs, _type", seqs_list) def test_nt(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df.seqs.seq.nt(), pd.Series) assert all([s._type == "NT" for s in df.seqs.seq.nt()]) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_aa(seqs, _type): # TODO: Docstring needed for test intent. df =
pd.DataFrame({"seqs": seqs})
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230:
pd.Timestamp("2012-12-18 00:00:00")
pandas.Timestamp
import calendar from datetime import date, datetime, time import locale import unicodedata import numpy as np import pytest import pytz from pandas._libs.tslibs.timezones import maybe_get_tz from pandas.core.dtypes.common import is_integer_dtype, is_list_like import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, PeriodIndex, Series, TimedeltaIndex, bdate_range, date_range, period_range, timedelta_range) from pandas.core.arrays import PeriodArray import pandas.core.common as com import pandas.util.testing as tm from pandas.util.testing import assert_series_equal class TestSeriesDatetimeValues: def test_dt_namespace_accessor(self): # GH 7207, 11128 # test .dt namespace accessor ok_for_period = PeriodArray._datetimelike_ops ok_for_period_methods = ['strftime', 'to_timestamp', 'asfreq'] ok_for_dt = DatetimeIndex._datetimelike_ops ok_for_dt_methods = ['to_period', 'to_pydatetime', 'tz_localize', 'tz_convert', 'normalize', 'strftime', 'round', 'floor', 'ceil', 'day_name', 'month_name'] ok_for_td = TimedeltaIndex._datetimelike_ops ok_for_td_methods = ['components', 'to_pytimedelta', 'total_seconds', 'round', 'floor', 'ceil'] def get_expected(s, name): result = getattr(Index(s._values), prop) if isinstance(result, np.ndarray): if is_integer_dtype(result): result = result.astype('int64') elif not is_list_like(result): return result return Series(result, index=s.index, name=s.name) def compare(s, name): a = getattr(s.dt, prop) b = get_expected(s, prop) if not (is_list_like(a) and is_list_like(b)): assert a == b else: tm.assert_series_equal(a, b) # datetimeindex cases = [Series(date_range('20130101', periods=5), name='xxx'), Series(date_range('20130101', periods=5, freq='s'), name='xxx'), Series(date_range('20130101 00:00:00', periods=5, freq='ms'), name='xxx')] for s in cases: for prop in ok_for_dt: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_dt_methods: getattr(s.dt, prop) result = s.dt.to_pydatetime() assert isinstance(result, np.ndarray) assert result.dtype == object result = s.dt.tz_localize('US/Eastern') exp_values = DatetimeIndex(s.values).tz_localize('US/Eastern') expected = Series(exp_values, index=s.index, name='xxx') tm.assert_series_equal(result, expected) tz_result = result.dt.tz assert str(tz_result) == 'US/Eastern' freq_result = s.dt.freq assert freq_result == DatetimeIndex(s.values, freq='infer').freq # let's localize, then convert result = s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern') exp_values = (DatetimeIndex(s.values).tz_localize('UTC') .tz_convert('US/Eastern')) expected = Series(exp_values, index=s.index, name='xxx') tm.assert_series_equal(result, expected) # datetimeindex with tz s = Series(date_range('20130101', periods=5, tz='US/Eastern'), name='xxx') for prop in ok_for_dt: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_dt_methods: getattr(s.dt, prop) result = s.dt.to_pydatetime() assert isinstance(result, np.ndarray) assert result.dtype == object result = s.dt.tz_convert('CET') expected = Series(s._values.tz_convert('CET'), index=s.index, name='xxx') tm.assert_series_equal(result, expected) tz_result = result.dt.tz assert str(tz_result) == 'CET' freq_result = s.dt.freq assert freq_result == DatetimeIndex(s.values, freq='infer').freq # timedelta index cases = [Series(timedelta_range('1 day', periods=5), index=list('abcde'), name='xxx'), Series(timedelta_range('1 day 01:23:45', periods=5, freq='s'), name='xxx'), Series(timedelta_range('2 days 01:23:45.012345', periods=5, freq='ms'), name='xxx')] for s in cases: for prop in ok_for_td: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_td_methods: getattr(s.dt, prop) result = s.dt.components assert isinstance(result, DataFrame) tm.assert_index_equal(result.index, s.index) result = s.dt.to_pytimedelta() assert isinstance(result, np.ndarray) assert result.dtype == object result = s.dt.total_seconds() assert isinstance(result, pd.Series) assert result.dtype == 'float64' freq_result = s.dt.freq assert freq_result == TimedeltaIndex(s.values, freq='infer').freq # both index = date_range('20130101', periods=3, freq='D') s = Series(date_range('20140204', periods=3, freq='s'), index=index, name='xxx') exp = Series(np.array([2014, 2014, 2014], dtype='int64'), index=index, name='xxx') tm.assert_series_equal(s.dt.year, exp) exp = Series(np.array([2, 2, 2], dtype='int64'), index=index, name='xxx') tm.assert_series_equal(s.dt.month, exp) exp = Series(np.array([0, 1, 2], dtype='int64'), index=index, name='xxx') tm.assert_series_equal(s.dt.second, exp) exp =
pd.Series([s[0]] * 3, index=index, name='xxx')
pandas.Series
# -*- coding: utf-8 -*- """ Created on Sun Jan 6 16:43:41 2019 @author: zhanglisama jxufe """ import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import xgboost as xgb from sklearn.preprocessing import PolynomialFeatures from sklearn.metrics import mean_squared_error import lightgbm as lgb train = pd.read_csv('pm25_train.csv') test = pd.read_csv('pm25_test.csv') label = train.pop('pm2.5') train['date'] =
pd.to_datetime(train['date'])
pandas.to_datetime
import datetime import json import numpy as np import pandas as pd import requests import xarray as xr from utils import divide_chunks, get_indices_not_done, \ get_site_codes, append_to_csv_column_wise, load_s3_zarr_store,\ convert_df_to_dataset def get_all_streamflow_data(output_file, sites_file, huc2=None, num_sites_per_chunk=5, start_date="1970-01-01", end_date='2019-01-01', time_scale='H', output_format='zarr', num_site_chunks_write=6, s3=False): """ gets all streamflow data for a date range for a given huc2. Calls are chunked by station :param output_file: [str] path to the csv file or zarr store where the data will be stored :param sites_file: [str] path to file that contains the nwis site information :param huc2: [str] zero-padded huc 2 (e.g., "02") :param num_sites_per_chunk: [int] the number of sites that will be pulled at in each web service call :param start_date: [str] the start date of when you want the data for (e.g., "1980-01-01") :param end_date: [str] the end date of when you want the data for (e.g., "1990-01-01") :param time_scale: [str] Pandas like time string for the time scale at which the data will be aggregated (e.g., 'H' for hour or 'D' for daily) :param output_format: [str] the format of the output file. 'csv' or 'zarr' :param num_site_chunks_write: :param S3: :return: None """ product = get_product_from_time_scale(time_scale) site_codes = get_site_codes(sites_file, huc2) not_done_sites = get_indices_not_done(output_file, site_codes, 'site_code', output_format, is_column=False, s3=s3) site_codes_chunked = divide_chunks(not_done_sites, num_sites_per_chunk) # loop through site_code_chunks chunk_dfs = [] i = 0 for site_chunk in site_codes_chunked: last_chunk = False if site_chunk[-1] == not_done_sites[-1]: last_chunk = True streamflow_df_sites = None # catch if there is a problem on the server retrieving the data try: streamflow_df_sites = get_streamflow_data(site_chunk, start_date, end_date, product, time_scale) except json.decoder.JSONDecodeError: continue if streamflow_df_sites is not None: chunk_dfs.append(streamflow_df_sites) # add the number of stations for which we got data i += streamflow_df_sites.shape[1] if not i % (num_site_chunks_write * num_sites_per_chunk) or \ last_chunk: print('writing out', flush=True) write_out_chunks(chunk_dfs, output_file, output_format) chunk_dfs = [] def write_out_chunks(chunks_dfs, out_file, out_format): all_chunks_df =
pd.concat(chunks_dfs, axis=1)
pandas.concat
import abc from datetime import date, datetime, timedelta from io import BytesIO import os from textwrap import fill from pandas._config import config from pandas.errors import EmptyDataError from pandas.util._decorators import Appender from pandas.core.dtypes.common import is_bool, is_float, is_integer, is_list_like from pandas.core.frame import DataFrame from pandas.io.common import ( _NA_VALUES, _is_url, _stringify_path, _validate_header_arg, get_filepath_or_buffer, urlopen, ) from pandas.io.excel._util import ( _fill_mi_header, _get_default_writer, _maybe_convert_usecols, _pop_header_name, get_writer, ) from pandas.io.formats.printing import pprint_thing from pandas.io.parsers import TextParser _read_excel_doc = ( """ Read an Excel file into a pandas DataFrame. Support both `xls` and `xlsx` file extensions from a local filesystem or URL. Support an option to read a single sheet or a list of sheets. Parameters ---------- io : str, ExcelFile, xlrd.Book, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.xlsx``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handler (e.g. via builtin ``open`` function) or ``StringIO``. sheet_name : str, int, list, or None, default 0 Strings are used for sheet names. Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. Available cases: * Defaults to ``0``: 1st sheet as a `DataFrame` * ``1``: 2nd sheet as a `DataFrame` * ``"Sheet1"``: Load sheet with name "Sheet1" * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5" as a dict of `DataFrame` * None: All sheets. header : int, list of int, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None. index_col : int, list of int, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. usecols : int, str, list-like, or callable default None * If None, then parse all columns. * If str, then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. * If list of int, then indicates list of column numbers to be parsed. * If list of string, then indicates list of column names to be parsed. .. versionadded:: 0.24.0 * If callable, then evaluate each column name against it and parse the column if the callable returns ``True``. Returns a subset of the columns according to behavior above. .. versionadded:: 0.24.0 squeeze : bool, default False If the parsed data only contains one column then return a Series. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : str, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None, "xlrd", "openpyxl" or "odf". converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True. false_values : list, default None Values to consider as False. skiprows : list-like Rows to skip at the beginning (0-indexed). nrows : int, default None Number of rows to parse. .. versionadded:: 0.23.0 na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is appended to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. parse_dates : bool, list-like, or dict, default False The behavior is as follows: * bool. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result 'foo' If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. If you don`t want to parse some cells as date just change their type in Excel to "Text". For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``. Note: A fast-path exists for iso8601-formatted dates. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Pandas will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skipfooter : int, default 0 Rows at the end to skip (0-indexed). convert_float : bool, default True Convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally. mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a dict of DataFrames is returned. See Also -------- to_excel : Write DataFrame to an Excel file. to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. read_fwf : Read a table of fixed-width formatted lines into DataFrame. Examples -------- The file can be read using the file name as string or an open file object: >>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP Name Value 0 string1 1 1 string2 2 2 #Comment 3 >>> pd.read_excel(open('tmp.xlsx', 'rb'), ... sheet_name='Sheet3') # doctest: +SKIP Unnamed: 0 Name Value 0 0 string1 1 1 1 string2 2 2 2 #Comment 3 Index and header can be specified via the `index_col` and `header` arguments >>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 #Comment 3 Column types are inferred but can be explicitly specified >>> pd.read_excel('tmp.xlsx', index_col=0, ... dtype={'Name': str, 'Value': float}) # doctest: +SKIP Name Value 0 string1 1.0 1 string2 2.0 2 #Comment 3.0 True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings! >>> pd.read_excel('tmp.xlsx', index_col=0, ... na_values=['string1', 'string2']) # doctest: +SKIP Name Value 0 NaN 1 1 NaN 2 2 #Comment 3 Comment lines in the excel input file can be skipped using the `comment` kwarg >>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP Name Value 0 string1 1.0 1 string2 2.0 2 None NaN """ ) @Appender(_read_excel_doc) def read_excel( io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds, ): for arg in ("sheet", "sheetname", "parse_cols"): if arg in kwds: raise TypeError( "read_excel() got an unexpected keyword argument `{}`".format(arg) ) if not isinstance(io, ExcelFile): io = ExcelFile(io, engine=engine) elif engine and engine != io.engine: raise ValueError( "Engine should not be specified when passing " "an ExcelFile - ExcelFile already has the engine set" ) return io.parse( sheet_name=sheet_name, header=header, names=names, index_col=index_col, usecols=usecols, squeeze=squeeze, dtype=dtype, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, keep_default_na=keep_default_na, verbose=verbose, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, mangle_dupe_cols=mangle_dupe_cols, **kwds, ) class _BaseExcelReader(metaclass=abc.ABCMeta): def __init__(self, filepath_or_buffer): # If filepath_or_buffer is a url, load the data into a BytesIO if _is_url(filepath_or_buffer): filepath_or_buffer = BytesIO(urlopen(filepath_or_buffer).read()) elif not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)): filepath_or_buffer, _, _, _ = get_filepath_or_buffer(filepath_or_buffer) if isinstance(filepath_or_buffer, self._workbook_class): self.book = filepath_or_buffer elif hasattr(filepath_or_buffer, "read"): # N.B. xlrd.Book has a read attribute too filepath_or_buffer.seek(0) self.book = self.load_workbook(filepath_or_buffer) elif isinstance(filepath_or_buffer, str): self.book = self.load_workbook(filepath_or_buffer) else: raise ValueError( "Must explicitly set engine if not passing in buffer or path for io." ) @property @abc.abstractmethod def _workbook_class(self): pass @abc.abstractmethod def load_workbook(self, filepath_or_buffer): pass @property @abc.abstractmethod def sheet_names(self): pass @abc.abstractmethod def get_sheet_by_name(self, name): pass @abc.abstractmethod def get_sheet_by_index(self, index): pass @abc.abstractmethod def get_sheet_data(self, sheet, convert_float): pass def parse( self, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds, ): _validate_header_arg(header) ret_dict = False # Keep sheetname to maintain backwards compatibility. if isinstance(sheet_name, list): sheets = sheet_name ret_dict = True elif sheet_name is None: sheets = self.sheet_names ret_dict = True else: sheets = [sheet_name] # handle same-type duplicates. sheets = list(dict.fromkeys(sheets).keys()) output = {} for asheetname in sheets: if verbose: print("Reading sheet {sheet}".format(sheet=asheetname)) if isinstance(asheetname, str): sheet = self.get_sheet_by_name(asheetname) else: # assume an integer if not a string sheet = self.get_sheet_by_index(asheetname) data = self.get_sheet_data(sheet, convert_float) usecols = _maybe_convert_usecols(usecols) if not data: output[asheetname] = DataFrame() continue if is_list_like(header) and len(header) == 1: header = header[0] # forward fill and pull out names for MultiIndex column header_names = None if header is not None and
is_list_like(header)
pandas.core.dtypes.common.is_list_like
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def postgres_url() -> str: conn = os.environ["POSTGRES_URL"] return conn @pytest.mark.xfail def test_on_non_select(postgres_url: str) -> None: query = "CREATE TABLE non_select(id INTEGER NOT NULL)" df = read_sql(postgres_url, query) def test_aggregation(postgres_url: str) -> None: query = "SELECT test_bool, SUM(test_float) FROM test_table GROUP BY test_bool" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "sum": pd.Series([10.9, 5.2, -10.0], dtype="float64") } ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation(postgres_url: str) -> None: query = "SELECT test_bool, SUM(test_int) AS test_int FROM test_table GROUP BY test_bool" df = read_sql(postgres_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "test_int": pd.Series([4, 5, 1315], dtype="Int64") } ) assert_frame_equal(df, expected, check_names=True) def test_aggregation2(postgres_url: str) -> None: query = "select DISTINCT(test_bool) from test_table" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), } ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation2(postgres_url: str) -> None: query = "select MAX(test_int), MIN(test_int) from test_table" df = read_sql(postgres_url, query, partition_on="max", partition_num=2) expected = pd.DataFrame( index=range(1), data={ "max": pd.Series([1314], dtype="Int64"), "min": pd.Series([0], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) def test_udf(postgres_url: str) -> None: query = "select increment(test_int) as test_int from test_table ORDER BY test_int" df = read_sql(postgres_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 3, 4, 5, 1315], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) def test_manual_partition(postgres_url: str) -> None: queries = [ "SELECT * FROM test_table WHERE test_int < 2", "SELECT * FROM test_table WHERE test_int >= 2", ] df = read_sql(postgres_url, query=queries) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 0, 2, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, 5, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "a", "str2", "b", "c", None], dtype="object" ), "test_float":
pd.Series([None, 3.1, 2.2, 3, 7.8, -10], dtype="float64")
pandas.Series
# This script performs the statistical analysis for the pollution growth paper # Importing required modules import pandas as pd import numpy as np import statsmodels.api as stats from ToTeX import restab # Reading in the data data = pd.read_csv('C:/Users/User/Documents/Data/Pollution/pollution_data.csv') W = pd.read_csv('C:/Users/User/Documents/Data/Pollution/pollution_data_W_reference.csv', header = None) # Creating a reference list of nations nations = list(data.Country.unique()) # Prepping data for pollution regression # Data sets for individual pollutants co2_data = data[['ln_co2', 'ln_co2_lag', 'ln_sk', 'ln_n5', 'ln_co2_intensity_rate', 'Country', 'Year', 'ln_co2_intensity_lag']].dropna() ch4_data = data[['ln_ch4', 'ln_ch4_lag', 'ln_sk', 'ln_n5', 'ln_ch4_intensity_rate', 'Country', 'Year', 'ln_ch4_intensity_lag']].dropna() nox_data = data[['ln_nox', 'ln_nox_lag', 'ln_sk', 'ln_n5', 'ln_nox_intensity_rate', 'Country', 'Year', 'ln_nox_intensity_lag']].dropna() # Creating dummy variables for each pollutant co2_national_dummies = pd.get_dummies(co2_data['Country']) co2_year_dummies = pd.get_dummies(co2_data['Year']) ch4_national_dummies = pd.get_dummies(ch4_data['Country']) ch4_year_dummies = pd.get_dummies(ch4_data['Year']) nox_national_dummies = pd.get_dummies(nox_data['Country']) nox_year_dummies = pd.get_dummies(nox_data['Year']) # Replacing Country and Year with fixed effects co2_data = pd.concat([co2_data, co2_national_dummies, co2_year_dummies], axis = 1) ch4_data = pd.concat([ch4_data, ch4_national_dummies, ch4_year_dummies], axis = 1) nox_data = pd.concat([nox_data, nox_national_dummies, nox_year_dummies], axis = 1) co2_data = co2_data.drop(['Country', 'Year', 1971, 'United States'], axis = 1) ch4_data = ch4_data.drop(['Country', 'Year', 1971, 'United States'], axis = 1) nox_data = nox_data.drop(['Country', 'Year', 1971, 'United States'], axis = 1) # Create the Y and X matrices CO2 = co2_data['ln_co2'] CH4 = ch4_data['ln_ch4'] NOX = nox_data['ln_nox'] X_CO2 = co2_data.drop(['ln_co2'], axis = 1) X_CH4 = ch4_data.drop(['ln_ch4'], axis = 1) X_NOX = nox_data.drop(['ln_nox'], axis = 1) # Running pollution regressions co2_mod = stats.OLS(CO2, X_CO2) ch4_mod = stats.OLS(CH4, X_CH4) nox_mod = stats.OLS(NOX, X_NOX) models = [co2_mod, ch4_mod, nox_mod] names = ['CO2', 'CH4', 'NOx'] res_list = [] for mod in models: res = mod.fit(cov_type = 'HC1') res_list.append(res) print(res.summary()) file = open('C:/Users/User/Documents/Data/Pollution/' + names[models.index(mod)] + '.txt', 'w') file.write(res.summary().as_text()) file.close() restab(res_list, 'C:/Users/User/Documents/Data/Pollution/restab.txt') # After running the conditional convergence models, we set up the network effects models # Compute technology growth rate # \widetilde{g} = \left(\frac{1}{T}\right)\sum\limits_{t=1}^{T}\left(\frac{\eta_{t}}{t-\gamma(t-1)}\right) g_co2 = (1/23) * sum([(co2_mod.fit().params[i] / ((i-1971) - (co2_mod.fit().params['ln_co2_lag'] * (i-1972)))) for i in range(1972,2015)]) g_ch4 = (1/21) * sum([(ch4_mod.fit().params[i] / ((i-1971) - (ch4_mod.fit().params['ln_ch4_lag'] * (i-1972)))) for i in range(1972,2013)]) g_nox = (1/21) * sum([(nox_mod.fit().params[i] / ((i-1971) - (nox_mod.fit().params['ln_nox_lag'] * (i-1972)))) for i in range(1972,2013)]) # Add technology parameters to the dataframe co2_tech = [] ch4_tech = [] nox_tech = [] for i in range(len(data)): if data.Year[i] > 1970 and data.Country[i] in co2_mod.fit().params.keys(): co2_tech.append(co2_mod.fit().params[data.Country[i]] + (g_co2 * (data.Year[i] - 1971))) else: co2_tech.append('') if data.Year[i] > 1970 and data.Country[i] in ch4_mod.fit().params.keys(): ch4_tech.append(ch4_mod.fit().params[data.Country[i]] + (g_ch4 * (data.Year[i] - 1971))) else: ch4_tech.append('') if data.Year[i] > 1970 and data.Country[i] in nox_mod.fit().params.keys(): nox_tech.append(nox_mod.fit().params[data.Country[i]] + (g_nox * (data.Year[i] - 1971))) else: nox_tech.append('') # Add technology values to data set co2_tech = pd.Series(co2_tech, name = 'co2_tech') ch4_tech = pd.Series(co2_tech, name = 'ch4_tech') nox_tech = pd.Series(co2_tech, name = 'nox_tech') data = pd.concat([data, co2_tech, ch4_tech, nox_tech], axis = 1) # Convert '' to np.nan to use pandas dropna data[data[['co2_tech', 'ch4_tech', 'nox_tech']] == ''] = np.nan # Data prep for network effects regressions for intensities tc_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'TC_CO2_ROB', 'Country', 'Year']].dropna() tc_ch4_rob = data[['ch4_intensity', 'ch4_intensity_init', 'ch4_intensity_lag', 'ch4_tech', 'TC_CH4_ROB', 'Country', 'Year']].dropna() tc_nox_rob = data[['nox_intensity', 'nox_intensity_init', 'nox_intensity_lag', 'nox_tech', 'TC_NOX_ROB', 'Country', 'Year']].dropna() co2_national_dummies = pd.get_dummies(tc_co2_rob['Country']) co2_year_dummies = pd.get_dummies(tc_co2_rob['Year']) ch4_national_dummies = pd.get_dummies(tc_ch4_rob['Country']) ch4_year_dummies = pd.get_dummies(tc_ch4_rob['Year']) nox_national_dummies = pd.get_dummies(tc_nox_rob['Country']) nox_year_dummies = pd.get_dummies(tc_nox_rob['Year']) xtc_co2_rob = pd.concat([tc_co2_rob, co2_national_dummies, co2_year_dummies], axis = 1).drop(['co2_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) xtc_ch4_rob = pd.concat([tc_ch4_rob, ch4_national_dummies, ch4_year_dummies], axis = 1).drop(['ch4_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) xtc_nox_rob = pd.concat([tc_nox_rob, nox_national_dummies, nox_year_dummies], axis = 1).drop(['nox_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) exp_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'EXP_CO2_ROB', 'Country', 'Year']].dropna() exp_ch4_rob = data[['ch4_intensity', 'ch4_intensity_init', 'ch4_intensity_lag', 'ch4_tech', 'EXP_CH4_ROB', 'Country', 'Year']].dropna() exp_nox_rob = data[['nox_intensity', 'nox_intensity_init', 'nox_intensity_lag', 'nox_tech', 'EXP_NOX_ROB', 'Country', 'Year']].dropna() co2_national_dummies = pd.get_dummies(exp_co2_rob['Country']) co2_year_dummies = pd.get_dummies(exp_co2_rob['Year']) ch4_national_dummies = pd.get_dummies(exp_ch4_rob['Country']) ch4_year_dummies = pd.get_dummies(exp_ch4_rob['Year']) nox_national_dummies = pd.get_dummies(exp_nox_rob['Country']) nox_year_dummies = pd.get_dummies(exp_nox_rob['Year']) xexp_co2_rob = pd.concat([exp_co2_rob, co2_national_dummies, co2_year_dummies], axis = 1).drop(['co2_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) xexp_ch4_rob = pd.concat([exp_ch4_rob, ch4_national_dummies, ch4_year_dummies], axis = 1).drop(['ch4_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) xexp_nox_rob = pd.concat([exp_nox_rob, nox_national_dummies, nox_year_dummies], axis = 1).drop(['nox_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) imp_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'IMP_CO2_ROB', 'Country', 'Year']].dropna() imp_ch4_rob = data[['ch4_intensity', 'ch4_intensity_init', 'ch4_intensity_lag', 'ch4_tech', 'IMP_CH4_ROB', 'Country', 'Year']].dropna() imp_nox_rob = data[['nox_intensity', 'nox_intensity_init', 'nox_intensity_lag', 'nox_tech', 'IMP_NOX_ROB', 'Country', 'Year']].dropna() co2_national_dummies = pd.get_dummies(imp_co2_rob['Country']) co2_year_dummies = pd.get_dummies(imp_co2_rob['Year']) ch4_national_dummies = pd.get_dummies(imp_ch4_rob['Country']) ch4_year_dummies = pd.get_dummies(imp_ch4_rob['Year']) nox_national_dummies = pd.get_dummies(imp_nox_rob['Country']) nox_year_dummies = pd.get_dummies(imp_nox_rob['Year']) ximp_co2_rob = pd.concat([imp_co2_rob, co2_national_dummies, co2_year_dummies], axis = 1).drop(['co2_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) ximp_ch4_rob = pd.concat([imp_ch4_rob, ch4_national_dummies, ch4_year_dummies], axis = 1).drop(['ch4_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) ximp_nox_rob = pd.concat([imp_nox_rob, nox_national_dummies, nox_year_dummies], axis = 1).drop(['nox_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) # Run network effects regressions for intensities tc_co2_rob_mod = stats.OLS(tc_co2_rob['co2_intensity'].astype(float), stats.add_constant(xtc_co2_rob).astype(float)) tc_ch4_rob_mod = stats.OLS(tc_ch4_rob['ch4_intensity'].astype(float), stats.add_constant(xtc_ch4_rob).astype(float)) tc_nox_rob_mod = stats.OLS(tc_nox_rob['nox_intensity'].astype(float), stats.add_constant(xtc_nox_rob).astype(float)) exp_co2_rob_mod = stats.OLS(exp_co2_rob['co2_intensity'].astype(float), stats.add_constant(xexp_co2_rob).astype(float)) exp_ch4_rob_mod = stats.OLS(exp_ch4_rob['ch4_intensity'].astype(float), stats.add_constant(xexp_ch4_rob).astype(float)) exp_nox_rob_mod = stats.OLS(exp_nox_rob['nox_intensity'].astype(float), stats.add_constant(xexp_nox_rob).astype(float)) imp_co2_rob_mod = stats.OLS(imp_co2_rob['co2_intensity'].astype(float), stats.add_constant(ximp_co2_rob).astype(float)) imp_ch4_rob_mod = stats.OLS(imp_ch4_rob['ch4_intensity'].astype(float), stats.add_constant(ximp_ch4_rob).astype(float)) imp_nox_rob_mod = stats.OLS(imp_nox_rob['nox_intensity'].astype(float), stats.add_constant(ximp_nox_rob).astype(float)) # Write results of regressions to file co2_models = [tc_co2_rob_mod, exp_co2_rob_mod, imp_co2_rob_mod] names = ['Competition', 'Exports', 'Imports'] res_list = [] for mod in co2_models: res = mod.fit(cov_type = 'HC1') res_list.append(res) print(res.summary()) file = open('C:/Users/User/Documents/Data/Pollution/Main_CO2_' + names[co2_models.index(mod)] + '.txt', 'w') file.write(res.summary().as_text()) file.close() restab(res_list, 'C:/Users/User/Documents/Data/Pollution/restab_networks_CO2.txt') ch4_models = [tc_ch4_rob_mod, exp_ch4_rob_mod, imp_ch4_rob_mod] res_list = [] for mod in ch4_models: res = mod.fit(cov_type = 'HC1') res_list.append(res) print(res.summary()) file = open('C:/Users/User/Documents/Data/Pollution/Main_CH4_' + names[ch4_models.index(mod)] + '.txt', 'w') file.write(res.summary().as_text()) file.close() restab(res_list, 'C:/Users/User/Documents/Data/Pollution/restab_networks_CH4.txt') nox_models = [tc_nox_rob_mod, exp_nox_rob_mod, imp_nox_rob_mod] res_list = [] for mod in nox_models: res = mod.fit(cov_type = 'HC1') res_list.append(res) print(res.summary()) file = open('C:/Users/User/Documents/Data/Pollution/Main_NOX_' + names[nox_models.index(mod)] + '.txt', 'w') file.write(res.summary().as_text()) file.close() restab(res_list, 'C:/Users/User/Documents/Data/Pollution/restab_networks_NOX.txt') # Geographical regression geo_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'GEO_CO2', 'Country', 'Year']].dropna() co2_national_dummies = pd.get_dummies(geo_co2_rob['Country']) co2_year_dummies = pd.get_dummies(geo_co2_rob['Year']) geo_co2_robx = pd.concat([geo_co2_rob, co2_national_dummies, co2_year_dummies], axis = 1).drop(['co2_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) geo_co2_rob_mod = stats.OLS(geo_co2_rob['co2_intensity'].astype(float), stats.add_constant(geo_co2_robx).astype(float)) res = geo_co2_rob_mod.fit(cov_type = 'HC1') res_list.append(res) print(res.summary()) file = open('C:/Users/User/Documents/Data/Pollution/GEO_CO2.txt', 'w') file.write(res.summary().as_text()) file.close() # Regressions with geographic spillovers and network effects # GEO + TC geo_tc_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'GEO_CO2', 'TC_CO2_ROB', 'Country', 'Year']].dropna() co2_national_dummies = pd.get_dummies(geo_tc_co2_rob['Country']) co2_year_dummies = pd.get_dummies(geo_tc_co2_rob['Year']) geo_tc_co2_robx = pd.concat([geo_tc_co2_rob, co2_national_dummies, co2_year_dummies], axis = 1).drop(['co2_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) geo_tc_co2_rob_mod = stats.OLS(geo_tc_co2_rob['co2_intensity'].astype(float), stats.add_constant(geo_tc_co2_robx).astype(float)) res = geo_tc_co2_rob_mod.fit(cov_type = 'HC1') res_list.append(res) print(res.summary()) file = open('C:/Users/User/Documents/Data/Pollution/GEO_CO2_TC.txt', 'w') file.write(res.summary().as_text()) file.close() # GEO + EXPORTS geo_exp_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'GEO_CO2', 'EXP_CO2_ROB', 'Country', 'Year']].dropna() co2_national_dummies =
pd.get_dummies(geo_exp_co2_rob['Country'])
pandas.get_dummies
import re from datetime import datetime import nose import pytz import platform from time import sleep import os import logging import numpy as np from distutils.version import StrictVersion from pandas import compat from pandas import NaT from pandas.compat import u, range from pandas.core.frame import DataFrame import pandas.io.gbq as gbq import pandas.util.testing as tm from pandas.compat.numpy import np_datetime64_compat PROJECT_ID = None PRIVATE_KEY_JSON_PATH = None PRIVATE_KEY_JSON_CONTENTS = None if compat.PY3: DATASET_ID = 'pydata_pandas_bq_testing_py3' else: DATASET_ID = 'pydata_pandas_bq_testing_py2' TABLE_ID = 'new_test' DESTINATION_TABLE = "{0}.{1}".format(DATASET_ID + "1", TABLE_ID) VERSION = platform.python_version() _IMPORTS = False _GOOGLE_API_CLIENT_INSTALLED = False _GOOGLE_API_CLIENT_VALID_VERSION = False _HTTPLIB2_INSTALLED = False _SETUPTOOLS_INSTALLED = False def _skip_if_no_project_id(): if not _get_project_id(): raise nose.SkipTest( "Cannot run integration tests without a project id") def _skip_if_no_private_key_path(): if not _get_private_key_path(): raise nose.SkipTest("Cannot run integration tests without a " "private key json file path") def _skip_if_no_private_key_contents(): if not _get_private_key_contents(): raise nose.SkipTest("Cannot run integration tests without a " "private key json contents") def _in_travis_environment(): return 'TRAVIS_BUILD_DIR' in os.environ and \ 'GBQ_PROJECT_ID' in os.environ def _get_project_id(): if _in_travis_environment(): return os.environ.get('GBQ_PROJECT_ID') else: return PROJECT_ID def _get_private_key_path(): if _in_travis_environment(): return os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json']) else: return PRIVATE_KEY_JSON_PATH def _get_private_key_contents(): if _in_travis_environment(): with open(os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json'])) as f: return f.read() else: return PRIVATE_KEY_JSON_CONTENTS def _test_imports(): global _GOOGLE_API_CLIENT_INSTALLED, _GOOGLE_API_CLIENT_VALID_VERSION, \ _HTTPLIB2_INSTALLED, _SETUPTOOLS_INSTALLED try: import pkg_resources _SETUPTOOLS_INSTALLED = True except ImportError: _SETUPTOOLS_INSTALLED = False if compat.PY3: google_api_minimum_version = '1.4.1' else: google_api_minimum_version = '1.2.0' if _SETUPTOOLS_INSTALLED: try: try: from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa except: from apiclient.discovery import build # noqa from apiclient.errors import HttpError # noqa from oauth2client.client import OAuth2WebServerFlow # noqa from oauth2client.client import AccessTokenRefreshError # noqa from oauth2client.file import Storage # noqa from oauth2client.tools import run_flow # noqa _GOOGLE_API_CLIENT_INSTALLED = True _GOOGLE_API_CLIENT_VERSION = pkg_resources.get_distribution( 'google-api-python-client').version if (StrictVersion(_GOOGLE_API_CLIENT_VERSION) >= StrictVersion(google_api_minimum_version)): _GOOGLE_API_CLIENT_VALID_VERSION = True except ImportError: _GOOGLE_API_CLIENT_INSTALLED = False try: import httplib2 # noqa _HTTPLIB2_INSTALLED = True except ImportError: _HTTPLIB2_INSTALLED = False if not _SETUPTOOLS_INSTALLED: raise ImportError('Could not import pkg_resources (setuptools).') if not _GOOGLE_API_CLIENT_INSTALLED: raise ImportError('Could not import Google API Client.') if not _GOOGLE_API_CLIENT_VALID_VERSION: raise ImportError("pandas requires google-api-python-client >= {0} " "for Google BigQuery support, " "current version {1}" .format(google_api_minimum_version, _GOOGLE_API_CLIENT_VERSION)) if not _HTTPLIB2_INSTALLED: raise ImportError( "pandas requires httplib2 for Google BigQuery support") # Bug fix for https://github.com/pandas-dev/pandas/issues/12572 # We need to know that a supported version of oauth2client is installed # Test that either of the following is installed: # - SignedJwtAssertionCredentials from oauth2client.client # - ServiceAccountCredentials from oauth2client.service_account # SignedJwtAssertionCredentials is available in oauthclient < 2.0.0 # ServiceAccountCredentials is available in oauthclient >= 2.0.0 oauth2client_v1 = True oauth2client_v2 = True try: from oauth2client.client import SignedJwtAssertionCredentials # noqa except ImportError: oauth2client_v1 = False try: from oauth2client.service_account import ServiceAccountCredentials # noqa except ImportError: oauth2client_v2 = False if not oauth2client_v1 and not oauth2client_v2: raise ImportError("Missing oauth2client required for BigQuery " "service account support") def _setup_common(): try: _test_imports() except (ImportError, NotImplementedError) as import_exception: raise nose.SkipTest(import_exception) if _in_travis_environment(): logging.getLogger('oauth2client').setLevel(logging.ERROR) logging.getLogger('apiclient').setLevel(logging.ERROR) def _check_if_can_get_correct_default_credentials(): # Checks if "Application Default Credentials" can be fetched # from the environment the tests are running in. # See Issue #13577 import httplib2 try: from googleapiclient.discovery import build except ImportError: from apiclient.discovery import build try: from oauth2client.client import GoogleCredentials credentials = GoogleCredentials.get_application_default() http = httplib2.Http() http = credentials.authorize(http) bigquery_service = build('bigquery', 'v2', http=http) jobs = bigquery_service.jobs() job_data = {'configuration': {'query': {'query': 'SELECT 1'}}} jobs.insert(projectId=_get_project_id(), body=job_data).execute() return True except: return False def clean_gbq_environment(private_key=None): dataset = gbq._Dataset(_get_project_id(), private_key=private_key) for i in range(1, 10): if DATASET_ID + str(i) in dataset.datasets(): dataset_id = DATASET_ID + str(i) table = gbq._Table(_get_project_id(), dataset_id, private_key=private_key) for j in range(1, 20): if TABLE_ID + str(j) in dataset.tables(dataset_id): table.delete(TABLE_ID + str(j)) dataset.delete(dataset_id) def make_mixed_dataframe_v2(test_size): # create df to test for all BQ datatypes except RECORD bools = np.random.randint(2, size=(1, test_size)).astype(bool) flts = np.random.randn(1, test_size) ints = np.random.randint(1, 10, size=(1, test_size)) strs = np.random.randint(1, 10, size=(1, test_size)).astype(str) times = [datetime.now(pytz.timezone('US/Arizona')) for t in range(test_size)] return DataFrame({'bools': bools[0], 'flts': flts[0], 'ints': ints[0], 'strs': strs[0], 'times': times[0]}, index=range(test_size)) def test_generate_bq_schema_deprecated(): # 11121 Deprecation of generate_bq_schema with tm.assert_produces_warning(FutureWarning): df = make_mixed_dataframe_v2(10) gbq.generate_bq_schema(df) class TestGBQConnectorIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) def test_get_application_default_credentials_does_not_throw_error(self): if _check_if_can_get_correct_default_credentials(): raise nose.SkipTest("Can get default_credentials " "from the environment!") credentials = self.sut.get_application_default_credentials() self.assertIsNone(credentials) def test_get_application_default_credentials_returns_credentials(self): if not _check_if_can_get_correct_default_credentials(): raise nose.SkipTest("Cannot get default_credentials " "from the environment!") from oauth2client.client import GoogleCredentials credentials = self.sut.get_application_default_credentials() self.assertTrue(isinstance(credentials, GoogleCredentials)) class TestGBQConnectorServiceAccountKeyPathIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() _skip_if_no_private_key_path() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class TestGBQConnectorServiceAccountKeyContentsIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() _skip_if_no_private_key_path() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class GBQUnitTests(tm.TestCase): def setUp(self): _setup_common() def test_import_google_api_python_client(self): if compat.PY2: with tm.assertRaises(ImportError): from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa from apiclient.discovery import build # noqa from apiclient.errors import HttpError # noqa else: from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa def test_should_return_bigquery_integers_as_python_floats(self): result = gbq._parse_entry(1, 'INTEGER') tm.assert_equal(result, float(1)) def test_should_return_bigquery_floats_as_python_floats(self): result = gbq._parse_entry(1, 'FLOAT') tm.assert_equal(result, float(1)) def test_should_return_bigquery_timestamps_as_numpy_datetime(self): result = gbq._parse_entry('0e9', 'TIMESTAMP') tm.assert_equal(result, np_datetime64_compat('1970-01-01T00:00:00Z')) def test_should_return_bigquery_booleans_as_python_booleans(self): result = gbq._parse_entry('false', 'BOOLEAN') tm.assert_equal(result, False) def test_should_return_bigquery_strings_as_python_strings(self): result = gbq._parse_entry('STRING', 'STRING') tm.assert_equal(result, 'STRING') def test_to_gbq_should_fail_if_invalid_table_name_passed(self): with tm.assertRaises(gbq.NotFoundException): gbq.to_gbq(DataFrame(), 'invalid_table_name', project_id="1234") def test_to_gbq_with_no_project_id_given_should_fail(self): with tm.assertRaises(TypeError): gbq.to_gbq(DataFrame(), 'dataset.tablename') def test_read_gbq_with_no_project_id_given_should_fail(self): with tm.assertRaises(TypeError): gbq.read_gbq('SELECT "1" as NUMBER_1') def test_that_parse_data_works_properly(self): test_schema = {'fields': [ {'mode': 'NULLABLE', 'name': 'VALID_STRING', 'type': 'STRING'}]} test_page = [{'f': [{'v': 'PI'}]}] test_output = gbq._parse_data(test_schema, test_page) correct_output = DataFrame({'VALID_STRING': ['PI']})
tm.assert_frame_equal(test_output, correct_output)
pandas.util.testing.assert_frame_equal
