prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" """ from lists_and_dicts import * from methods_and_classes import * import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import ticker import seaborn as sns # global parameters pd.options.display.float_format = '{:,.2f}'.format plt.style.use('my_style') stock = pd.read_csv('data/stock_transactions.csv') new = stock['alt_product_group & cc'].str.split(n=0, expand=True) stock['cc'] = new[0] stock['alternate_product_group'] = new[1] stock['cost_value'] = stock['unit_cost'] * stock['quantity'] stock = stock.drop(columns=['alt_product_group & cc']) num_invalid_apg = pd.isnull(stock['alternate_product_group']).sum() print(f'You have {num_invalid_apg} records after the preprocessing where you find invalid "alternate_product_group"') num_invalid_cc = pd.isnull(pd.to_numeric(stock['cc'], errors='coerce')).sum() print(f'You have {num_invalid_cc} records after the preprocessing where you find invalid "cc"') # transaction type 1: debit raw materials chemical_sum = summarise_stock(stock, 1, 48, '50', 'quantity', np.sum) oil_sum = summarise_stock(stock, 1, 40, '55', 'quantity', np.sum) plastics_sum = summarise_stock(stock, 1, 60, '60', 'quantity', np.sum) paper_sum = summarise_stock(stock, 1, 41, '80', 'quantity', np.sum) tuffa_sum = summarise_stock(stock, 1, 51, '85', 'quantity', np.sum) # concatenate raw_mats_one =
pd.DataFrame()
pandas.DataFrame
from T2GEORES import geometry as geometry import numpy as np import re as re import subprocess import datetime import matplotlib.pyplot as plt import matplotlib.patches as mpatches import shutil import os import itertools import json import shapefile import pylab as plb import math import sys from scipy.spatial import ConvexHull from scipy.interpolate import griddata from scipy.spatial.distance import cdist from scipy.spatial import cKDTree import pandas as pd from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,AutoMinorLocator) import pyvista as pv import vtk import sqlite3 import geopandas as gpd import string from lloydRelax import Field class py2amesh: """It creates a mesh based on well positions and irregular blocks The main characteristics are: -It generates the mesh based on defined boundaries -The inner section is called wellfield and can contain elements with hexagonal or square shape -The wellfield can be delimited by a shapefile or by fixed squared boundaries. -It allows to generates elements along a line to represent structures. -The voronoi elements are generated by AMESH. -The elements name cannot contain two consecutive zeros. -The well blocks are the first on the list -It creates the input files to work on Steinar (RockEditor) -It can export a defined layer on a shapefile format -It can plot a selected layer (It is recommended to use the function plot_voronoi() to plot) -Two json file are generated with the correlative block for each well, from which can be track during all the modelling steps. Parameters ---------- filename : str File name with well feedzone location filepath : str Path of input files Xmin : float Minimun X coordinates for the grid Xmax : float Maximun X coordinates for the grid Ymin : float Minimun Y coordinates for the grid Ymax : float Maximun Y coordinates for the grid toler : float AMESH parameter layers : dictionary Name (correlative) and thickness of every layer on the model, keyword on input_dictionary layer_to_plot : int In case it is specified a voronoi plot will be performed x_space : float Horizontal distance between elements for the outerfield y_space : float Vertical distance between elements for the outerfield radius_criteria: float Minimun distance between well location and a regular element x_from_boarder: float Horizontal distance from the first element to the east border y_from_boarder: float Vertical distance from the first element to the south border x_gap_min: float Minimun X coordinates on the grid for the well field x_gap_max: float Maximun X coordinates on the grid for the well field x_gap_space: float Horizontal distance between elements for the farfield y_gap_min: float Minimun Y coordinates on the grid for the well field o y_gap_max: float Maximun X coordinates on the grid for the well field y_gap_space: float Vertical distance between elements for the farfield plot_names: bool If true it plots the name of the blocks from the selected layer to plot plot_centers: bool If true it plots the centers of the blocks from the selected layer to plot z0_level: float Reference level (elevation) for all the grid, keyword on input_dictionary mesh_creation: bool If true the mesh is created plot_layer: bool If true it plots the selected layer to_steinar: bool If true it creates the input files for steinar to_GIS: bool If true it generates a shapefile of the selected layer plot_all_GIS: bool If true it generates a shapefile of all layers from_leapfrog: bool lee archivos leapfrong ../mesh/from_leapfrog/LF_geometry.dat y ../mesh/from_leapfrog/LF_t2.dat, sin embargo se pierde la simbologia usada en leapfrog y no te utiliza la malla regular ni los pozos. Solamente se crea la malla utilizando amesh line_file: str It defines the path and name of a line that can represented a fault or other structure on the mesh, The input file must contain the header: ID,X,Y on csv format. ID referes to the same structure, thus, more than one structure can be defined on a single file. fault_distance: float In case a line_file is define, some paralels elements will be created at a defined distance with_polygon: bool If true a shapefile will be read to define the wellfield. polygon_shape: str The shapefile deines the wellfield boundaries. The shape must not contain any cavity set_inac_from_poly: bool If true all the elements on the outside of the shapefile are defined as inactive set_inac_from_inner:bool If true all the elements on the outerfield are defined as inactive rotate: bool If true it rotates the mesh a defined angle angle: float Angle in degrees inner_mesh_type: string Type of mesh on the inner part of the mesh, it could be 'honeycomb' or 'regular' Returns ------- file eleme: list of blocks from the grid file conne : list of connections on the grid shapefile mesh_{field}_layer_{layer} : shapefile of a defined (or all) layer including rock distribution plot Voronoi plot (in case is specified) Attention --------- A copy of AMESH must be on the path or directory """ def __init__(self,filename,filepath,Xmin,Xmax,Ymin,Ymax,\ toler,layers,layer_to_plot,x_space,y_space,radius_criteria,\ x_from_boarder,y_from_boarder,\ x_gap_min,x_gap_max,x_gap_space,y_gap_min,y_gap_max,y_gap_space,\ plot_names,plot_centers,z0_level,plot_all_GIS,from_leapfrog,line_file,fault_distance,with_polygon,polygon_shape,set_inac_from_poly,set_inac_from_inner,rotate,angle,inner_mesh_type,\ distance_points,fault_rows,relaxation_times,points_around_well,distance_points_around_well): self.filename=filename self.filepath=filepath self.layers=layers self.number_of_layer=len(layers) self.Xmin=Xmin self.Xmax=Xmax self.Ymin=Ymin self.Ymax=Ymax self.z0_level=z0_level self.layer_to_plot=layer_to_plot self.radius_criteria=radius_criteria self.x_space=x_space self.y_space=y_space self.x_from_boarder=x_from_boarder self.y_from_boarder=y_from_boarder self.z=0 self.delf_rock="101" #Layer index self.filename_out="in" self.toler=toler self.x_gap_min=x_gap_min self.x_gap_max=x_gap_max self.x_gap_space=x_gap_space self.y_gap_min=y_gap_min self.y_gap_max=y_gap_max self.y_gap_space=y_gap_space self.plot_names=plot_names self.plot_centers=plot_centers self.plot_all_GIS=plot_all_GIS self.from_leapfrog=from_leapfrog self.line_file=line_file self.fault_distance=fault_distance self.with_polygon=with_polygon self.set_inac_from_poly=set_inac_from_poly self.set_inac_from_inner=set_inac_from_inner self.rotate=rotate self.angle=angle self.inner_mesh_type=inner_mesh_type self.polygon_shape=polygon_shape self.distance_points=distance_points self.fault_rows=fault_rows self.relaxation_times=relaxation_times self.points_around_well=points_around_well self.distance_points_around_well=distance_points_around_well if self.with_polygon: shape = shapefile.Reader(polygon_shape) #first feature of the shapefile feature = shape.shapeRecords()[0] points = feature.shape.__geo_interface__ self.polygon=[] for n in points: for v in points[n]: if n=='coordinates': self.polygon.append([v[0],v[1]]) # (GeoJSON format) #Read border to clip write into in files borders=gpd.read_file('../../GIS/reservoir/reservoir_limits_1_pol.shp') border_points=[] for line in borders.iterrows(): pointList = line[1].geometry.exterior.coords.xy for point in zip(pointList[0],pointList[1]): border_points.append([point[0],point[1]]) self.polygon_external=border_points[::-1][0:-1] self.color_dict = {1:[['AA','AB','AC','AD','AE','AF','AG'],'ROCK1','red'],\ 2:[['BA','BB','BC','BD','BE','BF','BG'],'ROCK2','white'],\ 3:[['CA','CB','CC','CD','CE','CF','CG'],'ROCK3','yellow'],\ 4:[['DA','DB','DC','DD','DE','DF','DG'],'ROCK4','blue'],\ 5:[['EA','EB','EC','ED','EE','EF','EG'],'ROCK5','green'],\ 6:[['FA','FB','FC','FD','FE','FF','FG'],'ROCK6','purple'],\ 7:[['GA','GB','GC','GD','GE','GF','GG'],'ROCK7','#ff69b4'],\ 8:[['HA','HB','HC','HD','HE','HF','HG'],'ROCK8','darkorange'],\ 9:[['IA','IB','IC','ID','IE','IF','IG'],'ROCK9','cyan'],\ 10:[['JA','JB','JC','JD','JE','JF','JG'],'ROK10','magenta'],\ 11:[['KA','KB','KC','KD','KE','KF','KG'],'ROK11','#faebd7'],\ 12:[['LA','LB','LC','LD','LE','LF','LG'],'ROK12','#2e8b57'],\ 13:[['MA','MB','MC','MD','ME','MF','MG'],'ROK13','#eeefff'],\ 14:[['NA','NB','NC','ND','NE','NF','NG'],'ROK14','#da70d6'],\ 15:[['OA','OB','OC','OD','OE','OF','OG'],'ROK15','#ff7f50'],\ 16:[['PA','PB','PC','PD','PE','PF','PG'],'ROK16','#cd853f'],\ 17:[['QA','QB','QC','QD','QE','QF','QG'],'ROK17','#bc8f8f'],\ 18:[['RA','RB','RC','RD','RE','RF','RG'],'ROK18','#5f9ea0'],\ 19:[['SA','SB','SC','SD','SE','SF','SG'],'ROK19','#daa520'], 20:[['TA','TB','SC','SD','SE','SF','SG'],'ROK20','#daa520'], 21:[['UA','UB','UC','UD','UE','UF','UG'],'ROK21','#daa520'], 22:[['VA','VB','SC','VD','VE','VF','VG'],'ROK22','#daa520'], 23:[['WA','WB','SC','WD','WE','WF','WG'],'ROK23','#daa520'], 24:[['XA','XB','SC','XD','XE','XF','XG'],'ROK19','#daa520'], 25:[['YA','YB','SC','YD','YE','YF','YG'],'ROK19','#daa520'], 26:[['ZA','ZB','SC','ZD','ZE','ZF','ZG'],'ROK19','#daa520']} self.rock_dict={} prof_cont=0 for jk in range(1,len(layers)+1): if jk==1: prof_cont=layers[jk-1]*0.5 z_real=z0_level-prof_cont elif jk>1: prof_cont=prof_cont+layers[jk-1]*0.5+layers[jk-2]*0.5 z_real=z0_level-prof_cont self.rock_dict[jk]=[self.color_dict[jk][0][0],self.color_dict[jk][1],\ self.color_dict[jk][2],self.color_dict[jk][0][0],z_real,self.layers[jk-1]] def regular_mesh(self): """Genera malla regular en en toda la extension de la region definida por Xmin,Xmax,Ymin y Ymax """ x_regular=range(self.Xmin+self.x_from_boarder,self.Xmax+self.x_space-self.x_from_boarder,self.x_space) y_regular=range(self.Ymin+self.y_from_boarder,self.Ymax+self.y_space-self.y_from_boarder,self.y_space) x_regular_small=range(self.x_gap_min,self.x_gap_max+self.x_gap_space,self.x_gap_space) y_regular_small=range(self.y_gap_min,self.y_gap_max+self.y_gap_space,self.y_gap_space) self.mesh_array=[] for nx in x_regular: for ny in y_regular: if ((nx<self.x_gap_min) or (nx>self.x_gap_max)) or ((ny<self.y_gap_min) or (ny>self.y_gap_max)): self.mesh_array.append([nx,ny]) #Small polygon area must be here for nxx in x_regular_small: cnt=0 for nyy in y_regular_small: if [nxx,nyy] not in self.mesh_array: if self.inner_mesh_type=='honeycomb': if cnt%2==0: self.mesh_array.append([nxx,nyy]) else: self.mesh_array.append([nxx+self.x_gap_space/2,nyy]) elif self.inner_mesh_type=='regular': self.mesh_array.append([nxx,nyy]) cnt+=1 if self.rotate: angle=self.angle for pair in range(len(self.mesh_array)): x1=self.mesh_array[pair][0]-self.Xmin y1=self.mesh_array[pair][1]-self.Ymin self.mesh_array[pair][0]=x1*math.cos(math.pi*angle/180)-y1*math.sin(math.pi*angle/180)+self.Xmin self.mesh_array[pair][1]=x1*math.sin(math.pi*angle/180)+y1*math.cos(math.pi*angle/180)+self.Ymin return np.array(self.mesh_array) def check_in_out(self,position,point,source): """Verifica si un punto de la malla del campo cercano esta dentro o fuera del poligo definido por el shapefile de entrada o del campo cercano """ if position=='internal': polygon=self.polygon elif position=='external': polygon=self.polygon_external boolean=False if source=='shapefile': cnt=0 for n in range(len(polygon)): if n+1!=len(polygon): m,b=plb.polyfit([polygon[n][0],polygon[n+1][0]],[polygon[n][1],polygon[n+1][1]],1) val_range=[polygon[n][1],polygon[n+1][1]] elif n+1==len(polygon): m,b=plb.polyfit([polygon[-1][0],polygon[0][0]],[polygon[-1][1],polygon[0][1]],1) val_range=[polygon[-1][1],polygon[0][1]] x=(point[1]-b)/m if point[0]<x and min(val_range)<point[1] and point[1]<max(val_range): cnt+=1 if cnt==1: boolean=True elif source=='inner': Xarray_inner=np.array([self.x_gap_min,self.x_gap_max+self.x_gap_space]) Yarray_inner=np.array([self.y_gap_min,self.y_gap_max+self.y_gap_space]) if Xarray_inner[0]<point[0] and Xarray_inner[1]>point[0] and Yarray_inner[0]<point[1] and Yarray_inner[1]>point[1]: boolean=True return boolean def reg_pol_mesh(self): """Crea malla regular cuando existe un poligono de entrada """ #x_regular=np.arange(self.Xmin+self.x_from_boarder,self.Xmax+self.x_space-self.x_from_boarder,self.x_space) #y_regular=np.arange(self.Ymin+self.y_from_boarder,self.Ymax+self.y_space-self.y_from_boarder,self.y_space) nx=40 #number of elements in one direction n_times=4 ny=int((self.Ymax+2*n_times*self.x_from_boarder-self.Ymin)*nx/(self.Xmax-self.Xmin+n_times*2*self.x_from_boarder)) x_regular=np.linspace(self.Xmin-n_times*self.x_from_boarder,self.Xmax+n_times*self.x_from_boarder,nx,endpoint=True) #generation of regular grid on X y_regular=np.linspace(self.Ymin-n_times*self.y_from_boarder,self.Ymax+n_times*self.x_from_boarder,ny,endpoint=True) #generation of regular grid on Y self.mesh_array=[] for nx in x_regular: for ny in y_regular: self.mesh_array.append([nx,ny]) if self.rotate: angle=self.angle for pair in range(len(self.mesh_array)): x1=self.mesh_array[pair][0]-(self.Xmin-n_times*self.x_from_boarder) y1=self.mesh_array[pair][1]-(self.Ymin-n_times*self.x_from_boarder) self.mesh_array[pair][0]=x1*math.cos(math.pi*angle/180)-y1*math.sin(math.pi*angle/180)+self.Xmin-n_times*self.x_from_boarder self.mesh_array[pair][1]=x1*math.sin(math.pi*angle/180)+y1*math.cos(math.pi*angle/180)+self.Ymin-n_times*self.x_from_boarder x_pol=[] y_pol=[] for n in range(len(self.polygon)): x_pol.append(int(self.polygon[n][0])) y_pol.append(int(self.polygon[n][1])) x_pol.append(int(self.polygon[0][0])) y_pol.append(int(self.polygon[0][1])) x_gap_min=self.x_gap_min#min(x_pol) x_gap_max=self.x_gap_max#max(x_pol) y_gap_min=self.y_gap_min#min(y_pol) y_gap_max=self.y_gap_max#max(y_pol) small_mesh=[] #x_regular_small=np.arange(x_gap_min,x_gap_max+self.x_gap_space,self.x_gap_space) #y_regular_small=np.arange(y_gap_min,y_gap_max+self.y_gap_space,self.y_gap_space) x_regular_small=np.arange(x_gap_min,x_gap_max,self.x_gap_space) y_regular_small=np.arange(y_gap_min,y_gap_max,self.y_gap_space) for nxx in x_regular_small: cnt=0 for nyy in y_regular_small: if [nxx,nyy] not in small_mesh: if self.inner_mesh_type=='honeycomb': if cnt%2==0: small_mesh.append([nxx,nyy]) else: small_mesh.append([nxx+self.x_gap_space/2,nyy]) elif self.inner_mesh_type=='regular': small_mesh.append([nxx,nyy]) cnt+=1 if self.rotate: angle=self.angle for pair in range(len(small_mesh)): x1=small_mesh[pair][0]-self.x_gap_min y1=small_mesh[pair][1]-self.y_gap_min small_mesh[pair][0]=x1*math.cos(math.pi*angle/180)-y1*math.sin(math.pi*angle/180)+self.x_gap_min small_mesh[pair][1]=x1*math.sin(math.pi*angle/180)+y1*math.cos(math.pi*angle/180)+self.y_gap_min to_delete=[] for v in range(len(self.mesh_array)): point=[self.mesh_array[v][0],self.mesh_array[v][1]] check=self.check_in_out('internal',point,source='shapefile') if check: to_delete.append(v) self.mesh_array=np.delete(self.mesh_array, to_delete, 0) to_delete=[] for v in range(len(small_mesh)): point=[small_mesh[v][0],small_mesh[v][1]] check=self.check_in_out('internal',point,source='shapefile') if not check: to_delete.append(v) small_mesh=np.delete(small_mesh, to_delete, 0) mesh_pol=[] for vk in range(len(self.mesh_array)): mesh_pol.append([self.mesh_array[vk][0],self.mesh_array[vk][1]]) for vk in range(len(small_mesh)): mesh_pol.append([small_mesh[vk][0],small_mesh[vk][1]]) return np.array(mesh_pol) def radius_select(self,x0,y0,xr,yr,type_i='mesh'): """Verifica si dos puntos estan mas cerca que el criterio seleccionado """ r=((x0-xr)**2+(y0-yr)**2)**0.5 if type_i=='mesh': cx=self.radius_criteria elif type_i=='well': cx=10*0.4*2**0.5 elif type_i=='fault': cx=15 if r<cx: boolean=1 else: boolean=0 return boolean def from_leapfrog_mesh(self): """Extrae puntos mas extremos y la posicion de los elementos de un set de datos provinientes de leapfrog, sin embargo no considera los elementos asociados a la roca ATM 0 """ geometry_file="../mesh/from_leapfrog/LF_geometry.dat" leapfrog_t2_file="../mesh/from_leapfrog/LF_t2.dat" #Creates a dictionary using the layers printlayer=False layer_min=[] layers={} with open(geometry_file,'r') as f: for line in f.readlines(): if line.rstrip()=='LAYERS': printlayer=True continue elif line.rstrip()=='SURFA' or line.rstrip()=='': printlayer=False if printlayer: layer=line.rstrip()[0:2] if layer==' 0': layer_min.append(line.rstrip()[2:13]) layer_middle=line.rstrip()[13:23] layer_max=line.rstrip()[13:23] continue else: layer_max=layer_min[-1] layer_min.append(line.rstrip()[2:13]) layer_middle=line.rstrip()[13:23] layers[int(layer)]=[float(layer_max),float(layer_middle),float(layer_min[-1])] max_layer=max(layers.keys()) xc=[] yc=[] self.LP_mesh=[] printeleme=False #Takes the elements at the selected leyer with open(leapfrog_t2_file,'r') as f: for line in f.readlines(): if line.rstrip()=='ELEME': printeleme=True continue elif line.rstrip()=='CONNE' or line.rstrip()=='': printeleme=False if printeleme and line.rstrip()[0:5]!="ATM 0" and int(line.rstrip()[3:5])==max_layer: xc=float(line.rstrip()[51:60]) yc=float(line.rstrip()[60:70]) self.LP_mesh.append([xc,yc]) #Creates a dictionary of the VERTICES printvertices=False self.x_min=1E20 self.x_max=0 self.y_min=1E20 self.y_max=0 with open(geometry_file,'r') as f: for line in f.readlines(): #It will read between the keywords GRID and CONNECTIONS if line.rstrip()=='VERTICES': printvertices=True continue elif line.rstrip()=='GRID' or line.rstrip()=="": printvertices=False if printvertices: vertice_x=float(line.rstrip()[4:13]) vertice_y=float(line.rstrip()[13:23]) if vertice_x>self.x_max: self.x_max=vertice_x if vertice_y>self.y_max: self.y_max=vertice_y if vertice_x<self.x_min: self.x_min=vertice_x if vertice_y<self.y_min: self.y_min=vertice_y return self.x_max,self.x_min, self.y_min,self.y_max, self.LP_mesh def data(self): """Define los puntos que ingresaran al archivo de entrada para amesh. Adicionalmente, en caso de definir un linea en el archivo de entrada <i><lines_data/i> se procedera a ingresar estos puntos y crear puntos paralelos en ambos extremos de la linea """ self.raw_data=np.genfromtxt(self.filepath+self.filename,dtype={'names':('ID','MD','X','Y','Z','TYPE'),'formats':('<U7','f4','f4','f4','f4','<U10')},delimiter=',',skip_header=True) self.IDXY={} if not self.from_leapfrog: if self.with_polygon: regular_mesh=self.reg_pol_mesh() else: regular_mesh=self.regular_mesh() else: x,x1,y1,y2,regular_mesh=self.from_leapfrog_mesh() for n in range(len(self.raw_data['ID'])): #Store the data from wells self.IDXY["%s"%(str(self.raw_data['ID'][n]))]=[self.raw_data['X'][n],self.raw_data['Y'][n],self.raw_data['TYPE'][n]] #self.IDXY["%s"%(str(self.raw_data['ID'][n])).split("'")[1]]=[self.raw_data['X'][n],self.raw_data['Y'][n],self.raw_data['TYPE'][n]] to_delete=[] x0=self.raw_data['X'][n] y0=self.raw_data['Y'][n] #Delete the regular points close to the wells for ngrid in range(len(regular_mesh)): if abs(x0-regular_mesh[ngrid][0])<self.radius_criteria or abs(y0-regular_mesh[ngrid][1])<self.radius_criteria: boolean=self.radius_select(x0,y0,regular_mesh[ngrid][0],regular_mesh[ngrid][1]) if boolean==1: to_delete.append(ngrid) regular_mesh=np.delete(regular_mesh, to_delete, 0) #Mesh around the wells well_mesh=[] d=self.distance_points_around_well dw=np.linspace(-d*0.4,d*0.4,num=self.points_around_well) dw=dw[dw!=0] for n in range(len(self.raw_data['ID'])): x=self.raw_data['X'][n] y=self.raw_data['Y'][n] for xr in dw: for yr in dw: xi=x+xr yi=y+yr #Rotating mesh around the wells if self.rotate: angle=self.angle x1=xi-(x) y1=yi-(y) xii=x1*math.cos(math.pi*angle/180)-y1*math.sin(math.pi*angle/180)+(x) yii=x1*math.sin(math.pi*angle/180)+y1*math.cos(math.pi*angle/180)+(y) well_mesh.append([xii,yii]) else: well_mesh.append([xi,yi]) well_mesh=np.array(well_mesh) #Deleting elements on the mesh around the well to close to other regular elements of the mesh for point in regular_mesh: to_delete=[] for i,well_point in enumerate(well_mesh): boolean=self.radius_select(well_point[0],well_point[1],point[0],point[1],type_i='well') if boolean==1: to_delete.append(i) well_mesh=np.delete(well_mesh, to_delete, 0) #Finally appending the mesh regular_mesh=np.append(regular_mesh,well_mesh,axis=0) cnt=0 if self.line_file: self.lines_data=np.loadtxt(self.filepath+self.line_file,dtype={'names':('ID','X','Y'),'formats':('S10','f4','f4')},delimiter=',',skiprows=1) lines_dict={} for v in self.lines_data: key=v[0].decode('UTF-8') if key not in list(lines_dict.keys()): lines_dict[key]=[[float(v[1]),float(v[2])]] else: lines_dict[key].append([float(v[1]),float(v[2])]) d=self.fault_distance #Fine more of this for better definition a long the faults #ds=np.arange(d,d*2.5,step=d/2) #df=self.x_gap_space-d/4 #step=d/2 ds=[] init_d=d/2 for j in range(self.fault_rows): d_val=init_d*2**(j) ds.append(d_val) ds=np.array(ds) #Iter over every structure for n in lines_dict: x_lines=[] y_lines=[] for v in lines_dict[n]: x_lines.append(v[0]) y_lines.append(v[1]) x_lines_np=np.array([]) #Initialize X position of structures y_lines_np=np.array([]) #Initialize Y position of structures for nv in range(len(x_lines)): if nv+1<len(x_lines): #Generates a line with the usual two points of the fault line=[(x_lines[nv],y_lines[nv]),(x_lines[nv+1],y_lines[nv+1])] #Calculates the distance between the points distDiag = cdist(line,line,'euclidean').diagonal(1) #Estimastes the number of new points d_btw_points=self.distance_points # 10 num_steps=int(distDiag//d_btw_points) #Generates the new x positions to evaluate x_lines_np_local=np.linspace(x_lines[nv],x_lines[nv+1],num=num_steps) y_lines_np_local=np.linspace(y_lines[nv],y_lines[nv+1],num=num_steps) #Generates a double quantity of new x positions x_lines_np_local2=[] y_lines_np_local2=[] for h, val in enumerate(x_lines_np_local): if h+1<len(x_lines_np_local): x_val=(val+x_lines_np_local[h+1])/2 y_val=(y_lines_np_local[h]+y_lines_np_local[h+1])/2 x_lines_np_local2.append(x_val) y_lines_np_local2.append(y_val) x_lines_np_local2=np.array(x_lines_np_local2) y_lines_np_local2=np.array(y_lines_np_local2) x_lines_np=np.append(x_lines_np,x_lines_np_local) y_lines_np=np.append(y_lines_np,y_lines_np_local) #calculates line parameters m,b=plb.polyfit(x_lines_np_local,y_lines_np_local,1) #perpendicular splope p_s=(-1/m) for i, d in enumerate(ds): c=d*(1+m**2)**0.5+b if b<0: c=b-d*(1+m**2)**0.5 if i%2!=0: b2p=[] for point in zip(x_lines_np_local,y_lines_np_local): b2p.append(point[1]-point[0]*p_s) if b>0: x_u=[(c-b2)/(p_s-m) for x,b2 in zip(x_lines_np_local,b2p)] x_d=[(2*b-c-b2)/(p_s-m) for x,b2 in zip(x_lines_np_local,b2p)] else: x_u=[(2*b-c-b2)/(p_s-m) for x,b2 in zip(x_lines_np_local,b2p)] x_d=[(c-b2)/(p_s-m) for x,b2 in zip(x_lines_np_local,b2p)] y_u=[p_s*xu+b2 for xu,b2 in zip(x_u,b2p)] y_d=[p_s*xd+b2 for xd,b2 in zip(x_d,b2p)] x_lines_np=np.append(x_lines_np,x_u) x_lines_np=np.append(x_lines_np,x_d) y_lines_np=np.append(y_lines_np,y_u) y_lines_np=np.append(y_lines_np,y_d) else: x_u=[] x_d=[] y_u=[] y_d=[] for i2, x in enumerate(x_lines_np_local2): b2p=y_lines_np_local2[i2]-x*p_s if b>0: x_uu=(c-b2p)/(p_s-m) x_dd=(2*b-c-b2p)/(p_s-m) else: x_uu=(2*b-c-b2p)/(p_s-m) x_dd=(c-b2p)/(p_s-m) x_u.append(x_uu) x_d.append(x_dd) y_uu=p_s*x_uu+b2p y_u.append(y_uu) y_dd=p_s*x_dd+b2p y_d.append(y_dd) x_lines_np=np.append(x_lines_np,x_u) x_lines_np=np.append(x_lines_np,x_d) y_lines_np=np.append(y_lines_np,y_u) y_lines_np=np.append(y_lines_np,y_d) for n2 in range(len(x_lines_np)): to_delete=[] x0=x_lines_np[n2] y0=y_lines_np[n2] for ngrid in range(len(regular_mesh)): boolean=self.radius_select(x0,y0,regular_mesh[ngrid][0],regular_mesh[ngrid][1],type_i='fault') if boolean==1: to_delete.append(ngrid) regular_mesh=np.delete(regular_mesh, to_delete, 0) for n3 in range(len(x_lines_np)): self.IDXY["RG%s"%(n3+cnt)]=[x_lines_np[n3],y_lines_np[n3],'REGUL'] cnt+=n3 #Store the data from the regular mesh on IDXY for n in range(len(regular_mesh)): self.IDXY["RG%s"%(n+cnt)]=[regular_mesh[n][0],regular_mesh[n][1],'REGUL'] return {'raw_data':self.raw_data,'IDXY':self.IDXY} def well_blk_assign(self): """Asigna el nombre a cada bloque, priorizando los pozos, es decir, estos llevan los correlativos mas bajos. Por ultimo almacena dos archivo json para registro de los bloques asignados a los pozos """ self.well_names=[] self.blocks_PT={} self.well_blocks_names={} self.wells_correlative={} data_dict=self.data() for n in range(self.number_of_layer): cnt=110 layer_num=0 for x in data_dict['IDXY']: if cnt%100==0: blocknumber=cnt+10 cnt=blocknumber else: blocknumber=cnt if cnt%1010==0: cnt=110 blocknumber=cnt layer_num+=1 cnt+=1 string_ele=self.color_dict[n+1][0][(layer_num)] blockname=string_ele+str(blocknumber) self.well_names.append(blockname) self.well_blocks_names["%s"%(blockname)]=[x,\ data_dict['IDXY'][x][0],\ data_dict['IDXY'][x][1],\ data_dict['IDXY'][x][2],\ n+1,self.rock_dict[n+1][4],\ self.rock_dict[n+1][2],self.rock_dict[n+1][5]] #print(data_dict['IDXY'][x][2]!='REGUL') #if data_dict['IDXY'][x][2]=='prod' or data_dict['IDXY'][x][2]=='rein': if data_dict['IDXY'][x][2]!='REGUL': #str(data_dict['IDXY'][x][2]).split("'")[1],\ self.blocks_PT["%s"%(blockname)]=[x,\ str(data_dict['IDXY'][x][0]),\ str(data_dict['IDXY'][x][1]),\ str(data_dict['IDXY'][x][2]),\ str(n+1),str(self.rock_dict[n+1][4]),\ self.rock_dict[n+1][2],str(self.rock_dict[n+1][5])] try: self.wells_correlative[x]=["%s"%(blockname[1:])] except KeyError: pass json.dump(self.blocks_PT, open("../mesh/well_dict.txt",'w'),sort_keys=True, indent=4) json.dump(self.wells_correlative, open("../mesh/wells_correlative.txt",'w'),sort_keys=True, indent=4) return {'well_names':self.well_names, 'well_blocks_names':self.well_blocks_names} def to_translate(self,points): #Converts data points to new coordinate system n_times=4 if self.rotate: angle=self.angle for n, point in enumerate(points): if point[1]!=(self.Ymin-n_times*self.x_from_boarder) and point[0]!=(self.Xmin-n_times*self.x_from_boarder): line=[(self.Xmin-n_times*self.x_from_boarder,self.Ymin-n_times*self.x_from_boarder),(point[0],point[1])] r = cdist(line,line,'euclidean').diagonal(1) alpha = np.arctan((point[1]-self.Ymin+n_times*self.x_from_boarder)/(point[0]-self.Xmin+n_times*self.x_from_boarder)) if alpha<0: alpha=np.pi+alpha betha = alpha - np.deg2rad(angle) points[n][0]=r*np.cos(betha) points[n][1]=r*np.sin(betha) else: points[n][0]=0 points[n][1]=0 return points def de_translate(self,points): #Converts data points to new coordinate system n_times=4 if self.rotate: angle=self.angle for n, point in enumerate(points): if point[1]!=0 and point[0]!=0: betha = np.arctan(point[1]/point[0]) alpha=betha+np.deg2rad(angle) line=[(0,0),(point[0],point[1])] r = cdist(line,line,'euclidean').diagonal(1) points[n][0]=r*np.cos(alpha)+(self.Xmin-n_times*self.x_from_boarder) points[n][1]=r*np.sin(alpha)+(self.Ymin-n_times*self.x_from_boarder) else: points[n][0]=self.Xmin points[n][1]=self.Ymin return points def well_block_assign_from_relaxation(self,layer,i): letters=string.ascii_uppercase name=layer+letters[int(i/810)]+str(int(1+(i-810*int(i/810))/90))+str(10+i-90*int(i/90)) return name def relaxation(self): data={'blocks':{},'borders':[]} #Extracts the points from the regular mesh, it considers the rotation already and internal region of shapefile data_dict=self.data()['IDXY'] points=[] for key in data_dict: points.append([data_dict[key][0],data_dict[key][1]]) points=np.array(points) points=np.array(points) fig, ax = plt.subplots(1, 1, figsize=(20,20)) ax.plot(points[:,0],points[:,1],'ok', linestyle='None',ms=1) for k, dot in enumerate(self.polygon_external): if k+1<len(self.polygon_external): ax.plot([dot[0],self.polygon_external[k+1][0]],[dot[1],self.polygon_external[k+1][1]],'og') ax.set_aspect('equal') plt.savefig('points_original.png',dpi=600) plt.show() points=self.to_translate(points) points=np.array(points) fig, ax = plt.subplots(1, 1, figsize=(20,20)) ax.plot(points[:,0],points[:,1],'or', linestyle='None',ms=1) ax.set_aspect('equal') plt.savefig('points_traslated.png',dpi=600) plt.show() #Perform relaxation for i in range(self.relaxation_times): field = Field(points) field.relax() points= field.get_points() points=np.array(points) fig, ax = plt.subplots(1, 1, figsize=(20,20)) ax.plot(points[:,0],points[:,1],'og', linestyle='None',ms=1) ax.set_aspect('equal') plt.savefig('points_traslated_relaxed.png',dpi=600) plt.show() points=self.de_translate(points) points=np.array(points) fig, ax = plt.subplots(1, 1, figsize=(20,20)) ax.plot(points[:,0],points[:,1],'om', linestyle='None',ms=1) for k, dot in enumerate(self.polygon_external): if k+1<len(self.polygon_external): ax.plot([dot[0],self.polygon_external[k+1][0]],[dot[1],self.polygon_external[k+1][1]],'og') ax.set_aspect('equal') plt.savefig('points_relaxed.png',dpi=600) plt.show() #Drops points out of shapefile rlx_points=[] for point in points: if self.check_in_out('external',[point[0],point[1]],'shapefile'): rlx_points.append([point[0],point[1]]) rlx_points=np.array(rlx_points) #Assign names to new points position={} for n, layer in enumerate(self.rock_dict): for i,point in enumerate(rlx_points): name=self.well_block_assign_from_relaxation(self.rock_dict[layer][0][0],i) data['blocks'][name]=[n+1,point[0],point[1],self.rock_dict[layer][4],self.rock_dict[layer][5]] if n==0: position[i]=name #Read border to clip write into in file borders=gpd.read_file('../../GIS/reservoir/reservoir_limits_1_pol.shp') border_points=[] for line in borders.iterrows(): pointList = line[1].geometry.exterior.coords.xy for point in zip(pointList[0],pointList[1]): border_points.append([point[0],point[1]]) data['borders']=self.polygon_external #Rewrite the wells dictionaries by finding the new closer position to the wells wells_dictionary={} well_corr={} wells=pd.read_csv('../input/well_feedzone_xyz.csv',sep=',') tree = cKDTree(rlx_points) for index, well in wells.iterrows(): distance = tree.query([well['x'],well['y']]) block_assig=position[distance[1]] well_corr[well['well']]=[block_assig[1:5]] x= data['blocks'][block_assig][1] y=data['blocks'][block_assig][2] for n in range(self.number_of_layer): block_assig_i=self.rock_dict[n+1][0]+block_assig[2:5] wells_dictionary[block_assig_i]=[well['well'],\ x,\ y,\ well['type'],\ n+1, data['blocks'][block_assig][3],\ self.rock_dict[n+1][2],\ data['blocks'][block_assig][4]] json.dump(well_corr, open("../mesh/well_dict.txt",'w'),sort_keys=True, indent=4) json.dump(wells_dictionary, open("../mesh/wells_correlative.txt",'w'),sort_keys=True, indent=4) return data def input_file_to_amesh_from_relaxation(self): data=self.relaxation() blocks_dict=data['blocks'] file=open(self.filename_out, "w") file.write("locat\n") #Writing ELEMENTS for x in sorted(blocks_dict.keys()): string="{:5s}{:5d}{:20.2f}{:20.2f}{:20.2f}{:20.2f}\n".format(x,blocks_dict[x][0],\ blocks_dict[x][1],\ blocks_dict[x][2],\ blocks_dict[x][3],\ blocks_dict[x][4]) file.write(string) file.write(" \n") file.write("bound\n") #Writing borders for point in data['borders']: string_bound=" %9.3E %9.3E\n"%(point[0],point[1]) file.write(string_bound) file.write(" \n") file.write("toler") file.write(" \n") file.write("%10s\n"%self.toler) file.write(" ") file.close() pass def run_amesh_from_relaxation(self): os.system("amesh\n") files2move=['in','conne','eleme','segmt'] for fn in files2move: shutil.move(fn,'../mesh/from_amesh/%s'%fn) return None def input_file_to_amesh(self): """Genera el archivo de entrada para amesh """ welldict=self.well_blk_assign()['well_blocks_names'] if not self.from_leapfrog: Xarray=np.array([self.Xmin,self.Xmax]) Yarray=np.array([self.Ymin,self.Ymax]) else: xmax,xmin,ymin,ymax,regular_mesh=self.from_leapfrog_mesh() Xarray=np.array([xmin,xmax]) Yarray=np.array([ymin,ymax]) boundaries=[] for i, j in itertools.product(Xarray, Yarray): boundaries.append([i,j]) if self.rotate: angle=self.angle for point_n in range(len(boundaries)): x1=boundaries[point_n][0]-self.Xmin y1=boundaries[point_n][1]-self.Ymin boundaries[point_n][0]=x1*math.cos(math.pi*angle/180)-y1*math.sin(math.pi*angle/180)+self.Xmin boundaries[point_n][1]=x1*math.sin(math.pi*angle/180)+y1*math.cos(math.pi*angle/180)+self.Ymin boundaries=np.array(boundaries) hull = ConvexHull(boundaries) file=open(self.filename_out, "w") file.write("locat\n") for x in sorted(welldict.keys()): string="{:5s}{:5d}{:20.2f}{:20.2f}{:20.2f}{:20.2f}\n".format(x,welldict[x][4],\ welldict[x][1],\ welldict[x][2],\ welldict[x][5],\ welldict[x][7]) file.write(string) file.write(" \n") file.write("bound\n") for n in range(len(boundaries[hull.vertices,0])): string_bound=" %9.3E %9.3E\n"%(boundaries[hull.vertices,0][::-1][n],boundaries[hull.vertices,1][::-1][n]) file.write(string_bound) file.write(" \n") file.write("toler") file.write(" \n") file.write("%10s\n"%self.toler) file.write(" ") file.close() fileread=open(self.filename,'r') os.system("amesh\n") string_out=fileread.read() files2move=['in','conne','eleme','segmt'] for fn in files2move: shutil.move(fn,'../mesh/from_amesh/%s'%fn) return string_out def plot_voronoi(self): """En caso de ser solicitado, grafica la malla a partir de los archivo en la carpeta ../mesh/from_amesh """ welldict=self.well_blk_assign()['well_blocks_names'] if os.path.isfile('../mesh/from_amesh/segmt'): data=np.genfromtxt('../mesh/from_amesh/segmt', dtype="f8,f8,f8,f8,i8,S5,S5", names=['X1','Y1','X2','Y2','index','elem1','elem2'],delimiter=[15,15,15,15,5,5,5]) fig, ax0 = plt.subplots(figsize=(10,10)) #Set of the principal plot ax0.axis([self.Xmin,self.Xmax,self.Ymin,self.Ymax]) ax0.set_xlabel('East [m]') ax0.set_ylabel('North [m]') ax0.set_title("Mesh for layer %s"%self.layer_to_plot,y=1.04) ax0.set_xticks(range(self.Xmin+self.x_from_boarder,self.Xmax+self.x_space-self.x_from_boarder,self.x_space)) ax0.set_yticks(range(self.Ymin+self.y_from_boarder,self.Ymax+self.y_space-self.y_from_boarder,self.y_space)) ax0.xaxis.set_minor_locator(AutoMinorLocator()) ax0.yaxis.set_minor_locator(AutoMinorLocator()) #Plot of the Yaxis in the top ax1 = ax0.twinx() ax1.set_ylim(ax0.get_ylim()) ax1.set_yticks(ax0.get_yticks()) ax1.yaxis.set_minor_locator(AutoMinorLocator()) #Plot of the Xaxis in the top ax2 = ax0.twiny() ax2.set_xticks(ax0.get_xticks()) ax2.set_xlim(ax0.get_xlim()) ax2.xaxis.set_minor_locator(AutoMinorLocator()) for n in np.unique(data['elem1']): Xfill=[] Yfill=[] if n[0:2] in self.color_dict[self.layer_to_plot][0]: for j in range(len(data['X1'])): cnt=0 if data['elem1'][j]==n: Xfill.append(data['X1'][j]) Xfill.append(data['X2'][j]) Yfill.append(data['Y1'][j]) Yfill.append(data['Y2'][j]) plt.plot([data['X1'][j],data['X2'][j]],[data['Y1'][j],data['Y2'][j]],'-k') if self.plot_names: if cnt==0: if welldict[n][3]=='WELL': ax0.text(welldict[n][1],welldict[n][2],\ "%s, %s"%(welldict[n][0],n),fontsize=8) color_dot='r' else: ax0.text(welldict[n][1],welldict[n][2],\ welldict[n][0],fontsize=8) color_dot='b' cnt+=1 if self.plot_centers: if welldict[n][3]=='WELL': color_dot='r' else: color_dot='b' ax0.plot(welldict[n][1],welldict[n][2],'%so'%color_dot,ms=1) ax0.fill(Xfill,Yfill,welldict[n][6],alpha=0.5) ax0.grid() ax0.grid(which='major', color='#CCCCCC', linestyle='--',alpha=0.5) fig.savefig('../mesh/plot_voronoi_'+str(datetime.datetime.now().strftime('%Y-%m-%d_%H%M%S')),bbox_inches="tight", pad_inches = 0) plot_s=plt.show() else: plot_s="Excecute input_file_to_amesh() function first" return plot_s def to_steinar(self): """Convierte los archivos de salida amesh en formato de entrada para Steinar """ if os.path.isfile('../mesh/from_amesh/segmt'): shutil.copyfile('../mesh/from_amesh/segmt', '../mesh/to_steinar/segmt') ele_file_st=open('../mesh/to_steinar/eleme','w') ele_file=open('../mesh/from_amesh/eleme','r') data_eleme=ele_file.readlines() if self.set_inac_from_poly or self.set_inac_from_inner: source_file="../mesh/from_amesh/eleme" data_eleme=pd.read_csv(source_file,delim_whitespace=True,skiprows=1,header=None,names=['block','rocktype','vol','X','Y','Z']) data_eleme.set_index('block') ele_file_st.write("eleme\n") if self.set_inac_from_inner: source='inner' if self.set_inac_from_poly: source='shapefile' for index, row in data_eleme.iterrows(): check=self.check_in_out('internal',[row['X'],row['Y']],source=source) outside=1 if not check: outside=-1 ele_file_st.write("%5s%10s%5s%10.3E\n"%(row['block']," ",row['rocktype'],row['vol']*outside)) else: cnt=0 ele_file_st.write("eleme") for a_line in data_eleme: if cnt!=0: name_rock_vol = a_line[0:30] ele_file_st.write("\n") ele_file_st.write("%s"%name_rock_vol) cnt+=1 ele_file_st.close() ele_file.close() conne_file_st=open('../mesh/to_steinar/conne','w') conne_file=open('../mesh/from_amesh/conne','r') data_conne=conne_file.readlines() cnt=0 for a_line in data_conne: if cnt!=0: name_conne = a_line[0:11] if '*' in name_conne: pass elif cnt<=len(data_conne)-2: try: conne_file_st.write("%s"%name_conne) conne_file_st.write(" 0 0 0 ") nod4=a_line[60:64] if len(nod4)==4: per=3 else: per=a_line[29:30] conne_file_st.write("%s"%per) nod1=a_line[30:40].replace('+', '') conne_file_st.write(" %9.3E"%(float(nod1))) nod2=a_line[40:50].replace('+', '') conne_file_st.write(" %9.3E"%(float(nod2))) nod3=a_line[50:60].replace('+', '') conne_file_st.write(" %9.3E"%(float(nod3))) if len(nod4)==4: #nod4=-1 conne_file_st.write("{:9.1f}".format(float(nod4))) elif len(nod4)==1: conne_file_st.write(" 0.0") conne_file_st.write(" 0.0000E+00\n") except ValueError: pass else: conne_file_st.write("conne\n") cnt+=1 conne_file_st.close() conne_file.close() in_file_st=open('../mesh/to_steinar/in','w') in_file=open('../mesh/from_amesh/in','r') data_in=in_file.readlines() in_file_st.write("bound\n") if not self.from_leapfrog: Xarray=np.array([self.Xmin,self.Xmax]) Yarray=np.array([self.Ymin,self.Ymax]) else: xmax,xmin,ymin,ymax,regular_mesh=self.from_leapfrog_mesh() Xarray=np.array([xmin,xmax]) Yarray=np.array([ymin,ymax]) if self.rotate: borders=self.polygon_external for point in borders: string_bound=" %6.2d %6.2d\n"%(point[0],point[1]) in_file_st.write(string_bound) else: in_file_st.write(" %6.2d %6.2d\n"%(Xarray[0],Yarray[0])) in_file_st.write(" %6.2d %6.2d\n"%(Xarray[0],Yarray[1])) in_file_st.write(" %6.2d %6.2d\n"%(Xarray[1],Yarray[1])) in_file_st.write(" %6.2d %6.2d\n\n"%(Xarray[1],Yarray[0])) in_file_st.write("\nlocat\n") cnt=0 for ny in data_in: if cnt>0 and cnt<(len(data_in)-10): read1=ny[0:6] read2=ny[8:11] read3=ny[11:31] read4=ny[31:52] read5=ny[51:72] read6=ny[71:92] in_file_st.write("%s"%read1) in_file_st.write("%4s"%read2) in_file_st.write("%23.8E"%float(read3)) in_file_st.write("%24.8E"%float(read4)) in_file_st.write("%24.8E"%float(read5)) in_file_st.write("%24.8E\n"%float(read6)) cnt+=1 in_file_st.close() in_file.close() #Dummy rocktype rock_file_st=open('../mesh/to_steinar/rocks','w') rock_file_st.write("rock1 02.6500E+031.0000E-011.0000E-151.0000E-151.0000E-152.1000E+008.5000E+02 160 243 150") rock_file_st.close() else: pass def to_GIS(self): """Toma como entrada el archivo segment de ../mesh/from_amesh y eleme de ../mesh/to_stainar y los convierte en shapefile con atributos de roca, nombre y volumen """ if os.path.isfile('../mesh/from_amesh/segmt') and os.path.isfile('../mesh/to_steinar/eleme'): if self.plot_all_GIS: max_layer=self.number_of_layer min_layer=1 else: max_layer=self.layer_to_plot min_layer=self.layer_to_plot for ln in range(min_layer,max_layer+1,1): w=shapefile.Writer('../mesh/GIS/mesh_layer_%s'%ln) w.field('BLOCK_NAME', 'C', size=5) w.field('ROCKTYPE', 'C', size=5) w.field('VOLUMEN', 'F', decimal=10) alttype = np.dtype([('X1', '<f8'), ('Y1', '<f8'), ('X2', '<f8'), ('Y2', '<f8'), ('index', '<f8'), ('elem1', 'U5'), ('elem2', 'U5')]) data = np.genfromtxt('../mesh/to_steinar/segmt', dtype=alttype, delimiter=[15,15,15,15,5,5,5]) elem_file = open('../mesh/to_steinar/eleme', 'r') plain_elemfile=elem_file.read() for n in np.unique(data['elem1']): if n[0:2] in self.color_dict[ln][0]: points=[] line = re.findall(r"%s.*$"%n, plain_elemfile,re.MULTILINE) rocktype=str(line)[17:22] volumen=float(str(line)[22:32]) for j in range(len(data['X1'])): if data['elem1'][j]==n: point1=[data['X1'][j],data['Y1'][j]] point2=[data['X2'][j],data['Y2'][j]] points.append(point1) points.append(point2) w.poly([points]) w.record(n,rocktype,volumen) w.close() elem_file.close() else: None def mesh_creation_func(input_mesh_dictionary,input_dictionary): """Creates a grid Most of the parameters are keywords from the input dictionary input_mesh_dictionary. Otherwise, the input dictionary is specified. Parameters ---------- filename : str File name with well feedzone location filepath : str Path of input files Xmin : float Minimun X coordinates for the grid Xmax : float Maximun X coordinates for the grid Ymin : float Minimun Y coordinates for the grid Ymax : float Maximun Y coordinates for the grid toler : float AMESH parameter layers : dictionary Name (correlative) and thickness of every layer on the model, keyword on input_dictionary layer_to_plot : int In case it is specified a voronoi plot will be performed x_space : float Horizontal distance between elements for the outerfield y_space : float Vertical distance between elements for the outerfield radius_criteria: float Minimun distance between well location and a regular element x_from_boarder: float Horizontal distance from the first element to the east border y_from_boarder: float Vertical distance from the first element to the south border x_gap_min: float Minimun X coordinates on the grid for the well field x_gap_max: float Maximun X coordinates on the grid for the well field x_gap_space: float Horizontal distance between elements for the farfield y_gap_min: float Minimun Y coordinates on the grid for the well field o y_gap_max: float Maximun X coordinates on the grid for the well field y_gap_space: float Vertical distance between elements for the farfield plot_names: bool If true it plots the name of the blocks from the selected layer to plot plot_centers: bool If true it plots the centers of the blocks from the selected layer to plot z0_level: float Reference level (elevation) for all the grid, keyword on input_dictionary mesh_creation: bool If true the mesh is created plot_layer: bool If true it plots the selected layer to_steinar: bool If true it creates the input files for steinar to_GIS: bool If true it generates a shapefile of the selected layer plot_all_GIS: bool If true it generates a shapefile of all layers from_leapfrog: bool lee archivos leapfrong ../mesh/from_leapfrog/LF_geometry.dat y ../mesh/from_leapfrog/LF_t2.dat, sin embargo se pierde la simbologia usada en leapfrog y no te utiliza la malla regular ni los pozos. Solamente se crea la malla utilizando amesh line_file: str It defines the path and name of a line that can represented a fault or other structure on the mesh, The input file must contain the header: ID,X,Y on csv format. ID referes to the same structure, thus, more than one structure can be defined on a single file. fault_distance: float In case a line_file is define, some paralels elements will be created at a defined distance with_polygon: bool If true a shapefile will be read to define the wellfield. polygon_shape: str The shapefile deines the wellfield boundaries. The shape must not contain any cavity set_inac_from_poly: bool If true all the elements on the outside of the shapefile are defined as inactive set_inac_from_inner:bool If true all the elements on the outerfield are defined as inactive rotate: bool If true it rotates the mesh a defined angle angle: float Angle in degrees inner_mesh_type: string Type of mesh on the inner part of the mesh, it could be 'honeycomb' or 'regular' Returns ------- file eleme: list of blocks from the grid file conne : list of connections on the grid shapefile mesh_{field}_layer_{layer} : shapefile of a defined (or all) layer including rock distribution plot Voronoi plot (in case is specified) Attention --------- A copy of AMESH must be on the path or directory """ layers_thick=list(map(float,np.array(list(input_dictionary['LAYERS'].values()))[:][:,1])) blocks=py2amesh(input_mesh_dictionary['filename'],input_mesh_dictionary['filepath'],input_mesh_dictionary['Xmin'],input_mesh_dictionary['Xmax'],input_mesh_dictionary['Ymin'],input_mesh_dictionary['Ymax'],\ input_mesh_dictionary['toler'],layers_thick,input_mesh_dictionary['layer_to_plot'],input_mesh_dictionary['x_space'],input_mesh_dictionary['y_space'],input_mesh_dictionary['radius_criteria'],input_mesh_dictionary['x_from_boarder'],input_mesh_dictionary['y_from_boarder'],\ input_mesh_dictionary['x_gap_min'],input_mesh_dictionary['x_gap_max'],input_mesh_dictionary['x_gap_space'],input_mesh_dictionary['y_gap_min'],input_mesh_dictionary['y_gap_max'],input_mesh_dictionary['y_gap_space'],input_mesh_dictionary['plot_names'],input_mesh_dictionary['plot_centers'],\ input_dictionary['z_ref'],input_mesh_dictionary['plot_all_GIS'],input_mesh_dictionary['from_leapfrog'],input_mesh_dictionary['line_file'],input_mesh_dictionary['fault_distance'],input_mesh_dictionary['with_polygon'],input_mesh_dictionary['polygon_shape'],\ input_mesh_dictionary['set_inac_from_poly'],input_mesh_dictionary['set_inac_from_inner'],input_mesh_dictionary['rotate'],input_mesh_dictionary['angle'],input_mesh_dictionary['inner_mesh_type'],\ input_mesh_dictionary['distance_points'],input_mesh_dictionary['fault_rows'],input_mesh_dictionary['relaxation_times'],input_mesh_dictionary['points_around_well'],input_mesh_dictionary['distance_points_around_well']) #data=blocks.relaxation() if input_mesh_dictionary['mesh_creation']: if input_mesh_dictionary['relaxation_times']>0: blocks.input_file_to_amesh_from_relaxation() blocks.run_amesh_from_relaxation() else: blocks.input_file_to_amesh() if input_mesh_dictionary['to_steinar']: blocks.to_steinar() if input_mesh_dictionary['plot_layer']: blocks.plot_voronoi() if input_mesh_dictionary['to_GIS']: blocks.to_GIS() return None #data #None def change_ref_elevation(variation=0): """It modifies the in files from the folders to_steinar and from_amesh by increasing (or decreasing) a fixed value Parameters ---------- variation: float Defined value change the elevation of the in file from amesh Returns ------- file in: modified on folders ../mesh/to_steinar and ../mesh/from_amesh Attention --------- The change is generated on all the elements. It is recommened to run ELEM_to_json() after this execution Examples -------- >>> change_ref_elevation(variation=-100) """ in_file_steinar='../mesh/to_steinar/in' in_file_amesh='../mesh/from_amesh/in' if os.path.isfile(in_file_steinar) and os.path.isfile(in_file_amesh): steinar_colums=[(0,5),(5,10),(10,35),(35,60),(60,85),(85,110)] steinar_data=
pd.read_fwf(in_file_steinar,colspecs=steinar_colums,skiprows=7,header=None,names=['block','level','X','Y','Z','h'])
pandas.read_fwf
# Copyright 2018 <NAME> <EMAIL> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import os import warnings from .dataset import DataSet from .dataframe_tools import * from .exceptions import FailedReindexWarning, ReindexMapError class Brca(DataSet): def __init__(self, version="latest"): """Load all of the brca dataframes as values in the self._data dict variable, with names as keys, and format them properly.""" # Set some needed variables, and pass them to the parent DataSet class __init__ function valid_versions = ["3.1", "3.1.1"] # This keeps a record of all versions that the code is equipped to handle. That way, if there's a new data release but they didn't update their package, it won't try to parse the new data version it isn't equipped to handle. data_files = { "3.1": [ "prosp-brca-v3.1-acetylome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-gene-level-cnv-gistic2-all_data_by_genes.gct.gz", "prosp-brca-v3.1-phosphoproteome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-proteome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-rnaseq-fpkm-log2-row-norm-2comp.gct.gz", "prosp-brca-v3.1-sample-annotation.csv.gz"], "3.1.1": [ "Breast_One_Year_Clinical_Data_20160927.xls", "prosp-brca-v3.0-v1.4.somatic.variants.070918.maf.gz", "prosp-brca-v3.1-acetylome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-gene-level-cnv-gistic2-all_data_by_genes.gct.gz", "prosp-brca-v3.1-phosphoproteome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-proteome-ratio-norm-NArm.gct.gz", "prosp-brca-v3.1-rnaseq-fpkm-log2-row-norm-2comp.gct.gz", "prosp-brca-v3.1-sample-annotation.csv.gz"], } super().__init__(cancer_type="brca", version=version, valid_versions=valid_versions, data_files=data_files) # Load the data into dataframes in the self._data dict loading_msg = "Loading dataframes" for file_path in self._data_files_paths: # Loops through files variable # Print a loading message. We add a dot every time, so the user knows it's not frozen. loading_msg = loading_msg + "." print(loading_msg, end='\r') path_elements = file_path.split(os.sep) # Get a list of the levels of the path file_name = path_elements[-1] # The last element will be the name of the file if file_name == "prosp-brca-v3.1-acetylome-ratio-norm-NArm.gct.gz": df = pd.read_csv(file_path, sep='\t', skiprows=2, dtype=object) # First two rows of file aren't part of the dataframe. Also, due to extra metadata rows we're going to remove, all cols have mixed types, so we pass dtype=object for now. df = df[df["GeneSymbol"] != "na"] # There are several metadata rows at the beginning of the dataframe, which duplicate the clinical and derived_molecular dataframes. They all don't have a value for GeneSymbol, so we'll use that to filter them out. # Prepare some columns we'll need later for the multiindex df["variableSites"] = df["variableSites"].str.replace(r"[a-z\s]", "") # Get rid of all lowercase delimeters and whitespace in the sites df = df.rename(columns={ "GeneSymbol": "Name", "variableSites": "Site", "sequence": "Peptide", # We take this instead of sequenceVML, to match the other datasets' format "accession_numbers": "Database_ID" # We take all accession numbers they have, instead of the singular accession_number column }) # Some rows have at least one localized acetylation site, but also have other acetylations that aren't localized. We'll drop those rows, if their localized sites are duplicated in another row, to avoid creating duplicates, because we only preserve information about the localized sites in a given row. However, if the localized sites aren't duplicated in another row, we'll keep the row. split_ids = df["id"].str.split('_', expand=True) unlocalized_to_drop = df.index[~split_ids[3].eq(split_ids[4]) & df.duplicated(["Name", "Site", "Peptide", "Database_ID"], keep=False)] # Column 3 of the split "id" column is number of phosphorylations detected, and column 4 is number of phosphorylations localized, so if the two values aren't equal, the row has at least one unlocalized site df = df.drop(index=unlocalized_to_drop) # Give it a multiindex df = df.set_index(["Name", "Site", "Peptide", "Database_ID"]) df = df.drop(columns=["id", "id.description", "geneSymbol", "numColumnsVMsiteObserved", "bestScore", "bestDeltaForwardReverseScore", "Best_scoreVML", "sequenceVML", "accessionNumber_VMsites_numVMsitesPresent_numVMsitesLocalizedBest_earliestVMsiteAA_latestVMsiteAA", "protein_mw", "species", "speciesMulti", "orfCategory", "accession_number", "protein_group_num", "entry_name"]) # We don't need these. The dropped columns include a "geneSymbol" column that is a duplicate of the original GeneSymbol. df = df.apply(pd.to_numeric) # Now that we've dropped all the extra metadata columns, convert everything to floats. df = df.sort_index() df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["acetylproteomics"] = df elif file_name == "prosp-brca-v3.1-gene-level-cnv-gistic2-all_data_by_genes.gct.gz": df = pd.read_csv(file_path, sep='\t', skiprows=2, index_col=0, dtype=object) # First two rows of file aren't part of the dataframe. Also, due to extra metadata rows we're going to remove, all cols have mixed types, so we pass dtype=object for now. df = df[df["geneSymbol"] != "na"] # There are several metadata rows at the beginning of the dataframe, which duplicate the clinical and derived_molecular dataframes. They all don't have a value for geneSymbol, so we'll use that to filter them out. df = df.drop(columns="Cytoband") df["geneSymbol"] = df["geneSymbol"].str.rsplit('|', n=1, expand=True)[0] # Some of the geneSymbols have the gene IDs appended to them, to get rid of duplicates. We're going to create a multiindex with all the gene names and gene IDs, so we can drop the appended IDs. df = df.rename(columns={"geneSymbol": "Name", "Gene.ID": "Database_ID"}) df = df.set_index(["Name", "Database_ID"]) df = df.apply(pd.to_numeric) # Now that we've dropped all the extra metadata columns, convert everything to floats. df = df.sort_index() df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["CNV"] = df elif file_name == "prosp-brca-v3.1-phosphoproteome-ratio-norm-NArm.gct.gz": df = pd.read_csv(file_path, sep='\t', skiprows=2, dtype=object) # First two rows of file aren't part of the dataframe. Also, due to extra metadata rows we're going to remove, all cols have mixed types, so we pass dtype=object for now. df = df[df["GeneSymbol"] != "na"] # There are several metadata rows at the beginning of the dataframe, which duplicate the clinical and derived_molecular dataframes. They all don't have a value for GeneSymbol, so we'll use that to filter them out. # Prepare some columns we'll need later for the multiindex df["variableSites"] = df["variableSites"].str.replace(r"[a-z\s]", "") # Get rid of all lowercase delimeters and whitespace in the sites df = df.rename(columns={ "GeneSymbol": "Name", "variableSites": "Site", "sequence": "Peptide", # We take this instead of sequenceVML, to match the other datasets' format "accession_numbers": "Database_ID" # We take all accession numbers they have, instead of the singular accession_number column }) # Some rows have at least one localized phosphorylation site, but also have other phosphorylations that aren't localized. We'll drop those rows, if their localized sites are duplicated in another row, to avoid creating duplicates, because we only preserve information about the localized sites in a given row. However, if the localized sites aren't duplicated in another row, we'll keep the row. split_ids = df["id"].str.split('_', expand=True) unlocalized_to_drop = df.index[~split_ids[3].eq(split_ids[4]) & df.duplicated(["Name", "Site", "Peptide", "Database_ID"], keep=False)] # Column 3 of the split "id" column is number of phosphorylations detected, and column 4 is number of phosphorylations localized, so if the two values aren't equal, the row has at least one unlocalized site df = df.drop(index=unlocalized_to_drop) # Give it a multiindex df = df.set_index(["Name", "Site", "Peptide", "Database_ID"]) df = df.drop(columns=["id", "id.description", "geneSymbol", "numColumnsVMsiteObserved", "bestScore", "bestDeltaForwardReverseScore", "Best_scoreVML", "Best_numActualVMSites_sty", "Best_numLocalizedVMsites_sty", "sequenceVML", "accessionNumber_VMsites_numVMsitesPresent_numVMsitesLocalizedBest_earliestVMsiteAA_latestVMsiteAA", "protein_mw", "species", "speciesMulti", "orfCategory", "accession_number", "protein_group_num", "entry_name"]) # We don't need these. The dropped columns include a "geneSymbol" column that is a duplicate of the original GeneSymbol. df = df.apply(pd.to_numeric) # Now that we've dropped all the extra metadata columns, convert everything to floats. df = df.sort_index() df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["phosphoproteomics"] = df elif file_name == "prosp-brca-v3.1-proteome-ratio-norm-NArm.gct.gz": df =
pd.read_csv(file_path, sep='\t', skiprows=2, dtype=object)
pandas.read_csv
# -*- coding: utf-8 -*- """ Functions for cleaning mdredze Sandy Twitter dataset. """ import matplotlib.pyplot as plt import numpy as np import pandas as pd from statsmodels.graphics.tsaplots import plot_acf from twitterinfrastructure.tools import cross_corr, output, query def create_timeseries_diff(df, col1, col2, zone_col, write_path=None): """Creates a dataframe where col1 and col2 columns are replaced by first differenced time series. Parameters ---------- df : Dataframe Dataframe to containing time series data to difference (e.g. from create_timeseries). Assumes dataframe is multi-indexed by zone_col and timedelta (in hours). col1 : str Name of column containing first time series. col2 : str Name of column containing second time series. zone_col : str Name of zone column: 'zone_id' (nyiso zone), 'location_id' (taxi zone), or 'borough' (taxi borough). write_path : str or None If str, then write a csv of the time series dataframe to the specified path. Else, do not write. Returns ------- df_diff : dataframe Notes ----- """ # create differenced time series dataframe df_diff = pd.DataFrame(columns=[zone_col, 'timedelta', col1, col2]) df_diff.set_index([zone_col, 'timedelta'], inplace=True) zones = pd.unique(df.index.get_level_values(level=zone_col)) for zone in zones: s_y1 = df[col1].xs(zone, level=0).dropna() s_y2 = df[col2].xs(zone, level=0).dropna() s_y1.index = pd.to_timedelta(s_y1.index.values, unit='h') s_y2.index = pd.to_timedelta(s_y2.index.values, unit='h') # difference both timeseries s_y1_diff = pd.Series(data=np.diff(s_y1), index=s_y1.index.values[0:-1], name=col1) s_y2_diff = pd.Series(data=np.diff(s_y2), index=s_y2.index.values[0:-1], name=col2) df_zone = pd.concat([s_y1_diff, s_y2_diff], axis=1) df_zone.index.name = 'timedelta' df_zone = df_zone.reset_index() df_zone[zone_col] = zone df_zone = df_zone.set_index([zone_col, 'timedelta']) # add zone to differenced dataframe df_diff = df_diff.append(df_zone, ignore_index=False, sort='False') # save to csv if write_path: df_csv = df_diff.reset_index() df_csv['timedelta'] = df_csv['timedelta'].astype('timedelta64[h]') df_csv.to_csv(write_path, index=False) return df_diff def create_timeseries_shift(df, df_max_rho, col1, col2, zone_col, write_path=None): """Creates a dataframe where the 2nd time series column is time-shifted. Parameters ---------- df : Dataframe Dataframe to containing time series data to shift (e.g. from create_timeseries). Assumes dataframe is multi-indexed by zone_col and timedelta (in hours). df_max_rho : Dataframe Dataframe containing desired shifts for col2 in a 'max-lag' column, indexed by zone_col. col1 : str Name of column containing first time series (copied). col2 : str Name of column containing second time series. This is the shifted time series, where col2_shifted = col2 + shift. zone_col : str Name of zone column: 'zone_id' (nyiso zone), 'location_id' (taxi zone), or 'borough' (taxi borough). write_path : str or None If str, then write a csv of the time series dataframe to the specified path. Else, do not write. Returns ------- df_shift : dataframe Notes ----- """ # create shifted time series dataframe df_shift = pd.DataFrame(columns=[zone_col, 'timedelta', col1, col2]) df_shift.set_index([zone_col, 'timedelta'], inplace=True) for zone in df_max_rho.index.values: if not np.isnan(df_max_rho.loc[zone, 'max-rho']): s_y1 = df[col1].xs(zone, level=0).dropna() s_y2 = df[col2].xs(zone, level=0).dropna() s_y1.index = pd.to_timedelta(s_y1.index.values, unit='h') s_y2.index = pd.to_timedelta(s_y2.index.values, unit='h') # shift 2nd time series shift = df_max_rho.loc[zone, 'max-shift'] s_y2_shift = s_y2.shift(1, freq=pd.Timedelta(shift, unit='h')) df_zone = pd.concat([s_y1, s_y2_shift], axis=1) df_zone.index.name = 'timedelta' df_zone = df_zone.reset_index() df_zone[zone_col] = zone df_zone = df_zone.set_index([zone_col, 'timedelta']) # add zone to shifted dataframe df_shift = df_shift.append(df_zone, ignore_index=False, sort='False') # save to csv if write_path: df_csv = df_shift.reset_index() df_csv['timedelta'] = df_csv['timedelta'].astype('timedelta64[h]') df_csv.to_csv(write_path, index=False) return df_shift def create_timeseries(df, zone_col, min_count, write_path=None, verbose=0): """Creates a time series dataframe where each column of df is independently linearly interpolated over the total range of timedeltas of each zone. Only time series with at least min_count data points are included. Assumes the dataframe is indexed by a zone column (zone_col) and a timedelta column (e.g. using index_timedelta). Parameters ---------- df : Dataframe Dataframe to calculate time series from. zone_col : str Name of zone column: 'zone_id' (nyiso zone), 'location_id' (taxi zone), or 'borough' (taxi borough). min_count : int Minimum number of data points needed to convert to a time series. write_path : str or None If str, then write a csv of the time series dataframe to the specified path. Else, do not write. verbose : int Defines verbosity for output statements. Returns ------- df_ts : dataframe Notes ----- """ # loop through zones df_ts = pd.DataFrame() skipped = [] zones = pd.unique(df.index.get_level_values(zone_col)) for zone in zones: df_zone = df.xs(zone, level=0) # loop through columns (i.e. data to convert to time series) y_interps = [] cols = df_zone.columns.values for col in cols: s = df_zone[col].dropna() if s.count() < min_count: skipped.append((zone, col)) else: timedeltas = range(s.index.astype('timedelta64[h]').min(), s.index.astype('timedelta64[h]').max() + 1) y_interp = pd.Series(data=np.interp( timedeltas, s.index.astype('timedelta64[h]'), s.values), index=timedeltas, name=col) y_interps.append(y_interp) # add interpolated data to dataframe if y_interps: df_temp = pd.concat(objs=y_interps, axis=1, join='outer') df_temp = df_temp.set_index( pd.to_timedelta(df_temp.index.values, unit='h')) df_temp[zone_col] = zone df_temp.set_index(zone_col, append=True, inplace=True) df_temp.index.names = ['timedelta', zone_col] df_temp = df_temp.reorder_levels([1, 0]) df_ts = df_ts.append(df_temp, sort=False) # save to csv if write_path: df_csv = df_ts.reset_index() df_csv['timedelta'] = df_csv['timedelta'].astype('timedelta64[h]') df_csv.to_csv(write_path, index=False) if verbose >= 1: output('skipped zones for having less than {min_count} data points ' 'in original column data: {skipped}'.format(skipped=skipped, min_count=min_count)) return df_ts def index_timedelta(df, datetime_ref, datetime_col): """Indexes a dataframe on a timedelta calculated from datetime_col relative to datetime_ref. Parameters ---------- df : Dataframe Dataframe to reindex on timedelta. datetime_ref : Timestamp Reference datetime to calculate timedelta relative to, specified as a timezone-aware Pandas Timestamp object. Calculates timedelta as datetime_col - datetime_ref. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') datetime_col : str Name of column (or index) containing the datetime data to calculate timedelta from. Returns ------- df : dataframe Notes ----- """ indexes = df.index.names df = df.reset_index() # calculate and add timedelta df['timedelta'] = df['datetimeNY'] - datetime_ref # df['timedelta'] = [int(td.total_seconds() / 3600) for td # in df['timedelta']] # df['timedelta'] = pd.to_timedelta(df['timedelta'], unit='h') # drop columns and reindex with datetime_col replaced by timedelta df = df.drop([datetime_col], axis=1) indexes = ['timedelta' if ind == datetime_col else ind for ind in indexes] df = df.set_index(indexes) df = df.sort_index(level=0) return df def load_nyctlc_zone(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=0): """Query and clean nyctlc dropoff or pickup data for the specified date range from a sqlite database, grouped by zone. Assumes the database contains a standard_zonedropoff_hour_sandy or standard_zonepickup_hour_sandy table created using create_standard_zone_hour. Parameters ---------- startdate : Timestamp Start date to include tweets from (inclusive), specified as a timezone-aware Pandas Timestamp object. E.g. startdate = pd.Timestamp('2012-10-28 00:00:00', tz='America/New_York') enddate : Timestamp End date to include tweets from (exclusive), specified as a timezone-aware Pandas Timestamp object. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') trip_type : str Trip type: 'dropoff' or 'pickup'. trip_count_filter : int Minimum number of trips required to load a data point. db_path : str Path to sqlite database containing table. verbose : int Defines verbosity for output statements. Returns ------- df_taxi : dataframe Notes ----- Sqlite date queries are inclusive for start and end, datetimes in nyctlc database are local (i.e. NY timezone). """ df_taxi = load_nyctlc_zone_hour(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=verbose) # remove index, remove columns, and group by zone df_taxi = df_taxi.reset_index() df_taxi = df_taxi.drop(['datetimeNY'], axis=1) df_taxi = df_taxi.groupby(['location_id']).mean() if verbose >= 1: if trip_type == 'dropoff': output('[min, max] taxi pace and trips mean z-score: [' + str(np.nanmin(df_taxi['zpace-drop'])) + ', ' + str(np.nanmax(df_taxi['zpace-drop'])) + '], [' + str(np.nanmin(df_taxi['ztrips-drop'])) + ', ' + str(np.nanmax(df_taxi['ztrips-drop'])) + '].') elif trip_type == 'pickup': output('[min, max] taxi pace and trips mean z-score: [' + str(np.nanmin(df_taxi['zpace-pick'])) + ', ' + str(np.nanmax(df_taxi['zpace-pick'])) + '], [' + str(np.nanmin(df_taxi['ztrips-pick'])) + ', ' + str(np.nanmax(df_taxi['ztrips-pick'])) + '].') return df_taxi def load_nyctlc_zone_date(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=0): """Query and clean nyctlc dropoff or pickup data for the specified date range from a sqlite database, grouped by zone and date. Assumes the database contains a standard_zonedropoff_hour_sandy or standard_zonepickup_hour_sandy table created using create_standard_zone_hour. Parameters ---------- startdate : Timestamp Start date to include tweets from (inclusive), specified as a timezone-aware Pandas Timestamp object. E.g. startdate = pd.Timestamp('2012-10-28 00:00:00', tz='America/New_York') enddate : Timestamp End date to include tweets from (exclusive), specified as a timezone-aware Pandas Timestamp object. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') trip_type : str Trip type: 'dropoff' or 'pickup'. trip_count_filter : int Minimum number of trips required to load a data point. db_path : str Path to sqlite database containing table. verbose : int Defines verbosity for output statements. Returns ------- df_taxi : dataframe Notes ----- Sqlite date queries are inclusive for start and end, datetimes in nyctlc database are local (i.e. NY timezone). """ df_taxi = load_nyctlc_zone_hour(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=verbose) # remove index, adjust datetime to date, and group by zone and date df_taxi = df_taxi.reset_index() df_taxi['datetimeNY'] = pd.to_datetime(df_taxi['datetimeNY']).dt.date df_taxi = df_taxi.groupby(['location_id', 'datetimeNY']).mean() if verbose >= 1: if trip_type == 'dropoff': output('[min, max] taxi pace and trips mean z-score: [' + str(np.nanmin(df_taxi['zpace-drop'])) + ', ' + str(np.nanmax(df_taxi['zpace-drop'])) + '], [' + str(np.nanmin(df_taxi['ztrips-drop'])) + ', ' + str(np.nanmax(df_taxi['ztrips-drop'])) + '].') elif trip_type == 'pickup': output('[min, max] taxi pace and trips mean z-score: [' + str(np.nanmin(df_taxi['zpace-pick'])) + ', ' + str(np.nanmax(df_taxi['zpace-pick'])) + '], [' + str(np.nanmin(df_taxi['ztrips-pick'])) + ', ' + str(np.nanmax(df_taxi['ztrips-pick'])) + '].') return df_taxi def load_nyctlc_zone_hour(startdate, enddate, trip_type, trip_count_filter, db_path, verbose=0): """Query and clean nyctlc dropoff or pickup data for the specified date range from a sqlite database, grouped by zone and hour. Assumes the database contains a standard_zonedropoff_hour_sandy or standard_zonepickup_hour_sandy table created using create_standard_zone_hour. Parameters ---------- startdate : Timestamp Start date to include tweets from (inclusive), specified as a timezone-aware Pandas Timestamp object. E.g. startdate = pd.Timestamp('2012-10-28 00:00:00', tz='America/New_York') enddate : Timestamp End date to include tweets from (exclusive), specified as a timezone-aware Pandas Timestamp object. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') trip_type : str Trip type: 'dropoff' or 'pickup'. trip_count_filter : int Minimum number of trips required to load a data point. db_path : str Path to sqlite database containing table. verbose : int Defines verbosity for output statements. Returns ------- df_taxi : dataframe Notes ----- Sqlite date queries are inclusive for start and end, datetimes in nyctlc database are local (i.e. NY timezone). """ if verbose >= 1: output('Started query.') # define trip type if trip_type not in ['dropoff', 'pickup']: raise ValueError('Invalid trip_type argument: {arg}.'.format( arg=trip_type)) # convert datetimes enddate_exclusive = enddate - pd.Timedelta('1 second') startdate_sql = startdate.strftime("%Y-%m-%d %H:%M:%S") enddate_sql = enddate_exclusive.strftime("%Y-%m-%d %H:%M:%S") # load dropoff/pickup data sql = """ SELECT {trip_type}_datetime AS datetimeNY, {trip_type}_location_id AS location_id, z_mean_pace AS zpace, z_trip_count AS ztrips FROM standard_zone{trip_type}_hour_sandy WHERE trip_count > {trip_count_filter} AND {trip_type}_datetime BETWEEN "{startdate_sql}" AND "{enddate_sql}" ;""".format(trip_count_filter=trip_count_filter, startdate_sql=startdate_sql, enddate_sql=enddate_sql, trip_type=trip_type) df_taxi = query(db_path, sql) # add columns df_taxi['abs-zpace'] = abs(df_taxi['zpace']) df_taxi['abs-ztrips'] = abs(df_taxi['ztrips']) # convert datetimes df_taxi['datetimeNY'] = pd.to_datetime(df_taxi['datetimeNY']) df_taxi['datetimeNY'] = [dt.tz_localize(tz='America/New_York') for dt in df_taxi['datetimeNY']] # index and sort df_taxi = df_taxi.set_index(['location_id', 'datetimeNY']) df_taxi = df_taxi.sort_index(level=0) if verbose >= 1: output('[min, max] taxi datetimeNY (hourly): [' + str(min(df_taxi.index.get_level_values(level=1))) + ', ' + str(max(df_taxi.index.get_level_values(level=1))) + '].') output('[min, max] taxi pace and trips mean z-score (hourly): [' + str(np.nanmin(df_taxi['zpace'])) + ', ' + str(np.nanmax(df_taxi['zpace'])) + '], [' + str(np.nanmin(df_taxi['ztrips'])) + ', ' + str(np.nanmax(df_taxi['ztrips'])) + '].') # add drop or pick to column names if trip_type == 'dropoff': val = '-drop' elif trip_type == 'pickup': val = '-pick' else: pass col_dict = {} for col in df_taxi.columns.values: col_dict[col] = col + val df_taxi = df_taxi.rename(col_dict, axis='columns') return df_taxi def load_nyiso(startdate, enddate, db_path, verbose=0): """Query and clean nyiso load forecast error data for the specified date range from a sqlite database. Assumes the database contains a forecast_error table created using create_forecast_err. Parameters ---------- startdate : Timestamp Start date to include tweets from (inclusive), specified as a timezone-aware Pandas Timestamp object. E.g. startdate = pd.Timestamp('2012-10-28 00:00:00', tz='America/New_York') enddate : Timestamp End date to include tweets from (exclusive), specified as a timezone-aware Pandas Timestamp object. e.g. enddate = pd.Timestamp('2012-11-03 00:00:00', tz='America/New_York') db_path : str Path to sqlite database containing table. verbose : int Defines verbosity for output statements. Returns ------- df : dataframe Notes ----- Sqlite date queries are inclusive for start and end, forecast_error datetimes are UTC. """ if verbose >= 1: output('Started query.') # convert datetimes startdateUTC = startdate.tz_convert('UTC') enddateUTC = enddate.tz_convert('UTC') - pd.Timedelta('1 second') startdate_sql = startdateUTC.strftime("%Y-%m-%d %H:%M:%S") enddate_sql = enddateUTC.strftime("%Y-%m-%d %H:%M:%S") # load nyiso load data sql = """ SELECT datetimeUTC, zone_id AS nyiso_zone, forecast_error_p0 AS err0 FROM forecast_error WHERE datetimeUTC BETWEEN "{startdate_sql}" AND "{enddate_sql}" ;""".format(startdate_sql=startdate_sql, enddate_sql=enddate_sql) df = query(db_path, sql) # convert datetimes df['datetimeUTC'] = pd.to_datetime(df['datetimeUTC']) df['datetimeUTC'] = [datetime.tz_localize(tz='UTC') for datetime in df['datetimeUTC']] df['datetimeNY'] = [datetime.tz_convert('America/New_York') for datetime in df['datetimeUTC']] # add and drop columns df['percent-err0'] = df['err0'] * 100 df = df.drop(['datetimeUTC'], axis=1) # index and sort df = df.set_index(['nyiso_zone', 'datetimeNY']) df = df.sort_index(level=0) if verbose >= 1: output('[min, max] forecast error datetimeNY: [' + str(min(df.index.get_level_values(level=1))) + ', ' + str(max(df.index.get_level_values(level=1))) + '].') output('[min, max] forecast error: [' + str(np.nanmin(df['err0'])) + ', ' + str(np.nanmax(df['err0'])) + '].') output('Finished query.') return df def max_cross_corr(df, col1, col2, zone_col, shifts, min_overlap, verbose=0): """Creates a dataframe containing the time shift that maximizes cross-correlation between two time series, the max cross-correlation value, and the number of overlapping data points in those series. Parameters ---------- df : Dataframe Dataframe to containing time series data (e.g. from create_timeseries). Assumes dataframe is multi-indexed by zone_col and timedelta (in hours). col1 : str Name of column containing first time series. col2 : str Name of column containing second time series. This is the shifted time series, where col2_shifted = col2 + shift. zone_col : str Name of spatial zone index. shifts : list List of time shifts to apply to 2nd time series (in hours). min_overlap : int Minimum number of overlapping data points (after the 2nd series is time shifted) needed to calculate cross-correlation. verbose : int Defines verbosity for output statements. Returns ------- df_max_rho : dataframe Dataframe of max cross-correlations and associated shifts and counts. df_rho : dataframe Dataframe of cross-correlations and associated shifts and counts for all shifts. Notes ----- """ df_rho = pd.DataFrame(columns=['shift', zone_col, 'rho']) df_count = pd.DataFrame(columns=['shift', zone_col, 'count']) skipped = [] zones = pd.unique(df.index.get_level_values(zone_col)) for shift in shifts: for zone in zones: s_y1 = df[col1].xs(zone, level=0).dropna() s_y2 = df[col2].xs(zone, level=0).dropna() s_y1.index = pd.to_timedelta(s_y1.index.values, unit='h') s_y2.index = pd.to_timedelta(s_y2.index.values, unit='h') # shift 2nd time series s_y2_shift = s_y2.shift(1, freq=pd.Timedelta(shift, unit='h')) # skip zone if not enough overlapping data points (after shift) df_zone = pd.concat([s_y1, s_y2_shift], axis=1).dropna() num_overlap = df_zone.shape[0] if num_overlap < min_overlap: df_rho = df_rho.append({'shift': shift, zone_col: zone, 'rho': np.nan}, ignore_index=True) skipped.append((shift, zone)) continue # normalized cross-correlation rho = cross_corr(df_zone[col1].values, df_zone[col2].values, True) df_rho = df_rho.append({'shift': shift, zone_col: zone, 'rho': rho}, ignore_index=True) df_count = df_count.append({'shift': shift, zone_col: zone, 'count': num_overlap}, ignore_index=True) # reshape and get max rhos and associated shifts and counts df_rho = df_rho.set_index(['shift', zone_col]) df_rho_reshape = df_rho.reset_index() df_rho_reshape = df_rho_reshape.pivot(index='shift', columns=zone_col, values='rho') s_max_shifts = df_rho_reshape.idxmax(axis=0) s_max_shifts.name = 'max-shift' s_max_rhos = df_rho_reshape.max(axis=0) s_max_rhos.name = 'max-rho' df_count = df_count.set_index(['shift', zone_col]) max_counts = [] for zone in zones: max_shift = s_max_shifts.loc[zone] if np.isnan(max_shift): max_counts.append(np.nan) else: max_counts.append(df_count.loc[max_shift, zone].item()) s_max_counts = pd.Series(max_counts, index=zones) s_max_counts.name = 'max-count' df_max_rho = pd.concat([s_max_rhos, s_max_shifts, s_max_counts], axis=1) if verbose >= 2: output('Skipped {num_skipped} (shift, {zone}) combos: {skipped}'.format( num_skipped=len(skipped), zone=zone_col, skipped=skipped)) return df_max_rho, df_rho def plot_acf_series(s, figsize=(6, 4), xlabel='Lag', ylabel=None, save_path=None): """Creates a dataframe containing the time shift that maximizes cross-correlation between two time series, the max cross-correlation value, and the number of overlapping data points in those series. Parameters ---------- s : list-like object List-like object (e.g. list, pandas series) containing time series to plot acf for. If ylable is None, then s must be a labeled series. figsize : tuple (optional) Two element tuple defining figure size in inches (width, height). xlabel : str (optional) Defines x-axis label. ylabel : str (optioal) Defines left y-axis label. save_path : str or None If str, defines path for saving figure. If None, does not save figure. Returns ------- Notes ----- """ # create figure and add acf plot fig, ax = plt.subplots(figsize=figsize, tight_layout=False) plot_acf(s, ax=ax) # axes ax.tick_params(axis='x', colors='k') ax.tick_params(axis='y', colors='k') ax.set_xlabel(xlabel, color='k') if ylabel: ax.set_ylabel(ylabel, color='k') else: ax.set_ylabel('ACF ({var})'.format(var=s.name), color='k') plt.title('') # save if save_path: fig.set_size_inches(figsize[0], figsize[1]) plt.savefig(save_path, dpi=300, bbox_inches='tight') def plot_timeseries(s1, s2, figsize=(6, 4), linestyles=('-', '--'), colors=('xkcd:black', 'xkcd:red'), xlabel='Timedelta, hours', y1label=None, y2label=None, save_path=None): """Creates a dataframe containing the time shift that maximizes cross-correlation between two time series, the max cross-correlation value, and the number of overlapping data points in those series. Parameters ---------- s1 : series 1st pandas series indexed by timedelta. Series must be named if y1label is None. s2 : series 2nd pandas series indexed by timedelta. Series must be named if y2label is None. figsize : tuple (optional) Two element tuple defining figure size in inches (width, height). linestyles : tuple (optional) Tuple defining line styles to use for each series. colors : tuple (optional) Tuple defining colors to use for each series. xlabel : str Defines x-axis label. y1label : str Defines left y-axis label. y2label : str Defines right y-axis label. save_path : str or None If str, defines path for saving figure. If None, does not save figure. Returns ------- Notes ----- """ # get data s1.index = pd.to_timedelta(s1.index.values, unit='h') s2.index =
pd.to_timedelta(s2.index.values, unit='h')
pandas.to_timedelta
from collections import namedtuple import matplotlib.pyplot as plt from numpy import * from numpy.linalg import qr from numpy.random import randint, randn, seed as randseed from os import makedirs, remove from os.path import isfile, basename, dirname from pandas import Series import pickle from scipy.stats import norm, kstest from typing import Any, Callable, Generator, List, Optional, Sequence, Union __all__ = ['RBIG_file', 'RBIG', 'inv', 'empiric', 'gaussianization'] Empiric = namedtuple('Empiric', ['xk', 'pk']) def inv(obj: Any) -> Callable: """Switches inv & call methods.""" return obj.__inv__ obj.__class__.__call__, obj.__inv__ = obj.__inv__, obj.__call__ return obj def normalize(x): """Domain: [0, 1]""" x = array(x) # assert minimal value >= 0 x[x<0] = 0 # assert sum = 1 if sum(x) == 0: x = ones_like(x) return x/sum(x) def normalize_cdf(x, tol=1e-8): """This prevents norm.ppf({0, 1}) = +-inf by shifting the values of CDF into (0, 1).""" x[x==0.] = tol x[x==1.] = 1. - tol return x class empiric: """Empiric distribution with connected support. domains: xk: real numbers pk: [0,1] ck, sk: (0,1) to prevent norm.ppf from returning {-inf, +inf}, which in turn would break the rotations of RBIG - anynumber * inf = nan - matrix multiplications propagate nans ToDo: Warnings: RuntimeWarning: invalid value encountered in greater_equal cond2 = (x >= np.asarray(_b)) & cond0 RuntimeWarning: invalid value encountered in less_equal cond2 = cond0 & (x <= _a) RuntimeWarning: invalid value encountered in greater cond1 = (0 < q) & (q < 1) RuntimeWarning: invalid value encountered in less cond1 = (0 < q) & (q < 1) """ def __init__(self, x, p=None): if ndim(x) == 2: x, p = x[0], x[1] y, py = unique(x, return_counts=True) if p is not None: py = p if len(x) != len(y): py = zeros(y.shape) for i in range(y.size): py[i] = p[where(x == y[i])].sum() # normalize probabilities p = normalize(py) self.xk = y self.pk = p self.ck = cumsum(p) # correct domains of ck & sk # many values may be 0 or 1! self.ck = normalize_cdf(self.ck, 1e-8) self.sk = 1. - self.ck def pdf(self, x): return interp(x, self.xk, self.pk) def cdf(self, x): return interp(x, self.xk, self.ck) def ppf(self, x): return interp(x, self.ck, self.xk) def sf(self, x): return interp(x, self.xk, self.sk) # reversed ordering - sf is decreasing def isf(self, x): return interp(x, self.sk[::-1], self.xk[::-1]) params = property(lambda self: Empiric(self.xk, self.pk)) class gaussianization(empiric): def __init__(self, x, p=None): super().__init__(x, p) def __call__(self, x): return norm.ppf(self.cdf(x)) def __inv__(self, x): return self.ppf(norm.cdf(x)) class Gaussianize_Matrix: """Marginally gaussianize each feature of design matrix.""" def __call__(self, x, dists): for i in range(len(x)): x[i] = gaussianization(dists[i])(x[i]) return x def __inv__(self, x, dists): for i in range(len(x)): x[i] = inv(gaussianization(dists[i]))(x[i]) return x gaussianize_matrix = Gaussianize_Matrix() def dists_of_matrix(x: ndarray) -> List[ndarray]: """Feature wise empirical distributions.""" dists = [] for feature in x: dists += [empiric(feature).params] # dists = self.dim * [0] # for i, feature in enumerate(self._x): # dists[i] = empiric(feature).params return dists def file_exists(file: str = 'tmp.rbig') -> str: path, base = dirname(file), basename(file) root, ext = base.split('.', 1) i, sep = 0, len(root) + len(path) + 1 while isfile(file): file = '{}-{:d}.{}'.format(file[:sep], i, ext) i += 1 return file class RBIG_file: """Rotation based iterative gaussianization (arXiv:1602.00229). Design matrix is transposed for efficiency reasons. All transformations are saved to a file.""" def __init__( self, x: ndarray, epochs: int, seed: Optional[int] = None, file: str = '../tmp/tmp.rbig'): self._x = copy(x.T) self.dim = x.shape[1] self.epoch_nr = 0 # ! self.file = file_exists(file) self.fit(epochs, seed) def fit(self, epochs: int, seed: Optional[int] = None): randseed(seed) for epoch in range(epochs): dists = dists_of_matrix(self._x) rot = qr(randn(self.dim, self.dim))[0] self._x = gaussianize_matrix(self._x, dists) self._x = rot @ self._x ks = mean([kstest(y, 'norm')[0] for y in self._x]) self._save([self.epoch_nr, ks, dists, rot]) self.epoch_nr += 1 def __call__(self, x): return self.encode(x) def __inv__(self, x): return self.decode(x) def encode(self, x: ndarray) -> ndarray: self._x = copy(x.T) for epoch, ks, dists, rot in self._load(): self._x = gaussianize_matrix(self._x, dists) self._x = rot @ self._x return self.x def decode(self, x: ndarray) -> ndarray: self._x = copy(x.T) for epoch, ks, dists, rot in reversed(list(self._load())): self._x = rot.T @ self._x self._x = inv(gaussianize_matrix)(self._x, dists) return self.x def kstest(self, show: bool = False, save: bool = False, path: str = 'KS.png') -> Series: ks = [] for epoch, k, dists, rot in self._load(): ks += [k] ks = Series(ks, name='KS-test') ks.index.name = 'Epochen' ks.index += 1 if show or save: ks.plot(title='Kolmogorow-Smirnow-Test', loglog=True, legend=False, color='k', figsize=(3, 2)) #plt.ylabel('KS Test Statistic') if save: plt.savefig(path, bbox_inches='tight') plt.show() if show else plt.close() return ks def _save(self, params: list): makedirs(dirname(self.file), exist_ok=True) with open(self.file, 'ab') as file: pickle.dump(params, file, pickle.HIGHEST_PROTOCOL) def _load(self) -> Generator[List, None, None]: with open(self.file, "rb") as f: while True: try: yield pickle.load(f) except EOFError: break @property def rem(self): if isfile(self.file): remove(self.file) x = property(lambda self: self._x.T) def inspect_seeds( epochs: Optional[int] = None, seeds: Optional[Sequence[int]] = None) -> (int, List[int]): """ Assert number of epochs matches number of seeds and that seeds is a list. :param epochs: Number of epochs for training. :param seeds: Seeds for random number generation. :return: Inspected epochs and seeds. """ # Assert that seeds is of type list. if isinstance(seeds, int) or seeds is None: randseed(seeds) seeds = [] else: seeds = list(seeds) # Optionally determine number of epochs from number of seeds. if epochs is None: epochs = len(seeds) # Match number of epochs with number of seeds. if epochs > len(seeds): # Extend random values to seeds. seeds += list(randint( 2 ** 32 - 1, # Max accepted range for numpy seed generator. size=epochs - len(seeds), dtype=int64)) elif epochs < len(seeds): seeds = seeds[:epochs] return epochs, seeds class RBIG: """ Rotation based iterative gaussianization (arXiv:1602.00229). :member _x: Transposed design matrix with shape (features, samples). :member features: Number of features of _x. :member samples: Number of samples of _x. :member epoch_nr: Current epoch number of training. :member seeds: Seeds for epoch wise generation of random rotation matrices. :member dists: Collection of feature wise empirical distributions of _x with shape (epochs, features, samples). :member ks: Epoch wise Kolmogorow-Smirnow-Test-statistics. """ def __init__( self, x: ndarray, epochs: Optional[int] = None, seeds: Optional[Sequence[int]] = None, eps: float = 1e-7): """ Initializes RBIG. :param x: Design matrix with shape (samples, features). :param epochs: Number of epochs for initial training. :param seeds: Seeds for epoch wise generation of random rotation matrices for initial training. :param eps: Precision parameter for marginal gaussianization. """ self._x = copy(x.T) self.features = self._x.shape[0] self.samples = self._x.shape[1] self.epoch_nr = 0 self.dists = None self.seeds = [] self.ks = [] self.eps = eps epochs, seeds = inspect_seeds(epochs, seeds) # initial gaussianization self.fit(epochs, seeds) def _empirical_distributions(self): """ Determines feature wise cumulated empirical distributions at recent epoch. Correct support at the edges by a small tolerance value. """ dists = zeros((2,) + self._x.shape) # Feature wise sorting and counting. for feature in range(self.features): vals, cnts = unique(self._x[feature], return_counts=True) dists[0, feature, :len(vals)] = vals dists[1, feature, :len(vals)] = cnts # correct length of distributions, otherwise interp breaks! dists[0, feature, len(vals):] = nan # Cumulate counts feature wise. dists[1] = cumsum(dists[1], axis=1) # Apply feature wise [0, 1]-normalization. dists[1] /= expand_dims(dists[1, :, -1], axis=1) # Clip empirical cdf into open interval (0, 1). dists[1] = clip(dists[1], self.eps, 1. - self.eps) self.dists[self.epoch_nr] = dists def _marginalcdf(self, epoch: int): xk, ck = self.dists[epoch] for feature in range(self.features): self._x[feature] = interp(self._x[feature], xk[feature], ck[feature]) def _marginalppf(self, epoch: int): xk, ck = self.dists[epoch] for feature in range(self.features): self._x[feature] = interp(self._x[feature], ck[feature], xk[feature]) def _mgauss(self, epoch: int): self._marginalcdf(epoch) self._x = norm.ppf(self._x) def _igauss(self, epoch: int): self._x = norm.cdf(self._x) self._marginalppf(epoch) def fit( self, epochs: Optional[int] = None, seeds: Optional[Sequence[int]] = None): """ Fit gaussianization transform. :param epochs: number of epochs to train; inferred from seeds if None :param seeds: sequence of seeds for the random rotation matrices; random if None :return: """ epochs, seeds = inspect_seeds(epochs, seeds) if epochs == 0: return # Expand empirical distributions by incoming epochs. dists = zeros((epochs, 2, self.features, self.samples)) if self.dists is None: self.dists = dists else: self.dists = concatenate((self.dists, dists)) for epoch, seed in enumerate(seeds): self._empirical_distributions() randseed(seed) rot = qr(randn(self.features, self.features))[0] # ToDo: rot is all NaN in first epoch. """ f.e. prepare_gauss, plot_anomalies, plot_comparison and plot_time_series do work in terminal but break if called from main. Warnings: RuntimeWarning: invalid value encountered in greater_equal cond2 = (x >= np.asarray(_b)) & cond0 RuntimeWarning: invalid value encountered in less_equal cond2 = cond0 & (x <= _a) RuntimeWarning: invalid value encountered in greater cond1 = (0 < q) & (q < 1) RuntimeWarning: invalid value encountered in less cond1 = (0 < q) & (q < 1) """ if any(isnan(rot)): raise ValueError('Rotation matrix contains NaN in epoch %d from seed %d.' % (epoch, seed)) self._mgauss(epoch) self._x = rot @ self._x # Update members. self.ks += [mean([kstest(feature, 'norm')[0] for feature in self._x])] self.epoch_nr += 1 self.seeds += [seed] def __call__(self, x): return self.encode(x) def __inv__(self, x): return self.decode(x) def encode(self, x: ndarray) -> ndarray: self._x = copy(x.T) for epoch, seed in enumerate(self.seeds): randseed(seed) rot = qr(randn(self.features, self.features))[0] self._mgauss(epoch) self._x = rot @ self._x return self.x def decode(self, x: ndarray) -> ndarray: self._x = copy(x.T) for epoch in reversed(range(self.epoch_nr)): randseed(self.seeds[epoch]) rot = qr(randn(self.features, self.features))[0] self._x = rot.T @ self._x self._igauss(epoch) return self.x def kstest( self, show: bool = False, save: bool = False, path: str = 'KS.png') -> Series: """ Feature wise KS-tests. Optionally plotting and saving. """ ks =
Series(self.ks, name='KS-test')
pandas.Series
import sys,os #os.chdir("/Users/utkarshvirendranigam/Desktop/Homework/Project") # required_packages=["PyQt5","re", "scipy","itertools","random","matplotlib","pandas","numpy","sklearn","pydotplus","collections","warnings","seaborn"] #print(os.getcwd()) # for my_package in required_packages: # try: # command_string="conda install "+ my_package+ " --yes" # os.system(command_string) # except: # count=1 from PyQt5.QtWidgets import (QMainWindow, QApplication, QWidget, QPushButton, QAction, QComboBox, QLabel, QGridLayout, QCheckBox, QGroupBox, QVBoxLayout, QHBoxLayout, QLineEdit, QPlainTextEdit) from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot, QRect from PyQt5.QtCore import pyqtSignal from PyQt5.QtCore import Qt # from scipy import interp from itertools import cycle, combinations import random from PyQt5.QtWidgets import QDialog, QVBoxLayout, QSizePolicy, QFormLayout, QRadioButton, QScrollArea, QMessageBox from PyQt5.QtGui import QPixmap from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure import pandas as pd import numpy as np import pickle from numpy.polynomial.polynomial import polyfit from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split, cross_val_score from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.compose import make_column_transformer from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve, auc, log_loss, brier_score_loss from sklearn.calibration import calibration_curve from sklearn.linear_model import LogisticRegression from sklearn.ensemble import GradientBoostingClassifier from sklearn import feature_selection from sklearn import metrics from sklearn.preprocessing import label_binarize from sklearn.model_selection import cross_val_predict # Libraries to display decision tree from pydotplus import graph_from_dot_data import collections from sklearn.tree import export_graphviz import webbrowser import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt from Preprocessing import PreProcessing import random import seaborn as sns #%%----------------------------------------------------------------------- import os os.environ["PATH"] += os.pathsep + 'C:\\Program Files (x86)\\graphviz-2.38\\release\\bin' #%%----------------------------------------------------------------------- #::-------------------------------- # Deafault font size for all the windows #::-------------------------------- font_size_window = 'font-size:18px' class DecisionTree(QMainWindow): #::-------------------------------------------------------------------------------- # Implementation of Random Forest Classifier using the happiness dataset # the methods in this class are # _init_ : initialize the class # initUi : creates the canvas and all the elements in the canvas # update : populates the elements of the canvas base on the parametes # chosen by the user #::--------------------------------------------------------------------------------- send_fig = pyqtSignal(str) def __init__(self): super(DecisionTree, self).__init__() self.Title = "Decision Tree Classifier" self.initUi() def initUi(self): #::----------------------------------------------------------------- # Create the canvas and all the element to create a dashboard with # all the necessary elements to present the results from the algorithm # The canvas is divided using a grid loyout to facilitate the drawing # of the elements #::----------------------------------------------------------------- self.setWindowTitle(self.Title) self.setStyleSheet(font_size_window) self.main_widget = QWidget(self) self.layout = QGridLayout(self.main_widget) self.groupBox1 = QGroupBox('Decision Tree Features') self.groupBox1Layout= QGridLayout() self.groupBox1.setLayout(self.groupBox1Layout) self.feature0 = QCheckBox(features_list[0],self) self.feature1 = QCheckBox(features_list[1],self) self.feature2 = QCheckBox(features_list[2], self) self.feature3 = QCheckBox(features_list[3], self) self.feature4 = QCheckBox(features_list[4],self) self.feature5 = QCheckBox(features_list[5],self) self.feature6 = QCheckBox(features_list[6], self) self.feature7 = QCheckBox(features_list[7], self) self.feature8 = QCheckBox(features_list[8], self) self.feature9 = QCheckBox(features_list[9], self) self.feature10 = QCheckBox(features_list[10], self) self.feature11 = QCheckBox(features_list[11], self) self.feature12 = QCheckBox(features_list[12], self) self.feature13 = QCheckBox(features_list[13], self) self.feature14 = QCheckBox(features_list[14], self) self.feature15 = QCheckBox(features_list[15], self) self.feature16 = QCheckBox(features_list[16], self) self.feature17 = QCheckBox(features_list[17], self) self.feature18 = QCheckBox(features_list[18], self) self.feature19 = QCheckBox(features_list[19], self) self.feature20 = QCheckBox(features_list[20], self) self.feature21 = QCheckBox(features_list[21], self) self.feature22 = QCheckBox(features_list[22], self) self.feature23 = QCheckBox(features_list[23], self) self.feature24 = QCheckBox(features_list[24], self) self.feature0.setChecked(True) self.feature1.setChecked(True) self.feature2.setChecked(True) self.feature3.setChecked(True) self.feature4.setChecked(True) self.feature5.setChecked(True) self.feature6.setChecked(True) self.feature7.setChecked(True) self.feature8.setChecked(True) self.feature9.setChecked(True) self.feature10.setChecked(True) self.feature11.setChecked(True) self.feature12.setChecked(True) self.feature13.setChecked(True) self.feature14.setChecked(True) self.feature15.setChecked(True) self.feature16.setChecked(True) self.feature17.setChecked(True) self.feature18.setChecked(True) self.feature19.setChecked(True) self.feature20.setChecked(True) self.feature21.setChecked(True) self.feature22.setChecked(True) self.feature23.setChecked(True) self.feature24.setChecked(True) self.lblPercentTest = QLabel('Percentage for Test :') self.lblPercentTest.adjustSize() self.txtPercentTest = QLineEdit(self) self.txtPercentTest.setText("30") self.lblMaxDepth = QLabel('Maximun Depth :') self.txtMaxDepth = QLineEdit(self) self.txtMaxDepth.setText("3") self.btnExecute = QPushButton("Run Model") self.btnExecute.setGeometry(QRect(60, 500, 75, 23)) self.btnExecute.clicked.connect(self.update) self.btnDTFigure = QPushButton("View Tree") self.btnDTFigure.setGeometry(QRect(60, 500, 75, 23)) self.btnDTFigure.clicked.connect(self.view_tree) # We create a checkbox for each feature self.groupBox1Layout.addWidget(self.feature0, 0, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature1, 0, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature2, 1, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature3, 1, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature4, 2, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature5, 2, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature6, 3, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature7, 3, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature8, 4, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature9, 4, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature10, 5, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature11, 5, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature12, 6, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature13, 6, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature14, 7, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature15, 7, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature16, 8, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature17, 8, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature18, 9, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature19, 9, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature20, 10, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature21, 10, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature22, 11, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature23, 11, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature24, 12, 0, 1, 1) self.groupBox1Layout.addWidget(self.lblPercentTest, 19, 0, 1, 1) self.groupBox1Layout.addWidget(self.txtPercentTest, 19, 1, 1, 1) self.groupBox1Layout.addWidget(self.lblMaxDepth, 20, 0, 1, 1) self.groupBox1Layout.addWidget(self.txtMaxDepth, 20, 1, 1, 1) self.groupBox1Layout.addWidget(self.btnExecute, 21, 0, 1, 1) self.groupBox1Layout.addWidget(self.btnDTFigure, 21, 1, 1, 1) self.groupBox2 = QGroupBox('Measurements:') self.groupBox2Layout = QVBoxLayout() self.groupBox2.setLayout(self.groupBox2Layout) # self.groupBox2.setMinimumSize(400, 100) self.current_model_summary = QWidget(self) self.current_model_summary.layout = QFormLayout(self.current_model_summary) self.txtCurrentAccuracy = QLineEdit() self.txtCurrentPrecision = QLineEdit() self.txtCurrentRecall = QLineEdit() self.txtCurrentF1score = QLineEdit() self.current_model_summary.layout.addRow('Accuracy:', self.txtCurrentAccuracy) self.current_model_summary.layout.addRow('Precision:', self.txtCurrentPrecision) self.current_model_summary.layout.addRow('Recall:', self.txtCurrentRecall) self.current_model_summary.layout.addRow('F1 Score:', self.txtCurrentF1score) self.groupBox2Layout.addWidget(self.current_model_summary) self.groupBox3 = QGroupBox('Other Models Accuracy:') self.groupBox3Layout = QVBoxLayout() self.groupBox3.setLayout(self.groupBox3Layout) self.other_models = QWidget(self) self.other_models.layout = QFormLayout(self.other_models) self.txtAccuracy_lr = QLineEdit() self.txtAccuracy_gb = QLineEdit() self.txtAccuracy_rf = QLineEdit() self.other_models.layout.addRow('Logistic:', self.txtAccuracy_lr) self.other_models.layout.addRow('Random Forest:', self.txtAccuracy_rf) self.other_models.layout.addRow('Gradient Boosting:', self.txtAccuracy_gb) self.groupBox3Layout.addWidget(self.other_models) #::------------------------------------- # Graphic 1 : Confusion Matrix #::------------------------------------- self.fig = Figure() self.ax1 = self.fig.add_subplot(111) self.axes=[self.ax1] self.canvas = FigureCanvas(self.fig) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas.updateGeometry() self.groupBoxG1 = QGroupBox('Confusion Matrix') self.groupBoxG1Layout= QVBoxLayout() self.groupBoxG1.setLayout(self.groupBoxG1Layout) self.groupBoxG1Layout.addWidget(self.canvas) #::--------------------------------------------- # Graphic 2 : ROC Curve #::--------------------------------------------- self.fig2 = Figure() self.ax2 = self.fig2.add_subplot(111) self.axes2 = [self.ax2] self.canvas2 = FigureCanvas(self.fig2) self.canvas2.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas2.updateGeometry() self.groupBoxG2 = QGroupBox('ROC Curve') self.groupBoxG2Layout = QVBoxLayout() self.groupBoxG2.setLayout(self.groupBoxG2Layout) self.groupBoxG2Layout.addWidget(self.canvas2) #::------------------------------------------- # Graphic 3 : Importance of Features #::------------------------------------------- self.fig3 = Figure() self.ax3 = self.fig3.add_subplot(111) self.axes3 = [self.ax3] self.canvas3 = FigureCanvas(self.fig3) self.canvas3.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas3.updateGeometry() self.groupBoxG3 = QGroupBox('Importance of Features') self.groupBoxG3Layout = QVBoxLayout() self.groupBoxG3.setLayout(self.groupBoxG3Layout) self.groupBoxG3Layout.addWidget(self.canvas3) #::-------------------------------------------- # Graphic 4 : ROC Curve by class #::-------------------------------------------- self.fig4 = Figure() self.ax4 = self.fig4.add_subplot(111) self.axes4 = [self.ax4] self.canvas4 = FigureCanvas(self.fig4) self.canvas4.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas4.updateGeometry() self.groupBoxG4 = QGroupBox('ROC Curve by Class') self.groupBoxG4Layout = QVBoxLayout() self.groupBoxG4.setLayout(self.groupBoxG4Layout) self.groupBoxG4Layout.addWidget(self.canvas4) #::------------------------------------------------- # End of graphs #::------------------------------------------------- self.layout.addWidget(self.groupBox1, 0, 0, 3, 2) self.layout.addWidget(self.groupBoxG1, 0, 2, 1, 1) self.layout.addWidget(self.groupBoxG3, 0, 3, 1, 1) self.layout.addWidget(self.groupBoxG2, 1, 2, 1, 1) self.layout.addWidget(self.groupBoxG4, 1, 3, 1, 1) self.layout.addWidget(self.groupBox2, 2, 2, 1, 1) self.layout.addWidget(self.groupBox3, 2, 3, 1, 1) self.setCentralWidget(self.main_widget) self.resize(1800, 1200) self.show() def update(self): ''' Random Forest Classifier We pupulate the dashboard using the parametres chosen by the user The parameters are processed to execute in the skit-learn Random Forest algorithm then the results are presented in graphics and reports in the canvas :return:None ''' # processing the parameters self.list_corr_features = pd.DataFrame([]) if self.feature0.isChecked(): if len(self.list_corr_features)==0: self.list_corr_features = df[features_list[0]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[0]]],axis=1) if self.feature1.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[1]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[1]]],axis=1) if self.feature2.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[2]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[2]]],axis=1) if self.feature3.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[3]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[3]]],axis=1) if self.feature4.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[4]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[4]]],axis=1) if self.feature5.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[5]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[5]]],axis=1) if self.feature6.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[6]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[6]]],axis=1) if self.feature7.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[7]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[7]]],axis=1) if self.feature8.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[8]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[8]]],axis=1) if self.feature9.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[9]] else: self.list_corr_features =
pd.concat([self.list_corr_features, df[features_list[9]]],axis=1)
pandas.concat
import numpy as np import pandas as pd import pytest from sklearn.exceptions import NotFittedError from feature_engine.datetime import DatetimeFeatures from feature_engine.datetime._datetime_constants import ( FEATURES_DEFAULT, FEATURES_SUFFIXES, FEATURES_SUPPORTED, ) vars_dt = ["datetime_range", "date_obj1", "date_obj2", "time_obj"] vars_non_dt = ["Name", "Age"] feat_names_default = [FEATURES_SUFFIXES[feat] for feat in FEATURES_DEFAULT] dates_nan = pd.DataFrame({"dates_na": ["Feb-2010", np.nan, "Jun-1922", np.nan]}) _false_input_params = [ (["not_supported"], 3.519, "wrong_option"), (["year", 1874], [1, -1.09, "var3"], 1), ("year", [3.5], [True, False]), (14198, [0.1, False], {True}), ] @pytest.mark.parametrize( "_features_to_extract, _variables, _other_params", _false_input_params ) def test_raises_error_when_wrong_input_params( _features_to_extract, _variables, _other_params ): with pytest.raises(ValueError): assert DatetimeFeatures(features_to_extract=_features_to_extract) with pytest.raises(ValueError): assert DatetimeFeatures(variables=_variables) with pytest.raises(ValueError): assert DatetimeFeatures(missing_values=_other_params) with pytest.raises(ValueError): assert DatetimeFeatures(drop_original=_other_params) with pytest.raises(ValueError): assert DatetimeFeatures(utc=_other_params) def test_default_params(): transformer = DatetimeFeatures() assert isinstance(transformer, DatetimeFeatures) assert transformer.variables is None assert transformer.features_to_extract is None assert transformer.drop_original assert transformer.utc is None assert transformer.dayfirst is False assert transformer.yearfirst is False assert transformer.missing_values == "raise" _variables = [0, [0, 1, 9, 23], "var_str", ["var_str1", "var_str2"], [0, 1, "var3", 3]] @pytest.mark.parametrize("_variables", _variables) def test_variables_params(_variables): assert DatetimeFeatures(variables=_variables).variables == _variables def test_features_to_extract_param(): assert DatetimeFeatures(features_to_extract=None).features_to_extract is None assert DatetimeFeatures(features_to_extract=["year"]).features_to_extract == [ "year" ] assert DatetimeFeatures(features_to_extract="all").features_to_extract == "all" _not_a_df = [ "not_a_df", [1, 2, 3, "some_data"], pd.Series([-2, 1.5, 8.94], name="not_a_df"), ] @pytest.mark.parametrize("_not_a_df", _not_a_df) def test_raises_error_when_fitting_not_a_df(_not_a_df): transformer = DatetimeFeatures() # trying to fit not a df with pytest.raises(TypeError): transformer.fit(_not_a_df) def test_raises_error_when_variables_not_datetime(df_datetime): # asking for not datetime variable(s) with pytest.raises(TypeError): DatetimeFeatures(variables=["Age"]).fit(df_datetime) with pytest.raises(TypeError): DatetimeFeatures(variables=["Name", "Age", "date_obj1"]).fit(df_datetime) # passing a df that contains no datetime variables with pytest.raises(ValueError): DatetimeFeatures().fit(df_datetime[["Name", "Age"]]) def test_raises_error_when_df_has_nan(): # dataset containing nans with pytest.raises(ValueError): DatetimeFeatures().fit(dates_nan) def test_attributes_upon_fitting(df_datetime): transformer = DatetimeFeatures() transformer.fit(df_datetime) assert transformer.variables_ == vars_dt assert transformer.features_to_extract_ == FEATURES_DEFAULT assert transformer.n_features_in_ == df_datetime.shape[1] transformer = DatetimeFeatures(variables="date_obj1", features_to_extract="all") transformer.fit(df_datetime) assert transformer.variables_ == ["date_obj1"] assert transformer.features_to_extract_ == FEATURES_SUPPORTED transformer = DatetimeFeatures( variables=["date_obj1", "time_obj"], features_to_extract=["year", "quarter_end", "second"], ) transformer.fit(df_datetime) assert transformer.variables_ == ["date_obj1", "time_obj"] assert transformer.features_to_extract_ == ["year", "quarter_end", "second"] @pytest.mark.parametrize("_not_a_df", _not_a_df) def test_raises_error_when_transforming_not_a_df(_not_a_df, df_datetime): transformer = DatetimeFeatures() transformer.fit(df_datetime) # trying to transform not a df with pytest.raises(TypeError): transformer.transform(_not_a_df) def test_raises_error_when_transform_df_with_different_n_variables(df_datetime): transformer = DatetimeFeatures() transformer.fit(df_datetime) # different number of columns than the df used to fit with pytest.raises(ValueError): transformer.transform(df_datetime[vars_dt]) def test_raises_error_when_nan_in_transform_df(df_datetime): transformer = DatetimeFeatures() transformer.fit(df_datetime) # dataset containing nans with pytest.raises(ValueError): DatetimeFeatures().transform(dates_nan) def test_raises_non_fitted_error(df_datetime): # trying to transform before fitting with pytest.raises(NotFittedError): DatetimeFeatures().transform(df_datetime) def test_extract_datetime_features_with_default_options( df_datetime, df_datetime_transformed ): transformer = DatetimeFeatures() X = transformer.fit_transform(df_datetime) pd.testing.assert_frame_equal( X, df_datetime_transformed[ vars_non_dt + [var + feat for var in vars_dt for feat in feat_names_default] ], ) def test_extract_datetime_features_from_specified_variables( df_datetime, df_datetime_transformed ): # single datetime variable X = DatetimeFeatures(variables="date_obj1").fit_transform(df_datetime) pd.testing.assert_frame_equal( X, df_datetime_transformed[ vars_non_dt + ["datetime_range", "date_obj2", "time_obj"] + ["date_obj1" + feat for feat in feat_names_default] ], ) # multiple datetime variables X = DatetimeFeatures(variables=["datetime_range", "date_obj2"]).fit_transform( df_datetime ) pd.testing.assert_frame_equal( X, df_datetime_transformed[ vars_non_dt + ["date_obj1", "time_obj"] + [ var + feat for var in ["datetime_range", "date_obj2"] for feat in feat_names_default ] ], ) # multiple datetime variables in different order than they appear in the df X = DatetimeFeatures(variables=["date_obj2", "date_obj1"]).fit_transform( df_datetime ) pd.testing.assert_frame_equal( X, df_datetime_transformed[ vars_non_dt + ["datetime_range", "time_obj"] + [ var + feat for var in ["date_obj2", "date_obj1"] for feat in feat_names_default ] ], ) def test_extract_all_datetime_features(df_datetime, df_datetime_transformed): X = DatetimeFeatures(features_to_extract="all").fit_transform(df_datetime) pd.testing.assert_frame_equal(X, df_datetime_transformed.drop(vars_dt, axis=1)) def test_extract_specified_datetime_features(df_datetime, df_datetime_transformed): X = DatetimeFeatures(features_to_extract=["semester", "week"]).fit_transform( df_datetime ) pd.testing.assert_frame_equal( X, df_datetime_transformed[ vars_non_dt + [var + "_" + feat for var in vars_dt for feat in ["semester", "week"]] ], ) # different order than they appear in the glossary X = DatetimeFeatures(features_to_extract=["hour", "day_of_week"]).fit_transform( df_datetime ) pd.testing.assert_frame_equal( X, df_datetime_transformed[ vars_non_dt + [var + "_" + feat for var in vars_dt for feat in ["hour", "day_of_week"]] ], ) def test_extract_features_from_categorical_variable( df_datetime, df_datetime_transformed ): cat_date = pd.DataFrame({"date_obj1": df_datetime["date_obj1"].astype("category")}) X = DatetimeFeatures(variables="date_obj1").fit_transform(cat_date) pd.testing.assert_frame_equal( X, df_datetime_transformed[["date_obj1" + feat for feat in feat_names_default]] ) def test_extract_features_from_different_timezones( df_datetime, df_datetime_transformed ): time_zones = [4, -1, 9, -7] tz_df = pd.DataFrame( {"time_obj": df_datetime["time_obj"].add(["+4", "-1", "+9", "-7"])} ) transformer = DatetimeFeatures( variables="time_obj", features_to_extract=["hour"], utc=True ) X = transformer.fit_transform(tz_df) pd.testing.assert_frame_equal( X, df_datetime_transformed[["time_obj_hour"]].apply( lambda x: x.subtract(time_zones) ), ) exp_err_msg = ( "ValueError: variable(s) time_obj " "could not be converted to datetime. Try setting utc=True" ) with pytest.raises(ValueError) as errinfo: assert DatetimeFeatures( variables="time_obj", features_to_extract=["hour"], utc=False ).fit_transform(tz_df) assert str(errinfo.value) == exp_err_msg def test_extract_features_from_localized_tz_variables(): tz_df = pd.DataFrame( { "date_var": [ "2018-10-28 01:30:00", "2018-10-28 02:00:00", "2018-10-28 02:30:00", "2018-10-28 02:00:00", "2018-10-28 02:30:00", "2018-10-28 03:00:00", "2018-10-28 03:30:00", ] } ) tz_df["date_var"] = pd.to_datetime(tz_df["date_var"]).dt.tz_localize( tz="US/Eastern" ) # when utc is None transformer = DatetimeFeatures(features_to_extract=["hour"]).fit(tz_df) # init params assert transformer.variables is None assert transformer.utc is None assert transformer.features_to_extract == ["hour"] # fit attr assert transformer.variables_ == ["date_var"] assert transformer.features_to_extract_ == ["hour"] assert transformer.n_features_in_ == 1 # transform X = transformer.transform(tz_df) df_expected = pd.DataFrame({"date_var_hour": [1, 2, 2, 2, 2, 3, 3]}) pd.testing.assert_frame_equal(X, df_expected) # when utc is True transformer = DatetimeFeatures(features_to_extract=["hour"], utc=True).fit(tz_df) # init params assert transformer.variables is None assert transformer.utc is True assert transformer.features_to_extract == ["hour"] # fit attr assert transformer.variables_ == ["date_var"] assert transformer.features_to_extract_ == ["hour"] assert transformer.n_features_in_ == 1 # transform X = transformer.transform(tz_df) df_expected = pd.DataFrame({"date_var_hour": [5, 6, 6, 6, 6, 7, 7]}) pd.testing.assert_frame_equal(X, df_expected) def test_extract_features_without_dropping_original_variables( df_datetime, df_datetime_transformed ): X = DatetimeFeatures( variables=["datetime_range", "date_obj2"], features_to_extract=["week", "quarter"], drop_original=False, ).fit_transform(df_datetime) pd.testing.assert_frame_equal( X, pd.concat( [df_datetime_transformed[column] for column in vars_non_dt] + [df_datetime[var] for var in vars_dt] + [ df_datetime_transformed[feat] for feat in [ var + "_" + feat for var in ["datetime_range", "date_obj2"] for feat in ["week", "quarter"] ] ], axis=1, ), ) def test_extract_features_from_variables_containing_nans(): X = DatetimeFeatures( features_to_extract=["year"], missing_values="ignore" ).fit_transform(dates_nan) pd.testing.assert_frame_equal( X,
pd.DataFrame({"dates_na_year": [2010, np.nan, 1922, np.nan]})
pandas.DataFrame
#! /usr/bin/python3 from abc import ABCMeta, abstractmethod import time from typing import Type from design import Design from estimator import Estimator from evaluator import Evaluator import numpy as np import pandas as pd class Plan(metaclass=ABCMeta): def __init__(self): self.evaluators = {} self.designs = {} def add_design(self, design_name, design_class: Type[Design], estimator_class: Type[Estimator], design_kwargs = None): self.designs[design_name] = (design_class, estimator_class, design_kwargs) def add_evaluator(self, evaluator_name: str, evaluator: Evaluator): self.evaluators[evaluator_name] = evaluator() def add_env(self, dgp_factory, seed, X_source_dist = None, X_target_dist = None): np.random.seed(seed) dgp_source = dgp_factory.create_dgp(X_dist = X_source_dist) self.X_source = dgp_source.X self.Y0_source = dgp_source.Y([0] * dgp_source.n) self.Y1_source = dgp_source.Y([1] * dgp_source.n) self.ITE_source = dgp_source.ITE() self.ATE_source = dgp_source.ATE() self.source = dgp_source.X_dist dgp_target = dgp_factory.create_dgp(X_dist = X_target_dist) self.ITE_target = dgp_target.ITE() self.ATE_target = dgp_target.ATE() self.target = dgp_target.X_dist self.weight_target = self.target def use_weighted_estimator(self, weighted_estimator = False): if not weighted_estimator: self.weight_target = self.source def execute(self, design_name, weight_threshold, weighted_estimator = False): results = [] design_class, estimator_class, design_kwargs = self.designs[design_name] def make_row(name, value): return pd.DataFrame({"design": [design_name + "_weighted-estimator" + str(weighted_estimator)], "metric": [name], "value": [value]}) time_start = time.time() if design_kwargs is None: design_kwargs = {} design = design_class(**design_kwargs) design.fit(self.X_source) A = design.assign(self.X_source) time_end = time.time() time_elapsed = time_end - time_start results.append(make_row("time_design", time_elapsed)) YA_source = np.where(A==1, self.Y1_source, self.Y0_source) time_start = time.time() estimator = estimator_class(design) ITEhat = estimator.ITE(self.X_source, A, YA_source) if weighted_estimator: ATEhat = estimator.weighted_ATE(self.source, self.weight_target, self.X_source, A, YA_source, weight_threshold = weight_threshold) else: ATEhat = estimator.ATE(self.X_source, A, YA_source) time_end = time.time() time_elapsed = time_end - time_start results.append(make_row("time_estimation", time_elapsed)) for name, evaluator in self.evaluators.items(): val = evaluator.evaluate(self.X_source, self.Y0_source, self.Y1_source, self.ATE_target, self.ITE_target, A, YA_source, ATEhat, ITEhat) results.append(make_row(name, val)) return
pd.concat(results)
pandas.concat