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key],name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.get_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): raise ValueError("must supply a tuple to get_group with multiple grouping keys") if not len(name) == len(sample): raise ValueError("must supply a a same-length tuple to get_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if len(groupers): self._group_selection = (ax-Index(groupers)).tolist() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group. If dropna, will not show nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not dropna: # good choice m = self.grouper._max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Example ------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _algos.groupsort_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.get_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.append(gpr) name = gpr gpr = obj[gpr] if isinstance(gpr, Categorical) and len(gpr) != len(obj): errmsg = "Categorical grouper must have len(grouper) == len(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper class SeriesGroupBy(GroupBy): _apply_whitelist = _series_apply_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, compat.string_types): func = getattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if Index(self.grouper.group_info[0]).is_monotonic: result = Series(values, index=self.obj.index) else: index = Index(np.concatenate([ indices[v] for v in self.grouper.result_index ])) result = Series(values, index=index).sort_index() result.index = self.obj.index return result def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Example ------- >>> grouped.filter(lambda x: x.mean() > 0) Returns ------- filtered : Series """ if isinstance(func, compat.string_types): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._get_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._get_data_to_aggregate() new_blocks = [] if numeric_only: data = data.get_numeric_data(copy=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = com.ensure_float(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) result = OrderedDict() if isinstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if any(isinstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if isinstance(subset, DataFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.append(fname) else: for col, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.append(col) if isinstance(list(result.values())[0], DataFrame): from pandas.tools.merge import concat result = concat([result[k] for k in keys], keys=keys, axis=1) else: result = DataFrame(result) elif isinstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: if isinstance(result.index, MultiIndex): zipped = zip(result.index.levels, result.index.labels, result.index.names) for i, (lev, lab, name) in enumerate(zipped): result.insert(i, name, com.take_nd(lev.values, lab, allow_fill=False)) result = result.consolidate() else: values = result.index.values name = self.grouper.groupings[0].name result.insert(0, name, values) result.index = np.arange(len(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from pandas.tools.merge import concat if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except SpecificationError: raise result = concat(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same if len(keys) == 0: # XXX return DataFrame({}) key_names = self.grouper.names if isinstance(values[0], DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object if com._count_not_none(*values) != len(values): v = next(v for v in values if v is not None) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([ x.index for x in values ]) singular_series = (len(values) == 1 and applied_index.nlevels == 1) # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.tools.merge import concat return concat(values) if not all_indexed_same: return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = set(v.name for v in values) if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if not _np_version_under1p7 or isinstance(v.index,MultiIndex) or key_index is None: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values,index=key_index,columns=index) else: # GH5788 instead of stacking; concat gets the dtypes correct from pandas.tools.merge import concat result = concat(values,keys=key_index,names=key_index.names, axis=self.axis).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values.T,index=v.index,columns=key_index) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return Series(values, index=key_index) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here if (self._selected_obj.ndim == 2 and self._selected_obj.dtypes.isin(_DATELIKE_DTYPES).any()): cd = 'coerce' else: cd = True return result.convert_objects(convert_dates=cd) else: # only coerce dates if we find at least 1 datetime cd = 'coerce' if any([ isinstance(v,Timestamp) for v in values ]) else False return Series(values, index=key_index).convert_objects(convert_dates=cd) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.tools.merge import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, 'name', name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except Exception: # pragma: no cover res = fast_path(group) path = fast_path else: res = path(group) # broadcasting if isinstance(res, Series): if res.index.is_(obj.index): group.T.values[:] = res else: group.values[:] = res applied.append(group) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index concatenated = concat(applied, join_axes=[concat_index], axis=self.axis, verify_integrity=False) concatenated.sort_index(inplace=True) return concatenated def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed DataFrame on each group and return a DataFrame having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each subframe Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) """ # try to do a fast transform via merge if possible try: obj = self._obj_with_exclusions if isinstance(func, compat.string_types): result = getattr(self, func)(*args, **kwargs) else: cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: result = getattr(self, cyfunc)() else: return self._transform_general(func, *args, **kwargs) except: return self._transform_general(func, *args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) # nuiscance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) # a grouped that doesn't preserve the index, remap index based on the grouper # and broadcast it if ((not isinstance(obj.index,MultiIndex) and type(result.index) != type(obj.index)) or len(result.index) != len(obj.index)): results = obj.values.copy() for (name, group), (i, row) in zip(self, result.iterrows()): indexer = self._get_index(name) results[indexer] = np.tile(row.values,len(indexer)).reshape(len(indexer),-1) return DataFrame(results,columns=result.columns,index=obj.index).convert_objects() # we can merge the result in # GH 7383 names = result.columns result = obj.merge(result, how='outer', left_index=True, right_index=True).iloc[:,-result.shape[1]:] result.columns = names return result def _define_paths(self, func, *args, **kwargs): if isinstance(func, compat.string_types): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) # compare that we get the same results if res.shape == res_fast.shape: res_r = res.values.ravel() res_fast_r = res_fast.values.ravel() mask = notnull(res_r) if (res_r[mask] == res_fast_r[mask]).all(): path = fast_path except: pass return path, res def _transform_item_by_item(self, obj, wrapper): # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) inds.append(i) except Exception: pass if len(output) == 0: # pragma: no cover raise TypeError('Transform function invalid for data types') columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return DataFrame(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Example -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.filter(lambda x: x['A'].sum() + x['B'].sum() > 0) """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, 'name', name) res = func(group) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if (isinstance(res, (bool, np.bool_)) or np.isscalar(res) and isnull(res)): if res and notnull(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError("filter function returned a %s, " "but expected a scalar bool" % type(res).__name__) return self._apply_filter(indices, dropna) class DataFrameGroupBy(NDFrameGroupBy): _apply_whitelist = _dataframe_apply_whitelist _block_agg_axis = 1 def __getitem__(self, key): if self._selection is not None: raise Exception('Column(s) %s already selected' % self._selection) if isinstance(key, (list, tuple, Series, Index, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: %s" % str(bad_keys)[1:-1]) return DataFrameGroupBy(self.obj, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index) elif not self.as_index: if key not in self.obj.columns: raise KeyError("Column not found: %s" % key) return DataFrameGroupBy(self.obj, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index) else: if key not in self.obj: raise KeyError("Column not found: %s" % key) # kind of a kludge return SeriesGroupBy(self.obj[key], selection=key, grouper=self.grouper, exclusions=self.exclusions) def _wrap_generic_output(self, result, obj): result_index = self.grouper.levels[0] if result: if self.axis == 0: result = DataFrame(result, index=obj.columns, columns=result_index).T else: result = DataFrame(result, index=obj.index, columns=result_index) else: result = DataFrame(result) return result def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 1: return obj.T._data, 1 else: return obj._data, 1 def _wrap_aggregated_output(self, output, names=None): agg_axis = 0 if self.axis == 1 else 1 agg_labels = self._obj_with_exclusions._get_axis(agg_axis) output_keys = self._decide_output_index(output, agg_labels) if not self.as_index: result = DataFrame(output, columns=output_keys) group_levels = self.grouper.get_group_levels() zipped = zip(self.grouper.names, group_levels) for i, (name, labels) in enumerate(zipped): result.insert(i, name, labels) result = result.consolidate() else: index = self.grouper.result_index result = DataFrame(output, index=index, columns=output_keys) if self.axis == 1: result = result.T return self._reindex_output(result).convert_objects() def _wrap_agged_blocks(self, items, blocks): if not self.as_index: index = np.arange(blocks[0].values.shape[1]) mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) group_levels = self.grouper.get_group_levels() zipped = zip(self.grouper.names, group_levels) for i, (name, labels) in enumerate(zipped): result.insert(i, name, labels) result = result.consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) if self.axis == 1: result = result.T return self._reindex_output(result).convert_objects() def _reindex_output(self, result): """ if we have categorical groupers, then we want to make sure that we have a fully reindex-output to the levels. These may have not participated in the groupings (e.g. may have all been nan groups) This can re-expand the output space """ groupings = self.grouper.groupings if groupings is None: return result elif len(groupings) == 1: return result elif not any([ping._was_factor for ping in groupings]): return result levels_list = [ ping._group_index for ping in groupings ] index = MultiIndex.from_product(levels_list, names=self.grouper.names) return result.reindex(**{ self.obj._get_axis_name(self.axis) : index, 'copy' : False }).sortlevel() def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy(self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions) def _apply_to_column_groupbys(self, func): from pandas.tools.merge import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1) from pandas.tools.plotting import boxplot_frame_groupby DataFrameGroupBy.boxplot = boxplot_frame_groupby class PanelGroupBy(NDFrameGroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self._selected_obj.items else: slice_axis = self._selection_list slicer = lambda x: self._selected_obj[x] else: raise NotImplementedError for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def aggregate(self, arg, *args, **kwargs): """ Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a Panel or when passed to Panel.apply. If pass a dict, the keys must be DataFrame column names Returns ------- aggregated : Panel """ if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) return self._aggregate_generic(arg, *args, **kwargs) def _wrap_generic_output(self, result, obj): if self.axis == 0: new_axes = list(obj.axes) new_axes[0] = self.grouper.result_index elif self.axis == 1: x, y, z = obj.axes new_axes = [self.grouper.result_index, z, x] else: x, y, z = obj.axes new_axes = [self.grouper.result_index, y, x] result = Panel._from_axes(result, new_axes) if self.axis == 1: result = result.swapaxes(0, 1).swapaxes(0, 2) elif self.axis == 2: result = result.swapaxes(0, 2) return result def _aggregate_item_by_item(self, func, *args, **kwargs): obj = self._obj_with_exclusions result = {} if self.axis > 0: for item in obj: try: itemg = DataFrameGroupBy(obj[item], axis=self.axis - 1, grouper=self.grouper) result[item] = itemg.aggregate(func, *args, **kwargs) except (ValueError, TypeError): raise new_axes = list(obj.axes) new_axes[self.axis] = self.grouper.result_index return Panel._from_axes(result, new_axes) else: raise NotImplementedError def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError class NDArrayGroupBy(GroupBy): pass #---------------------------------------------------------------------- # Splitting / application class DataSplitter(object): def __init__(self, data, labels, ngroups, axis=0): self.data = data self.labels = com._ensure_int64(labels) self.ngroups = ngroups self.axis = axis @cache_readonly def slabels(self): # Sorted labels return com.take_nd(self.labels, self.sort_idx, allow_fill=False) @cache_readonly def sort_idx(self): # Counting sort indexer return _algos.groupsort_indexer(self.labels, self.ngroups)[0] def __iter__(self): sdata = self._get_sorted_data() if self.ngroups == 0: raise StopIteration starts, ends = lib.generate_slices(self.slabels, self.ngroups) for i, (start, end) in enumerate(zip(starts, ends)): # Since I'm now compressing the group ids, it's now not "possible" # to produce empty slices because such groups would not be observed # in the data # if start >= end: # raise AssertionError('Start %s must be less than end %s' # % (str(start), str(end))) yield i, self._chop(sdata, slice(start, end)) def _get_sorted_data(self): return self.data.take(self.sort_idx, axis=self.axis, convert=False) def _chop(self, sdata, slice_obj): return sdata.iloc[slice_obj] def apply(self, f): raise NotImplementedError class ArraySplitter(DataSplitter): pass class SeriesSplitter(DataSplitter): def _chop(self, sdata, slice_obj): return sdata._get_values(slice_obj).to_dense() class FrameSplitter(DataSplitter): def __init__(self, data, labels, ngroups, axis=0): super(FrameSplitter, self).__init__(data, labels, ngroups, axis=axis) def fast_apply(self, f, names): # must return keys::list, values::list, mutated::bool try: starts, ends = lib.generate_slices(self.slabels, self.ngroups) except: # fails when all -1 return [], True sdata = self._get_sorted_data() results, mutated = lib.apply_frame_axis0(sdata, f, names, starts, ends) return results, mutated def _chop(self, sdata, slice_obj): if self.axis == 0: return sdata.iloc[slice_obj] else: return sdata._slice(slice_obj, axis=1) # ix[:, slice_obj] class NDFrameSplitter(DataSplitter): def __init__(self, data, labels, ngroups, axis=0): super(NDFrameSplitter, self).__init__(data, labels, ngroups, axis=axis) self.factory = data._constructor def _get_sorted_data(self): # this is the BlockManager data = self.data._data # this is sort of wasteful but... sorted_axis = data.axes[self.axis].take(self.sort_idx) sorted_data = data.reindex_axis(sorted_axis, axis=self.axis) return sorted_data def _chop(self, sdata, slice_obj): return self.factory(sdata.get_slice(slice_obj, axis=self.axis)) def get_splitter(data, *args, **kwargs): if isinstance(data, Series): klass = SeriesSplitter elif isinstance(data, DataFrame): klass = FrameSplitter else: klass = NDFrameSplitter return klass(data, *args, **kwargs) #---------------------------------------------------------------------- # Misc utilities def get_group_index(label_list, shape): """ For the particular label_list, gets the offsets into the hypothetical list representing the totally ordered cartesian product of all possible label combinations. """ if len(label_list) == 1: return label_list[0] n = len(label_list[0]) group_index = np.zeros(n, dtype=np.int64) mask = np.zeros(n, dtype=bool) for i in range(len(shape)): stride = np.prod([x for x in shape[i + 1:]], dtype=np.int64) group_index += com._ensure_int64(label_list[i]) * stride mask |= label_list[i] < 0 np.putmask(group_index, mask, -1) return group_index _INT64_MAX = np.iinfo(np.int64).max def _int64_overflow_possible(shape): the_prod = long(1) for x in shape: the_prod *= long(x) return the_prod >= _INT64_MAX def decons_group_index(comp_labels, shape): # reconstruct labels label_list = [] factor = 1 y = 0 x = comp_labels for i in reversed(range(len(shape))): labels = (x - y) % (factor * shape[i]) // factor np.putmask(labels, comp_labels < 0, -1) label_list.append(labels) y = labels * factor factor *= shape[i] return label_list[::-1] def _indexer_from_factorized(labels, shape, compress=True): if _int64_overflow_possible(shape): indexer = np.lexsort(np.array(labels[::-1])) return indexer group_index = get_group_index(labels, shape) if compress: comp_ids, obs_ids = _compress_group_index(group_index) max_group = len(obs_ids) else: comp_ids = group_index max_group = com._long_prod(shape) if max_group > 1e6: # Use mergesort to avoid memory errors in counting sort indexer = comp_ids.argsort(kind='mergesort') else: indexer, _ = _algos.groupsort_indexer(comp_ids.astype(np.int64), max_group) return indexer def _lexsort_indexer(keys, orders=None, na_position='last'): labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) for key, order in zip(keys, orders): # we are already a Categorical if is_categorical_dtype(key): c = key # create the Categorical else: c =
Categorical(key,ordered=True)
pandas.core.categorical.Categorical
import pandas as pd import random import sklearn.preprocessing as pp from datetime import datetime import itertools import re from scipy.stats import entropy import uuid import pickle import os from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans import sqlite3 from collections import Counter import numpy as np from sklearn.linear_model import SGDClassifier pd.options.display.max_columns = 50 pd.options.display.max_colwidth = 200 pd.options.display.max_colwidth = 200 pd.set_option('display.max_rows', None) RND_SEED = 45822 random.seed(RND_SEED) np.random.seed(RND_SEED) connection = sqlite3.connect('database.db', timeout=30) with open("schema.sql") as f: connection.executescript(f.read()) def get_db_connection(): conn = sqlite3.connect('database.db', timeout=30) conn.row_factory = sqlite3.Row return conn def populate_texts_table_sql(texts_list, table_name="texts", reset_labels=True): conn = get_db_connection() cur = conn.cursor() cur.execute("DELETE FROM " + table_name + ";") conn.commit() if reset_labels: for text_record in texts_list: cur.execute("INSERT INTO " + table_name + " (id, text, label) VALUES (?, ?, ?)", (text_record["id"], text_record["text"], "-")) else: for text_record in texts_list: cur.execute("INSERT INTO " + table_name + " (id, text, label) VALUES (?, ?, ?)", (text_record["id"], text_record["text"], text_record["label"])) conn.commit() conn.close() return None def get_decimal_value(name): conn = get_db_connection() query = "SELECT name, value FROM decimalValues WHERE name = '%s' ;" % name sql_table = conn.execute(query).fetchall() decimal_value = [dict(row)["value"] for row in sql_table][0] conn.close() return decimal_value def set_decimal_value(name, value): conn = get_db_connection() query = "UPDATE decimalValues SET value = %s WHERE name = '%s' ;" % (value, name) conn.execute(query) conn.commit() conn.close() return None def update_overall_quality_scores(value): current_score = get_decimal_value(name="OVERALL_QUALITY_SCORE_DECIMAL") set_decimal_value(name="OVERALL_QUALITY_SCORE_DECIMAL_PREVIOUS", value=current_score) set_decimal_value(name="OVERALL_QUALITY_SCORE_DECIMAL", value=value) return None def set_pkl(name, pkl_data, reset=False): conn = get_db_connection() cur = conn.cursor() if not reset: test_query = cur.execute('SELECT * FROM pkls WHERE name = ?', (name,)).fetchall() if len(test_query) > 0: cur.execute('DELETE FROM pkls WHERE name = ?', (name,)) query = "INSERT INTO pkls (name, data) VALUES (?, ?)" pkl_data_ = pickle.dumps(pkl_data) cur.execute(query, (name, pkl_data_)) # test_query = cur.execute('SELECT * FROM pkls WHERE name = ?', (name,)).fetchall() # test_data = pickle.loads([dict(row)["data"] for row in test_query][0]) else: cur.execute("DELETE FROM pkls WHERE name = '" + name + "';") conn.commit() conn.close() return None def get_pkl(name): try: conn = get_db_connection() cur = conn.cursor() query = "SELECT * FROM pkls WHERE name = '" + name + "';" pkl_table = cur.execute(query).fetchall() data = [dict(row)["data"] for row in pkl_table] if len(data) > 0: pkl_data = pickle.loads(data[0]) else: pkl_data = None conn.close() return pkl_data except: return None def get_text_list(table_name="texts"): conn = get_db_connection() text_list_sql = conn.execute("SELECT * FROM " + table_name).fetchall() text_list_sql = [dict(row) for row in text_list_sql] conn.close() return text_list_sql def set_text_list(label, table_name="searchResults"): conn = get_db_connection() conn.execute("UPDATE " + table_name + " SET label = '" + label + "'") conn.commit() conn.close() return None def clear_text_list(table_name="searchResults"): conn = get_db_connection() cur = conn.cursor() cur.execute("DELETE FROM " + table_name + ";") conn.commit() conn.close() return None def get_appropriate_text_list_list(text_list_full_sql, total_pages_sql, search_results_length_sql, table_limit_sql): if search_results_length_sql > 0: text_list_full_sql = get_text_list(table_name="searchResults") total_pages_sql = get_variable_value(name="SEARCH_TOTAL_PAGES") text_list_list_sql = create_text_list_list(text_list_full_sql=text_list_full_sql, sub_list_limit=table_limit_sql) return text_list_list_sql, text_list_full_sql, total_pages_sql def get_y_classes(): conn = get_db_connection() y_classes_sql = conn.execute('SELECT className FROM yClasses;').fetchall() y_classes_sql = [dict(row)["className"] for row in y_classes_sql] conn.close() return y_classes_sql def clear_y_classes(): conn = get_db_connection() conn.execute('DELETE FROM yClasses;') conn.commit() conn.close() return [] def add_y_classes(y_classses_list, begin_fresh=True): conn = get_db_connection() cur = conn.cursor() if begin_fresh: cur.execute("DELETE FROM yClasses;") for i, value in enumerate(y_classses_list): cur.execute("INSERT INTO yClasses (classId, className) VALUES (?, ?)", (i, value)) conn.commit() conn.close() return 1 def get_click_log(): conn = get_db_connection() sql_table = \ conn.execute('SELECT click_id, click_location, click_type, click_object, click_date_time FROM clickRecord;').fetchall() click_log_sql = list() for row in sql_table: dict_row = {"click_id": dict(row)["click_id"], "click_location": dict(row)["click_location"], "click_type": dict(row)["click_type"], "click_object": dict(row)["click_object"], "click_date_time" : dict(row)["click_date_time"]} click_log_sql.append(dict_row) conn.close() return click_log_sql def get_value_log(): conn = get_db_connection() sql_table = \ conn.execute('SELECT click_id, value_type, value FROM valueRecord;').fetchall() click_log_sql = list() for row in sql_table: dict_row = {"click_id": dict(row)["click_id"], "value_type": dict(row)["value_type"], "value": dict(row)["value"]} click_log_sql.append(dict_row) conn.close() return click_log_sql def reset_log_click_record_sql(): conn = get_db_connection() conn.execute("DELETE FROM clickRecord") conn.commit() conn.close() return None def reset_log_click_value_sql(): conn = get_db_connection() conn.execute("DELETE FROM valueRecord") conn.commit() conn.close() return None def add_log_click_record_sql(records): conn = get_db_connection() cur = conn.cursor() for record in records: cur.execute("""INSERT INTO clickRecord (click_id, click_location, click_type, click_object, click_date_time) VALUES (?, ?, ?, ?, ?)""", (record["click_id"], record["click_location"], record["click_type"], record["click_object"], record["click_date_time"])) conn.commit() conn.close() return None def add_log_click_value_sql(records): conn = get_db_connection() cur = conn.cursor() for record in records: cur.execute("""INSERT INTO valueRecord (click_id, value_type, value) VALUES (?, ?, ?)""", (record["click_id"], record["value_type"], record["value"])) conn.commit() conn.close() return None def get_panel_flags(): conn = get_db_connection() sql_table = conn.execute('SELECT name, value FROM initializeFlags;').fetchall() panel_flags = {dict(row)["name"]: dict(row)["value"] for row in sql_table} conn.close() return panel_flags def update_panel_flags_sql(update_flag): conn = get_db_connection() cur = conn.cursor() update_query = "UPDATE initializeFlags SET value = ? WHERE name = ?;" for name, value in update_flag.items(): cur.execute(update_query, (value, name)) conn.commit() conn.close() return None def get_texts_group_x(table_name="group1Texts"): conn = get_db_connection() sql_table = conn.execute("SELECT id, text, label FROM " + table_name + ";").fetchall() conn.close() if len(sql_table) > 0: texts_group_2 = [{"id": dict(row)["id"], "text": dict(row)["text"], "label": dict(row)["label"]} for row in sql_table] else: texts_group_2 = [] return texts_group_2 def set_texts_group_x(top_texts, table_name="group1Texts"): conn = get_db_connection() cur = conn.cursor() cur.execute("DELETE FROM " + table_name + ";") if top_texts: for record in top_texts: cur.execute("INSERT INTO " + table_name + " (id, text, label) VALUES (?, ?, ?)", (record["id"], record["text"], record["label"])) conn.commit() conn.close() return None def get_total_summary_sql(): conn = get_db_connection() sql_table = conn.execute('SELECT name, number, percentage FROM totalSummary;').fetchall() total_summary = [{"name": dict(row)["name"], "number": dict(row)["number"], "percentage": dict(row)["percentage"]} for row in sql_table] conn.close() return total_summary def set_total_summary(text_lists): labels = [text_obj["label"] for text_obj in text_lists] label_counter = Counter(labels) total_texts = len(text_lists) number_unlabeled = label_counter["-"] number_labeled = total_texts - number_unlabeled total_texts_percentage = "100.00%" if total_texts > 0: number_unlabeled_percentage = "{:.2%}".format(number_unlabeled / total_texts) number_labeled_percentage = "{:.2%}".format(number_labeled / total_texts) else: number_unlabeled_percentage = "{:.2%}".format(1.0) number_labeled_percentage = "{:.2%}".format(0.0) total_summary = list() total_summary.append({"name": "Total Texts", "number": "{:,}".format(total_texts), "percentage": total_texts_percentage}) total_summary.append({"name": "Total Unlabeled", "number": "{:,}".format(number_unlabeled), "percentage": number_unlabeled_percentage}) total_summary.append({"name": "Total Labeled", "number": "{:,}".format(number_labeled), "percentage": number_labeled_percentage}) conn = get_db_connection() cur = conn.cursor() cur.execute("DELETE FROM totalSummary;") for record in total_summary: cur.execute("INSERT INTO totalSummary (name, number, percentage) VALUES (?, ?, ?)", (record["name"], record["number"], record["percentage"])) conn.commit() conn.close() return None def get_label_summary_sql(): conn = get_db_connection() sql_table = conn.execute('SELECT name, number, percentage FROM labelSummary;').fetchall() label_summary = [{"name": dict(row)["name"], "number": dict(row)["number"], "percentage": dict(row)["percentage"]} for row in sql_table] conn.close() return label_summary def set_label_summary(text_lists): labels = [text_obj["label"] for text_obj in text_lists] label_counter = Counter(labels) total_texts = len(text_lists) label_summary = [] for key, value in label_counter.items(): label_summary.append({"name": key, "number": "{:,}".format(value), "percentage": "{:.2%}".format(value / total_texts)}) conn = get_db_connection() cur = conn.cursor() cur.execute("DELETE FROM labelSummary;") for record in label_summary: cur.execute("INSERT INTO labelSummary (name, number, percentage) VALUES (?, ?, ?)", (record["name"], record["number"], record["percentage"])) conn.commit() conn.close() return None def get_selected_text(selected_text_id, text_list_full_sql): selected_text_test = [text["text"] for text in text_list_full_sql if text["id"] == selected_text_id] if selected_text_id: if len(selected_text_test) == 0: selected_text = "" else: selected_text = selected_text_test[0] else: selected_text = "" return selected_text def create_text_list_list(text_list_full_sql, sub_list_limit): texts_list_list = \ [text_list_full_sql[i:i + sub_list_limit] for i in range(0, len(text_list_full_sql), sub_list_limit)] return texts_list_list def update_texts_list_by_id_sql(update_objs=None, selected_label=None, update_ids=None, sub_list_limit=10, update_in_place=True): conn = get_db_connection() cur = conn.cursor() if selected_label and update_ids and not update_objs: if update_in_place: update_query = "UPDATE texts SET label = ? WHERE id IN (%s)" % ",".join("?"*len(update_ids)) update_values = [selected_label] update_values.extend(update_ids) cur.execute(update_query, update_values) conn.commit() conn.close() else: cur.execute("DROP TABLE IF EXISTS temp_table;") cur.execute(""" CREATE TABLE temp_table ( id TEXT NOT NULL, text TEXT NOT NULL, label TEXT NOT NULL ); """) query = "INSERT INTO temp_table SELECT * FROM texts WHERE id IN (%s)" % ",".join("?" * len(update_ids)) cur.execute(query, update_ids) cur.execute("UPDATE temp_table SET label = ?", (selected_label, )) cur.execute("DELETE FROM texts WHERE id IN (%s)" % ",".join("?" * len(update_ids)), update_ids) cur.execute("INSERT INTO texts SELECT * FROM temp_table;") conn.commit() conn.close() elif update_objs and not selected_label and not update_ids: if update_in_place: labels = set([obj["label"] for obj in update_objs]) for label in labels: update_ids = [obj["id"] for obj in update_objs if obj["label"] == label] update_ids_sql = ", ".join(update_ids) update_query = "UPDATE texts SET label = ? WHERE id IN (%s)" % update_ids_sql conn.execute(update_query, (label, )) conn.commit() conn.close() else: cur.execute("DROP TABLE IF EXISTS temp_table;") cur.execute(""" CREATE TABLE temp_table ( id TEXT NOT NULL, text TEXT NOT NULL, label TEXT NOT NULL ); """) all_update_ids = [obj["id"] for obj in update_objs] query = "INSERT INTO temp_table SELECT * FROM texts WHERE id IN (%s)" % ",".join("?" * len(all_update_ids)) cur.execute(query, all_update_ids) labels = set([obj["label"] for obj in update_objs]) for label in labels: update_ids = [obj["id"] for obj in update_objs if obj["label"] == label] update_ids_sql = ", ".join(update_ids) update_query = "UPDATE temp_table SET label = ? WHERE id IN (%s)" % update_ids_sql conn.execute(update_query, (label,)) delete_query = "DELETE FROM texts WHERE id IN (%s)" % ",".join("?" * len(all_update_ids)) cur.execute(delete_query, all_update_ids) cur.execute("INSERT INTO texts SELECT * FROM temp_table;") conn.commit() conn.close() text_list_full = get_text_list(table_name="texts") texts_list_list = create_text_list_list(text_list_full_sql=text_list_full, sub_list_limit=sub_list_limit) return text_list_full, texts_list_list def label_all_sql(fitted_classifier, sparse_vectorized_corpus, corpus_text_ids, texts_list, label_only_unlabeled=True, sub_list_limit=50, update_in_place=True): texts_list_df = pd.DataFrame(texts_list) if not label_only_unlabeled: predictions = fitted_classifier.predict(sparse_vectorized_corpus) predictions_df = pd.DataFrame(predictions) predictions_df["id"] = corpus_text_ids labeled_text_ids = corpus_text_ids number_to_label = len(labeled_text_ids) else: label_only_these_ids = texts_list_df[texts_list_df["label"] == "-"]["id"].values keep_indices = [corpus_text_ids.index(x) for x in label_only_these_ids] number_to_label = len(keep_indices) if number_to_label > 0: if label_only_unlabeled: sparse_vectorized_corpus_alt = sparse_vectorized_corpus[keep_indices, :] predictions = fitted_classifier.predict(sparse_vectorized_corpus_alt) predictions_df = pd.DataFrame(predictions) predictions_df["id"] = label_only_these_ids labeled_text_ids = label_only_these_ids predictions_df = predictions_df.rename(columns={0: "label"}) predictions_df = predictions_df.merge(texts_list_df[["id", "text"]], left_on="id", right_on="id", how="left") predictions_df = predictions_df[["id", "text", "label"]] update_objects = predictions_df.to_dict("records") text_list_full, texts_list_list = \ update_texts_list_by_id_sql(update_objs=update_objects, selected_label=None, update_ids=None, sub_list_limit=sub_list_limit, update_in_place=update_in_place) else: text_list_full = get_text_list(table_name="texts") texts_list_list = create_text_list_list(text_list_full_sql=text_list_full, sub_list_limit=sub_list_limit) labeled_text_ids = [] return text_list_full, texts_list_list, labeled_text_ids def generate_summary_sql(text_lists): labels = [text_obj["label"] for text_obj in text_lists] label_counter = Counter(labels) total_texts = len(text_lists) number_unlabeled = label_counter["-"] number_labeled = total_texts - number_unlabeled set_total_summary(text_lists=text_lists) set_label_summary(text_lists=text_lists) set_variable(name="NUMBER_UNLABELED_TEXTS", value=number_unlabeled) summary_headline = \ "Total Labeled : {:,} / {:,} {:.1%}".format(number_labeled, total_texts, number_labeled / total_texts) set_variable(name="LABEL_SUMMARY_STRING", value=summary_headline) total_summary_sql = get_total_summary_sql() label_summary_sql = get_label_summary_sql() number_unlabeled_texts_sql = number_unlabeled label_summary_string_sql = summary_headline return total_summary_sql, label_summary_sql, number_unlabeled_texts_sql, label_summary_string_sql def set_variable(name, value): conn = get_db_connection() cur = conn.cursor() test_query = cur.execute('SELECT * FROM variables WHERE name = ?', (name,)).fetchall() if len(test_query) > 0: cur.execute('DELETE FROM variables WHERE name = ?', (name,)) query = """INSERT INTO variables (name, value) VALUES (?, ?) """ else: query = """INSERT INTO variables (name, value) VALUES (?, ?) """ cur.execute(query, (name, value)) conn.commit() conn.close() return 1 def get_variable_value(name): conn = get_db_connection() cur = conn.cursor() query = cur.execute('SELECT value FROM variables WHERE name = ?', (name,)).fetchall() value = [dict(row)["value"] for row in query] value = value[0] if name in ["TOTAL_PAGES", "NUMBER_UNLABELED_TEXTS", "MAX_CONTENT_PATH", "TEXTS_LIMIT", "TABLE_LIMIT", "MAX_FEATURES", "RND_STATE", "PREDICTIONS_NUMBER", "SEARCH_RESULTS_LENGTH", "GROUP_1_KEEP_TOP", "GROUP_3_KEEP_TOP", "CONFIRM_LABEL_ALL_TEXTS_COUNTS", "SEARCH_TOTAL_PAGES", "LABEL_ALL_BATCH_NO", "LABEL_ALL_TOTAL_BATCHES", "NUMBER_AUTO_LABELED", "LABEL_ALL_BATCH_SIZE"]: value = int(value) if name in ["KEEP_ORIGINAL", "GROUP_1_EXCLUDE_ALREADY_LABELED", "GROUP_2_EXCLUDE_ALREADY_LABELED", "PREDICTIONS_VERBOSE", "SIMILAR_TEXT_VERBOSE", "FIT_CLASSIFIER_VERBOSE", "FIRST_LABELING_FLAG", "FULL_FIT_IF_LABELS_GOT_OVERRIDDEN", "FORCE_FULL_FIT_FOR_DIFFICULT_TEXTS", "LABELS_GOT_OVERRIDDEN_FLAG", "UPDATE_TEXTS_IN_PLACE"]: if value == "True": value = True else: value = False if name in ["PREDICTIONS_PROBABILITY"]: value = float(value) conn.commit() conn.close() return value def get_difficult_texts_sql(): try: conn = get_db_connection() select_diff_texts_query = get_variable_value(name="SELECT_DIFF_TEXTS_QUERY") sql_cols_list_y_classes = get_pkl(name="SQL_COLS_LIST_Y_CLASSES") sql_table = conn.execute(select_diff_texts_query).fetchall() total_summary = list() for row in sql_table: temp_row = {col: dict(row)[col] for col in sql_cols_list_y_classes} total_summary.append(temp_row) conn.close() return total_summary except: return [] def reset_difficult_texts_sql(): try: conn = get_db_connection() cur = conn.cursor() cur.execute('DELETE FROM difficultTexts') conn.commit() conn.close() return None except: return None def get_available_datasets(): conn = get_db_connection() cur = conn.cursor() cur.execute("DELETE FROM availableDatasets;") cur.execute("INSERT INTO availableDatasets SELECT * FROM fixedDatasets;") conn.commit() conn.close() dataset_name, dataset_url, date_time, y_classes, total_summary = has_save_data() if dataset_name and date_time and y_classes and total_summary: date_at_end_check = re.findall(r"(.*)\-[0-9]{4}\-[0-9]{2}\-[0-9]{2}\-\-[0-9]{2}\-[0-9]{2}\-[0-9]{2}", dataset_name) if len(date_at_end_check) > 0: dataset_name_alt = date_at_end_check[0] else: dataset_name_alt = dataset_name conn = get_db_connection() cur = conn.cursor() cur.execute("INSERT INTO availableDatasets (name, description, url) VALUES (?, ?, ?)", (dataset_name_alt + "-" + date_time, "A partially labeled dataset having " + total_summary[2]["percentage"] + " of " + total_summary[0]["number"] + " texts labeled.", dataset_url)) conn.commit() conn.close() conn = get_db_connection() available_datasets_sql = conn.execute('SELECT * FROM availableDatasets').fetchall() conn.close() return available_datasets_sql def has_save_data(): try: dataset_name = get_pkl(name="DATASET_NAME") dataset_url = get_pkl(name="DATASET_URL") date_time = get_pkl(name="DATE_TIME") y_classes = get_pkl(name="Y_CLASSES") total_summary = get_pkl(name="TOTAL_SUMMARY") return dataset_name, dataset_url, date_time, y_classes, total_summary except: return None, None, None, None, None def get_all_predictions_sql(fitted_classifier, sparse_vectorized_corpus, corpus_text_ids, texts_list, top=5, y_classes=["earthquake", "fire", "flood", "hurricane"], verbose=False, round_to=2, format_as_percentage=False): predictions = fitted_classifier.predict_proba(sparse_vectorized_corpus) predictions_df = pd.DataFrame(predictions) y_classes = [x.replace(" ", "_") for x in y_classes] predictions_df.columns = y_classes predictions_summary = predictions_df.replace(0.0, np.NaN).mean(axis=0) predictions_df["id"] = corpus_text_ids texts_list_df = pd.DataFrame(texts_list) predictions_df = predictions_df.merge(texts_list_df, left_on="id", right_on="id") keep_cols = ["id", "text"] keep_cols.extend(y_classes) predictions_df = predictions_df[keep_cols] pred_scores = score_predictions(predictions_df[y_classes], use_entropy=True, num_labels=len(y_classes)) overall_quality = np.mean(pred_scores) overall_quality_score_decimal_sql = overall_quality predictions_df["pred_scores"] = pred_scores if round_to and not format_as_percentage: predictions_df[y_classes] = predictions_df[y_classes].round(round_to) predictions_summary = predictions_summary.round(round_to) overall_quality = overall_quality.round(round_to) if format_as_percentage: if verbose: print(">> get_all_predictions > predictions_df.head() :") print(predictions_df.head(top)) predictions_df[y_classes] = predictions_df[y_classes]\ .astype(float)\ .applymap(lambda x: "{0:.0%}".format(x)) # predictions_summary = (predictions_summary.astype(float) * 100).round(1).astype(str) + "%" overall_quality = (overall_quality.astype(float) * 100).round(1).astype(str) + "%" predictions_df = predictions_df.sort_values(["pred_scores"], ascending=[True]) if verbose: print(">> get_all_predictions > predictions_df.head() :") print(predictions_df.head(top)) print(">> get_all_predictions > predictions_df.tail() :") print(predictions_df.tail(top)) keep_cols = ["id", "text"] keep_cols.extend(y_classes) sql_cols_list = [x + ' TEXT NOT NULL' for x in keep_cols] sql_cols = ", ".join(sql_cols_list) top_texts = predictions_df.head(top)[keep_cols].to_dict("records") sql_query_1 = """ DROP TABLE IF EXISTS difficultTexts; """ sql_query_2 = """ CREATE TABLE difficultTexts ( """ + sql_cols + """ ); """ conn = get_db_connection() cur = conn.cursor() cur.execute(sql_query_1) conn.commit() cur.execute(sql_query_2) conn.commit() parameters = ", ".join(["?"] * len(keep_cols)) query = "INSERT INTO difficultTexts (" + ", ".join(keep_cols) + ") VALUES (%s)" % parameters for record in top_texts: insert_values = [value for key, value in record.items()] cur.execute(query, (insert_values)) conn.commit() conn.close() conn = get_db_connection() select_diff_texts_query = "SELECT " + ", ".join(keep_cols) + " FROM difficultTexts;" set_variable(name="SELECT_DIFF_TEXTS_QUERY", value=select_diff_texts_query) set_pkl(name="SQL_COLS_LIST_Y_CLASSES", pkl_data=keep_cols, reset=None) sql_table = conn.execute(select_diff_texts_query).fetchall() texts_group_3_sql = [] for row in sql_table: texts_group_3_sql.append({key: value for key, value in dict(row).items()}) conn.close() update_overall_quality_scores(value=overall_quality_score_decimal_sql) set_variable(name="OVERALL_QUALITY_SCORE", value=overall_quality) overall_quality_score_sql = overall_quality overall_quality_score_decimal_previous_sql = get_decimal_value(name="OVERALL_QUALITY_SCORE_DECIMAL_PREVIOUS") return texts_group_3_sql, overall_quality_score_sql, \ overall_quality_score_decimal_sql, overall_quality_score_decimal_previous_sql def get_top_predictions_sql(selected_class, fitted_classifier, sparse_vectorized_corpus, corpus_text_ids, texts_list, top=5, cutoff_proba=0.95, y_classes=["earthquake", "fire", "flood", "hurricane"], verbose=False, exclude_already_labeled=True): predictions = fitted_classifier.predict_proba(sparse_vectorized_corpus) predictions_df = pd.DataFrame(predictions) predictions_df.columns = y_classes predictions_df["id"] = corpus_text_ids keep_cols = ["id"] keep_cols.extend([selected_class]) predictions_df = predictions_df[keep_cols] predictions_df = predictions_df[predictions_df[selected_class] > cutoff_proba] predictions_df = predictions_df.sort_values([selected_class], ascending=False) if exclude_already_labeled: texts_list_df = pd.DataFrame.from_dict(texts_list) predictions_df = predictions_df.merge(texts_list_df, left_on="id", right_on="id", how="left") predictions_df = predictions_df[predictions_df["label"].isin(["-"])] if verbose: print(">> get_top_predictions > predictions_df :") print(predictions_df.head(top)) filter_list = predictions_df.head(top)["id"].values top_texts = filter_all_texts(texts_list, filter_list, exclude_already_labeled=False) set_texts_group_x(top_texts=top_texts, table_name="group2Texts") texts_group_3_sql = get_texts_group_x(table_name="group2Texts") return texts_group_3_sql def fit_classifier_sql(sparse_vectorized_corpus, corpus_text_ids, texts_list, texts_list_labeled, y_classes=["earthquake", "fire", "flood", "hurricane"], verbose=False, random_state=2584, n_jobs=-1, labels_got_overridden_flag=False, full_fit_if_labels_got_overridden=False): texts_list_labeled_df = pd.DataFrame.from_dict(texts_list_labeled) if verbose: print("texts_list_labeled_df :") print(texts_list_labeled_df.head()) ids = texts_list_labeled_df["id"].values y_train = texts_list_labeled_df["label"].values indices = [corpus_text_ids.index(x) for x in ids] X_train = sparse_vectorized_corpus[indices, :] classifier_sql = get_pkl(name="CLASSIFIER") if classifier_sql: clf = classifier_sql else: # clf = make_pipeline(StandardScaler(), SGDClassifier(max_iter=1000, tol=1e-3, random_state=2584)) clf = SGDClassifier(loss="modified_huber", max_iter=1000, tol=1e-3, random_state=random_state, n_jobs=n_jobs) if labels_got_overridden_flag: if full_fit_if_labels_got_overridden: all_texts_list_labeled_df = pd.DataFrame.from_dict(texts_list) all_texts_list_labeled_df = all_texts_list_labeled_df[~all_texts_list_labeled_df["label"].isin(["-"])] y_classes_labeled = list(set(all_texts_list_labeled_df["label"].values)) all_classes_present = all(label in y_classes_labeled for label in y_classes) clf = SGDClassifier(loss="modified_huber", max_iter=1000, tol=1e-3, random_state=random_state, n_jobs=n_jobs) ids_all = all_texts_list_labeled_df["id"].values y_train_all = all_texts_list_labeled_df["label"].values indices_all = [corpus_text_ids.index(x) for x in ids_all] X_train_all = sparse_vectorized_corpus[indices_all, :] if all_classes_present: clf.fit(X_train_all, y_train_all) else: clf.partial_fit(X_train_all, y_train_all, classes=y_classes) else: clf.partial_fit(X_train, y_train, classes=y_classes) else: clf.partial_fit(X_train, y_train, classes=y_classes) set_pkl(name="CLASSIFIER", pkl_data=clf, reset=False) return clf def load_new_data_sql(source_file, text_id_col, text_value_col, source_folder="./output/upload/", shuffle_by="kmeans", table_limit=50, texts_limit=1000, max_features=100, y_classes=["Label 1", "Label 2", "Label 3", "Label 4"], rnd_state=258): data_df = get_new_data(source_file=source_file, source_folder=source_folder, number_samples=None, random_state=rnd_state) corpus_text_ids = [str(x) for x in data_df[text_id_col].values] vectorizer = TfidfVectorizer(ngram_range=(1, 2), stop_words="english", max_features=max_features) vectorized_corpus = vectorizer.fit_transform(data_df[text_value_col].values) if shuffle_by == "kmeans": kmeans = KMeans(n_clusters=len(y_classes), random_state=rnd_state).fit(vectorized_corpus) kmeans_labels = kmeans.labels_ texts_list, adj_text_ids = convert_new_data_into_list_json(data_df, limit=texts_limit, shuffle_list=kmeans_labels, random_shuffle=False, random_state=rnd_state, id_col=text_id_col, text_col=text_value_col, label_col="label") else: texts_list, adj_text_ids = convert_new_data_into_list_json(data_df, limit=texts_limit, shuffle_list=[], random_shuffle=True, random_state=rnd_state, id_col=text_id_col, text_col=text_value_col, label_col="label") populate_texts_table_sql(texts_list=texts_list, table_name="texts") set_pkl(name="DATASET_NAME", pkl_data=None, reset=True) set_pkl(name="DATASET_NAME", pkl_data=source_file, reset=False) set_pkl(name="DATASET_URL", pkl_data=None, reset=True) set_pkl(name="DATASET_URL", pkl_data="-", reset=False) set_pkl(name="CORPUS_TEXT_IDS", pkl_data=None, reset=True) set_pkl(name="CORPUS_TEXT_IDS", pkl_data=adj_text_ids, reset=False) texts_list_list = [texts_list[i:i + table_limit] for i in range(0, len(texts_list), table_limit)] total_pages = len(texts_list_list) set_variable(name="TOTAL_PAGES", value=total_pages) set_pkl(name="TEXTS_LIST_LIST", pkl_data=None, reset=True) set_pkl(name="TEXTS_LIST_LIST", pkl_data=texts_list_list, reset=False) set_pkl(name="VECTORIZED_CORPUS", pkl_data=None, reset=True) set_pkl(name="VECTORIZED_CORPUS", pkl_data=vectorized_corpus, reset=False) set_pkl(name="VECTORIZER", pkl_data=None, reset=True) set_pkl(name="VECTORIZER", pkl_data=vectorizer, reset=False) return texts_list, texts_list_list, adj_text_ids, total_pages, vectorized_corpus, vectorizer, corpus_text_ids def load_demo_data_sql(dataset_name="Disaster Tweets Dataset", shuffle_by="kmeans", table_limit=50, texts_limit=1000, max_features=100, y_classes=["Earthquake", "Fire", "Flood", "Hurricane"], rnd_state=258): if dataset_name == "Disaster Tweets Dataset": consolidated_disaster_tweet_data_df = get_disaster_tweet_demo_data(number_samples=None, filter_data_types=["train"], random_state=rnd_state) corpus_text_ids = [str(x) for x in consolidated_disaster_tweet_data_df["tweet_id"].values] set_pkl(name="CORPUS_TEXT_IDS", pkl_data=corpus_text_ids, reset=False) vectorizer = TfidfVectorizer(ngram_range=(1, 2), stop_words="english", max_features=max_features) # https://stackoverflow.com/questions/69326639/sklearn-warnings-in-version-1-0 vectorized_corpus = \ vectorizer.fit_transform(consolidated_disaster_tweet_data_df["tweet_text"].values) set_pkl(name="VECTORIZER", pkl_data=vectorizer, reset=False) set_pkl(name="VECTORIZED_CORPUS", pkl_data=vectorized_corpus, reset=False) if shuffle_by == "kmeans": kmeans = KMeans(n_clusters=len(y_classes), random_state=rnd_state).fit(vectorized_corpus) kmeans_labels = kmeans.labels_ texts_list, adj_text_ids = convert_demo_data_into_list_json(consolidated_disaster_tweet_data_df, limit=texts_limit, keep_labels=False, shuffle_list=kmeans_labels, random_shuffle=False, random_state=rnd_state) else: texts_list, adj_text_ids = convert_demo_data_into_list_json(consolidated_disaster_tweet_data_df, limit=texts_limit, keep_labels=False, shuffle_list=[], random_shuffle=True, random_state=rnd_state) texts_list_list = [texts_list[i:i + table_limit] for i in range(0, len(texts_list), table_limit)] total_pages = len(texts_list_list) set_variable(name="TOTAL_PAGES", value=total_pages) return texts_list, texts_list_list, adj_text_ids, total_pages, vectorized_corpus, vectorizer, corpus_text_ids def generate_all_predictions_if_appropriate(n_jobs=-1, labels_got_overridden_flag=True, full_fit_if_labels_got_overridden=True, round_to=1, format_as_percentage=True): classifier_sql = get_pkl(name="CLASSIFIER") try: if classifier_sql: label_summary_sql = get_label_summary_sql() label_summary_df =
pd.DataFrame.from_dict(label_summary_sql)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ Created on Thu May 21 09:55:29 2020 @author: Gary """ import pandas as pd import core.Find_silent_change as fsc import core.Read_FF as rff import difflib #import core.Construct_set as const_set output = './out/' tempdir = './tmp/' arcdir = './arc_testing/' upload_hash_ref = output+'upload_hash_ref.csv' change_log = output+'silent_change_log.csv' exclude_files = ['archive_2018_08_28.zip','sky_truth_final.zip'] skyfn = 'sky_truth_final' def getDfForCompare(fn,sources='./sources/'): fn = sources+fn raw_df = rff.Read_FF(zname=fn).import_raw() raw_df = raw_df[~(raw_df.IngredientKey.isna())] return raw_df def initializeSilentChangeRecords(): """Careful!!! This does what the name describes!""" ref = pd.DataFrame({'UploadKey':[],'last_hash':[]}) fsc.saveUpdatedHash(ref) def startFromScratch(): """Be aware - this initializes everything before running a LONG process on all archived files!""" initializeSilentChangeRecords() archives = fsc.createInitialCompareList() new =
pd.DataFrame({'UploadKey':None,'rhash':None},index=[])
pandas.DataFrame
import pandas as pd import sys if len(sys.argv) != 3: print("Usage: python3 overhead.py raw.csv transform.csv") raw = pd.read_csv(sys.argv[1]) tran = pd.read_csv(sys.argv[2]) half = len(tran) // 2 # raw = raw[half:] # tran = tran[half:] merged =
pd.merge(raw,tran, on=['Index', 'Index'])
pandas.merge
""" Computing in the thymic Q framework. """ import os import tempfile import click import delegator import numpy as np import pandas as pd # These are our "lvj" columns, which are the most common indices for # probabilities and sequences in what follows. lvj = ['length', 'v_gene', 'j_gene'] def bound(x, m): """ Cut off the values in x with a hard maximum m. """ return np.minimum(x, m) def normalize_column(df, col_name): """ Normalize a column so that it has sum one. """ df[col_name] = df[col_name] / sum(df[col_name]) def add_pseudocount(df, col_name, pseudocount_multiplier): """ Add a pseudocount to `col_name`. The pseudocount is pseudocount_multiplier times the smallest non-zero element. """ zero_rows = (df[col_name] == 0) pseudocount = min(df.loc[~zero_rows, col_name]) * pseudocount_multiplier df.loc[zero_rows, col_name] += pseudocount def read_olga_tsv(path): """ Read in a TSV in the format liked by OLGA. Four columns means that there is DNA data-- if so, drop it. """ df = pd.read_csv(path, sep='\t', header=None) if len(df.columns) == 4: df = df.iloc[:, 1:] assert len(df.columns) == 3 df.columns = 'amino_acid v_gene j_gene'.split() return df def read_olga_pgen_tsv(path): """ Read in a TSV output by OLGA's Pgen calculation. """ df = pd.read_csv(path, sep='\t', header=None) assert len(df.columns) == 4 df.columns = 'amino_acid v_gene j_gene Pgen'.split() return df def lvj_frequency_of_olga_tsv(path, col_name): """ Read in an OLGA TSV and calculate the frequency of the lvj triples contained in it. """ df = read_olga_tsv(path) df['length'] = df['amino_acid'].apply(len) df = df.loc[:, lvj] df[col_name] = 1. df = df.groupby(lvj).sum() normalize_column(df, col_name) return df def set_lvj_index(df): """ Make an lvj index in place from the length, v_gene, and j_gene. """ df['length'] = df['amino_acid'].apply(len) df.set_index(lvj, inplace=True) def merge_lvj_dfs(df1, df2, how='outer'): """ Merge two data frames on lvj indices. By default, uses the union of the keys (an "outer" join). """ merged = pd.merge(df1, df2, how=how, left_index=True, right_index=True) merged.fillna(0, inplace=True) return merged def q_of_train_and_model_pgen(model_p_lvj_csv, train_tsv, max_q=None, pseudocount_multiplier=0.5): """ Fit a q distribution, but truncating q at max_q. """ # Merge the p_lvj from the data and that from the model: df = merge_lvj_dfs( lvj_frequency_of_olga_tsv(train_tsv, col_name='data_P_lvj'), pd.read_csv(model_p_lvj_csv, index_col=lvj)) # We need to do this merge so we can add a pseudocount: add_pseudocount(df, 'model_P_lvj', pseudocount_multiplier) normalize_column(df, 'model_P_lvj') q = df['data_P_lvj'] / df['model_P_lvj'] if max_q: q = bound(q, max_q) return
pd.DataFrame({'q': q})
pandas.DataFrame
import os, datetime import csv import pycurl import sys import shutil from openpyxl import load_workbook import pandas as pd import download.box from io import BytesIO import numpy as np import subprocess #new unrelateds program #take curated pedigree (curated to best knowledge), subset to those in HCA or HCD stg... #merge with the list of unrelateds already selected last time around. #fill in the blanks. #latest pedigree dev_peds_path='/home/petra/UbWinSharedSpace1/redcap2nda_Lifespan2019/Dev_pedigrees/' pedsfile='redcapandexcelpeds09_23_2019.csv' peds=pd.read_csv(dev_peds_path+pedsfile) peds=peds[['subjectped','nda_guid','HCD_ID','HCA_ID','final_pedid']] #nda vars from staging hcalist='/home/petra/UbWinSharedSpace1/ccf-nda-behavioral/PycharmToolbox/ndafields2intradb/CCF_HCA_STG_23Sept2019.csv' hcaids=
pd.read_csv(hcalist,header=0)
pandas.read_csv
""" helper_fxns.py by <NAME> ------------------------------------------ A few helper functions that were aggregated from activities I found myself repeating. Included are - graphing feature importance (created for CatBoost but should work with relevant sklearn models - mass scoring that generates a number of categorical scores, as well as confusion matrices (it needs a loss. Perhaps add one later) for CV and Holdout data """ # Import the usual suspects import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Scorers of various sorts from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, classification_report from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import make_scorer def feature_imp(model,X,text=True,head=10,graph=True,title='Feature Importance',fgsz=(12,12)): """ Generate a graph with feature importances, given a fit model 'model', for a dataset X model: a model that has been fit that has a feature_importances_ method X: a dataset, typically as a dataframe text = True: prints out the feature importances head = 10: the number of lines of feature importances to print out graph = True: print graph title = 'Feature Importance': title of the graph fgsz = (12,12): size of the graph. 12,12 is great for examining but 6,6 may be better if you have many models in a single notebook. """ # Feature Importances A = pd.DataFrame(model.feature_importances_) # Feature Names Xc = pd.DataFrame(X.columns) # Create a data set Mat that has all the feature importance values # concatenated to each respective feature name Mat = pd.concat([Xc,A],axis=1) #Rename columns Mat.columns=['features','importance'] if text == True: print(Mat.sort_values('importance',ascending=False).head(head)) # Seaborn Barplot graph if graph==True: sns.set_style('darkgrid') plt.figure(figsize=fgsz) ax = sns.barplot(x='features',y='importance',data=Mat) ax.set_xticklabels(ax.get_xticklabels(),rotation = 90) plt.title(title) plt.show() # Mass Scoring Function def mass_scoring(y,y_pred,title='Train'): """ Input classification truth and predictions (not probabilities) Returns a list with precision, recall, f1, and support for both micro and weighted averages Prints f1/acc, f1(wt), and confusion matrix title='Train': Title of the data, such as 'CV', 'Holdout' The precision,recall,fscore,support are all delivered returned list X_scores To extract measures that use micro average: X_scores[0] is precision, X_scores[1] is recall, X_scores[2] is f1, X_scores[3] is support\ Tp extract measures that use weighted average: X_scores[4] is precision, X_scores[5] is recall, X_scores[6] is f1, X_scores[7] is support """ # precision, recall, f1 and support function from sklearn prfs_mic = precision_recall_fscore_support(y,y_pred,average='micro') prfs_wt = precision_recall_fscore_support(y,y_pred,average='weighted') # Individual components of each f1mic = prfs_mic[2] f1wt = prfs_wt[2] rmic = prfs_mic[1] rwt = prfs_wt[1] pmic = prfs_mic[0] pwt = prfs_wt[0] smic = prfs_mic[3] swt = prfs_wt[3] conf_mat = confusion_matrix(y,y_pred) # Print the f1/acc, f1(wt) and confusion matrix print('\n'+title+' Data: ') print('f1(micro)/acc: '+str(f1mic)+', f1(wt): '+str(f1wt)) print('Confusion Matrix (' + title +'):') print(
pd.DataFrame(conf_mat)
pandas.DataFrame
import requests from bs4 import BeautifulSoup from re import search import unicodedata import pandas as pd from multiprocessing import Pool from seo import * # ... i=0 def get_head(link): Topics = {} h1_new = [] h2_new = [] h3_new = [] Topics = {} headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'} request = requests.get(link, headers=headers) Soup = BeautifulSoup(request.text, 'lxml') a = [] b = [] c = [] h1_tags = ["h1"] for tags in Soup.find_all(h1_tags): a.append(tags.text.strip()) h2_tags = ["h2"] for tags in Soup.find_all(h2_tags): b.append(tags.text.strip()) h3_tags = ["h3"] for tags in Soup.find_all(h3_tags): c.append(tags.text.strip()) h1 = [] [h1.append(x) for x in a if x not in h1] h2 = [] [h2.append(x) for x in b if x not in h2] h3 = [] [h3.append(x) for x in c if x not in h3] if len(h1) ==0: message = "" h1_new.append(message) else: for sub in h1: string_encode = unicodedata.normalize("NFKD", sub) h1_new.append(string_encode) if len(h2) ==0: message = "" h2_new.append(message) else: for sub in h2: string_encode = unicodedata.normalize("NFKD", sub) h2_new.append(string_encode) if len(h3) ==0: message = "" h3_new.append(message) else: for sub in h3: string_encode = unicodedata.normalize("NFKD", sub) h3_new.append(string_encode) L = [['Heading 1', h1_new], ['Heading 2', h2_new], ['Heading 3',h3_new]] Topics[link] = L return Topics def excel_maker(main_dict, search_query, links): H1_Headings = [] H2_Headings = [] H3_Headings = [] Mega_list1 = [] Mega_list2 = [] Mega_list3 = [] r_l=related_queries(search_query) t_l=related_topics(search_query) for keys, values in main_dict.items(): H1_Headings.append(values[0][1]) H2_Headings.append(values[1][1]) H3_Headings.append(values[2][1]) for keys, values in main_dict.items(): H1_Headings.append(values[0][1]) H2_Headings.append(values[1][1]) H3_Headings.append(values[2][1]) for i in H1_Headings: for j in i: Mega_list1.append(j) for i in H2_Headings: for j in i: Mega_list2.append(j) for i in H3_Headings: for j in i: Mega_list3.append(j) res1 = [] res2 = [] res3 = [] for i in Mega_list1: if i not in res1: res1.append(i) for i in Mega_list2: if i not in res2: res2.append(i) for i in Mega_list3: if i not in res3: res3.append(i) if len(res1) >= len(res2) and len(res1) >= len(res3): for i in range(len(res1)-len(res2)): res2.append('[]') for i in range(len(res1)-len(res3)): res3.append('[]') if len(res2) >= len(res1) and len(res2) >= len(res3): for i in range(len(res2)-len(res1)): res1.append('[]') for i in range(len(res2)-len(res3)): res3.append('[]') if len(res3) >= len(res1) and len(res3) >= len(res2): for i in range(len(res3)-len(res1)): res1.append('[]') for i in range(len(res3)-len(res2)): res2.append('[]') res1 = list(filter(None, res1)) res2 = list(filter(None, res2)) res3 = list(filter(None, res3)) ls = [] for i in links: ls.append(search_query) data_tuples = list(zip(ls,links,H1_Headings,H2_Headings,H3_Headings)) df1 = pd.DataFrame(data_tuples, columns=['Search_query','URL','H1_Headings','H2_Headings','H3_Headings']) df1 import people_also_ask list1 = [] for question in people_also_ask.get_related_questions(search_query): list1.append(question) data_tuples = list(zip(ls,list1)) df2 = pd.DataFrame(data_tuples, columns=['Search_query','People_also_asked']) df2 list_final = [] for i in res1: list_final.append(search_query) data_tuples = list(zip(list_final,res1,res2,res3)) df3 = pd.DataFrame(data_tuples, columns=['Search_query','Unique H1_Headings','Unique H2_Headings','Unique H3_Headings']) df3 filename = "%s.xlsx" % search_query with
pd.ExcelWriter(filename, engine='xlsxwriter')
pandas.ExcelWriter
""" Plot allele usage """ import sys import logging import pandas as pd import dnaio from ..table import read_table logger = logging.getLogger(__name__) def add_arguments(parser): arg = parser.add_argument arg('--d-evalue', type=float, default=1E-4, help='Maximal allowed E-value for D gene match. Default: %(default)s') arg('--d-coverage', '--D-coverage', type=float, default=65, help='Minimum D coverage (in percent). Default: %(default)s%%)') arg('--database', metavar='FASTA', help='Restrict plotting to the sequences named in the FASTA file. ' 'Only the sequence names are used!') arg('--order', metavar='FASTA', help='Sort genes according to the order of the records in the FASTA file.') arg('--x', choices=('V', 'D', 'J'), default='V', help='Type of gene on x axis. Default: %(default)s') arg('--gene', choices=('V', 'D', 'J'), default='J', help='Type of gene on y axis. Default: %(default)s') arg('alleles', help='List of alleles to plot on y axis, separated by comma') arg('table', help='Table with parsed and filtered IgBLAST results') arg('plot', help='Path to output PDF or PNG') def main(args): usecols = ['v_call', 'd_call', 'j_call', 'V_errors', 'D_errors', 'J_errors', 'D_covered', 'd_support'] # Support reading a table without D_errors try: table = read_table(args.table, usecols=usecols) except ValueError: usecols.remove('D_errors') table = read_table(args.table, usecols=usecols) logger.info('Table with %s rows read', len(table)) if args.x == 'V' or args.gene == 'V': table = table[table.V_errors == 0] logger.info('%s rows remain after requiring V errors = 0', len(table)) if args.gene == 'J' or args.x == 'J': table = table[table.J_errors == 0] logger.info('%s rows remain after requiring J errors = 0', len(table)) if args.gene == 'D' or args.x == 'D': table = table[table.d_support <= args.d_evalue] logger.info('%s rows remain after requiring D E-value <= %s', len(table), args.d_evalue) table = table[table.D_covered >= args.d_coverage] logger.info('%s rows remain after requiring D coverage >= %s', len(table), args.d_coverage) if 'D_errors' in table.columns: table = table[table.D_errors == 0] logger.info('%s rows remain after requiring D errors = 0', len(table)) gene1 = args.x.lower() + '_call' gene2 = args.gene.lower() + '_call' expression_counts = table.groupby((gene1, gene2)).size().to_frame().reset_index() matrix = pd.DataFrame( expression_counts.pivot(index=gene1, columns=gene2, values=0).fillna(0), dtype=int) # matrix[v_gene,d_gene] gives co-occurrences of v_gene and d_gene print('#\n# Expressed genes with counts\n#') # The .sum() is along axis=0, that is, the V gene counts are summed up, # resulting in counts for each D/J gene for g, count in matrix.sum().iteritems(): print(g, '{:8}'.format(count)) alleles = args.alleles.split(',') for allele in alleles: if allele not in matrix.columns: logger.error('Allele %s not expressed in this dataset', allele) sys.exit(1) matrix = matrix.loc[:, alleles] if args.database: with dnaio.open(args.database) as f: x_names = [record.name for record in f if record.name in matrix.index] if not x_names: logger.error('None of the sequence names in %r were found in the input table', args.database) sys.exit(1) matrix = matrix.loc[x_names, :] if args.order: with dnaio.open(args.order) as f: ordered_names = [r.name.partition('*')[0] for r in f] gene_order = {name: index for index, name in enumerate(ordered_names)} def orderfunc(full_name): name, _, allele = full_name.partition('*') allele = int(allele) try: index = gene_order[name] except KeyError: logger.warning('Gene name %s not found in %r, placing it at the end', name, args.order) index = 1000000 return index * 1000 + allele matrix['v_call_tmp'] =
pd.Series(matrix.index, index=matrix.index)
pandas.Series
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os from pathlib import Path from time import time import copy from skimage import color import matplotlib as mpl from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_validate, GridSearchCV, RandomizedSearchCV from scipy.stats import loguniform import umap # if not installed run: conda install -c conda-forge umap-learn import hdbscan from sklearn.cluster import OPTICS, cluster_optics_dbscan from skimage import io from scipy.stats import ttest_ind # Welch's t-test from scipy.stats import mannwhitneyu # Mann-Whitney rank test from scipy.stats import ks_2samp # Kolmogorov-Smirnov statistic import sys sys.path.extend([ '../../tysserand', '../../mosna', ]) from tysserand import tysserand as ty from mosna import mosna # If need to reload modules after their modification from importlib import reload # ty = reload(ty) # mosna = reload(mosna) # sns = reload(sns) # plt = reload(plt) data_dir = Path("../../Commons/Common_data/MIBI-TOF__Triple_Negative_Breast_Cancer__Angelo_lab/processed_data") patients_path = data_dir / "patient_class.csv" objects_path = data_dir / "cellData.csv" images_path = list(data_dir.glob('*.tiff')) # relate image paths to patient numbers import re img_path_patients = [int(re.search('/processed_data/p(.+?)_labeledcell', str(s)).group(1)) for s in images_path] pat_img = pd.Series(images_path, index=img_path_patients) ##### Patients data patients = pd.read_csv(patients_path, index_col=0, header=None, names=['patient', 'response']) ### Objects data obj =
pd.read_csv(objects_path)
pandas.read_csv
# -*- coding: utf-8 -*- from collections import OrderedDict from datetime import date, datetime, timedelta import numpy as np import pytest from pandas.compat import product, range import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat, date_range) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.pivot import crosstab, pivot_table import pandas.util.testing as tm @pytest.fixture(params=[True, False]) def dropna(request): return request.param class TestPivotTable(object): def setup_method(self, method): self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_pivot_table(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, values='D', index=index, columns=columns) table2 = self.data.pivot_table( values='D', index=index, columns=columns) tm.assert_frame_equal(table, table2) # this works pivot_table(self.data, values='D', index=index) if len(index) > 1: assert table.index.names == tuple(index) else: assert table.index.name == index[0] if len(columns) > 1: assert table.columns.names == columns else: assert table.columns.name == columns[0] expected = self.data.groupby( index + [columns])['D'].agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_table_nocols(self): df = DataFrame({'rows': ['a', 'b', 'c'], 'cols': ['x', 'y', 'z'], 'values': [1, 2, 3]}) rs = df.pivot_table(columns='cols', aggfunc=np.sum) xp = df.pivot_table(index='cols', aggfunc=np.sum).T tm.assert_frame_equal(rs, xp) rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'}) xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T tm.assert_frame_equal(rs, xp) def test_pivot_table_dropna(self): df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000}, 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'}, 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310}, 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'}, 'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}}) pv_col = df.pivot_table('quantity', 'month', [ 'customer', 'product'], dropna=False) pv_ind = df.pivot_table( 'quantity', ['customer', 'product'], 'month', dropna=False) m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'), ('A', 'd'), ('B', 'a'), ('B', 'b'), ('B', 'c'), ('B', 'd'), ('C', 'a'), ('C', 'b'), ('C', 'c'), ('C', 'd')], names=['customer', 'product']) tm.assert_index_equal(pv_col.columns, m) tm.assert_index_equal(pv_ind.index, m) def test_pivot_table_categorical(self): cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B'], dropna=True) exp_index = pd.MultiIndex.from_arrays( [cat1, cat2], names=['A', 'B']) expected = DataFrame( {'values': [1, 2, 3, 4]}, index=exp_index) tm.assert_frame_equal(result, expected) def test_pivot_table_dropna_categoricals(self, dropna): # GH 15193 categories = ['a', 'b', 'c', 'd'] df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'C': range(0, 9)}) df['A'] = df['A'].astype(CDT(categories, ordered=False)) result = df.pivot_table(index='B', columns='A', values='C', dropna=dropna) expected_columns = Series(['a', 'b', 'c'], name='A') expected_columns = expected_columns.astype( CDT(categories, ordered=False)) expected_index = Series([1, 2, 3], name='B') expected = DataFrame([[0, 3, 6], [1, 4, 7], [2, 5, 8]], index=expected_index, columns=expected_columns,) if not dropna: # add back the non observed to compare expected = expected.reindex( columns=Categorical(categories)).astype('float') tm.assert_frame_equal(result, expected) def test_pivot_with_non_observable_dropna(self, dropna): # gh-21133 df = pd.DataFrame( {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'], categories=['low', 'high'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3]}, index=pd.Index( pd.Categorical.from_codes([0, 1], categories=['low', 'high'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) # gh-21378 df = pd.DataFrame( {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'], categories=['low', 'high', 'left'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3, 0]}, index=pd.Index( pd.Categorical.from_codes([0, 1, 2], categories=['low', 'high', 'left'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) def test_pass_array(self): result = self.data.pivot_table( 'D', index=self.data.A, columns=self.data.C) expected = self.data.pivot_table('D', index='A', columns='C') tm.assert_frame_equal(result, expected) def test_pass_function(self): result = self.data.pivot_table('D', index=lambda x: x // 5, columns=self.data.C) expected = self.data.pivot_table('D', index=self.data.index // 5, columns='C') tm.assert_frame_equal(result, expected) def test_pivot_table_multiple(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, index=index, columns=columns) expected = self.data.groupby(index + [columns]).agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_dtypes(self): # can convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'int64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.sum) result = z.get_dtype_counts() expected = Series(dict(int64=2)) tm.assert_series_equal(result, expected) # cannot convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'float64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.mean) result = z.get_dtype_counts() expected = Series(dict(float64=2)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns,values', [('bool1', ['float1', 'float2']), ('bool1', ['float1', 'float2', 'bool1']), ('bool2', ['float1', 'float2', 'bool1'])]) def test_pivot_preserve_dtypes(self, columns, values): # GH 7142 regression test v = np.arange(5, dtype=np.float64) df = DataFrame({'float1': v, 'float2': v + 2.0, 'bool1': v <= 2, 'bool2': v <= 3}) df_res = df.reset_index().pivot_table( index='index', columns=columns, values=values) result = dict(df_res.dtypes) expected = {col: np.dtype('O') if col[0].startswith('b') else np.dtype('float64') for col in df_res} assert result == expected def test_pivot_no_values(self): # GH 14380 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02', '2011-01-01', '2011-01-02']) df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=idx) res = df.pivot_table(index=df.index.month, columns=df.index.day) exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)]) exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'dt': pd.date_range('2011-01-01', freq='D', periods=5)}, index=idx) res = df.pivot_table(index=df.index.month, columns=pd.Grouper(key='dt', freq='M')) exp_columns = pd.MultiIndex.from_tuples([('A', pd.Timestamp('2011-01-31'))]) exp_columns.names = [None, 'dt'] exp = pd.DataFrame([3.25, 2.0], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) res = df.pivot_table(index=pd.Grouper(freq='A'), columns=pd.Grouper(key='dt', freq='M')) exp = pd.DataFrame([3], index=pd.DatetimeIndex(['2011-12-31']), columns=exp_columns) tm.assert_frame_equal(res, exp) def test_pivot_multi_values(self): result = pivot_table(self.data, values=['D', 'E'], index='A', columns=['B', 'C'], fill_value=0) expected = pivot_table(self.data.drop(['F'], axis=1), index='A', columns=['B', 'C'], fill_value=0) tm.assert_frame_equal(result, expected) def test_pivot_multi_functions(self): f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) # margins not supported?? f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func, margins=True) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_index_with_nan(self, method): # GH 3588 nan = np.nan df = DataFrame({'a': ['R1', 'R2', nan, 'R4'], 'b': ['C1', 'C2', 'C3', 'C4'], 'c': [10, 15, 17, 20]}) if method: result = df.pivot('a', 'b', 'c') else: result = pd.pivot(df, 'a', 'b', 'c') expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan], [nan, 15, nan, nan], [nan, nan, nan, 20]], index=Index([nan, 'R1', 'R2', 'R4'], name='a'), columns=Index(['C1', 'C2', 'C3', 'C4'], name='b')) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T) # GH9491 df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'), 'c': 100 + np.arange(6)}) df['b'] = df['a'] - pd.Timestamp('2014-02-02') df.loc[1, 'a'] = df.loc[3, 'a'] = nan df.loc[1, 'b'] = df.loc[4, 'b'] = nan if method: pv = df.pivot('a', 'b', 'c') else: pv = pd.pivot(df, 'a', 'b', 'c') assert pv.notna().values.sum() == len(df) for _, row in df.iterrows(): assert pv.loc[row['a'], row['b']] == row['c'] if method: result = df.pivot('b', 'a', 'c') else: result = pd.pivot(df, 'b', 'a', 'c') tm.assert_frame_equal(result, pv.T) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tz(self, method): # GH 5878 df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0), datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0)], 'dt2': [datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 2, 9, 0), datetime(2014, 1, 2, 9, 0)], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'] * 2, name='dt2', tz='Asia/Tokyo') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=exp_col) if method: pv = df.pivot(index='dt1', columns='dt2') else: pv = pd.pivot(df, index='dt1', columns='dt2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo')) if method: pv = df.pivot(index='dt1', columns='dt2', values='data1') else: pv = pd.pivot(df, index='dt1', columns='dt2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_periods(self, method): df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D'), pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D')], 'p2': [pd.Period('2013-01', 'M'), pd.Period('2013-01', 'M'), pd.Period('2013-02', 'M'), pd.Period('2013-02', 'M')], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2, name='p2', freq='M') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=exp_col) if method: pv = df.pivot(index='p1', columns='p2') else: pv = pd.pivot(df, index='p1', columns='p2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=pd.PeriodIndex(['2013-01', '2013-02'], name='p2', freq='M')) if method: pv = df.pivot(index='p1', columns='p2', values='data1') else: pv = pd.pivot(df, index='p1', columns='p2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('values', [ ['baz', 'zoo'], np.array(['baz', 'zoo']), pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='foo', columns='bar', values=values) else: result = pd.pivot(df, index='foo', columns='bar', values=values) data = [[1, 2, 3, 'x', 'y', 'z'], [4, 5, 6, 'q', 'w', 't']] index = Index(data=['one', 'two'], name='foo') columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[None, 'bar']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('values', [ ['bar', 'baz'], np.array(['bar', 'baz']), pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values_nans(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='zoo', columns='foo', values=values) else: result = pd.pivot(df, index='zoo', columns='foo', values=values) data = [[np.nan, 'A', np.nan, 4], [np.nan, 'C', np.nan, 6], [np.nan, 'B', np.nan, 5], ['A', np.nan, 1, np.nan], ['B', np.nan, 2, np.nan], ['C', np.nan, 3, np.nan]] index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo') columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[None, 'foo']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails' 'with KeyError GH#19966') @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_multiindex(self, method): # issue #17160 index = Index(data=[0, 1, 2, 3, 4, 5]) data = [['one', 'A', 1, 'x'], ['one', 'B', 2, 'y'], ['one', 'C', 3, 'z'], ['two', 'A', 4, 'q'], ['two', 'B', 5, 'w'], ['two', 'C', 6, 't']] columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df =
DataFrame(data=data, index=index, columns=columns, dtype='object')
pandas.DataFrame
import pytest import pandas as pd from numpy.testing import assert_equal from pandas.testing import assert_series_equal, assert_index_equal from siuba.dply.forcats import fct_recode, fct_collapse @pytest.fixture def series1(): yield
pd.Series(["a", "b", "c", "d"])
pandas.Series
import sqlite3, datetime, os, multiprocessing as mp, concurrent.futures from pathlib import Path import click import pandas as pd import SimpleITK as sitk import pydicom from tqdm import tqdm ifr = sitk.ImageFileReader() ifr.LoadPrivateTagsOn() dcm_tags = { # Attributes "0008|0005": "SpecificCharacterSet", "0008|0008": "ImageType", "0008|0012": "InstanceCreationDate", "0008|0013": "InstanceCreationTime", "0008|0016": "SOPClassUID", "0008|0018": "SOPInstanceUID", "0008|0020": "StudyDate", "0008|0021": "SeriesDate", "0008|0022": "AcquisitionDate", "0008|0023": "ContentDate", "0008|0030": "StudyTime", "0008|0031": "SeriesTime", "0008|0032": "AcquisitionTime", "0008|0033": "ContentTime", "0008|0050": "AccessionNumber", "0008|0060": "Modality", "0008|0070": "Manufacturer", "0008|1010": "StationName", "0008|1030": "StudyDescription", "0008|103e": "SeriesDescription", "0008|1040": "InstitutionalDepartmentName", "0008|1090": "ManufacturersModelName", "0010|0020": "PatientID", "0010|0030": "PatientsBirthDate", "0010|0040": "PatientsSex", "0010|1010": "PatientsAge", "0010|21b0": "AdditionalPatientHistory", "0012|0062": "PatientIdentityRemoved", "0012|0063": "DeidentificationMethod", "0018|0015": "BodyPartExamined", "0018|0020": "ScanningSequence", "0018|0021": "SequenceVariant", "0018|0022": "ScanOptions", "0018|0023": "MRAcquisitionType", "0018|0024": "SequenceName", "0018|0050": "SliceThickness", "0018|0080": "RepetitionTime", "0018|0081": "EchoTime", "0018|0083": "NumberofAverages", "0018|0084": "ImagingFrequency", "0018|0085": "ImagedNucleus", "0018|0087": "MagneticFieldStrength", "0018|0088": "SpacingBetweenSlices", "0018|0089": "NumberofPhaseEncodingSteps", "0018|0091": "EchoTrainLength", "0018|0093": "PercentSampling", "0018|0094": "PercentPhaseFieldofView", "0018|1000": "DeviceSerialNumber", "0018|1030": "ProtocolName", "0018|1310": "AcquisitionMatrix", "0018|1312": "InplanePhaseEncodingDirection", "0018|1314": "FlipAngle", "0018|1315": "VariableFlipAngleFlag", "0018|5100": "PatientPosition", "0018|9087": "Diffusionbvalue", "0020|000d": "StudyInstanceUID", "0020|000e": "SeriesInstanceUID", "0020|0010": "StudyID", "0020|0032": "ImagePositionPatient", "0020|0037": "ImageOrientationPatient", "0020|0052": "FrameofReferenceUID", "0020|1041": "SliceLocation", "0028|0002": "SamplesperPixel", "0028|0010": "Rows", "0028|0011": "Columns", "0028|0030": "PixelSpacing", "0028|0100": "BitsAllocated", "0028|0101": "BitsStored", "0028|0106": "SmallestImagePixelValue", "0028|0107": "LargestImagePixelValue", "0028|1050": "WindowCenter", "0028|1051": "WindowWidth", "0040|0244": "PerformedProcedureStepStartDate", "0040|0254": "PerformedProcedureStepDescription" } TABLE_DOSSIERS = "Dossiers" TABLE_PATH = "InputPath" ORDER_BY = "SeriesTime,StudyTime,StudyInstanceUID,SeriesInstanceUID,PatientID" def get_pydicom_value(data: pydicom.dataset.FileDataset, key: str): key = '0x' + key.replace('|', '') if key in data: result = data[key] return result.value if not result.is_empty else None return None class Connection: def __init__(self, path): self._conn = sqlite3.connect(os.path.abspath(path)) self._c = self._conn.cursor() self.name = path.name def __del__(self): self._conn.close() def _refactor_result(self, results: list): desc = self._c.description R = [] for r in results: item = dict() for i, name in enumerate(desc): item[name[0]] = r[i] R.append(item) return R def select(self, include_siblings=True, **kvp): q = [] for key, value in kvp.items(): values = value.split(',') values = [f"{key} LIKE '%{v}%'" for v in values] values = ' OR '.join(values) q.append(f"({values})") selection = 'StudyInstanceUID,SeriesInstanceUID' if include_siblings else '*' Q = f"SELECT {selection} FROM {TABLE_DOSSIERS} WHERE {' AND '.join(q)} ORDER BY {ORDER_BY}" # studies can be duplicate (set), series should be unique (list) studies, series = set(), [] for study, serie in self._c.execute(Q).fetchall(): studies.add(study) series.append(serie) temp = 'TEMP' df = pd.DataFrame.from_records([{'uid': u} for u in studies]) df.to_sql(name=temp, con=self._conn, if_exists='replace') R = self._c.execute(f"SELECT * FROM {TABLE_DOSSIERS} orig, {temp} t WHERE t.uid = orig.StudyInstanceUID").fetchall() R = self._refactor_result(R) self._c.execute(f"DROP TABLE {temp}") return R, series def select_all(self): Q = f"SELECT * FROM {TABLE_DOSSIERS} ORDER BY {ORDER_BY}" return self._refactor_result(self._c.execute(Q).fetchall()) class Dossier: def __init__(self, input_dir: Path, dcm_dir: Path, dcms: list): self.dcm_dir = dcm_dir self.sample = dcms[-1] self.sample_path = str(input_dir / dcm_dir / self.sample) self.dcms = dcms self._headers = None def __len__(self): return len(self.dcms) def is_valid(self): try: pydicom.dcmread(self.sample_path, specific_tags=['0x00080005']) except: try: ifr.SetFileName(self.sample_path) ifr.ReadImageInformation() except: return False return True @property def headers(self): if not self._headers: self._headers = self._dossier_to_row() return self._headers def _dossier_to_row(self): try: dcm = pydicom.dcmread(self.sample_path) get_metadata = lambda key: get_pydicom_value(dcm, key) except: try: ifr.SetFileName(self.sample_path) ifr.ReadImageInformation() get_metadata = lambda key: ifr.GetMetaData(key) except Exception as e: print(f"EXCEPTION (skipping): {self.dcm_dir}") print(e) return None headers = {'SeriesLength': len(self), 'Path': str(self.dcm_dir), 'Sample': self.sample} for key, header in dcm_tags.items(): try: header = header.replace(' ', '_').strip() val = get_metadata(key) try: if 'Date' in header: val = datetime.datetime(int(val[:4]), int(val[4:6]), int(val[6:])) # if 'Time' in header: # return f'{val[0:2]}:{val[2:4]}:{val[4:6]}.{int(val[7:])}' finally: val = val.strip() headers[header] = val except: headers[header] = None return headers # def header_to_date(header): # header = str(header) # return datetime.datetime(int(header[:4]), int(header[4:6]), int(header[6:])) def create(input: Path, output: Path): try: sqlite3.connect(output).close() click.echo(f"Gathering DICOMs from {input} and its subdirectories") dcms = dict() dirs = os.listdir(input) def walk_input(dir: Path): for dirpath, dirnames, filenames in os.walk(input / dir): for filename in [f for f in filenames if f.endswith(".dcm")]: dpath = str(Path(dirpath).relative_to(input)) dcms[dpath] = dcms.get(dpath, []) + [filename] with concurrent.futures.ThreadPoolExecutor(min(32, (os.cpu_count() or 1) + 4)) as executor: list(tqdm(executor.map(walk_input, dirs), total=len(dirs))) # Create Dossier items dossiers = [] for subpath, filenames in dcms.items(): dossiers.append(Dossier(input, subpath, filenames)) click.echo(f"Creating database from {len(dossiers)} DICOM directories") rows = [] def process_dossier(dossier): headers = dossier.headers if headers: rows.append(dossier.headers) with concurrent.futures.ThreadPoolExecutor(min(32, (os.cpu_count() or 1) + 4)) as executor: list(tqdm(executor.map(process_dossier, dossiers), total=len(dossiers))) click.echo(f"Writing {len(rows)} rows to SQL database.") df_dossiers =
pd.DataFrame.from_dict(rows, orient='columns')
pandas.DataFrame.from_dict
import sys # importing user defined modules import field_extraction import lib import resume_sectioning import inspect import logging import os import pandas as pd import numpy as np import re import spacy #import en_core_web_sm # hide settingwithcopywarning pd.options.mode.chained_assignment = None currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) # get location of main.py parentdir = os.path.dirname(currentdir) # get parent directory of main.py (where repository is on local) sys.path.insert(0, parentdir) # sys.path is the module search path def main(root_file_path, job_id): logging.getLogger().setLevel(logging.WARNING) # essentially does print statements to help debug (WARNING) # logging explained https://appdividend.com/2019/06/08/python-logging-tutorial-with-example-logging-in-python/ observations = extract(root_file_path) # get text from pdf resumes # to make it like Kraft's observations['ReqID'] = np.repeat(job_id, len(observations)) observations.dropna(inplace=True) # to compare it to already parsed info to not have to reparse current_observations =
pd.read_csv(root_file_path + "Resume-Parser-master-new/data/output/resume_summary.csv")
pandas.read_csv
import pandas as pd import numpy as np def build_raw(): df = pd.DataFrame() # Create columns to store data df.insert(0, "Iteracion",
pd.Series([], dtype=int)
pandas.Series
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df =
DataFrame([["1", "2"], ["4", "5", "6"]])
pandas.DataFrame
import numpy as np import pandas as pd import os def launch_Weighting(directory, out_directory = None, reporting = False): print("WEIGHTING STARTING") if out_directory == None: out_directory=directory iaaFiles = [] for root, dir, files in os.walk(directory): for file in files: if file.endswith('.csv') and 'Dep' in file: iaaFiles.append(directory+'/'+file) print("IAA files found:", iaaFiles) weight_list = [] #get holistic so different weight keys can be used for different types of articles weight_col = 'Point_Recommendation' for f in iaaFiles: if 'olistic' in f: holistic = pd.read_csv(f, encoding='utf-8') q1 = holistic[holistic['question_Number'] == 1] if len(q1) > 0 and int(q1.iloc[0]['agreed_Answer']) == 3: weight_col = 'Op-Ed' break dirname = os.path.dirname(__file__) # can't use os.path.join, probably because windows uses \ as a separator instead of / weight_key_path = dirname + os.sep + 'config' + os.sep + 'weight_key.csv' weight_scaling_path = dirname + os.sep + 'config' + os.sep + 'weight_key_scaling_guide.csv' for f in iaaFiles: weight = weighting_alg(f, weight_key_path, weight_scaling_path, out_directory,reporting=reporting, weight_col = weight_col) if weight is not None and not weight.empty: weight_list.append(weight) if len(weight_list) == 0: print("No weights") file = pd.read_csv(iaaFiles[0], encoding = 'utf-8') columns = file.columns.tolist() weight_key_cols = pd.read_csv(weight_key_path, encoding= 'utf-8').columns.tolist() columns = columns + weight_key_cols + ['agreement_adjusted_points', 'Schema'] weights = pd.DataFrame(columns = columns) weights = weights.loc[:, ~weights.columns.duplicated()] else: weights = pd.concat(weight_list) return weights def weighting_alg(IAA_csv_file, credibility_weights_csv_file, weight_scale_csv, directory = './', reporting = False, weight_col = 'Point_Recommendation'): IAA_csv = pd.read_csv(IAA_csv_file) #IndexError when the csv is empty try: IAA_csv_schema_name = IAA_csv.namespace.iloc[0] except IndexError: if IAA_csv.shape[0]<1: return else: print(len(IAA_csv)) print(IAA_csv) raise Exception('Index Error') if "uage" in IAA_csv_schema_name: IAA_csv_schema_type = "Language" elif "Reason" in IAA_csv_schema_name: IAA_csv_schema_type = "Reasoning" elif "Evidence" in IAA_csv_schema_name: IAA_csv_schema_type = "Evidence" elif "Probability" in IAA_csv_schema_name: IAA_csv_schema_type = "Probability" elif 'olistic' in IAA_csv_schema_name: IAA_csv_schema_type = "Holistic" elif 'ource' in IAA_csv_schema_name: IAA_csv_schema_type = "Sourcing" else: print("unweighted IAA", IAA_csv_file, "aborting") return IAA_csv = IAA_csv.rename(columns={ "question_Number": "Question_Number", 'agreed_Answer': 'Answer_Number'}) IAA_csv['Schema'] = IAA_csv_schema_type credibility_weights_csv = pd.read_csv(credibility_weights_csv_file) if IAA_csv_schema_name not in credibility_weights_csv.values: raise Exception("Couldn't find weights for schema namespace {}".format(IAA_csv_schema_name)) weight_scale_table =
pd.read_csv(weight_scale_csv)
pandas.read_csv
import argparse #This package is used to read in arguments from command line. import configparser #This package is used to read in configuration files import pandas as pd import xgboost as xgb import os import pickle from QUANTAXIS.QAUtil import QASETTING from QUANTAXIS.TSFetch.fetchdata import getrawfrommongodb from QUANTAXIS.TSSU.save_prediction import TS_SU_save_prediction from QUANTAXIS.TSSU import save_rawdata config = configparser.ConfigParser(interpolation=configparser.ExtendedInterpolation()) config.read('./QUANTAXIS/TSBoosting/config.ini') ''' get arguments from cli, run: python3 setup.py install python3 timeseriesfcst -c /Users/you/Desktop/timeseriesfcst_config/config.ini # create a new argument parser parser = argparse.ArgumentParser(description="Simple argument parser") # add a new command line option, call it '-c' and set its destination to 'config' parser.add_argument("-c", action="store", dest="config_file") # get the result result = parser.parse_args() # read configuration from configuration file. config = configparser.ConfigParser() config.read(result.config_file) ''' # def readdata(path): # '''This function reads in a data frame with index 'dtindex' from a specified path. # Args: # path: a path that specifies the location of the data. # Returns: # A data frame indexed with standard datetime index. The column name of that index must be dtindex. # ''' # # data = pd.read_csv(path) # data.index = data['dtindex'] # # return data.drop(columns='dtindex') def fillinmissing(data, dtindex, fillin=None, indicator=False): '''This function takes a data frame that is indexed by standard datetime index. It completes the data frame by encoding values to missing records. Args: data: a data frame that is indexed by datetime index with missing records to be filled in. dtindex: a full datetime index list as a reference to locate the missing records. fillin: indicate what value should be filled in. indicator: if is True. The function will add an additional column indicts which row is newly filled in. Returns: A data frame without missing records. ''' fulldata =
pd.DataFrame(index=dtindex)
pandas.DataFrame
import numpy as np import pytest from pandas import Categorical, Series import pandas._testing as tm @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, False, False, True, True, False])), ("last", Series([False, True, True, False, False, False, False])), (False, Series([False, True, True, False, True, True, False])), ], ) def test_drop_duplicates(any_numpy_dtype, keep, expected): tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype)) if tc.dtype == "bool": pytest.skip("tested separately in test_drop_duplicates_bool") tm.assert_series_equal(tc.duplicated(keep=keep), expected) tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) sc = tc.copy() return_value = sc.drop_duplicates(keep=keep, inplace=True) assert return_value is None tm.assert_series_equal(sc, tc[~expected]) @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, True, True])), ("last", Series([True, True, False, False])), (False, Series([True, True, True, True])), ], ) def test_drop_duplicates_bool(keep, expected): tc = Series([True, False, True, False]) tm.assert_series_equal(tc.duplicated(keep=keep), expected) tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) sc = tc.copy() return_value = sc.drop_duplicates(keep=keep, inplace=True) tm.assert_series_equal(sc, tc[~expected]) assert return_value is None @pytest.mark.parametrize("values", [[], list(range(5))]) def test_drop_duplicates_no_duplicates(any_numpy_dtype, keep, values): tc = Series(values, dtype=np.dtype(any_numpy_dtype)) expected = Series([False] * len(tc), dtype="bool") if tc.dtype == "bool": # 0 -> False and 1-> True # any other value would be duplicated tc = tc[:2] expected = expected[:2] tm.assert_series_equal(tc.duplicated(keep=keep), expected) result_dropped = tc.drop_duplicates(keep=keep) tm.assert_series_equal(result_dropped, tc) # validate shallow copy assert result_dropped is not tc class TestSeriesDropDuplicates: @pytest.fixture( params=["int_", "uint", "float_", "unicode_", "timedelta64[h]", "datetime64[D]"] ) def dtype(self, request): return request.param @pytest.fixture def cat_series1(self, dtype, ordered): # Test case 1 cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) input1 = np.array([1, 2, 3, 3], dtype=np.dtype(dtype)) cat = Categorical(input1, categories=cat_array, ordered=ordered) tc1 = Series(cat) return tc1 def test_drop_duplicates_categorical_non_bool(self, cat_series1): tc1 = cat_series1 expected = Series([False, False, False, True]) result = tc1.duplicated() tm.assert_series_equal(result, expected) result = tc1.drop_duplicates() tm.assert_series_equal(result, tc1[~expected]) sc = tc1.copy() return_value = sc.drop_duplicates(inplace=True) assert return_value is None tm.assert_series_equal(sc, tc1[~expected]) def test_drop_duplicates_categorical_non_bool_keeplast(self, cat_series1): tc1 = cat_series1 expected = Series([False, False, True, False]) result = tc1.duplicated(keep="last") tm.assert_series_equal(result, expected) result = tc1.drop_duplicates(keep="last") tm.assert_series_equal(result, tc1[~expected]) sc = tc1.copy() return_value = sc.drop_duplicates(keep="last", inplace=True) assert return_value is None tm.assert_series_equal(sc, tc1[~expected]) def test_drop_duplicates_categorical_non_bool_keepfalse(self, cat_series1): tc1 = cat_series1 expected = Series([False, False, True, True]) result = tc1.duplicated(keep=False) tm.assert_series_equal(result, expected) result = tc1.drop_duplicates(keep=False) tm.assert_series_equal(result, tc1[~expected]) sc = tc1.copy() return_value = sc.drop_duplicates(keep=False, inplace=True) assert return_value is None tm.assert_series_equal(sc, tc1[~expected]) @pytest.fixture def cat_series2(self, dtype, ordered): # Test case 2; TODO: better name cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) input2 = np.array([1, 2, 3, 5, 3, 2, 4], dtype=np.dtype(dtype)) cat = Categorical(input2, categories=cat_array, ordered=ordered) tc2 = Series(cat) return tc2 def test_drop_duplicates_categorical_non_bool2(self, cat_series2): # Test case 2; TODO: better name tc2 = cat_series2 expected = Series([False, False, False, False, True, True, False]) result = tc2.duplicated() tm.assert_series_equal(result, expected) result = tc2.drop_duplicates() tm.assert_series_equal(result, tc2[~expected]) sc = tc2.copy() return_value = sc.drop_duplicates(inplace=True) assert return_value is None tm.assert_series_equal(sc, tc2[~expected]) def test_drop_duplicates_categorical_non_bool2_keeplast(self, cat_series2): tc2 = cat_series2 expected = Series([False, True, True, False, False, False, False]) result = tc2.duplicated(keep="last") tm.assert_series_equal(result, expected) result = tc2.drop_duplicates(keep="last") tm.assert_series_equal(result, tc2[~expected]) sc = tc2.copy() return_value = sc.drop_duplicates(keep="last", inplace=True) assert return_value is None tm.assert_series_equal(sc, tc2[~expected]) def test_drop_duplicates_categorical_non_bool2_keepfalse(self, cat_series2): tc2 = cat_series2 expected = Series([False, True, True, False, True, True, False]) result = tc2.duplicated(keep=False)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
''' @author: <NAME> Replace the filenames of the best models you found in networks ''' import tensorflow as tf tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True tf.keras.backend.set_session(tf.Session(config=tf_config)) from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import load_model import numpy as np from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, cohen_kappa_score import configparser, argparse, datetime, visualize, json, os import pandas as pd networks = { 'resnet50': ['crop_resnet50' + x + '.h5' for x in ['2019-12-26 06:02:10']], 'densenet':['crop_densenet' + x + '.h5' for x in ['2020-01-01 01:57:07']], 'vgg16':['crop_vgg16'+x+'.h5' for x in ['2019-12-14 17:59:47']]} parser = argparse.ArgumentParser() parser.add_argument('-c', '--configPath', help="""path to config file""", default='./config.ini') parser.add_argument('-t', '--task', help="""task you are performing - refers to the header for each section in the config file""", default='crop-vgg16') parser.add_argument('-n', '--network', help="""name of the network you are predicting for""", default='vgg16') parser_args = parser.parse_args() config = configparser.ConfigParser() config.read(parser_args.configPath) te_path = str(config[parser_args.task]['TEST_FOLDER']) input_size = 224 all_test_accuracies = [] all_kappa_scores = [] for timestamp in networks[parser_args.network]: model_name = os.path.join('/home/kgadira/multi-modal-crop-classification/8_models/', timestamp) predicted_probabilities_csv_name = './{}-probs.csv'.format(config[parser_args.task]) test_datagen = ImageDataGenerator(rescale=1./255) test_generator = test_datagen.flow_from_directory(te_path, target_size = (input_size, input_size), class_mode='categorical', shuffle = False, batch_size=1) model = load_model(model_name) print(model.summary()) data_paths = test_generator.filenames results = model.predict_generator(test_generator, steps=int(test_generator.samples/1.), verbose=1) predictions = np.argmax(results, axis = 1) actual_labels = test_generator.classes cm = confusion_matrix(actual_labels, predictions) print(cm) classes_lst = ['Corn', 'Cotton', 'Soy', 'Spring Wheat', 'Winter Wheat', 'Barley'] creport = classification_report(y_true = actual_labels, y_pred=predictions, target_names = classes_lst, digits = 4, output_dict = True) creport_df = pd.DataFrame(creport).transpose() acc = accuracy_score(actual_labels, predictions) all_test_accuracies.append(acc) kappa_score = cohen_kappa_score(actual_labels, predictions) all_kappa_scores.append(kappa_score) print(creport_df) print('Accuracy for {} is {}, kappa score is {}'.format(timestamp, acc, kappa_score)) predict_df =
pd.DataFrame(data=results, columns=['SP0', 'SP1', 'SP2', 'SP3', 'SP4', 'SP5'])