#!/usr/bin/env python # coding: utf-8 get_ipython().system(" python ../input/mlcomp/mlcomp/mlcomp/setup.py") get_ipython().system( "pip install ../input/../input/efficientnet-pytorch/efficientnet-pytorch/EfficientNet-PyTorch-master" ) get_ipython().system( "pip install ../input/pretrainedmodels/pretrainedmodels-0.7.4/pretrainedmodels-0.7.4/" ) get_ipython().system( "pip install --no-deps --no-dependencies ../input/segmentation-models-pytorch/ " ) import warnings warnings.filterwarnings("ignore") import os import matplotlib.pyplot as plt import numpy as np import cv2 import albumentations as A from tqdm import tqdm_notebook import pandas as pd import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.jit import load from mlcomp.contrib.transform.albumentations import ChannelTranspose from mlcomp.contrib.dataset.classify import ImageDataset from mlcomp.contrib.transform.rle import rle2mask, mask2rle from mlcomp.contrib.transform.tta import TtaWrap unet_se_resnext50_32x4d = load( "/kaggle/input/severstalmodels/unet_se_resnext50_32x4d.pth" ).cuda() unet_mobilenet2 = load("/kaggle/input/severstalmodels/unet_mobilenet2.pth").cuda() # unet_resnet34 = load('/kaggle/input/severstalmodels/unet_resnet34.pth').cuda() import os from segmentation_models_pytorch import Unet, FPN ENCODER = "resnet34" ENCODER_WEIGHTS = "imagenet" DEVICE = "cuda" CLASSES = ["0", "1", "2", "3", "4"] ACTIVATION = "softmax" unet_resnet34 = Unet( encoder_name=ENCODER, encoder_weights=None, classes=4, activation="sigmoid" ) state = torch.load("../input/bce-clf/unet_res34_525.pth") unet_resnet34.load_state_dict(state["model_state_dict"]) unet_resnet34 = unet_resnet34.cuda() unet_resnet34 = unet_resnet34.eval() device = torch.device("cuda") model_senet = Unet( "se_resnext50_32x4d", encoder_weights=None, classes=4, activation=None ) model_senet.to(device) model_senet.eval() state = torch.load( "../input/senetmodels/senext50_30_epochs_high_threshold.pth", map_location=lambda storage, loc: storage, ) model_senet.load_state_dict(state["state_dict"]) model_fpn91lb = FPN( encoder_name="se_resnext50_32x4d", classes=4, activation=None, encoder_weights=None ) model_fpn91lb.to(device) model_fpn91lb.eval() # state = torch.load('../input/fpnseresnext/model_se_resnext50_32x4d_fold_0_epoch_7_dice_0.935771107673645.pth', map_location=lambda storage, loc: storage) state = torch.load( "../input/fpnse50dice944/model_se_resnext50_32x4d_fold_0_epoch_26_dice_0.94392.pth", map_location=lambda storage, loc: storage, ) model_fpn91lb.load_state_dict(state["state_dict"]) model_fpn91lb_pseudo = FPN( encoder_name="se_resnext50_32x4d", classes=4, activation=None, encoder_weights=None ) model_fpn91lb_pseudo.to(device) model_fpn91lb_pseudo.eval() # state = torch.load('../input/fpnseresnext/model_se_resnext50_32x4d_fold_0_epoch_7_dice_0.935771107673645.pth', map_location=lambda storage, loc: storage) state = torch.load( "../input/942-finetuned-on-pseudo-to9399/pseudo_fpn_se_resnext50_32x4d_fold_0_epoch_22_dice_0.944/pseudo_fpn_se_resnext50_32x4d_fold_0_epoch_22_dice_0.9446276426315308.pth", map_location=lambda storage, loc: storage, ) model_fpn91lb_pseudo.load_state_dict(state["state_dict"]) ENCODER = "se_resnext50_32x4d" ENCODER_WEIGHTS = "imagenet" CLASSES = ["0", "1", "2", "3", "4"] ACTIVATION = "softmax" fpn_se = FPN( encoder_name=ENCODER, encoder_weights=None, # encoder_weights=ENCODER_WEIGHTS, classes=len(CLASSES), activation=ACTIVATION, ) state = torch.load("../input/bce-clf/fpn_se13.pth") fpn_se.to(device) fpn_se.eval() fpn_se.load_state_dict(state["model_state_dict"]) ENCODER = "se_resnext50_32x4d" ENCODER_WEIGHTS = "imagenet" CLASSES = ["0", "1", "2", "3", "4"] ACTIVATION = "softmax" fpn_se2 = FPN( encoder_name=ENCODER, encoder_weights=None, # encoder_weights=ENCODER_WEIGHTS, classes=len(CLASSES), activation=ACTIVATION, ) state = torch.load("../input/bce-clf/fpn_lovash_9519.pth") fpn_se2.to(device) fpn_se2.eval() fpn_se2.load_state_dict(state["model_state_dict"]) # ### Models' mean aggregator class Model: def __init__(self, models): self.models = models def __call__(self, x): res = [] x = x.cuda() with torch.no_grad(): for m in self.models[:-2]: res.append(torch.sigmoid(m(x))) # last model with 5 classes (+background) res.append(torch.sigmoid(self.models[-2](x))[:, 1:, :, :]) res.append(torch.sigmoid(self.models[-1](x))[:, 1:, :, :]) res = torch.stack(res) res = torch.mean(res, dim=0) # print(res.shape) # print(pred_cls.shape) return res model = Model( [ unet_se_resnext50_32x4d, unet_mobilenet2, unet_resnet34, model_senet, model_fpn91lb, model_fpn91lb_pseudo, fpn_se, fpn_se2, ] ) # ### Create TTA transforms, datasets, loaders def create_transforms(additional): res = list(additional) # add necessary transformations res.extend( [ A.Normalize( mean=(0.485, 0.456, 0.406), std=(0.230, 0.225, 0.223) # mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) ), ChannelTranspose(), ] ) res = A.Compose(res) return res img_folder = "/kaggle/input/severstal-steel-defect-detection/test_images" batch_size = 2 num_workers = 0 # Different transforms for TTA wrapper transforms = [[], [A.HorizontalFlip(p=1)]] transforms = [create_transforms(t) for t in transforms] datasets = [ TtaWrap(ImageDataset(img_folder=img_folder, transforms=t), tfms=t) for t in transforms ] loaders = [ DataLoader(d, num_workers=num_workers, batch_size=batch_size, shuffle=False) for d in datasets ] # ### Loaders' mean aggregator thresholds = [0.5, 0.5, 0.5, 0.49] min_area = [500, 500, 1000, 2000] res = [] # Iterate over all TTA loaders total = len(datasets[0]) // batch_size for loaders_batch in tqdm_notebook(zip(*loaders), total=total): preds = [] image_file = [] for i, batch in enumerate(loaders_batch): features = batch["features"].cuda() # p = torch.sigmoid(model(features)) p = model(features) # inverse operations for TTA p = datasets[i].inverse(p) preds.append(p) image_file = batch["image_file"] # TTA mean preds = torch.stack(preds) preds = torch.mean(preds, dim=0) preds = preds.detach().cpu().numpy() # Batch post processing for p, file in zip(preds, image_file): file = os.path.basename(file) # Image postprocessing for i in range(4): p_channel = p[i] imageid_classid = file + "_" + str(i + 1) p_channel = (p_channel > thresholds[i]).astype(np.uint8) if p_channel.sum() < min_area[i]: p_channel = np.zeros(p_channel.shape, dtype=p_channel.dtype) res.append( { "ImageId_ClassId": imageid_classid, "EncodedPixels": mask2rle(p_channel), } ) df = pd.DataFrame(res) df.to_csv("submission.csv", index=False) df = pd.DataFrame(res) df = df.fillna("") df.to_csv("submission.csv", index=False) # In[22]: import pdb import os import cv2 import torch import pandas as pd import numpy as np from tqdm import tqdm import torch.backends.cudnn as cudnn from torch.utils.data import DataLoader, Dataset from albumentations import Normalize, Compose from albumentations.pytorch import ToTensor import torch.utils.data as data import torchvision.models as models import torch.nn as nn from torch.nn import functional as F BatchNorm2d = nn.BatchNorm2d IMAGE_RGB_MEAN = [0.485, 0.456, 0.406] IMAGE_RGB_STD = [0.229, 0.224, 0.225] ############################################################################### CONVERSION = [ "block0.0.weight", (64, 3, 7, 7), "conv1.weight", (64, 3, 7, 7), "block0.1.weight", (64,), "bn1.weight", (64,), "block0.1.bias", (64,), "bn1.bias", (64,), "block0.1.running_mean", (64,), "bn1.running_mean", (64,), "block0.1.running_var", (64,), "bn1.running_var", (64,), "block1.1.conv_bn1.conv.weight", (64, 64, 3, 3), "layer1.0.conv1.weight", (64, 64, 3, 3), "block1.1.conv_bn1.bn.weight", (64,), "layer1.0.bn1.weight", (64,), "block1.1.conv_bn1.bn.bias", (64,), "layer1.0.bn1.bias", (64,), "block1.1.conv_bn1.bn.running_mean", (64,), "layer1.0.bn1.running_mean", (64,), "block1.1.conv_bn1.bn.running_var", (64,), "layer1.0.bn1.running_var", (64,), "block1.1.conv_bn2.conv.weight", (64, 64, 3, 3), "layer1.0.conv2.weight", (64, 64, 3, 3), "block1.1.conv_bn2.bn.weight", (64,), "layer1.0.bn2.weight", (64,), "block1.1.conv_bn2.bn.bias", (64,), "layer1.0.bn2.bias", (64,), "block1.1.conv_bn2.bn.running_mean", (64,), "layer1.0.bn2.running_mean", (64,), "block1.1.conv_bn2.bn.running_var", (64,), "layer1.0.bn2.running_var", (64,), "block1.2.conv_bn1.conv.weight", (64, 64, 3, 3), "layer1.1.conv1.weight", (64, 64, 3, 3), "block1.2.conv_bn1.bn.weight", (64,), "layer1.1.bn1.weight", (64,), "block1.2.conv_bn1.bn.bias", (64,), "layer1.1.bn1.bias", (64,), "block1.2.conv_bn1.bn.running_mean", (64,), "layer1.1.bn1.running_mean", (64,), "block1.2.conv_bn1.bn.running_var", (64,), "layer1.1.bn1.running_var", (64,), "block1.2.conv_bn2.conv.weight", (64, 64, 3, 3), "layer1.1.conv2.weight", (64, 64, 3, 3), "block1.2.conv_bn2.bn.weight", (64,), "layer1.1.bn2.weight", (64,), "block1.2.conv_bn2.bn.bias", (64,), "layer1.1.bn2.bias", (64,), "block1.2.conv_bn2.bn.running_mean", (64,), "layer1.1.bn2.running_mean", (64,), "block1.2.conv_bn2.bn.running_var", (64,), "layer1.1.bn2.running_var", (64,), "block1.3.conv_bn1.conv.weight", (64, 64, 3, 3), "layer1.2.conv1.weight", (64, 64, 3, 3), "block1.3.conv_bn1.bn.weight", (64,), "layer1.2.bn1.weight", (64,), "block1.3.conv_bn1.bn.bias", (64,), "layer1.2.bn1.bias", (64,), "block1.3.conv_bn1.bn.running_mean", (64,), "layer1.2.bn1.running_mean", (64,), "block1.3.conv_bn1.bn.running_var", (64,), "layer1.2.bn1.running_var", (64,), "block1.3.conv_bn2.conv.weight", (64, 64, 3, 3), "layer1.2.conv2.weight", (64, 64, 3, 3), "block1.3.conv_bn2.bn.weight", (64,), "layer1.2.bn2.weight", (64,), "block1.3.conv_bn2.bn.bias", (64,), "layer1.2.bn2.bias", (64,), "block1.3.conv_bn2.bn.running_mean", (64,), "layer1.2.bn2.running_mean", (64,), "block1.3.conv_bn2.bn.running_var", (64,), "layer1.2.bn2.running_var", (64,), "block2.0.conv_bn1.conv.weight", (128, 64, 3, 3), "layer2.0.conv1.weight", (128, 64, 3, 3), "block2.0.conv_bn1.bn.weight", (128,), "layer2.0.bn1.weight", (128,), "block2.0.conv_bn1.bn.bias", (128,), "layer2.0.bn1.bias", (128,), "block2.0.conv_bn1.bn.running_mean", (128,), "layer2.0.bn1.running_mean", (128,), "block2.0.conv_bn1.bn.running_var", (128,), "layer2.0.bn1.running_var", (128,), "block2.0.conv_bn2.conv.weight", (128, 128, 3, 3), "layer2.0.conv2.weight", (128, 128, 3, 3), "block2.0.conv_bn2.bn.weight", (128,), "layer2.0.bn2.weight", (128,), "block2.0.conv_bn2.bn.bias", (128,), "layer2.0.bn2.bias", (128,), "block2.0.conv_bn2.bn.running_mean", (128,), "layer2.0.bn2.running_mean", (128,), "block2.0.conv_bn2.bn.running_var", (128,), "layer2.0.bn2.running_var", (128,), "block2.0.shortcut.conv.weight", (128, 64, 1, 1), "layer2.0.downsample.0.weight", (128, 64, 1, 1), "block2.0.shortcut.bn.weight", (128,), "layer2.0.downsample.1.weight", (128,), "block2.0.shortcut.bn.bias", (128,), "layer2.0.downsample.1.bias", (128,), "block2.0.shortcut.bn.running_mean", (128,), "layer2.0.downsample.1.running_mean", (128,), "block2.0.shortcut.bn.running_var", (128,), "layer2.0.downsample.1.running_var", (128,), "block2.1.conv_bn1.conv.weight", (128, 128, 3, 3), "layer2.1.conv1.weight", (128, 128, 3, 3), "block2.1.conv_bn1.bn.weight", (128,), "layer2.1.bn1.weight", (128,), "block2.1.conv_bn1.bn.bias", (128,), "layer2.1.bn1.bias", (128,), "block2.1.conv_bn1.bn.running_mean", (128,), "layer2.1.bn1.running_mean", (128,), "block2.1.conv_bn1.bn.running_var", (128,), "layer2.1.bn1.running_var", (128,), "block2.1.conv_bn2.conv.weight", (128, 128, 3, 3), "layer2.1.conv2.weight", (128, 128, 3, 3), "block2.1.conv_bn2.bn.weight", (128,), "layer2.1.bn2.weight", (128,), "block2.1.conv_bn2.bn.bias", (128,), "layer2.1.bn2.bias", (128,), "block2.1.conv_bn2.bn.running_mean", (128,), "layer2.1.bn2.running_mean", (128,), "block2.1.conv_bn2.bn.running_var", (128,), "layer2.1.bn2.running_var", (128,), "block2.2.conv_bn1.conv.weight", (128, 128, 3, 3), "layer2.2.conv1.weight", (128, 128, 3, 3), "block2.2.conv_bn1.bn.weight", (128,), "layer2.2.bn1.weight", (128,), "block2.2.conv_bn1.bn.bias", (128,), "layer2.2.bn1.bias", (128,), "block2.2.conv_bn1.bn.running_mean", (128,), "layer2.2.bn1.running_mean", (128,), "block2.2.conv_bn1.bn.running_var", (128,), "layer2.2.bn1.running_var", (128,), "block2.2.conv_bn2.conv.weight", (128, 128, 3, 3), "layer2.2.conv2.weight", (128, 128, 3, 3), "block2.2.conv_bn2.bn.weight", (128,), "layer2.2.bn2.weight", (128,), "block2.2.conv_bn2.bn.bias", (128,), "layer2.2.bn2.bias", (128,), "block2.2.conv_bn2.bn.running_mean", (128,), "layer2.2.bn2.running_mean", (128,), "block2.2.conv_bn2.bn.running_var", (128,), "layer2.2.bn2.running_var", (128,), "block2.3.conv_bn1.conv.weight", (128, 128, 3, 3), "layer2.3.conv1.weight", (128, 128, 3, 3), "block2.3.conv_bn1.bn.weight", (128,), "layer2.3.bn1.weight", (128,), "block2.3.conv_bn1.bn.bias", (128,), "layer2.3.bn1.bias", (128,), "block2.3.conv_bn1.bn.running_mean", (128,), "layer2.3.bn1.running_mean", (128,), "block2.3.conv_bn1.bn.running_var", (128,), "layer2.3.bn1.running_var", (128,), "block2.3.conv_bn2.conv.weight", (128, 128, 3, 3), "layer2.3.conv2.weight", (128, 128, 3, 3), "block2.3.conv_bn2.bn.weight", (128,), "layer2.3.bn2.weight", (128,), "block2.3.conv_bn2.bn.bias", (128,), "layer2.3.bn2.bias", (128,), "block2.3.conv_bn2.bn.running_mean", (128,), "layer2.3.bn2.running_mean", (128,), "block2.3.conv_bn2.bn.running_var", (128,), "layer2.3.bn2.running_var", (128,), "block3.0.conv_bn1.conv.weight", (256, 128, 3, 3), "layer3.0.conv1.weight", (256, 128, 3, 3), "block3.0.conv_bn1.bn.weight", (256,), "layer3.0.bn1.weight", (256,), "block3.0.conv_bn1.bn.bias", (256,), "layer3.0.bn1.bias", (256,), "block3.0.conv_bn1.bn.running_mean", (256,), "layer3.0.bn1.running_mean", (256,), "block3.0.conv_bn1.bn.running_var", (256,), "layer3.0.bn1.running_var", (256,), "block3.0.conv_bn2.conv.weight", (256, 256, 3, 3), "layer3.0.conv2.weight", (256, 256, 3, 3), "block3.0.conv_bn2.bn.weight", (256,), "layer3.0.bn2.weight", (256,), "block3.0.conv_bn2.bn.bias", (256,), "layer3.0.bn2.bias", (256,), "block3.0.conv_bn2.bn.running_mean", (256,), "layer3.0.bn2.running_mean", (256,), "block3.0.conv_bn2.bn.running_var", (256,), "layer3.0.bn2.running_var", (256,), "block3.0.shortcut.conv.weight", (256, 128, 1, 1), "layer3.0.downsample.0.weight", (256, 128, 1, 1), "block3.0.shortcut.bn.weight", (256,), "layer3.0.downsample.1.weight", (256,), "block3.0.shortcut.bn.bias", (256,), "layer3.0.downsample.1.bias", (256,), "block3.0.shortcut.bn.running_mean", (256,), "layer3.0.downsample.1.running_mean", (256,), "block3.0.shortcut.bn.running_var", (256,), "layer3.0.downsample.1.running_var", (256,), "block3.1.conv_bn1.conv.weight", (256, 256, 3, 3), "layer3.1.conv1.weight", (256, 256, 3, 3), "block3.1.conv_bn1.bn.weight", (256,), "layer3.1.bn1.weight", (256,), "block3.1.conv_bn1.bn.bias", (256,), "layer3.1.bn1.bias", (256,), "block3.1.conv_bn1.bn.running_mean", (256,), "layer3.1.bn1.running_mean", (256,), "block3.1.conv_bn1.bn.running_var", (256,), "layer3.1.bn1.running_var", (256,), "block3.1.conv_bn2.conv.weight", (256, 256, 3, 3), "layer3.1.conv2.weight", (256, 256, 3, 3), "block3.1.conv_bn2.bn.weight", (256,), "layer3.1.bn2.weight", (256,), "block3.1.conv_bn2.bn.bias", (256,), "layer3.1.bn2.bias", (256,), "block3.1.conv_bn2.bn.running_mean", (256,), "layer3.1.bn2.running_mean", (256,), "block3.1.conv_bn2.bn.running_var", (256,), "layer3.1.bn2.running_var", (256,), "block3.2.conv_bn1.conv.weight", (256, 256, 3, 3), "layer3.2.conv1.weight", (256, 256, 3, 3), "block3.2.conv_bn1.bn.weight", (256,), "layer3.2.bn1.weight", (256,), "block3.2.conv_bn1.bn.bias", (256,), "layer3.2.bn1.bias", (256,), "block3.2.conv_bn1.bn.running_mean", (256,), "layer3.2.bn1.running_mean", (256,), "block3.2.conv_bn1.bn.running_var", (256,), "layer3.2.bn1.running_var", (256,), "block3.2.conv_bn2.conv.weight", (256, 256, 3, 3), "layer3.2.conv2.weight", (256, 256, 3, 3), "block3.2.conv_bn2.bn.weight", (256,), "layer3.2.bn2.weight", (256,), "block3.2.conv_bn2.bn.bias", (256,), "layer3.2.bn2.bias", (256,), "block3.2.conv_bn2.bn.running_mean", (256,), "layer3.2.bn2.running_mean", (256,), "block3.2.conv_bn2.bn.running_var", (256,), "layer3.2.bn2.running_var", (256,), "block3.3.conv_bn1.conv.weight", (256, 256, 3, 3), "layer3.3.conv1.weight", (256, 256, 3, 3), "block3.3.conv_bn1.bn.weight", (256,), "layer3.3.bn1.weight", (256,), "block3.3.conv_bn1.bn.bias", (256,), "layer3.3.bn1.bias", (256,), "block3.3.conv_bn1.bn.running_mean", (256,), "layer3.3.bn1.running_mean", (256,), "block3.3.conv_bn1.bn.running_var", (256,), "layer3.3.bn1.running_var", (256,), "block3.3.conv_bn2.conv.weight", (256, 256, 3, 3), "layer3.3.conv2.weight", (256, 256, 3, 3), "block3.3.conv_bn2.bn.weight", (256,), "layer3.3.bn2.weight", (256,), "block3.3.conv_bn2.bn.bias", (256,), "layer3.3.bn2.bias", (256,), "block3.3.conv_bn2.bn.running_mean", (256,), "layer3.3.bn2.running_mean", (256,), "block3.3.conv_bn2.bn.running_var", (256,), "layer3.3.bn2.running_var", (256,), "block3.4.conv_bn1.conv.weight", (256, 256, 3, 3), "layer3.4.conv1.weight", (256, 256, 3, 3), "block3.4.conv_bn1.bn.weight", (256,), "layer3.4.bn1.weight", (256,), "block3.4.conv_bn1.bn.bias", (256,), "layer3.4.bn1.bias", (256,), "block3.4.conv_bn1.bn.running_mean", (256,), "layer3.4.bn1.running_mean", (256,), "block3.4.conv_bn1.bn.running_var", (256,), "layer3.4.bn1.running_var", (256,), "block3.4.conv_bn2.conv.weight", (256, 256, 3, 3), "layer3.4.conv2.weight", (256, 256, 3, 3), "block3.4.conv_bn2.bn.weight", (256,), "layer3.4.bn2.weight", (256,), "block3.4.conv_bn2.bn.bias", (256,), "layer3.4.bn2.bias", (256,), "block3.4.conv_bn2.bn.running_mean", (256,), "layer3.4.bn2.running_mean", (256,), "block3.4.conv_bn2.bn.running_var", (256,), "layer3.4.bn2.running_var", (256,), "block3.5.conv_bn1.conv.weight", (256, 256, 3, 3), "layer3.5.conv1.weight", (256, 256, 3, 3), "block3.5.conv_bn1.bn.weight", (256,), "layer3.5.bn1.weight", (256,), "block3.5.conv_bn1.bn.bias", (256,), "layer3.5.bn1.bias", (256,), "block3.5.conv_bn1.bn.running_mean", (256,), "layer3.5.bn1.running_mean", (256,), "block3.5.conv_bn1.bn.running_var", (256,), "layer3.5.bn1.running_var", (256,), "block3.5.conv_bn2.conv.weight", (256, 256, 3, 3), "layer3.5.conv2.weight", (256, 256, 3, 3), "block3.5.conv_bn2.bn.weight", (256,), "layer3.5.bn2.weight", (256,), "block3.5.conv_bn2.bn.bias", (256,), "layer3.5.bn2.bias", (256,), "block3.5.conv_bn2.bn.running_mean", (256,), "layer3.5.bn2.running_mean", (256,), "block3.5.conv_bn2.bn.running_var", (256,), "layer3.5.bn2.running_var", (256,), "block4.0.conv_bn1.conv.weight", (512, 256, 3, 3), "layer4.0.conv1.weight", (512, 256, 3, 3), "block4.0.conv_bn1.bn.weight", (512,), "layer4.0.bn1.weight", (512,), "block4.0.conv_bn1.bn.bias", (512,), "layer4.0.bn1.bias", (512,), "block4.0.conv_bn1.bn.running_mean", (512,), "layer4.0.bn1.running_mean", (512,), "block4.0.conv_bn1.bn.running_var", (512,), "layer4.0.bn1.running_var", (512,), "block4.0.conv_bn2.conv.weight", (512, 512, 3, 3), "layer4.0.conv2.weight", (512, 512, 3, 3), "block4.0.conv_bn2.bn.weight", (512,), "layer4.0.bn2.weight", (512,), "block4.0.conv_bn2.bn.bias", (512,), "layer4.0.bn2.bias", (512,), "block4.0.conv_bn2.bn.running_mean", (512,), "layer4.0.bn2.running_mean", (512,), "block4.0.conv_bn2.bn.running_var", (512,), "layer4.0.bn2.running_var", (512,), "block4.0.shortcut.conv.weight", (512, 256, 1, 1), "layer4.0.downsample.0.weight", (512, 256, 1, 1), "block4.0.shortcut.bn.weight", (512,), "layer4.0.downsample.1.weight", (512,), "block4.0.shortcut.bn.bias", (512,), "layer4.0.downsample.1.bias", (512,), "block4.0.shortcut.bn.running_mean", (512,), "layer4.0.downsample.1.running_mean", (512,), "block4.0.shortcut.bn.running_var", (512,), "layer4.0.downsample.1.running_var", (512,), "block4.1.conv_bn1.conv.weight", (512, 512, 3, 3), "layer4.1.conv1.weight", (512, 512, 3, 3), "block4.1.conv_bn1.bn.weight", (512,), "layer4.1.bn1.weight", (512,), "block4.1.conv_bn1.bn.bias", (512,), "layer4.1.bn1.bias", (512,), "block4.1.conv_bn1.bn.running_mean", (512,), "layer4.1.bn1.running_mean", (512,), "block4.1.conv_bn1.bn.running_var", (512,), "layer4.1.bn1.running_var", (512,), "block4.1.conv_bn2.conv.weight", (512, 512, 3, 3), "layer4.1.conv2.weight", (512, 512, 3, 3), "block4.1.conv_bn2.bn.weight", (512,), "layer4.1.bn2.weight", (512,), "block4.1.conv_bn2.bn.bias", (512,), "layer4.1.bn2.bias", (512,), "block4.1.conv_bn2.bn.running_mean", (512,), "layer4.1.bn2.running_mean", (512,), "block4.1.conv_bn2.bn.running_var", (512,), "layer4.1.bn2.running_var", (512,), "block4.2.conv_bn1.conv.weight", (512, 512, 3, 3), "layer4.2.conv1.weight", (512, 512, 3, 3), "block4.2.conv_bn1.bn.weight", (512,), "layer4.2.bn1.weight", (512,), "block4.2.conv_bn1.bn.bias", (512,), "layer4.2.bn1.bias", (512,), "block4.2.conv_bn1.bn.running_mean", (512,), "layer4.2.bn1.running_mean", (512,), "block4.2.conv_bn1.bn.running_var", (512,), "layer4.2.bn1.running_var", (512,), "block4.2.conv_bn2.conv.weight", (512, 512, 3, 3), "layer4.2.conv2.weight", (512, 512, 3, 3), "block4.2.conv_bn2.bn.weight", (512,), "layer4.2.bn2.weight", (512,), "block4.2.conv_bn2.bn.bias", (512,), "layer4.2.bn2.bias", (512,), "block4.2.conv_bn2.bn.running_mean", (512,), "layer4.2.bn2.running_mean", (512,), "block4.2.conv_bn2.bn.running_var", (512,), "layer4.2.bn2.running_var", (512,), "logit.weight", (1000, 512), "fc.weight", (1000, 512), "logit.bias", (1000,), "fc.bias", (1000,), ] ############################################################################### class ConvBn2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size=3, padding=1, stride=1): super(ConvBn2d, self).__init__() self.conv = nn.Conv2d( in_channel, out_channel, kernel_size=kernel_size, padding=padding, stride=stride, bias=False, ) self.bn = nn.BatchNorm2d(out_channel, eps=1e-5) def forward(self, x): x = self.conv(x) x = self.bn(x) return x ############# resnext50 pyramid feature net ####################################### # https://github.com/Hsuxu/ResNeXt/blob/master/models.py # https://github.com/D-X-Y/ResNeXt-DenseNet/blob/master/models/resnext.py # https://github.com/miraclewkf/ResNeXt-PyTorch/blob/master/resnext.py # bottleneck type C class BasicBlock(nn.Module): def __init__(self, in_channel, channel, out_channel, stride=1, is_shortcut=False): super(BasicBlock, self).__init__() self.is_shortcut = is_shortcut self.conv_bn1 = ConvBn2d( in_channel, channel, kernel_size=3, padding=1, stride=stride ) self.conv_bn2 = ConvBn2d( channel, out_channel, kernel_size=3, padding=1, stride=1 ) if is_shortcut: self.shortcut = ConvBn2d( in_channel, out_channel, kernel_size=1, padding=0, stride=stride ) def forward(self, x): z = F.relu(self.conv_bn1(x), inplace=True) z = self.conv_bn2(z) if self.is_shortcut: x = self.shortcut(x) z += x z = F.relu(z, inplace=True) return z class ResNet34(nn.Module): def __init__(self, num_class=1000): super(ResNet34, self).__init__() self.block0 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, padding=3, stride=2, bias=False), BatchNorm2d(64), nn.ReLU(inplace=True), ) self.block1 = nn.Sequential( nn.MaxPool2d(kernel_size=3, padding=1, stride=2), BasicBlock(64, 64, 64, stride=1, is_shortcut=False), *[BasicBlock(64, 64, 64, stride=1, is_shortcut=False) for i in range(1, 3)], ) self.block2 = nn.Sequential( BasicBlock(64, 128, 128, stride=2, is_shortcut=True), *[ BasicBlock(128, 128, 128, stride=1, is_shortcut=False) for i in range(1, 4) ], ) self.block3 = nn.Sequential( BasicBlock(128, 256, 256, stride=2, is_shortcut=True), *[ BasicBlock(256, 256, 256, stride=1, is_shortcut=False) for i in range(1, 6) ], ) self.block4 = nn.Sequential( BasicBlock(256, 512, 512, stride=2, is_shortcut=True), *[ BasicBlock(512, 512, 512, stride=1, is_shortcut=False) for i in range(1, 3) ], ) self.logit = nn.Linear(512, num_class) def forward(self, x): batch_size = len(x) x = self.block0(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = F.adaptive_avg_pool2d(x, 1).reshape(batch_size, -1) logit = self.logit(x) return logit class Resnet34_classification(nn.Module): def __init__(self, num_class=4): super(Resnet34_classification, self).__init__() e = ResNet34() self.block = nn.ModuleList([e.block0, e.block1, e.block2, e.block3, e.block4]) e = None # dropped self.feature = nn.Conv2d(512, 32, kernel_size=1) # dummy conv for dim reduction self.logit = nn.Conv2d(32, num_class, kernel_size=1) def forward(self, x): batch_size, C, H, W = x.shape for i in range(len(self.block)): x = self.block[i](x) # print(i, x.shape) x = F.dropout(x, 0.5, training=self.training) x = F.adaptive_avg_pool2d(x, 1) x = self.feature(x) logit = self.logit(x) return logit model_classification = Resnet34_classification() model_classification.load_state_dict( torch.load( "../input/clsification/00007500_model.pth", map_location=lambda storage, loc: storage, ), strict=True, ) class TestDataset(Dataset): """Dataset for test prediction""" def __init__(self, root, df, mean, std): self.root = root df["ImageId"] = df["ImageId_ClassId"].apply(lambda x: x.split("_")[0]) self.fnames = df["ImageId"].unique().tolist() self.num_samples = len(self.fnames) self.transform = Compose([Normalize(mean=mean, std=std, p=1), ToTensor()]) def __getitem__(self, idx): fname = self.fnames[idx] path = os.path.join(self.root, fname) image = cv2.imread(path) images = self.transform(image=image)["image"] return fname, images def __len__(self): return self.num_samples def sharpen(p, t=0.5): if t != 0: return p ** t else: return p augment = ["null"] def get_classification_preds(net, test_loader): test_probability_label = [] test_id = [] net = net.cuda() for t, (fnames, images) in enumerate(tqdm(test_loader)): batch_size, C, H, W = images.shape images = images.cuda() with torch.no_grad(): net.eval() num_augment = 0 if 1: # null logit = net(images) probability = torch.sigmoid(logit) probability_label = sharpen(probability, 0) num_augment += 1 if "flip_lr" in augment: logit = net(torch.flip(images, dims=[3])) probability = torch.sigmoid(logit) probability_label += sharpen(probability) num_augment += 1 if "flip_ud" in augment: logit = net(torch.flip(images, dims=[2])) probability = torch.sigmoid(logit) probability_label += sharpen(probability) num_augment += 1 probability_label = probability_label / num_augment probability_label = probability_label.data.cpu().numpy() test_probability_label.append(probability_label) test_id.extend([i for i in fnames]) test_probability_label = np.concatenate(test_probability_label) return test_probability_label, test_id sample_submission_path = ( "../input/severstal-steel-defect-detection/sample_submission.csv" ) test_data_folder = "../input/severstal-steel-defect-detection/test_images" batch_size = 1 # mean and std mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) df = pd.read_csv(sample_submission_path) testset = DataLoader( TestDataset(test_data_folder, df, mean, std), batch_size=batch_size, shuffle=False, num_workers=0, pin_memory=True, ) threshold_label = [0.50, 0.50, 0.50, 0.50] probability_label, image_id = get_classification_preds(model_classification, testset) predict_label = probability_label > np.array(threshold_label).reshape(1, 4, 1, 1) image_id_class_id = [] encoded_pixel = [] for b in range(len(image_id)): for c in range(4): image_id_class_id.append(image_id[b] + "_%d" % (c + 1)) if predict_label[b, c] == 0: rle = "" else: rle = "1 1" encoded_pixel.append(rle) df_classification = pd.DataFrame( zip(image_id_class_id, encoded_pixel), columns=["ImageId_ClassId", "EncodedPixels"] ) df = pd.read_csv("submission.csv") df = df.fillna("") if 1: df["Class"] = df["ImageId_ClassId"].str[-1].astype(np.int32) df["Label"] = (df["EncodedPixels"] != "").astype(np.int32) pos1 = ((df["Class"] == 1) & (df["Label"] == 1)).sum() pos2 = ((df["Class"] == 2) & (df["Label"] == 1)).sum() pos3 = ((df["Class"] == 3) & (df["Label"] == 1)).sum() pos4 = ((df["Class"] == 4) & (df["Label"] == 1)).sum() num_image = len(df) // 4 num = len(df) pos = (df["Label"] == 1).sum() neg = num - pos print("") print("\t\tnum_image = %5d(1801)" % num_image) print("\t\tnum = %5d(7204)" % num) print("\t\tneg = %5d(6172) %0.3f" % (neg, neg / num)) print("\t\tpos = %5d(1032) %0.3f" % (pos, pos / num)) print("\t\tpos1 = %5d( 128) %0.3f %0.3f" % (pos1, pos1 / num_image, pos1 / pos)) print("\t\tpos2 = %5d( 43) %0.3f %0.3f" % (pos2, pos2 / num_image, pos2 / pos)) print("\t\tpos3 = %5d( 741) %0.3f %0.3f" % (pos3, pos3 / num_image, pos3 / pos)) print("\t\tpos4 = %5d( 120) %0.3f %0.3f" % (pos4, pos4 / num_image, pos4 / pos)) df_mask = df.copy() df_label = df_classification.copy() assert np.all(df_mask["ImageId_ClassId"].values == df_label["ImageId_ClassId"].values) print( (df_mask.loc[df_label["EncodedPixels"] == "", "EncodedPixels"] != "").sum() ) # 202 df_mask.loc[df_label["EncodedPixels"] == "", "EncodedPixels"] = "" # df_mask.to_csv("submission.csv", index=False) df_mask.to_csv( "submission.csv", columns=["ImageId_ClassId", "EncodedPixels"], index=False ) if 1: df_mask["Class"] = df_mask["ImageId_ClassId"].str[-1].astype(np.int32) df_mask["Label"] = (df_mask["EncodedPixels"] != "").astype(np.int32) pos1 = ((df_mask["Class"] == 1) & (df_mask["Label"] == 1)).sum() pos2 = ((df_mask["Class"] == 2) & (df_mask["Label"] == 1)).sum() pos3 = ((df_mask["Class"] == 3) & (df_mask["Label"] == 1)).sum() pos4 = ((df_mask["Class"] == 4) & (df_mask["Label"] == 1)).sum() num_image = len(df_mask) // 4 num = len(df_mask) pos = (df_mask["Label"] == 1).sum() neg = num - pos print("") print("\t\tnum_image = %5d(1801)" % num_image) print("\t\tnum = %5d(7204)" % num) print("\t\tneg = %5d(6172) %0.3f" % (neg, neg / num)) print("\t\tpos = %5d(1032) %0.3f" % (pos, pos / num)) print("\t\tpos1 = %5d( 128) %0.3f %0.3f" % (pos1, pos1 / num_image, pos1 / pos)) print("\t\tpos2 = %5d( 43) %0.3f %0.3f" % (pos2, pos2 / num_image, pos2 / pos)) print("\t\tpos3 = %5d( 741) %0.3f %0.3f" % (pos3, pos3 / num_image, pos3 / pos)) print("\t\tpos4 = %5d( 120) %0.3f %0.3f" % (pos4, pos4 / num_image, pos4 / pos)) # ### Visualization get_ipython().run_line_magic("matplotlib", "inline") df =
pd.read_csv("submission.csv")
pandas.read_csv
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import os import pandas import numpy as np import pyarrow import pytest import re from modin.config import IsExperimental, Engine, StorageFormat from modin.pandas.test.utils import io_ops_bad_exc from .utils import eval_io, ForceOmnisciImport, set_execution_mode, run_and_compare from pandas.core.dtypes.common import is_list_like IsExperimental.put(True) Engine.put("native") StorageFormat.put("omnisci") import modin.pandas as pd from modin.pandas.test.utils import ( df_equals, bool_arg_values, to_pandas, test_data_values, test_data_keys, generate_multiindex, eval_general, df_equals_with_non_stable_indices, ) from modin.utils import try_cast_to_pandas from modin.experimental.core.execution.native.implementations.omnisci_on_native.partitioning.partition_manager import ( OmnisciOnNativeDataframePartitionManager, ) from modin.experimental.core.execution.native.implementations.omnisci_on_native.df_algebra import ( FrameNode, ) @pytest.mark.usefixtures("TestReadCSVFixture") class TestCSV: from modin import __file__ as modin_root root = os.path.dirname( os.path.dirname(os.path.abspath(modin_root)) + ".." ) # root of modin repo boston_housing_names = [ "index", "CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT", "PRICE", ] boston_housing_dtypes = { "index": "int64", "CRIM": "float64", "ZN": "float64", "INDUS": "float64", "CHAS": "float64", "NOX": "float64", "RM": "float64", "AGE": "float64", "DIS": "float64", "RAD": "float64", "TAX": "float64", "PTRATIO": "float64", "B": "float64", "LSTAT": "float64", "PRICE": "float64", } def test_usecols_csv(self): """check with the following arguments: names, dtype, skiprows, delimiter""" csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") for kwargs in ( {"delimiter": ","}, {"sep": None}, {"skiprows": 1, "names": ["A", "B", "C", "D", "E"]}, {"dtype": {"a": "int32", "e": "string"}}, {"dtype": {"a": np.dtype("int32"), "b": np.dtype("int64"), "e": "string"}}, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) def test_housing_csv(self): csv_file = os.path.join(self.root, "examples/data/boston_housing.csv") for kwargs in ( { "skiprows": 1, "names": self.boston_housing_names, "dtype": self.boston_housing_dtypes, }, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) def test_time_parsing(self): csv_file = os.path.join( self.root, "modin/pandas/test/data", "test_time_parsing.csv" ) for kwargs in ( { "skiprows": 1, "names": [ "timestamp", "symbol", "high", "low", "open", "close", "spread", "volume", ], "parse_dates": ["timestamp"], "dtype": {"symbol": "string"}, }, ): rp = pandas.read_csv(csv_file, **kwargs) rm = pd.read_csv(csv_file, engine="arrow", **kwargs) with ForceOmnisciImport(rm): rm = to_pandas(rm) df_equals(rm["timestamp"].dt.year, rp["timestamp"].dt.year) df_equals(rm["timestamp"].dt.month, rp["timestamp"].dt.month) df_equals(rm["timestamp"].dt.day, rp["timestamp"].dt.day) def test_csv_fillna(self): csv_file = os.path.join(self.root, "examples/data/boston_housing.csv") for kwargs in ( { "skiprows": 1, "names": self.boston_housing_names, "dtype": self.boston_housing_dtypes, }, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, comparator=lambda df1, df2: df_equals( df1["CRIM"].fillna(1000), df2["CRIM"].fillna(1000) ), # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) @pytest.mark.parametrize("null_dtype", ["category", "float64"]) def test_null_col(self, null_dtype): csv_file = os.path.join( self.root, "modin/pandas/test/data", "test_null_col.csv" ) ref = pandas.read_csv( csv_file, names=["a", "b", "c"], dtype={"a": "int64", "b": "int64", "c": null_dtype}, skiprows=1, ) ref["a"] = ref["a"] + ref["b"] exp = pd.read_csv( csv_file, names=["a", "b", "c"], dtype={"a": "int64", "b": "int64", "c": null_dtype}, skiprows=1, ) exp["a"] = exp["a"] + exp["b"] # df_equals cannot compare empty categories if null_dtype == "category": ref["c"] = ref["c"].astype("string") with ForceOmnisciImport(exp): exp = to_pandas(exp) exp["c"] = exp["c"].astype("string") df_equals(ref, exp) def test_read_and_concat(self): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") ref1 = pandas.read_csv(csv_file) ref2 = pandas.read_csv(csv_file) ref = pandas.concat([ref1, ref2]) exp1 = pandas.read_csv(csv_file) exp2 = pandas.read_csv(csv_file) exp = pd.concat([exp1, exp2]) with ForceOmnisciImport(exp): df_equals(ref, exp) @pytest.mark.parametrize("names", [None, ["a", "b", "c", "d", "e"]]) @pytest.mark.parametrize("header", [None, 0]) def test_from_csv(self, header, names): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=csv_file, header=header, names=names, ) @pytest.mark.parametrize("kwargs", [{"sep": "|"}, {"delimiter": "|"}]) def test_sep_delimiter(self, kwargs): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_delim.csv") eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) @pytest.mark.skip(reason="https://github.com/modin-project/modin/issues/2174") def test_float32(self): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") kwargs = { "dtype": {"a": "float32", "b": "float32"}, } pandas_df = pandas.read_csv(csv_file, **kwargs) pandas_df["a"] = pandas_df["a"] + pandas_df["b"] modin_df = pd.read_csv(csv_file, **kwargs, engine="arrow") modin_df["a"] = modin_df["a"] + modin_df["b"] with ForceOmnisciImport(modin_df): df_equals(modin_df, pandas_df) # Datetime Handling tests @pytest.mark.parametrize("engine", [None, "arrow"]) @pytest.mark.parametrize( "parse_dates", [ True, False, ["col2"], ["c2"], [["col2", "col3"]], {"col23": ["col2", "col3"]}, ], ) @pytest.mark.parametrize("names", [None, [f"c{x}" for x in range(1, 7)]]) def test_read_csv_datetime( self, engine, parse_dates, names, ): parse_dates_unsupported = isinstance(parse_dates, dict) or ( isinstance(parse_dates, list) and isinstance(parse_dates[0], list) ) if parse_dates_unsupported and engine == "arrow" and not names: pytest.skip( "In these cases Modin raises `ArrowEngineException` while pandas " "doesn't raise any exceptions that causes tests fails" ) # In these cases Modin raises `ArrowEngineException` while pandas # raises `ValueError`, so skipping exception type checking skip_exc_type_check = parse_dates_unsupported and engine == "arrow" eval_io( fn_name="read_csv", md_extra_kwargs={"engine": engine}, check_exception_type=not skip_exc_type_check, raising_exceptions=None if skip_exc_type_check else io_ops_bad_exc, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], parse_dates=parse_dates, names=names, ) @pytest.mark.parametrize("engine", [None, "arrow"]) @pytest.mark.parametrize( "usecols", [ None, ["col1"], ["col1", "col1"], ["col1", "col2", "col6"], ["col6", "col2", "col1"], [0], [0, 0], [0, 1, 5], [5, 1, 0], lambda x: x in ["col1", "col2"], ], ) def test_read_csv_col_handling( self, engine, usecols, ): eval_io( fn_name="read_csv", check_kwargs_callable=not callable(usecols), md_extra_kwargs={"engine": engine}, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], usecols=usecols, ) class TestMasks: data = { "a": [1, 1, 2, 2, 3], "b": [None, None, 2, 1, 3], "c": [3, None, None, 2, 1], } cols_values = ["a", ["a", "b"], ["a", "b", "c"]] @pytest.mark.parametrize("cols", cols_values) def test_projection(self, cols): def projection(df, cols, **kwargs): return df[cols] run_and_compare(projection, data=self.data, cols=cols) def test_drop(self): def drop(df, **kwargs): return df.drop(columns="a") run_and_compare(drop, data=self.data) def test_iloc(self): def mask(df, **kwargs): return df.iloc[[0, 1]] run_and_compare(mask, data=self.data, allow_subqueries=True) def test_empty(self): def empty(df, **kwargs): return df run_and_compare(empty, data=None) def test_filter(self): def filter(df, **kwargs): return df[df["a"] == 1] run_and_compare(filter, data=self.data) def test_filter_with_index(self): def filter(df, **kwargs): df = df.groupby("a").sum() return df[df["b"] > 1] run_and_compare(filter, data=self.data) def test_filter_proj(self): def filter(df, **kwargs): df1 = df + 2 return df1[(df["a"] + df1["b"]) > 1] run_and_compare(filter, data=self.data) def test_filter_drop(self): def filter(df, **kwargs): df = df[["a", "b"]] df = df[df["a"] != 1] df["a"] = df["a"] * df["b"] return df run_and_compare(filter, data=self.data) class TestMultiIndex: data = {"a": np.arange(24), "b": np.arange(24)} @pytest.mark.parametrize("names", [None, ["", ""], ["name", "name"]]) def test_dup_names(self, names): index = pandas.MultiIndex.from_tuples( [(i, j) for i in range(3) for j in range(8)], names=names ) pandas_df = pandas.DataFrame(self.data, index=index) + 1 modin_df = pd.DataFrame(self.data, index=index) + 1 df_equals(pandas_df, modin_df) @pytest.mark.parametrize( "names", [ None, [None, "s", None], ["i1", "i2", "i3"], ["i1", "i1", "i3"], ["i1", "i2", "a"], ], ) def test_reset_index(self, names): index = pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)], names=names, ) def applier(lib): df = lib.DataFrame(self.data, index=index) + 1 return df.reset_index() eval_general(pd, pandas, applier) @pytest.mark.parametrize("is_multiindex", [True, False]) @pytest.mark.parametrize( "column_names", [None, ["level1", None], ["level1", "level2"]] ) def test_reset_index_multicolumns(self, is_multiindex, column_names): index = ( pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)], names=["l1", "l2", "l3"], ) if is_multiindex else pandas.Index(np.arange(len(self.data["a"])), name="index") ) columns = pandas.MultiIndex.from_tuples( [("a", "b"), ("b", "c")], names=column_names ) data = np.array(list(self.data.values())).T def applier(df, **kwargs): df = df + 1 return df.reset_index(drop=False) run_and_compare( fn=applier, data=data, constructor_kwargs={"index": index, "columns": columns}, ) def test_set_index_name(self): index = pandas.Index.__new__(pandas.Index, data=[i for i in range(24)]) pandas_df = pandas.DataFrame(self.data, index=index) pandas_df.index.name = "new_name" modin_df = pd.DataFrame(self.data, index=index) modin_df._query_compiler.set_index_name("new_name") df_equals(pandas_df, modin_df) def test_set_index_names(self): index = pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)] ) pandas_df = pandas.DataFrame(self.data, index=index) pandas_df.index.names = ["new_name1", "new_name2", "new_name3"] modin_df = pd.DataFrame(self.data, index=index) modin_df._query_compiler.set_index_names( ["new_name1", "new_name2", "new_name3"] ) df_equals(pandas_df, modin_df) class TestFillna: data = {"a": [1, 1, None], "b": [None, None, 2], "c": [3, None, None]} values = [1, {"a": 1, "c": 3}, {"a": 1, "b": 2, "c": 3}] @pytest.mark.parametrize("value", values) def test_fillna_all(self, value): def fillna(df, value, **kwargs): return df.fillna(value) run_and_compare(fillna, data=self.data, value=value) def test_fillna_bool(self): def fillna(df, **kwargs): df["a"] = df["a"] == 1 df["a"] = df["a"].fillna(False) return df run_and_compare(fillna, data=self.data) class TestConcat: data = { "a": [1, 2, 3], "b": [10, 20, 30], "d": [1000, 2000, 3000], "e": [11, 22, 33], } data2 = { "a": [4, 5, 6], "c": [400, 500, 600], "b": [40, 50, 60], "f": [444, 555, 666], } data3 = { "f": [2, 3, 4], "g": [400, 500, 600], "h": [20, 30, 40], } @pytest.mark.parametrize("join", ["inner", "outer"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat(self, join, sort, ignore_index): def concat(lib, df1, df2, join, sort, ignore_index): return lib.concat( [df1, df2], join=join, sort=sort, ignore_index=ignore_index ) run_and_compare( concat, data=self.data, data2=self.data2, join=join, sort=sort, ignore_index=ignore_index, ) def test_concat_with_same_df(self): def concat(df, **kwargs): df["f"] = df["a"] return df run_and_compare(concat, data=self.data) def test_setitem_lazy(self): def applier(df, **kwargs): df = df + 1 df["a"] = df["a"] + 1 df["e"] = df["a"] + 1 df["new_int8"] = np.int8(10) df["new_int16"] = np.int16(10) df["new_int32"] = np.int32(10) df["new_int64"] = np.int64(10) df["new_int"] = 10 df["new_float"] = 5.5 df["new_float64"] = np.float64(10.1) return df run_and_compare(applier, data=self.data) def test_setitem_default(self): def applier(df, lib, **kwargs): df = df + 1 df["a"] = np.arange(3) df["b"] = lib.Series(np.arange(3)) return df run_and_compare(applier, data=self.data, force_lazy=False) def test_insert_lazy(self): def applier(df, **kwargs): df = df + 1 df.insert(2, "new_int", 10) df.insert(1, "new_float", 5.5) df.insert(0, "new_a", df["a"] + 1) return df run_and_compare(applier, data=self.data) def test_insert_default(self): def applier(df, lib, **kwargs): df = df + 1 df.insert(1, "new_range", np.arange(3)) df.insert(1, "new_series", lib.Series(np.arange(3))) return df run_and_compare(applier, data=self.data, force_lazy=False) def test_concat_many(self): def concat(df1, df2, lib, **kwargs): df3 = df1.copy() df4 = df2.copy() return lib.concat([df1, df2, df3, df4]) def sort_comparator(df1, df2): """Sort and verify equality of the passed frames.""" # We sort values because order of rows in the 'union all' result is inconsistent in OmniSci df1, df2 = ( try_cast_to_pandas(df).sort_values(df.columns[0]) for df in (df1, df2) ) return df_equals(df1, df2) run_and_compare( concat, data=self.data, data2=self.data2, comparator=sort_comparator ) def test_concat_agg(self): def concat(lib, df1, df2): df1 = df1.groupby("a", as_index=False).agg( {"b": "sum", "d": "sum", "e": "sum"} ) df2 = df2.groupby("a", as_index=False).agg( {"c": "sum", "b": "sum", "f": "sum"} ) return lib.concat([df1, df2]) run_and_compare(concat, data=self.data, data2=self.data2, allow_subqueries=True) @pytest.mark.parametrize("join", ["inner", "outer"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat_single(self, join, sort, ignore_index): def concat(lib, df, join, sort, ignore_index): return lib.concat([df], join=join, sort=sort, ignore_index=ignore_index) run_and_compare( concat, data=self.data, join=join, sort=sort, ignore_index=ignore_index, ) def test_groupby_concat_single(self): def concat(lib, df): df = lib.concat([df]) return df.groupby("a").agg({"b": "min"}) run_and_compare( concat, data=self.data, ) @pytest.mark.parametrize("join", ["inner"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat_join(self, join, sort, ignore_index): def concat(lib, df1, df2, join, sort, ignore_index, **kwargs): return lib.concat( [df1, df2], axis=1, join=join, sort=sort, ignore_index=ignore_index ) run_and_compare( concat, data=self.data, data2=self.data3, join=join, sort=sort, ignore_index=ignore_index, ) def test_concat_index_name(self): df1 = pandas.DataFrame(self.data) df1 = df1.set_index("a") df2 = pandas.DataFrame(self.data3) df2 = df2.set_index("f") ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) df2.index.name = "a" ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) def test_concat_index_names(self): df1 = pandas.DataFrame(self.data) df1 = df1.set_index(["a", "b"]) df2 = pandas.DataFrame(self.data3) df2 = df2.set_index(["f", "h"]) ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) df2.index.names = ["a", "b"] ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) class TestGroupby: data = { "a": [1, 1, 2, 2, 2, 1], "b": [11, 21, 12, 22, 32, 11], "c": [101, 201, 202, 202, 302, 302], } cols_value = ["a", ["a", "b"]] @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_sum(self, cols, as_index): def groupby_sum(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).sum() run_and_compare(groupby_sum, data=self.data, cols=cols, as_index=as_index) @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_count(self, cols, as_index): def groupby_count(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).count() run_and_compare(groupby_count, data=self.data, cols=cols, as_index=as_index) @pytest.mark.xfail( reason="Currently mean() passes a lambda into query compiler which cannot be executed on OmniSci engine" ) @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_mean(self, cols, as_index): def groupby_mean(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).mean() run_and_compare(groupby_mean, data=self.data, cols=cols, as_index=as_index) @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_proj_sum(self, cols, as_index): def groupby_sum(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).c.sum() run_and_compare( groupby_sum, data=self.data, cols=cols, as_index=as_index, force_lazy=False ) @pytest.mark.parametrize("agg", ["count", "size", "nunique"]) def test_groupby_agg(self, agg): def groupby(df, agg, **kwargs): return df.groupby("a").agg({"b": agg}) run_and_compare(groupby, data=self.data, agg=agg) def test_groupby_agg_default_to_pandas(self): def lambda_func(df, **kwargs): return df.groupby("a").agg(lambda df: (df.mean() - df.sum()) // 2) run_and_compare(lambda_func, data=self.data, force_lazy=False) def not_implemented_func(df, **kwargs): return df.groupby("a").agg("cumprod") run_and_compare(lambda_func, data=self.data, force_lazy=False) @pytest.mark.xfail( reason="Function specified as a string should be passed into query compiler API, but currently it is transformed into a lambda" ) @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_agg_mean(self, cols, as_index): def groupby_mean(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).agg("mean") run_and_compare(groupby_mean, data=self.data, cols=cols, as_index=as_index) def test_groupby_lazy_multiindex(self): index = generate_multiindex(len(self.data["a"])) def groupby(df, *args, **kwargs): df = df + 1 return df.groupby("a").agg({"b": "size"}) run_and_compare(groupby, data=self.data, constructor_kwargs={"index": index}) def test_groupby_lazy_squeeze(self): def applier(df, **kwargs): return df.groupby("a").sum().squeeze(axis=1) run_and_compare( applier, data=self.data, constructor_kwargs={"columns": ["a", "b"]}, force_lazy=True, ) @pytest.mark.parametrize("method", ["sum", "size"]) def test_groupby_series(self, method): def groupby(df, **kwargs): ser = df[df.columns[0]] return getattr(ser.groupby(ser), method)() run_and_compare(groupby, data=self.data) def test_groupby_size(self): def groupby(df, **kwargs): return df.groupby("a").size() run_and_compare(groupby, data=self.data) @pytest.mark.parametrize("by", [["a"], ["a", "b", "c"]]) @pytest.mark.parametrize("agg", ["sum", "size"]) @pytest.mark.parametrize("as_index", [True, False]) def test_groupby_agg_by_col(self, by, agg, as_index): def simple_agg(df, **kwargs): return df.groupby(by, as_index=as_index).agg(agg) run_and_compare(simple_agg, data=self.data) def dict_agg(df, **kwargs): return df.groupby(by, as_index=as_index).agg({by[0]: agg}) run_and_compare(dict_agg, data=self.data) def dict_agg_all_cols(df, **kwargs): return df.groupby(by, as_index=as_index).agg({col: agg for col in by}) run_and_compare(dict_agg_all_cols, data=self.data) # modin-issue#3461 def test_groupby_pure_by(self): data = [1, 1, 2, 2] # Test when 'by' is a 'TransformNode' run_and_compare(lambda df: df.groupby(df).sum(), data=data, force_lazy=True) # Test when 'by' is a 'FrameNode' md_ser, pd_ser = pd.Series(data), pandas.Series(data) md_ser._query_compiler._modin_frame._execute() assert isinstance( md_ser._query_compiler._modin_frame._op, FrameNode ), "Triggering execution of the Modin frame supposed to set 'FrameNode' as a frame's op" set_execution_mode(md_ser, "lazy") md_res = md_ser.groupby(md_ser).sum() set_execution_mode(md_res, None) pd_res = pd_ser.groupby(pd_ser).sum() df_equals(md_res, pd_res) taxi_data = { "a": [1, 1, 2, 2], "b": [11, 21, 12, 11], "c": pandas.to_datetime( ["20190902", "20180913", "20190921", "20180903"], format="%Y%m%d" ), "d": [11.5, 21.2, 12.8, 13.4], } # TODO: emulate taxi queries with group by category types when we have loading # using arrow # Another way of doing taxi q1 is # res = df.groupby("cab_type").size() - this should be tested later as well def test_taxi_q1(self): def taxi_q1(df, **kwargs): return df.groupby("a").size() run_and_compare(taxi_q1, data=self.taxi_data) def test_taxi_q2(self): def taxi_q2(df, **kwargs): return df.groupby("a").agg({"b": "mean"}) run_and_compare(taxi_q2, data=self.taxi_data) @pytest.mark.parametrize("as_index", bool_arg_values) def test_taxi_q3(self, as_index): def taxi_q3(df, as_index, **kwargs): return df.groupby(["b", df["c"].dt.year], as_index=as_index).size() run_and_compare(taxi_q3, data=self.taxi_data, as_index=as_index) def test_groupby_expr_col(self): def groupby(df, **kwargs): df = df.loc[:, ["b", "c"]] df["year"] = df["c"].dt.year df["month"] = df["c"].dt.month df["id1"] = df["year"] * 12 + df["month"] df["id2"] = (df["id1"] - 24000) // 12 df = df.groupby(["id1", "id2"], as_index=False).agg({"b": "max"}) return df run_and_compare(groupby, data=self.taxi_data) def test_series_astype(self): def series_astype(df, **kwargs): return df["d"].astype("int") run_and_compare(series_astype, data=self.taxi_data) def test_df_astype(self): def df_astype(df, **kwargs): return df.astype({"b": "float", "d": "int"}) run_and_compare(df_astype, data=self.taxi_data) def test_df_indexed_astype(self): def df_astype(df, **kwargs): df = df.groupby("a").agg({"b": "sum"}) return df.astype({"b": "float"}) run_and_compare(df_astype, data=self.taxi_data) @pytest.mark.parametrize("as_index", bool_arg_values) def test_taxi_q4(self, as_index): def taxi_q4(df, **kwargs): df["c"] = df["c"].dt.year df["d"] = df["d"].astype("int64") df = df.groupby(["b", "c", "d"], sort=True, as_index=as_index).size() if as_index: df = df.reset_index() return df.sort_values( by=["c", 0 if as_index else "size"], ignore_index=True, ascending=[True, False], ) run_and_compare(taxi_q4, data=self.taxi_data) h2o_data = { "id1": ["id1", "id2", "id3", "id1", "id2", "id3", "id1", "id2", "id3", "id1"], "id2": ["id1", "id2", "id1", "id2", "id1", "id2", "id1", "id2", "id1", "id2"], "id3": ["id4", "id5", "id6", "id4", "id5", "id6", "id4", "id5", "id6", "id4"], "id4": [4, 5, 4, 5, 4, 5, 4, 5, 4, 5], "id5": [7, 8, 9, 7, 8, 9, 7, 8, 9, 7], "id6": [7, 8, 7, 8, 7, 8, 7, 8, 7, 8], "v1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "v2": [1, 3, 5, 7, 9, 10, 8, 6, 4, 2], "v3": [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 10.0], } def _get_h2o_df(self): df = pandas.DataFrame(self.h2o_data) df["id1"] = df["id1"].astype("category") df["id2"] = df["id2"].astype("category") df["id3"] = df["id3"].astype("category") return df def test_h2o_q1(self): df = self._get_h2o_df() ref = df.groupby(["id1"], observed=True).agg({"v1": "sum"}) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id1"], observed=True, as_index=False).agg( {"v1": "sum"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) exp["id1"] = exp["id1"].astype("category") df_equals(ref, exp) def test_h2o_q2(self): df = self._get_h2o_df() ref = df.groupby(["id1", "id2"], observed=True).agg({"v1": "sum"}) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id1", "id2"], observed=True, as_index=False).agg( {"v1": "sum"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) exp["id1"] = exp["id1"].astype("category") exp["id2"] = exp["id2"].astype("category") df_equals(ref, exp) def test_h2o_q3(self): df = self._get_h2o_df() ref = df.groupby(["id3"], observed=True).agg({"v1": "sum", "v3": "mean"}) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id3"], observed=True, as_index=False).agg( {"v1": "sum", "v3": "mean"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) exp["id3"] = exp["id3"].astype("category") df_equals(ref, exp) def test_h2o_q4(self): df = self._get_h2o_df() ref = df.groupby(["id4"], observed=True).agg( {"v1": "mean", "v2": "mean", "v3": "mean"} ) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id4"], observed=True, as_index=False).agg( {"v1": "mean", "v2": "mean", "v3": "mean"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) df_equals(ref, exp) def test_h2o_q5(self): df = self._get_h2o_df() ref = df.groupby(["id6"], observed=True).agg( {"v1": "sum", "v2": "sum", "v3": "sum"} ) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id6"], observed=True, as_index=False).agg( {"v1": "sum", "v2": "sum", "v3": "sum"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) df_equals(ref, exp) def test_h2o_q7(self): df = self._get_h2o_df() ref = ( df.groupby(["id3"], observed=True) .agg({"v1": "max", "v2": "min"}) .assign(range_v1_v2=lambda x: x["v1"] - x["v2"])[["range_v1_v2"]] ) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id3"], observed=True).agg( {"v1": "max", "v2": "min"} ) modin_df["range_v1_v2"] = modin_df["v1"] - modin_df["v2"] modin_df = modin_df[["range_v1_v2"]] modin_df.reset_index(inplace=True) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) exp["id3"] = exp["id3"].astype("category") df_equals(ref, exp) def test_h2o_q10(self): df = self._get_h2o_df() ref = df.groupby(["id1", "id2", "id3", "id4", "id5", "id6"], observed=True).agg( {"v3": "sum", "v1": "count"} ) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) modin_df = modin_df.groupby( ["id1", "id2", "id3", "id4", "id5", "id6"], observed=True ).agg({"v3": "sum", "v1": "count"}) modin_df.reset_index(inplace=True) exp = to_pandas(modin_df) exp["id1"] = exp["id1"].astype("category") exp["id2"] = exp["id2"].astype("category") exp["id3"] = exp["id3"].astype("category") df_equals(ref, exp) std_data = { "a": [1, 2, 1, 1, 1, 2, 2, 2, 1, 2], "b": [4, 3, 1, 6, 9, 8, 0, 9, 5, 13], "c": [12.8, 45.6, 23.5, 12.4, 11.2, None, 56.4, 12.5, 1, 55], } def test_agg_std(self): def std(df, **kwargs): df = df.groupby("a").agg({"b": "std", "c": "std"}) if not isinstance(df, pandas.DataFrame): df = to_pandas(df) df["b"] = df["b"].apply(lambda x: round(x, 10)) df["c"] = df["c"].apply(lambda x: round(x, 10)) return df run_and_compare(std, data=self.std_data, force_lazy=False) skew_data = { "a": [1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 3, 4, 4], "b": [4, 3, 1, 6, 9, 8, 0, 9, 5, 13, 12, 44, 6], "c": [12.8, 45.6, 23.5, 12.4, 11.2, None, 56.4, 12.5, 1, 55, 4.5, 7.8, 9.4], } def test_agg_skew(self): def std(df, **kwargs): df = df.groupby("a").agg({"b": "skew", "c": "skew"}) if not isinstance(df, pandas.DataFrame): df = to_pandas(df) df["b"] = df["b"].apply(lambda x: round(x, 10)) df["c"] = df["c"].apply(lambda x: round(x, 10)) return df run_and_compare(std, data=self.skew_data, force_lazy=False) def test_multilevel(self): def groupby(df, **kwargs): return df.groupby("a").agg({"b": "min", "c": ["min", "max", "sum", "skew"]}) run_and_compare(groupby, data=self.data) class TestAgg: data = { "a": [1, 2, None, None, 1, None], "b": [10, 20, None, 20, 10, None], "c": [None, 200, None, 400, 500, 600], "d": [11, 22, 33, 22, 33, 22], } int_data = pandas.DataFrame(data).fillna(0).astype("int").to_dict() @pytest.mark.parametrize("agg", ["max", "min", "sum", "mean"]) @pytest.mark.parametrize("skipna", bool_arg_values) def test_simple_agg(self, agg, skipna): def apply(df, agg, skipna, **kwargs): return getattr(df, agg)(skipna=skipna) run_and_compare(apply, data=self.data, agg=agg, skipna=skipna, force_lazy=False) def test_count_agg(self): def apply(df, **kwargs): return df.count() run_and_compare(apply, data=self.data, force_lazy=False) @pytest.mark.parametrize("data", [data, int_data], ids=["nan_data", "int_data"]) @pytest.mark.parametrize("cols", ["a", "d", ["a", "d"]]) @pytest.mark.parametrize("dropna", [True, False]) @pytest.mark.parametrize("sort", [True]) @pytest.mark.parametrize("ascending", [True, False]) def test_value_counts(self, data, cols, dropna, sort, ascending): def value_counts(df, cols, dropna, sort, ascending, **kwargs): return df[cols].value_counts(dropna=dropna, sort=sort, ascending=ascending) if dropna and pandas.DataFrame( data, columns=cols if is_list_like(cols) else [cols] ).isna().any(axis=None): pytest.xfail( reason="'dropna' parameter is forcibly disabled in OmniSci's GroupBy" "due to performance issues, you can track this problem at:" "https://github.com/modin-project/modin/issues/2896" ) # Custom comparator is required because pandas is inconsistent about # the order of equal values, we can't match this behaviour. For more details: # https://github.com/modin-project/modin/issues/1650 run_and_compare( value_counts, data=data, cols=cols, dropna=dropna, sort=sort, ascending=ascending, comparator=df_equals_with_non_stable_indices, ) @pytest.mark.parametrize( "method", ["sum", "mean", "max", "min", "count", "nunique"] ) def test_simple_agg_no_default(self, method): def applier(df, **kwargs): if isinstance(df, pd.DataFrame): # At the end of reduction function it does inevitable `transpose`, which # is defaulting to pandas. The following logic check that `transpose` is the only # function that falling back to pandas in the reduction operation flow. with pytest.warns(UserWarning) as warns: res = getattr(df, method)() assert ( len(warns) == 1 ), f"More than one warning were arisen: len(warns) != 1 ({len(warns)} != 1)" message = warns[0].message.args[0] assert ( re.match(r".*transpose.*defaulting to pandas", message) is not None ), f"Expected DataFrame.transpose defaulting to pandas warning, got: {message}" else: res = getattr(df, method)() return res run_and_compare(applier, data=self.data, force_lazy=False) @pytest.mark.parametrize("data", [data, int_data]) @pytest.mark.parametrize("dropna", bool_arg_values) def test_nunique(self, data, dropna): def applier(df, **kwargs): return df.nunique(dropna=dropna) run_and_compare(applier, data=data, force_lazy=False) class TestMerge: data = { "a": [1, 2, 3, 6, 5, 4], "b": [10, 20, 30, 60, 50, 40], "e": [11, 22, 33, 66, 55, 44], } data2 = { "a": [4, 2, 3, 7, 1, 5], "b": [40, 20, 30, 70, 10, 50], "d": [4000, 2000, 3000, 7000, 1000, 5000], } on_values = ["a", ["a"], ["a", "b"], ["b", "a"], None] how_values = ["inner", "left"] @pytest.mark.parametrize("on", on_values) @pytest.mark.parametrize("how", how_values) @pytest.mark.parametrize("sort", [True, False]) def test_merge(self, on, how, sort): def merge(lib, df1, df2, on, how, sort, **kwargs): return df1.merge(df2, on=on, how=how, sort=sort) run_and_compare( merge, data=self.data, data2=self.data2, on=on, how=how, sort=sort ) def test_merge_non_str_column_name(self): def merge(lib, df1, df2, on, **kwargs): return df1.merge(df2, on=on, how="inner") run_and_compare(merge, data=[[1, 2], [3, 4]], data2=[[1, 2], [3, 4]], on=1) h2o_data = { "id1": ["id1", "id10", "id100", "id1000"], "id2": ["id2", "id20", "id200", "id2000"], "id3": ["id3", "id30", "id300", "id3000"], "id4": [4, 40, 400, 4000], "id5": [5, 50, 500, 5000], "id6": [6, 60, 600, 6000], "v1": [3.3, 4.4, 7.7, 8.8], } h2o_data_small = { "id1": ["id10", "id100", "id1000", "id10000"], "id4": [40, 400, 4000, 40000], "v2": [30.3, 40.4, 70.7, 80.8], } h2o_data_medium = { "id1": ["id10", "id100", "id1000", "id10000"], "id2": ["id20", "id200", "id2000", "id20000"], "id4": [40, 400, 4000, 40000], "id5": [50, 500, 5000, 50000], "v2": [30.3, 40.4, 70.7, 80.8], } h2o_data_big = { "id1": ["id10", "id100", "id1000", "id10000"], "id2": ["id20", "id200", "id2000", "id20000"], "id3": ["id30", "id300", "id3000", "id30000"], "id4": [40, 400, 4000, 40000], "id5": [50, 500, 5000, 50000], "id6": [60, 600, 6000, 60000], "v2": [30.3, 40.4, 70.7, 80.8], } def _get_h2o_df(self, data): df = pandas.DataFrame(data) if "id1" in data: df["id1"] = df["id1"].astype("category") if "id2" in data: df["id2"] = df["id2"].astype("category") if "id3" in data: df["id3"] = df["id3"].astype("category") return df # Currently OmniSci returns category as string columns # and therefore casted to category it would only have # values from actual data. In Pandas category would # have old values as well. Simply casting category # to string for somparison doesn't work because None # casted to category and back to strting becomes # "nan". So we cast everything to category and then # to string. def _fix_category_cols(self, df): if "id1" in df.columns: df["id1"] = df["id1"].astype("category") df["id1"] = df["id1"].astype(str) if "id1_x" in df.columns: df["id1_x"] = df["id1_x"].astype("category") df["id1_x"] = df["id1_x"].astype(str) if "id1_y" in df.columns: df["id1_y"] = df["id1_y"].astype("category") df["id1_y"] = df["id1_y"].astype(str) if "id2" in df.columns: df["id2"] = df["id2"].astype("category") df["id2"] = df["id2"].astype(str) if "id2_x" in df.columns: df["id2_x"] = df["id2_x"].astype("category") df["id2_x"] = df["id2_x"].astype(str) if "id2_y" in df.columns: df["id2_y"] = df["id2_y"].astype("category") df["id2_y"] = df["id2_y"].astype(str) if "id3" in df.columns: df["id3"] = df["id3"].astype("category") df["id3"] = df["id3"].astype(str) def test_h2o_q1(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_small) ref = lhs.merge(rhs, on="id1") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, on="id1") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) def test_h2o_q2(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_medium) ref = lhs.merge(rhs, on="id2") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, on="id2") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) def test_h2o_q3(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_medium) ref = lhs.merge(rhs, how="left", on="id2") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, how="left", on="id2") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) def test_h2o_q4(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_medium) ref = lhs.merge(rhs, on="id5") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, on="id5") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) def test_h2o_q5(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_big) ref = lhs.merge(rhs, on="id3") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, on="id3") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) dt_data1 = { "id": [1, 2], "timestamp":
pandas.to_datetime(["20000101", "20000201"], format="%Y%m%d")
pandas.to_datetime
''' Created on 18.03.2015 @author: <NAME> ''' import pandas as pd from pandas import DataFrame, MultiIndex import datetime as dt from dateutil.relativedelta import relativedelta from datetime import date, datetime, timedelta import h5py import numpy as np import datetime class meda(object): ''' class containing the data object (a apandas DataFrame) with multicolumns ''' def __init__(self,flatname=None): self._dfglob=DataFrame() def genLevels(self): ###### used (but always commented) ''' convertion of the columns names (in tuple format) of the main dataframe to multiIndex ''' cols=MultiIndex.from_tuples(self._dfglob.columns.values) self._dfglob.columns=cols def viewer_time_to_datetime(self,viewer_timevector, roundTo=None): ''' Will create a pandas-accesible datetime-time-vector instead of the time-format used in the hdf5-File and in the hdf5-EBC-viewer. ''' def roundTime(dt=None, roundTo=60): """Round a datetime object to any time laps in seconds dt : datetime.datetime object, default now. roundTo : Closest number of seconds to round to, default 1 minute. """ if dt == None : dt = datetime.datetime.now() seconds = (dt - dt.min).seconds # // is a floor division, not a comment on following line: rounding = (seconds+roundTo/2) // roundTo * roundTo dt + datetime.timedelta(0,rounding-seconds,-dt.microsecond) dt.replace(second=0, microsecond=0) return dt def to_datetime(time_value, roundTo=60): # NOTE: a much nicer methods, but it leaves milliseconds and I prefer a less exact rounding: http://stackoverflow.com/questions/26187139/create-a-datetime-time-object-just-from-seconds/26187347#26187347 ''' Convert one time-value into datetime-object ''' dt = datetime.datetime.min + datetime.timedelta(days=time_value - 1) if roundTo!=None: dt=roundTime(dt,roundTo) return dt time_vec = map(to_datetime,viewer_timevector) return time_vec def _unifyWP(self,level=3): ''' to be called before using the data of the main DataFrame change the 10-0 signal (window open/closed) into 1-0. ''' self._dfglob.iloc[:, self._dfglob.columns.get_level_values(level)=='WP1']=self._dfglob.iloc[:, self._dfglob.columns.get_level_values(level)=='WP1']/10 self._dfglob.iloc[:, self._dfglob.columns.get_level_values(level)=='WP2']=self._dfglob.iloc[:, self._dfglob.columns.get_level_values(level)=='WP2']/10 def _loadTimeGroup(self,h5file,group2go=None,columnNames=[],limit2=[],exclude=[]): ''' method to open leafs from a selected group. It allows for leaf inclusion or exclusion. intergroups should be provided separated by a slash as a string, in the "group2go" argument. columnNames useful for multiindexing is a list. it will be as column name up to the level before the leaf name ''' exclude=exclude+["Time"] keys=h5file[group2go].keys() try: time = np.ndarray.flatten( h5file[group2go+"/Time"][:]) except KeyError: print ("Oops, ", group2go, "doesn't exist!") adr=DataFrame() else: timeArr = self.viewer_time_to_datetime(time, 60) data_dict = {} divideWP=10 for key in keys: if limit2!=[]: if key in limit2: data_dict[tuple(columnNames+[key])] = np.ndarray.flatten(h5file[group2go+"/"+key][:]) else: if key not in exclude: data_dict[tuple(columnNames+[key])] = np.ndarray.flatten(h5file[group2go+"/"+key][:]) adr=pd.DataFrame(data = data_dict,index = timeArr) adr["index"] = adr.index adr.drop_duplicates(subset='index', keep='last', inplace=True) del adr["index"] return adr def loadAT(self,Year=2013, Month=1): Year=str(Year) if Month<10: Month="0"+str(Month) else: Month=str(Month) FileName='D:/HDF-Archive/iiiHD_'+str(Year)+'_'+Month+'.hdf5' h5file = h5py.File(FileName,'r') time = np.ndarray.flatten( h5file['Field_Test']['Weather_Station']['Time'][:]) data_dict = {} data_dict[("Weather","-","-",'AT')] = np.ndarray.flatten( h5file['Field_Test']['Weather_Station']['AT'][:]) time = self.viewer_time_to_datetime(time, 60) df=pd.DataFrame(data = data_dict,index = time) def openFile(self, Year=2013, Month=1): ''' Method to open a HDF File based on the asked month and year ''' Year=str(Year) if Month<10: Month="0"+str(Month) else: Month=str(Month) FileName='D:/HDF-Archive/iiiHD_'+str(Year)+'_'+Month+'.hdf5' print (FileName) h5file = h5py.File(FileName,'r') return h5file def prepare4Room(self,Building=2,Entrance=1,Apartment=1,Room="Children"): ''' Method to generate the column names including building (e.g. B2E1), apartment and room ''' Building=str(Building) Entrance=str(Entrance) if Apartment<10: Apartment="0"+str(Apartment) else: Apartment=str(Apartment) Room="Room"+"_"+Room print ("Loading ", Room) bdCode="B"+Building+"E"+Entrance ApCode="A"+Apartment group2go='Field_Test/Building_'+Building+'/Entrance_B'+Building+'E'+Entrance+'/Apartment_'+Apartment+'/'+Room+'/RMU/' columnName=[bdCode, ApCode, Room] return Building, Entrance, Apartment, Room, group2go, columnName def findWiloGroup(self,Building=2,Entrance=1,Apartment=1,Room="Children"): group2go='Field_Test/Building_'+Building+'/Entrance_B'+Building+'E'+Entrance+'/Apartment_'+Apartment+'/'+Room+'/Wilo_Pump/' return group2go def loadRoomRMU(self, Year=2013, Month=1,Building=2,Entrance=1,Apartment=1,Room="Children",loadAmbTemp=True,limit2=[],esclude=[],df2glob=True,h5file=None, WeatherLimit2=["AT","Wind_Speed"],Wilo=False, WiloLimit2=['WRT', 'Set_Temp', 'Set_Temp_2']): ''' limit2 and Exclude only refer to the RMU group ''' if h5file==None: h5file=self.openFile(Year,Month) Building, Entrance, Apartment, Room, group2go, columnName=self.prepare4Room(Building, Entrance, Apartment, Room) group2goWilo=self.findWiloGroup(Building, Entrance, Apartment, Room) temp=self._loadTimeGroup(h5file,group2go, columnName,limit2,esclude) if df2glob==True: self._dfglob=temp if loadAmbTemp==True: group2go='Field_Test/Weather_Station' columnName=["Weather","-","-"] Wlimit2=WeatherLimit2 temp=self._loadTimeGroup(h5file,group2go, columnName,Wlimit2) self._dfglob=self._dfglob.join(temp) if Wilo==True: print ('load Wilo') temp=self._loadTimeGroup(h5file,group2goWilo, columnName,WiloLimit2) self._dfglob=self._dfglob.join(temp) self._unifyWP() else: if loadAmbTemp==True: print ("Warning, not including AT at this stage") return temp def loadAparRMU(self,Year=2013, Month=1,Building=2,Entrance=1,Apartment=1,loadAmbTemp=True,limit2=[],esclude=[],df2glob=True,h5file=None, WeatherLimit2=["AT","Wind_Speed"],Wilo=False, WiloLimit2=['WRT', 'Set_Temp', 'Set_Temp_2']): if h5file==None: h5file=self.openFile(Year,Month) Rooms=["Living","Kitchen","Sleeping","Children","Bath"] print ("Loading apartment ", Apartment) RL1=self.loadRoomRMU(Year, Month, Building, Entrance, Apartment, Rooms[0], False, limit2, esclude, False, h5file,Wilo, WiloLimit2) RK1=self.loadRoomRMU(Year, Month, Building, Entrance, Apartment, Rooms[1], False, limit2, esclude, False, h5file,Wilo, WiloLimit2) RS1=self.loadRoomRMU(Year, Month, Building, Entrance, Apartment, Rooms[2], False, limit2, esclude, False, h5file,Wilo, WiloLimit2) RC1=self.loadRoomRMU(Year, Month, Building, Entrance, Apartment, Rooms[3], False, limit2, esclude, False, h5file,Wilo, WiloLimit2) RB1=self.loadRoomRMU(Year, Month, Building, Entrance, Apartment, Rooms[4], False, limit2, esclude, False, h5file,Wilo, WiloLimit2) lenAr=(RL1.shape[0],RK1.shape[0],RS1.shape[0],RC1.shape[0],RB1.shape[0]) joinAr=[lenAr[0]] for indexlA, size in enumerate(lenAr): if indexlA>0: if joinAr[0]!=size: joinAr.append(size) print (joinAr) if loadAmbTemp==True: print ("I join all...") group2go='Field_Test/Weather_Station' columnName=["Weather","-","-"] Wlimit2=WeatherLimit2 df=self._loadTimeGroup(h5file,group2go, columnName,Wlimit2) joinIt=[RK1,RS1,RC1,RB1,df] RL1=RL1.join(joinIt, how="outer") temp=RL1 else: if len(joinAr)==1: print ("I concat") temp=pd.concat([RL1,RK1,RS1,RC1,RB1],axis=1, join="outer") else: print ("I join") temp=RL1.join([RK1,RS1,RC1,RB1], how="outer") if df2glob==True: self._dfglob=temp self._unifyWP() else: return temp def loadEntrRMU(self,Year=2013, Month=1,Building=2,Entrance=1,loadAmbTemp=True,limit2=[],esclude=[],df2glob=True,h5file=None, WeatherLimit2=["AT","Wind_Speed"],Wilo=False, WiloLimit2=['WRT', 'Set_Temp', 'Set_Temp_2']): if h5file==None: h5file=self.openFile(Year,Month) A1=self.loadAparRMU(Year, Month, Building, Entrance, 1, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A2=self.loadAparRMU(Year, Month, Building, Entrance, 2, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A3=self.loadAparRMU(Year, Month, Building, Entrance, 3, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A4=self.loadAparRMU(Year, Month, Building, Entrance, 4, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A5=self.loadAparRMU(Year, Month, Building, Entrance, 5, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A6=self.loadAparRMU(Year, Month, Building, Entrance, 6, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A7=self.loadAparRMU(Year, Month, Building, Entrance, 7, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A8=self.loadAparRMU(Year, Month, Building, Entrance, 8, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A9=self.loadAparRMU(Year, Month, Building, Entrance, 9, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) A10=self.loadAparRMU(Year, Month, Building, Entrance, 10, False, limit2, esclude, False, h5file,Wilo, WiloLimit2) lenAr=(A1.shape[0],A2.shape[0],A3.shape[0],A4.shape[0],A5.shape[0],A6.shape[0],A7.shape[0],A8.shape[0],A9.shape[0],A10.shape[0]) joinAr=[lenAr[0]] for indexlA, size in enumerate(lenAr): if indexlA>0: if joinAr[0]!=size: joinAr.append(size) print (joinAr) if loadAmbTemp==True: group2go='Field_Test/Weather_Station' columnName=["Weather","-","-"] Wlimit2=WeatherLimit2 df=self._loadTimeGroup(h5file,group2go, columnName,Wlimit2) temp=A1.join([A2,A3,A4,A5,A6,A7,A8,A9,A10,df], how="outer") else: if len(joinAr)!=1: print ("I concat") temp=
pd.concat([A1,A2,A3,A4,A5,A6,A7,A8,A9,A10],axis=1, join="outer")
pandas.concat
import pandas as pd from pandas.util.testing import assert_frame_equal import numpy as np from dstk.imputation.encoders import MasterExploder, StringFeatureEncoder def test_master_exploder_encodes_ints_bools_floats_strings(): T = True F = False N = None NaN = np.NaN S = 's' data = pd.DataFrame(dict( a=[T, N, T, T, F, F, F, N], b=[N, F, T, F, N, F, T, F], c=[T, T, F, N, N, T, F, F], d=np.array([NaN, NaN, 1.0, NaN, NaN, 2.5, 0.0, NaN]), e=[S, N, N, S, N, S, S, N] )) actual = MasterExploder(encode_categorical=True).fit(data).transform(data) expected = pd.DataFrame(dict( a=[2, 0, 2, 2, 1, 1, 1, 0], b=[0, 1, 2, 1, 0, 1, 2, 1], c=[2, 2, 1, 0, 0, 2, 1, 1], d_filled_in=[1.0, 1.0, 1.0, 1.0, 1.0, 2.5, 0.0, 1.0], d_missing=[True, True, False, True, True, False, False, True], e=[1, 0, 0, 1, 0, 1, 1, 0] )) assert_frame_equal(actual, expected) def test_master_exploder_ignores_categorical_columns_when_told(): NaN = np.NaN data = pd.DataFrame(dict( a=[1, -1, 1, 1, 0, 0, 0, 1], b=[-1, 0, 1, 0, -1, 0, 1, 0], c=[1, 1, 0, -1, -1, 1, 0, 0], d=np.array([NaN, NaN, 1.0, NaN, NaN, 2.5, 0.0, NaN]), e=[0, -1, -1, 0, -1, 0, -1, 0], f=[1, 2, 3, 0, 0, 2, 2, 1] )) actual = MasterExploder(encode_categorical=False).fit(data).transform(data) expected = pd.DataFrame(dict( a=[1, -1, 1, 1, 0, 0, 0, 1], b=[-1, 0, 1, 0, -1, 0, 1, 0], c=[1, 1, 0, -1, -1, 1, 0, 0], d_filled_in=[1.0, 1.0, 1.0, 1.0, 1.0, 2.5, 0.0, 1.0], d_missing=[True, True, False, True, True, False, False, True], e=[0, -1, -1, 0, -1, 0, -1, 0], f=[1, 2, 3, 0, 0, 2, 2, 1] ))
assert_frame_equal(actual, expected)
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 24 10:27:25 2021 @author: laura.gf """ import requests from requests.exceptions import HTTPError import time import pandas as pd import argparse # Input parameters from command line import sys def query_entry_pt(url): """This function takes as input a URL entry point and returns the complete JSON response in a REST API Input: - url(string): complete url (or entry point) pointing at server Output: - jsonResponse(json object): JSON response associated wtih query """ try: # Time query start_time = time.time() # Using GET command response = requests.get(url) total_time = time.time() - start_time # Raise issues if response is different from 200 response.raise_for_status() # access JSOn content jsonResponse = response.json() return [jsonResponse,total_time] except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') def format_json_resp(json_resp,query_time,record_path_field,date,time,output_dir,base_url,entry_pt): """ This function takes query result in JSON format and saves a CSV with results Parameters ---------- json_resp : JSON object content of query. query_time : string time it took for the query to complete. record_path_field : string level necessary to flatten JSON. date : datetime object date of query. time : datetime object time of query. output_dir : string path to directory where CSV query results will be stored. base_url : string URL pointing at REST API. entry_pt : string complete query type. Returns ------- None. """ df =
pd.json_normalize(json_resp,record_path=record_path_field)
pandas.json_normalize
import numpy as np import pandas as pd from pandas.testing import assert_series_equal import pytest from rcbm import fab def test_calculate_fabric_heat_loss_coefficient(): """Output is equivalent to DEAP 4.2.0 example A""" floor_area = pd.Series([63]) roof_area = pd.Series([63]) wall_area = pd.Series([85.7]) window_area = pd.Series([29.6]) door_area = pd.Series([1.85]) floor_uvalue = pd.Series([0.14]) roof_uvalue = pd.Series([0.11]) wall_uvalue = pd.Series([0.13]) window_uvalue = pd.Series([0.87]) door_uvalue = pd.Series([1.5]) thermal_bridging_factor =
pd.Series([0.05])
pandas.Series
# output.py module dealing with outputs of DEMENTpy. # <NAME>, January, 2020 import numpy as np import pandas as pd class Output(): """ This class deals with outputs. Accepts data derived from the initialization.py and grid.py modules, and have two methods: output(): stores all time series microbes_abundance(): a special method microbes_tradeoff(): another special method tracking intracellular carbon allocation """ def __init__(self,runtime,data_init): """ The constructor of Output class. Parameters: runtime: user-specified parameters when running the model data_init: data dictionary;all inititialized data from the 'initialization.py' module Returns: Initialization: all data initialized preceding the execution of grid.py: dictionary Microbial_traits: microbial traits only pulled out from Initialization: dataframe SubstratesSeries: substrate-specific total mass over the grid: Substrate * C Substrates_Sum: total substrates over the grid: day * C MonomersSeries: monomoer-specific total mass over the grid: Monomer * C Monomers_Sum: total monomers over the grid: day * C MicrobesSeries: taxon-specific total biomass over the grid: Taxon * (C,N,P) Microbes_Sum: total biomass over the grid: day * (C,N,P) TransporterSeries: taxon-specific total transporter production over the grid EnzymesSeries: enzyme-specific total mass over the grid: Enzyme * C Enzymes_Sum: total enzyme summed up over the grid: list OsmolyteSeries: taxon-specific total osmolyte production over the grid RespSeries: total respiration over the grid CUE: Notes: Variables that are not tracked but instead by DEMENT(R version): NH4Series: PO4Series: """ # A couple of vars used in processing outputs n_taxa = int(runtime.loc['n_taxa',1]) # number of taxa Mic_index = ["Tax" + str(i) for i in range(1,n_taxa + 1)] # microbial taxa index # number of time steps in each pulse self.cycle = int(runtime.loc['end_time',1]) # Pass all runtime parameters to Runtime self.Runtime = runtime # Pass all initialized data (a dictionary) to 'Initialization' self.Initialization = data_init # Pull out microbial traits data and put them in a dataframe:Microbial_traits data = np.concatenate( (data_init['fb'][0:n_taxa], data_init['Microbes_pp']['C'][0:n_taxa], data_init['Microbes_pp']['N'][0:n_taxa], data_init['Microbes_pp']['P'][0:n_taxa], data_init['UptakeGenes'].sum(axis=1)[0:n_taxa], data_init['EnzGenes'].sum(axis=1)[0:n_taxa], data_init['OsmoGenes'].sum(axis=1)[0:n_taxa], data_init['UptakeGenes_trait'][0:n_taxa], data_init['EnzProdConsti_trait'][0:n_taxa], data_init['EnzProdInduci_trait'][0:n_taxa], data_init['OsmoProdConsti_trait'][0:n_taxa], data_init['OsmoProdInduci_trait'][0:n_taxa], data_init['TaxDroughtTol'][0:n_taxa]), axis=0 ) columns = [ 'F/B','C','N','P','Uptake_Gene','Enz_Gene','Osmo_Gene','Uptake_Cost','Enz_Consti_Cost', 'Enz_Induci_Cost','Osmo_Consti_Cost','Osmo_Induci_Cost','Drought_tolerance' ] self.Microbial_traits = pd.DataFrame(data=data.reshape(13,n_taxa).T, index=Mic_index, columns=columns, dtype='float32') # Account for inputs in mass balance # self.Cum_Substrate = (data_init['Substrates'].groupby(level=0,sort=False).sum()).sum(axis=0) # self.Cum_Monomer = (data_init['Monomers'].groupby(level=0,sort=False).sum()).sum(axis=0) # self.Cum_Monomer_ratios = ecosystem.Cum_Monomer_ratios # Degradation rates #DecayRates_list = [0] * n_substrates * gridsize #DecayRates_array = np.array(DecayRates_list).reshape(n_substrates * gridsize,1) #DecayRates_df = pd.DataFrame(data = DecayRates_array, index= data_init['Substrates'].index, columns= ['C']) #self.DecayRatesSeries = DecayRates_df.groupby(level=0,sort=False).sum() # Leaching #self.Cum_Leaching_N = pd.Series([0],index=[0]) #self.Cum_Leaching_P = pd.Series([0],index=[0]) # Substrates Substrates_grid = data_init['Substrates'].groupby(level=0,sort=False).sum() Substrates_grid['C'].name = 0 # set the series name to 0 self.SubstratesSeries = Substrates_grid['C'] #self.Substrates_Sum = pd.Series([Substrates_grid['C'].sum()],index=[0]) # Monomers Monomers_grid = data_init['Monomers'].groupby(level=0,sort=False).sum() Monomers_grid['C'].name = 0 self.MonomersSeries = Monomers_grid['C'] #self.Monomers_Sum = pd.Series([sum(Monomers_grid["C"])],index=[0]) #self.NH4Series = pd.Series([Monomers_grid.loc["NH4","N"]],index=[0]) #self.PO4Series = pd.Series([Monomers_grid.loc["PO4","P"]],index=[0]) # Microbes Microbes_grid = data_init['Microbes'].groupby(level=0,sort=False).sum() Microbes_grid['C'].name = 0 # rename the series name to 0 self.MicrobesSeries = Microbes_grid['C'] # taxon-specific total biomass summed over the grid self.MicrobesSeries_repop = Microbes_grid['C'] # created for reinitialization # define a new var placing biomass (in C) by taxon grid-specifically self.microbes_grid_taxa = data_init['Microbes']['C'] # Number of individuals of Taxon count Taxon_index = data_init['Microbes']['C'] > 0 Taxon_index.name = 0 self.Taxon_count = Taxon_index.groupby(level=0,sort=False).sum().astype('uint32') #self.Taxon_count_repop = Taxon_index.groupby(level=0,sort=False).sum().astype('uint32') # Taxon-specific CUE #self.CUE_TaxonSeries = pd.Series(data=[0]*n_taxa,index=Mic_index) # Enzymes Enzymes_grid = data_init['Enzymes'].groupby(level=0,sort=False).sum() # total of each enzyme summed over the spatial grid Enzymes_grid.name = 0 self.EnzymesSeries = Enzymes_grid #self.Enzymes_Sum = pd.Series([Enzymes_grid.sum()],index=[0]) # Emergent properties over the grid self.RespSeries = pd.Series([0],index=[0], dtype='float32') # respiration self.CUE_system = pd.Series([0],index=[0], dtype='float32') # emergent CUE self.Kill = pd.Series([0],index=[0], dtype='uint32') # stochastic death toll # Transporters: taxon-specific production summed over the grid by taxon #self.TransporterSeries = pd.Series(data=[0]*n_taxa,index=Mic_index) # Enyzmes: taxon-specific production summed over the grid by taxon #self.EnzymeConSeries = pd.Series(data=[0]*n_taxa,index=Mic_index) #self.EnzymeIndSeries = pd.Series(data=[0]*n_taxa,index=Mic_index) self.Enzyme_TaxonSeries = pd.Series(data=[0]*n_taxa, index=Mic_index, dtype='float32') # Osmolytes: taxon-specific production summed over the grid by taxon #self.OsmolyteConSeries = pd.Series(data=[0]*n_taxa,index=Mic_index) #self.OsmolyteIndSeries = pd.Series(data=[0]*n_taxa,index=Mic_index) self.Osmolyte_TaxonSeries = pd.Series(data=[0]*n_taxa, index=Mic_index, dtype='float32') # Growth yield self.Growth_yield = pd.Series(data=[0]*n_taxa, index=Mic_index, dtype='float32') def output(self,ecosystem,year,day): """ Records outputs in various variables of each iteration. Parameters: ecosystem: object from the grid.py module day: the day to record to outputs Returns: """ # Account for inputs in mass balance # self.Cum_Substrate = self.Cum_Substrate + ecosystem.SubInput.sum(axis = 0) # self.Cum_Monomer = self.Cum_Monomer + (ecosystem.MonInput.mul(ecosystem.Cum_Monomer_ratios,axis=0)).sum(axis=0) # DecayRates # DecayRates_grid = ecosystem.DecayRates.groupby(level=0,sort=False).sum() # self.DecayRatesSeries = pd.concat([self.DecayRatesSeries,DecayRates_grid],axis=1,sort=False) # Substrates Substrates_grid = ecosystem.Substrates.groupby(level=0,sort=False).sum() Substrates_grid['C'].name = self.cycle*year + (day+1) # index the output continuously by day self.SubstratesSeries = pd.concat([self.SubstratesSeries,Substrates_grid['C']], axis=1, sort=False) #self.Substrates_Sum = pd.concat([self.Substrates_Sum,pd.Series([Substrates_grid['C'].sum()],index=[day+1])],axis=0,sort=False) # Monomers Monomers_grid = ecosystem.Monomers.groupby(level=0,sort=False).sum() Monomers_grid['C'].name = self.cycle*year + (day+1) self.MonomersSeries = pd.concat([self.MonomersSeries,Monomers_grid['C']], axis=1, sort=False) #self.Monomers_Sum = pd.concat([self.Monomers_Sum, pd.Series([sum(Monomers_grid["C"])], index=[day+1])], axis=0, sort=False) #self.NH4Series = pd.concat([self.NH4Series, pd.Series([Monomers_grid.loc["NH4","N"]],index=[day+1])], axis=0, sort=False) #self.PO4Series = pd.concat([self.PO4Series, pd.Series([Monomers_grid.loc["PO4","P"]],index=[day+1])], axis=0, sort=False) # Interim Microbes #Microbes_interim_grid = ecosystem.Microbes_interim.groupby(level=0,sort=False).sum() #self.Microbes_Interim = pd.concat([self.MicrobesSeries,Microbes_interim_grid['C']],axis=1,sort=False) # Count taxon for averaging taxon CUE #Taxon_index = (ecosystem.Microbes_interim)['C'] > 0 #Taxon_index.name = day + 1 #taxon_count = Taxon_index.groupby(level=0,sort=False).sum() #self.Taxon_count = pd.concat([self.Taxon_count,taxon_count],axis=1,sort=False) # Microbe ## Taxon abundance Taxon_index = ecosystem.Microbes['C'] > 0 Taxon_index.name = self.cycle*year + (day+1) self.Taxon_count = pd.concat([self.Taxon_count, Taxon_index.groupby(level=0,sort=False).sum().astype('uint32')], axis=1, sort=False) ## Taxon biomass Microbes_grid = ecosystem.Microbes.groupby(level=0,sort=False).sum() Microbes_grid['C'].name = self.cycle*year + (day+1) self.MicrobesSeries = pd.concat([self.MicrobesSeries, Microbes_grid['C']], axis=1, sort=False) #self.Microbes_Sum = pd.concat([self.Microbes_Sum,pd.Series([Microbes_grid['C'].sum()],index=[day+1])],axis=0,sort=False) self.microbes_grid_taxa =
pd.concat([self.microbes_grid_taxa,ecosystem.Microbes['C']],axis=1,sort=False)
pandas.concat
import numpy as np import pandas as pd from utils import topickle, load_feats from constants import FEATS_DIR, MAX_DAYS, NUM_COMMON_CONS from processing.const import START, END, HOLIDAYS from featnames import HOLIDAY, DOW_PREFIX, CON, INDEX def save_date_feats(): N = pd.to_datetime(END) -
pd.to_datetime(START)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Tur Jan 11 11:51:13 2018 @author: Diogo """ import pandas as pd import numpy as np from files_treatment_new.generic_xls_file import _generic_xls_file from natsort import natsorted, ns import numpy as np from objects_new.Proteins_new import * class XlsGenBankPatric(_generic_xls_file): """ Class specified in the treatment of the gen_bank format file of xls. Remember that its a heritage of the class _generic_xls_file that its used to read the data from a file """ def __init__(self, path_file, sheet_name = "Sheet1"): """ Constructor of the class excel gen_bank class, this one contain all methods for the treatment of excel files gen mark of RAST platform. After the parameters initialisation, the file is loaded in the init method. :param path_file: Complete path with file name :param sheet_name: name of the sheet where is the information :type path_file: string - required :type sheet_name: string - required """ _generic_xls_file.__init__(self, path_file, sheet_name) self.read_xls_file() def get_contigs_id_sorted(self): """ Get all the contigs id sorted naturally. :return: array of string of id_contigs :rtype: array(string) """ ids_contigs = self.panda_data_file["contig_id"].unique() if isinstance(ids_contigs[0], str) == True: ids_contigs = np.asarray(natsorted(ids_contigs, key=lambda y: y.lower())) return ids_contigs def get_proteins_ids_by_contig_id(self, contig_id): """ Given a contig id, its return all proteins associated. in the file, these one are called "feature_id" :param contig_id: contig id :type contig_id: string - required :return: array of string of id_proteins :rtype: array(string) """ self.panda_data_file['contig_id'] = self.panda_data_file['contig_id'].astype(str) ids_proteins = self.panda_data_file.loc[(self.panda_data_file["contig_id"] == contig_id, ["feature_id"])] ids_proteins = ids_proteins["feature_id"].values return ids_proteins def get_information_line_by_protein_id(self, protein_id): """ Given a protein id return a dictionary with all details of the protein, where: - Key: key value in the excel document - value: value of the detail in string format :param protein_id: contig id :type protein_id: string - required :return: dictionary with the details of the protein :rtype: dictionary """ prot = self.panda_data_file["feature_id"] == protein_id protein_line = self.panda_data_file[self.panda_data_file["feature_id"] == protein_id].iloc[0].to_dict() if isinstance(protein_line['aa_sequence'], float) == True: protein_line['aa_sequence'] = ' ' return protein_line def get_number_of_proteins(self): """ Return the number of lines in the dataframe """ qty_proteins = self.panda_data_file.shape[0] return qty_proteins def get_number_different_contigs(self): """ Return the quantity of contigs in excel files """ qty_contigs = np.size(
pd.unique(self.panda_data_file['contig_id'])
pandas.unique
from __future__ import division import logging from os import path import time from ast import literal_eval import traceback from flask import request from sqlalchemy.sql import select from sqlalchemy.sql import text import settings import skyline_version from skyline_functions import ( mkdir_p, get_redis_conn_decoded, get_redis_conn, ) from database import ( get_engine, engine_disposal, ionosphere_table_meta, metrics_table_meta, ionosphere_matched_table_meta, ionosphere_layers_matched_table_meta, anomalies_table_meta, ) skyline_version = skyline_version.__absolute_version__ skyline_app = 'webapp' skyline_app_logger = '%sLog' % skyline_app logger = logging.getLogger(skyline_app_logger) skyline_app_logfile = '%s/%s.log' % (settings.LOG_PATH, skyline_app) logfile = '%s/%s.log' % (settings.LOG_PATH, skyline_app) try: ENABLE_WEBAPP_DEBUG = settings.ENABLE_WEBAPP_DEBUG except EnvironmentError as e: logger.error('error :: cannot determine ENABLE_WEBAPP_DEBUG from settings - %s' % e) ENABLE_WEBAPP_DEBUG = False # @added 20210107 - Feature #3934: ionosphere_performance def get_ionosphere_performance( metric, metric_like, from_timestamp, until_timestamp, format, # @added 20210128 - Feature #3934: ionosphere_performance # Improve performance and pass arguments to get_ionosphere_performance # for cache key anomalies, new_fps, fps_matched_count, layers_matched_count, sum_matches, title, period, height, width, fp_type, timezone_str): """ Analyse the performance of Ionosphere on a metric or metric namespace and create the graph resources or json data as required. :rtype: dict """ import datetime import pytz import pandas as pd dev_null = None ionosphere_performance_debug = False determine_start_timestamp = False redis_conn = None redis_conn_decoded = None # @added 20210202 - Feature #3934: ionosphere_performance # Handle user timezone tz_from_timestamp_datetime_obj = None tz_until_timestamp_datetime_obj = None utc_epoch_timestamp = datetime.datetime(1970, 1, 1, tzinfo=datetime.timezone(datetime.timedelta(seconds=0))) determine_timezone_start_date = False determine_timezone_end_date = False user_timezone = pytz.timezone(timezone_str) utc_timezone = pytz.timezone('UTC') # @added 20210203 - Feature #3934: ionosphere_performance # Add default timestamp start_timestamp = 0 end_timestamp = 0 if from_timestamp == 0: start_timestamp = 0 determine_start_timestamp = True if from_timestamp != 0: if ":" in from_timestamp: # @modified 20210202 - Feature #3934: ionosphere_performance # Handle user timezone if timezone_str == 'UTC': new_from_timestamp = time.mktime(datetime.datetime.strptime(from_timestamp, '%Y%m%d %H:%M').timetuple()) logger.info('get_ionosphere_performance - new_from_timestamp - %s' % str(new_from_timestamp)) else: utc_from_timestamp = time.mktime(datetime.datetime.strptime(from_timestamp, '%Y%m%d %H:%M').timetuple()) logger.info('get_ionosphere_performance - utc_from_timestamp - %s' % str(utc_from_timestamp)) from_timestamp_datetime_obj = datetime.datetime.strptime(from_timestamp, '%Y%m%d %H:%M') logger.info('get_ionosphere_performance - from_timestamp_datetime_obj - %s' % str(from_timestamp_datetime_obj)) tz_offset = pytz.timezone(timezone_str).localize(from_timestamp_datetime_obj).strftime('%z') tz_from_date = '%s:00 %s' % (from_timestamp, tz_offset) logger.info('get_ionosphere_performance - tz_from_date - %s' % str(tz_from_date)) tz_from_timestamp_datetime_obj = datetime.datetime.strptime(tz_from_date, '%Y%m%d %H:%M:%S %z') tz_epoch_timestamp = int((tz_from_timestamp_datetime_obj - utc_epoch_timestamp).total_seconds()) new_from_timestamp = tz_epoch_timestamp # new_from_timestamp = time.mktime(datetime.datetime.strptime(tz_from_timestamp, '%Y%m%d %H:%M:%S %z').timetuple()) logger.info('get_ionosphere_performance - new_from_timestamp - %s' % str(new_from_timestamp)) determine_timezone_start_date = True start_timestamp = int(new_from_timestamp) # @added 20210203 - Feature #3934: ionosphere_performance # Add default timestamp else: if from_timestamp == 'all': start_timestamp = 0 determine_start_timestamp = True else: start_timestamp = int(from_timestamp) if from_timestamp == 'all': start_timestamp = 0 determine_start_timestamp = True if from_timestamp == 'all': start_timestamp = 0 determine_start_timestamp = True if until_timestamp and until_timestamp != 'all': if ":" in until_timestamp: if timezone_str == 'UTC': new_until_timestamp = time.mktime(datetime.datetime.strptime(until_timestamp, '%Y%m%d %H:%M').timetuple()) else: until_timestamp_datetime_obj = datetime.datetime.strptime(until_timestamp, '%Y%m%d %H:%M') tz_offset = pytz.timezone(timezone_str).localize(until_timestamp_datetime_obj).strftime('%z') tz_until_date = '%s:00 %s' % (until_timestamp, tz_offset) logger.info('get_ionosphere_performance - tz_until_date - %s' % str(tz_until_date)) tz_until_timestamp_datetime_obj = datetime.datetime.strptime(tz_until_date, '%Y%m%d %H:%M:%S %z') tz_epoch_timestamp = int((tz_until_timestamp_datetime_obj - utc_epoch_timestamp).total_seconds()) new_from_timestamp = tz_epoch_timestamp # new_from_timestamp = time.mktime(datetime.datetime.strptime(tz_until_timestamp, '%Y%m%d %H:%M:%S %z').timetuple()) end_timestamp = int(new_until_timestamp) # @added 20210203 - Feature #3934: ionosphere_performance # Add default timestamp else: if until_timestamp == 'all': end_timestamp = int(time.time()) else: end_timestamp = int(until_timestamp) determine_timezone_end_date = False if until_timestamp == 'all': end_timestamp = int(time.time()) determine_timezone_end_date = True if until_timestamp == 0: end_timestamp = int(time.time()) determine_timezone_end_date = True start_timestamp_str = str(start_timestamp) # end_timestamp_str = str(end_timestamp) if timezone_str == 'UTC': begin_date = datetime.datetime.utcfromtimestamp(start_timestamp).strftime('%Y-%m-%d') end_date = datetime.datetime.utcfromtimestamp(end_timestamp).strftime('%Y-%m-%d') else: if determine_timezone_start_date: logger.info('get_ionosphere_performance - determine_timezone_start_date - True') # non_tz_start_datetime_object = datetime.datetime.utcfromtimestamp(start_timestamp) # logger.info('get_ionosphere_performance - non_tz_start_datetime_object - %s' % str(non_tz_start_datetime_object)) # tz_start_datetime_object = utc_timezone.localize(non_tz_start_datetime_object).astimezone(user_timezone) # logger.info('get_ionosphere_performance - tz_end_datetime_object - %s' % str(tz_start_datetime_object)) begin_date = tz_from_timestamp_datetime_obj.strftime('%Y-%m-%d') logger.info('get_ionosphere_performance - begin_date with %s timezone applied - %s' % (timezone_str, str(begin_date))) else: begin_date = datetime.datetime.utcfromtimestamp(start_timestamp).strftime('%Y-%m-%d') if determine_timezone_end_date: logger.info('get_ionosphere_performance - determine_timezone_end_date - True') non_tz_end_datetime_object = datetime.datetime.utcfromtimestamp(end_timestamp) logger.info('get_ionosphere_performance - non_tz_end_datetime_object - %s' % str(non_tz_end_datetime_object)) tz_end_datetime_object = utc_timezone.localize(non_tz_end_datetime_object).astimezone(user_timezone) logger.info('get_ionosphere_performance - tz_end_datetime_object - %s' % str(tz_end_datetime_object)) end_date = tz_end_datetime_object.strftime('%Y-%m-%d') logger.info('get_ionosphere_performance - end_date with %s timezone applied - %s' % (timezone_str, str(end_date))) else: logger.info('get_ionosphere_performance - determine_timezone_end_date - False') end_date = datetime.datetime.utcfromtimestamp(end_timestamp).strftime('%Y-%m-%d') original_begin_date = begin_date # Determine period frequency = 'D' if 'period' in request.args: period = request.args.get('period', 'daily') if period == 'daily': frequency = 'D' extended_end_timestamp = end_timestamp + 86400 if period == 'weekly': frequency = 'W' extended_end_timestamp = end_timestamp + (86400 * 7) if period == 'monthly': frequency = 'M' extended_end_timestamp = end_timestamp + (86400 * 30) extended_end_date = datetime.datetime.utcfromtimestamp(extended_end_timestamp).strftime('%Y-%m-%d') remove_prefix = False try: remove_prefix_str = request.args.get('remove_prefix', 'false') if remove_prefix_str != 'false': remove_prefix = True except Exception as e: dev_null = e # Allow for the removal of a prefix from the metric name use_metric_name = metric if remove_prefix: try: if remove_prefix_str.endswith('.'): remove_prefix = '%s' % remove_prefix_str else: remove_prefix = '%s.' % remove_prefix_str use_metric_name = metric.replace(remove_prefix, '') except Exception as e: logger.error('error :: failed to remove prefix %s from %s - %s' % (str(remove_prefix_str), metric, e)) # @added 20210129 - Feature #3934: ionosphere_performance # Improve performance and pass arguments to get_ionosphere_performance # for cache key yesterday_timestamp = end_timestamp - 86400 yesterday_end_date = datetime.datetime.utcfromtimestamp(yesterday_timestamp).strftime('%Y-%m-%d') metric_like_str = str(metric_like) metric_like_wildcard = metric_like_str.replace('.%', '') # @modified 20210202 - Feature #3934: ionosphere_performance # Handle user timezone yesterday_data_cache_key = 'performance.%s.metric.%s.metric_like.%s.begin_date.%s.tz.%s.anomalies.%s.new_fps.%s.fps_matched_count.%s.layers_matched_count.%s.sum_matches.%s.period.%s.fp_type.%s' % ( str(yesterday_end_date), str(metric), metric_like_wildcard, str(begin_date), str(timezone_str), str(anomalies), str(new_fps), str(fps_matched_count), str(layers_matched_count), str(sum_matches), str(period), str(fp_type)) logger.info('get_ionosphere_performance - yesterday_data_cache_key - %s' % yesterday_data_cache_key) try: redis_conn_decoded = get_redis_conn_decoded(skyline_app) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance :: get_redis_conn_decoded failed') dev_null = e yesterday_data_raw = None try: yesterday_data_raw = redis_conn_decoded.get(yesterday_data_cache_key) except Exception as e: trace = traceback.format_exc() fail_msg = 'error :: get_ionosphere_performance - could not get Redis data for - %s' % yesterday_data_cache_key logger.error(trace) logger.error(fail_msg) dev_null = e yesterday_data = None if yesterday_data_raw: try: yesterday_data = literal_eval(yesterday_data_raw) except Exception as e: trace = traceback.format_exc() fail_msg = 'error :: get_ionosphere_performance - could not get literal_eval Redis data from key - %s' % yesterday_data_cache_key logger.error(trace) logger.error(fail_msg) dev_null = e if yesterday_data: logger.info('get_ionosphere_performance - using cache data from yesterday with %s items' % str(len(yesterday_data))) new_from = '%s 23:59:59' % yesterday_end_date # @modified 20210202 - Feature #3934: ionosphere_performance # Handle user timezone if timezone_str == 'UTC': new_from_timestamp = time.mktime(datetime.datetime.strptime(new_from, '%Y-%m-%d %H:%M:%S').timetuple()) start_timestamp = int(new_from_timestamp) + 1 begin_date = datetime.datetime.utcfromtimestamp(start_timestamp).strftime('%Y-%m-%d') else: tz_new_from_timestamp_datetime_obj = datetime.datetime.strptime(new_from, '%Y-%m-%d %H:%M:%S') tz_offset = pytz.timezone(timezone_str).localize(tz_new_from_timestamp_datetime_obj).strftime('%z') tz_from_timestamp = '%s %s' % (new_from, tz_offset) new_from_timestamp = time.mktime(datetime.datetime.strptime(tz_from_timestamp, '%Y-%m-%d %H:%M:%S %z').timetuple()) start_timestamp = int(new_from_timestamp) + 1 begin_date = tz_new_from_timestamp_datetime_obj.strftime('%Y-%m-%d') logger.info('get_ionosphere_performance - using cache data from yesterday, set new start_timestamp: %s, begin_date: %s' % ( str(start_timestamp), str(begin_date))) determine_start_timestamp = False else: logger.info('get_ionosphere_performance - no cache data for yesterday_data') try: engine, fail_msg, trace = get_engine(skyline_app) logger.info(fail_msg) except Exception as e: trace = traceback.format_exc() logger.error(trace) logger.error('%s' % fail_msg) logger.error('error :: get_ionosphere_performance - could not get a MySQL engine') dev_null = e raise # to webapp to return in the UI if not engine: trace = 'none' fail_msg = 'error :: get_ionosphere_performance - engine not obtained' logger.error(fail_msg) raise try: metrics_table, log_msg, trace = metrics_table_meta(skyline_app, engine) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance - failed to get metrics_table meta') dev_null = e if engine: engine_disposal(skyline_app, engine) raise # to webapp to return in the UI metric_id = None metric_ids = [] if metric_like != 'all': metric_like_str = str(metric_like) logger.info('get_ionosphere_performance - metric_like - %s' % metric_like_str) metrics_like_query = text("""SELECT id FROM metrics WHERE metric LIKE :like_string""") metric_like_wildcard = metric_like_str.replace('.%', '') request_key = '%s.%s.%s.%s' % (metric_like_wildcard, begin_date, end_date, frequency) plot_title = '%s - %s' % (metric_like_wildcard, period) logger.info('get_ionosphere_performance - metric like query, cache key being generated from request key - %s' % request_key) try: connection = engine.connect() result = connection.execute(metrics_like_query, like_string=metric_like_str) connection.close() for row in result: m_id = row['id'] metric_ids.append(int(m_id)) except Exception as e: trace = traceback.format_exc() logger.error(trace) logger.error('error :: get_ionosphere_performance - could not determine ids from metrics table LIKE query - %s' % e) if engine: engine_disposal(skyline_app, engine) return {} start_timestamp_date = None # If the from_timestamp is 0 or all if determine_start_timestamp: created_dates = [] try: connection = engine.connect() # stmt = select([metrics_table.c.created_timestamp], metrics_table.c.id.in_(metric_ids)).limit(1) stmt = select([metrics_table.c.created_timestamp], metrics_table.c.id.in_(metric_ids)) result = connection.execute(stmt) for row in result: # start_timestamp_date = row['created_timestamp'] created_dates.append(row['created_timestamp']) # break connection.close() start_timestamp_date = sorted(created_dates)[0] if not start_timestamp_date: logger.error('error :: get_ionosphere_performance - could not determine created_timestamp - returning empty') if engine: engine_disposal(skyline_app, engine) return {} start_timestamp_str = str(start_timestamp_date) logger.info('get_ionosphere_performance - determined start_timestamp_str - %s' % start_timestamp_str) new_from_timestamp = time.mktime(datetime.datetime.strptime(start_timestamp_str, '%Y-%m-%d %H:%M:%S').timetuple()) start_timestamp = int(new_from_timestamp) logger.info('get_ionosphere_performance - determined start_timestamp - %s' % str(start_timestamp)) begin_date = datetime.datetime.utcfromtimestamp(start_timestamp).strftime('%Y-%m-%d') logger.info('get_ionosphere_performance - determined begin_date - %s' % str(begin_date)) # @added 20210203 - Feature #3934: ionosphere_performance # Handle user timezone if timezone_str != 'UTC': logger.info('get_ionosphere_performance - determining %s datetime from UTC start_timestamp_str - %s' % (timezone_str, str(start_timestamp_str))) from_timestamp_datetime_obj = datetime.datetime.strptime(start_timestamp_str, '%Y-%m-%d %H:%M:%S') logger.info('get_ionosphere_performance - from_timestamp_datetime_obj - %s' % str(from_timestamp_datetime_obj)) tz_offset = pytz.timezone(timezone_str).localize(from_timestamp_datetime_obj).strftime('%z') tz_from_date = '%s %s' % (start_timestamp_str, tz_offset) logger.info('get_ionosphere_performance - tz_from_date - %s' % str(tz_from_date)) tz_from_timestamp_datetime_obj = datetime.datetime.strptime(tz_from_date, '%Y-%m-%d %H:%M:%S %z') begin_date = tz_from_timestamp_datetime_obj.strftime('%Y-%m-%d') logger.info('get_ionosphere_performance - begin_date with %s timezone applied - %s' % (timezone_str, str(begin_date))) determine_start_timestamp = False request_key = '%s.%s.%s.%s' % (metric_like_wildcard, begin_date, end_date, frequency) except Exception as e: trace = traceback.format_exc() logger.error(trace) logger.error('error :: get_ionosphere_performance - could not determine ids from metrics table LIKE query - %s' % e) if engine: engine_disposal(skyline_app, engine) return {} logger.info('get_ionosphere_performance - metric_ids length - %s' % str(len(metric_ids))) if not metric_ids: # stmt = select([metrics_table]).where(metrics_table.c.id > 0) if metric == 'all': request_key = 'all.%s.%s.%s' % (begin_date, end_date, frequency) plot_title = 'All metrics - %s' % period logger.info('get_ionosphere_performance - metric all query, cache key being generated from request key - %s' % request_key) # If the from_timestamp is 0 or all if determine_start_timestamp: try: connection = engine.connect() stmt = select([metrics_table.c.created_timestamp]).limit(1) result = connection.execute(stmt) for row in result: start_timestamp_date = row['created_timestamp'] break connection.close() start_timestamp_str = str(start_timestamp_date) logger.info('get_ionosphere_performance - determined start_timestamp_str - %s' % start_timestamp_str) new_from_timestamp = time.mktime(datetime.datetime.strptime(start_timestamp_str, '%Y-%m-%d %H:%M:%S').timetuple()) start_timestamp = int(new_from_timestamp) logger.info('get_ionosphere_performance - determined start_timestamp - %s' % str(start_timestamp)) begin_date = datetime.datetime.utcfromtimestamp(start_timestamp).strftime('%Y-%m-%d') logger.info('get_ionosphere_performance - determined begin_date - %s' % str(begin_date)) # @added 20210203 - Feature #3934: ionosphere_performance # Handle user timezone if timezone_str != 'UTC': logger.info('get_ionosphere_performance - determining %s datetime from UTC start_timestamp_str - %s' % (timezone_str, str(start_timestamp_str))) from_timestamp_datetime_obj = datetime.datetime.strptime(start_timestamp_str, '%Y-%m-%d %H:%M:%S') logger.info('get_ionosphere_performance - from_timestamp_datetime_obj - %s' % str(from_timestamp_datetime_obj)) tz_offset = pytz.timezone(timezone_str).localize(from_timestamp_datetime_obj).strftime('%z') tz_from_date = '%s %s' % (start_timestamp_str, tz_offset) logger.info('get_ionosphere_performance - tz_from_date - %s' % str(tz_from_date)) tz_from_timestamp_datetime_obj = datetime.datetime.strptime(tz_from_date, '%Y-%m-%d %H:%M:%S %z') begin_date = tz_from_timestamp_datetime_obj.strftime('%Y-%m-%d') logger.info('get_ionosphere_performance - begin_date with %s timezone applied - %s' % (timezone_str, str(begin_date))) determine_start_timestamp = False request_key = 'all.%s.%s.%s' % (begin_date, end_date, frequency) logger.info('get_ionosphere_performance - metric all query, determine_start_timestamp cache key being generated from request key - %s' % request_key) except Exception as e: trace = traceback.format_exc() logger.error(trace) logger.error('error :: get_ionosphere_performance - could not determine ids from metrics table LIKE query - %s' % e) if engine: engine_disposal(skyline_app, engine) return {} try: request_key = '%s.%s.%s.%s' % (metric, begin_date, end_date, frequency) plot_title = '%s - %s' % (use_metric_name, period) logger.info('get_ionosphere_performance - metric all query, cache key being generated from request key - %s' % request_key) connection = engine.connect() stmt = select([metrics_table]).where(metrics_table.c.id > 0) result = connection.execute(stmt) for row in result: metric_id_str = row['id'] r_metric_id = int(metric_id_str) metric_ids.append(r_metric_id) connection.close() except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance - could not determine metric ids from metrics - %s' % e) if engine: engine_disposal(skyline_app, engine) raise if metric != 'all': logger.info('get_ionosphere_performance - metric - %s' % metric) try: request_key = '%s.%s.%s.%s' % (metric, begin_date, end_date, frequency) plot_title = '%s - %s' % (use_metric_name, period) logger.info('get_ionosphere_performance - metric query, cache key being generated from request key - %s' % request_key) connection = engine.connect() stmt = select([metrics_table]).where(metrics_table.c.metric == str(metric)) result = connection.execute(stmt) for row in result: metric_id_str = row['id'] metric_id = int(metric_id_str) connection.close() except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance - could not determine metric id from metrics - %s' % e) if engine: engine_disposal(skyline_app, engine) raise if determine_start_timestamp and metric_id: try: connection = engine.connect() stmt = select([metrics_table.c.created_timestamp]).where(metrics_table.c.metric == str(metric)) result = connection.execute(stmt) for row in result: start_timestamp_date = row['created_timestamp'] break connection.close() start_timestamp_str = str(start_timestamp_date) logger.info('get_ionosphere_performance - determined start_timestamp_str - %s' % start_timestamp_str) new_from_timestamp = time.mktime(datetime.datetime.strptime(start_timestamp_str, '%Y-%m-%d %H:%M:%S').timetuple()) start_timestamp = int(new_from_timestamp) logger.info('get_ionosphere_performance - determined start_timestamp - %s' % str(start_timestamp)) begin_date = datetime.datetime.utcfromtimestamp(start_timestamp).strftime('%Y-%m-%d') logger.info('get_ionosphere_performance - determined begin_date - %s' % str(begin_date)) request_key = '%s.%s.%s.%s' % (metric, begin_date, end_date, frequency) logger.info('get_ionosphere_performance - metric query, determine_start_timestamp cache key being generated from request key - %s' % request_key) except Exception as e: trace = traceback.format_exc() logger.error(trace) logger.error('error :: get_ionosphere_performance - could not determine ids from metrics table LIKE query - %s' % e) if engine: engine_disposal(skyline_app, engine) return {} logger.info('get_ionosphere_performance - metric - %s' % str(metric)) logger.info('get_ionosphere_performance - metric_id - %s' % str(metric_id)) if metric != 'all': if not metric_ids and not metric_id: if engine: engine_disposal(skyline_app, engine) logger.info('get_ionosphere_performance - no metric_id or metric_ids, nothing to do') performance = { 'performance': {'date': None, 'reason': 'no metric data found'}, 'request_key': request_key, 'success': False, 'reason': 'no data for metric/s', 'plot': None, 'csv': None, } return performance logger.info('get_ionosphere_performance - metric_id: %s, metric_ids length: %s' % ( str(metric_id), str(len(metric_ids)))) # Create request_key performance directory ionosphere_dir = path.dirname(settings.IONOSPHERE_DATA_FOLDER) performance_dir = '%s/performance/%s' % (ionosphere_dir, request_key) if not path.exists(performance_dir): mkdir_p(performance_dir) # Report anomalies report_anomalies = False if 'anomalies' in request.args: anomalies_str = request.args.get('performance', 'false') if anomalies_str == 'true': report_anomalies = True anomalies = [] anomalies_ts = [] if report_anomalies: try: anomalies_table, log_msg, trace = anomalies_table_meta(skyline_app, engine) logger.info(log_msg) logger.info('anomalies_table OK') except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: failed to get anomalies_table meta') dev_null = e if engine: engine_disposal(skyline_app, engine) raise # to webapp to return in the UI try: connection = engine.connect() if metric_ids: # stmt = select([anomalies_table.c.id, anomalies_table.c.anomaly_timestamp], anomalies_table.c.metric_id.in_(metric_ids)).\ stmt = select([anomalies_table.c.id, anomalies_table.c.metric_id, anomalies_table.c.anomaly_timestamp]).\ where(anomalies_table.c.anomaly_timestamp >= start_timestamp).\ where(anomalies_table.c.anomaly_timestamp <= end_timestamp) result = connection.execute(stmt) elif metric_id: stmt = select([anomalies_table.c.id, anomalies_table.c.metric_id, anomalies_table.c.anomaly_timestamp]).\ where(anomalies_table.c.metric_id == int(metric_id)).\ where(anomalies_table.c.anomaly_timestamp >= start_timestamp).\ where(anomalies_table.c.anomaly_timestamp <= end_timestamp) result = connection.execute(stmt) else: stmt = select([anomalies_table.c.id, anomalies_table.c.metric_id, anomalies_table.c.anomaly_timestamp]).\ where(anomalies_table.c.anomaly_timestamp >= start_timestamp).\ where(anomalies_table.c.anomaly_timestamp <= end_timestamp) result = connection.execute(stmt) for row in result: r_metric_id = row['metric_id'] append_result = False if r_metric_id == metric_id: append_result = True if not append_result: if r_metric_id in metric_ids: append_result = True if append_result: anomaly_id = row['id'] anomaly_timestamp = row['anomaly_timestamp'] anomalies.append(int(anomaly_timestamp)) # anomalies_ts.append([datetime.datetime.fromtimestamp(int(anomaly_timestamp)), int(anomaly_id)]) anomalies_ts.append([int(anomaly_timestamp), int(anomaly_id)]) connection.close() except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: could not determine anomaly ids') dev_null = e if engine: engine_disposal(skyline_app, engine) raise logger.info('get_ionosphere_performance - anomalies_ts length - %s' % str(len(anomalies_ts))) fp_type = 'all' if 'fp_type' in request.args: fp_type = request.args.get('fp_type', 'all') # Get fp_ids fp_ids = [] fp_ids_ts = [] fp_ids_cache_key = 'performance.%s.%s.fp_ids' % (request_key, timezone_str) fp_ids_ts_cache_key = 'performance.%s.%s.fp_ids_ts' % (request_key, timezone_str) if not redis_conn_decoded: try: redis_conn_decoded = get_redis_conn_decoded(skyline_app) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance :: get_redis_conn_decoded failed') dev_null = e try: fp_ids_raw = redis_conn_decoded.get(fp_ids_cache_key) except Exception as e: trace = traceback.format_exc() fail_msg = 'error :: get_ionosphere_performance - could not get Redis data for - %s' % fp_ids_cache_key logger.error(trace) logger.error(fail_msg) dev_null = e if fp_ids_raw: try: fp_ids = literal_eval(fp_ids_raw) except Exception as e: trace = traceback.format_exc() fail_msg = 'error :: get_ionosphere_performance - could not get literal_eval Redis data from key - %s' % fp_ids_cache_key logger.error(trace) logger.error(fail_msg) dev_null = e if fp_ids: logger.info('get_ionosphere_performance - using fp_ids from cache') try: fp_ids_ts_raw = redis_conn_decoded.get(fp_ids_ts_cache_key) except Exception as e: trace = traceback.format_exc() fail_msg = 'error :: get_ionosphere_performance - could not get Redis data for - %s' % fp_ids_ts_cache_key logger.error(trace) logger.error(fail_msg) dev_null = e if fp_ids_ts_raw: try: fp_ids_ts = literal_eval(fp_ids_ts_raw) except Exception as e: trace = traceback.format_exc() fail_msg = 'error :: get_ionosphere_performance - could not get literal_eval Redis data from key - %s' % fp_ids_ts_cache_key logger.error(trace) logger.error(fail_msg) dev_null = e if fp_ids_ts: logger.info('get_ionosphere_performance - using fp_ids_ts from cache') if not fp_ids or not fp_ids_ts: try: ionosphere_table, log_msg, trace = ionosphere_table_meta(skyline_app, engine) logger.info(log_msg) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance - failed to get ionosphere_table meta') dev_null = e if engine: engine_disposal(skyline_app, engine) raise # to webapp to return in the UI try: logger.info('get_ionosphere_performance - determining fp ids of type %s' % fp_type) connection = engine.connect() if metric_ids: if fp_type == 'user': # stmt = select([ionosphere_table.c.id, ionosphere_table.c.anomaly_timestamp], ionosphere_table.c.metric_id.in_(metric_ids)).\ stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp).\ where(ionosphere_table.c.generation <= 1) elif fp_type == 'learnt': # stmt = select([ionosphere_table.c.id, ionosphere_table.c.anomaly_timestamp], ionosphere_table.c.metric_id.in_(metric_ids)).\ stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp).\ where(ionosphere_table.c.generation >= 2) else: # stmt = select([ionosphere_table.c.id, ionosphere_table.c.anomaly_timestamp], ionosphere_table.c.metric_id.in_(metric_ids)).\ stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp) logger.info('get_ionosphere_performance - determining fp ids of type %s for metric_ids' % fp_type) result = connection.execute(stmt) elif metric_id: if fp_type == 'user': stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.metric_id == int(metric_id)).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp).\ where(ionosphere_table.c.generation <= 1) elif fp_type == 'learnt': stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.metric_id == int(metric_id)).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp).\ where(ionosphere_table.c.generation >= 2) else: stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.metric_id == int(metric_id)).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp) logger.info('get_ionosphere_performance - determining fp ids for metric_id') result = connection.execute(stmt) else: if fp_type == 'user': stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp).\ where(ionosphere_table.c.generation <= 1) elif fp_type == 'learnt': stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp).\ where(ionosphere_table.c.generation >= 2) else: stmt = select([ionosphere_table.c.id, ionosphere_table.c.metric_id, ionosphere_table.c.anomaly_timestamp]).\ where(ionosphere_table.c.enabled == 1).\ where(ionosphere_table.c.anomaly_timestamp <= end_timestamp) logger.info('get_ionosphere_performance - determining fp ids for all metrics') result = connection.execute(stmt) for row in result: r_metric_id = row['metric_id'] append_result = False if r_metric_id == metric_id: append_result = True if r_metric_id in metric_ids: append_result = True if append_result: fp_id = row['id'] anomaly_timestamp = row['anomaly_timestamp'] fp_ids.append(int(fp_id)) fp_ids_ts.append([int(anomaly_timestamp), int(fp_id)]) connection.close() except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance - could not determine fp_ids') dev_null = e if engine: engine_disposal(skyline_app, engine) raise logger.info('get_ionosphere_performance - fp_ids_ts length - %s' % str(len(fp_ids_ts))) if fp_ids: if not redis_conn: try: redis_conn = get_redis_conn(skyline_app) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_redis_conn failed for get_ionosphere_performance') dev_null = e if redis_conn: try: logger.info('get_ionosphere_performance - setting Redis performance key with fp_ids containing %s items' % str(len(fp_ids))) redis_conn.setex(fp_ids_cache_key, 600, str(fp_ids)) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_redis_conn failed to set - %s' % fp_ids_cache_key) dev_null = e if fp_ids_ts: if not redis_conn: try: redis_conn = get_redis_conn(skyline_app) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_redis_conn failed for get_ionosphere_performance') dev_null = e if redis_conn: try: logger.info('get_ionosphere_performance - setting Redis performance key with fp_ids_ts containing %s items' % str(len(fp_ids_ts))) redis_conn.setex(fp_ids_ts_cache_key, 600, str(fp_ids_ts)) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_redis_conn failed to set - %s' % fp_ids_ts_cache_key) dev_null = e # Get fp matches try: ionosphere_matched_table, log_msg, trace = ionosphere_matched_table_meta(skyline_app, engine) except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance - failed to get ionosphere_matched_table_meta_table meta') dev_null = e if engine: engine_disposal(skyline_app, engine) raise # to webapp to return in the UI fps_matched_ts = [] if fp_ids: try: connection = engine.connect() # stmt = select([ionosphere_matched_table.c.id, ionosphere_matched_table.c.metric_timestamp], ionosphere_matched_table.c.fp_id.in_(fp_ids)).\ stmt = select([ionosphere_matched_table.c.id, ionosphere_matched_table.c.fp_id, ionosphere_matched_table.c.metric_timestamp]).\ where(ionosphere_matched_table.c.metric_timestamp >= start_timestamp).\ where(ionosphere_matched_table.c.metric_timestamp <= end_timestamp) result = connection.execute(stmt) for row in result: append_result = False if metric == 'all' and metric_like == 'all': append_result = True if not append_result: fp_id = row['fp_id'] if fp_id in fp_ids: append_result = True if append_result: matched_id = row['id'] metric_timestamp = row['metric_timestamp'] fps_matched_ts.append([int(metric_timestamp), int(matched_id)]) connection.close() except Exception as e: logger.error(traceback.format_exc()) logger.error('error :: get_ionosphere_performance - could not determine timestamps from ionosphere_matched') dev_null = e if engine: engine_disposal(skyline_app, engine) raise logger.info('get_ionosphere_performance - fps_matched_ts - %s' % str(len(fps_matched_ts))) # Get layers matches try: ionosphere_layers_matched_table, log_msg, trace = ionosphere_layers_matched_table_meta(skyline_app, engine) except Exception as e: trace = traceback.format_exc() logger.error(trace) fail_msg = 'error :: get_ionosphere_performance - failed to get ionosphere_layers_matched_table meta' logger.error('%s' % fail_msg) dev_null = e if engine: engine_disposal(skyline_app, engine) raise # to webapp to return in the UI layers_matched_ts = [] if fp_ids: try: connection = engine.connect() # stmt = select([ionosphere_layers_matched_table.c.id, ionosphere_layers_matched_table.c.anomaly_timestamp], ionosphere_layers_matched_table.c.fp_id.in_(fp_ids)).\ stmt = select([ionosphere_layers_matched_table.c.id, ionosphere_layers_matched_table.c.fp_id, ionosphere_layers_matched_table.c.anomaly_timestamp]).\ where(ionosphere_layers_matched_table.c.anomaly_timestamp >= start_timestamp).\ where(ionosphere_layers_matched_table.c.anomaly_timestamp <= end_timestamp) result = connection.execute(stmt) for row in result: append_result = False if metric == 'all' and metric_like == 'all': append_result = True if not append_result: fp_id = row['fp_id'] if fp_id in fp_ids: append_result = True if append_result: matched_layers_id = row['id'] matched_timestamp = row['anomaly_timestamp'] layers_matched_ts.append([int(matched_timestamp), int(matched_layers_id)]) connection.close() except Exception as e: trace = traceback.format_exc() logger.error(trace) fail_msg = 'error :: get_ionosphere_performance - could not determine timestamps from ionosphere_layers_matched' logger.error('%s' % fail_msg) dev_null = e if engine: engine_disposal(skyline_app, engine) raise # to webapp to return in the UI logger.info('get_ionosphere_performance - layers_matched_ts - %s' % str(len(layers_matched_ts))) anomalies_df = [] if anomalies_ts: try: anomalies_df = pd.DataFrame(anomalies_ts, columns=['date', 'id']) anomalies_df['date'] = pd.to_datetime(anomalies_df['date'], unit='s') # @added 20210202 - Feature #3934: ionosphere_performance # Handle user timezone if timezone_str != 'UTC': anomalies_df['date'] = anomalies_df['date'].dt.tz_localize('UTC').dt.tz_convert(user_timezone) anomalies_df = anomalies_df.set_index(pd.DatetimeIndex(anomalies_df['date'])) anomalies_df = anomalies_df.resample(frequency).apply({'id': 'count'}) anomalies_df.rename(columns={'id': 'anomaly_count'}, inplace=True) if ionosphere_performance_debug: fname_out = '%s/%s.anomalies_df.csv' % (settings.SKYLINE_TMP_DIR, request_key) anomalies_df.to_csv(fname_out) except Exception as e: trace = traceback.format_exc() logger.error(trace) fail_msg = 'error :: get_ionosphere_performance - could not create anomalies_df' logger.error('%s' % fail_msg) dev_null = e if engine: engine_disposal(skyline_app, engine) raise # to webapp to return in the UI fp_ids_df = [] fps_total_df = [] if fp_ids_ts: try: fp_ids_df =