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0, 'b', 1, 'd', 'e', 'f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a', 'b', 'c', 0, 1, 'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)), 'b', 'c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1, 2, 3, 4]) result = s.mask(s > 2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s > 1, 'X') self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, ['X', 'Y', 'Z']) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, np.array(['X', 'Y', 'Z'])) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1, 2, 3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment', None) df = DataFrame({"aa": range(5), "bb": [2.2] * 5}) df["cc"] = 0.0 ck = [True] * len(df) df["bb"].iloc[0] = .13 # TODO: unused df_tmp = df.iloc[ck] # noqa df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment', 'raise') # GH 3217 df = DataFrame(dict(a=[1, 3], b=[np.nan, 2])) df['c'] = np.nan df['c'].update(pd.Series(['foo'], index=[0])) expected = DataFrame(dict(a=[1, 3], b=[np.nan, 2], c=['foo', np.nan])) tm.assert_frame_equal(df, expected) def test_preserveRefs(self): seq = self.ts[[5, 10, 15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_drop(self): # unique s = Series([1, 2], index=['one', 'two']) expected = Series([1], index=['one']) result = s.drop(['two']) assert_series_equal(result, expected) result = s.drop('two', axis='rows') assert_series_equal(result, expected) # non-unique # GH 5248 s = Series([1, 1, 2], index=['one', 'two', 'one']) expected = Series([1, 2], index=['one', 'one']) result = s.drop(['two'], axis=0) assert_series_equal(result, expected) result = s.drop('two') assert_series_equal(result, expected) expected = Series([1], index=['two']) result = s.drop(['one']) assert_series_equal(result, expected) result = s.drop('one') assert_series_equal(result, expected) # single string/tuple-like s = Series(range(3), index=list('abc')) self.assertRaises(ValueError, s.drop, 'bc') self.assertRaises(ValueError, s.drop, ('a', )) # errors='ignore' s = Series(range(3), index=list('abc')) result = s.drop('bc', errors='ignore') assert_series_equal(result, s) result = s.drop(['a', 'd'], errors='ignore') expected = s.ix[1:] assert_series_equal(result, expected) # bad axis self.assertRaises(ValueError, s.drop, 'one', axis='columns') # GH 8522 s = Series([2, 3], index=[True, False]) self.assertTrue(s.index.is_object()) result = s.drop(True) expected = Series([3], index=[False]) assert_series_equal(result, expected) def test_align(self): def _check_align(a, b, how='left', fill=None): aa, ab = a.align(b, join=how, fill_value=fill) join_index = a.index.join(b.index, how=how) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: self.assertTrue((aa.reindex(diff_a) == fill).all()) if len(diff_b) > 0: self.assertTrue((ab.reindex(diff_b) == fill).all()) ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) self.assertEqual(aa.name, 'ts') self.assertEqual(ea.name, 'ts') self.assertEqual(ab.name, 'ts') self.assertEqual(eb.name, 'ts') for kind in JOIN_TYPES: _check_align(self.ts[2:], self.ts[:-5], how=kind) _check_align(self.ts[2:], self.ts[:-5], how=kind, fill=-1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind) _check_align(self.ts[:0], self.ts[:-5], how=kind, fill=-1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind) _check_align(self.ts[:-5], self.ts[:0], how=kind, fill=-1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind) _check_align(self.ts[:0], self.ts[:0], how=kind, fill=-1) def test_align_fill_method(self): def _check_align(a, b, how='left', method='pad', limit=None): aa, ab = a.align(b, join=how, method=method, limit=limit) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: for meth in ['pad', 'bfill']: _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth, limit=1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth, limit=1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth, limit=1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth, limit=1) def test_align_nocopy(self): b = self.ts[:5].copy() # do copy a = self.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 self.assertFalse((a[:5] == 5).any()) # do not copy a = self.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 self.assertTrue((a[:5] == 5).all()) # do copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 self.assertFalse((b[:3] == 5).any()) # do not copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 self.assertTrue((b[:2] == 5).all()) def test_align_sameindex(self): a, b = self.ts.align(self.ts, copy=False) self.assertIs(a.index, self.ts.index) self.assertIs(b.index, self.ts.index) # a, b = self.ts.align(self.ts, copy=True) # self.assertIsNot(a.index, self.ts.index) # self.assertIsNot(b.index, self.ts.index) def test_align_multiindex(self): # GH 10665 midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') s1 = pd.Series(np.arange(12, dtype='int64'), index=midx) s2 = pd.Series(np.arange(2, dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = s1.align(s2, join='left') res2l, res2r = s2.align(s1, join='right') expl = s1 tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) res1l, res1r = s1.align(s2, join='right') res2l, res2r = s2.align(s1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) def test_reindex(self): identity = self.series.reindex(self.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: self.assertTrue(np.may_share_memory(self.series.index, identity.index)) except (AttributeError): pass self.assertTrue(identity.index.is_(self.series.index)) self.assertTrue(identity.index.identical(self.series.index)) subIndex = self.series.index[10:20] subSeries = self.series.reindex(subIndex) for idx, val in
compat.iteritems(subSeries)
pandas.compat.iteritems
"""Simulate a rollout and plot the time series result""" from copy import copy import random from typing import List, Tuple, Optional, TYPE_CHECKING import matplotlib.pyplot as plt from matplotlib.pyplot import figure import pandas as pd import seaborn as sns import torch import tqdm from neural_clbf.experiments import Experiment from neural_clbf.systems.utils import ScenarioList if TYPE_CHECKING: from neural_clbf.controllers import Controller # noqa class RolloutTimeSeriesExperiment(Experiment): """An experiment for plotting rollout performance of controllers. Plots trajectories as a function of time. """ def __init__( self, name: str, start_x: torch.Tensor, plot_x_indices: List[int], plot_x_labels: List[str], plot_u_indices: List[int], plot_u_labels: List[str], scenarios: Optional[ScenarioList] = None, n_sims_per_start: int = 5, t_sim: float = 5.0, ): """Initialize an experiment for simulating controller performance. args: name: the name of this experiment plot_x_indices: a list of the indices of the state variables to plot plot_x_labels: a list of the labels for each state variable trace plot_u_indices: a list of the indices of the control inputs to plot plot_u_labels: a list of the labels for each control trace scenarios: a list of parameter scenarios to sample from. If None, use the nominal parameters of the controller's dynamical system n_sims_per_start: the number of simulations to run (with random parameters), per row in start_x t_sim: the amount of time to simulate for """ super(RolloutTimeSeriesExperiment, self).__init__(name) # Save parameters self.start_x = start_x self.plot_x_indices = plot_x_indices self.plot_x_labels = plot_x_labels self.plot_u_indices = plot_u_indices self.plot_u_labels = plot_u_labels self.scenarios = scenarios self.n_sims_per_start = n_sims_per_start self.t_sim = t_sim @torch.no_grad() def run(self, controller_under_test: "Controller") -> pd.DataFrame: """ Run the experiment, likely by evaluating the controller, but the experiment has freedom to call other functions of the controller as necessary (if these functions are not supported by all controllers, then experiments will be responsible for checking compatibility with the provided controller) args: controller_under_test: the controller with which to run the experiment returns: a pandas DataFrame containing the results of the experiment, in tidy data format (i.e. each row should correspond to a single observation from the experiment). """ # Deal with optional parameters if self.scenarios is None: scenarios = [controller_under_test.dynamics_model.nominal_params] else: scenarios = self.scenarios # Set up a dataframe to store the results results_df =
pd.DataFrame()
pandas.DataFrame
# Created by woochanghwang at 28/06/2020 # Modified by woochang at 21/07/2021 ''' Count ATC code Draw Bar graph ''' import pandas as pd import matplotlib.pyplot as plt import numpy as np def count_ATC_of_candidate_drugs(): virus = "SARS-CoV-2" # candidate_drug_atc_df = pd.read_excel(f"../result/{virus}/Drug/{virus}_candidate_drug_info_target.SIP.CT.xlsx") candidate_drug_atc_df =
pd.read_excel(f"../result/{virus}/Drug/{virus}_candidate_drug_info_target.SIP.xlsx")
pandas.read_excel
"""Module for representing a CastorStudy in Python.""" import itertools import math import pathlib import re import sys from datetime import datetime from operator import attrgetter from typing import List, Optional, Any, Union, Dict import pandas as pd from tqdm import tqdm from castoredc_api import CastorClient, CastorException from castoredc_api.study.castor_objects.castor_data_point import CastorDataPoint from castoredc_api.study.castor_objects import ( CastorField, CastorFormInstance, CastorRecord, CastorStep, CastorForm, CastorStudyFormInstance, CastorSurveyFormInstance, CastorReportFormInstance, ) class CastorStudy: """Object representing a study in Castor. Functions as the head of a tree for all interrelations. Needs an authenticated api_client that is linked to the same study_id to call data.""" # pylint: disable=too-many-instance-attributes # Necessary number of attributes to allow caching of information # pylint: disable=too-many-public-methods # Necessary number of public methods to interact with study # pylint: disable=too-many-arguments # Necessary number of arguments to setup study def __init__( self, client_id: str, client_secret: str, study_id: str, url: str, test=False, format_options=None, ) -> None: """Create a CastorStudy object.""" self.study_id = study_id # Set configuration settings self.configuration = { "date": "%d-%m-%Y", "datetime": "%d-%m-%Y %H:%M", "datetime_seconds": "%d-%m-%Y %H:%M:%S", "time": "%H:%M", } if format_options: self.configuration.update(format_options) # Create the client to interact with the study if test is False: self.client = CastorClient(client_id, client_secret, url) self.client.link_study(study_id) # List of all forms in the study - structure self.forms_on_id = {} self.forms_on_name = {} # Dictionary to store the relationship between a form instance and its form ID self.form_links = {} # List of all records in the study - data self.records = {} # List of dictionaries of optiongroups self.optiongroups = {} # Container variables to save time querying the database self.__all_report_instances = {} # STRUCTURE MAPPING def map_structure(self) -> None: """Maps the structure for the study.""" # Reset structure & data self.forms_on_id = {} self.forms_on_name = {} self.form_links = {} self.records = {} self.optiongroups = {} self.__all_report_instances = {} # Get the structure from the API print("Downloading Study Structure.", flush=True, file=sys.stderr) data = self.client.export_study_structure() # Loop over all fields for field in tqdm(data, desc="Mapping Study Structure"): # Check if the form for the field exists, if not, create it form = self.get_single_form(field["Form Collection ID"]) if form is None: form = CastorForm( form_collection_type=field["Form Type"], form_collection_id=field["Form Collection ID"], form_collection_name=field["Form Collection Name"], form_collection_order=field["Form Collection Order"], ) self.add_form(form) # Check if the step for the field exists, if not, create it step = form.get_single_step(field["Form ID"]) if step is None: step = CastorStep( step_id=field["Form ID"], step_name=field["Form Name"], step_order=field["Form Order"], ) form.add_step(step) # Create the field new_field = CastorField( field_id=field["Field ID"], field_name=field["Field Variable Name"], field_label=field["Field Label"], field_type=field["Field Type"], field_required=field["Field Required"], field_option_group=field["Field Option Group"], field_order=field["Field Order"], ) step.add_field(new_field) # Augment field data self.__load_field_information() # Map the field dependencies and optiongroups self.__map_field_dependencies() self.__load_optiongroups() # DATA MAPPING def map_data(self) -> None: """Maps the data for the study.""" self.map_structure() self.update_links() self.__link_data() self.__load_record_information() self.__load_survey_information() self.__load_report_information() def update_links(self) -> None: """Creates the links between form and form instances.""" # Reset form links self.form_links = {} # Get the name of the survey forms, as the export data can only be linked on name, not on id print("Downloading Surveys.", flush=True, file=sys.stderr) surveys = self.client.all_surveys() self.form_links["Survey"] = {survey["name"]: survey["id"] for survey in surveys} # Get all report instances that need to be linked print("Downloading Report Instances.", flush=True, file=sys.stderr) # Save this data from the database to save time later report_instances = self.client.all_report_instances(archived=0) archived_report_instances = self.client.all_report_instances(archived=1) # Create dict with link id: object self.__all_report_instances = { report_instance["id"]: report_instance for report_instance in report_instances + archived_report_instances } # Create dict with link instance_id: form_id self.form_links["Report"] = { instance_id: self.__all_report_instances[instance_id]["_embedded"][ "report" ]["id"] for instance_id in self.__all_report_instances } # OPTIONGROUPS def __load_optiongroups(self) -> None: """Loads all optiongroups through the client""" # Get the optiongroups print("Downloading Optiongroups", flush=True, file=sys.stderr) optiongroups = self.client.all_field_optiongroups() self.optiongroups = { optiongroup["id"]: optiongroup for optiongroup in optiongroups } # AUXILIARY DATA def __load_record_information(self) -> None: """Adds auxiliary data to records.""" print("Downloading Record Information.", flush=True, file=sys.stderr) record_data = self.client.all_records() for record_api in tqdm(record_data, desc="Augmenting Record Data"): record = self.get_single_record(record_api["id"]) record.institute = record_api["_embedded"]["institute"]["name"] record.randomisation_group = record_api["randomization_group_name"] record.randomisation_datetime = self.__get_date_or_none( record_api["randomized_on"] ) record.archived = record_api["archived"] def __load_survey_information(self) -> None: """Adds auxiliary data to survey forms.""" print("Downloading Survey Information.", flush=True, file=sys.stderr) survey_package_data = self.client.all_survey_package_instances() # Create mapping {survey_instance_id: survey_package} survey_data = { survey["id"]: { "package": package, "record": package["record_id"], "survey": survey, } for package in survey_package_data for survey in package["_embedded"]["survey_instances"] } for survey_instance, values in tqdm( survey_data.items(), desc="Augmenting Survey Data" ): # Test if instance in study local_instance = self.get_single_form_instance_on_id( instance_id=survey_instance, record_id=values["record"] ) local_instance.created_on = self.__get_date_or_none( values["package"]["created_on"] ) local_instance.sent_on = self.__get_date_or_none( values["package"]["sent_on"] ) local_instance.progress = values["survey"]["progress"] local_instance.completed_on = self.__get_date_or_none( values["package"]["finished_on"] ) local_instance.archived = values["package"]["archived"] local_instance.survey_package_id = values["package"]["id"] local_instance.survey_package_name = values["package"][ "survey_package_name" ] def __load_report_information(self) -> None: """Adds auxiliary data to report forms.""" for instance_id, report_instance in tqdm( self.__all_report_instances.items(), "Augmenting Report Data", ): # Test if instance in study local_instance = self.get_single_form_instance_on_id( instance_id=instance_id, record_id=report_instance["record_id"] ) local_instance.created_on = datetime.strptime( report_instance["created_on"], "%Y-%m-%d %H:%M:%S" ).strftime(self.configuration["datetime_seconds"]) if report_instance["parent_type"] == "phase": local_instance.parent = self.get_single_form( report_instance["parent_id"] ).form_name elif report_instance["parent_type"] == "reportInstance": local_instance.parent = self.get_single_form_instance_on_id( report_instance["record_id"], report_instance["parent_id"] ).name_of_form else: local_instance.parent = "No parent" local_instance.archived = report_instance["archived"] def __load_field_information(self): """Adds auxillary information to fields.""" all_fields = self.client.all_fields() for api_field in all_fields: field = self.get_single_field(api_field["id"]) # Use -inf and inf for easy numeric comparison field.field_min = ( -math.inf if api_field["field_min"] is None else api_field["field_min"] ) field.field_max = ( math.inf if api_field["field_max"] is None else api_field["field_max"] ) def __get_date_or_none(self, dictionary: Optional[dict]) -> Optional[datetime]: """Returns the date or None when no date found.""" date = ( None if dictionary is None else datetime.strptime(dictionary["date"], "%Y-%m-%d %H:%M:%S.%f").strftime( self.configuration["datetime_seconds"] ) ) return date # FIELD DEPENDENCIES def __map_field_dependencies(self) -> None: """Retrieves all field_dependencies and links them to the right field.""" print("Downloading Field Dependencies", flush=True, file=sys.stderr) dependencies = self.client.all_field_dependencies() # Format to dict of {child_id: {"parent_field": parent_field, "parent_value": value} dependencies = { dep["child_id"]: { "parent_field": self.get_single_field(dep["parent_id"]), "parent_value": dep["value"], } for dep in dependencies } for child_id in dependencies: self.get_single_field(child_id).field_dependency = dependencies[child_id] # DATA ANALYSIS def export_to_dataframe(self, archived=False) -> dict: """Exports all data from a study into a dict of dataframes for statistical analysis.""" self.map_data() dataframes = { "Study": self.__export_study_data(archived), "Surveys": self.__export_survey_data(archived), "Reports": self.__export_report_data(archived), } return dataframes def export_to_csv(self, archived=False) -> dict: """Exports all data to csv files. Returns dict with file locations.""" now = f"{datetime.now().strftime('%Y%m%d %H%M%S.%f')[:-3]}" dataframes = self.export_to_dataframe(archived) # Instantiate output folder pathlib.Path(pathlib.Path.cwd(), "output").mkdir(parents=True, exist_ok=True) # Export dataframes dataframes["Study"] = self.export_dataframe_to_csv( dataframes["Study"], "Study", now ) for survey in dataframes["Surveys"]: dataframes["Surveys"][survey] = self.export_dataframe_to_csv( dataframes["Surveys"][survey], survey, now ) for report in dataframes["Reports"]: dataframes["Reports"][report] = self.export_dataframe_to_csv( dataframes["Reports"][report], report, now ) return dataframes def export_to_feather(self, archived=False) -> dict: """Exports all data to feather files. Returns dict of file locations for export into R.""" now = f"{datetime.now().strftime('%Y%m%d %H%M%S.%f')[:-3]}" dataframes = self.export_to_dataframe(archived) # Instantiate output folder pathlib.Path(pathlib.Path.cwd(), "output").mkdir(parents=True, exist_ok=True) print("Writing data to feather files...", flush=True, file=sys.stderr) dataframes["Study"] = self.export_dataframe_to_feather( dataframes["Study"], "Study", now ) for report in dataframes["Reports"]: dataframes["Reports"][report] = self.export_dataframe_to_feather( dataframes["Reports"][report], report, now ) for survey in dataframes["Surveys"]: dataframes["Surveys"][survey] = self.export_dataframe_to_feather( dataframes["Surveys"][survey], survey, now ) return dataframes def export_dataframe_to_csv( self, dataframe: pd.DataFrame, name: str, now: str ) -> str: """Exports a single dataframe to csv and returns the destination path.""" filename = re.sub(r"[^\w\-_\. ]", "_", name) path = pathlib.Path( pathlib.Path.cwd(), "output", f"{now} {self.study_id} {filename}.csv" ) dataframe.to_csv( path_or_buf=path, sep=";", index=False, ) return str(path) def export_dataframe_to_feather( self, dataframe: pd.DataFrame, name: str, now: str ) -> str: """Exports a single dataframe to feather and returns the destination path.""" filename = re.sub(r"[^\w\-_\. ]", "_", name) path = pathlib.Path( pathlib.Path.cwd(), "output", f"{now} {self.study_id} {filename}.feather" ) if dataframe.empty: # If dataframe is empty, set all dtypes to object # See also https://github.com/reiniervlinschoten/castoredc_api/issues/44 dataframe = dataframe.astype("object") dataframe.reset_index(drop=True).to_feather( path, compression="uncompressed", ) return str(path) # HELPERS def get_single_optiongroup(self, optiongroup_id: str) -> Optional[Dict]: """Get a single optiongroup based on id.""" return self.optiongroups.get(optiongroup_id) def add_form(self, form: CastorForm) -> None: """Add a CastorForm to the study.""" self.forms_on_id[form.form_id] = form self.forms_on_name[form.form_name] = form form.study = self def get_all_forms(self) -> List[CastorForm]: """Get all linked CastorForms.""" return list(self.forms_on_id.values()) def get_all_survey_forms(self) -> List[CastorForm]: """Gets all survey CastorForms.""" return self.get_all_form_type_forms("Survey") def get_all_report_forms(self) -> List[CastorForm]: """Gets all report CastorForms.""" return self.get_all_form_type_forms("Report") def get_all_form_type_forms(self, form_type: str) -> List[CastorForm]: """Gets all CastorForms of form_type.""" forms = self.get_all_forms() return [form for form in forms if form.form_type == form_type] def get_all_form_type_form_instances( self, form_type: str ) -> List[CastorFormInstance]: """Gets all CastorForms of form_type.""" instances = self.get_all_form_instances() return [ instance for instance in instances if instance.instance_type == form_type ] def get_form_instances_by_form(self, form: CastorForm) -> List: """Gets all CastorFormInstances that are an instance of the given Form""" instances = self.get_all_form_instances() return [instance for instance in instances if instance.instance_of == form] def get_single_form(self, form_id: str) -> Optional[CastorForm]: """Get a single CastorForm based on id.""" return self.forms_on_id.get(form_id) def get_single_form_name(self, form_name: str) -> Optional[CastorForm]: """Get a single CastorForm based on id.""" return self.forms_on_name.get(form_name) def add_record(self, record: CastorRecord) -> None: """Add a CastorRecord to the study.""" self.records[record.record_id] = record record.study = self def get_all_records(self) -> List[CastorRecord]: """Get all linked CastorRecords.""" return list(self.records.values()) def get_single_record(self, record_id: str) -> Optional[CastorRecord]: """Get a single CastorRecord based on id.""" return self.records.get(record_id) def get_all_steps(self) -> List[CastorStep]: """Get all linked CastorSteps.""" steps = list( itertools.chain.from_iterable( [value.get_all_steps() for key, value in self.forms_on_id.items()] ) ) return steps def get_single_step(self, step_id_or_name: str) -> Optional[CastorStep]: """Get a single CastorStep based on id or name.""" for form in self.get_all_forms(): # Search for step in each form step = form.get_single_step(step_id_or_name) # If step found (id and name are both unique) if step is not None: return step # If step not found return None def get_all_fields(self) -> List[CastorField]: """Get all linked CastorFields.""" fields = list( itertools.chain.from_iterable( [value.get_all_fields() for key, value in self.forms_on_id.items()] ) ) return fields def get_single_field(self, field_id_or_name: str) -> Optional[CastorField]: """Get a single CastorField based on id or name.""" if field_id_or_name == "": # Some Castor studies have fields for which the name can be empty # These are nonsensical identifiers, so we can't search on these return None for form in self.get_all_forms(): for step in form.get_all_steps(): # Search for field in each step in each form field = step.get_single_field(field_id_or_name) # If field found (id and name are both unique) if field is not None: return field # If field not found return None def get_all_study_fields(self) -> List[CastorField]: """Gets all linked study CastorFields.""" return self.__get_all_form_type_fields("Study") def get_all_survey_fields(self) -> List[CastorField]: """Gets all linked survey CastorFields.""" return self.__get_all_form_type_fields("Survey") def get_all_report_fields(self) -> List[CastorField]: """Gets all linked report CastorFields.""" return self.__get_all_form_type_fields("Report") def __get_all_form_type_fields(self, form_type: str) -> List[CastorField]: """Gets all linked CastorFields belonging to form of form_type.""" fields = self.get_all_fields() return [field for field in fields if field.step.form.form_type == form_type] def get_all_form_instances(self) -> List["CastorFormInstance"]: """Returns all form instances""" form_instances = list( itertools.chain.from_iterable( [ list(value.form_instances_ids.values()) for key, value in self.records.items() ] ) ) return form_instances def get_single_form_instance_on_id( self, record_id: str, instance_id: str, ) -> Optional["CastorFormInstance"]: """Returns a single form instance based on id.""" return self.get_single_record(record_id).get_single_form_instance_on_id( instance_id ) def get_all_data_points(self) -> List["CastorDataPoint"]: """Returns all data_points of the study""" data_points = list( itertools.chain.from_iterable( [value.get_all_data_points() for key, value in self.records.items()] ) ) return data_points def get_single_data_point( self, record_id: str, form_instance_id: str, field_id_or_name: str ) -> Optional["CastorDataPoint"]: """Returns a single data_point based on id.""" form_instance = self.get_single_form_instance_on_id(record_id, form_instance_id) return form_instance.get_single_data_point(field_id_or_name) def instance_of_form( self, instance_id: str, instance_type: str ) -> Optional[CastorForm]: """Returns the form of which the given id is an instance. instance_id is id for type: Report, name for type: Survey, or id for type: Study""" if instance_type == "Study": form = self.get_single_form(instance_id) elif instance_type in ("Report", "Survey"): form_id = self.form_links[instance_type][instance_id] form = self.get_single_form(form_id) else: raise CastorException(f"{instance_type} is not a form type.") return form # PRIVATE HELPER FUNCTIONS def __link_data(self) -> None: """Links the study data""" # Get the data from the API print("Downloading Study Data.", flush=True, file=sys.stderr) data = self.client.export_study_data() # Loop over all fields for field in tqdm(data, desc="Mapping Data"): self.__handle_row(field) def __handle_row(self, field): """Handles a row from the export data.""" # Check if the record for the field exists, if not, create it record = self.get_single_record(field["Record ID"]) if record is None: record = CastorRecord(record_id=field["Record ID"]) self.add_record(record) if field["Form Type"] == "": # If the Form Type is empty, the line indicates a record pass else: # If it is not empty, the line indicates data self.__handle_data(field, record) def __handle_data(self, field, record): """Handles data from a row from the export data""" # First check what type of form and check if it exists else create it if field["Form Type"] == "Study": form_instance = self.__handle_study_form(field, record) elif field["Form Type"] == "Report": form_instance = self.__handle_report_form(field, record) elif field["Form Type"] == "Survey": form_instance = self.__handle_survey_form(field, record) else: raise CastorException(f"Form Type: {field['Form Type']} does not exist.") # Check if the field exists, if not, create it if field["Field ID"] == "": # No field ID means that the row indicates an empty report or survey # Empty is a report or survey without any datapoints pass else: self.__handle_data_point(field, form_instance) def __handle_data_point(self, field, form_instance): """Handles the data point from the export data""" # Check if the data point already exists # Should not happen, but just in case data_point = form_instance.get_single_data_point(field["Field ID"]) if data_point is None: data_point = CastorDataPoint( field_id=field["Field ID"], raw_value=field["Value"], study=self, filled_in=field["Date"], ) form_instance.add_data_point(data_point) else: raise CastorException("Duplicated data point found!") def __handle_survey_form(self, field, record): form_instance = record.get_single_form_instance_on_id(field["Form Instance ID"]) if form_instance is None: form_instance = CastorSurveyFormInstance( instance_id=field["Form Instance ID"], name_of_form=field["Form Instance Name"], study=self, ) record.add_form_instance(form_instance) return form_instance def __handle_report_form(self, field, record): form_instance = record.get_single_form_instance_on_id(field["Form Instance ID"]) if form_instance is None: form_instance = CastorReportFormInstance( instance_id=field["Form Instance ID"], name_of_form=field["Form Instance Name"], study=self, ) record.add_form_instance(form_instance) return form_instance def __handle_study_form(self, field, record): instance_of_field = self.get_single_field(field["Field ID"]) instance_of_form = instance_of_field.step.form.form_id form_instance_id = instance_of_form form_instance = record.get_single_form_instance_on_id(form_instance_id) if form_instance is None: form_instance = CastorStudyFormInstance( instance_id=form_instance_id, name_of_form=field["Form Instance Name"], study=self, ) record.add_form_instance(form_instance) return form_instance def __export_study_data(self, archived) -> pd.DataFrame: """Returns a dataframe containing all study data.""" # Get study forms forms = self.get_all_form_type_forms("Study") df_study = self.__export_data( forms, [ "record_id", "archived", "institute", "randomisation_group", "randomisation_datetime", ], "Study", archived, ) return df_study def __export_survey_data(self, archived) -> Dict[str, pd.DataFrame]: """Returns a dict of dataframes containing all survey data.""" dataframes = {} # Get survey forms forms = self.get_all_form_type_forms("Survey") # For each survey form, create a distinct dataframe for form in forms: dataframe = self.__export_data( [form], [ "record_id", "institute", "survey_name", "survey_instance_id", "created_on", "sent_on", "progress", "completed_on", "package_id", "package_name", "archived", ], "Survey", archived, ) # Add to return dict dataframes[form.form_name] = dataframe return dataframes def __export_report_data(self, archived): """Returns a dict of dataframes containing all report data.""" dataframes = {} # Get survey forms forms = self.get_all_form_type_forms("Report") # For each survey form, create a distinct dataframe for form in forms: dataframe = self.__export_data( [form], [ "record_id", "institute", "created_on", "custom_name", "parent", "archived", ], "Report", archived, ) # Add to return dict dataframes[form.form_name] = dataframe return dataframes def __export_data( self, forms: List["CastorForm"], extra_columns: List[str], form_type: str, archived: bool, ) -> pd.DataFrame: """Exports given type of data and returns a dataframe.""" # Get all study fields fields = self.__filtered_fields_forms(forms) # Get all data points if form_type == "Study": data = self.__get_all_data_points_study(fields, archived) elif form_type == "Survey": data = self.__get_all_data_points_survey(forms[0], archived) elif form_type == "Report": data = self.__get_all_data_points_report(forms[0], archived) else: raise CastorException( f"{form_type} is not a valid type. Use Study/Survey/Report." ) # Order fields sorted_fields = sorted( fields, key=attrgetter("step.form.form_order", "step.step_order", "field_order"), ) # Define columns from study + auxiliary record columns column_order = extra_columns + [field.field_name for field in sorted_fields] # Convert study data points to data frame dataframe = pd.DataFrame.from_records(data, columns=column_order) # Split up checkbox and numberdate fields (multiple values in one column) dataframe, column_order = self.__split_up_checkbox_data( dataframe, fields, column_order ) dataframe, column_order = self.__split_up_numberdate_data( dataframe, fields, column_order ) dataframe = self.__format_year(dataframe, fields) dataframe = self.__format_categorical_fields(dataframe, fields) # Order the dataframe dataframe = dataframe[column_order] return dataframe def __format_categorical_fields( self, dataframe: pd.DataFrame, fields: List[CastorField] ) -> pd.DataFrame: """Sets categorical fields to use categorical dtype.""" cat_fields = [ field for field in fields if field.field_type in ["dropdown", "radio"] ] for field in cat_fields: # Get options + missings options = self.get_single_optiongroup(field.field_option_group)["options"] # Remove duplicates option_names = list( set( [option["name"] for option in options] + [ "measurement failed", "not applicable", "not asked", "asked but unknown", "not done", ] ) ) # Set columns to categorical cat_type = pd.CategoricalDtype(categories=option_names, ordered=False) dataframe[field.field_name] = dataframe[field.field_name].astype(cat_type) return dataframe @staticmethod def __format_year( dataframe: pd.DataFrame, fields: List[CastorField] ) -> pd.DataFrame: """Casts year fields to the correct format.""" # Year fields to Ints year_fields = [field for field in fields if field.field_type == "year"] for year in year_fields: dataframe[year.field_name] = dataframe[year.field_name].astype("Int64") return dataframe @staticmethod def __split_up_numberdate_data( dataframe: pd.DataFrame, fields: List[CastorField], column_order: List[str] ) -> (pd.DataFrame, List[str]): """Splits up the numberdate data in dummies and returns a new dataframe + column order.""" # Select numberdate fields numberdate_fields = [ field for field in fields if field.field_type == "numberdate" ] for numberdate in numberdate_fields: # Create dummies dummies = [ numberdate.field_name + "_number", numberdate.field_name + "_date", ] # Get an array of the data and double the nans temp_list = dataframe[numberdate.field_name].tolist() temp_list = [ [item, item] if not pd.Series(item).any() else item for item in temp_list ] # Add the dummies to the old data frame dataframe[dummies] =
pd.DataFrame(temp_list, index=dataframe.index)
pandas.DataFrame
import copy from datetime import datetime import warnings import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Index, Series, isna, notna import pandas._testing as tm from pandas.core.window.common import _flex_binary_moment from pandas.tests.window.common import ( Base, check_pairwise_moment, moments_consistency_cov_data, moments_consistency_is_constant, moments_consistency_mock_mean, moments_consistency_series_data, moments_consistency_std_data, moments_consistency_var_data, moments_consistency_var_debiasing_factors, ) import pandas.tseries.offsets as offsets @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning") class TestMoments(Base): def setup_method(self, method): self._create_data() def test_centered_axis_validation(self): # ok Series(np.ones(10)).rolling(window=3, center=True, axis=0).mean() # bad axis with pytest.raises(ValueError): Series(np.ones(10)).rolling(window=3, center=True, axis=1).mean() # ok ok DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=0).mean() DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=1).mean() # bad axis with pytest.raises(ValueError): (DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=2).mean()) def test_rolling_sum(self, raw): self._check_moment_func( np.nansum, name="sum", zero_min_periods_equal=False, raw=raw ) def test_rolling_count(self, raw): counter = lambda x: np.isfinite(x).astype(float).sum() self._check_moment_func( counter, name="count", has_min_periods=False, fill_value=0, raw=raw ) def test_rolling_mean(self, raw): self._check_moment_func(np.mean, name="mean", raw=raw) @td.skip_if_no_scipy def test_cmov_mean(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, win_type="boxcar", center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window_corner(self): # GH 8238 # all nan vals = pd.Series([np.nan] * 10) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert np.isnan(result).all() # empty vals = pd.Series([], dtype=object) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert len(result) == 0 # shorter than window vals = pd.Series(np.random.randn(5)) result = vals.rolling(10, win_type="boxcar").mean() assert np.isnan(result).all() assert len(result) == 5 @td.skip_if_no_scipy @pytest.mark.parametrize( "f,xp", [ ( "mean", [ [np.nan, np.nan], [np.nan, np.nan], [9.252, 9.392], [8.644, 9.906], [8.87, 10.208], [6.81, 8.588], [7.792, 8.644], [9.05, 7.824], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "std", [ [np.nan, np.nan], [np.nan, np.nan], [3.789706, 4.068313], [3.429232, 3.237411], [3.589269, 3.220810], [3.405195, 2.380655], [3.281839, 2.369869], [3.676846, 1.801799], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "var", [ [np.nan, np.nan], [np.nan, np.nan], [14.36187, 16.55117], [11.75963, 10.48083], [12.88285, 10.37362], [11.59535, 5.66752], [10.77047, 5.61628], [13.51920, 3.24648], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "sum", [ [np.nan, np.nan], [np.nan, np.nan], [46.26, 46.96], [43.22, 49.53], [44.35, 51.04], [34.05, 42.94], [38.96, 43.22], [45.25, 39.12], [np.nan, np.nan], [np.nan, np.nan], ], ), ], ) def test_cmov_window_frame(self, f, xp): # Gh 8238 df = DataFrame( np.array( [ [12.18, 3.64], [10.18, 9.16], [13.24, 14.61], [4.51, 8.11], [6.15, 11.44], [9.14, 6.21], [11.31, 10.67], [2.94, 6.51], [9.42, 8.39], [12.44, 7.34], ] ) ) xp = DataFrame(np.array(xp)) roll = df.rolling(5, win_type="boxcar", center=True) rs = getattr(roll, f)() tm.assert_frame_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_na_min_periods(self): # min_periods vals = Series(np.random.randn(10)) vals[4] = np.nan vals[8] = np.nan xp = vals.rolling(5, min_periods=4, center=True).mean() rs = vals.rolling(5, win_type="boxcar", min_periods=4, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "hamming": [ np.nan, np.nan, 8.71384, 9.56348, 12.38009, 14.03687, 13.8567, 11.81473, np.nan, np.nan, ], "triang": [ np.nan, np.nan, 9.28667, 10.34667, 12.00556, 13.33889, 13.38, 12.33667, np.nan, np.nan, ], "barthann": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], "bohman": [ np.nan, np.nan, 7.61599, 9.1764, 12.83559, 14.17267, 14.65923, 11.10401, np.nan, np.nan, ], "blackmanharris": [ np.nan, np.nan, 6.97691, 9.16438, 13.05052, 14.02156, 15.10512, 10.74574, np.nan, np.nan, ], "nuttall": [ np.nan, np.nan, 7.04618, 9.16786, 13.02671, 14.03559, 15.05657, 10.78514, np.nan, np.nan, ], "blackman": [ np.nan, np.nan, 7.73345, 9.17869, 12.79607, 14.20036, 14.57726, 11.16988, np.nan, np.nan, ], "bartlett": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_linear_range(self, win_types): # GH 8238 vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_missing_data(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, np.nan, 10.63, 14.48] ) xps = { "bartlett": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "blackman": [ np.nan, np.nan, 9.04582, 11.41536, 7.73345, 9.17869, 12.79607, 14.20036, 15.8706, 13.655, ], "barthann": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "bohman": [ np.nan, np.nan, 8.9444, 11.56327, 7.61599, 9.1764, 12.83559, 14.17267, 15.90976, 13.655, ], "hamming": [ np.nan, np.nan, 9.59321, 10.29694, 8.71384, 9.56348, 12.38009, 14.20565, 15.24694, 13.69758, ], "nuttall": [ np.nan, np.nan, 8.47693, 12.2821, 7.04618, 9.16786, 13.02671, 14.03673, 16.08759, 13.65553, ], "triang": [ np.nan, np.nan, 9.33167, 9.76125, 9.28667, 10.34667, 12.00556, 13.82125, 14.49429, 13.765, ], "blackmanharris": [ np.nan, np.nan, 8.42526, 12.36824, 6.97691, 9.16438, 13.05052, 14.02175, 16.1098, 13.65509, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, min_periods=3).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "exponential": {"tau": 10}, } vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "gaussian": [ np.nan, np.nan, 8.97297, 9.76077, 12.24763, 13.89053, 13.65671, 12.01002, np.nan, np.nan, ], "general_gaussian": [ np.nan, np.nan, 9.85011, 10.71589, 11.73161, 13.08516, 12.95111, 12.74577, np.nan, np.nan, ], "kaiser": [ np.nan, np.nan, 9.86851, 11.02969, 11.65161, 12.75129, 12.90702, 12.83757, np.nan, np.nan, ], "exponential": [ np.nan, np.nan, 9.83364, 11.10472, 11.64551, 12.66138, 12.92379, 12.83770, np.nan, np.nan, ], } xp = Series(xps[win_types_special]) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special_linear_range(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "slepian": {"width": 0.5}, "exponential": {"tau": 10}, } vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) def test_rolling_median(self, raw): self._check_moment_func(np.median, name="median", raw=raw) def test_rolling_min(self, raw): self._check_moment_func(np.min, name="min", raw=raw) a = pd.Series([1, 2, 3, 4, 5]) result = a.rolling(window=100, min_periods=1).min() expected = pd.Series(np.ones(len(a))) tm.assert_series_equal(result, expected) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).min() def test_rolling_max(self, raw): self._check_moment_func(np.max, name="max", raw=raw) a = pd.Series([1, 2, 3, 4, 5], dtype=np.float64) b = a.rolling(window=100, min_periods=1).max() tm.assert_almost_equal(a, b) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).max() @pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0]) def test_rolling_quantile(self, q, raw): def scoreatpercentile(a, per): values = np.sort(a, axis=0) idx = int(per / 1.0 * (values.shape[0] - 1)) if idx == values.shape[0] - 1: retval = values[-1] else: qlow = float(idx) / float(values.shape[0] - 1) qhig = float(idx + 1) / float(values.shape[0] - 1) vlow = values[idx] vhig = values[idx + 1] retval = vlow + (vhig - vlow) * (per - qlow) / (qhig - qlow) return retval def quantile_func(x): return scoreatpercentile(x, q) self._check_moment_func(quantile_func, name="quantile", quantile=q, raw=raw) def test_rolling_quantile_np_percentile(self): # #9413: Tests that rolling window's quantile default behavior # is analogous to Numpy's percentile row = 10 col = 5 idx = pd.date_range("20100101", periods=row, freq="B") df = DataFrame(np.random.rand(row * col).reshape((row, -1)), index=idx) df_quantile = df.quantile([0.25, 0.5, 0.75], axis=0) np_percentile = np.percentile(df, [25, 50, 75], axis=0) tm.assert_almost_equal(df_quantile.values, np.array(np_percentile)) @pytest.mark.parametrize("quantile", [0.0, 0.1, 0.45, 0.5, 1]) @pytest.mark.parametrize( "interpolation", ["linear", "lower", "higher", "nearest", "midpoint"] ) @pytest.mark.parametrize( "data", [ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [8.0, 1.0, 3.0, 4.0, 5.0, 2.0, 6.0, 7.0], [0.0, np.nan, 0.2, np.nan, 0.4], [np.nan, np.nan, np.nan, np.nan], [np.nan, 0.1, np.nan, 0.3, 0.4, 0.5], [0.5], [np.nan, 0.7, 0.6], ], ) def test_rolling_quantile_interpolation_options( self, quantile, interpolation, data ): # Tests that rolling window's quantile behavior is analogous to # Series' quantile for each interpolation option s = Series(data) q1 = s.quantile(quantile, interpolation) q2 = s.expanding(min_periods=1).quantile(quantile, interpolation).iloc[-1] if np.isnan(q1): assert np.isnan(q2) else: assert q1 == q2 def test_invalid_quantile_value(self): data = np.arange(5) s = Series(data) msg = "Interpolation 'invalid' is not supported" with pytest.raises(ValueError, match=msg): s.rolling(len(data), min_periods=1).quantile(0.5, interpolation="invalid") def test_rolling_quantile_param(self): ser = Series([0.0, 0.1, 0.5, 0.9, 1.0]) with pytest.raises(ValueError): ser.rolling(3).quantile(-0.1) with pytest.raises(ValueError): ser.rolling(3).quantile(10.0) with pytest.raises(TypeError): ser.rolling(3).quantile("foo") def test_rolling_apply(self, raw): # suppress warnings about empty slices, as we are deliberately testing # with a 0-length Series def f(x): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) return x[np.isfinite(x)].mean() self._check_moment_func(np.mean, name="apply", func=f, raw=raw) def test_rolling_std(self, raw): self._check_moment_func(lambda x: np.std(x, ddof=1), name="std", raw=raw) self._check_moment_func( lambda x: np.std(x, ddof=0), name="std", ddof=0, raw=raw ) def test_rolling_std_1obs(self): vals = pd.Series([1.0, 2.0, 3.0, 4.0, 5.0]) result = vals.rolling(1, min_periods=1).std() expected = pd.Series([np.nan] * 5) tm.assert_series_equal(result, expected) result = vals.rolling(1, min_periods=1).std(ddof=0) expected = pd.Series([0.0] * 5) tm.assert_series_equal(result, expected) result = pd.Series([np.nan, np.nan, 3, 4, 5]).rolling(3, min_periods=2).std() assert np.isnan(result[2]) def test_rolling_std_neg_sqrt(self): # unit test from Bottleneck # Test move_nanstd for neg sqrt. a = pd.Series( [ 0.0011448196318903589, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, ] ) b = a.rolling(window=3).std() assert np.isfinite(b[2:]).all() b = a.ewm(span=3).std() assert np.isfinite(b[2:]).all() def test_rolling_var(self, raw): self._check_moment_func(lambda x: np.var(x, ddof=1), name="var", raw=raw) self._check_moment_func( lambda x: np.var(x, ddof=0), name="var", ddof=0, raw=raw ) @td.skip_if_no_scipy def test_rolling_skew(self, raw): from scipy.stats import skew self._check_moment_func(lambda x: skew(x, bias=False), name="skew", raw=raw) @td.skip_if_no_scipy def test_rolling_kurt(self, raw): from scipy.stats import kurtosis self._check_moment_func(lambda x: kurtosis(x, bias=False), name="kurt", raw=raw) def _check_moment_func( self, static_comp, name, raw, has_min_periods=True, has_center=True, has_time_rule=True, fill_value=None, zero_min_periods_equal=True, **kwargs, ): # inject raw if name == "apply": kwargs = copy.copy(kwargs) kwargs["raw"] = raw def get_result(obj, window, min_periods=None, center=False): r = obj.rolling(window=window, min_periods=min_periods, center=center) return getattr(r, name)(**kwargs) series_result = get_result(self.series, window=50) assert isinstance(series_result, Series) tm.assert_almost_equal(series_result.iloc[-1], static_comp(self.series[-50:])) frame_result = get_result(self.frame, window=50) assert isinstance(frame_result, DataFrame) tm.assert_series_equal( frame_result.iloc[-1, :], self.frame.iloc[-50:, :].apply(static_comp, axis=0, raw=raw), check_names=False, ) # check time_rule works if has_time_rule: win = 25 minp = 10 series = self.series[::2].resample("B").mean() frame = self.frame[::2].resample("B").mean() if has_min_periods: series_result = get_result(series, window=win, min_periods=minp) frame_result = get_result(frame, window=win, min_periods=minp) else: series_result = get_result(series, window=win, min_periods=0) frame_result = get_result(frame, window=win, min_periods=0) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = self.series[::2].truncate(prev_date, last_date) trunc_frame = self.frame[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], static_comp(trunc_series)) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(static_comp, raw=raw), check_names=False, ) # excluding NaNs correctly obj = Series(randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN if has_min_periods: result = get_result(obj, 50, min_periods=30) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # min_periods is working correctly result = get_result(obj, 20, min_periods=15) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(randn(20)) result = get_result(obj2, 10, min_periods=5) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if zero_min_periods_equal: # min_periods=0 may be equivalent to min_periods=1 result0 = get_result(obj, 20, min_periods=0) result1 = get_result(obj, 20, min_periods=1) tm.assert_almost_equal(result0, result1) else: result = get_result(obj, 50) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # window larger than series length (#7297) if has_min_periods: for minp in (0, len(self.series) - 1, len(self.series)): result = get_result(self.series, len(self.series) + 1, min_periods=minp) expected = get_result(self.series, len(self.series), min_periods=minp) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) else: result = get_result(self.series, len(self.series) + 1, min_periods=0) expected = get_result(self.series, len(self.series), min_periods=0) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) # check center=True if has_center: if has_min_periods: result = get_result(obj, 20, min_periods=15, center=True) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=15 )[9:].reset_index(drop=True) else: result = get_result(obj, 20, min_periods=0, center=True) print(result) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=0 )[9:].reset_index(drop=True) tm.assert_series_equal(result, expected) # shifter index s = [f"x{x:d}" for x in range(12)] if has_min_periods: minp = 10 series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=minp, center=True ) frame_rs = get_result( self.frame, window=25, min_periods=minp, center=True ) else: series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=0, center=True ) frame_rs = get_result(self.frame, window=25, min_periods=0, center=True) if fill_value is not None: series_xp = series_xp.fillna(fill_value) frame_xp = frame_xp.fillna(fill_value) tm.assert_series_equal(series_xp, series_rs) tm.assert_frame_equal(frame_xp, frame_rs) def _rolling_consistency_cases(): for window in [1, 2, 3, 10, 20]: for min_periods in {0, 1, 2, 3, 4, window}: if min_periods and (min_periods > window): continue for center in [False, True]: yield window, min_periods, center class TestRollingMomentsConsistency(Base): def setup_method(self, method): self._create_data() # binary moments def test_rolling_cov(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).cov(B) tm.assert_almost_equal(result[-1], np.cov(A[-50:], B[-50:])[0, 1]) def test_rolling_corr(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).corr(B) tm.assert_almost_equal(result[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) # test for correct bias correction a = tm.makeTimeSeries() b = tm.makeTimeSeries() a[:5] = np.nan b[:10] = np.nan result = a.rolling(window=len(a), min_periods=1).corr(b) tm.assert_almost_equal(result[-1], a.corr(b)) @pytest.mark.parametrize("func", ["cov", "corr"]) def test_rolling_pairwise_cov_corr(self, func): check_pairwise_moment(self.frame, "rolling", func, window=10, min_periods=5) @pytest.mark.parametrize("method", ["corr", "cov"]) def test_flex_binary_frame(self, method): series = self.frame[1] res = getattr(series.rolling(window=10), method)(self.frame) res2 = getattr(self.frame.rolling(window=10), method)(series) exp = self.frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) tm.assert_frame_equal(res, exp) tm.assert_frame_equal(res2, exp) frame2 = self.frame.copy() frame2.values[:] = np.random.randn(*frame2.shape) res3 = getattr(self.frame.rolling(window=10), method)(frame2) exp = DataFrame( { k: getattr(self.frame[k].rolling(window=10), method)(frame2[k]) for k in self.frame } ) tm.assert_frame_equal(res3, exp) @pytest.mark.slow @pytest.mark.parametrize( "window,min_periods,center", list(_rolling_consistency_cases()) ) def test_rolling_apply_consistency( consistency_data, base_functions, no_nan_functions, window, min_periods, center ): x, is_constant, no_nans = consistency_data with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) # test consistency between rolling_xyz() and either (a) # rolling_apply of Series.xyz(), or (b) rolling_apply of # np.nanxyz() functions = base_functions # GH 8269 if no_nans: functions = no_nan_functions + base_functions for (f, require_min_periods, name) in functions: rolling_f = getattr( x.rolling(window=window, center=center, min_periods=min_periods), name, ) if ( require_min_periods and (min_periods is not None) and (min_periods < require_min_periods) ): continue if name == "count": rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) else: if name in ["cov", "corr"]: rolling_f_result = rolling_f(pairwise=False) else: rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) # GH 9422 if name in ["sum", "prod"]: tm.assert_equal(rolling_f_result, rolling_apply_f_result) @pytest.mark.parametrize("window", range(7)) def test_rolling_corr_with_zero_variance(window): # GH 18430 s = pd.Series(np.zeros(20)) other = pd.Series(np.arange(20)) assert s.rolling(window=window).corr(other=other).isna().all() def test_flex_binary_moment(): # GH3155 # don't blow the stack msg = "arguments to moment function must be of type np.ndarray/Series/DataFrame" with pytest.raises(TypeError, match=msg): _flex_binary_moment(5, 6, None) def test_corr_sanity(): # GH 3155 df = DataFrame( np.array( [ [0.87024726, 0.18505595], [0.64355431, 0.3091617], [0.92372966, 0.50552513], [0.00203756, 0.04520709], [0.84780328, 0.33394331], [0.78369152, 0.63919667], ] ) ) res = df[0].rolling(5, center=True).corr(df[1]) assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) # and some fuzzing for _ in range(10): df = DataFrame(np.random.rand(30, 2)) res = df[0].rolling(5, center=True).corr(df[1]) try: assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) except AssertionError: print(res) def test_rolling_cov_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2) expected = Series([None, None, 2.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2a) tm.assert_series_equal(result, expected) def test_rolling_corr_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2) expected = Series([None, None, 1.0])