pd.DataFrame(fp_ids_ts, columns=['date', 'id'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Relé de proteção do TAP-02 """ # Importing libraries import matplotlib.pyplot as plt import numpy as np import pandas as pd from PIL import Image import streamlit as st # ============================================================================= # Functions # ============================================================================= # ============================================================================= # # Page title # ============================================================================= st.title('Proteção do TAP-02') # ============================================================================= # Dados técnicos # ============================================================================= expander_6 = st.beta_expander(label='Dados técnicos') with expander_6: st.write('Dados do relé') st.text('Marca: Siemens') st.text('Modelo: 7UT63') st.write('Dados do TA-02') st.text('Primário: 525 kV, Y aterrado') st.text('Secndário: 13,8 kV, Y aterrado') st.write('RTCs') st.text('06TA02: 1200/5 A') st.text('86TA02: 1200/5 A') st.text('52-A2: 2000/5 A') st.text('Neutro 13,8 kV: 2000/5 A') # ============================================================================= # Diagrama unifilar # ============================================================================= expander_1 = st.beta_expander(label='Diagrama unifilar') with expander_1: image = Image.open('src/unifilar.JPG') st.image(image) # ============================================================================= # # Relay settings table # ============================================================================= expander_2 = st.beta_expander(label='Ajustes') with expander_2: st.write("Ajustes:") dict_ajustes = {'Parâmetro': ['Pick-up (pu)', 'Tempo de operação (s)'], 'Valor': [0.5, 11] } df_ajustes = pd.DataFrame(dict_ajustes) st.table(df_ajustes) # Validate parameters if dict_ajustes['Valor'][1] > 10: st.write(ValueError('O tempo de operação deve ser no máximo 10 s')) # ============================================================================= # Configuração pré-falta # ============================================================================= expander_3 = st.beta_expander(label='Configuração pré-falta') with expander_3: c1, c2, c3 = st.beta_columns(3) sampling_freq = c1.number_input(label='Taxa de amostragem (kHz)', min_value=1, max_value=20, value=10) dt = 1 / (sampling_freq*1000) # sampling period in seconds t_final = 1 # end of simulation t_vec = np.arange(start=0, stop=t_final, step=dt) # time array # ============================================================================= # # Corrente do TC 06TA2 # ============================================================================= st.subheader('Corrente do TC 06TA2') c1, c2, c3 = st.beta_columns(3) c1.write('Fase A') tc_06ta2_r_mag = c1.number_input(label='Mag (A)', min_value=1, max_value=4000, value=500, step=100, key='tc_06ta2_r_mag') tc_06ta2_r_f = c1.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_06ta2_r_f') tc_06ta2_r_phi = c1.number_input(label='Fase (°)', min_value=-180, max_value=180, value=0, key='tc_06ta2_r_phi') c2.write('Fase B') tc_06ta2_s_mag = c2.number_input(label='Mag (A)', min_value=1, max_value=4000, value=500, step=100, key='tc_06ta2_s_mag') tc_06ta2_s_f = c2.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_06ta2_s_f') tc_06ta2_s_phi = c2.number_input(label='Fase (°)', min_value=-180, max_value=180, value=-120, key='tc_06ta2_s_phi') c3.write('Fase C') tc_06ta2_t_mag = c3.number_input(label='Mag (A)', min_value=1, max_value=4000, value=500, step=100, key='tc_06ta2_t_mag') tc_06ta2_t_f = c3.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_06ta2_t_f') tc_06ta2_t_phi = c3.number_input(label='Fase (°)', min_value=-180, max_value=180, value=120, key='tc_06ta2_t_phi') tc_06ta2_r_phi = tc_06ta2_r_phi*np.pi/180 tc_06ta2_s_phi = tc_06ta2_s_phi*np.pi/180 tc_06ta2_t_phi = tc_06ta2_t_phi*np.pi/180 tc_06ta2_r = [tc_06ta2_r_mag*np.sin(2*np.pi*tc_06ta2_r_f*t + tc_06ta2_r_phi) \ for t in t_vec] tc_06ta2_s = [tc_06ta2_s_mag*np.sin(2*np.pi*tc_06ta2_s_f*t + tc_06ta2_s_phi) \ for t in t_vec] tc_06ta2_t = [tc_06ta2_t_mag*np.sin(2*np.pi*tc_06ta2_t_f*t + tc_06ta2_t_phi) \ for t in t_vec] # ============================================================================= # # Corrente do TC 86TA2 # ============================================================================= st.subheader('Corrente do TC 86TA2') c1, c2, c3 = st.beta_columns(3) c1.write('Fase A') tc_86ta2_r_mag = c1.number_input(label='Mag (A)', min_value=1, max_value=4000, value=500, step=100, key='tc_86ta2_r_mag') tc_86ta2_r_f = c1.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_86ta2_r_f') tc_86ta2_r_phi = c1.number_input(label='Fase (°)', min_value=-180, max_value=180, value=0, key='tc_86ta2_r_phi') c2.write('Fase B') tc_86ta2_s_mag = c2.number_input(label='Mag (A)', min_value=1, max_value=4000, value=500, step=100, key='tc_86ta2_s_mag') tc_86ta2_s_f = c2.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_86ta2_s_f') tc_86ta2_s_phi = c2.number_input(label='Fase (°)', min_value=-180, max_value=180, value=-120, key='tc_86ta2_s_phi') c3.write('Fase C') tc_86ta2_t_mag = c3.number_input(label='Mag (A)', min_value=1, max_value=4000, value=500, step=100, key='tc_86ta2_t_mag') tc_86ta2_t_f = c3.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_86ta2_t_f') tc_86ta2_t_phi = c3.number_input(label='Fase (°)', min_value=-180, max_value=180, value=120, key='tc_86ta2_t_phi') tc_86ta2_r_phi = tc_86ta2_r_phi*np.pi/180 tc_86ta2_s_phi = tc_86ta2_s_phi*np.pi/180 tc_86ta2_t_phi = tc_86ta2_t_phi*np.pi/180 tc_86ta2_r = [tc_86ta2_r_mag*np.sin(2*np.pi*tc_86ta2_r_f*t + tc_86ta2_r_phi) \ for t in t_vec] tc_86ta2_s = [tc_86ta2_s_mag*np.sin(2*np.pi*tc_86ta2_s_f*t + tc_86ta2_s_phi) \ for t in t_vec] tc_86ta2_t = [tc_86ta2_t_mag*np.sin(2*np.pi*tc_86ta2_t_f*t + tc_86ta2_t_phi) \ for t in t_vec] # ============================================================================= # # Corrente do TC 52-A2 # ============================================================================= st.subheader('Corrente do TC 52-A2') c1, c2, c3 = st.beta_columns(3) c1.write('Fase A') tc_52a2_r_mag = c1.number_input(label='Mag (A)', min_value=1, max_value=4000, value=1000, step=100, key='tc_52a2_r_mag') tc_52a2_r_f = c1.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_52a2_r_f') tc_52a2_r_phi = c1.number_input(label='Fase (°)', min_value=-180, max_value=180, value=0, key='tc_52a2_r_phi') c2.write('Fase B') tc_52a2_s_mag = c2.number_input(label='Mag (A)', min_value=1, max_value=4000, value=1000, step=100, key='tc_52a2_s_mag') tc_52a2_s_f = c2.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_52a2_s_f') tc_52a2_s_phi = c2.number_input(label='Fase (°)', min_value=-180, max_value=180, value=-120, key='tc_52a2_s_phi') c3.write('Fase C') tc_52a2_t_mag = c3.number_input(label='Mag (A)', min_value=1, max_value=4000, value=1000, step=100, key='tc_52a2_t_mag') tc_52a2_t_f = c3.number_input(label='f (Hz)', min_value=55, max_value=65, value=60, key='tc_52a2_t_f') tc_52a2_t_phi = c3.number_input(label='Fase (°)', min_value=-180, max_value=180, value=120, key='tc_52a2_t_phi') tc_52a2_r_phi = tc_52a2_r_phi*np.pi/180 tc_52a2_s_phi = tc_52a2_s_phi*np.pi/180 tc_52a2_t_phi = tc_52a2_t_phi*np.pi/180 tc_52a2_r = [tc_52a2_r_mag*np.sin(2*np.pi*tc_52a2_r_f*t + tc_52a2_r_phi) \ for t in t_vec] tc_52a2_s = [tc_52a2_s_mag*np.sin(2*np.pi*tc_52a2_s_f*t + tc_52a2_s_phi) \ for t in t_vec] tc_52a2_t = [tc_52a2_t_mag*np.sin(2*np.pi*tc_52a2_t_f*t + tc_52a2_t_phi) \ for t in t_vec] # ============================================================================= # Configuração da Falta # ============================================================================= expander_4 = st.beta_expander(label='Configuração da Falta') with expander_4: c1, c2, c3 = st.beta_columns(3) pre_fault = c1.number_input(label='Tempo pré-falta (ms)', min_value=40, max_value=300, value=100) fault_location = c2.selectbox('Local da falta:', ['Interna', 'Externa']) fault_type = c3.selectbox('Tipo da falta:', ['Circuito aberto L', 'Circuito aberto L-L', 'Curto-circuito L', 'Curto-circuito L-L', 'Curto-circuito L-L-L']) # ============================================================================= # Gerar oscilografia da falta # ============================================================================= t_vec_fault_start_pos = int(pre_fault /1000 / dt) # posição do vetor tempo no início da falta fault_created = False # Flag to indicate if the fault has been configured and applied t_fault_end = t_vec[-t_vec_fault_start_pos] t_fault = np.arange(start=0, stop=t_fault_end, step=dt) # time array for calculating the fault fault_created = st.button(label='Criar falta', key='criar_falta') if (fault_type == 'Circuito aberto L') & fault_created: last_value = tc_06ta2_r[t_vec_fault_start_pos] tc_06ta2_r_fault = last_value * np.exp(-500*t_fault) tc_06ta2_r[t_vec_fault_start_pos:] = tc_06ta2_r_fault last_value = tc_86ta2_r[t_vec_fault_start_pos] tc_86ta2_r_fault = last_value * np.exp(-500*t_fault) tc_86ta2_r[t_vec_fault_start_pos:] = tc_86ta2_r_fault last_value = tc_52a2_r[t_vec_fault_start_pos] tc_52a2_r_fault = last_value * np.exp(-500*t_fault) tc_52a2_r[t_vec_fault_start_pos:] = tc_52a2_r_fault if (fault_type == 'Circuito aberto L-L') & fault_created: last_value = tc_06ta2_r[t_vec_fault_start_pos] tc_06ta2_r_fault = last_value * np.exp(-500*t_fault) tc_06ta2_r[t_vec_fault_start_pos:] = tc_06ta2_r_fault last_value = tc_06ta2_s[t_vec_fault_start_pos] tc_06ta2_s_fault = last_value * np.exp(-500*t_fault) tc_06ta2_s[t_vec_fault_start_pos:] = tc_06ta2_s_fault last_value = tc_86ta2_r[t_vec_fault_start_pos] tc_86ta2_r_fault = last_value * np.exp(-500*t_fault) tc_86ta2_r[t_vec_fault_start_pos:] = tc_86ta2_r_fault last_value = tc_86ta2_s[t_vec_fault_start_pos] tc_86ta2_s_fault = last_value * np.exp(-500*t_fault) tc_86ta2_s[t_vec_fault_start_pos:] = tc_86ta2_s_fault last_value = tc_52a2_r[t_vec_fault_start_pos] tc_52a2_r_fault = last_value * np.exp(-500*t_fault) tc_52a2_r[t_vec_fault_start_pos:] = tc_52a2_r_fault last_value = tc_52a2_s[t_vec_fault_start_pos] tc_52a2_s_fault = last_value * np.exp(-500*t_fault) tc_52a2_s[t_vec_fault_start_pos:] = tc_52a2_s_fault cond_1 = (fault_type == 'Curto-circuito L-L-L') cond_2 = fault_created cond_3 = (fault_location =='Interna') if cond_1 & cond_2 & cond_3: short_circuit_level = 3 #current increases 3 times when a short-circuit occurs (arbitrary, needs correction with the protection study) after_pre_fault = tc_06ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_06ta2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_s[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_06ta2_t[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_t[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_s[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_t[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_t[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_r[t_vec_fault_start_pos:] fault_values = [ 0 * x for x in after_pre_fault ] tc_52a2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_s[t_vec_fault_start_pos:] fault_values = [ 0 * x for x in after_pre_fault ] tc_52a2_s[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_t[t_vec_fault_start_pos:] fault_values = [ 0 * x for x in after_pre_fault ] tc_52a2_t[t_vec_fault_start_pos:] = fault_values cond_1 = (fault_type == 'Curto-circuito L-L-L') cond_2 = fault_created cond_3 = (fault_location =='Externa') if cond_1 & cond_2 & cond_3: short_circuit_level = 1.4 #current increases 3 times when a short-circuit occurs (arbitrary, needs correction with the protection study) after_pre_fault = tc_06ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_06ta2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_s[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_06ta2_t[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_t[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_s[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_t[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_t[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_52a2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_52a2_s[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_t[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_52a2_t[t_vec_fault_start_pos:] = fault_values cond_1 = (fault_type == 'Curto-circuito L-L') cond_2 = fault_created cond_3 = (fault_location =='Interna') if cond_1 & cond_2 & cond_3: short_circuit_level = 3 #current increases 3 times when a short-circuit occurs (arbitrary, needs correction with the protection study) after_pre_fault = tc_06ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_06ta2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_s[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_s[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_r[t_vec_fault_start_pos:] fault_values = [ 0 * x for x in after_pre_fault ] tc_52a2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_s[t_vec_fault_start_pos:] fault_values = [ 0 * x for x in after_pre_fault ] tc_52a2_s[t_vec_fault_start_pos:] = fault_values cond_1 = (fault_type == 'Curto-circuito L-L') cond_2 = fault_created cond_3 = (fault_location =='Externa') if cond_1 & cond_2 & cond_3: short_circuit_level = 1.4 #current increases 3 times when a short-circuit occurs (arbitrary, needs correction with the protection study) after_pre_fault = tc_06ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_06ta2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_s[t_vec_fault_start_pos:] = fault_values tc_06ta2_t[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_s[t_vec_fault_start_pos:] = fault_values tc_86ta2_t[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_52a2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_s[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_52a2_s[t_vec_fault_start_pos:] = fault_values cond_1 = (fault_type == 'Curto-circuito L') cond_2 = fault_created cond_3 = (fault_location =='Interna') if cond_1 & cond_2 & cond_3: short_circuit_level = 3 #current increases 3 times when a short-circuit occurs (arbitrary, needs correction with the protection study) after_pre_fault = tc_06ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_r[t_vec_fault_start_pos:] fault_values = [ 0 * x for x in after_pre_fault ] tc_52a2_r[t_vec_fault_start_pos:] = fault_values cond_1 = (fault_type == 'Curto-circuito L-L') cond_2 = fault_created cond_3 = (fault_location =='Externa') if cond_1 & cond_2 & cond_3: short_circuit_level = 1.4 #current increases 3 times when a short-circuit occurs (arbitrary, needs correction with the protection study) after_pre_fault = tc_06ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_06ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_86ta2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_86ta2_r[t_vec_fault_start_pos:] = fault_values after_pre_fault = tc_52a2_r[t_vec_fault_start_pos:] fault_values = [ short_circuit_level * x for x in after_pre_fault ] tc_52a2_r[t_vec_fault_start_pos:] = fault_values fault_created = False # ============================================================================= # Oscilografia # ============================================================================= expander_5 = st.beta_expander(label='Oscilografia') with expander_5: st.header('Oscilografia') fig, axes = plt.subplots(nrows=9, ncols=1, sharex=True, figsize=(10,6), sharey=True) # plotting axes[0].plot(pd.DataFrame({'IA-06TA2': tc_06ta2_r}, index=t_vec)) axes[1].plot(pd.DataFrame({'IB-06TA2': tc_06ta2_s}, index=t_vec)) axes[2].plot(pd.DataFrame({'IC-06TA2': tc_06ta2_t}, index=t_vec)) axes[3].plot(pd.DataFrame({'IA-86TA2': tc_86ta2_r}, index=t_vec)) axes[4].plot(
pd.DataFrame({'IB-86TA2': tc_86ta2_s}, index=t_vec)
pandas.DataFrame
import pandas as pd import generator_labeler.ExecutionPlanAnalyzer as EPAnalyzer from IPython.display import display import numpy as np from scipy.stats import kurtosis, skew import matplotlib.pyplot as plt import seaborn as sns import networkx as nx import re #################### ## Table features ## #################### from generator_labeler.TaskMonitor.TaskManagerClient import TaskDetailsParser def get_tables_features(df_tables, data_cardinality=False, factors=-1, verbose=True): one_hot = sorted(list(set([t for tables in df_tables.values for t in tables]))) one_hot_enc = {one_hot[c]: c for c in range(one_hot.__len__())} one_hot_dec = {c: one_hot[c] for c in range(one_hot.__len__())} print("one_hot_enc:", one_hot_enc, "\none_hot_dec:", one_hot_dec) def encode(x, one_hot_enc): enc_vec = np.zeros(one_hot_enc.__len__()) for v in x: idx = one_hot_enc[v] enc_vec[idx] = 1.0 return enc_vec df_tables_enc = df_tables.apply(lambda x: encode(x, one_hot_enc)) if data_cardinality: cards = [] ks = [] for k, values in df_tables_enc.iteritems(): new_values = [v * data_cardinality[k[1]][one_hot_dec[idx]] for idx, v in enumerate(values)] cards.append(new_values) ks.append(k) cards_df = pd.DataFrame(cards) cards_df["plan_id"] = [k[0] for k in ks] cards_df["data_id"] = [k[1] for k in ks] cards_df = cards_df.set_index(["plan_id", "data_id"]) df_tables_enc = cards_df df_tables_enc = df_tables_enc.apply(pd.Series) df_tables_enc.columns = ["t_" + str(c) for c in df_tables_enc.columns] if factors > 0: from sklearn.decomposition import PCA pca_model = PCA(n_components=factors, svd_solver="auto") df_tables_enc_factors = pca_model.fit_transform(df_tables_enc) for f in range(factors): df_tables_enc[f"t_F{f + 1}"] = df_tables_enc_factors[:, f] if verbose: print("n_components:", pca_model.n_components, "\nexplained_variance_ :", pca_model.explained_variance_, "\nexplained_variance_ratio_ :", np.cumsum(pca_model.explained_variance_ratio_)) return df_tables_enc ################### ## DEPRECATED! - Data sampling ## ################### def sample_by_value_dist(df, sample_size, sample_col, verbose=True): values = df[sample_col].values arg_s_values = values.argsort() if verbose: plt.plot(values, marker='.', linewidth=0) plt.ylabel(sample_col) plt.xlabel("Samples") plt.show() norm_values = values / max(values) if verbose: plt.plot(norm_values[arg_s_values], marker=".") plt.ylabel("Norm - " + sample_col) plt.xlabel("Samples") plt.show() n_samples = int(norm_values.__len__() * sample_size) th_step = (norm_values.max() - norm_values.min()) / n_samples cut_points_indexes = [] th = norm_values.min() sampled_sorted_idx = [] i = 0 for idx in arg_s_values: if norm_values[idx] >= th: cut_points_indexes.append(idx) th = th + th_step sampled_sorted_idx.append(i) i = i + 1 cut_points_indexes.append(arg_s_values[-1]) # Add last point sampled_sorted_idx.append(arg_s_values.__len__() - 1) if verbose: plt.plot(norm_values[arg_s_values], marker=".") plt.plot(sampled_sorted_idx, norm_values[cut_points_indexes], 'r.') plt.ylabel("Norm - " + sample_col) plt.xlabel("Samples") plt.show() if verbose: plt.plot(values, marker='.', linewidth=0) plt.plot(cut_points_indexes, values[cut_points_indexes], 'r.') plt.ylabel(sample_col) plt.xlabel("Samples") plt.show() sampled_data = df.iloc[cut_points_indexes, :] return sampled_data def sample_by_data_2(x, samples_key, sample_col, verbose=False): k = x["data_id"].values[0] print(k) if verbose else None return sample_by_value_dist(x, samples_key[k], sample_col, verbose) def custom_train_test_split_2(df, samples_key, sample_col, job_filter=".*", verbose=False): df = df.reset_index().loc[df.reset_index()["plan_id"].str.contains(job_filter), :] print("Len before:", df.__len__()) df_train = df.groupby("data_id", group_keys=False).apply( lambda x: sample_by_data_2(x, samples_key, sample_col, verbose)) print("Len train:", df_train.__len__()) df_test = df[~df.index.isin(df_train.index)] print("Len test:", df_test.__len__()) return df_train, df_test ###################### ## Outliers removal ## ###################### def remove_outliers(df, outlier_col, b=0.01, verbose=False): asd = [] for ds in sorted(df["data_size"].unique()): ds_df = df.loc[df["data_size"] == ds, :] len_before = ds_df.__len__() q = b ds_df = ds_df[ds_df[outlier_col] > np.quantile(ds_df[outlier_col], q)] q = 1.0 - b ds_df = ds_df[ds_df[outlier_col] < np.quantile(ds_df[outlier_col], q)] print(f"Removing {len_before - ds_df.__len__()} outliers from '{ds}'") asd.append(ds_df) df_no_out =
pd.concat(asd)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import math import glob import re import os.path import numpy as np import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt import matplotlib.colors as colors from pathlib import Path from io import StringIO from pyproj import Transformer from itertools import takewhile from scipy import stats import multiprocessing as mp from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from shapely.geometry import box, Point, LineString def standardise_source(df): # Dictionary containing method values to rename remap_dict = {'emery': 'emery/levelling', 'levelling': 'emery/levelling', 'dunefill': np.NaN, 'rtk gps': 'gps', 'photogrammetry': 'aerial photogrammetry', 'stereo photogrammtery': 'aerial photogrammetry', 'ads80': 'aerial photogrammetry', 'photos': 'aerial photogrammetry', 'total station': 'total station', 'total station\t': 'total station', 'laser scanning': 'terrestrial laser scanning', 'satellite': 'satellite', 'gps rtk gps': 'gps'} # Set all values to lower case for easier conversion df['source'] = df.source.str.lower() # Replace values df['source'] = df.source.replace(remap_dict) def to_vector(df, fname='test.shp', x='x', y='y', crs='EPSG:3577', output_crs='EPSG:3577'): # Convert datetimes to strings df = df.copy() is_datetime = df.dtypes == 'datetime64[ns]' df.loc[:, is_datetime] = df.loc[:, is_datetime].astype(str) # Export to file gdf = gpd.GeoDataFrame(data=df.loc[:, df.dtypes != 'datetime64[ns]'], geometry=gpd.points_from_xy(x=df[x], y=df[y]), crs=crs).to_crs(output_crs).to_file(fname) return gdf def export_eval(df, output_name, output_crs='EPSG:3577'): from shapely.geometry import box, Point, LineString # Extract geometries val_points = gpd.points_from_xy(x=df.val_x, y=df.val_y) deacl_points = gpd.points_from_xy(x=df.deacl_x, y=df.deacl_y) df_profiles = df.groupby('id').first() profile_lines = df_profiles.apply( lambda x: LineString([(x.start_x, x.start_y), (x.end_x, x.end_y)]), axis=1) # Export validation points val_gdf = gpd.GeoDataFrame(data=df, geometry=val_points, crs=output_crs).to_crs('EPSG:4326') val_gdf.to_file(f'figures/eval/{output_name}_val.geojson', driver='GeoJSON') # Export DEACL points deacl_gdf = gpd.GeoDataFrame(data=df, geometry=deacl_points, crs=output_crs).to_crs('EPSG:4326') deacl_gdf.to_file(f'figures/eval/{output_name}_deacl.geojson', driver='GeoJSON') # Export profiles profile_gdf = gpd.GeoDataFrame(data=df_profiles, geometry=profile_lines, crs=output_crs).to_crs('EPSG:4326') profile_gdf.to_file(f'figures/eval/{output_name}_profiles.geojson', driver='GeoJSON') def deacl_val_stats(val_dist, deacl_dist, n=None, remove_bias=False): np.seterr(all='ignore') # Compute difference and bias diff_dist = val_dist - deacl_dist bias = diff_dist.mean() if remove_bias: deacl_dist += bias diff_dist = val_dist - deacl_dist # Compute stats if n is None: n = len(val_dist) else: n = sum(n) mae = mean_absolute_error(val_dist, deacl_dist) rmse = mean_squared_error(val_dist, deacl_dist)**0.5 if n > 1: corr = np.corrcoef(x=val_dist, y=deacl_dist)[0][1] stdev = diff_dist.std() else: corr = np.nan stdev = np.nan return pd.Series({ 'n': n, 'mae': f'{mae:.2f}', 'rmse': f'{rmse:.2f}', 'stdev': f'{stdev:.2f}', 'corr': f'{corr:.3f}', 'bias': f'{bias:.2f}', }).astype(float) def rse_tableformat(not_bias_corrected, bias_corrected, groupby='source'): # Fix rounding and total observations not_bias_corrected['n'] = not_bias_corrected['n'].astype(int) not_bias_corrected[['bias', 'stdev', 'mae', 'rmse']] = not_bias_corrected[['bias', 'stdev', 'mae', 'rmse']].round(1) not_bias_corrected['n'] = not_bias_corrected.groupby(groupby)['n'].sum() # Move bias corrected values into brackets not_bias_corrected['MAE (m)'] = (not_bias_corrected.mae.astype('str') + ' (' + bias_corrected.mae.round(1).astype('str') + ')') not_bias_corrected['RMSE (m)'] = (not_bias_corrected.rmse.astype('str') + ' (' + bias_corrected.rmse.round(1).astype('str') + ')') # Sort by MAE, rename columns not_bias_corrected = (not_bias_corrected.sort_values('mae') .drop(['mae', 'rmse'], axis=1) .rename({'stdev': 'SD (m)', 'corr': 'Correlation', 'bias': 'Bias (m)'}, axis=1) [['n', 'Bias (m)', 'MAE (m)', 'RMSE (m)', 'SD (m)', 'Correlation']]) return not_bias_corrected def val_slope(profiles_df, intercept_df, datum=0, buffer=25, method='distance'): # Join datum dist to full profile dataframe profiles_datum_dist = (profiles_df.set_index( ['id', 'date'])[['distance', 'z']].join(intercept_df[f'{datum}_dist'])) if method == 'distance': # Filter to measurements within distance of datum distance beach_data = profiles_datum_dist[profiles_datum_dist.distance.between( profiles_datum_dist[f'{datum}_dist'] - buffer, profiles_datum_dist[f'{datum}_dist'] + buffer)] elif method == 'height': # Filter measurements within height of datum beach_data = profiles_datum_dist.loc[ profiles_datum_dist.z.between(-buffer, buffer)] # Calculate slope beach_slope = beach_data.groupby(['id', 'date']).apply( lambda x: stats.linregress(x=x.distance, y=x.z).slope) return beach_slope.round(3) def dms2dd(s): # example: s = "0°51'56.29" degrees, minutes, seconds = re.split('[°\'"]+', s) if float(degrees) > 0: dd = float(degrees) + float(minutes) / 60 + float(seconds) / (60 * 60) else: dd = float(degrees) - float(minutes) / 60 - float(seconds) / (60 * 60); return dd def dist_angle(lon, lat, dist, angle): lon_end = lon + dist * np.sin(angle * np.pi / 180) lat_end = lat + dist * np.cos(angle * np.pi / 180) return pd.Series({'end_y': lat_end, 'end_x': lon_end}) def interp_intercept(x, y1, y2, reverse=False): """ Find the intercept of two curves, given by the same x data References: ---------- Source: https://stackoverflow.com/a/43551544/2510900 """ def intercept(point1, point2, point3, point4): """find the intersection between two lines the first line is defined by the line between point1 and point2 the first line is defined by the line between point3 and point4 each point is an (x,y) tuple. So, for example, you can find the intersection between intercept((0,0), (1,1), (0,1), (1,0)) = (0.5, 0.5) Returns: the intercept, in (x,y) format """ def line(p1, p2): A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0] * p2[1] - p2[0] * p1[1]) return A, B, -C def intersection(L1, L2): D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] x = Dx / D y = Dy / D return x,y L1 = line([point1[0],point1[1]], [point2[0],point2[1]]) L2 = line([point3[0],point3[1]], [point4[0],point4[1]]) R = intersection(L1, L2) return R try: if isinstance(y2, (int, float)): y2 = np.array([y2] * len(x)) if reverse: x = x[::-1] y1 = y1[::-1] y2 = y2[::-1] idx = np.argwhere(np.diff(np.sign(y1 - y2)) != 0) xc, yc = intercept((x[idx], y1[idx]),((x[idx + 1], y1[idx + 1])), ((x[idx], y2[idx])), ((x[idx + 1], y2[idx + 1]))) return xc[0][0] except: return np.nan def dist_along_transect(dist, start_x, start_y, end_x, end_y): transect_line = LineString([(start_x, start_y), (end_x, end_y)]) distance_coords = transect_line.interpolate(dist).coords.xy return [coord[0] for coord in distance_coords] def waterline_intercept(x, dist_col='distance', x_col='x', y_col='y', z_col='z', z_val=0, debug=False): # Extract distance and coordinates of where the z_val first # intersects with the profile line dist_int = interp_intercept(x[dist_col].values, x[z_col].values, z_val) x_int = interp_intercept(x[x_col].values, x[z_col].values, z_val) y_int = interp_intercept(x[y_col].values, x[z_col].values, z_val) # Identify last distance where the z_value intersects the profile rev_int = interp_intercept(x[dist_col].values, x[z_col].values, z_val, reverse=True) # If first and last intersects are the identical, return data. # If not, the comparison is invalid (i.e. NaN) if dist_int == rev_int: if debug: print('Single intersection found') return pd.Series({f'{z_val}_dist': dist_int, f'{z_val}_x': x_int, f'{z_val}_y': y_int}) else: if debug: print('Multiple intersections returned') return pd.Series({f'{z_val}_dist': np.NaN, f'{z_val}_x': np.NaN, f'{z_val}_y': np.NaN}) def reproj_crs(in_data, in_crs, x='x', y='y', out_crs='EPSG:3577'): # Reset index to allow merging new data with original data in_data = in_data.reset_index(drop=True) # Reproject coords to Albers and create geodataframe trans = Transformer.from_crs(in_crs, out_crs, always_xy=True) coords = trans.transform(in_data[x].values, in_data[y].values) in_data[['x', 'y']] = pd.DataFrame(zip(*coords)) return in_data def profiles_from_dist(profiles_df, id_col='id', dist_col='distance', x_col='x', y_col='y'): # Compute origin points for each profile min_ids = profiles_df.groupby(id_col)[dist_col].idxmin() start_xy = profiles_df.loc[min_ids, [id_col, x_col, y_col]] start_xy = start_xy.rename({x_col: f'start_{x_col}', y_col: f'start_{y_col}'}, axis=1) # Compute end points for each profile max_ids = profiles_df.groupby(id_col)[dist_col].idxmax() end_xy = profiles_df.loc[max_ids, [x_col, y_col]] # Add end coords into same dataframe start_xy = start_xy.reset_index(drop=True) end_xy = end_xy.reset_index(drop=True) start_xy[[f'end_{x_col}', f'end_{y_col}']] = end_xy return start_xy def perpendicular_line(input_line, length): # Generate parallel lines either side of input line left = input_line.parallel_offset(length / 2.0, 'left') right = input_line.parallel_offset(length / 2.0, 'right') # Create new line between centroids of parallel line. # This should be perpendicular to the original line return LineString([left.centroid, right.centroid]) def generate_transects(line_geom, length=400, interval=200, buffer=20): # Create tangent line at equal intervals along line geom interval_dists = np.arange(buffer, line_geom.length, interval) tangent_geom = [LineString([line_geom.interpolate(dist - buffer), line_geom.interpolate(dist + buffer)]) for dist in interval_dists] # Convert to geoseries and remove erroneous lines by length tangent_gs = gpd.GeoSeries(tangent_geom) tangent_gs = tangent_gs.loc[tangent_gs.length.round(1) <= buffer * 2] # Compute perpendicular lines return tangent_gs.apply(perpendicular_line, length=length) def coastal_transects(bbox, name, interval=200, transect_length=400, simplify_length=200, transect_buffer=20, output_crs='EPSG:3577', coastline='../input_data/Smartline.gdb', land_poly='/g/data/r78/rt1527/shapefiles/australia/australia/cstauscd_r.shp'): # Load smartline coastline_gdf = gpd.read_file(coastline, bbox=bbox).to_crs(output_crs) coastline_geom = coastline_gdf.geometry.unary_union.simplify(simplify_length) # Load Australian land water polygon land_gdf = gpd.read_file(land_poly, bbox=bbox).to_crs(output_crs) land_gdf = land_gdf.loc[land_gdf.FEAT_CODE.isin(["mainland", "island"])] land_geom = gpd.overlay(df1=land_gdf, df2=bbox).unary_union # Extract transects along line geoms = generate_transects(coastline_geom, length=transect_length, interval=interval, buffer=transect_buffer) # Test if end points of transects fall in water or land p1 = gpd.GeoSeries([Point(i.coords[0]) for i in geoms]) p2 = gpd.GeoSeries([Point(i.coords[1]) for i in geoms]) p1_within_land = p1.within(land_geom) p2_within_land = p2.within(land_geom) # Create geodataframe, remove invalid land-land/water-water transects transect_gdf = gpd.GeoDataFrame(data={'p1': p1_within_land, 'p2': p2_within_land}, geometry=geoms.values, crs=output_crs) transect_gdf = transect_gdf[~(transect_gdf.p1 == transect_gdf.p2)] # Reverse transects so all point away from land transect_gdf['geometry'] = transect_gdf.apply( lambda i: LineString([i.geometry.coords[1], i.geometry.coords[0]]) if i.p1 < i.p2 else i.geometry, axis=1) # Export to file transect_gdf[['geometry']].to_file(f'input_data/coastal_transects_{name}.geojson', driver='GeoJSON') def coastal_transects_parallel( regions_gdf, interval=200, transect_length=400, simplify_length=200, transect_buffer=20, overwrite=False, output_path='input_data/combined_transects_wadot.geojson'): if not os.path.exists(output_path) or overwrite: if os.path.exists(output_path): print('Removing existing file') os.remove(output_path) # Generate transects for each region print('Generating transects') with mp.Pool(mp.cpu_count()) as pool: for i, _ in regions_gdf.iterrows(): name = str(i).replace(' ', '').replace('/', '').lower() pool.apply_async(coastal_transects, [ regions_gdf.loc[[i]], name, interval, transect_length, simplify_length, transect_buffer ]) pool.close() pool.join() # Load regional transects and combine into a single file print('Combining data') transect_list = glob.glob('input_data/coastal_transects_*.geojson') gdf = pd.concat( [gpd.read_file(shp, ignore_index=True) for shp in transect_list]) gdf = gdf.reset_index(drop=True) gdf['profile'] = gdf.index.astype(str) gdf.to_file(output_path, driver='GeoJSON') # Clean files [os.remove(f) for f in transect_list] def preprocess_wadot(compartment, overwrite=True, fname='input_data/wadot/Coastline_Movements_20190819.gdb'): beach = str(compartment.index.item()) fname_out = f'output_data/wadot_{beach}.csv' print(f'Processing {beach:<80}', end='\r') # Test if file exists if not os.path.exists(fname_out) or overwrite: # Read file and filter to AHD 0 shorelines val_gdf = gpd.read_file(fname, bbox=compartment).to_crs('EPSG:3577') val_gdf = gpd.clip(gdf=val_gdf, mask=compartment, keep_geom_type=True) val_gdf = val_gdf[(val_gdf.TYPE == 'AHD 0m') | (val_gdf.TYPE == 'AHD 0m ')] # Filter to post 1987 shorelines and set index to year val_gdf = val_gdf[val_gdf.PHOTO_YEAR > 1987] val_gdf = val_gdf.set_index('PHOTO_YEAR') # If no data is returned, skip this iteration if len(val_gdf.index) == 0: print(f'Failed: {beach:<80}', end='\r') return None ###################### # Generate transects # ###################### transect_gdf = gpd.read_file('input_data/combined_transects_wadot.geojson', bbox=compartment) transect_gdf = gpd.clip(gdf=transect_gdf, mask=compartment, keep_geom_type=True) ################################ # Identify 0 MSL intersections # ################################ output_list = [] # Select one year for year in val_gdf.index.unique().sort_values(): # Extract validation contour print(f'Processing {beach} {year:<80}', end='\r') val_contour = val_gdf.loc[[year]].geometry.unary_union # Copy transect data, and find intersects # between transects and contour intersect_gdf = transect_gdf.copy() intersect_gdf['val_point'] = transect_gdf.intersection(val_contour) to_keep = gpd.GeoSeries(intersect_gdf['val_point']).geom_type == 'Point' intersect_gdf = intersect_gdf.loc[to_keep] # If no data is returned, skip this iteration if len(intersect_gdf.index) == 0: print(f'Failed: {beach} {year:<80}', end='\r') continue # Add generic metadata intersect_gdf['date'] = pd.to_datetime(str(year)) intersect_gdf['beach'] = beach intersect_gdf['section'] = 'all' intersect_gdf['source'] = 'aerial photogrammetry' intersect_gdf['name'] = 'wadot' intersect_gdf['id'] = (intersect_gdf.beach + '_' + intersect_gdf.section + '_' + intersect_gdf.profile) # Add measurement metadata intersect_gdf[['start_x', 'start_y']] = intersect_gdf.apply( lambda x: pd.Series(x.geometry.coords[0]), axis=1) intersect_gdf[['end_x', 'end_y']] = intersect_gdf.apply( lambda x: pd.Series(x.geometry.coords[1]), axis=1) intersect_gdf['0_dist'] = intersect_gdf.apply( lambda x: Point(x.start_x, x.start_y).distance(x['val_point']), axis=1) intersect_gdf[['0_x', '0_y']] = intersect_gdf.apply( lambda x: pd.Series(x.val_point.coords[0]), axis=1) # Add empty slope var (not possible to compute without profile data) intersect_gdf['slope'] = np.nan # Keep required columns intersect_gdf = intersect_gdf[['id', 'date', 'beach', 'section', 'profile', 'name', 'source', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', '0_dist', '0_x', '0_y']] # Append to file output_list.append(intersect_gdf) # Combine all year data and export to file if len(output_list) > 0: shoreline_df = pd.concat(output_list) shoreline_df.to_csv(fname_out, index=False) else: print(f'Skipping {beach:<80}', end='\r') def preprocess_dasilva2021(fname='input_data/dasilva2021/dasilva_etal_2021_shorelines.shp'): beach = 'dasilva2021' print(f'Processing {beach:<80}', end='\r') # Read file and filter to AHD 0 shorelines fname='input_data/dasilva2021/dasilva_etal_2021_shorelines.shp' val_gdf = gpd.read_file(fname).to_crs('EPSG:3577') val_gdf = val_gdf.loc[val_gdf.Year_ > 1987] val_gdf['Year_'] = val_gdf.Year_.astype(str) val_gdf = val_gdf.set_index('Year_') # If no data is returned, skip this iteration if len(val_gdf.index) == 0: print(f'Failed: {beach:<80}', end='\r') return None ###################### # Generate transects # ###################### transect_gdf = gpd.read_file('input_data/dasilva2021/dasilva_etal_2021_retransects.shp').to_crs('EPSG:3577')[['TransectID', 'Direction', 'order', 'geometry']] transect_gdf.columns = ['profile', 'section', 'order', 'geometry'] transect_gdf = transect_gdf.sort_values('order').set_index('order') transect_gdf['profile'] = transect_gdf.profile.astype(str) ################################ # Identify 0 MSL intersections # ################################ output_list = [] # Select one year for year in val_gdf.index.unique().sort_values(): # Extract validation contour print(f'Processing {beach} {year:<80}', end='\r') val_contour = val_gdf.loc[[year]].geometry.unary_union # Copy transect data, and find intersects # between transects and contour intersect_gdf = transect_gdf.copy() intersect_gdf['val_point'] = transect_gdf.intersection(val_contour) to_keep = gpd.GeoSeries(intersect_gdf['val_point']).geom_type == 'Point' intersect_gdf = intersect_gdf.loc[to_keep] # If no data is returned, skip this iteration if len(intersect_gdf.index) == 0: print(f'Failed: {beach} {year:<80}', end='\r') continue # Add generic metadata intersect_gdf['date'] = pd.to_datetime(str(year)) intersect_gdf['beach'] = beach intersect_gdf['source'] = 'satellite' intersect_gdf['name'] = 'dasilva2021' intersect_gdf['id'] = (intersect_gdf.beach + '_' + intersect_gdf.section + '_' + intersect_gdf.profile) # Add measurement metadata intersect_gdf[['start_x', 'start_y']] = intersect_gdf.apply( lambda x: pd.Series(x.geometry.coords[0]), axis=1) intersect_gdf[['end_x', 'end_y']] = intersect_gdf.apply( lambda x: pd.Series(x.geometry.coords[1]), axis=1) intersect_gdf['0_dist'] = intersect_gdf.apply( lambda x: Point(x.start_x, x.start_y).distance(x['val_point']), axis=1) intersect_gdf[['0_x', '0_y']] = intersect_gdf.apply( lambda x: pd.Series(x.val_point.coords[0][0:2]), axis=1) # Add empty slope var (not possible to compute without profile data) intersect_gdf['slope'] = np.nan # Keep required columns intersect_gdf = intersect_gdf[['id', 'date', 'beach', 'section', 'profile', 'name', 'source', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', '0_dist', '0_x', '0_y']] # Append to file output_list.append(intersect_gdf) # Combine all year data and export to file if len(output_list) > 0: shoreline_df = pd.concat(output_list) shoreline_df.to_csv(f'output_data/{beach}.csv', index=False) def preprocess_stirling(fname_out, datum=0): # List containing files to import and all params to extract data survey_xl = [ {'fname': 'input_data/stirling/2015 05 28 - From Stirling - Coastal Profiles 2014-2015 April-Feb with updated reef#2.xlsm', 'skiprows': 2, 'skipcols': 5, 'nrows': 100, 'meta_skiprows': 0, 'meta_nrows': 1, 'meta_usecols': [6, 7]}, {'fname': 'input_data/stirling/Coastal Profiles 2013-2014 JUL-MAY#2.xlsx', 'skiprows': 2, 'skipcols': 5, 'nrows': 100, 'meta_skiprows': 0, 'meta_nrows': 1, 'meta_usecols': [6, 7]}, {'fname': 'input_data/stirling/COASTAL PROFILES 2013 JAN - JUNE#2.xls', 'skiprows': 3, 'skipcols': 0, 'nrows': 40, 'meta_skiprows': 1, 'meta_nrows': 2, 'meta_usecols': [1, 2]}, {'fname': 'input_data/stirling/COASTAL PROFILES 2012 JUN - DEC#2.xls', 'skiprows': 3, 'skipcols': 0, 'nrows': 40, 'meta_skiprows': 1, 'meta_nrows': 2, 'meta_usecols': [1, 2]}, {'fname': 'input_data/stirling/COASTAL PROFILES 2011-2012 NOV - MAY#2.xls', 'skiprows': 3, 'skipcols': 0, 'nrows': 40, 'meta_skiprows': 1, 'meta_nrows': 2, 'meta_usecols': [1, 2]} ] # List to contain processed profile data output = [] # For each survey excel file in the list above: for survey in survey_xl: # Load profile start metadata all_meta = pd.read_excel(survey['fname'], sheet_name=None, nrows=survey['meta_nrows'], skiprows=survey['meta_skiprows'], usecols=survey['meta_usecols'], header=None, on_demand=True) # Load data all_sheets = pd.read_excel(survey['fname'], sheet_name=None, skiprows=survey['skiprows'], nrows=survey['nrows'], parse_dates=False, usecols=lambda x: 'Unnamed' not in str(x)) # Iterate through each profile in survey data for profile_id in np.arange(1, 20).astype('str'): # Extract profile start metadata and profile data start_x, start_y = all_meta[profile_id].values[0] sheet = all_sheets[profile_id].iloc[:,survey['skipcols']:] # First set all column names to lower case strings sheet.columns = (sheet.columns.astype(str) .str.slice(0, 10) .str.lower()) # Drop note columns and distance/angle offset sheet = sheet.loc[:,~sheet.columns.str.contains('note|notes')] sheet = sheet.drop(['dist', 'angle dd'], axis=1, errors='ignore') # Expand date column values into rows for each sampling event sheet.loc[:,sheet.columns[::4]] = sheet.columns[::4] # Number date columns incrementally to match other fields start_num = 1 if survey['skipcols'] > 0 else 0 rename_dict = {name: f'date.{i + start_num}' for i, name in enumerate(sheet.columns[::4])} sheet = sheet.rename(rename_dict, axis=1).reset_index() sheet = sheet.rename({'x': 'x.0', 'y': 'y.0', 'z': 'z.0'}, axis=1) # Reshape data into long format profile_df = pd.wide_to_long(sheet, stubnames=['date', 'x', 'y', 'z'], i='index', j='dropme', sep='.').reset_index(drop=True) # Set datetimes profile_df['date'] = pd.to_datetime(profile_df.date, errors='coerce', dayfirst=True) # Add profile metadata profile_df['beach'] = 'stirling' profile_df['section'] = 'all' profile_df['profile'] = profile_id profile_df['name'] = 'stirling' profile_df['source'] = 'gps' profile_df['start_x'] = start_x profile_df['start_y'] = start_y profile_df['id'] = (profile_df.beach + '_' + profile_df.section + '_' + profile_df.profile) # Add results to list output.append(profile_df.dropna()) # Combine all survey and profile data profiles_df = pd.concat(output) # Reproject Perth Coastal Grid coordinates into Australian Albers pcg_crs = '+proj=tmerc +lat_0=0 +lon_0=115.8166666666667 ' \ '+k=0.9999990600000001 +x_0=50000 +y_0=3800000 ' \ '+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs' trans = Transformer.from_crs(pcg_crs, 'EPSG:3577', always_xy=True) profiles_df['x'], profiles_df['y'] = trans.transform( profiles_df.y.values, profiles_df.x.values) profiles_df['start_x'], profiles_df['start_y'] = trans.transform( profiles_df.start_y.values, profiles_df.start_x.values) # Calculate per-point distance from start of profile profiles_df['distance'] = profiles_df.apply( lambda x: Point(x.start_x, x.start_y).distance(Point(x.x, x.y)), axis=1) # Identify end of profiles by max distance from start, and merge back max_dist = (profiles_df.sort_values('distance', ascending=False) .groupby('id')['x', 'y'] .first() .rename({'x': 'end_x', 'y': 'end_y'}, axis=1)) profiles_df = profiles_df.merge(max_dist, on='id') # Find location and distance to water for datum height (e.g. 0 m AHD) intercept_df = profiles_df.groupby(['id', 'date']).apply( waterline_intercept, z_val=datum).dropna() # Join into dataframe shoreline_dist = intercept_df.join( profiles_df.groupby(['id', 'date']).first()) # Keep required columns shoreline_dist = shoreline_dist[['beach', 'section', 'profile', 'name', 'source', 'start_x', 'start_y', 'end_x', 'end_y', f'{datum}_dist', f'{datum}_x', f'{datum}_y']] # Export to file shoreline_dist.to_csv(fname_out) def preprocess_vicdeakin(fname, datum=0): # Dictionary to map correct CRSs to locations crs_dict = {'apo': 'epsg:32754', 'cow': 'epsg:32755', 'inv': 'epsg:32755', 'leo': 'epsg:32755', 'mar': 'epsg:32754', 'pfa': 'epsg:32754', 'por': 'epsg:32755', 'prd': 'epsg:32755', 'sea': 'epsg:32755', 'wbl': 'epsg:32754'} # Read data profiles_df = pd.read_csv(fname, parse_dates=['survey_date']).dropna() # Restrict to pre-2019 profiles_df = profiles_df.loc[profiles_df.survey_date.dt.year < 2020] profiles_df = profiles_df.reset_index(drop=True) # Remove invalid profiles invalid = ((profiles_df.location == 'leo') & (profiles_df.tr_id == 94)) profiles_df = profiles_df.loc[~invalid].reset_index(drop=True) # Extract coordinates coords = profiles_df.coordinates.str.findall(r'\d+\.\d+') profiles_df[['x', 'y']] = pd.DataFrame(coords.values.tolist(), dtype=np.float32) # Add CRS and convert to Albers profiles_df['crs'] = profiles_df.location.apply(lambda x: crs_dict[x]) profiles_df = profiles_df.groupby('crs', as_index=False).apply( lambda x: reproj_crs(x, in_crs=x.crs.iloc[0])).drop('crs', axis=1) profiles_df = profiles_df.reset_index(drop=True) # Convert columns to strings and add unique ID column profiles_df = profiles_df.rename({'location': 'beach', 'tr_id': 'profile', 'survey_date': 'date', 'z': 'z_dirty', 'z_clean': 'z'}, axis=1) profiles_df['profile'] = profiles_df['profile'].astype(str) profiles_df['section'] = 'all' profiles_df['source'] = 'drone photogrammetry' profiles_df['name'] = 'vicdeakin' profiles_df['id'] = (profiles_df.beach + '_' + profiles_df.section + '_' + profiles_df.profile) # Reverse profile distances by subtracting max distance from each prof_max = profiles_df.groupby('id')['distance'].transform('max') profiles_df['distance'] = (profiles_df['distance'] - prof_max).abs() # Compute origin and end points for each profile and merge into data start_end_xy = profiles_from_dist(profiles_df) profiles_df = pd.merge(left=profiles_df, right=start_end_xy) # Export each beach for beach_name, beach in profiles_df.groupby('beach'): # Create output file name fname_out = f'output_data/vicdeakin_{beach_name}.csv' print(f'Processing {fname_out:<80}', end='\r') # Find location and distance to water for datum height (0 m AHD) intercept_df = beach.groupby(['id', 'date']).apply( waterline_intercept, z_val=datum).dropna() # If the output contains data if len(intercept_df.index) > 0: # Join into dataframe shoreline_dist = intercept_df.join( beach.groupby(['id', 'date']).first()) # Compute validation slope and join into dataframe slope = val_slope(beach, intercept_df, datum=datum) shoreline_dist = shoreline_dist.join(slope.rename('slope')) # Keep required columns shoreline_dist = shoreline_dist[['beach', 'section', 'profile', 'name', 'source', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', f'{datum}_dist', f'{datum}_x', f'{datum}_y']] # Export to file shoreline_dist.to_csv(fname_out) def preprocess_nswbpd(fname, datum=0, overwrite=False): # Get output filename name = Path(fname).stem.split('_')[-1].lower().replace(' ', '') fname_out = f'output_data/nswbpd_{name}.csv' # Test if file exists if not os.path.exists(fname_out) or overwrite: # Read in data print(f'Processing {fname_out:<80}', end='\r') profiles_df = pd.read_csv(fname, skiprows=5, dtype={'Block': str, 'Profile': str}) profiles_df['Year/Date'] = pd.to_datetime(profiles_df['Year/Date'], dayfirst=True, errors='coerce') # Convert columns to strings and add unique ID column profiles_df['Beach'] = profiles_df['Beach'].str.lower().str.replace(' ', '') profiles_df['Block'] = profiles_df['Block'].str.lower() profiles_df['Profile'] = profiles_df['Profile'].astype(str).str.lower() profiles_df['id'] = (profiles_df.Beach + '_' + profiles_df.Block + '_' + profiles_df.Profile) profiles_df['name'] = 'nswbpd' # Rename columns profiles_df.columns = ['beach', 'section', 'profile', 'date', 'distance', 'z', 'x', 'y', 'source', 'id', 'name'] # Reproject coords to Albers trans = Transformer.from_crs('EPSG:32756', 'EPSG:3577', always_xy=True) profiles_df['x'], profiles_df['y'] = trans.transform( profiles_df.x.values, profiles_df.y.values) # Restrict to post 1987 profiles_df = profiles_df[profiles_df['date'] > '1987'] # Compute origin and end points for each profile and merge into data start_end_xy = profiles_from_dist(profiles_df) profiles_df = pd.merge(left=profiles_df, right=start_end_xy) # Drop profiles that have been assigned incorrect profile IDs. # To do this, we use a correlation test to determine whether x # and y coordinates within each individual profiles fall along a # straight line. If a profile has a low correlation (e.g. less # than 99.9), it is likely that multiple profile lines have been # incorrectly labelled with a single profile ID. valid_profiles = lambda x: x[['x', 'y']].corr().abs().iloc[0, 1] > 0.99 drop = (~profiles_df.groupby('id').apply(valid_profiles)).sum() profiles_df = profiles_df.groupby('id').filter(valid_profiles) if drop.sum() > 0: print(f'\nDropping invalid profiles: {drop:<80}') # If profile data remains if len(profiles_df.index) > 0: # Restrict profiles to data that falls ocean-ward of the top of # the foredune (the highest point in the profile) to remove # spurious validation points, e.g. due to a non-shoreline lagoon # at the back of the profile foredune_dist = profiles_df.groupby(['id', 'date']).apply( lambda x: x.distance.loc[x.z.idxmax()]).reset_index(name='foredune_dist') profiles_df = pd.merge(left=profiles_df, right=foredune_dist) profiles_df = profiles_df.loc[(profiles_df.distance >= profiles_df.foredune_dist)] # Find location and distance to water for datum height (e.g. 0 m AHD) intercept_df = profiles_df.groupby(['id', 'date']).apply( waterline_intercept, z_val=datum).dropna() # If any datum intercepts are found if len(intercept_df.index) > 0: # Join into dataframe shoreline_dist = intercept_df.join( profiles_df.groupby(['id', 'date']).agg( lambda x:
pd.Series.mode(x)
pandas.Series.mode
# -*- coding: UTF-8 -*- """ functions to process vcf files """ import sys import subprocess import numpy as np import pandas as pd import os.path as op from pathlib import Path from subprocess import run from schnablelab.apps.base import ActionDispatcher, OptionParser, glob, put2slurm # the location of linkimpute, beagle executable lkipt = op.abspath(op.dirname(__file__)) + '/../apps/LinkImpute.jar' begle = op.abspath(op.dirname(__file__)) + '/../apps/beagle.24Aug19.3e8.jar' tassel = op.abspath(op.dirname(__file__)) + '/../apps/tassel-5-standalone/run_pipeline.pl' def main(): actions = ( ('BatchFilterMissing', 'apply FilterMissing on multiple vcf files'), ('BatchFilterMAF', 'apply FilterMissing on multiple vcf files'), ('BatchFilterHetero', 'apply FilterMissing on multiple vcf files'), ('IndexVCF', 'index vcf using bgzip and tabix'), ('splitVCF', 'split a vcf to several smaller files with equal size'), ('merge_files', 'combine split vcf or hmp files'), ('combineFQ', 'combine split fqs'), ('impute_beagle', 'impute vcf using beagle or linkimpute'), ('FixIndelHmp', 'fix the indels problems in hmp file converted from tassel'), ('FilterVCF', 'remove bad snps using bcftools'), ('only_ALT', 'filter number of ALT'), ('fixGTsep', 'fix the allele separator for beagle imputation'), ('calculateLD', 'calculate r2 using Plink'), ('summarizeLD', 'summarize ld decay in log scale') ) p = ActionDispatcher(actions) p.dispatch(globals()) def BatchFilterMissing(args): """ %prog in_dir apply FilterMissing on multiple vcf files """ p = OptionParser(BatchFilterMissing.__doc__) p.add_option('--pattern', default='*.vcf', help="file pattern of vcf files in the 'dir_in'") p.add_option('--missing_cutoff', default='0.7', help='missing rate cutoff, SNPs higher than this cutoff will be removed') p.add_option('--disable_slurm', default=False, action="store_true", help='do not convert commands to slurm jobs') p.add_slurm_opts(job_prefix=BatchFilterMissing.__name__) opts, args = p.parse_args(args) if len(args) == 0: sys.exit(not p.print_help()) in_dir, = args in_dir_path= Path(in_dir) vcfs = in_dir_path.glob(opts.pattern) cmds = [] for vcf in vcfs: cmd = "python -m schnablelab.SNPcalling.base FilterMissing %s --missing_cutoff %s"%(vcf, opts.missing_cutoff) cmds.append(cmd) cmd_sh = '%s.cmds%s.sh'%(opts.job_prefix, len(cmds)) pd.DataFrame(cmds).to_csv(cmd_sh, index=False, header=None) print('check %s for all the commands!'%cmd_sh) if not opts.disable_slurm: put2slurm_dict = vars(opts) put2slurm(cmds, put2slurm_dict) def BatchFilterMAF(args): """ %prog in_dir apply FilterMAF on multiple vcf files """ p = OptionParser(BatchFilterMAF.__doc__) p.add_option('--pattern', default='*.vcf', help="file pattern of vcf files in the 'dir_in'") p.add_option('--maf_cutoff', default='0.01', help='maf cutoff, SNPs lower than this cutoff will be removed') p.add_option('--disable_slurm', default=False, action="store_true", help='do not convert commands to slurm jobs') p.add_slurm_opts(job_prefix=BatchFilterMAF.__name__) opts, args = p.parse_args(args) if len(args) == 0: sys.exit(not p.print_help()) in_dir, = args in_dir_path= Path(in_dir) vcfs = in_dir_path.glob(opts.pattern) cmds = [] for vcf in vcfs: cmd = "python -m schnablelab.SNPcalling.base FilterMAF %s --maf_cutoff %s"%(vcf, opts.maf_cutoff) cmds.append(cmd) cmd_sh = '%s.cmds%s.sh'%(opts.job_prefix, len(cmds)) pd.DataFrame(cmds).to_csv(cmd_sh, index=False, header=None) print('check %s for all the commands!'%cmd_sh) if not opts.disable_slurm: put2slurm_dict = vars(opts) put2slurm(cmds, put2slurm_dict) def BatchFilterHetero(args): """ %prog in_dir apply FilterMAF on multiple vcf files """ p = OptionParser(BatchFilterHetero.__doc__) p.add_option('--pattern', default='*.vcf', help="file pattern of vcf files in the 'dir_in'") p.add_option('--het_cutoff', default='0.1', help='heterozygous rate cutoff, SNPs higher than this cutoff will be removed') p.add_option('--disable_slurm', default=False, action="store_true", help='do not convert commands to slurm jobs') p.add_slurm_opts(job_prefix=BatchFilterHetero.__name__) opts, args = p.parse_args(args) if len(args) == 0: sys.exit(not p.print_help()) in_dir, = args in_dir_path= Path(in_dir) vcfs = in_dir_path.glob(opts.pattern) cmds = [] for vcf in vcfs: cmd = "python -m schnablelab.SNPcalling.base FilterHetero %s --het_cutoff %s"%(vcf, opts.het_cutoff) cmds.append(cmd) cmd_sh = '%s.cmds%s.sh'%(opts.job_prefix, len(cmds))
pd.DataFrame(cmds)
pandas.DataFrame
import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import numpy as np begge_kjonn_5 = pd.read_csv("begge_kjonn_5.csv") gutter_5 =
pd.read_csv("gutter_5.csv")
pandas.read_csv
import pandas as pd import math import sqlite3 as sql def read_tables_info(con): data = pd.read_sql_query('select * from tables_info',con,index_col='index') return data def is_table_exists(cursor,table_name): cursor.execute('select count(*) from sqlite_master where type="table" and name="'+table_name+'"') values = cursor.fetchall() #print(values[0][0]) return values[0][0] == 1 def table_info(cursor,table_name): cursor.execute('pragma table_info("'+table_name+'")') values = cursor.fetchall() print(values) def read_trade_cal(con): data = pd.read_sql_query('select * from trade_cal',con,index_col='index') return data def read_daily_by_date(con,sdate,edate): sql_str = 'select * from daily where trade_date >= "'+sdate+'" and trade_date <= "'+edate+'"' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_fut_daily_by_tscode(con,tscode): sql_str = 'select * from fut_daily where ts_code = "'+tscode+'"' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_fut_daily_by_symbol(con,symbol): sql_str = 'select * from fut_daily where symbol = "'+symbol+'"' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_fut_holding_by_symbol(con,symbol): sql_str = 'select * from fut_holding where symbol = "'+symbol+'"' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_concept_info(con): sql_str = 'select * from concept_info' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_concept_detail(con): sql_str = 'select * from concept_detail' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_daily_by_tscode(con,tscode): sql_str = 'select * from daily where ts_code="'+tscode+'"' data = pd.read_sql_query(sql_str,con) return data def read_daily_basic_by_date(con,sdate,edate): sql_str = 'select * from daily_basic where trade_date >= "'+sdate+'" and trade_date <= "'+edate+'"' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_margin_detail_by_date(con,sdate,edate): sql_str = 'select * from margin_detail where trade_date >= "'+sdate+'" and trade_date <= "'+edate+'"' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_hk_hold_by_date(con,sdate,edate): sql_str = 'select * from hk_hold where trade_date >= "'+sdate+'" and trade_date <= "'+edate+'"' data = pd.read_sql_query(sql_str,con,index_col='index') return data def read_daily_by_date_and_tscode(con,tscode,sdate,edate): sql_str = 'select * from daily where ts_code="'+tscode+'" and trade_date >= "'+sdate+'" and trade_date <= "'+edate+'"' data = pd.read_sql_query(sql_str,con,index_col='trade_date') return data def read_daily_basic_by_tscode(con,tscode): sql_str = 'select * from daily_basic where ts_code="'+tscode+'"' data = pd.read_sql_query(sql_str,con) return data def find_date_need_update(con,sdate,edate): sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and (cal_date not in (select trade_date from daily) or cal_date not in (select trade_date from daily_basic))' data = pd.read_sql_query(sql_str,con) return data def find_date_need_update_daily(con,sdate,edate): sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from daily)' data = pd.read_sql_query(sql_str,con) return data def find_date_need_update_daily_basic(con,sdate,edate): sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from daily_basic)' data = pd.read_sql_query(sql_str,con) return data def find_date_need_update_adj_factor(con,sdate,edate): sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from adj_factor)' data = pd.read_sql_query(sql_str,con) return data def find_date_need_update_block_trade(con,sdate,edate): try: sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from block_trade)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_stock_suspend(con,sdate,edate): try: sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and cal_date not in (select suspend_date from stock_suspend)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_longhubang_list(con,sdate,edate): try: sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from longhubang_list)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_money_flow(con,sdate,edate): try: sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from money_flow)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_stock_limit_price(con,sdate,edate): try: sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+sdate+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from stock_price_limit)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_stk_holdernumber(con,sdate,edate): try: sql_str='select cal_date from trade_cal where cal_date >="'+'20190101'+'" and cal_date <="'+edate+'" and cal_date not in (select end_date from stk_holder_num)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_hk_hold(con,sdate,edate): try: sql_str='select cal_date from trade_cal where cal_date >="'+'20190101'+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from hk_hold)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_fut_daily(con,sdate,edate): try: sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+'20190101'+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from fut_daily)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_fut_holding(con,sdate,edate): try: sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+'20190101'+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from fut_holding)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_fut_wsr(con,sdate,edate): try: sql_str='select cal_date from trade_cal where is_open = 1 and cal_date >="'+'20190101'+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from fut_wsr)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def find_date_need_update_margin_detail(con,sdate,edate): try: sql_str='select cal_date from trade_cal where cal_date >="'+'20190101'+'" and cal_date <="'+edate+'" and cal_date not in (select trade_date from margin_detail)' data = pd.read_sql_query(sql_str,con) except Exception as e: print("ex:"+str(e)) return None return data def read_money_flow(con,tscode): sql_str='select * from money_flow where ts_code="'+tscode+'"' data =
pd.read_sql_query(sql_str,con)
pandas.read_sql_query
import argparse import os import shutil import time from tqdm import tqdm import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data as data import torchvision.transforms as transforms import torchvision.datasets as datasets import moon_net import pdb import bisect from loader_moon_two import MoonData import math from math import ceil import torch.nn.functional as F from methods_two import train_sup, train_mt, validate parser = argparse.ArgumentParser(description='PyTorch Moon Age Estimation Model Testing') parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50', help='model architecture: '+ ' (default: resnet50)') parser.add_argument('--model', '-m', metavar='MODEL', default='mt', help='model: '+' (default: baseline)', choices=['baseline', 'mt']) parser.add_argument('--ntrial', default=5, type=int, help='number of trial') parser.add_argument('--optim', '-o', metavar='OPTIM', default='adam', help='optimizer: '+' (default: adam)', choices=['adam']) parser.add_argument('--dataset', '-d', metavar='DATASET', default='moon_two', help='dataset: '+' (default: moon_two)') parser.add_argument('--aug', action='store_true', default=False, help='control data aug or not') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=5, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=32, type=int, metavar='N', help='mini-batch size (default: 225)') parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--weight_l1', '--l1', default=1e-3, type=float, metavar='W1', help='l1 regularization (default: 1e-3)') parser.add_argument('--print-freq', '-p', default=50, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--num_classes',default=5, type=int, help='number of classes in the model') parser.add_argument('--attr_filters',default=(78, 1024, 4096)) parser.add_argument('--ckpt', default='ckpt', type=str, metavar='PATH', help='path to save checkpoint (default: ckpt)') parser.add_argument('--gpu',default=0, type=str, help='cuda_visible_devices') parser.add_argument('--is_inception', help='is or not inception struction', default=False, type=bool) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu) def main(trial=1): global args, best_prec1, best_test_prec1 global acc1_tr, losses_tr global losses_cl_tr global acc1_val, losses_val, losses_et_val global acc1_test, losses_test, losses_et_test global weights_cl args = parser.parse_args() print(args) attr_range = (0,78) # Data loading code # test data df_test = pd.read_csv('input/train_imgs_gray_CE1_single_size/test_labels_{}_trial{}.csv'.format(256, trial)) test_img_path = 'input/train_imgs_gray_CE1_single_size/train_{}/'.format(256) test_attr_path = 'input/train_attr_CE1/' if args.aug: pred_img_path = 'result_CV_CE1/pred_error_test_img_by_{}_{}_trial{}_aug/'.format(args.arch, args.model, trial) else: pred_img_path = 'result_CV_CE1/pred_error_test_img_by_{}_{}_trial{}/'.format(args.arch, args.model, trial) if not os.path.exists(pred_img_path): os.makedirs(pred_img_path) img_path_test = [] attr_path_test = [] y_test = [] for f, tags in tqdm(df_test.values, miniters=100): img_path = test_img_path + '{}.jpg'.format(f.split('.')[0]) img_path_test.append(img_path) attr_path = test_attr_path + '{}.csv'.format(f) attr_path_test.append(attr_path) y_test.append(tags-1) img_path_test, attr_path_test, y_test = shuffle(img_path_test, attr_path_test, y_test, random_state = 24) print('Testing on {} samples\n'.format(len(img_path_test))) testset = MoonData(img_path_test, attr_path_test, labels=y_test, attr_range=attr_range) test_loader = data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) # create model if args.arch == 'resnet50': print("Model: %s" %args.arch) model = moon_net.resnet_50_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'resnet101': print("Model: %s" %args.arch) model = moon_net.resnet_101_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'resnet152': print("Model: %s" %args.arch) model = moon_net.resnet_152_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'densenet201': print("Model: %s" %args.arch) model = moon_net.densenet_201_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'senet': print("Model: %s" %args.arch) model = moon_net.senet_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'se_resnet152': print("Model: %s" %args.arch) model = moon_net.se_resnet152_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'se_resnet101': print("Model: %s" %args.arch) model = moon_net.se_resnet101_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'se_resnet50': print("Model: %s" %args.arch) model = moon_net.se_resnet50_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'se_resnext101': print("Model: %s" %args.arch) model = moon_net.se_resnext101_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'polynet': print("Model: %s" %args.arch) model = moon_net.polynet_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'inceptionv3': print("Model: %s" %args.arch) args.is_inception = False model = moon_net.inceptionv3_two(num_classes=args.num_classes, attr_filters=args.attr_filters) elif args.arch == 'dpn68b': print("Model: %s" %args.arch) model = moon_net.dpn68b_two(num_classes=args.num_classes, attr_filters=args.attr_filters) else: assert(False) if args.model == 'mt': import copy model_teacher = copy.deepcopy(model) model_teacher = torch.nn.DataParallel(model_teacher).cuda() model = torch.nn.DataParallel(model).cuda() #print(model) if args.aug: ckpt_dir = args.ckpt+'_'+args.dataset+'_'+args.arch+'_'+args.model+'_aug'+'_'+args.optim else: ckpt_dir = args.ckpt+'_'+args.dataset+'_'+args.arch+'_'+args.model+'_'+args.optim ckpt_dir = ckpt_dir + '_e%d'%(args.epochs) cudnn.benchmark = True # deifine loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss(size_average=False).cuda() criterion_mse = nn.MSELoss(size_average=False).cuda() criterion_kl = nn.KLDivLoss(size_average=False).cuda() criterion_l1 = nn.L1Loss(size_average=False).cuda() criterions = (criterion, criterion_mse, criterion_kl, criterion_l1) '''pred test set one by one and save error pred img''' if args.aug: checkpoint = torch.load(os.path.join(ckpt_dir, args.arch.lower() + '_aug_trial{}'.format(trial) + '_best.pth.tar')) prob_error_file = 'prob_error_test_img_{}_aug_trial{}.csv'.format(args.arch.lower(), trial) prob_test_file = 'prob_test_img_{}_aug_trial{}.csv'.format(args.arch.lower(), trial) else: checkpoint = torch.load(os.path.join(ckpt_dir, args.arch.lower() + '_trial{}'.format(trial) + '_best.pth.tar')) prob_error_file = 'prob_error_test_img_{}_trial{}.csv'.format(args.arch.lower(), trial) prob_test_file = 'prob_test_img_{}_trial{}.csv'.format(args.arch.lower(), trial) model.load_state_dict(checkpoint['state_dict']) prec1_t_test, loss_t_test, pred_test, prob_test = validate(test_loader, model, criterions, args, 'test') prob_test = np.array(prob_test) prob_error = [] prob_img_name = [] prob_img_name_test = [] for ii in range(len(y_test)): target = y_test[ii] maxk = pred_test[ii] prob = prob_test[ii] img_path = img_path_test[ii] img_path_temp = img_path.split('.')[0] img_path_temp = img_path_temp.split('/')[-1] prob_img_name_test.append(img_path_temp) if target != maxk: print(maxk, target) print(img_path) img_path_error = pred_img_path + img_path_temp + '_' + str(maxk+1) + '.jpg' shutil.copyfile(img_path, img_path_error) prob_error.append(prob) prob_img_name.append(img_path_temp) prob_error = np.array(prob_error) prob_dict = {'p'+str(ii+1):prob_error.T[ii] for ii in range(args.num_classes)} img_name_dict = {'img_name':prob_img_name} prob_dict.update(img_name_dict) prob_df =
pd.DataFrame(prob_dict)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Unofficial python API to datashake reviews API (https://www.datashake.com/review-scraper-api) This module makes it easier to schedule jobs and fetch the results Official web API documentation: https://api.datashake.com/#reviews You need to have datashake API key to use this module Authors: <NAME> (<EMAIL>) """ import time import math import re import datetime import json import requests import pandas as pd def _prepare_date(from_date): """ Private function to prepare from_date by converting it to YYYY-MM-DD format. """ # check if from_date was provided and if it was provided in the right # format from_date_str = None if from_date is not None: if not isinstance(from_date, str): try: from_date_str = from_date.strftime('%Y-%m-%d') except AttributeError: raise ValueError( f"""from_date must be a string in the format YYYY-MM-DD or datetime. String provided: {from_date}" """ ) else: # regex template for YYYY-MM-DD pattern = re.compile("\\d{4}-\\d{2}-\\d{2}") match = pattern.match(from_date) if match is None: raise ValueError( f"""from_date must be a string in the format YYYY-MM-DD \ or datetime. String provided: {from_date}" """ ) from_date_str = from_date[0:10] return from_date_str class APIConnectionError(Exception): """Exception to handle errors while connecting to API""" class APIResponseError(Exception): """Exception to handle errors received from API""" class DatashakeReviewAPI: """ Class to manage Datashake Review API (https://api.datashake.com/#reviews) Pratameters ----------- api_key : str, 40-symbol api key for Datashake Reviews. Must be obtained on their website max_requests_per_second : number of requests allowed to be send to the API service per second. Introduced to avoid 429 status code (Too Many Requests) Link to the Datashake doc: https://api.datashake.com/#rate-limiting language_code : str, default='en'. Language code of the reviews. allow_response : boolean, default=True min_days_since_last_crawl : int, default=3 - the number of days that need to pass since the last crawl to launch another one """ def __init__(self, api_key, max_requests_per_second=10, language_code='en', allow_response=True, min_days_since_last_crawl=3): self.api_key = str(api_key) if len(self.api_key) != 40: raise ValueError(f"""api_key must be 40 symbols long, \ the key provided was {len(self.api_key)} symbols long"\ """) self.max_requests_per_second = max_requests_per_second self.language_code = str(language_code) self.allow_response = str(allow_response) self.min_days_since_last_crawl = min_days_since_last_crawl # setting up hidden attribues self.__time_counter = 0 # counts in seconds self.__requests_done = 0 self.reviews_per_page = 500 def __check_load_and_wait(self): """ Hidden method to check workload of requests to API and wait to ensure the number of requests sent to API stays within the threshold Attribute max_requests_per_second regulates the behaviour of this method. More info here: https://api.datashake.com/#rate-limiting """ if self.__time_counter == 0: self.__time_counter = time.perf_counter() elif (time.perf_counter() - self.__time_counter) > 1.0: self.__time_counter = time.perf_counter() self.__requests_done = 1 elif self.__requests_done < self.max_requests_per_second: self.__requests_done += 1 else: wait_secs = 1.0 - (time.perf_counter() - self.__time_counter) + 0.1 print(f'API overload risk, waiting for {wait_secs} seconds') time.sleep(wait_secs) self.__requests_done = 1 self.__time_counter = time.perf_counter() def get_job_status(self, job_id): """ Returns the status of the scheduled review job Parameters ---------- job_id : str, identificator of the scheduled job Returns ------- Dictionary with the job status results. Example: {'success': True, 'status': 200, 'job_id': 278171040, 'source_url': 'https://uk.trustpilot.com/review/uk.iqos.com', 'source_name': 'trustpilot', 'place_id': None, 'external_identifier': None, 'meta_data': None, 'unique_id': None, 'review_count': 3400, 'average_rating': 4.5, 'last_crawl': '2021-09-28', 'crawl_status': 'complete', 'percentage_complete': 100, 'result_count': 3401, 'credits_used': 3409, 'from_date': '2017-01-01', 'blocks': None} """ url = "https://app.datashake.com/api/v2/profiles/info" querystring = {"job_id": str(job_id)} headers = { 'spiderman-token': self.api_key, } self.__check_load_and_wait() response = requests.request("GET", url, headers=headers, params=querystring) if response.ok is False: error_str = 'API Connection Error. ' error_str += f"""Error code: {response.status_code} - \ {response.reason}. URL: {url}""" raise APIConnectionError(error_str) if response.json()['success'] is False: error_str = 'API Response Error. ' error_str += f"{response.text}. Job ID: {job_id}. URL: {url}" raise APIResponseError(error_str) return response.json() def get_job_reviews(self, job_id, from_date=None): """ Return job status and reviews scraped within the sepcified job if job is finished. If gob is not finished, the reviews results will be empty Parameters ---------- job_id : str, identificator of the job_id that was scheduled to scrape the reviews. from_date : str or datetime, optional. If not provided, all reviews will be queried. If from date was provided while scheduling the job you can't get any reviews before that date with this method. Returns ------- tuple containing: dictionary with the job_status from the API pandas Dataframe with reviews """ from_date_str = _prepare_date(from_date) df_reviews = pd.DataFrame() # Chekc the job status job_status = self.get_job_status(job_id) if not (job_status['success'] and job_status['crawl_status'] == 'complete' and job_status['review_count'] > 0): # early exit return (job_status, df_reviews) # job complete, let's fetch all the results review_count = job_status['review_count'] pages_count = math.trunc((review_count - 1) / self.reviews_per_page) + 1 for page_num in range(1, pages_count + 2): url = "https://app.datashake.com/api/v2/profiles/reviews" querystring = {"job_id": str(job_id), "language_code": self.language_code, "page": str(page_num), "per_page": self.reviews_per_page, "allow_response": str(self.allow_response) } if from_date_str is not None: querystring['from_date'] = from_date_str headers = { 'spiderman-token': self.api_key, } self.__check_load_and_wait() response = requests.request("GET", url, headers=headers, params=querystring) if response.ok is False: error_str = 'API Connection Error. ' error_str += f"Error code: {response.status_code} - \ {response.reason}. URL: {url}" raise APIConnectionError(error_str) df = pd.DataFrame(json.loads(response.text)) df = df[['job_id', 'source_name', 'reviews']] if len(df.index) == 0: break df = df.join(df['reviews'].apply(pd.Series), how='inner') df.drop('reviews', axis=1, inplace=True) df_reviews = df_reviews.append(df) if df_reviews.index.size > 0: df_reviews.set_index('unique_id', inplace=True) return (job_status, df_reviews) def schedule_job(self, review_url, from_date=None, previous_job_id=None): """ Schedules a new job to get reviews from the url provided. Parameters ---------- review_url : str, url to the page with reveiws from_date : str in format YYYY-MM-DD or datetime, the start dat of the reviews to be collected. Defaults to None. previous_job_id : str, id of the previous job that for this url. Helps to scrape only delta ans save credits. Returns ------- Dictionary with the results of the call. Example: {"success":true,"job_id":278171040,"status":200, "message":"Added this profile to the queue..." } """ from_date_str = _prepare_date(from_date) # prepare the parameteres for the POST request url = "https://app.datashake.com/api/v2/profiles/add" querystring = {"url": review_url} if from_date_str is not None: querystring['from_date'] = from_date_str if previous_job_id is not None: querystring['diff'] = str(previous_job_id) headers = { 'spiderman-token': self.api_key, } # POST request self.__check_load_and_wait() response = requests.request("POST", url, headers=headers, params=querystring) if response.ok is False: error_str = 'API Connection Error. ' error_str += f"Error code: {response.status_code} - \ {response.reason}. URL: {url}" raise APIConnectionError(error_str) print(response.json()) return response.json() def schedule_job_list(self, df_jobs_input): """ Schedule or refresh a list of jobs based on the csv file. Save the results to the same file. Parameters ---------- df_jobs_input :pandas.DataFrame with the list of jobs to schedule/reschedule. Returns ------- Dataframe with the dataframe after update """ df_jobs = df_jobs_input.copy() df_jobs.dropna(axis=0, how='any', subset=['url'], inplace=True) for i in df_jobs.index: # skip if not enough days passed since last crawl if
pd.isnull(df_jobs.loc[i, 'status'])
pandas.isnull
""" This module takes care of getting the data, wherever it may be.""" from pandas_datareader import data import datetime as dt import pandas as pd import numpy as np from time import time import logging log = logging.getLogger(__name__) logging.basicConfig(level=logging.WARN) DATA_SOURCE = 'google' SPY_CREATION_DATE = dt.datetime(1993, 1, 22) START_DATE = SPY_CREATION_DATE END_DATE = dt.datetime(2017, 1, 1) SP500_TICKER = 'SPY' DATE_COL = 'date' FEATURE_COL = 'feature' SP500_LIST_PATH = '../data/sp500_list.csv' DATES_BATCH_DAYS = 3650 PATH_TO_PICKLE = '../data/data_df.pkl' def download_capstone_data(): """ Gets the data for the capstone project and saves it in pickle format.""" try: data_df =
pd.read_pickle(PATH_TO_PICKLE)
pandas.read_pickle
# -*- coding: utf-8 -*- """ modules for universal fetcher that gives historical daily data and realtime data for almost everything in the market """ import requests import time import datetime as dt import pandas as pd from bs4 import BeautifulSoup from functools import wraps from xalpha.info import fundinfo, mfundinfo from xalpha.cons import connection_errors def rget(*args, **kws): tries = 5 for count in range(tries): try: r = requests.get(*args, **kws) return r except connection_errors as e: if count == tries - 1: print(*args, sep="\n") raise e time.sleep(1) def rpost(*args, **kws): tries = 5 for count in range(tries): try: r = requests.post(*args, **kws) return r except connection_errors as e: if count == tries - 1: print(*args, sep="\n") raise e time.sleep(1) def today_obj(): now = dt.datetime.today() return now.replace(hour=0, minute=0, second=0, microsecond=0) def tomorrow_ts(): dto = dt.datetime.now() + dt.timedelta(1) return dto.timestamp() def get_token(): r = rget("https://xueqiu.com", headers={"user-agent": "Mozilla"}) return r.cookies["xq_a_token"] def get_history( code, prefix="SH", count=365, token="<KEY>" ): url = "https://stock.xueqiu.com/v5/stock/chart/kline.json?symbol={prefix}{code}&begin={tomorrow}&period=day&type=before&count=-{count}" data = rget( url.format( code=code, prefix=prefix, tomorrow=int(tomorrow_ts() * 1000), count=count ), cookies={"xq_a_token": token}, headers={"user-agent": "Mozilla/5.0"}, ) return data.json() def ts2pdts(ts): tz_bj = dt.timezone(dt.timedelta(hours=8)) dto = dt.datetime.fromtimestamp(ts / 1000, tz=tz_bj).replace(tzinfo=None) return dto.replace( hour=0, minute=0, second=0, microsecond=0 ) # 雪球美股数据时间戳是美国0点,按北京时区换回时间后,把时分秒扔掉就重合了 def get_xueqiu(code, count): r = get_history(code=code, prefix="", count=count, token=get_token()) df = pd.DataFrame(data=r["data"]["item"], columns=r["data"]["column"]) df["date"] = (df["timestamp"]).apply(ts2pdts) # reset hours to zero return df def get_cninvesting(curr_id, st_date, end_date): r = rpost( "https://cn.investing.com/instruments/HistoricalDataAjax", data={ "curr_id": curr_id, # "smlID": smlID, # ? but seems to be fixed with curr_id, it turns out it doesn't matter "st_date": st_date, "end_date": end_date, "interval_sec": "Daily", "sort_col": "date", "sort_ord": "DESC", "action": "historical_data", }, headers={ "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4)\ AppleWebKit/537.36 (KHTML, like Gecko)", "Host": "cn.investing.com", "X-Requested-With": "XMLHttpRequest", }, ) s = BeautifulSoup(r.text, "lxml") dfdict = {} cols = [] for col in s.find_all("th"): dfdict[str(col.contents[0])] = [] cols.append(str(col.contents[0])) num_cols = len(cols) for i, td in enumerate(s.find_all("td")[:-5]): if cols[i % num_cols] == "日期": dfdict[cols[i % num_cols]].append( dt.datetime.strptime(str(td.string), "%Y年%m月%d日") ) else: dfdict[cols[i % num_cols]].append(str(td.string)) return pd.DataFrame(dfdict) def prettify(df): _map = { "日期": "date", "收盘": "close", "开盘": "open", "高": "high", "低": "low", "涨跌幅": "percent", } df.rename(_map, axis=1, inplace=True) if len(df) > 1 and df.iloc[1]["date"] < df.iloc[0]["date"]: df = df[::-1] df = df[["date", "open", "close", "high", "low", "percent"]] for k in ["open", "close", "high", "low"]: df[k] = df[k].apply(_float) return df def dstr2dobj(dstr): if len(dstr.split("/")) > 1: d_obj = dt.datetime.strptime(dstr, "%Y/%m/%d") elif len(dstr.split(".")) > 1: d_obj = dt.datetime.strptime(dstr, "%Y.%m.%d") elif len(dstr.split("-")) > 1: d_obj = dt.datetime.strptime(dstr, "%Y-%m-%d") else: d_obj = dt.datetime.strptime(dstr, "%Y%m%d") return d_obj def get_investing_id(suburl): url = "https://cn.investing.com" if not suburl.startswith("/"): url += "/" url += suburl r = rget( url, headers={ "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/537.36" }, ) s = BeautifulSoup(r.text, "lxml") pid = s.find("span", id="last_last")["class"][-1].split("-")[1] return pid def get_rmb(start=None, end=None, prev=360, currency="USD/CNY"): """ 获取人民币汇率中间价 :param start: :param end: :param prev: :param currency: :return: pd.DataFrame """ url = "http://www.chinamoney.com.cn/ags/ms/cm-u-bk-ccpr/CcprHisNew?startDate={start_str}&endDate={end_str}&currency={currency}&pageNum=1&pageSize=300" if not end: end_obj = today_obj() else: end_obj = dstr2dobj(end) if not start: start_obj = end_obj - dt.timedelta(prev) else: start_obj = dstr2dobj(start) start_str = start_obj.strftime("%Y-%m-%d") end_str = end_obj.strftime("%Y-%m-%d") count = (end_obj - start_obj).days + 1 rl = [] if count <= 360: r = rpost(url.format(start_str=start_str, end_str=end_str, currency=currency)) rl.extend(r.json()["records"]) else: # data more than 1 year cannot be fetched once due to API limitation sepo_obj = end_obj sepn_obj = sepo_obj - dt.timedelta(360) # sep0_obj = end_obj - dt.timedelta(361) while sepn_obj > start_obj: # [sepn sepo] r = rpost( url.format( start_str=sepn_obj.strftime("%Y-%m-%d"), end_str=sepo_obj.strftime("%Y-%m-%d"), currency=currency, ) ) rl.extend(r.json()["records"]) sepo_obj = sepn_obj - dt.timedelta(1) sepn_obj = sepo_obj - dt.timedelta(360) r = rpost( url.format( start_str=start_obj.strftime("%Y-%m-%d"), end_str=sepo_obj.strftime("%Y-%m-%d"), currency=currency, ) ) rl.extend(r.json()["records"]) data = {"date": [], "close": []} for d in rl: data["date"].append(
pd.Timestamp(d["date"])
pandas.Timestamp
import pandas as pd import numpy as np import random import plotly.express as px import pickle class ShapeEstimator: def __init__(self, connections_file_name, duplicate_data=False, point_details_file_name=None, color_definitions_file=None, optimized_points_file=None): self.data = self.load_data(connections_file_name) self.duplicate_data = duplicate_data if self.duplicate_data: self.data = self.data_duplicator() self.point_details_data = None self.color_dictionary = {} self.color_definition_column = None if point_details_file_name is not None: self.point_details_data = self.load_data(point_details_file_name) if color_definitions_file is not None: self.color_definitions_data = self.load_data(color_definitions_file) self.color_definition_column = self.color_definitions_data.columns[0] self.color_dictionary = self.create_color_dictionary() if optimized_points_file is not None: self.load_data_from_optimization_file(optimized_points_file) self.unique_points = self.get_all_unique_points_codes() self.connections_count = self.points_connections_counter() self.best_point_hub_name = self.connections_count.head(1)['point_name'].item() if optimized_points_file is None: self.points_dictionary = self.create_points_dictionary() self.optimize() self.values, self.labels = self.split_points_dictionary() self.normalize_values() self.data_frame = self.create_dataframe_from_points_dictionary() self.calculate_average_points_distance_from_the_center() def load_data_from_optimization_file(self, optimized_points_file): pickle_in = open(optimized_points_file, 'rb') self.points_dictionary, cumulative_errors, max_errors, self.duplicate_data = pickle.load(pickle_in) if self.duplicate_data: self.data = self.data_duplicator() self.show_optimization_stats(cumulative_errors, max_errors) def data_duplicator(self): return self.data.append(self.data, ignore_index=True) @staticmethod def load_data(file_name): return pd.read_csv(file_name, sep=',') def get_all_unique_points_codes(self): return pd.unique(np.array(self.data[['departure_point', 'arrival_point']]).flatten()) def create_points_dictionary(self): points_dictionary = {} for point_name in self.unique_points: points_dictionary[point_name] = [(random.random() - 0.5) * 2, (random.random() - 0.5) * 2, (random.random() - 0.5) * 2] return points_dictionary def create_color_dictionary(self): def get_values_from_columns(index): return [self.color_definitions_data.iloc[i, index] for i in range(len(self.color_definitions_data.iloc[:, index]))] keys = get_values_from_columns(0) values = get_values_from_columns(1) return dict(zip(keys, values)) def calculate_errors(self): cumulative_error = 0 max_error = 0 for index, row in self.data.iterrows(): error = abs(self.calculate_euclidean_distance_between_two_points(self.points_dictionary[row['departure_point']], self.points_dictionary[row['arrival_point']]) - row['measurement_value']) cumulative_error += error if max_error < error: max_error = error return cumulative_error, max_error def points_connections_counter(self): connections_dictionary = dict(zip(self.unique_points, [0] * len(self.unique_points))) for index, row in self.data.iterrows(): points = [row['departure_point'], row['arrival_point']] for point in points: connections_dictionary[point] += 1 connections_count =
pd.DataFrame(columns=['point_name', 'count'])
pandas.DataFrame
import pandas as pd import utils as sru import defs import projections as fp from datetime import datetime import os def run_rr_simulation(sewer_df, annual_replacements, startdate, results_dir = None, return_snapshot=False): sewers = sewer_df[:] #prep data: assume that sewers with 9999 or UNK install year installed at 1900 #sewers['Year'] = sewers.Year.fillna(1900) sewers.loc[pd.isnull(sewers.Year), 'Year'] = 1900 sewers.loc[sewers.Year > 9000, 'Year'] = 1900 #calculate the remaining useful years for each assets sewers['RemainingLife'] = sewers.apply(lambda x: remaining_life_span(x, startdate), axis=1) #sewers['Year'] = sewers.Year.replace( [9952., 9973., 9974., 9983., 9999.], 1900) #create Dataframe to hold result for each year res_columns = ['Year', 'AvgAge', 'AvgRemainingLife', 'MinRemainingLife', '75thPercRemLife', '25thPercRemLife', 'AvgAgeOfReplaced', 'CumulativeMiles'] results_df = pd.DataFrame(columns=res_columns, data=None) if results_dir: xlpath = os.path.join(results_dir, '{}_{}.xlsx'.format(annual_replacements[0], startdate)) excelwriter = pd.ExcelWriter(xlpath) #save the initial data set to the first sheet sewers.sort_values('RemainingLife').to_excel(excelwriter, 'existing_assets') #snapshots = {} date = startdate cumulative_miles = 0.0 for miles in annual_replacements: if results_dir: #save a snapshot of the data if a results_dir is provided # fname = os.path.join(results_dir, '{}.csv'.format(date)) # sewers.to_csv(fname) sheetname = '{}'.format(date) sewers.sort_values('RemainingLife').to_excel(excelwriter, sheetname) #measure this years stats before making improvements avg_age = sru.average_sewer_age(sewers, datetime(date,1,1)) min_rem_life = sewers.RemainingLife.min() percentile75 = sewers.RemainingLife.quantile(0.75) percentile25 = sewers.RemainingLife.quantile(0.25) #length weighted avg remaining useful life avg_rem_life = (sewers.RemainingLife * sewers.Length).sum() / sewers.Length.sum() #find candidates, and replace repl = find_replacement_candidates(sewers, miles, date) sewers = apply_replacements(sewers, repl, date) #snapshots.update({date:repl}) #hold on to snapshots of each year avg_age_replaced = sru.average_sewer_age(repl, datetime(date,1,1)) oldestreplaced = repl.Year.min() #compute and record this year's results res = [date, avg_age, avg_rem_life, min_rem_life, percentile75, percentile25, avg_age_replaced, cumulative_miles] results_df = results_df.append(pd.DataFrame(columns = res_columns, data = [res])) #increment the year that is currently being modeled and age each sewer segment date += 1 sewers['RemainingLife'] = sewers['RemainingLife'] - 1 cumulative_miles += repl.Length.sum() / 5280.0 #compute the rate of aging (of the weighted average age of whole system) results_df['AgeRate'] = results_df['AvgAge'].diff() if results_dir: excelwriter.save() if return_snapshot: return sewers else: return results_df.set_index('Year') def remaining_life_span(asset, replacement_year): lifespan = defs.lifespans.get(asset.Material, 150) #assume 150 if not found age = replacement_year - asset.Year remaininglife = lifespan - age if not
pd.isnull(asset.LinerDate)
pandas.isnull
import pandas as pd import numpy as np import matplotlib.pyplot as plt test = pd.read_csv("test.csv") train = pd.read_csv("train.csv") from sklearn.ensemble import RandomForestClassifier modelo = RandomForestClassifier(n_estimators=100, n_jobs=-1, random_state=0) variaveis = ['Sex_binario','Age'] def change_str(value): if value == 'female': return 1 else: return 0 train['Sex_binario'] = train['Sex'].map(change_str) # ntrain = train.loc[:,variaveis].dropna() X = train[variaveis].fillna(-1) y = train['Survived'] modelo.fit(X,y) # conjunto de test test['Sex_binario'] = test['Sex'].map(change_str) X_prev = test[variaveis].fillna(-1) p = modelo.predict(X_prev) surv =
pd.Series(p, index=test['PassengerId'], name='Survived')
pandas.Series
""" @author: Tim_Janke """ import numpy as np import pandas as pd #from helpers import emp_cdf from models.igc import ImplicitGenerativeCopula, GMMNCopula, GenerativeMomentMatchingNetwork, GenerativeAdversarialNetwork from models.mv_copulas import GaussianCopula import statsmodels.api as sm from sklearn.neighbors import KernelDensity from sklearn.model_selection import GridSearchCV from models.utils import cdf_interpolator import os import subprocess import pyvinecopulib as pv import copy from statsmodels.distributions.empirical_distribution import ECDF as fit_ecdf def run_experiment(data_train, data_test, margins_model="ECDF", # margins model for copula based methods evaluate_cdf=False, # evaluate copula by ISE and IAE evaluate_ed_cop=False, # evaluate copula distribution via energy distance evaluate_ed_data=False, # evaluate data distribution via energy distance evaluate_likelihood = False, # evaluate data distribution via KDE LogLik n_eval = int(1e5), # number of points to generate for evaluation IndepCop=False, GaussCop=False, VineCop=False, GMMNCop=False, GMMNFull=False, IGC=True, GAN=False, # models to use (GMMNFull and GAN operate on data distribution) options_nn={"n_neurons": 100, "n_layers": 2, "n_samples_train": 200}, # options for NN architecture (for GMMN and IGC) options_nn_training={"epochs": 500, "batch_size": 100}, # options for NN architecture (for GMMN and IGC) options_gan={"n_neurons": 100, "n_layers": 2}, # options for GAN architecture options_gan_training={"epochs": 500, "batch_size": 100}, # options for GAN architecture bw_kde = None, # bandwidth for KDE fit_margins_on_train_and_test=False # if True margins will be fit an compete data set, otherwise only traing data ): """ Evaluate models for given test and training data set.""" print("Training models ...") if fit_margins_on_train_and_test: data_test_margins= data_test else: data_test_margins = None models_joint, models_margins = fit_models(data_train=data_train, data_test=data_test_margins, # only used for fitting marginal models if not None margins_model=margins_model, IndepCop=IndepCop, GaussCop=GaussCop, VineCop=VineCop, GMMNCop=GMMNCop, GMMNFull=GMMNFull, GAN=GAN, IGC=IGC, options_nn=options_nn, options_nn_training=options_nn_training, options_gan=options_gan, options_gan_training=options_gan_training) print("Done.\n") print("Sampling data for evalutation...") data_models_v, data_models_y = make_data_eval(models_joint, models_margins, n=n_eval) print("Done.\n") print("Computing evaluation metrics...") all_scores = pd.DataFrame(index=models_joint.keys()) if evaluate_cdf: print("ISE and IAE...") pobs_test = [] for i in range(data_test.shape[1]): pobs_test.append(models_margins[i].cdf(data_test[:,i])) pobs_test = np.column_stack(pobs_test) cdf_vals_test = emp_cdf(pobs_test,pobs_test) cdf_vals_models = {} for key_i, v_i in data_models_v.items(): cdf_vals_models[key_i] = emp_cdf(v=pobs_test, u=v_i) ise, iae = eval_copula_cdf(cdf_vals_models, cdf_vals_test) all_scores["ise"] = pd.Series(ise) all_scores["iae"] = pd.Series(iae) if evaluate_ed_cop: print("ED unit space...") ed = eval_energy_distance(data_models_v, data_test, standardize=False) all_scores["ED_unitspace"] = pd.Series(ed) if evaluate_ed_data: print("ED data space...") ed = eval_energy_distance(data_models_y, data_test, standardize=True) all_scores["ED_dataspace"] = pd.Series(ed) if evaluate_likelihood: print("LogLikelihood data space...") ll = eval_likelihood(data_models_y, data_test, bw=bw_kde) all_scores["NLL_dataspace"] = pd.Series(ll) print("All done.\n") return all_scores, data_models_v, data_models_y, models_joint, models_margins class IdentityMargins(object): def __init__(self): pass def fit(self): pass def cdf(self, x): return x def icdf(self, tau): return self.ppf(tau) def ppf(self, tau): return tau def fit_models(data_train, data_test=None, margins_model="ECDF", IndepCop=False, GaussCop=False, VineCop=True, GMMNCop=True, GMMNFull=False, IGC=True, GAN=False, options_nn={"n_neurons": 100, "n_layers": 2, "n_samples_train": 200}, options_nn_training={"epochs": 500, "batch_size": 100}, options_gan={"n_neurons": 50, "n_layers": 1}, options_gan_training={"epochs": 100, "batch_size": 100}, ): """ Trains models for given data set""" models_margins=[] pobs_train=[] for i in range(data_train.shape[1]): if data_test is not None: data_train_i = np.concatenate((data_train[:,i], data_test[:,i]), axis=0) else: data_train_i = data_train[:,i] if margins_model == "identity": # if margins are assumed to be uniform already mdl_i = IdentityMargins() elif margins_model == "ECDF": #linear interpolation of empirical marginal CDFs mdl_i = cdf_interpolator(data_train_i, kind="linear", x_min=np.min(data_train_i)-np.diff(np.sort(data_train_i)[0:2])[0], x_max=np.max(data_train_i)+np.diff(np.sort(data_train_i)[-2:])[0]) # elif margins_model == "KDE": # mdl_i = sm.nonparametric.KDEUnivariate(data_train_i) # mdl_i.fit() else: raise ValueError("Unknown model type for margins.") models_margins.append(mdl_i) pobs_train.append(mdl_i.cdf(data_train[:,i])) pobs_train = np.column_stack(pobs_train) models_joint = {} # Independence Copula if IndepCop: models_joint["indep"] = None # Gaussian Copula if GaussCop: cop_gauss = GaussianCopula() cop_gauss.fit(pobs_train) models_joint["gauss"] = cop_gauss # Vine Copula (TLL2) if VineCop: controls_tll = pv.FitControlsVinecop(family_set=[pv.BicopFamily.tll]) cop_tll = pv.Vinecop(data=pobs_train, controls=controls_tll) models_joint["vine_tll2"] = cop_tll pobs_train_nn = pobs_train[0:int(np.floor(len(pobs_train)/options_nn_training["batch_size"])*options_nn_training["batch_size"])] #make training data dividebale by 100 # IGC model if IGC: cop_igc = ImplicitGenerativeCopula(dim_latent=pobs_train.shape[1]*3, dim_out=pobs_train.shape[1], **options_nn) cop_igc.fit(pobs_train_nn, **options_nn_training) models_joint["igc"] = cop_igc # GMMN copula if GMMNCop: cop_gmmn = GMMNCopula(dim_latent=pobs_train.shape[1]*3, dim_out=pobs_train.shape[1], **options_nn) cop_gmmn.fit(pobs_train_nn, **options_nn_training) models_joint["gmmn_cop"] = cop_gmmn # GMMN with ED loss (models both margins and joint at once) if GMMNFull: gmmn = GenerativeMomentMatchingNetwork(dim_latent=pobs_train.shape[1]*3, dim_out=pobs_train.shape[1], **options_nn) gmmn.fit(data_train, **options_nn_training) models_joint["gmmn_full"] = gmmn # GAN (models both margins and joint at once) if GAN: gan = GenerativeAdversarialNetwork(dim_latent=pobs_train.shape[1]*3, dim_out=pobs_train.shape[1], **options_gan) gan.fit(data_train, **options_gan_training) models_joint["gan"] = gan return models_joint, models_margins def make_data_eval(models_joint, models_margins, n=int(1e5)): data_v = {} data_y = {} # generate samples in unit space for key_i, mdl_i in models_joint.items(): if key_i == "gmmn_cop": data_v[key_i] = mdl_i.simulate(n) elif key_i == "gmmn_full": data_v[key_i] = None elif key_i == "gan": data_v[key_i] = None elif key_i == "indep": data_v[key_i] = np.random.uniform(0.0,1.0,size=(n, len(models_margins))) else: data_v[key_i] = mdl_i.simulate(n) # obtain samples in data space by transforming samples componentwise via the inverse cdf for key_i, v_i in data_v.items(): if key_i == "gmmn_full": data_y[key_i] = models_joint["gmmn_full"].simulate(n) data_v[key_i] = models_joint["gmmn_full"]._to_pobs(data_y[key_i]) elif key_i == "gan": data_y[key_i] = models_joint["gan"].simulate(n) data_v[key_i] = models_joint["gan"]._to_pobs(data_y[key_i]) else: y=[] for j, mdl_j in enumerate(models_margins): y.append(mdl_j.icdf(v_i[:,j])) data_y[key_i] = np.column_stack(y) return data_v, data_y def eval_copula_cdf(cdf_vals_models, cdf_vals_test): # compute ISE and IAE from cdf values ise = {} iae = {} for key_i, cdf_i in cdf_vals_models.items(): eps = cdf_vals_test-cdf_i iae[key_i] = np.sum(np.abs(eps)) ise[key_i] = np.sum(np.square(eps)) return ise, iae def eval_likelihood(data_models, data_test, bw, n_eval=10000): # evaluate likelihood of test data under KDE based likelihood from trained models nll={} if bw is None: grid_cv = GridSearchCV(KernelDensity(), param_grid={"bandwidth": np.logspace(-1.0,1.0,10)}) # use CV to find best bandwidth on the test data grid_cv.fit(data_test) bw_opt = grid_cv.best_params_["bandwidth"] print(bw_opt) elif isinstance(bw, (list, tuple, np.ndarray)): grid_cv = GridSearchCV(KernelDensity(), param_grid={"bandwidth": bw}) # use CV to find best bandwidth on the test data grid_cv.fit(data_test) bw_opt = grid_cv.best_params_["bandwidth"] print(bw_opt) elif isinstance(bw, float): bw_opt = bw for key_i, y_i in data_models.items(): kde_model = KernelDensity(bandwidth=bw_opt).fit(y_i) nll[key_i] = -np.mean(kde_model.score_samples(data_test[0:n_eval])) # compute likelihood of test data under KDE return nll def eval_energy_distance(data_models, data_test, standardize=False, n_eval=int(5e3)): if standardize: means = np.expand_dims(np.mean(data_test, axis=0),0) stds = np.expand_dims(np.std(data_test, axis=0),0) else: means = np.zeros((1, data_test.shape[1])) stds = np.ones((1, data_test.shape[1])) ed_df={} for key_i, y_i in data_models.items(): ed_df[key_i] = energy_distance(X=(data_test[0:n_eval,:]-means)/stds, Y=(y_i[0:n_eval,:]-means)/stds) return ed_df def energy_distance(X,Y): # X,Y are shape NxD with N samples and D dimensions n_x = X.shape[0] n_y = Y.shape[0] X = np.expand_dims(X.T,0) # (N_x,D) --> (1,D,N_x) Y = np.expand_dims(Y.T,0) # (N_y,D) --> (1,D,N_y) ed_xx = np.sum(np.sqrt(np.sum(np.square(X - np.repeat(np.transpose(X, axes=(2,1,0)), repeats=n_x, axis=2)), axis=1))) ed_yy = np.sum(np.sqrt(np.sum(np.square(Y - np.repeat(np.transpose(Y, axes=(2,1,0)), repeats=n_y, axis=2)), axis=1))) ed_xy = np.sum(np.sqrt(np.sum(np.square(Y - np.repeat(np.transpose(X, axes=(2,1,0)), repeats=n_y, axis=2)), axis=1))) return 2*ed_xy/(n_x*n_y) - ed_yy/(n_y*(n_y-1)) - ed_xx/(n_y*(n_y-1)) ###### functions for generating random copulas and vines #### def random_bicop(family): """ sample a copula with random parameters for given family """ if family == "gaussian": return {"family": family, "rotation": 0, "parameters": np.random.choice((-1,1))*np.random.uniform(0.5,0.95,1)} elif family == "student": return {"family": family, "rotation": 0, "parameters": np.array([np.random.choice((-1,1))*np.random.uniform(0.5,0.95), np.random.uniform(2.0, 10.0)])} elif any(x==family for x in ["clayton", "gumbel", "frank", "joe"]): if family == "frank": return {"family": family, "rotation": 0, "parameters": np.random.uniform(10.0, 25.0, 1)} else: return {"family": family, "rotation": np.random.choice((0, 90, 180, 270)), "parameters": np.random.uniform(2.0,10.0,1)} elif family == "bb1": return {"family": family, "rotation": np.random.choice((0, 90, 180, 270)), "parameters": np.array([np.random.uniform(1.0,5.0), np.random.uniform(1.0, 5.0)])} elif family=="bb7": return {"family": family, "rotation": np.random.choice((0, 90, 180, 270)), "parameters": np.array([np.random.uniform(1.0,6.0), np.random.uniform(2.0, 20.0)])} elif family == "indep": return {"family": family} else: raise ValueError("Unknown copula family.") def random_tree(dim, families): """ create a tree with random families and random parameters""" trees = [] for d_i in range(dim-1): tree_i=[] for j in range(dim-d_i-1): tree_i.append(random_bicop(np.random.choice(families))) trees.append(tree_i) return trees def make_random_vinecopula(dim=3, families=["gaussian", "student", "clayton", "gumbel", "frank", "joe", "bb1", "bb7", "indep"]): """ creates a dictionary with info for a random vine copula """ vine_cop = {} #vine_cop["vine_class"] = "rvine" vine_cop["structure"] = pv.RVineStructure.simulate(dim) vine_cop["pair_copulas"] = get_pvtrees(random_tree(dim, families)) #vine_cop["d"] = dim return vine_cop def get_pvcopfamily(family): """ maps strings to pyvinecopulib bivaraite families """ if family == "gaussian": return pv.BicopFamily.gaussian elif family == "student": return pv.BicopFamily.student elif family == "clayton": return pv.BicopFamily.clayton elif family == "gumbel": return pv.BicopFamily.gumbel elif family == "frank": return pv.BicopFamily.frank elif family == "joe": return pv.BicopFamily.joe elif family == "bb1": return pv.BicopFamily.bb1 elif family == "bb7": return pv.BicopFamily.bb7 elif family == "indep": return pv.BicopFamily.indep else: raise ValueError("Unknown copula family.") def get_pvtrees(trees): """ creates pyvinecopulib tree list """ _trees = copy.deepcopy(trees) tree_list = [] for tree_i in _trees: cops = [] for cop_j in tree_i: cop_j["family"] = get_pvcopfamily(cop_j["family"]) cops.append(pv.Bicop(**cop_j)) tree_list.append(cops) return tree_list ### more helper functions ### def emp_cdf(v, u): """ evaluate the empirical copula at points v using the samples u""" # cdf is evaluated at points v, v has to be a MxD vector in [0,1]^D, cdf is evaluated at these points # u are samples from model NxD vector in [0,1]^D, u should be very large # larger u will lead to better estimation of the empirical copula but slows down computation cdf_vals = np.empty(shape=(len(v))) for i in range(v.shape[0]): cdf_vals[i] = np.sum(np.all(u<=v[[i],:], axis=1)) return cdf_vals/len(u) def beta_copula_cdf(u_train, u_test, rscript_path): # rscript_path is ususally something like "C:/Users/USERNAME/R/R-4.0.4/bin/Rscript.exe" # write csv files pd.DataFrame(u_train).to_csv("R/_u_train_bicop.csv", header=False, index=False) pd.DataFrame(u_test).to_csv("R/_u_test_bicop.csv", header=False, index=False) # run R script subprocess.run([rscript_path, "R/_beta_copula_cdf.R"]) # TODO: assumes that R script is in current working directory # read results from R script cdf_beta = pd.read_csv("R/_cdf_beta.csv", header=None, index_col=False) # TODO: assumes that csv is in current working directory # remove csv files os.remove("R/_u_train_bicop.csv") os.remove("R/_u_test_bicop.csv") os.remove("R/_cdf_beta.csv") return np.squeeze(cdf_beta.values) def gaussian_copula_cdf(u_train, u_test, rscript_path): # rscript_path is ususally something like "C:/Users/USERNAME/R/R-4.0.4/bin/Rscript.exe" # write csv files pd.DataFrame(u_train).to_csv("R/_u_train_gausscop.csv", header=False, index=False) pd.DataFrame(u_test).to_csv("R/_u_test_gausscop.csv", header=False, index=False) # run R script subprocess.run([rscript_path, "R/_gaussian_copula_cdf.R"]) # TODO: assumes that R script is in current working directory # read results from R script cdf_gauss = pd.read_csv("R/_cdf_gausscop.csv", header=None, index_col=False) # TODO: assumes that csv is in current working directory pdf_gauss =
pd.read_csv("R/_pdf_gausscop.csv", header=None, index_col=False)
pandas.read_csv
""" Models for classical robust Generalised Quadratic Discriminant Analysis (Bose et al. 2015) and Robust Generalised Quadratic Discriminant Analysis (Ghosh et al. 2020) using various robust estimators. """ import numpy as np import pandas as pd from ._algo_utils import fit_t from ._models_lda import QDA import rpy2.robjects as robjects from rpy2.robjects.packages import importr from rpy2.robjects import pandas2ri # Import R libraries for robust estimators pandas2ri.activate() r = robjects.r psych = importr('psych') rrcov = importr('rrcov') SpatialNP = importr('SpatialNP') LaplacesDemon = importr('LaplacesDemon') class GQDA(QDA): """Generalised Quadratic Discriminant Analysis. See `_models_lda.QDA` for more details. Inherits from QDA and fits an additional parameter on top of the classic estimation, which models a large class of distributions, by minimisation of misclassification error. The method 'generalised' must be used to benefit from this. When `c_ = 1`, this is equal to QDA. """ def __init__(self): super().__init__(method='generalised') def _bose_k(self): """ Generalised discriminant coefficient according to Bose et al. (2015). """ return np.array([0.5/self.c_]) def fit(self, X, y, c_=None): """Fit GQDA model parameters according to data. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. c_ : float, default=None. The generalised coefficient. If set, don't fit this parameter. If not, estimate using method of error minimisation. """ super().fit(X,y) #Kx[n_k, M] if c_ is not None: self.c_ = c_ return self uijs = [np.zeros((self.X_classes_[k].shape[0], self._K, self._K)) for k in range(self._K)] #Kx[n_kxIxJ] sij = np.zeros((self._K,self._K)) logdets = np.log(np.linalg.det(self.covariance_)) #K, for i in range(self._K): for j in range(self._K): dij_on_i = self._mahalanobis(self.X_classes_[i], ki=j) \ - self._mahalanobis(self.X_classes_[i], ki=i) #Kxn_i dij_on_j = self._mahalanobis(self.X_classes_[j], ki=j) \ - self._mahalanobis(self.X_classes_[j], ki=i) #Kxn_j sij[i,j] = logdets[j] - logdets[i] uijs[i][:, i, j] = dij_on_i / sij[i,j] uijs[i][:, j, j] = np.inf uijs[j][:, i, j] = dij_on_j / sij[i,j] T = [] for uij in uijs: T.append(uij[(uij > 0) * (uij<1)]) T = np.sort(np.concatenate(T)) T = np.concatenate([np.array([0]), T]) #print(T) MCc = np.zeros((len(T))) for e,c_ in enumerate(T): for i in range(self._K): Rijc = [] for j in range(self._K): if i==j: continue p = uijs[i][:, i,j] to_app = p > -c_ if sij[i,j]>0 else p < -c_ Rijc.append(self.X_classes_[i][to_app]) Rijc = np.vstack(Rijc) Ric = np.unique(Rijc, axis=0) #print(Ric.shape, Rijc.shape) lenRic = Ric.shape[0] MCic = self.X_classes_[i].shape[0] - lenRic #print(MCic, Ric.shape) MCc[e] += MCic #return uijs, MCc, T c_star = T[MCc.argmin()] self.c_ = c_star if c_star > 0 else 0.001 print("optimal c is", c_star) return self class RGQDA(GQDA): """Robust Generalised Quadratic Discriminant Analysis. See `GQDA` for more details. Inherits from GQDA and replaces classical mean and covariance estimation with robust estimators, as used by Ghosh et al. (2020). Note that when `c_ = 1`, this becomes classical QDA with robust estimators. Additional Parameters --------------------- estimation : str, {'gaussian', 't-EM', 'winsorised', 'MVE', 'MCD', 'M-estimator', 'S-estimator', 'SD-estimator'}, default='gaussian' Method of robust estimation. """ def __init__(self, estimation='gaussian'): super().__init__() self.estimation = estimation def _estimate_t_EM(self, X): """Estimate by fitting t-distribution using EM """ return fit_t(X) #discarding dof parameters def _estimate_gaussian_MLE(self, X): """Estimate by fitting Gaussian according to the MLE """ return [X.mean(axis=0), np.cov(X.T)] def _get_r_frame(self, X): """Prepare data for passing into R """ return pandas2ri.py2rpy(
pd.DataFrame(X)
pandas.DataFrame
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data = pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]}) df = from_pandas_df(data) df = df.rechunk((2, 2)).rechunk({1: 3}) res = df.execute().fetch() pd.testing.assert_frame_equal(data, res) def test_series_map_execution(setup): raw = pd.Series(np.arange(10)) s = from_pandas_series(raw, chunk_size=7) with pytest.raises(ValueError): # cannot infer dtype, the inferred is int, # but actually it is float # just due to nan s.map({5: 10}) r = s.map({5: 10}, dtype=float) result = r.execute().fetch() expected = raw.map({5: 10}) pd.testing.assert_series_equal(result, expected) r = s.map({i: 10 + i for i in range(7)}, dtype=float) result = r.execute().fetch() expected = raw.map({i: 10 + i for i in range(7)}) pd.testing.assert_series_equal(result, expected) r = s.map({5: 10}, dtype=float, na_action='ignore') result = r.execute().fetch() expected = raw.map({5: 10}, na_action='ignore') pd.testing.assert_series_equal(result, expected) # dtype can be inferred r = s.map({5: 10.}) result = r.execute().fetch() expected = raw.map({5: 10.}) pd.testing.assert_series_equal(result, expected) r = s.map(lambda x: x + 1, dtype=int) result = r.execute().fetch() expected = raw.map(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) def f(x: int) -> float: return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) def f(x: int): return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series raw2 = pd.Series([10], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2, dtype=float) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series, and dtype can be inferred raw2 = pd.Series([10.], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test str raw = pd.Series(['a', 'b', 'c', 'd']) s = from_pandas_series(raw, chunk_size=2) r = s.map({'c': 'e'}) result = r.execute().fetch() expected = raw.map({'c': 'e'}) pd.testing.assert_series_equal(result, expected) # test map index raw = pd.Index(np.random.rand(7)) idx = from_pandas_index(pd.Index(raw), chunk_size=2) r = idx.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_index_equal(result, expected) def test_describe_execution(setup): s_raw = pd.Series(np.random.rand(10)) # test one chunk series = from_pandas_series(s_raw, chunk_size=10) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) # test multi chunks series = from_pandas_series(s_raw, chunk_size=3) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(5) df_raw = pd.DataFrame(rs.rand(10, 4), columns=list('abcd')) df_raw['e'] = rs.randint(100, size=10) # test one chunk df = from_pandas_df(df_raw, chunk_size=10) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = series.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = s_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_series_equal(result, expected) # test multi chunks df = from_pandas_df(df_raw, chunk_size=3) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = df.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_frame_equal(result, expected) # test skip percentiles r = df.describe(percentiles=False, include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) expected.drop(['50%'], axis=0, inplace=True) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.describe(percentiles=[1.1]) with pytest.raises(ValueError): # duplicated values df.describe(percentiles=[0.3, 0.5, 0.3]) # test input dataframe which has unknown shape df = from_pandas_df(df_raw, chunk_size=3) df2 = df[df['a'] < 0.5] r = df2.describe() result = r.execute().fetch() expected = df_raw[df_raw['a'] < 0.5].describe() pd.testing.assert_frame_equal(result, expected) def test_data_frame_apply_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) r = df.apply('ffill') result = r.execute().fetch() expected = df_raw.apply('ffill') pd.testing.assert_frame_equal(result, expected) r = df.apply(['sum', 'max']) result = r.execute().fetch() expected = df_raw.apply(['sum', 'max']) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sqrt) result = r.execute().fetch() expected = df_raw.apply(np.sqrt) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2])) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2])) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sum, axis='index') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='index') pd.testing.assert_series_equal(result, expected) r = df.apply(np.sum, axis='columns') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='columns') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1) pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1, result_type='expand') result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='reduce') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='reduce') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') pd.testing.assert_frame_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit def test_series_apply_execute(setup): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = series.apply('add', args=(1,)) result = r.execute().fetch() expected = s_raw.apply('add', args=(1,)) pd.testing.assert_series_equal(result, expected) r = series.apply(['sum', 'max']) result = r.execute().fetch() expected = s_raw.apply(['sum', 'max']) pd.testing.assert_series_equal(result, expected) r = series.apply(np.sqrt) result = r.execute().fetch() expected = s_raw.apply(np.sqrt) pd.testing.assert_series_equal(result, expected) r = series.apply('sqrt') result = r.execute().fetch() expected = s_raw.apply('sqrt') pd.testing.assert_series_equal(result, expected) r = series.apply(lambda x: [x, x + 1], convert_dtype=False) result = r.execute().fetch() expected = s_raw.apply(lambda x: [x, x + 1], convert_dtype=False) pd.testing.assert_series_equal(result, expected) s_raw2 = pd.Series([np.array([1, 2, 3]), np.array([4, 5, 6])]) series = from_pandas_series(s_raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes) result = r.execute().fetch() expected = s_raw2.apply(pd.Series) pd.testing.assert_frame_equal(result, expected) @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_apply_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.apply(lambda row: str(row[0]) + row[1], axis=1) result = r.execute().fetch() expected = df1.apply(lambda row: str(row[0]) + row[1], axis=1) pd.testing.assert_series_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.apply(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.apply(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_transform_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) idx_vals = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idx_vals) def rename_fn(f, new_name): f.__name__ = new_name return f old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 # DATAFRAME CASES df = from_pandas_df(df_raw, chunk_size=5) # test transform scenarios on data frames r = df.transform(lambda x: list(range(len(x)))) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x)))) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: list(range(len(x))), axis=1) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x))), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.transform(['cumsum', 'cummax', lambda x: x + 1]) result = r.execute().fetch() expected = df_raw.transform(['cumsum', 'cummax', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) fn_dict = OrderedDict([ ('A', 'cumsum'), ('D', ['cumsum', 'cummax']), ('F', lambda x: x + 1), ]) r = df.transform(fn_dict) result = r.execute().fetch() expected = df_raw.transform(fn_dict) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1]) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], axis=1, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1], axis=1) pd.testing.assert_frame_equal(result, expected) fn_list = [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)] r = df.transform(fn_list, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_list) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.sum(), _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.sum()) pd.testing.assert_series_equal(result, expected) fn_dict = OrderedDict([ ('A', rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1')), ('D', [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)]), ('F', lambda x: x.iloc[:-1].reset_index(drop=True)), ]) r = df.transform(fn_dict, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_dict) pd.testing.assert_frame_equal(result, expected) # SERIES CASES series = from_pandas_series(s_raw, chunk_size=5) # test transform scenarios on series r = series.transform(lambda x: x + 1) result = r.execute().fetch() expected = s_raw.transform(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) r = series.transform(['cumsum', lambda x: x + 1]) result = r.execute().fetch() expected = s_raw.transform(['cumsum', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) # test transform on string dtype df_raw = pd.DataFrame({'col1': ['str'] * 10, 'col2': ['string'] * 10}) df = from_pandas_df(df_raw, chunk_size=3) r = df['col1'].transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw['col1'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) r = df.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw.transform(lambda x: x + '_suffix') pd.testing.assert_frame_equal(result, expected) r = df['col2'].transform(lambda x: x + '_suffix', dtype=np.dtype('str')) result = r.execute().fetch() expected = df_raw['col2'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_transform_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.transform({'b': lambda x: x + '_suffix'}) result = r.execute().fetch() expected = df1.transform({'b': lambda x: x + '_suffix'}) pd.testing.assert_frame_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_string_method_execution(setup): s = pd.Series(['s1,s2', 'ef,', 'dd', np.nan]) s2 = pd.concat([s, s, s]) series = from_pandas_series(s, chunk_size=2) series2 = from_pandas_series(s2, chunk_size=2) # test getitem r = series.str[:3] result = r.execute().fetch() expected = s.str[:3] pd.testing.assert_series_equal(result, expected) # test split, expand=False r = series.str.split(',', n=2) result = r.execute().fetch() expected = s.str.split(',', n=2) pd.testing.assert_series_equal(result, expected) # test split, expand=True r = series.str.split(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.split(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test rsplit r = series.str.rsplit(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.rsplit(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test cat all data r = series2.str.cat(sep='/', na_rep='e') result = r.execute().fetch() expected = s2.str.cat(sep='/', na_rep='e') assert result == expected # test cat list r = series.str.cat(['a', 'b', np.nan, 'c']) result = r.execute().fetch() expected = s.str.cat(['a', 'b', np.nan, 'c']) pd.testing.assert_series_equal(result, expected) # test cat series r = series.str.cat(series.str.capitalize(), join='outer') result = r.execute().fetch() expected = s.str.cat(s.str.capitalize(), join='outer') pd.testing.assert_series_equal(result, expected) # test extractall r = series.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") result = r.execute().fetch() expected = s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") pd.testing.assert_frame_equal(result, expected) # test extract, expand=False r = series.str.extract(r'[ab](\d)', expand=False) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=False) pd.testing.assert_series_equal(result, expected) # test extract, expand=True r = series.str.extract(r'[ab](\d)', expand=True) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=True) pd.testing.assert_frame_equal(result, expected) def test_datetime_method_execution(setup): # test datetime s = pd.Series([pd.Timestamp('2020-1-1'), pd.Timestamp('2020-2-1'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.year result = r.execute().fetch() expected = s.dt.year pd.testing.assert_series_equal(result, expected) r = series.dt.strftime('%m-%d-%Y') result = r.execute().fetch() expected = s.dt.strftime('%m-%d-%Y') pd.testing.assert_series_equal(result, expected) # test timedelta s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('3 days'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.days result = r.execute().fetch() expected = s.dt.days pd.testing.assert_series_equal(result, expected) def test_isin_execution(setup): # one chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=10) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in one chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=4) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = np.array([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = tensor(b, chunk_size=3) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = {2, 1, 9, 3} # set sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 3))) df = from_pandas_df(raw, chunk_size=(5, 2)) # set b = {2, 1, raw[1][0]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin(b) pd.testing.assert_frame_equal(result, expected) # mars object b = tensor([2, 1, raw[1][0]], chunk_size=2) r = df.isin(b) result = r.execute().fetch() expected = raw.isin([2, 1, raw[1][0]]) pd.testing.assert_frame_equal(result, expected) # dict b = {1: tensor([2, 1, raw[1][0]], chunk_size=2), 2: [3, 10]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin({1: [2, 1, raw[1][0]], 2: [3, 10]}) pd.testing.assert_frame_equal(result, expected) def test_cut_execution(setup): session = setup rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) bins = [10, 100, 500] ii = pd.interval_range(10, 500, 3) labels = ['a', 'b'] t = tensor(raw, chunk_size=4) series = from_pandas_series(s, chunk_size=4) iii = from_pandas_index(ii, chunk_size=2) # cut on Series r = cut(series, bins) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins)) r, b = cut(series, bins, retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # cut on tensor r = cut(t, bins) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # one chunk r = cut(s, tensor(bins, chunk_size=2), right=False, include_lowest=True) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins, right=False, include_lowest=True)) # test labels r = cut(t, bins, labels=labels) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) r = cut(t, bins, labels=False) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=False) np.testing.assert_array_equal(result, expected) # test labels which is tensor labels_t = tensor(['a', 'b'], chunk_size=1) r = cut(raw, bins, labels=labels_t, include_lowest=True) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels, include_lowest=True) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # test labels=False r, b = cut(raw, ii, labels=False, retbins=True) # result and expected is array whose dtype is CategoricalDtype r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(raw, ii, labels=False, retbins=True) for r, e in zip(r_result, r_expected): np.testing.assert_equal(r, e) pd.testing.assert_index_equal(b_result, b_expected) # test bins which is md.IntervalIndex r, b = cut(series, iii, labels=tensor(labels, chunk_size=1), retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, ii, labels=labels, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) pd.testing.assert_index_equal(b_result, b_expected) # test duplicates bins2 = [0, 2, 4, 6, 10, 10] r, b = cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test integer bins r = cut(series, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, 3)) r, b = cut(series, 3, right=False, retbins=True) r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(s, 3, right=False, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test min max same s2 = pd.Series([1.1] * 15) r = cut(s2, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s2, 3)) # test inf exist s3 = s2.copy() s3[-1] = np.inf with pytest.raises(ValueError): cut(s3, 3).execute() def test_transpose_execution(setup): raw = pd.DataFrame({"a": ['1', '2', '3'], "b": ['5', '-6', '7'], "c": ['1', '2', '3']}) # test 1 chunk df = from_pandas_df(raw) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # test multi chunks df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = from_pandas_df(raw, chunk_size=2) result = df.T.execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # dtypes are varied raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": [5, -6, 7], "c": [1, 2, 3]}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": ['5', '-6', '7']}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # Transposing from results of other operands raw = pd.DataFrame(np.arange(0, 100).reshape(10, 10)) df = DataFrame(arange(0, 100, chunk_size=5).reshape(10, 10)) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = DataFrame(rand(100, 100, chunk_size=10)) raw = df.to_pandas() result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) def test_to_numeric_execition(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100)) s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test multi chunks series = from_pandas_series(s, chunk_size=20) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test object dtype s = pd.Series(['1.0', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test errors and downcast s = pd.Series(['appple', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series, errors='ignore', downcast='signed') pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s, errors='ignore', downcast='signed')) # test list data l = ['1.0', 2, -3, '2.0'] r = to_numeric(l) np.testing.assert_array_equal(r.execute().fetch(), pd.to_numeric(l)) def test_q_cut_execution(setup): rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) series = from_pandas_series(s) r = qcut(series, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) r = qcut(s, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s) r = qcut(series, [0.3, 0.5, 0.7]) result = r.execute().fetch() expected = pd.qcut(s, [0.3, 0.5, 0.7]) pd.testing.assert_series_equal(result, expected) r = qcut(range(5), 3) result = r.execute().fetch() expected = pd.qcut(range(5), 3) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), [0.2, 0.5]) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), tensor([0.2, 0.5])) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) def test_shift_execution(setup): # test dataframe rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=5) for periods in (2, -2, 6, -6): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df.shift(periods=periods, axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw.shift(periods=periods, axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected, check_dtype=False) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}' ) from e raw2 = raw.copy() raw2.index = pd.date_range('2020-1-1', periods=10) raw2.columns = pd.date_range('2020-3-1', periods=8) df2 = from_pandas_df(raw2, chunk_size=5) # test freq not None for periods in (2, -2): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}') from e # test tshift r = df2.tshift(periods=1) result = r.execute().fetch() expected = raw2.tshift(periods=1) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): _ = df.tshift(periods=1) # test series s = raw.iloc[:, 0] series = from_pandas_series(s, chunk_size=5) for periods in (0, 2, -2, 6, -6): for fill_value in (None, 0, 1.): r = series.shift(periods=periods, fill_value=fill_value) try: result = r.execute().fetch() expected = s.shift(periods=periods, fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e s2 = raw2.iloc[:, 0] # test freq not None series2 = from_pandas_series(s2, chunk_size=5) for periods in (2, -2): for fill_value in (None, 0, 1.): r = series2.shift(periods=periods, freq='D', fill_value=fill_value) try: result = r.execute().fetch() expected = s2.shift(periods=periods, freq='D', fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e def test_diff_execution(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) raw1 = raw.copy() raw1['col4'] = raw1['col4'] < 400 r = from_pandas_df(raw1, chunk_size=(10, 5)).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw1, chunk_size=5).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw, chunk_size=(5, 8)).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1)) r = from_pandas_df(raw, chunk_size=5).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1), check_dtype=False) # test series s = raw.iloc[:, 0] s1 = s.copy() < 400 r = from_pandas_series(s, chunk_size=10).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s, chunk_size=5).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s1, chunk_size=5).diff(1) pd.testing.assert_series_equal(r.execute().fetch(), s1.diff(1)) def test_value_counts_execution(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100), name='s') s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s, chunk_size=100) r = series.value_counts() pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) # test multi chunks series = from_pandas_series(s, chunk_size=30) r = series.value_counts(method='tree') pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(method='tree', normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(normalize=True)) # test bins and normalize r = series.value_counts(method='tree', bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) def test_astype(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) # single chunk df = from_pandas_df(raw) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # multiply chunks df = from_pandas_df(raw, chunk_size=6) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # dict type df = from_pandas_df(raw, chunk_size=5) r = df.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) pd.testing.assert_frame_equal(expected, result) # test arrow_string dtype df = from_pandas_df(raw, chunk_size=8) r = df.astype({'c1': 'arrow_string'}) result = r.execute().fetch() expected = raw.astype({'c1': 'arrow_string'}) pd.testing.assert_frame_equal(expected, result) # test series s = pd.Series(rs.randint(5, size=20)) series = from_pandas_series(s) r = series.astype('int32') result = r.execute().fetch() expected = s.astype('int32') pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s, chunk_size=6) r = series.astype('arrow_string') result = r.execute().fetch() expected = s.astype('arrow_string') pd.testing.assert_series_equal(result, expected) # test index raw = pd.Index(rs.randint(5, size=20)) mix = from_pandas_index(raw) r = mix.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_index_equal(result, expected) # multiply chunks series = from_pandas_series(s, chunk_size=6) r = series.astype('str') result = r.execute().fetch() expected = s.astype('str') pd.testing.assert_series_equal(result, expected) # test category raw = pd.DataFrame(rs.randint(3, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=5) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=3) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=6) r = df.astype({'c1': 'category', 'c5': 'float', 'c2': 'int32', 'c7': pd.CategoricalDtype([1, 3, 4, 2]), 'c4': pd.CategoricalDtype([1, 3, 2])}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c5': 'float', 'c2': 'int32', 'c7': pd.CategoricalDtype([1, 3, 4, 2]), 'c4': pd.CategoricalDtype([1, 3, 2])}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=8) r = df.astype({'c2': 'category'}) result = r.execute().fetch() expected = raw.astype({'c2': 'category'}) pd.testing.assert_frame_equal(expected, result) # test series category raw = pd.Series(np.random.choice(['a', 'b', 'c'], size=(10,))) series = from_pandas_series(raw, chunk_size=4) result = series.astype('category').execute().fetch() expected = raw.astype('category')
pd.testing.assert_series_equal(expected, result)
pandas.testing.assert_series_equal
#!/usr/bin/env python3 import os import sys import random import time from random import seed, randint import argparse import platform from datetime import datetime import imp import subprocess import glob import re from helperFunctions.myFunctions_helper import * import numpy as np import pandas as pd import fileinput from itertools import product from Bio.PDB.PDBParser import PDBParser from Bio.PDB import PDBList from pdbfixer import PDBFixer from simtk.openmm.app import PDBFile # compute cross Q for every pdb pair in one folder # parser = argparse.ArgumentParser(description="Compute cross q") # parser.add_argument("-m", "--mode", # type=int, default=1) # args = parser.parse_args() def getFromTerminal(CMD): return subprocess.Popen(CMD,stdout=subprocess.PIPE,shell=True).communicate()[0].decode() def read_hydrophobicity_scale(seq, isNew=False): seq_dataFrame = pd.DataFrame({"oneLetterCode":list(seq)}) HFscales = pd.read_table("~/opt/small_script/Whole_residue_HFscales.txt") if not isNew: # Octanol Scale # new and old difference is at HIS. code = {"GLY" : "G", "ALA" : "A", "LEU" : "L", "ILE" : "I", "ARG+" : "R", "LYS+" : "K", "MET" : "M", "CYS" : "C", "TYR" : "Y", "THR" : "T", "PRO" : "P", "SER" : "S", "TRP" : "W", "ASP-" : "D", "GLU-" : "E", "ASN" : "N", "GLN" : "Q", "PHE" : "F", "HIS+" : "H", "VAL" : "V", "M3L" : "K", "MSE" : "M", "CAS" : "C"} else: code = {"GLY" : "G", "ALA" : "A", "LEU" : "L", "ILE" : "I", "ARG+" : "R", "LYS+" : "K", "MET" : "M", "CYS" : "C", "TYR" : "Y", "THR" : "T", "PRO" : "P", "SER" : "S", "TRP" : "W", "ASP-" : "D", "GLU-" : "E", "ASN" : "N", "GLN" : "Q", "PHE" : "F", "HIS0" : "H", "VAL" : "V", "M3L" : "K", "MSE" : "M", "CAS" : "C"} HFscales_with_oneLetterCode = HFscales.assign(oneLetterCode=HFscales.AA.str.upper().map(code)).dropna() data = seq_dataFrame.merge(HFscales_with_oneLetterCode, on="oneLetterCode", how="left") return data def create_zim(seqFile, isNew=False): a = seqFile seq = getFromTerminal("cat " + a).rstrip() data = read_hydrophobicity_scale(seq, isNew=isNew) z = data["DGwoct"].values np.savetxt("zim", z, fmt="%.2f") def expand_grid(dictionary): return pd.DataFrame([row for row in product(*dictionary.values())], columns=dictionary.keys()) def duplicate_pdb(From, To, offset_x=0, offset_y=0, offset_z=0, new_chain="B"): with open(To, "w") as out: with open(From, "r") as f: for line in f: tmp = list(line) atom = line[0:4] atomSerialNumber = line[6:11] atomName = line[12:16] atomResidueName = line[17:20] chain = line[21] residueNumber = line[22:26] # change chain A to B # new_chain = "B" tmp[21] = new_chain if atom == "ATOM": x = float(line[30:38]) y = float(line[38:46]) z = float(line[46:54]) # add 40 to the x new_x = x + offset_x new_y = y + offset_y new_z = z + offset_z tmp[30:38] = "{:8.3f}".format(new_x) tmp[38:46] = "{:8.3f}".format(new_y) tmp[46:54] = "{:8.3f}".format(new_z) a = "".join(tmp) out.write(a) def compute_native_contacts(coords, MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): native_coords = np.array(coords) a= native_coords[:,np.newaxis] dis = np.sqrt(np.sum((a - native_coords)**2, axis=2)) n = len(dis) remove_band = np.eye(n) for i in range(1, MAX_OFFSET): remove_band += np.eye(n, k=i) remove_band += np.eye(n, k=-i) dis[remove_band==1] = np.max(dis) native_contacts = dis < DISTANCE_CUTOFF return native_contacts.astype("int") def compute_contacts(coords, native_contacts, DISTANCE_CUTOFF=9.5): native_coords = np.array(coords) a= native_coords[:,np.newaxis] dis = np.sqrt(np.sum((a - native_coords)**2, axis=2)) constacts = dis < DISTANCE_CUTOFF constacts = constacts*native_contacts # remove non native contacts return np.sum(constacts, axis=1).astype("float") def compute_localQ_init(MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): from pathlib import Path home = str(Path.home()) struct_id = '2xov' filename = os.path.join(home, "opt/pulling/2xov.pdb") p = PDBParser(PERMISSIVE=1) s = p.get_structure(struct_id, filename) chains = s[0].get_list() # import pdb file native_coords = [] for chain in chains: dis = [] all_res = [] for res in chain: is_regular_res = res.has_id('CA') and res.has_id('O') res_id = res.get_id()[0] if (res.get_resname()=='GLY'): native_coords.append(res['CA'].get_coord()) elif (res_id==' ' or res_id=='H_MSE' or res_id=='H_M3L' or res_id=='H_CAS') and is_regular_res: native_coords.append(res['CB'].get_coord()) else: print('ERROR: irregular residue at %s!' % res) exit() native_contacts_table = compute_native_contacts(native_coords, MAX_OFFSET, DISTANCE_CUTOFF) return native_contacts_table def compute_localQ(native_contacts_table, pre=".", ii=-1, MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): native_contacts = np.sum(native_contacts_table, axis=1).astype("float") dump = read_lammps(os.path.join(pre, f"dump.lammpstrj.{ii}"), ca=False) localQ_list = [] for atom in dump: contacts = compute_contacts(np.array(atom), native_contacts_table, DISTANCE_CUTOFF=DISTANCE_CUTOFF) c = np.divide(contacts, native_contacts, out=np.zeros_like(contacts), where=native_contacts!=0) localQ_list.append(c) data = pd.DataFrame(localQ_list) data.columns = ["Res" + str(i+1) for i in data.columns] data.to_csv(os.path.join(pre, f"localQ.{ii}.csv"), index=False) def readPMF_basic(pre): # perturbation_table = {0:"original", 1:"p_mem", # 2:"m_mem", 3:"p_lipid", # 4:"m_lipid", 5:"p_go", # 6:"m_go", 7:"p_rg", 8:"m_rg"} perturbation_table = {0:"original", 1:"m_go", 2:"p_go", 3:"m_lipid", 4:"p_lipid", 5:"m_mem", 6:"p_mem", 7:"m_rg", 8:"p_rg"} pmf_list = { "perturbation":list(perturbation_table.keys()) } pmf_list_data = expand_grid(pmf_list) all_pmf_list = [] for index, row in pmf_list_data.iterrows(): perturbation = row["perturbation"] if perturbation == 0: location = pre + f"/pmf-*.dat" pmf_list = glob.glob(location) change = "none" upOrDown = "none" else: location = pre + f"/perturbation-{perturbation}-pmf-*.dat" pmf_list = glob.glob(location) change = perturbation_table[perturbation].split("_")[-1] upOrDown = perturbation_table[perturbation].split("_")[0] # print(location) name_list = ["f", "df", "e", "s"] names = ["bin", "x"] + name_list for location in pmf_list: # print(location) temp = re.findall(r'pmf-(\d+)', location) if len(temp) != 1: raise ValueError('Not expected to see more than one or none') else: temp = temp[0] data = pd.read_table(location, skiprows=2, sep='\s+', names=names).assign(upOrDown=upOrDown, change=change, temp=temp, perturbation=perturbation_table[perturbation]) all_pmf_list.append(data) return pd.concat(all_pmf_list).dropna().reset_index() def make_metadata_3(k=1000.0, temps_list=["450"], i=-1, biasLow=None, biasHigh=None): print("make metadata") cwd = os.getcwd() files = glob.glob(f"../data_{i}/*") kconstant = k with open("metadatafile", "w") as out: for oneFile in sorted(files): tmp = oneFile.split("/")[-1].replace('.dat', '') t = tmp.split("_")[1] bias = tmp.split("_")[3] if biasLow: if float(bias) < biasLow: continue if biasHigh: if float(bias) > biasHigh: continue # print(tmp) # if int(float(dis)) > 150: # continue if t in temps_list: target = "../{} {} {} {}\n".format(oneFile, t, kconstant, bias) out.write(target) def readPMF(pre, is2d=False, force_list=["0.0", "0.1", "0.2"]): # perturbation_table = {0:"original", 1:"p_mem", # 2:"m_mem", 3:"p_lipid", # 4:"m_lipid", 5:"p_go", # 6:"m_go", 7:"p_rg", 8:"m_rg"} perturbation_table = {0:"original", 1:"m_go", 2:"p_go", 3:"m_lipid", 4:"p_lipid", 5:"m_mem", 6:"p_mem", 7:"m_rg", 8:"p_rg"} pmf_list = { "perturbation":list(perturbation_table.keys()), "force":force_list } pmf_list_data = expand_grid(pmf_list) all_pmf_list = [] for index, row in pmf_list_data.iterrows(): force = row["force"] perturbation = row["perturbation"] if perturbation == 0: location = pre + f"/force_{force}/pmf-*.dat" pmf_list = glob.glob(location) change = "none" upOrDown = "none" else: location = pre + f"/force_{force}/perturbation-{perturbation}-pmf-*.dat" pmf_list = glob.glob(location) change = perturbation_table[perturbation].split("_")[-1] upOrDown = perturbation_table[perturbation].split("_")[0] # print(pmf_list) name_list = ["f", "df", "e", "s"] if is2d: names = ["x", "y"] + name_list else: names = ["bin", "x"] + name_list for location in pmf_list: # print(location) temp = re.findall(r'pmf-(\d+)', location) if len(temp) != 1: raise ValueError('Not expected to see more than one or none') else: temp = temp[0] data = pd.read_table(location, skiprows=2, sep='\s+', names=names).assign(upOrDown=upOrDown, change=change, force=force, temp=temp, perturbation=perturbation_table[perturbation]) all_pmf_list.append(data) return pd.concat(all_pmf_list).dropna().reset_index() def readPMF_2(pre, is2d=0, force_list=["0.0", "0.1", "0.2"]): if is2d: print("reading 2d pmfs") else: print("reading 1d dis, qw and z") if is2d == 1: mode_list = ["2d_qw_dis", "2d_z_dis", "2d_z_qw"] elif is2d == 2: mode_list = ["quick"] else: mode_list = ["1d_dis", "1d_qw", "1d_z"] all_data_list =[] for mode in mode_list: tmp = readPMF(mode, is2d, force_list).assign(mode=mode) all_data_list.append(tmp) return pd.concat(all_data_list).dropna().reset_index() def shrinkage(n=552, shrink_size=6, max_frame=2000, fileName="dump.lammpstrj"): print("Shrinkage: size: {}, max_frame: {}".format(shrink_size, max_frame)) bashCommand = "wc " + fileName process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate() line_number = int(output.decode("utf-8").split()[0]) print(line_number) print(line_number/552) # number of atom = 543 n = 552 count = 0 with open("small.lammpstrj", "w") as out: with open(fileName, "r") as f: for i, line in enumerate(f): if (i // n) % shrink_size == 0: if count >= max_frame*n: break count += 1 out.write(line) def compute_theta_for_each_helix(output="angles.csv", dumpName="../dump.lammpstrj.0"): print("This is for 2xov only") helices_list = [(94,114), (147,168), (171, 192), (200, 217), (226, 241), (250, 269)] atoms_all_frames = read_lammps(dumpName) # print(atoms[0]) # print(len(atoms), len(atoms[0])) # helices_angles_all_frames = [] with open(output, "w") as out: out.write("Frame, Helix, Angle\n") for ii, frame in enumerate(atoms_all_frames): # helices_angles = [] for count, (i, j) in enumerate(helices_list): # print(i, j) i = i-91 j = j-91 # end - start a = np.array(frame[j]) - np.array(frame[i]) b = np.array([0, 0, 1]) angle = a[2]/length(a) # in form of cos theta # helices_angles.append(angle) # print(angle) out.write("{}, {}, {}\n".format(ii, count+1, angle)) # helices_angles_all_frames.append(helices_angles) def structure_prediction_run(protein): print(protein) protocol_list = ["awsemer", "frag", "er"] do = os.system cd = os.chdir cd(protein) # run = "frag" for protocol in protocol_list: do("rm -r " + protocol) do("mkdir -p " + protocol) do("cp -r {} {}/".format(protein, protocol)) cd(protocol) cd(protein) # do("cp ~/opt/gremlin/protein/{}/gremlin/go_rnativeC* .".format(protein)) do("cp ~/opt/gremlin/protein/{}/raptor/go_rnativeC* .".format(protein)) fileName = protein + "_multi.in" backboneFile = "fix_backbone_coeff_" + protocol with fileinput.FileInput(fileName, inplace=True, backup='.bak') as file: for line in file: tmp = line.replace("fix_backbone_coeff_er", backboneFile) print(tmp, end='') cd("..") do("run.py -m 0 -n 20 {}".format(protein)) cd("..") cd("..") # do("") def check_and_correct_fragment_memory(fragFile="fragsLAMW.mem"): with open("tmp.mem", "w") as out: with open(fragFile, "r") as f: for i in range(4): line = next(f) out.write(line) for line in f: gro, _, i, n, _ = line.split() delete = False # print(gro, i, n) # name = gro.split("/")[-1] with open(gro, "r") as one: next(one) next(one) all_residues = set() for atom in one: residue, *_ = atom.split() # print(residue) all_residues.add(int(residue)) for test in range(int(i), int(i)+int(n)): if test not in all_residues: print("ATTENTION", gro, i, n, "missing:",test) delete = True if not delete: out.write(line) os.system(f"mv {fragFile} fragsLAMW_back") os.system(f"mv tmp.mem {fragFile}") def read_complete_temper_2(n=4, location=".", rerun=-1, qnqc=False, average_z=False, localQ=False, disReal=False, dis_h56=False, goEnergy=False, goEnergy3H=False, goEnergy4H=False): all_data_list = [] for i in range(n): file = "lipid.{}.dat".format(i) lipid = pd.read_csv(location+file) lipid.columns = lipid.columns.str.strip() remove_columns = ['Steps'] lipid = lipid.drop(remove_columns, axis=1) file = "rgs.{}.dat".format(i) rgs = pd.read_csv(location+file) rgs.columns = rgs.columns.str.strip() remove_columns = ['Steps'] rgs = rgs.drop(remove_columns, axis=1) file = "energy.{}.dat".format(i) energy = pd.read_csv(location+file) energy.columns = energy.columns.str.strip() energy = energy[["AMH-Go", "Membrane", "Rg"]] file = "addforce.{}.dat".format(i) dis = pd.read_csv(location+file) dis.columns = dis.columns.str.strip() remove_columns = ['Steps', 'AddedForce', 'Dis12', 'Dis34', 'Dis56'] dis.drop(remove_columns, axis=1,inplace=True) file = "wham.{}.dat".format(i) wham = pd.read_csv(location+file).assign(Run=i) wham.columns = wham.columns.str.strip() remove_columns = ['Rg', 'Tc'] wham = wham.drop(remove_columns, axis=1) if qnqc: qc = pd.read_table(location+f"qc_{i}", names=["qc"])[1:].reset_index(drop=True) qn = pd.read_table(location+f"qn_{i}", names=["qn"])[1:].reset_index(drop=True) qc2 = pd.read_table(location+f"qc2_{i}", names=["qc2"])[1:].reset_index(drop=True) wham = pd.concat([wham, qn, qc, qc2],axis=1) # if average_z: # z = pd.read_table(location+f"z_{i}.dat", names=["AverageZ"])[1:].reset_index(drop=True) # wham = pd.concat([wham, z],axis=1) if disReal: tmp = pd.read_csv(location+f"distance_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() wham = pd.concat([wham, tmp],axis=1) if dis_h56: tmp = pd.read_csv(location+f"distance_h56_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) tmp1 = pd.read_csv(location+f"distance_h12_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) tmp2 = pd.read_csv(location+f"distance_h34_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() tmp1.columns = tmp1.columns.str.strip() tmp2.columns = tmp2.columns.str.strip() wham = pd.concat([wham, tmp, tmp1, tmp2],axis=1) if average_z: z = pd.read_csv(location+f"z_complete_{i}.dat")[1:].reset_index(drop=True) z.columns = z.columns.str.strip() wham = pd.concat([wham, z],axis=1) if localQ: all_localQ = pd.read_csv(location+f"localQ.{i}.csv")[1:].reset_index(drop=True) wham = pd.concat([wham, all_localQ], axis=1) if goEnergy: tmp = pd.read_csv(location+f"Go_{i}/goEnergy.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() wham = pd.concat([wham, tmp],axis=1) if goEnergy3H: nEnergy = pd.read_csv(location+f"Go_3helix_{i}/goEnergy.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) nEnergy.columns = nEnergy.columns.str.strip() wham = pd.concat([wham, nEnergy],axis=1) if goEnergy4H: nEnergy = pd.read_csv(location+f"Go_4helix_{i}/goEnergy.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) nEnergy.columns = nEnergy.columns.str.strip() wham = pd.concat([wham, nEnergy],axis=1) data = pd.concat([wham, dis, energy, rgs, lipid], axis=1) # lipid = lipid[["Steps","Lipid","Run"]] all_data_list.append(data) data = pd.concat(all_data_list) file = f"../log{rerun}/log.lammps" temper = pd.read_table(location+file, skiprows=2, sep=' ') temper = temper.melt(id_vars=['Step'], value_vars=['T' + str(i) for i in range(n)], value_name="Temp", var_name="Run") temper["Run"] = temper["Run"].str[1:].astype(int) temper["Temp"] = "T" + temper["Temp"].astype(str) # print(temper) # print(wham) t2 = temper.merge(data, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]).sort_values('Step').drop('Steps', axis=1) # print(t2) t3 = t2.assign(TotalE=t2.Energy + t2.Lipid) return t3.sort_values(["Step", "Run"]).reset_index(drop=True) def process_complete_temper_data_3(pre, data_folder, folder_list, rerun=-1, end=-1, n=12, bias="dis", qnqc=False, average_z=False, disReal=False, dis_h56=False, localQ=False, goEnergy=False, goEnergy3H=False, goEnergy4H=False, label=""): print("process temp data") dateAndTime = datetime.today().strftime('%d_%h_%H%M%S') for folder in folder_list: simulation_list = glob.glob(pre+folder+f"/simulation/{bias}_*") print(pre+folder+f"/simulation/{bias}_*") os.system("mkdir -p " + pre+folder+"/data") # this one only consider rerun >=0, for the case rerun=-1, move log.lammps to log0 for i in range(rerun, end, -1): all_data_list = [] for one_simulation in simulation_list: bias_num = one_simulation.split("_")[-1] print(bias_num, "!") location = one_simulation + f"/{i}/" print(location) data = read_complete_temper_2(location=location, n=n, rerun=i, qnqc=qnqc, average_z=average_z, localQ=localQ, disReal=disReal, dis_h56=dis_h56, goEnergy=goEnergy, goEnergy3H=goEnergy3H, goEnergy4H=goEnergy4H) print(data.shape) # remove_columns = ['Step', "Run"] # data = data.drop(remove_columns, axis=1) all_data_list.append(data.assign(BiasTo=bias_num)) data = pd.concat(all_data_list).reset_index(drop=True) # if localQ: # print("hi") # else: # data.to_csv(os.path.join(pre, folder, f"data/rerun_{i}.csv")) # complete_data_list.append(data) # temps = list(dic.keys()) # complete_data = pd.concat(complete_data_list) name = f"rerun_{2*i}_{dateAndTime}.feather" data = data.reset_index(drop=True) data.query(f'Step > {2*i}e7 & Step <= {2*i+1}e7').reset_index(drop=True).to_feather(pre+folder+"/" + name) os.system("cp "+pre+folder+"/" + name + " "+data_folder+label+name) name = f"rerun_{2*i+1}_{dateAndTime}.feather" data = data.reset_index(drop=True) data.query(f'Step > {2*i+1}e7 & Step <= {2*i+2}e7').reset_index(drop=True).to_feather(pre+folder+"/" + name) os.system("cp "+pre+folder+"/" + name + " "+data_folder+label+name) def move_data4(data_folder, freeEnergy_folder, folder_list, temp_dict_mode=1, sub_mode_name="", kmem=0.2, klipid=0.1, kgo=0.1, krg=0.2, sample_range_mode=0, biasName="dis", qnqc=False, average_z=0, chosen_mode=0): print("move data") # dic = {"T_defined":300, "T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000} if temp_dict_mode == 1: dic = {"T0":280, "T1":300, "T2":325, "T3":350, "T4":375, "T5":400, "T6":450, "T7":500, "T8":550, "T9":600, "T10":650, "T11":700} if temp_dict_mode == 2: dic = {"T0":280, "T1":290, "T2":300, "T3":315, "T4":335, "T5":355, "T6":380, "T7":410, "T8":440, "T9":470, "T10":500, "T11":530} if temp_dict_mode == 3: dic = {"T0":280, "T1":290, "T2":300, "T3":310, "T4":320, "T5":335, "T6":350, "T7":365, "T8":380, "T9":410, "T10":440, "T11":470} if temp_dict_mode == 4: dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000} # read in complete.feather data_list = [] for folder in folder_list: tmp = pd.read_feather(data_folder + folder +".feather") data_list.append(tmp) data = pd.concat(data_list) os.system("mkdir -p "+freeEnergy_folder+"/"+sub_mode_name+f"/data_{sample_range_mode}") for bias, oneBias in data.groupby("BiasTo"): for tempSymbol, oneTempAndBias in oneBias.groupby("Temp"): temp = dic[tempSymbol] if float(temp) > 800: continue print(f"t_{temp}_{biasName}_{bias}.dat") if sample_range_mode == 0: queryCmd = 'Step > 0 & Step <= 1e7' if sample_range_mode == 1: queryCmd = 'Step > 1e7 & Step <= 2e7' elif sample_range_mode == 2: queryCmd ='Step > 2e7 & Step <= 3e7' elif sample_range_mode == 3: queryCmd ='Step > 3e7 & Step <= 4e7' elif sample_range_mode == 4: queryCmd ='Step > 4e7 & Step <= 5e7' elif sample_range_mode == 5: queryCmd ='Step > 5e7 & Step <= 6e7' elif sample_range_mode == 6: queryCmd ='Step > 6e7 & Step <= 7e7' elif sample_range_mode == 7: queryCmd ='Step > 7e7 & Step <= 8e7' elif sample_range_mode == -1: queryCmd ='Step > 4e7 & Step <= 6e7' if sample_range_mode == -2: tmp = oneTempAndBias.reset_index(drop=True) else: tmp = oneTempAndBias.query(queryCmd).reset_index() if average_z < 5: chosen_list = ["TotalE", "Qw", "Distance"] elif average_z == 5: chosen_list = ["TotalE", "Qw", "DisReal"] chosen_list += ["z_h6"] if average_z == 1: chosen_list += ["abs_z_average"] if average_z == 2 or average_z == 3: chosen_list += ["z_h6"] if average_z == 3: chosen_list += ["DisReal"] if average_z == 4: tmp["z_h5_and_h6"] = tmp["z_h5"] + tmp["z_h6"] chosen_list += ["z_h5_and_h6"] chosen_list += ["DisReal"] if average_z == 6: chosen_list = ["TotalE", "Qw", "DisReal"] tmp["z_h5_and_h6"] = tmp["z_h5"] + tmp["z_h6"] chosen_list += ["z_h5_and_h6"] chosen_list += ["z_h5"] chosen_list += ["z_h6"] chosen_list += ["Dis_h56"] if average_z == 7: chosen_list = ["TotalE", "Qw", "DisReal"] tmp["z_h56"] = tmp["z_h5"] + tmp["z_h6"] tmp["z_h14"] = tmp["z_h1"] + tmp["z_h2"] + tmp["z_h3"] + tmp["z_h4"] chosen_list += ["z_h14"] chosen_list += ["z_h56"] chosen_list += ["z_h5"] chosen_list += ["z_h6"] chosen_list += ["Dis_h12"] chosen_list += ["Dis_h34"] chosen_list += ["Dis_h56"] if chosen_mode == 0: chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_perturb_mem_p=tmp.TotalE + kmem*tmp.Membrane, TotalE_perturb_mem_m=tmp.TotalE - kmem*tmp.Membrane, TotalE_perturb_lipid_p=tmp.TotalE + klipid*tmp.Lipid, TotalE_perturb_lipid_m=tmp.TotalE - klipid*tmp.Lipid, TotalE_perturb_go_p=tmp.TotalE + kgo*tmp["AMH-Go"], TotalE_perturb_go_m=tmp.TotalE - kgo*tmp["AMH-Go"], TotalE_perturb_rg_p=tmp.TotalE + krg*tmp.Rg, TotalE_perturb_rg_m=tmp.TotalE - krg*tmp.Rg) if chosen_mode == 1: chosen_list += ["Res" + str(i+1) for i in range(181)] chosen = tmp[chosen_list] if chosen_mode == 2: chosen_list += ["Res" + str(i+1) for i in range(181)] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_perturb_go_m=tmp.TotalE - kgo*tmp["AMH-Go"], TotalE_perturb_go_p=tmp.TotalE + kgo*tmp["AMH-Go"], TotalE_perturb_lipid_m=tmp.TotalE - klipid*tmp.Lipid, TotalE_perturb_lipid_p=tmp.TotalE + klipid*tmp.Lipid, TotalE_perturb_mem_m=tmp.TotalE - kmem*tmp.Membrane, TotalE_perturb_mem_p=tmp.TotalE + kmem*tmp.Membrane, TotalE_perturb_rg_m=tmp.TotalE - krg*tmp.Rg, TotalE_perturb_rg_p=tmp.TotalE + krg*tmp.Rg) # print(tmp.count()) if chosen_mode == 3: chosen_list += ["AMH-Go", "Lipid", "Membrane", "Rg"] chosen = tmp[chosen_list] if chosen_mode == 4: chosen_list += ["Dis_h56"] chosen = tmp[chosen_list] if chosen_mode == 5: chosen_list += ["Dis_h56"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_perturb_go_m=tmp.TotalE/10, TotalE_perturb_go_p=0, Go=tmp["AMH-Go"]) if chosen_mode == 6: chosen_list += ["Dis_h56"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH, TotalE_2=tmp.TotalE + 0.2*tmp.AMH, TotalE_3=tmp.TotalE + 0.5*tmp.AMH, TotalE_4=tmp.TotalE + tmp.AMH, TotalE_5=tmp.AMH) if chosen_mode == 7: chosen_list += ["Dis_h56"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH_3H, TotalE_2=tmp.TotalE + 0.2*tmp.AMH_3H, TotalE_3=tmp.TotalE + 0.5*tmp.AMH_3H, TotalE_4=tmp.TotalE + tmp.AMH_3H, TotalE_5=tmp.TotalE + 0.1*tmp.AMH, TotalE_6=tmp.TotalE + 0.2*tmp.AMH) if chosen_mode == 8: # chosen_list += ["Dis_h56"] chosen_list += ["z_average"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH_4H, TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H, TotalE_3=tmp.TotalE + 0.5*tmp.AMH_4H, TotalE_4=tmp.TotalE + 0.1*tmp.AMH_3H, TotalE_5=tmp.TotalE + 0.2*tmp.AMH_3H, TotalE_6=tmp.TotalE + 0.5*tmp.AMH_3H) if chosen_mode == 9: # chosen_list += ["Dis_h56"] chosen_list += ["z_average"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH_4H, TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H, TotalE_3=tmp.TotalE + 0.5*tmp.AMH_4H) chosen = chosen.assign(TotalE_perturb_1go_m=chosen.TotalE_2 - kgo*tmp["AMH-Go"], TotalE_perturb_1go_p=chosen.TotalE_2 + kgo*tmp["AMH-Go"], TotalE_perturb_2lipid_m=chosen.TotalE_2 - tmp.Lipid, TotalE_perturb_2lipid_p=chosen.TotalE_2 + tmp.Lipid, TotalE_perturb_3mem_m=chosen.TotalE_2 - tmp.Membrane, TotalE_perturb_3mem_p=chosen.TotalE_2 + tmp.Membrane, TotalE_perturb_4rg_m=chosen.TotalE_2 - tmp.Rg, TotalE_perturb_4rg_p=chosen.TotalE_2 + tmp.Rg, TotalE_perturb_5go=tmp["AMH-Go"], TotalE_perturb_5lipid=tmp.Lipid, TotalE_perturb_5mem=tmp.Membrane, TotalE_perturb_5rg=tmp.Rg) if chosen_mode == 10: # chosen_list += ["Dis_h56"] chosen_list += ["z_average"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH_4H, TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H, TotalE_3=tmp.TotalE + 0.5*tmp.AMH_4H) chosen = chosen.assign(TotalE_perturb_1lipid_m1=chosen.TotalE_2 - 0.1*tmp.Lipid, TotalE_perturb_1lipid_p1=chosen.TotalE_2 + 0.1*tmp.Lipid, TotalE_perturb_2lipid_m2=chosen.TotalE_2 - 0.2*tmp.Lipid, TotalE_perturb_2lipid_p2=chosen.TotalE_2 + 0.2*tmp.Lipid, TotalE_perturb_3lipid_m3=chosen.TotalE_2 - 0.3*tmp.Lipid, TotalE_perturb_3lipid_p3=chosen.TotalE_2 + 0.3*tmp.Lipid, TotalE_perturb_4lipid_m4=chosen.TotalE_2 - 0.5*tmp.Lipid, TotalE_perturb_4lipid_p4=chosen.TotalE_2 + 0.5*tmp.Lipid, TotalE_perturb_5go=tmp["AMH-Go"], TotalE_perturb_5lipid=tmp.Lipid, TotalE_perturb_5mem=tmp.Membrane, TotalE_perturb_5rg=tmp.Rg) if chosen_mode == 11: # chosen_list += ["Dis_h56"] chosen_list += ["z_average"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 1.1*0.1*tmp.AMH_4H + 0.1*tmp["AMH-Go"], TotalE_2=tmp.TotalE + 1.1*0.2*tmp.AMH_4H + 0.1*tmp["AMH-Go"], TotalE_3=tmp.TotalE + 1.1*0.5*tmp.AMH_4H + 0.1*tmp["AMH-Go"]) chosen = chosen.assign(TotalE_perturb_1lipid_m1=chosen.TotalE_2 - 0.1*tmp.Lipid, TotalE_perturb_1lipid_p1=chosen.TotalE_2 + 0.1*tmp.Lipid, TotalE_perturb_2lipid_m2=chosen.TotalE_2 - 0.2*tmp.Lipid, TotalE_perturb_2lipid_p2=chosen.TotalE_2 + 0.2*tmp.Lipid, TotalE_perturb_3lipid_m3=chosen.TotalE_2 - 0.1*tmp.Membrane, TotalE_perturb_3lipid_p3=chosen.TotalE_2 + 0.1*tmp.Membrane, TotalE_perturb_4lipid_m4=chosen.TotalE_2 - 0.2*tmp.Membrane, TotalE_perturb_4lipid_p4=chosen.TotalE_2 + 0.2*tmp.Membrane, TotalE_perturb_5go=tmp["AMH-Go"], TotalE_perturb_5lipid=tmp.Lipid, TotalE_perturb_5mem=tmp.Membrane, TotalE_perturb_5rg=tmp.Rg) if chosen_mode == 12: chosen = tmp[chosen_list] # chosen["z_h56"] = (chosen["z_h5"] + chosen["z_h6"])/2 chosen = chosen.assign(TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H, z_h56=(tmp.z_h5 + tmp.z_h6)/2) if chosen_mode == 13: chosen_list += ["z_average"] chosen = tmp[chosen_list] # chosen["z_h56"] = (chosen["z_h5"] + chosen["z_h6"])/2 force = 0.1 chosen = chosen.assign(TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H - (tmp.DisReal - 25.1)*force, TotalE_3=tmp.TotalE - (tmp.DisReal - 25.1)*force, TotalE_4=tmp.TotalE + 0.2*tmp.AMH_4H, TotalE_5=tmp.TotalE + 0.2*tmp.AMH_4H - (tmp.DisReal)*force) chosen.to_csv(freeEnergy_folder+"/"+sub_mode_name+f"/data_{sample_range_mode}/t_{temp}_{biasName}_{bias}.dat", sep=' ', index=False, header=False) # perturbation_table = {0:"original", 1:"m_go", # 2:"p_go", 3:"m_lipid", # 4:"p_lipid", 5:"m_mem", # 6:"p_mem", 7:"m_rg", 8:"p_rg"} def compute_average_z(dumpFile, outFile): # input dump, output z.dat z_list = [] with open(outFile, "w") as f: a = read_lammps(dumpFile) for atoms in a: b = np.array(atoms) z = b.mean(axis=0)[2] z_list.append(z) f.write(str(z)+"\n") def compute_average_z_2(dumpFile, outFile): # input dump, output z.dat helices_list = [(94,114), (147,168), (171, 192), (200, 217), (226, 241), (250, 269)] with open(outFile, "w") as f: a = read_lammps(dumpFile) f.write("z_average, abs_z_average, z_h1, z_h2, z_h3, z_h4, z_h5, z_h6\n") for atoms in a: b = np.array(atoms) z = b.mean(axis=0)[2] f.write(str(z)+ ", ") z = np.abs(b).mean(axis=0)[2] f.write(str(z)+ ", ") for count, (i,j) in enumerate(helices_list): i = i - 91 j = j - 91 z = np.mean(b[i:j], axis=0)[2] if count == 5: f.write(str(z)) else: f.write(str(z)+ ", ") f.write("\n") def read_simulation_2(location=".", i=-1, qnqc=False, average_z=False, localQ=False, disReal=False, **kwargs): file = "lipid.dat" lipid = pd.read_csv(location+file) lipid.columns = lipid.columns.str.strip() remove_columns = ['Steps'] lipid = lipid.drop(remove_columns, axis=1) file = "rgs.dat" rgs = pd.read_csv(location+file) rgs.columns = rgs.columns.str.strip() remove_columns = ['Steps'] rgs = rgs.drop(remove_columns, axis=1) file = "energy.dat" energy = pd.read_csv(location+file) energy.columns = energy.columns.str.strip() energy = energy[["AMH-Go", "Membrane", "Rg"]] file = "addforce.dat" dis = pd.read_csv(location+file) dis.columns = dis.columns.str.strip() remove_columns = ['Steps', 'AddedForce', 'Dis12', 'Dis34', 'Dis56'] dis.drop(remove_columns, axis=1,inplace=True) file = "wham.dat" wham = pd.read_csv(location+file).assign(Run=i) wham.columns = wham.columns.str.strip() remove_columns = ['Rg', 'Tc'] wham = wham.drop(remove_columns, axis=1) if qnqc: qc = pd.read_table(location+f"qc", names=["qc"])[1:].reset_index(drop=True) qn = pd.read_table(location+f"qn", names=["qn"])[1:].reset_index(drop=True) qc2 = pd.read_table(location+f"qc2", names=["qc2"])[1:].reset_index(drop=True) wham = pd.concat([wham, qn, qc, qc2],axis=1) # if average_z: # z = pd.read_table(location+f"z_{i}.dat", names=["AverageZ"])[1:].reset_index(drop=True) # wham = pd.concat([wham, z],axis=1) if disReal: tmp = pd.read_csv(location+f"distance.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() wham = pd.concat([wham, tmp],axis=1) if average_z: z = pd.read_csv(location+f"z_complete.dat")[1:].reset_index(drop=True) z.columns = z.columns.str.strip() wham = pd.concat([wham, z],axis=1) if localQ: all_localQ = pd.read_csv(location+f"localQ.csv")[1:].reset_index(drop=True) wham = pd.concat([wham, all_localQ], axis=1) data = pd.concat([wham, dis, energy, rgs, lipid], axis=1) t3 = data.assign(TotalE=data.Energy + data.Lipid) return t3.reset_index(drop=True) def read_folder(location, match="", **kwargs): runFolders = os.listdir(location+"/simulation") if match == "qbias": runFolders = [f for f in runFolders if re.match(r'qbias_[0-9]+', f)] else: runFolders = [f for f in runFolders if re.match(r'[0-9]+', f)] print(runFolders) data_list = [] for run in runFolders: tmp = read_simulation_2(location+"/simulation/"+run+"/0/", **kwargs).assign(Run=run) data_list.append(tmp) return pd.concat(data_list).reset_index(drop=True) def read_variable_folder(location, match="*_", **kwargs): variables = glob.glob(os.path.join(location, match)) print(variables) data_list = [] for variableFolder in variables: tmp = variableFolder.split("/")[-1] data_list.append(read_folder(variableFolder, **kwargs).assign(Folder=tmp)) data = pd.concat(data_list) name = f"{datetime.today().strftime('%d_%h_%H%M%S')}.feather" data.reset_index(drop=True).to_feather(name) def downloadPdb(pdb_list): os.system("mkdir -p original_pdbs") for pdb_id in pdb_list: pdb = f"{pdb_id.lower()[:4]}" pdbFile = pdb+".pdb" if not os.path.isfile("original_pdbs/"+pdbFile): pdbl = PDBList() name = pdbl.retrieve_pdb_file(pdb, pdir='.', file_format='pdb') os.system(f"mv {name} original_pdbs/{pdbFile}") def cleanPdb(pdb_list, chain=None): os.system("mkdir -p cleaned_pdbs") for pdb_id in pdb_list: pdb = f"{pdb_id.lower()[:4]}" if chain is None: if len(pdb_id) == 5: Chosen_chain = pdb_id[4].upper() else: assert(len(pdb_id) == 4) Chosen_chain = "A" else: Chosen_chain = chain pdbFile = pdb+".pdb" # clean pdb fixer = PDBFixer(filename="original_pdbs/"+pdbFile) # remove unwanted chains chains = list(fixer.topology.chains()) chains_to_remove = [i for i, x in enumerate(chains) if x.id not in Chosen_chain] fixer.removeChains(chains_to_remove) fixer.findMissingResidues() # add missing residues in the middle of a chain, not ones at the start or end of the chain. chains = list(fixer.topology.chains()) keys = fixer.missingResidues.keys() # print(keys) for key in list(keys): chain = chains[key[0]] if key[1] == 0 or key[1] == len(list(chain.residues())): del fixer.missingResidues[key] fixer.findNonstandardResidues() fixer.replaceNonstandardResidues() fixer.removeHeterogens(keepWater=False) fixer.findMissingAtoms() fixer.addMissingAtoms() fixer.addMissingHydrogens(7.0) PDBFile.writeFile(fixer.topology, fixer.positions, open("cleaned_pdbs/"+pdbFile, 'w')) def getAllChains(pdbFile): fixer = PDBFixer(filename=pdbFile) # remove unwanted chains chains = list(fixer.topology.chains()) a = "" for i in chains: a += i.id return ''.join(sorted(set(a.upper().replace(" ", "")))) def add_chain_to_pymol_pdb(location): # location = "/Users/weilu/Research/server/nov_2018/openMM/random_start/1r69.pdb" with open("tmp", "w") as out: with open(location, "r") as f: for line in f: info = list(line) if len(info) > 21: info[21] = "A" out.write("".join(info)) os.system(f"mv tmp {location}") # ----------------------------depreciated--------------------------------------- def read_simulation(location): file = "lipid.dat" lipid = pd.read_csv(location+file) lipid.columns = lipid.columns.str.strip() file = "energy.dat" energy = pd.read_csv(location+file) energy.columns = energy.columns.str.strip() file = "addforce.dat" dis = pd.read_csv(location+file) dis.columns = dis.columns.str.strip() # remove_columns = ['AddedForce', 'Dis12', 'Dis34', 'Dis56'] file = "rgs.dat" rgs = pd.read_csv(location+file) rgs.columns = rgs.columns.str.strip() file = "wham.dat" wham = pd.read_csv(location+file) wham.columns = wham.columns.str.strip() remove_columns = ['Rg', 'Tc'] wham = wham.drop(remove_columns, axis=1) data = wham.merge(rgs, how='inner', left_on=["Steps"], right_on=["Steps"]).\ merge(dis, how='inner', left_on=["Steps"], right_on=["Steps"]).\ merge(energy, how='inner', left_on=["Steps"], right_on=["Steps"]).\ merge(lipid, how='inner', left_on=["Steps"], right_on=["Steps"]) data = data.assign(TotalE=data.Energy + data.Lipid) return data def process_complete_temper_data_2(pre, data_folder, folder_list, rerun=-1, n=12, bias="dis", qnqc=False, average_z=False, localQ=False): print("process temp data") dateAndTime = datetime.today().strftime('%d_%h_%H%M%S') for folder in folder_list: simulation_list = glob.glob(pre+folder+f"/simulation/{bias}_*") print(pre+folder+f"/simulation/{bias}_*") os.system("mkdir -p " + pre+folder+"/data") # this one only consider rerun >=0, for the case rerun=-1, move log.lammps to log0 for i in range(rerun+1): all_data_list = [] for one_simulation in simulation_list: bias_num = one_simulation.split("_")[-1] print(bias_num, "!") location = one_simulation + f"/{i}/" print(location) data = read_complete_temper_2(location=location, n=n, rerun=i, qnqc=qnqc, average_z=average_z, localQ=localQ) print(data.shape) # remove_columns = ['Step', "Run"] # data = data.drop(remove_columns, axis=1) all_data_list.append(data.assign(BiasTo=bias_num)) data = pd.concat(all_data_list).reset_index(drop=True) # if localQ: # print("hi") # else: # data.to_csv(os.path.join(pre, folder, f"data/rerun_{i}.csv")) # complete_data_list.append(data) # temps = list(dic.keys()) # complete_data = pd.concat(complete_data_list) name = f"rerun_{i}_{dateAndTime}.feather" data.reset_index(drop=True).to_feather(pre+folder+"/" + name) os.system("cp "+pre+folder+"/" + name + " "+data_folder) def move_data3(data_folder, freeEnergy_folder, folder, sub_mode_name="", kmem=0.2, klipid=0.1, kgo=0.1, krg=0.2, sample_range_mode=0, biasName="dis", qnqc=False, average_z=0, chosen_mode=0): print("move data") dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000} # read in complete.feather data = pd.read_feather(data_folder + folder +".feather") os.system("mkdir -p "+freeEnergy_folder+"/"+sub_mode_name+f"/data_{sample_range_mode}") for bias, oneBias in data.groupby("BiasTo"): for tempSymbol, oneTempAndBias in oneBias.groupby("Temp"): temp = dic[tempSymbol] if float(temp) > 800: continue print(f"t_{temp}_{biasName}_{bias}.dat") if sample_range_mode == 0: queryCmd = 'Step > 0 & Step <= 1e7' if sample_range_mode == 1: queryCmd = 'Step > 1e7 & Step <= 2e7' elif sample_range_mode == 2: queryCmd ='Step > 2e7 & Step <= 3e7' elif sample_range_mode == 3: queryCmd ='Step > 3e7 & Step <= 4e7' elif sample_range_mode == 4: queryCmd ='Step > 4e7 & Step <= 5e7' elif sample_range_mode == 5: queryCmd ='Step > 5e7 & Step <= 6e7' elif sample_range_mode == -1: queryCmd ='Step > 4e7 & Step <= 6e7' tmp = oneTempAndBias.query(queryCmd) chosen_list = ["TotalE", "Qw", "Distance"] if average_z == 1: chosen_list += ["abs_z_average"] if average_z == 2: chosen_list += ["z_h6"] if chosen_mode == 0: chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_perturb_mem_p=tmp.TotalE + kmem*tmp.Membrane, TotalE_perturb_mem_m=tmp.TotalE - kmem*tmp.Membrane, TotalE_perturb_lipid_p=tmp.TotalE + klipid*tmp.Lipid, TotalE_perturb_lipid_m=tmp.TotalE - klipid*tmp.Lipid, TotalE_perturb_go_p=tmp.TotalE + kgo*tmp["AMH-Go"], TotalE_perturb_go_m=tmp.TotalE - kgo*tmp["AMH-Go"], TotalE_perturb_rg_p=tmp.TotalE + krg*tmp.Rg, TotalE_perturb_rg_m=tmp.TotalE - krg*tmp.Rg) if chosen_mode == 1: chosen_list += ["Res" + str(i+1) for i in range(181)] chosen = tmp[chosen_list] # print(tmp.count()) chosen.to_csv(freeEnergy_folder+"/"+sub_mode_name+f"/data_{sample_range_mode}/t_{temp}_{biasName}_{bias}.dat", sep=' ', index=False, header=False) def move_data2(data_folder, freeEnergy_folder, folder, sub_mode_name="", kmem=0.2, klipid=0.1, kgo=0.1, krg=0.2, sample_range_mode=0, biasName="dis", qnqc=False, average_z=0, chosen_mode=0): print("move data") dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000} # read in complete.feather data = pd.read_feather(data_folder + folder +".feather") os.system("mkdir -p "+freeEnergy_folder+folder+sub_mode_name+"/data") for bias, oneBias in data.groupby("BiasTo"): for tempSymbol, oneTempAndBias in oneBias.groupby("Temp"): temp = dic[tempSymbol] if float(temp) > 800: continue print(f"t_{temp}_{biasName}_{bias}.dat") if sample_range_mode == 0: queryCmd = 'Step > 1e7 & Step <= 2e7' elif sample_range_mode == 1: queryCmd ='Step > 2e7 & Step <= 3e7' elif sample_range_mode == 2: queryCmd ='Step > 3e7 & Step <= 4e7' elif sample_range_mode == 3: queryCmd ='Step > 4e7 & Step <= 5e7' elif sample_range_mode == 4: queryCmd ='Step > 5e7 & Step <= 6e7' elif sample_range_mode == -1: queryCmd ='Step > 4e7 & Step <= 6e7' tmp = oneTempAndBias.query(queryCmd) chosen_list = ["TotalE", "Qw", "Distance"] if average_z == 1: chosen_list += ["abs_z_average"] if average_z == 2: chosen_list += ["z_h6"] if chosen_mode == 0: chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_perturb_mem_p=tmp.TotalE + kmem*tmp.Membrane, TotalE_perturb_mem_m=tmp.TotalE - kmem*tmp.Membrane, TotalE_perturb_lipid_p=tmp.TotalE + klipid*tmp.Lipid, TotalE_perturb_lipid_m=tmp.TotalE - klipid*tmp.Lipid, TotalE_perturb_go_p=tmp.TotalE + kgo*tmp["AMH-Go"], TotalE_perturb_go_m=tmp.TotalE - kgo*tmp["AMH-Go"], TotalE_perturb_rg_p=tmp.TotalE + krg*tmp.Rg, TotalE_perturb_rg_m=tmp.TotalE - krg*tmp.Rg) if chosen_mode == 1: chosen_list += ["Res" + str(i+1) for i in range(181)] chosen = tmp[chosen_list] # print(tmp.count()) chosen.to_csv(freeEnergy_folder+folder+sub_mode_name+f"/data/t_{temp}_{biasName}_{bias}.dat", sep=' ', index=False, header=False) # chosen def make_metadata_2(cwd=".", k=1000.0, temps_list=["450"]): files = glob.glob("../../data/*") kconstant = k with open("metadatafile", "w") as out: for oneFile in files: tmp = oneFile.split("/")[-1].replace('.dat', '') t = tmp.split("_")[1] bias = tmp.split("_")[3] # print(tmp) # if int(float(dis)) > 150: # continue if t in temps_list: target = "{} {} {} {}\n".format(oneFile, t, kconstant, bias) out.write(target) def make_metadata(k=1000.0, temps_list=["450"]): cwd = os.getcwd() files = glob.glob("../data/*") kconstant = k with open("metadatafile", "w") as out: for oneFile in files: tmp = oneFile.split("/")[-1].replace('.dat', '') t = tmp.split("_")[1] bias = tmp.split("_")[3] # print(tmp) # if int(float(dis)) > 150: # continue if t in temps_list: target = "../{} {} {} {}\n".format(oneFile, t, kconstant, bias) out.write(target) def read_complete_temper(n=4, location=".", rerun=-1, qnqc=False, average_z=False, localQ=False): all_lipid_list = [] for i in range(n): file = "lipid.{}.dat".format(i) lipid = pd.read_csv(location+file).assign(Run=i) lipid.columns = lipid.columns.str.strip() # lipid = lipid[["Steps","Lipid","Run"]] all_lipid_list.append(lipid) lipid = pd.concat(all_lipid_list) all_rgs_list = [] for i in range(n): file = "rgs.{}.dat".format(i) rgs = pd.read_csv(location+file).assign(Run=i) rgs.columns = rgs.columns.str.strip() # lipid = lipid[["Steps","Lipid","Run"]] all_rgs_list.append(rgs) rgs = pd.concat(all_rgs_list) all_energy_list = [] for i in range(n): file = "energy.{}.dat".format(i) energy = pd.read_csv(location+file).assign(Run=i) energy.columns = energy.columns.str.strip() energy = energy[["Steps", "AMH-Go", "Membrane", "Rg", "Run"]] all_energy_list.append(energy) energy = pd.concat(all_energy_list) all_dis_list = [] for i in range(n): file = "addforce.{}.dat".format(i) dis = pd.read_csv(location+file).assign(Run=i) dis.columns = dis.columns.str.strip() remove_columns = ['AddedForce', 'Dis12', 'Dis34', 'Dis56'] dis.drop(remove_columns, axis=1,inplace=True) all_dis_list.append(dis) dis =
pd.concat(all_dis_list)
pandas.concat
import json import numpy as np import pandas as pd import shap import sys from sqlalchemy import create_engine from sklearn.isotonic import IsotonicRegression from sklearn.metrics import roc_auc_score, average_precision_score, matthews_corrcoef, precision_score, recall_score from tensorflow.keras.callbacks import ModelCheckpoint, Callback from tensorflow.keras.layers import Activation, Lambda, ReLU from tensorflow.keras.models import Model, load_model from utils import pick_features, handle_imbalance, remove_old_results_from_db, make_feature_subset class early_stopping_by_metric(Callback): """ A helper callback allowing us to stop training only when the defined metric reaches a certain value. """ def __init__(self, monitor="loss", value=0.00001): super(Callback, self).__init__() self.monitor, self.value = monitor, value def on_epoch_end(self, epoch, logs={}): if logs.get(self.monitor) <= self.value: self.model.stop_training = True # sys.stdout = open(snakemake.log[0], "w") DBNAME = snakemake.params["dbname"] DBUSER = snakemake.params["dbuser"] DBSCHEMA = snakemake.params["dbschema"] psql_url = f"postgresql://{DBUSER}@trans-db-01/{DBNAME}?options=-c%20search_path={DBSCHEMA}" engine = create_engine(psql_url) with engine.connect() as connection: outcome_type = snakemake.wildcards["outcome_type"] model_type = snakemake.wildcards["model_type"] outcome_variable = snakemake.wildcards["outcome_variable"] optuna_study_name = f"{outcome_type}__{model_type}__{outcome_variable}" feature_subset = make_feature_subset(outcome_type) hp = pd.read_sql(f"SELECT hyperparameters FROM best_trials WHERE study_name = '{optuna_study_name}'", connection) hp = json.loads(hp.hyperparameters[0]) datasets = {x: pd.read_sql("data_" + x, connection) for x in ("dev", "test", "test_new")} features = {k: pick_features(v, feature_subset).values for k,v in datasets.items()} y = {k: v[outcome_variable].values for k,v in datasets.items()} features["dev"], y["dev"], class_weights = \ handle_imbalance(features["dev"], y["dev"], hp["class_handling"]) # Read settings needed to pick up where best CV fold stopped so we can load the model cv_model_to_continue_training = pd.read_sql(f""" WITH cte_loss AS ( SELECT bt.study_name , trial_number , cv_fold , (eval_val::json->>'loss')::float AS target_loss FROM best_trials AS bt INNER JOIN trials ON trials.trial_id = bt.trial_id INNER JOIN training_summaries AS ts ON ts.study_name = bt.study_name AND ts.trial_number = trials.number ) SELECT * FROM ( SELECT *, ROW_NUMBER() OVER(PARTITION BY study_name ORDER BY target_loss) AS rn FROM cte_loss ) AS loss WHERE rn = 1 AND study_name = '{optuna_study_name}'; """, connection) cv_fold = int(cv_model_to_continue_training.cv_fold) trial_number = int(cv_model_to_continue_training.trial_number) target_loss = float(cv_model_to_continue_training.target_loss) model_crude = load_model(snakemake.params["weights_dir"] + \ f"/{optuna_study_name}__trial_{trial_number}__cv_fold_{cv_fold}__best_weights.hdf5") # Define callbacks study_name = f"{outcome_type}__{model_type}__{outcome_variable}__final" weights_fpath = snakemake.params["weights_dir"] + f"/final__{study_name}__best_weights.hdf5" checkpoint = ModelCheckpoint( # needed to save the model so we can re-invoke it below for Platt calibration monitor="loss", filepath=weights_fpath, save_best_only=True, save_weights_only=False, mode="min" ) early_stopping = early_stopping_by_metric(value=target_loss) # Continue training hist = model_crude.fit( x=features["dev"], y=y["dev"], verbose=False, epochs=500, batch_size=hp["batch_size"], validation_data=None, callbacks=[checkpoint, early_stopping], class_weight=class_weights ) # Platt recalibration # acoeff, bcoeff = _sigmoid_calibration(model_crude.predict(features["dev"]), y["dev"]) # # platt = model_crude.layers[-1].output # platt = Lambda(lambda x: -(acoeff*x + bcoeff))(platt) # platt = Activation("sigmoid")(platt) # model_platt = Model(inputs=model_crude.layers[0].input, outputs=platt) # # # Isotonic regression # iso_reg = IsotonicRegression(y_min=0, y_max=1, out_of_bounds="clip") # iso_reg = iso_reg.fit(model_crude.predict(features["dev"]).squeeze(), y["dev"]) # Make predictions and save in database def make_pred_df (y_true, features, dataset, mod, pred_type=None): y_pred = pd.DataFrame(mod.predict(features), columns=["y_pred"]) # if pred_type == "isotonic": # y_pred = pd.DataFrame(iso_reg.predict(y_pred.squeeze()), columns=["y_pred"]) context = pd.DataFrame({ "study_name": study_name, "dataset": dataset, "admission_id": datasets[dataset].admission_id, "pred_type": pred_type, "y_true": y_true}) return pd.concat([context, y_pred], axis="columns") preds = pd.concat([make_pred_df(y[k], features[k], k, model_crude, "crude") for k in datasets.keys()]) remove_old_results_from_db("predictions", "study_name", study_name, connection) preds.to_sql("predictions", connection, if_exists="append", index=False) # Evaluation metrics def get_metrics(k, mod=model_crude, pred_type="crude"): # First, find best threshold as per Matthew's correlation coefficient y_pred_train = mod.predict(features["dev"]) y_true_train = y["dev"] best_mcc = 0 threshold = 0 for th in np.linspace(0, 1, 100, endpoint=False): y_binary = (y_pred_train > th).astype("int32") mcc = matthews_corrcoef(y_true_train, y_binary) if mcc > best_mcc: threshold = th # Then, use threshold to compute metrics y_true = y[k] y_pred = mod.predict(features[k]) y_pred_binary = (y_pred > threshold).astype("int32") return pd.DataFrame({ "study_name": study_name, "dataset": k, "pred_type": pred_type, "auroc": roc_auc_score(y_true, y_pred), "avg_prec_score": average_precision_score(y_true, y_pred), "mcc": matthews_corrcoef(y_true, y_pred_binary), "precision": precision_score(y_true, y_pred_binary), "recall": recall_score(y_true, y_pred_binary), "threshold": threshold, "n_epochs": len(hist.history["loss"]) }, index=[0]) metrics = pd.concat([get_metrics(k, model_crude, "crude") for k in datasets.keys()]) remove_old_results_from_db("evaluation_metrics", "study_name", study_name, connection) metrics.to_sql("evaluation_metrics", connection, if_exists="append", index=False) # Make SHAP explanations features = {k: pick_features(v, feature_subset) for k,v in datasets.items()} # needed again without converting to np array try: n_samples = min(snakemake.params["n_shap_background"], features["dev"].shape[0]) background_set = features["dev"].sample(n_samples, random_state=42) except: background_set = features["dev"] try: n_explanations = snakemake.params["n_explanations"] except: n_explanations = features["test"].shape[0] print("Creating explainer") e = shap.DeepExplainer(model_crude, background_set.values) print("Computing shap values") shap_values = e.shap_values(features["test"][:n_explanations].values)[0] print("Creating combined dataframe and writing to database") context = pd.DataFrame({ "study_name": study_name, "dataset": "test", "pred_type": "crude", "admission_id": datasets["test"].admission_id[:n_explanations], "y_true": y["test"][:n_explanations], "y_pred": model_crude.predict(features["test"][:n_explanations]).squeeze(), "base_value": float(e.expected_value) }) shap_df = pd.concat([context,
pd.DataFrame(shap_values, columns=background_set.columns)
pandas.DataFrame
from abc import ABC, abstractmethod import argparse import datetime import multiprocessing as mp import numpy as np import os import sys import pandas as pd import shutil import subprocess from typing import Union, List from yaml import dump import ChildProject from ChildProject.pipelines.pipeline import Pipeline pipelines = {} class AudioProcessor(ABC): def __init__( self, project: ChildProject.projects.ChildProject, name: str, input_profile: str = None, threads: int = 1, recordings: Union[str, List[str], pd.DataFrame] = None, ): self.project = project self.name = name self.threads = int(threads) self.recordings = Pipeline.recordings_from_list(recordings) self.input_profile = input_profile if self.input_profile: input_path = os.path.join( self.project.path, ChildProject.projects.ChildProject.CONVERTED_RECORDINGS, self.input_profile, ) assert os.path.exists( input_path ), f"provided input profile {input_profile} does not exist" self.converted = pd.DataFrame() def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) pipelines[cls.SUBCOMMAND] = cls def output_directory(self): return os.path.join( self.project.path, ChildProject.projects.ChildProject.CONVERTED_RECORDINGS, self.name, ) def read_metadata(self): path = os.path.join(self.output_directory(), "recordings.csv") if os.path.exists(path): return pd.read_csv(path).set_index( ["original_filename", "converted_filename"] ) else: return None def export_metadata(self): path = os.path.join(self.output_directory(), "recordings.csv") self.converted.to_csv(path) @abstractmethod def process_recording(self, recording): pass def process(self, parameters): recordings = self.project.get_recordings_from_list(self.recordings) os.makedirs(name=self.output_directory(), exist_ok=True) if self.threads == 1: self.converted = [ self.process_recording(recording) for recording in recordings.to_dict("records") ] else: with mp.Pool(processes=self.threads) as pool: self.converted = pool.map( self.process_recording, recordings.to_dict("records") ) previously_converted = self.read_metadata() self.converted =
pd.concat(self.converted)
pandas.concat
# Import python modules import os, sys # data handling libraries import pandas as pd import numpy as np import pickle import json import dask from multiprocessing import Pool # graphical control libraries import matplotlib as mpl mpl.use('agg') import matplotlib.pyplot as plt # shape and layer libraries import fiona from shapely.geometry import MultiPolygon, shape, point, box from descartes import PolygonPatch from matplotlib.collections import PatchCollection from mpl_toolkits.basemap import Basemap from mpl_toolkits.axes_grid1 import make_axes_locatable import geopandas as gpd # data wrangling libraries import ftplib, urllib, wget, bz2 from bs4 import BeautifulSoup as bs class ogh_meta: """ The json file that describes the Gridded climate data products """ def __init__(self): self.__meta_data = dict(json.load(open('ogh_meta.json','rb'))) # key-value retrieval def __getitem__(self, key): return(self.__meta_data[key]) # key list def keys(self): return(self.__meta_data.keys()) # value list def values(self): return(self.__meta_data.values()) # print('Version '+datetime.fromtimestamp(os.path.getmtime('ogh.py')).strftime('%Y-%m-%d %H:%M:%S')+' jp') def saveDictOfDf(outfilename, dictionaryObject): # write a dictionary of dataframes to a json file using pickle with open(outfilename, 'wb') as f: pickle.dump(dictionaryObject, f) f.close() def readDictOfDf(infilename): # read a dictionary of dataframes from a json file using pickle with open(infilename, 'rb') as f: dictionaryObject = pickle.load(f) f.close() return(dictionaryObject) def reprojShapefile(sourcepath, newprojdictionary={'proj':'longlat', 'ellps':'WGS84', 'datum':'WGS84'}, outpath=None): """ sourcepath: (dir) the path to the .shp file newprojdictionary: (dict) the new projection definition in the form of a dictionary (default provided) outpath: (dir) the output path for the new shapefile """ # if outpath is none, treat the reprojection as a file replacement if isinstance(outpath, type(None)): outpath = sourcepath shpfile = gpd.GeoDataFrame.from_file(sourcepath) shpfile = shpfile.to_crs(newprojdictionary) shpfile.to_file(outpath) def getFullShape(shapefile): """ Generate a MultiPolygon to represent each shape/polygon within the shapefile shapefile: (dir) a path to the ESRI .shp shapefile """ shp = fiona.open(shapefile) mp = [shape(pol['geometry']) for pol in shp] mp = MultiPolygon(mp) shp.close() return(mp) def getShapeBbox(polygon): """ Generate a geometric box to represent the bounding box for the polygon, shapefile connection, or MultiPolygon polygon: (geometry) a geometric polygon, MultiPolygon, or shapefile connection """ # identify the cardinal bounds minx, miny, maxx, maxy = polygon.bounds bbox = box(minx, miny, maxx, maxy, ccw=True) return(bbox) def readShapefileTable(shapefile): """ read in the datatable captured within the shapefile properties shapefile: (dir) a path to the ESRI .shp shapefile """ #cent_df = gpd.read_file(shapefile) shp = fiona.open(shapefile) centroid = [eachpol['properties'] for eachpol in shp] cent_df = pd.DataFrame.from_dict(centroid, orient='columns') shp.close() return(cent_df) def filterPointsinShape(shape, points_lat, points_lon, points_elev=None, buffer_distance=0.06, buffer_resolution=16, labels=['LAT', 'LONG_', 'ELEV']): """ filter for datafiles that can be used shape: (geometry) a geometric polygon or MultiPolygon points_lat: (series) a series of latitude points in WGS84 projection points_lon: (series) a series of longitude points in WGS84 projection points_elev: (series) a series of elevation points in meters; optional - default is None buffer_distance: (float64) a numerical multiplier to increase the geodetic boundary area buffer_resolution: (float64) the increments between geodetic longlat degrees labels: (list) a list of preferred labels for latitude, longitude, and elevation """ # add buffer region region = shape.buffer(buffer_distance, resolution=buffer_resolution) # construct points_elev if null if isinstance(points_elev, type(None)): points_elev=np.repeat(np.nan, len(points_lon)) # Intersection each coordinate with the region limited_list = [] for lon, lat, elev in zip(points_lon, points_lat, points_elev): gpoint = point.Point(lon, lat) if gpoint.intersects(region): limited_list.append([lat, lon, elev]) maptable = pd.DataFrame.from_records(limited_list, columns=labels) ## dask approach ## #intersection=[] #for lon, lat, elev in zip(points_lon, points_lat, points_elev): # gpoint = point.Point(lon, lat) # intersection.append(dask.delayed(gpoint.intersects(region))) # limited_list.append([intersection, lat, lon, elev]) # convert to dataframe #maptable = pd.DataFrame({labels[0]:points_lat, labels[1]:points_lon, labels[2]:points_elev} # .loc[dask.compute(intersection)[0],:] # .reset_index(drop=True) return(maptable) def scrapeurl(url, startswith=None, hasKeyword=None): """ scrape the gridded datafiles from a url of interest url: (str) the web folder path to be scraped for hyperlink references startswith: (str) the starting keywords for a webpage element; default is None hasKeyword: (str) keywords represented in a webpage element; default is None """ # grab the html of the url, and prettify the html structure page = urllib2.urlopen(url).read() page_soup = bs(page, 'lxml') page_soup.prettify() # loop through and filter the hyperlinked lines if pd.isnull(startswith): temp = [anchor['href'] for anchor in page_soup.findAll('a', href=True) if hasKeyword in anchor['href']] else: temp = [anchor['href'] for anchor in page_soup.findAll('a', href=True) if anchor['href'].startswith(startswith)] # convert to dataframe then separate the lon and lat as float coordinate values temp = pd.DataFrame(temp, columns = ['filenames']) return(temp) def treatgeoself(shapefile, NAmer, folder_path=os.getcwd(), outfilename='mappingfile.csv', buffer_distance=0.06): """ TreatGeoSelf to some [data] lovin'! shapefile: (dir) the path to an ESRI shapefile for the region of interest Namer: (dir) the path to an ESRI shapefile, which has each 1/16th coordinate and elevation information from a DEM folder_path: (dir) the destination folder path for the mappingfile output; default is the current working directory outfilename: (str) the name of the output file; default name is 'mappingfile.csv' buffer_distance: (float64) the multiplier to be applied for increasing the geodetic boundary area; default is 0.06 """ # conform projections to longlat values in WGS84 reprojShapefile(shapefile, newprojdictionary={'proj':'longlat', 'ellps':'WGS84', 'datum':'WGS84'}, outpath=None) # read shapefile into a multipolygon shape-object shape_mp = getFullShape(shapefile) # read in the North American continental DEM points for the station elevations NAmer_datapoints = readShapefileTable(NAmer).rename(columns={'Lat':'LAT','Long':'LONG_','Elev':'ELEV'}) # generate maptable maptable = filterPointsinShape(shape_mp, points_lat=NAmer_datapoints.LAT, points_lon=NAmer_datapoints.LONG_, points_elev=NAmer_datapoints.ELEV, buffer_distance=buffer_distance, buffer_resolution=16, labels=['LAT', 'LONG_', 'ELEV']) maptable.reset_index(inplace=True) maptable = maptable.rename(columns={"index":"FID"}) print(maptable.shape) print(maptable.tail()) # print the mappingfile mappingfile=os.path.join(folder_path, outfilename) maptable.to_csv(mappingfile, sep=',', header=True, index=False) return(mappingfile) def mapContentFolder(resid): """ map the content folder within HydroShare resid: (str) a string hash that represents the hydroshare resource that has been migrated """ path = os.path.join('/home/jovyan/work/notebooks/data', str(resid), str(resid), 'data/contents') return(path) # ### CIG (DHSVM)-oriented functions def compile_bc_Livneh2013_locations(maptable): """ compile a list of file URLs for bias corrected Livneh et al. 2013 (CIG) maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/Livneh/bcLivneh_WWA_2013/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) def compile_Livneh2013_locations(maptable): """ compile a list of file URLs for Livneh et al. 2013 (CIG) maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://www.cses.washington.edu/rocinante/Livneh/Livneh_WWA_2013/forcs_dhsvm/',basename] locations.append(''.join(url)) return(locations) ### VIC-oriented functions def compile_VICASCII_Livneh2015_locations(maptable): """ compile the list of file URLs for Livneh et al., 2015 VIC.ASCII outputs maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Fluxes_Livneh_NAmerExt_15Oct2014', str(row['LAT']), str(row['LONG_'])]) url=["ftp://192.168.127.12/pub/dcp/archive/OBS/livneh2014.1_16deg/VIC.ASCII/latitude.",str(row['LAT']),'/',loci,'.bz2'] locations.append(''.join(url)) return(locations) def compile_VICASCII_Livneh2013_locations(maptable): """ compile the list of file URLs for Livneh et al., 2013 VIC.ASCII outputs for the USA maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ # identify the subfolder blocks blocks = scrape_domain(domain='livnehpublicstorage.colorado.edu', subdomain='/public/Livneh.2013.CONUS.Dataset/Fluxes.asc.v.1.2.1915.2011.bz2/', startswith='fluxes') # map each coordinate to the subfolder maptable = mapToBlock(maptable, blocks) locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['VIC_fluxes_Livneh_CONUSExt_v.1.2_2013', str(row['LAT']), str(row['LONG_'])]) url='/'.join(["ftp://livnehpublicstorage.colorado.edu/public/Livneh.2013.CONUS.Dataset/Fluxes.asc.v.1.2.1915.2011.bz2", str(row['blocks']), loci+".bz2"]) locations.append(url) return(locations) ### Climate (Meteorological observations)-oriented functions def canadabox_bc(): """ Establish the Canadian (north of the US bounding boxes) Columbia river basin bounding box """ # left, bottom, right top return(box(-138.0, 49.0, -114.0, 53.0)) def scrape_domain(domain, subdomain, startswith=None): """ scrape the gridded datafiles from a url of interest domain: (str) the web folder path subdomain: (str) the subfolder path to be scraped for hyperlink references startswith: (str) the starting keywords for a webpage element; default is None """ # connect to domain ftp = ftplib.FTP(domain) ftp.login() ftp.cwd(subdomain) # scrape for data directories tmp = [dirname for dirname in ftp.nlst() if dirname.startswith(startswith)] geodf = pd.DataFrame(tmp, columns=['dirname']) # conform to bounding box format tmp = geodf['dirname'].apply(lambda x: x.split('.')[1:]) tmp = tmp.apply(lambda x: list(map(float,x)) if len(x)>2 else x) # assemble the boxes geodf['bbox']=tmp.apply(lambda x: box(x[0]*-1, x[2]-1, x[1]*-1, x[3]) if len(x)>2 else canadabox_bc()) return(geodf) def mapToBlock(df_points, df_regions): for index, eachblock in df_regions.iterrows(): for ind, row in df_points.iterrows(): if point.Point(row['LONG_'], row['LAT']).intersects(eachblock['bbox']): df_points.loc[ind, 'blocks'] = str(eachblock['dirname']) return(df_points) def compile_dailyMET_Livneh2013_locations(maptable): """ compile the list of file URLs for Livneh et al., 2013 Daily Meteorology data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ # identify the subfolder blocks blocks = scrape_domain(domain='livnehpublicstorage.colorado.edu', subdomain='/public/Livneh.2013.CONUS.Dataset/Meteorology.asc.v.1.2.1915.2011.bz2/', startswith='data') # map each coordinate to the subfolder maptable = mapToBlock(maptable, blocks) locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Meteorology_Livneh_CONUSExt_v.1.2_2013', str(row['LAT']), str(row['LONG_'])]) url='/'.join(["ftp://livnehpublicstorage.colorado.edu/public/Livneh.2013.CONUS.Dataset/Meteorology.asc.v.1.2.1915.2011.bz2", str(row['blocks']), loci+".bz2"]) locations.append(url) return(locations) def compile_dailyMET_Livneh2015_locations(maptable): """ compile the list of file URLs for Livneh et al., 2015 Daily Meteorology data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): loci='_'.join(['Meteorology_Livneh_NAmerExt_15Oct2014', str(row['LAT']), str(row['LONG_'])]) url=["ftp://192.168.127.12/pub/dcp/archive/OBS/livneh2014.1_16deg/ascii/daily/latitude.", str(row['LAT']),"/",loci,".bz2"] locations.append(''.join(url)) return(locations) # ### WRF-oriented functions def compile_wrfnnrp_raw_Salathe2014_locations(maptable): """ compile a list of file URLs for Salathe et al., 2014 raw WRF NNRP data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/WRF/NNRP/vic_16d/WWA_1950_2010/raw/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) def compile_wrfnnrp_bc_Salathe2014_locations(maptable): """ compile a list of file URLs for the Salathe et al., 2014 bias corrected WRF NNRP data maptable: (dataframe) a dataframe that contains the FID, LAT, LONG_, and ELEV for each interpolated data file """ locations=[] for ind, row in maptable.iterrows(): basename='_'.join(['data', str(row['LAT']), str(row['LONG_'])]) url=['http://cses.washington.edu/rocinante/WRF/NNRP/vic_16d/WWA_1950_2010/bc/forcings_ascii/',basename] locations.append(''.join(url)) return(locations) # ## Data file migration functions def ensure_dir(f): """ check if the destination folder directory exists; if not, create it and set it as the working directory f: (dir) the directory to create and/or set as working directory """ if not os.path.exists(f): os.makedirs(f) os.chdir(f) def wget_download(listofinterest): """ Download files from an http domain listofinterest: (list) a list of urls to request """ # check and download each location point, if it doesn't already exist in the download directory for fileurl in listofinterest: basename = os.path.basename(fileurl) try: ping = urllib.request.urlopen(fileurl) if ping.getcode()!=404: wget.download(fileurl) print('downloaded: ' + basename) except: print('File does not exist at this URL: ' + basename) # Download the files to the subdirectory def wget_download_one(fileurl): """ Download a file from an http domain fileurl: (url) a url to request """ # check and download each location point, if it doesn't already exist in the download directory basename=os.path.basename(fileurl) # if it exists, remove for new download (overwrite mode) if os.path.isfile(basename): os.remove(basename) try: ping = urllib.request.urlopen(fileurl) if ping.getcode()!=404: wget.download(fileurl) print('downloaded: ' + basename) except: print('File does not exist at this URL: ' + basename) def wget_download_p(listofinterest, nworkers=20): """ Download files from an http domain in parallel listofinterest: (list) a list of urls to request nworkers: (int) the number of processors to distribute tasks; default is 10 """ pool = Pool(int(nworkers)) pool.map(wget_download_one, listofinterest) pool.close() pool.terminate() def ftp_download(listofinterest): """ Download and decompress files from an ftp domain listofinterest: (list) a list of urls to request """ for loci in listofinterest: # establish path info fileurl=loci.replace('ftp://','') # loci is already the url with the domain already appended ipaddress=fileurl.split('/',1)[0] # ip address path=os.path.dirname(fileurl.split('/',1)[1]) # folder path filename=os.path.basename(fileurl) # filename # download the file from the ftp server ftp=ftplib.FTP(ipaddress) ftp.login() ftp.cwd(path) try: ftp.retrbinary("RETR " + filename ,open(filename, 'wb').write) ftp.close() # decompress the file decompbz2(filename) except: os.remove(filename) print('File does not exist at this URL: '+fileurl) def ftp_download_one(loci): """ Download and decompress a file from an ftp domain loci: (url) a url to request """ # establish path info fileurl=loci.replace('ftp://','') # loci is already the url with the domain already appended ipaddress=fileurl.split('/',1)[0] # ip address path=os.path.dirname(fileurl.split('/',1)[1]) # folder path filename=os.path.basename(fileurl) # filename # download the file from the ftp server ftp=ftplib.FTP(ipaddress) ftp.login() ftp.cwd(path) try: ftp.retrbinary("RETR " + filename ,open(filename, 'wb').write) ftp.close() # decompress the file decompbz2(filename) except: os.remove(filename) print('File does not exist at this URL: '+fileurl) def ftp_download_p(listofinterest, nworkers=5): """ Download and decompress files from an ftp domain in parallel listofinterest: (list) a list of urls to request nworkers: (int) the number of processors to distribute tasks; default is 5 """ pool = Pool(int(nworkers)) pool.map(ftp_download_one, listofinterest) pool.close() pool.terminate() def decompbz2(filename): """ Extract a file from a bz2 file of the same name, then remove the bz2 file filename: (dir) the file path for a bz2 compressed file """ with open(filename.split(".bz2",1)[0], 'wb') as new_file, open(filename, 'rb') as zipfile: decompressor = bz2.BZ2Decompressor() for data in iter(lambda : zipfile.read(100 * 1024), b''): new_file.write(decompressor.decompress(data)) os.remove(filename) zipfile.close() new_file.close() print(os.path.splitext(filename)[0] + ' unzipped') def catalogfiles(folderpath): """ make a catalog of the gridded files within a folderpath folderpath: (dir) the folder of files to be catalogged, which have LAT and LONG_ as the last two filename features """ # read in downloaded files temp = [eachfile for eachfile in os.listdir(folderpath) if not os.path.isdir(eachfile)] if len(temp)==0: # no files were available; setting default catalog output structure catalog = pd.DataFrame([], columns=['filenames','LAT','LONG_']) else: # create the catalog dataframe and extract the filename components catalog = pd.DataFrame(temp, columns=['filenames']) catalog[['LAT','LONG_']] = catalog['filenames'].apply(lambda x: pd.Series(str(x).rsplit('_',2))[1:3]).astype(float) # convert the filenames column to a filepath catalog['filenames'] = catalog['filenames'].apply(lambda x: os.path.join(folderpath, x)) return(catalog) def addCatalogToMap(outfilepath, maptable, folderpath, catalog_label): """ Update the mappingfile with a new column, a vector of filepaths for the downloaded files outfilepath: (dir) the path for the output file maptable: (dataframe) a dataframe containing the FID, LAT, LONG_, and ELEV information folderpath: (dir) the folder of files to be catalogged, which have LAT and LONG_ as the last two filename features catalog_label: (str) the preferred name for the series of catalogged filepaths """ # assert catalog_label as a string-object catalog_label = str(catalog_label) # catalog the folder directory catalog = catalogfiles(folderpath).rename(columns={'filenames':catalog_label}) # drop existing column if catalog_label in maptable.columns: maptable = maptable.drop(labels=catalog_label, axis=1) # update with a vector for the catalog of files maptable = maptable.merge(catalog, on=['LAT','LONG_'], how='left') # remove blocks, if they were needed if 'blocks' in maptable.columns: maptable = maptable.drop(labels=['blocks'], axis=1) # write the updated mappingfile maptable.to_csv(outfilepath, header=True, index=False) # Wrapper scripts def getDailyMET_livneh2013(homedir, mappingfile, subdir='livneh2013/Daily_MET_1915_2011/raw', catalog_label='dailymet_livneh2013'): """ Get the Livneh el al., 2013 Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate DailyMET livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_dailyMET_Livneh2013_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyMET_livneh2015(homedir, mappingfile, subdir='livneh2015/Daily_MET_1950_2013/raw', catalog_label='dailymet_livneh2015'): """ Get the Livneh el al., 2015 Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate Daily MET livneh 2015 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_dailyMET_Livneh2015_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyMET_bcLivneh2013(homedir, mappingfile, subdir='livneh2013/Daily_MET_1915_2011/bc', catalog_label='dailymet_bclivneh2013'): """ Get the Livneh el al., 2013 bias corrected Daily Meteorology files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate baseline_corrected livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_bc_Livneh2013_locations(maptable) # download the files wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyVIC_livneh2013(homedir, mappingfile, subdir='livneh2013/Daily_VIC_1915_2011', catalog_label='dailyvic_livneh2013'): """ Get the Livneh el al., 2013 Daily VIC files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # FIRST RUN # check and generate VIC_ASCII Flux model livneh 2013 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points for USA locations = compile_VICASCII_Livneh2013_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyVIC_livneh2015(homedir, mappingfile, subdir='livneh2015/Daily_VIC_1950_2013', catalog_label='dailyvic_livneh2015'): """ Get the Livneh el al., 2015 Daily VIC files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate Daily VIC.ASCII Flux model livneh 2015 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # generate table of lats and long coordinates maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_VICASCII_Livneh2015_locations(maptable) # Download the files ftp_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyWRF_salathe2014(homedir, mappingfile, subdir='salathe2014/WWA_1950_2010/raw', catalog_label='dailywrf_salathe2014'): """ Get the Salathe el al., 2014 raw Daily WRF files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate the Daily Meteorology raw WRF Salathe 2014 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # read in the longitude and latitude points from the reference mapping file maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_wrfnnrp_raw_Salathe2014_locations(maptable) # download the data wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) def getDailyWRF_bcsalathe2014(homedir, mappingfile, subdir='salathe2014/WWA_1950_2010/bc', catalog_label='dailywrf_bcsalathe2014'): """ Get the Salathe el al., 2014 bias corrected Daily WRF files of interest using the reference mapping file homedir: (dir) the home directory to be used for establishing subdirectories mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest subdir: (dir) the subdirectory to be established under homedir catalog_label: (str) the preferred name for the series of catalogged filepaths """ # check and generate the Daily Meteorology bias corrected WRF Salathe 2014 data directory filedir=os.path.join(homedir, subdir) ensure_dir(filedir) # read in the longitude and latitude points from the reference mapping file maptable = pd.read_csv(mappingfile) # compile the longitude and latitude points locations = compile_wrfnnrp_bc_Salathe2014_locations(maptable) # download the data wget_download_p(locations) # update the mappingfile with the file catalog addCatalogToMap(outfilepath=mappingfile, maptable=maptable, folderpath=filedir, catalog_label=catalog_label) # return to the home directory os.chdir(homedir) return(filedir) # # Data Processing libraries def filesWithPath(folderpath): """ Create a list of filepaths for the files folderpath: (dir) the folder of interest """ files =[os.path.join(folderpath, eachfile) for eachfile in os.listdir(folderpath) if not eachfile.startswith('.') and not os.path.isdir(eachfile)] # exclude hidden files return(files) def compareonvar(map_df, colvar='all'): """ subsetting a dataframe based on some columns of interest map_df: (dataframe) the dataframe of the mappingfile table colvar: (str or list) the column(s) to use for subsetting; 'None' will return an outerjoin, 'all' will return an innerjoin """ # apply row-wise inclusion based on a subset of columns if isinstance(colvar, type(None)): return(map_df) if colvar is 'all': # compare on all columns except the station info return(map_df.dropna()) else: # compare on only the listed columns return(map_df.dropna(subset=colvar)) def mappingfileToDF(mappingfile, colvar='all'): """ read in a dataframe and subset based on columns of interest mappingfile: (dir) the file path to the mappingfile, which contains the LAT, LONG_, and ELEV coordinates of interest colvar: (str or list) the column(s) to use for subsetting; 'None' will return an outerjoin, 'all' will return an innerjoin """ # Read in the mappingfile as a data frame map_df = pd.read_csv(mappingfile) # select rows (datafiles) based on the colvar(s) chosen, default is map_df = compareonvar(map_df=map_df, colvar=colvar) # compile summaries print(map_df.head()) print('Number of gridded data files:'+ str(len(map_df))) print('Minimum elevation: ' + str(np.min(map_df.ELEV))+ 'm') print('Mean elevation: '+ str(np.mean(map_df.ELEV))+ 'm') print('Maximum elevation: '+ str(np.max(map_df.ELEV))+ 'm') return(map_df, len(map_df)) def read_in_all_files(map_df, dataset, metadata, file_start_date, file_end_date, file_time_step, file_colnames, file_delimiter, subset_start_date, subset_end_date): """ Read in files based on dataset label map_df: (dataframe) the mappingfile clipped to the subset that will be read-in dataset: (str) the name of the dataset catalogged into map_df metadata (str) the dictionary that contains the metadata explanations; default is None file_colnames: (list) the list of shorthand variables; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_time_step: (str) the timedelta code that represents the difference between time points; default is 'D' (daily) subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest """ # extract metadata if the information are not provided if pd.notnull(metadata): if isinstance(file_start_date, type(None)): file_start_date = metadata[dataset]['start_date'] if isinstance(file_end_date, type(None)): file_end_date = metadata[dataset]['end_date'] if isinstance(file_time_step, type(None)): file_time_step = metadata[dataset]['temporal_resolution'] if isinstance(file_colnames, type(None)): file_colnames = metadata[dataset]['variable_list'] if isinstance(file_delimiter, type(None)): file_delimiter = metadata[dataset]['delimiter'] #initialize dictionary and time sequence df_dict=dict() met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) # daily # import data for all climate stations for ind, row in map_df.iterrows(): tmp = pd.read_table(row[dataset], header=None, delimiter=file_delimiter, names=file_colnames) tmp.set_index(met_daily_dates, inplace=True) # subset to the date range of interest (default is file date range) tmp = tmp.iloc[(met_daily_dates>=subset_start_date) & (met_daily_dates<=subset_end_date),:] # set row indices df_dict[tuple(row[['FID','LAT','LONG_']].tolist())] = tmp return(df_dict) def read_files_to_vardf(map_df, df_dict, gridclimname, dataset, metadata, file_start_date, file_end_date, file_delimiter, file_time_step, file_colnames, subset_start_date, subset_end_date, min_elev, max_elev): """ # reads in the files to generate variables dataframes map_df: (dataframe) the mappingfile clipped to the subset that will be read-in df_dict: (dict) an existing dictionary where new computations will be stored gridclimname: (str) the suffix for the dataset to be named; if None is provided, default to the dataset name dataset: (str) the name of the dataset catalogged into map_df metadata: (str) the dictionary that contains the metadata explanations; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_delimiter: (str) a file parsing character to be used for file reading file_time_step: (str) the timedelta code that represents the difference between time points; default is 'D' (daily) file_colnames: (list) the list of shorthand variables; default is None subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest """ # start time starttime = pd.datetime.now() # date range from ogh_meta file met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) met_daily_subdates=pd.date_range(subset_start_date, subset_end_date, freq=file_time_step) # omit null entries or missing data file map_df = map_df.loc[pd.notnull(map_df[dataset]),:] print('Number of data files within elevation range ('+str(min_elev)+':'+str(max_elev)+'): '+str(len(map_df))) # iterate through each data file for eachvar in metadata[dataset]['variable_list']: # identify the variable column index usecols = [metadata[dataset]['variable_list'].index(eachvar)] # initiate df as a list df_list=[] # loop through each file for ind, row in map_df.iterrows(): # consider rewriting the params to just select one column by index at a time var_series = dask.delayed(pd.read_table)(filepath_or_buffer=row[dataset], delimiter=file_delimiter,header=None,usecols=usecols, names=[tuple(row[['FID','LAT','LONG_']])]) # append the series into the list of series df_list.append(var_series) # concatenate list of series (axis=1 is column-wise) into a dataframe df1 = dask.delayed(pd.concat)(df_list, axis=1) # set and subset date_range index df2 = df1.set_index(met_daily_dates, inplace=False).loc[met_daily_subdates] # end of variable table print(eachvar+ ' dataframe reading to start: ' + str(pd.datetime.now()-starttime)) # assign dataframe to dictionary object df_dict['_'.join([eachvar, gridclimname])] = dask.compute(df2)[0] print(eachvar+ ' dataframe complete:' + str(pd.datetime.now()-starttime)) return(df_dict) def read_daily_streamflow(file_name, drainage_area_m2, file_colnames=None, delimiter='\t', header='infer'): # read in a daily streamflow data set # if file_colnames are supplied, use header=None if file_colnames is not None: header=None # read in the data daily_data=pd.read_table(file_name, delimiter=delimiter, header=header) # set columns, if header=None if file_colnames is not None: daily_data.columns=file_colnames else: file_colnames=list(daily_data.columns) # calculate cfs to cms conversion, or vice versa if 'flow_cfs' in daily_data.columns: flow_cfs=daily_data['flow_cfs'] flow_cms=flow_cfs/(3.28084**3) flow_mmday=flow_cms*1000*3600*24/drainage_area_m2 elif 'flow_cms' in daily_data.columns: flow_cms=daily_data['flow_cms'] flow_cfs=flow_cms*(3.28084**3) flow_mmday=flow_cms*1000*3600*24/drainage_area_m2 # determine the datetime date_index=[file_colnames.index(each) for each in ['year','month','day']] row_dates=pd.to_datetime(daily_data[date_index]) # generate the daily_flow and set the datetime as row indices daily_flow=pd.concat([flow_cfs, flow_cms, flow_mmday],axis=1) daily_flow.set_index(row_dates, inplace=True) daily_flow.columns=['flow_cfs', 'flow_cms', 'flow_mmday'] return(daily_flow) def read_daily_precip(file_name, file_colnames=None, header='infer', delimiter='\s+'): # read in a daily precipitation data set # if file_colnames are supplied, use header=None if ps.notnull(file_colnames): header=None # read in the data daily_data=pd.read_table(file_name, delimiter=delimiter, header=header) # set columns, if header=None if pd.notnull(file_colnames): daily_data.columns=file_colnames else: file_colnames=list(daily_data.columns) # calculate cfs to cms conversion, or vice versa if 'precip_m' in daily_data.columns: precip_m=daily_data['precip_m'] precip_mm=precip_m*1000 # determine the datetime date_index=[file_colnames.index(each) for each in ['year','month','day']] row_dates=pd.to_datetime(daily_data[date_index]) # generate the daily_flow and set the datetime as row indices daily_precip=pd.concat([precip_m, precip_mm],axis=1) daily_precip.set_index(row_dates, inplace=True) daily_precip.columns=['precip_m', 'precip_mm'] return(daily_precip) def read_daily_snotel(file_name, file_colnames=None, usecols=None, delimiter=',', header='infer'): # read in a daily SNOTEL observation data set # if file_colnames are supplied, use header=None if file_colnames is not None: header=None # read in the data daily_data=pd.read_table(file_name, usecols=usecols, header=header, delimiter=delimiter) # reset the colnames daily_data.columns=['Date', 'Tmax_C', 'Tmin_C', 'Tavg_C', 'Precip_mm'] # transform the data daily_data['Tmax_C']=(daily_data['Tmax_C'] -32)/1.8 daily_data['Tmin_C']=(daily_data['Tmin_C'] -32)/1.8 daily_data['Tavg_C']=(daily_data['Tavg_C'] -32)/1.8 daily_data['Precip_mm']=daily_data['Precip_mm'] *25.4 # determine the datetime row_dates=pd.to_datetime(daily_data.Date) # generate the daily_flow and set the datetime as row indices daily_snotel=daily_data[['Tmax_C', 'Tmin_C', 'Tavg_C', 'Precip_mm']] daily_snotel.set_index(row_dates, inplace=True) return(daily_snotel) def read_daily_coop(file_name, file_colnames=None, usecols=None, delimiter=',', header='infer'): # read in a daily COOP observation data set # if file_colnames are supplied, use header=None if file_colnames is not None: header=None # read in the data daily_data=pd.read_table(file_name, usecols=usecols, header=header, delimiter=delimiter, date_parser=lambda x: pd.datetime.strptime(x, '%Y%m%d'), parse_dates=[0], na_values=-9999) # reset the colnames daily_data.columns=['Date', 'Precip_mm','Tmax_C', 'Tmin_C', 'Tavg_C'] # transform the data daily_data['Tmax_C']=(daily_data['Tmax_C'] -32)/1.8 daily_data['Tmin_C']=(daily_data['Tmin_C'] -32)/1.8 daily_data['Tavg_C']=(daily_data['Tavg_C'] -32)/1.8 daily_data['Precip_mm']=daily_data['Precip_mm'] *25.4 # determine the datetime row_dates=pd.to_datetime(daily_data.Date) # generate the daily_flow and set the datetime as row indices daily_coop=daily_data[['Precip_mm','Tmax_C', 'Tmin_C', 'Tavg_C']] daily_coop.set_index(row_dates, inplace=True) return(daily_coop) # ### Data Processing functions def generateVarTables(file_dict, gridclimname, dataset, metadata, df_dict=None): """ Slice the files by their common variable all_files: (dict) a dictionary of dataframes for each tabular datafile dataset: (str) the name of the dataset metadata (dict) the dictionary that contains the metadata explanations; default is None """ # combine the files into a pandas panel panel = pd.Panel.from_dict(file_dict) # initiate output dictionary if pd.isnull(df_dict): df_dict = dict() # slice the panel for each variable in list for eachvar in metadata[dataset]['variable_list']: df_dict['_'.join([eachvar, gridclimname])] = panel.xs(key=eachvar, axis=2) return(df_dict) # compare two date sets for the start and end of the overlapping dates def overlappingDates(date_set1, date_set2): # find recent date if date_set1[0] > date_set2[0]: start_date = date_set1[0] else: start_date = date_set2[0] # find older date if date_set1[-1] < date_set2[-1]: end_date = date_set1[-1] else: end_date = date_set2[-1] return(start_date, end_date) # Calculate means by 8 different methods def multigroupMeans(VarTable, n_stations, start_date, end_date): Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # e.g., Mean monthly temperature at each station month_daily=Var_daily.groupby(Var_daily.index.month).mean() # average monthly minimum temperature at each station # e.g., Mean monthly temperature averaged for all stations in analysis meanmonth_daily=month_daily.mean(axis=1) # e.g., Mean monthly temperature for minimum and maximum elevation stations meanmonth_min_maxelev_daily=Var_daily.loc[:,analysis_elev_max_station].groupby(Var_daily.index.month).mean() meanmonth_min_minelev_daily=Var_daily.loc[:,analysis_elev_min_station].groupby(Var_daily.index.month).mean() # e.g., Mean annual temperature year_daily=Var_daily.groupby(Var_daily.index.year).mean() # e.g., mean annual temperature each year for all stations meanyear_daily=year_daily.mean(axis=1) # e.g., mean annual min temperature for all years, for all stations meanallyear_daily=np.nanmean(meanyear_daily) # e.g., anomoly per year compared to average anom_year_daily=meanyear_daily-meanallyear_daily return(month_daily, meanmonth_daily, meanmonth_min_maxelev_daily, meanmonth_min_minelev_daily, year_daily, meanyear_daily, meanallyear_daily, anom_year_daily) def specialTavgMeans(VarTable): Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # Average temperature for each month at each station permonth_daily=Var_daily.groupby(pd.TimeGrouper("M")).mean() # Average temperature each month averaged at all stations meanpermonth_daily=permonth_daily.mean(axis=1) # Average monthly temperature for all stations meanallpermonth_daily=meanpermonth_daily.mean(axis=0) # anomoly per year compared to average anom_month_daily=(meanpermonth_daily-meanallpermonth_daily)/1000 return(permonth_daily, meanpermonth_daily, meanallpermonth_daily, anom_month_daily) def aggregate_space_time_average(VarTable, df_dict, suffix, start_date, end_date): """ VarTable: (dataframe) a dataframe with date ranges as the index df_dict: (dict) a dictionary to which computed outputs will be stored suffix: (str) a string representing the name of the original table start_date: (date) the start of the date range within the original table end_date: (date) the end of the date range within the original table """ starttime = pd.datetime.now() # subset dataframe to the date range of interest Var_daily = VarTable.loc[start_date:end_date,:] # Mean monthly temperature at each station df_dict['month_'+suffix] = Var_daily.groupby(Var_daily.index.month).mean() # Mean monthly temperature averaged for all stations in analysis df_dict['meanmonth_'+suffix] = Var_daily.groupby(Var_daily.index.month).mean().mean(axis=1) # Mean annual temperature df_dict['year_'+suffix] = Var_daily.groupby(Var_daily.index.year).mean() # mean annual temperature each year for all stations df_dict['meanyear_'+suffix] = Var_daily.groupby(Var_daily.index.year).mean().mean(axis=1) # mean annual temperature for all years, for all stations df_dict['meanallyear_'+suffix] = Var_daily.mean(axis=1).mean(axis=0) # anomaly per year compared to average df_dict['anom_year_'+suffix] = df_dict['meanyear_'+suffix] - df_dict['meanallyear_'+suffix] print(suffix+ ' calculations completed in ' + str(pd.datetime.now()-starttime)) return(df_dict) def aggregate_space_time_sum(VarTable, n_stations, start_date, end_date): Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # Average precipitation per month at each station permonth_daily=Var_daily.groupby(pd.TimeGrouper("M")).sum() # Average precipitation per month averaged at all stations meanpermonth_daily=permonth_daily.mean(axis=1) # Average monthly precipitation averaged at all stations meanmonth_daily= meanpermonth_daily.groupby(meanpermonth_daily.index.month).mean() return(Var_daily, permonth_daily, meanpermonth_daily, meanmonth_daily) #def aggregate_space_time_sum(VarTable, n_stations, start_date, end_date): # Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # # # Average precipitation per month at each station # permonth_daily=Var_daily.groupby(pd.TimeGrouper("M")).sum() # # # Average precipitation per month averaged at all stations # meanpermonth_daily=permonth_daily.mean(axis=1) # # # Average monthly precipitation averaged at all stations # meanmonth_daily= meanpermonth_daily.groupby(meanpermonth_daily.index.month).mean() # # return(Var_daily, # permonth_daily, # meanpermonth_daily, # meanmonth_daily) #def specialTavgMeans(VarTable): # Var_daily = VarTable.loc[start_date:end_date, range(0,n_stations)] # # # Average temperature for each month at each station # permonth_daily=Var_daily.groupby(pd.TimeGrouper("M")).mean() # # # Average temperature each month averaged at all stations # meanpermonth_daily=permonth_daily.mean(axis=1) # # # Average monthly temperature for all stations # meanallpermonth_daily=meanpermonth_daily.mean(axis=0) # # # anomoly per year compared to average # anom_month_daily=(meanpermonth_daily-meanallpermonth_daily)/1000 # # return(permonth_daily, # meanpermonth_daily, # meanallpermonth_daily, # anom_month_daily) def plotTavg(dictionary, loc_name, start_date, end_date): # Plot 1: Monthly temperature analysis of Livneh data if 'meanmonth_temp_avg_liv2013_met_daily' and 'meanmonth_temp_avg_wrf2014_met_daily' not in dictionary.keys(): pass # generate month indices wy_index=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] wy_numbers=[10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9] month_strings=[ 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sept'] # initiate the plot object fig, ax=plt.subplots(1,1,figsize=(10, 6)) if 'meanmonth_temp_avg_liv2013_met_daily' in dictionary.keys(): # Liv2013 plt.plot(wy_index, dictionary['meanmonth_maxelev_temp_avg_liv2013_met_daily'][wy_numbers],'r*--',linewidth=1, label='Liv Tavg- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_temp_avg_liv2013_met_daily'][wy_numbers],'r-', linewidth=1, label='Liv Tavg- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_temp_avg_liv2013_met_daily'][wy_numbers],'rX--',linewidth=1, label='Liv Tavg- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') if 'meanmonth_temp_avg_wrf2014_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_maxelev_temp_avg_wrf2014_met_daily'][wy_numbers],'b^--',linewidth=1, label='WRF Tavg- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_temp_avg_wrf2014_met_daily'][wy_numbers],'b-',linewidth=1, label='WRF Tavg- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_temp_avg_wrf2014_met_daily'][wy_numbers],'bo--',linewidth=1, label='WRF Tavg- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') if 'meanmonth_temp_avg_livneh2013_wrf2014bc_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_maxelev_temp_avg_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g^--',linewidth=1, label='WRFbc Tavg- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_temp_avg_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g-',linewidth=1, label='WRFbc Tavg- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_temp_avg_livneh2013_wrf2014bc_met_daily'][wy_numbers],'go--',linewidth=1, label='WRFbc Tavg- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') # add reference line at y=0 plt.plot([1, 12],[0, 0], 'k-',linewidth=1) plt.ylabel('Temperature (deg C)',fontsize=14) plt.xlabel('Month',fontsize=14) plt.xlim(1,12); plt.xticks(wy_index, month_strings); plt.tick_params(labelsize=12) plt.legend(loc='best') plt.grid(which='both') plt.title(str(loc_name)+'\nAverage Temperature\n Years: '+str(start_date.year)+'-'+str(end_date.year)+'; Elevation: '+str(dictionary['analysis_elev_min'])+'-'+str(dictionary['analysis_elev_max'])+'m', fontsize=16) plt.savefig('avg_monthly_temp'+str(loc_name)+'.png') plt.show() def plotPavg(dictionary, loc_name, start_date, end_date): # Plot 1: Monthly temperature analysis of Livneh data if 'meanmonth_precip_liv2013_met_daily' and 'meanmonth_precip_wrf2014_met_daily' not in dictionary.keys(): pass # generate month indices wy_index=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] wy_numbers=[10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9] month_strings=[ 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sept'] # initiate the plot object fig, ax=plt.subplots(1,1,figsize=(10, 6)) if 'meanmonth_precip_liv2013_met_daily' in dictionary.keys(): # Liv2013 plt.plot(wy_index, dictionary['meanmonth_maxelev_precip_liv2013_met_daily'][wy_numbers],'r^--',linewidth=1, label='Liv Precip- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_precip_liv2013_met_daily'][wy_numbers],'r-', linewidth=1, label='Liv Precip- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_precip_liv2013_met_daily'][wy_numbers],'ro--',linewidth=1, label='Liv Precip- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') if 'meanmonth_temp_avg_wrf2014_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_maxelev_precip_wrf2014_met_daily'][wy_numbers],'b^--',linewidth=1, label='WRF Precip- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_precip_wrf2014_met_daily'][wy_numbers],'b-',linewidth=1, label='WRF Precip- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_precip_wrf2014_met_daily'][wy_numbers],'bo--',linewidth=1, label='WRF Precip- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') if 'meanmonth_temp_avg_livneh2013_wrf2014bc_met_daily' in dictionary.keys(): # WRF2014 plt.plot(wy_index, dictionary['meanmonth_maxelev_precip_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g^--',linewidth=1, label='WRFbc Precip- Max Elev='+str(dictionary['analysis_elev_max_cutoff'])+"-"+str(dictionary['analysis_elev_max'])+'m') plt.plot(wy_index, dictionary['meanmonth_midelev_precip_livneh2013_wrf2014bc_met_daily'][wy_numbers],'g-',linewidth=1, label='WRFbc Precip- Mid Elev='+str(dictionary['analysis_elev_min_cutoff'])+"-"+str(dictionary['analysis_elev_max_cutoff'])+'m') plt.plot(wy_index, dictionary['meanmonth_minelev_precip_livneh2013_wrf2014bc_met_daily'][wy_numbers],'go--',linewidth=1, label='WRFbc Precip- Min Elev='+str(dictionary['analysis_elev_min'])+"-"+str(dictionary['analysis_elev_min_cutoff'])+'m') # add reference line at y=0 plt.plot([1, 12],[0, 0], 'k-',linewidth=1) plt.ylabel('Precip (mm)',fontsize=14) plt.xlabel('Month',fontsize=14) plt.xlim(1,12); plt.xticks(wy_index, month_strings); plt.tick_params(labelsize=12) plt.legend(loc='best') plt.grid(which='both') plt.title(str(loc_name)+'\nAverage Precipitation\n Years: '+str(start_date.year)+'-'+str(end_date.year)+'; Elevation: '+str(dictionary['analysis_elev_min'])+'-'+str(dictionary['analysis_elev_max'])+'m', fontsize=16) plt.savefig('avg_monthly_precip'+str(loc_name)+'.png') plt.show() def gridclim_dict(mappingfile, dataset, gridclimname=None, metadata=None, min_elev=None, max_elev=None, file_start_date=None, file_end_date=None, file_time_step=None, file_colnames=None, file_delimiter=None, subset_start_date=None, subset_end_date=None, df_dict=None, colvar='all'): """ # pipelined operation for assimilating data, processing it, and standardizing the plotting mappingfile: (dir) the path directory to the mappingfile dataset: (str) the name of the dataset within mappingfile to use gridclimname: (str) the suffix for the dataset to be named; if None is provided, default to the dataset name metadata: (str) the dictionary that contains the metadata explanations; default is None min_elev: (float) the minimum elevation criteria; default is None max_elev: (float) the maximum elevation criteria; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_time_step: (str) the timedelta code that represents the difference between time points; default is 'D' (daily) file_colnames: (list) the list of shorthand variables; default is None file_delimiter: (str) a file parsing character to be used for file reading subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest df_dict: (dict) an existing dictionary where new computations will be stored """ # generate the climate locations and n_stations locations_df, n_stations = mappingfileToDF(mappingfile, colvar=colvar) # generate the climate station info if pd.isnull(min_elev): min_elev = locations_df.ELEV.min() if pd.isnull(max_elev): max_elev = locations_df.ELEV.max() # extract metadata if the information are not provided if not isinstance(metadata, type(None)): if isinstance(file_start_date, type(None)): file_start_date = metadata[dataset]['start_date'] if isinstance(file_end_date, type(None)): file_end_date = metadata[dataset]['end_date'] if isinstance(file_time_step, type(None)): file_time_step = metadata[dataset]['temporal_resolution'] if isinstance(file_colnames, type(None)): file_colnames = metadata[dataset]['variable_list'] if isinstance(file_delimiter, type(None)): file_delimiter = metadata[dataset]['delimiter'] # take all defaults if subset references are null if pd.isnull(subset_start_date): subset_start_date = file_start_date if pd.isnull(subset_end_date): subset_end_date = file_end_date # initiate output dictionary df_dict was null if pd.isnull(df_dict): df_dict = dict() if pd.isnull(gridclimname): if pd.notnull(dataset): gridclimname=dataset else: print('no suffix name provided. Provide a gridclimname or dataset label.') return # assemble the stations within min and max elevantion ranges locations_df = locations_df[(locations_df.ELEV >= min_elev) & (locations_df.ELEV <= max_elev)] # create dictionary of dataframe df_dict = read_files_to_vardf(map_df=locations_df, dataset=dataset, metadata=metadata, gridclimname=gridclimname, file_start_date=file_start_date, file_end_date=file_end_date, file_delimiter=file_delimiter, file_time_step=file_time_step, file_colnames=file_colnames, subset_start_date=subset_start_date, subset_end_date=subset_end_date, min_elev=min_elev, max_elev=max_elev, df_dict=df_dict) # vardf_list = [eachvardf for eachvardf in df_dict.keys() if eachvardf.endswith(gridclimname)] # loop through the dictionary to compute each aggregate_space_time_average object for eachvardf in vardf_list: # update the dictionary with spatial and temporal average computations df_dict.update(aggregate_space_time_average(VarTable=df_dict[eachvardf], df_dict=df_dict, suffix=eachvardf, start_date=subset_start_date, end_date=subset_end_date)) # if the number of stations exceeds 500, remove daily time-series dataframe if len(locations_df)>500: del df_dict[eachvardf] return(df_dict) def compute_diffs(df_dict, df_str, gridclimname1, gridclimname2, prefix1, prefix2='meanmonth', comp_dict=None): #Compute difference between monthly means for some data (e.g,. Temp) for two different gridded datasets (e.g., Liv, WRF) if isinstance(comp_dict, type(None)): comp_dict=dict() for each1 in prefix1: for each2 in prefix2: comp_dict['_'.join([str(each1),df_str])] = df_dict['_'.join([each2,each1,gridclimname1])]-df_dict['_'.join([each2,each1,gridclimname2])] return(comp_dict) def compute_ratios(df_dict, df_str, gridclimname1, gridclimname2, prefix1, prefix2='meanmonth', comp_dict=None): #Compute difference between monthly means for some data (e.g,. Temp) for two different gridded datasets (e.g., Liv, WRF) if isinstance(comp_dict, type(None)): comp_dict=dict() for each1 in prefix1: for each2 in prefix2: comp_dict['_'.join([str(each1),df_str])] = df_dict['_'.join([each2,each1,gridclimname1])]/df_dict['_'.join([each2,each1,gridclimname2])] return(comp_dict) def compute_elev_diffs(df_dict, df_str, gridclimname1, prefix1, prefix2a='meanmonth_minelev_', prefix2b='meanmonth_maxelev_'): comp_dict=dict() for each1 in prefix1: comp_dict[str(each1)+df_str] = df_dict[prefix2a+each1+gridclimname1]-df_dict[prefix2b+each1+gridclimname1] return(comp_dict) def monthlyBiasCorrection_deltaTratioP_Livneh_METinput(homedir, mappingfile, BiasCorr, lowrange='0to1000m', LowElev=range(0,1000), midrange='1000to1500m', MidElev=range(1001,1501), highrange='1500to3000m', HighElev=range(1501,3000), data_dir=None, file_start_date=None, file_end_date=None): np.set_printoptions(precision=3) # take liv2013 date set date range as default if file reference dates are not given if isinstance(file_start_date, type(None)): file_start_date = pd.datetime(1915,1,1) if isinstance(file_end_date, type(None)): file_end_date = pd.datetime(2011,12,31) # generate the month vector month = pd.date_range(start=file_start_date, end=file_end_date).month month = pd.DataFrame({'month':month}) # create NEW directory dest_dir = os.path.join(homedir, 'biascorrWRF_liv') if not os.path.exists(dest_dir): os.mkdir(dest_dir) print('destdir created') # read in the Elevation table zdiff = pd.read_table(mappingfile, sep=',', header='infer') zdiff = zdiff.rename(columns={'RASTERVALU':'Elev','ELEV':'Elev'}) zdiff = zdiff[['LAT','LONG_', 'Elev']] zdiff['filename'] = zdiff[['LAT','LONG_']].apply(lambda x: '_'.join(['Meteorology_Livneh_CONUSExt_v.1.2_2013',str(x[0]), str(x[1])]), axis=1) #print(zdiff[0:10]) # lapse rate vector by month # temperature adjustment vector by month # identify the files to read print('reading in data_long_lat files') data_files = [os.path.join(data_dir,dat) for dat in os.listdir(data_dir) if os.path.basename(dat).startswith('Meteorology_Livneh_CONUSExt_v.1.2_2013')] print('done reading data_long_lat files') # loop through each file for eachfile in data_files: # subset the zdiff table using the eachfile's filename, then assign Elevation to equal the Elev value Elevation = zdiff[zdiff['filename']==os.path.basename(eachfile)]['Elev'].reset_index(drop=True) print(Elevation) # decide on the elevation-based Tcorr #print('Convert BiasCorr to a df') if Elevation.iloc[0] in LowElev: BiasCorr_sub = {k: v for k, v in BiasCorr.items() if k.endswith('_'+lowrange)} #BiasCorr_sub_df = pd.DataFrame.from_dict(BiasCorr_sub, orient='columns').reset_index() #BiasCorr_sub_df.columns = ['month', 'precip', 'Tmax', 'Tmin'] elif Elevation.iloc[0] in MidElev: BiasCorr_sub = {k: v for k, v in BiasCorr.items() if k.endswith('_'+midrange)} #BiasCorr_sub_df = pd.DataFrame.from_dict(BiasCorr_sub, orient='columns').reset_index() #BiasCorr_sub_df.columns = ['month', 'precip', 'Tmax', 'Tmin'] elif Elevation.iloc[0] in HighElev: BiasCorr_sub = {k: v for k, v in BiasCorr.items() if k.endswith('_'+highrange)} #BiasCorr_sub_df = pd.DataFrame.from_dict(BiasCorr_sub, orient='columns').reset_index() #BiasCorr_sub_df.columns = ['month', 'precip', 'Tmax', 'Tmin'] #print('reading in eachfile') read_dat = pd.read_table(eachfile, delimiter='\s+', header=None) read_dat.columns = ['precip', 'temp_max','temp_min','wind'] # print('done reading eachfile') # extrapolate monthly values for each variable for eachvar in ['precip', 'temp_max', 'temp_min']: BiasCorr_sub_df = [BiasCorr_sub[eachkey] for eachkey in BiasCorr_sub.keys() if eachkey.startswith(eachvar)] # subset the column for the eachfile station number BiasCorr_sub_df = BiasCorr_sub_df.loc[:,zdiff[zdiff['filename']==eachfile].index] BiasCorr_sub_df.columns = ['var'] # regenerate the month BiasCorr_sub_df = BiasCorr_sub_df.reset_index().rename(columns={'index':'month'}) # generate s-vectors month_obj = month.merge(BiasCorr_sub_df, how='left', on='month') # generate the s-vector s = pd.Series(month_obj.var) # if eachvar=='precip': read_dat[eachvar] = np.array(read_dat[eachvar])*np.array(s) else: read_dat[eachvar] = np.array(read_dat[eachvar])+np.array(s) #print('grabbing the S vector of monthlapse after the merge between month and Tcorr_df') #print('number of corrections to apply: '+str(len(month))) # write it out to the new destination location read_dat.to_csv(os.path.join(dest_dir, os.path.basename(eachfile)), sep='\t', header=None, index=False) print(os.path.join(dest_dir, os.path.basename(eachfile))) print('mission complete.') print('this device will now self-destruct.') print('just kidding.') def monthlyBiasCorrection_WRFlongtermmean_elevationbins_METinput(homedir, mappingfile, BiasCorr, lowrange='0to1000m', LowElev=range(0,1000), midrange='1000to1500m', MidElev=range(1001,1501), highrange='1500to3000m', HighElev=range(1501,3000), data_dir=None, file_start_date=None, file_end_date=None): np.set_printoptions(precision=3) # take liv2013 date set date range as default if file reference dates are not given if isinstance(file_start_date, type(None)): file_start_date = pd.datetime(1950,1,1) if isinstance(file_end_date, type(None)): file_end_date = pd.datetime(2010,12,31) # generate the month vector month = pd.date_range(start=file_start_date, end=file_end_date).month month = pd.DataFrame({'month':month}) # create NEW directory dest_dir = os.path.join(homedir, 'biascorr_WRF_ltm') if not os.path.exists(dest_dir): os.mkdir(dest_dir) print('destdir created') # read in the Elevation table zdiff = pd.read_table(mappingfile, sep=',', header='infer') zdiff = zdiff.rename(columns={'RASTERVALU':'Elev','ELEV':'Elev'}) zdiff = zdiff[['LAT','LONG_', 'Elev']] zdiff['filename'] = zdiff[['LAT','LONG_']].apply(lambda x: '_'.join(['data',str(x[0]), str(x[1])]), axis=1) #print(zdiff[0:10]) # lapse rate vector by month # temperature adjustment vector by month # identify the files to read print('reading in data_long_lat files') data_files = [os.path.join(data_dir,dat) for dat in os.listdir(data_dir) if os.path.basename(dat).startswith('data')] #print('done reading data_long_lat files') # loop through each file for eachfile in data_files: # subset the zdiff table using the eachfile's filename, then assign Elevation to equal the Elev value Elevation = zdiff[zdiff['filename']==os.path.basename(eachfile)]['Elev'].reset_index(drop=True) print(Elevation) # decide on the elevation-based Tcorr #print('Convert BiasCorr to a df') if Elevation.iloc[0] in LowElev: BiasCorr_sub = {k: v for k, v in BiasCorr.items() if k.endswith('_'+lowrange)} BiasCorr_sub_df = pd.DataFrame.from_dict(BiasCorr_sub, orient='columns').reset_index() BiasCorr_sub_df.columns = ['month', 'precip', 'Tmax', 'Tmin'] elif Elevation.iloc[0] in MidElev: BiasCorr_sub = {k: v for k, v in BiasCorr.items() if k.endswith('_'+midrange)} BiasCorr_sub_df = pd.DataFrame.from_dict(BiasCorr_sub, orient='columns').reset_index() BiasCorr_sub_df.columns = ['month', 'precip', 'Tmax', 'Tmin'] elif Elevation.iloc[0] in HighElev: BiasCorr_sub = {k: v for k, v in BiasCorr.items() if k.endswith('_'+highrange)} BiasCorr_sub_df = pd.DataFrame.from_dict(BiasCorr_sub, orient='columns').reset_index() BiasCorr_sub_df.columns = ['month', 'precip', 'Tmax', 'Tmin'] print('reading in eachfile') read_dat = pd.read_table(eachfile, delimiter='\s+', header=None) read_dat.columns = ['precip', 'Tmax','Tmin','wind'] print('done reading eachfile') # extrapolate monthly values month_obj = month.merge(BiasCorr_sub_df, how='left', on='month') #print('merged month with Tcorr_df') #print(month_obj.head(35)) # generate s-vectors s1 = pd.Series(month_obj.Tmin) s2 =
pd.Series(month_obj.Tmax)
pandas.Series
# This file is part of NEORL. # Copyright (c) 2021 Exelon Corporation and MIT Nuclear Science and Engineering # NEORL is free software: you can redistribute it and/or modify # it under the terms of the MIT LICENSE # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #!/usr/bin/env python3 # -*- coding: utf-8 -*- #""" #Created on Tue Feb 25 14:42:24 2020 # #@author: <NAME> #""" #Implementation of RL-informed ES (PPO-ES) #Based on papers: #<NAME>., & <NAME>. (2021). Rule-based reinforcement learning #methodology to inform evolutionary algorithms for constrained optimization #of engineering applications. Knowledge-Based Systems, 217, 106836. #<NAME>., <NAME>., & <NAME>. (2021). Large-scale design #optimisation of boiling water reactor bundles with neuroevolution. #Annals of Nuclear Energy, 160, 108355. import warnings warnings.filterwarnings("ignore") import random import pandas as pd import numpy as np from neorl.evolu.discrete import mutate_discrete, encode_grid_to_discrete, decode_discrete_to_grid from neorl import ES from neorl import PPO2, MlpPolicy, RLLogger from neorl.utils.seeding import set_neorl_seed def encode_grid_individual_to_discrete(individual, bounds): new_indv=[] for i, key in enumerate(bounds): if bounds[key][0]=='grid': int_val=bounds[key][1].index(individual[i]) new_indv.append(int_val) else: new_indv.append(individual[i]) return new_indv class PPOES(object): """ A PPO-informed ES Neuroevolution module :param mode: (str) problem type, either ``min`` for minimization problem or ``max`` for maximization :param fit: (function) the fitness function to be used with ES :param env: (NEORL environment or Gym environment) The environment to learn with PPO, either use NEORL method ``CreateEnvironment`` (see **below**) or construct your custom Gym environment. :param bounds: (dict) input parameter type and lower/upper bounds in dictionary form. Example: ``bounds={'x1': ['int', 1, 4], 'x2': ['float', 0.1, 0.8], 'x3': ['float', 2.2, 6.2]}`` :param npop: (int): population size of ES :param npop_rl: (int): number of RL/PPO individuals to use in ES population (``npop_rl < npop``) :param init_pop_rl: (bool) flag to initialize ES population with PPO individuals :param hyperparam: (dict) dictionary of ES hyperparameters (``cxpb``, ``cxmode``, ``mutpb``, ``alpha``, ``mu``, ``smin``, ``smax``) and PPO hyperparameters (``n_steps``, ``gamma``, ``learning_rate``, ``ent_coef``, ``vf_coef``, ``lam``, ``cliprange``, ``max_grad_norm``, ``nminibatches``, ``noptephocs``) :param seed: (int) random seed for sampling """ def __init__ (self, mode, fit, env, bounds, npop=60, npop_rl=6, init_pop_rl=True, hyperparam={}, seed=None): self.seed = seed set_neorl_seed(self.seed) assert npop_rl < npop, '--error: the size of RL individuals `npop_rl` MUST be less than `npop`' self.mode=mode self.bounds=bounds self.fit=fit self.env=env self.npop=npop self.npop_rl=npop_rl self.init_pop_rl=init_pop_rl #--mir self.mode=mode #infer variable types self.var_type = np.array([bounds[item][0] for item in bounds]) self.bounds=bounds #mir-grid if "grid" in self.var_type: self.grid_flag=True else: self.grid_flag=False self.dim = len(bounds) self.var_names=[item for item in self.bounds] self.hyperparam = hyperparam #PPO hyperparameters self.n_steps = hyperparam['n_steps'] if 'n_steps' in hyperparam else 128 self.gamma = hyperparam['gamma'] if 'gamma' in hyperparam else 0.99 self.ent_coef = hyperparam['ent_coef'] if 'ent_coef' in hyperparam else 0.01 self.learning_rate = hyperparam['learning_rate'] if 'learning_rate' in hyperparam else 0.00025 self.vf_coef = hyperparam['vf_coef'] if 'vf_coef' in hyperparam else 0.5 self.lam = hyperparam['lam'] if 'lam' in hyperparam else 0.95 self.max_grad_norm = hyperparam['max_grad_norm'] if 'max_grad_norm' in hyperparam else 0.5 self.cliprange = hyperparam['cliprange'] if 'cliprange' in hyperparam else 0.2 self.nminibatches = hyperparam['nminibatches'] if 'nminibatches' in hyperparam else 4 self.noptepochs = hyperparam['noptepochs'] if 'noptepochs' in hyperparam else 10 #ES hyperparameters self.cxpb = hyperparam['cxpb'] if 'cxpb' in hyperparam else 0.6 self.cxmode = hyperparam['cxmode'] if 'cxmode' in hyperparam else 'blend' self.alpha = hyperparam['alpha'] if 'alpha' in hyperparam else 0.5 self.mutpb = hyperparam['mutpb'] if 'mutpb' in hyperparam else 0.3 self.mu = hyperparam['mu'] if 'mu' in hyperparam else int(npop/2) self.smin = hyperparam['smin'] if 'smin' in hyperparam else 0.01 self.smax = hyperparam['smax'] if 'smax' in hyperparam else 0.5 #will be activated after using `learn` method self.PPO_RUN_FLAG=False def learn(self, total_timesteps, rl_filter=100, verbose=False): """ This function starts the learning of PPO algorithm for number of timesteps to create individuals for evolutionary search :param total_timesteps: (int) number of timesteps to run :param rl_filter: (int) number of top individuals to keep from the full RL search :param verbose: (bool) print statistics to screen :return: (dataframe) dataframe of individuals/fitness sorted from best to worst """ self.PPO_RUN_FLAG=True print('---------------------------------------------------------------------------------') print('------------------------------- PPO-ES is Running -------------------------------') print('---------------------------------------------------------------------------------') try: ncores=len(self.env.get_attr('mode')) print('Paralell RL is running with {} cores'.format(ncores)) self.env.mode=self.env.get_attr('mode')[0] except: try: self.env.mode # ncores=1 print('Serial RL is running with {} core'.format(ncores)) except: self.env.mode = 'max' # or some other default value. print('--warning: Problem mode defined in the RL enviroment is', self.env.mode) print('--warning: Problem mode defined in the PPOES class is', self.mode) if self.env.mode == self.mode: print('--warning: Both problem modes match') else: raise ValueError('The two problem modes do not match, alg terminates') print('------------------------------- Part I: PPO is collecting data -------------------------------') cb=RLLogger(check_freq=1) ppo = PPO2(MlpPolicy, env=self.env, n_steps=self.n_steps, gamma=self.gamma, ent_coef=self.ent_coef, vf_coef=self.vf_coef, cliprange=self.cliprange, max_grad_norm=self.max_grad_norm, lam=self.lam, nminibatches=self.nminibatches, noptepochs=self.noptepochs, seed=self.seed, verbose=verbose) #run PPO ppo.learn(total_timesteps=total_timesteps, callback=cb) rl_data=
pd.DataFrame(cb.x_hist, columns=self.var_names)
pandas.DataFrame