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
# Copyright 2021 Research Institute of Systems Planning, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from copy import deepcopy from typing import List, Optional, Callable, Dict, Set from enum import IntEnum import pandas as pd import sys from abc import abstractmethod class RecordInterface: # To avoid conflicts with the pybind metaclass, ABC is not used. @abstractmethod def equals(self, other: RecordInterface) -> bool: pass @abstractmethod def merge(self, other: RecordInterface, inplace=False) -> Optional[Record]: pass @abstractmethod def drop_columns(self, columns: List[str], inplace: bool = False) -> Optional[Record]: pass @abstractmethod def add(self, key: str, stamp: int) -> None: pass @abstractmethod def change_dict_key(self, old_key: str, new_key: str) -> None: pass @abstractmethod def get(self, key: str) -> int: pass @property @abstractmethod def data(self) -> Dict[str, int]: pass @property @abstractmethod def columns(self) -> Set[str]: pass class RecordsInterface: # To avoid conflicts with the pybind metaclass, ABC is not used. @abstractmethod def equals(self, other: RecordsInterface) -> bool: pass @abstractmethod def append(self, other: RecordInterface) -> None: pass @abstractmethod def concat(self, other: RecordsInterface, inplace=False) -> Optional[RecordsInterface]: pass @abstractmethod def sort( self, key: str, sub_key: Optional[str] = None, inplace=False, ascending=True ) -> Optional[RecordsInterface]: pass @abstractmethod def filter( self, f: Callable[[RecordInterface], bool], inplace: bool = False ) -> Optional[RecordsInterface]: pass @abstractmethod def copy(self) -> RecordsInterface: pass @property @abstractmethod def data(self) -> List[RecordInterface]: pass @abstractmethod def drop_columns( self, columns: List[str], inplace: bool = False ) -> Optional[RecordsInterface]: pass @abstractmethod def rename_columns( self, columns: Dict[str, str], inplace: bool = False ) -> Optional[RecordsInterface]: pass @property @abstractmethod def columns(self) -> Set[str]: pass @abstractmethod def to_dataframe(self) -> pd.DataFrame: pass @abstractmethod def to_string(self) -> str: pass @abstractmethod def merge( self, right_records: Records, join_key: str, how: str = "inner", left_record_sort_key: Optional[str] = None, right_record_sort_key: Optional[str] = None, *, progress_label: Optional[str] = None ) -> Records: pass @abstractmethod def merge_sequencial( self, right_records: Records, left_stamp_key: str, right_stamp_key: str, join_key: Optional[str], how: str = "inner", *, progress_label: Optional[str] = None ) -> Records: pass @abstractmethod def merge_sequencial_for_addr_track( self, source_stamp_key: str, source_key: str, copy_records: RecordsInterface, copy_stamp_key: str, copy_from_key: str, copy_to_key: str, sink_records: RecordsInterface, sink_stamp_key: str, sink_from_key: str, *, progress_label: Optional[str] = None ) -> RecordsInterface: pass @abstractmethod def clone(self): pass class MergeSideInfo(IntEnum): LEFT = 0 RIGHT = 1 # class Record(collections.UserDict, RecordInterface): class Record(RecordInterface): def __init__(self, init: Optional[Dict] = None): init = init or {} self._data = init or {} self._columns = set(init.keys()) def get(self, key: str) -> int: return self._data[key] @property def data(self) -> Dict[str, int]: return self._data @property def columns(self) -> Set[str]: return self._columns def drop_columns(self, columns: List[str], inplace=False) -> Optional[Record]: data: Dict[str, int] if inplace: data = self._data else: data = deepcopy(self)._data for column in columns: if column not in self.columns: continue del data[column] if inplace: self._columns -= set(columns) return None else: return Record(data) def equals(self, other: Record) -> bool: # type: ignore is_columns_equal = self.columns == other.columns if is_columns_equal is False: return False return self.data == other.data def add(self, key: str, stamp: int): self.columns.add(key) self._data[key] = stamp def merge(self, other: Record, inplace=False) -> Optional[Record]: # type: ignore if inplace: self._data.update(other.data) self._columns |= other.columns return None else: d = deepcopy(self.data) d.update(deepcopy(other.data)) return Record(d) def change_dict_key(self, old_key: str, new_key: str) -> None: self._data[new_key] = self._data.pop(old_key, None) self._columns -= set([old_key]) self._columns |= set([new_key]) # class Records(collections.UserList, RecordsInterface): class Records(RecordsInterface): def __init__(self, init: Optional[List[Record]] = None): self._columns: Set[str] = set() for record in init or []: self._columns |= record.columns self._data: List[Record] = init or [] @property def columns(self) -> Set[str]: return self._columns def sort( self, key: str, sub_key: Optional[str] = None, inplace=False, ascending=True ) -> Optional[Records]: if inplace: data = self.data else: data = deepcopy(self.data) if ascending: if sub_key is None: data.sort(key=lambda record: record.get(key)) else: data.sort( key=lambda record: (record.get(key), record.get(sub_key)) # type: ignore ) else: if sub_key is None: data.sort(key=lambda record: -record.get(key)) else: data.sort( key=lambda record: (-record.get(key), -record.get(sub_key)) # type: ignore ) if inplace: return None else: return Records(data) def copy(self) -> Records: return deepcopy(self) @property def data(self) -> List[Record]: # type: ignore return self._data def append(self, other: Record): # type: ignore assert isinstance(other, Record) self._data.append(other) self._columns |= other.columns def concat(self, other: Records, inplace=False) -> Optional[Records]: # type: ignore if inplace: self._data += other._data self._columns |= other.columns return None else: d = deepcopy(self._data) d += deepcopy(other._data) return Records(d) def drop_columns(self, columns: List[str], inplace: bool = False) -> Optional[Records]: data: List[Record] if inplace: data = self._data else: data = deepcopy(self._data) for record in data: record.drop_columns(columns, inplace=True) if not inplace: return Records(data) else: self._columns -= set(columns) return None def rename_columns(self, columns: Dict[str, str], inplace: bool = False) -> Optional[Records]: self._columns -= set(columns.keys()) self._columns |= set(columns.values()) data: List[Record] if inplace: data = self._data else: data = deepcopy(self._data) for record in data: for key_from, key_to in columns.items(): if key_from not in record.columns: continue record.change_dict_key(key_from, key_to) if not inplace: return Records(data) else: return None def filter(self, f: Callable[[Record], bool], inplace: bool = False) -> Optional[Records]: records = Records() init_columns = self.columns for record in self._data: # type: Record if f(record): records.append(record) if not inplace: records._columns = init_columns records._data = deepcopy(records._data) return records else: self._data = records._data return None def equals(self, records: Records) -> bool: # type: ignore for r, r_ in zip(self.data, records.data): if r.equals(r_) is False: return False if self._columns != records._columns: return False return True def to_dataframe(self) -> pd.DataFrame: pd_dict = [record.data for record in self.data] df =
pd.DataFrame.from_dict(pd_dict)
pandas.DataFrame.from_dict
""" Test the creation and utilization of a SparkContext. """ import pandas as pd from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession, SQLContext if __name__ == "__main__": sc = SparkContext.getOrCreate() sqlContext = SQLContext(sc) spark = sqlContext.sparkSession df =
pd.DataFrame([1, 2, 3, 4, 5], columns=['a'])
pandas.DataFrame
''' Created on 13.04.2018 @author: malte ''' import gc import pickle import random import time from skopt import gbrt_minimize from skopt import gp_minimize from algorithms.baseline.Solution import Solution from algorithms.hybrid.Weighted import Weighted from helper import inout from helper.eval import evaluate import numpy as np import pandas as pd NUM_RECOMMENDATIONS=500 # data folder FOLDER_TRAIN = 'data/data_formatted_50k/' FOLDER_TEST = 'data/sample_50k_similar/' DKNN = FOLDER_TEST + 'results_knn_disk_tf-ratio-s50_idf-log10_cosine-s0_k1000.csv-fill-sol.csv' IKNN = FOLDER_TEST + 'results_iknn-100-a.75-idfw.csv' SKNN = FOLDER_TEST + 'results_sknn-1000-0-idfw.csv' IMPLICIT = FOLDER_TEST + 'results_implicitopt-300f-10e-filter20.5.csv' best = 0 bestr = 0 bestp = 0 bestn = 0 best_key = "" def main(): train, test = inout.load_dataset( FOLDER_TRAIN, FOLDER_TEST, feather=True ) export_csv_base = 'opt_hybrid/test' space = [(0.05,1), # nickweight (0.05,1), # iknnweight (0.05,1), # sknn (0.05,1) # implicit ] def objective_sv( popt ): algs = {} nicknn = Solution( DKNN ) iknn = Solution( IKNN ) sknn = Solution( SKNN ) implicit = Solution( IMPLICIT ) nickw, iknnw, sknnw, implicitw = popt key = 'weighted-nicknn-iknn-sknn-implicit-{}-{}-{}-{}'.format( nickw, iknnw, sknnw, implicitw ) algs[key] = Weighted( [nicknn, iknn, sknn, implicit], [nickw, iknnw, sknnw, implicitw], training=True ) print( ' -- current run for {}:'.format(key) ) for k, v in algs.items(): tstart = time.time() v.train( train, test=test ) print( ' -- trained {} in {}s'.format( k, (time.time() - tstart) ) ) results = {} results_time = {} for k, v in algs.items(): results[k] = {} results[k]['playlist_id'] = [] results[k]['track_id'] = [] results[k]['confidence'] = [] results_time[k] = 0 tstart = time.time() test['actions'].sort_values( 'playlist_id', inplace=True ) plidmap = pd.Series( index=list(test['actions'].playlist_id.unique()), data=range(len(test['actions'].playlist_id.unique())) ) start = np.r_[ 0, test['actions'].groupby('playlist_id').size().cumsum().values ] tracks = test['actions'].track_id.values artists = test['actions'].artist_id.values done = 0 for row in list( zip( test['playlists']['playlist_id'], test['playlists']['name'], test['playlists']['num_tracks'], test['playlists']['num_samples'] ) ): pid, name, ntracks, nsamples = row num_hidden = ntracks - nsamples if pid in plidmap: sidx = plidmap[pid] s = start[sidx] e = start[sidx+1] actions = tracks[s:e] artist_ids = artists[s:e] else: actions = None artist_ids = None for k, v in algs.items(): tpredict = time.time() res = v.predict( name, actions, playlist_id=pid, artists=artist_ids, num_hidden=num_hidden ) pt = time.time() - tpredict results[k]['playlist_id'] += [pid]*len(res) results[k]['track_id'] += list(res.track_id.values) results[k]['confidence'] += list(res.confidence.values) results_time[k] += pt done += 1 if done % 1000 == 0: print( ' -- finished {} of {} test lists in {}s'.format( done, len(test['playlists']), (time.time() - tstart) ) ) key = "" for k, v in algs.items(): results[k] = pd.DataFrame.from_dict( results[k] ) results[k].to_csv( FOLDER_TEST + export_csv_base + k +'.csv' ) print( 'prediction time for {}: {}'.format( k, (results_time[k] / len( test['playlists'] ) ) ) ) key=k rp, page, ndcg = eval( algs.keys(), export_csv_base ) page_norm = 1 - (page / 51) sum = rp + page_norm + ndcg global best, bestr, bestp, bestn, best_key if sum > best: # new best found best = sum bestr = rp bestp = page bestn = ndcg best_key = key print('CURRENT BEST: ' + best_key) print('WITH SUM: ' + str(best)) print('WITH RP@500: ' + str(bestr)) print('WITH PAGE@500: ' + str(bestp)) print('WITH NDCG@500: ' + str(bestn)) return -sum res = gbrt_minimize(objective_sv, space) def eval(list, basepath): preloaded = inout.load_validation(FOLDER_TEST) preloaded[0].sort_values( ['num_samples','name'], inplace=True ) all = pd.DataFrame() all_parts =
pd.DataFrame()
pandas.DataFrame
import sys import numpy as np import os import pandas as pd from sklearn import preprocessing import re from nltk.corpus import stopwords from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from nltk.corpus import stopwords from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.linear_model import SGDClassifier from sklearn.metrics import accuracy_score , roc_auc_score , log_loss import sklearn.linear_model as lm from sklearn.model_selection import GridSearchCV import Stemmer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import roc_auc_score, log_loss from numpy import linalg as LA from sklearn import neighbors from sklearn.neural_network import MLPClassifier from bs4 import BeautifulSoup #import xgboost as xgb import datetime as dt # StemmedTfidfVectorizer english_stemmer = Stemmer.Stemmer('en') class StemmedTfidfVectorizer(TfidfVectorizer): def build_analyzer(self): analyzer = super(TfidfVectorizer, self).build_analyzer() return lambda doc: english_stemmer.stemWords(analyzer(doc)) def text_to_wordlist( review, remove_stopwords=False ): # Function to convert a document to a sequence of words, # optionally removing stop words. Returns a list of words. # # 1. Remove HTML text = BeautifulSoup(review,'html.parser').get_text() # # 2. Remove non-letters text = re.sub("[^A-za-z0-9^,?!.\/'+-=]"," ", text) text = re.sub(r"what's", "what is ", text) text = re.sub(r"\'s", " ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", "cannot ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"i'm", "i am ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r"\'scuse", " excuse ", text) text = re.sub(r",", " ", text) text = re.sub(r"\.", " ", text) text = re.sub(r"!", " ! ", text) text = re.sub(r"\?", " ? ", text) # # 3. Convert words to lower case and split them words = text.lower().split() # # 4. Optionally remove stop words (false by default) if remove_stopwords: stops = set(stopwords.words("english")) words = [w for w in words if not w in stops] # 5. Return a list return(words) def clean_text( text ): # Function to convert a document to a sequence of words, # optionally removing stop words. Returns a list of words. # # 1. Remove HTML #text = BeautifulSoup(review,'html.parser').get_text() # # 2. Remove non-letters text = re.sub("[^A-za-z0-9^,?!.\/'+-=]"," ", text) text = re.sub(r"what's", "what is ", text) text = re.sub(r"\'s", " ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", "cannot ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"i'm", "i am ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r"\'scuse", " excuse ", text) text = re.sub(r",", " ", text) text = re.sub(r"\.", " ", text) text = re.sub(r"!", " _exclamationmark_ ", text) text = re.sub(r"\?", " _questionmark_ ", text) # return text def build_data_set(ngram=3,stem=False,max_features=2000,min_df=2,remove_stopwords=True): train =
pd.read_csv('data/train.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Main data processing script, loads ChIP-exo transcription factor data and processes into interval based data. Also creates the features used for the machine learning models. Part of the Hyena Toolbox (see https://github.com/SysBioChalmers/Hyena) @author: <NAME>; Chalmers University of Technology, Gothenburg Sweden """ import pandas as pd import numpy as np from datetime import datetime def parseWigLike(selected_genes, selected_tf): #load data path_to_ChIPexo = 'Data_ChIPexo/' data_Glu=[[x for x in line.rstrip('\n\r').split('\t')] for line in open(path_to_ChIPexo + selected_tf+'_Glu.wigLike')] data_Glu = {x[0] + '_' + x[1] : float(x[2]) for x in data_Glu if x[0] in selected_genes} data_Eth=[[x for x in line.rstrip('\n\r').split('\t')] for line in open(path_to_ChIPexo + selected_tf+'_Eth.wigLike')] data_Eth = {x[0] + '_' + x[1] : float(x[2]) for x in data_Eth if x[0] in selected_genes} combined_keys = list(set(list(data_Glu.keys()) + list(data_Eth.keys()))) combined_keys = [x.split('_') for x in combined_keys] combined_keys.sort(key = lambda x : (x[0], int(x[1]))) tf_data = [] for gene, pos in combined_keys: tf_data.append({'Gene' : gene, 'TF' : selected_tf, 'Pos' : int(pos) - 1000, 'Glu_Value' : data_Glu.get(gene + '_' + pos, 0), 'Eth_Value' : data_Eth.get(gene + '_' + pos, 0), 'Diff_Value' : data_Eth.get(gene + '_' + pos, 0) - data_Glu.get(gene + '_' + pos, 0)}) tf_data =
pd.DataFrame(tf_data)
pandas.DataFrame
import pandas as pd import plotly.graph_objs as go ####### STUDIES TRACES ###### def tech_indicator_plot(df, study, fig): return eval(study)(df, fig) def tech_indicator_subplot(df, study): return eval(study)(df) # Moving average def moving_average_trace(df, fig): MA = df["Close"].rolling(window=5).mean() trace = go.Scatter( x=df["Date"], y=MA, mode="lines", showlegend=False, name="MA", line=dict(width=1) ) fig.append_trace(trace, 1, 1) # plot in first row return fig # Exponential moving average def e_moving_average_trace(df, fig): EMA = df["Close"].rolling(window=20).mean() trace = go.Scatter( x=df["Date"], y=EMA, mode="lines", showlegend=False, name="EMA", line=dict(width=1) ) fig.append_trace(trace, 1, 1) # plot in first row return fig # Bollinger Bands def bollinger_trace(df, fig, window_size=10, num_of_std=5): price = df["Close"] rolling_mean = price.rolling(window=window_size).mean() rolling_std = price.rolling(window=window_size).std() upper_band = rolling_mean + (rolling_std * num_of_std) Lower_band = rolling_mean - (rolling_std * num_of_std) trace = go.Scatter( x=df["Date"], y=upper_band, mode="lines", showlegend=False, name="BB_upper", line=dict(width=1) ) trace2 = go.Scatter( x=df["Date"], y=rolling_mean, mode="lines", showlegend=False, name="BB_mean", line=dict(width=1) ) trace3 = go.Scatter( x=df["Date"], y=Lower_band, mode="lines", showlegend=False, name="BB_Lower", line=dict(width=1) ) fig.append_trace(trace, 1, 1) # plot in first row fig.append_trace(trace2, 1, 1) # plot in first row fig.append_trace(trace3, 1, 1) # plot in first row return fig # Accumulation Distribution def accumulation_trace(df): df["Volume"] = ((df["Close"] - df["Low"]) - (df["High"] - df["Close"])) / ( df["High"] - df["Low"] ) trace = go.Scatter( x=df["Date"], y=df["Volume"], mode="lines", showlegend=False, name="Accumulation", line=dict(width=1) ) return trace # Commodity Channel Index def cci_trace(df, ndays=5): TP = (df["High"] + df["Low"] + df["Close"]) / 3 CCI = pd.Series( (TP - TP.rolling(window=10, center=False).mean()) / (0.015 * TP.rolling(window=10, center=False).std()), name="cci", ) trace = go.Scatter( x=df["Date"], y=CCI, mode="lines", showlegend=False, name="CCI", line=dict(width=1) ) return trace # Price Rate of Change def roc_trace(df, ndays=5): N = df["Close"].diff(ndays) D = df["Close"].shift(ndays) ROC = pd.Series(N / D, name="roc") trace = go.Scatter( x=df["Date"], y=ROC, mode="lines", showlegend=False, name="ROC", line=dict(width=1) ) return trace # Stochastic oscillator %K def stoc_trace(df): SOk = pd.Series((df["Close"] - df["Low"]) / (df["High"] - df["Low"]), name="SO%k") trace = go.Scatter( x=df["Date"], y=SOk, mode="lines", showlegend=False, name="SO%k", line=dict(width=1) ) return trace # Momentum def mom_trace(df, n=5): M = pd.Series(df["Close"].diff(n), name="Momentum_" + str(n)) trace = go.Scatter( x=df["Date"], y=M, mode="lines", showlegend=False, name="MOM", line=dict(width=1) ) return trace # Pivot points def pp_trace(df, fig): PP =
pd.Series((df["High"] + df["Low"] + df["Close"]) / 3)
pandas.Series
# pylint: disable-msg=E1101,W0612 import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core.sparse.api import SparseDtype class TestSparseSeriesIndexing(object): def setup_method(self, method): self.orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) self.sparse = self.orig.to_sparse() def test_getitem(self): orig = self.orig sparse = self.sparse assert sparse[0] == 1 assert np.isnan(sparse[1]) assert sparse[3] == 3 result = sparse[[1, 3, 4]] exp = orig[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) # dense array result = sparse[orig % 2 == 1] exp = orig[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse[sparse % 2 == 1] exp = orig[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_getitem_slice(self): orig = self.orig sparse = self.sparse tm.assert_sp_series_equal(sparse[:2], orig[:2].to_sparse()) tm.assert_sp_series_equal(sparse[4:2], orig[4:2].to_sparse()) tm.assert_sp_series_equal(sparse[::2], orig[::2].to_sparse()) tm.assert_sp_series_equal(sparse[-5:], orig[-5:].to_sparse()) def test_getitem_int_dtype(self): # GH 8292 s = pd.SparseSeries([0, 1, 2, 3, 4, 5, 6], name='xxx') res = s[::2] exp = pd.SparseSeries([0, 2, 4, 6], index=[0, 2, 4, 6], name='xxx') tm.assert_sp_series_equal(res, exp) assert res.dtype == SparseDtype(np.int64) s = pd.SparseSeries([0, 1, 2, 3, 4, 5, 6], fill_value=0, name='xxx') res = s[::2] exp = pd.SparseSeries([0, 2, 4, 6], index=[0, 2, 4, 6], fill_value=0, name='xxx') tm.assert_sp_series_equal(res, exp) assert res.dtype == SparseDtype(np.int64) def test_getitem_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) assert sparse[0] == 1 assert np.isnan(sparse[1]) assert sparse[2] == 0 assert sparse[3] == 3 result = sparse[[1, 3, 4]] exp = orig[[1, 3, 4]].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # dense array result = sparse[orig % 2 == 1] exp = orig[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse[sparse % 2 == 1] exp = orig[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_getitem_ellipsis(self): # GH 9467 s = pd.SparseSeries([1, np.nan, 2, 0, np.nan]) tm.assert_sp_series_equal(s[...], s) s = pd.SparseSeries([1, np.nan, 2, 0, np.nan], fill_value=0) tm.assert_sp_series_equal(s[...], s) def test_getitem_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse[:2], orig[:2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[4:2], orig[4:2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[::2], orig[::2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[-5:], orig[-5:].to_sparse(fill_value=0)) def test_loc(self): orig = self.orig sparse = self.sparse assert sparse.loc[0] == 1 assert np.isnan(sparse.loc[1]) result = sparse.loc[[1, 3, 4]] exp = orig.loc[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) # exceeds the bounds result = sparse.reindex([1, 3, 4, 5]) exp = orig.reindex([1, 3, 4, 5]).to_sparse() tm.assert_sp_series_equal(result, exp) # padded with NaN assert np.isnan(result[-1]) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse.loc[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_loc_index(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() assert sparse.loc['A'] == 1 assert np.isnan(sparse.loc['B']) result = sparse.loc[['A', 'C', 'D']] exp = orig.loc[['A', 'C', 'D']].to_sparse() tm.assert_sp_series_equal(result, exp) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_loc_index_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) assert sparse.loc['A'] == 1 assert np.isnan(sparse.loc['B']) result = sparse.loc[['A', 'C', 'D']] exp = orig.loc[['A', 'C', 'D']].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) def test_loc_slice(self): orig = self.orig sparse = self.sparse tm.assert_sp_series_equal(sparse.loc[2:], orig.loc[2:].to_sparse()) def test_loc_slice_index_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.loc['C':], orig.loc['C':].to_sparse(fill_value=0)) def test_loc_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.loc[2:], orig.loc[2:].to_sparse(fill_value=0)) def test_iloc(self): orig = self.orig sparse = self.sparse assert sparse.iloc[3] == 3 assert np.isnan(sparse.iloc[2]) result = sparse.iloc[[1, 3, 4]] exp = orig.iloc[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) result = sparse.iloc[[1, -2, -4]] exp = orig.iloc[[1, -2, -4]].to_sparse() tm.assert_sp_series_equal(result, exp) with pytest.raises(IndexError): sparse.iloc[[1, 3, 5]] def test_iloc_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) assert sparse.iloc[3] == 3 assert np.isnan(sparse.iloc[1]) assert sparse.iloc[4] == 0 result = sparse.iloc[[1, 3, 4]] exp = orig.iloc[[1, 3, 4]].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) def test_iloc_slice(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) sparse = orig.to_sparse() tm.assert_sp_series_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse()) def test_iloc_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse(fill_value=0)) def test_at(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) sparse = orig.to_sparse() assert sparse.at[0] == orig.at[0] assert np.isnan(sparse.at[1]) assert np.isnan(sparse.at[2]) assert sparse.at[3] == orig.at[3] assert np.isnan(sparse.at[4]) orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('abcde')) sparse = orig.to_sparse() assert sparse.at['a'] == orig.at['a'] assert np.isnan(sparse.at['b']) assert np.isnan(sparse.at['c']) assert sparse.at['d'] == orig.at['d'] assert np.isnan(sparse.at['e']) def test_at_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('abcde')) sparse = orig.to_sparse(fill_value=0) assert sparse.at['a'] == orig.at['a'] assert np.isnan(sparse.at['b']) assert sparse.at['c'] == orig.at['c'] assert sparse.at['d'] == orig.at['d'] assert sparse.at['e'] == orig.at['e'] def test_iat(self): orig = self.orig sparse = self.sparse assert sparse.iat[0] == orig.iat[0] assert np.isnan(sparse.iat[1]) assert np.isnan(sparse.iat[2]) assert sparse.iat[3] == orig.iat[3] assert np.isnan(sparse.iat[4]) assert np.isnan(sparse.iat[-1]) assert sparse.iat[-5] == orig.iat[-5] def test_iat_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse() assert sparse.iat[0] == orig.iat[0] assert np.isnan(sparse.iat[1]) assert sparse.iat[2] == orig.iat[2] assert sparse.iat[3] == orig.iat[3] assert sparse.iat[4] == orig.iat[4] assert sparse.iat[-1] == orig.iat[-1] assert sparse.iat[-5] == orig.iat[-5] def test_get(self): s = pd.SparseSeries([1, np.nan, np.nan, 3, np.nan]) assert s.get(0) == 1 assert np.isnan(s.get(1)) assert s.get(5) is None s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE')) assert s.get('A') == 1 assert np.isnan(s.get('B')) assert s.get('C') == 0 assert s.get('XX') is None s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE'), fill_value=0) assert s.get('A') == 1 assert np.isnan(s.get('B')) assert s.get('C') == 0 assert s.get('XX') is None def test_take(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() tm.assert_sp_series_equal(sparse.take([0]), orig.take([0]).to_sparse()) tm.assert_sp_series_equal(sparse.take([0, 1, 3]), orig.take([0, 1, 3]).to_sparse()) tm.assert_sp_series_equal(sparse.take([-1, -2]), orig.take([-1, -2]).to_sparse()) def test_take_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([0]), orig.take([0]).to_sparse(fill_value=0)) exp = orig.take([0, 1, 3]).to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([0, 1, 3]), exp) exp = orig.take([-1, -2]).to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([-1, -2]), exp) def test_reindex(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse() tm.assert_sp_series_equal(res, exp) # all missing & fill_value res = sparse.reindex(['B', 'E', 'C']) exp = orig.reindex(['B', 'E', 'C']).to_sparse() tm.assert_sp_series_equal(res, exp) orig = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse() tm.assert_sp_series_equal(res, exp) def test_fill_value_reindex(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # includes missing and fill_value res = sparse.reindex(['A', 'B', 'C']) exp = orig.reindex(['A', 'B', 'C']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # all missing orig = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # all fill_value orig = pd.Series([0., 0., 0., 0., 0.], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) def test_fill_value_reindex_coerces_float_int(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) def test_reindex_fill_value(self): floats = pd.Series([1., 2., 3.]).to_sparse() result = floats.reindex([1, 2, 3], fill_value=0) expected = pd.Series([2., 3., 0], index=[1, 2, 3]).to_sparse() tm.assert_sp_series_equal(result, expected) def test_reindex_nearest(self): s = pd.Series(np.arange(10, dtype='float64')).to_sparse() target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = pd.Series(np.around(target), target).to_sparse() tm.assert_sp_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = pd.Series([0, 1, np.nan, 2], target).to_sparse() tm.assert_sp_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=[0.3, 0.01, 0.4, 3]) expected = pd.Series([0, np.nan, np.nan, 2], target).to_sparse() tm.assert_sp_series_equal(expected, actual) def tests_indexing_with_sparse(self): # GH 13985 for kind in ['integer', 'block']: for fill in [True, False, np.nan]: arr = pd.SparseArray([1, 2, 3], kind=kind) indexer = pd.SparseArray([True, False, True], fill_value=fill, dtype=bool) tm.assert_sp_array_equal(pd.SparseArray([1, 3], kind=kind), arr[indexer],) s = pd.SparseSeries(arr, index=['a', 'b', 'c'], dtype=np.float64) exp = pd.SparseSeries( [1, 3], index=['a', 'c'], dtype=SparseDtype(np.float64, s.fill_value), kind=kind ) tm.assert_sp_series_equal(s[indexer], exp) tm.assert_sp_series_equal(s.loc[indexer], exp) tm.assert_sp_series_equal(s.iloc[indexer], exp) indexer = pd.SparseSeries(indexer, index=['a', 'b', 'c']) tm.assert_sp_series_equal(s[indexer], exp) tm.assert_sp_series_equal(s.loc[indexer], exp) msg = ("iLocation based boolean indexing cannot use an " "indexable as a mask") with tm.assert_raises_regex(ValueError, msg): s.iloc[indexer] class TestSparseSeriesMultiIndexing(TestSparseSeriesIndexing): def setup_method(self, method): # Mi with duplicated values idx = pd.MultiIndex.from_tuples([('A', 0), ('A', 1), ('B', 0), ('C', 0), ('C', 1)]) self.orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=idx) self.sparse = self.orig.to_sparse() def test_getitem_multi(self): orig = self.orig sparse = self.sparse assert sparse[0] == orig[0] assert np.isnan(sparse[1]) assert sparse[3] == orig[3] tm.assert_sp_series_equal(sparse['A'], orig['A'].to_sparse()) tm.assert_sp_series_equal(sparse['B'], orig['B'].to_sparse()) result = sparse[[1, 3, 4]] exp = orig[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) # dense array result = sparse[orig % 2 == 1] exp = orig[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse[sparse % 2 == 1] exp = orig[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_getitem_multi_tuple(self): orig = self.orig sparse = self.sparse assert sparse['C', 0] == orig['C', 0] assert np.isnan(sparse['A', 1]) assert np.isnan(sparse['B', 0]) def test_getitems_slice_multi(self): orig = self.orig sparse = self.sparse tm.assert_sp_series_equal(sparse[2:], orig[2:].to_sparse()) tm.assert_sp_series_equal(sparse.loc['B':], orig.loc['B':].to_sparse()) tm.assert_sp_series_equal(sparse.loc['C':], orig.loc['C':].to_sparse()) tm.assert_sp_series_equal(sparse.loc['A':'B'], orig.loc['A':'B'].to_sparse()) tm.assert_sp_series_equal(sparse.loc[:'B'], orig.loc[:'B'].to_sparse()) def test_loc(self): # need to be override to use different label orig = self.orig sparse = self.sparse tm.assert_sp_series_equal(sparse.loc['A'], orig.loc['A'].to_sparse()) tm.assert_sp_series_equal(sparse.loc['B'], orig.loc['B'].to_sparse()) result = sparse.loc[[1, 3, 4]] exp = orig.loc[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) # exceeds the bounds result = sparse.loc[[1, 3, 4, 5]] exp = orig.loc[[1, 3, 4, 5]].to_sparse() tm.assert_sp_series_equal(result, exp) # single element list (GH 15447) result = sparse.loc[['A']] exp = orig.loc[['A']].to_sparse() tm.assert_sp_series_equal(result, exp) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
pandas.util.testing.assert_sp_series_equal
import numpy as np import pandas as pd import os import time import scipy.stats as stats from numpy.linalg import svd, lstsq from sklearn.decomposition import PCA from scipy.stats import linregress, f_oneway import itertools import sys from statsmodels.nonparametric.smoothers_lowess import lowess from tqdm import tqdm from sklearn.preprocessing import scale from sklearn.neighbors import NearestNeighbors import math import json from ctypes import c_int import pickle from multiprocess import Pool, current_process, Manager from functools import partial from sklearn import preprocessing class imputable: """Imputes missing data with K Nearest Neighbors based on user specified parameters. This class generates an object from raw data and allows for preprocessing, imputation and output of that data. Parameters ---------- filename : str This is the path to the file containing the raw data. missingness : float This is the maximum allowable percentage of missingness expressed as a decimal. For example a value of 0.25 would mean that all rows for which more than one in four values are missing will be rejected. Attributes ---------- data : dataframe This is where the raw data read from filename is stored. miss : float This is where the maximum allowable percentage of missingness expressed as a decimal is stored. pats : dict This is where the set of missingness patterns found in the dataset will be stored later, initialized here. """ def __init__(self, filename, missingness, neighbors=10): """ Constructor, takes input data and missingness threshold and initializes imputable object. This is the initialization function for imputation. It reads the input file of raw data and sets the user specified value for the missingness threshold and number of nearest neighbors. """ self.data = pd.read_csv(filename,sep='\t') self.miss = float(missingness) self.pats = {} self.notdone = True self.NN = neighbors def deduplicate(self): """ Removes duplicate peptides. Groups rows by peptide, if a peptide appears in more than one row it is removed. """ if (self.data[self.data.columns.values[1]][0][-2] == "T") & (self.data[self.data.columns.values[1]][0][-1].isdigit()): self.data[self.data.columns.values[1]] = self.data[self.data.columns.values[1]].apply(lambda x: x.split('T')[0]) self.data = self.data.groupby(['Peptide','Protein']).mean() todrop = [] for name, group in tqdm(self.data.groupby(level='Peptide')): if len(group) > 1: todrop.append(name) self.data = self.data.drop(todrop) def drop_missing(self): """Removes rows which are missing more data than the user specified missingness threshold.""" self.miss = np.rint(len(self.data.columns)*self.miss) self.data = self.data[self.data.isnull().sum(axis=1)<=self.miss] def impute(self,outname): """ Imputes missing data with KNN and outputs the results to the specified file. First all of the missingness patterns present in the dataset are identified. Then those patterns are iterated over and for each pattern, missing values are imputed. Finally the dataset is reformed with the imputed values and output. Parameters ---------- outname : str Path to output file. """ def match_pat(l,i): """ finds all missingness patterns present in the dataset For each row, if that row has a new missingness pattern, that pattern is added to the list, then whether the missingness pattern is new or not, the index of that row is assigned to the appropriate missingness pattern. Parameters ---------- l : list A row of data i : int the index of that row in the original dataset """ l = "".join(np.isnan(l).astype(int).astype(str)) if l not in self.pats.keys(): self.pats[l] = [i] else: self.pats[l].append(i) def get_patterns(arr): """Calls match_pat on all rows of data""" for ind, val in enumerate(arr): match_pat(val,ind) def sub_imputer(inds,pattern,origarr,comparr): """ single imputation process for a missingness pattern. Drops columns missing in a given missingness pattern. Then finds nearest neighbors. Iterates over rows matching missingness pattern, getting indexes of nearest neighbors, averaging nearest neighbrs and replacing missing values with corresponding averages. Parameters ---------- inds : list indexes of rows sharing the missingness pattern. pattern : str Binary representation of missingness pattern. origarr : arr original array of data with missing values comparr : arr Complete array of only rows with no missing values (complete cases). Returns ------- outa : arr Imputed array for missingness pattern. """ #drop missing columns given missingness pattern newarr = comparr[:,~np.array(list(pattern)).astype(bool)] #fit nearest neighbors nbrs = NearestNeighbors(n_neighbors=self.NN).fit(newarr) outa = [] #iterate over rows matching missingness pattern for rowind, row in enumerate(origarr[inds]): outl = [] #get indexes of given rows nearest neighbors indexes = nbrs.kneighbors([origarr[inds[rowind],~np.array(list(pattern)).astype(bool)]],return_distance=False) #get array of nearest neighbors means = np.mean(comparr[indexes[0][1:]], axis=0) #iterate over entries in each row for ind, v in enumerate(row): if not np.isnan(v): outl.append(v) else: outl.append(means[ind]) outa.append(outl) return outa def imputer(origarr, comparr): """ Calls sub_imputer on each missingness pattern and outputs the results to a dict. Parameters ---------- origarr : arr Original array with missing values. comparr : arr Complete array of only rows with no missing values (complete cases). Returns ------- outdict : dict Dict of imputed data with index in the original dataset as the key and imputed data as the value. """ outdict = {} for k in tqdm(self.pats.keys()): temparr = sub_imputer(self.pats[k],k, origarr,comparr) for ind, v in enumerate(temparr): outdict[self.pats[k][ind]] = v return outdict datavals = self.data.values #generate array of complete cases comparr = datavals[~np.isnan(datavals).any(axis=1)] #find missingness patterns get_patterns(datavals) #impute out = imputer(datavals, comparr) #reform dataframe with imputed values from outdict meld =
pd.DataFrame.from_dict(out,orient='index')
pandas.DataFrame.from_dict