""" Base Model Module ----------------- This is the base class for all model modules. This class does not contain an particular model but it does include all of the functions to run a model, capture model statistics, and visualize model data. """ __author__ = 'krishnab' __version__ = '0.1.0' import abc import numpy as np import pandas as pd import datetime from operator import neg from .DataManagement import DataManagement import xarray as xr from tqdm import tqdm from .ColumnSpecs import EXCLUDED_COLUMNS np.seterr(divide='ignore', invalid='ignore') class Base_model(metaclass=abc.ABCMeta): def __init__(self, argsdict ={}): self.name = 'base model m' self.label = 'base model m' self.nf1 = argsdict.get('number_of_females_1', 0) self.nf2 = argsdict.get('number_of_females_2', 0) self.nf3 = argsdict.get('number_of_females_3', 0) self.nm1 = argsdict.get('number_of_males_1', 0) self.nm2 = argsdict.get('number_of_males_2', 0) self.nm3 = argsdict.get('number_of_males_3',0) self.bf1 = argsdict.get('hiring_rate_women_1', 0) self.bf2 = argsdict.get('hiring_rate_women_2',0) self.bf3 = argsdict.get('hiring_rate_women_3',0) self.df1 = argsdict.get('attrition_rate_women_1',0) self.df2 = argsdict.get('attrition_rate_women_2',0) self.df3 = argsdict.get('attrition_rate_women_3',0) self.dm1 = argsdict.get('attrition_rate_men_1',0) self.dm2 = argsdict.get('attrition_rate_men_2',0) self.dm3 = argsdict.get('attrition_rate_men_3',0) self.target_female_percentage = argsdict.get('t_fpct', 0.25) self.duration = argsdict.get('duration',0) self.female_promotion_probability_1 = argsdict.get('female_promotion_probability_1',0) self.female_promotion_probability_2 = argsdict.get('female_promotion_probability_2',0) self.male_promotion_probability_1 = argsdict.get('male_promotion_probability_1',0) self.male_promotion_probability_2 = argsdict.get('male_promotion_probability_2',0) self.upperbound = argsdict.get('upperbound',0) self.lowerbound = argsdict.get('lowerbound',0) self.variation_range = argsdict.get('variation_range',0) self.mgmt_data = DataManagement().load_data() self.model_run_date_time = get_date_time_of_today() self.model_common_name = argsdict.get('model_name', '') self.number_of_sim_columns = 0 self.itercount = 0 self.annotation = argsdict.get('annotation_text', '') self.init_default_rates() @staticmethod def get_mgmt_data(): return DataManagement().load_data() def load_baseline_data_mgmt(self): ''' This function will load the parameter values for the baseline scenario of the Business School into the model :return: This function does not return anything. It changes the current model in place. :rtype: void ''' self.nf1 = 2 self.nf2 = 3 self.nf3 = 3 self.nm1 = 11 self.nm2 = 13 self.nm3 = 42 self.vac3 = 0 self.vac2 = 0 self.vac1 = 0 self.bf1 = 14/68 self.bf2 = 4/68 self.bf3 = 0/68 self.df1 = 0.0615 self.df2 = 0.00 self.df3 = 0.0600 self.dm1 = 0.0859 self.dm2 = 0.0473 self.dm3 = 0.0414 self.phire2 = 0. self.phire3 = 0. self.female_promotion_probability_1 = 0.0769 self.female_promotion_probability_2 = 0.1111 self.male_promotion_probability_1 = 0.0707 self.male_promotion_probability_2 = 0.0946 self.upperbound = 84 self.lowerbound = 64 self.variation_range = 3 self.name = "Promote-Hire baseline" self.label = "Promote-Hire baseline" def init_default_rates(self): self.default_rates = {'default_hiring_rate_f1': round(14/68, 4), 'default_hiring_rate_f2': round(4/68, 4), 'default_hiring_rate_f3': round(0/68, 4), 'default_hiring_rate_m1': round(36/68, 4), 'default_hiring_rate_m2': round(8/68, 4), 'default_hiring_rate_m3': round(6/68, 4)} @abc.abstractmethod def run_model(self): pass @abc.abstractmethod def get_number_of_model_data_columns(self): pass def run_multiple(self,num_iterations): # first get the sizing of the storage array # set up the array to hold the data array from each model run. self.run_model_iterations(num_iterations) # calculate summaries self.calculate_simulation_summaries() def run_model_iterations(self, num_iterations): if self.number_of_sim_columns == 0: raise ValueError('number of simulation columns should not be 0. ' 'Fix the __init__ function in the model class.') results_matrix = np.zeros([num_iterations, self.duration, self.number_of_sim_columns]) simulation_matrix = xr.DataArray(results_matrix, coords={'simdata': self.sim_column_list, 'run': range(num_iterations), 'year': range(self.duration)}, dims=('run', 'year', 'simdata')) simulation_matrix = simulation_matrix.astype('object') self.itercount = 0 for i in tqdm(range(num_iterations)): simulation_matrix[i, :, :] = self.run_model() self.itercount += 1 self.simulation_matrix = simulation_matrix self.itercount = 0 def calculate_simulation_summaries(self): # allocate column names summary_matrix_columns,\ sim_results_cols, \ sim_setting_cols, \ mgmt_data_cols = self.create_summary_column_names_list() # create new dataframe to hold summary info temp = np.zeros([self.duration, len(summary_matrix_columns)]) summary_matrix =
pd.DataFrame(temp)
pandas.DataFrame
# -*- coding: utf-8 -*- """ dwx_analytics.py - Pythonic access to raw DARWIN analytics data via FTP -- @author: <NAME> (www.darwinex.com) Last Updated: October 17, 2019 Copyright (c) 2017-2019, Darwinex. All rights reserved. Licensed under the BSD 3-Clause License, you may not use this file except in compliance with the License. You may obtain a copy of the License at: https://opensource.org/licenses/BSD-3-Clause """ import gzip import json, os import pandas as pd from tqdm import tqdm from ftplib import FTP from io import BytesIO from matplotlib import pyplot as plt import logging logger = logging.getLogger() class DWX_Darwin_Data_Analytics_API(): '''This API has the ability to download DARWIN data and analyze it.''' def __init__(self, dwx_ftp_user, dwx_ftp_pass, dwx_ftp_hostname, dwx_ftp_port): """Initialize variables, setup byte buffer and FTP connection. Parameters ---------- ftp_server : str FTP server that houses raw DARWIN data ftp_username : str Your Darwinex username ftp_password : str Your FTP password (NOT your Darwinex password) ftp_port : int Port to connect to FTP server on. -- """ # Analytics Headers self.analytics_headers = {'AVG_LEVERAGE': ['timestamp','periods','darwin_vs_eurusd_volatility'], 'ORDER_DIVERGENCE': ['timestamp','instrument','usd_volume','latency','divergence'], 'RETURN_DIVERGENCE': ['timestamp','quote','quote_after_avg_divergence'], 'MONTHLY_DIVERGENCE': ['timestamp','average_divergence','monthly_divergence'], 'DAILY_FIXED_DIVERGENCE': ['timestamp','profit_difference'], 'DAILY_REAL_DIVERGENCE': ['timestamp','profit_difference'], 'POSITIONS': ['timestamp','periods','array','total_pos_number','max_open_trades'], 'TRADES': ['timestamp','periods','array'], 'TRADE_CONSISTENCY': ['timestamp','periods','array'], 'ROTATION': ['timestamp','periods','daily_rotation']} # Setup data container self.retbuf = BytesIO() # Setup data access mode (file or FTP) self.mode = 0 # Default is file. try: self.server = FTP(dwx_ftp_hostname) self.server.login(dwx_ftp_user, dwx_ftp_pass) # 200+ codes signify success. if str(self.server.lastresp).startswith('2'): logger.warning('[KERNEL] FTP Connection Successful. Data will now be pulled from Darwinex FTP Server.') self.mode = 1 # 1 = FTP, 0 logger.warning(f'[KERNEL] Last FTP Status Code: {self.server.lastresp} | Please consult https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes for code definitions.') except Exception as ex: logger.warning(f'Exception: {ex}') exit(-1) ########################################################################## """Parse a line containing a list. Only works for max one list or one list of lists.""" def parse_line(self, line): for start, end in [['[[', ']]'], ['[', ']']]: if start in line: ls = line.split(start) ls1 = ls[1].split(end) return ls[0].split(',')[:-1] + [json.loads(start+ls1[0].replace("'", '"')+end)] + ls1[1].split(',')[1:] return line.split(',') def get_data_from_ftp(self, darwin, data_type): """Connect to FTP server and download requested data for DARWIN. For example, darwin='PLF' and data_type='AVG_LEVERAGE' results in this code retrieving the file 'PLF/AVG_LEVERAGE' from the FTP server. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF data_type : str Must be a key in self.analytics_headers dictionary. Returns ------- df Pandas DataFrame -- """ # Clear / reinitialize buffer self.retbuf = BytesIO() self.server.retrbinary(f"RETR {darwin}/{data_type}", self.retbuf.write) self.retbuf.seek(0) # Extract data from BytesIO object ret = [] while True: line = self.retbuf.readline() if len(line) > 1: ret.append(self.parse_line(line.strip().decode())) else: break # Return as Dataframe return pd.DataFrame(ret) def get_data_from_file(self, darwin, data_type): """Read data from local file stored in path darwin/filename For example, darwin='PLF' and data_type='AVG_LEVERAGE' results in this code retrieving the file 'PLF/AVG_LEVERAGE' from the current directory. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF data_type : str Must be a key in self.analytics_headers dictionary. Returns ------- df Pandas DataFrame -- """ if self.mode == 0: logger.warning(f'Retrieving data from file for DARWIN {darwin}...') return pd.read_csv(f'{str(darwin).upper()}/{str(data_type).upper()}', header=None) else: logger.warning(f'Retrieving data from FTP Server for DARWIN {darwin}...') return self.get_data_from_ftp(str(darwin).upper(), str(data_type).upper()) def save_data_to_csv(self, dataframe_to_save, which_path, filename): # Save: if which_path: # It will save the data to the specified path: dataframe_to_save.to_csv(which_path + filename + '.csv') else: # It will save the data in the working directory: dataframe_to_save.to_csv(filename + '.csv') ########################################################################## def get_analytics(self, darwin, data_type): """Get, index and prepare requested data. For example, darwin='PLF' and data_type='AVG_LEVERAGE' results in: - the code retrieving the file 'PLF/AVG_LEVERAGE' - converting millisecond timestamps column to Pandas datetime - Setting the above converted timestamps as the index - Dropping the timestamp column itself. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF data_type : str Must be a key in self.analytics_headers dictionary. Returns ------- df Pandas DataFrame -- """ df = self.get_data_from_file(darwin, data_type) df.columns = self.analytics_headers[data_type] df.set_index(pd.to_datetime(df['timestamp'], unit='ms'), inplace=True) df.drop(['timestamp'], axis=1, inplace=True) return df ########################################################################## def get_darwin_vs_eurusd_volatility(self, darwin, plot=True): """Get the evolution of the given DARWIN's volatility vs that of the EUR/USD. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF plot : bool If true, produce a chart as defined in the method. Returns ------- df Pandas DataFrame -- """ # Set required data type data_type = 'AVG_LEVERAGE' # Get raw data into pandas dataframe df = self.get_analytics(darwin, data_type) # DARWIN vs EURUSD volatility is a list. We need the last value df.loc[:,self.analytics_headers[data_type][-1]] = \ df.loc[:,self.analytics_headers[data_type][-1]].apply(eval).apply(lambda x: x[-1]) if plot: df['darwin_vs_eurusd_volatility'].plot(title=f'${darwin}: DARWIN vs EUR/USD Volatility', figsize=(10,8)) # Return processed data return df ############################################################################## def get_order_divergence(self, darwin, plot=True): """Get the evolution of the given DARWIN's replication latency and investor divergence, per order executed by the trader. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF plot : bool If true, produce a chart as defined in the method. Returns ------- df Pandas DataFrame -- """ # Set required data type data_type = 'ORDER_DIVERGENCE' # Get raw data into pandas dataframe df = self.get_analytics(darwin, data_type) # Convert values to numeric df[['latency','usd_volume','divergence']] = df[['latency','usd_volume','divergence']].apply(pd.to_numeric, errors='coerce') # Plot if plot: fig = plt.figure(figsize=(10,12)) # 2x1 grid, first plot ax1 = fig.add_subplot(211) ax1.xaxis.set_label_text('Replication Latency (ms)') # 2x1 grid, second plot ax2 = fig.add_subplot(212) ax2.xaxis.set_label_text('Investor Divergence') # Plot Median Replication Latency by Instrument df.groupby('instrument').latency.median()\ .sort_values(ascending=True).plot(kind='barh',\ title=f'${darwin} | Median Order Replication Latency (ms)',\ ax=ax1) # Plot Median Investor Divergence by Instrument df.groupby('instrument').divergence.median()\ .sort_values(ascending=True).plot(kind='barh',\ title=f'${darwin} | Median Investor Divergence per Order',\ ax=ax2) fig.subplots_adjust(hspace=0.2) # Return processed data return df.dropna() ########################################################################## def get_return_divergence(self, darwin, plot=True): """Get the evolution of the given DARWIN's Quote and Quote after applying average investors' divergence. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF plot : bool If true, produce a chart as defined in the method. Returns ------- df Pandas DataFrame -- """ # Set required data type data_type = 'RETURN_DIVERGENCE' # Get raw data into pandas dataframe df = self.get_analytics(darwin, data_type).apply(pd.to_numeric, errors='coerce') if plot: df.plot(title=f'${darwin} | Quote vs Quote with Average Divergence', figsize=(10,8)) return df ########################################################################## def get_monthly_divergence(self, darwin): """Get the evolution of the given DARWIN's average and monthly divergence. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF Returns ------- df Pandas DataFrame -- """ # Set required data type data_type = 'MONTHLY_DIVERGENCE' # Get raw data into pandas dataframe df = self.get_analytics(darwin, data_type).apply(pd.to_numeric, errors='coerce') return df ########################################################################## def get_daily_fixed_divergence(self, darwin, plot=True): """Analyses the effect of applying a fixed divergence (10e-5) on the profit. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF plot : bool If true, produce a chart as defined in the method. Returns ------- df Pandas DataFrame -- """ # Set required data type data_type = 'DAILY_FIXED_DIVERGENCE' # Get raw data into pandas dataframe df = self.get_analytics(darwin, data_type).apply(pd.to_numeric, errors='coerce') if plot: df.plot(title=f'${darwin} | Effect of 10e-5 Fixed Divergence on profit', figsize=(10,8)) return df ########################################################################## def get_daily_real_divergence(self, darwin, plot=True): """Analyse the effect of applying the investors' divergence on the profit. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF plot : bool If true, produce a chart as defined in the method. Returns ------- df Pandas DataFrame -- """ # Set required data type data_type = 'DAILY_REAL_DIVERGENCE' # Get raw data into pandas dataframe df = self.get_analytics(darwin, data_type).apply(pd.to_numeric, errors='coerce') if plot: df.plot(title=f'${darwin} | Effect of Investor Divergence on profit', figsize=(10,8)) return df ########################################################################## def get_quotes_from_ftp(self, darwin='PLF', suffix='4.1', monthly=True, # If set to False, month/year used. month='01', year='2019', former_or_new='former'): """Download Quote data for any DARWIN directly via FTP. Parameters ---------- darwin : str DARWIN ticker symbol, e.g. $PLF suffix : str Reflects risk, '4.1' being for 10% VaR DARWIN assets. monthly : bool If set to True, month and year arguments are ignored, and ALL data available for the DARWIN is downloaded. month : str Data on the FTP server has the following directory structure: DARWIN_Symbol -> {year}-{month} -> *.csv.gz files e.g. PLF/2019-01/PLF....csv.gz Specifies month for {year}-{month} tuple as above. year : str Data on the FTP server has the following directory structure: DARWIN_Symbol -> {year}-{month} -> *.csv.gz files e.g. PLF/2019-01/PLF....csv.gz Specifies year for {year}-{month} tuple as above. former_or_new : str Access the former var10 DARWIN data or new var6.5 DARWIN data. Returns ------- df Pandas DataFrame containing Quotes, indexed by timeframe. -- """ if former_or_new == 'former': quote_files = [] roots = [] if monthly: tqdm.write(f'\n[KERNEL] Searching for Quote data for DARWIN (FORMER VAR_10) {darwin}, please wait..', end='') self.server.retrlines(f'NLST {darwin}/_{darwin}_former_var10/quotes/', roots.append) roots_pbar = tqdm(roots, position=0, leave=True) for root in roots_pbar: try: roots_pbar.set_description("Getting filenames for month: %s" % root) root_files = [] self.server.retrlines(f'NLST {darwin}/_{darwin}_former_var10/quotes/{root}', root_files.append) # Finalize filenames quote_files += [f'{darwin}/_{darwin}_former_var10/quotes/{root}/{root_file}'\ for root_file in root_files if '{}.{}'.format(darwin, suffix) in root_file] except Exception as ex: logger.warning(ex) return elif pd.to_numeric(month) > 0 and pd.to_numeric(year) > 2010: tqdm.write(f'\n[KERNEL] Asserting data on DARWIN (FORMER VAR_10) for month {year}-{month}, please wait..', end='') quote_files = [] try: self.server.retrlines(f'NLST {darwin}/_{darwin}_former_var10/quotes/{year}-{month}/', quote_files.append) quote_files = [f'{darwin}/_{darwin}_former_var10/quotes/{year}-{month}/{quote_file}'\ for quote_file in quote_files if '{}.{}'.format(darwin, suffix) in quote_file] except Exception as ex: logger.warning(ex) return else: logger.warning('\n[ERROR] Please either set monthly=True or ensure both month and year have integer values') return # Process tick data files tqdm.write(f'\n[KERNEL] {len(quote_files)} files retrieved.. post-processing now, please wait..', end='') ticks_df = pd.DataFrame() ticks_pbar = tqdm(quote_files, position=0, leave=True) for tick_file in ticks_pbar: try: ticks_pbar.set_description("Processing %s" % tick_file) # Clear / reinitialize buffer self.retbuf = BytesIO() self.server.retrbinary(f"RETR {tick_file}", self.retbuf.write) self.retbuf.seek(0) # Extract data from BytesIO object ret = [line.strip().decode().split(',') for line in gzip.open(self.retbuf)] ticks_df = pd.concat([ticks_df, pd.DataFrame(ret[1:])], axis=0) except Exception as ex: logger.warning(ex) # Clean up ticks_df.columns = ['timestamp','quote'] ticks_df.timestamp = ticks_df.timestamp.apply(pd.to_numeric) ticks_df.set_index('timestamp', drop=True, inplace=True) ticks_df.index = pd.to_datetime(ticks_df.index, unit='ms') ticks_df.quote = ticks_df.quote.apply(pd.to_numeric) # Return DataFrame return ticks_df.dropna() elif former_or_new == 'new': quote_files = [] roots = [] if monthly: tqdm.write(f'\n[KERNEL] Searching for Quote data for DARWIN (NEW) {darwin}, please wait..', end='') self.server.retrlines(f'NLST {darwin}/quotes/', roots.append) roots_pbar = tqdm(roots, position=0, leave=True) for root in roots_pbar: try: roots_pbar.set_description("Getting filenames for month: %s" % root) root_files = [] self.server.retrlines(f'NLST {darwin}/quotes/{root}', root_files.append) # Finalize filenames quote_files += [f'{darwin}/quotes/{root}/{root_file}'\ for root_file in root_files if '{}.{}'.format(darwin, suffix) in root_file] except Exception as ex: logger.warning(ex) return elif pd.to_numeric(month) > 0 and
pd.to_numeric(year)
pandas.to_numeric
from datetime import datetime import numpy as np import pandas as pd from fetcher.extras.common import MaRawData from fetcher.utils import Fields, extract_arcgis_attributes NULL_DATE = datetime(2020, 1, 1) DATE = Fields.DATE.name TS = Fields.TIMESTAMP.name def make_cumsum_df(data, timestamp_field=Fields.TIMESTAMP.name): df = pd.DataFrame(data) df.set_index(timestamp_field, inplace=True) df.sort_index(inplace=True) df = df.select_dtypes(exclude=['string', 'object']) # .groupby(level=0).last() # can do it here, but not mandatory cumsum_df = df.cumsum() cumsum_df[Fields.TIMESTAMP.name] = cumsum_df.index return cumsum_df def handle_ak(res, mapping): tests = res[0] collected = [x['attributes'] for x in tests['features']] df =
pd.DataFrame(collected)
pandas.DataFrame
import math import warnings import numpy as np import pandas as pd import seaborn as sns import scipy.stats as ss import scipy.cluster.hierarchy as sch import matplotlib.pyplot as plt from collections import Counter from .data_utils import identify_columns_by_type from ._private import ( convert, remove_incomplete_samples, replace_nan_with_value ) __all__ = [ 'associations', 'cluster_correlations', 'compute_associations', 'conditional_entropy', 'correlation_ratio', 'cramers_v', 'identify_nominal_columns', 'identify_numeric_columns', 'numerical_encoding', 'theils_u' ] _REPLACE = 'replace' _DROP = 'drop' _DROP_SAMPLES = 'drop_samples' _DROP_FEATURES = 'drop_features' _SKIP = 'skip' _DEFAULT_REPLACE_VALUE = 0.0 def _inf_nan_str(x): if np.isnan(x): return 'NaN' elif abs(x) == np.inf: return 'inf' else: return '' def conditional_entropy(x, y, nan_strategy=_REPLACE, nan_replace_value=_DEFAULT_REPLACE_VALUE, log_base: float = math.e): """ Calculates the conditional entropy of x given y: S(x|y) Wikipedia: https://en.wikipedia.org/wiki/Conditional_entropy Parameters: ----------- x : list / NumPy ndarray / Pandas Series A sequence of measurements y : list / NumPy ndarray / Pandas Series A sequence of measurements nan_strategy : string, default = 'replace' How to handle missing values: can be either 'drop' to remove samples with missing values, or 'replace' to replace all missing values with the nan_replace_value. Missing values are None and np.nan. nan_replace_value : any, default = 0.0 The value used to replace missing values with. Only applicable when nan_strategy is set to 'replace'. log_base: float, default = e specifying base for calculating entropy. Default is base e. Returns: -------- float """ if nan_strategy == _REPLACE: x, y = replace_nan_with_value(x, y, nan_replace_value) elif nan_strategy == _DROP: x, y = remove_incomplete_samples(x, y) y_counter = Counter(y) xy_counter = Counter(list(zip(x, y))) total_occurrences = sum(y_counter.values()) entropy = 0.0 for xy in xy_counter.keys(): p_xy = xy_counter[xy] / total_occurrences p_y = y_counter[xy[1]] / total_occurrences entropy += p_xy * math.log(p_y / p_xy, log_base) return entropy def cramers_v(x, y, bias_correction=True, nan_strategy=_REPLACE, nan_replace_value=_DEFAULT_REPLACE_VALUE): """ Calculates Cramer's V statistic for categorical-categorical association. This is a symmetric coefficient: V(x,y) = V(y,x) Original function taken from: https://stackoverflow.com/a/46498792/5863503 Wikipedia: https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V Parameters: ----------- x : list / NumPy ndarray / Pandas Series A sequence of categorical measurements y : list / NumPy ndarray / Pandas Series A sequence of categorical measurements bias_correction : Boolean, default = True Use bias correction from Bergsma and Wicher, Journal of the Korean Statistical Society 42 (2013): 323-328. nan_strategy : string, default = 'replace' How to handle missing values: can be either 'drop' to remove samples with missing values, or 'replace' to replace all missing values with the nan_replace_value. Missing values are None and np.nan. nan_replace_value : any, default = 0.0 The value used to replace missing values with. Only applicable when nan_strategy is set to 'replace'. Returns: -------- float in the range of [0,1] """ if nan_strategy == _REPLACE: x, y = replace_nan_with_value(x, y, nan_replace_value) elif nan_strategy == _DROP: x, y = remove_incomplete_samples(x, y) confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape if bias_correction: phi2corr = max(0, phi2 - ((k - 1) * (r - 1)) / (n - 1)) rcorr = r - ((r - 1) ** 2) / (n - 1) kcorr = k - ((k - 1) ** 2) / (n - 1) if min((kcorr - 1), (rcorr - 1)) == 0: warnings.warn( "Unable to calculate Cramer's V using bias correction. Consider using bias_correction=False", RuntimeWarning) return np.nan else: return np.sqrt(phi2corr / min((kcorr - 1), (rcorr - 1))) else: return np.sqrt(phi2 / min(k - 1, r - 1)) def theils_u(x, y, nan_strategy=_REPLACE, nan_replace_value=_DEFAULT_REPLACE_VALUE): """ Calculates Theil's U statistic (Uncertainty coefficient) for categorical- categorical association. This is the uncertainty of x given y: value is on the range of [0,1] - where 0 means y provides no information about x, and 1 means y provides full information about x. This is an asymmetric coefficient: U(x,y) != U(y,x) Wikipedia: https://en.wikipedia.org/wiki/Uncertainty_coefficient Parameters: ----------- x : list / NumPy ndarray / Pandas Series A sequence of categorical measurements y : list / NumPy ndarray / Pandas Series A sequence of categorical measurements nan_strategy : string, default = 'replace' How to handle missing values: can be either 'drop' to remove samples with missing values, or 'replace' to replace all missing values with the nan_replace_value. Missing values are None and np.nan. nan_replace_value : any, default = 0.0 The value used to replace missing values with. Only applicable when nan_strategy is set to 'replace'. Returns: -------- float in the range of [0,1] """ if nan_strategy == _REPLACE: x, y = replace_nan_with_value(x, y, nan_replace_value) elif nan_strategy == _DROP: x, y = remove_incomplete_samples(x, y) s_xy = conditional_entropy(x, y) x_counter = Counter(x) total_occurrences = sum(x_counter.values()) p_x = list(map(lambda n: n / total_occurrences, x_counter.values())) s_x = ss.entropy(p_x) if s_x == 0: return 1 else: return (s_x - s_xy) / s_x def correlation_ratio(categories, measurements, nan_strategy=_REPLACE, nan_replace_value=_DEFAULT_REPLACE_VALUE): """ Calculates the Correlation Ratio (sometimes marked by the greek letter Eta) for categorical-continuous association. Answers the question - given a continuous value of a measurement, is it possible to know which category is it associated with? Value is in the range [0,1], where 0 means a category cannot be determined by a continuous measurement, and 1 means a category can be determined with absolute certainty. Wikipedia: https://en.wikipedia.org/wiki/Correlation_ratio Parameters: ----------- categories : list / NumPy ndarray / Pandas Series A sequence of categorical measurements measurements : list / NumPy ndarray / Pandas Series A sequence of continuous measurements nan_strategy : string, default = 'replace' How to handle missing values: can be either 'drop' to remove samples with missing values, or 'replace' to replace all missing values with the nan_replace_value. Missing values are None and np.nan. nan_replace_value : any, default = 0.0 The value used to replace missing values with. Only applicable when nan_strategy is set to 'replace'. Returns: -------- float in the range of [0,1] """ if nan_strategy == _REPLACE: categories, measurements = replace_nan_with_value( categories, measurements, nan_replace_value) elif nan_strategy == _DROP: categories, measurements = remove_incomplete_samples( categories, measurements) categories = convert(categories, 'array') measurements = convert(measurements, 'array') fcat, _ =
pd.factorize(categories)
pandas.factorize
# load packages import pandas as pd import statsmodels.tsa.stattools as stats import statsmodels.graphics.tsaplots as sg import matplotlib.pyplot as plt import matplotlib import itertools as it import sys from datetime import datetime import numpy as np import warnings import json import time warnings.filterwarnings("ignore") import networkx as nx from nxpd import draw from nxpd import nxpdParams nxpdParams['show'] = 'ipynb' sys.path.append("../../pipelines") import Pipelines as tdw data_folder = "../../data/invitro/" output_path = "../../data/invitro/" current_time = datetime.now().strftime('%Y-%m-%d_%H:%M:%S') file_path = "../../data/invitro/gardner_timeseries.tsv" n_trials = 50 run_params = {'data_folder': data_folder, 'file_path': file_path, 'td_window': 7, 'min_lag': 0, 'max_lag': 1, 'n_trees': 1000, 'permutation_n': 0, 'lag_method': 'mean_mean', 'calc_mse': False, 'bootstrap_n': 1000, 'n_trilas50': n_trials, 'run_time': current_time, 'sort_by': 'rank', 'window_type': 'RandomForest' } overall_df =
pd.DataFrame()
pandas.DataFrame
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small =
DataFrame("hello", index=[0], columns=[0])
pandas.DataFrame
def Moder_merger(params : dict): def Solo_M1mHpC4H11N(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 72.081324 mz_Cl = 34.968853 + mz - 72.081324 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl]) def Solo_M1mHpHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 44.997654 mz_Cl = 34.968853 + mz - 44.997654 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl]) def Solo_M1m2HpNapHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 66.979600 mz_Cl = 34.968853 + mz - 66.979600 mz_m2HpNa = 20.97412 + mz - 66.979600 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa]) def Solo_M1m2HpNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 66.979600 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H]) def Solo_M1m2HpK(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 36.948058 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H]) def Solo_M2mHpC4H11N(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 72.081324)/2 mz_Cl = 34.968853 + (mz - 72.081324)/2 mz_m2HpNa = 20.97412 + (mz - 72.081324)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa]) def Solo_M2mHpHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 44.997654)/2 mz_Cl = 34.968853 + (mz - 44.997654)/2 mz_m2HpNa = 20.97412 + (mz - 44.997654)/2 mz_mHpHCOOH = 44.997654 + (mz - 44.997654)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_mHpHCOOH = peaks.between(mz_mHpHCOOH - prec_mass_error, mz_mHpHCOOH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_mHpHCOOH]) def Solo_M2mH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz + 1.007825)/2 mz_Cl = 34.968853 + (mz + 1.007825)/2 mz_m2HpNa = 20.97412 + (mz + 1.007825)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa]) def Solo_M2pCl(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 34.968853)/2 mz_Cl = 34.968853 + (mz - 34.968853)/2 mz_m2HpNa = 20.97412 + (mz - 34.968853)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa]) def Solo_M2m2HpNapHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 66.979600)/2 mz_Cl = 34.968853 + (mz - 66.979600)/2 mz_m2HpNa = 20.97412 + (mz - 66.979600)/2 mz_m2HpNapHCOOH = 66.9796 + (mz - 66.979600)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH]) def Solo_M2m2HpNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 20.97412)/2 mz_Cl = 34.968853 + (mz - 20.97412)/2 mz_m2HpNa = 20.97412 + (mz - 20.97412)/2 mz_m2HpNapHCOOH = 66.9796 + (mz - 20.97412)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH]) def Solo_M2m2HpK(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 36.948058)/2 mz_Cl = 34.968853 + (mz - 36.948058)/2 mz_m2HpNa = 20.97412 + (mz - 36.948058)/2 mz_m2HpNapHCOOH = 66.9796 + (mz - 36.948058)/2 mz_m2HpK = 36.948058 + (mz - 36.948058)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK]) def Solo_M3mH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz + 1.007825)/3 mz_Cl = 34.968853 + (mz + 1.007825)/3 mz_m2HpNa = 20.97412 + (mz + 1.007825)/3 mz_m2HpNapHCOOH = 66.9796 + (mz + 1.007825)/3 mz_m2HpK = 36.948058 + (mz + 1.007825)/3 mz_M2mH = -1.007825 + (mz + 1.007825)*(2/3) mz_M2pCl = 34.968853 + (mz + 1.007825)*(2/3) mz_M2m2HpNa = 20.97412 + (mz + 1.007825)*(2/3) mz_M2m2HpNapHCOOH = 66.9796 + (mz + 1.007825)*(2/3) mz_M2m2HpK = 36.948058 + (mz + 1.007825)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK]) def Solo_M3pCl(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 34.968853)/3 mz_Cl = 34.968853 + (mz - 34.968853)/3 mz_m2HpNa = 20.97412 + (mz - 34.968853)/3 mz_m2HpNapHCOOH = 66.9796 + (mz - 34.968853)/3 mz_m2HpK = 36.948058 + (mz - 34.968853)/3 mz_M2mH = -1.007825 + (mz - 34.968853)*(2/3) mz_M2pCl = 34.968853 + (mz - 34.968853)*(2/3) mz_M2m2HpNa = 20.97412 + (mz - 34.968853)*(2/3) mz_M2m2HpNapHCOOH = 66.9796 + (mz - 34.968853)*(2/3) mz_M2m2HpK = 36.948058 + (mz - 34.968853)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK]) def Solo_M3m2HpNapHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 66.979600)/3 mz_Cl = 34.968853 + (mz - 66.979600)/3 mz_m2HpNa = 20.97412 + (mz - 66.979600)/3 mz_m2HpNapHCOOH = 66.9796 + (mz - 66.979600)/3 mz_m2HpK = 36.948058 + (mz - 66.979600)/3 mz_M2mH = -1.007825 + (mz - 66.979600)*(2/3) mz_M2pCl = 34.968853 + (mz - 66.979600)*(2/3) mz_M2m2HpNa = 20.97412 + (mz - 66.979600)*(2/3) mz_M2m2HpNapHCOOH = 66.9796 + (mz - 66.979600)*(2/3) mz_M2m2HpK = 36.948058 + (mz - 66.979600)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK]) def Solo_M3m2HpNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 20.97412)/3 mz_Cl = 34.968853 + (mz - 20.97412)/3 mz_m2HpNa = 20.97412 + (mz - 20.97412)/3 mz_m2HpNapHCOOH = 66.9796 + (mz - 20.97412)/3 mz_m2HpK = 36.948058 + (mz - 20.97412)/3 mz_M2mH = -1.007825 + (mz - 20.97412)*(2/3) mz_M2pCl = 34.968853 + (mz - 20.97412)*(2/3) mz_M2m2HpNa = 20.97412 + (mz - 20.97412)*(2/3) mz_M2m2HpNapHCOOH = 66.9796 + (mz - 20.97412)*(2/3) mz_M2m2HpK = 36.948058 + (mz - 20.97412)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK]) def Solo_M4mH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz + 1.007825)/4 mz_Cl = 34.968853 + (mz + 1.007825)/4 mz_m2HpNa = 20.97412 + (mz + 1.007825)/4 mz_m2HpNapHCOOH = 66.9796 + (mz + 1.007825)/4 mz_m2HpK = 36.948058 + (mz + 1.007825)/4 mz_M2mH = -1.007825 + (mz + 1.007825)/2 mz_M2pCl = 34.968853 + (mz + 1.007825)/2 mz_M2m2HpNa = 20.97412 + (mz + 1.007825)/2 mz_M2m2HpNapHCOOH = 66.9796 + (mz + 1.007825)/2 mz_M2m2HpK = 36.948058 + (mz + 1.007825)/2 mz_M3mH = -1.007825 + (mz + 1.007825)*(3/4) mz_M3pCl = 34.968853 + (mz + 1.007825)*(3/4) mz_M3m2HpNa = 20.97412 + (mz + 1.007825)*(3/4) mz_M3m2HpNapHCOOH = 66.9796 + (mz + 1.007825)*(3/4) mz_M3m2HpK = 36.948058 + (mz + 1.007825)*(3/4) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M3mH = peaks.between(mz_M3mH - prec_mass_error, mz_M3mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3pCl = peaks.between(mz_M3pCl - prec_mass_error, mz_M3pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNa = peaks.between(mz_M3m2HpNa - prec_mass_error, mz_M3m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNapHCOOH = peaks.between(mz_M3m2HpNapHCOOH - prec_mass_error, mz_M3m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpK = peaks.between(mz_M3m2HpK - prec_mass_error, mz_M3m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK, valid_M3mH, valid_M3pCl, valid_M3m2HpNa, valid_M3m2HpNapHCOOH, valid_M3m2HpK]) def Solo_M4pCl(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 34.968853)/4 mz_Cl = 34.968853 + (mz - 34.968853)/4 mz_m2HpNa = 20.97412 + (mz - 34.968853)/4 mz_m2HpNapHCOOH = 66.9796 + (mz - 34.968853)/4 mz_m2HpK = 36.948058 + (mz - 34.968853)/4 mz_M2mH = -1.007825 + (mz - 34.968853)/2 mz_M2pCl = 34.968853 + (mz - 34.968853)/2 mz_M2m2HpNa = 20.97412 + (mz - 34.968853)/2 mz_M2m2HpNapHCOOH = 66.9796 + (mz - 34.968853)/2 mz_M2m2HpK = 36.948058 + (mz - 34.968853)/2 mz_M3mH = -1.007825 + (mz - 34.968853)*(3/4) mz_M3pCl = 34.968853 + (mz - 34.968853)*(3/4) mz_M3m2HpNa = 20.97412 + (mz - 34.968853)*(3/4) mz_M3m2HpNapHCOOH = 66.9796 + (mz - 34.968853)*(3/4) mz_M3m2HpK = 36.948058 + (mz - 34.968853)*(3/4) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M3mH = peaks.between(mz_M3mH - prec_mass_error, mz_M3mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3pCl = peaks.between(mz_M3pCl - prec_mass_error, mz_M3pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNa = peaks.between(mz_M3m2HpNa - prec_mass_error, mz_M3m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNapHCOOH = peaks.between(mz_M3m2HpNapHCOOH - prec_mass_error, mz_M3m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpK = peaks.between(mz_M3m2HpK - prec_mass_error, mz_M3m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK, valid_M3mH, valid_M3pCl, valid_M3m2HpNa, valid_M3m2HpNapHCOOH, valid_M3m2HpK]) def Solo_M4m2HpNapHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 66.979600)/4 mz_Cl = 34.968853 + (mz - 66.979600)/4 mz_m2HpNa = 20.97412 + (mz - 66.979600)/4 mz_m2HpNapHCOOH = 66.9796 + (mz - 66.979600)/4 mz_m2HpK = 36.948058 + (mz - 66.979600)/4 mz_M2mH = -1.007825 + (mz - 66.979600)/2 mz_M2pCl = 34.968853 + (mz - 66.979600)/2 mz_M2m2HpNa = 20.97412 + (mz - 66.979600)/2 mz_M2m2HpNapHCOOH = 66.9796 + (mz - 66.979600)/2 mz_M2m2HpK = 36.948058 + (mz - 66.979600)/2 mz_M3mH = -1.007825 + (mz - 66.979600)*(3/4) mz_M3pCl = 34.968853 + (mz - 66.979600)*(3/4) mz_M3m2HpNa = 20.97412 + (mz - 66.979600)*(3/4) mz_M3m2HpNapHCOOH = 66.9796 + (mz - 66.979600)*(3/4) mz_M3m2HpK = 36.948058 + (mz - 66.979600)*(3/4) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M3mH = peaks.between(mz_M3mH - prec_mass_error, mz_M3mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3pCl = peaks.between(mz_M3pCl - prec_mass_error, mz_M3pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNa = peaks.between(mz_M3m2HpNa - prec_mass_error, mz_M3m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNapHCOOH = peaks.between(mz_M3m2HpNapHCOOH - prec_mass_error, mz_M3m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpK = peaks.between(mz_M3m2HpK - prec_mass_error, mz_M3m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK, valid_M3mH, valid_M3pCl, valid_M3m2HpNa, valid_M3m2HpNapHCOOH, valid_M3m2HpK]) def Solo_M4m2HpNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 20.97412)/4 mz_Cl = 34.968853 + (mz - 20.97412)/4 mz_m2HpNa = 20.97412 + (mz - 20.97412)/4 mz_m2HpNapHCOOH = 66.9796 + (mz - 20.97412)/4 mz_m2HpK = 36.948058 + (mz - 20.97412)/4 mz_M2mH = -1.007825 + (mz - 20.97412)/2 mz_M2pCl = 34.968853 + (mz - 20.97412)/2 mz_M2m2HpNa = 20.97412 + (mz - 20.97412)/2 mz_M2m2HpNapHCOOH = 66.9796 + (mz - 20.97412)/2 mz_M2m2HpK = 36.948058 + (mz - 20.97412)/2 mz_M3mH = -1.007825 + (mz - 20.97412)*(3/4) mz_M3pCl = 34.968853 + (mz - 20.97412)*(3/4) mz_M3m2HpNa = 20.97412 + (mz - 20.97412)*(3/4) mz_M3m2HpNapHCOOH = 66.9796 + (mz - 20.97412)*(3/4) mz_M3m2HpK = 36.948058 + (mz - 20.97412)*(3/4) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M3mH = peaks.between(mz_M3mH - prec_mass_error, mz_M3mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3pCl = peaks.between(mz_M3pCl - prec_mass_error, mz_M3pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNa = peaks.between(mz_M3m2HpNa - prec_mass_error, mz_M3m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNapHCOOH = peaks.between(mz_M3m2HpNapHCOOH - prec_mass_error, mz_M3m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpK = peaks.between(mz_M3m2HpK - prec_mass_error, mz_M3m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK, valid_M3mH, valid_M3pCl, valid_M3m2HpNa, valid_M3m2HpNapHCOOH, valid_M3m2HpK]) def Solo_M2pH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 1.007825)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H]) def Solo_M2pHpCH3CN(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 42.034374)/2 mz_Na = 22.98977 + (mz - 42.034374)/2 mz_K = 38.963708 + (mz - 42.034374)/2 mz_HpCH3CN = 42.034374 + (mz - 42.034374)/2 mz_HpCH3OH = 33.034040 + (mz - 42.034374)/2 mz_NapCH3CN = 64.016319 + (mz - 42.034374)/2 mz_NapCH3OH = 55.015985 + (mz - 42.034374)/2 mz_KpCH3CN = 79.990257 + (mz - 42.034374)/2 mz_KpCH3OH = 70.989923 + (mz - 42.034374)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3CN = peaks.between(mz_KpCH3CN - prec_mass_error, mz_KpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3OH = peaks.between(mz_KpCH3OH - prec_mass_error, mz_KpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_K, valid_HpCH3CN, valid_HpCH3OH, valid_NapCH3CN, valid_NapCH3OH, valid_KpCH3CN, valid_KpCH3OH]) def Solo_M2pHpCH3OH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 33.034040)/2 mz_Na = 22.98977 + (mz - 33.034040)/2 mz_K = 38.963708 + (mz - 33.034040)/2 mz_HpCH3CN = 42.034374 + (mz - 33.034040)/2 mz_HpCH3OH = 33.034040 + (mz - 33.034040)/2 mz_NapCH3CN = 64.016319 + (mz - 33.034040)/2 mz_NapCH3OH = 55.015985 + (mz - 33.034040)/2 mz_KpCH3CN = 79.990257 + (mz - 33.034040)/2 mz_KpCH3OH = 70.989923 + (mz - 33.034040)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3CN = peaks.between(mz_KpCH3CN - prec_mass_error, mz_KpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3OH = peaks.between(mz_KpCH3OH - prec_mass_error, mz_KpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_K, valid_HpCH3CN, valid_HpCH3OH, valid_NapCH3CN, valid_NapCH3OH, valid_KpCH3CN, valid_KpCH3OH]) def Solo_M2pHpHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 47.013304)/2 mz_Na = 22.98977 + (mz - 47.013304)/2 mz_K = 38.963708 + (mz - 47.013304)/2 mz_HpCH3CN = 42.034374 + (mz - 47.0133042)/2 mz_HpCH3OH = 33.034040 + (mz - 47.013304)/2 mz_NapCH3CN = 64.016319 + (mz - 47.013304)/2 mz_NapCH3OH = 55.015985 + (mz - 47.013304)/2 mz_KpCH3CN = 79.990257 + (mz - 47.013304)/2 mz_KpCH3OH = 70.989923 + (mz - 47.013304)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3CN = peaks.between(mz_KpCH3CN - prec_mass_error, mz_KpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3OH = peaks.between(mz_KpCH3OH - prec_mass_error, mz_KpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_K, valid_HpCH3CN, valid_HpCH3OH, valid_NapCH3CN, valid_NapCH3OH, valid_KpCH3CN, valid_KpCH3OH]) def Solo_M2pNH4(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 18.034374)/2 mz_NH4 = 18.034374 + (mz - 18.034374)/2 mz_Na = 22.98977 + (mz - 18.034374)/2 mz_K = 38.963708 + (mz - 18.034374)/2 mz_HpCH3CN = 42.034374 + (mz - 18.034374)/2 mz_HpCH3OH = 33.034040 + (mz - 18.034374)/2 mz_NapCH3CN = 64.016319 + (mz - 18.034374)/2 mz_NapCH3OH = 55.015985 + (mz - 18.034374)/2 mz_KpCH3CN = 79.990257 + (mz - 18.034374)/2 mz_KpCH3OH = 70.989923 + (mz - 18.034374)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_NH4 = peaks.between(mz_NH4 - prec_mass_error, mz_NH4 + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3CN = peaks.between(mz_KpCH3CN - prec_mass_error, mz_KpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3OH = peaks.between(mz_KpCH3OH - prec_mass_error, mz_KpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_NH4, valid_Na, valid_K, valid_HpCH3CN, valid_HpCH3OH, valid_NapCH3CN, valid_NapCH3OH, valid_KpCH3CN, valid_KpCH3OH]) def Solo_M2pNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 22.98977)/2 mz_Na = 22.98977 + (mz - 22.98977)/2 mz_NapCH3CN = 64.016319 + (mz - 22.98977)/2 mz_NapCH3OH = 55.015985 + (mz - 22.98977)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_NapCH3CN, valid_NapCH3OH]) def Solo_M2pNapCH3OH(ion_idx, mgf_file) : mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 55.015985)/2 mz_Na = 22.98977 + (mz - 55.015985)/2 mz_NapCH3CN = 64.016319 + (mz - 55.015985)/2 mz_NapCH3OH = 55.015985 + (mz - 55.015985)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_NapCH3CN, valid_NapCH3OH]) def Solo_M2pNapCH3CN(ion_idx, mgf_file) : mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 64.016319)/2 mz_Na = 22.98977 + (mz - 64.016319)/2 mz_NapCH3CN = 64.016319 + (mz - 64.016319)/2 mz_NapCH3OH = 55.015985 + (mz - 64.016319)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_NapCH3CN, valid_NapCH3OH]) def Solo_M2pK(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 38.963708)/2 mz_Na = 22.98977 + (mz - 38.963708)/2 mz_K = 38.963708 + (mz - 38.963708)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_K]) def Solo_M1pHpCH3CN(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 42.034374 mz_Na = 22.98977 + mz - 42.034374 mz_HpCH3OH = 33.034040 + mz - 42.034374 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_HpCH3OH]) def Solo_M1pHpCH3OH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 33.034040 mz_Na = 22.98977 + mz - 33.034040 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na]) def Solo_M1pHpHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 47.013304 mz_Na = 22.98977 + mz - 47.013304 mz_HpCH3OH = 33.034040 + mz - 47.013304 mz_HpCH3CN = 42.034374 + mz - 47.013304 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_HpCH3OH, valid_HpCH3CN]) def Solo_M1pNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 22.989770 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() return valid_H def Solo_M1pNapCH3CN(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = mz - 64.016319 + 1.007825 mz_Na = mz - 64.016319 + 22.98977 mz_NapCH3OH = mz - 64.016319 + 55.015985 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_NapCH3OH]) def Solo_M1pNapCH3OH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 55.015985 mz_Na = 22.98977 + mz - 55.015985 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na]) def Solo_M1pNH4(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 18.034374 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() return valid_H def Solo_M1pNH4pCH3CN(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 59.060923 mz_NH4 = 18.034374 + mz - 59.060923 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_NH4 = peaks.between(mz_NH4 - prec_mass_error, mz_NH4 + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_NH4]) def Solo_M1pK(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 38.963708 mz_NH4 = 18.034374 + mz - 38.963708 mz_Na = 22.98977 + mz - 38.963708 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() valid_NH4 = peaks.between(mz_NH4 - prec_mass_error, mz_NH4 + prec_mass_error, inclusive = "both").sum() valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() return sum([valid_H, valid_NH4, valid_Na]) def Solo_M1pKpCH3OH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 70.989923 mz_NH4 = 18.034374 + mz - 70.989923 mz_Na = 22.98977 + mz - 70.989923 mz_K = 38.963708 + mz - 70.989923 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() valid_NH4 = peaks.between(mz_NH4 - prec_mass_error, mz_NH4 + prec_mass_error, inclusive = "both").sum() valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() return sum([valid_H, valid_NH4, valid_Na, valid_K]) def Solo_M3pH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 1.007825)/3 mz_M2pH = 1.007825 + (mz - 1.007825)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pH = peaks.between(mz_M2pH - prec_mass_error, mz_M2pH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_M2pH]) def Solo_M3pNH4(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks =
pd.Series(mgf_file[ion_idx].peaks.mz)
pandas.Series
import pandas as pd import numpy as np import datetime class Durations(object): @classmethod def set(cls, X, extract_cols, dataset): print("... ... Durations") all_df = dataset["all_df"] # duration from first action to clickout dffac_df = all_df[["session_id", "timestamp", "timestamp_dt"]].groupby( "session_id").first().reset_index() dffac_df = dffac_df[["session_id", "timestamp_dt"]] dffac_df.columns = ["session_id", "first_timestamp_dt"] X = pd.merge(X, dffac_df, on="session_id", how="left") X["session_duration"] = X.apply(lambda x: (x.timestamp_dt - x.first_timestamp_dt).seconds, axis=1) extract_cols = extract_cols + ["session_duration"] del dffac_df # duration from last distination to clickout dflsc_df = all_df[["session_id", "_session_id", "timestamp", "timestamp_dt"]].groupby( "_session_id").first().reset_index() dflsc_df = dflsc_df[dflsc_df._session_id.isin(X._session_id)] dflsc_df = dflsc_df[["session_id", "timestamp_dt"]] dflsc_df.columns = ["session_id", "step_first_timestamp_dt"] X = pd.merge(X, dflsc_df, on="session_id", how="left") X["step_duration"] = X.apply(lambda x: (x.timestamp_dt - x.step_first_timestamp_dt).seconds, axis=1) extract_cols = extract_cols + ["step_duration"] del dflsc_df return (X, extract_cols) class JustClickout(object): @classmethod def set(cls, X, extract_cols): print("... ... JustClickout") # append current fillters def get_cf_features(x): sbp = 1 if "Sort by Price" in x.current_filters else 0 sbd = 1 if "Sort By Distance" in x.current_filters else 0 sbr = 1 if "Sort By Rating" in x.current_filters else 0 fod = 1 if "Focus on Distance" in x.current_filters else 0 fsr = 1 if "Focus on Rating" in x.current_filters else 0 bev = 1 if "Best Value" in x.current_filters else 0 return pd.Series({'cf_sbp': sbp , 'cf_sbd': sbd , 'cf_sbr': sbr , 'cf_fod': fod , 'cf_fsr': fsr , 'cf_bev': bev}) X["current_filters"] = X["current_filters"].fillna("") curf_df = X[["current_filters"]].apply(lambda x: get_cf_features(x), axis=1) X = pd.concat([X, curf_df], axis=1) extract_cols = extract_cols + list(curf_df.columns) del curf_df return (X, extract_cols) class JustBeforeClickout(object): @classmethod def set(cls, X, dataset): print("... ... JustBeforeClickout") all_df = dataset["all_df"] # last action_type lasttype_df = all_df[["session_id", "action_type", "is_y"]].copy() lasttype_df["lat"] = lasttype_df["action_type"].shift(1) lasttype_df["last_session_id"] = lasttype_df["session_id"].shift(1) lasttype_df = lasttype_df[lasttype_df.is_y == 1] lasttype_df = lasttype_df[lasttype_df.session_id == lasttype_df.last_session_id] lasttype_df = lasttype_df[["session_id", "lat"]] onehot_lat = pd.get_dummies(lasttype_df, columns=['lat']) X = pd.merge(X, onehot_lat, on="session_id", how="left") lat_cols = list(onehot_lat.columns) lat_cols.remove("session_id") for lat_col in lat_cols: X[lat_col] = X[lat_col].fillna(0) del lasttype_df del onehot_lat return X class Record2Impression(object): @classmethod def expand(cls, X, extract_cols, dataset): print("... ... Record2Impression") # create expanded X = X.reset_index() X["gid"] = X.index X["n_imps"] = X[["impressions"]].apply(lambda x: len(str(x.impressions).split("|")), axis=1) X["price_mean"] = X[["prices"]].apply(lambda x: np.mean(np.array(str(x.prices).split("|")).astype(int)), axis=1) X["price_std"] = X[["prices"]].apply(lambda x: np.std(np.array(str(x.prices).split("|")).astype(int)), axis=1) X["impression"] = X[["impressions"]].apply(lambda x: str(x.impressions).split("|"), axis=1) X["price"] = X[["prices"]].apply(lambda x: str(x.prices).split("|"), axis=1) X_impression = X[["gid", "impression"]].set_index('gid').impression.apply(pd.Series).stack().reset_index( level=0).rename(columns={0: 'impression'}) X_price = X[["gid", "price"]].set_index('gid').price.apply(pd.Series).stack().reset_index(level=0).rename( columns={0: 'price'}) X_position = X[["gid", "impression"]].set_index('gid').impression.apply( lambda x: pd.Series(range(len(x)))).stack().reset_index(level=0).rename(columns={0: 'position'}) X_expanded = pd.concat([X_impression, X_price], axis=1) X_expanded = pd.concat([X_expanded, X_position], axis=1) X_expanded.columns = ["gid", "impression", "gid2", "price", "gid3", "position"] X_expanded = X_expanded[["gid", "impression", "price", "position"]] # join expaned X = pd.merge(X_expanded, X[["gid", "n_imps", "price_mean", "price_std"] + extract_cols], on="gid", how="left") # to normalize position and price X["pos_rate"] = X["position"] / X["n_imps"] X["pos"] = X["position"] + 1 X["price_norm"] = (X["price"].astype(float) - X["price_mean"].astype(float)) / X["price_std"].astype(float) # join price_norm rank pnorm_rank_df = X[["session_id", "price_norm"]].copy() pnorm_rank_df = pnorm_rank_df[["session_id", "price_norm"]].groupby("session_id").rank(ascending=False) pnorm_rank_df.columns = ["price_norm_rank"] X = pd.concat([X, pnorm_rank_df], axis=1) del pnorm_rank_df # calc discount rate X["price"] = X["price"].astype(float) prices_df = X[["impression", "price"]].groupby("impression").agg({'price': np.mean}).reset_index() prices_df.columns = ["impression", "item_price_mean"] X = pd.merge(X, prices_df, on="impression", how="left") X["discount_rate"] = X["price"] / X["item_price_mean"] del prices_df # append some important props and other props with over 0.2 coverage sum_item_props_df = dataset["sum_item_props_df"] item_props = dataset["item_props"] prop_cols = ["pGood Rating" , "pVery Good Rating" , "pExcellent Rating" , "pSatisfactory Rating" , "p1 Star" , "p2 Star" , "p3 Star" , "p4 Star" , "p5 Star" , "pBusiness Centre" , "pBusiness Hotel" , "pConference Rooms"] c02over_prop_cols = sum_item_props_df[sum_item_props_df.coverage >= 0.2]["prop"].tolist() prop_cols = prop_cols + c02over_prop_cols prop_cols = list(set(prop_cols)) X = pd.merge(X, item_props[["item_id"] + prop_cols], left_on="impression", right_on="item_id", how="left") X[prop_cols] = X[prop_cols].fillna(0) return (X, extract_cols) class DecisionMakingProcess(object): @classmethod def detect(cls, X, dataset): print("... ... Decision Making Process") print("... ... ... Attention and Perceptual Encoding") print("... ... ... Information Acquisition and Evaluation") all_df = dataset["all_df"] # join pos stats" copos_df = all_df[all_df.action_type == "clickout item"][ ["session_id", "reference", "impressions", "is_y"]].copy() copos_df = copos_df[copos_df.is_y == 0] copos_df["impression"] = copos_df[["impressions"]].apply(lambda x: str(x.impressions).split("|"), axis=1) copos_df["co_pos"] = copos_df[["impression", "reference"]].apply( lambda x: x.impression.index(x.reference) + 1 if x.reference in x.impression else 1, axis=1) copos_df_stats = copos_df[["session_id", "co_pos"]].groupby("session_id").agg( {'co_pos': [np.min, np.max, np.mean]}).reset_index() copos_df_stats.columns = ["session_id", "co_pos_min", "co_pos_max", "co_pos_mean"] X = pd.merge(X, copos_df_stats, on="session_id", how="left") X["co_pos_min"] = X["co_pos_min"].fillna(1) X["co_pos_mean"] = X["co_pos_mean"].fillna(1) X["co_pos_max"] = X["co_pos_max"].fillna(1) X["co_pos_min_diff"] = X["pos"] - X["co_pos_min"] X["co_pos_mean_diff"] = X["pos"] - X["co_pos_mean"] X["clickouted_pos_max_diff"] = X["co_pos_max"] - X["pos"] del copos_df del copos_df_stats # is_last and is_last_elapsed_time action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] lastref_df = all_df[["session_id", "action_type", "reference", "timestamp", "is_y"]].copy() lastref_df["is_target"] = 0 lastref_df.loc[lastref_df.is_y == 1, "is_target"] = 1 lastref_df = lastref_df[lastref_df.action_type.isin(action_types)] lastref_df["last_session_id"] = lastref_df["session_id"].shift(1) lastref_df["last_reference"] = lastref_df["reference"].shift(1) lastref_df["last_timestamp"] = lastref_df["timestamp"].shift(1) lastref_df = lastref_df[lastref_df.session_id == lastref_df.last_session_id] lastref_df = lastref_df[lastref_df.is_target == 1][["session_id", "last_reference", "last_timestamp"]] X = pd.merge(X, lastref_df, on="session_id", how="left") X[["last_reference"]] = X[["last_reference"]].fillna("-1") X[["last_timestamp"]] = X[["last_timestamp"]].fillna(-1) X["is_last"] = X[["impression", "last_reference"]].apply(lambda x: 1 if x.impression == x.last_reference else 0, axis=1) X["elapsed_time_between_is_last"] = X[["impression", "last_reference", "timestamp", "last_timestamp"]].apply( lambda x: int(x.timestamp) - int(x.last_timestamp) if x.impression == x.last_reference else np.nan, axis=1) lastdur_df = X[["session_id", "elapsed_time_between_is_last"]].copy() lastdur_df = lastdur_df.dropna(axis=0, how='any') X.drop("elapsed_time_between_is_last", axis=1, inplace=True) X = pd.merge(X, lastdur_df, on="session_id", how="left") del lastref_df del lastdur_df # join is_last_last lastref_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() lastref_df["last_last_session_id"] = lastref_df["session_id"].shift(2) lastref_df["last_last_reference"] = lastref_df["reference"].shift(2) lastref_df = lastref_df[lastref_df.is_y == 1] lastref_df = lastref_df[lastref_df.session_id == lastref_df.last_last_session_id] lastref_df = lastref_df[["session_id", "last_last_reference"]] lastref_df = lastref_df[~lastref_df.duplicated()] X = pd.merge(X, lastref_df, on="session_id", how="left") X[["last_last_reference"]] = X[["last_last_reference"]].fillna("-1") X["is_last_last"] = X[["impression", "last_last_reference"]].apply( lambda x: 1 if x.impression == x.last_last_reference else 0, axis=1) del lastref_df # elapsed next mean by item "it's kind of a future information." action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] isnext_df = all_df[["session_id", "action_type", "reference", "timestamp", "is_y"]].copy() isnext_df["next_session_id"] = isnext_df["session_id"].shift(-1) isnext_df["next_timestamp"] = isnext_df["timestamp"].shift(-1) isnext_df = isnext_df[isnext_df.session_id == isnext_df.next_session_id] isnext_df["elapsed_next"] = isnext_df["next_timestamp"] - isnext_df["timestamp"] isnext_df = isnext_df[isnext_df.action_type.isin(action_types)] isnext_df = isnext_df[isnext_df.is_y == 0] isnext_gp_df = isnext_df[["reference", "elapsed_next"]].groupby("reference").agg( {"elapsed_next": np.mean}).reset_index() isnext_gp_df.columns = ["impression", "next_elapsed_time"] X = pd.merge(X, isnext_gp_df, on="impression", how="left") del isnext_gp_df isnext_gp_df = isnext_df[isnext_df.action_type == "clickout item"][["reference", "elapsed_next"]].groupby( "reference").agg({"elapsed_next": np.mean}).reset_index() isnext_gp_df.columns = ["impression", "next_elapsed_time_byco"] X = pd.merge(X, isnext_gp_df, on="impression", how="left") del isnext_df del isnext_gp_df # clickouted item during session couted_df = all_df[["action_type", "session_id", "reference", "is_y"]].copy() couted_df = couted_df[couted_df.action_type == "clickout item"] couted_df = couted_df[couted_df.is_y == 0] # to prevent leakage couted_df = couted_df[["session_id", "reference"]] couted_df.columns = ["session_id", "impression"] couted_df = couted_df[~couted_df.duplicated()] couted_df["clickouted"] = 1 X = pd.merge(X, couted_df, on=["session_id", "impression"], how="left") X["clickouted"] = X["clickouted"].fillna(0) X["clickouted"] = X["clickouted"].astype(int) # diff between clickouted price mean co_price_df = all_df[all_df.action_type == "clickout item"][ ["session_id", "reference", "prices", "impressions", "is_y"]].copy() co_price_df = co_price_df[co_price_df.is_y == 0] # to prevent leakage def get_price(reference, impressions, prices): imps = str(impressions).split("|") prs = str(prices).split("|") if reference in imps: return prs[imps.index(reference)] else: return 0 co_price_df["price"] = co_price_df.apply(lambda x: get_price(x.reference, x.impressions, x.prices), axis=1) co_price_df["price"] = co_price_df["price"].astype(float) co_price_df = co_price_df.groupby("session_id").agg({'price': np.mean}).reset_index() co_price_df.columns = ["session_id", "couted_price_mean"] X =
pd.merge(X, co_price_df, on="session_id", how="left")
pandas.merge
# from scripts.features import features import os import pandas as pd from numpy import asarray import numpy as np import pandas as pd def paths(): INPUTS_DIR = os.getenv('VH_INPUTS_DIR', './inputs') folders = [ 't1/BattlesStaging_01012021_WL_tagged.csv', 't2/BattlesStaging_01032021_WL_tagged.csv'] dr=[] for folder in folders: dr.append(os.path.join(INPUTS_DIR, folder)) return dr def main(): print('Initializing main...') dr = paths() chunk_size = 500000 dfList = [] for file in dr: filename = file text_file_reader = pd.read_csv(filename, engine='python',encoding='utf-8-sig', chunksize = chunk_size, index_col=0) for df in text_file_reader: dfList.append(df) if len(dfList)>1: df = pd.concat(dfList,sort=False) else: df = dfList[0] print('CSV as dataframes. Calculating features and labels...') win_columns,loose_columns = features() # Features X1 = df[win_columns] X1.columns = range(X1.shape[1]) X2 = df[loose_columns] X2.columns = range(X2.shape[1]) X =
pd.concat([X1,X2],axis=0)
pandas.concat
# -*- coding: utf-8 -*- """ AIDeveloper --------- @author: maikherbig """ import os,sys,gc os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'#suppress warnings/info from tensorflow if not sys.platform.startswith("win"): from multiprocessing import freeze_support freeze_support() # Make sure to get the right icon file on win,linux and mac if sys.platform=="darwin": icon_suff = ".icns" else: icon_suff = ".ico" import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtWidgets, QtGui from pyqtgraph import Qt import aid_start dir_root = os.path.dirname(aid_start.__file__)#ask the module for its origin dir_settings = os.path.join(dir_root,"aid_settings.json")#dir to settings Default_dict = aid_start.get_default_dict(dir_settings) #try: # splashapp = QtWidgets.QApplication(sys.argv) # #splashapp.setWindowIcon(QtGui.QIcon("."+os.sep+"art"+os.sep+Default_dict["Icon theme"]+os.sep+"main_icon_simple_04_256.ico")) # # Create and display the splash screen # splash_pix = os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff) # splash_pix = QtGui.QPixmap(splash_pix) # #splash_pix = QtGui.QPixmap("."+os.sep+"art"+os.sep+Default_dict["Icon theme"]+os.sep+"main_icon_simple_04_256"+icon_suff) # splash = QtWidgets.QSplashScreen(splash_pix, QtCore.Qt.WindowStaysOnTopHint) # splash.setMask(splash_pix.mask()) # splash.show() #except: # pass #BEFORE importing tensorflow or anything from keras: make sure the keras.json has #certain properties keras_json_path = os.path.expanduser('~')+os.sep+'.keras'+os.sep+'keras.json' if not os.path.isdir(os.path.expanduser('~')+os.sep+'.keras'): os.mkdir(os.path.expanduser('~')+os.sep+'.keras') aid_start.banner() #show a fancy banner in console aid_start.keras_json_check(keras_json_path) import traceback,shutil,re,ast,io,platform import h5py,json,time,copy,urllib,datetime from stat import S_IREAD,S_IRGRP,S_IROTH,S_IWRITE,S_IWGRP,S_IWOTH import tensorflow as tf from tensorboard import program from tensorboard import default from tensorflow.python.client import device_lib devices = device_lib.list_local_devices() device_types = [devices[i].device_type for i in range(len(devices))] #Get the number of CPU cores and GPUs cpu_nr = os.cpu_count() gpu_nr = device_types.count("GPU") print("Nr. of GPUs detected: "+str(gpu_nr)) print("Found "+str(len(devices))+" device(s):") print("------------------------") for i in range(len(devices)): print("Device "+str(i)+": "+devices[i].name) print("Device type: "+devices[i].device_type) print("Device description: "+devices[i].physical_device_desc) print("------------------------") #Split CPU and GPU into two lists of devices devices_cpu = [] devices_gpu = [] for dev in devices: if dev.device_type=="CPU": devices_cpu.append(dev) elif dev.device_type=="GPU": devices_gpu.append(dev) else: print("Unknown device type:"+str(dev)+"\n") import numpy as np rand_state = np.random.RandomState(117) #to get the same random number on diff. PCs from scipy import ndimage,misc from sklearn import metrics,preprocessing import PIL import dclab import cv2 import pandas as pd import openpyxl,xlrd import psutil from keras.models import model_from_json,model_from_config,load_model,clone_model from keras import backend as K if 'GPU' in device_types: keras_gpu_avail = K.tensorflow_backend._get_available_gpus() if len(keras_gpu_avail)>0: print("Following GPU is used:") print(keras_gpu_avail) print("------------------------") else: print("TensorFlow detected GPU, but Keras didn't") print("------------------------") from keras.preprocessing.image import load_img from keras.utils import np_utils,multi_gpu_model from keras.utils.conv_utils import convert_kernel import keras_metrics #side package for precision, recall etc during training global keras_metrics import model_zoo from keras2onnx import convert_keras from onnx import save_model as save_onnx import aid_img, aid_dl, aid_bin import aid_frontend from partial_trainability import partial_trainability import aid_imports VERSION = "0.2.3" #Python 3.5.6 Version model_zoo_version = model_zoo.__version__() print("AIDeveloper Version: "+VERSION) print("model_zoo.py Version: "+model_zoo.__version__()) try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtWidgets.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig) tooltips = aid_start.get_tooltips() class MyPopup(QtWidgets.QWidget): def __init__(self): QtWidgets.QWidget.__init__(self) class WorkerSignals(QtCore.QObject): ''' Code inspired from here: https://www.learnpyqt.com/courses/concurrent-execution/multithreading-pyqt-applications-qthreadpool/ Defines the signals available from a running worker thread. Supported signals are: finished No data error `tuple` (exctype, value, traceback.format_exc() ) result `object` data returned from processing, anything progress `int` indicating % progress history `dict` containing keras model history.history resulting from .fit ''' finished = QtCore.pyqtSignal() error = QtCore.pyqtSignal(tuple) result = QtCore.pyqtSignal(object) progress = QtCore.pyqtSignal(int) history = QtCore.pyqtSignal(dict) class Worker(QtCore.QRunnable): ''' Code inspired/copied from: https://www.learnpyqt.com/courses/concurrent-execution/multithreading-pyqt-applications-qthreadpool/ Worker thread Inherits from QRunnable to handler worker thread setup, signals and wrap-up. :param callback: The function callback to run on this worker thread. Supplied args and kwargs will be passed through to the runner. :type callback: function :param args: Arguments to pass to the callback function :param kwargs: Keywords to pass to the callback function ''' def __init__(self, fn, *args, **kwargs): super(Worker, self).__init__() # Store constructor arguments (re-used for processing) self.fn = fn self.args = args self.kwargs = kwargs self.signals = WorkerSignals() # Add the callback to our kwargs self.kwargs['progress_callback'] = self.signals.progress self.kwargs['history_callback'] = self.signals.history @QtCore.pyqtSlot() def run(self): ''' Initialise the runner function with passed args, kwargs. ''' # Retrieve args/kwargs here; and fire processing using them try: result = self.fn(*self.args, **self.kwargs) except: traceback.print_exc() exctype, value = sys.exc_info()[:2] self.signals.error.emit((exctype, value, traceback.format_exc())) else: self.signals.result.emit(result) # Return the result of the processing finally: self.signals.finished.emit() # Done class MainWindow(QtWidgets.QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.setupUi() def setupUi(self): aid_frontend.setup_main_ui(self,gpu_nr) def retranslateUi(self): aid_frontend.retranslate_main_ui(self,gpu_nr,VERSION) def dataDropped(self, l): #If there is data stored on ram tell user that RAM needs to be refreshed! if len(self.ram)>0: self.statusbar.showMessage("Newly added data is not yet in RAM. Only RAM data will be used. Use ->'File'->'Data to RAM now' to update RAM",5000) #l is a list of some filenames (.rtdc) or folders (containing .jpg, jpeg, .png) #Iterate over l and check if it is a folder or a file (directory) isfile = [os.path.isfile(str(url)) for url in l] isfolder = [os.path.isdir(str(url)) for url in l] #####################For folders with images:########################## #where are folders? ind_true = np.where(np.array(isfolder)==True)[0] foldernames = list(np.array(l)[ind_true]) #select the indices that are valid #On mac, there is a trailing / in case of folders; remove them foldernames = [os.path.normpath(url) for url in foldernames] basename = [os.path.basename(f) for f in foldernames] #Look quickly inside the folders and ask the user if he wants to convert #to .rtdc (might take a while!) if len(foldernames)>0: #User dropped (also) folders (which may contain images) # filecounts = [] # for i in range(len(foldernames)): # url = foldernames[i] # files = os.listdir(url) # files_full = [os.path.join(url,files[i]) for i in range(len(files))] # filecounts.append(len([f for f in files_full if os.path.isfile(f)])) # Text = [] # for b,n in zip(basename,filecounts): # Text.append(b+": "+str(n)+" images") # Text = "\n".join(Text) Text = "Images from single folders are read and saved to individual \ .rtdc files with the same name like the corresponding folder.<b>If \ you have RGB images you can either save the full RGB information, \ or do a conversion to Grayscale (saves some diskspace but information \ about color is lost). RGB is recommended since AID will automatically\ do the conversion to grayscale later if required.<b>If you have \ Grayscale images, a conversion to RGB will just copy the info to all \ channels, which allows you to use RGB-mode and Grayscale-mode lateron." Text = Text+"\nImages from following folders will be converted:\n"+"\n".join(basename) #Show the user a summary with all the found folders and how many files are #contained. Ask if he want to convert msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>Should the images of the chosen folder(s)\ be converted to .rtdc using <b>RGB</b> or <b>Grayscale</b> format? <b>\ (RGB is recommended!)</b> Either option might take some time. You can \ reuse the .rtdc file next time.</p></body></html>" msg.setText(text) msg.setDetailedText(Text) msg.setWindowTitle("Format for conversion to .rtdc (RGB/Grayscale)") msg.addButton(QtGui.QPushButton('Convert to Grayscale'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('Convert to RGB'), QtGui.QMessageBox.NoRole) msg.addButton(QtGui.QPushButton('Cancel'), QtGui.QMessageBox.RejectRole) retval = msg.exec_() #Conversion of images in folders is (almost) independent from what #is going to be fitted (So I leave the option menu still!) #In options: Color Mode one can still use RGB mode and export here as #Grayscale (but this would actually not work since RGB information is lost). #The other way around works. Therefore it is recommended to export RGB! if retval==0: color_mode = "Grayscale" channels = 1 elif retval==1: color_mode = "RGB" channels = 3 else: return self.statusbar.showMessage("Color mode' "+color_mode+"' is used",5000) url_converted = [] for i in range(len(foldernames)): url = foldernames[i] print("Start converting images in\n"+url) #try: #get a list of files inside this directory: images,pos_x,pos_y = [],[],[] for root, dirs, files in os.walk(url): for file in files: try: path = os.path.join(root, file) img = load_img(path,color_mode=color_mode.lower()) #This uses PIL and supports many many formats! images.append(np.array(img)) #append nice numpy array to list #create pos_x and pos_y pos_x.append( int(np.round(img.width/2.0,0)) ) pos_y.append( int(np.round(img.height/2.0,0)) ) except: pass #Thanks to andko76 for pointing that unequal image sizes cause an error: #https://github.com/maikherbig/AIDeveloper/issues/1 #Check that all images have the same size # img_shape_errors = 0 # text_error = "Images have unequal dimensions:" # img_h = [a.shape[0] for a in images] # img_h_uni = len(np.unique(img_h)) # if img_h_uni!=1: # text_error += "\n- found unequal heights" # img_shape_errors=1 # img_w = [a.shape[1] for a in images] # img_w_uni = len(np.unique(img_w)) # if img_w_uni!=1: # text_error += "\n- found unequal widths" # img_shape_errors=1 # img_c = [len(a.shape) for a in images] # img_c_uni = len(np.unique(img_c)) # if img_c_uni!=1: # text_error += "\n- found unequal numbers of channels" # img_shape_errors=1 # #If there were issues detected, show error message # if img_shape_errors==1: # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Warning) # msg.setText(str(text_error)) # msg.setWindowTitle("Error: Unequal image shapes") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() # return #Get a list of occuring image dimensions (width and height) img_shape = [a.shape[0] for a in images] + [a.shape[1] for a in images] dims = np.unique(img_shape) #Get a list of occurences of image shapes img_shape = [str(a.shape[0])+" x "+str(a.shape[1]) for a in images] occurences = np.unique(img_shape,return_counts=True) #inform user if there is more than one img shape if len(occurences[0])>1 or len(dims)>1: text_detail = "Path: "+url text_detail += "\nFollowing image shapes are present" for i in range(len(occurences[0])): text_detail+="\n- "+str(occurences[1][i])+" times: "+str(occurences[0][i]) self.popup_imgRes = QtGui.QDialog() self.popup_imgRes_ui = aid_frontend.popup_imageLoadResize() self.popup_imgRes_ui.setupUi(self.popup_imgRes) #open a popup to show options for image resizing (make image equally sized) #self.popup_imgRes.setWindowModality(QtCore.Qt.WindowModal) self.popup_imgRes.setWindowModality(QtCore.Qt.ApplicationModal) #Insert information into textBrowser self.popup_imgRes_ui.textBrowser_imgResize_occurences.setText(text_detail) Image_import_dimension = Default_dict["Image_import_dimension"] self.popup_imgRes_ui.spinBox_ingResize_h_1.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_h_2.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_w_1.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_w_2.setValue(Image_import_dimension) Image_import_interpol_method = Default_dict["Image_import_interpol_method"] index = self.popup_imgRes_ui.comboBox_resizeMethod.findText(Image_import_interpol_method, QtCore.Qt.MatchFixedString) if index >= 0: self.popup_imgRes_ui.comboBox_resizeMethod.setCurrentIndex(index) #Define function for the OK button: def popup_imgRes_ok(images,channels,pos_x,pos_y): print("Start resizing operation") #Get info from GUI final_h = int(self.popup_imgRes_ui.spinBox_ingResize_h_1.value()) print("Height:"+str(final_h)) final_w = int(self.popup_imgRes_ui.spinBox_ingResize_w_1.value()) print("Width:"+str(final_w)) Default_dict["Image_import_dimension"] = final_h pix = 1 if self.popup_imgRes_ui.radioButton_imgResize_cropPad.isChecked():#cropping and padding method images = aid_img.image_crop_pad_cv2(images,pos_x,pos_y,pix,final_h,final_w,padding_mode="cv2.BORDER_CONSTANT") elif self.popup_imgRes_ui.radioButton_imgResize_interpolate.isChecked(): interpolation_method = str(self.popup_imgRes_ui.comboBox_resizeMethod.currentText()) Default_dict["Image_import_interpol_method"] = interpolation_method images = aid_img.image_resize_scale(images,pos_x,pos_y,final_h,final_w,channels,interpolation_method,verbose=False) else: print("Invalid image resize method!") #Save the Default_dict aid_bin.save_aid_settings(Default_dict) self.popup_imgRes.accept() return images #Define function for the Cancel button: def popup_imgRes_cancel(): self.popup_imgRes.close() return self.popup_imgRes_ui.pushButton_imgResize_ok.clicked.connect(lambda: popup_imgRes_ok(images,channels,pos_x,pos_y)) self.popup_imgRes_ui.pushButton_imgResize_cancel.clicked.connect(popup_imgRes_cancel) retval = self.popup_imgRes.exec_() #retval is 0 if the user clicked cancel or just closed the window; in this case just exist the function if retval==0: return #get new pos_x, pos_y (after cropping, the pixel value for the middle of the image is different!) pos_x = [int(np.round(img.shape[1]/2.0,0)) for img in images] pos_y = [int(np.round(img.shape[0]/2.0,0)) for img in images] #Now, all images are of identical shape and can be converted to a numpy array images = np.array((images), dtype="uint8") pos_x = np.array((pos_x), dtype="uint8") pos_y = np.array((pos_y), dtype="uint8") #Save as foldername.rtdc fname = url+".rtdc" if os.path.isfile(fname): #ask user if file can be overwritten msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>File:"+fname+" already exists. Should it be overwritten?</p></body></html>" msg.setText(text) msg.setWindowTitle("Overwrite file?") msg.addButton(QtGui.QPushButton('Yes'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('No'), QtGui.QMessageBox.NoRole) msg.addButton(QtGui.QPushButton('Cancel'), QtGui.QMessageBox.RejectRole) retval = msg.exec_() if retval==0: try: os.remove(fname) aid_img.imgs_2_rtdc(fname,images,pos_x,pos_y) url_converted.append(fname) except Exception as e: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") retval = msg.exec_() elif retval==1: pass else: pass else:#file does not yet exist. Create it aid_img.imgs_2_rtdc(fname,images,pos_x,pos_y) url_converted.append(fname) print("Finished converting! Final dimension of image tensor is:"+str(images.shape)) #Now load the created files directly to drag/drop-region! self.dataDropped(url_converted) #####################For .rtdc files:################################## #where are files? ind_true = np.where(np.array(isfile)==True)[0] filenames = list(np.array(l)[ind_true]) #select the indices that are valid #check if the file can be opened and get some information fileinfo = [] for i in range(len(filenames)): rtdc_path = filenames[i] try: failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return features = list(rtdc_ds["events"].keys()) #Make sure that there is "images", "pos_x" and "pos_y" available if "image" in features and "pos_x" in features and "pos_y" in features: nr_images = rtdc_ds["events"]["image"].len() pix = rtdc_ds.attrs["imaging:pixel size"] xtra_in_available = len(rtdc_ds.keys())>2 #Is True, only if there are more than 2 elements. fileinfo.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"pix":pix,"xtra_in":xtra_in_available}) else: missing = [] for feat in ["image","pos_x","pos_y"]: if feat not in features: missing.append(feat) msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Essential feature(s) are missing in data-set") msg.setDetailedText("Data-set: "+rtdc_path+"\nis missing "+str(missing)) msg.setWindowTitle("Missing essential features") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() except Exception as e: print(e) #Add the stuff to the combobox on Plot/Peak Tab url_list = [fileinfo[iterator]["rtdc_path"] for iterator in range(len(fileinfo))] self.comboBox_chooseRtdcFile.addItems(url_list) self.comboBox_selectData.addItems(url_list) if len(url_list)==0: #This fixes the issue that the prog. crashes if accidentially a tableitem is dragged and "dropped" on the table return width=self.comboBox_selectData.fontMetrics().boundingRect(max(url_list, key=len)).width() self.comboBox_selectData.view().setFixedWidth(width+10) for rowNumber in range(len(fileinfo)):#for url in l: url = fileinfo[rowNumber]["rtdc_path"] #add to table rowPosition = self.table_dragdrop.rowCount() self.table_dragdrop.insertRow(rowPosition) columnPosition = 0 line = QtWidgets.QLabel(self.table_dragdrop) line.setText(url) line.setDisabled(True) line.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter) self.table_dragdrop.setCellWidget(rowPosition, columnPosition, line) # item = QtWidgets.QTableWidgetItem(url) # item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) # print(item.textAlignment()) # item.setTextAlignment(QtCore.Qt.AlignRight) # change the alignment # #item.setTextAlignment(QtCore.Qt.AlignLeading | QtCore.Qt.AnchorRight) # change the alignment # self.table_dragdrop.setItem(rowPosition , columnPosition, item ) # columnPosition = 1 spinb = QtWidgets.QSpinBox(self.table_dragdrop) spinb.valueChanged.connect(self.dataOverviewOn) self.table_dragdrop.setCellWidget(rowPosition, columnPosition, spinb) for columnPosition in range(2,4): #for each item, also create 2 checkboxes (train/valid) item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 4 #Place a button which allows to show a plot (scatter, histo...lets see) btn = QtWidgets.QPushButton(self.table_dragdrop) btn.setMinimumSize(QtCore.QSize(50, 30)) btn.setMaximumSize(QtCore.QSize(50, 30)) btn.clicked.connect(self.button_hist) btn.setText('Plot') self.table_dragdrop.setCellWidget(rowPosition, columnPosition, btn) self.table_dragdrop.resizeRowsToContents() # columnPosition = 5 # #Place a combobox with the available features # cb = QtWidgets.QComboBox(self.table_dragdrop) # cb.addItems(fileinfo[rowNumber]["features"]) # cb.setMinimumSize(QtCore.QSize(70, 30)) # cb.setMaximumSize(QtCore.QSize(70, 30)) # width=cb.fontMetrics().boundingRect(max(fileinfo[rowNumber]["features"], key=len)).width() # cb.view().setFixedWidth(width+30) # self.table_dragdrop.setCellWidget(rowPosition, columnPosition, cb) columnPosition = 5 #Place a combobox with the available features item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, fileinfo[rowNumber]["nr_images"]) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 6 #Field to user-define nr. of cells/epoch item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole,100) #item.cellChanged.connect(self.dataOverviewOn) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 7 #Pixel size item = QtWidgets.QTableWidgetItem() pix = float(fileinfo[rowNumber]["pix"]) #print(pix) item.setData(QtCore.Qt.EditRole,pix) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 8 #Should data be shuffled (random?) item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Checked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 9 #Zooming factor item = QtWidgets.QTableWidgetItem() zoom = 1.0 item.setData(QtCore.Qt.EditRole,zoom) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 10 #Should xtra_data be used? item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) xtra_in_available = fileinfo[rowNumber]["xtra_in"] if xtra_in_available: item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) else: item.setFlags( QtCore.Qt.ItemIsUserCheckable ) item.setCheckState(QtCore.Qt.Unchecked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) #Functions for Keras augmentation checkboxes def keras_changed_rotation(self,on_or_off): if on_or_off==0: self.lineEdit_Rotation.setText(str(0)) self.lineEdit_Rotation.setEnabled(False) elif on_or_off==2: self.lineEdit_Rotation.setText(str(Default_dict ["rotation"])) self.lineEdit_Rotation.setEnabled(True) else: return def keras_changed_width_shift(self,on_or_off): if on_or_off==0: self.lineEdit_widthShift.setText(str(0)) self.lineEdit_widthShift.setEnabled(False) elif on_or_off==2: self.lineEdit_widthShift.setText(str(Default_dict ["width_shift"])) self.lineEdit_widthShift.setEnabled(True) else: return def keras_changed_height_shift(self,on_or_off): if on_or_off==0: self.lineEdit_heightShift.setText(str(0)) self.lineEdit_heightShift.setEnabled(False) elif on_or_off==2: self.lineEdit_heightShift.setText(str(Default_dict ["height_shift"])) self.lineEdit_heightShift.setEnabled(True) else: return def keras_changed_zoom(self,on_or_off): if on_or_off==0: self.lineEdit_zoomRange.setText(str(0)) self.lineEdit_zoomRange.setEnabled(False) elif on_or_off==2: self.lineEdit_zoomRange.setText(str(Default_dict ["zoom"])) self.lineEdit_zoomRange.setEnabled(True) else: return def keras_changed_shear(self,on_or_off): if on_or_off==0: self.lineEdit_shearRange.setText(str(0)) self.lineEdit_shearRange.setEnabled(False) elif on_or_off==2: self.lineEdit_shearRange.setText(str(Default_dict ["shear"])) self.lineEdit_shearRange.setEnabled(True) else: return def keras_changed_brightplus(self,on_or_off): if on_or_off==0: self.spinBox_PlusLower.setValue(0) self.spinBox_PlusLower.setEnabled(False) self.spinBox_PlusUpper.setValue(0) self.spinBox_PlusUpper.setEnabled(False) elif on_or_off==2: self.spinBox_PlusLower.setValue(Default_dict ["Brightness add. lower"]) self.spinBox_PlusLower.setEnabled(True) self.spinBox_PlusUpper.setValue(Default_dict ["Brightness add. upper"]) self.spinBox_PlusUpper.setEnabled(True) else: return def keras_changed_brightmult(self,on_or_off): if on_or_off==0: self.doubleSpinBox_MultLower.setValue(1.0) self.doubleSpinBox_MultLower.setEnabled(False) self.doubleSpinBox_MultUpper.setValue(1.0) self.doubleSpinBox_MultUpper.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_MultLower.setValue(Default_dict ["Brightness mult. lower"]) self.doubleSpinBox_MultLower.setEnabled(True) self.doubleSpinBox_MultUpper.setValue(Default_dict ["Brightness mult. upper"]) self.doubleSpinBox_MultUpper.setEnabled(True) else: return def keras_changed_noiseMean(self,on_or_off): if on_or_off==0: self.doubleSpinBox_GaussianNoiseMean.setValue(0.0) self.doubleSpinBox_GaussianNoiseMean.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_GaussianNoiseMean.setValue(Default_dict ["Gaussnoise Mean"]) self.doubleSpinBox_GaussianNoiseMean.setEnabled(True) else: return def keras_changed_noiseScale(self,on_or_off): if on_or_off==0: self.doubleSpinBox_GaussianNoiseScale.setValue(0.0) self.doubleSpinBox_GaussianNoiseScale.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_GaussianNoiseScale.setValue(Default_dict ["Gaussnoise Scale"]) self.doubleSpinBox_GaussianNoiseScale.setEnabled(True) else: return def keras_changed_contrast(self,on_or_off): if on_or_off==0: self.doubleSpinBox_contrastLower.setEnabled(False) self.doubleSpinBox_contrastHigher.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) else: return def keras_changed_saturation(self,on_or_off): if on_or_off==0: self.doubleSpinBox_saturationLower.setEnabled(False) self.doubleSpinBox_saturationHigher.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_saturationLower.setEnabled(True) self.doubleSpinBox_saturationHigher.setEnabled(True) else: return def keras_changed_hue(self,on_or_off): if on_or_off==0: self.doubleSpinBox_hueDelta.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_hueDelta.setEnabled(True) else: return def expert_mode_off(self,on_or_off): """ Reset all values on the expert tab to the default values, excluding the metrics metrics are defined only once when starting fitting and should not be changed """ if on_or_off==0: #switch off self.spinBox_batchSize.setValue(Default_dict["spinBox_batchSize"]) self.spinBox_epochs.setValue(1) self.checkBox_expt_loss.setChecked(False) self.expert_loss_off(0) self.groupBox_learningRate.setChecked(False) self.expert_learningrate_off(0) self.checkBox_optimizer.setChecked(False) self.expert_optimizer_off(0) def expert_loss_off(self,on_or_off): if on_or_off==0: #switch off #switch back to categorical_crossentropy index = self.comboBox_expt_loss.findText("categorical_crossentropy", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_expt_loss.setCurrentIndex(index) def expert_learningrate_off(self,on_or_off): if on_or_off==0: #switch off #which optimizer is used? (there are different default learning-rates #for each optimizer!) optimizer = str(self.comboBox_optimizer.currentText()) self.doubleSpinBox_learningRate.setValue(Default_dict["doubleSpinBox_learningRate_"+optimizer]) self.radioButton_LrCycl.setChecked(False) self.radioButton_LrExpo.setChecked(False) self.radioButton_LrConst.setChecked(True) def expert_optimizer_off(self,on_or_off): if on_or_off==0: #switch off, set back to categorical_crossentropy optimizer = "Adam" index = self.comboBox_optimizer.findText(optimizer, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_optimizer.setCurrentIndex(index) #also reset the learning rate to the default self.doubleSpinBox_learningRate.setValue(Default_dict["doubleSpinBox_learningRate_"+optimizer]) def expert_optimizer_changed(self,optimizer_text,listindex): # print("optimizer_text: "+str(optimizer_text)) # print("listindex: "+str(listindex)) if optimizer_text=="": return if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] #set the learning rate to the default for this optimizer value_current = float(item_ui.doubleSpinBox_learningRate.value()) value_wanted = Default_dict["doubleSpinBox_learningRate_"+optimizer_text] #insert the current value in the optimizer_settings: item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_text.lower()] = value_current item_ui.optimizer_settings["comboBox_optimizer"] = optimizer_text try: #only works on the fitting-popup text = str(item_ui.textBrowser_FittingInfo.toPlainText()) except: text = "Epoch" # print("text: "+str(text)) if value_current!=value_wanted and "Epoch" in text:#avoid that the message pops up when window is created item_ui.doubleSpinBox_learningRate.setValue(value_wanted) item_ui.doubleSpinBox_expDecInitLr.setValue(value_wanted) #Inform user msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setWindowTitle("Learning rate to default") msg.setText("Learning rate was set to the default for "+optimizer_text) msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return def expert_lr_changed(self,value,optimizer_text,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_text.lower()] = value def update_hist1(self): feature = str(self.comboBox_feat1.currentText()) feature_values = self.rtdc_ds["events"][feature] #if len(feature_values)==len(self.rtdc_ds['area_cvx']): # self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def update_hist2(self): feature = str(self.comboBox_feat2.currentText()) feature_values = self.rtdc_ds["events"][feature] #if len(feature_values)==len(self.rtdc_ds['area_cvx']): #self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def update_scatter(self): feature_x = str(self.comboBox_feat1.currentText()) feature_x_values = self.rtdc_ds["events"][feature_x] feature_y = str(self.comboBox_feat2.currentText()) feature_y_values = self.rtdc_ds["events"][feature_y] if len(feature_x_values)==len(feature_y_values): #self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() #y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(feature_x_values, feature_y_values,pen=None,symbol='o',clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def button_hist(self,item): buttonClicked = self.sender() index = self.table_dragdrop.indexAt(buttonClicked.pos()) rowPosition = index.row() rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.rtdc_ds = rtdc_ds # feature_values = rtdc_ds[feature] #Init a popup window self.w = MyPopup() self.w.setWindowTitle(rtdc_path) self.w.setObjectName(_fromUtf8("w")) self.gridLayout_w2 = QtWidgets.QGridLayout(self.w) self.gridLayout_w2.setContentsMargins(0, 0, 0, 0) self.gridLayout_w2.setObjectName(_fromUtf8("gridLayout_w2")) self.widget = QtWidgets.QWidget(self.w) self.widget.setMinimumSize(QtCore.QSize(0, 65)) self.widget.setMaximumSize(QtCore.QSize(16777215, 65)) self.widget.setObjectName(_fromUtf8("widget")) self.horizontalLayout_w3 = QtWidgets.QHBoxLayout(self.widget) self.horizontalLayout_w3.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_w3.setObjectName(_fromUtf8("horizontalLayout_w3")) self.verticalLayout_w = QtWidgets.QVBoxLayout() self.verticalLayout_w.setObjectName(_fromUtf8("verticalLayout_w")) self.horizontalLayout_w = QtWidgets.QHBoxLayout() self.horizontalLayout_w.setObjectName(_fromUtf8("horizontalLayout_w")) self.comboBox_feat1 = QtWidgets.QComboBox(self.widget) self.comboBox_feat1.setObjectName(_fromUtf8("comboBox_feat1")) features = list(self.rtdc_ds["events"].keys()) self.comboBox_feat1.addItems(features) self.horizontalLayout_w.addWidget(self.comboBox_feat1) self.comboBox_feat2 = QtWidgets.QComboBox(self.widget) self.comboBox_feat2.setObjectName(_fromUtf8("comboBox_feat2")) self.comboBox_feat2.addItems(features) self.horizontalLayout_w.addWidget(self.comboBox_feat2) self.verticalLayout_w.addLayout(self.horizontalLayout_w) self.horizontalLayout_w2 = QtWidgets.QHBoxLayout() self.horizontalLayout_w2.setObjectName(_fromUtf8("horizontalLayout_w2")) self.pushButton_Hist1 = QtWidgets.QPushButton(self.widget) self.pushButton_Hist1.setObjectName(_fromUtf8("pushButton_Hist1")) self.horizontalLayout_w2.addWidget(self.pushButton_Hist1) self.pushButton_Hist2 = QtWidgets.QPushButton(self.widget) self.pushButton_Hist2.setObjectName(_fromUtf8("pushButton_Hist2")) self.horizontalLayout_w2.addWidget(self.pushButton_Hist2) self.verticalLayout_w.addLayout(self.horizontalLayout_w2) self.horizontalLayout_w3.addLayout(self.verticalLayout_w) self.verticalLayout_w2 = QtWidgets.QVBoxLayout() self.verticalLayout_w2.setObjectName(_fromUtf8("verticalLayout_w2")) self.pushButton_Scatter = QtWidgets.QPushButton(self.widget) self.pushButton_Scatter.setObjectName(_fromUtf8("pushButton_Scatter")) self.verticalLayout_w2.addWidget(self.pushButton_Scatter) self.checkBox_ScalePix = QtWidgets.QCheckBox(self.widget) self.checkBox_ScalePix.setObjectName(_fromUtf8("checkBox_ScalePix")) self.verticalLayout_w2.addWidget(self.checkBox_ScalePix) self.horizontalLayout_w3.addLayout(self.verticalLayout_w2) self.gridLayout_w2.addWidget(self.widget, 0, 0, 1, 1) self.pushButton_Hist1.setText("Hist") self.pushButton_Hist1.clicked.connect(self.update_hist1) self.pushButton_Hist2.setText("Hist") self.pushButton_Hist2.clicked.connect(self.update_hist2) self.pushButton_Scatter.setText("Scatter") self.pushButton_Scatter.clicked.connect(self.update_scatter) self.checkBox_ScalePix.setText("Scale by pix") self.histogram = pg.GraphicsWindow() self.plt1 = self.histogram.addPlot() # y,x = np.histogram(feature_values, bins='auto') # plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150)) self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) self.w.show() def update_historyplot_pop(self,listindex): #listindex = self.popupcounter-1 #len(self.fittingpopups_ui)-1 #After the first epoch there are checkboxes available. Check, if user checked some: colcount = int(self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.columnCount()) #Collect items that are checked selected_items,Colors = [],[] for colposition in range(colcount): #is it checked for train? cb = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) self.Colors = Colors Histories = self.fittingpopups_ui[listindex].Histories DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) # if len(DF1)>0: # DF1 = pd.concat(DF1) # else: # return self.fittingpopups_ui[listindex].widget_pop.clear() #Create fresh plot plt1 = self.fittingpopups_ui[listindex].widget_pop.addPlot() plt1.showGrid(x=True,y=True) plt1.addLegend() plt1.setLabel('bottom', 'Epoch', units='') #Create a dict that stores plots for each metric (for real time plotting) self.fittingpopups_ui[listindex].historyscatters = dict() for i in range(len(selected_items)): key = selected_items[i] df = DF1[key] color = self.Colors[i] pen_rollmedi = list(color.color().getRgb()) pen_rollmedi = pg.mkColor(pen_rollmedi) pen_rollmedi = pg.mkPen(color=pen_rollmedi,width=6) color = list(color.color().getRgb()) color[-1] = int(0.6*color[-1]) color = tuple(color) pencolor = pg.mkColor(color) brush = pg.mkBrush(color=pencolor) #print(df) historyscatter = plt1.plot(range(len(df)), df.values, pen=None,symbol='o',symbolPen=None,symbolBrush=brush,name=key,clear=False) #self.fittingpopups_ui[listindex].historyscatters.append(historyscatter) self.fittingpopups_ui[listindex].historyscatters[key]=historyscatter def stop_fitting_pop(self,listindex): #listindex = len(self.fittingpopups_ui)-1 epochs = self.fittingpopups_ui[listindex].epoch_counter #Stop button on the fititng popup #Should stop the fitting process and save the metafile #1. Change the nr. requested epochs to a smaller number self.fittingpopups_ui[listindex].spinBox_NrEpochs.setValue(epochs-1) #2. Check the box which will cause that the new parameters are applied at next epoch self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.setChecked(True) def pause_fitting_pop(self,listindex): #Just change the text on the button if str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())==" ": #If the the text on the button was Pause, change it to Continue self.fittingpopups_ui[listindex].pushButton_Pause_pop.setText("") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setStyleSheet("background-color: green") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setIcon(QtGui.QIcon(os.path.join(dir_root,"art",Default_dict["Icon theme"],"continue.png"))) elif str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())=="": #If the the text on the button was Continue, change it to Pause self.fittingpopups_ui[listindex].pushButton_Pause_pop.setText(" ") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setIcon(QtGui.QIcon(os.path.join(dir_root,"art",Default_dict["Icon theme"],"pause.png"))) self.fittingpopups_ui[listindex].pushButton_Pause_pop.setStyleSheet("") def saveTextWindow_pop(self,listindex): #Get the entire content of textBrowser_FittingInfo text = str(self.fittingpopups_ui[listindex].textBrowser_FittingInfo.toPlainText()) #Ask the user where to save the stuff filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Fitting info', Default_dict["Path of last model"]," (*.txt)") filename = filename[0] #Save to this filename if len(filename)>0: f = open(filename,'w') f.write(text) f.close() def clearTextWindow_pop(self,listindex): self.fittingpopups_ui[listindex].textBrowser_FittingInfo.clear() def showModelSumm_pop(self,listindex): text5 = "Model summary:\n" summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text5+summary self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) def saveModelSumm_pop(self,listindex): text5 = "Model summary:\n" summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text5+summary #Ask the user where to save the stuff filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Model summary', Default_dict["Path of last model"]," (*.txt)") filename = filename[0] #Save to this filename f = open(filename,'w') f.write(text) f.close() #class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert) # def get_class_weight(self,SelectedFiles,lossW_expert,custom_check_classes=False): t1 = time.time() print("Getting dictionary for class_weight") if lossW_expert=="None": return None elif lossW_expert=="": return None elif lossW_expert=="Balanced": #Which are training files? ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = list(np.array(SelectedFiles)[ind]) classes = [int(selectedfile["class"]) for selectedfile in SelectedFiles_train] nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train] classes_uni = np.unique(classes) counter = {} for class_ in classes_uni: ind = np.where(np.array(classes)==class_)[0] nr_events_epoch_class = np.array(nr_events_epoch)[ind] counter[class_] = np.sum(nr_events_epoch_class) max_val = float(max(counter.values())) return {class_id : max_val/num_images for class_id, num_images in counter.items()} elif lossW_expert.startswith("{"):#Custom loss weights class_weights = eval(lossW_expert) if custom_check_classes:#Check that each element in classes_uni is contained in class_weights.keys() ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = list(np.array(SelectedFiles)[ind]) classes = [int(selectedfile["class"]) for selectedfile in SelectedFiles_train] classes_uni = np.unique(classes) classes_uni = np.sort(classes_uni) class_weights_keys = np.sort([int(a) for a in class_weights.keys()]) #each element in classes_uni has to be equal to class_weights_keys equal = np.array_equal(classes_uni,class_weights_keys) if equal == True: return class_weights else: #If the equal is false I'm really in trouble... #run the function again, but request 'Balanced' weights. I'm not sure if this should be the default... class_weights = self.get_class_weight(SelectedFiles,"Balanced") return ["Balanced",class_weights] else: return class_weights t2 = time.time() dt = np.round(t2-t1,2) print("Comp. time = "+str(dt)) def accept_lr_range(self): lr_start = str(self.popup_lrfinder_ui.lineEdit_LrMin.text()) lr_stop = str(self.popup_lrfinder_ui.lineEdit_LrMax.text()) if len(lr_start)>0 and len(lr_stop)>0: self.lineEdit_cycLrMin.setText(lr_start) self.lineEdit_cycLrMax.setText(lr_stop) else: print("Found no values for LR range") def accept_lr_value(self): single_lr = self.popup_lrfinder_ui.lineEdit_singleLr.text() if len(single_lr)>0: lr_value = float(single_lr) self.doubleSpinBox_learningRate.setValue(lr_value) self.doubleSpinBox_expDecInitLr.setValue(lr_value) else: print("Found no value for single LR!") def reset_lr_settings(self): self.popup_lrfinder_ui.lineEdit_startLr.setText(_translate("Form_LrFinder", "1e-10", None)) self.popup_lrfinder_ui.lineEdit_stopLr.setText(_translate("Form_LrFinder", "0.1", None)) self.popup_lrfinder_ui.doubleSpinBox_percDataT.setProperty("value", 100.0) self.popup_lrfinder_ui.doubleSpinBox_percDataV.setProperty("value", 100.0) self.popup_lrfinder_ui.spinBox_batchSize.setValue(Default_dict["spinBox_batchSize"]) self.popup_lrfinder_ui.spinBox_lineWidth.setProperty("value", 6) self.popup_lrfinder_ui.spinBox_epochs.setProperty("value", 5) def reset_lr_value(self): self.popup_lrfinder_ui.lineEdit_singleLr.setText("") #Uncheck and Check the groupbox to refresh the line self.popup_lrfinder_ui.groupBox_singleLr.setChecked(False) self.popup_lrfinder_ui.groupBox_singleLr.setChecked(True) def reset_lr_range(self): self.popup_lrfinder_ui.lineEdit_LrMin.setText("") self.popup_lrfinder_ui.lineEdit_LrMax.setText("") #Uncheck and Check the groupbox to refresh the range self.popup_lrfinder_ui.groupBox_LrRange.setChecked(False) self.popup_lrfinder_ui.groupBox_LrRange.setChecked(True) def popup_lr_finder(self): SelectedFiles = self.items_clicked() self.popup_lrfinder = MyPopup() self.popup_lrfinder_ui = aid_frontend.popup_lrfinder() self.popup_lrfinder_ui.setupUi(self.popup_lrfinder) #open a popup for lr finder #Get information about the model #check, which radiobutton is clicked and just copy paste the text from there if self.radioButton_NewModel.isChecked(): modelname = str(self.comboBox_ModelSelection.currentText()) if modelname==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return elif self.radioButton_LoadContinueModel.isChecked(): modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadRestartModel.isChecked(): modelname = str(self.lineEdit_LoadModelPath.text()) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please specify a model using the radiobuttons on the 'Define Model' -tab") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return in_dim = int(self.spinBox_imagecrop.value()) #Put information onto UI self.popup_lrfinder_ui.lineEdit_loadModel.setText(modelname) self.popup_lrfinder_ui.spinBox_Crop_inpImgSize.setValue(in_dim) color_mode = self.get_color_mode() self.popup_lrfinder_ui.comboBox_colorMode.addItem(color_mode) loss_str = str(self.comboBox_expt_loss.currentText()) self.popup_lrfinder_ui.comboBox_expt_loss.addItem(loss_str) optimizer_str = str(self.comboBox_optimizer.currentText()) self.popup_lrfinder_ui.comboBox_optimizer.addItem(optimizer_str) batch_size = self.spinBox_batchSize.value() self.popup_lrfinder_ui.spinBox_batchSize.setValue(batch_size) #Connect action_lr_finder function to button self.popup_lrfinder_ui.pushButton_LrFindRun.clicked.connect(lambda: self.action_initialize_model(duties="initialize_lrfind")) self.popup_lrfinder_ui.pushButton_rangeAccept.clicked.connect(self.accept_lr_range) self.popup_lrfinder_ui.pushButton_singleAccept.clicked.connect(self.accept_lr_value) self.popup_lrfinder_ui.pushButton_LrReset.clicked.connect(self.reset_lr_settings) self.popup_lrfinder_ui.pushButton_singleReset.clicked.connect(self.reset_lr_value) self.popup_lrfinder_ui.pushButton_rangeReset.clicked.connect(self.reset_lr_range) #Update the plot when any plotting option is changed self.popup_lrfinder_ui.comboBox_metric.currentIndexChanged.connect(self.update_lrfind_plot) self.popup_lrfinder_ui.spinBox_lineWidth.valueChanged.connect(self.update_lrfind_plot) self.popup_lrfinder_ui.checkBox_smooth.toggled.connect(self.update_lrfind_plot) #LR single value when groupbox is toggled self.popup_lrfinder_ui.groupBox_singleLr.toggled.connect(self.get_lr_single) #LR range when groupbox is toggled self.popup_lrfinder_ui.groupBox_LrRange.toggled.connect(self.get_lr_range) #compute the number of steps/epoch ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) def update_stepsPerEpoch(): batch_size = self.popup_lrfinder_ui.spinBox_batchSize.value() perc_data = self.popup_lrfinder_ui.doubleSpinBox_percDataT.value() nr_events = (perc_data/100)*nr_events_train_total stepsPerEpoch = np.ceil(nr_events / float(batch_size)) self.popup_lrfinder_ui.spinBox_stepsPerEpoch.setValue(stepsPerEpoch) update_stepsPerEpoch() self.popup_lrfinder_ui.spinBox_batchSize.valueChanged.connect(update_stepsPerEpoch) self.popup_lrfinder_ui.doubleSpinBox_percDataT.valueChanged.connect(update_stepsPerEpoch) self.popup_lrfinder.show() def popup_clr_settings(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_clrsettings = MyPopup() item_ui.popup_clrsettings_ui = aid_frontend.Ui_Clr_settings() item_ui.popup_clrsettings_ui.setupUi(item_ui.popup_clrsettings) #open a popup for lr plotting ##Manual insertion## item_ui.popup_clrsettings_ui.spinBox_stepSize.setProperty("value", item_ui.clr_settings["step_size"]) item_ui.popup_clrsettings_ui.doubleSpinBox_gamma.setProperty("value", item_ui.clr_settings["gamma"]) def clr_settings_ok(): step_size = int(item_ui.popup_clrsettings_ui.spinBox_stepSize.value()) gamma = float(item_ui.popup_clrsettings_ui.doubleSpinBox_gamma.value()) item_ui.clr_settings["step_size"] = step_size #Number of epochs to fulfill half a cycle item_ui.clr_settings["gamma"] = gamma #gamma factor for Exponential decrease method (exp_range) print("Settings for cyclical learning rates were changed.") #close the popup item_ui.popup_clrsettings = None item_ui.popup_clrsettings_ui = None def clr_settings_cancel():#close the popup item_ui.popup_clrsettings = None item_ui.popup_clrsettings_ui = None item_ui.popup_clrsettings_ui.pushButton_ok.clicked.connect(clr_settings_ok) item_ui.popup_clrsettings_ui.pushButton_cancel.clicked.connect(clr_settings_cancel) item_ui.popup_clrsettings.show() def popup_lr_plot(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_lrplot = MyPopup() item_ui.popup_lrplot_ui = aid_frontend.popup_lrplot() item_ui.popup_lrplot_ui.setupUi(item_ui.popup_lrplot) #open a popup for lr plotting #compute total number of epochs that will be fitted spinBox_NrEpochs = item_ui.spinBox_NrEpochs.value() #my own loop spinBox_epochs = item_ui.spinBox_epochs.value() #inside model.fit() nr_epochs = spinBox_NrEpochs*spinBox_epochs item_ui.popup_lrplot_ui.spinBox_totalEpochs.setValue(nr_epochs) #Get the number of training examples SelectedFiles = self.items_clicked() ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) if nr_events_train_total==0 and item_ui.radioButton_LrConst.isChecked()==False: #for Cyclical learning rates and Exponential learning rates, the #number of training images is needed msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no training data. Nr. of training images is required for this plot.") msg.setWindowTitle("Nr. of training images = 0") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return text_info = "" if item_ui.radioButton_LrConst.isChecked(): text_info+="Constant learning rate\n" epochs_plot = np.array(range(nr_epochs)) const_lr = float(self.doubleSpinBox_learningRate.value()) learningrates = np.repeat(const_lr,nr_epochs) elif item_ui.radioButton_LrCycl.isChecked(): text_info+="Cyclical learning rates\n" base_lr = float(item_ui.lineEdit_cycLrMin.text()) max_lr = float(item_ui.lineEdit_cycLrMax.text()) batch_size = int(item_ui.spinBox_batchSize.value()) step_size = item_ui.clr_settings["step_size"] #batch updates in a half cycle step_size_ = step_size*int(np.round(nr_events_train_total / batch_size))#number of steps in one epoch mode = str(item_ui.comboBox_cycLrMethod.currentText()) clr_iterations = nr_epochs*int(np.round(nr_events_train_total / batch_size))#number of cycles nr_cycles = (clr_iterations/step_size_)/2.0#number of cycles gamma = item_ui.clr_settings["gamma"] #gamma factor for the exp_range #Generate text to diplay the settings used text_info+="Nr. of training images: "+str(nr_events_train_total)+"\n" text_info+="base_lr: "+str(base_lr)+"\n" text_info+="max_lr: "+str(max_lr)+"\n" text_info+="batch_size: "+str(batch_size)+"\n" text_info+="mode: "+str(mode)+"\n" text_info+="gamma: "+str(gamma)+"\n" text_info+="Nr. of epochs to fulfill one cycle: "+str(2*step_size)+"\n" #text_info+="Total nr. of lr adjustmend: "+str(step_size_)+"\n" text_info+="Total nr. of lr adjustments: "+str(clr_iterations)+"\n" text_info+="Total nr. of cycles: "+str(nr_cycles)+"\n" #Request the learning rates from the class cyclicLR clr_iterations = np.arange(clr_iterations) clr_1 = aid_dl.cyclicLR(base_lr=base_lr,max_lr=max_lr,step_size=step_size_,mode=mode,gamma=gamma) clr_1.clr_iterations=clr_iterations#pass the number of clr iterations to the class learningrates = clr_1.clr() #compute the learning rates for each iteration #convert clr_iterations back to "epochs" epochs_plot = clr_iterations/int(np.round(nr_events_train_total / batch_size)) elif item_ui.radioButton_LrExpo.isChecked(): text_info+="Exponentially decreased learning rates\n" initial_lr = float(item_ui.doubleSpinBox_expDecInitLr.value()) decay_steps = int(item_ui.spinBox_expDecSteps.value()) decay_rate = float(item_ui.doubleSpinBox_expDecRate.value()) batch_size = int(item_ui.spinBox_batchSize.value()) text_info+="Nr. of training images: "+str(nr_events_train_total)+"\n" text_info+="initial_lr: "+str(initial_lr)+"\n" text_info+="decay_steps: "+str(decay_steps)+"\n" text_info+="decay_rate: "+str(decay_rate)+"\n" #epochs_plot = np.array(range(nr_epochs)) epochs_plot = nr_epochs * int(np.round(nr_events_train_total / batch_size)) epochs_plot = np.arange(epochs_plot) exp_decay = aid_dl.exponentialDecay(initial_lr=initial_lr, decay_steps=decay_steps, decay_rate=decay_rate) exp_decay.iterations=epochs_plot#pass the number of clr iterations to the class learningrates = exp_decay.exp_decay() epochs_plot = epochs_plot/int(np.round(nr_events_train_total / batch_size)) #learningrates = aid_dl.exponentialDecay(epochs_plot,initial_lr=initial_lr, decay_steps=decay_steps, decay_rate=decay_rate) def refreshPlot(): try: # try to empty the plot item_ui.popup_lrplot_ui.lr_plot.removeItem(item_ui.lr_line2) except: pass #Get design settings color = item_ui.popup_lrplot_ui.pushButton_color.palette().button().color() width = int(item_ui.popup_lrplot_ui.spinBox_lineWidth.value()) color = list(color.getRgb()) color = tuple(color) pencolor=pg.mkPen(color, width=width) #define curve and add to plot item_ui.lr_line2 = pg.PlotCurveItem(x=epochs_plot, y=learningrates,pen=pencolor) item_ui.popup_lrplot_ui.lr_plot.addItem(item_ui.lr_line2) refreshPlot() item_ui.popup_lrplot_ui.pushButton_refreshPlot.clicked.connect(refreshPlot) item_ui.popup_lrplot_ui.textBrowser_lrSettings.setText(text_info) item_ui.popup_lrplot.show() def lossWeights_activated(self,on_or_off,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] if on_or_off==False:#0 means switched OFF item_ui.lineEdit_lossW.setText("") item_ui.pushButton_lossW.setEnabled(False) #this happens when the user activated the expert option "loss weights" elif on_or_off==True:#2 means switched ON #Activate button item_ui.pushButton_lossW.setEnabled(True) self.lossWeights_popup(listindex) def lossWeights_popup(self,listindex): if listindex==-1: item_ui = self SelectedFiles = self.items_clicked() else: item_ui = self.fittingpopups_ui[listindex] SelectedFiles = item_ui.SelectedFiles item_ui.popup_lossW = MyPopup() item_ui.popup_lossW_ui = aid_frontend.popup_lossweights() item_ui.popup_lossW_ui.setupUi(item_ui.popup_lossW) #open a popup to show the numbers of events in each class in a table indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] item_ui.popup_lossW_ui.tableWidget_lossW.setColumnCount(5) nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = nr_ind item_ui.popup_lossW_ui.tableWidget_lossW.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class", "Events tot." ,"Events/Epoch", "Events/Epoch[%]", "Loss weight"] item_ui.popup_lossW_ui.tableWidget_lossW.setHorizontalHeaderLabels(header_labels) header = item_ui.popup_lossW_ui.tableWidget_lossW.horizontalHeader() for i in range(len(header_labels)): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) #Fill the table rowPosition = 0 #Training info ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) #Total nr of cells for each index for index in np.unique(indices_train): colPos = 0 #"Class" #put the index (class!) in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole,str(index)) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) #Get the training files of that index ind = np.where(indices_train==index)[0] SelectedFiles_train_index = np.array(SelectedFiles_train)[ind] colPos = 1 #"Events tot." nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 2 #"Events/Epoch" nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 3 #"Events/Epoch[%]" item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.round(np.sum(nr_events_epoch)/float(nr_events_train_total),2))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 4 #"Loss weights" #for each item create a spinbopx (trainability) spinb = QtWidgets.QDoubleSpinBox(item_ui.popup_lossW_ui.tableWidget_lossW) spinb.setEnabled(False) spinb.setMinimum(-99999) spinb.setMaximum(99999) spinb.setSingleStep(0.1) spinb.setValue(1.0) #Default in Keras is "None", which means class_weight=1.0 item_ui.popup_lossW_ui.tableWidget_lossW.setCellWidget(rowPosition, colPos, spinb) rowPosition += 1 item_ui.popup_lossW_ui.tableWidget_lossW.resizeColumnsToContents() item_ui.popup_lossW_ui.tableWidget_lossW.resizeRowsToContents() item_ui.popup_lossW.show() item_ui.popup_lossW_ui.pushButton_pop_lossW_cancel.clicked.connect(lambda: self.lossW_cancel(listindex)) item_ui.popup_lossW_ui.pushButton_pop_lossW_ok.clicked.connect(lambda: self.lossW_ok(listindex)) item_ui.popup_lossW_ui.comboBox_lossW.currentIndexChanged.connect(lambda on_or_off: self.lossW_comboB(on_or_off,listindex)) def optimizer_change_settings_popup(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_optim = MyPopup() item_ui.popup_optim_ui = aid_frontend.Ui_Form_expt_optim() item_ui.popup_optim_ui.setupUi(item_ui.popup_optim) #open a popup to show advances settings for optimizer ##Manual insertion## optimizer_name = item_ui.optimizer_settings["comboBox_optimizer"].lower() if optimizer_name=='sgd': item_ui.popup_optim_ui.radioButton_sgd.setChecked(True) elif optimizer_name=='rmsprop': item_ui.popup_optim_ui.radioButton_rms.setChecked(True) elif optimizer_name=='adagrad': item_ui.popup_optim_ui.radioButton_adagrad.setChecked(True) elif optimizer_name=='adadelta': item_ui.popup_optim_ui.radioButton_adadelta.setChecked(True) elif optimizer_name=='adam': item_ui.popup_optim_ui.radioButton_adam.setChecked(True) elif optimizer_name=='adamax': item_ui.popup_optim_ui.radioButton_adamax.setChecked(True) elif optimizer_name=='nadam': item_ui.popup_optim_ui.radioButton_nadam.setChecked(True) item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_sgd"]) item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.setValue(item_ui.optimizer_settings["doubleSpinBox_sgd_momentum"]) item_ui.popup_optim_ui.checkBox_sgd_nesterov.setChecked(item_ui.optimizer_settings["checkBox_sgd_nesterov"]) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_rmsprop"]) item_ui.popup_optim_ui.doubleSpinBox_rms_rho.setValue(item_ui.optimizer_settings["doubleSpinBox_rms_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adam"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_adam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_adam_beta2"]) item_ui.popup_optim_ui.checkBox_adam_amsgrad.setChecked(item_ui.optimizer_settings["checkBox_adam_amsgrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_nadam"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_nadam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_nadam_beta2"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adadelta"]) item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.setValue(item_ui.optimizer_settings["doubleSpinBox_adadelta_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adagrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adamax"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_adamax_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_adamax_beta2"]) def change_lr(lr): item_ui.doubleSpinBox_learningRate.setValue(lr) item_ui.doubleSpinBox_expDecInitLr.setValue(lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.valueChanged.connect(change_lr) def change_optimizer(optimizer_name): index = item_ui.comboBox_optimizer.findText(optimizer_name, QtCore.Qt.MatchFixedString) if index >= 0: item_ui.comboBox_optimizer.setCurrentIndex(index) #get the learning rate for that optimizer lr = item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_name.lower()] change_lr(lr) item_ui.popup_optim_ui.radioButton_adam.toggled.connect(lambda: change_optimizer("Adam")) item_ui.popup_optim_ui.radioButton_sgd.toggled.connect(lambda: change_optimizer("SGD")) item_ui.popup_optim_ui.radioButton_rms.toggled.connect(lambda: change_optimizer("RMSprop")) item_ui.popup_optim_ui.radioButton_adagrad.toggled.connect(lambda: change_optimizer("Adagrad")) item_ui.popup_optim_ui.radioButton_adadelta.toggled.connect(lambda: change_optimizer("Adadelta")) item_ui.popup_optim_ui.radioButton_adamax.toggled.connect(lambda: change_optimizer("Adamax")) item_ui.popup_optim_ui.radioButton_nadam.toggled.connect(lambda: change_optimizer("Nadam")) def ok(): doubleSpinBox_lr_sgd = float(item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.value()) doubleSpinBox_sgd_momentum = float(item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.value()) checkBox_sgd_nesterov = bool(item_ui.popup_optim_ui.checkBox_sgd_nesterov.isChecked()) doubleSpinBox_lr_rmsprop = float(item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.value()) doubleSpinBox_rms_rho = float(item_ui.popup_optim_ui.doubleSpinBox_rms_rho.value()) doubleSpinBox_lr_adam = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adam.value()) doubleSpinBox_adam_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.value()) doubleSpinBox_adam_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.value()) checkBox_adam_amsgrad = bool(item_ui.popup_optim_ui.checkBox_adam_amsgrad.isChecked()) doubleSpinBox_lr_adadelta = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.value()) doubleSpinBox_adadelta_rho = float(item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.value()) doubleSpinBox_lr_nadam = float(item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.value()) doubleSpinBox_nadam_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.value()) doubleSpinBox_nadam_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.value()) doubleSpinBox_lr_adagrad = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.value()) doubleSpinBox_lr_adamax = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.value()) doubleSpinBox_adamax_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.value()) doubleSpinBox_adamax_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.value()) item_ui.optimizer_settings["doubleSpinBox_lr_sgd"] = doubleSpinBox_lr_sgd item_ui.optimizer_settings["doubleSpinBox_sgd_momentum"] = doubleSpinBox_sgd_momentum item_ui.optimizer_settings["checkBox_sgd_nesterov"] = checkBox_sgd_nesterov item_ui.optimizer_settings["doubleSpinBox_lr_rmsprop"] = doubleSpinBox_lr_rmsprop item_ui.optimizer_settings["doubleSpinBox_rms_rho"] = doubleSpinBox_rms_rho item_ui.optimizer_settings["doubleSpinBox_lr_adam"] = doubleSpinBox_lr_adam item_ui.optimizer_settings["doubleSpinBox_adam_beta1"] = doubleSpinBox_adam_beta1 item_ui.optimizer_settings["doubleSpinBox_adam_beta2"] = doubleSpinBox_adam_beta2 item_ui.optimizer_settings["checkBox_adam_amsgrad"] = checkBox_adam_amsgrad item_ui.optimizer_settings["doubleSpinBox_lr_adadelta"] = doubleSpinBox_lr_adadelta item_ui.optimizer_settings["doubleSpinBox_adadelta_rho"] = doubleSpinBox_adadelta_rho item_ui.optimizer_settings["doubleSpinBox_lr_nadam"] = doubleSpinBox_lr_nadam item_ui.optimizer_settings["doubleSpinBox_nadam_beta1"] = doubleSpinBox_nadam_beta1 item_ui.optimizer_settings["doubleSpinBox_nadam_beta2"] = doubleSpinBox_nadam_beta2 item_ui.optimizer_settings["doubleSpinBox_lr_adagrad"] = doubleSpinBox_lr_adagrad item_ui.optimizer_settings["doubleSpinBox_lr_adamax"] = doubleSpinBox_lr_adamax item_ui.optimizer_settings["doubleSpinBox_adamax_beta1"] = doubleSpinBox_adamax_beta1 item_ui.optimizer_settings["doubleSpinBox_adamax_beta2"] = doubleSpinBox_adamax_beta2 #close the popup item_ui.popup_optim = None item_ui.popup_optim_ui = None print("Advanced settings for optimizer were changed.") def cancel():#close the popup item_ui.popup_optim = None item_ui.popup_optim_ui = None def reset(): print("Reset optimizer settings (in UI). To accept, click OK") optimizer_default = aid_dl.get_optimizer_settings() item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.setValue(optimizer_default["doubleSpinBox_lr_sgd"]) item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.setValue(optimizer_default["doubleSpinBox_sgd_momentum"]) item_ui.popup_optim_ui.checkBox_sgd_nesterov.setChecked(optimizer_default["checkBox_sgd_nesterov"]) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.setValue(optimizer_default["doubleSpinBox_lr_rmsprop"]) item_ui.popup_optim_ui.doubleSpinBox_rms_rho.setValue(optimizer_default["doubleSpinBox_rms_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.setValue(optimizer_default["doubleSpinBox_lr_adam"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.setValue(optimizer_default["doubleSpinBox_adam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.setValue(optimizer_default["doubleSpinBox_adam_beta2"]) item_ui.popup_optim_ui.checkBox_adam_amsgrad.setChecked(optimizer_default["checkBox_adam_amsgrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.setValue(optimizer_default["doubleSpinBox_lr_nadam"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.setValue(optimizer_default["doubleSpinBox_nadam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.setValue(optimizer_default["doubleSpinBox_nadam_beta2"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.setValue(optimizer_default["doubleSpinBox_lr_adadelta"]) item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.setValue(optimizer_default["doubleSpinBox_adadelta_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.setValue(optimizer_default["doubleSpinBox_lr_adagrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.setValue(optimizer_default["doubleSpinBox_lr_adamax"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.setValue(optimizer_default["doubleSpinBox_adamax_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.setValue(optimizer_default["doubleSpinBox_adamax_beta2"]) item_ui.popup_optim_ui.pushButton_ok.clicked.connect(ok) item_ui.popup_optim_ui.pushButton_cancel.clicked.connect(cancel) item_ui.popup_optim_ui.pushButton_reset.clicked.connect(reset) item_ui.popup_optim.show() def onLayoutChange(self,app): #Get the text of the triggered layout layout_trig = (self.sender().text()).split(" layout")[0] layout_current = Default_dict["Layout"] if layout_trig == layout_current: self.statusbar.showMessage(layout_current+" layout is already in use",2000) return elif layout_trig == "Normal": #Change Layout in Defaultdict to "Normal", such that next start will use Normal layout Default_dict["Layout"] = "Normal" app.setStyleSheet("") #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) elif layout_trig == "Dark": #Change Layout in Defaultdict to "Dark", such that next start will use Dark layout Default_dict["Layout"] = "Dark" dir_layout = os.path.join(dir_root,"layout_dark.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) elif layout_trig == "DarkOrange": #Change Layout in Defaultdict to "Dark", such that next start will use Dark layout Default_dict["Layout"] = "DarkOrange" dir_layout = os.path.join(dir_root,"layout_darkorange.