import json import io import plotly.graph_objects as go from plotly.subplots import make_subplots import dash from dash import html from dash import dcc import dash_bootstrap_components as dbc import pandas as pd import numpy as np import plotly.express as px from dash.dependencies import Output, Input, State from datetime import datetime, timedelta from server import app import plotly.graph_objects as go import plotly.express as px from sqlalchemy import create_engine from flask import send_file import os from joblib import Parallel, delayed from dash.exceptions import PreventUpdate import time import re # ----------------------------------------------------------------------------------------------------- 一级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取抗菌药物-菌检出-药敏一级第一张图数据 def get_first_lev_first_fig_date(engine): res = pd.DataFrame(columns=['业务类型', 'num', 'month' ]) # 问题类别、问题数据量统计、全数据统计 bus_dic = { '生化': "select '生化' as 业务类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null group by substr(REQUESTTIME,1,7)", '检查': " select '检查' as 业务类型 , count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null group by substr(EXAM_DATE,1,7) ", '体温': " select '体温' as 业务类型 , count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where RECORDDATE is not null group by substr(RECORDDATE,1,7) ", } for bus in bus_dic: res = res.append(pd.read_sql(bus_dic[bus],con=engine)) return res # 更新抗菌药物-菌检出-药敏一级图一 @app.callback( Output('rout_exam_temp_first_level_first_fig','figure'), Output('rout_exam_temp_first_level_first_fig_data','data'), Input('rout_exam_temp_first_level_first_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_first_fig(rout_exam_temp_first_level_first_fig_data,db_con_url,count_time): if db_con_url is None : return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] engine = create_engine(db_con_url['db']) if rout_exam_temp_first_level_first_fig_data is None: rout_exam_temp_first_level_first_fig_data = {} rout_exam_temp_first_level_first_fig = get_first_lev_first_fig_date(engine) rout_exam_temp_first_level_first_fig_data['rout_exam_temp_first_level_first_fig'] = rout_exam_temp_first_level_first_fig.to_json(orient='split', date_format='iso') rout_exam_temp_first_level_first_fig_data['hosname'] = db_con_url['hosname'] rout_exam_temp_first_level_first_fig_data['btime'] = btime rout_exam_temp_first_level_first_fig_data['etime'] = etime rout_exam_temp_first_level_first_fig_data = json.dumps(rout_exam_temp_first_level_first_fig_data) else: rout_exam_temp_first_level_first_fig_data = json.loads(rout_exam_temp_first_level_first_fig_data) if db_con_url['hosname'] != rout_exam_temp_first_level_first_fig_data['hosname']: rout_exam_temp_first_level_first_fig = get_first_lev_first_fig_date(engine) rout_exam_temp_first_level_first_fig_data['rout_exam_temp_first_level_first_fig'] = rout_exam_temp_first_level_first_fig.to_json(orient='split',date_format='iso') rout_exam_temp_first_level_first_fig_data['hosname'] = db_con_url['hosname'] rout_exam_temp_first_level_first_fig_data = json.dumps(rout_exam_temp_first_level_first_fig_data) else: rout_exam_temp_first_level_first_fig = pd.read_json(rout_exam_temp_first_level_first_fig_data['rout_exam_temp_first_level_first_fig'], orient='split') rout_exam_temp_first_level_first_fig_data = dash.no_update # rout_exam_temp_first_level_first_fig = rout_exam_temp_first_level_first_fig[(rout_exam_temp_first_level_first_fig['month']>=btime) & (rout_exam_temp_first_level_first_fig['month']<=etime)] rout_exam_temp_first_level_first_fig = rout_exam_temp_first_level_first_fig.sort_values(['month','业务类型']) fig1 = px.line(rout_exam_temp_first_level_first_fig, x='month', y='num', color='业务类型', color_discrete_sequence=px.colors.qualitative.Dark24) # 设置水平图例及位置 fig1.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) fig1.update_yaxes(title_text="业务数据量") fig1.update_xaxes(title_text="时间") return fig1,rout_exam_temp_first_level_first_fig_data # ----------------------------------------------------------------------------------------------------- 一级图二 ---------------------------------------------------------------------------------------------------------------------- # 获取一级第二张图片数据 def get_first_lev_second_fig_date(engine): res = pd.DataFrame(columns=['问题类型', 'num' ]) # 问题类别、问题数据量统计、全数据统计 bus_dic = { '体温测量时间缺失': f"select '体温测量时间缺失' as 问题类型 ,count(1) as num from TEMPERATURE where RECORDDATE is null ", '生化检验申请时间缺失': f"select '生化检验申请时间缺失' as 问题类型 ,count(1) as num from ROUTINE2 where REQUESTTIME is null ", '生化检验报告时间缺失': f"select '生化检验报告时间缺失' as 问题类型 ,count(1) as num from ROUTINE2 where REPORTTIME is null", '检查时间为空': f"select '检查时间为空' as 问题类型 ,count(1) as num from exam where EXAM_DATE is null ", } for bus in bus_dic: res = res.append(pd.read_sql(bus_dic[bus],con=engine)) return res # 更新一级图二 @app.callback( Output('rout_exam_temp_first_level_second_fig','figure'), Output('rout_exam_temp_first_level_second_fig_data','data'), Input('rout_exam_temp_first_level_second_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_first_fig(rout_exam_temp_first_level_second_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if rout_exam_temp_first_level_second_fig_data is None: rout_exam_temp_first_level_second_fig = get_first_lev_second_fig_date(engine) rout_exam_temp_first_level_second_fig_data = {} rout_exam_temp_first_level_second_fig_data['rout_exam_temp_first_level_second_fig'] = rout_exam_temp_first_level_second_fig.to_json( orient='split', date_format='iso') rout_exam_temp_first_level_second_fig_data['hosname'] = db_con_url['hosname'] rout_exam_temp_first_level_second_fig_data = json.dumps(rout_exam_temp_first_level_second_fig_data) else: rout_exam_temp_first_level_second_fig_data = json.loads(rout_exam_temp_first_level_second_fig_data) if db_con_url['hosname'] != rout_exam_temp_first_level_second_fig_data['hosname']: rout_exam_temp_first_level_second_fig = get_first_lev_second_fig_date(engine) rout_exam_temp_first_level_second_fig_data = {} rout_exam_temp_first_level_second_fig_data[ 'rout_exam_temp_first_level_second_fig'] = rout_exam_temp_first_level_second_fig.to_json( orient='split', date_format='iso') rout_exam_temp_first_level_second_fig_data['hosname'] = db_con_url['hosname'] rout_exam_temp_first_level_second_fig_data = json.dumps(rout_exam_temp_first_level_second_fig_data) else: rout_exam_temp_first_level_second_fig = pd.read_json( rout_exam_temp_first_level_second_fig_data['rout_exam_temp_first_level_second_fig'], orient='split') rout_exam_temp_first_level_second_fig_data = dash.no_update fig = go.Figure() # fig = px.bar(rout_exam_temp_first_level_second_fig,x='问题类型',y='num',color_discrete_sequence=px.colors.qualitative.Dark24 ) fig.add_trace( go.Bar(x=rout_exam_temp_first_level_second_fig['问题类型'], y=rout_exam_temp_first_level_second_fig['num'], name="问题类型", marker_color=px.colors.qualitative.Dark24, ) ) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ) ) fig.update_yaxes(title_text="问题数量") fig.update_xaxes(title_text="月份") return fig, rout_exam_temp_first_level_second_fig_data # 下载一级图二明细 @app.callback( Output('rout_exam_temp_first_level_second_fig_detail', 'data'), Input('rout_exam_temp_first_level_second_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) bus_dic = { '体温测量时间缺失': f"select * from TEMPERATURE where RECORDDATE is null ", '生化检验申请时间缺失': f"select * from ROUTINE2 where REQUESTTIME is null ", '生化检验报告时间缺失': f"select * from ROUTINE2 where REPORTTIME is null", '检查时间为空': f"select * from exam where EXAM_DATE is null ", } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}时间缺失数据明细.xlsx') else: return dash.no_update # # ----------------------------------------------------------------------------------------------------- 二级图一 ---------------------------------------------------------------------------------------------------------------------- # # 获取体温二级第一张图数据 def get_second_lev_first_fig_date(engine,btime,etime): res = pd.DataFrame(columns=['问题类型','num','momth']) bus_dic = { '体温测量值异常': f"select '体温测量值异常' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where (VALUE >46 or VALUE<34) and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '体温测量值缺失': f"select '体温测量值缺失' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where VALUE is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '科室缺失': f"select '科室缺失' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where DEPT is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '体温测量时机缺失': f"select '体温测量时机缺失' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where OUTSIDE is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '体温测量时间无时间点': f"select '检验测量时间无时间点' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where length(RECORDDATE)<19 and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '体温测量时间在出入院时间之外': f""" select '体温测量时间在出入院时间之外' as 问题类型,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE t1,overall t2 where ( t1.RECORDDATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.RECORDDATE<t2.IN_TIME or t1.RECORDDATE > t2.OUT_TIME ) and (substr(t1.RECORDDATE,1,7)>='{btime}' and substr(t1.RECORDDATE,1,7)<='{etime}') group by substr(RECORDDATE,1,7) """, } for bus in bus_dic: res = res.append(pd.read_sql(bus_dic[bus],con=engine)) return res # 更新二级图一 @app.callback( Output('temp_second_level_first_fig','figure'), Output('temp_second_level_first_fig_data','data'), Input('temp_second_level_first_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), ) def update_first_level_second_fig(temp_second_level_first_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if temp_second_level_first_fig_data is None: temp_second_level_first_fig_data = {} temp_second_level_first_fig = get_second_lev_first_fig_date(engine, btime, etime) temp_second_level_first_fig_data['temp_second_level_first_fig'] = temp_second_level_first_fig.to_json( orient='split', date_format='iso') temp_second_level_first_fig_data['hosname'] = db_con_url['hosname'] temp_second_level_first_fig_data['btime'] = btime temp_second_level_first_fig_data['etime'] = etime temp_second_level_first_fig_data = json.dumps(temp_second_level_first_fig_data) else: temp_second_level_first_fig_data = json.loads(temp_second_level_first_fig_data) if db_con_url['hosname'] != temp_second_level_first_fig_data['hosname']: temp_second_level_first_fig = get_second_lev_first_fig_date(engine, btime, etime) temp_second_level_first_fig_data['temp_second_level_first_fig'] = temp_second_level_first_fig.to_json( orient='split', date_format='iso') temp_second_level_first_fig_data['hosname'] = db_con_url['hosname'] temp_second_level_first_fig_data['btime'] = btime temp_second_level_first_fig_data['etime'] = etime temp_second_level_first_fig_data = json.dumps(temp_second_level_first_fig_data) else: if temp_second_level_first_fig_data['btime'] != btime or temp_second_level_first_fig_data[ 'etime'] != etime: temp_second_level_first_fig = get_second_lev_first_fig_date(engine, btime, etime) temp_second_level_first_fig_data[ 'temp_second_level_first_fig'] = temp_second_level_first_fig.to_json( orient='split', date_format='iso') temp_second_level_first_fig_data['btime'] = btime temp_second_level_first_fig_data['etime'] = etime temp_second_level_first_fig_data = json.dumps(temp_second_level_first_fig_data) else: temp_second_level_first_fig = pd.read_json( temp_second_level_first_fig_data['temp_second_level_first_fig'], orient='split') temp_second_level_first_fig_data = dash.no_update temp_second_level_first_fig = temp_second_level_first_fig.sort_values(['month']) fig = px.line(temp_second_level_first_fig, x="month", y="num", color='问题类型', color_discrete_sequence=px.colors.qualitative.Dark24) fig.update_layout( margin=dict(l=30, r=30, t=30, b=30), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), ) fig.update_yaxes(title_text="体温测量数量", ) fig.update_xaxes(title_text="月份", ) return fig, temp_second_level_first_fig_data # 下载二级图一明细 @app.callback( Output('temp_second_level_first_fig_detail', 'data'), Input('temp_second_level_first_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] engine = create_engine(db_con_url['db']) bus_dic = { '体温测量值异常': f"select * from TEMPERATURE where (VALUE >46 or VALUE<34) and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '体温测量值缺失': f"select * from TEMPERATURE where VALUE is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '科室缺失': f"select * from TEMPERATURE where DEPT is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '体温测量时机缺失': f"select * from TEMPERATURE where OUTSIDE is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '体温测量时间无时间点': f"select * from TEMPERATURE where length(RECORDDATE)<19 and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '体温测量时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from TEMPERATURE t1,overall t2 where ( t1.RECORDDATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.RECORDDATE<t2.IN_TIME or t1.RECORDDATE > t2.OUT_TIME ) and (substr(t1.RECORDDATE,1,7)>='{btime}' and substr(t1.RECORDDATE,1,7)<='{etime}') """, } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}体温问题数据明细.xlsx') else: return dash.no_update # # # # ----------------------------------------------------------------------------------------------------- 三级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取生化检验三级第一张图数据 def get_third_lev_first_fig_date(engine,btime,etime): res_数据时间缺失及汇总 = pd.DataFrame(columns=['问题类型', 'num', 'month' ]) # 问题类别、问题数据量统计、全数据统计 bus_dic = { '标本缺失': f"select '标本缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and SPECIMEN is null group by substr(REQUESTTIME,1,7)", '检验项目缺失': f"select '检验项目缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RTYPE is null group by substr(REQUESTTIME,1,7)", '检验结果缺失': f"select '检验结果缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RVALUE is null group by substr(REQUESTTIME,1,7)", '院内外标识缺失': f"select '院内外标识缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and OUTSIDE is null group by substr(REQUESTTIME,1,7)", '检验子项缺失': f"select '检验子项缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RITEM is null group by substr(REQUESTTIME,1,7)", '定性结果缺失': f"select '定性结果缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and ABNORMAL is null group by substr(REQUESTTIME,1,7)", '申请时间大于等于报告时间': f"select '申请时间大于等于报告时间' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME >= REPORTTIME and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' group by substr(REQUESTTIME,1,7)", '申请时间在出入院时间之外': f""" select '申请时间在出入院时间之外' as 问题类型,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 t1,overall t2 where ( t1.REQUESTTIME is not null and t1.REPORTTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') group by substr(REQUESTTIME,1,7) """, } for bus in bus_dic: res_数据时间缺失及汇总 = res_数据时间缺失及汇总.append(pd.read_sql(bus_dic[bus],con=engine)) return res_数据时间缺失及汇总 # 更新抗菌药物-菌检出-药敏一级图一 @app.callback( Output('rout_third_level_first_fig','figure'), Output('rout_third_level_first_fig_data','data'), Input('rout_third_level_first_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_first_fig(rout_third_level_first_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if rout_third_level_first_fig_data is None: rout_third_level_first_fig_data = {} rout_third_level_first_fig = get_third_lev_first_fig_date(engine, btime, etime) rout_third_level_first_fig_data['rout_third_level_first_fig'] = rout_third_level_first_fig.to_json( orient='split', date_format='iso') rout_third_level_first_fig_data['hosname'] = db_con_url['hosname'] rout_third_level_first_fig_data['btime'] = btime rout_third_level_first_fig_data['etime'] = etime rout_third_level_first_fig_data = json.dumps(rout_third_level_first_fig_data) else: rout_third_level_first_fig_data = json.loads(rout_third_level_first_fig_data) if db_con_url['hosname'] != rout_third_level_first_fig_data['hosname']: rout_third_level_first_fig = get_third_lev_first_fig_date(engine, btime, etime) rout_third_level_first_fig_data['rout_third_level_first_fig'] = rout_third_level_first_fig.to_json( orient='split', date_format='iso') rout_third_level_first_fig_data['hosname'] = db_con_url['hosname'] rout_third_level_first_fig_data['btime'] = btime rout_third_level_first_fig_data['etime'] = etime rout_third_level_first_fig_data = json.dumps(rout_third_level_first_fig_data) else: if rout_third_level_first_fig_data['btime'] != btime or rout_third_level_first_fig_data[ 'etime'] != etime: rout_third_level_first_fig = get_third_lev_first_fig_date(engine, btime, etime) rout_third_level_first_fig_data[ 'rout_third_level_first_fig'] = rout_third_level_first_fig.to_json(orient='split', date_format='iso') rout_third_level_first_fig_data['btime'] = btime rout_third_level_first_fig_data['etime'] = etime rout_third_level_first_fig_data = json.dumps(rout_third_level_first_fig_data) else: rout_third_level_first_fig = pd.read_json( rout_third_level_first_fig_data['rout_third_level_first_fig'], orient='split') rout_third_level_first_fig_data = dash.no_update rout_third_level_first_fig = rout_third_level_first_fig.sort_values(['month']) fig = px.line(rout_third_level_first_fig,x='month',y='num',color='问题类型',color_discrete_sequence=px.colors.qualitative.Dark24 ) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ) ) fig.update_yaxes(title_text="问题数量") fig.update_xaxes(title_text="月份") return fig, rout_third_level_first_fig_data # 下载三级图一明细 @app.callback( Output('rout_third_level_first_fig_detail', 'data'), Input('rout_third_level_first_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] bus_dic = { '标本缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and SPECIMEN is null ", '检验项目缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RTYPE is null ", '检验结果缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RVALUE is null ", '院内外标识缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and OUTSIDE is null ", '检验子项缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RITEM is null ", '定性结果缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and ABNORMAL is null ", '申请时间大于等于报告时间': f"select * from ROUTINE2 where REQUESTTIME >= REPORTTIME and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' ", '申请时间在出入院时间之外': f""" select t1.* ,t2.in_time as 入院时间,t2.out_time as 出院时间 from ROUTINE2 t1,overall t2 where ( t1.REQUESTTIME is not null and t1.REPORTTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') """, } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}生化检验问题数据明细.xlsx') else: return dash.no_update # # # ----------------------------------------------------------------------------------------------------- 三级图二 ---------------------------------------------------------------------------------------------------------------------- # 获取生化三级第二张图数据 def get_third_level_second_fig_date(engine,btime,etime): res = pd.read_sql(f"select RTYPE as 生化检验类型,count(distinct CASEID||TESTNO||RTYPE) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where RTYPE is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' group by RTYPE,substr(REQUESTTIME,1,7)",con=engine) return res # 更新生化三级第二张图 @app.callback( Output('rout_third_level_second_fig','figure'), Output('rout_third_level_second_fig_data','data'), Input('rout_third_level_second_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_second_level_fig(rout_third_level_second_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if rout_third_level_second_fig_data is None: rout_third_level_second_fig_data = {} rout_third_level_second_fig = get_third_level_second_fig_date(engine, btime, etime) rout_third_level_second_fig_data['rout_third_level_second_fig'] = rout_third_level_second_fig.to_json(orient='split', date_format='iso') rout_third_level_second_fig_data['hosname'] = db_con_url['hosname'] rout_third_level_second_fig_data['btime'] = btime rout_third_level_second_fig_data['etime'] = etime rout_third_level_second_fig_data = json.dumps(rout_third_level_second_fig_data) else: rout_third_level_second_fig_data = json.loads(rout_third_level_second_fig_data) if db_con_url['hosname'] != rout_third_level_second_fig_data['hosname']: rout_third_level_second_fig = get_third_level_second_fig_date(engine, btime, etime) rout_third_level_second_fig_data['rout_third_level_second_fig'] = rout_third_level_second_fig.to_json(orient='split',date_format='iso') rout_third_level_second_fig_data['hosname'] = db_con_url['hosname'] rout_third_level_second_fig_data['btime'] = btime rout_third_level_second_fig_data['etime'] = etime rout_third_level_second_fig_data = json.dumps(rout_third_level_second_fig_data) else: if rout_third_level_second_fig_data['btime'] != btime or rout_third_level_second_fig_data['etime'] != etime: rout_third_level_second_fig = get_third_level_second_fig_date(engine, btime, etime) rout_third_level_second_fig_data['rout_third_level_second_fig'] = rout_third_level_second_fig.to_json(orient='split',date_format='iso') rout_third_level_second_fig_data['btime'] = btime rout_third_level_second_fig_data['etime'] = etime rout_third_level_second_fig_data = json.dumps(rout_third_level_second_fig_data) else: rout_third_level_second_fig = pd.read_json(rout_third_level_second_fig_data['rout_third_level_second_fig'], orient='split') rout_third_level_second_fig_data = dash.no_update rout_third_level_second_fig = rout_third_level_second_fig.sort_values(['month']) # fig = px.line(rout_third_level_second_fig,x='month',y='num',color='生化检验类型',color_discrete_sequence=px.colors.qualitative.Dark24) fig = px.bar(rout_third_level_second_fig,x='month',y='num',color='生化检验类型',color_discrete_sequence=px.colors.qualitative.Dark24) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ) ) fig.update_yaxes(title_text="生化检验数量", ) fig.update_xaxes(title_text="月份", ) return fig,rout_third_level_second_fig_data # # # ----------------------------------------------------------------------------------------------------- 四级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取检查四级第一张图数据 def get_fourth_level_first_fig_date(engine,btime,etime): res = pd.DataFrame(columns=['问题类型', 'num', 'month']) # 问题类别、问题数据量统计、全数据统计 bus_dic = { '检查类别缺失': f"select '检查类别缺失' as 问题类型 ,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and EXAM_CLASS is null group by substr(EXAM_DATE,1,7)", '检查部位缺失': f"select '检验部位缺失' as 问题类型 ,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and EXAM_PARA is null group by substr(EXAM_DATE,1,7)", '检查所见缺失': f"select '检查所见缺失' as 问题类型 ,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and DESCRIPTION is null group by substr(EXAM_DATE,1,7)", '检查印象缺失': f"select '检查印象缺失' as 问题类型 ,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and IMPRESSION is null group by substr(EXAM_DATE,1,7)", '检查时间在出入院时间之外': f""" select '检查时间在出入院时间之外' as 问题类型,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM t1,overall t2 where ( t1.EXAM_DATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.EXAM_DATE<t2.IN_TIME or t1.EXAM_DATE > t2.OUT_TIME ) and (substr(t1.EXAM_DATE,1,7)>='{btime}' and substr(t1.EXAM_DATE,1,7)<='{etime}') group by substr(EXAM_DATE,1,7) """, } for bus in bus_dic: res = res.append(pd.read_sql(bus_dic[bus], con=engine)) return res # 四级第一张图更新 @app.callback( Output('exam_fourth_level_first_fig','figure'), Output('exam_fourth_level_first_fig_data', 'data'), Input('exam_fourth_level_first_fig_data', 'data'), Input("db_con_url", "data"), Input("count_time", "data"), ) def update_third_level_first_fig(exam_fourth_level_first_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if exam_fourth_level_first_fig_data is None: exam_fourth_level_first_fig_data = {} exam_fourth_level_first_fig = get_fourth_level_first_fig_date(engine, btime, etime) exam_fourth_level_first_fig_data['exam_fourth_level_first_fig'] = exam_fourth_level_first_fig.to_json( orient='split', date_format='iso') exam_fourth_level_first_fig_data['hosname'] = db_con_url['hosname'] exam_fourth_level_first_fig_data['btime'] = btime exam_fourth_level_first_fig_data['etime'] = etime exam_fourth_level_first_fig_data = json.dumps(exam_fourth_level_first_fig_data) else: exam_fourth_level_first_fig_data = json.loads(exam_fourth_level_first_fig_data) if db_con_url['hosname'] != exam_fourth_level_first_fig_data['hosname']: exam_fourth_level_first_fig = get_fourth_level_first_fig_date(engine, btime, etime) exam_fourth_level_first_fig_data['exam_fourth_level_first_fig'] = exam_fourth_level_first_fig.to_json(orient='split', date_format='iso') exam_fourth_level_first_fig_data['hosname'] = db_con_url['hosname'] exam_fourth_level_first_fig_data['btime'] = btime exam_fourth_level_first_fig_data['etime'] = etime exam_fourth_level_first_fig_data = json.dumps(exam_fourth_level_first_fig_data) else: if exam_fourth_level_first_fig_data['btime'] != btime or exam_fourth_level_first_fig_data['etime'] != etime: exam_fourth_level_first_fig = get_fourth_level_first_fig_date(engine, btime, etime) exam_fourth_level_first_fig_data['exam_fourth_level_first_fig'] = exam_fourth_level_first_fig.to_json(orient='split', date_format='iso') exam_fourth_level_first_fig_data['btime'] = btime exam_fourth_level_first_fig_data['etime'] = etime exam_fourth_level_first_fig_data = json.dumps(exam_fourth_level_first_fig_data) else: exam_fourth_level_first_fig = pd.read_json( exam_fourth_level_first_fig_data['exam_fourth_level_first_fig'], orient='split') exam_fourth_level_first_fig_data = dash.no_update exam_fourth_level_first_fig = exam_fourth_level_first_fig.sort_values(['month']) fig = px.line(exam_fourth_level_first_fig, x="month", y="num", color='问题类型', color_discrete_sequence=px.colors.qualitative.Dark24) fig.update_layout( margin=dict(l=30, r=30, t=30, b=30), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), ) fig.update_yaxes(title_text="问题数量", ) fig.update_xaxes(title_text="月份", ) return fig,exam_fourth_level_first_fig_data # 下载四级图一明细 @app.callback( Output('exam_fourth_level_first_fig_detail', 'data'), Input('exam_fourth_level_first_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] bus_dic = { '检查类别缺失': f"select * from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and EXAM_CLASS is null ", '检查部位缺失': f"select * from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and EXAM_PARA is null ", '检查所见缺失': f"select * from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and DESCRIPTION is null ", '检查印象缺失': f"select * from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and IMPRESSION is null ", '检查时间在出入院时间之外': f""" select t1.* ,t2.in_time as 入院时间,t2.out_time as 出院时间 from EXAM t1,overall t2 where ( t1.EXAM_DATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.EXAM_DATE<t2.IN_TIME or t1.EXAM_DATE > t2.OUT_TIME ) and (substr(t1.EXAM_DATE,1,7)>='{btime}' and substr(t1.EXAM_DATE,1,7)<='{etime}') """, } output = io.BytesIO() writer =
pd.ExcelWriter(output, engine='xlsxwriter')
pandas.ExcelWriter
#!/usr/bin/env python3 """Post-process """ # ======================================================================== # # Imports # # ======================================================================== import os import argparse import numpy as np import yt import glob import pandas as pd import time from datetime import timedelta # ======================================================================== # # Function definitions # # ======================================================================== def parse_ic(fname): """ Parse the file written by PeleC to understand the initial condition Returns a dictionary for easy acces """ # Read into dataframe df = pd.read_csv(fname) df.rename(columns=lambda x: x.strip(), inplace=True) # convert to dictionary for easier access return df.to_dict("records")[0] # ======================================================================== def parse_output(fname): walltime = 0 steps = 0 cfl = 0 dt = 0 with open(fname, "r") as f: for line in f: if "Running " in line: cfl = float(line.split()[6]) dt = float(line.split()[-1]) elif "STEP =" in line: steps = max(steps, int(line.split()[2])) elif "Run time w/o init =" in line: walltime = float(line.split()[-1]) return walltime, steps, cfl, dt # ======================================================================== # # Main # # ======================================================================== if __name__ == "__main__": # Timer start = time.time() # Parse arguments parser = argparse.ArgumentParser(description="A simple post-processing tool") args = parser.parse_args() # Setup casedir = os.path.abspath("cases") fdirs = sorted( [ os.path.join(casedir, f) for f in os.listdir(casedir) if os.path.isdir(os.path.join(casedir, f)) ] ) oname = "out" # Get the data lst = [] for k, fdir in enumerate(fdirs): # Initial conditions ics = parse_ic(os.path.join(fdir, "ic.txt")) # Get walltime, number of steps, cfl walltime, steps, cfl, dt = parse_output(os.path.join(fdir, oname)) # Get plt directories pltdirs = sorted(glob.glob(os.path.join(fdir, "plt*"))) # Initial condition ds = yt.load(pltdirs[0]) max_level = ds.index.max_level ref = int(np.product(ds.ref_factors[0:max_level])) low = ds.domain_left_edge L = (ds.domain_right_edge - ds.domain_left_edge).d N = ds.domain_dimensions * ref cube = ds.covering_grid( max_level, left_edge=low, dims=N, fields=["x", "density", "velocity_x"] ) u_0 = cube["x_velocity"].d # Exact solution at initial xmt = cube["x"].d - ics["v0"] * ds.current_time.d ymt = cube["y"].d - ics["v0"] * ds.current_time.d zmt = cube["z"].d - ics["v0"] * ds.current_time.d u_e0 = ics["v0"] + ics["v0"] * np.sin(ics["omega_x"] * xmt / ics["L"]) * np.cos( ics["omega_y"] * ymt / ics["L"] ) * np.cos(ics["omega_z"] * zmt / ics["L"]) # Final time ds = yt.load(pltdirs[-1]) max_level = ds.index.max_level ref = int(np.product(ds.ref_factors[0:max_level])) low = ds.domain_left_edge L = (ds.domain_right_edge - ds.domain_left_edge).d N = ds.domain_dimensions * ref dx = ds.index.get_smallest_dx().d cube = ds.covering_grid( max_level, left_edge=low, dims=N, fields=["x", "y", "z", "density", "velocity_x"], ) u_f = cube["x_velocity"].d # Exact solution at final time xmt = cube["x"].d - ics["v0"] * ds.current_time.d ymt = cube["y"].d - ics["v0"] * ds.current_time.d zmt = cube["z"].d - ics["v0"] * ds.current_time.d u_ef = ics["v0"] + ics["v0"] * np.sin(ics["omega_x"] * xmt / ics["L"]) * np.cos( ics["omega_y"] * ymt / ics["L"] ) * np.cos(ics["omega_z"] * zmt / ics["L"]) # Calculate the L2 error norm e0 = np.sqrt(np.mean((u_0 - u_e0) ** 2)) ef = np.sqrt(np.mean((u_f - u_ef) ** 2)) lst.append( { "N": N[0], "L20": e0, "L2": ef, "walltime": walltime, "steps": steps, "dx": dx, "dt": dt, "cfl": cfl, } ) # Concatenate all errors df =
pd.DataFrame(lst)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from itertools import islice import os import pysam import gzip import pdb import time import argparse import warnings import sys from tqdm.auto import tqdm def genotype_finder(path_vcf, path_lookup_table,max_var,output_path,vcf_geno): #looking for genotypes from vcf file def genotypeOfHaplotypes(genotype_info): # set 22 for nonphased genotypes if not ("|" in genotype_info): return "22" genotype_info_Split = genotype_info.split("|") genotype_hap1 = 0 if genotype_info_Split[0] == "0" else 1 genotype_hap2 = 0 if genotype_info_Split[1] == "0" else 1 return (str(genotype_hap1) + str(genotype_hap2)) def sample_column_map(path, start_col=9, line_key="#CHR"): stream_in = gzip.open(path, "r") out_map = {} for line in stream_in: if isinstance(line, bytes) and not isinstance(line, str): line = line.decode() if line_key in line: line = line.rstrip().split("\t") for i in range(start_col,len(line)): out_map[line[i]] = i break stream_in.close() return(out_map) vcf_map = sample_column_map(os.path.expanduser(vcf_path)) tabix_vcf = pysam.Tabixfile(os.path.expanduser(vcf_path),"r") for var_count in range(1,max_var+1): lookup_table= pd.read_table(path_lookup_table+'haplotype_logExpression_var_'+str(var_count)+'_sort.txt', sep=" ") lookup_table = lookup_table.reset_index(drop= True) prediction_matrix_haplotype1= pd.DataFrame(); prediction_matrix_haplotype2= pd.DataFrame(); hap1_individual_genotype_lst = []; hap2_individual_genotype_lst = []; temp = pd.DataFrame(); individual_starting_column = 9 pred_index =1 ; individuals = vcf_map.keys() individuals_lst = list(vcf_map.keys()) genotype_info_hap1 = dict.fromkeys(np.arange(len(lookup_table))) genotype_info_hap2 = dict.fromkeys(np.arange(len(lookup_table))) count = 0 for index, row in tqdm(lookup_table.iterrows(),total=lookup_table.shape[0],position=0, leave=True, desc=" "+str(var_count)+"-eQTL genes"): # tqdm.write(str(var_count)+"-eQTL genes", end = "\r") columns = pd.Series(); columns = columns.append(pd.Series({'gene_id':row['gene_id']})) if ('chrX' in row['variant_id_1']):# chrX won't be found in vcf file for chrx_count in range(1,var_count+1): var= 'variant_id_' + str(chrx_count) columns = columns.append(pd.Series({var:row[var]})) temp = columns.to_frame().T; prediction_matrix_haplotype1= prediction_matrix_haplotype1.append(temp,ignore_index=True); prediction_matrix_haplotype2= prediction_matrix_haplotype2.append(temp,ignore_index=True); genotype_info_hap1[index] = ['2' for i in range(len(individuals_lst))] genotype_info_hap2[index] = ['2' for i in range(len(individuals_lst))] continue; hap1_individual_genotype_lst.clear(); hap2_individual_genotype_lst.clear(); count = count + 1 # print (count, end='\r') for i in range(1,var_count+1): var= 'variant_id_' + str(i) columns = columns.append(pd.Series({var:row[var]})) temp = columns.to_frame().T; var_split = row[var].split('_') # reading vcf file records = tabix_vcf.fetch(var_split[0],int(var_split[1])-1,int(var_split[1])) snp_found = 0 for record in records: cols = record.rstrip().split("\t") if cols[2] == row[var]: gt_index = cols[8].split(":").index(vcf_geno) snp_found = 1 break if (snp_found==0): # chrX won't be found gt_index = 1000 print("WARNING: eSNP %s not found in VCF"%(row[var])) hap_ind = 0; for ind in individuals: if (gt_index ==1000): genotype_both = './.' else: sample_col = cols[vcf_map[ind]] genotype_both = sample_col.split(":")[gt_index] genotype_both_haps= genotypeOfHaplotypes(genotype_both); if (i>1): hap1_individual_genotype_lst.insert(hap_ind, hap1_individual_genotype_lst[hap_ind]+str(genotype_both_haps[0]) + ", "); del hap1_individual_genotype_lst[hap_ind + 1]; hap2_individual_genotype_lst.insert(hap_ind, hap2_individual_genotype_lst[hap_ind]+str(genotype_both_haps[1]) + ", "); del hap2_individual_genotype_lst[hap_ind + 1]; else: hap1_individual_genotype_lst.insert(hap_ind, str(genotype_both_haps[0]) + ", "); hap2_individual_genotype_lst.insert(hap_ind, str(genotype_both_haps[1]) + ", "); hap_ind = hap_ind+1; prediction_matrix_haplotype1= prediction_matrix_haplotype1.append(temp,ignore_index=True); prediction_matrix_haplotype2= prediction_matrix_haplotype2.append(temp,ignore_index=True); #Create genotype array to be inserted for each gene clean_genotype_lst1 = [genotype[:-2] for genotype in hap1_individual_genotype_lst] clean_genotype_lst2 = [genotype[:-2] for genotype in hap2_individual_genotype_lst] #Do the insertion one gene at a time genotype_info_hap1[index] = clean_genotype_lst1 genotype_info_hap2[index] = clean_genotype_lst2 output_genotype_hap1 = pd.concat([prediction_matrix_haplotype1, pd.DataFrame.from_dict(genotype_info_hap1, columns=individuals, orient='index')],axis = 1, sort = False); output_genotype_hap2 = pd.concat([prediction_matrix_haplotype2, pd.DataFrame.from_dict(genotype_info_hap2, columns=individuals, orient='index')],axis = 1, sort = False); output_genotype_hap1.to_csv(os.path.expanduser(output_path+'/genotype_hap1_var_count_'+str(var_count)+".csv")); output_genotype_hap2.to_csv(os.path.expanduser(output_path+'/genotype_hap2_var_count_'+str(var_count)+".csv")); def expr_pred(lookup_Table_path, max_var, path_genotype, output_path): # predicting ASE and total expression def Allelic_imbalance_predicted(hap1_count,hap2_count): return hap1_count - hap2_count; def ASE_predicted_value(hap1_count,hap2_count): h1 = 2**hap1_count htotal = 2**hap1_count + 2**hap2_count p = h1 / htotal h1_percent = round(p,2) h2_percent = round(1 - h1_percent,2) s = str(h1_percent)+"|"+str(h2_percent) return s def total_predicted_value(hap1_count,hap2_count): hap1_count = 2**hap1_count; hap2_count = 2**hap2_count; return np.log2(hap1_count + hap2_count); for var_count in range(1,max_var+1): lookup_Table = pd.read_table(lookup_Table_path+"haplotype_logExpression_var_"+str(var_count)+".txt", sep=" "); lookup_Table.columns = lookup_Table.columns.str.replace(',','').str.replace(" ", ""); genotype_haplotype1=pd.read_csv(path_genotype+"/genotype_hap1_var_count_"+str(var_count)+".csv") genotype_haplotype2= pd.read_csv(path_genotype+"/genotype_hap2_var_count_"+str(var_count)+".csv") start_index_individuals = var_count + 2; individuals = genotype_haplotype1.columns.tolist()[start_index_individuals :] # make empty dict total_exp_output = dict.fromkeys(np.arange(len(genotype_haplotype1))) ASE_exp_output = dict.fromkeys(np.arange(len(genotype_haplotype1))) # make gene_ids seperately genes = pd.DataFrame(np.arange(len(genotype_haplotype1))) count = 0 total_count_lst = []; ASE_count_lst = []; for index, row in tqdm(genotype_haplotype1.iterrows(),total=genotype_haplotype1.shape[0],position=0, leave=True, desc=" "+str(var_count)+"-eQTL genes"): total_count_lst.clear(); ASE_count_lst.clear(); count = count +1 # if ('chrX' in row['variant_id_1']): # continue; # print (var_count, " ", count, end='\r') placeholder = list(np.where(lookup_Table['gene_id'] == row['gene_id']))[0] + 1; # index starts from 1 in lookup table lookup_Table_index = placeholder [0]; genes.at[index,'gene_id'] = row['gene_id'] ind_index = 0 for ind in individuals: if (not '2' in str(row[ind]) and not '2' in str(genotype_haplotype2.loc[index,ind])): x1 = str(genotype_haplotype1.loc[index,ind]).replace(",","").replace(" ", "") x2 = str(genotype_haplotype2.loc[index,ind]).replace(",","").replace(" ", "") if (var_count == 1): x1 = x1.split('.')[0] x2 = x2.split('.')[0] # read predicted value from lookup table total_prediction = total_predicted_value(lookup_Table.loc[lookup_Table_index,x1],lookup_Table.loc[lookup_Table_index,x2]) total_count_lst.insert(ind_index,round(total_prediction,4)) ASE_prediction = ASE_predicted_value(lookup_Table.loc[lookup_Table_index,x1],lookup_Table.loc[lookup_Table_index,x2]) ASE_count_lst.insert(ind_index,ASE_prediction) else: total_count_lst.insert(ind_index,np.nan) ASE_count_lst.insert(ind_index,np.nan) ind_index = ind_index + 1 total_count_lst1 = [expr for expr in total_count_lst] ASE_count_lst1 = [expr for expr in ASE_count_lst] total_exp_output[index] = total_count_lst1 ASE_exp_output[index] = ASE_count_lst1 # make different dicts for different number of eQTLs globals()['total_exp_output_df_%s'%var_count] = pd.concat([genes,
pd.DataFrame.from_dict(total_exp_output, columns=individuals, orient='index')
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ This file is part of the Shotgun Lipidomics Assistant (SLA) project. Copyright 2020 <NAME> (UCLA), <NAME> (UCLA) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os #os.environ["MODIN_ENGINE"] = "dask" import pandas as pd #import modin.pandas as pd import numpy as np from pyopenms import * import glob import re from pyopenms import * import uuid import tkinter as tk from tkinter import ttk from pandastable import Table, TableModel from tkinter import filedialog pd.set_option('display.float_format', '{:,.5E}'.format) class App: def __init__(self): self.root = tk.Tk() self.root.title("IntensityViewer") self.dirloc = tk.Text(width=30, height=2, state='disabled') self.dirloc.grid(column=1, row=0, columnspan=1, sticky='nw', padx=2) self.button = ttk.Button(text='Set Directory', command=lambda: self.set_dir_read()) self.button.grid(column=0, row=0, sticky='nw') self.stdkey = tk.Text(width=30, height=2, state='disabled') self.stdkey.grid(column=1, row=1, columnspan=1, sticky='nw', padx=2) self.button2 = ttk.Button(text='StandardKey', command=lambda: self.stdkey_read()) self.button2.grid(column=0, row=1, sticky='nw') self.spname = tk.Text(width=30, height=2, state='disabled') self.spname.grid(column=1, row=2, columnspan=1, sticky='nw', padx=2) self.button3 = ttk.Button(text='Spname', command=lambda: self.spname_read()) self.button3.grid(column=0, row=2, sticky='nw') self.button4 = ttk.Button(text='Read', command=lambda: self.readmzml()) self.button4.grid(column=0, row=3, sticky='nw') self.tree = ttk.Treeview(columns=('Outliers', 'Min', 'Mean', 'Max', 'Coef.Var')) self.tree.heading('#0', text='ID') self.tree.heading('Outliers', text='Outliers') self.tree.heading('Min', text='Min') self.tree.heading('Mean', text='Mean') self.tree.heading('Max', text='Max') self.tree.heading('Coef.Var', text='Coef.Var') self.tree.column('#0', width=50, anchor='center', stretch=False) self.tree.column('Outliers', width=50, anchor='center', stretch=False) self.tree.column('Min', width=50, anchor='center', stretch=False) self.tree.column('Mean', width=50, anchor='center', stretch=False) self.tree.column('Max', width=50, anchor='center', stretch=False) self.tree.column('Coef.Var', width=60, anchor='center', stretch=False) self.tree.grid(column=0, row=4, columnspan=2, sticky='nwe', pady=3, padx=3) self.tree.bind("<Double-1>", self.OnDoubleClick) # Constructing vertical scrollbar # with treeview self.verscrlbar = ttk.Scrollbar(self.root, orient="vertical", command=self.tree.yview) # config bar self.verscrlbar.grid(column=2, row=4, sticky='nws', pady=3, padx=0) # self.tree.config(yscrollcommand = self.verscrlbar.set) # self.verscrlbar.config(command=self.tree.yview) # Constructing horizontal scrollbar # with treeview self.horscrlbar = ttk.Scrollbar(self.root, orient="horizontal", command=self.tree.xview) # config bar self.horscrlbar.grid(column=0, row=5, columnspan=2, sticky='enw', pady=0, padx=5) self.tree.config(yscrollcommand=self.verscrlbar.set) self.tree.config(xscrollcommand=self.horscrlbar.set) self.f = tk.Frame() self.f.grid(column=3, row=0, rowspan=10, columnspan=10, sticky='nsew') # self.f.columnconfigure(10, weight=1) # self.f.rowconfigure(10, weight=1) self.root.columnconfigure(3, weight=1) self.root.rowconfigure(5, weight=1) self.root.mainloop() def OnDoubleClick(self, event): item = self.tree.selection()[0] print("you clicked on", self.tree.item(item, 'text')) method = self.tree.item(item, 'values')[-1] samp = self.tree.item(item, 'text') df = self.data[method][samp].copy() # self.data['1']['54'] df.iloc[:, 4:24] = df.iloc[:, 4:24].applymap('{:,.5E}'.format) # scientific notation pt = Table(self.f, dataframe=df, model=TableModel(df), showtoolbar=True, showstatusbar=True, enable=True) pt.show() pt.redraw() def set_dir_read(self): self.dirloc.configure(state="normal") self.dirloc.delete(1.0, 'end') self.setdir = filedialog.askdirectory() self.dirloc.insert('insert', self.setdir) self.dirloc.configure(state="disabled") def stdkey_read(self): self.stdkey.configure(state="normal") self.stdkey.delete(1.0, 'end') self.setdir = filedialog.askopenfilename(filetypes=(("excel Files", "*.xlsx"), ("all files", "*.*"))) self.stdkey.insert('insert', self.setdir) self.stdkey.configure(state="disabled") def spname_read(self): self.spname.configure(state="normal") self.spname.delete(1.0, 'end') self.setdir = filedialog.askopenfilename(filetypes=(("excel Files", "*.xlsx"), ("all files", "*.*"))) self.spname.insert('insert', self.setdir) self.spname.configure(state="disabled") def readmzml(self): os.chdir(self.dirloc.get('1.0', 'end-1c')) list_of_files = glob.glob('./*.mzML') ##def functions def centered_average(row): mesures = row # [6:26] mesures = mesures[mesures != 0] # drop all 0s if len(mesures) == 0: mesures = [0] mesures = np.nanmean(mesures) return (mesures) def stdNorm(row): return (sp_df2['AvgIntensity'][sp_df2['Species'] == std_dict[method]['StdName'][row['Species']]].iloc[0]) # return(sp_df2['AvgIntensity'][sp_df2['Species'] == std_dict[method]['StdName'][row['Species']]].item()) def conCoef(row): return (std_dict[method]['Coef'][row['Species']]) # def spName(row): # return(sp_dict[method].loc[(pd.Series(sp_dict[method]['Q1'] == row['Q1']) & pd.Series(sp_dict[method]['Q3'] == row['Q3']))].index[0]) ##create all variable all_df_dict = {'1': {}, '2': {}} # out_df2 = pd.DataFrame() out_df2 = {'1': pd.DataFrame(), '2': pd.DataFrame()} # out_df2_con = pd.DataFrame() out_df2_con = {'1': pd.DataFrame(), '2':
pd.DataFrame()
pandas.DataFrame
from __future__ import print_function from datetime import datetime import numpy as np import pandas as pd from pandas import to_datetime def group_survival_table_from_events(groups, durations, censorship, limit=-1): """ Joins multiple event series together into dataframes. A generalization of `survival_table_from_events` to data with groups. Previously called `group_event_series` pre 0.2.3. Parameters: groups: a (n,) array of individuals' group ids. durations: a (n,) array of durations of each individual censorship: a (n,) array of censorship, 1 if observed, 0 else. Output: - np.array of unique groups - dataframe of removal count data at event_times for each group, column names are 'removed:<group name>' - dataframe of observed count data at event_times for each group, column names are 'observed:<group name>' - dataframe of censored count data at event_times for each group, column names are 'censored:<group name>' Example: #input group_survival_table_from_events(waltonG, waltonT, np.ones_like(waltonT)) #data available in test_suite.py #output [ array(['control', 'miR-137'], dtype=object), removed:control removed:miR-137 event_at 6 0 1 7 2 0 9 0 3 13 0 3 15 0 2 ..., observed:control observed:miR-137 event_at 6 0 1 7 2 0 9 0 3 13 0 3 15 0 2 ..., censored:control censored:miR-137 event_at 6 0 0 7 0 0 9 0 0 ..., ] """ unique_groups = np.unique(groups) # set first group g = unique_groups[0] ix = groups == g T = durations[ix] C = censorship[ix] g_name = str(g) data = survival_table_from_events(T, C, columns=['removed:' + g_name, "observed:" + g_name, 'censored:' + g_name]) for g in unique_groups[1:]: ix = groups == g T = durations[ix] C = censorship[ix] g_name = str(g) data = data.join(survival_table_from_events(T, C, columns=['removed:' + g_name, "observed:" + g_name, 'censored:' + g_name]), how='outer') data = data.fillna(0) # hmmm pandas...its too bad I can't do data.ix[:limit] and leave out the if. if int(limit) != -1: data = data.ix[:limit] return unique_groups, data.filter(like='removed:'), data.filter(like='observed:'), data.filter(like='censored:') def survival_table_from_events(event_times, censorship, columns=["removed", "observed", "censored"], weights=None): """ Parameters: event_times: (n,1) array of event times censorship: if not None, (n,1) boolean array, 1 if observed event, 0 is censored columns: a 3-length array to call the, in order, removed individuals, observed deaths and censorships. Returns: Pandas DataFrame with index as the unique times in event_times. The columns named 'removed' refers to the number of individuals who were removed from the population by the end of the period. The column 'observed' refers to the number of removed individuals who were observed to have died (i.e. not censored.) The column 'censored' is defined as 'removed' - 'observed' (the number of individuals who left the population due to censorship) Example: #input survival_table_from_events( waltonT, np.ones_like(waltonT)) #available in test suite #output removed observed censored event_at 6 1 1 0 7 2 2 0 9 3 3 0 13 3 3 0 15 2 2 0 """ event_times = np.array(event_times) df = pd.DataFrame(event_times.astype(float), columns=["event_at"]) df[columns[0]] = 1 if weights is None else weights df[columns[1]] = censorship event_table = df.groupby("event_at").sum().sort_index() event_table[columns[2]] = event_table[columns[0]] - event_table[columns[1]] return event_table def survival_events_from_table(event_table, observed_deaths_col="observed", censored_col="censored"): """ This is the inverse of the function ``survival_table_from_events``. Parameters event_table: a pandas DataFrame with index as the durations (!!) and columns "observed" and "censored", referring to the number of individuals that died and were censored at time t. Returns T: a np.array of durations of observation -- one element for each individual in the population. C: a np.array of censorships -- one element for each individual in the population. 1 if observed, 0 else. Ex: The survival table, as a pandas DataFrame: observed censored index 1 1 0 2 0 1 3 1 0 4 1 1 5 0 1 would return T = np.array([ 1., 2., 3., 4., 4., 5.]), C = np.array([ 1., 0., 1., 1., 0., 0.]) """ columns = [observed_deaths_col, censored_col] N = event_table[columns].sum().sum() T = np.empty(N) C = np.empty(N) i = 0 for event_time, row in event_table.iterrows(): n = row[columns].sum() T[i:i + n] = event_time C[i:i + n] = np.r_[np.ones(row[columns[0]]), np.zeros(row[columns[1]])] i += n return T, C def datetimes_to_durations(start_times, end_times, fill_date=datetime.today(), freq='D', dayfirst=False, na_values=None): """ This is a very flexible function for transforming arrays of start_times and end_times to the proper format for lifelines: duration and censorship arrays. Parameters: start_times: an array, series or dataframe of start times. These can be strings, or datetimes. end_times: an array, series or dataframe of end times. These can be strings, or datetimes. These values can be None, or an empty string, which corresponds to censorship. fill_date: the date to use if end_times is a None or empty string. This corresponds to last date of observation. Anything above this date is also censored. Default: datetime.today() freq: the units of time to use. See pandas 'freq'. Default 'D' for days. day_first: convert assuming European-style dates, i.e. day/month/year. na_values : Additional string to recognize as NA/NaN. Ex: [''] Returns: T: a array of floats representing the durations with time units given by freq. C: a boolean array of censorship: 1 if death observed, 0 else. """ freq_string = 'timedelta64[%s]' % freq start_times = pd.Series(start_times).copy() end_times = pd.Series(end_times).copy() start_times_ = to_datetime(start_times, dayfirst=dayfirst) C = ~(pd.isnull(end_times).values + (end_times == "") + (end_times == na_values)) end_times[~C] = fill_date """ c = (to_datetime(end_times, dayfirst=dayfirst, coerce=True) > fill_date) end_times[c] = fill_date C += c """ end_times_ =