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/nphase/qt-ping-grapher/blob/master/resources/darkorange.stylesheet f = f.read() app.setStyleSheet(f) #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) #Save the layout to Default_dict with open(dir_settings, 'w') as f: json.dump(Default_dict,f) def onTooltipOnOff(self,app): #what is the current layout? if bool(self.actionLayout_Normal.isChecked())==True: #use normal layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips app.setStyleSheet("") elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips app.setStyleSheet("""QToolTip { opacity: 0 }""") elif bool(self.actionLayout_Dark.isChecked())==True: #use dark layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips dir_layout = os.path.join(dir_root,"layout_dark.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips dir_layout = os.path.join(dir_root,"layout_dark_notooltip.txt")#dir to settings f = open(dir_layout, "r")#I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) elif bool(self.actionLayout_DarkOrange.isChecked())==True: #use darkorange layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips dir_layout = os.path.join(dir_root,"layout_darkorange.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/nphase/qt-ping-grapher/blob/master/resources/darkorange.stylesheet f = f.read() app.setStyleSheet(f) elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips dir_layout = os.path.join(dir_root,"layout_darkorange_notooltip.txt")#dir to settings f = open(dir_layout, "r") f = f.read() app.setStyleSheet(f) def onIconThemeChange(self): #Get the text of the triggered icon theme icontheme_trig = self.sender().text() icontheme_currenent = Default_dict["Icon theme"] if icontheme_trig == icontheme_currenent: self.statusbar.showMessage(icontheme_currenent+" is already in use",2000) return elif icontheme_trig == "Icon theme 1": Default_dict["Icon theme"] = "Icon theme 1" self.statusbar.showMessage("Icon theme 1 will be used after restart",2000) elif icontheme_trig == "Icon theme 2": Default_dict["Icon theme"] = "Icon theme 2" self.statusbar.showMessage("Icon theme 2 will be used after restart",2000) #Save the layout to Default_dict with open(dir_settings, 'w') as f: json.dump(Default_dict,f) def items_clicked(self): #This function checks, which data has been checked on table_dragdrop and returns the necessary data rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #is it checked for train? cb_t = self.table_dragdrop.item(rowPosition, 2) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) if cb_t.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #add to training files if the user wants more than 0 images per epoch failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return hash_ = aid_bin.hashfunction(rtdc_path)#rtdc_ds.hash features = list(rtdc_ds["events"].keys()) nr_images = rtdc_ds["events"]["image"].len() SelectedFiles.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"hash":hash_,"xtra_in":xtra_in}) cb_v = self.table_dragdrop.item(rowPosition, 3) if cb_v.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return hash_ = aid_bin.hashfunction(rtdc_path) features = list(rtdc_ds["events"].keys()) nr_images = rtdc_ds["events"]["image"].len() SelectedFiles.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"hash":hash_,"xtra_in":xtra_in}) return SelectedFiles def items_available(self): """ Function grabs all information from table_dragdrop. Checked and Unchecked Does not load rtdc_ds (save time) """ rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"NotSpecified","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) return SelectedFiles def items_clicked_no_rtdc_ds(self): #This function checks, which data has been checked on table_dragdrop and returns the necessary data rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) #is it checked for train? cb_t = self.table_dragdrop.item(rowPosition, 2) if cb_t.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #add to training files if the user wants more than 0 images per epoch #SelectedFiles.append({"nr_images":nr_events,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch}) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) cb_v = self.table_dragdrop.item(rowPosition, 3) if cb_v.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #SelectedFiles.append({"nr_images":nr_events,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch}) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) return SelectedFiles def uncheck_if_zero(self,item): #If the Nr. of epochs is changed to zero: #uncheck the dataset for train/valid row = item.row() col = item.column() #if the user changed Nr. of cells per epoch to zero if col==6 and int(item.text())==0: #get the checkstate of the coresponding T/V cb_t = self.table_dragdrop.item(row, 2) if cb_t.checkState() == QtCore.Qt.Checked: cb_t.setCheckState(False) cb_v = self.table_dragdrop.item(row, 3) if cb_v.checkState() == QtCore.Qt.Checked: cb_v.setCheckState(False) def item_click(self,item): colPosition = item.column() rowPosition = item.row() #if Shuffle was clicked (col=8), check if this checkbox is not deactivated if colPosition==8: if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==False: rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_images = rtdc_ds["events"]["image"].len() columnPosition = 6 item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, nr_images) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==True: #Inspect this table item. If shuffle was checked before, it will be grayed out. Invert normal cell then item = self.table_dragdrop.item(rowPosition, 6) item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) if len(self.ram)>0: self.statusbar.showMessage("Make sure to update RAM (->Edit->Data to RAM now) after changing Data-set",2000) self.ram = dict() #clear the ram, since the data was changed self.dataOverviewOn() #When data is clicked, always reset the validation set (only important for 'Assess Model'-tab) self.ValidationSet = None self.Metrics = dict() #Also reset the metrics def dataOverviewOn(self): if self.groupBox_DataOverview.isChecked()==True: if self.threadpool_single_queue == 0: SelectedFiles = self.items_clicked_no_rtdc_ds() self.update_data_overview(SelectedFiles) self.update_data_overview_2(SelectedFiles) def dataOverviewOn_OnChange(self,item): #When a value is entered in Events/Epoch and enter is hit #there is no update of the table called if self.groupBox_DataOverview.isChecked()==True: if self.threadpool_single_queue == 0: rowPosition = item.row() colPosition = item.column() if colPosition==6:#one when using the spinbox (Class),or when entering a new number in "Events/Epoch", the table is not updated. #get the new value nr_cells = self.table_dragdrop.cellWidget(rowPosition, colPosition) if nr_cells==None: return else: SelectedFiles = self.items_clicked_no_rtdc_ds() self.update_data_overview(SelectedFiles) self.update_data_overview_2(SelectedFiles) def update_data_overview(self,SelectedFiles): #Check if there are custom class names (determined by user) rows = self.tableWidget_Info.rowCount() self.classes_custom = [] #by default assume there are no custom classes classes_custom_bool = False if rows>0:#if >0, then there is already a table existing classes,self.classes_custom = [],[] for row in range(rows): try: class_ = self.tableWidget_Info.item(row,0).text() if class_.isdigit(): classes.append(class_)#get the classes except: pass try: self.classes_custom.append(self.tableWidget_Info.item(row,3).text())#get the classes except: pass classes = np.unique(classes) if len(classes)==len(self.classes_custom):#equal in length same = [i for i, j in zip(classes, self.classes_custom) if i == j] #which items are identical? if len(same)==0: #apparently there are custom classes! Save them classes_custom_bool = True if len(SelectedFiles)==0:#reset the table #Table1 #Prepare a table in tableWidget_Info self.tableWidget_Info.setColumnCount(0) self.tableWidget_Info.setRowCount(0) self.tableWidget_Info.setColumnCount(4) header = self.tableWidget_Info.horizontalHeader() header_labels = ["Class","Events tot.","Events/Epoch","Name"] self.tableWidget_Info.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) return #Prepare a table in tableWidget_Info self.tableWidget_Info.setColumnCount(0) self.tableWidget_Info.setRowCount(0) indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] self.tableWidget_Info.setColumnCount(4) header = self.tableWidget_Info.horizontalHeader() nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = 2*nr_ind+2 #add two rows for intermediate headers (Train/Valid) self.tableWidget_Info.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class","Events tot.","Events/Epoch","Name"] self.tableWidget_Info.setHorizontalHeaderLabels(header_labels) #self.tableWidget_Info.resizeColumnsToContents() header = self.tableWidget_Info.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) #Training info rowPosition = 0 self.tableWidget_Info.setSpan(rowPosition, 0, 1, 2) item = QtWidgets.QTableWidgetItem("Train. data") item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) self.tableWidget_Info.setItem(rowPosition, 0, item) rowPosition += 1 ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] classes = np.unique(indices_train) if len(classes)==len(self.classes_custom): classes_custom_bool = True else: classes_custom_bool = False #display information for each individual class for index_ in range(len(classes)): #for index in np.unique(indices_train): index = classes[index_] #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info.setItem(rowPosition, 0, item) #Get the training files of that index ind = np.where(indices_train==index)[0] SelectedFiles_train_index = np.array(SelectedFiles_train)[ind] #Total nr of cells for each class nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) self.tableWidget_Info.setItem(rowPosition, 1, item) nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() if classes_custom_bool==False: item.setData(QtCore.Qt.EditRole,str(index)) else: item.setData(QtCore.Qt.EditRole,self.classes_custom[index_]) self.tableWidget_Info.setItem(rowPosition, 3, item) rowPosition += 1 #Validation info self.tableWidget_Info.setSpan(rowPosition, 0, 1, 2) item = QtWidgets.QTableWidgetItem("Val. data") item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) self.tableWidget_Info.setItem(rowPosition, 0, item) rowPosition += 1 ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] #Total nr of cells for each index for index in np.unique(indices_valid): #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info.setItem(rowPosition, 0, item) #Get the validation files of that index ind = np.where(indices_valid==index)[0] SelectedFiles_valid_index = np.array(SelectedFiles_valid)[ind] nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) self.tableWidget_Info.setItem(rowPosition, 1, item) nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info.setItem(rowPosition, 2, item) rowPosition += 1 self.tableWidget_Info.resizeColumnsToContents() self.tableWidget_Info.resizeRowsToContents() def update_data_overview_2(self,SelectedFiles): if len(SelectedFiles)==0: #Table2 self.tableWidget_Info_2.setColumnCount(0) self.tableWidget_Info_2.setRowCount(0) #In case user specified X_valid and y_valid before, delete it again: self.ValidationSet = None self.Metrics = dict() #Also reset the metrics #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setColumnCount(4) header_labels = ["Class","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info_2.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) return #Prepare a table in tableWidget_Info self.tableWidget_Info_2.setColumnCount(0) self.tableWidget_Info_2.setRowCount(0) #In case user specified X_valid and y_valid before, delete it again: self.ValidationSet = None self.Metrics = dict() #Also reset the metrics indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setColumnCount(4) nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = nr_ind self.tableWidget_Info_2.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info_2.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) rowPosition = 0 #Validation info ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] #Total nr of cells for each index for index in np.unique(indices_valid): #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info_2.setItem(rowPosition, 0, item) #Get the validation files of that index ind = np.where(indices_valid==index)[0] SelectedFiles_valid_index = np.array(SelectedFiles_valid)[ind] nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info_2.setItem(rowPosition, 1, item) #Column for color item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, "") item.setBackground(QtGui.QColor(self.colorsQt[index])) self.tableWidget_Info_2.setItem(rowPosition, 2, item) #Column for User specified name item = QtWidgets.QTableWidgetItem() #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info_2.setItem(rowPosition, 3, item) rowPosition += 1 self.tableWidget_Info_2.resizeColumnsToContents() self.tableWidget_Info_2.resizeRowsToContents() def tableWidget_Info_2_click(self,item): if item is not None: if item.column()==2: tableitem = self.tableWidget_Info_2.item(item.row(), item.column()) color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) def tableWidget_HistoryItems_dclick(self,item): if item is not None: tableitem = self.tableWidget_HistoryItems.item(item.row(), item.column()) if str(tableitem.text())!="Show saved only": color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) self.update_historyplot() def select_all(self,col): """ Check/Uncheck items on table_dragdrop """ apply_at_col = [2,3,8,10] if col not in apply_at_col: return #otherwiese continue rows = range(self.table_dragdrop.rowCount()) #Number of rows of the table tableitems = [self.table_dragdrop.item(row, col) for row in rows] checkStates = [tableitem.checkState() for tableitem in tableitems] #Checked? checked = [state==QtCore.Qt.Checked for state in checkStates] if set(checked)=={True}:#all are checked! #Uncheck all! for tableitem in tableitems: tableitem.setCheckState(QtCore.Qt.Unchecked) else:#otherwise check all for tableitem in tableitems: tableitem.setCheckState(QtCore.Qt.Checked) #If shuffle column was clicked do some extra if col==8: for rowPosition in rows: if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==False: rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_images = rtdc_ds["events"]["image"].len() columnPosition = 6 item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, nr_images) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==True: #Inspect this table item. If shuffle was checked before, it will be grayed out. Invert normal cell then item = self.table_dragdrop.item(rowPosition, 6) item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) #Finally, update the Data-Overview-Box self.dataOverviewOn()#update the overview box def item_dclick(self, item): #Check/Uncheck if item is from column 2 or 3 tableitem = self.table_dragdrop.item(item.row(), item.column()) if item.column() in [2,3]: #If the item is unchecked ->check it! if tableitem.checkState() == QtCore.Qt.Unchecked: tableitem.setCheckState(QtCore.Qt.Checked) #else, the other way around elif tableitem.checkState() == QtCore.Qt.Checked: tableitem.setCheckState(QtCore.Qt.Unchecked) #Show example image if item on column 0 was dclicked if item.column() == 0: #rtdc_path = str(item.text()) #rtdc_path = tableitem.text() rtdc_path = self.table_dragdrop.cellWidget(item.row(), item.column()).text() failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() nr_images = rtdc_ds["events"]["image"].len() ind = np.random.randint(0,nr_images) img = rtdc_ds["events"]["image"][ind] if len(img.shape)==2: height, width = img.shape channels = 1 elif len(img.shape)==3: height, width, channels = img.shape else: print("Invalid image format: "+str(img.shape)) return self.w = MyPopup() self.gridLayout_w = QtWidgets.QGridLayout(self.w) self.label_image = QtWidgets.QLabel(self.w) self.label_cropimage = QtWidgets.QLabel(self.w) #zoom image such that longest side is 512 zoom_factor = np.round(float(512.0/np.max(img.shape)),0) #Get the order, specified in Image processing->Zoom Order zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order #Convert to corresponding cv2 zooming method zoom_interpol_method = aid_img.zoom_arguments_scipy2cv(zoom_factor,zoom_order) img_zoomed = cv2.resize(img, dsize=None,fx=zoom_factor, fy=zoom_factor, interpolation=eval(zoom_interpol_method)) if channels==1: height, width = img_zoomed.shape if channels==3: height, width, _ = img_zoomed.shape if channels==1: qi=QtGui.QImage(img_zoomed.data, width, height,width, QtGui.QImage.Format_Indexed8) if channels==3: qi = QtGui.QImage(img_zoomed.data,img_zoomed.shape[1], img_zoomed.shape[0], QtGui.QImage.Format_RGB888) self.label_image.setPixmap(QtGui.QPixmap.fromImage(qi)) self.gridLayout_w.addWidget(self.label_image, 1,1) #get the location of the cell rowPosition = item.row() pix = float(self.table_dragdrop.item(rowPosition, 7).text()) #pix = rtdc_ds.config["imaging"]["pixel size"] PIX = pix pos_x,pos_y = rtdc_ds["events"]["pos_x"][ind]/PIX,rtdc_ds["events"]["pos_y"][ind]/PIX cropsize = self.spinBox_imagecrop.value() y1 = int(round(pos_y))-cropsize/2 x1 = int(round(pos_x))-cropsize/2 y2 = y1+cropsize x2 = x1+cropsize #Crop the image img_crop = img[int(y1):int(y2),int(x1):int(x2)] #zoom image such that the height gets the same as for non-cropped img zoom_factor = float(img_zoomed.shape[0])/img_crop.shape[0] if zoom_factor == np.inf: factor = 1 if self.actionVerbose.isChecked()==True: print("Set resize factor to 1. Before, it was: "+str(factor)) #Get the order, specified in Image processing->Zoom Order zoom_order = str(self.comboBox_zoomOrder.currentText()) # zoom_interpol_method = aid_img.zoom_arguments_scipy2cv(zoom_factor,zoom_order) img_crop = cv2.resize(img_crop, dsize=None,fx=zoom_factor, fy=zoom_factor, interpolation=eval(zoom_interpol_method)) if channels==1: height, width = img_crop.shape qi=QtGui.QImage(img_crop.data, width, height,width, QtGui.QImage.Format_Indexed8) if channels==3: height, width, _ = img_crop.shape qi = QtGui.QImage(img_crop.data,width, height, QtGui.QImage.Format_RGB888) self.label_cropimage.setPixmap(QtGui.QPixmap.fromImage(qi)) self.gridLayout_w.addWidget(self.label_cropimage, 1,2) self.w.show() def get_norm_from_modelparafile(self): #Get the normalization method from a modelparafile filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open meta-data', Default_dict["Path of last model"],"AIDeveloper Meta file (*meta.xlsx)") filename = filename[0] if len(str(filename))==0: return norm = pd.read_excel(filename,sheet_name='Parameters')["Normalization"] norm = str(norm[0]) index = self.comboBox_Normalization.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_Normalization.setCurrentIndex(index) self.w.close() else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Invalid normalization method was specified.\ Likely this version of AIDeveloper does not support that normalization method\ Please define a valid normalization method") msg.setDetailedText("Supported normalization methods are: "+"\n".join(self.norm_methods)) msg.setWindowTitle("Invalid Normalization method") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("Invalid Normalization method") def update_plottingTab(self): #Get current text of combobox (url to data set) url = str(self.comboBox_chooseRtdcFile.currentText()) if len(url)==0: return failed,rtdc_ds = aid_bin.load_rtdc(url) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return keys = list(rtdc_ds["events"].keys()) #find keys of image_channels keys_0d,keys_1d,keys_2d = [],[],[] for key in keys: if type(rtdc_ds["events"][key])==h5py._hl.dataset.Dataset: shape = rtdc_ds["events"][key].shape if len(shape)==1: #zero-dimensional info (single number per cell) keys_0d.append(key) elif len(shape)==2: #one-dimensional info (multiple numbers per cell) keys_1d.append(key) elif len(shape)==3: #two-dimensional info (images) keys_2d.append(key) #add the traces to the 1d features if "trace" in keys: for key_trace in list(rtdc_ds["events"]["trace"].keys()): keys_1d.append(key_trace+" (RTFDC)") #Sort keys_2d: "image" first; "mask" last keys_2d.insert(0, keys_2d.pop(keys_2d.index("image"))) keys_2d.insert(len(keys_2d), keys_2d.pop(keys_2d.index("mask"))) #Fill those feautues in the comboboxes at the scatterplot self.comboBox_featurex.addItems(keys_0d) self.comboBox_featurey.addItems(keys_0d) #check if masks or contours are available cont_available = "mask" in keys or "contour" in keys self.checkBox_contour.setEnabled(cont_available) self.checkBox_contour.setChecked(cont_available) #Centroid is always available (prerequisite for AIDeveloper) self.checkBox_centroid.setEnabled(True) self.checkBox_centroid.setChecked(True) #Intialize option menus self.contour_options_nr = 0 self.centroid_options_nr = 0 self.show_1d_options_nr = 0 self.show_2d_options_nr = 0 self.init_contour_options(keys_2d) self.init_centroid_options(keys_1d) self.init_2d_options(keys_2d) self.init_1d_options(keys_1d) def init_contour_options(self,keys_2d): print("Work in progress") # self.popup_layercontrols = MyPopup() # self.popup_layercontrols_ui = frontend.Ui_LayerControl() # self.popup_layercontrols_ui.setupUi(self.popup_layercontrols,keys_2d) #open a popup def init_centroid_options(self,keys_image): print("Work in progress") # self.popup_centroid_options = MyPopup() # self.popup_centroid_options_ui = aid_frontend.Ui_centroid_options() # self.popup_centroid_options_ui.setupUi(self.popup_centroid_options,keys_image) #open a popup def init_2d_options(self,keys_2d): #Initialize 2d Option Menu. Range values are saved and manipulated here self.popup_2dOptions = MyPopup() self.popup_2dOptions_ui = aid_frontend.Ui_2dOptions() self.popup_2dOptions_ui.setupUi(self.popup_2dOptions,keys_2d) #open a popup def init_1d_options(self,keys_1d): self.popup_1dOptions = MyPopup() self.popup_1dOptions_ui = aid_frontend.Ui_1dOptions() self.popup_1dOptions_ui.setupUi(self.popup_1dOptions,keys_1d) #open a popup def show_contour_options(): self.contour_options_nr += 1 print("Work in progress") def show_centroid_options(self): print("Work in progress") self.centroid_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.centroid_options_nr==1: for iterator in range(len(self.popup_layercontrols_ui.spinBox_minChX)): print(1) def show_2d_options(self): self.show_2d_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.show_2d_options_nr==1: for iterator in range(len(self.popup_2dOptions_ui.spinBox_minChX)): slider = self.popup_2dOptions_ui.horizontalSlider_chX[iterator] slider.startValueChanged.connect(lambda _, b=None: self.put_image(ind=b)) slider.endValueChanged.connect(lambda _, b=None: self.put_image(ind=b)) checkBox = self.popup_2dOptions_ui.checkBox_show_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_image(ind=b)) comboBox = self.popup_2dOptions_ui.comboBox_cmap_chX[iterator] comboBox.currentIndexChanged.connect(lambda _, b=None: self.put_image(ind=b)) checkBox = self.popup_2dOptions_ui.checkBox_auto_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_image(ind=b)) self.popup_2dOptions.show() def show_1d_options(self): self.show_1d_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.show_1d_options_nr==1: for iterator in range(len(self.popup_1dOptions_ui.checkBox_show_chX)): checkBox = self.popup_1dOptions_ui.checkBox_show_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_line(index=b)) comboBox = self.popup_1dOptions_ui.comboBox_cmap_chX[iterator] comboBox.clicked.connect(lambda _, b=None: self.put_line(index=b)) self.popup_1dOptions.show() def activate_deactivate_spinbox(self,newstate): #get the checkstate of the Input model crop if newstate==2: #activate the spinbox self.spinBox_imagecrop.setEnabled(True) elif newstate==0: self.spinBox_imagecrop.setEnabled(False) def gray_or_rgb_augmentation(self,index): #When Color-Mode is changed: #Get the new colormode: new_colormode = self.colorModes[index] #when the new Color Mode is Grayscale, disable saturation and hue augmentation if new_colormode=="Grayscale": self.checkBox_contrast.setEnabled(True) self.checkBox_contrast.setChecked(True) self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) self.checkBox_saturation.setEnabled(False) self.checkBox_saturation.setChecked(False) self.doubleSpinBox_saturationLower.setEnabled(False) self.doubleSpinBox_saturationHigher.setEnabled(False) self.checkBox_hue.setEnabled(False) self.checkBox_hue.setChecked(False) self.doubleSpinBox_hueDelta.setEnabled(False) elif new_colormode=="RGB": self.checkBox_contrast.setEnabled(True) self.checkBox_contrast.setChecked(True) self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) self.checkBox_saturation.setEnabled(True) self.checkBox_saturation.setChecked(True) self.doubleSpinBox_saturationLower.setEnabled(True) self.doubleSpinBox_saturationHigher.setEnabled(True) self.checkBox_hue.setEnabled(True) self.checkBox_hue.setChecked(True) self.doubleSpinBox_hueDelta.setEnabled(True) else: print("Invalid Color Mode") def onClick(self,points,pointermethod): #delete the last item if the user selected already one: try: self.scatter_xy.removeItem(self.point_clicked) except: pass if pointermethod=="point": points = points[0] p = points.pos() clicked_x, clicked_y = p.x(), p.y() a1 = (clicked_x)/float(np.max(self.feature_x)) a2 = (clicked_y)/float(np.max(self.feature_y)) #Which is the closest scatter point? dist = np.sqrt(( a1-self.scatter_x_norm )**2 + ( a2-self.scatter_y_norm )**2) index = np.argmin(dist) elif pointermethod=="index": index = points clicked_x = self.feature_x[index] clicked_y = self.feature_y[index] self.point_clicked = pg.ScatterPlotItem() self.point_clicked.setData([clicked_x], [clicked_y],brush="r",symbol='o',symbolPen="w",size=15) self.scatter_xy.addItem(self.point_clicked) #self.scatter_xy.plot([clicked_x], [clicked_y],pen=None,symbol='o',symbolPen='w',clear=False) self.point_was_selected_before = True #I dont care if the user click or used the slider->always adjust spinbox and slider without running the onChange functions self.changedbyuser = False self.spinBox_cellInd.setValue(index) self.horizontalSlider_cellInd.setValue(index) self.changedbyuser = True self.put_image(index) self.put_line(index) def put_image(self,ind): #check that the user is looking at the plotting tab curr_ind = self.tabWidget_Modelbuilder.currentIndex() if curr_ind!=3: return try: self.widget_showCell.removeItem(self.dot) except: pass try: self.widget_showCell.removeItem(self.plot_contour) except: pass if ind==None: index = int(self.spinBox_cellInd.value()) else: index = ind rtdc_ds = self.rtdc_ds #which channel shouldbe displayed channels = len(self.popup_2dOptions_ui.spinBox_minChX) keys_2d = [self.popup_2dOptions_ui.label_layername_chX[i].text() for i in range(channels)] #Define variable on self that carries all image information if channels==1: img = np.expand_dims(rtdc_ds["events"]["image"][index],-1) elif channels>1: img = np.stack( [rtdc_ds["events"][key][index] for key in keys_2d] ,axis=-1) if len(img.shape)==2: channels = 1 elif len(img.shape)==3: height, width, channels = img.shape else: print("Invalid image format: "+str(img.shape)) return color_mode = str(self.comboBox_GrayOrRGB_2.currentText()) if color_mode=="Grayscale": #Slider allows to show individual layers: each is shown as grayscale img = img elif color_mode == "RGB":#User can define, which layers are shown in R,G,and B #Retrieve the setting from self.popup_layercontrols_ui ui_item = self.popup_2dOptions_ui layer_names = [obj.text() for obj in ui_item.label_layername_chX] layer_active = [obj.isChecked() for obj in ui_item.checkBox_show_chX] layer_range = [obj.getRange() for obj in ui_item.horizontalSlider_chX] layer_auto = [obj.isChecked() for obj in ui_item.checkBox_auto_chX] layer_cmap = [obj.currentText() for obj in ui_item.comboBox_cmap_chX] #Assemble the image according to the settings in self.popup_layercontrols_ui #Find activated layers for each color: ind_active_r,ind_active_g,ind_active_b = [],[],[] for ch in range(len(layer_cmap)): #for color,active in zip(layer_cmap,layer_active): if layer_cmap[ch]=="Red" and layer_active[ch]==True: ind_active_r.append(ch) if layer_cmap[ch]=="Green" and layer_active[ch]==True: ind_active_g.append(ch) if layer_cmap[ch]=="Blue" and layer_active[ch]==True: ind_active_b.append(ch) if len(ind_active_r)>0: img_ch = img[:,:,np.array(ind_active_r)] layer_range_ch = np.array(layer_range)[np.array(ind_active_r)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_r)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_r = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_r = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) if len(ind_active_g)>0: img_ch = img[:,:,np.array(ind_active_g)] layer_range_ch = np.array(layer_range)[np.array(ind_active_g)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_g)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_g = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_g = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) if len(ind_active_b)>0: img_ch = img[:,:,np.array(ind_active_b)] layer_range_ch = np.array(layer_range)[np.array(ind_active_b)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_b)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_b = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_b = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) #Assemble image by stacking all layers img = np.stack([img_r,img_g,img_b],axis=-1) #Get the levels of the previous frame levels_init = self.widget_showCell.getLevels() if levels_init==(0,1.0): levels_init = (0,255) #Get the layer index of the previous frame index_ = self.widget_showCell.currentIndex if color_mode=="Grayscale": self.widget_showCell.setImage(img.T,autoRange=False,levels=levels_init,levelMode="mono") self.widget_showCell.setCurrentIndex(index_) elif color_mode=="RGB": self.widget_showCell.setImage(np.swapaxes(img,0,1)) pix = rtdc_ds.attrs["imaging:pixel size"] pos_x = rtdc_ds["events"]["pos_x"][index]/pix pos_y = rtdc_ds["events"]["pos_y"][index]/pix #Indicate the centroid of the cell if self.checkBox_centroid.isChecked(): self.dot = pg.CircleROI(pos=(pos_x-2, pos_y-2), size=4, pen=QtGui.QPen(QtCore.Qt.red, 0.1), movable=False) self.widget_showCell.getView().addItem(self.dot) self.widget_showCell.show() if self.checkBox_contour.isChecked(): #get the contour based on the mask contour,_ = cv2.findContours(rtdc_ds["events"]["mask"][index], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contour = contour[0][:,0,:] self.plot_contour = pg.PlotCurveItem(contour[:,0],contour[:,1],width=6,pen="r") self.widget_showCell.getView().addItem(self.plot_contour) def put_line(self,index): curr_ind = self.tabWidget_Modelbuilder.currentIndex() if curr_ind!=3: return #Fluorescence traces: clear first try: self.plot_fl_trace_.clear() #clear the plot self.plot_fl_trace.clear() #clear the plot except: pass if index==None: index = int(self.spinBox_cellInd.value()) rtdc_ds = self.rtdc_ds feature_keys = list(rtdc_ds.keys()) #which features shouldbe displayed features_nr = len(self.popup_1dOptions_ui.checkBox_show_chX) keys_1d = [self.popup_1dOptions_ui.checkBox_show_chX[i].text() for i in range(features_nr)] keys_1d_on = [self.popup_1dOptions_ui.checkBox_show_chX[i].isChecked() for i in range(features_nr)] colors = [self.popup_1dOptions_ui.comboBox_cmap_chX[i].palette().button().color() for i in range(features_nr)] colors = [list(c.getRgb()) for c in colors] colors = [tuple(c) for c in colors] ind = np.where(np.array(keys_1d_on)==True)[0] keys_1d = list(np.array(keys_1d)[ind]) colors = list(np.array(colors)[ind]) for key_1d,color in zip(keys_1d,colors): if key_1d.endswith(" (RTFDC)"): key_1d = key_1d.split(" (RTFDC)")[0] trace_flx = rtdc_ds["events"]["trace"][key_1d][index] pencolor = pg.mkPen(color, width=2) self.plot_fl_trace_ = self.plot_fl_trace.plot(range(len(trace_flx)),trace_flx,width=6,pen=pencolor,clear=False) # if "fl1_max" in feature_keys and "fl1_pos" in feature_keys: #if also the maxima and position of the max are available: use it to put the region accordingly # fl1_max,fl1_pos = rtdc_ds["events"]["fl1_max"][index],rtdc_ds["events"]["fl1_pos"][index] else: values = rtdc_ds["events"][key_1d][index] pencolor = pg.mkPen(color, width=2) self.plot_fl_trace_ = self.plot_fl_trace.plot(range(len(trace_flx)),trace_flx,width=6,pen=pencolor,clear=False) #get the maximum of [fl1_max,fl2_max,fl3_max] and put the region to the corresponding fl-position # ind = np.argmax(np.array([fl1_max,fl2_max,fl3_max])) # region_pos = np.array([fl1_pos,fl2_pos,fl3_pos])[ind] #this region is already given in us. translate this back to range # peak_height = np.array([fl1_max,fl2_max,fl3_max])[ind] # sample_rate = rtdc_ds.attrs["fluorescence:sample rate"] # fl_pos_ind = float((sample_rate*region_pos))/1E6 # # #Indicate the used flx_max and flx_pos by a scatter dot # self.peak_dot = self.plot_fl_trace.plot([float(fl_pos_ind)], [float(peak_height)],pen=None,symbol='o',symbolPen='w',clear=False) def onScatterClick(self,event, points): pointermethod = 'point' if self.changedbyuser: self.onClick(points,pointermethod) def onIndexChange(self,index): pointermethod = 'index' if self.changedbyuser: self.onClick(index,pointermethod) #Set self.changedbyuser to False and change the spinbox and slider. changedbyuser=False prevents onClick function self.changedbyuser = False self.spinBox_cellInd.setValue(index) self.horizontalSlider_cellInd.setValue(index) self.changedbyuser = True def updateScatterPlot(self): #If the Plot is updated, delete the dot in the cell-image try: self.widget_showCell.removeItem(self.dot) except: pass try: self.scatter_xy.removeItem(self.point_clicked) except: pass self.point_was_selected_before = False #read url from current comboBox_chooseRtdcFile url = str(self.comboBox_chooseRtdcFile.currentText()) if len(url)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please use the 'Build' tab to load files first") msg.setWindowTitle("No file selected") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return failed,rtdc_ds = aid_bin.load_rtdc(url) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.rtdc_ds = rtdc_ds feature_x_name = str(self.comboBox_featurex.currentText()) feature_y_name = str(self.comboBox_featurey.currentText()) features = list(self.rtdc_ds["events"].keys()) if feature_x_name in features: self.feature_x = self.rtdc_ds["events"][feature_x_name] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Feature on x axis is not contained in data set") msg.setWindowTitle("Invalid x feature") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if feature_y_name in features: self.feature_y = self.rtdc_ds["events"][feature_y_name] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Feature on y axis is not contained in data set") msg.setWindowTitle("Invalid y feature") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.changedbyuser = True #variable used to prevent plotting if spinbox or slider is changed programmatically #density estimation kde = self.comboBox_kde.currentText() if kde=="None": brush = "b" elif kde=="2d Histogram" or kde=="Gauss": if kde=="2d Histogram": density = aid_bin.kde_histogram(np.array(self.feature_x), np.array(self.feature_y)) elif kde=="Gauss": density = aid_bin.kde_gauss(np.array(self.feature_x), np.array(self.feature_y)) density_min,density_max = np.min(density),np.max(density) density = (density-density_min)/density_max # define colormap brush = [] from pyqtgraph.graphicsItems.GradientEditorItem import Gradients cmap = pg.ColorMap(*zip(*Gradients["viridis"]["ticks"])) for k in density: brush.append(cmap.mapToQColor(k)) #Add plot #self.scatter = self.scatter_xy.plot(np.array(self.feature_x), np.array(self.feature_y),symbolPen=None,pen=None,symbol='o',brush=brush[100],clear=True) #try to remove existing scatterplot try: self.scatter_xy.removeItem(self.scatter) except: print("Not cleared") self.scatter = pg.ScatterPlotItem() self.scatter.setData(np.array(self.feature_x), np.array(self.feature_y),brush=brush,symbolPen=None,pen=None,symbol='o',size=10) self.scatter_xy.addItem(self.scatter) #pen=None,symbol='o',symbolPen=None,symbolBrush=density,clear=True) self.scatter.sigClicked.connect(self.onScatterClick) #When scatterplot is clicked, show the desired cell #Fill histogram for x-axis; widget_histx y,x = np.histogram(self.feature_x, bins='auto') self.hist_x.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) #Manually clear y hist first. Only clear=True did not do the job self.hist_y.clear() #Fill histogram for y-axis; widget_histy y,x = np.histogram(self.feature_y, bins='auto') curve = pg.PlotCurveItem(-1.*x, y, stepMode=True, fillLevel=0, brush=(0, 0, 255, 150),clear=True) curve.rotate(-90) self.hist_y.addItem(curve) self.scatter_x_norm = (np.array(self.feature_x).astype(np.float32))/float(np.max(self.feature_x)) self.scatter_y_norm = (np.array(self.feature_y).astype(np.float32))/float(np.max(self.feature_y)) #Adjust the horizontalSlider_cellInd and spinBox_cellInd self.horizontalSlider_cellInd.setSingleStep(1) self.horizontalSlider_cellInd.setMinimum(0) self.horizontalSlider_cellInd.setMaximum(len(self.feature_x)-1) self.spinBox_cellInd.setMinimum(0) self.spinBox_cellInd.setMaximum(len(self.feature_x)-1) def selectPeakPos(self): #Check if self.region exists #If not, show a message and return: if not hasattr(self, 'region'): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no region defined yet") msg.setWindowTitle("No region defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Try to get the user defined peak position if not hasattr(self, 'new_peak'): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no peak defined yet") msg.setWindowTitle("No peak defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #how much rows are already in table? rowcount = self.tableWidget_showSelectedPeaks.rowCount() self.tableWidget_showSelectedPeaks.setRowCount(rowcount+1) rowPosition = rowcount item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["fl_max"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 0, item) item = QtWidgets.QTableWidgetItem() fl_pos_us = float(float(self.new_peak["fl_pos"])*float(1E6))/float(self.rtdc_ds.attrs["fluorescence:sample rate"]) item.setData(QtCore.Qt.EditRole,fl_pos_us) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 1, item) item = QtWidgets.QTableWidgetItem() pos_x_um = float(self.new_peak["pos_x"])*float(self.rtdc_ds.attrs["imaging:pixel size"]) item.setData(QtCore.Qt.EditRole,pos_x_um) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["fl_pos"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 3, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["pos_x"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 4, item) self.tableWidget_showSelectedPeaks.resizeColumnsToContents() self.tableWidget_showSelectedPeaks.resizeRowsToContents() #Update the widget_showSelectedPeaks self.update_peak_plot() def selectPeakRange(self): new_region = self.region.getRegion() region_width = np.max(new_region) - np.min(new_region) #in [samples] sample_rate = self.rtdc_ds.attrs["fluorescence:sample rate"] region_width = (float(region_width)/float(sample_rate))*1E6 #range[samples]*(1/sample_rate[1/s]) = range[s]; div by 1E6 to conver to us self.region_width = region_width #put this in the table item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.region_width)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() def onPeaksPlotClick(self,event, points): points = points[0] p = points.pos() clicked_x, clicked_y = p.x(), p.y() a1 = (clicked_x)/float(np.max(self.Pos_x)) a2 = (clicked_y)/float(np.max(self.Fl_pos)) #Which is the closest scatter point? pos_x_norm = self.Pos_x/np.max(self.Pos_x)#normalized pos_x fl_pos_norm = self.Fl_pos/np.max(self.Fl_pos)#normalized fl_pos dist = np.sqrt(( a1-pos_x_norm )**2 + ( a2-fl_pos_norm )**2) index = np.argmin(dist) #Highlight this row self.tableWidget_showSelectedPeaks.selectRow(index) #Delete the highlighted rows # try: # self.actionRemoveSelectedPeaks_function() # except: # pass def update_peak_plot(self): #This function reads tableWidget_showSelectedPeaks and #fits a function and #puts fitting parameters on tableWidget_peakModelParameters #read the data on tableWidget_showSelectedPeaks rowcount = self.tableWidget_showSelectedPeaks.rowCount() Fl_pos,Pos_x = [],[] for row in range(rowcount): line = [float(self.tableWidget_showSelectedPeaks.item(row, col).text()) for col in [1,2]] #use the values for [us] and [um] Fl_pos.append(line[0]) Pos_x.append(line[1]) self.Fl_pos = np.array(Fl_pos) self.Pos_x = np.array(Pos_x) self.selectedPeaksPlotPlot = self.selectedPeaksPlot.plot(self.Pos_x, self.Fl_pos,pen=None,symbol='o',symbolPen=None,symbolBrush='b',clear=True) #if user clicks in the plot, show him the corresponding row in the table self.selectedPeaksPlotPlot.sigPointsClicked.connect(self.onPeaksPlotClick) if not hasattr(self, 'region_width'): #if there was no region_width defined yet... #to get a reasonable initial range, use 20% of the nr. of availeble samples samples_per_event = self.rtdc_ds.attrs["fluorescence:samples per event"] self.region_width = 0.2*samples_per_event #width of the region in samples #Convert to SI unit: sample_rate = self.rtdc_ds.attrs["fluorescence:sample rate"] self.region_width = (float(self.region_width)/float(sample_rate))*1E6 #range[samples]*(1/sample_rate[1/s]) = range[s]; div by 1E6 to convert to us #which model should be used? if str(self.comboBox_peakDetModel.currentText()) == "Linear dependency and max in range" and len(Pos_x)>1: slope,intercept = np.polyfit(Pos_x, Fl_pos,deg=1) #Linear FIT, y=mx+n; y=FL_pos[us] x=Pos_x[um] xlin = np.round(np.linspace(np.min(Pos_x),np.max(Pos_x),25),1) ylin = intercept + slope*xlin self.selectedPeaksPlot.plot(xlin, ylin,width=6,pen='b',clear=False) #Put info to tableWidget_peakModelParameters self.tableWidget_peakModelParameters.setColumnCount(2) self.tableWidget_peakModelParameters.setRowCount(5) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Model") self.tableWidget_peakModelParameters.setItem(0, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Linear dependency and max in range") self.tableWidget_peakModelParameters.setItem(0, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.region_width)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Intercept [us]") self.tableWidget_peakModelParameters.setItem(2, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(intercept)) self.tableWidget_peakModelParameters.setItem(2, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Slope [us/um]") self.tableWidget_peakModelParameters.setItem(3, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(slope)) self.tableWidget_peakModelParameters.setItem(3, 1, item) #Calculate velocity item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Velocity[m/s]") self.tableWidget_peakModelParameters.setItem(4, 0, item) velocity = float(1.0/float(slope)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(velocity)) self.tableWidget_peakModelParameters.setItem(4, 1, item) def addHighestXPctPeaks(self): #how many x%? x_pct = float(self.doubleSpinBox_highestXPercent.value()) #Get the flourescence traces and maxima/positions of maxima #->it could be that the user did not yet load the dataset: if not hasattr(self,"rtdc_ds"): #run the function updateScatterPlot() self.updateScatterPlot() trace = self.rtdc_ds["events"]["trace"] fl_keys = list(trace.keys()) fl1_max,fl1_pos,fl2_max,fl2_pos,fl3_max,fl3_pos,pos_x = [],[],[],[],[],[],[] for i in range(len(fl_keys)): if "fl1_median" in fl_keys[i] and self.checkBox_fl1.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl1_max.append(trace_flx[ind]) fl1_pos.append(ind) #Get the x% maxima fl1_max = np.array(fl1_max) fl1_pos = np.array(fl1_pos) sorter = np.argsort(fl1_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl1_max))] fl1_max = fl1_max[sorter] fl1_pos = fl1_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) elif "fl2_median" in fl_keys[i] and self.checkBox_fl2.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl2_max.append(trace_flx[ind]) fl2_pos.append(ind) #Get the x% maxima fl2_max = np.array(fl2_max) fl2_pos = np.array(fl2_pos) sorter = np.argsort(fl2_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl2_max))] fl2_max = fl2_max[sorter] fl2_pos = fl2_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) elif "fl3_median" in fl_keys[i] and self.checkBox_fl3.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl3_max.append(trace_flx[ind]) fl3_pos.append(ind) #Get the x% maxima fl3_max = np.array(fl3_max) fl3_pos = np.array(fl3_pos) sorter = np.argsort(fl3_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl3_max))] fl3_max = fl3_max[sorter] fl3_pos = fl3_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) #Add fl1 fl2 and fl3 information flx_max = np.array(list(fl1_max)+list(fl2_max)+list(fl3_max)) flx_pos = np.array(list(fl1_pos)+list(fl2_pos)+list(fl3_pos)) pos_x_um = np.concatenate(np.atleast_2d(np.array(pos_x))) pix = self.rtdc_ds.attrs["imaging:pixel size"] pos_x = pos_x_um/pix #convert from um to pix rowcount = self.tableWidget_showSelectedPeaks.rowCount() self.tableWidget_showSelectedPeaks.setRowCount(rowcount+len(flx_max)) for i in range(len(flx_max)): rowPosition = rowcount+i item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(flx_max[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 0, item) item = QtWidgets.QTableWidgetItem() fl_pos_us = float(float(flx_pos[i])*float(1E6))/float(self.rtdc_ds.attrs["fluorescence:sample rate"] ) item.setData(QtCore.Qt.EditRole,fl_pos_us) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 1, item) item = QtWidgets.QTableWidgetItem() #pos_x_um = float(pos_x[i])*float(self.rtdc_ds.config["imaging"]["pixel size"]) item.setData(QtCore.Qt.EditRole,float(pos_x_um[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(flx_pos[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 3, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(pos_x[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 4, item) #Update the widget_showSelectedPeaks self.update_peak_plot() def savePeakDetModel(self): #Get tableWidget_peakModelParameters and write it to excel file #Get filename from user: filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save peak fitting model', Default_dict["Path of last model"],"Excel file (*.xlsx)") filename = filename[0] if len(filename)==0: return #add the suffix .csv if not filename.endswith(".xlsx"): filename = filename +".xlsx" table = self.tableWidget_peakModelParameters cols = table.columnCount() header = range(cols) rows = table.rowCount() model_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: model_df.iloc[i, j] = table.item(i, j).text() except: model_df.iloc[i, j] = np.nan table = self.tableWidget_showSelectedPeaks cols = table.columnCount() header = [table.horizontalHeaderItem(col).text() for col in range(cols)] rows = table.rowCount() peaks_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: peaks_df.iloc[i, j] = table.item(i, j).text() except: peaks_df.iloc[i, j] = np.nan writer = pd.ExcelWriter(filename, engine='openpyxl') #Used files go to a separate sheet on the MetaFile.xlsx pd.DataFrame().to_excel(writer,sheet_name='Model') #initialize empty Sheet model_df.to_excel(writer,sheet_name='Model') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='Peaks') #initialize empty Sheet peaks_df.to_excel(writer,sheet_name='Peaks') writer.save() writer.close() def loadPeakDetModel(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open peak fitting model', Default_dict["Path of last model"],"Excel file (*.xlsx)") filename = filename[0] if len(str(filename))==0: return peak_model_df = pd.read_excel(filename,sheet_name='Model') model = peak_model_df.iloc[0,1] if model=="Linear dependency and max in range": #set the combobox accordingly index = self.comboBox_peakDetModel.findText(model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_peakDetModel.setCurrentIndex(index) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Could not find a valid model in the chosen file. Did you accidentially load a session or history file?!") msg.setWindowTitle("No valid model found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return range_ = float(peak_model_df.iloc[1,1]) intercept = float(peak_model_df.iloc[2,1]) slope = float(peak_model_df.iloc[3,1]) velocity = float(peak_model_df.iloc[4,1]) #put the information in the table xlin = np.round(np.linspace(np.min(0),np.max(100),25),1) ylin = intercept + slope*xlin self.selectedPeaksPlot.plot(xlin, ylin,width=6,pen='b',clear=False) #Put info to tableWidget_peakModelParameters self.tableWidget_peakModelParameters.setColumnCount(2) self.tableWidget_peakModelParameters.setRowCount(5) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Model") self.tableWidget_peakModelParameters.setItem(0, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Linear dependency and max in range") self.tableWidget_peakModelParameters.setItem(0, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(range_)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Intercept [us]") self.tableWidget_peakModelParameters.setItem(2, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(intercept)) self.tableWidget_peakModelParameters.setItem(2, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Slope [us/um]") self.tableWidget_peakModelParameters.setItem(3, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(slope)) self.tableWidget_peakModelParameters.setItem(3, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Velocity[m/s]") self.tableWidget_peakModelParameters.setItem(4, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(velocity)) self.tableWidget_peakModelParameters.setItem(4, 1, item) def applyPeakModel_and_export(self): #On which files should the action be performed? Files = [] if self.radioButton_exportAll.isChecked(): #Grab all items of comboBox_chooseRtdcFile Files = [self.comboBox_chooseRtdcFile.itemText(i) for i in range(self.comboBox_chooseRtdcFile.count())] else: file = self.comboBox_chooseRtdcFile.currentText() Files.append(str(file)) #Get the model from tableWidget_peakModelParameters table = self.tableWidget_peakModelParameters cols = table.columnCount() header = range(cols) rows = table.rowCount() model_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: model_df.iloc[i, j] = table.item(i, j).text() except: model_df.iloc[i, j] = np.nan model = model_df.iloc[0,1] if model == "Linear dependency and max in range": range_us = float(model_df.iloc[1,1]) #[us] intercept_us = float(model_df.iloc[2,1]) slope_us_um = float(model_df.iloc[3,1]) #velocity_m_s = float(model_df.iloc[4,1]) #Get a directory from the user! folder = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select directory', Default_dict["Path of last model"]) if len(folder)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Invalid directory") msg.setWindowTitle("Invalid directory") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return for rtdc_path in Files: path, rtdc_file = os.path.split(rtdc_path) savename = os.path.join(folder,rtdc_file) #Avoid to save to an existing file: addon = 1 while os.path.isfile(savename): savename = savename.split(".rtdc")[0] if addon>1: savename = savename.split("_"+str(addon-1))[0] savename = savename+"_"+str(addon)+".rtdc" addon += 1 print("Saving to : "+savename) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Convert quantities to [index] sample_rate = rtdc_ds.attrs["fluorescence:sample rate"] range_ = (range_us*float(sample_rate))/1E6 #range was given in us->Divide by 1E6 to get to s and then multiply by the sample rate # #check if an rtdc_ds is already chosen: # if not hasattr(self,'rtdc_ds'): # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("No measurement chosen yet. Use 'Update' button") # msg.setWindowTitle("No measurement") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() # return trace = rtdc_ds["events"]["trace"] fl_keys = list(trace.keys()) #Which traces are available fl1_max,fl1_pos,fl2_max,fl2_pos,fl3_max,fl3_pos,pos_x = [],[],[],[],[],[],[] #Iterate over the available cells pos_x = rtdc_ds["events"]["pos_x"] #is already given in [um] indices = range(len(pos_x)) if model == "Linear dependency and max in range": #Use the linear model to get the estimated location of the fluorescence peaks fl_peak_position_us = intercept_us+slope_us_um*pos_x #Convert to index fl_peak_position_ = (fl_peak_position_us*float(sample_rate))/1E6 #Now we have the estimated peak position of each cell. Look at the traces on these spots def ind_to_us(x): return x*1E6/sample_rate #iterate over the cells: for cellindex in range(len(pos_x)): #Iterate over the availble traces for i in range(len(fl_keys)): if "_median" in fl_keys[i]: trace_flx = trace[fl_keys[i]][cellindex] trace_pos = np.array(range(len(trace_flx))) left = int(fl_peak_position_[cellindex]-range_/2.0) right = int(fl_peak_position_[cellindex]+range_/2.0) trace_flx_range = trace_flx[left:right] trace_pos_range = trace_pos[left:right] ind = np.argmax(trace_flx_range) if "fl1_median" in fl_keys[i]: fl1_max.append(trace_flx_range[ind]) fl1_pos.append(ind_to_us(trace_pos_range[ind])) if "fl2_median" in fl_keys[i]: fl2_max.append(trace_flx_range[ind]) fl2_pos.append(ind_to_us(trace_pos_range[ind])) if "fl3_median" in fl_keys[i]: fl3_max.append(trace_flx_range[ind]) fl3_pos.append(ind_to_us(trace_pos_range[ind])) #Save those new fluorescence features into free spots in .rtdc file #Those names can be found via dclab.dfn.feature_names called (userdef0...userdef9) #TODO (dont use dclab anymore for saving) #But just in case anyone uses that function?! #get metadata of the dataset meta = {} # only export configuration meta data (no user-defined config) for sec in dclab.definitions.CFG_METADATA: if sec in ["fmt_tdms"]: # ignored sections continue if sec in rtdc_ds.config: meta[sec] = rtdc_ds.config[sec].copy() #features = rtdc_ds._events.keys() #Get the names of the online features compression = 'gzip' nev = len(rtdc_ds) #["Overwrite Fl_max and Fl_pos","Save to userdef"] features = list(rtdc_ds["events"].keys()) if str(self.comboBox_toFlOrUserdef.currentText())=='Save to userdef': features = features+["userdef"+str(i) for i in range(10)] with dclab.rtdc_dataset.write_hdf5.write(path_or_h5file=savename,meta=meta, mode="append") as h5obj: # write each feature individually for feat in features: # event-wise, because # - tdms-based datasets don't allow indexing with numpy # - there might be memory issues if feat == "contour": cont_list = [rtdc_ds["events"]["contour"][ii] for ii in indices] dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"contour": cont_list}, mode="append", compression=compression) elif feat == "userdef0": if "fl1_median" in fl_keys: print("writing fl1_max to userdef0") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef0": np.array(fl1_max)}, mode="append", compression=compression) elif feat == "userdef1": if "fl2_median" in fl_keys: print("writing fl2_max to userdef1") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef1": np.array(fl2_max)}, mode="append", compression=compression) elif feat == "userdef2": if "fl3_median" in fl_keys: print("writing fl3_max to userdef2") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef2": np.array(fl3_max)}, mode="append", compression=compression) elif feat == "userdef3": if "fl1_pos" in features: print("writing fl1_pos to userdef3") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef3": np.array(fl1_pos)}, mode="append", compression=compression) elif feat == "userdef4": if "fl2_pos" in features: print("writing fl2_pos to userdef4") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef4": np.array(fl2_pos)}, mode="append", compression=compression) elif feat == "userdef5": if "fl3_pos" in features: print("writing fl3_pos to userdef5") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef5": np.array(fl3_pos)}, mode="append", compression=compression) elif feat in ["userdef"+str(i) for i in range(5,10)]: pass elif feat == "fl1_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl1_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl1_max)},mode="append",compression=compression) elif feat == "fl2_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl2_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl2_max)},mode="append",compression=compression) elif feat == "fl3_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl3_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl3_max)},mode="append",compression=compression) elif feat == "fl1_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl1_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl1_pos)},mode="append",compression=compression) elif feat == "fl2_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl2_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl2_pos)},mode="append",compression=compression) elif feat == "fl3_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl3_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl3_pos)},mode="append",compression=compression) elif feat == "index": dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"index": np.array(indices)+1}, #ShapeOut likes to start with index=1 mode="append", compression=compression) elif feat in ["mask", "image"]: # store image stacks (reduced file size and save time) m = 64 if feat=='mask': im0 = rtdc_ds["events"][feat][0] if feat=="image": im0 = rtdc_ds["events"][feat][0] imstack = np.zeros((m, im0.shape[0], im0.shape[1]), dtype=im0.dtype) jj = 0 if feat=='mask': image_list = [rtdc_ds["events"][feat][ii] for ii in indices] elif feat=='image': image_list = [rtdc_ds["events"][feat][ii] for ii in indices] for ii in range(len(image_list)): dat = image_list[ii] #dat = rtdc_ds[feat][ii] imstack[jj] = dat if (jj + 1) % m == 0: jj = 0 dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: imstack}, mode="append", compression=compression) else: jj += 1 # write rest if jj: dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: imstack[:jj, :, :]}, mode="append", compression=compression) elif feat == "trace": for tr in rtdc_ds["events"]["trace"].keys(): tr0 = rtdc_ds["events"]["trace"][tr][0] trdat = np.zeros((nev, tr0.size), dtype=tr0.dtype) jj = 0 trace_list = [rtdc_ds["events"]["trace"][tr][ii] for ii in indices] for ii in range(len(trace_list)): trdat[jj] = trace_list[ii] jj += 1 dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"trace": {tr: trdat}}, mode="append", compression=compression) else: dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: rtdc_ds["events"][feat][indices]},mode="append") h5obj.close() def partialtrainability_activated(self,on_or_off): if on_or_off==False:#0 means switched OFF self.lineEdit_partialTrainability.setText("") #self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) #Also, remove the model from self! self.model_keras = None self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(False) self.lineEdit_LoadModelPath.setText("")#put the filename in the lineedit #this happens when the user activated the expert option "partial trainability" elif on_or_off==True:#2 means switched ON #Has the user already chosen a model? if self.model_keras == None: #if there is no model yet chosen self.action_initialize_model(duties="initialize") #If there is still no model... if self.model_keras == None:# or self.model_keras_path==None: #if there is no model yet chosen #Tell the user to initiate a model first! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>To use this option please first select and load a model. To do that choose/load a model in 'Define Model'-Tab and hit the button 'Initialize/Fit Model'. Choose to only initialize the model.</p></body></html>") msg.setWindowTitle("Please load a model first") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #Switch off self.lineEdit_partialTrainability.setText("") self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(False) self.lineEdit_LoadModelPath.setText("") #self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) self.checkBox_partialTrainability.setChecked(False) return #Otherwise, there is a model on self and we can continue :) #Collections are not supported if type(self.model_keras)==tuple: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>Partial trainability is not available for collections of models. Please specify a single model.</p></body></html>") msg.setWindowTitle("Collections of models not supported for collections of models") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Switch on lineedit and the button #self.lineEdit_partialTrainability.setEnabled(True)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(True)#enables the lineEdit which shows the trainability status of each layer. #Load trainability states of the model Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] Layer_train_status = [self.model_keras.layers[layerindex].trainable for layerindex in index] self.lineEdit_partialTrainability.setText(str(Layer_train_status))#enables the lineEdit which shows the trainability status of each layer. def partialTrainability(self): self.popup_trainability = MyPopup() self.popup_trainability_ui = aid_frontend.popup_trainability() self.popup_trainability_ui.setupUi(self.popup_trainability) #open a popup to show the layers in a table #One can only activate this function when there was a model loaded already! #self.model_keras has to exist!!! if self.model_keras == None: #if there is no model yet chosen self.action_initialize_model(duties="initialize") if self.model_keras == None: #if there is still no model... msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>To use this option please first select and load a model. To do that choose/load a model in 'Define Model'-Tab and hit the button 'Initialize/Fit Model'. Choose to only initialize the model.</p></body></html>") msg.setWindowTitle("Please load a model first") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #Switch this On in the final version self.lineEdit_partialTrainability.setText("") self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) return #Fill information about the model if self.radioButton_NewModel.isChecked():#a new model is loaded self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("New model") elif self.radioButton_LoadRestartModel.isChecked():#a new model is loaded load_model_path = str(self.lineEdit_LoadModelPath.text()) self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("Restart model: "+load_model_path) elif self.radioButton_LoadContinueModel.isChecked():#a new model is loaded load_model_path = str(self.lineEdit_LoadModelPath.text()) self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("Continue model: "+load_model_path) in_dim = self.model_keras.input_shape #Retrieve the color_mode from the model (nr. of channels in last in_dim) channels = in_dim[-1] #TensorFlow: channels in last dimension out_dim = self.model_keras.output_shape[-1] self.popup_trainability_ui.spinBox_pop_pTr_inpSize.setValue(int(in_dim[1])) self.popup_trainability_ui.spinBox_pop_pTr_outpSize.setValue(int(out_dim)) if channels==1: self.popup_trainability_ui.comboBox_pop_pTr_colorMode.addItem("Grayscale") elif channels==3: self.popup_trainability_ui.comboBox_pop_pTr_colorMode.addItem("RGB") #Model summary to textBrowser_pop_pTr_modelSummary summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) self.popup_trainability_ui.textBrowser_pop_pTr_modelSummary.setText(summary) #Work on the tableWidget_pop_pTr_layersTable Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] nr_layers = len(index) #total nr. of dense and conv layers with parameters for rowNumber in range(nr_layers): layerindex = index[rowNumber] columnPosition = 0 layer = self.model_keras.layers[layerindex] rowPosition = self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.rowCount() self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.insertRow(rowPosition) Name = layer.name item = QtWidgets.QTableWidgetItem(Name) item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) item.setTextAlignment(QtCore.Qt.AlignCenter) # change the alignment self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition , columnPosition, item ) # columnPosition = 1 layer_type = layer.__class__.__name__ item = QtWidgets.QTableWidgetItem(layer_type) item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) item.setTextAlignment(QtCore.Qt.AlignCenter) # change the alignment self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition , columnPosition, item ) # columnPosition = 2 Params = layer.count_params() item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, Params) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition, columnPosition, item) columnPosition = 3 if layer_type == "Dense": split_property = "units" #'units' are the number of nodes in dense layers elif layer_type == "Conv2D": split_property = "filters" else: print("other splitprop!") return layer_config = layer.get_config() nr_units = layer_config[split_property] #units are either nodes or filters for dense and convolutional layer, respectively item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, int(nr_units)) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition, columnPosition, item) columnPosition = 4 #for each item create a spinbopx (trainability) spinb = QtWidgets.QDoubleSpinBox(self.popup_trainability_ui.tableWidget_pop_pTr_layersTable) spinb.setMinimum(0) spinb.setMaximum(1) spinb.setSingleStep(0.1) trainability = int(layer.trainable) #.trainable actually returns True or False. Make it integer spinb.setValue(trainability) #this should be always 1 self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setCellWidget(rowPosition, columnPosition, spinb) self.popup_trainability.show() #self.popup_trainability_ui.pushButton_pop_pTr_reset.clicked.connect(self.pop_pTr_reset) self.popup_trainability_ui.pushButton_pop_pTr_update.clicked.connect(self.pop_pTr_update_2) self.popup_trainability_ui.pushButton_pop_pTr_ok.clicked.connect(self.pop_pTr_ok) ###############Functions for the partial trainability popup################ def pop_pTr_reset(self): #Reset the model to initial state, with partial trainability print("Not implemented yet") msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>Not implemented yet.</p></body></html>") msg.setWindowTitle("Not implemented") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def pop_pTr_update_1(self):#main worker function #Apply the requested changes and display updated model in table pTr_table = self.popup_trainability_ui.tableWidget_pop_pTr_layersTable #Read the table: Layer_names,Layer_trainabilities = [],[] rowCount = pTr_table.rowCount() for row in range(rowCount): #Layer_indices.append(str(pTr_table.item(row, 0).text())) Layer_names.append(str(pTr_table.item(row, 0).text())) Layer_trainabilities.append(float(pTr_table.cellWidget(row, 4).value())) Layer_trainabilities = np.array(Layer_trainabilities) #What are the current trainability statuses of the model Layer_trainabilities_orig = np.array([self.model_keras.get_layer(l_name).trainable for l_name in Layer_names]) diff = abs( Layer_trainabilities - Layer_trainabilities_orig ) ind = np.where( diff>0 )[0] #Where do we have a trainability between 0 and 1 #ind = np.where( (Layer_trainabilities>0) & (Layer_trainabilities<1) )[0] if len(ind)>0: Layer_trainabilities = list(Layer_trainabilities[ind]) Layer_names = list(np.array(Layer_names)[ind]) #Update the model using user-specified trainabilities self.model_keras = partial_trainability(self.model_keras,Layer_names,Layer_trainabilities) #Update lineEdit_partialTrainability Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] Layer_train_status = [self.model_keras.layers[layerindex].trainable for layerindex in index] self.lineEdit_partialTrainability.setText(str(Layer_train_status))#enables the lineEdit which shows the trainability status of each layer. else: print("Nothing to do. All trainabilities are either 0 or 1") def pop_pTr_update_2(self):#call pop_pTr_update_1 to do the work and then update the window try: self.pop_pTr_update_1()#Change the model on self.model_keras according to the table self.partialTrainability()#Update the popup window by calling the partialTrainability function except Exception as e: #There is an issue building the model! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error occured when building model:") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return def pop_pTr_ok(self): self.pop_pTr_update_1()#Change the model on self.model_keras according to the table; If 'Update' was used before, there will not be done work again, but the model is used as it is #To make the model accessible, it has to be saved to a new .model file filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save model', Default_dict["Path of last model"],"AIDeveloper model file (*.model)") filename = filename[0] path, fname = os.path.split(filename) if len(fname)==0: return #add the suffix _session.xlsx if not fname.endswith(".model"): fname = fname +".model" filename = os.path.join(path,fname) self.model_keras.save(filename) #Activate 'load and restart' and put this file #Avoid the automatic popup self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(True) self.lineEdit_LoadModelPath.setText(filename)#put the filename in the lineedit #Destroy the window self.popup_trainability = None msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText(tooltips["modelsaved_success"]) msg.setWindowTitle("Sucessfully created and selected model") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def lossW_comboB(self,state_nr,listindex): if listindex==-1: ui_item = self.popup_lossW_ui else: ui_item = self.fittingpopups_ui[listindex].popup_lossW_ui state_str = ui_item.comboBox_lossW.itemText(int(state_nr)) rows_nr = int(ui_item.tableWidget_lossW.rowCount()) if rows_nr==0: state_str = "None" if state_str=="None": for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(False) ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setValue(1.0) elif state_str=="Custom": for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(True) elif state_str=="Balanced": #How many cells in total per epoch events_epoch = [int(ui_item.tableWidget_lossW.item(rowPos,2).text()) for rowPos in range(rows_nr)] classes = [int(ui_item.tableWidget_lossW.item(rowPos,0).text()) for rowPos in range(rows_nr)] counter = {} for i in range(len(classes)): counter[classes[i]]=events_epoch[i] max_val = float(max(counter.values())) class_weights = {class_id : max_val/num_images for class_id, num_images in counter.items()} class_weights = list(class_weights.values()) for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(False) ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setValue(class_weights[rowPos]) def lossW_ok(self,listindex): #This happens when the user presses the OK button on the popup for #custom loss weights if listindex==-1: ui_item = self else: ui_item = self.fittingpopups_ui[listindex] #Which option was used on comboBox_lossW? state_str = ui_item.popup_lossW_ui.comboBox_lossW.currentText() if state_str=="None":#User left None. This actually means its off ui_item.lineEdit_lossW.setText("") ui_item.pushButton_lossW.setEnabled(False) ui_item.checkBox_lossW.setChecked(False) elif state_str=="Custom":#User left None. This actually means its off #There are custom values #Read the loss values on the table rows_nr = int(ui_item.popup_lossW_ui.tableWidget_lossW.rowCount()) classes = [int(ui_item.popup_lossW_ui.tableWidget_lossW.item(rowPos,0).text()) for rowPos in range(rows_nr)] loss_weights = [float(ui_item.popup_lossW_ui.tableWidget_lossW.cellWidget(rowPos,4).value()) for rowPos in range(rows_nr)] counter = {} for i in range(len(classes)): counter[classes[i]]=loss_weights[i] #Put counter (its a dictionary) to lineedit ui_item.lineEdit_lossW.setText(str(counter)) elif state_str=="Balanced":#Balanced, the values are computed later fresh, even when user changes the cell-numbers again ui_item.lineEdit_lossW.setText("Balanced") #Destroy the window ui_item.popup_lossW = None def lossW_cancel(self,listindex): #This happens when the user presses the Cancel button on the popup for #custom loss weights if listindex==-1: ui_item = self else: ui_item = self.fittingpopups_ui[listindex] if ui_item.lineEdit_lossW.text()=="": #if state_str=="None":#User left None. This actually means its off ui_item.lineEdit_lossW.setText("") ui_item.pushButton_lossW.setEnabled(False) ui_item.checkBox_lossW.setChecked(False) ui_item.popup_lossW = None return #Destroy the window ui_item.popup_lossW = None def get_norm_from_manualselection(self): norm = self.comboBox_w.currentText() index = self.comboBox_Normalization.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_Normalization.setCurrentIndex(index) self.w.close() def popup_normalization(self): self.w = MyPopup() self.gridLayout_w = QtWidgets.QGridLayout(self.w) self.gridLayout_w.setObjectName(_fromUtf8("gridLayout")) self.verticalLayout_w = QtWidgets.QVBoxLayout() self.verticalLayout_w.setObjectName(_fromUtf8("verticalLayout")) self.label_w = QtWidgets.QLabel(self.w) self.label_w.setAlignment(QtCore.Qt.AlignCenter) self.label_w.setObjectName(_fromUtf8("label_w")) self.verticalLayout_w.addWidget(self.label_w) self.horizontalLayout_2_w = QtWidgets.QHBoxLayout() self.horizontalLayout_2_w.setObjectName(_fromUtf8("horizontalLayout_2")) self.pushButton_w = QtWidgets.QPushButton(self.w) self.pushButton_w.setObjectName(_fromUtf8("pushButton")) self.horizontalLayout_2_w.addWidget(self.pushButton_w) self.horizontalLayout_w = QtWidgets.QHBoxLayout() self.horizontalLayout_w.setObjectName(_fromUtf8("horizontalLayout")) self.label_2_w = QtWidgets.QLabel(self.w) self.label_2_w.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_2_w.setObjectName(_fromUtf8("label_2_w")) self.horizontalLayout_w.addWidget(self.label_2_w) self.comboBox_w = QtWidgets.QComboBox(self.w) self.comboBox_w.setObjectName(_fromUtf8("comboBox")) self.comboBox_w.addItems(["Select"]+self.norm_methods) self.comboBox_w.setMinimumSize(QtCore.QSize(200,22)) self.comboBox_w.setMaximumSize(QtCore.QSize(200, 22)) width=self.comboBox_w.fontMetrics().boundingRect(max(self.norm_methods, key=len)).width() self.comboBox_w.view().setFixedWidth(width+10) self.comboBox_w.currentIndexChanged.connect(self.get_norm_from_manualselection) self.horizontalLayout_w.addWidget(self.comboBox_w) self.horizontalLayout_2_w.addLayout(self.horizontalLayout_w) self.verticalLayout_w.addLayout(self.horizontalLayout_2_w) self.gridLayout_w.addLayout(self.verticalLayout_w, 0, 0, 1, 1) self.w.setWindowTitle("Select normalization method") self.label_w.setText("You are about to continue training a pretrained model\n" "Please select the meta file of that model to load the normalization method\n" "or choose the normalization method manually") self.pushButton_w.setText("Load meta file") self.label_2_w.setText("Manual \n" "selection") #one button that allows to load a meta file containing the norm-method self.pushButton_w.clicked.connect(self.get_norm_from_modelparafile) self.w.show() def action_preview_model(self,enabled):#function runs when radioButton_LoadRestartModel or radioButton_LoadContinueModel was clicked if enabled: #if the "Load and restart" radiobutton was clicked: if self.radioButton_LoadRestartModel.isChecked(): modelname = QtWidgets.QFileDialog.getOpenFileName(self, 'Open model architecture', Default_dict["Path of last model"],"Architecture or model (*.arch *.model)") modelname = modelname[0] #modelname_for_dict = modelname #if the "Load and continue" radiobutton was clicked: elif self.radioButton_LoadContinueModel.isChecked(): modelname = QtWidgets.QFileDialog.getOpenFileName(self, 'Open model with all parameters', Default_dict["Path of last model"],"Keras model (*.model)") modelname = modelname[0] #modelname_for_dict = modelname self.lineEdit_LoadModelPath.setText(modelname) #Put the filename to the line edit #Remember the location for next time if len(str(modelname))>0: Default_dict["Path of last model"] = os.path.split(modelname)[0] aid_bin.save_aid_settings(Default_dict) #If user wants to load and restart a model if self.radioButton_LoadRestartModel.isChecked(): #load the model and print summary if modelname.endswith(".arch"): json_file = open(modelname, 'r') model_config = json_file.read() json_file.close() model_config = json.loads(model_config) #cut the .json off modelname = modelname.split(".arch")[0] #Or a .model (FULL model with trained weights) , but for display only load the architecture elif modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) #model = model_from_config(model_config) modelname = modelname.split(".model")[0] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") text1 = "Architecture: loaded from .arch\nWeights: will be randomly initialized'\n" #Try to find the corresponding .meta #All models have a number: metaname = modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" if chosen_model is not None: #chosen_model is a string that should be contained in comboBox_ModelSelection index = self.comboBox_ModelSelection.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) else: index = self.comboBox_ModelSelection.findText('None', QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) #Otherwise, user wants to load and continue training a model elif self.radioButton_LoadContinueModel.isChecked(): #User can only choose a .model (FULL model with trained weights) , but for display only load the architecture if modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) #model = model_from_config(model_config) modelname = modelname.split(".model")[0] #Try to find the corresponding .meta #All models have a number: metaname = modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" if chosen_model is not None: #chosen_model is a string that should be contained in comboBox_ModelSelection index = self.comboBox_ModelSelection.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) else: index = self.comboBox_ModelSelection.findText('None', QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) text1 = "Architecture: loaded from .model\nWeights: pretrained weights will be loaded and used when hitting button 'Initialize model!'\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") #In both cases (restart or continue) the input dimensions have to fit #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info try: #Sequential Model in_dim = model_config['config'][0]['config']['batch_input_shape'] except: #Functional Api in_dim = model_config['config']["layers"][0]["config"]["batch_input_shape"] try: #Sequential Model out_dim = model_config['config'][-2]['config']['units'] except: #Functional Api out_dim = model_config['config']["layers"][-2]["config"]["units"] # # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] #Retrieve the color_mode from the model (nr. of channels in last in_dim) channels = in_dim[-1] #TensorFlow: channels in last dimension if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: loaded Model takes: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked_no_rtdc_ds() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" #aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" text = text1+text2+text3 self.textBrowser_Info.setText(text) if self.radioButton_LoadContinueModel.isChecked(): #"Load the parameter file of the model that should be continued and apply the same normalization" #Make a popup: You are about to continue to train a pretrained model #Please select the parameter file of that model to load the normalization method #or choose the normalization method manually: #this is important self.popup_normalization() def get_metrics(self,nr_classes): Metrics = [] f1 = bool(self.checkBox_expertF1.isChecked()) if f1==True: Metrics.append("f1_score") precision = bool(self.checkBox_expertPrecision.isChecked()) if precision==True: Metrics.append("precision") recall = bool(self.checkBox_expertRecall.isChecked()) if recall==True: Metrics.append("recall") metrics = ['accuracy'] + Metrics metrics = aid_dl.get_metrics_tensors(metrics,nr_classes) return metrics def action_set_modelpath_and_name(self): #Get the path and filename for the new model filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save model', Default_dict["Path of last model"],"Keras Model file (*.model)") filename = filename[0] if len(filename)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid filename was chosen.") msg.setWindowTitle("No valid filename was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if filename.endswith(".arch"): filename = filename.split(".arch")[0] #add the suffix .model if not filename.endswith(".model"): filename = filename +".model" self.lineEdit_modelname.setText(filename) #Write to Default_dict Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) def get_dataOverview(self): table = self.tableWidget_Info cols = table.columnCount() header = [table.horizontalHeaderItem(col).text() for col in range(cols)] rows = table.rowCount() tmp_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: tmp_df.iloc[i, j] = table.item(i, j).text() except: tmp_df.iloc[i, j] = np.nan return tmp_df def action_initialize_model(self,duties="initialize_train"): """ duties: which tasks should be performed: "initialize", "initialize_train", "initialize_lrfind" """ #print("duties: "+str(duties)) #Create config (define which device to use) if self.radioButton_cpu.isChecked(): deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) # try: # K.clear_session() # except: # print("Could not clear_session (7)") with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #Initialize the model #######################Load and restart model########################## if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) text0 = "Loaded model: "+load_modelname #load the model and print summary if load_modelname.endswith(".arch"): json_file = open(load_modelname, 'r') model_config = json_file.read() json_file.close() model_keras = model_from_json(model_config) model_config = json.loads(model_config) text1 = "\nArchitecture: loaded from .arch\nWeights: randomly initialized\n" #Or a .model (FULL model with trained weights) , but for display only load the architecture elif load_modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(load_modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) model_keras = model_from_config(model_config) text1 = "\nArchitecture: loaded from .model\nWeights: randomly initialized\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return try: metaname = load_modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] except: chosen_model = str(self.comboBox_ModelSelection.currentText()) #In both cases (restart or continue) the input dimensions have to fit #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info try: #Sequential Model in_dim = model_config['config'][0]['config']['batch_input_shape'] except: #Functional Api in_dim = model_config['config']["layers"][0]["config"]["batch_input_shape"] try: #Sequential Model out_dim = model_config['config'][-2]['config']['units'] except: #Functional Api out_dim = model_config['config']["layers"][-2]["config"]["units"] # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] channels = in_dim[-1] #TensorFlow: channels in last dimension #Compile model (consider user-specific metrics) model_metrics = self.get_metrics(out_dim) model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" ###############Load and continue training the model#################### elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) text0 = "Loaded model: "+load_modelname+"\n" #User can only choose a .model (FULL model with trained weights) , but for display only load the architecture if load_modelname.endswith(".model"): #Load the full model try: model_keras = load_model(load_modelname,custom_objects=aid_dl.get_custom_metrics()) except: K.clear_session() #On linux It happened that there was an error, if another fitting run before model_keras = load_model(load_modelname,custom_objects=aid_dl.get_custom_metrics()) #model_config = model_keras.config() #Load the model config (this is the architecture) #load_modelname = load_modelname.split(".model")[0] text1 = "Architecture: loaded from .model\nWeights: pretrained weights were loaded\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") try: metaname = load_modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: chosen_model = str(self.comboBox_ModelSelection.currentText()) except: chosen_model = str(self.comboBox_ModelSelection.currentText()) #Check input dimensions #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] in_dim = model_keras.get_input_shape_at(0) out_dim = model_keras.get_output_shape_at(0)[1] channels = in_dim[-1] #TensorFlow: channels in last dimension if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" ###########################New model################################### elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded text0 = load_modelname #Create a new model! #Get what the user wants from the dropdown menu! chosen_model = str(self.comboBox_ModelSelection.currentText()) if chosen_model==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return in_dim = int(self.spinBox_imagecrop.value()) SelectedFiles = self.items_clicked() #rtdc_ds = SelectedFiles[0]["rtdc_ds"] if str(self.comboBox_GrayOrRGB.currentText())=="Grayscale": channels=1 elif str(self.comboBox_GrayOrRGB.currentText())=="RGB": channels=3 indices = [s["class"] for s in SelectedFiles] indices_unique = np.unique(np.array(indices)) if len(indices_unique)<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Need at least two classes to fit. Please specify .rtdc files and corresponding indeces") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return out_dim = np.max(indices)+1 nr_classes = out_dim if chosen_model=="None": msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return try: model_keras = model_zoo.get_model(chosen_model,in_dim,channels,out_dim) except Exception as e: #There is an issue building the model! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error occured when building model:") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return text1 = "Architecture: created "+chosen_model+" design\nWeights: Initialized random weights\n" if self.get_color_mode()=="Grayscale": channels = 1 channel_text = "1 channel (Grayscale)" elif self.get_color_mode()=="RGB": channels = 3 channel_text = "3 channels (RGB)" text2 = "Model Input: "+str(in_dim)+" x "+str(in_dim) + " pixel images and "+channel_text+"\n" if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" else: #No radio-button was chosen msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please use the radiobuttons to define the model") msg.setWindowTitle("No model defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #If expert mode is on, apply the requested options #This affects learning rate, trainability of layers and dropout rate expert_mode = bool(self.groupBox_expertMode.isChecked()) learning_rate_const = float(self.doubleSpinBox_learningRate.value()) learning_rate_expert_on = bool(self.groupBox_learningRate.isChecked()) train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) loss_expert_on = bool(self.checkBox_expt_loss.isChecked()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert_on = bool(self.checkBox_optimizer.isChecked()) optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.optimizer_settings.copy() #get the current optimizer settings paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() model_metrics = self.get_metrics(nr_classes) if "collection" in chosen_model.lower(): for m in model_keras[1]: #in a collection, model_keras[0] are the names of the models and model_keras[1] is a list of all models aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,self.get_metrics(nr_classes),nr_classes) if not "collection" in chosen_model.lower(): aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] if type(model_keras)==tuple:#when user chose a Collection of models, a tuple is returned by get_model collection = True else: collection = False if collection==False: #if there is a single model: #Original learning rate (before expert mode is switched on!) try: self.learning_rate_original = K.eval(model_keras.optimizer.lr) except: print("Session busy. Try again in fresh session...") #tf.reset_default_graph() #Make sure to start with a fresh session K.clear_session() sess = tf.Session(graph = tf.Graph(), config=config_gpu) #K.set_session(sess) self.learning_rate_original = K.eval(model_keras.optimizer.lr) #Get initial trainability states of model self.trainable_original, self.layer_names = aid_dl.model_get_trainable_list(model_keras) trainable_original, layer_names = self.trainable_original, self.layer_names self.do_list_original = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model do_list_original = self.do_list_original if collection==True: #if there is a collection of models: #Original learning rate (before expert mode is switched on!) self.learning_rate_original = [K.eval(model_keras[1][i].optimizer.lr) for i in range(len(model_keras[1]))] #Get initial trainability states of model trainable_layerName = [aid_dl.model_get_trainable_list(model_keras[1][i]) for i in range(len(model_keras[1]))] self.trainable_original = [trainable_layerName[i][0] for i in range(len(trainable_layerName))] self.layer_names = [trainable_layerName[i][1] for i in range(len(trainable_layerName))] trainable_original, layer_names = self.trainable_original, self.layer_names self.do_list_original = [aid_dl.get_dropout(model_keras[1][i]) for i in range(len(model_keras[1]))]#Get a list of dropout values of the current model do_list_original = self.do_list_original #TODO add expert mode ability for collection of models. Maybe define self.model_keras as a list in general. So, fitting a single model is just a special case if expert_mode==True: #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,out_dim,loss_expert,optimizer_settings,learning_rate_const) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,out_dim,loss_expert,optimizer_settings,learning_rate_const) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a float dropout_expert_list=len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers") msg.setWindowTitle("Issue with Expert->Dropout") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() dropout_expert_list = [] return else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Could not understand user input at Expert->Dropout") msg.setWindowTitle("Issue with Expert->Dropout") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) text_updates = "" #Learning Rate: Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[1][0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: #If there is a difference, change lr accordingly K.set_value(model_keras.optimizer.lr, learning_rate_const) text_updates += "Learning rate: "+str(lr_current)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model else: optimizer_current = aid_dl.get_optimizer_name(model_keras[1][0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Optimizer: "+optimizer_expert+"\n" #Loss function: Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True if collection==True: if model_keras[1][0].loss!=loss_expert: recompile = True text_updates += "Loss function: "+loss_expert+"\n" if recompile==True: if collection==False: print("Recompiling...") aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras[1]: print("Recompiling...") aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) self.model_keras = model_keras #overwrite the model in self if collection == False: #Get user-specified filename for the new model new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)>0: text_new_modelname = "Model will be saved as: "+new_modelname+"\n" else: text_new_modelname = "Please specify a model path (name for the model to be fitted)\n" if collection == True: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)>0: new_modelname = os.path.split(new_modelname) text_new_modelname = "Collection of Models will be saved into: "+new_modelname[0]+"\n" else: text_new_modelname = "Please specify a model path (name for the model to be fitted)\n" #Info about normalization method norm = str(self.comboBox_Normalization.currentText()) text4 = "Input image normalization method: "+norm+"\n" #Check if there are dropout layers: #do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model if len(do_list_original)>0: text4 = text4+"Found "+str(len(do_list_original)) +" dropout layers with rates: "+str(do_list_original)+"\n" else: text4 = text4+"Found no dropout layers\n" if expert_mode==True: if dropout_expert_on: text4 = text4+text_do+"\n" # if learning_rate_expert_on==True: # if K.eval(model_keras.optimizer.lr) != learning_rate_const: #if the learning rate in UI is NOT equal to the lr of the model... # text_lr = "Changed the learning rate to: "+ str(learning_rate_const)+"\n" # text4 = text4+text_lr text5 = "Model summary:\n" summary = [] if collection==False: model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text_new_modelname+text0+text1+text2+text3+text4+text_updates+text5+summary self.textBrowser_Info.setText(text) #Save the model architecture: serialize to JSON model_json = model_keras.to_json() with open(new_modelname.split(".model")[0]+".arch", "w") as json_file: json_file.write(model_json) elif collection==True: if self.groupBox_expertMode.isChecked()==True: self.groupBox_expertMode.setChecked(False) print("Turned off expert mode. Not implemented yet for collections of models. This does not affect user-specified metrics (precision/recall/f1)") self.model_keras_arch_path = [new_modelname[0]+os.sep+new_modelname[1].split(".model")[0]+"_"+model_keras[0][i]+".arch" for i in range(len(model_keras[0]))] for i in range(len(model_keras[1])): model_keras[1][i].summary(print_fn=summary.append) #Save the model architecture: serialize to JSON model_json = model_keras[1][i].to_json() with open(self.model_keras_arch_path[i], "w") as json_file: json_file.write(model_json) summary = "\n".join(summary) text = text_new_modelname+text0+text1+text2+text3+text4+text_updates+text5+summary self.textBrowser_Info.setText(text) #Save the model to a variable on self self.model_keras = model_keras #Get the user-defined cropping size crop = int(self.spinBox_imagecrop.value()) #Make the cropsize a bit larger since the images will later be rotated cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Estimate RAM needed nr_imgs = np.sum([np.array(list(SelectedFiles)[i]["nr_images"]) for i in range(len(list(SelectedFiles)))]) ram_needed = np.round(nr_imgs * aid_bin.calc_ram_need(cropsize2),2) if duties=="initialize":#Stop here if the model just needs to be intialized (for expert mode->partial trainability) return elif duties=="initialize_train": #Tell the user if the data is stored and read from ram or not msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>Should the model only be initialized,\ or do you want to start fitting right after? For fitting, data will\ be loaded to RAM (since Edit->Data to RAM is enabled), which will\ require "+str(ram_needed)+"MB of RAM.</p></body></html>" msg.setText(text) msg.setWindowTitle("Initialize model or initialize and fit model?") msg.addButton(QtGui.QPushButton('Stop after model initialization'), QtGui.QMessageBox.RejectRole) msg.addButton(QtGui.QPushButton('Start fitting'), QtGui.QMessageBox.ApplyRole) retval = msg.exec_() elif duties=="initialize_lrfind": retval = 1 else: print("Invalid duties: "+duties) return if retval==0: #yes role: Only initialize model print("Closing session") del model_keras sess.close() return elif retval == 1: if self.actionDataToRam.isChecked(): color_mode = self.get_color_mode() zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order #Check if there is data already available in RAM if len(self.ram)==0:#if there is already data stored on ram print("No data on RAM. I have to load") dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic else: print("There is already some data on RAM") new_fileinfo = {"SelectedFiles":list(SelectedFiles),"cropsize2":cropsize2,"zoom_factors":zoom_factors,"zoom_order":zoom_order,"color_mode":color_mode} identical = aid_bin.ram_compare_data(self.ram,new_fileinfo) if not identical: #Load the data dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic if identical: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "Data was loaded before! Should same data be reused? If not, click 'Reload data', e.g. if you altered the Data-table." text = "<html><head/><body><p>"+text+"</p></body></html>" msg.setText(text) msg.setWindowTitle("Found data on RAM") msg.addButton(QtGui.QPushButton('Reuse data'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('Reload data'), QtGui.QMessageBox.NoRole) retval = msg.exec_() if retval==0: print("Re-use data") #Re-use same data elif retval==1: print("Re-load data") dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic #Finally, activate the 'Fit model' button again #self.pushButton_FitModel.setEnabled(True) if duties=="initialize_train": self.action_fit_model() if duties=="initialize_lrfind": self.action_lr_finder() del model_keras def action_fit_model_worker(self,progress_callback,history_callback): if self.radioButton_cpu.isChecked(): gpu_used = False deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): gpu_used = True deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) #Retrieve more Multi-GPU Options from Menubar: cpu_merge = bool(self.actioncpu_merge.isEnabled()) cpu_relocation = bool(self.actioncpu_relocation.isEnabled()) cpu_weight_merge = bool(self.actioncpu_weightmerge.isEnabled()) #Create config (define which device to use) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #get an index of the fitting popup listindex = self.popupcounter-1 #Get user-specified filename for the new model new_modelname = str(self.lineEdit_modelname.text()) model_keras_path = self.model_keras_path if type(model_keras_path)==list: collection = True #Take the initialized models model_keras_path = self.model_keras_path model_keras = [load_model(model_keras_path[i],custom_objects=aid_dl.get_custom_metrics()) for i in range(len(model_keras_path)) ] model_architecture_names = self.model_keras[0] print(model_architecture_names) #self.model_keras = None else: collection = False if deviceSelected=="Multi-GPU" and cpu_weight_merge==True: with tf.device("/cpu:0"): model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) else: model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) #self.model_keras = None #Initialize a variable for the parallel model model_keras_p = None #Multi-GPU if deviceSelected=="Multi-GPU": if collection==False: print("Adjusting the model for Multi-GPU") model_keras_p = multi_gpu_model(model_keras, gpus=gpu_nr, cpu_merge=cpu_merge, cpu_relocation=cpu_relocation)#indicate the numbers of gpus that you have if self.radioButton_LoadContinueModel.isChecked():#calling multi_gpu_model resets the weights. Hence, they need to be put in place again model_keras_p.layers[-2].set_weights(model_keras.get_weights()) elif collection==True: print("Collection & Multi-GPU is not supported yet") return # model_keras_p = [] # for m in model_keras_p: # print("Adjusting the model for Multi-GPU") # model_keras_p.append(multi_gpu_model(m, gpus=gpu_nr)) #indicate the numbers of gpus that you have ##############Main function after hitting FIT MODEL#################### if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras[0].output.shape.dims[1]) #Metrics to be displayed during fitting (real-time) model_metrics = self.get_metrics(nr_classes) #Compile model if collection==False and deviceSelected=="Single-GPU": model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==False and deviceSelected=="Multi-GPU": model_keras_p.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==True and deviceSelected=="Single-GPU": #Switch off the expert tab! self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(False) self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setEnabled(False) for m in model_keras: m.compile(loss='categorical_crossentropy',optimizer='adam',metrics=self.get_metrics(nr_classes))#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==True and deviceSelected=="Multi-GPU": print("Collection & Multi-GPU is not supported yet") return #Original learning rate: #learning_rate_original = self.learning_rate_original#K.eval(model_keras.optimizer.lr) #Original trainable states of layers with parameters trainable_original, layer_names = self.trainable_original, self.layer_names do_list_original = self.do_list_original #Collect all information about the fitting routine that was user #defined if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 new_model = self.radioButton_NewModel.isChecked() chosen_model = str(self.comboBox_ModelSelection.currentText()) crop = int(self.spinBox_imagecrop.value()) color_mode = str(self.comboBox_GrayOrRGB.currentText()) loadrestart_model = self.radioButton_LoadRestartModel.isChecked() loadcontinue_model = self.radioButton_LoadContinueModel.isChecked() norm = str(self.comboBox_Normalization.currentText()) nr_epochs = int(self.spinBox_NrEpochs.value()) keras_refresh_nr_epochs = int(self.spinBox_RefreshAfterEpochs.value()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_refresh_nr_epochs = int(self.spinBox_RefreshAfterNrEpochs.value()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple if collection==False: expert_mode = bool(self.groupBox_expertMode.isChecked()) elif collection==True: expert_mode = self.groupBox_expertMode.setChecked(False) print("Expert mode was switched off. Not implemented yet for collections") expert_mode = False batchSize_expert = int(self.spinBox_batchSize.value()) epochs_expert = int(self.spinBox_epochs.value()) learning_rate_expert_on = bool(self.groupBox_learningRate.isChecked()) learning_rate_const_on = bool(self.radioButton_LrConst.isChecked()) learning_rate_const = float(self.doubleSpinBox_learningRate.value()) learning_rate_cycLR_on = bool(self.radioButton_LrCycl.isChecked()) try: cycLrMin = float(self.lineEdit_cycLrMin.text()) cycLrMax = float(self.lineEdit_cycLrMax.text()) except: cycLrMin = [] cycLrMax = [] cycLrMethod = str(self.comboBox_cycLrMethod.currentText()) #clr_settings = self.fittingpopups_ui[listindex].clr_settings.copy() cycLrGamma = self.clr_settings["gamma"] SelectedFiles = self.items_clicked()#to compute cycLrStepSize, the number of training images is needed cycLrStepSize = aid_dl.get_cyclStepSize(SelectedFiles,self.clr_settings["step_size"],batchSize_expert) #put clr_settings onto fittingpopup, self.fittingpopups_ui[listindex].clr_settings = self.clr_settings.copy()#assign a copy. Otherwise values in both dicts are changed when manipulating one dict #put optimizer_settings onto fittingpopup, self.fittingpopups_ui[listindex].optimizer_settings = self.optimizer_settings.copy()#assign a copy. Otherwise values in both dicts are changed when manipulating one dict learning_rate_expo_on = bool(self.radioButton_LrExpo.isChecked()) expDecInitLr = float(self.doubleSpinBox_expDecInitLr.value()) expDecSteps = int(self.spinBox_expDecSteps.value()) expDecRate = float(self.doubleSpinBox_expDecRate.value()) loss_expert_on = bool(self.checkBox_expt_loss.isChecked()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert_on = bool(self.checkBox_optimizer.isChecked()) optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.fittingpopups_ui[listindex].optimizer_settings.copy()#make a copy to make sure that changes in the UI are not immediately used paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert_on = bool(self.checkBox_lossW.isChecked()) lossW_expert = str(self.lineEdit_lossW.text()) #To get the class weights (loss), the SelectedFiles are required #SelectedFiles = self.items_clicked() #Check if xtra_data should be used for training xtra_in = [s["xtra_in"] for s in SelectedFiles] if len(set(xtra_in))==1: xtra_in = list(set(xtra_in))[0] elif len(set(xtra_in))>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return self.fittingpopups_ui[listindex].SelectedFiles = SelectedFiles #save to self. to make it accessible for popup showing loss weights #Get the class weights. This function runs now the first time in the fitting routine. #It is possible that the user chose Custom weights and then changed the classes. Hence first check if #there is a weight for each class available. class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert,custom_check_classes=True) if type(class_weight)==list: #There has been a mismatch between the classes described in class_weight and the classes available in SelectedFiles! lossW_expert = class_weight[0] #overwrite class_weight = class_weight[1] print("class_weight:" +str(class_weight)) print("There has been a mismatch between the classes described in \ Loss weights and the classes available in the selected files! \ Hence, the Loss weights are set to Balanced") #Get callback for the learning rate scheduling callback_lr = aid_dl.get_lr_callback(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) #save a dictionary with initial values lr_dict_original = aid_dl.get_lr_dict(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) if collection==False: #Create an excel file writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles_df = pd.DataFrame(SelectedFiles) pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df = self.get_dataOverview() DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet elif collection==True: SelectedFiles_df = pd.DataFrame(SelectedFiles) Writers = [] #Create excel files for i in range(len(model_keras_path)): writer = pd.ExcelWriter(model_keras_path[i].split(".model")[0]+'_meta.xlsx', engine='openpyxl') Writers.append(writer) for writer in Writers: #Used files go to a separate sheet on the MetaFile.xlsx pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df = self.get_dataOverview() DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet ###############################Expert Mode values################## expert_mode_before = False #There was no expert mode used before. if expert_mode==True: #activate groupBox_expertMode_pop self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(True) expert_mode_before = True #Some settings only need to be changed once, after user clicked apply at next epoch #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a single float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else: text = "Could not understand user input at Expert->Dropout" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do) text_updates = "" #Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection == False: K.set_value(model_keras.optimizer.lr, learning_rate_const) if collection == True: for m in model_keras: K.set_value(m.optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" #Check if model has to be compiled again recompile = False #by default, dont recompile (happens for "Load and continue" training a model) if new_model==True: recompile = True #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model if collection==True: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if collection==True: if model_keras[0].loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True: print("Recompiling...") if collection==False: aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras: aid_dl.model_compile(m, loss_expert, optimizer_settings, learning_rate_const,model_metrics, nr_classes) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to adjust learning rate, loss, optimizer") self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_updates) #self.model_keras = model_keras #overwrite the model on self ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_epoch_train = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_train] rtdc_path_train = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_train] zoom_factors_train = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_train] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_train = [selectedfile["shuffle"] for selectedfile in SelectedFiles_train] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_train]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False #read self.ram to new variable ; next clear ram. This is required for multitasking (training multiple models with maybe different data) DATA = self.ram if verbose==1: print("Length of DATA (in RAM) = "+str(len(DATA))) #clear the ram again if desired if not self.actionKeep_Data_in_RAM.isChecked(): self.ram = dict() print("Removed data from self.ram. For further training sessions, data has to be reloaded.") #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles_train)): #if Data_to_RAM was not enabled: #if not self.actionDataToRam.isChecked(): if len(DATA)==0: #Here, the entire training set needs to be used! Not only random images! #Replace=true: means individual cells could occur several times gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) # else: #get a similar generator, using the ram-data # if len(DATA)==0: # gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times else: gen_train = aid_img.gen_crop_img_ram(DATA,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen_train)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "<html><head/><body><p>The standard deviation of your training data is zero! This would lead to division by zero. To avoid this, I will divide by 0.0001 instead.</p></body></html>" msg.setText(text) msg.setWindowTitle("Std. is zero") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() Para_dict = pd.DataFrame() def update_para_dict(): #Document changes in the meta-file Para_dict["AIDeveloper_Version"]=VERSION, Para_dict["model_zoo_version"]=model_zoo_version, try: Para_dict["OS"]=platform.platform(), Para_dict["CPU"]=platform.processor(), except: Para_dict["OS"]="Unknown", Para_dict["CPU"]="Unknown", Para_dict["Modelname"]=new_modelname, Para_dict["Chosen Model"]=chosen_model, Para_dict["new_model"]=new_model, Para_dict["loadrestart_model"]=loadrestart_model, Para_dict["loadcontinue_model"]=loadcontinue_model, Para_dict["Continued_Fitting_From"]=load_modelname, Para_dict["Input image size"]=crop, Para_dict["Color Mode"]=color_mode, Para_dict["Zoom order"]=zoom_order, Para_dict["Device"]=deviceSelected, Para_dict["gpu_used"]=gpu_used, Para_dict["gpu_memory"]=gpu_memory, Para_dict["Output Nr. classes"]=nr_classes, Para_dict["Normalization"]=norm, Para_dict["Nr. epochs"]=nr_epochs, Para_dict["Keras refresh after nr. epochs"]=keras_refresh_nr_epochs, Para_dict["Horz. flip"]=h_flip, Para_dict["Vert. flip"]=v_flip, Para_dict["rotation"]=rotation, Para_dict["width_shift"]=width_shift, Para_dict["height_shift"]=height_shift, Para_dict["zoom"]=zoom, Para_dict["shear"]=shear, Para_dict["Brightness refresh after nr. epochs"]=brightness_refresh_nr_epochs, Para_dict["Brightness add. lower"]=brightness_add_lower, Para_dict["Brightness add. upper"]=brightness_add_upper, Para_dict["Brightness mult. lower"]=brightness_mult_lower, Para_dict["Brightness mult. upper"]=brightness_mult_upper, Para_dict["Gaussnoise Mean"]=gaussnoise_mean, Para_dict["Gaussnoise Scale"]=gaussnoise_scale, Para_dict["Contrast on"]=contrast_on, Para_dict["Contrast Lower"]=contrast_lower, Para_dict["Contrast Higher"]=contrast_higher, Para_dict["Saturation on"]=saturation_on, Para_dict["Saturation Lower"]=saturation_lower, Para_dict["Saturation Higher"]=saturation_higher, Para_dict["Hue on"]=hue_on, Para_dict["Hue delta"]=hue_delta, Para_dict["Average blur on"]=avgBlur_on, Para_dict["Average blur Lower"]=avgBlur_min, Para_dict["Average blur Higher"]=avgBlur_max, Para_dict["Gauss blur on"]=gaussBlur_on, Para_dict["Gauss blur Lower"]=gaussBlur_min, Para_dict["Gauss blur Higher"]=gaussBlur_max, Para_dict["Motion blur on"]=motionBlur_on, Para_dict["Motion blur Kernel"]=motionBlur_kernel, Para_dict["Motion blur Angle"]=motionBlur_angle, Para_dict["Epoch_Started_Using_These_Settings"]=counter, Para_dict["expert_mode"]=expert_mode, Para_dict["batchSize_expert"]=batchSize_expert, Para_dict["epochs_expert"]=epochs_expert, Para_dict["learning_rate_expert_on"]=learning_rate_expert_on, Para_dict["learning_rate_const_on"]=learning_rate_const_on, Para_dict["learning_rate_const"]=learning_rate_const, Para_dict["learning_rate_cycLR_on"]=learning_rate_cycLR_on, Para_dict["cycLrMin"]=cycLrMin, Para_dict["cycLrMax"]=cycLrMax, Para_dict["cycLrMethod"] = cycLrMethod, Para_dict["clr_settings"] = self.fittingpopups_ui[listindex].clr_settings, Para_dict["learning_rate_expo_on"]=learning_rate_expo_on, Para_dict["expDecInitLr"]=expDecInitLr, Para_dict["expDecSteps"]=expDecSteps, Para_dict["expDecRate"]=expDecRate, Para_dict["loss_expert_on"]=loss_expert_on, Para_dict["loss_expert"]=loss_expert, Para_dict["optimizer_expert_on"]=optimizer_expert_on, Para_dict["optimizer_expert"]=optimizer_expert, Para_dict["optimizer_settings"]=optimizer_settings, Para_dict["paddingMode"]=paddingMode, Para_dict["train_last_layers"]=train_last_layers, Para_dict["train_last_layers_n"]=train_last_layers_n, Para_dict["train_dense_layers"]=train_dense_layers, Para_dict["dropout_expert_on"]=dropout_expert_on, Para_dict["dropout_expert"]=dropout_expert, Para_dict["lossW_expert_on"]=lossW_expert_on, Para_dict["lossW_expert"]=lossW_expert, Para_dict["class_weight"]=class_weight, Para_dict["metrics"]=model_metrics, #training data cannot be changed during training if norm == "StdScaling using mean and std of all training data": #This needs to be saved into Para_dict since it will be required for inference Para_dict["Mean of training data used for scaling"]=mean_trainingdata, Para_dict["Std of training data used for scaling"]=std_trainingdata, if collection==False: if counter == 0: Para_dict.to_excel(self.fittingpopups_ui[listindex].writer,sheet_name='Parameters') else: Para_dict.to_excel(self.fittingpopups_ui[listindex].writer,sheet_name='Parameters',startrow=self.fittingpopups_ui[listindex].writer.sheets['Parameters'].max_row,header= False) if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH)#change to read/write try: self.fittingpopups_ui[listindex].writer.save() except: pass os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH)#change to only readable if collection==True: for i in range(len(Writers)): Para_dict["Chosen Model"]=model_architecture_names[i], writer = Writers[i] if counter==0: Para_dict.to_excel(Writers[i],sheet_name='Parameters') else: Para_dict.to_excel(writer,sheet_name='Parameters',startrow=writer.sheets['Parameters'].max_row,header= False) if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write try: writer.save() except: pass os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #read only ######################Load the Validation Data################################ ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] nr_events_epoch_valid = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_valid] rtdc_path_valid = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_valid] zoom_factors_valid = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_valid] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_valid = [selectedfile["shuffle"] for selectedfile in SelectedFiles_valid] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_valid]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False ############Cropping##################### X_valid,y_valid,Indices,xtra_valid = [],[],[],[] for i in range(len(SelectedFiles_valid)): if not self.actionDataToRam.isChecked(): #Replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: #get a similar generator, using the ram-data if len(DATA)==0: #Replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: gen_valid = aid_img.gen_crop_img_ram(DATA,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") generator_cropped_out = next(gen_valid) X_valid.append(generator_cropped_out[0]) #y_valid.append(np.repeat(indices_valid[i],nr_events_epoch_valid[i])) y_valid.append(np.repeat(indices_valid[i],X_valid[-1].shape[0])) Indices.append(generator_cropped_out[1]) xtra_valid.append(generator_cropped_out[2]) del generator_cropped_out #Save the validation set (BEFORE normalization!) #Write to.rtdc files if bool(self.actionExport_Original.isChecked())==True: print("Export original images") save_cropped = False aid_bin.write_rtdc(new_modelname.split(".model")[0]+'_Valid_Data.rtdc',rtdc_path_valid,X_valid,Indices,cropped=save_cropped,color_mode=self.get_color_mode(),xtra_in=xtra_valid) elif bool(self.actionExport_Cropped.isChecked())==True: print("Export cropped images") save_cropped = True aid_bin.write_rtdc(new_modelname.split(".model")[0]+'_Valid_Data.rtdc',rtdc_path_valid,X_valid,Indices,cropped=save_cropped,color_mode=self.get_color_mode(),xtra_in=xtra_valid) elif bool(self.actionExport_Off.isChecked())==True: print("Exporting is turned off") # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("Use a different Exporting option in ->Edit if you want to export the data") # msg.setWindowTitle("Export is turned off!") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() X_valid = np.concatenate(X_valid) y_valid = np.concatenate(y_valid) Y_valid = np_utils.to_categorical(y_valid, nr_classes)# * 2 - 1 xtra_valid = np.concatenate(xtra_valid) if not bool(self.actionExport_Off.isChecked())==True: #Save the labels np.savetxt(new_modelname.split(".model")[0]+'_Valid_Labels.txt',y_valid.astype(int),fmt='%i') if len(X_valid.shape)==4: channels=3 elif len(X_valid.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_valid.shape)) if channels==1: #Add the "channels" dimension X_valid = np.expand_dims(X_valid,3) #get it to theano image format (channels first) #X_valid = X_valid.swapaxes(-1,-2).swapaxes(-2,-3) if norm == "StdScaling using mean and std of all training data": X_valid = aid_img.image_normalization(X_valid,norm,mean_trainingdata,std_trainingdata) else: X_valid = aid_img.image_normalization(X_valid,norm) #Validation data can be cropped to final size already since no augmentation #will happen on this data set dim_val = X_valid.shape print("Current dim. of validation set (pixels x pixels) = "+str(dim_val[2])) if dim_val[2]!=crop: print("Change dim. (pixels x pixels) of validation set to = "+str(crop)) remove = int(dim_val[2]/2.0 - crop/2.0) X_valid = X_valid[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow if xtra_in==True: print("Add Xtra Data to X_valid") X_valid = [X_valid,xtra_valid] ####################Update the PopupFitting######################## self.fittingpopups_ui[listindex].lineEdit_modelname_pop.setText(new_modelname) #set the progress bar to zero self.fittingpopups_ui[listindex].spinBox_imagecrop_pop.setValue(crop) self.fittingpopups_ui[listindex].spinBox_NrEpochs.setValue(nr_epochs) self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.addItems(self.predefined_models) chosen_model = str(self.comboBox_ModelSelection.currentText()) index = self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].comboBox_Normalization_pop.addItems(self.norm_methods) index = self.fittingpopups_ui[listindex].comboBox_Normalization_pop.