to_datetime(end_times, dayfirst=dayfirst, coerce=True)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 1 16:11:46 2020 @author: <NAME> and <NAME> Input file: gff file Output files: tsv file Description: Used to extract annotations from gff file for each gene/transcript (transcript_id, transcript_name, gene_id, gene_name, gene_type) """ import argparse import pandas as pd import os # function to extract annotations from host gff file def extract_gene_types_host(gff,gene_feature,gene_attribute): gene_type_host = [] # initialize list of dictionaries with genes/transcripts and their annotations for line in open(gff): #looping through GFF file d = line.rstrip() #remove '\n' if ((d[0] != '#') and (d != '')): # skip both commented and empty lines d = d.split('\t') # separating tabbed words into a list if d[2] in gene_feature: # check if gene feature (3rd column of gff file) is present in list of features used in quantification d1 = d[8].split(';') # split column 8 by ; # extract ID of gene attribute ID_pos_host = [pos.split('=') for pos in d1 if pos.startswith(gene_attribute)][0][1] # extract gene type gt_host = [pos.split('=') for pos in d1 if pos.startswith('gene_type')][0][1] if d[0] == 'chrM': # if gene is located on Mitochondrial chromosome, set gene type as mitoRNA g_type = 'mitoRNA' elif gt_host.startswith('Pseudo_'): # if gene type contains Pseudo_ prefix, set gene type as pseudogene g_type = 'pseudogene' elif 'tRNA' in gt_host: # if gene type contains tRNA, set gene type as tRNA g_type = 'tRNA' else: g_type = gt_host # set original gene type # extract gene_id ID_gene_pos_host = [pos.split(' ') for pos in d1 if pos.startswith('gene_id')][0][0].split("=")[1] # extract gene_name gene_name_host = [pos.split(' ') for pos in d1 if pos.startswith('gene_name')][0][0].split("=")[1] # if quantification is performed at gene-level, store results for genes (in case of HTSeq, attribute is set to 'gene_id') if gene_attribute.startswith('gene'): gene_type_host.append({'gene_id':ID_gene_pos_host,'gene_name':gene_name_host, 'gene_type':g_type}) # store rusults for transcripts - in case of Salmon, attribute is set to 'parent' else: # extract transcript_name transcript_name_host = [pos.split('=') for pos in d1 if pos.startswith('transcript_name')][0][1] gene_type_host.append({'transcript_id' :ID_pos_host, 'transcript_name':transcript_name_host, 'gene_id':ID_gene_pos_host,'gene_name':gene_name_host, 'gene_type':g_type}) return gene_type_host # function to extract annotations from pathogen gff file def extract_gene_types_pathogen(gff,gene_feature,gene_attribute): gene_type_pathogen = [] #create new list for line in open(gff): #looping through GFF file d = line.rstrip() #remove '\n' if (not d.startswith('#') and (d != '')): #ignoring comments and blank lines d = d.split('\t') #separating tabbed words into a list if d[2] in gene_feature: #if values from 3rd col of GFF are in gene_feature d1 = d[8].split(';') #split column 8 by ; #Error handler to ignore rows that don't contain the same format as other rows #This is a common issue in bacterial GTFs/GFFs which are often composed with non-uniform rows try: #further split contents from col 8 by '=', taking first occurance and 2nd value. #ie, ID=1234 becomes 'ID', '1234', and '1234' is stored ID_pos_pathogen = [pos.split('=') for pos in d1 if pos.startswith(gene_attribute)][0][1] except Exception: continue #Search for field 'Name/name' and store contents if ('name' or 'Name' in d1): feature_name = [pos.split('=') for pos in d1 if pos.startswith(tuple(['name','Name']))] if feature_name: feature_name_pathogen = feature_name[0][1] else: feature_name_pathogen = '' else: feature_name_pathogen = '' #Capture biotypes if d[2] == 'sRNA': g_type = 'sRNA' elif d[2] == 'ncRNA': g_type = 'ncRNA' elif d[2] == 'tRNA': g_type = 'tRNA' elif d[2] == 'rRNA': g_type = 'rRNA' elif ([True for st in d1 if 'gene_biotype' in st]): r_pos_host = [pos.split('=') for pos in d1 if pos.startswith('gene_biotype')] g_type = r_pos_host[0][1] else: g_type = d[2] gene_type_pathogen.append({gene_attribute: ID_pos_pathogen, 'name':feature_name_pathogen,'gene_type':g_type}) return gene_type_pathogen parser = argparse.ArgumentParser(description="""extract annotations from gff""") parser.add_argument("-gff", "--gff", metavar='<gff_annotations>', help="Path to gff file") parser.add_argument("-f", "--gene_feature", nargs='+', help="gene features from 3rd column of gff file used for quantification") parser.add_argument("-a", "--gene_attribute", help="gene attribute from 9th column of gff file") parser.add_argument("-q_tool", "--quantifier", metavar='<quantifier>', help="name of quantifier") parser.add_argument("-org", "--organism", help = 'host or pathogen') parser.add_argument("-o", "--output", metavar='<output>', help="output file name") args = parser.parse_args() # create list of gene features used in quantification gene_features = [feature.replace('[' , '').replace(']','').replace(',','') for feature in args.gene_feature] if args.organism == 'pathogen': # create dictionary of annotations for each gff entry with desired gene feature gene_types = extract_gene_types_pathogen(args.gff,gene_features, args.gene_attribute) # create data frame of quantified genes/transcripts with annotations (e.g. gene type and gene name) gene_annotations_pathogen_df =
pd.DataFrame.from_dict(gene_types)
pandas.DataFrame.from_dict
# coding: utf-8 # In[11]: # First of all, we import all the necessary libs import nltk import re import unicodedata import string from nltk.corpus import stopwords from nltk.stem import LancasterStemmer, WordNetLemmatizer import pandas as pd import inflect import pickle import math from scipy.spatial import distance import heapq from geopy import geocoders import numpy as np from geopy import distance as geodis from IPython.display import clear_output from termcolor import colored from IPython.display import Markdown import matplotlib.pyplot as plt import folium # This strings open a connection to GeoPy Database in order to get cities and addresses coordinates knowing their name gn = geocoders.GeoNames(username = "clabat9") gl = geocoders.Nominatim( user_agent = "<PASSWORD>") # ---------- SECTION 1 : DOCUMENTS PREPROCESSING ---------- # F1 : This function removes stop words from list of tokenized words def remove_stopwords(wrd): new_wrd = [] #List of updated words for word in wrd: if word not in stopwords.words('english'): # If the current word is not a stopword (ckeck using nltk) new_wrd.append(word) #appends it to the list return new_wrd # F2 : This function removes punctuation from list of tokenized words def remove_punctuation(wrd): new_wrds = [] #List of updated words for word in wrd: new_wrd = re.sub(r'[^\w\s]', '', word) # Replaces all punctuation word with "" using RegEx if new_wrd != '': new_wrds.append(new_wrd) #And then appends all words different from "" to the list return new_wrds # F3 : This function stems words in a list of tokenized words def stem_words(wrd): stemmer = LancasterStemmer() # Selects the stemmmer from nltk stems = [] # List of updated words for word in wrd: stem = stemmer.stem(word) # Stems the word stems.append(stem) # and appends it to the list return stems # F4 : This functions removes non ascii chars from a list of tokenized words def remove_non_ascii(wrd): new_wrds = [] # List of updated words for word in wrd: new_wrd = unicodedata.normalize('NFKD', word).encode('ascii', 'ignore').decode('utf-8', 'ignore') # Filters non ascii chars new_wrds.append(new_wrd) # Appends the word to the list return new_wrds # F5 : This function converts all characters to lowercase from a list of tokenized words def to_lowercase(wrd): new_wrds = [] # List of updated words for word in wrd: new_wrd = word.lower() # Converts the current word to lower case new_wrds.append(new_wrd) # And append it to the list return new_wrds # F5 : This function replaces all integers occurences in list of tokenized words with textual representation def replace_numbers(wrd): d = inflect.engine() # Libs inflect contains what we need new_wrds = [] # List of updated words for word in wrd: if word.isdigit(): # If the current word is a number new_wrd = d.number_to_words(word) # Converts it to its textual representation new_wrds.append(new_wrd) # And appends it to the list else: new_wrds.append(word) # If the current word is not a number appends it to the list return new_wrds # The following function takes a record of a dataFrame containg our docs and preprocesses it's title and description # with all the previous functions def preProcessing (x): x.fillna("*", inplace = True) # fills NA with "*" xt = x["title"] # Takes title and description xd = x["description"] if xt != "*": xt = nltk.word_tokenize(xt) # Tokenizes title using nltk if xd != "*": xd = nltk.word_tokenize(xd) # Tokenizes description using nltk # Uses previous functions xt = replace_numbers(xt) xd = replace_numbers(xd) xt = remove_stopwords(xt) xd = remove_stopwords(xd) xt = remove_punctuation(xt) xd = remove_punctuation(xd) xt = stem_words(xt) xd = stem_words(xd) xt = remove_non_ascii(xt) xd = remove_non_ascii(xd) xt = to_lowercase(xt) xd = to_lowercase(xd) x["title"] = xt x["description"] = xd return x # Returns the preprocessed doc # This function takes the query and preprocecesses it with all the previous methods def query_preProcessing (x): xt = nltk.word_tokenize(x) # Tokenizes query using nltk # Uses previous functions xt = replace_numbers(xt) xt = remove_stopwords(xt) xt = remove_punctuation(xt) xt = stem_words(xt) xt = remove_non_ascii(xt) xt = to_lowercase(xt) return xt # ---------- SECTION 2 : SPLITTING ---------- # F1 : This function takes a path of a DataFrame or the DataFrame it's self and exports each one of its rows as a .tsv file # Important : if the function receives both the path and the DataFrame, it will use the DataFrame option. # For our purposes it is not fundamental to guarantee that the file is in the specified path or that the df is consistent, # but it's clear that in a more general context will be useful to insert some simple code to catch errors. def csv_to_tsv(path_of_the_doc_to_convert = None ,pdata = pd.DataFrame()): if not pdata.empty : # If it receives a DataFrame pdata.to_csv("processed_data.tsv",encoding = "utf-8", sep = "\t") # Saves it as a .tsv f = open("processed_data.tsv","r", encoding = "utf-8") # Loads it leng = 0 # Counter of the number of documents for line in f: # For each record (document) with open(r"D:\Claudio\Uni\M 1° anno Sapienza\AMDS\Homeworks\Hw3\ptsv\doc_"+str(leng)+".tsv", "w", encoding = "utf-8" ) as ftmp: ftmp.write(line) # Saves the record as .tsv leng += 1 # Update counter return leng # Returns the number of documents else: # If it receives a path data = open(path_of_the_doc_to_convert,"r", encoding = "utf-8") # Opens the data in the specified path leng = 0 # And makes the same procedure above for line in data: with open(r"D:\Claudio\Uni\M 1° anno Sapienza\AMDS\Homeworks\Hw3\tsv\doc_"+str(leng)+".tsv", "w", encoding = "utf-8" ) as ftmp: ftmp.write(re.sub(r",","\t",line)) leng += 1 return leng # ----------SECTION 3 : CREATION OF VOCABULARY, INVERTED INDECES AND SCORE FUNCTIONS---------- # This function takes the path where (preprocessed) documents are saved and their total number # and returns the vocabulary of the indicated corpus def create_vocabulary(number_of_docs, path): vocabulary = {} # The vocabulary is a dictionary of the form "Word : word_id" wid = 0 # word_id for idx in range(1,number_of_docs): # for every document.. with open(path+"doc_"+str(idx)+".tsv", "r", encoding = "utf-8" ) as ftmp: first_line = ftmp.readline() # It opens the doc and reads the first line (in our case docs are made by only one line) desc = (first_line.split(sep = "\t"))[6] # Takes in account only title and description of the record title = (first_line.split(sep = "\t"))[9] # Following lines clean up some unuseful chars desc = desc.split("'") title = title.split("'") foo = ["]","[",", "] desc = list(filter(lambda x: not x in foo, desc)) title = list(filter(lambda x: not x in foo, title)) for word in title+desc: # For every word in title + description if not word in list(vocabulary.keys()) : # if the word is not in the dic vocabulary[word] = wid # adds it wid += 1 # Update word_id with open("vocabulary", "wb") as f : pickle.dump(vocabulary, f) # Saves the vocabulary as a pickle return vocabulary # Returns the vocabulary # This function create the first inverted index we need in the form "word (key) : [list of docs that contain word] (value)". # It takes the number of (preprocessed) docs and the path where they are saved and returns the reverted index as a dictionary. def create_inverted_index(number_of_docs, path): inverted_index = {} # Initializes the inverted index, in our case a dic for idx in range(1,number_of_docs+1): # for every document # Opens the doc, cleans it and extracts title and description as the previous function with open(path+"doc_"+str(idx)+".tsv", "r", encoding = "utf-8" ) as ftmp: first_line = ftmp.readline() desc = (first_line.split(sep = "\t"))[6] title = (first_line.split(sep = "\t"))[9] desc = desc.split("'") title = title.split("'") foo = ["]","[",", "] desc = list(filter(lambda x: not x in foo, desc)) title = list(filter(lambda x: not x in foo, title)) for word in title+desc: # for every word in title + description if word in list(inverted_index.keys()) : # if the word is in the inverted index inverted_index[word] = inverted_index[word] + ["doc_"+str(idx)] # adds the current doc to the list of docs that contain the word else : inverted_index[word] = ["doc_"+str(idx)] # else creates a record in the dic for the current word and doc with open("inverted_index", "wb") as f : pickle.dump(inverted_index, f) # Saves the inverted index as a pickle return inverted_index # returns the inverted index # This function takes a term, a riverted index and the total number of docs in the corpus to compute the IDF of the term def IDFi(term, reverted_index, number_of_docs): return math.log10(number_of_docs/len(reverted_index[term])) # This function create the second inverted index we need in the form "word (key) : [(doc that contain the word, TFID of the term in the doc),....]" # It takes the number of (preprocessed) docs, the path where they are saved, the vocabulary and a list containig all the idfs and returns the reverted index as a dictionary. def create_inverted_index_with_TFIDF(number_of_docs, path, vocabulary, idfi): inverted_index2 = {} # Initializes the inverted index, in our case a dic for idx in range(1, number_of_docs+1): # for every document # Opens the doc, cleans it and extracts title and description as the previous function with open(path+"doc_"+str(idx)+".tsv", "r", encoding = "utf-8" ) as ftmp: first_line = ftmp.readline() desc = (first_line.split(sep = "\t"))[6] title = (first_line.split(sep = "\t"))[9] desc = desc.split("'") title = title.split("'") foo = ["]","[",", "] desc = list(filter(lambda x: not x in foo, desc)) title = list(filter(lambda x: not x in foo, title)) for word in title+desc: # for every word in title + description if word in list(inverted_index2.keys()) : # if the word is inthe inverted index # adds to the index line of the current word a tuple that contains the current doc and its TFID for the current word. It uses the vocabulary to get the index of the word # in the IDF list. inverted_index2[word] = inverted_index2[word] + [("doc_"+str(idx),((title+desc).count(word)/len(title+desc))*idfi[vocabulary[word]])] # Just applying the def else : # Makes the same initializing the index line of the current word inverted_index2[word] = [("doc_"+str(idx),((title+desc).count(word)/len(title+desc))*idfi[vocabulary[word]])] with open("inverted_index2", "wb") as f : # Saves the inverted index as a pickle pickle.dump(inverted_index2, f) # This function takes the two inverted indices , the (processed) query, the document the query has to be compared to and the vocabulary # and returns the cosine similarity between them def score(pquery, document, inverted_index, inverted_index_with_TFIDF, vocabulary, idfi): #the first vector is made by the all the tfid of the words in thw query. To build it we use a simple list comprehension # that computes the tfid for all the words in set(query) in order to not process the same word more times v1 = [((pquery.count(word)/len(pquery))*idfi[vocabulary[word]]) if word in vocabulary.keys() else 0 for word in set(pquery)] v2 = [] # We don't need to work on vectors in R^(number of distinct words in query+document) becouse, in that case, all elements that # are not simultaneously non zero will give a 0 contribute in the computation of the similarity, # so we just need to work in R^(number of different words in query). #(the optimal solution will be to work in R^(dim of intersection of different words in query+ different words in document)) . # In the end, to build the vector associated to the doc: for word in set(pquery) : # for every distinc word in the query if word in vocabulary.keys(): # if the word is in the corpus vocabulary if document in inverted_index[word]: # if the document contains the word idx = inverted_index[word].index(document) # gets the index of the doc in the second inverted index using the first inverted index # order will be the same v2.append(inverted_index_with_TFIDF[word][idx][1]) # appends the tfid of the current word for the selected doc # gettin it from the second inverted index else: # if the doc doesnt contain the word the associated component is 0 v2.append(0) else: # if the word is not in the vocabulary the associated component of the doc vectror is 0 v2.append(0) if not all(v == 0 for v in v2): # if at least one word is in common return (1 - distance.cosine(v1, v2)) # returns the cosine similarity else: # if the query and the doc haven't nothing in common their similarity is 0 return 0 # This function implements our score function explained in the notebook. It takes the max rate user prefers to spend, the number of # bed user prefers to have in it's holiday house, the city user prefers to stay in and one of the doc that match his query and returns it's score. def score_function(max_cash, pref_bed, pref_city, coords, result): score = 0 max_distance = 1298 # Normalization factor for the distances computed on the two farthest points of the Texas cash = float(result["average_rate_per_night"].split("$")[1]) try : bed = int(result["bedrooms_count"]) except : bed = 0.5 if (cash < max_cash) & (cash > 0) : score += (5)*math.exp(-cash/max_cash) score += (4)*min(bed/pref_bed, pref_bed/bed) coord = (result.loc["latitude"], result.loc["longitude"]) score += 3*(1 - geodis.distance(coords,coord).km/1298) return (100/12)*score # ----------SECTION 4: SEARCH ENGINES---------- # This function implements a search engine that returns the docs containing ALL the words in the query. # It takes the path where (preprocessed) docs are saved and the inverted index above # and returns the list of the names of the docs containing all the world of the query, a df containing all features of this docs # (useful later) and a df containing only the requested features. # We tried to have some fun inserting code that allows the user to retry the search if it returns no results. def first_search_engine(inverted_index, path): check = "y" # This var controls the logic of the multiple attempts while check == "y": # while it is "y" print(colored("Insert your query:", "blue", attrs =["bold","underline"]))#(Markdown('<span style="color: #800080">Insert your query: </span>')) # Get users query (asking in a nice colored way :) ) query = input() pq = query_preProcessing(query) #Preprocesses the query l = set() # our results are in a set not_first_word = 0 # Var to know if it's the first word of the query for el in pq: # for every word in the query if el in list(inverted_index.keys()): # if the word is in at least one document if not_first_word == 0: # If it's the first word of the query l = set(inverted_index[el]) # Adds all the docs that contain the word to results not_first_word += 1 # The next word is not the first else : # If it isn't the first word l = l.intersection(set(inverted_index[el])) # Takes the docs that contain the word in a set and intersect it with # the set of the results else: # if a word is not in the corpus there will be no results for this kind of search. l = [] # empty list break #exit the loop if len(l) == 0: # If there are no results print(colored("Your search did not bring results. Do you wanna try again? [y/n]", "red", attrs = ["underline"])) # Get users query (asking in a nice colored way :) ) check = input() # asks the user if he wanna make another search while (check != "y")&(check !="n") : # force the user to give an acceptable answer print(colored("You can choose [y/n] !","red", attrs = ["underline"])) # Get users query (asking in a nice colored way :) ) check = input() # If the user wants to retry, the while statement loops again if check == "n": # If the user prefers to not retry return [],l,pd.DataFrame(), pd.DataFrame() # returns empty data structures else: # If there are results res = [] for doc in l : # for every doc of the results creates a df ( a column for each feature, as in the original one) res.append(pd.read_csv(path +doc+ ".tsv", sep = "\t", engine = "python", names = ["id","average_rate_per_night","bedrooms_count","city","date_of_listing","description","latitude","longitude","title","url"])) complete_results =
pd.concat(res)
pandas.concat
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key],name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.get_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): raise ValueError("must supply a tuple to get_group with multiple grouping keys") if not len(name) == len(sample): raise ValueError("must supply a a same-length tuple to get_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if len(groupers): self._group_selection = (ax-Index(groupers)).tolist() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group. If dropna, will not show nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not dropna: # good choice m = self.grouper._max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Example ------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _algos.groupsort_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.get_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.append(gpr) name = gpr gpr = obj[gpr] if isinstance(gpr, Categorical) and len(gpr) != len(obj): errmsg = "Categorical grouper must have len(grouper) == len(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper class SeriesGroupBy(GroupBy): _apply_whitelist = _series_apply_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, compat.string_types): func = getattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if Index(self.grouper.group_info[0]).is_monotonic: result = Series(values, index=self.obj.index) else: index = Index(np.concatenate([ indices[v] for v in self.grouper.result_index ])) result = Series(values, index=index).sort_index() result.index = self.obj.index return result def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Example ------- >>> grouped.filter(lambda x: x.mean() > 0) Returns ------- filtered : Series """ if isinstance(func, compat.string_types): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._get_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._get_data_to_aggregate() new_blocks = [] if numeric_only: data = data.get_numeric_data(copy=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = com.ensure_float(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) result = OrderedDict() if isinstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if any(isinstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if isinstance(subset, DataFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.append(fname) else: for col, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.append(col) if isinstance(list(result.values())[0], DataFrame): from pandas.tools.merge import concat result = concat([result[k] for k in keys], keys=keys, axis=1) else: result = DataFrame(result) elif isinstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: if isinstance(result.index, MultiIndex): zipped = zip(result.index.levels, result.index.labels, result.index.names) for i, (lev, lab, name) in enumerate(zipped): result.insert(i, name, com.take_nd(lev.values, lab, allow_fill=False)) result = result.consolidate() else: values = result.index.values name = self.grouper.groupings[0].name result.insert(0, name, values) result.index = np.arange(len(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from pandas.tools.merge import concat if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except SpecificationError: raise result = concat(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same if len(keys) == 0: # XXX return DataFrame({}) key_names = self.grouper.names if isinstance(values[0], DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object if com._count_not_none(*values) != len(values): v = next(v for v in values if v is not None) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([ x.index for x in values ]) singular_series = (len(values) == 1 and applied_index.nlevels == 1) # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.tools.merge import concat return concat(values) if not all_indexed_same: return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = set(v.name for v in values) if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if not _np_version_under1p7 or isinstance(v.index,MultiIndex) or key_index is None: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values,index=key_index,columns=index) else: # GH5788 instead of stacking; concat gets the dtypes correct from pandas.tools.merge import concat result = concat(values,keys=key_index,names=key_index.names, axis=self.axis).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values.T,index=v.index,columns=key_index) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return Series(values, index=key_index) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here if (self._selected_obj.ndim == 2 and self._selected_obj.dtypes.isin(_DATELIKE_DTYPES).any()): cd = 'coerce' else: cd = True return result.convert_objects(convert_dates=cd) else: # only coerce dates if we find at least 1 datetime cd = 'coerce' if any([ isinstance(v,Timestamp) for v in values ]) else False return Series(values, index=key_index).convert_objects(convert_dates=cd) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.tools.merge import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, 'name', name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except Exception: # pragma: no cover res = fast_path(group) path = fast_path else: res = path(group) # broadcasting if isinstance(res, Series): if res.index.is_(obj.index): group.T.values[:] = res else: group.values[:] = res applied.append(group) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index concatenated = concat(applied, join_axes=[concat_index], axis=self.axis, verify_integrity=False) concatenated.sort_index(inplace=True) return concatenated def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed DataFrame on each group and return a DataFrame having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each subframe Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) """ # try to do a fast transform via merge if possible try: obj = self._obj_with_exclusions if isinstance(func, compat.string_types): result = getattr(self, func)(*args, **kwargs) else: cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: result = getattr(self, cyfunc)() else: return self._transform_general(func, *args, **kwargs) except: return self._transform_general(func, *args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) # nuiscance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) # a grouped that doesn't preserve the index, remap index based on the grouper # and broadcast it if ((not isinstance(obj.index,MultiIndex) and type(result.index) != type(obj.index)) or len(result.index) != len(obj.index)): results = obj.values.copy() for (name, group), (i, row) in zip(self, result.iterrows()): indexer = self._get_index(name) results[indexer] = np.tile(row.values,len(indexer)).reshape(len(indexer),-1) return DataFrame(results,columns=result.columns,index=obj.index).convert_objects() # we can merge the result in # GH 7383 names = result.columns result = obj.merge(result, how='outer', left_index=True, right_index=True).iloc[:,-result.shape[1]:] result.columns = names return result def _define_paths(self, func, *args, **kwargs): if isinstance(func, compat.string_types): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) # compare that we get the same results if res.shape == res_fast.shape: res_r = res.values.ravel() res_fast_r = res_fast.values.ravel() mask = notnull(res_r) if (res_r[mask] == res_fast_r[mask]).all(): path = fast_path except: pass return path, res def _transform_item_by_item(self, obj, wrapper): # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) inds.append(i) except Exception: pass if len(output) == 0: # pragma: no cover raise TypeError('Transform function invalid for data types') columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return DataFrame(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Example -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.filter(lambda x: x['A'].sum() + x['B'].sum() > 0) """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, 'name', name) res = func(group) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if (isinstance(res, (bool, np.bool_)) or np.isscalar(res) and isnull(res)): if res and
notnull(res)
pandas.core.common.notnull
# -*- coding:utf-8 -*- import math from datetime import datetime PI = 3.1415926585 def delta_days(time_one, time_two): if isinstance(time_one, str): time_one = datetime.strptime(time_one, '%Y-%m-%d') if isinstance(time_two, str): time_two = datetime.strptime(time_two, '%Y-%m-%d') return (time_one - time_two).days def get_date_of_max_temp(temperature_dataframe): ind = temperature_dataframe['ave_air_temp'].idxmax() date = temperature_dataframe['date'].iloc[ind] return date def simulate_bottom_temperature(temperature_dataframe, kwargs, depth=100): # Simulate temperature of bottom soil # temperature_dataframe is temperature data of a year # depth default is 100cm # average_thermal_conductivity is λa # average_heat_capacity is Ca average_thermal_conductivity = kwargs.get('average_thermal_conductivity') average_heat_capacity = kwargs.get('average_heat_capacity') today = kwargs.get('today') demp = math.sqrt((2 * average_thermal_conductivity / average_heat_capacity) / (2 * PI / 365)) tmp_var = depth / demp ave_year_air_temp = temperature_dataframe['ave_air_temp'].mean() air_temp_ampl = temperature_dataframe['ave_air_temp'].max() - temperature_dataframe['ave_air_temp'].min() max_temp_date = get_date_of_max_temp(temperature_dataframe) days = delta_days(today, max_temp_date) # import pdb # pdb.set_trace() return ave_year_air_temp + math.pow(air_temp_ampl, tmp_var) * math.cos(2 * PI * days / 365 + tmp_var) if __name__ == '__main__': import pandas as pd import os filename = 'summary_report_2016-01-01_2020-09-07.txt' origin_data =
pd.read_csv(filename, header=[0,1], sep=" ")
pandas.read_csv
""" This code is not for good model to , but to share with my teammate for another competitions under the rule of this competition. In this script, I gave you a suggestion for extending or wrapping transformers, pipelines and estimator. As you know, sklearn api having estimators, transformers and pipelines is very nice, but lacks a flexibility to be used in a competition. For example, - can't update pandas or dask DataFrames. - can't change row numbers (i.e. filter, reduce etc.) - input validation (Of course, it is the good feature in writing production models.) - I recommend - wrap - extend - Caution! - This code doesn't run to its end on this kernel because of the exceed of the memory limit. - Only a tutorial implementation - This code requires more refactoring """ import gc import itertools import logging import os import re import sys from abc import abstractmethod, ABCMeta, ABC from multiprocessing.pool import Pool from pathlib import Path from time import perf_counter from typing import Union import keras import lightgbm as lgb import numpy as np import pandas as pd import pandas.tseries.offsets as offsets import torch from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.utils import Sequence from scipy import sparse from sklearn.base import BaseEstimator, TransformerMixin from sklearn.compose import ColumnTransformer from sklearn.feature_extraction.text import CountVectorizer from sklearn.impute import SimpleImputer from sklearn.metrics import roc_auc_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import FunctionTransformer, StandardScaler, OneHotEncoder from torch import nn, optim from torch.utils.data import Dataset, DataLoader from torch.utils.data.dataloader import default_collate from tqdm import tqdm RANDOM_SEED = 10 NEXT_MKTRES_10 = "returnsOpenNextMktres10" CATEGORY_START_END_PATTERN = r"[\{\}\']" SPLIT_PATTERN = r"[{}']" logger = logging.getLogger(__name__) # logger.addHandler(logging.StreamHandler(sys.stdout)) # logger.addHandler(logging.FileHandler("main.log")) try: TEST_MARKET_DATA = Path(__file__).parent.joinpath("data/test/marketdata_sample.csv") TEST_NEWS_DATA = Path(__file__).parent.joinpath("data/test/news_sample.csv") except NameError as e: TEST_MARKET_DATA = "data/test/marketdata_sample.csv" TEST_NEWS_DATA = "data/test/news_sample.csv" # MODEL_TYPE = "mlp" # MODEL_TYPE = "lgb" MODEL_TYPE = "sparse_mlp" MARKET_ID = "market_id" NEWS_ID = "news_id" np.random.seed(10) class FeatureSetting(object): """ Get remarkable the settings together. If not in a kenel competition, it can be load from a configuration file. """ # remove_news_features = ["headline", "subjects", "headlineTag", "provider"] remove_news_features = [] should_use_news_feature = True remove_raw_for_lag = True scale = True scale_type = "standard" # max_shift_date = 14 max_shift_date = 10 # since = date(2010, 1, 1) since = None should_use_prev_news = False def main(): """ Don't :return: """ logger.info("This model type is {}".format(MODEL_TYPE)) # I don't recommend load because if you want to gc by yourself, you should return to main function. # Please make an object to store dfs. env, market_train_df, news_train_df = load_train_dfs() market_preprocess = MarketPreprocess() market_train_df = market_preprocess.fit_transform(market_train_df) news_preprocess = NewsPreprocess() news_train_df = news_preprocess.fit_transform(news_train_df) features = Features() market_train_df, news_train_df = features.fit_transform(market_train_df, news_train_df) logger.info("First feature extraction has done") max_day_diff = 3 gc.collect() if FeatureSetting.should_use_news_feature: linker = MarketNewsLinker(max_day_diff) linker.link(market_train_df, news_train_df) del news_train_df del market_train_df gc.collect() market_train_df = linker.create_new_market_df() linker.clear() gc.collect() else: linker = None model = ModelWrapper.generate(MODEL_TYPE) market_train_df, _ = model.create_dataset(market_train_df, features, train_batch_size=1024, valid_batch_size=1024) gc.collect() model.train(sparse_input=True) model.clear() days = env.get_prediction_days() predictor = Predictor(linker, model, features, market_preprocess, news_preprocess) predictor.predict_all(days, env) logger.info('Done!') env.write_submission_file() logger.info([filename for filename in os.listdir('.') if '.csv' in filename]) def measure_time(func): def inner(*args, **kwargs): start = perf_counter() result = func(*args, **kwargs) duration = perf_counter() - start logger.info("%s took %.6f sec", func.__name__, duration) return result return inner class UnionFeaturePipeline(object): def __init__(self, *args): if args is None: self.transformers = [] else: self.transformers = list(args) def transform(self, df, include_sparse=True): feature_columns = [] for transformer in self.transformers: if isinstance(transformer, NullTransformer): transformer.transform(df) elif isinstance(transformer, DfTransformer): df = transformer.transform(df) else: feature_columns.append(transformer.transform(df)) if include_sparse: return df, sparse.hstack(feature_columns, format="csr") if len(feature_columns) == 0: return df, None return df, np.hstack(feature_columns) def add(self, transformer): self.transformers.append(transformer) def is_not_empty(list_like): if list_like is None: return False if isinstance(list_like, np.ndarray) or sparse.issparse(list_like): return list_like.shape[0] > 0 return len(list_like) > 0 class MarketNewsLinker(object): """ For complex join of dataframes, It would be better two dataframe transformer class """ def __init__(self, max_day_diff): self.market_df = None self.news_df = None self.market_columns = None self.max_day_diff = max_day_diff self.datatypes_before_aggregation = None # self.concatable_features = concatable_fields self.news_columns = None def link_market_assetCode_and_news_assetCodes(self): assetCodes_in_markests = self.market_df.assetCode.unique().tolist() logger.info("assetCodes pattern in markets: {}".format(len(assetCodes_in_markests))) assetCodes_in_news = self.news_df.assetCodes.unique() assetCodes_in_news_size = len(assetCodes_in_news) logger.info("assetCodes pattern in news: {}".format(assetCodes_in_news_size)) parse_multiple_codes = lambda codes: re.sub(SPLIT_PATTERN, "", str(codes)).split(", ") parsed_assetCodes_in_news = [parse_multiple_codes(str(codes)) for codes in assetCodes_in_news] # len(max(parsed_assetCodes_in_news, key=lambda x: len(x))) # all_assetCode_type_in_news = list(set(itertools.chain.from_iterable(assetCodes_in_news))) # check linking links_assetCodes = [[[raw_codes, market_assetCode] for parsed_codes, raw_codes in zip(parsed_assetCodes_in_news, assetCodes_in_news) if str(market_assetCode) in parsed_codes] for market_assetCode in assetCodes_in_markests] links_assetCodes = list(itertools.chain.from_iterable(links_assetCodes)) logger.info("links for assetCodes: {}".format(len(links_assetCodes))) links_assetCodes = pd.DataFrame(links_assetCodes, columns=["newsAssetCodes", "marketAssetCode"], dtype='category') logger.info(links_assetCodes.shape) # self.market_df = self.market_df.merge(links_assetCodes, left_on="assetCode", right_on="marketAssetCode", # copy=False, how="left", left_index=True) self.market_df = self.market_df.merge(links_assetCodes, left_on="assetCode", right_on="marketAssetCode", copy=False, how="left") logger.info(self.market_df.shape) self.market_df.drop(["marketAssetCode"], axis=1, inplace=True) def append_working_date_on_market(self): self.market_df["date"] = self.market_df.time.dt.date self.news_df["firstCreatedDate"] = self.news_df.firstCreated.dt.date self.news_df.firstCreatedDate = self.news_df.firstCreatedDate.astype(np.datetime64) working_dates = self.news_df.firstCreatedDate.unique() working_dates.sort() market_dates = self.market_df.date.unique().astype(np.datetime64) market_dates.sort() def find_prev_date(date): for diff_day in range(1, self.max_day_diff + 1): prev_date = date - np.timedelta64(diff_day, 'D') if len(np.searchsorted(working_dates, prev_date)) > 0: return prev_date return None prev_news_days_for_market_day = np.apply_along_axis(arr=market_dates, func1d=find_prev_date, axis=0) date_df = pd.DataFrame(columns=["date", "prevDate"]) date_df.date = market_dates date_df.prevDate = prev_news_days_for_market_day self.market_df.date = self.market_df.date.astype(np.datetime64) self.market_df = self.market_df.merge(date_df, left_on="date", right_on="date", how="left") def link_market_id_and_news_id(self): logger.info("linking ids...") self.news_columns = self.news_df.columns.tolist() # merge market and news market_link_columns = [MARKET_ID, "time", "newsAssetCodes", "date", "prevDate"] news_link_df = self.news_df[["assetCodes", "firstCreated", "firstCreatedDate", NEWS_ID]] self.news_df.drop(["assetCodes", "firstCreated", "firstCreatedDate"], axis=1, inplace=True) link_df = self.market_df[market_link_columns].merge(news_link_df, left_on=["newsAssetCodes", "date"], right_on=["assetCodes", "firstCreatedDate"], how='left') link_df = link_df[link_df["time"] > link_df["firstCreated"]] link_df.drop(["time", "newsAssetCodes", "date", "prevDate"], axis=1, inplace=True) if FeatureSetting.should_use_prev_news: prev_day_link_df = self.market_df[market_link_columns].merge( news_link_df, left_on=["newsAssetCodes", "prevDate"], right_on=["assetCodes", "firstCreatedDate"]) prev_day_link_df = prev_day_link_df[ prev_day_link_df["time"] - pd.Timedelta(days=1) < prev_day_link_df["firstCreated"]] prev_day_link_df = prev_day_link_df.drop( ["time", "newsAssetCodes", "date", "prevDate"], axis=1, inplace=True) del news_link_df gc.collect() if FeatureSetting.should_use_prev_news: # link_df = pd.concat([link_df, prev_day_link_df]) link_df = link_df.append(prev_day_link_df) del prev_day_link_df gc.collect() self.market_df = self.market_df.merge(link_df, on=MARKET_ID, how="left", copy=False) # self.market_df = self.market_df.merge(link_df, on=MARKET_ID, how="left") del link_df gc.collect() logger.info("shape after append news" + str(self.market_df.shape)) def aggregate_day_asset_news(self): logger.info("aggregating....") agg_func_map = {column: "mean" for column in self.market_df.columns.tolist() if column == "marketCommentary" or column not in self.market_columns} agg_func_map.update({col: "first" for col in self.market_columns}) agg_func_map[NEWS_ID] = lambda x: x.tolist() logger.info(agg_func_map) logger.info(self.market_df.dtypes) self.market_df = self.market_df.groupby(MARKET_ID).agg(agg_func_map) logger.info("the aggregation for each group has done") self._update_inner_data() def _update_inner_data(self): self.market_columns = self.market_df.columns.tolist() @measure_time def link(self, market_df, news_df, pool=4): self.market_df = market_df self.news_df = news_df self.pool = pool self.market_columns = self.market_df.columns.tolist() self.datatypes_before_aggregation = {col: t for col, t in zip(self.market_columns, self.market_df.dtypes)} self.datatypes_before_aggregation.update( {col: t for col, t in zip(self.news_df.columns, self.news_df.dtypes)} ) self.link_market_assetCode_and_news_assetCodes() self.append_working_date_on_market() return self.link_market_id_and_news_id() @measure_time def create_new_market_df(self): logger.info("updating market df....") dropped_columns = ["date", "prevDate", "newsAssetCodes", "assetCodes", "firstCreated", "firstCreatedDate"] logger.info(self.market_df.columns) self.market_df.drop(dropped_columns, axis=1, inplace=True) self.market_df.sort_values(by=MARKET_ID, inplace=True) self.aggregate_day_asset_news() logger.info("linking done") return self.market_df def clear(self): del self.market_df self.market_df = None self.news_df = None self.market_columns = None self.datatypes_before_aggregation = None def compress_dtypes(news_df): for col, dtype in zip(news_df.columns, news_df.dtypes): if dtype == np.dtype('float64'): news_df[col] = news_df[col].astype("float32") if dtype == np.dtype('int64'): news_df[col] = news_df[col].astype("int32") def load_train_dfs(): """ define switchable loader to debug in local with the sample data :return: """ try: from kaggle.competitions import twosigmanews env = twosigmanews.make_env() (market_train_df, news_train_df) = env.get_training_data() except: market_train_df = pd.read_csv(TEST_MARKET_DATA, encoding="utf-8", engine="python") news_train_df = pd.read_csv(TEST_NEWS_DATA, encoding="utf-8", engine="python") env = None return env, market_train_df, news_train_df class TorchDataset(Dataset): def __init__(self, matrix, labels, transformers=None): self._matrix = matrix self._labels = labels self._transformers = transformers self.n_features = matrix.shape[-1] def __getitem__(self, index): item = self._matrix[index, :] if self._transformers is None: return item, torch.Tensor(self._labels[index:index + 1]) return self._transformers(item), torch.Tensor(self._labels[index:index + 1]) def __len__(self): return self._matrix.shape[0] class TorchDataLoader(DataLoader): def __init__(self, dataset: TorchDataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None): super().__init__(dataset, batch_size, shuffle, sampler, batch_sampler, num_workers, collate_fn, pin_memory, drop_last, timeout, worker_init_fn) def __len__(self): return len(self.dataset) def create_data_loader(matrix: Union[np.ndarray, sparse.coo_matrix, sparse.csr_matrix], labels: np.ndarray, batch_size: int, shuffle: bool): if np.isnan(labels).any(): raise ValueError("remove nan from labels") if isinstance(matrix, np.ndarray): if np.isnan(matrix).any(): raise ValueError("remove nan from feature matrix") def transformers(item): item = item.astype("float32") if sparse.issparse(matrix): return torch.from_numpy(item.todense().A1) item = torch.from_numpy(item) return item dataset = TorchDataset(matrix, labels.astype("uint8").reshape((-1, 1)), transformers) return TorchDataLoader(dataset, batch_size=batch_size, shuffle=shuffle) class BaseMLPClassifier(nn.Module): def __init__(self, fc_layer_params: list): super().__init__() layers = [ nn.Sequential( nn.Linear(**params), nn.BatchNorm1d(params["out_features"]), nn.ReLU(), nn.Dropout(0.4) ) for i, params in enumerate(fc_layer_params[:-1]) ] for layer in layers: layer.apply(self.init_weights) self.fc_layers = nn.Sequential(*layers) self.output_layer = nn.Linear(**fc_layer_params[-1]) # if self.output_layer.out_features == 1: self.sigmoid = nn.Sigmoid() @staticmethod def init_weights(m): if isinstance(m, nn.Linear): nn.init.xavier_uniform(m.weight.data) m.bias.data.zero_() def forward(self, x): out = self.fc_layers(x) out = self.output_layer(out) out = self.sigmoid(out) return out class BaseMLPTrainer(object): def __init__(self, model, loss_function, score_function, optimizer_factory): self.model: nn.Module = model self.loss_function = loss_function self.score_function = score_function self.optimiser = optimizer_factory(self.model) self.train_data_loader = None self.valid_data_loader = None self.n_epoch = None self._current_epoch = 0 self.train_losses = [] self.train_scores = [] self.valid_losses = [] self.valid_scores = [] self._current_max_valid_score = 0 self._early_stop_count = 0 self.save_name = "twosigma.model" def train(self, train_data_loader, valid_data_loader, n_epochs): self.clear_history() self.train_data_loader = train_data_loader self.valid_data_loader = valid_data_loader self.n_epoch = n_epochs logger.info("train with: {}".format(self.train_data_loader.dataset._matrix.shape)) logger.info("valid with: {}".format(self.valid_data_loader.dataset._matrix.shape)) iterator = tqdm(range(n_epochs)) for epoch in iterator: self._current_epoch = epoch + 1 logger.info("training %d epoch / n_epochs", self._current_epoch) self._train_epoch() self._valid_epoch() if self.valid_scores[-1] <= self._current_max_valid_score: self._early_stop_count += 1 else: logger.info("validation score is improved from %.3f to %.3f", self._current_max_valid_score, self.valid_scores[-1]) self._current_max_valid_score = self.valid_scores[-1] self._early_stop_count = 0 self.save_models() if self._early_stop_count >= 10: logger.info("======early stopped=====") self.model.load_state_dict(torch.load(self.save_name)) iterator.close() break logger.info("train done!") def clear_history(self): self.n_epoch = None self._current_epoch = 0 self.train_losses = [] self.train_scores = [] self.valid_losses = [] self.valid_scores = [] self._current_max_valid_score = 0 self._early_stop_count = 0 def _train_epoch(self): self.model.train() total_loss = 0.0 for i, data in enumerate(self.train_data_loader): inputs, labels = data # print("batch data size {}".format(inputs.size())) self.optimiser.zero_grad() outputs = self.model(inputs) loss = self.loss_function(outputs, labels) loss.backward() self.optimiser.step() total_loss += loss.item() if i % 2000 == 1999: logger.info('[%d, %5d] loss: %.7f' % (self._current_epoch, i + 1, total_loss / (i + 1))) avg_loss = total_loss / len(self.train_data_loader) logger.info("******train loss at epoch %d: %.7f :" % (self._current_epoch, avg_loss)) self.train_losses.append(avg_loss) def _valid_epoch(self): total_loss = 0.0 all_labels = [] all_outputs = [] self.model.eval() for i, data in enumerate(self.valid_data_loader): inputs, labels = data outputs = self.model(inputs) all_labels.append(labels.detach().numpy()) all_outputs.append(outputs.detach().numpy()) loss = self.loss_function(outputs, labels) total_loss += loss.item() if i % 2000 == 1999: logger.info('[%d, %5d] validation loss: %.7f' % (self._current_epoch, i + 1, total_loss / (i + 1))) avg_loss = total_loss / len(self.valid_data_loader) self.valid_losses.append(avg_loss) logger.info("******valid loss at epoch %d: %.7f :" % (self._current_epoch, avg_loss)) all_outputs = np.vstack(all_outputs).reshape((-1)) all_labels = np.vstack(all_labels).reshape((-1)) score = self.score_function(all_outputs, all_labels) logger.info("******valid score at epoch %d: %.3f :" % (self._current_epoch, score)) self.valid_scores.append(score) def save_models(self): torch.save(self.model.state_dict(), self.save_name) logger.info("Checkpoint saved") class ModelWrapper(ABC): """ Wrap models to absorb difference of the libraries. It should inherit sklearn's estimator and transformer. """ def __init__(self, **kwargs): self.model = None super().__init__(**kwargs) @abstractmethod def predict(self, X: np.ndarray): return None @abstractmethod def train(self, **kwargs): return self @staticmethod def generate(model_type): if model_type == "lgb": return LgbWrapper() elif model_type == "mlp": return MLPWrapper() elif model_type == "sparse_mlp": return SparseMLPWrapper() else: raise ValueError("unknown model type: {}".format(model_type)) @staticmethod def split_train_validation(train_X, train_Y, train_size): train_size = int(len(train_X) * train_size) valid_X, valid_Y = train_X[train_size:], train_Y[train_size:] train_X, train_Y = train_X[:train_size], train_Y[:train_size] return train_X, valid_X, train_Y, valid_Y @staticmethod def to_x_y(df): def to_Y(df): return np.asarray(df.confidence) train_Y = to_Y(df=df) df.drop(["confidence"], axis=1, inplace=True) market_obs_ids = df[MARKET_ID] df.drop([MARKET_ID], axis=1, inplace=True) return train_Y, market_obs_ids @abstractmethod def create_dataset(self, market_train, features, train_batch_size, valid_batch_size): return None, None class MLPWrapper(ModelWrapper): def __init__(self, **kwargs): super().__init__(**kwargs) def predict(self, x: Union[np.ndarray, sparse.spmatrix]): logger.info("predicting %d samples...".format(x.shape[0])) self.model.eval() if sparse.issparse(x): x = x.todense() x = torch.from_numpy(x.astype("float32")) return self.model(x).detach().numpy().reshape((-1)) def train(self, **kwargs): classes = 1 model = BaseMLPClassifier( [{"in_features": self.train_data_loader.dataset.n_features, "out_features": 128, "bias": True}, {"in_features": 128, "out_features": 64, "bias": True}, {"in_features": 64, "out_features": 16, "bias": True}, {"in_features": 16, "out_features": classes, "bias": True}, ] ) def score_function(predicted, labels): return roc_auc_score(labels, predicted) optimizer_factory = lambda model: optim.Adam(model.parameters(), lr=1e-3, weight_decay=0.0001) trainer = BaseMLPTrainer(model, loss_function=nn.BCELoss(), score_function=score_function, optimizer_factory=optimizer_factory) trainer.train(self.train_data_loader, self.valid_data_loader, 50) self.model = model return self def create_dataset(self, market_train, features, train_batch_size, valid_batch_size): feature_names, market_obs_ids, market_train, labels = ModelWrapper.to_x_y(market_train) logger.info("concatenating train x....") market_train = market_train.astype("float32") if is_not_empty(features): features = features.astype("float32") market_train = sparse.hstack([market_train, features], format="csr") market_train, valid_matrix, labels, valid_labels, = ModelWrapper.split_train_validation( market_train, labels, train_size=0.8) logger.info("creating torch dataset....") market_train = market_train.astype("float32") valid_matrix = valid_matrix.astype("float32") self.train_data_loader = create_data_loader(market_train, labels, batch_size=train_batch_size, shuffle=True) self.valid_data_loader = create_data_loader(valid_matrix, valid_labels, batch_size=valid_batch_size, shuffle=True) logger.info("torch dataset is created!") return None, None class LgbWrapper(ModelWrapper): def __init__(self, **kwargs): super().__init__(**kwargs) @measure_time def train(self, **kwargs): hyper_params = {"objective": "binary", "boosting": "gbdt", "num_iterations": 500, "learning_rate": 0.2, "num_leaves": 2500, "num_threads": 2, "max_bin": 205, 'min_data_in_leaf': 210, "seed": RANDOM_SEED, "early_stopping_round": 10 } # ## train model = lgb.train(params=hyper_params, train_set=self.x, valid_sets=[self.valid_X]) for feature, imp in zip(model.feature_name(), model.feature_importance()): logger.info("{}: {}".format(feature, imp)) # del self.x del self.valid_X gc.collect() self.model = model return self def predict(self, X): return self.model.predict(X) def create_dataset(self, df, features, train_batch_size, valid_batch_size): y, self.market_obs_ids = ModelWrapper.to_x_y(df) train_size = 0.8 self.x, self.valid_X, y, valid_Y = ModelWrapper.split_train_validation( features, y, train_size ) self.x = lgb.Dataset(self.x, label=y, free_raw_data=False) self.valid_X = self.x.create_valid(self.valid_X, label=valid_Y) del valid_Y return None, None class Preprocess(object): def __init__(self): self.transformers = [] def fit_transform(self, df: pd.DataFrame): for new_col_name, transformer, col_name in self.transformers: if not new_col_name: new_col_name = col_name df[new_col_name] = transformer.fit_transform(to_2d_array(df[col_name])) return df def transform(self, df: pd.DataFrame): for new_col_name, transformer, col_name in self.transformers: if not new_col_name: new_col_name = col_name df[new_col_name] = transformer.transform(to_2d_array(df[col_name])) return df class MarketPreprocess(Preprocess): def __init__(self): super().__init__() transformers = [] if FeatureSetting.since is not None: transformers.append(DateFilterTransformer(FeatureSetting.since, "time")) transformers.extend([ IdAppender(MARKET_ID), ConfidenceAppender(), LagAggregationTransformer(lags=[3, 5, 10], shift_size=1, scale=True, n_pool=3) ]) self.pipeline: UnionFeaturePipeline = UnionFeaturePipeline( *transformers ) def fit_transform(self, df: pd.DataFrame): df = super().fit_transform(df) return self.pipeline.transform(df, include_sparse=False)[0] def transform(self, df: pd.DataFrame): df = super().transform(df) return self.pipeline.transform(df, include_sparse=False)[0] class NewsPreprocess(Preprocess): def __init__(self): super().__init__() transformers = [] if FeatureSetting.since is not None: transformers.append(DateFilterTransformer(FeatureSetting.since, "firstCreated")) transformers.append(IdAppender(NEWS_ID)) self.pipeline: UnionFeaturePipeline = UnionFeaturePipeline( *transformers ) def fit_transform(self, df: pd.DataFrame): df = super().fit_transform(df) return self.pipeline.transform(df, include_sparse=False)[0] def transform(self, df: pd.DataFrame): df = super().transform(df) return self.pipeline.transform(df, include_sparse=False)[0] class ReshapeInto2d(FunctionTransformer): def __init__(self, kw_args=None, inv_kw_args=None): validate = False inverse_func = None accept_sparse = False pass_y = 'deprecated' super().__init__(to_2d_array, inverse_func, validate, accept_sparse, pass_y, kw_args, inv_kw_args) def to_2d_array(x): array = x if isinstance(x, pd.Series): array = array.values if len(array.shape) == 1: array = array.reshape((-1, 1)) return array class LogTransformer(FunctionTransformer): def __init__(self, kw_args=None, inv_kw_args=None): validate = False inverse_func = None accept_sparse = False pass_y = 'deprecated' super().__init__(LogTransformer.to_log, inverse_func, validate, accept_sparse, pass_y, kw_args, inv_kw_args) @staticmethod def to_log(x): input_ = x # input_ = input_ return np.log1p(input_) class RavelTransformer(FunctionTransformer): def __init__(self, kw_args=None, inv_kw_args=None): validate = False inverse_func = None accept_sparse = False pass_y = 'deprecated' super().__init__(RavelTransformer.f, inverse_func, validate, accept_sparse, pass_y, kw_args, inv_kw_args) @staticmethod def f(x): return x.ravel() class TahnEstimators(BaseEstimator, TransformerMixin): """ refer https://stats.stackexchange.com/questions/7757/data-normalization-and-standardization-in-neural-networks https://stackoverflow.com/questions/43061120/tanh-estimator-normalization-in-python """ def __init__(self): self.std_ = None self.mean_ = None self.n_seen_samples = None def fit(self, X, y=None): self.mean_ = np.mean(X) self.std_ = np.std(X) return self def transform(self, X, copy=None): return 0.5 * (np.tanh(0.01 * (to_2d_array(X) - self.mean_) / self.std_) + 1) class Features(object): def __init__(self): self.market_transformer = MarketFeatureTransformer() self.news_transformer = NewsFeatureTransformer() def fit(self, market_train_df: pd.DataFrame, news_train_df: pd.DataFrame): self.market_transformer.fit(market_train_df) self.news_transformer.fit(news_train_df) logger.info("feature fitting has done") return self def transform(self, market_train_df: pd.DataFrame, news_train_df: pd.DataFrame): logger.info("transforming into feature") return self.market_transformer.transform(market_train_df), self.news_transformer.transform(news_train_df) def fit_transform(self, market_train_df: pd.DataFrame, news_train_df: pd.DataFrame): return self.fit(market_train_df, news_train_df).transform(market_train_df, news_train_df) def get_linked_feature_matrix(self, link_df, market_indices=None): # print(link_df) link_df, news_feature_matrix = self.news_transformer.post_link_transform(link_df) # return sparse.hstack([self.market_transformer.feature_matrix, news_feature_matrix], dtype="float32", # format="csr") # return sparse.hstack([self.market_transformer.feature_matrix, news_feature_matrix], dtype="uint8", # format="csr") if market_indices is None and isinstance(link_df, pd.DataFrame): market_indices = link_df[MARKET_ID].tolist() return np.hstack([self.market_transformer.feature_matrix[market_indices], news_feature_matrix]) def clear(self): self.market_transformer.clear() self.news_transformer.clear() def get_feature_num(self): return self.market_transformer.feature_matrix.shape[1] + self.news_transformer.feature_matrix.shape[1] def log_object_sizes(): for memory_info in ["{}: {}".format(v, sys.getsizeof(eval(v)) / 1000000000) for v in dir()]: logger.info(memory_info) class FeatureTransformer(metaclass=ABCMeta): @abstractmethod def transform(self, df): pass def fit(self, df): pass @abstractmethod def release_raw_field(self, df): pass def fit_transform(self, df): pass class NullTransformer(FeatureTransformer): def transform(self, df): pass def release_raw_field(self, df): pass class DfTransformer(FeatureTransformer): def transform(self, df): return df class DropColumnsTransformer(NullTransformer): def __init__(self, columns): self.columns = columns def transform(self, df): df.drop(self.columns, axis=1, inplace=True) gc.collect() class DateFilterTransformer(DfTransformer): def __init__(self, since_date, column="time"): self.since_date = since_date self.column = column def transform(self, df): df = df[df[self.column].dt.date >= self.since_date] return df def release_raw_field(self, df): pass # based on https://www.kaggle.com/qqgeogor/eda-script-67 class LagAggregationTransformer(DfTransformer): LAG_FEATURES = ['returnsClosePrevMktres10', 'returnsClosePrevRaw10', 'open', 'close'] def __init__(self, lags, shift_size, scale=True, remove_raw=False, n_pool=4): self.lags = lags self.shift_size = shift_size self.scale = scale if scale: self.scaler = None self.remove_raw = remove_raw self.imputer = None self.n_pool = n_pool @measure_time def transform(self, df, n_pool=None): if not n_pool: self.n_pool = n_pool df.sort_values(by="time", axis=0, inplace=True) logger.info("start extract lag...") group_features = [MARKET_ID, "time", "assetCode"] + self.LAG_FEATURES asset_code_groups = df[group_features].groupby("assetCode") asset_code_groups = [asset_code_group[1][group_features] for asset_code_group in asset_code_groups] with Pool(self.n_pool) as pool: group_dfs = pool.map(self.extract_lag, asset_code_groups) group_dfs = pd.concat(group_dfs) group_dfs.drop(["time", "assetCode"] + self.LAG_FEATURES, axis=1, inplace=True) df = df.merge(group_dfs, how="left", copy=False, on=MARKET_ID) new_columns = list(itertools.chain.from_iterable( [['%s_lag_%s_mean' % (col, lag), '%s_lag_%s_max' % (col, lag), '%s_lag_%s_min' % (col, lag)] for col, lag in itertools.product(self.LAG_FEATURES, self.lags)])) if self.remove_raw: df.drop(self.LAG_FEATURES, axis=1, inplace=True) for col in new_columns: df[col] = df[col].astype("float32") logger.info("Lag Aggregation has done") return df def extract_lag(self, asset_code_group): for col in self.LAG_FEATURES: for lag in self.lags: rolled = asset_code_group[col].shift(self.shift_size).rolling(window=lag) lag_mean = rolled.mean() lag_max = rolled.max() lag_min = rolled.min() # lag_std = rolled.std() asset_code_group['%s_lag_%s_mean' % (col, lag)] = lag_mean asset_code_group['%s_lag_%s_max' % (col, lag)] = lag_max asset_code_group['%s_lag_%s_min' % (col, lag)] = lag_min return asset_code_group def release_raw_field(self, df): pass def fit_transform(self, df): return self.transform(df) class IdAppender(DfTransformer): def __init__(self, id_name): super().__init__() self.id_name = id_name def transform(self, df): df[self.id_name] = df.index.astype("int32") return df def release_raw_field(self, df): pass def fit_transform(self, df): return self.transform(df) class ConfidenceAppender(DfTransformer): def transform(self, df): if NEXT_MKTRES_10 in df.columns: df["confidence"] = df[NEXT_MKTRES_10] >= 0 return df def release_raw_field(self, df): pass def fit_transform(self, df): return self.transform(df) class LimitMax(FunctionTransformer): def __init__(self, upper_limit, kw_args=None, inv_kw_args=None): validate = False inverse_func = None accept_sparse = False pass_y = 'deprecated' self.upper_limit = upper_limit super().__init__(self.f, inverse_func, validate, accept_sparse, pass_y, kw_args, inv_kw_args) def f(self, X, y=None): return np.where(X >= self.upper_limit, X, self.upper_limit).reshape((-1, 1)) class NullTransformer(FunctionTransformer): def __init__(self, kw_args=None, inv_kw_args=None): validate = False inverse_func = None accept_sparse = False pass_y = 'deprecated' super().__init__(self.f, inverse_func, validate, accept_sparse, pass_y, kw_args, inv_kw_args) def f(self, X, y=None): return X class WeekDayTransformer(FunctionTransformer): def __init__(self, kw_args=None, inv_kw_args=None): validate = False inverse_func = None accept_sparse = False pass_y = 'deprecated' super().__init__(self.f, inverse_func, validate, accept_sparse, pass_y, kw_args, inv_kw_args) def f(self, X, y=None): return np.cos(pd.Series(X).dt.dayofweek.values / 7).astype("float32").reshape((-1, 1)) class MonthTransformer(FunctionTransformer): def __init__(self, kw_args=None, inv_kw_args=None): validate = False inverse_func = None accept_sparse = False pass_y = 'deprecated' super().__init__(self.f, inverse_func, validate, accept_sparse, pass_y, kw_args, inv_kw_args) def f(self, X, y=None): return np.cos(pd.Series(X).dt.month.values / 12).astype("float32").reshape((-1, 1)) class DayTransformer(FunctionTransformer): def __init__(self, kw_args=None, inv_kw_args=None): validate = False inverse_func = None accept_sparse = False pass_y = 'deprecated' super().__init__(self.f, inverse_func, validate, accept_sparse, pass_y, kw_args, inv_kw_args) def f(self, X, y=None): return np.cos(pd.Series(X).dt.day.values / 31).astype("float32").reshape((-1, 1)) class MarketFeatureTransformer(DfTransformer): NUMERIC_COLUMNS = ['volume', 'close', 'open', 'returnsClosePrevRaw1', 'returnsOpenPrevRaw1', 'returnsClosePrevMktres1', 'returnsOpenPrevMktres1', 'returnsClosePrevRaw10', 'returnsOpenPrevRaw10', 'returnsClosePrevMktres10', 'returnsOpenPrevMktres10'] LAG_FEATURES = new_columns = list(itertools.chain.from_iterable( [['%s_lag_%s_mean' % (col, lag), '%s_lag_%s_max' % (col, lag), '%s_lag_%s_min' % (col, lag)] for col, lag in itertools.product( ['returnsClosePrevMktres10', 'returnsClosePrevRaw10', 'open', 'close'], [3, 5, 10])])) LABEL_OBJECT_FIELDS = ['assetName'] DROP_COLS = ['universe', "returnsOpenNextMktres10"] TIME_COLS = ['time'] def __init__(self): transformers = [] # transformers.extend([ # (col, # Pipeline([ # ("log", LogTransformer()), # ("normalize", StandardScaler(copy=False)), # ("fill_missing", SimpleImputer(strategy="median"))]), # [col]) for col in set(self.COLUMNS_SCALED) & set(self.LOG_NORMAL_FIELDS) # ]) scaled_columns = self.NUMERIC_COLUMNS if FeatureSetting.max_shift_date > 0: scaled_columns.extend(self.LAG_FEATURES) transformers.extend( [ (col, Pipeline([ # ("normalize", StandardScaler(copy=False)), ("fill_missing", SimpleImputer(strategy="median"))]), # ("discrete", KBinsDiscretizer(n_bins=10, encode="onehot", strategy="quantile"))]), [col]) for col in scaled_columns ] ) transformers.extend( [ ("time_week", WeekDayTransformer(), self.TIME_COLS[0]), ("time_month", MonthTransformer(), self.TIME_COLS[0]), ("time_day", DayTransformer(), self.TIME_COLS[0]) ] ) # transformers.extend( # [(col + "bow", # Pipeline([ # ("fill_missing", SimpleImputer(strategy="constant", fill_value="")), # ('flatten', RavelTransformer()), # ("encode", CountVectorizer(decode_error="ignore", # stop_words=None, # strip_accents="unicode", # max_features=100, # min_df=30, # binary=True)) # ]), [col]) for col in self.LABEL_OBJECT_FIELDS]), self.encoder: ColumnTransformer = ColumnTransformer(transformers=transformers) self.feature_matrix = None def transform(self, df): self.feature_matrix = self.encoder.transform(df).astype("float32") # self.feature_matrix = self.feature_matrix self.release_raw_field(df) return df def fit(self, df): self.encoder.fit(df) return self def fit_transform(self, df): return self.fit(df).transform(df) def release_raw_field(self, df: pd.DataFrame): drop_cols = list \ (set(self.NUMERIC_COLUMNS + self.LABEL_OBJECT_FIELDS)) for col in self.DROP_COLS: if col in df.columns: drop_cols.append(col) df.drop(drop_cols, axis=1, inplace=True) gc.collect() def clear(self): self.feature_matrix = None gc.collect() class NewsFeatureTransformer(DfTransformer): RAW_COLS = ['relevance', 'sentimentNegative', 'sentimentNeutral', 'sentimentPositive', 'marketCommentary'] LOG_NORMAL_FIELDS = [ 'bodySize', 'sentenceCount', 'wordCount', 'sentimentWordCount', 'noveltyCount12H', 'noveltyCount24H', 'noveltyCount3D', 'noveltyCount5D', 'noveltyCount7D', 'volumeCounts12H', 'volumeCounts24H', 'volumeCounts3D', 'volumeCounts5D', 'volumeCounts7D'] COLUMNS_SCALED = [ 'takeSequence', 'bodySize', 'companyCount', 'sentenceCount', 'wordCount', 'sentimentWordCount', 'noveltyCount12H', 'noveltyCount24H', 'noveltyCount3D', 'noveltyCount5D', 'noveltyCount7D', 'volumeCounts12H', 'volumeCounts24H', 'volumeCounts3D', 'volumeCounts5D', 'volumeCounts7D'] LABEL_COLS = ["sentimentClass", "provider", "urgency"] FIRST_MENTION_SENTENCE = "firstMentionSentence" BOW_COLS = ["headline"] MULTI_LABEL_COLS = ["subjects", "audiences"] LABEL_OBJECT_FIELDS = ['headlineTag'] DROP_COLS = ['time', 'sourceId', 'sourceTimestamp', "assetName"] NUMERIC_COLS = list(set(RAW_COLS + LOG_NORMAL_FIELDS + COLUMNS_SCALED)) NUMERIC_COL_INDICES = list(range(len(NUMERIC_COLS))) N_NUMERIC_COLS = len(NUMERIC_COLS) def __init__(self): transformers = [] transformers.extend( [ ( col, "passthrough", # KBinsDiscretizer(n_bins=10, encode="onehot", strategy="quantile"), [col] ) for col in self.RAW_COLS ] ) transformers.extend([ (col, Pipeline([ ("log", LogTransformer()), ("normalize", StandardScaler(copy=False)), ("fill_missing", SimpleImputer(strategy="median"))]), # ("discrete", KBinsDiscretizer(n_bins=10, encode="onehot", strategy="quantile"))]), [col]) for col in set(self.COLUMNS_SCALED) & set(self.LOG_NORMAL_FIELDS) ]) transformers.extend( [ (col, Pipeline([ ("normalize", StandardScaler(copy=False)), ("fill_missing", SimpleImputer(strategy="median"))]), # ("discrete", KBinsDiscretizer(n_bins=10, encode="onehot", strategy="quantile"))]), [col]) for col in set(self.COLUMNS_SCALED) - set(self.LOG_NORMAL_FIELDS) ] ) delay_transformers = [] delay_transformers.extend([ (col, OneHotEncoder(sparse=True, handle_unknown='ignore', dtype='uint8'), [col]) for col in self.LABEL_COLS]) delay_transformers.append( (self.FIRST_MENTION_SENTENCE, Pipeline( [("limitMax", LimitMax(4)), ("encoder", OneHotEncoder(sparse=True, handle_unknown='ignore', dtype='uint8'))]), [self.FIRST_MENTION_SENTENCE]) ) # transformers.extend( # [(col + "bow", # Pipeline([ # ("fill_missing", SimpleImputer(strategy="constant", fill_value="")), # ('flatten', RavelTransformer()), # ("encode", CountVectorizer(decode_error="ignore", # stop_words="english", # strip_accents="unicode", # max_features=2000, # binary=True, dtype="uint8")) # ]), [col]) for col in self.BOW_COLS]), delay_transformers.extend( [(col, CountVectorizer(decode_error="ignore", strip_accents="unicode", min_df=5, max_features=2000, binary=True, dtype="uint8"), col) for col in self.MULTI_LABEL_COLS]) delay_transformers.extend( [(col, Pipeline([ ("fill_missing", SimpleImputer(strategy="constant", fill_value="UNKNOWN")), ("encoder", OneHotEncoder(sparse=True, handle_unknown='ignore', dtype='uint8')) ]), [col]) for col in self.LABEL_OBJECT_FIELDS] ) self.encoder: ColumnTransformer = ColumnTransformer(transformers=transformers) self.delay_encoder: ColumnTransformer = ColumnTransformer(transformers=delay_transformers) self.feature_matrix = None self.store_df: pd.DataFrame = None self.n_delay_features = None def transform(self, df): self.feature_matrix = self.encoder.transform(df).astype("float32") # self.feature_matrix = self.feature_matrix.tocsr() self.store_df = df[ self.LABEL_COLS + [self.FIRST_MENTION_SENTENCE] + self.MULTI_LABEL_COLS + self.LABEL_OBJECT_FIELDS] self.release_raw_field(df) return df def fit(self, df): self.encoder.fit(df) self.delay_encoder.fit(df) self.n_delay_features = self._get_delay_faeture_num() return self def fit_transform(self, df): return self.fit(df).transform(df) def release_raw_field(self, df): drop_cols = list \ (set(self.RAW_COLS + [self.FIRST_MENTION_SENTENCE] + self.LABEL_COLS + self.MULTI_LABEL_COLS + self.BOW_COLS + self.LOG_NORMAL_FIELDS + self.LABEL_OBJECT_FIELDS + self.COLUMNS_SCALED + self.DROP_COLS)) df.drop(drop_cols, axis=1, inplace=True) gc.collect() def clear(self): self.feature_matrix = None self.store_df = None self.n_delay_features = None gc.collect() # @measure_time def aggregate(self, list_of_indices, pool_size=4, binary=True): self.encoded_cols_indices = list(range(self.N_NUMERIC_COLS, self.feature_matrix.shape[1])) # print(list_of_indices) # with Pool(pool_size) as pool: # list_of_indices = pool.map(self.get_partial_agg, list_of_indices) list_of_indices = [self.get_partial_agg(indices) for indices in list_of_indices] # list_of_indices = sparse.csr_matrix(np.vstack(list_of_indices), dtype="float32") # list_of_indices = sparse.csr_matrix(np.vstack(list_of_indices), dtype="uint8") # list_of_indices = np.vstack(list_of_indices) list_of_indices = sparse.vstack(list_of_indices, dtype="float32", format="csr") # if binary: # rows[rows != 0] = 1 return list_of_indices def _get_delay_faeture_num(self): total = 0 for transfomer_tuple in self.delay_encoder.transformers: transfomer = transfomer_tuple[1] if isinstance(transfomer, CountVectorizer): total += len(transfomer.vocabulary) elif isinstance(transfomer, OneHotEncoder): total += len(transfomer.categories) elif isinstance(transfomer, Pipeline): total += len(transfomer.named_steps["encoder"].categories) return total def get_partial_agg(self, ids): if not isinstance(ids, list) or np.isnan(ids[0]): # empty_feature = np.zeros((1, self.feature_matrix.shape[1] + ), dtype="float32") empty_feature = sparse.csr_matrix((1, self.feature_matrix.shape[1] + self.n_delay_features), dtype="float32") # empty_feature = np.zeros((1, self.feature_matrix.shape[1]), dtype="uint8") return empty_feature # numeric_partial = self.feature_matrix[ids][:, self.NUMERIC_COL_INDICES].mean(axis=0) # encoded_partial = self.feature_matrix[ids][:, self.encoded_cols_indices].sum(axis=0) # encoded_partial = self.feature_matrix[ids].sum(axis=0) # encoded_partial[encoded_partial != 0] = 1 return sparse.hstack([self.feature_matrix[[int(id) for id in ids], :].mean(axis=0).reshape((1, -1)), self.delay_encoder.transform(self.store_df.iloc[ids]).sum(axis=0).reshape((1, -1))], dtype="float32") def post_link_transform(self, links): if isinstance(links, pd.DataFrame): aggregate_feature = self.aggregate(links[NEWS_ID].tolist()) links.drop(NEWS_ID, axis=1, inplace=True) else: aggregate_feature = self.aggregate(links) return links, aggregate_feature class TfDataGenerator(Sequence): def __init__(self, list_of_indices, features: Features, labels, batch_size=200): self.list_of_indices = list_of_indices # print(list_of_indices) self.features = features self.labels = labels self.batch_size = batch_size self.n_samples = len(self.list_of_indices) self.n_batches = self.n_samples // self.batch_size + int(bool(self.n_samples % self.batch_size)) self._current_batch_num = 0 def __len__(self): return self.n_batches def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch start = index * self.batch_size if index < self.n_batches - 1: end = (index + 1) * self.batch_size return self.features.get_linked_feature_matrix( self.list_of_indices[start:end], market_indices=list(range(start, end))), self.labels[start:end] # index += 1 else: return self.features.get_linked_feature_matrix(self.list_of_indices[start:], market_indices=list( range(start, len(self.list_of_indices)))), \ self.labels[start:] # index = 0 def on_epoch_end(self): pass class SparseMLPWrapper(ModelWrapper): def __init__(self, **kwargs): super().__init__(**kwargs) self.train_data_generator: TfDataGenerator = None self.valid_data_generator: TfDataGenerator = None def predict(self, x: Union[np.ndarray, sparse.spmatrix]): self.model = keras.models.load_model("mlp.model.h5") logger.info("predicting %d samples...".format(x.shape[0])) return self.model.predict(x) def train(self, sparse_input=False, **kwargs): input_ = keras.layers.Input(shape=(self.train_data_generator.features.get_feature_num(),), sparse=sparse_input, dtype="float32") x = keras.layers.Dense(192, activation='relu', kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l1_l2(1e-4, 1e-3))(input_) x = keras.layers.Dropout(0.4)(x) x = keras.layers.Dense(64, activation='relu', kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l1_l2(1e-4, 1e-3))(x) x = keras.layers.Dropout(0.3)(x) x = keras.layers.Dense(64, activation='relu', kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l1_l2(1e-4, 1e-3))(x) x = keras.layers.Dropout(0.2)(x) output_ = keras.layers.Dense(1, activation="softmax", kernel_initializer='lecun_normal')(x) self.model = keras.Model(inputs=input_, outputs=output_) self.model.summary() checkpointer = ModelCheckpoint(filepath="mlp.model.h5", verbose=1, save_best_only=True) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1, mode='auto') self.model.compile( loss='binary_crossentropy', optimizer=keras.optimizers.Adam(lr=2e-2, decay=0.001), metrics=["accuracy"] ) self.model.fit_generator(self.train_data_generator, self.train_data_generator.n_batches, epochs=50, validation_data=self.valid_data_generator, validation_steps=self.valid_data_generator.n_batches, verbose=0, callbacks=[checkpointer, early_stopping], shuffle=True) def create_dataset(self, market_train, features, train_batch_size, valid_batch_size): y, _ = ModelWrapper.to_x_y(market_train) # print(market_train[NEWS_ID]) list_of_indices = market_train[NEWS_ID].tolist() list_of_indices, valid_indices, y, valid_y = ModelWrapper.split_train_validation(list_of_indices, y, train_size=0.8) self.train_data_generator = TfDataGenerator(list_of_indices, features, y, batch_size=train_batch_size) self.valid_data_generator = TfDataGenerator(valid_indices, features, valid_y, batch_size=valid_batch_size) return None, None def clear(self): self.train_data_generator = None self.valid_data_generator = None gc.collect() class Predictor(object): def __init__(self, linker, model, features, market_preprocess, news_preprocess): self.linker = linker self.model = model self.features: Features = features self.market_preprocess = market_preprocess self.news_preprocess = news_preprocess def predict_all(self, days, env): logger.info("=================prediction start ===============") stored_market_df = None stored_news_df = None max_time = None predict_start_id = 0 def store_past_data(market_df, news_df, max_store_date=0): nonlocal stored_market_df nonlocal stored_news_df nonlocal predict_start_id if stored_market_df is None or max_store_date == 0: stored_market_df = market_df stored_news_df = news_df predict_start_id = 0 return nonlocal max_time max_time = market_df["time"].max() min_time = max_time - offsets.Day(max_store_date) stored_market_df = stored_market_df[stored_market_df["time"] >= min_time] stored_news_df = stored_news_df[stored_news_df["firstCreated"] >= min_time] predict_start_id = len(stored_market_df) stored_market_df = pd.concat([stored_market_df, market_df], axis=0, ignore_index=True) stored_news_df =
pd.concat([stored_news_df, news_df], axis=0, ignore_index=True)
pandas.concat
from analytic_types.segment import Segment import utils import unittest import numpy as np import pandas as pd import math import random RELATIVE_TOLERANCE = 1e-1 class TestUtils(unittest.TestCase): #example test for test's workflow purposes def test_segment_parsion(self): self.assertTrue(True) def test_confidence_all_normal_value(self): segment = [1, 2, 0, 6, 8, 5, 3] utils_result = utils.find_confidence(segment)[0] result = 4.0 self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE)) def test_confidence_all_nan_value(self): segment = [np.nan, np.nan, np.nan, np.nan] self.assertEqual(utils.find_confidence(segment)[0], 0) def test_confidence_with_nan_value(self): data = [np.nan, np.nan, 0, 8] utils_result = utils.find_confidence(data)[0] result = 4.0 self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE)) def test_interval_all_normal_value(self): data = [1, 2, 1, 2, 4, 1, 2, 4, 5, 6] data = pd.Series(data) center = 4 window_size = 2 result = [1, 2, 4, 1, 2] self.assertEqual(list(utils.get_interval(data, center, window_size)), result) def test_interval_wrong_ws(self): data = [1, 2, 4, 1, 2, 4] data = pd.Series(data) center = 3 window_size = 6 result = [1, 2, 4, 1, 2, 4] self.assertEqual(list(utils.get_interval(data, center, window_size)), result) def test_subtract_min_without_nan(self): segment = [1, 2, 4, 1, 2, 4] segment = pd.Series(segment) result = [0, 1, 3, 0, 1, 3] utils_result = list(utils.subtract_min_without_nan(segment)) self.assertEqual(utils_result, result) def test_subtract_min_with_nan(self): segment = [np.nan, 2, 4, 1, 2, 4] segment = pd.Series(segment) result = [2, 4, 1, 2, 4] utils_result = list(utils.subtract_min_without_nan(segment)[1:]) self.assertEqual(utils_result, result) def test_get_convolve(self): data = [1, 2, 3, 2, 2, 0, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 3, 2, 0] data = pd.Series(data) pattern_index = [2, 8, 15] window_size = 2 av_model = [1, 2, 3, 2, 1] result = [] self.assertNotEqual(utils.get_convolve(pattern_index, av_model, data, window_size), result) def test_get_convolve_with_nan(self): data = [1, 2, 3, 2, np.nan, 0, 2, 3, 4, np.nan, 2, 1, 1, 2, 3, 4, 3, np.nan, 0] data = pd.Series(data) pattern_index = [2, 8, 15] window_size = 2 av_model = [1, 2, 3, 2, 1] result = utils.get_convolve(pattern_index, av_model, data, window_size) for val in result: self.assertFalse(np.isnan(val)) def test_get_convolve_empty_data(self): data = [] pattern_index = [] window_size = 2 window_size_zero = 0 av_model = [] result = [] self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size), result) self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size_zero), result) def test_find_jump_parameters_center(self): segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] segment = pd.Series(segment) jump_center = [10, 11] self.assertIn(utils.find_pattern_center(segment, 0, 'jump'), jump_center) def test_find_jump_parameters_height(self): segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] segment = pd.Series(segment) jump_height = [3.5, 4] self.assertGreaterEqual(utils.find_parameters(segment, 0, 'jump')[0], jump_height[0]) self.assertLessEqual(utils.find_parameters(segment, 0, 'jump')[0], jump_height[1]) def test_find_jump_parameters_length(self): segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] segment = pd.Series(segment) jump_length = 2 self.assertEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_length) def test_find_drop_parameters_center(self): segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] segment = pd.Series(segment) drop_center = [14, 15, 16] self.assertIn(utils.find_pattern_center(segment, 0, 'drop'), drop_center) def test_find_drop_parameters_height(self): segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] segment = pd.Series(segment) drop_height = [3.5, 4] self.assertGreaterEqual(utils.find_parameters(segment, 0, 'drop')[0], drop_height[0]) self.assertLessEqual(utils.find_parameters(segment, 0, 'drop')[0], drop_height[1]) def test_find_drop_parameters_length(self): segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] segment = pd.Series(segment) drop_length = 2 self.assertEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_length) def test_get_av_model_empty_data(self): patterns_list = [] result = [] self.assertEqual(utils.get_av_model(patterns_list), result) def test_get_av_model_normal_data(self): patterns_list = [[1, 1, 1], [2, 2, 2],[3,3,3]] result = [2.0, 2.0, 2.0] self.assertEqual(utils.get_av_model(patterns_list), result) def test_find_jump_nan_data(self): data = [np.nan, np.nan, np.nan, np.nan] data = pd.Series(data) length = 2 height = 3 length_zero = 0 height_zero = 0 result = [] self.assertEqual(utils.find_jump(data, height, length), result) self.assertEqual(utils.find_jump(data, height_zero, length_zero), result) def test_find_drop_nan_data(self): data = [np.nan, np.nan, np.nan, np.nan] data = pd.Series(data) length = 2 height = 3 length_zero = 0 height_zero = 0 result = [] self.assertEqual(utils.find_drop(data, height, length), result) self.assertEqual(utils.find_drop(data, height_zero, length_zero), result) def test_get_distribution_density(self): segment = [1, 1, 1, 3, 5, 5, 5] segment = pd.Series(segment) result = (3, 5, 1) self.assertEqual(utils.get_distribution_density(segment), result) def test_get_distribution_density_right(self): data = [1.0, 5.0, 5.0, 4.0] data = pd.Series(data) median = 3.0 max_line = 5.0 min_line = 1.0 utils_result = utils.get_distribution_density(data) self.assertTrue(math.isclose(utils_result[0], median, rel_tol = RELATIVE_TOLERANCE)) self.assertTrue(math.isclose(utils_result[1], max_line, rel_tol = RELATIVE_TOLERANCE)) self.assertTrue(math.isclose(utils_result[2], min_line, rel_tol = RELATIVE_TOLERANCE)) def test_get_distribution_density_left(self): data = [1.0, 1.0, 2.0, 1.0, 5.0] data = pd.Series(data) median = 3.0 max_line = 5.0 min_line = 1.0 utils_result = utils.get_distribution_density(data) self.assertTrue(math.isclose(utils_result[0], median, rel_tol = RELATIVE_TOLERANCE)) self.assertTrue(math.isclose(utils_result[1], max_line, rel_tol = RELATIVE_TOLERANCE)) self.assertTrue(math.isclose(utils_result[2], min_line, rel_tol = RELATIVE_TOLERANCE)) def test_get_distribution_density_short_data(self): data = [1.0, 5.0] data = pd.Series(data) segment = [1.0] segment = pd.Series(segment) utils_result_data = utils.get_distribution_density(data) utils_result_segment = utils.get_distribution_density(segment) self.assertEqual(len(utils_result_data), 3) self.assertEqual(utils_result_segment, (0, 0, 0)) def test_get_distribution_density_with_nans(self): segment = [np.NaN, 1, 1, 1, np.NaN, 3, 5, 5, 5, np.NaN] segment = pd.Series(segment) result = (3, 5, 1) self.assertEqual(utils.get_distribution_density(segment), result) def test_find_pattern_jump_center(self): data = [1.0, 1.0, 1.0, 5.0, 5.0, 5.0] data = pd.Series(data) median = 3.0 result = 3 self.assertEqual(result, utils.find_pattern_center(data, 0, 'jump')) def test_get_convolve_wrong_index(self): data = [1.0, 5.0, 2.0, 1.0, 6.0, 2.0] data = pd.Series(data) segemnts = [1, 11] av_model = [0.0, 4.0, 0.0] window_size = 1 try: utils.get_convolve(segemnts, av_model, data, window_size) except ValueError: self.fail('Method get_convolve raised unexpectedly') def test_get_av_model_for_different_length(self): patterns_list = [[1.0, 1.0, 2.0], [4.0, 4.0], [2.0, 2.0, 2.0], [3.0, 3.0], []] try: utils.get_av_model(patterns_list) except ValueError: self.fail('Method get_convolve raised unexpectedly') def test_find_nan_indexes(self): data = [1, 1, 1, 0, 0, np.nan, None, []] data = pd.Series(data) result = [5, 6] self.assertEqual(utils.find_nan_indexes(data), result) def test_find_nan_indexes_normal_values(self): data = [1, 1, 1, 0, 0, 0, 1, 1] data = pd.Series(data) result = [] self.assertEqual(utils.find_nan_indexes(data), result) def test_find_nan_indexes_empty_values(self): data = [] result = [] self.assertEqual(utils.find_nan_indexes(data), result) def test_create_correlation_data(self): data = [random.randint(10, 999) for _ in range(10000)] data = pd.Series(data) pattern_model = [100, 200, 500, 300, 100] ws = 2 result = 6000 corr_data = utils.get_correlation_gen(data, ws, pattern_model) corr_data = list(corr_data) self.assertGreaterEqual(len(corr_data), result) def test_inverse_segment(self): data = pd.Series([1,2,3,4,3,2,1]) result = pd.Series([3,2,1,0,1,2,3]) utils_result = utils.inverse_segment(data) for ind, val in enumerate(utils_result): self.assertEqual(val, result[ind]) def test_get_end_of_segment_equal(self): data = pd.Series([5,4,3,2,1,0,0,0]) result_list = [4, 5, 6] self.assertIn(utils.get_end_of_segment(data, False), result_list) def test_get_end_of_segment_greater(self): data = pd.Series([5,4,3,2,1,0,1,2,3]) result_list = [4, 5, 6] self.assertIn(utils.get_end_of_segment(data, False), result_list) def test_get_borders_of_peaks(self): data =
pd.Series([1,0,1,2,3,2,1,0,0,1,2,3,4,3,2,2,1,0,1,2,3,4,5,3,2,1,0])
pandas.Series
"""Normal-reciprocal functionality """ import pandas as pd import numpy as np def _first(x): """return the first item of the supplied Series""" return x.iloc[0] def average_repetitions(df, keys_mean): """average duplicate measurements. This requires that IDs and norrec labels were assigned using the *assign_norrec_to_df* function. Parameters ---------- df DataFrame keys_mean: list list of keys to average. For all other keys the first entry will be used. """ if 'norrec' not in df.columns: raise Exception( 'The "norrec" column is required for this function to work!' ) # Get column order to restore later cols = list(df.columns.values) keys_keep = list(set(df.columns.tolist()) - set(keys_mean)) agg_dict = {x: _first for x in keys_keep} agg_dict.update({x: np.mean for x in keys_mean}) for key in ('id', 'timestep', 'frequency', 'norrec'): if key in agg_dict: del(agg_dict[key]) # print(agg_dict) # average over duplicate measurements extra_dimensions_raw = ['id', 'norrec', 'frequency', 'timestep'] extra_dimensions = [x for x in extra_dimensions_raw if x in df.columns] df = df.groupby(extra_dimensions).agg(agg_dict) df.reset_index(inplace=True) return df[cols] def compute_norrec_differences(df, keys_diff): """DO NOT USE ANY MORE - DEPRECIATED! """ raise Exception('This function is depreciated!') print('computing normal-reciprocal differences') # df.sort_index(level='norrec') def norrec_diff(x): """compute norrec_diff""" if x.shape[0] != 2: return np.nan else: return np.abs(x.iloc[1] - x.iloc[0]) keys_keep = list(set(df.columns.tolist()) - set(keys_diff)) agg_dict = {x: _first for x in keys_keep} agg_dict.update({x: norrec_diff for x in keys_diff}) for key in ('id', 'timestep', 'frequency'): if key in agg_dict: del(agg_dict[key]) # for frequencies, we could (I think) somehow prevent grouping by # frequencies... df = df.groupby(('timestep', 'frequency', 'id')).agg(agg_dict) # df.rename(columns={'r': 'Rdiff'}, inplace=True) df.reset_index() return df def _normalize_abmn(abmn): """return a normalized version of abmn """ abmn_2d = np.atleast_2d(abmn) abmn_normalized = np.hstack(( np.sort(abmn_2d[:, 0:2], axis=1), np.sort(abmn_2d[:, 2:4], axis=1), )) return abmn_normalized def assign_norrec_to_df(df): """Determine normal-reciprocal pairs for a given dataframe. Parameters ---------- df: pandas.DataFrame The data Returns ------- df_new: pandas.DataFrame The data with two new columns: "id" and "norrec" """ if df.shape[0] == 0: # empty dataframe, just return a copy return df.copy() c = df[['a', 'b', 'm', 'n']].values.copy() # unique injections cu = np.unique(c, axis=0) print('generating ids') # now assign unique IDs to each config in normal and reciprocal running_index = 0 normal_ids = {} reciprocal_ids = {} # loop through all configurations for i in range(0, cu.shape[0]): # print('testing', cu[i], i, cu.shape[0]) # normalize configuration cu_norm = _normalize_abmn(cu[i, :]).squeeze() if tuple(cu_norm) in normal_ids: # print('already indexed') continue # find pairs indices = np.where(( # current electrodes ( ( (cu[:, 0] == cu[i, 2]) & (cu[:, 1] == cu[i, 3]) ) | ( (cu[:, 0] == cu[i, 3]) & (cu[:, 1] == cu[i, 2]) ) ) & # voltage electrodes ( ( (cu[:, 2] == cu[i, 0]) & (cu[:, 3] == cu[i, 1]) ) | ( (cu[:, 2] == cu[i, 1]) & (cu[:, 3] == cu[i, 0]) ) ) ))[0] # we found no pair if len(indices) == 0: # print('no reciprocals, continuing') if not tuple(cu_norm) in normal_ids: if np.min(cu_norm[0:2]) < np.min(cu_norm[2:3]): # treat as normal normal_ids[tuple(cu_norm)] = running_index else: reciprocal_ids[tuple(cu_norm)] = running_index running_index += 1 continue # if len(indices) > 1: # print('found more than one reciprocals') # normalize the first reciprocal cu_rec_norm = _normalize_abmn(cu[indices[0], :]).squeeze() # decide on normal or reciprocal # print('ABREC', cu_norm[0:2], cu_rec_norm[0:2]) if np.min(cu_norm[0:2]) < np.min(cu_rec_norm[0:2]): # print('is normal') # normal normal_ids[tuple(cu_norm)] = running_index reciprocal_ids[tuple(cu_rec_norm)] = running_index else: normal_ids[tuple(cu_rec_norm)] = running_index reciprocal_ids[tuple(cu_norm)] = running_index running_index += 1 print('assigning ids') # print(df.shape) # print(df.columns) # print('normal_ids', normal_ids) # print('reciprocal_ids', reciprocal_ids) # now convert the indices into a dataframe so we can use pd.merge # note that this code was previously written in another way, so the # conversion is quite cumbersome # at one point we need to rewrite everything here... df_nor = {item: key for key, item in normal_ids.items()} df_nor = pd.DataFrame(df_nor).T.reset_index().rename( {'index': 'id'}, axis=1) df_nor['norrec'] = 'nor' if len(normal_ids) > 0: df_nor.columns = ('id', 'a', 'b', 'm', 'n', 'norrec') df_nor2 = df_nor.copy() df_nor2.columns = ('id', 'b', 'a', 'm', 'n', 'norrec') df_nor3 = df_nor.copy() df_nor3.columns = ('id', 'b', 'a', 'n', 'm', 'norrec') df_nor4 = df_nor.copy() df_nor4.columns = ('id', 'a', 'b', 'n', 'm', 'norrec') df_ids = pd.concat( ( df_nor, df_nor2, df_nor3, df_nor4, ), sort=True ) else: df_ids = pd.DataFrame() if len(reciprocal_ids) > 0: df_rec = {item: key for key, item in reciprocal_ids.items()} df_rec =
pd.DataFrame(df_rec)
pandas.DataFrame
import os import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from mpl_toolkits.axes_grid1 import make_axes_locatable from sklearn.preprocessing import MinMaxScaler # set ggplot style plt.style.use('ggplot') sns.set_style("whitegrid") mpl.rcParams.update({'font.size': 24}) pd.set_option('display.max_colwidth', None) pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) class ProjectStatus(object): def __init__(self, project_dir, project): self.project_dir = project_dir self.project = project self.scaler = MinMaxScaler() def update_project(self, project_dir, project): self.project_dir = project_dir self.project = project def _faults_column_attribute(self, df): return 'NumErrors' if 'NumErrors' in df.columns else 'Verdict' def get_summary(self): def get_sparline(dataframe): # Sparklines sparklines = "\\sparkspike 0 0" # Workaround for variants without failures if len(dataframe) > 1: scaled_values = self.scaler.fit_transform(dataframe) # sparklines = f' '.join([f"\\sparkspike {i[0]} {i[1]}" for i in scaled_values]) sparklines = f' '.join([f"{i[0]} {i[1]}" for i in scaled_values]) # return "\\begin{sparkline}{15} " + os.linesep + sparklines + os.linesep + " \\end{sparkline}" return "\\begin{sparkline}{15} " + "\\spark " + sparklines + " / \\end{sparkline}" return "" summary_cols = ["Name", "Period", "Builds", "Faults", "FaultsByCycle", "Tests", "Volatility", "Duration", "Interval"] summary =
pd.DataFrame(columns=summary_cols)
pandas.DataFrame