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_Normalization_pop.setCurrentIndex(index) #padding index = self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.findText(paddingMode, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.setCurrentIndex(index) #zoom_order self.fittingpopups_ui[listindex].comboBox_zoomOrder.setCurrentIndex(zoom_order) #CPU setting self.fittingpopups_ui[listindex].comboBox_cpu_pop.addItem("Default CPU") if gpu_used==False: self.fittingpopups_ui[listindex].radioButton_cpu_pop.setChecked(True) self.fittingpopups_ui[listindex].doubleSpinBox_memory_pop.setValue(gpu_memory) #GPU setting if gpu_used==True: self.fittingpopups_ui[listindex].radioButton_gpu_pop.setChecked(True) self.fittingpopups_ui[listindex].comboBox_gpu_pop.addItem(deviceSelected) self.fittingpopups_ui[listindex].doubleSpinBox_memory_pop.setValue(gpu_memory) self.fittingpopups_ui[listindex].spinBox_RefreshAfterEpochs_pop.setValue(keras_refresh_nr_epochs) self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.setChecked(h_flip) self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.setChecked(v_flip) self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.setText(str(rotation)) self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.setText(str(width_shift)) self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.setText(str(height_shift)) self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.setText(str(zoom)) self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.setText(str(shear)) self.fittingpopups_ui[listindex].spinBox_RefreshAfterNrEpochs_pop.setValue(brightness_refresh_nr_epochs) self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.setValue(brightness_add_lower) self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.setValue(brightness_add_upper) self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.setValue(brightness_mult_lower) self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.setValue(brightness_mult_upper) self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.setValue(gaussnoise_mean) self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.setValue(gaussnoise_scale) self.fittingpopups_ui[listindex].checkBox_contrast_pop.setChecked(contrast_on) self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.setValue(contrast_lower) self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.setValue(contrast_higher) self.fittingpopups_ui[listindex].checkBox_saturation_pop.setChecked(saturation_on) self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.setValue(saturation_lower) self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.setValue(saturation_higher) self.fittingpopups_ui[listindex].checkBox_hue_pop.setChecked(hue_on) self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.setValue(hue_delta) #Special for saturation and hue. Only enabled for RGB: saturation_enabled = bool(self.checkBox_saturation.isEnabled()) self.fittingpopups_ui[listindex].checkBox_saturation_pop.setEnabled(saturation_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.setEnabled(saturation_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.setEnabled(saturation_enabled) hue_enabled = bool(self.checkBox_hue.isEnabled()) self.fittingpopups_ui[listindex].checkBox_hue_pop.setEnabled(hue_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.setEnabled(hue_enabled) self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.setChecked(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].label_avgBlurMin_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.setValue(avgBlur_min) self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].label_avgBlurMax_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.setValue(avgBlur_max) self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.setChecked(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].label_gaussBlurMin_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.setValue(gaussBlur_min) self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].label_gaussBlurMax_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.setValue(gaussBlur_max) self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.setChecked(motionBlur_on) self.fittingpopups_ui[listindex].label_motionBlurKernel_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].label_motionBlurAngle_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setEnabled(motionBlur_on) if len(motionBlur_kernel)==1: self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setText(str(motionBlur_kernel[0])) if len(motionBlur_kernel)==2: self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setText(str(motionBlur_kernel[0])+","+str(motionBlur_kernel[1])) if len(motionBlur_angle)==1: self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setText(str(motionBlur_angle[0])) if len(motionBlur_kernel)==2: self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setText(str(motionBlur_angle[0])+","+str(motionBlur_angle[1])) self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(expert_mode) self.fittingpopups_ui[listindex].spinBox_batchSize.setValue(batchSize_expert) self.fittingpopups_ui[listindex].spinBox_epochs.setValue(epochs_expert) self.fittingpopups_ui[listindex].groupBox_learningRate_pop.setChecked(learning_rate_expert_on) self.fittingpopups_ui[listindex].radioButton_LrConst.setChecked(learning_rate_const_on) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.setValue(learning_rate_const) self.fittingpopups_ui[listindex].radioButton_LrCycl.setChecked(learning_rate_cycLR_on) self.fittingpopups_ui[listindex].lineEdit_cycLrMin.setText(str(cycLrMin)) self.fittingpopups_ui[listindex].lineEdit_cycLrMax.setText(str(cycLrMax)) index = self.fittingpopups_ui[listindex].comboBox_cycLrMethod.findText(cycLrMethod, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_cycLrMethod.setCurrentIndex(index) self.fittingpopups_ui[listindex].radioButton_LrExpo.setChecked(learning_rate_expo_on) self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.setValue(expDecInitLr) self.fittingpopups_ui[listindex].spinBox_expDecSteps.setValue(expDecSteps) self.fittingpopups_ui[listindex].doubleSpinBox_expDecRate.setValue(expDecRate) self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.setChecked(loss_expert_on) self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.setChecked(loss_expert_on) index = self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.findText(loss_expert, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].checkBox_optimizer_pop.setChecked(optimizer_expert_on) index = self.fittingpopups_ui[listindex].comboBox_optimizer.findText(optimizer_expert, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_optimizer.setCurrentIndex(index) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.setValue(learning_rate_const) index = self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.findText(paddingMode, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].checkBox_trainLastNOnly_pop.setChecked(train_last_layers) self.fittingpopups_ui[listindex].spinBox_trainLastNOnly_pop.setValue(train_last_layers_n) self.fittingpopups_ui[listindex].checkBox_trainDenseOnly_pop.setChecked(train_dense_layers) self.fittingpopups_ui[listindex].checkBox_dropout_pop.setChecked(dropout_expert_on) do_text = [str(do_i) for do_i in dropout_expert] self.fittingpopups_ui[listindex].lineEdit_dropout_pop.setText((', '.join(do_text))) self.fittingpopups_ui[listindex].checkBox_lossW.setChecked(lossW_expert_on) self.fittingpopups_ui[listindex].pushButton_lossW.setEnabled(lossW_expert_on) self.fittingpopups_ui[listindex].lineEdit_lossW.setText(str(lossW_expert)) if channels==1: channel_text = "Grayscale" elif channels==3: channel_text = "RGB" self.fittingpopups_ui[listindex].comboBox_colorMode_pop.addItems([channel_text]) ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Dictionary defining affine image augmentation options: aug_paras = {"v_flip":v_flip,"h_flip":h_flip,"rotation":rotation,"width_shift":width_shift,"height_shift":height_shift,"zoom":zoom,"shear":shear} Histories,Index,Saved,Stopwatch,LearningRate = [],[],[],[],[] if collection==True: HISTORIES = [ [] for model in model_keras] SAVED = [ [] for model in model_keras] counter = 0 saving_failed = False #when saving fails, this becomes true and the user will be informed at the end of training #Save the initial values (Epoch 1) update_para_dict() model_metrics_names = [] for met in model_metrics: if type(met)==str: model_metrics_names.append(met) else: metname = met.name metlabel = met.label if metlabel>0: metname = metname+"_"+str(metlabel) model_metrics_names.append(metname) #Dictionary for records in metrics model_metrics_records = {} model_metrics_records["acc"] = 0 #accuracy starts at zero and approaches 1 during training model_metrics_records["val_acc"] = 0 #accuracy starts at zero and approaches 1 during training model_metrics_records["loss"] = 9E20 ##loss starts very high and approaches 0 during training model_metrics_records["val_loss"] = 9E20 ##loss starts very high and approaches 0 during training for key in model_metrics_names: if 'precision' in key or 'recall' in key or 'f1_score' in key: model_metrics_records[key] = 0 #those metrics start at zero and approach 1 model_metrics_records["val_"+key] = 0 #those metrics start at zero and approach 1 gen_train_refresh = False time_start = time.time() t1 = time.time() #Initialize a timer; this is used to save the meta file every few seconds t2 = time.time() #Initialize a timer; this is used update the fitting parameters while counter < nr_epochs:#nr_epochs: #resample nr_epochs times #Only keep fitting if the respective window is open: isVisible = self.fittingpopups[listindex].isVisible() if isVisible: ############Keras image augmentation##################### #Start the first iteration: X_train,y_train,xtra_train = [],[],[] t3 = time.time() for i in range(len(SelectedFiles_train)): if len(DATA)==0 or gen_train_refresh: #Replace true means that individual cells could occur several times gen_train = aid_img.gen_crop_img(cropsize2,rtdc_path_train[i],nr_events_epoch_train[i],random_images=shuffle_train[i],replace=True,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) gen_train_refresh = False else: gen_train = aid_img.gen_crop_img_ram(DATA,rtdc_path_train[i],nr_events_epoch_train[i],random_images=shuffle_train[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") data_ = next(gen_train) X_train.append(data_[0]) y_train.append(np.repeat(indices_train[i],X_train[-1].shape[0])) if xtra_in==True: xtra_train.append(data_[2]) del data_ X_train = np.concatenate(X_train) X_train = X_train.astype(np.uint8) y_train = np.concatenate(y_train) if xtra_in==True: print("Retrieve Xtra Data...") xtra_train = np.concatenate(xtra_train) t4 = time.time() if verbose == 1: print("Time to load data (from .rtdc or RAM) and crop="+str(t4-t3)) if len(X_train.shape)==4: channels=3 elif len(X_train.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_train.shape)) if channels==1: #Add the "channels" dimension X_train = np.expand_dims(X_train,3) t3 = time.time() #Some parallellization: use nr_threads (number of CPUs) nr_threads = 1 #Somehow for MNIST and CIFAR, processing always took longer for nr_threads>1 . I tried nr_threads=2,4,8,16,24 if nr_threads == 1: X_batch = aid_img.affine_augm(X_train,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) #Affine image augmentation y_batch = np.copy(y_train) else: #Divde data in 4 batches X_train = np.array_split(X_train,nr_threads) y_train = np.array_split(y_train,nr_threads) self.X_batch = [False] * nr_threads self.y_batch = [False] * nr_threads self.counter_aug = 0 self.Workers_augm = [] def imgaug_worker(aug_paras,progress_callback,history_callback): i = aug_paras["i"] self.X_batch[i] = aid_img.affine_augm(aug_paras["X_train"],v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) self.y_batch[i] = aug_paras["y_train"] self.counter_aug+=1 t3_a = time.time() for i in range(nr_threads): aug_paras_ = copy.deepcopy(aug_paras) aug_paras_["i"] = i aug_paras_["X_train"]=X_train[i]#augparas contains rotation and so on. X_train and y_train are overwritten in each iteration (for each worker new X_train) aug_paras_["y_train"]=y_train[i] self.Workers_augm.append(Worker(imgaug_worker,aug_paras_)) self.threadpool.start(self.Workers_augm[i]) while self.counter_aug < nr_threads: time.sleep(0.01)#Wait 0.1s, then check the len again t3_b = time.time() if verbose == 1: print("Time to perform affine augmentation_internal ="+str(t3_b-t3_a)) X_batch = np.concatenate(self.X_batch) y_batch = np.concatenate(self.y_batch) Y_batch = np_utils.to_categorical(y_batch, nr_classes)# * 2 - 1 t4 = time.time() if verbose == 1: print("Time to perform affine augmentation ="+str(t4-t3)) t3 = time.time() #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow t4 = time.time() # if verbose == 1: # print("Time to crop to final size="+str(t4-t3)) X_batch_orig = np.copy(X_batch) #save into new array and do some iterations with varying noise/brightness #reuse this X_batch_orig a few times since this augmentation was costly keras_iter_counter = 0 while keras_iter_counter < keras_refresh_nr_epochs and counter < nr_epochs: keras_iter_counter+=1 #if t2-t1>5: #check for changed settings every 5 seconds if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #Another while loop if the user wants to reuse the keras-augmented data #several times and only apply brightness augmentation: brightness_iter_counter = 0 while brightness_iter_counter < brightness_refresh_nr_epochs and counter < nr_epochs: #In each iteration, start with non-augmented data X_batch = np.copy(X_batch_orig)#copy from X_batch_orig, X_batch will be altered without altering X_batch_orig X_batch = X_batch.astype(np.uint8) #########X_batch = X_batch.astype(float)########## No float yet :) !!! brightness_iter_counter += 1 if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 if self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.isChecked(): nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_NrEpochs.value()) #Keras stuff keras_refresh_nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_RefreshAfterEpochs_pop.value()) h_flip = bool(self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.isChecked()) v_flip = bool(self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.isChecked()) rotation = float(self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.text()) width_shift = float(self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.text()) height_shift = float(self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.text()) zoom = float(self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.text()) shear = float(self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.text()) #Brightness stuff brightness_refresh_nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_RefreshAfterNrEpochs_pop.value()) brightness_add_lower = float(self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.value()) brightness_add_upper = float(self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.value()) brightness_mult_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.value()) brightness_mult_upper = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.value()) gaussnoise_mean = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.value()) gaussnoise_scale = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.value()) contrast_on = bool(self.fittingpopups_ui[listindex].checkBox_contrast_pop.isChecked()) contrast_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.value()) contrast_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.value()) saturation_on = bool(self.fittingpopups_ui[listindex].checkBox_saturation_pop.isChecked()) saturation_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.value()) saturation_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.value()) hue_on = bool(self.fittingpopups_ui[listindex].checkBox_hue_pop.isChecked()) hue_delta = float(self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.value()) avgBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.isChecked()) avgBlur_min = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.value()) avgBlur_max = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.value()) gaussBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.isChecked()) gaussBlur_min = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.value()) gaussBlur_max = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.value()) motionBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.isChecked()) motionBlur_kernel = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.text()) motionBlur_angle = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple #Expert mode stuff expert_mode = bool(self.fittingpopups_ui[listindex].groupBox_expertMode_pop.isChecked()) batchSize_expert = int(self.fittingpopups_ui[listindex].spinBox_batchSize.value()) epochs_expert = int(self.fittingpopups_ui[listindex].spinBox_epochs.value()) learning_rate_expert_on = bool(self.fittingpopups_ui[listindex].groupBox_learningRate_pop.isChecked()) learning_rate_const_on = bool(self.fittingpopups_ui[listindex].radioButton_LrConst.isChecked()) learning_rate_const = float(self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value()) learning_rate_cycLR_on = bool(self.fittingpopups_ui[listindex].radioButton_LrCycl.isChecked()) try: cycLrMin = float(self.fittingpopups_ui[listindex].lineEdit_cycLrMin.text()) cycLrMax = float(self.fittingpopups_ui[listindex].lineEdit_cycLrMax.text()) except: cycLrMin = [] cycLrMax = [] cycLrMethod = str(self.fittingpopups_ui[listindex].comboBox_cycLrMethod.currentText()) clr_settings = self.fittingpopups_ui[listindex].clr_settings.copy() #Get a copy of the current optimizer_settings. .copy prevents that changes in the UI have immediate effect cycLrStepSize = aid_dl.get_cyclStepSize(SelectedFiles,clr_settings["step_size"],batchSize_expert) cycLrGamma = clr_settings["gamma"] learning_rate_expo_on = bool(self.fittingpopups_ui[listindex].radioButton_LrExpo.isChecked()) expDecInitLr = float(self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.value()) expDecSteps = int(self.fittingpopups_ui[listindex].spinBox_expDecSteps.value()) expDecRate = float(self.fittingpopups_ui[listindex].doubleSpinBox_expDecRate.value()) loss_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.isChecked()) loss_expert = str(self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.currentText()) optimizer_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_optimizer_pop.isChecked()) optimizer_expert = str(self.fittingpopups_ui[listindex].comboBox_optimizer.currentText()) optimizer_settings = self.fittingpopups_ui[listindex].optimizer_settings.copy() #Get a copy of the current optimizer_settings. .copy prevents that changes in the UI have immediate effect paddingMode_ = str(self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.currentText()) print("paddingMode_:"+str(paddingMode_)) if paddingMode_ != paddingMode: print("Changed the padding mode!") gen_train_refresh = True#otherwise changing paddingMode will not have any effect paddingMode = paddingMode_ train_last_layers = bool(self.fittingpopups_ui[listindex].checkBox_trainLastNOnly_pop.isChecked()) train_last_layers_n = int(self.fittingpopups_ui[listindex].spinBox_trainLastNOnly_pop.value()) train_dense_layers = bool(self.fittingpopups_ui[listindex].checkBox_trainDenseOnly_pop.isChecked()) dropout_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_dropout_pop.isChecked()) try: dropout_expert = str(self.fittingpopups_ui[listindex].lineEdit_dropout_pop.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_lossW.isChecked()) lossW_expert = str(self.fittingpopups_ui[listindex].lineEdit_lossW.text()) class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert) # print("Updating parameter file (meta.xlsx)!") update_para_dict() #Changes in expert mode can affect the model: apply changes now: if expert_mode==True: if collection==False: #Expert mode is currently not supported for Collections expert_mode_before = True #Apply changes to the trainable states: if train_last_layers==True:#Train only the last n layers if verbose: print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] #Change the trainability states. Model compilation is done inside model_change_trainability summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if train_dense_layers==True:#Train only dense layers if verbose: print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True #Change the trainability states. Model compilation is done inside model_change_trainability summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else: text = "Could not understand user input at Expert->Dropout" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... #Change dropout. Model .compile happens inside change_dropout function do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to changed dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" if verbose: print(text_do) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do) if learning_rate_expert_on==True: #get the current lr_dict lr_dict_now = aid_dl.get_lr_dict(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) if not lr_dict_now.equals(lr_dict_original):#in case the dataframes dont equal... #generate a new callback callback_lr = aid_dl.get_lr_callback(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) #update lr_dict_original lr_dict_original = lr_dict_now.copy() else: callback_lr = None if optimizer_expert_on==True: optimizer_settings_now = self.fittingpopups_ui[listindex].optimizer_settings.copy() if not optimizer_settings_now == optimizer_settings:#in case the dataframes dont equal... #grab these new optimizer values optimizer_settings = optimizer_settings_now.copy() ############################Invert 'expert' settings######################### if expert_mode==False and expert_mode_before==True: #if the expert mode was selected before, change the parameters back to original vlaues if verbose: print("Expert mode was used before and settings are now inverted") #Re-set trainable states back to original state if verbose: print("Change 'trainable' layers back to original state") summary = aid_dl.model_change_trainability(model_keras,trainable_original,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change 'trainable' layers back to original state") text1 = "Expert mode turns off: Request for orignal trainability states:\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if verbose: print("Change dropout rates in dropout layers back to original values") callback_lr = None#remove learning rate callback if verbose: print("Set learning rate callback to None") if len(do_list_original)>0: do_changed = aid_dl.change_dropout(model_keras,do_list_original,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout values back to original state. I'm not sure if this works!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to original values: "+str(do_list_original) else: text_do = "Dropout rate(s) in model was/were not changed" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do+"\n") text_updates = "" #Compare current lr and the lr on expert tab: if collection==False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection==False: K.set_value(model_keras.optimizer.lr, learning_rate_const) else: K.set_value(model_keras[0].optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model else: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: loss_ = model_keras.loss else: loss_ = model_keras[0].loss if loss_!=loss_expert: recompile = True model_metrics_records["loss"] = 9E20 #Reset the record for loss because new loss function could converge to a different min. value model_metrics_records["val_loss"] = 9E20 #Reset the record for loss because new loss function could converge to a different min. value text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True and collection==False: print("Recompiling...") aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change optimizer, loss and learninig rate.") elif recompile==True and collection==True: if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled print("Altering learning rate is not suported for collections (yet)") return print("Recompiling...") for m in model_keras: aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_updates) #self.model_keras = model_keras #overwrite the model in self self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.setChecked(False) ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? X_batch = X_batch.astype(np.uint8) if contrast_on: t_con_aug_1 = time.time() X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! t_con_aug_2 = time.time() if verbose == 1: print("Time to augment contrast="+str(t_con_aug_2-t_con_aug_1)) if saturation_on or hue_on: t_sat_aug_1 = time.time() X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) #Gray and RGB; both values >0! t_sat_aug_2 = time.time() if verbose == 1: print("Time to augment saturation/hue="+str(t_sat_aug_2-t_sat_aug_1)) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: t_avgBlur_1 = time.time() X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) t_avgBlur_2 = time.time() if verbose == 1: print("Time to perform average blurring="+str(t_avgBlur_2-t_avgBlur_1)) if gaussBlur_on: t_gaussBlur_1 = time.time() X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) t_gaussBlur_2 = time.time() if verbose == 1: print("Time to perform gaussian blurring="+str(t_gaussBlur_2-t_gaussBlur_1)) if motionBlur_on: t_motionBlur_1 = time.time() X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) t_motionBlur_2 = time.time() if verbose == 1: print("Time to perform motion blurring="+str(t_motionBlur_2-t_motionBlur_1)) ##########Brightness noise######### t3 = time.time() X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) t4 = time.time() if verbose == 1: print("Time to augment brightness="+str(t4-t3)) t3 = time.time() if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) t4 = time.time() if verbose == 1: print("Time to apply normalization="+str(t4-t3)) #Fitting can be paused while str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())=="": time.sleep(2) #wait 2 seconds and then check the text on the button again if verbose == 1: print("X_batch.shape") print(X_batch.shape) if xtra_in==True: print("Add Xtra Data to X_batch") X_batch = [X_batch,xtra_train] #generate a list of callbacks, get empty list if callback_lr is none callbacks = [] if callback_lr!=None: callbacks.append(callback_lr) ################################################### ###############Actual fitting###################### ################################################### if collection==False: if model_keras_p == None: history = model_keras.fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) elif model_keras_p != None: history = model_keras_p.fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) Histories.append(history.history) Stopwatch.append(time.time()-time_start) learningrate = K.get_value(history.model.optimizer.lr) LearningRate.append(learningrate) #Check if any metric broke a record record_broken = False #initially, assume there is no new record for key in history.history.keys(): value = history.history[key][-1] record = model_metrics_records[key] if 'val_acc' in key or 'val_precision' in key or 'val_recall' in key or 'val_f1_score' in key: #These metrics should go up (towards 1) if value>record: model_metrics_records[key] = value record_broken = True print(key+" broke record -> Model will be saved" ) elif 'val_loss' in key: #This metric should go down (towards 0) if value<record: model_metrics_records[key] = value record_broken = True print(key+" broke record -> Model will be saved") #self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) if record_broken:#if any record was broken... if deviceSelected=="Multi-GPU":#in case of Multi-GPU... #In case of multi-GPU, first copy the weights of the parallel model to the normal model model_keras.set_weights(model_keras_p.layers[-2].get_weights()) #Save the model text = "Save model to following directory: \n"+os.path.dirname(new_modelname) print(text) if os.path.exists(os.path.dirname(new_modelname)): model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") text = "Record was broken -> saved model" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else:#in case the folder does not exist (anymore), create a folder in temp #what is the foldername of the model? text = "Saving failed. Create folder in temp" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) saving_failed = True temp_path = aid_bin.create_temp_folder()#create a temp folder if it does not already exist text = "Your temp. folder is here: "+str(temp_path) print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) parentfolder = aid_bin.splitall(new_modelname)[-2] fname = os.path.split(new_modelname)[-1] #create that folder in temp if it not exists already if not os.path.exists(os.path.join(temp_path,parentfolder)): text = "Create folder in temp:\n"+os.path.join(temp_path,parentfolder) print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) os.mkdir(os.path.join(temp_path,parentfolder)) #change the new_modelname to a path in temp new_modelname = os.path.join(temp_path,parentfolder,fname) #inform user! text = "Could not find original folder. Files are now saved to "+new_modelname text = "<span style=\' color: red;\'>" +text+"</span>" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) text = "<span style=\' color: black;\'>" +""+"</span>" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #Save the model model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") text = "Model saved successfully to temp" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #Also update the excel writer! writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet Saved.append(1) #Also save the model upon user-request elif bool(self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.isChecked())==True: if deviceSelected=="Multi-GPU":#in case of Multi-GPU... #In case of multi-GPU, first copy the weights of the parallel model to the normal model model_keras.set_weights(model_keras_p.layers[-2].get_weights()) model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") Saved.append(1) self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.setChecked(False) else: Saved.append(0) elif collection==True: for i in range(len(model_keras)): #Expert-settings return automatically to default values when Expert-mode is unchecked history = model_keras[i].fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) HISTORIES[i].append(history.history) learningrate = K.get_value(history.model.optimizer.lr) print("model_keras_path[i]") print(model_keras_path[i]) #Check if any metric broke a record record_broken = False #initially, assume there is no new record for key in history.history.keys(): value = history.history[key][-1] record = model_metrics_records[key] if 'val_acc' in key or 'val_precision' in key or 'val_recall' in key or 'val_f1_score' in key: #These metrics should go up (towards 1) if value>record: model_metrics_records[key] = value record_broken = True text = key+" broke record -> Model will be saved" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #one could 'break' here, but I want to update all records elif 'val_loss' in key: #This metric should go down (towards 0) if value<record: model_metrics_records[key] = value record_broken = True text = key+" broke record -> Model will be saved" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #For collections of models: if record_broken: #Save the model model_keras[i].save(model_keras_path[i].split(".model")[0]+"_"+str(counter)+".model") SAVED[i].append(1) elif bool(self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.isChecked())==True: model_keras[i].save(model_keras_path[i].split(".model")[0]+"_"+str(counter)+".model") SAVED[i].append(1) self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.setChecked(False) else: SAVED[i].append(0) callback_progessbar = float(counter)/nr_epochs progress_callback.emit(100.0*callback_progessbar) history_emit = history.history history_emit["LearningRate"] = [learningrate] history_callback.emit(history_emit) Index.append(counter) t2 = time.time() if collection==False: if counter==0: #If this runs the first time, create the file with header DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index #If this runs the first time, create the file with header if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(writer,sheet_name='History') writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) meta_saving_t = int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()) text = "meta.xlsx was saved (automatic saving every "+str(meta_saving_t)+"s)" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #self.fittingpopups_ui[listindex].backup.append({"DF1":DF1}) Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists #Get a sensible frequency for saving the dataframe (every 20s) elif t2-t1>int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()): #elif counter%50==0: #otherwise save the history to excel after each n epochs DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index #Saving if os.path.exists(os.path.dirname(new_modelname)):#check if folder is (still) available if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #make read only meta_saving_t = int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()) text = "meta.xlsx was saved (automatic saving every "+str(meta_saving_t)+"s to directory:\n)"+new_modelname print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists t1 = time.time() else:#If folder not available, create a folder in temp text = "Failed to save meta.xlsx. -> Create folder in temp\n" saving_failed = True temp_path = aid_bin.create_temp_folder()#create a temp folder if it does not already exist text += "Your temp folder is here: "+str(temp_path)+"\n" folder = os.path.split(new_modelname)[-2] folder = os.path.split(folder)[-1] fname = os.path.split(new_modelname)[-1] #create that folder in temp if it does'nt exist already if not os.path.exists(os.path.join(temp_path,folder)): os.mkdir(os.path.join(temp_path,folder)) text +="Created directory in temp:\n"+os.path.join(temp_path,folder) print(text) #change the new_modelname to a path in temp new_modelname = os.path.join(temp_path,folder,fname) #inform user! text = "Could not find original folder. Files are now saved to "+new_modelname text = "<span style=\' color: red;\'>" +text+"</span>"#put red text to the infobox self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) text = "<span style=\' color: black;\'>" +""+"</span>"#reset textcolor to black self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #update the excel writer writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): print("There is already such a file...AID will add new data to it. Please check if this is OK") os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(writer,sheet_name='History') writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) print("meta.xlsx was saved") Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists if collection==True: if counter==0: for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] #If this runs the first time, create the file with header DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #If this runs the first time, create the file with header if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(Writers[i],sheet_name='History') Writers[i].save() os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) print("meta.xlsx was saved") Index = []#reset the Index list #Get a sensible frequency for saving the dataframe (every 20s) elif t2-t1>int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()): for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #Saving #TODO: save to temp, if harddisk not available to prevent crash. if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write DF1.to_excel(Writers[i],sheet_name='History', startrow=Writers[i].sheets['History'].max_row,header= False) Writers[i].save() os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #make read only print("meta.xlsx was saved") t1 = time.time() Index = []#reset the Index list counter+=1 progress_callback.emit(100.0) #If the original storing locating became inaccessible (folder name changed, HD unplugged...) #the models and meta are saved to temp folder. Inform the user!!! if saving_failed==True: path_orig = str(self.fittingpopups_ui[listindex].lineEdit_modelname_pop.text()) text = "<html><head/><body><p>Original path:<br>"+path_orig+\ "<br>became inaccessible during training! Files were then saved to:<br>"+\ new_modelname.split(".model")[0]+"<br>To bring both parts back together\ , you have manually open the meta files (excel) and copy;paste each sheet. \ Sorry for the inconvenience.<br>If that happens often, you may contact \ the main developer and ask him to improve that.</p></body></html>" text = "<span style=\' font-weight:600; color: red;\'>" +text+"</span>"#put red text to the infobox self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) print('\a')#make a noise self.fittingpopups_ui[listindex].textBrowser_FittingInfo.setStyleSheet("background-color: yellow;") self.fittingpopups_ui[listindex].textBrowser_FittingInfo.moveCursor(QtGui.QTextCursor.End) if collection==False: if len(Histories)>0: #if the list for History files is not empty, process it! DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index Index = []#reset the Index list Histories = []#reset the Histories list Saved = [] #does such a file exist already? append! if not os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): DF1.to_excel(writer,sheet_name='History') else: # else it exists so append without writing the header DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write writer.save() writer.close() if collection==True: for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] if len(Histories)>0: #if the list for History files is not empty, process it! DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #does such a file exist already? append! if not os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): DF1.to_excel(Writers[i],sheet_name='History') else: # else it exists so append without writing the header DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write Writers[i].save() Writers[i].close() Index = []#reset the Index list sess.close() # try: # aid_dl.reset_keras(model_keras) # except: # pass def action_fit_model(self): #Take the initialized model #Unfortunately, in TensorFlow it is not possile to pass a model from #one thread to another. Therefore I have to load and save the models each time :( model_keras = self.model_keras if type(model_keras)==tuple: collection=True else: collection=False #Check if there was a model initialized: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a path/filename for the model to be fitted!") msg.setWindowTitle("Model path/ filename missing!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if model_keras==None:#in case the model got deleted in another task self.action_initialize_model(duties="initialize_train") print("Had to re-run action_initialize_model!") model_keras = self.model_keras self.model_keras = None#delete this copy if model_keras==None: # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("Model could not be initialized") # msg.setWindowTitle("Error") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() return if not model_keras==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Model is now initialized for you, Please check Model summary window below if everything is correct and then press Fit again!") msg.setWindowTitle("No initilized model found!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #There should be at least two outputs (index 0 and 1) if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras[1][0].get_config()#["layers"] nr_classes = int(model_keras[1][0].output.shape.dims[1]) if nr_classes<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define at least two classes") msg.setWindowTitle("Not enough classes") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if collection==False: #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = new_modelname.split(".model")[0]+"_0.model" #save a first version of the .model model_keras.save(self.model_keras_path) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway if collection==True: #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = [new_modelname.split(".model")[0]+"_"+model_keras[0][i]+".model" for i in range(len(model_keras[0]))] for i in range(len(self.model_keras_path)): #save a first version of the .model model_keras[1][i].save(self.model_keras_path[i]) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway #Check that Data is on RAM DATA_len = len(self.ram) #this returns the len of a dictionary. The dictionary is supposed to contain the training/validation data; otherwise the data is read from .rtdc data directly (SLOW unless you have ultra-good SSD) def popup_data_to_ram(button): yes_or_no = button.text() if yes_or_no == "&Yes": print("Moving data to ram") self.actionDataToRamNow_function() elif yes_or_no == "&No": pass if DATA_len==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Would you like transfer the Data to RAM now?\n(Currently the data is not in RAM and would be read from .rtdc, which slows down fitting dramatically unless you have a super-fast SSD.)") msg.setWindowTitle("Data to RAM now?") msg.setStandardButtons(QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) msg.buttonClicked.connect(popup_data_to_ram) msg.exec_() ###################Popup Window#################################### self.fittingpopups.append(MyPopup()) ui = aid_frontend.Fitting_Ui() ui.setupUi(self.fittingpopups[-1]) #append the ui to the last element on the list self.fittingpopups_ui.append(ui) # Increase the popupcounter by one; this will help to coordinate the data flow between main ui and popup self.popupcounter += 1 listindex=self.popupcounter-1 ##############################Define functions######################### self.fittingpopups_ui[listindex].pushButton_UpdatePlot_pop.clicked.connect(lambda: self.update_historyplot_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_Stop_pop.clicked.connect(lambda: self.stop_fitting_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_Pause_pop.clicked.connect(lambda: self.pause_fitting_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_saveTextWindow_pop.clicked.connect(lambda: self.saveTextWindow_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_clearTextWindow_pop.clicked.connect(lambda: self.clearTextWindow_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_showModelSumm_pop.clicked.connect(lambda: self.showModelSumm_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_saveModelSumm_pop.clicked.connect(lambda: self.saveModelSumm_pop(listindex)) #Expert mode functions #self.fittingpopups_ui[listindex].checkBox_pTr_pop.toggled.connect(lambda on_or_off: self.partialtrainability_activated_pop(on_or_off,listindex)) self.fittingpopups_ui[listindex].pushButton_lossW.clicked.connect(lambda: self.lossWeights_popup(listindex)) self.fittingpopups_ui[listindex].checkBox_lossW.clicked.connect(lambda on_or_off: self.lossWeights_activated(on_or_off,listindex)) self.fittingpopups_ui[listindex].Form.setWindowTitle(os.path.split(new_modelname)[1]) self.fittingpopups_ui[listindex].progressBar_Fitting_pop.setValue(0) #set the progress bar to zero self.fittingpopups_ui[listindex].pushButton_ShowExamleImgs_pop.clicked.connect(lambda: self.action_show_example_imgs_pop(listindex)) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.doubleClicked.connect(lambda item: self.tableWidget_HistoryInfo_pop_dclick(item,listindex)) #Cyclical learning rate extra settings self.fittingpopups_ui[listindex].pushButton_cycLrPopup.clicked.connect(lambda: self.popup_clr_settings(listindex)) self.fittingpopups_ui[listindex].comboBox_optimizer.currentTextChanged.connect(lambda: self.expert_optimizer_changed(optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].pushButton_LR_plot.clicked.connect(lambda: self.popup_lr_plot(listindex)) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.valueChanged.connect(lambda: self.expert_lr_changed(value=self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value(),optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.valueChanged.connect(lambda: self.expert_lr_changed(value=self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value(),optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].pushButton_optimizer_pop.clicked.connect(lambda: self.optimizer_change_settings_popup(listindex)) worker = Worker(self.action_fit_model_worker) #Get a signal from the worker to update the progressbar worker.signals.progress.connect(self.fittingpopups_ui[listindex].progressBar_Fitting_pop.setValue) #Define a func which prints information during fitting to textbrowser #And furthermore provide option to do real-time plotting def real_time_info(dic): self.fittingpopups_ui[listindex].Histories.append(dic) #append to a list. Will be used for plotting in the "Update plot" function OtherMetrics_keys = self.fittingpopups_ui[listindex].RealTime_OtherMetrics.keys() #Append to lists for real-time plotting self.fittingpopups_ui[listindex].RealTime_Acc.append(dic["acc"][0]) self.fittingpopups_ui[listindex].RealTime_ValAcc.append(dic["val_acc"][0]) self.fittingpopups_ui[listindex].RealTime_Loss.append(dic["loss"][0]) self.fittingpopups_ui[listindex].RealTime_ValLoss.append(dic["val_loss"][0]) keys = list(dic.keys()) #sort keys alphabetically keys_ = [l.lower() for l in keys] ind_sort = np.argsort(keys_) keys = list(np.array(keys)[ind_sort]) #First keys should always be acc,loss,val_acc,val_loss -in this order keys_first = ["acc","loss","val_acc","val_loss"] for i in range(len(keys_first)): if keys_first[i] in keys: ind = np.where(np.array(keys)==keys_first[i])[0][0] if ind!=i: del keys[ind] keys.insert(i,keys_first[i]) for key in keys: if "precision" in key or "f1" in key or "recall" in key or "LearningRate" in key: if not key in OtherMetrics_keys: #if this key is missing in self.fittingpopups_ui[listindex].RealTime_OtherMetrics attach it! self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key] = [] self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key].append(dic[key]) dic_text = [("{} {}".format(item, np.round(amount[0],4))) for item, amount in dic.items()] text = "Epoch "+str(self.fittingpopups_ui[listindex].epoch_counter)+"\n"+" ".join(dic_text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) self.fittingpopups_ui[listindex].epoch_counter+=1 if self.fittingpopups_ui[listindex].epoch_counter==1: #for each key, put a checkbox on the tableWidget_HistoryInfo_pop rowPosition = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.rowCount() self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.insertRow(rowPosition) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.setColumnCount(len(keys)) for columnPosition in range(len(keys)):#(2,4): key = keys[columnPosition] #for each item, also create 2 checkboxes (train/valid) item = QtWidgets.QTableWidgetItem(str(key))#("item {0} {1}".format(rowNumber, columnNumber)) item.setBackground(QtGui.QColor(self.colorsQt[columnPosition])) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.setItem(rowPosition, columnPosition, item) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.resizeColumnsToContents() self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.resizeRowsToContents() ########################Real-time plotting######################### if self.fittingpopups_ui[listindex].checkBox_realTimePlotting_pop.isChecked(): #get the range for the real time fitting if hasattr(self.fittingpopups_ui[listindex], 'historyscatters'):#if update plot was hit before x = range(len(self.fittingpopups_ui[listindex].Histories)) realTimeEpochs = self.fittingpopups_ui[listindex].spinBox_realTimeEpochs.value() if len(x)>realTimeEpochs: x = x[-realTimeEpochs:] #is any metric checked on the table? colcount = int(self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.columnCount()) #Collect items that are checked selected_items,Colors = [],[] for colposition in range(colcount): #is it checked? cb = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) for i in range(len(self.fittingpopups_ui[listindex].historyscatters)): #iterate over all available plots key = list(self.fittingpopups_ui[listindex].historyscatters.keys())[i] if key in selected_items: if key=="acc": y = np.array(self.fittingpopups_ui[listindex].RealTime_Acc).astype(float) elif key=="val_acc": y = np.array(self.fittingpopups_ui[listindex].RealTime_ValAcc).astype(float) elif key=="loss": y = np.array(self.fittingpopups_ui[listindex].RealTime_Loss).astype(float) elif key=="val_loss": y = np.array(self.fittingpopups_ui[listindex].RealTime_ValLoss).astype(float) elif "precision" in key or "f1" in key or "recall" in key or "LearningRate" in key: y = np.array(self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key]).astype(float).reshape(-1,) else: return #Only show the last 250 epochs if y.shape[0]>realTimeEpochs: y = y[-realTimeEpochs:] if y.shape[0]==len(x): self.fittingpopups_ui[listindex].historyscatters[key].setData(x, y)#,pen=None,symbol='o',symbolPen=None,symbolBrush=brush,clear=False) else: print("x and y are not the same size! Omitted plotting. I will try again to plot after the next epoch.") pg.QtGui.QApplication.processEvents() self.fittingpopups_ui[listindex].epoch_counter = 0 #self.fittingpopups_ui[listindex].backup = [] #backup of the meta information -> in case the original folder is not accessible anymore worker.signals.history.connect(real_time_info) #Finally start the worker! self.threadpool.start(worker) self.fittingpopups[listindex].show() def action_lr_finder(self): #lr_find model_keras = self.model_keras if type(model_keras)==tuple: collection=True msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText("LR screening is not supported for Collections of models. Please select single model") msg.setWindowTitle("LR screening not supported for Collections!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return else: collection=False #Check if there was a model initialized: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a path/filename for the model to be fitted!") msg.setWindowTitle("Model path/ filename missing!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if model_keras==None:#in case the model got deleted in another task self.action_initialize_model(duties="initialize_train") print("Had to re-run action_initialize_model!") model_keras = self.model_keras self.model_keras = None#delete this copy if model_keras==None: return if not model_keras==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Model is now initialized for you, Please check Model summary window below if everything is correct and then press Fit again!") msg.setWindowTitle("No initilized model found!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_classes = int(model_keras.output.shape.dims[1]) if nr_classes<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define at least two classes") msg.setWindowTitle("Not enough classes") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = new_modelname.split(".model")[0]+"_0.model" #save a first version of the .model model_keras.save(self.model_keras_path) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway #Check that Data is on RAM DATA_len = len(self.ram) #this returns the len of a dictionary. The dictionary is supposed to contain the training/validation data; otherwise the data is read from .rtdc data directly (SLOW unless you have ultra-good SSD) def popup_data_to_ram(button): yes_or_no = button.text() if yes_or_no == "&Yes": print("Moving data to ram") self.actionDataToRamNow_function() elif yes_or_no == "&No": pass if DATA_len==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Would you like transfer the Data to RAM now?\n(Currently the data is not in RAM and would be read from .rtdc, which slows down fitting dramatically unless you have a super-fast SSD.)") msg.setWindowTitle("Data to RAM now?") msg.setStandardButtons(QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) msg.buttonClicked.connect(popup_data_to_ram) msg.exec_() worker = Worker(self.action_lr_finder_worker) #Get a signal from the worker to update the progressbar worker.signals.progress.connect(print) worker.signals.history.connect(print) #Finally start the worker! self.threadpool.start(worker) def action_lr_finder_worker(self,progress_callback,history_callback): if self.radioButton_cpu.isChecked(): gpu_used = False deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): gpu_used = True deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) #Retrieve more Multi-GPU Options from Menubar: cpu_merge = bool(self.actioncpu_merge.isEnabled()) cpu_relocation = bool(self.actioncpu_relocation.isEnabled()) cpu_weight_merge = bool(self.actioncpu_weightmerge.isEnabled()) #Create config (define which device to use) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #get an index of the fitting popup #listindex = self.popupcounter-1 #Get user-specified filename for the new model model_keras_path = self.model_keras_path if type(model_keras_path)==list: collection = True msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText("LR screening is currently not supported for Collections of models. Please use single model") msg.setWindowTitle("LR screening not supported for Collections") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return else: collection = False if deviceSelected=="Multi-GPU" and cpu_weight_merge==True: with tf.device("/cpu:0"): model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) else: model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) #Initialize a variable for the parallel model model_keras_p = None #Multi-GPU if deviceSelected=="Multi-GPU": if collection==False: print("Adjusting the model for Multi-GPU") model_keras_p = multi_gpu_model(model_keras, gpus=gpu_nr, cpu_merge=cpu_merge, cpu_relocation=cpu_relocation)#indicate the numbers of gpus that you have if self.radioButton_LoadContinueModel.isChecked():#calling multi_gpu_model resets the weights. Hence, they need to be put in place again model_keras_p.layers[-2].set_weights(model_keras.get_weights()) elif collection==True: print("Collection & Multi-GPU is not supported yet") return ##############Main function after hitting FIT MODEL#################### if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras[0].output.shape.dims[1]) #Metrics to be displayed during fitting (real-time) model_metrics = self.get_metrics(nr_classes) #Compile model if deviceSelected=="Single-GPU": model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif deviceSelected=="Multi-GPU": model_keras_p.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled #Collect all information about the fitting routine that was user #defined if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 trainable_original, layer_names = self.trainable_original, self.layer_names crop = int(self.spinBox_imagecrop.value()) norm = str(self.comboBox_Normalization.currentText()) nr_epochs = int(self.spinBox_NrEpochs.value()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple if collection==False: expert_mode = bool(self.groupBox_expertMode.isChecked()) elif collection==True: expert_mode = self.groupBox_expertMode.setChecked(False) print("Expert mode was switched off. Not implemented yet for collections") expert_mode = False learning_rate_const = float(self.doubleSpinBox_learningRate.value()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.optimizer_settings.copy() paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert = str(self.lineEdit_lossW.text()) #To get the class weights (loss), the SelectedFiles are required SelectedFiles = self.items_clicked_no_rtdc_ds() #Check if xtra_data should be used for training xtra_in = [s["xtra_in"] for s in SelectedFiles] if len(set(xtra_in))==1: xtra_in = list(set(xtra_in))[0] elif len(set(xtra_in))>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return #Get the class weights. This function runs now the first time in the fitting routine. #It is possible that the user chose Custom weights and then changed the classes. Hence first check if #there is a weight for each class available. class_weight = self.get_class_weight(SelectedFiles,lossW_expert,custom_check_classes=True) if type(class_weight)==list: #There has been a mismatch between the classes described in class_weight and the classes available in SelectedFiles! lossW_expert = class_weight[0] #overwrite class_weight = class_weight[1] print(class_weight) print("There has been a mismatch between the classes described in \ Loss weights and the classes available in the selected files! \ Hence, the Loss weights are set to Balanced") ###############################Expert Mode values################## if expert_mode==True: #Some settings only need to be changed once, after user clicked apply at next epoch #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" print(text1+summary) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" print(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a single float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" print(text) else: text = "Could not understand user input at Expert->Dropout" print(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) text_updates = "" #Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection == False: K.set_value(model_keras.optimizer.lr, learning_rate_const) if collection == True: for m in model_keras: K.set_value(m.optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model if collection==True: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if collection==True: if model_keras[0].loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True: print("Recompiling...") if collection==False: aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras[1]: aid_dl.model_compile(m, loss_expert, optimizer_settings, learning_rate_const,model_metrics, nr_classes) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to adjust learning rate, loss, optimizer") print(text_updates) ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_epoch_train = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_train] rtdc_path_train = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_train] zoom_factors_train = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_train] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_train = [selectedfile["shuffle"] for selectedfile in SelectedFiles_train] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_train]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False if verbose==1: print("Length of DATA (in RAM) = "+str(len(self.ram))) #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles_train)): if len(self.ram)==0: #Here, the entire training set needs to be used! Not only random images! #Replace=true: means individual cells could occur several times gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen_train = aid_img.gen_crop_img_ram(self.ram,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen_train)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "<html><head/><body><p>The standard deviation of your training data is zero! This would lead to division by zero. To avoid this, I will divide by 0.0001 instead.</p></body></html>" msg.setText(text) msg.setWindowTitle("Std. is zero") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() ######################Load the Validation Data################################ ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] nr_events_epoch_valid = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_valid] rtdc_path_valid = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_valid] zoom_factors_valid = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_valid] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_valid = [selectedfile["shuffle"] for selectedfile in SelectedFiles_valid] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_valid]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False ############Cropping##################### percDataV = float(self.popup_lrfinder_ui.doubleSpinBox_percDataV.value()) percDataV = percDataV/100.0 X_valid,y_valid,Indices,xtra_valid = [],[],[],[] for i in range(len(SelectedFiles_valid)): if len(self.ram)==0:#if there is no data available on ram #replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],int(np.rint(percDataV*nr_events_epoch_valid[i])),random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else:#get a similar generator, using the ram-data gen_valid = aid_img.gen_crop_img_ram(self.ram,rtdc_path_valid[i],int(np.rint(percDataV*nr_events_epoch_valid[i])),random_images=shuffle_valid[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") generator_cropped_out = next(gen_valid) X_valid.append(generator_cropped_out[0]) #y_valid.append(np.repeat(indices_valid[i],nr_events_epoch_valid[i])) y_valid.append(np.repeat(indices_valid[i],X_valid[-1].shape[0])) Indices.append(generator_cropped_out[1]) xtra_valid.append(generator_cropped_out[2]) del generator_cropped_out X_valid = np.concatenate(X_valid) y_valid = np.concatenate(y_valid) Y_valid = np_utils.to_categorical(y_valid, nr_classes)# * 2 - 1 xtra_valid = np.concatenate(xtra_valid) if len(X_valid.shape)==4: channels=3 elif len(X_valid.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_valid.shape)) if channels==1: #Add the "channels" dimension X_valid = np.expand_dims(X_valid,3) if norm == "StdScaling using mean and std of all training data": X_valid = aid_img.image_normalization(X_valid,norm,mean_trainingdata,std_trainingdata) else: X_valid = aid_img.image_normalization(X_valid,norm) #Validation data can be cropped to final size already since no augmentation #will happen on this data set dim_val = X_valid.shape print("Current dim. of validation set (pixels x pixels) = "+str(dim_val[2])) if dim_val[2]!=crop: print("Change dim. (pixels x pixels) of validation set to = "+str(crop)) remove = int(dim_val[2]/2.0 - crop/2.0) X_valid = X_valid[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow if xtra_in==True: print("Add Xtra Data to X_valid") X_valid = [X_valid,xtra_valid] ###################Load training data#################### #####################and perform######################### ##################Image augmentation##################### #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Should only a certain percentage of the numbers given in the table be sampled? percDataT = float(self.popup_lrfinder_ui.doubleSpinBox_percDataT.value()) percDataT = percDataT/100.0 X_train,y_train,xtra_train = [],[],[] t3 = time.time() for i in range(len(SelectedFiles_train)): if len(self.ram)==0: #Replace true means that individual cells could occur several times gen_train = aid_img.gen_crop_img(cropsize2,rtdc_path_train[i],int(np.rint(percDataT*nr_events_epoch_train[i])),random_images=shuffle_train[i],replace=True,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: gen_train = aid_img.gen_crop_img_ram(self.ram,rtdc_path_train[i],int(np.rint(percDataT*nr_events_epoch_train[i])),random_images=shuffle_train[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") data_ = next(gen_train) X_train.append(data_[0]) y_train.append(np.repeat(indices_train[i],X_train[-1].shape[0])) if xtra_in==True: xtra_train.append(data_[2]) del data_ X_train = np.concatenate(X_train) X_train = X_train.astype(np.uint8) y_train = np.concatenate(y_train) if xtra_in==True: print("Retrieve Xtra Data...") xtra_train = np.concatenate(xtra_train) t4 = time.time() if verbose == 1: print("Time to load data (from .rtdc or RAM) and crop="+str(t4-t3)) if len(X_train.shape)==4: channels=3 elif len(X_train.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_train.shape)) if channels==1: #Add the "channels" dimension X_train = np.expand_dims(X_train,3) t3 = time.time() #Affine augmentation X_train = aid_img.affine_augm(X_train,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) #Affine image augmentation y_train = np.copy(y_train) Y_train = np_utils.to_categorical(y_train, nr_classes)# * 2 - 1 t4 = time.time() if verbose == 1: print("Time to perform affine augmentation ="+str(t4-t3)) t3 = time.time() #Now do the final cropping to the actual size that was set by user dim = X_train.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) X_train = X_train[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow t4 = time.time() #X_train = np.copy(X_train) #save into new array and do some iterations with varying noise/brightness #reuse this X_batch_orig a few times since this augmentation was costly if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #In each iteration, start with non-augmented data #X_batch = np.copy(X_batch_orig)#copy from X_batch_orig, X_batch will be altered without altering X_batch_orig #X_train = X_train.astype(np.uint8) ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? X_train = X_train.astype(np.uint8) if contrast_on: t_con_aug_1 = time.time() X_train = aid_img.contrast_augm_cv2(X_train,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! t_con_aug_2 = time.time() if verbose == 1: print("Time to augment contrast="+str(t_con_aug_2-t_con_aug_1)) if saturation_on or hue_on: t_sat_aug_1 = time.time() X_train = aid_img.satur_hue_augm_cv2(X_train.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) #Gray and RGB; both values >0! t_sat_aug_2 = time.time() if verbose == 1: print("Time to augment saturation/hue="+str(t_sat_aug_2-t_sat_aug_1)) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: t_avgBlur_1 = time.time() X_train = aid_img.avg_blur_cv2(X_train,avgBlur_min,avgBlur_max) t_avgBlur_2 = time.time() if verbose == 1: print("Time to perform average blurring="+str(t_avgBlur_2-t_avgBlur_1)) if gaussBlur_on: t_gaussBlur_1 = time.time() X_train = aid_img.gauss_blur_cv(X_train,gaussBlur_min,gaussBlur_max) t_gaussBlur_2 = time.time() if verbose == 1: print("Time to perform gaussian blurring="+str(t_gaussBlur_2-t_gaussBlur_1)) if motionBlur_on: t_motionBlur_1 = time.time() X_train = aid_img.motion_blur_cv(X_train,motionBlur_kernel,motionBlur_angle) t_motionBlur_2 = time.time() if verbose == 1: print("Time to perform motion blurring="+str(t_motionBlur_2-t_motionBlur_1)) ##########Brightness noise######### t3 = time.time() X_train = aid_img.brightn_noise_augm_cv2(X_train,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) t4 = time.time() if verbose == 1: print("Time to augment brightness="+str(t4-t3)) t3 = time.time() if norm == "StdScaling using mean and std of all training data": X_train = aid_img.image_normalization(X_train,norm,mean_trainingdata,std_trainingdata) else: X_train = aid_img.image_normalization(X_train,norm) t4 = time.time() if verbose == 1: print("Time to apply normalization="+str(t4-t3)) if verbose == 1: print("X_train.shape") print(X_train.shape) if xtra_in==True: print("Add Xtra Data to X_train") X_train = [X_train,xtra_train] ################################################### ###############Actual fitting###################### ################################################### batch_size = int(self.popup_lrfinder_ui.spinBox_batchSize.value()) stepsPerEpoch = int(self.popup_lrfinder_ui.spinBox_stepsPerEpoch.value()) epochs = int(self.popup_lrfinder_ui.spinBox_epochs.value()) start_lr = float(self.popup_lrfinder_ui.lineEdit_startLr.text()) stop_lr = float(self.popup_lrfinder_ui.lineEdit_stopLr.text()) valMetrics = bool(self.popup_lrfinder_ui.checkBox_valMetrics.isChecked()) ####################lr_find algorithm#################### if model_keras_p == None: lrf = aid_dl.LearningRateFinder(model_keras) elif model_keras_p != None: lrf = aid_dl.LearningRateFinder(model_keras_p) if valMetrics==True: lrf.find([X_train,Y_train],[X_valid,Y_valid],start_lr,stop_lr,stepsPerEpoch=stepsPerEpoch,batchSize=batch_size,epochs=epochs) else: lrf.find([X_train,Y_train],None,start_lr,stop_lr,stepsPerEpoch=stepsPerEpoch,batchSize=batch_size,epochs=epochs) skipBegin,skipEnd = 10,1 self.learning_rates = lrf.lrs[skipBegin:-skipEnd] self.losses_or = lrf.losses_or[skipBegin:-skipEnd] self.losses_sm = lrf.losses_sm[skipBegin:-skipEnd] self.accs_or = lrf.accs_or[skipBegin:-skipEnd] self.accs_sm = lrf.accs_sm[skipBegin:-skipEnd] self.val_losses_sm = lrf.val_losses_sm[skipBegin:-skipEnd] self.val_losses_or = lrf.val_losses_or[skipBegin:-skipEnd] self.val_accs_sm = lrf.val_accs_sm[skipBegin:-skipEnd] self.val_accs_or = lrf.val_accs_or[skipBegin:-skipEnd] # Enable the groupboxes self.popup_lrfinder_ui.groupBox_singleLr.setEnabled(True) self.popup_lrfinder_ui.groupBox_LrRange.setEnabled(True) self.update_lrfind_plot() def update_lrfind_plot(self): if not hasattr(self, 'learning_rates'): return metric = str(self.popup_lrfinder_ui.comboBox_metric.currentText()) color = self.popup_lrfinder_ui.pushButton_color.palette().button().color() width = int(self.popup_lrfinder_ui.spinBox_lineWidth.value()) color = list(color.getRgb()) color = tuple(color) pencolor = pg.mkPen(color, width=width) smooth = bool(self.popup_lrfinder_ui.checkBox_smooth.isChecked()) try:# try to empty the plot self.popup_lrfinder_ui.lr_plot.clear() #self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_line) except: pass if metric=="Loss" and smooth==True: self.y_values = self.losses_sm elif metric=="Loss" and smooth==False: self.y_values = self.losses_or elif metric=="Loss 1st derivative" and smooth==True: self.y_values = np.diff(self.losses_sm,n=1) elif metric=="Loss 1st derivative" and smooth==False: self.y_values = np.diff(self.losses_or,n=1) elif metric=="Accuracy" and smooth==True: self.y_values = self.accs_sm elif metric=="Accuracy" and smooth==False: self.y_values = self.accs_or elif metric=="Accuracy 1st derivative" and smooth==True: self.y_values = np.diff(self.accs_sm,n=1) elif metric=="Accuracy 1st derivative" and smooth==False: self.y_values = np.diff(self.accs_or,n=1) elif metric=="Val. loss" and smooth==True: self.y_values = self.val_losses_sm elif metric=="Val. loss" and smooth==False: self.y_values = self.val_losses_or elif metric=="Val. loss 1st derivative" and smooth==True: self.y_values = np.diff(self.val_losses_sm,n=1) elif metric=="Val. loss 1st derivative" and smooth==False: self.y_values = np.diff(self.val_losses_or,n=1) elif metric=="Val. accuracy" and smooth==True: self.y_values = self.val_accs_sm elif metric=="Val. accuracy" and smooth==False: self.y_values = self.val_accs_or elif metric=="Val. accuracy 1st derivative" and smooth==True: self.y_values = np.diff(self.val_accs_sm,n=1) elif metric=="Val. accuracy 1st derivative" and smooth==False: self.y_values = np.diff(self.val_accs_or,n=1) else: print("The combination of "+str(metric)+" and smooth="+str(smooth)+" is not supported!") if len(self.learning_rates)==len(self.y_values): self.lr_line = pg.PlotCurveItem(x=np.log10(self.learning_rates), y=self.y_values,pen=pencolor,name=metric) elif len(self.learning_rates)-1==len(self.y_values): self.lr_line = pg.PlotCurveItem(x=np.log10(self.learning_rates)[1:], y=self.y_values,pen=pencolor,name=metric) else: print("No data available. Probably, validation metrics were not computed. Please click Run again.") return self.popup_lrfinder_ui.lr_plot.addItem(self.lr_line) #In case the groupBox_singleLr is already checked, carry out the function: if self.popup_lrfinder_ui.groupBox_singleLr.isChecked(): self.get_lr_single(on_or_off=True) #In case the groupBox_LrRange is already checked, carry out the function: if self.popup_lrfinder_ui.groupBox_LrRange.isChecked(): self.get_lr_range(on_or_off=True) def get_lr_single(self,on_or_off): if on_or_off==True: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): ind = np.argmin(self.y_values)#find location of loss-minimum mini_x = self.learning_rates[ind] mini_x = np.log10(mini_x) pen = pg.mkPen(color="w") self.lr_single = pg.InfiniteLine(pos=mini_x, angle=90, pen=pen, movable=True) self.popup_lrfinder_ui.lr_plot.addItem(self.lr_single) def position_changed(): #where did the user drag the region_linfit to? new_position = 10**(self.lr_single.value()) self.popup_lrfinder_ui.lineEdit_singleLr.setText(str(new_position)) self.lr_single.sigPositionChangeFinished.connect(position_changed) if on_or_off==False: #user unchecked the groupbox->remove the InfiniteLine if possible try: self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_single) except: pass def get_lr_range(self,on_or_off): #print(on_or_off) #start_lr = float(self.popup_lrfinder_ui.lineEdit_startLr.text()) #stop_lr = float(self.popup_lrfinder_ui.lineEdit_stopLr.text()) if on_or_off==True: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): start_x = 0.00001 start_x = np.log10(start_x) ind = np.argmin(self.y_values)#find location of loss-minimum end_x = self.learning_rates[ind] end_x = np.log10(end_x) self.lr_region = pg.LinearRegionItem([start_x, end_x], movable=True) self.popup_lrfinder_ui.lr_plot.addItem(self.lr_region) def region_changed(): #where did the user drag the region_linfit to? new_region = self.lr_region.getRegion() new_region_left = 10**(new_region[0]) new_region_right = 10**(new_region[1]) self.popup_lrfinder_ui.lineEdit_LrMin.setText(str(new_region_left)) self.popup_lrfinder_ui.lineEdit_LrMax.setText(str(new_region_right)) self.lr_region.sigRegionChangeFinished.connect(region_changed) if on_or_off==False: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): try: self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_region) except: pass def action_show_example_imgs(self): #this function is only for the main window if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #Get state of the comboboxes! tr_or_valid = str(self.comboBox_ShowTrainOrValid.currentText()) w_or_wo_augm = str(self.comboBox_ShowWOrWoAug.currentText()) #most of it should be similar to action_fit_model_worker #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles = self.items_clicked_no_rtdc_ds() #Collect all information about the fitting routine that was user defined crop = int(self.spinBox_imagecrop.value()) norm = str(self.comboBox_Normalization.currentText()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() #which index is requested by user:? req_index = int(self.spinBox_ShowIndex.value()) if tr_or_valid=='Training': ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] elif tr_or_valid=='Validation': ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles = np.array(SelectedFiles)[ind] SelectedFiles = list(SelectedFiles) indices = [selectedfile["class"] for selectedfile in SelectedFiles] ind = np.where(np.array(indices)==req_index)[0] if len(ind)<1: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no data for this class available") msg.setWindowTitle("Class not available") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return indices = list(np.array(indices)[ind]) SelectedFiles = list(np.array(SelectedFiles)[ind]) nr_events_epoch = len(indices)*[10] #[selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles] rtdc_path = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles] zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle = [selectedfile["shuffle"] for selectedfile in SelectedFiles] #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 print("std_trainingdata was zero and is now set to 0.0001 to avoid div. by zero!") if self.actionVerbose.isChecked(): print("Used all training data to get mean and std for normalization") if w_or_wo_augm=='With Augmentation': ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number ############Cropping and image augmentation##################### #Start the first iteration: X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=True,replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") try: #When all cells are at the border of the image, the generator will be empty. Avoid program crash by try, except X.append(next(gen)[0]) except StopIteration: print("All events at border of image and discarded") return y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) X = X.astype(np.uint8) #make sure we stay in uint8 y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 X = np.expand_dims(X,3)#Add the "channels" dimension else: print("Invalid data dimension:" +str(X.shape)) X_batch, y_batch = aid_img.affine_augm(X,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear), y #Affine image augmentation X_batch = X_batch.astype(np.uint8) #make sure we stay in uint8 #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) #X_batch = X_batch[:,:,remove:-remove,remove:-remove] #crop to crop x crop pixels #Theano X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? if contrast_on: X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! if saturation_on or hue_on: X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) if gaussBlur_on: X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) if motionBlur_on: X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) X = X_batch if verbose: print("Shape of the shown images is:"+str(X.shape)) elif w_or_wo_augm=='Original image': ############Cropping##################### X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=True,replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") try: X.append(next(gen)[0]) except: return y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 X = np.expand_dims(X,3) #Add the "channels" dimension else: print("Invalid data dimension: " +str(X.shape)) if norm == "StdScaling using mean and std of all training data": X = aid_img.image_normalization(X,norm,mean_trainingdata,std_trainingdata) else: X = aid_img.image_normalization(X,norm) if verbose: print("Shape of the shown images is: "+str(X.shape)) #Is there already anything shown on the widget? children = self.widget_ViewImages.findChildren(QtWidgets.QGridLayout) if len(children)>0: #if there is something, delete it! for i in reversed(range(self.gridLayout_ViewImages.count())): widgetToRemove = self.gridLayout_ViewImages.itemAt(i).widget() widgetToRemove.setParent(None) widgetToRemove.deleteLater() else: #else, create a Gridlayout to put the images self.gridLayout_ViewImages = QtWidgets.QGridLayout(self.widget_ViewImages) for i in range(5): if channels==1: img = X[i,:,:,0] #TensorFlow if channels==3: img = X[i,:,:,:] #TensorFlow #Stretch pixel value to full 8bit range (0-255); only for display img = img-np.min(img) fac = np.max(img) img = (img/fac)*255.0 img = img.astype(np.uint8) if channels==1: height, width = img.shape if channels==3: height, width, _ = img.shape # qi=QtGui.QImage(img_zoom.data, width, height,width, QtGui.QImage.Format_Indexed8) # self.label_image_show = QtWidgets.QLabel(self.widget_ViewImages) # self.label_image_show.setPixmap(QtGui.QPixmap.fromImage(qi)) # self.gridLayout_ViewImages.addWidget(self.label_image_show, 1,i) # self.label_image_show.show() #Use pygtgraph instead, in order to allow for exporting images self.image_show = pg.ImageView(self.widget_ViewImages) self.image_show.show() if verbose: print("Shape of zoomed image: "+str(img.shape)) if channels==1: self.image_show.setImage(img.T,autoRange=False) if channels==3: self.image_show.setImage(np.swapaxes(img,0,1),autoRange=False) self.image_show.ui.histogram.hide() self.image_show.ui.roiBtn.hide() self.image_show.ui.menuBtn.hide() self.gridLayout_ViewImages.addWidget(self.image_show, 1,i) self.widget_ViewImages.show() def tableWidget_HistoryInfo_pop_dclick(self,item,listindex): if item is not None: tableitem = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(item.row(), item.column()) if str(tableitem.text())!="Show saved only": color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) #self.update_historyplot_pop(listindex) def action_show_example_imgs_pop(self,listindex): #this function is only for the main window #Get state of the comboboxes! tr_or_valid = str(self.fittingpopups_ui[listindex].comboBox_ShowTrainOrValid_pop.currentText()) w_or_wo_augm = str(self.fittingpopups_ui[listindex].comboBox_ShowWOrWoAug_pop.currentText()) #most of it should be similar to action_fit_model_worker #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles = self.items_clicked_no_rtdc_ds() #Collect all information about the fitting routine that was user defined crop = int(self.fittingpopups_ui[listindex].spinBox_imagecrop_pop.value()) norm = str(self.fittingpopups_ui[listindex].comboBox_Normalization_pop.currentText()) h_flip = bool(self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.isChecked()) v_flip = bool(self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.isChecked()) rotation = float(self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.text()) width_shift = float(self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.text()) height_shift = float(self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.text()) zoom = float(self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.text()) shear = float(self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.text()) brightness_add_lower = float(self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.value()) brightness_add_upper = float(self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.value()) brightness_mult_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.value()) brightness_mult_upper = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.value()) gaussnoise_mean = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.value()) gaussnoise_scale = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.value()) contrast_on = bool(self.fittingpopups_ui[listindex].checkBox_contrast_pop.isChecked()) contrast_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.value()) contrast_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.value()) saturation_on = bool(self.fittingpopups_ui[listindex].checkBox_saturation_pop.isChecked()) saturation_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.value()) saturation_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.value()) hue_on = bool(self.fittingpopups_ui[listindex].checkBox_hue_pop.isChecked()) hue_delta = float(self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.value()) avgBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.isChecked()) avgBlur_min = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.value()) avgBlur_max = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.value()) gaussBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.isChecked()) gaussBlur_min = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.value()) gaussBlur_max = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.value()) motionBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.isChecked()) motionBlur_kernel = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.text()) motionBlur_angle = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple paddingMode = str(self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.currentText()).lower() #which index is requested by user:? req_index = int(self.fittingpopups_ui[listindex].spinBox_ShowIndex_pop.value()) if tr_or_valid=='Training': ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] elif tr_or_valid=='Validation': ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles = np.array(SelectedFiles)[ind] SelectedFiles = list(SelectedFiles) indices = [selectedfile["class"] for selectedfile in SelectedFiles] ind = np.where(np.array(indices)==req_index)[0] if len(ind)<1: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no data for this class available") msg.setWindowTitle("Class not available") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return indices = list(np.array(indices)[ind]) SelectedFiles = list(np.array(SelectedFiles)[ind]) nr_events_epoch = len(indices)*[10] #[selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles] rtdc_path = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles] zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle = [selectedfile["shuffle"] for selectedfile in SelectedFiles] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) #Replace true means that individual cells could occur several times else: if len(self.ram)==0: gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) #Replace true means that individual cells could occur several times else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],random_images=False,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 print("std_trainingdata turned out to be zero. I set it to 0.0001, to avoid division by zero!") if self.actionVerbose.isChecked(): print("Used all training data to get mean and std for normalization") if w_or_wo_augm=='With Augmentation': ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number ############Get cropped images with image augmentation##################### #Start the first iteration: X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=shuffle[i],replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") X.append(next(gen)[0]) #y.append(np.repeat(indices[i],nr_events_epoch[i])) y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X.shape)) if channels==1: #Add the "channels" dimension X = np.expand_dims(X,3) X_batch, y_batch = aid_img.affine_augm(X,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear), y #Affine image augmentation X_batch = X_batch.astype(np.uint8) #make sure we stay in uint8 #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) #X_batch = X_batch[:,:,remove:-remove,remove:-remove] #crop to crop x crop pixels #Theano X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? if contrast_on: X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! if saturation_on or hue_on: X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) if gaussBlur_on: X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) if motionBlur_on: X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) X = X_batch elif w_or_wo_augm=='Original image': ############Cropping##################### X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=shuffle[i],replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") X.append(next(gen)[0]) #y.append(np.repeat(indices[i],nr_events_epoch[i])) y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels = 3 elif len(X.shape)==3: channels = 1 X = np.expand_dims(X,3)#Add the "channels" dimension else: print("Invalid data dimension:" +str(X.shape)) if norm == "StdScaling using mean and std of all training data": X = aid_img.image_normalization(X,norm,mean_trainingdata,std_trainingdata) else: X = aid_img.image_normalization(X,norm) #Is there already anything shown on the widget? children = self.fittingpopups_ui[listindex].widget_ViewImages_pop.findChildren(QtWidgets.QGridLayout) if len(children)>0: #if there is something, delete it! for i in reversed(range(self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.count())): widgetToRemove = self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.itemAt(i).widget() widgetToRemove.setParent(None) widgetToRemove.deleteLater() else: #else, create a Gridlayout to put the images self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop = QtWidgets.QGridLayout(self.fittingpopups_ui[listindex].widget_ViewImages_pop) for i in range(5): if channels==1: img = X[i,:,:,0] if channels==3: img = X[i,:,:,:] #Normalize image to full 8bit range (from 0 to 255) img = img-np.min(img) fac = np.max(img) img = (img/fac)*255.0 img = img.astype(np.uint8) # height, width = img_zoom.shape # qi=QtGui.QImage(img_zoom.data, width, height,width, QtGui.QImage.Format_Indexed8) # self.label_image_show = QtWidgets.QLabel(self.widget_ViewImages) # self.label_image_show.setPixmap(QtGui.QPixmap.fromImage(qi)) # self.gridLayout_ViewImages_pop.addWidget(self.label_image_show, 1,i) # self.label_image_show.show() #Use pygtgraph instead, in order to allow for exporting images self.fittingpopups_ui[listindex].image_show_pop = pg.ImageView(self.fittingpopups_ui[listindex].widget_ViewImages_pop) self.fittingpopups_ui[listindex].image_show_pop.show() if channels==1: self.fittingpopups_ui[listindex].image_show_pop.setImage(img.T,autoRange=False) if channels==3: self.fittingpopups_ui[listindex].image_show_pop.setImage(np.swapaxes(img,0,1),autoRange=False) self.fittingpopups_ui[listindex].image_show_pop.ui.histogram.hide() self.fittingpopups_ui[listindex].image_show_pop.ui.roiBtn.hide() self.fittingpopups_ui[listindex].image_show_pop.ui.menuBtn.hide() self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.addWidget(self.fittingpopups_ui[listindex].image_show_pop, 1,i) self.fittingpopups_ui[listindex].widget_ViewImages_pop.show() def get_color_mode(self): if str(self.comboBox_GrayOrRGB.currentText())=="Grayscale": return "Grayscale" elif str(self.comboBox_GrayOrRGB.currentText())=="RGB": return "RGB" else: return None def checkBox_rollingMedian_statechange(self,item):#used in frontend self.horizontalSlider_rollmedi.setEnabled(item) def update_historyplot(self): #After loading a history, there are checkboxes available. Check, if user checked some: colcount = self.tableWidget_HistoryItems.columnCount() #Collect items that are checked selected_items = [] Colors = [] for colposition in range(colcount): #get checkbox item and; is it checked? cb = self.tableWidget_HistoryItems.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) #Get a list of the color from the background of the table items DF1 = self.loaded_history #Clear the plot self.widget_Scatterplot.clear() #Add plot self.plt1 = self.widget_Scatterplot.addPlot() self.plt1.showGrid(x=True,y=True) self.plt1.addLegend() self.plt1.setLabel('bottom', 'Epoch', units='') self.plot_rollmedis = [] #list for plots of rolling medians if "Show saved only" in selected_items: #nr_of_selected_items = len(selected_items)-1 #get the "Saved" column from DF1 saved = DF1["Saved"] saved = np.where(np.array(saved==1))[0] # else: # nr_of_selected_items = len(selected_items) self.Colors = Colors scatter_x,scatter_y = [],[] for i in range(len(selected_items)): key = selected_items[i] if key!="Show saved only": df = DF1[key] epochs = range(len(df)) win = int(self.horizontalSlider_rollmedi.value()) rollmedi = df.rolling(window=win).median() if "Show saved only" in selected_items: df = np.array(df)[saved] epochs = np.array(epochs)[saved] rollmedi =
pd.DataFrame(df)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/0.1_mgmnt.prep.conv.ipynb (unless otherwise specified). __all__ = ['englishStemmer', 'default_params', 'ConventionalPreprocessing', 'open_file', 'get_files', 'get_file_zip'] # Cell from typing import List, Set, Callable, Tuple, Dict, Optional import re from nltk.stem.snowball import SnowballStemmer import nltk import pandas as pd import glob import os import pathlib from string import punctuation import csv from nltk.stem.snowball import SnowballStemmer englishStemmer=SnowballStemmer("english") # Cell from tensorflow.keras.preprocessing import text from pathlib import Path import glob from datetime import datetime # Cell # Imports import pandas as pd import sentencepiece as sp import numpy as np import json from pathlib import Path import sys import sentencepiece as spm from tokenizers import ByteLevelBPETokenizer from tokenizers.processors import BertProcessing # Cell import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) # Cell def default_params(): return { 'system': 'sacp-python-common', 'path_zip': Path("cisco/sacp-python-common.zip"), 'saving_path': 'cisco/sacp_data/', 'language': 'english', 'model_prefix':'test_data/sentencepiece/wiki_py_java_bpe_8k' #For BPE Analysis } # Cell class ConventionalPreprocessing(): '''NLTK libraries for Conventional Preprocessing''' def __init__(self, params, bpe = False): self.params = params #If BPE provided, then preprocessing with BPE is allowed on CONV if bpe: self.sp_bpe = spm.SentencePieceProcessor() self.sp_bpe.load(params['model_prefix']+'.model') else: self.sp_bpe = None pass def bpe_pieces_pipeline(self, doc_list): '''Computes BPE preprocessing according to params''' encoded_str = '' if self.sp_bpe is None: logging.info('Provide a BPE Model!') else: encoded_str = [self.sp_bpe.encode_as_pieces(doc) for doc in doc_list] return encoded_str #ToDo Transforme it into a For-Comprenhension def clean_punctuation(self, token): #remove terms !"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~0123456789 return re.sub(r'[^a-zA-Z\s]', ' ', token, re.I|re.A) def split_camel_case_token(self, token): return re.sub('([a-z])([A-Z])', r'\1 \2', token) def remove_terms(self, filtered_tokens): remove_terms = punctuation + '0123456789' return [token for token in filtered_tokens if token not in remove_terms and len(token)>2 and len(token)<21] def stemmer(self, filtered_tokens): return [englishStemmer.stem(token) for token in filtered_tokens ] def stop_words(self, filtered_tokens): stop_words = nltk.corpus.stopwords.words(self.params['language']) return [token for token in filtered_tokens if token not in stop_words] def basic_pipeline(self, dict_filenames): '''@dict_filenames: {filename: code}''' pre_process = [( key.replace('.txt', '-pre.txt') , self.clean_punctuation(dict_filenames[key][0]) ) for key in dict_filenames] pre_process = [( doc[0] , self.split_camel_case_token(doc[1]) ) for doc in pre_process] pre_process = [( doc[0] , doc[1].lower() ) for doc in pre_process] pre_process = [( doc[0] , doc[1].strip()) for doc in pre_process] # Leading whitepsace are removed pre_process_tokens = [(doc[0] , nltk.WordPunctTokenizer().tokenize(doc[1])) for doc in pre_process] filtered_tokens = [(doc[0], self.stop_words(doc[1]) ) for doc in pre_process_tokens] #Stop Words filtered_tokens = [(doc[0], self.stemmer(doc[1]) ) for doc in filtered_tokens] #Filtering Stemmings filtered_tokens = [(doc[0], self.remove_terms(doc[1])) for doc in filtered_tokens] #Filtering remove-terms pre_process = [(doc[0], ' '.join(doc[1])) for doc in filtered_tokens] return pre_process def fromdocs_pipeline(self, docs): #TODO """@tokenized_file: a list of tokens that represents a document/code""" pre_process = [ self.clean_punctuation(doc) for doc in docs] logging.info('fromtokens_pipeline: clean punctuation') pre_process = [ self.split_camel_case_token(doc) for doc in pre_process] logging.info('fromtokens_pipeline: camel case') pre_process = [ doc.lower() for doc in pre_process] logging.info('fromtokens_pipeline: lowe case') pre_process = [ doc.strip() for doc in pre_process] # Leading whitepsace are removed logging.info('fromtokens_pipeline: white space removed') pre_process_tokens = [ nltk.WordPunctTokenizer().tokenize(doc) for doc in pre_process] logging.info('fromtokens_pipeline: WordPunctTokenizer') filtered_tokens = [ self.stop_words(doc) for doc in pre_process_tokens] #Stop Words logging.info('fromtokens_pipeline: Stop words') filtered_tokens = [ self.stemmer(doc) for doc in filtered_tokens] #Filtering Stemmings logging.info('fromtokens_pipeline: Stemmings') filtered_tokens = [ self.remove_terms(doc) for doc in filtered_tokens] #Filtering remove-terms logging.info('fromtokens_pipeline: Removed Special Terns') pre_process = [ ' '.join(doc) for doc in filtered_tokens] logging.info('fromtokens_pipeline END') return pre_process def frombatch_pipeline(self, batch): #TODO """@batch: a TensorFlow Dataset Batch""" pre_process = [ self.clean_punctuation( doc.decode("utf-8") ) for doc in batch] logging.info('frombatch_pipeline: clean punctuation') pre_process = [ self.split_camel_case_token(doc) for doc in pre_process] logging.info('frombatch_pipeline: camel case') pre_process = [ doc.lower() for doc in pre_process] logging.info('frombatch_pipeline: lowe case') pre_process = [ doc.strip() for doc in pre_process] # Leading whitepsace are removed logging.info('frombatch_pipeline: white space removed') pre_process_tokens = [ nltk.WordPunctTokenizer().tokenize(doc) for doc in pre_process] logging.info('frombatch_pipeline: WordPunctTokenizer') filtered_tokens = [ self.stop_words(doc) for doc in pre_process_tokens] #Stop Words logging.info('frombatch_pipeline: Stop words') filtered_tokens = [ self.stemmer(doc) for doc in filtered_tokens] #Filtering Stemmings logging.info('frombatch_pipeline: Stemmings') filtered_tokens = [ self.remove_terms(doc) for doc in filtered_tokens] #Filtering remove-terms logging.info('frombatch_pipeline: Removed Special Terns') #pre_process = [ ' '.join(doc) for doc in filtered_tokens] logging.info('frombatch_pipeline [END]') return filtered_tokens def fromtensor_pipeline(self, ts_x): """@ts_x: es un elemento del tensor""" #TODO pre_process = self.clean_punctuation(ts_x) pre_process = self.split_camel_case_token(pre_process) pre_process = pre_process.lower() pre_process = pre_process.strip() pre_process = nltk.WordPunctTokenizer().tokenize(pre_process) filtered_tokens = self.stop_words(pre_process) filtered_tokens = self.stemmer(filtered_tokens) filtered_tokens = self.remove_terms(filtered_tokens) pre_process = ' '.join(filtered_tokens) logging.info('fromtokens_pipeline END') return pre_process def SaveCorpus(self, df, language='js', sep=',', mode='a'): timestamp = datetime.timestamp(datetime.now()) path_to_link = self.params['saving_path'] + '['+ self.params['system'] + '-' + language + '-{}].csv'.format(timestamp) df.to_csv(path_to_link, header=True, index=True, sep=sep, mode=mode) logging.info('Saving in...' + path_to_link) pass def LoadCorpus(self, timestamp, language='js', sep=',', mode='a'): path_to_link = self.params['saving_path'] + '['+ self.params['system'] + '-' + language + '-{}].csv'.format(timestamp) return
pd.read_csv(path_to_link, header=0, index_col=0, sep=sep)
pandas.read_csv
# -*- coding: utf-8 -*- """IATI_DFID_DATA.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1jkrOj2Ma_W14Tjh6bOuDaKVHfAQKZz8H # This code pulls in a CSV file on DFID's work in Uganda, which has been produced using the IATI data standard, chooses the specific fields (columns) that I want to work on, and exports it to an Excel sheet for ease of use. This is the the full pandas code. It's broken down into sections below. """ # this imports pandas and renames it as pd import pandas as pd # this fetches the CSV file from a URL and reads the contents datadoc =
pd.read_csv("https://raw.githubusercontent.com/sj21446/IATI_data/master/DFID_Uganda_current_activities_04062020.csv")
pandas.read_csv
import numpy as np import pandas as pd from lib import pandas_option as pd_op from lib import repository def save_entry(date, side, price): sql = "insert into backtest_entry values('{date}','{side}',{price},0)" \ .format(date=date, side=side, price=price) repository.execute(database=database, sql=sql, log=False) volume_ma = 10 diff_ratio = 2 back_min = 5 print("----------------------------------------------") print("volume_ma", volume_ma, "diff_ratio", diff_ratio, "back_min", back_min) asset = 1000000 database = "tradingbot" sql = "truncate backtest_entry" repository.execute(database=database, sql=sql, log=False) pd_op.display_max_columns() pd_op.display_round_down() sql = """ select b2.Date as date, b3.Close as fr_Price, b2.Close as to_Price, b1.Volume as v1, b2.Volume as v2, b1.Date as bb1, b2.Date as bb2, b3.Date as bb3 from bitflyer_btc_ohlc_1M b1 inner join bitflyer_btc_ohlc_1M b2 on (b1.Date + interval 1 minute) = b2.Date inner join bitflyer_btc_ohlc_1M b3 on (b3.Date + interval {back_min} minute) = b2.Date order by Date """.format(back_min=back_min) be = repository.read_sql(database=database, sql=sql) df = be["v1"] sma = df.rolling(volume_ma).mean()[:volume_ma] be["v1_ma"] =
pd.concat([sma, df[volume_ma:]])
pandas.concat
""" Test parameters i.e. sample data, known past errors, etc. """ from functools import lru_cache from pathlib import Path from traceback import print_tb from typing import List import geopandas as gpd import numpy as np import pandas as pd import pytest from click.testing import Result from hypothesis.strategies import floats, integers, tuples from shapely.geometry import ( LineString, MultiLineString, MultiPolygon, Point, Polygon, box, ) from shapely.wkt import loads from fractopo import general from fractopo.analysis import length_distributions, parameters from fractopo.general import ( CC_branch, CI_branch, E_node, I_node, II_branch, X_node, Y_node, bounding_polygon, determine_azimuth, read_geofile, ) from fractopo.tval import trace_validation from fractopo.tval.trace_validators import ( GeomNullValidator, GeomTypeValidator, MultiJunctionValidator, MultipleCrosscutValidator, SharpCornerValidator, StackedTracesValidator, TargetAreaSnapValidator, UnderlappingSnapValidator, VNodeValidator, ) from tests import trace_builder from tests.sample_data.py_samples.samples import ( results_in_false_positive_stacked_traces_list, results_in_false_positive_underlapping_ls, results_in_multijunction_why_ls_list, results_in_multijunction_why_ls_list_2, results_in_overlapping_ls_list, should_result_in_multij_ls_list, should_result_in_some_error_ls_list, should_result_in_target_area_underlapping_ls, should_result_in_target_area_underlapping_poly, should_result_in_vnode_ls_list, v_node_network_error_ls_list, ) GEOMETRY_COLUMN = trace_validation.Validation.GEOMETRY_COLUMN ERROR_COLUMN = trace_validation.Validation.ERROR_COLUMN SNAP_THRESHOLD = 0.001 SNAP_THRESHOLD_ERROR_MULTIPLIER = 1.1 AREA_EDGE_SNAP_MULTIPLIER = 5 def click_error_print(result: Result): """ Print click result traceback. """ if result.exit_code == 0: return assert result.exc_info is not None _, _, tb = result.exc_info # print(err_class, err) print_tb(tb) print(result.output) raise Exception(result.exception) class Helpers: """ Parameters for tests. """ valid_geom = LineString(((0, 0), (1, 1))) invalid_geom_empty = LineString() invalid_geom_none = None invalid_geom_multilinestring = MultiLineString( [((0, 0), (1, 1)), ((-1, 0), (1, 0))] ) mergeable_geom_multilinestring = MultiLineString( [((0, 0), (1, 1)), ((1, 1), (2, 2))] ) ( valid_traces, invalid_traces, valid_areas_geoseries, invalid_areas_geoseries, ) = trace_builder.main(False, SNAP_THRESHOLD, SNAP_THRESHOLD_ERROR_MULTIPLIER) valid_error_srs =
pd.Series([[] for _ in valid_traces.geometry.values])
pandas.Series
# FLOWDO # FlowDo is an application created for the purpose of managing business activities like Inventory Maintenance, Billing, Sales analysis and other business functions. # Developed by: # <NAME> (@Moulishankar10) # <NAME> (@ToastCoder) # REQUIRED MODULES import numpy as np import pandas as pd from datetime import datetime import matplotlib.pyplot as plt # VISUALIZER FUNCTIONS: # Used to display keymaps for main menu and every submenu # LIST OF KEYMAPS TO BE DISPLAYED IN MAIN MENU def mainOptionsVisualizer(): print(""" \n******************************************** MAIN MENU ***********************************************\n Press 1 to take a New Order Press 2 to explore the Revenue options Press 3 to explore the Inventory properties Press 9 for exit \n******************************************************************************************************\n """) # LIST OF KEYMAPS TO BE DISPLAYED IN ORDER OPTIONS def orderOptionsVisualizer(): print(""" \n******************************************** ORDER MENU **********************************************\n Press 1 to add a new product Press 2 to remove a product Press 3 to view the bill Press 4 to modify your order Press 5 to proceed your order Press 9 for exit \n******************************************************************************************************\n """) # LIST OF KEYMAPS TO BE DISPLAYED IN REVENUE OPTIONS def revenueOptionsVisualizer(): print(""" \n******************************************* REVENUE MENU *********************************************\n Press 1 to view the Revenue Database Press 2 to view a Month's Total Revenue Press 3 to view the product which generated the Maximum Profit in any month Press 4 to view the product which generated the Minimum Profit in any month Press 5 to view the Revenue Trend Graph for any year Press 9 for exit \n******************************************************************************************************\n """) # LIST OF KEYMAPS TO BE DISPLAYED IN INVENTORY OPTIONS def inventoryOptionsVisualizer(): print(""" \n****************************************** INVENTORY MENU *********************************************\n Press 1 to view the Stock Inventory Press 2 to add a new product to your inventory Press 3 to remove a product from your inventory Press 4 to modify the properties of existing products Press 9 for exit \n*******************************************************************************************************\n """) # USED TO CHECK IF THE COLUMN FOR THE MONTH IS CREATED OR NOT def revMonthChecker(): today = datetime.now() frmt = today.strftime('%m-%Y') rev_data = pd.read_csv('data/revenue.csv') header = list(rev_data.columns) if frmt not in header: x = [0]*len(rev_data) rev_data[frmt] = x rev_data.to_csv("data/revenue.csv", index = False) # CLASS FOR BILLING OPERATIONS class Biller: def __init__(self,l): self.prod_name=[] self.quantity=[] self.price=[] self.total_price=[] self.limit=l self.ordered = False self.item_selected = False def isFull(self): return len(self.prod_name) == self.limit def isEmpty(self): return len(self.prod_name) == 0 # FUNCTION TO ADD A NEW PRODUCT TO THE BILL def enqueue(self,ele,qn): if self.isFull(): print("\nMaximum limit reached !") elif ele.upper() in self.prod_name: print(f"\n!! '{ele.upper()}' is already in the ordered list !!") print("\n--- Please refer the 'ORDER MENU' to modify the ordered items ---\n") else: inv_data = pd.read_csv('data/inventory.csv') flag = 0 for i in range(len(inv_data)): flag = 0 if inv_data["Product_Name"][i] == ele.upper(): if qn.isnumeric() == True: if int(qn) <= inv_data["Available_Stock"][i]: self.prod_name.append(ele.upper()) self.quantity.append(int(qn)) self.price.append(inv_data["Selling_Price"][i]) self.item_selected = True print("\n>>>>>>>> Product is Added to the Order <<<<<<<<\n") break else: print("\n!! Sorry for the inconvenience... Your required product is Out of Stock !!") break else: print("\n!! Invalid Amount of Quantity !!") break else: flag = 1 if flag == 1: print("\n!! Unavailable Product or Invalid Product !!") # FUNCTION TO REMOVE A PRODUCT FROM THE BILL def remove(self): if self.isEmpty(): print("\n!!! You haven't ordered any product(s) yet to remove !!!\n") else: ele = input("\nEnter the product name : ").upper() if ele in self.prod_name: ind = self.prod_name.index(ele) del self.prod_name[ind] del self.quantity[ind] del self.price[ind] del self.total_price[ind] print("\n>>>>>>>> Product is Removed from the Order <<<<<<<<\n") else: print("\n!!! The Specified Product is not in the Order !!!\n") # FUNCTION TO DISPLAY CONTENTS OF THE BILL def display(self): if self.isEmpty(): print("\n!!! You haven't ordered any product(s) yet to generate bill !!!\n") else: self.total_price = list(np.array(self.quantity)*np.array(self.price)) form = {'Product Name':self.prod_name,'Quantity':self.quantity,'Cost(1)':self.price,'Total Cost':self.total_price} res = pd.DataFrame(form) res.index=list(range(1,len(self.prod_name)+1)) print(res) print("\n=============================================================\n") print(f"Total Items : {len(self.prod_name)}") print(f"Total Quantities : {sum(self.quantity)}") print(f"Grand Total : Rs.{sum(self.total_price)}") print("\n=============================================================\n") # FUNCTION TO MODIFY A PRODUCT NAME OR QUANTITY IN THE BILL def modify(self): if self.isEmpty(): print("\n!!! You haven't ordered any product(s) yet to modify !!!\n") else: ele = input("\nEnter the product name : ").upper() if ele in self.prod_name: ind = self.prod_name.index(ele.upper()) key = int(input("\n Press 1 to modify the product name ..... \n\n Press 2 to modify the quantity .....\n\nYour Option : ")) if key == 1: self.prod_name[ind] = input("\nEnter the new product name : ").upper() elif key == 2: self.quantity[ind] = int(input("\nEnter the new amount of quantity : ")) print("\n>>>>>>>> Updated the Order <<<<<<<<\n") else: print("\n!!! The Specified Product is not in the Order !!!\n") # FUNCTION TO PERFORM THE POST PROCESSING ACTIVITIES ONCE THE BILL IS CONFIRMED def postProcessor(self): today = datetime.now() frmt = today.strftime('%m-%Y') inv_data = pd.read_csv('data/inventory.csv') rev_data = pd.read_csv("data/revenue.csv") for i in range(len(inv_data)): for j in range(len(self.prod_name)): if inv_data["Product_Name"][i] == self.prod_name[j]: inv_data["Available_Stock"][i] -= self.quantity[j] inv_data.to_csv('data/inventory.csv', index=False) for i in range(len(rev_data)): for j in range(len(self.prod_name)): if rev_data["Product_Name"][i] == self.prod_name[j]: rev_data[str(frmt)][i] += self.total_price[j] rev_data.to_csv('data/revenue.csv', index=False) self.ordered = True print("\n\n\n -------- Updated the Inventory Data ! -------- \n") #INDIVIDUAL FUNCTIONS USED IN REVENUE SUB MENU month = ["January","February","March","April","May","June","July","August","September","October","November","December"] # FUNCTION TO VIEW THE REVENUE DATABASE def viewRevenue(): rev_data = pd.read_csv('data/revenue.csv') print("\n------------------------------------------ REVENUE DATABASE --------------------------------------------\n\n",rev_data.to_string(index=False)) # FUNCTION TO DISPLAY THE REVENUE GENERATED BY THIS MONTH def viewMonthRevenue(): rev_data = pd.read_csv('data/revenue.csv') frmt = input("\nEnter the time period (MM-YYYY) : ") if frmt[:2] in ['01','02','03','04','05','06','07','08','09','10','11','12'] and frmt in rev_data.columns: month_revenue = sum(list(rev_data[frmt])) print(f"\n The revenue generated in {month[int(frmt[:2])-1]} {int(frmt[-4:])} -- Rs.{month_revenue}") else: print("\n!!!! Invalid Time Period or Non-Entried Time Period !!!!\n") # FUNCTION TO DISPLAY THE MAXIMUM PROFIT GENERATED PRODUCTS def maxProfit(): rev_data = pd.read_csv('data/revenue.csv') frmt = input("\nEnter the time period (MM-YYYY) : ") if frmt[:2] in ['01','02','03','04','05','06','07','08','09','10','11','12'] and frmt in rev_data.columns: if list(rev_data[frmt]) == [0 for i in range(len(rev_data))]: today = datetime.now() if frmt[:2] == today.strftime('%m'): print(f"\n\n!! No Products are sold in {month[int(frmt[:2])-1]} {int(frmt[-4:])} !!\n") else: print(f"\n\n!! No Products were sold in {month[int(frmt[:2])-1]} {int(frmt[-4:])} !!\n") else: max_amt = max(list(rev_data[frmt])) print(f"\n The following product(s) generated the maximum profit on {month[int(frmt[:2])-1]} {int(frmt[-4:])} : \n") for i in range(len(rev_data)): if rev_data[frmt][i] == max_amt: print(" * {} - Rs.{}".format(rev_data["Product_Name"][i],max_amt)) else: print("\n\n!!!! Invalid Time Period or Non-Entried Time Period !!!!\n") # FUNCTION TO DISPLAY THE MINIMUM PROFIT GENERATED PRODUCTS def minProfit(): rev_data = pd.read_csv('data/revenue.csv') frmt = input("\nEnter the time period (MM-YYYY) : ") if frmt[:2] in ['01','02','03','04','05','06','07','08','09','10','11','12'] and frmt in rev_data.columns: if list(rev_data[frmt]) == [0 for i in range(len(rev_data))]: today = datetime.now() if frmt[:2] == today.strftime('%m'): print(f"\n\n!! No Products are sold in {month[int(frmt[:2])-1]} {int(frmt[-4:])} !!\n") else: print(f"\n\n!! No Products were sold in {month[int(frmt[:2])-1]} {int(frmt[-4:])} !!\n") else: min_amt = min(list(rev_data[frmt])) print(f"\n The following product(s) generated the least profit on {month[int(frmt[:2])-1]} {int(frmt[-4:])} : \n") for i in range(len(rev_data)): if rev_data[frmt][i] == min_amt: print(" * {} - Rs.{}".format(rev_data["Product_Name"][i],min_amt)) else: print("\n\n!!!! Invalid Time Period or Non-Entried Time Period !!!!\n") # FUNCTION TO VISUALIZE THE REVENUE GENERATED BY MONTHS THROUGH A GRAPH def viewRevenueGraph(): rev_data = pd.read_csv('data/revenue.csv') profits =[] months = [] year = input("\nEnter the Year (YYYY) : ") for i in rev_data.columns: if year in i: rev_data =
pd.read_csv("data/revenue.csv")
pandas.read_csv
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index[:2].droplevel(['three', 'one']) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) with pytest.raises(ValueError): index[:2].droplevel(['one', 'two', 'three']) with pytest.raises(KeyError): index[:2].droplevel(['one', 'four']) def test_drop_not_lexsorted(self): # GH 12078 # define the lexsorted version of the multi-index tuples = [('a', ''), ('b1', 'c1'), ('b2', 'c2')] lexsorted_mi = MultiIndex.from_tuples(tuples, names=['b', 'c']) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) df = df.pivot_table(index='a', columns=['b', 'c'], values='d') df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop('a'), not_lexsorted_mi.drop('a')) def test_insert(self): # key contained in all levels new_index = self.index.insert(0, ('bar', 'two')) assert new_index.equal_levels(self.index) assert new_index[0] == ('bar', 'two') # key not contained in all levels new_index = self.index.insert(0, ('abc', 'three')) exp0 = Index(list(self.index.levels[0]) + ['abc'], name='first') tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(self.index.levels[1]) + ['three'], name='second') tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ('abc', 'three') # key wrong length msg = "Item must have length equal to number of levels" with tm.assert_raises_regex(ValueError, msg): self.index.insert(0, ('foo2',)) left = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1]], columns=['1st', '2nd', '3rd']) left.set_index(['1st', '2nd'], inplace=True) ts = left['3rd'].copy(deep=True) left.loc[('b', 'x'), '3rd'] = 2 left.loc[('b', 'a'), '3rd'] = -1 left.loc[('b', 'b'), '3rd'] = 3 left.loc[('a', 'x'), '3rd'] = 4 left.loc[('a', 'w'), '3rd'] = 5 left.loc[('a', 'a'), '3rd'] = 6 ts.loc[('b', 'x')] = 2 ts.loc['b', 'a'] = -1 ts.loc[('b', 'b')] = 3 ts.loc['a', 'x'] = 4 ts.loc[('a', 'w')] = 5 ts.loc['a', 'a'] = 6 right = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1], ['b', 'x', 2], ['b', 'a', -1], ['b', 'b', 3], ['a', 'x', 4], ['a', 'w', 5], ['a', 'a', 6]], columns=['1st', '2nd', '3rd']) right.set_index(['1st', '2nd'], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right['3rd']) # GH9250 idx = [('test1', i) for i in range(5)] + \ [('test2', i) for i in range(6)] + \ [('test', 17), ('test', 18)] left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[('test', 17)] = 11 left.loc[('test', 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_take_preserve_name(self): taken = self.index.take([3, 0, 1]) assert taken.names == self.index.names def test_take_fill_value(self): # GH 12631 vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) result = idx.take(np.array([1, 0, -1])) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), (np.nan, pd.NaT)] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) def take_invalid_kwargs(self): vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') @pytest.mark.parametrize('other', [Index(['three', 'one', 'two']), Index(['one']), Index(['one', 'three'])]) def test_join_level(self, other, join_type): join_index, lidx, ridx = other.join(self.index, how=join_type, level='second', return_indexers=True) exp_level = other.join(self.index.levels[1], how=join_type) assert join_index.levels[0].equals(self.index.levels[0]) assert join_index.levels[1].equals(exp_level) # pare down levels mask = np.array( [x[1] in exp_level for x in self.index], dtype=bool) exp_values = self.index.values[mask] tm.assert_numpy_array_equal(join_index.values, exp_values) if join_type in ('outer', 'inner'): join_index2, ridx2, lidx2 = \ self.index.join(other, how=join_type, level='second', return_indexers=True) assert join_index.equals(join_index2) tm.assert_numpy_array_equal(lidx, lidx2) tm.assert_numpy_array_equal(ridx, ridx2) tm.assert_numpy_array_equal(join_index2.values, exp_values) def test_join_level_corner_case(self): # some corner cases idx = Index(['three', 'one', 'two']) result = idx.join(self.index, level='second') assert isinstance(result, MultiIndex) tm.assert_raises_regex(TypeError, "Join.*MultiIndex.*ambiguous", self.index.join, self.index, level=1) def test_join_self(self, join_type): res = self.index joined = res.join(res, how=join_type) assert res is joined def test_join_multi(self): # GH 10665 midx = pd.MultiIndex.from_product( [np.arange(4), np.arange(4)], names=['a', 'b']) idx = pd.Index([1, 2, 5], name='b') # inner jidx, lidx, ridx = midx.join(idx, how='inner', return_indexers=True) exp_idx = pd.MultiIndex.from_product( [np.arange(4), [1, 2]], names=['a', 'b']) exp_lidx = np.array([1, 2, 5, 6, 9, 10, 13, 14], dtype=np.intp) exp_ridx = np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=np.intp) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='inner', return_indexers=True) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # keep MultiIndex jidx, lidx, ridx = midx.join(idx, how='left', return_indexers=True) exp_ridx = np.array([-1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1], dtype=np.intp) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='right', return_indexers=True) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) def test_reindex(self): result, indexer = self.index.reindex(list(self.index[:4])) assert isinstance(result, MultiIndex) self.check_level_names(result, self.index[:4].names) result, indexer = self.index.reindex(list(self.index)) assert isinstance(result, MultiIndex) assert indexer is None self.check_level_names(result, self.index.names) def test_reindex_level(self): idx = Index(['one']) target, indexer = self.index.reindex(idx, level='second') target2, indexer2 = idx.reindex(self.index, level='second') exp_index = self.index.join(idx, level='second', how='right') exp_index2 = self.index.join(idx, level='second', how='left') assert target.equals(exp_index) exp_indexer = np.array([0, 2, 4]) tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False) assert target2.equals(exp_index2) exp_indexer2 = np.array([0, -1, 0, -1, 0, -1]) tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False) tm.assert_raises_regex(TypeError, "Fill method not supported", self.index.reindex, self.index, method='pad', level='second') tm.assert_raises_regex(TypeError, "Fill method not supported", idx.reindex, idx, method='bfill', level='first') def test_duplicates(self): assert not self.index.has_duplicates assert self.index.append(self.index).has_duplicates index = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[ [0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) assert index.has_duplicates # GH 9075 t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169), (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119), (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135), (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145), (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158), (u('x'), u('out'), u('z'), 16, u('y'), u('in'), u('z'), 122), (u('x'), u('out'), u('z'), 17, u('y'), u('in'), u('z'), 160), (u('x'), u('out'), u('z'), 18, u('y'), u('in'), u('z'), 180), (u('x'), u('out'), u('z'), 20, u('y'), u('in'), u('z'), 143), (u('x'), u('out'), u('z'), 21, u('y'), u('in'), u('z'), 128), (u('x'), u('out'), u('z'), 22, u('y'), u('in'), u('z'), 129), (u('x'), u('out'), u('z'), 25, u('y'), u('in'), u('z'), 111), (u('x'), u('out'), u('z'), 28, u('y'), u('in'), u('z'), 114), (u('x'), u('out'), u('z'), 29, u('y'), u('in'), u('z'), 121), (u('x'), u('out'), u('z'), 31, u('y'), u('in'), u('z'), 126), (u('x'), u('out'), u('z'), 32, u('y'), u('in'), u('z'), 155), (u('x'), u('out'), u('z'), 33, u('y'), u('in'), u('z'), 123), (u('x'), u('out'), u('z'), 12, u('y'), u('in'), u('z'), 144)] index = pd.MultiIndex.from_tuples(t) assert not index.has_duplicates # handle int64 overflow if possible def check(nlevels, with_nulls): labels = np.tile(np.arange(500), 2) level = np.arange(500) if with_nulls: # inject some null values labels[500] = -1 # common nan value labels = [labels.copy() for i in range(nlevels)] for i in range(nlevels): labels[i][500 + i - nlevels // 2] = -1 labels += [np.array([-1, 1]).repeat(500)] else: labels = [labels] * nlevels + [np.arange(2).repeat(500)] levels = [level] * nlevels + [[0, 1]] # no dups index = MultiIndex(levels=levels, labels=labels) assert not index.has_duplicates # with a dup if with_nulls: def f(a): return np.insert(a, 1000, a[0]) labels = list(map(f, labels)) index = MultiIndex(levels=levels, labels=labels) else: values = index.values.tolist() index = MultiIndex.from_tuples(values + [values[0]]) assert index.has_duplicates # no overflow check(4, False) check(4, True) # overflow possible check(8, False) check(8, True) # GH 9125 n, k = 200, 5000 levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)] labels = [np.random.choice(n, k * n) for lev in levels] mi = MultiIndex(levels=levels, labels=labels) for keep in ['first', 'last', False]: left = mi.duplicated(keep=keep) right = pd._libs.hashtable.duplicated_object(mi.values, keep=keep) tm.assert_numpy_array_equal(left, right) # GH5873 for a in [101, 102]: mi = MultiIndex.from_arrays([[101, a], [3.5, np.nan]]) assert not mi.has_duplicates with warnings.catch_warnings(record=True): # Deprecated - see GH20239 assert mi.get_duplicates().equals(MultiIndex.from_arrays( [[], []])) tm.assert_numpy_array_equal(mi.duplicated(), np.zeros( 2, dtype='bool')) for n in range(1, 6): # 1st level shape for m in range(1, 5): # 2nd level shape # all possible unique combinations, including nan lab = product(range(-1, n), range(-1, m)) mi = MultiIndex(levels=[list('abcde')[:n], list('WXYZ')[:m]], labels=np.random.permutation(list(lab)).T) assert len(mi) == (n + 1) * (m + 1) assert not mi.has_duplicates with warnings.catch_warnings(record=True): # Deprecated - see GH20239 assert mi.get_duplicates().equals(MultiIndex.from_arrays( [[], []])) tm.assert_numpy_array_equal(mi.duplicated(), np.zeros( len(mi), dtype='bool')) def test_duplicate_meta_data(self): # GH 10115 index = MultiIndex( levels=[[0, 1], [0, 1, 2]], labels=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) for idx in [index, index.set_names([None, None]), index.set_names([None, 'Num']), index.set_names(['Upper', 'Num']), ]: assert idx.has_duplicates assert idx.drop_duplicates().names == idx.names def test_get_unique_index(self): idx = self.index[[0, 1, 0, 1, 1, 0, 0]] expected = self.index._shallow_copy(idx[[0, 1]]) for dropna in [False, True]: result = idx._get_unique_index(dropna=dropna) assert result.unique tm.assert_index_equal(result, expected) @pytest.mark.parametrize('names', [None, ['first', 'second']]) def test_unique(self, names): mi = pd.MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names) tm.assert_index_equal(res, exp) mi = pd.MultiIndex.from_arrays([list('aaaa'), list('abab')], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([list('aa'), list('ab')], names=mi.names) tm.assert_index_equal(res, exp) mi = pd.MultiIndex.from_arrays([list('aaaa'), list('aaaa')], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([['a'], ['a']], names=mi.names) tm.assert_index_equal(res, exp) # GH #20568 - empty MI mi = pd.MultiIndex.from_arrays([[], []], names=names) res = mi.unique() tm.assert_index_equal(mi, res) @pytest.mark.parametrize('level', [0, 'first', 1, 'second']) def test_unique_level(self, level): # GH #17896 - with level= argument result = self.index.unique(level=level) expected = self.index.get_level_values(level).unique() tm.assert_index_equal(result, expected) # With already unique level mi = pd.MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) tm.assert_index_equal(result, expected) # With empty MI mi = pd.MultiIndex.from_arrays([[], []], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) def test_unique_datetimelike(self): idx1 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-01', '2015-01-01', 'NaT', 'NaT']) idx2 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-02', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]).unique() eidx1 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', 'NaT', 'NaT']) eidx2 = pd.DatetimeIndex(['2015-01-01', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') exp = pd.MultiIndex.from_arrays([eidx1, eidx2]) tm.assert_index_equal(result, exp) def test_tolist(self): result = self.index.tolist() exp = list(self.index.values) assert result == exp def test_repr_with_unicode_data(self): with pd.core.config.option_context("display.encoding", 'UTF-8'): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} index = pd.DataFrame(d).set_index(["a", "b"]).index assert "\\u" not in repr(index) # we don't want unicode-escaped def test_repr_roundtrip(self): mi = MultiIndex.from_product([list('ab'), range(3)], names=['first', 'second']) str(mi) if PY3: tm.assert_index_equal(eval(repr(mi)), mi, exact=True) else: result = eval(repr(mi)) # string coerces to unicode tm.assert_index_equal(result, mi, exact=False) assert mi.get_level_values('first').inferred_type == 'string' assert result.get_level_values('first').inferred_type == 'unicode' mi_u = MultiIndex.from_product( [list(u'ab'), range(3)], names=['first', 'second']) result = eval(repr(mi_u)) tm.assert_index_equal(result, mi_u, exact=True) # formatting if PY3: str(mi) else: compat.text_type(mi) # long format mi = MultiIndex.from_product([list('abcdefg'), range(10)], names=['first', 'second']) if PY3: tm.assert_index_equal(eval(repr(mi)), mi, exact=True) else: result = eval(repr(mi)) # string coerces to unicode tm.assert_index_equal(result, mi, exact=False) assert mi.get_level_values('first').inferred_type == 'string' assert result.get_level_values('first').inferred_type == 'unicode' result = eval(repr(mi_u)) tm.assert_index_equal(result, mi_u, exact=True) def test_str(self): # tested elsewhere pass def test_unicode_string_with_unicode(self): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} idx = pd.DataFrame(d).set_index(["a", "b"]).index if PY3: str(idx) else: compat.text_type(idx) def test_bytestring_with_unicode(self): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} idx =
pd.DataFrame(d)
pandas.DataFrame
''' Created on Aug 28, 2018 @author: cef object handlers for the fdmg tab ''' #=============================================================================== # # IMPORT STANDARD MODS ------------------------------------------------------- #=============================================================================== import logging, re #os, sys, imp, time, re, math, copy, inspect import pandas as pd import numpy as np #import scipy.integrate #from collections import OrderedDict #=============================================================================== # IMPORT CUSTOM MODS --------------------------------------------------------- #=============================================================================== import hp.pd import hp.data mod_logger = logging.getLogger(__name__) mod_logger.debug('initilized') class Fdmgo_data_wrap(object): #generic methods for Fdmg data objects def clean_binv_data(self, df_raw): #generic cleaning for binv style data #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('clean_binv_data') binv_df = self.parent.kids_d['binv'].childmeta_df if self.db_f: if not isinstance(binv_df, pd.DataFrame): raise IOError if not len(binv_df) > 0: raise IOError #try and drop the FID column df = df_raw.drop('FID', axis=1, errors = 'ignore') df = df.drop('rank', axis=1, errors = 'ignore') #switch the index to the mind df.loc[:,self.mind] = df.loc[:,self.mind].astype(int) #change the type df2 = df.set_index(self.mind).sort_index() #=================================================================== # slice for the binv #=================================================================== boolind = np.isin(df2.index, binv_df.index) df3 = df2[boolind] if self.db_f: if not boolind.sum() == len(binv_df): boolind2 = np.isin(binv_df.index, df2.index) logger.error('failed to find %i entries specified in the binv: \n %s' %(len(binv_df) - boolind.sum(),binv_df.index[~boolind2].values.tolist())) raise IOError #check data trimming? logger.debug('dropped %i (of %i) not found in teh binv to get %s'% (len(df2) - len(df3), len(df2), str(df3.shape))) return df3 def check_binv_data(self, df): #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('check_binv_data') binv_df = self.parent.kids_d['binv'].childmeta_df #null check if np.any(pd.isnull(df)): logger.error('got %i nulls'%pd.isnull(df).sum().sum()) logger.debug('\n %s'%df[pd.isnull(df).sum(axis=1)==1]) raise IOError #length check if not len(df) == len(binv_df): logger.error('my data length (%i) does not match the binv length (%i)'%(len(df), len(binv_df))) raise IOError #check for index match if not np.all(df.index == binv_df.index): raise IOError def apply_on_binv(self, #apply the passed key data to the binv data_attn, hse_attn, coln = None ): #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('apply_on_binv') if coln is None: coln = hse_attn #assume this is how the data is labeld df = getattr(self, data_attn) binv = self.model.binv if self.db_f: if not isinstance(df, pd.DataFrame): raise IOError if not coln in df.columns: raise IOError ser = df.loc[:, coln] """ type(ser) """ logger.debug('from \'%s\' with %s applied to \'%s\''% (data_attn, str(df.shape), hse_attn)) #======================================================================= # mid session dynamic update to the objects #======================================================================= if not self.session.state == 'init': #======================================================================= # tell teh binv to update its houses #======================================================================= binv.set_all_hse_atts(hse_attn, ser = ser) #======================================================================= # pre run just update the binv_df #======================================================================= else: if self.db_f: binv_df = binv.childmeta_df.copy() if not np.all(binv_df.index == ser.index): raise IOError binv.childmeta_df.loc[:,hse_attn] = ser logger.debug('merged %i entries for \'%s\' onto the binv_df %s' %(len(ser), hse_attn, str(binv.childmeta_df.shape))) return class Rfda_curve_data(#class object for rfda legacy pars hp.data.Data_wrapper, hp.oop.Child): 'made this a class for easy tracking/nesting of parameters' def __init__(self, *vars, **kwargs): super(Rfda_curve_data, self).__init__(*vars, **kwargs) #initilzie teh baseclass self.load_data() self.logger.debug('fdmg.Rfda_curve_data initilized') def load_data(self): #load legacy pars from the df #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('load_data') #test pars if self.session._parlo_f: test_trim_row = self.test_trim_row else: test_trim_row = None self.filepath = self.get_filepath() #load from file df_raw = hp.pd.load_xls_df(self.filepath, logger=logger, test_trim_row = test_trim_row, header = 0, index_col = None) self.data = df_raw logger.debug('attached rfda_curve with %s'%str(self.data.shape)) class Dfeat_tbl( #holder/generator fo all the dmg_feats hp.data.Data_wrapper, hp.sim.Sim_o, hp.oop.Parent, hp.oop.Child): """ holder/generator fo all the dmg_feats """ #=========================================================================== # progran pars #=========================================================================== extra_hse_types = ['AD'] #always load these house types def __init__(self, *vars, **kwargs): logger = mod_logger.getChild('Dfeat_tbl') logger.debug('start _init_ ') self.inherit_parent_ans=set(['mind']) super(Dfeat_tbl, self).__init__(*vars, **kwargs) #initilzie teh baseclass #======================================================================= # properties #======================================================================= import fdmg.scripts self.kid_class = fdmg.scripts.Dmg_feat #mannually pass/attach this if self.session.wdfeats_f: #only bother if we're using dfeats logger.debug('load_data() \n') self.load_data() self.logger.debug('fdmg.Dfeat_tbl initilized') if self.db_f: if self.model is None: raise IOError def load_data(self): #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('load_data') #test pars if self.session._parlo_f: test_trim_row = self.test_trim_row else: test_trim_row = None self.filepath = self.get_filepath() #load from file df_dict = hp.pd.load_xls_df(self.filepath, logger=logger, test_trim_row = test_trim_row, skiprows = [1],header = 0, index_col = None, sheetname=None) 'wrong function?' 'todo: add some template check' for tabname, df_raw in df_dict.iteritems(): #======================================================================= # send for cleaning #======================================================================= df_clean = self.clean_df(df_raw) #rewrite this df_dict[tabname] = df_clean logger.debug('loaded dynamic danage curve table for %s with %s'%(tabname, str(df_clean.shape))) self.df_dict = df_dict self.data = None #======================================================================= # wrap up #======================================================================= if self.session._write_ins: _ = hp.basic.copy_file(self.filepath,self.session.inscopy_path) logger.debug('attached df_dict with %i entries'%len(df_dict)) def clean_df(self, df_raw): #custom cleaner logger = self.logger.getChild('clean_df') df1 = self.generic_clean_df(df_raw) df2 = df1.dropna(how = 'all', axis='columns') #drop columns where ANY values are na #drop the 'note' column from the frame df3 = df2.drop('note', axis=1, errors='ignore') #======================================================================= # exclude small dfeats #======================================================================= if self.model.dfeat_xclud_price > 0: boolidx = df3['base_price'] <= self.model.dfeat_xclud_price df4 = df3.loc[~boolidx,:] #trim to just these if boolidx.sum() > 0: logger.warning('trimmed %i (of %i) dfeats below %.2f '%(boolidx.sum(), len(df3), self.model.dfeat_xclud_price)) """ hp.pd.v(df4.sort_values('base_price')) hp.pd.v(df3.sort_values('base_price')) """ else: df4 = df3 'todo: drop any columns where name == np.nan' df_clean = df4 hp.pd.cleaner_report(df_raw, df_clean, logger = logger) #======================================================================= # #post formatters #======================================================================= df_clean.loc[:,'depth'] = df_clean['depth_dflt'].values #duplicate this column """ This is throwing the SettingWithCopy warning. Tried for 20mins to figure this out, but couldnt find any chained indexing. """ df_clean.loc[:,'calc_price'] = np.nan #add this as a blank column return df_clean """ df_clean._is_view df_clean.values.base hp.pd.v(df_clean) self.name """ def raise_all_dfeats(self): #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('raise_all_dfeats') d = self.df_dict dfeats_d = dict() #container of containers #======================================================================= # get the list of house types provided in teh binv #======================================================================= hse_types_l = set(self.parent.kids_d['binv'].hse_types_l) #pull from binv hse_types_l.update(self.extra_hse_types) #add the extras """ self.parent.kids_d.keys() """ #======================================================================= # load all the dfeats for this #======================================================================= logger.debug('on %i house types: %s \n'%(len(d), d.keys())) for hse_type, df in d.iteritems(): if not hse_type in hse_types_l: logger.debug(' hse_type = \'%s\' not found in the binv. skipping'%hse_type) continue #get all teh place codes place_codes_l = df['place_code'].unique().tolist() #=================================================================== # raise children on each of these #=================================================================== logger.debug('building set for hse_type = \'%s\' with %i place_codes \n'%(hse_type, len(place_codes_l))) cnt = 0 for place_code in place_codes_l: tag = hse_type + place_code #unique tag #get this metadata boolidx = df['place_code'] == place_code df_slice = df[boolidx].reset_index(drop=True) 'need thsi so the dfloc aligns' """ hp.pd.v(df_slice) df_slice.columns import pandas as pd pd.reset_option('all') pd.get_option("display.max_rows") pd.get_option("display.max_columns") pd.set_option("display.max_columns", 6) d.keys() d['AD'] """ #spawn this subset logger.debug('for \'%s\' raising children from %s'%(tag, str(df_slice.shape))) #run teh generic child raiser for all dfeats of this type 'raise these as shadow children' dfeats_d[tag] = self.raise_children_df( df_slice, kid_class = self.kid_class, dup_sibs_f = True, shadow = True) logger.debug('finished with %i dfeats on tag \'%s\''%(len(dfeats_d[tag]), tag)) cnt += len(dfeats_d[tag]) logger.debug('finish loop \'%s\' with %i'%(hse_type, len(dfeats_d))) logger.debug("finished with %i dfeats in %i sets raised: %s \n"%(cnt, len(dfeats_d), dfeats_d.keys())) return dfeats_d class Flood_tbl( #flood table worker hp.data.Data_wrapper, hp.oop.Child, Fdmgo_data_wrap): #=========================================================================== # program #=========================================================================== expected_tabn = ['wet', 'dry', 'aprot'] #=========================================================================== # from user #=========================================================================== na_value = None #extra value to consider as null min_chk = 800 #minimum value to pass through checking max_chk = 2000 #maximumv alue to allow through checking wetnull_code = 'take_wet' wetdry_tol = 0.1 damp_build_code = 'average' #area exposure grade area_egrd00 = None area_egrd01 = None area_egrd02 = None #=========================================================================== # calculated #=========================================================================== aprot_df = None def __init__(self, *vars, **kwargs): logger = mod_logger.getChild('Flood_tbl') logger.debug('start _init_') super(Flood_tbl, self).__init__(*vars, **kwargs) #initilzie teh baseclass #======================================================================= # custom atts #======================================================================= self.mind = self.parent.mind self.model = self.parent self.wsl_d = dict() logger.debug('load_data() \n') self.load_data() #execute the standard data loader self.treat_wetnull() self.wetdry_logic_fix() self.build_damp() if self.db_f: self.check_data() """ NO! only want the named flood table to set this self.set_area_prot_lvl()""" logger.debug('finish _init_ \n') return def load_data(self): logger = self.logger.getChild('load_data') self.filepath = self.get_filepath() d = self.loadr_real(self.filepath, multi = True) #======================================================================= # sort and attach #======================================================================= for k, v in d.iteritems(): logger.debug('sending \'%s\' for cleaning'%k) df1 = self.clean_binv_data(v) if k in ['dry', 'wet']: df2 = self.wsl_clean(df1) self.wsl_d[k] = df2 elif k == 'aprot': self.aprot_df = df1.astype(np.int) else: logger.error('got unexpected tab name \'%s\''%k) raise IOError return def wsl_clean(self, df_raw): logger = self.logger.getChild('wsl_clean') #=================================================================== # headers #=================================================================== #reformat columns try: df_raw.columns = df_raw.columns.astype(int) #reformat the aeps as ints except: logger.error('failed to recast columns as int: \n %s'%(df_raw.columns)) raise IOError #sort the columns df2 = df_raw.reindex(columns = sorted(df_raw.columns)) #reformat values df2 = df2.astype(float) #======================================================================= # clean the user provided null #======================================================================= if not self.na_value is None: boolar = df2.values == self.na_value df2[boolar] = np.nan logger.warning('for set %i user identified values to null with \'%s\''% (boolar.sum().sum(), self.na_value)) """not working for some reason hp.pd.cleaner_report(df_raw, df2)""" logger.debug('cleaned to %s'%str(df2.shape)) return df2 def treat_wetnull(self): #apply the wetnull_code algorhitim to the dry #======================================================================= # defaults #======================================================================= logger = self.logger.getChild('treat_wetnull') dfwet = self.wsl_d['wet'] dfdry = self.wsl_d['dry'] dfwet_raw = dfwet.copy() dfdry_raw = dfdry.copy() #======================================================================= # precheck #======================================================================= if self.db_f: if np.any(pd.isnull(dfdry)): logger.error('got %i null values for dfdry'%pd.isnull(dfdry).sum().sum()) logger.debug('%s'%pd.isnull(dfdry).sum(axis=0)) logger.debug('%s'%
pd.isnull(dfdry)
pandas.isnull
""" I/O functions of the aecg package: tools for annotated ECG HL7 XML files This module implements helper functions to parse and read annotated electrocardiogram (ECG) stored in XML files following HL7 specification. See authors, license and disclaimer at the top level directory of this project. """ # Imports ===================================================================== from typing import Dict, Tuple from lxml import etree from aecg import validate_xpath, new_validation_row, VALICOLS, \ TIME_CODES, SEQUENCE_CODES, \ Aecg, AecgLead, AecgAnnotationSet import copy import logging import pandas as pd import re import zipfile # Python logging ============================================================== logger = logging.getLogger(__name__) def parse_annotations(xml_filename: str, zip_filename: str, aecg_doc: etree._ElementTree, aecgannset: AecgAnnotationSet, path_prefix: str, annsset_xmlnode_path: str, valgroup: str = "RHYTHM", log_validation: bool = False) -> Tuple[ AecgAnnotationSet, pd.DataFrame]: """Parses `aecg_doc` XML document and extracts annotations Args: xml_filename (str): Filename of the aECG XML file. zip_filename (str): Filename of zip file containint the aECG XML file. If '', then xml file is not stored in a zip file. aecg_doc (etree._ElementTree): XML document of the aECG XML file. aecgannset (AecgAnnotationSet): Annotation set to which append found annotations. path_prefix (str): Prefix of xml path from which start searching for annotations. annsset_xmlnode_path (str): Path to xml node of the annotation set containing the annotations. valgroup (str, optional): Indicates whether to search annotations in rhythm or derived waveform. Defaults to "RHYTHM". log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Tuple[AecgAnnotationSet, pd.DataFrame]: Annotation set updated with found annotations and dataframe with results of validation. """ anngrpid = 0 # Annotations stored within a beat beatnodes = aecg_doc.xpath(( path_prefix + "/component/annotation/code[@code=\'MDC_ECG_BEAT\']").replace( '/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) beatnum = 0 valpd = pd.DataFrame() if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {len(beatnodes)} annotated beats found') for beatnode in beatnodes: for rel_path in ["../component/annotation/" "code[contains(@code, \"MDC_ECG_\")]"]: annsnodes = beatnode.xpath(rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotation code valrow2 = validate_xpath( annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame( [valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] # Annotations type valrow2 = validate_xpath( annsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path + \ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) subannsnodes = annsnode.xpath( rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] else: subannsnodes += [annsnode] # Exclude annotations reporting interval values only subannsnodes = [ sa for sa in subannsnodes if not sa.get("code").startswith("MDC_ECG_TIME_PD_")] for subannsnode in subannsnodes: # Annotations type valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI rel_path3 = "../support/supportingROI/component/"\ "boundary/value" for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/"\ "boundary/code" roinodes = subannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath( roinode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: # Annotations type valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path +\ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/" \ "boundary/code" roinodes = annsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, ".", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) anngrpid = anngrpid + 1 beatnum = beatnum + 1 if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {beatnum} annotated beats and {anngrpid} ' f'annotations groups found') anngrpid_from_beats = anngrpid # Annotations stored without an associated beat for codetype_path in ["/component/annotation/code[" "(contains(@code, \"MDC_ECG_\") and" " not (@code=\'MDC_ECG_BEAT\'))]"]: annsnodes = aecg_doc.xpath( (path_prefix + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotations code valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] subannsnodes = annsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] for subannsnode in subannsnodes: subsubannsnodes = subannsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) tmpnodes = [subannsnode] if len(subsubannsnodes) > 0: tmpnodes = tmpnodes + subsubannsnodes for subsubannsnode in tmpnodes: ann["wavecomponent"] = "" ann["wavecomponent2"] = "" ann["timecode"] = "" ann["value"] = "" ann["value_unit"] = "" ann["low"] = "" ann["low_unit"] = "" ann["high"] = "" ann["high_unit"] = "" roi_base = "../support/supportingROI/component/boundary" rel_path3 = roi_base + "/value" valrow2 = validate_xpath( subsubannsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/code" if valrow2["VALIOUT"] == "PASSED": if not ann["codetype"].endswith("WAVE"): ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations type valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] # if ann["wavecomponent"] == "": # ann["wavecomponent"] = valrow2["VALUE"] # else: # ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value as attribute valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] else: roi_base = "../component/annotation/support/"\ "supportingROI/component/boundary" # Annotations type valrow2 = validate_xpath(subsubannsnode, "../component/annotation/" "value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + \ "../component/annotation/value" if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append(
pd.DataFrame([valrow2], columns=VALICOLS)
pandas.DataFrame
import matplotlib matplotlib.use('TkAgg') # noqa import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from matplotlib.colors import LinearSegmentedColormap import matplotlib.cm as cm import matplotlib.colors as mcolors from mpl_toolkits.axes_grid1.inset_locator import inset_axes import cmocean import numpy as np import os import ast import pickle import pandas as pd from collections import defaultdict from oggm import workflow, cfg, tasks, utils from oggm.core.flowline import FileModel from oggm.graphics import plot_centerlines from relic.postprocessing import (mae_weighted, optimize_cov, calc_coverage, get_ensemble_length, get_rcp_ensemble_length) from relic.preprocessing import name_plus_id, GLCDICT, MERGEDICT def paramplots(df, glid, pout, y_len=None): # take care of merged glaciers rgi_id = glid.split('_')[0] fig1, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=[20, 7]) allvars = ['prcp_scaling_factor', 'mbbias', 'glena_factor'] varcols = {'mbbias': np.array([-1400, -1200, -1000, -800, -600, -400, -200, -100, 0, 100, 200, 400, 600, 800, 1000]), 'prcp_scaling_factor': np.arange(0.5, 4.1, 0.25), 'glena_factor': np.arange(1, 4.1, 0.5)} for var, ax in zip(allvars, [ax1, ax2, ax3]): notvars = allvars.copy() notvars.remove(var) # lets use OGGM HISTALP default papar = {'glena_factor': 1.0, 'mbbias': 0, 'prcp_scaling_factor': 1.75} # store specific runs dfvar = pd.DataFrame([], columns=varcols[var], index=df.index) # OGGM standard for run in df.columns: if run == 'obs': continue para = ast.literal_eval('{' + run + '}') if ((np.isclose(para[notvars[0]], papar[notvars[0]], atol=0.01)) and (np.isclose(para[notvars[1]], papar[notvars[1]], atol=0.01))): dfvar.loc[:, para[var]] = df.loc[:, run] if var == 'prcp_scaling_factor': lbl = 'Precip scaling factor' cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.deep)) normalize = mcolors.Normalize(vmin=0, vmax=4.5) bounds = np.arange(0.375, 4.2, 0.25) cbarticks = np.arange(1, 4.1, 1) elif var == 'glena_factor': lbl = 'Glen A factor' cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.matter)) normalize = mcolors.Normalize(vmin=0, vmax=4.5) bounds = np.arange(0.75, 4.3, 0.5) cbarticks = np.arange(1, 4.1, 1) elif var == 'mbbias': cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.balance)) cmaplist = [cmap(i) for i in range(cmap.N)] cmaplist[128] = (0.412, 0.847, 0.655, 1.0) cmap = mcolors.LinearSegmentedColormap.from_list('mcm', cmaplist, cmap.N) cbarticks = np.array([-1400, -1000, -600, -200, 0, 200, 600, 1000]) bounds = np.array([-1500, -1300, -1100, -900, -700, -500, -300, -150, -50, 50, 100, 300, 500, 700, 900, 1100]) normalize = mcolors.Normalize(vmin=-1600, vmax=1600) lbl = 'MB bias [mm w.e.]' colors = [cmap(normalize(n)) for n in varcols[var]] scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=cmap) cbaxes = inset_axes(ax, width="3%", height="40%", loc=3) cbar = plt.colorbar(scalarmappaple, cax=cbaxes, label=lbl, boundaries=bounds) cbar.set_ticks(cbarticks) cbaxes.tick_params(axis='both', which='major', labelsize=16) cbar.set_label(label=lbl, size=16) # plot observations df.loc[:, 'obs'].rolling(1, min_periods=1).mean(). \ plot(ax=ax, color='k', style='.', marker='o', label='Observed length change', markersize=6) dfvar = dfvar.sort_index(axis=1) # default parameter column dc = np.where(dfvar.columns == papar[var])[0][0] dfvar.loc[:, varcols[var][dc]].rolling(y_len, center=True).mean(). \ plot(ax=ax, color=colors[dc], linewidth=5, label='{}: {} (OGGM default)'. format(lbl, str(varcols[var][dc]))) # all parameters nolbl = ['' for i in np.arange(len(dfvar.columns))] dfvar.columns = nolbl dfvar.rolling(y_len, center=True).mean().plot(ax=ax, color=colors, linewidth=2) ax.set_xlabel('Year', fontsize=26) ax.set_xlim([1850, 2010]) ax.set_ylim([-4000, 2000]) ax.tick_params(axis='both', which='major', labelsize=22) if not ax == ax1: ax.set_yticklabels([]) ax.grid(True) ax.set_xticks(np.arange(1880, 2010, 40)) ax.legend(fontsize=16, loc=2) ax1.set_ylabel('relative length change [m]', fontsize=26) name = name_plus_id(rgi_id) fig1.suptitle('%s' % name, fontsize=28) fig1.subplots_adjust(left=0.09, right=0.99, bottom=0.12, top=0.89, wspace=0.05) fn1 = os.path.join(pout, 'calibration_%s.png' % glid) fig1.savefig(fn1) def past_simulation_and_params(glcdict, pout, y_len=5): for glid, df in glcdict.items(): # take care of merged glaciers rgi_id = glid.split('_')[0] fig = plt.figure(figsize=[20, 7]) gs = GridSpec(1, 4) # 1 rows, 4 columns ax1 = fig.add_subplot(gs[0, 0:3]) ax2 = fig.add_subplot(gs[0, 3]) df.loc[:, 'obs'].plot(ax=ax1, color='k', marker='o', label='Observations') # OGGM standard for run in df.columns: if run == 'obs': continue para = ast.literal_eval('{' + run + '}') if ((np.abs(para['prcp_scaling_factor'] - 1.75) < 0.01) and (para['mbbias'] == 0) and (para['glena_factor'] == 1)): df.loc[:, run].rolling(y_len, center=True). \ mean().plot(ax=ax1, linewidth=2, color='k', label='OGGM default parameter run') oggmdefault = run maes = mae_weighted(df).sort_values() idx2plot = optimize_cov(df.loc[:, maes.index[:150]], df.loc[:, 'obs'], glid, minuse=5) ensmean = df.loc[:, idx2plot].mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df.loc[:, idx2plot].std(axis=1).rolling(y_len, center=True).mean() # coverage cov = calc_coverage(df, idx2plot, df['obs']) ax1.fill_between(ensmeanmean.index, ensmeanmean - ensstdmean, ensmeanmean + ensstdmean, color='xkcd:teal', alpha=0.5) # nolbl = df.loc[:, idx2plot2].rolling(y_len, center=True).mean().copy() # nolbl.columns = ['' for i in range(len(nolbl.columns))] #df.loc[:, idx2plot2].rolling(y_len, center=True).mean().plot( # ax=ax1, linewidth=0.8) # plot ens members ensmeanmean.plot(ax=ax1, linewidth=4.0, color='xkcd:teal', label='ensemble parameters runs') # reference run (basically min mae) df.loc[:, maes.index[0]].rolling(y_len, center=True).mean(). \ plot(ax=ax1, linewidth=3, color='xkcd:lavender', label='minimum wMAE parameter run') name = name_plus_id(rgi_id) mae_ens = mae_weighted(pd.concat([ensmean, df['obs']], axis=1))[0] mae_best = maes[0] ax1.set_title('%s' % name, fontsize=28) ax1.text(2030, -4900, 'wMAE ensemble mean = %.2f m\n' 'wMAE minimum run = %.2f m' % (mae_ens, mae_best), fontsize=18, horizontalalignment='right') ax1.text(2040, -4900, '%d ensemble members\n' 'coverage = %.2f' % (len(idx2plot), cov), fontsize=18) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.set_xlim([1850, 2020]) ax1.set_ylim([-3500, 1000]) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.grid(True) ax1.legend(bbox_to_anchor=(-0.1, -0.15), loc='upper left', fontsize=18, ncol=2) # parameter plots from colorspace import sequential_hcl col = sequential_hcl('Blue-Yellow').colors(len(idx2plot) + 3) for i, run in enumerate(idx2plot): para = ast.literal_eval('{' + run + '}') psf = para['prcp_scaling_factor'] gla = para['glena_factor'] mbb = para['mbbias'] mbb = (mbb - -1400) * (4-0.5) / (1000 - -1400) + 0.5 ax2.plot([1, 2, 3], [psf, gla, mbb], color=col[i], linewidth=2) ax2.set_xlabel('calibration parameters', fontsize=18) ax2.set_ylabel('Precipitation scaling factor\nGlen A factor', fontsize=18) ax2.set_xlim([0.8, 3.2]) ax2.set_ylim([0.3, 4.2]) ax2.set_xticks([1, 2, 3]) ax2.set_xticklabels(['Psf', 'GlenA', 'MB bias'], fontsize=16) ax2.tick_params(axis='y', which='major', labelsize=16) ax2.grid(True) ax3 = ax2.twinx() # scale to same y lims scale = (4.2-0.3)/(4.0-0.5) dy = (2400*scale-2400)/2 ax3.set_ylim([-1400-dy, 1000+dy]) ax3.set_ylabel('mass balance bias [m w.e. ]', fontsize=18) ax3.set_yticks(np.arange(-1400, 1100, 400)) ax3.set_yticklabels(['-1.4', '-1.0', '-0.6', '-0.2', '0.2', '0.6', '1.0']) ax3.tick_params(axis='both', which='major', labelsize=16) fig.subplots_adjust(left=0.08, right=0.95, bottom=0.24, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'histalp_%s.png' % glid) fig.savefig(fn1) used = dict() used['oggmdefault'] = oggmdefault used['minmae'] = idx2plot[0] used['ensemble'] = idx2plot pickle.dump(used, open(os.path.join(pout, 'runs_%s.p' % glid), 'wb')) def past_simulation_and_commitment(rgi, allobs, allmeta, histalp_storage, comit_storage, comit_storage_noseed, pout, y_len=5, comyears=300): cols = ['xkcd:teal', 'xkcd:orange', 'xkcd:azure', 'xkcd:tomato', 'xkcd:blue', 'xkcd:chartreuse', 'xkcd:green' ] obs = allobs.loc[rgi.split('_')[0]] meta = allmeta.loc[rgi.split('_')[0]] fn99 = 'model_diagnostics_commitment1999_{:02d}.nc' df99 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn99, meta) fn85 = 'model_diagnostics_commitment1885_{:02d}.nc' df85 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn85, meta) fn70 = 'model_diagnostics_commitment1970_{:02d}.nc' df70 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn70, meta) # plot fig, ax1 = plt.subplots(1, figsize=[20, 7]) obs.plot(ax=ax1, color='k', marker='o', label='Observations') # past ensmean = df99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df99.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[:2015].index, ensmeanmean.loc[:2015] - ensstdmean.loc[:2015], ensmeanmean.loc[:2015] + ensstdmean.loc[:2015], color=cols[0], alpha=0.5) ensmeanmean.loc[:2015].plot(ax=ax1, linewidth=4.0, color=cols[0], label='HISTALP climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # 1999 ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[1], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[1], label='Random climate (1984-2014)') # 1970 ensmean = df70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df70.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[5], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[5], label='Random climate (1960-1980)') # 1885 ensmean = df85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df85.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[2], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[2], label='Random climate (1870-1900)') # --------------------------------------------------------------------- # plot commitment ensemble length # 1984 efn99 = 'model_diagnostics_commitment1999_{:02d}.nc' edf99 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn99, meta) ensmean = edf99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf99.std(axis=1).rolling(y_len, center=True).mean() postlength = ensmeanmean.dropna().iloc[-30:].mean() poststd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], postlength + poststd, postlength - poststd, color=cols[3], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [postlength, postlength], linewidth=4.0, color=cols[3], label=('Random climate (1984-2014) ' 'equlibrium length')) # 1970 efn70 = 'model_diagnostics_commitment1970_{:02d}.nc' edf70 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn70, meta) ensmean = edf70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf70.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], prelength + prestd, prelength - prestd, color=cols[6], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [prelength, prelength], linewidth=4.0, color=cols[6], label=('Random climate (1960-1980) ' 'equlibrium length')) # 1885 efn85 = 'model_diagnostics_commitment1885_{:02d}.nc' edf85 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn85, meta) ensmean = edf85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf85.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], prelength + prestd, prelength - prestd, color=cols[4], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [prelength, prelength], linewidth=4.0, color=cols[4], label=('Random climate (1870-1900) ' 'equlibrium length')) # --------------------------------------------------------------------- ylim = ax1.get_ylim() #ax1.plot([2015, 2015], ylim, 'k-', linewidth=2) ax1.set_xlim([1850, 2014+comyears+30]) #ax1.set_ylim(ylim) ax2 = ax1.twinx() ax2.set_ylabel('approximate\n absolute glacier length [m]', fontsize=26) y1, y2 = get_absolute_length(ylim[0], ylim[1], rgi, df99, histalp_storage) ax2.tick_params(axis='both', which='major', labelsize=22) ax2.set_ylim([y1, y2]) name = name_plus_id(rgi) ax1.set_title('%s' % name, fontsize=28) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.set_xticks([1850, 1950, 2014, 2114, 2214, 2314]) ax1.set_xticklabels(['1850', '1950', '2014/0', '100', '200', '300']) ax1.grid(True) ax1.legend(bbox_to_anchor=(-0.0, -0.17), loc='upper left', fontsize=18, ncol=3) fig.subplots_adjust(left=0.09, right=0.9, bottom=0.3, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'commit_%s.png' % rgi) fig.savefig(fn1) def past_simulation_and_projection(rgi, allobs, allmeta, histalp_storage, proj_storage, comit_storage, pout, y_len=5,): cols = ['xkcd:teal', 'xkcd:azure', 'xkcd:lime', 'xkcd:orange', 'xkcd:magenta', 'xkcd:tomato', 'xkcd:blue', 'xkcd:green' ] obs = allobs.loc[rgi.split('_')[0]] meta = allmeta.loc[rgi.split('_')[0]] dfall = pd.DataFrame([], index=np.arange(1850, 2101)) dfallstd = pd.DataFrame([], index=np.arange(1850, 2101)) for rcp in ['rcp26', 'rcp45', 'rcp60', 'rcp85']: dfrcp = get_rcp_ensemble_length(rgi, histalp_storage, proj_storage, rcp, meta) ensmean = dfrcp.mean(axis=1) dfall.loc[:, rcp] = ensmean.rolling(y_len, center=True).mean() dfallstd.loc[:, rcp] = dfrcp.std(axis=1).\ rolling(y_len, center=True).mean() # plot fig, ax1 = plt.subplots(1, figsize=[20, 7]) obs.plot(ax=ax1, color='k', marker='o', label='Observations') # past ax1.fill_between(dfall.loc[:2015, rcp].index, dfall.loc[:2015, rcp] - dfallstd.loc[:2015, rcp], dfall.loc[:2015, rcp] + dfallstd.loc[:2015, rcp], color=cols[0], alpha=0.5) dfall.loc[:2015, rcp].plot(ax=ax1, linewidth=4.0, color=cols[0], label='HISTALP climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # projections # rcp26 ax1.fill_between(dfall.loc[2015:, 'rcp26'].index, dfall.loc[2015:, 'rcp26'] - dfallstd.loc[2015:, 'rcp26'], dfall.loc[2015:, 'rcp26'] + dfallstd.loc[2015:, 'rcp26'], color=cols[1], alpha=0.5) dfall.loc[2015:, 'rcp26'].plot(ax=ax1, linewidth=4.0, color=cols[1], label='RCP 2.6 climate') # rcp45 dfall.loc[2015:, 'rcp45'].plot(ax=ax1, linewidth=4.0, color=cols[2], label='RCP 4.5 climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # rcp60 dfall.loc[2015:, 'rcp60'].plot(ax=ax1, linewidth=4.0, color=cols[3], label='RCP 6.0 climate') # rcp85 ax1.fill_between(dfall.loc[2015:, 'rcp85'].index, dfall.loc[2015:, 'rcp85'] - dfallstd.loc[2015:, 'rcp85'], dfall.loc[2015:, 'rcp85'] + dfallstd.loc[2015:, 'rcp85'], color=cols[4], alpha=0.5) dfall.loc[2015:, 'rcp85'].plot(ax=ax1, linewidth=4.0, color=cols[4], label='RCP 8.5 climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # plot commitment length # 1984 fn99 = 'model_diagnostics_commitment1999_{:02d}.nc' df99 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn99, meta) ensmean = df99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df99.std(axis=1).rolling(y_len, center=True).mean() postlength = ensmeanmean.dropna().iloc[-30:].mean() poststd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], postlength + poststd, postlength - poststd, color=cols[5], alpha=0.5) ax1.plot([2105.5, 2110.5], [postlength, postlength], linewidth=4.0, color=cols[5], label=('Random climate (1984-2014) ' 'equilibrium length')) # 1970 fn70 = 'model_diagnostics_commitment1970_{:02d}.nc' df70 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn70, meta) ensmean = df70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df70.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], prelength + prestd, prelength - prestd, color=cols[7], alpha=0.5) ax1.plot([2105.5, 2110.5], [prelength, prelength], linewidth=4.0, color=cols[7], label=('Random climate (1960-1980) ' 'equilibrium length')) # 1885 fn85 = 'model_diagnostics_commitment1885_{:02d}.nc' df85 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn85, meta) ensmean = df85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df85.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], prelength + prestd, prelength - prestd, color=cols[6], alpha=0.5) ax1.plot([2105.5, 2110.5], [prelength, prelength], linewidth=4.0, color=cols[6], label=('Random climate (1870-1900) ' 'equilibrium length')) ylim = ax1.get_ylim() ax1.set_xlim([1850, 2112]) ax2 = ax1.twinx() ax2.set_ylabel('apporixmate\n absolute glacier length [m]', fontsize=26) y1, y2 = get_absolute_length(ylim[0], ylim[1], rgi, df99, histalp_storage) ax2.tick_params(axis='both', which='major', labelsize=22) ax2.set_ylim([y1, y2]) name = name_plus_id(rgi) ax1.set_title('%s' % name, fontsize=28) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.grid(True) ax1.legend(bbox_to_anchor=(0.0, -0.17), loc='upper left', fontsize=18, ncol=4) fig.subplots_adjust(left=0.09, right=0.9, bottom=0.3, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'proj_%s.png' % rgi) fig.savefig(fn1) def get_mean_temps_eq(rgi, histalp_storage, comit_storage, ensmembers): from oggm import cfg, utils, GlacierDirectory from oggm.core.massbalance import MultipleFlowlineMassBalance from oggm.core.flowline import FileModel import shutil # 1. get mean surface heights df85 = pd.DataFrame([]) df99 = pd.DataFrame([]) for i in range(ensmembers): fnc1 = os.path.join(comit_storage, rgi, 'model_run_commitment1885_{:02d}.nc'.format(i)) fnc2 = os.path.join(comit_storage, rgi, 'model_run_commitment1999_{:02d}.nc'.format(i)) tmpmod1 = FileModel(fnc1) tmpmod2 = FileModel(fnc2) for j in np.arange(270, 301): tmpmod1.run_until(j) df85.loc[:, '{}{}'.format(i, j)] = tmpmod1.fls[-1].surface_h tmpmod2.run_until(j) df99.loc[:, '{}{}'.format(i, j)] = tmpmod2.fls[-1].surface_h meanhgt99 = df99.mean(axis=1).values meanhgt85 = df85.mean(axis=1).values # 2. get the climate # Initialize OGGM cfg.initialize() wd = utils.gettempdir(reset=True) cfg.PATHS['working_dir'] = wd utils.mkdir(wd, reset=True) cfg.PARAMS['baseline_climate'] = 'HISTALP' # and set standard histalp values cfg.PARAMS['temp_melt'] = -1.75 i = 0 storage_dir = os.path.join(histalp_storage, rgi, '{:02d}'.format(i), rgi[:8], rgi[:11], rgi) new_dir = os.path.join(cfg.PATHS['working_dir'], 'per_glacier', rgi[:8], rgi[:11], rgi) shutil.copytree(storage_dir, new_dir) gdir = GlacierDirectory(rgi) mb = MultipleFlowlineMassBalance(gdir, filename='climate_monthly', check_calib_params=False) # need to do the above for every ensemble member if I consider PRECIP! # and set cfg.PARAMS['prcp_scaling_factor'] = pdict['prcp_scaling_factor'] df99_2 = pd.DataFrame() df85_2 = pd.DataFrame() for i in np.arange(9, 12): for y in np.arange(1870, 1901): flyear = utils.date_to_floatyear(y, i) tmp = mb.flowline_mb_models[-1].get_monthly_climate(meanhgt85, flyear)[0] df85_2.loc[y, i] = tmp.mean() for y in np.arange(1984, 2015): tmp = mb.flowline_mb_models[-1].get_monthly_climate(meanhgt99, flyear)[0] df99_2.loc[y, i] = tmp.mean() t99 = df99_2.mean().mean() t85 = df85_2.mean().mean() return t85, t99 def get_mean_temps_2k(rgi, return_prcp): from oggm import cfg, utils, workflow, tasks from oggm.core.massbalance import PastMassBalance # Initialize OGGM cfg.initialize() wd = utils.gettempdir(reset=True) cfg.PATHS['working_dir'] = wd utils.mkdir(wd, reset=True) cfg.PARAMS['baseline_climate'] = 'HISTALP' # and set standard histalp values cfg.PARAMS['temp_melt'] = -1.75 cfg.PARAMS['prcp_scaling_factor'] = 1.75 gdir = workflow.init_glacier_regions(rgidf=rgi.split('_')[0], from_prepro_level=3, prepro_border=10)[0] # run histalp climate on glacier! tasks.process_histalp_data(gdir) f = gdir.get_filepath('climate_historical') with utils.ncDataset(f) as nc: refhgt = nc.ref_hgt mb = PastMassBalance(gdir, check_calib_params=False) df = pd.DataFrame() df2 = pd.DataFrame() for y in np.arange(1870, 2015): for i in np.arange(9, 12): flyear = utils.date_to_floatyear(y, i) tmp = mb.get_monthly_climate([refhgt], flyear)[0] df.loc[y, i] = tmp.mean() if return_prcp: for i in np.arange(3, 6): flyear = utils.date_to_floatyear(y, i) pcp = mb.get_monthly_climate([refhgt], flyear)[3] df2.loc[y, i] = tmp.mean() t99 = df.loc[1984:2014, :].mean().mean() t85 = df.loc[1870:1900, :].mean().mean() t2k = df.loc[1900:2000, :].mean().mean() if return_prcp: p99 = df2.loc[1984:2014, :].mean().mean() p85 = df2.loc[1870:1900, :].mean().mean() p2k = df2.loc[1900:2000, :].mean().mean() return t85, t99, t2k, p85, p99, p2k return t85, t99, t2k def get_absolute_length(y0, y1, rgi, df, storage): rgipath = os.path.join(storage, rgi, '{:02d}'.format(0), rgi[:8], rgi[:11], rgi) mfile = os.path.join(rgipath, 'model_run_histalp_{:02d}.nc'.format(0)) tmpmod = FileModel(mfile) absL = tmpmod.length_m deltaL = df.loc[int(tmpmod.yr.values), 0] abs_y0 = absL + (y0 - deltaL) abs_y1 = absL + (y1 - deltaL) return abs_y0, abs_y1 def elevation_profiles(rgi, meta, histalp_storage, pout): name = name_plus_id(rgi) df1850 = pd.DataFrame() df2003 =
pd.DataFrame()
pandas.DataFrame
# https://quantdare.com/risk-parity-in-python/ import pandas as pd import pandas_datareader.data as web import numpy as np import datetime from scipy.optimize import minimize TOLERANCE = 1e-10 def _allocation_risk(weights, covariances): # We calculate the risk of the weights distribution portfolio_risk = np.sqrt((weights * covariances * weights.T))[0, 0] # It returns the risk of the weights distribution return portfolio_risk def _assets_risk_contribution_to_allocation_risk(weights, covariances): # We calculate the risk of the weights distribution portfolio_risk = _allocation_risk(weights, covariances) # We calculate the contribution of each asset to the risk of the weights # distribution assets_risk_contribution = np.multiply(weights.T, covariances * weights.T) \ / portfolio_risk # It returns the contribution of each asset to the risk of the weights # distribution return assets_risk_contribution def _risk_budget_objective_error(weights, args): # The covariance matrix occupies the first position in the variable covariances = args[0] # The desired contribution of each asset to the portfolio risk occupies the # second position assets_risk_budget = args[1] # We convert the weights to a matrix weights = np.matrix(weights) # We calculate the risk of the weights distribution portfolio_risk = _allocation_risk(weights, covariances) # We calculate the contribution of each asset to the risk of the weights # distribution assets_risk_contribution = \ _assets_risk_contribution_to_allocation_risk(weights, covariances) # We calculate the desired contribution of each asset to the risk of the # weights distribution assets_risk_target = \ np.asmatrix(np.multiply(portfolio_risk, assets_risk_budget)) # Error between the desired contribution and the calculated contribution of # each asset error = \ sum(np.square(assets_risk_contribution - assets_risk_target.T))[0, 0] # It returns the calculated error return error def _get_risk_parity_weights(covariances, assets_risk_budget, initial_weights): # Restrictions to consider in the optimisation: only long positions whose # sum equals 100% constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0}, {'type': 'ineq', 'fun': lambda x: x}) # Optimisation process in scipy optimize_result = minimize(fun=_risk_budget_objective_error, x0=initial_weights, args=[covariances, assets_risk_budget], method='SLSQP', constraints=constraints, tol=TOLERANCE, options={'disp': False}) # Recover the weights from the optimised object weights = optimize_result.x # It returns the optimised weights return weights def get_weights(yahoo_tickers=['GOOGL', 'AAPL', 'AMZN'], start_date=datetime.datetime(2016, 10, 31), end_date=datetime.datetime(2017, 10, 31)): # We download the prices from Yahoo Finance prices = pd.DataFrame([web.DataReader(t, 'yahoo', start_date, end_date).loc[:, 'Adj Close'] for t in yahoo_tickers], index=yahoo_tickers).T.asfreq('B').ffill() # We calculate the covariance matrix covariances = 52.0 * \ prices.asfreq('W-FRI').pct_change().iloc[1:, :].cov().values # The desired contribution of each asset to the portfolio risk: we want all # asset to contribute equally assets_risk_budget = [1 / prices.shape[1]] * prices.shape[1] # Initial weights: equally weighted init_weights = [1 / prices.shape[1]] * prices.shape[1] # Optimisation process of weights weights = \ _get_risk_parity_weights(covariances, assets_risk_budget, init_weights) # Convert the weights to a pandas Series weights =
pd.Series(weights, index=prices.columns, name='weight')
pandas.Series
import warnings import pytest import pandas as pd from mssql_dataframe.connect import connect from mssql_dataframe.core import custom_errors, create, read from mssql_dataframe.core.write import insert pd.options.mode.chained_assignment = "raise" table_name = "##test_select" class package: def __init__(self, connection): self.connection = connection.connection self.create = create.create(self.connection) self.insert = insert.insert(self.connection, include_metadata_timestamps=False, autoadjust_sql_objects=False) self.read = read.read(self.connection) @pytest.fixture(scope="session") def sql(): db = connect(database="tempdb", server="localhost") yield package(db) db.connection.close() @pytest.fixture(scope="session") def sample(sql): # create table and insert sample data sql.create.table( table_name, columns={ "ColumnA": "TINYINT", "ColumnB": "INT", "ColumnC": "BIGINT", "ColumnD": "DATE", "ColumnE": "VARCHAR(1)", "ColumnF": "VARCHAR(3)", }, primary_key_column=["ColumnA", "ColumnF"], ) dataframe = pd.DataFrame( { "ColumnA": [5, 6, 7], "ColumnB": [5, 6, None], "ColumnC": [pd.NA, 6, 7], "ColumnD": ["06-22-2021", "06-22-2021", pd.NaT], "ColumnE": ["a", "b", None], "ColumnF": ["xxx", "yyy", "zzz"], } ).set_index(keys=["ColumnA", "ColumnF"]) dataframe["ColumnB"] = dataframe["ColumnB"].astype("Int64") dataframe["ColumnD"] =
pd.to_datetime(dataframe["ColumnD"])
pandas.to_datetime
import os import tempfile import numpy as np import pandas as pd import datetime as dt if __name__ == "__main__": base_dir = "/opt/ml/processing" #Read Data df = pd.read_csv( f"{base_dir}/input/storedata_total.csv" ) # convert created column to datetime df["created"] = pd.to_datetime(df["created"]) #Convert firstorder and lastorder to datetime datatype df["firstorder"] =
pd.to_datetime(df["firstorder"],errors='coerce')
pandas.to_datetime
# -*- coding: utf-8 -*- """ docstring goes here. :copyright: Copyright 2014 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function import unittest from itertools import chain from neo.test.generate_datasets import fake_neo import numpy as np from numpy.testing.utils import assert_array_equal import quantities as pq try: import pandas as pd from pandas.util.testing import assert_frame_equal, assert_index_equal except ImportError: HAVE_PANDAS = False else: import elephant.pandas_bridge as ep HAVE_PANDAS = True @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiindexFromDictTestCase(unittest.TestCase): def test__multiindex_from_dict(self): inds = {'test1': 6.5, 'test2': 5, 'test3': 'test'} targ = pd.MultiIndex(levels=[[6.5], [5], ['test']], labels=[[0], [0], [0]], names=['test1', 'test2', 'test3']) res0 = ep._multiindex_from_dict(inds) self.assertEqual(targ.levels, res0.levels) self.assertEqual(targ.names, res0.names) self.assertEqual(targ.labels, res0.labels) def _convert_levels(levels): """Convert a list of levels to the format pandas returns for a MultiIndex. Parameters ---------- levels : list The list of levels to convert. Returns ------- list The the level in `list` converted to values like what pandas will give. """ levels = list(levels) for i, level in enumerate(levels): if hasattr(level, 'lower'): try: level = unicode(level) except NameError: pass elif hasattr(level, 'date'): levels[i] = pd.DatetimeIndex(data=[level]) continue elif level is None: levels[i] = pd.Index([]) continue levels[i] = pd.Index([level]) return levels @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class ConvertValueSafeTestCase(unittest.TestCase): def test__convert_value_safe__float(self): targ = 5.5 value = targ res = ep._convert_value_safe(value) self.assertIs(res, targ) def test__convert_value_safe__str(self): targ = 'test' value = targ res = ep._convert_value_safe(value) self.assertIs(res, targ) def test__convert_value_safe__bytes(self): targ = 'test' value = b'test' res = ep._convert_value_safe(value) self.assertEqual(res, targ) def test__convert_value_safe__numpy_int_scalar(self): targ = 5 value = np.array(5) res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_float_scalar(self): targ = 5. value = np.array(5.) res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_unicode_scalar(self): targ = u'test' value = np.array('test', dtype='U') res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_str_scalar(self): targ = u'test' value = np.array('test', dtype='S') res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__quantity_scalar(self): targ = (10., 'ms') value = 10. * pq.ms res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res[0], 'dtype')) self.assertFalse(hasattr(res[0], 'units')) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class SpiketrainToDataframeTestCase(unittest.TestCase): def test__spiketrain_to_dataframe__parents_empty(self): obj = fake_neo('SpikeTrain', seed=0) res0 = ep.spiketrain_to_dataframe(obj) res1 = ep.spiketrain_to_dataframe(obj, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, child_first=False) res3 = ep.spiketrain_to_dataframe(obj, parents=True) res4 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=True) res5 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=False) res6 = ep.spiketrain_to_dataframe(obj, parents=False) res7 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=True) res8 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) self.assertEqual(len(obj), len(res3.index)) self.assertEqual(len(obj), len(res4.index)) self.assertEqual(len(obj), len(res5.index)) self.assertEqual(len(obj), len(res6.index)) self.assertEqual(len(obj), len(res7.index)) self.assertEqual(len(obj), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) assert_array_equal(targindex, res4.index) assert_array_equal(targindex, res5.index) assert_array_equal(targindex, res6.index) assert_array_equal(targindex, res7.index) assert_array_equal(targindex, res8.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(['spike_number'], res3.index.names) self.assertEqual(['spike_number'], res4.index.names) self.assertEqual(['spike_number'], res5.index.names) self.assertEqual(['spike_number'], res6.index.names) self.assertEqual(['spike_number'], res7.index.names) self.assertEqual(['spike_number'], res8.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__noparents(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj, parents=False) res1 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj) res1 = ep.spiketrain_to_dataframe(obj, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, parents=True) res3 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=True) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) self.assertEqual(len(obj), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(['spike_number'], res3.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj, child_first=False) res1 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class EventToDataframeTestCase(unittest.TestCase): def test__event_to_dataframe__parents_empty(self): obj = fake_neo('Event', seed=42) res0 = ep.event_to_dataframe(obj) res1 = ep.event_to_dataframe(obj, child_first=True) res2 = ep.event_to_dataframe(obj, child_first=False) res3 = ep.event_to_dataframe(obj, parents=True) res4 = ep.event_to_dataframe(obj, parents=True, child_first=True) res5 = ep.event_to_dataframe(obj, parents=True, child_first=False) res6 = ep.event_to_dataframe(obj, parents=False) res7 = ep.event_to_dataframe(obj, parents=False, child_first=True) res8 = ep.event_to_dataframe(obj, parents=False, child_first=False) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res3.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res4.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res5.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res6.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res7.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) assert_array_equal(targindex, res4.index) assert_array_equal(targindex, res5.index) assert_array_equal(targindex, res6.index) assert_array_equal(targindex, res7.index) assert_array_equal(targindex, res8.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(['times'], res3.index.names) self.assertEqual(['times'], res4.index.names) self.assertEqual(['times'], res5.index.names) self.assertEqual(['times'], res6.index.names) self.assertEqual(['times'], res7.index.names) self.assertEqual(['times'], res8.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__noparents(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj, parents=False) res1 = ep.event_to_dataframe(obj, parents=False, child_first=False) res2 = ep.event_to_dataframe(obj, parents=False, child_first=True) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj) res1 = ep.event_to_dataframe(obj, child_first=True) res2 = ep.event_to_dataframe(obj, parents=True) res3 = ep.event_to_dataframe(obj, parents=True, child_first=True) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(['times'], res3.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj, child_first=False) res1 = ep.event_to_dataframe(obj, parents=True, child_first=False) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class EpochToDataframeTestCase(unittest.TestCase): def test__epoch_to_dataframe__parents_empty(self): obj = fake_neo('Epoch', seed=42) res0 = ep.epoch_to_dataframe(obj) res1 = ep.epoch_to_dataframe(obj, child_first=True) res2 = ep.epoch_to_dataframe(obj, child_first=False) res3 = ep.epoch_to_dataframe(obj, parents=True) res4 = ep.epoch_to_dataframe(obj, parents=True, child_first=True) res5 = ep.epoch_to_dataframe(obj, parents=True, child_first=False) res6 = ep.epoch_to_dataframe(obj, parents=False) res7 = ep.epoch_to_dataframe(obj, parents=False, child_first=True) res8 = ep.epoch_to_dataframe(obj, parents=False, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res3.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res4.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res5.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res6.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res7.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual([u'durations', u'times'], res3.index.names) self.assertEqual([u'durations', u'times'], res4.index.names) self.assertEqual([u'durations', u'times'], res5.index.names) self.assertEqual([u'durations', u'times'], res6.index.names) self.assertEqual([u'durations', u'times'], res7.index.names) self.assertEqual([u'durations', u'times'], res8.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) self.assertEqual(2, len(res3.index.levels)) self.assertEqual(2, len(res4.index.levels)) self.assertEqual(2, len(res5.index.levels)) self.assertEqual(2, len(res6.index.levels)) self.assertEqual(2, len(res7.index.levels)) self.assertEqual(2, len(res8.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) assert_array_equal(targindex, res3.index.levels) assert_array_equal(targindex, res4.index.levels) assert_array_equal(targindex, res5.index.levels) assert_array_equal(targindex, res6.index.levels) assert_array_equal(targindex, res7.index.levels) assert_array_equal(targindex, res8.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__noparents(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj, parents=False) res1 = ep.epoch_to_dataframe(obj, parents=False, child_first=True) res2 = ep.epoch_to_dataframe(obj, parents=False, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj) res1 = ep.epoch_to_dataframe(obj, child_first=True) res2 = ep.epoch_to_dataframe(obj, parents=True) res3 = ep.epoch_to_dataframe(obj, parents=True, child_first=True) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual([u'durations', u'times'], res3.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) self.assertEqual(2, len(res3.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) assert_array_equal(targindex, res3.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj, child_first=False) res1 = ep.epoch_to_dataframe(obj, parents=True, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiSpiketrainsToDataframeTestCase(unittest.TestCase): def setUp(self): if hasattr(self, 'assertItemsEqual'): self.assertCountEqual = self.assertItemsEqual def test__multi_spiketrains_to_dataframe__single(self): obj = fake_neo('SpikeTrain', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res3 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res4 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res5 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) res6 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res7 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) res8 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) targ = ep.spiketrain_to_dataframe(obj) keys = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True).keys() keys = list(keys) targwidth = 1 targlen = len(obj) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targwidth, len(res4.columns)) self.assertEqual(targwidth, len(res5.columns)) self.assertEqual(targwidth, len(res6.columns)) self.assertEqual(targwidth, len(res7.columns)) self.assertEqual(targwidth, len(res8.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertEqual(targlen, len(res4.index)) self.assertEqual(targlen, len(res5.index)) self.assertEqual(targlen, len(res6.index)) self.assertEqual(targlen, len(res7.index)) self.assertEqual(targlen, len(res8.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) self.assertCountEqual(keys, res4.columns.names) self.assertCountEqual(keys, res5.columns.names) self.assertCountEqual(keys, res6.columns.names) self.assertCountEqual(keys, res7.columns.names) self.assertCountEqual(keys, res8.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_array_equal(targ.values, res4.values) assert_array_equal(targ.values, res5.values) assert_array_equal(targ.values, res6.values) assert_array_equal(targ.values, res7.values) assert_array_equal(targ.values, res8.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) assert_frame_equal(targ, res4) assert_frame_equal(targ, res5) assert_frame_equal(targ, res6) assert_frame_equal(targ, res7) assert_frame_equal(targ, res8) def test__multi_spiketrains_to_dataframe__unit_default(self): obj = fake_neo('Unit', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = obj.spiketrains targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__segment_default(self): obj = fake_neo('Segment', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = obj.spiketrains targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__block_noparents(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_spiketrains_to_dataframe__block_parents_childfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res2 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res3 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_spiketrains_to_dataframe__block_parents_parentfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_spiketrains_to_dataframe__list_noparents(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_spiketrains_to_dataframe__list_parents_childfirst(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res2 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res3 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_spiketrains_to_dataframe__list_parents_parentfirst(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_spiketrains_to_dataframe__tuple_default(self): obj = tuple(fake_neo('Block', seed=i, n=3) for i in range(3)) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__iter_default(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(iter(obj)) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(
pd.concat(targ, axis=1)
pandas.concat
from pyhdx.fileIO import read_dynamx, csv_to_protein, save_fitresult, dataframe_to_file from pyhdx import PeptideMasterTable, HDXMeasurement from pyhdx.models import HDXMeasurementSet from pyhdx.fitting import fit_rates_weighted_average, fit_gibbs_global, fit_gibbs_global_batch, fit_gibbs_global_batch_aligned from pyhdx.local_cluster import default_client import numpy as np import pandas as pd from pathlib import Path import torch """Run this file to renew the fit results which is used to test against""" # Toggle to also generate long computation time fits do_long_fit = False epochs_long = 20000 torch.manual_seed(43) np.random.seed(43) epochs = 1000 sequence = 'MSEQNNTEMTFQIQRIYTKDISFEAPNAPHVFQKDWQPEVKLDLDTASSQLADDVYEVVLRVTVTASLGEETAFLCEVQQGGIFSIAGIEGTQMAHCLGAYCPNILFPYARECITSMVSRGTFPQLNLAPVNFDALFMNYLQQQAGEGTEEHQDA' sequence_dimer = 'MSEQNNTEMTFQIQRIYTKDISFEAPNAPHVFQKDWQPEVKLDLDTASSQLADDVYEVVLRVTVTASLGEETAFLCEVQQGGIFSIAGIEGTQMAHCLGAYCPNILFPAARECIASMVARGTFPQLNLAPVNFDALFMNYLQQQAGEGTEEHQDA' cwd = Path(__file__).parent input_dir = cwd / 'test_data' / 'input' output_dir = cwd / 'test_data' / 'output' guess = True control = ('Full deuteration control', 0.167*60) data = read_dynamx(input_dir / 'ecSecB_apo.csv', input_dir / 'ecSecB_dimer.csv') pmt = PeptideMasterTable(data, drop_first=1, ignore_prolines=True, remove_nan=False) pmt.set_control(control) temperature, pH = 273.15 + 30, 8. hdxm = HDXMeasurement(pmt.get_state('SecB WT apo'), sequence=sequence, temperature=temperature, pH=pH) data = pmt.get_state('SecB WT apo') reduced_data = data[data['end'] < 40] hdxm_reduced = HDXMeasurement(reduced_data, temperature=temperature, pH=pH) result = fit_rates_weighted_average(hdxm_reduced) reduced_guess = result.output reduced_guess.to_file(output_dir / 'ecSecB_reduced_guess.csv') reduced_guess.to_file(output_dir / 'ecSecB_reduced_guess.txt', fmt='pprint') gibbs_guess = hdxm_reduced.guess_deltaG(reduced_guess['rate']) fr_torch = fit_gibbs_global(hdxm_reduced, gibbs_guess, epochs=epochs, r1=2) save_fitresult(output_dir / 'ecsecb_reduced', fr_torch) if guess: wt_avg_result = fit_rates_weighted_average(hdxm, bounds=(1e-2/60., 800/60.)) output = wt_avg_result.output output.to_file(output_dir / 'ecSecB_guess.csv') output.to_file(output_dir / 'ecSecB_guess.txt', fmt='pprint') else: output = csv_to_protein(output_dir / 'ecSecB_guess.csv') # Export protein sequence and intrinsic rate of exchange hdxm.coverage.protein.to_file(output_dir / 'ecSecB_info.csv') hdxm.coverage.protein.to_file(output_dir / 'ecSecB_info.txt', fmt='pprint') rfu_exposure = {time: rfu for time, rfu in zip(hdxm.timepoints, hdxm.rfu_residues.T)} # Nr x Nt array rfu_df =
pd.DataFrame(rfu_exposure, index=hdxm.coverage.r_number)
pandas.DataFrame
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import itertools import pandas as pd from pipeline import experiment, ephys, psth from pipeline.plot import (_plot_with_sem, _extract_one_stim_dur, _get_units_hemisphere, _plot_stacked_psth_diff, _plot_avg_psth, _get_photostim_time_and_duration, _get_trial_event_times, jointplot_w_hue) m_scale = 1200 _plt_xmin = -3 _plt_xmax = 2 def plot_clustering_quality(probe_insertion): probe_insertion = probe_insertion.proj() amp, snr, spk_rate, isi_violation = (ephys.Unit * ephys.UnitStat * ephys.ProbeInsertion.InsertionLocation & probe_insertion).fetch( 'unit_amp', 'unit_snr', 'avg_firing_rate', 'isi_violation') metrics = {'amp': amp, 'snr': snr, 'isi': np.array(isi_violation) * 100, # to percentage 'rate': np.array(spk_rate)} label_mapper = {'amp': 'Amplitude', 'snr': 'Signal to noise ratio (SNR)', 'isi': 'ISI violation (%)', 'rate': 'Firing rate (spike/s)'} fig, axs = plt.subplots(2, 3, figsize=(12, 8)) fig.subplots_adjust(wspace=0.4) for (m1, m2), ax in zip(itertools.combinations(list(metrics.keys()), 2), axs.flatten()): ax.plot(metrics[m1], metrics[m2], '.k') ax.set_xlabel(label_mapper[m1]) ax.set_ylabel(label_mapper[m2]) # cosmetic ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) def plot_unit_characteristic(probe_insertion, axs=None): probe_insertion = probe_insertion.proj() amp, snr, spk_rate, x, y, insertion_depth = ( ephys.Unit * ephys.ProbeInsertion.InsertionLocation * ephys.UnitStat & probe_insertion & 'unit_quality != "all"').fetch( 'unit_amp', 'unit_snr', 'avg_firing_rate', 'unit_posx', 'unit_posy', 'dv_location') insertion_depth = np.where(np.isnan(insertion_depth), 0, insertion_depth) metrics = pd.DataFrame(list(zip(*(amp/amp.max(), snr/snr.max(), spk_rate/spk_rate.max(), x, y + insertion_depth)))) metrics.columns = ['amp', 'snr', 'rate', 'x', 'y'] if axs is None: fig, axs = plt.subplots(1, 3, figsize=(10, 8)) fig.subplots_adjust(wspace=0.6) assert axs.size == 3 cosmetic = {'legend': None, 'linewidth': 1.75, 'alpha': 0.9, 'facecolor': 'none', 'edgecolor': 'k'} sns.scatterplot(data=metrics, x='x', y='y', s=metrics.amp*m_scale, ax=axs[0], **cosmetic) sns.scatterplot(data=metrics, x='x', y='y', s=metrics.snr*m_scale, ax=axs[1], **cosmetic) sns.scatterplot(data=metrics, x='x', y='y', s=metrics.rate*m_scale, ax=axs[2], **cosmetic) # cosmetic for title, ax in zip(('Amplitude', 'SNR', 'Firing rate'), axs.flatten()): ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_title(title) ax.set_xlim((-10, 60)) def plot_unit_selectivity(probe_insertion, axs=None): probe_insertion = probe_insertion.proj() attr_names = ['unit', 'period', 'period_selectivity', 'contra_firing_rate', 'ipsi_firing_rate', 'unit_posx', 'unit_posy', 'dv_location'] selective_units = (psth.PeriodSelectivity * ephys.Unit * ephys.ProbeInsertion.InsertionLocation * experiment.Period & probe_insertion & 'period_selectivity != "non-selective"').fetch(*attr_names) selective_units = pd.DataFrame(selective_units).T selective_units.columns = attr_names selective_units.period_selectivity.astype('category') # --- account for insertion depth (manipulator depth) selective_units.unit_posy = (selective_units.unit_posy + np.where(np.isnan(selective_units.dv_location.values.astype(float)), 0, selective_units.dv_location.values.astype(float))) # --- get ipsi vs. contra firing rate difference f_rate_diff = np.abs(selective_units.ipsi_firing_rate - selective_units.contra_firing_rate) selective_units['f_rate_diff'] = f_rate_diff / f_rate_diff.max() # --- prepare for plotting cosmetic = {'legend': None, 'linewidth': 0.0001} ymax = selective_units.unit_posy.max() + 100 # a bit of hack to get 'open circle' pts = np.linspace(0, np.pi * 2, 24) circ = np.c_[np.sin(pts) / 2, -np.cos(pts) / 2] vert = np.r_[circ, circ[::-1] * .7] open_circle = mpl.path.Path(vert) # --- plot if axs is None: fig, axs = plt.subplots(1, 3, figsize=(10, 8)) fig.subplots_adjust(wspace=0.6) assert axs.size == 3 for (title, df), ax in zip(((p, selective_units[selective_units.period == p]) for p in ('sample', 'delay', 'response')), axs): sns.scatterplot(data=df, x='unit_posx', y='unit_posy', s=df.f_rate_diff.values.astype(float)*m_scale, hue='period_selectivity', marker=open_circle, palette={'contra-selective': 'b', 'ipsi-selective': 'r'}, ax=ax, **cosmetic) contra_p = (df.period_selectivity == 'contra-selective').sum() / len(df) * 100 # cosmetic ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_title(f'{title}\n% contra: {contra_p:.2f}\n% ipsi: {100-contra_p:.2f}') ax.set_xlim((-10, 60)) # ax.set_ylim((0, ymax)) def plot_unit_bilateral_photostim_effect(probe_insertion, axs=None): probe_insertion = probe_insertion.proj() cue_onset = (experiment.Period & 'period = "delay"').fetch1('period_start') no_stim_cond = (psth.TrialCondition & {'trial_condition_name': 'all_noearlylick_both_alm_nostim'}).fetch1('KEY') bi_stim_cond = (psth.TrialCondition & {'trial_condition_name': 'all_noearlylick_both_alm_stim'}).fetch1('KEY') # get photostim duration stim_durs = np.unique((experiment.Photostim & experiment.PhotostimEvent * psth.TrialCondition().get_trials('all_noearlylick_both_alm_stim') & probe_insertion).fetch('duration')) stim_dur = _extract_one_stim_dur(stim_durs) units = ephys.Unit & probe_insertion & 'unit_quality != "all"' metrics = pd.DataFrame(columns=['unit', 'x', 'y', 'frate_change']) # XXX: could be done with 1x fetch+join for u_idx, unit in enumerate(units.fetch('KEY')): x, y = (ephys.Unit & unit).fetch1('unit_posx', 'unit_posy') nostim_psth, nostim_edge = ( psth.UnitPsth & {**unit, **no_stim_cond}).fetch1('unit_psth') bistim_psth, bistim_edge = ( psth.UnitPsth & {**unit, **bi_stim_cond}).fetch1('unit_psth') # compute the firing rate difference between contra vs. ipsi within the stimulation duration ctrl_frate = nostim_psth[np.logical_and(nostim_edge[1:] >= cue_onset, nostim_edge[1:] <= cue_onset + stim_dur)] stim_frate = bistim_psth[np.logical_and(bistim_edge[1:] >= cue_onset, bistim_edge[1:] <= cue_onset + stim_dur)] frate_change = np.abs(stim_frate.mean() - ctrl_frate.mean()) / ctrl_frate.mean() metrics.loc[u_idx] = (int(unit['unit']), x, y, frate_change) metrics.frate_change = metrics.frate_change / metrics.frate_change.max() if axs is None: fig, axs = plt.subplots(1, 1, figsize=(4, 8)) cosmetic = {'legend': None, 'linewidth': 1.75, 'alpha': 0.9, 'facecolor': 'none', 'edgecolor': 'k'} sns.scatterplot(data=metrics, x='x', y='y', s=metrics.frate_change*m_scale, ax=axs, **cosmetic) axs.spines['right'].set_visible(False) axs.spines['top'].set_visible(False) axs.set_title('% change') axs.set_xlim((-10, 60)) def plot_stacked_contra_ipsi_psth(units, axs=None): units = units.proj() if axs is None: fig, axs = plt.subplots(1, 2, figsize=(20, 20)) assert axs.size == 2 trial_cond_name = psth.TrialCondition.get_cond_name_from_keywords(['good_noearlylick_', '_hit'])[0] period_starts = _get_trial_event_times(['sample', 'delay', 'go'], units, trial_cond_name) hemi = _get_units_hemisphere(units) conds_i = (psth.TrialCondition & {'trial_condition_name': 'good_noearlylick_left_hit' if hemi == 'left' else 'good_noearlylick_right_hit'}).fetch1('KEY') conds_c = (psth.TrialCondition & {'trial_condition_name': 'good_noearlylick_right_hit' if hemi == 'left' else 'good_noearlylick_left_hit'}).fetch1('KEY') sel_i = (ephys.Unit * psth.UnitSelectivity & 'unit_selectivity = "ipsi-selective"' & units) sel_c = (ephys.Unit * psth.UnitSelectivity & 'unit_selectivity = "contra-selective"' & units) # ipsi selective ipsi trials psth_is_it = (psth.UnitPsth * sel_i.proj('unit_posy') & conds_i).fetch(order_by='unit_posy desc') # ipsi selective contra trials psth_is_ct = (psth.UnitPsth * sel_i.proj('unit_posy') & conds_c).fetch(order_by='unit_posy desc') # contra selective contra trials psth_cs_ct = (psth.UnitPsth * sel_c.proj('unit_posy') & conds_c).fetch(order_by='unit_posy desc') # contra selective ipsi trials psth_cs_it = (psth.UnitPsth * sel_c.proj('unit_posy') & conds_i).fetch(order_by='unit_posy desc') _plot_stacked_psth_diff(psth_cs_ct, psth_cs_it, ax=axs[0], vlines=period_starts, flip=True) _plot_stacked_psth_diff(psth_is_it, psth_is_ct, ax=axs[1], vlines=period_starts) # cosmetic for ax, title in zip(axs, ('Contra-selective Units', 'Ipsi-selective Units')): ax.set_title(title) ax.set_ylabel('Unit') ax.set_xlabel('Time to go-cue (s)') ax.set_xlim([_plt_xmin, _plt_xmax]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) def plot_selectivity_sorted_stacked_contra_ipsi_psth(units, axs=None): units = units.proj() if axs is None: fig, axs = plt.subplots(1, 2, figsize=(20, 20)) assert axs.size == 2 trial_cond_name = psth.TrialCondition.get_cond_name_from_keywords(['good_noearlylick_', '_hit'])[0] period_starts = _get_trial_event_times(['sample', 'delay', 'go'], units, trial_cond_name) hemi = _get_units_hemisphere(units) conds_i = (psth.TrialCondition & {'trial_condition_name': 'good_noearlylick_left_hit' if hemi == 'left' else 'good_noearlylick_right_hit'}).fetch1('KEY') conds_c = (psth.TrialCondition & {'trial_condition_name': 'good_noearlylick_right_hit' if hemi == 'left' else 'good_noearlylick_left_hit'}).fetch1('KEY') # ---- separate units to: # i) sample or delay not response: sample_delay_units = units & (psth.PeriodSelectivity & 'period in ("sample", "delay")' & 'period_selectivity != "non-selective"') sample_delay_units = sample_delay_units & (psth.PeriodSelectivity & units & 'period = "response"' & 'period_selectivity = "non-selective"') # ii) sample or delay and response: sample_delay_response_units = units & (psth.PeriodSelectivity & 'period in ("sample", "delay")' & 'period_selectivity != "non-selective"') sample_delay_response_units = sample_delay_response_units & (psth.PeriodSelectivity & units & 'period = "response"' & 'period_selectivity != "non-selective"') # iii) not sample nor delay and response: response_units = (units & (psth.PeriodSelectivity & 'period in ("sample")' & 'period_selectivity = "non-selective"') & (psth.PeriodSelectivity & 'period in ("delay")' & 'period_selectivity = "non-selective"')) response_units = response_units & (psth.PeriodSelectivity & units & 'period = "response"' & 'period_selectivity != "non-selective"') ipsi_selective_psth, contra_selective_psth = [], [] for units in (sample_delay_units, sample_delay_response_units, response_units): sel_i = (ephys.Unit * psth.UnitSelectivity & 'unit_selectivity = "ipsi-selective"' & units) sel_c = (ephys.Unit * psth.UnitSelectivity & 'unit_selectivity = "contra-selective"' & units) # ipsi selective ipsi trials psth_is_it = (psth.UnitPsth * sel_i & conds_i).fetch() # ipsi selective contra trials psth_is_ct = (psth.UnitPsth * sel_i & conds_c).fetch() # contra selective contra trials psth_cs_ct = (psth.UnitPsth * sel_c & conds_c).fetch() # contra selective ipsi trials psth_cs_it = (psth.UnitPsth * sel_c & conds_i).fetch() contra_selective_psth.append(_plot_stacked_psth_diff(psth_cs_ct, psth_cs_it, ax=axs[0], flip=True, plot=False)) ipsi_selective_psth.append(_plot_stacked_psth_diff(psth_is_it, psth_is_ct, ax=axs[1], plot=False)) contra_boundaries = np.cumsum([len(k) for k in contra_selective_psth[::-1]]) ipsi_boundaries = np.cumsum([len(k) for k in ipsi_selective_psth[::-1]]) contra_selective_psth = np.vstack(contra_selective_psth) ipsi_selective_psth = np.vstack(ipsi_selective_psth) xlim = -3, 2 im = axs[0].imshow(contra_selective_psth, cmap=plt.cm.bwr, aspect=4.5/contra_selective_psth.shape[0], extent=[-3, 3, 0, contra_selective_psth.shape[0]]) im.set_clim((-1, 1)) im = axs[1].imshow(ipsi_selective_psth, cmap=plt.cm.bwr, aspect=4.5/ipsi_selective_psth.shape[0], extent=[-3, 3, 0, ipsi_selective_psth.shape[0]]) im.set_clim((-1, 1)) # cosmetic for ax, title, hspans in zip(axs, ('Contra-selective Units', 'Ipsi-selective Units'), (contra_boundaries, ipsi_boundaries)): for x in period_starts: ax.axvline(x=x, linestyle='--', color='k') ax.set_title(title) ax.set_ylabel('Unit') ax.set_xlabel('Time to go-cue (s)') ax.set_xlim(xlim) for ystart, ystop, color in zip([0]+list(hspans[:-1]), hspans, ('k', 'grey', 'w')): ax.axhspan(ystart, ystop, 0.98, 1, alpha=1, color=color) def plot_avg_contra_ipsi_psth(units, axs=None): units = units.proj() if axs is None: fig, axs = plt.subplots(1, 2, figsize=(16, 6)) assert axs.size == 2 period_starts = (experiment.Period & 'period in ("sample", "delay", "response")').fetch( 'period_start') hemi = _get_units_hemisphere(units) good_unit = ephys.Unit & 'unit_quality != "all"' conds_i = (psth.TrialCondition & {'trial_condition_name': 'good_noearlylick_left_hit' if hemi == 'left' else 'good_noearlylick_right_hit'}).fetch('KEY') conds_c = (psth.TrialCondition & {'trial_condition_name': 'good_noearlylick_right_hit' if hemi == 'left' else 'good_noearlylick_left_hit'}).fetch('KEY') sel_i = (ephys.Unit * psth.UnitSelectivity & 'unit_selectivity = "ipsi-selective"' & units) sel_c = (ephys.Unit * psth.UnitSelectivity & 'unit_selectivity = "contra-selective"' & units) psth_is_it = (((psth.UnitPsth & conds_i) * ephys.Unit.proj('unit_posy')) & good_unit.proj() & sel_i.proj()).fetch( 'unit_psth', order_by='unit_posy desc') psth_is_ct = (((psth.UnitPsth & conds_c) * ephys.Unit.proj('unit_posy')) & good_unit.proj() & sel_i.proj()).fetch( 'unit_psth', order_by='unit_posy desc') psth_cs_ct = (((psth.UnitPsth & conds_c) * ephys.Unit.proj('unit_posy')) & good_unit.proj() & sel_c.proj()).fetch( 'unit_psth', order_by='unit_posy desc') psth_cs_it = (((psth.UnitPsth & conds_i) * ephys.Unit.proj('unit_posy')) & good_unit.proj() & sel_c.proj()).fetch( 'unit_psth', order_by='unit_posy desc') _plot_avg_psth(psth_cs_it, psth_cs_ct, period_starts, axs[0], 'Contra-selective') _plot_avg_psth(psth_is_it, psth_is_ct, period_starts, axs[1], 'Ipsi-selective') ymax = max([ax.get_ylim()[1] for ax in axs]) for ax in axs: ax.set_ylim((0, ymax)) ax.set_xlim([_plt_xmin, _plt_xmax]) def plot_psth_photostim_effect(units, condition_name_kw=['both_alm'], axs=None): """ For the specified `units`, plot PSTH comparison between stim vs. no-stim with left/right trial instruction The stim location (or other appropriate search keywords) can be specified in `condition_name_kw` (default: bilateral ALM) """ units = units.proj() if axs is None: fig, axs = plt.subplots(1, 2, figsize=(16, 6)) assert axs.size == 2 hemi = _get_units_hemisphere(units) period_starts = (experiment.Period & 'period in ("sample", "delay", "response")').fetch( 'period_start') # no photostim: psth_n_l = psth.TrialCondition.get_cond_name_from_keywords(['_nostim', '_left'])[0] psth_n_r = psth.TrialCondition.get_cond_name_from_keywords(['_nostim', '_right'])[0] psth_n_l = (psth.UnitPsth * psth.TrialCondition & units & {'trial_condition_name': psth_n_l} & 'unit_psth is not NULL').fetch('unit_psth') psth_n_r = (psth.UnitPsth * psth.TrialCondition & units & {'trial_condition_name': psth_n_r} & 'unit_psth is not NULL').fetch('unit_psth') psth_s_l = psth.TrialCondition.get_cond_name_from_keywords(condition_name_kw + ['_stim_left'])[0] psth_s_r = psth.TrialCondition.get_cond_name_from_keywords(condition_name_kw + ['_stim_right'])[0] psth_s_l = (psth.UnitPsth * psth.TrialCondition & units & {'trial_condition_name': psth_s_l} & 'unit_psth is not NULL').fetch('unit_psth') psth_s_r = (psth.UnitPsth * psth.TrialCondition & units & {'trial_condition_name': psth_s_r} & 'unit_psth is not NULL').fetch('unit_psth') # get photostim duration and stim time (relative to go-cue) stim_trial_cond_name = psth.TrialCondition.get_cond_name_from_keywords(condition_name_kw + ['_stim'])[0] stim_time, stim_dur = _get_photostim_time_and_duration(units, psth.TrialCondition().get_trials(stim_trial_cond_name)) if hemi == 'left': psth_s_i = psth_s_l psth_n_i = psth_n_l psth_s_c = psth_s_r psth_n_c = psth_n_r else: psth_s_i = psth_s_r psth_n_i = psth_n_r psth_s_c = psth_s_l psth_n_c = psth_n_l _plot_avg_psth(psth_n_i, psth_n_c, period_starts, axs[0], 'Control') _plot_avg_psth(psth_s_i, psth_s_c, period_starts, axs[1], 'Photostim') # cosmetic ymax = max([ax.get_ylim()[1] for ax in axs]) for ax in axs: ax.set_ylim((0, ymax)) ax.set_xlim([_plt_xmin, _plt_xmax]) # add shaded bar for photostim axs[1].axvspan(stim_time, stim_time + stim_dur, alpha=0.3, color='royalblue') def plot_selectivity_change_photostim_effect(units, condition_name_kw, recover_time_window=None, ax=None): """ For each unit in the specified units, extract: + control, left-instruct PSTH (ctrl_left) + control, right-instruct PSTH (ctrl_right) + stim, left-instruct PSTH (stim_left) + stim, right-instruct PSTH (stim_right) Then, control_PSTH and stim_PSTH is defined as (ctrl_left - ctrl_right) for ipsi-selective unit that locates on the left-hemisphere, and vice versa (stim_left - stim_right) for ipsi-selective unit that locates on the left-hemisphere, and vice versa Selectivity change is then defined as: control_PSTH - stim_PSTH """ trial_cond_name = psth.TrialCondition.get_cond_name_from_keywords(['good_noearlylick_', '_hit'])[0] period_starts = _get_trial_event_times(['sample', 'delay', 'go'], units, trial_cond_name) stim_trial_cond_name = psth.TrialCondition.get_cond_name_from_keywords(condition_name_kw + ['_stim'])[0] stim_time, stim_dur = _get_photostim_time_and_duration(units, psth.TrialCondition().get_trials(stim_trial_cond_name)) ctrl_left_cond_name = 'all_noearlylick_nostim_left' ctrl_right_cond_name = 'all_noearlylick_nostim_right' stim_left_cond_name = psth.TrialCondition().get_cond_name_from_keywords(condition_name_kw + ['noearlylick', 'stim', 'left'])[0] stim_right_cond_name = psth.TrialCondition().get_cond_name_from_keywords(condition_name_kw + ['noearlylick', 'stim', 'right'])[0] delta_sels, ctrl_psths = [], [] for unit in (units * psth.UnitSelectivity & 'unit_selectivity != "non-selective"').proj('unit_selectivity').fetch(as_dict=True): # ---- trial count criteria ---- # no less than 5 trials for control if (len(psth.TrialCondition.get_trials(ctrl_left_cond_name) & unit) < 5 or len(psth.TrialCondition.get_trials(ctrl_right_cond_name) & unit) < 5): continue # no less than 2 trials for stimulation if (len(psth.TrialCondition.get_trials(stim_left_cond_name) & unit) < 2 or len(psth.TrialCondition.get_trials(stim_right_cond_name) & unit) < 2): continue hemi = _get_units_hemisphere(unit) ctrl_left_psth, t_vec = psth.UnitPsth.get_plotting_data(unit, {'trial_condition_name': ctrl_left_cond_name})['psth'] ctrl_right_psth, _ = psth.UnitPsth.get_plotting_data(unit, {'trial_condition_name': ctrl_right_cond_name})['psth'] try: stim_left_psth, _ = psth.UnitPsth.get_plotting_data(unit, {'trial_condition_name': stim_left_cond_name})['psth'] stim_right_psth, _ = psth.UnitPsth.get_plotting_data(unit, {'trial_condition_name': stim_right_cond_name})['psth'] except: continue if unit['unit_selectivity'] == 'ipsi-selective': ctrl_psth_diff = ctrl_left_psth - ctrl_right_psth if hemi == 'left' else ctrl_right_psth - ctrl_left_psth stim_psth_diff = stim_left_psth - stim_right_psth if hemi == 'left' else stim_right_psth - stim_left_psth elif unit['unit_selectivity'] == 'contra-selective': ctrl_psth_diff = ctrl_left_psth - ctrl_right_psth if hemi == 'right' else ctrl_right_psth - ctrl_left_psth stim_psth_diff = stim_left_psth - stim_right_psth if hemi == 'right' else stim_right_psth - stim_left_psth ctrl_psths.append(ctrl_psth_diff) delta_sels.append(ctrl_psth_diff - stim_psth_diff) ctrl_psths = np.vstack(ctrl_psths) delta_sels = np.vstack(delta_sels) if ax is None: fig, ax = plt.subplots(1, 1, figsize=(4, 6)) _plot_with_sem(delta_sels, t_vec, ax) if recover_time_window: recovery_times = [] for i in range(1000): i_sample = np.random.choice(delta_sels.shape[0], delta_sels.shape[0], replace = True) btstrp_diff = np.nanmean(delta_sels[i_sample, :], axis = 0) / np.nanmean(ctrl_psths[i_sample, :], axis = 0) t_recovered = t_vec[ (btstrp_diff < 0.2) & (t_vec > recover_time_window[0]) & (t_vec < recover_time_window[1])] if len(t_recovered) > 0: recovery_times.append(t_recovered[0]) ax.axvline(x = np.mean(recovery_times), linestyle = '--', color = 'g') ax.axvspan(np.mean(recovery_times) - np.std(recovery_times), np.mean(recovery_times) + np.std(recovery_times), alpha = 0.2, color = 'g') ax.axhline(y=0, color = 'k') for x in period_starts: ax.axvline(x=x, linestyle = '--', color = 'k') # add shaded bar for photostim ax.axvspan(stim_time, stim_time + stim_dur, 0.95, 1, alpha = 0.3, color = 'royalblue') ax.set_ylabel('Selectivity change (spike/s)') ax.set_xlabel('Time (s)') def plot_coding_direction(units, time_period=None, axs=None): _, proj_contra_trial, proj_ipsi_trial, time_stamps = psth.compute_CD_projected_psth( units.fetch('KEY'), time_period=time_period) period_starts = (experiment.Period & 'period in ("sample", "delay", "response")').fetch('period_start') if axs is None: fig, axs = plt.subplots(1, 1, figsize=(8, 6)) # plot _plot_with_sem(proj_contra_trial, time_stamps, ax=axs, c='b') _plot_with_sem(proj_ipsi_trial, time_stamps, ax=axs, c='r') for x in period_starts: axs.axvline(x=x, linestyle = '--', color = 'k') # cosmetic axs.spines['right'].set_visible(False) axs.spines['top'].set_visible(False) axs.set_ylabel('CD projection (a.u.)') axs.set_xlabel('Time (s)') def plot_paired_coding_direction(unit_g1, unit_g2, labels=None, time_period=None): """ Plot trial-to-trial CD-endpoint correlation between CD-projected trial-psth from two unit-groups (e.g. two brain regions) Note: coding direction is calculated on selective units, contra vs. ipsi, within the specified time_period """ _, proj_contra_trial_g1, proj_ipsi_trial_g1, time_stamps = psth.compute_CD_projected_psth( unit_g1.fetch('KEY'), time_period=time_period) _, proj_contra_trial_g2, proj_ipsi_trial_g2, time_stamps = psth.compute_CD_projected_psth( unit_g2.fetch('KEY'), time_period=time_period) period_starts = (experiment.Period & 'period in ("sample", "delay", "response")').fetch('period_start') if labels: assert len(labels) == 2 else: labels = ('unit group 1', 'unit group 2') # plot projected trial-psth fig, axs = plt.subplots(1, 2, figsize=(16, 6)) _plot_with_sem(proj_contra_trial_g1, time_stamps, ax=axs[0], c='b') _plot_with_sem(proj_ipsi_trial_g1, time_stamps, ax=axs[0], c='r') _plot_with_sem(proj_contra_trial_g2, time_stamps, ax=axs[1], c='b') _plot_with_sem(proj_ipsi_trial_g2, time_stamps, ax=axs[1], c='r') # cosmetic for ax, label in zip(axs, labels): for x in period_starts: ax.axvline(x=x, linestyle = '--', color = 'k') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('CD projection (a.u.)') ax.set_xlabel('Time (s)') ax.set_title(label) # plot trial CD-endpoint correlation p_start, p_end = time_period contra_cdend_1 = proj_contra_trial_g1[:, np.logical_and(time_stamps >= p_start, time_stamps < p_end)].mean(axis=1) contra_cdend_2 = proj_contra_trial_g2[:, np.logical_and(time_stamps >= p_start, time_stamps < p_end)].mean(axis=1) ipsi_cdend_1 = proj_ipsi_trial_g1[:, np.logical_and(time_stamps >= p_start, time_stamps < p_end)].mean(axis=1) ipsi_cdend_2 = proj_ipsi_trial_g2[:, np.logical_and(time_stamps >= p_start, time_stamps < p_end)].mean(axis=1) c_df = pd.DataFrame([contra_cdend_1, contra_cdend_2]).T c_df.columns = labels c_df['trial-type'] = 'contra' i_df =
pd.DataFrame([ipsi_cdend_1, ipsi_cdend_2])
pandas.DataFrame
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, doc, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.array_algos.transforms import shift from pandas.core.arrays.base import ExtensionArray, _extension_array_shared_docs from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = np.dtype("O") if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) @property def codes(self) -> np.ndarray: """ The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") fill_value = self._validate_fill_value(fill_value) codes = shift(codes.copy(), periods, axis=0, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def _validate_fill_value(self, fill_value): """ Convert a user-facing fill_value to a representation to use with our underlying ndarray, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : int Raises ------ ValueError """ if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) return fill_value def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self) -> "Categorical": """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, (np.ndarray, Categorical, ABCSeries)): # We get ndarray or Categorical if called via Series.fillna, # where it will unwrap another aligned Series before getting here mask = ~algorithms.isin(value, self.categories) if not isna(value[mask]).all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.copy() codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if allow_fill: # convert user-provided `fill_value` to codes fill_value = self._validate_fill_value(fill_value) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1:
deprecate_ndim_indexing(result)
pandas.core.indexers.deprecate_ndim_indexing
"""""" """ Copyright (c) 2021 <NAME> as part of Airlab Amsterdam Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import torch import torch.utils.data as torchdata import pandas as pd #%% Training class class timeseries_dataset(): def __init__(self, name, dim_inputseqlen, dim_outputseqlen, dim_maxseqlen): self.name = name self.dim_inputseqlen = dim_inputseqlen self.dim_outputseqlen = dim_outputseqlen self.dim_maxseqlen = dim_maxseqlen def load(self, mode): if self.name == 'uci_electricity': output = uci_electricity(self.dim_inputseqlen, self.dim_outputseqlen, self.dim_maxseqlen, mode, self.name) if self.name == 'uci_traffic': output = uci_traffic(self.dim_inputseqlen, self.dim_outputseqlen, self.dim_maxseqlen, mode, self.name) if self.name == 'kaggle_webtraffic': output = kaggle_webtraffic(self.dim_inputseqlen, self.dim_outputseqlen, self.dim_maxseqlen, mode, self.name) if self.name == 'kaggle_favorita': output = kaggle_favorita(self.dim_inputseqlen, self.dim_outputseqlen, self.dim_maxseqlen, mode, self.name) if self.name == 'kaggle_m5': output = kaggle_m5(self.dim_inputseqlen, self.dim_outputseqlen, self.dim_maxseqlen, mode, self.name) return output #%% UCI - Electricity # Source: https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014 class uci_electricity(torchdata.Dataset): def __init__(self, dim_inputseqlen, dim_outputseqlen, dim_maxseqlen, mode, name): """ Load UCI Electricity dataset in format [samples, seqlen, features] """ self.dim_inputseqlen = dim_inputseqlen self.dim_outputseqlen = dim_outputseqlen self.window = dim_inputseqlen + dim_outputseqlen self.dim_maxseqlen = dim_maxseqlen self.mode = mode self.p_train = 0.8 self.p_validate = 0.1 self.name = name self.X, self.Y = self.get_data() def __len__(self): return len(self.index) def __getitem__(self, idx): x = self.X[self.index[idx, 0], self.index[idx, 1]] y = self.Y[self.index[idx, 0], self.index[idx, 1]] return x, y def get_data(self): # Read data from source df = pd.read_csv('data/uci_electricity/LD2011_2014.txt', sep = ';', parse_dates=[0], infer_datetime_format=True, dtype='float32', decimal=',', index_col=[0]) # Subtract 15 minutes from index to make index the starting time (instead of ending time) df.index = df.index + pd.Timedelta(minutes=-15) # Aggregate to hourly level if desired df = df.groupby([df.index.date, df.index.hour]).sum() df.index = df.index.set_levels([pd.to_datetime(df.index.levels[0]), df.index.levels[1]]) # Create index for allowable entries (not only zeros) self.num_series = len(df.columns) self.num_dates = len(df) arr_online = np.zeros((self.num_dates, self.num_series)) index = np.empty((0, 2), dtype='int') for i in range(len(df.columns)): idx = np.flatnonzero(df.iloc[:, i]) arr_online[idx, i] = 1 idx = np.arange(idx[0] - self.window, np.minimum(idx[-1] + 1, len(df) - self.dim_maxseqlen)) idx = idx[idx >= 0] arr = np.array([np.repeat(i, len(idx)), idx]).T index = np.append(index, arr, axis = 0) # Stack (and recreate Dataframe because stupid Pandas creates a Series otherwise) df = pd.DataFrame(df.stack()) # Add time-based covariates df['Series'] = df.index.get_level_values(2) df['Series'] = df['Series'].str.replace(r'MT_','').astype('int') - 1 # Add scaled time-based features df['Month_sin'] = np.sin(df.index.get_level_values(0).month * (2 * np.pi / 12)) df['Month_cos'] = np.cos(df.index.get_level_values(0).month * (2 * np.pi / 12)) df['DayOfWeek_sin'] = np.sin(df.index.get_level_values(0).dayofweek * (2 * np.pi / 7)) df['DayOfWeek_cos'] = np.cos(df.index.get_level_values(0).dayofweek * (2 * np.pi / 7)) df['HourOfDay_sin'] = np.sin(df.index.get_level_values(1) * (2 * np.pi / 24)) df['HourOfDay_cos'] = np.cos(df.index.get_level_values(1) * (2 * np.pi / 24)) df['Online'] = arr_online.reshape(-1, 1) # Rename target column df.rename(columns={0:'E_consumption'}, inplace=True) # Add lagged output variable df['E_consumption_lag'] = df.groupby(level=2)['E_consumption'].shift(1) # Remove first date (contains NaNs for the lagged column) df = df.iloc[370:] # Sort by series df.index.names = ['date','hour','series'] df.sort_index(level=['series','date','hour'], inplace=True) # Create feature matrix X and output vector Y df_Y = df[['E_consumption']] df.drop(['E_consumption'], axis=1, inplace=True) df_X = df # Convert dataframe to numpy and reshape to [series x dates x features] format X = df_X.to_numpy(dtype='float32').reshape(self.num_series, -1, len(df_X.columns)) Y = df_Y.to_numpy(dtype='float32').reshape(self.num_series, -1, len(df_Y.columns)) # Input and output dimensions self.dim_input, self.dim_output = X.shape[-1], Y.shape[-1] # Convert to torch X, Y = torch.from_numpy(X), torch.from_numpy(Y) # Create subsequences by unfolding along date dimension with a sliding window Xt, Yt = X.unfold(-2, self.dim_maxseqlen, 1).permute(0, 1, 3, 2), Y.unfold(-2, self.dim_maxseqlen, 1).permute(0, 1, 3, 2) # Create train, validate and test sets num_dates_train = int(self.p_train * Xt.shape[1]) num_dates_validate = int(self.p_validate * Xt.shape[1]) index = torch.from_numpy(index) # Get datasets if self.mode == 'train': self.index = index[index[:, 1] < num_dates_train] elif self.mode == 'validate': self.index = index[(index[:, 1] >= num_dates_train) & (index[:, 1] < num_dates_train + num_dates_validate)] elif self.mode == 'test': self.index = index[(index[:, 1] >= num_dates_train + num_dates_validate + self.dim_outputseqlen - 1)] # Useful for use in algorithms - dimension of lags and dimension of covariates (minus dim of time series ID) self.d_lag = self.dim_output self.d_emb = 1 self.d_cov = self.dim_input - self.dim_output - 1 return Xt, Yt[:, :, self.dim_inputseqlen:self.window, :] #%% UCI - Traffic # Source: http://archive.ics.uci.edu/ml/datasets/PEMS-SF class uci_traffic(torchdata.Dataset): def __init__(self, dim_inputseqlen, dim_outputseqlen, dim_maxseqlen, mode, name): """ Load UCI Traffic dataset in format [samples, seqlen, features] """ self.dim_inputseqlen = dim_inputseqlen self.dim_outputseqlen = dim_outputseqlen self.window = dim_inputseqlen + dim_outputseqlen self.dim_maxseqlen = dim_maxseqlen self.mode = mode self.p_train = 0.8 self.p_validate = 0.1 self.name = name self.X, self.Y = self.get_data() def __len__(self): return len(self.index) def __getitem__(self, idx): x = self.X[self.index[idx, 0], self.index[idx, 1]] y = self.Y[self.index[idx, 0], self.index[idx, 1]] return x, y def get_data(self): # Read data from source df = pd.read_csv('data/uci_traffic/dataset.csv', index_col=0, infer_datetime_format=True, parse_dates=[[0, 1]]) # Extract missing column missing = df['missing'].copy() df = df.drop(columns=['missing']) # Create index for allowable entries self.num_series = len(df.columns) self.num_dates = len(df) index_col1 = np.repeat(np.arange(0, self.num_series), self.num_dates - self.dim_maxseqlen) index_col2 = np.tile(np.arange(0, self.num_dates - self.dim_maxseqlen), self.num_series) index = np.stack((index_col1, index_col2), axis=1) # Stack (and recreate Dataframe because stupid Pandas creates a Series otherwise) df = pd.DataFrame(df.stack()) # Add series indicator as integer df['Series'] = df.index.get_level_values(1) df['Series'] = df['Series'].str.replace(r'carlane_','').astype('int') - 1 # Add time-based covariates df['DayOfWeek_sin'] = np.sin(df.index.get_level_values(0).dayofweek * (2 * np.pi / 7)) df['DayOfWeek_cos'] = np.cos(df.index.get_level_values(0).dayofweek * (2 * np.pi / 7)) df['HourOfDay_sin'] = np.sin(df.index.get_level_values(0).hour * (2 * np.pi / 24)) df['HourOfDay_cos'] = np.cos(df.index.get_level_values(0).hour * (2 * np.pi / 24)) df['Available'] = 1 df.loc[(missing[missing == 1].index, slice(None)), 'Available'] = 0 # Rename target column df.rename(columns={0:'Occupancy_rate'}, inplace=True) # Add lagged output variable df['Occupancy_rate_lag'] = df.groupby(level=1)['Occupancy_rate'].shift(1) # Remove first date (contains NaNs for the lagged column) df = df.iloc[self.num_series:] # Sort by series df.index.names = ['date_time','series'] df = df.sort_index(level=['series','date_time']) # Create feature matrix X and output vector Y df_Y = df[['Occupancy_rate']] df.drop(['Occupancy_rate'], axis=1, inplace=True) df_X = df # Convert dataframe to numpy and reshape to [series x dates x features] format X = df_X.to_numpy(dtype='float32').reshape(self.num_series, -1, len(df_X.columns)) Y = df_Y.to_numpy(dtype='float32').reshape(self.num_series, -1, len(df_Y.columns)) # Input and output dimensions self.dim_input, self.dim_output = X.shape[-1], Y.shape[-1] # Convert to torch X, Y = torch.from_numpy(X), torch.from_numpy(Y) # Create subsequences by unfolding along date dimension with a sliding window Xt, Yt = X.unfold(-2, self.dim_maxseqlen, 1).permute(0, 1, 3, 2), Y.unfold(-2, self.dim_maxseqlen, 1).permute(0, 1, 3, 2) # Create train, validate and test sets num_dates_train = int(self.p_train * Xt.shape[1]) num_dates_validate = int(self.p_validate * Xt.shape[1]) index = torch.from_numpy(index) # Get datasets if self.mode == 'train': self.index = index[index[:, 1] < num_dates_train] elif self.mode == 'validate': self.index = index[(index[:, 1] >= num_dates_train) & (index[:, 1] < num_dates_train + num_dates_validate)] elif self.mode == 'test': self.index = index[(index[:, 1] >= num_dates_train + num_dates_validate + self.dim_outputseqlen - 1)] # Useful for use in algorithms - dimension of lags and dimension of covariates (minus dim of time series ID) self.d_lag = self.dim_output self.d_emb = 1 self.d_cov = self.dim_input - self.dim_output - 1 return Xt, Yt[:, :, self.dim_inputseqlen:self.window, :] #%% Kaggle - Webtraffic # Source: https://www.kaggle.com/c/web-traffic-time-series-forecasting/data class kaggle_webtraffic(torchdata.Dataset): def __init__(self, dim_inputseqlen, dim_outputseqlen, dim_maxseqlen, mode, name): """ Load Kaggle Web Traffic dataset in format [samples, seqlen, features] """ self.dim_inputseqlen = dim_inputseqlen self.dim_outputseqlen = dim_outputseqlen self.window = dim_inputseqlen + dim_outputseqlen self.dim_maxseqlen = dim_maxseqlen self.mode = mode self.train_maxdate = '2016-12-31' self.validate_maxdate = '2017-03-31' self.name = name self.X, self.Y = self.get_data() def __len__(self): return len(self.index) def __getitem__(self, idx): x = self.X[self.index[idx, 0], self.index[idx, 1]] y = self.Y[self.index[idx, 0], self.index[idx, 1]] return x, y def get_data(self): # Read data from source df = pd.read_csv('data/kaggle_webtraffic/train_2.csv', index_col=[0]).fillna(0).transpose() # Set index df.index = pd.to_datetime(df.index) # Training, validation, test num_dates_train = len(df.loc[:self.train_maxdate]) - self.dim_maxseqlen num_dates_validate = len(df.loc[:self.validate_maxdate]) - self.dim_maxseqlen # Use only top-10000 pageviews = df.loc[:'2016-12-31'].sum(axis=0) indices = pageviews.sort_values(ascending=False)[:10000].index df = df.loc[:, indices] # Rename pages to simple index - we ignore information in the page name columns = [str(i) for i in range(len(df.columns))] df.columns = columns # Series self.num_series = len(df.columns) self.num_dates = len(df) - 1 # Create index for allowable entries index_col1 = np.repeat(np.arange(0, self.num_series), self.num_dates - self.dim_maxseqlen + 1) index_col2 = np.tile(np.arange(0, self.num_dates - self.dim_maxseqlen + 1), self.num_series) index = np.stack((index_col1, index_col2), axis=1) # Reset index # Stack (and recreate Dataframe because stupid Pandas creates a Series otherwise) df = pd.DataFrame(df.stack()) # Add series indicator as integer df['Series'] = df.index.get_level_values(1) df['Series'] = df['Series'].astype('int') # Add time-based covariates df['DayOfWeek_sin'] = np.sin(df.index.get_level_values(0).dayofweek * (2 * np.pi / 7)) df['DayOfWeek_cos'] = np.cos(df.index.get_level_values(0).dayofweek * (2 * np.pi / 7)) df['DayOfMonth_sin'] = np.sin(df.index.get_level_values(0).day * (2 * np.pi / 31)) df['DayOfMonth_cos'] = np.cos(df.index.get_level_values(0).day * (2 * np.pi / 31)) df['WeekOfYear_sin'] = np.sin(df.index.get_level_values(0).week * (2 * np.pi / 53)) df['WeekOfYear_cos'] = np.cos(df.index.get_level_values(0).week * (2 * np.pi / 53)) df['MonthOfYear_sin'] = np.sin(df.index.get_level_values(0).month * (2 * np.pi / 12)) df['MonthOfYear_cos'] = np.cos(df.index.get_level_values(0).month * (2 * np.pi / 12)) # Rename target column df.rename(columns={0:'Page_views'}, inplace=True) # Add lagged output variable df['Page_views_lag'] = df.groupby(level=1)['Page_views'].shift(1) # Remove first date (contains NaNs for the lagged column) df = df.iloc[self.num_series:] # Sort by series df.index.names = ['date_time','series'] df = df.sort_index(level=['series','date_time']) # Create feature matrix X and output vector Y df_Y = df[['Page_views']] df.drop(['Page_views'], axis=1, inplace=True) df_X = df # Convert dataframe to numpy and reshape to [series x dates x features] format X = df_X.to_numpy(dtype='float32').reshape(self.num_series, -1, len(df_X.columns)) Y = df_Y.to_numpy(dtype='float32').reshape(self.num_series, -1, len(df_Y.columns)) # Input and output dimensions self.dim_input, self.dim_output = X.shape[-1], Y.shape[-1] # Convert to torch X, Y = torch.from_numpy(X), torch.from_numpy(Y) # Create subsequences by unfolding along date dimension with a sliding window Xt, Yt = X.unfold(-2, self.dim_maxseqlen, 1).permute(0, 1, 3, 2), Y.unfold(-2, self.dim_maxseqlen, 1).permute(0, 1, 3, 2) index = torch.from_numpy(index) # Get datasets if self.mode == 'train': self.index = index[index[:, 1] < num_dates_train] elif self.mode == 'validate': self.index = index[(index[:, 1] >= num_dates_train) & (index[:, 1] < num_dates_validate)] elif self.mode == 'test': self.index = index[(index[:, 1] >= num_dates_validate)] # Useful for use in algorithms - dimension of lags and dimension of covariates (minus dim of time series ID) self.d_lag = self.dim_output self.d_emb = 1 self.d_cov = self.dim_input - self.dim_output - 1 return Xt, Yt[:, :, self.dim_inputseqlen:self.window, :] #%% Kaggle - Favorita # Source: https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data class kaggle_favorita(torchdata.Dataset): def __init__(self, dim_inputseqlen, dim_outputseqlen, dim_maxseqlen, mode, name): """ Load Favorita dataset in format [samples, seqlen, features] """ self.dim_inputseqlen = dim_inputseqlen self.dim_outputseqlen = dim_outputseqlen self.window = dim_inputseqlen + dim_outputseqlen self.dim_maxseqlen = dim_maxseqlen self.mode = mode self.train_maxdate = '2013-09-02' self.validate_maxdate = '2013-10-03' self.name = name self.X, self.Y = self.get_data() def __len__(self): return len(self.index) def __getitem__(self, idx): x = self.X[self.index[idx]:self.index[idx] + self.dim_maxseqlen] y = self.Y[self.index[idx] + self.dim_inputseqlen:self.index[idx] + self.dim_outputseqlen + self.dim_inputseqlen] return x, y def get_data(self): # Read data from source df = pd.read_hdf('data/kaggle_favorita/df_full_2013.h5', key='favorita') index = pd.read_hdf('data/kaggle_favorita/df_full_2013.h5', key='index') df_Y = df[['unit_sales']] df_X = df.drop(columns=['unit_sales', 'transactions_missing_lagged', 'oil_price_missing_lagged', 'unit_sales_missing_lagged', 'transactions_lagged', 'oil_price_lagged']) # Convert dataframe to numpy and reshape to [series x dates x features] format X = df_X.to_numpy(dtype='float32') Y = df_Y.to_numpy(dtype='float32') # Input and output dimensions self.dim_input, self.dim_output = X.shape[-1], Y.shape[-1] # Convert to torch X, Y = torch.from_numpy(X), torch.from_numpy(Y) # Get datasets if self.mode == 'train': idx = index[index['date'] <= self.train_maxdate]['index'].to_numpy() self.index = torch.from_numpy(idx) elif self.mode == 'validate': idx = index[(index['date'] <= self.validate_maxdate) & (index['date'] > self.train_maxdate)]['index'].to_numpy() self.index = torch.from_numpy(idx) elif self.mode == 'test': idx = index[index['date'] > self.validate_maxdate]['index'].to_numpy() self.index = torch.from_numpy(idx) # Useful for use in algorithms - dimension of lags and dimension of covariates (minus dim of time series ID) self.d_lag = 1 # number of lags in input self.d_emb = 2 # number of embedding categoricals in input self.d_cov = self.dim_input - self.d_lag - self.d_emb # number of covariates input return X, Y #%% Kaggle - M5 # Source: https://www.kaggle.com/c/m5-forecasting-accuracy class kaggle_m5(torchdata.Dataset): def __init__(self, dim_inputseqlen, dim_outputseqlen, dim_maxseqlen, mode, name): """ Load m5 dataset in format [samples, seqlen, features] """ self.dim_inputseqlen = dim_inputseqlen self.dim_outputseqlen = dim_outputseqlen self.window = dim_inputseqlen + dim_outputseqlen self.dim_maxseqlen = dim_maxseqlen self.mode = mode self.train_mindate = '2014-01-01' self.train_maxdate = '2015-12-31' self.validate_maxdate = '2016-01-31' self.name = name self.X, self.Y = self.get_data() def __len__(self): return len(self.index) def __getitem__(self, idx): x = self.X[self.index[idx]:self.index[idx] + self.dim_maxseqlen] y = self.Y[(self.index[idx] + self.dim_inputseqlen):(self.index[idx] + self.dim_outputseqlen + self.dim_inputseqlen)] return x, y def get_data(self): # Read data from source df =
pd.read_feather('data/kaggle_m5/m5_dataset_products.feather')
pandas.read_feather
import datetime as dt import json import os from datetime import datetime import bs4 import pandas as pd import requests import yfinance as yf from pandas_datareader import data as pdr yf.pdr_override() info_types = ["info", "options", "dividends", "mutualfund_holders", "institutional_holders", "major_holders", "calendar", "actions", "splits"] def date_parse(d): return datetime.strptime(d, "%Y-%m-%d") def load_price_history(symbol, start_date=dt.datetime(2000, 1, 1), end_date=dt.datetime.now(), market="us", reload=True): now = dt.datetime.now() symbol = symbol.lower().strip() symbol_filename = "-".join(symbol.split(".")) file_path = f"data/{market}/price_history/{symbol_filename}.csv" if reload: if os.path.isfile(file_path): # download only data from one day after latest date in csv df_old = pd.read_csv(file_path, index_col=0, parse_dates=True) if len(df_old) == 0: df = pdr.get_data_yahoo(symbol, start_date, end_date) df.reset_index(level=0).to_csv(file_path, index=False, date_format="%Y-%m-%d") return df oldest_saved_date = df_old.index[0] lastest_saved_date = df_old.index[-1] try: if start_date < oldest_saved_date: df_older = pdr.get_data_yahoo(symbol, start_date, oldest_saved_date - dt.timedelta(days=1)) df_older = df_older[(df_older.index >= start_date) & (df_older.index < oldest_saved_date)] df_old = pd.concat([df_older, df_old]) df_old = df_old[df_old.index < lastest_saved_date] df_new = pdr.get_data_yahoo(symbol, lastest_saved_date, now) df_new = df_new[df_new.index >= lastest_saved_date] df_new = df_new[~df_new.index.duplicated(keep="first")] df = pd.concat([df_old, df_new]) df.reset_index(level=0).to_csv(file_path, index=False, date_format="%Y-%m-%d") return df[(df.index >= start_date) & (df.index <= end_date)] except TypeError: df = pdr.get_data_yahoo(symbol, start_date, end_date) df.reset_index(level=0).to_csv(file_path, index=False, date_format="%Y-%m-%d") return df else: # no csv exits df = pdr.get_data_yahoo(symbol, start_date, end_date) directory = f"data/{market}/price_history" if not os.path.exists(directory): os.makedirs(directory) print(file_path) df.reset_index(level=0).to_csv(file_path, index=False, date_format="%Y-%m-%d") return df else: # don't reload df =
pd.read_csv(file_path, index_col=0, parse_dates=True)
pandas.read_csv
""" Helper module for road-network related functions """ __version__ = '0.2' import logging import numpy as np import networkx as nx from pysal.lib.cg import RTree, Rect from sklearn.neighbors import KDTree import pandas as pd from code_libs.euclidean import euchelper class Network: """Class for the Network graph """ def __init__(self, lines_arr, max_point_dist=0.1): self.pt_dict = {} self.adj_dict = {} self.rtree = RTree() # KD Tree related self.kd_tree = None self.points_kd = None self.kd_ptid_to_nodeid_map = {} self.kd_nodeid_to_ptid_map = {} self.kd_pt_data_list = [] self.network = None self.refine_graph(lines_arr, max_point_dist) self.build_all_elements() def check_and_add_pt(self, point, min_dist, next_pt_id): """Check if a point is present. A point will be added if there are no other points within the "min_dist" neighborhood Arguments: point {[list]} -- [x,y] of the point min_dist {[float]} -- The minimum neighborhood distance next_pt_id {[int]} -- The starting id of the point that should be assigned for the next point Returns: [int] -- The next_id to be used for downstream calls """ point_id = None res = [r.leaf_obj() for r in self.rtree.query_point(point) if r.is_leaf()] if(res is not None) and res: #logging.debug("\tREPEAT: point={}, res={}".format(point,res)) point_id = res[0] else: pt0 = ((point[0] - float(min_dist / 2.0)), (point[1] - float(min_dist / 2.0))) pt1 = ((point[0] + float(min_dist / 2.0)), (point[1] + float(min_dist / 2.0))) self.rtree.insert(next_pt_id, Rect(pt0[0], pt0[1], pt1[0], pt1[1])) point_id = next_pt_id return point_id def refine_graph(self, lines_arr, max_point_dist): """ Refine the graph by removing close points Arguments: lines_arr {[list]} -- List of lines max_point_dist {[float]} -- The max distance between two points """ # Put all lines in an r-tree pt_id = 0 add_reverse_edge = False #index = 0 for line_string in lines_arr: prev_pt_id = None for point in line_string: add_pt_id = self.check_and_add_pt(point, max_point_dist, pt_id) if add_pt_id == pt_id: # Point was added self.pt_dict[add_pt_id] = point pt_id += 1 else: # Point was already found pass if prev_pt_id is not None: # Add edge from src->dest adj_list = self.adj_dict.get(prev_pt_id, None) if adj_list is None: adj_list = [] adj_list.append(add_pt_id) self.adj_dict[prev_pt_id] = adj_list # Add reverse edge (dst->src) if add_reverse_edge: adj_list = self.adj_dict.get(add_pt_id, None) if adj_list is None: adj_list = [] adj_list.append(prev_pt_id) self.adj_dict[add_pt_id] = adj_list prev_pt_id = add_pt_id # logging.debug("pt_dict={}".format(self.pt_dict)) def build_all_elements(self): """Build the network and create an indexing structure (kdtree) """ self.build_network() self.create_point_kd() def create_point_kd(self): """Create a kdtree of points """ index = 0 node_list = self.network.nodes(data=True) for node, data in node_list: self.kd_nodeid_to_ptid_map[node] = index self.kd_ptid_to_nodeid_map[index] = node self.kd_pt_data_list.append([data["x"], data["y"]]) index += 1 if self.kd_pt_data_list: self.kd_pt_data_list = np.array(self.kd_pt_data_list) self.kd_tree = KDTree(self.kd_pt_data_list) def get_nearest_point_id(self, thept): """Get the first nearest point on the graph for a given "pt" Arguments: thept {[list]} -- [x,y] point Returns: [list] -- Nearest point """ pt_id = None if self.kd_tree is not None: dist_arr, pt_ind_arr = self.kd_tree.query([thept], k=1) dist = dist_arr[0][0] pt_ind = pt_ind_arr[0][0] if self.kd_ptid_to_nodeid_map.get(pt_ind, None) is not None: pt_id = self.kd_ptid_to_nodeid_map[pt_ind] else: logging.error("ERROR: Nearest point for %s (ind=%d, pt=%s, " "dist=%f) is not a part of kdtree", str(thept), pt_ind, str(self.kd_pt_data_list[pt_ind]), dist) return pt_id def build_network(self): """Build the road-network """ self.network = nx.Graph() for pt_id in self.pt_dict: self.network.add_node(pt_id, x=self.pt_dict[pt_id][0], y=self.pt_dict[pt_id][1], pos=(self.pt_dict[pt_id][0], self.pt_dict[pt_id][1])) for src in self.adj_dict: for dst in self.adj_dict[src]: src_pt = np.array(self.pt_dict[src]) dst_pt = np.array(self.pt_dict[dst]) edge_len = np.linalg.norm(src_pt-dst_pt) self.network.add_edge(src, dst, weight=edge_len) def get_shortest_path_bw_id(self, start_point_id, dst_point_id): """Get the shortest path between given source and dest Arguments: start_point_id {[list]} -- [x,y] of the source point dst_point_id {[type]} -- [x,y] of the destination point Returns: [list] -- list of points [x,y] """ retval = [] try: retval = nx.shortest_path( self.network, source=start_point_id, target=dst_point_id, weight='weight') except nx.NetworkXNoPath: # No path found between two points retval = None return retval def get_xy(self, node_id): """ Get the (x,y) position of a given node with id = "node_id" Arguments: node_id {[int]} -- The node id Returns: [list] -- The [x,y] of the node """ if node_id in self.network: return (self.network.node[node_id]['x'], self.network.node[node_id]['y']) else: return None def get_interpolated_path(self, st_pt, end_pt, ts_arr, interpolate_time_sec=0.5, id_str=None): """ Interpolate a path between st_pt and end_pt on the graph Arguments: st_pt {int} -- The id of the starting point end_pt {int} -- The id of the end point ts_arr {list} -- [list of timestamps for each visit] Keyword Arguments: interpolate_time_sec {float} -- The interpolation time (default: {0.5}) id_str {string} -- The string id provided as a suffix to file (default: {None}) """ retval = [] path = self.get_shortest_path_bw_id(st_pt, end_pt) if path is None: retval = None elif path: last_ts = ts_arr[len(ts_arr) - 1] start_ts = ts_arr[0] total_time_sec = (last_ts - start_ts) / np.timedelta64(1, 's') path_lth = 0 path_pts = [] prev_pt = None # Compute path length for node in path: thept = self.get_xy(node) if thept is not None: thept = np.array(thept) path_pts.append(thept) if prev_pt is not None: dist = np.linalg.norm(thept-prev_pt) path_lth += dist prev_pt = thept # Chop the distance into points based on speed and time time_diff = (ts_arr[len(ts_arr) - 1] - ts_arr[0]) / np.timedelta64(1, 's') dist_km_per_hop = (path_lth * interpolate_time_sec / float(total_time_sec)) path_list = [] prev_node = None prev_node_pt = None remaining_dist_on_this_hop = 0.0 curr_ts = start_ts for node in path: thept = np.array(self.get_xy(node)) if prev_node_pt is not None: # Now interpolate with the distance edge_len_km = np.linalg.norm(thept - prev_node_pt) traversed_dist_on_this_hop = abs( remaining_dist_on_this_hop) if(remaining_dist_on_this_hop < 0 and abs(remaining_dist_on_this_hop) < edge_len_km): proportion = ( traversed_dist_on_this_hop / float(edge_len_km)) new_pt = euchelper.interpolate_line( prev_node_pt, thept, proportion) curr_lth = abs(remaining_dist_on_this_hop) time_delta_this_hop_sec = (curr_lth * time_diff / float(path_lth)) curr_ts = (curr_ts + pd.Timedelta(time_delta_this_hop_sec, unit='s')) path_list.append({"ts": curr_ts, "edgept1": prev_node, "edgept2": node, "edgeX0": prev_node_pt[0], "edgeY0": prev_node_pt[1], "edgeX1": thept[0], "edgeY1": thept[1], "edgeLth": edge_len_km, "x": new_pt[0], "y": new_pt[1], "proportion": proportion, "currLth": curr_lth, "timeDelta": time_delta_this_hop_sec, "distOnHop": traversed_dist_on_this_hop, "remLth": remaining_dist_on_this_hop} ) retval.append( [curr_ts, new_pt[0], new_pt[1], curr_lth]) remaining_dist_on_this_hop = edge_len_km + remaining_dist_on_this_hop if remaining_dist_on_this_hop <= 0: # Add entire edge new_pt = thept curr_lth = edge_len_km remaining_dist_on_this_hop -= curr_lth time_delta_this_hop_sec = curr_lth * \ time_diff / float(path_lth) curr_ts = curr_ts + \ pd.Timedelta(time_delta_this_hop_sec, unit='s') retval.append( [curr_ts, new_pt[0], new_pt[1], curr_lth]) path_list.append({"ts": curr_ts, "edgeX0": prev_node_pt[0], "edgeY0": prev_node_pt[1], "edgeX1": thept[0], "edgeY1": thept[1], "x": new_pt[0], "y": new_pt[1], "edgeLth": edge_len_km, "proportion": 1.0, "currLth": curr_lth, "timeDelta": time_delta_this_hop_sec, "distOnHop": curr_lth, "remLth": remaining_dist_on_this_hop} ) else: while remaining_dist_on_this_hop >= 0.0: # Now keep interpolating curr_lth = dist_km_per_hop # about 0.7 traversed_dist_on_this_hop += curr_lth remaining_dist_on_this_hop = edge_len_km - traversed_dist_on_this_hop if traversed_dist_on_this_hop > edge_len_km: curr_lth = (edge_len_km - (traversed_dist_on_this_hop - curr_lth)) traversed_dist_on_this_hop = edge_len_km proportion = (traversed_dist_on_this_hop / float(edge_len_km)) new_pt = euchelper.interpolate_line( prev_node_pt, thept, proportion) time_delta_this_hop_sec = (curr_lth * time_diff / float(path_lth)) curr_ts = (curr_ts + pd.Timedelta(time_delta_this_hop_sec, unit='s')) path_list.append({"ts": curr_ts, "edgept1": prev_node, "edgept2": node, "edgeX0": prev_node_pt[0], "edgeY0": prev_node_pt[1], "edgeX1": thept[0], "edgeY1": thept[1], "edgeLth": edge_len_km, "x": new_pt[0], "y": new_pt[1], "proportion": proportion, "currLth": curr_lth, "timeDelta": time_delta_this_hop_sec, "distOnHop": traversed_dist_on_this_hop, "remLth": remaining_dist_on_this_hop}) retval.append( [curr_ts, new_pt[0], new_pt[1], curr_lth]) else: # First point retval.append([curr_ts, thept[0], thept[1], 0]) path_list.append({"ts": curr_ts, "edgept1": prev_node, "edgept2": node, "edgeX0": None, "edgeY0": None, "edgeX1": thept[0], "edgeY1": thept[1], "x": thept[0], "y": thept[1], "edgeLth": None, "proportion": None, "currLth": None, "timeDelta": None, "distOnHop": None, "remLth": remaining_dist_on_this_hop}) prev_node = node prev_node_pt = thept pd.DataFrame(path_list).to_csv( "pathBreaks_{}.csv".format(id_str), index=False) if(retval is not None) and (len(retval) > 2): path_list = [] index = 0 curr_ts = start_ts lth_vec = [ele[3] for ele in retval] total_lth = float(np.sum(lth_vec)) curr_ts = start_ts for ent in retval: ent[0] = curr_ts time_inc = ent[3] * total_time_sec / float(total_lth) curr_ts = curr_ts + pd.Timedelta(time_inc, unit='s') index += 1 path_list.append( {"ts": ent[0], "edgeX0": ent[1], "edgeY0": ent[2]})
pd.DataFrame(path_list)
pandas.DataFrame
from matplotlib import pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pylab as pl import itertools sns.set(color_codes = True) rel_dir = './data/measurements/' figure_directory = './data/figures/' trajectories = ['segment', 'pentagon', 'M'] mirrors = ['', '_mirror'] m_to_mirror_dict = {'':'', '_m':'_mirror'} cm_to_inches = 2.54 figure_size = (40/cm_to_inches, 50/cm_to_inches) trajektorijų_kilmininkas = {'pentagon':'penkiakampio', 'M':'M', 'segment':'atkarpos'} show_figures = False write_figures = True controllers = ['main', '16', '91', '127_stiff'] follow_writer = pd.ExcelWriter('data/figures/trajektoriju_sekimo_matavimai.xlsx') for c in controllers: column_names = ['mean line dist', 'mean spline dist', 'mean line angle', 'mean spline angle'] trajectory_deviation_table = pd.DataFrame(np.NaN, index=trajectories, columns=column_names) for m in ['', '_m']: for t in trajectories: short_c_name = c+m long_c_name = c+m_to_mirror_dict[m] follow_data = pd.read_csv(rel_dir+short_c_name+'_follow_'+t+'.csv', skipinitialspace=True) mean_dist_from_line = np.mean(follow_data['distance_from_segment']) mean_dist_from_spline = np.mean(follow_data['distance_from_spline']) abs_angle_from_line = np.abs(follow_data['signed_angle_from_segment']) abs_angle_from_spline = np.abs(follow_data['signed_angle_from_spline']) mean_angle_from_line = np.mean(abs_angle_from_line) mean_angle_from_spline = np.mean(abs_angle_from_spline) trajectory_deviation_table[column_names[0]][t] = mean_dist_from_line trajectory_deviation_table[column_names[1]][t] = mean_dist_from_spline trajectory_deviation_table[column_names[2]][t] = mean_angle_from_line trajectory_deviation_table[column_names[3]][t] = mean_angle_from_spline plt.figure(figsize=figure_size) plt.suptitle('Valdiklio \"' + short_c_name + '\" ' + trajektorijų_kilmininkas[t] + ' trajektorijos sekimo paklaidos'); plt.subplot(2, 2, 1) plt.title("Atstumas iki atkarpos") plt.plot(follow_data['t'], follow_data['distance_from_segment'], label='momentinis atstumas') plt.plot(follow_data['t'], np.repeat(mean_dist_from_line, follow_data.index.size), label='vidutinis atstumas') plt.xlabel("Laikas (s)") plt.ylabel("Atstumas (m)") plt.legend(loc=1) plt.subplot(2, 2, 2) plt.title("Atstumas iki Catmull-Rom kreivės") plt.plot(follow_data['t'], follow_data['distance_from_spline'], label='momentinis atstumas') plt.plot(follow_data['t'], np.repeat(mean_dist_from_spline, follow_data.index.size), label='vidutinis atsumas') plt.xlabel("Laikas (s)") plt.ylabel("Atstumas (m)") plt.legend(loc=1) plt.subplot(2, 2, 3) plt.title("Absoliutus kampas su atkarpa") #plt.plot(follow_data['t'], follow_data['signed_angle_from_segment']) plt.plot(follow_data['t'], abs_angle_from_line, label='momentinis kampas') plt.plot(follow_data['t'], np.repeat(mean_angle_from_line, follow_data.index.size), label='vidutinis kampas') plt.xlabel("Laikas (s)") plt.ylabel("Nuokrypio kampas ("+u'\N{DEGREE SIGN}'+")") plt.legend(loc=1) plt.subplot(2, 2, 4) plt.title("Absoliutus kampas su Catmull-Rom kreivės liestine") #plt.plot(follow_data['t'], follow_data['signed_angle_from_spline']) plt.plot(follow_data['t'], abs_angle_from_spline, label='momentinis kampas') plt.plot(follow_data['t'], np.repeat(mean_angle_from_spline, follow_data.index.size), label='vidutinis kampas') plt.ylabel("Nuokrypio kampas ("+u'\N{DEGREE SIGN}'+")") plt.legend(loc=1) if write_figures: plt.savefig(figure_directory+short_c_name+'_nuokrypis.png'); if show_figures: plt.show() plt.close('all') trajectory_deviation_table.round(3).to_excel(follow_writer, short_c_name) follow_writer.save() follow_writer.close() controllers = ['main', '16', '91', '127_stiff'] column_names = controllers + [i+'_m' for i in controllers] plt.figure(figsize=figure_size) #facing_change_time_table = pd.DataFrame(np.NaN, index=np.arange(2*len(controllers)), columns=['min reach time', 'mean time to reach', 'max reach time']) facing_change_time_table = pd.DataFrame(np.NaN, index=column_names, columns=['min reach time', 'mean time to reach', 'max reach time']) for i, c in enumerate(controllers): plt.subplot(len(controllers), 1, i+1) plt.title('Valdiklio \"'+c+'\" žiūrėjimo tiklso kampo pasiekimo laikas') for j, m in enumerate(['', '_m']): short_c_name = c+m facing_data = pd.read_csv(rel_dir+short_c_name+'_facing.csv', skipinitialspace=True) index = short_c_name #i*len(['','_m'])+j plt.scatter(facing_data['angle'], facing_data['turn_time'], label=['be veidrodinių animacijų', 'su veidrodinėmis animacijomis'][j]) plt.xlabel("Testuojamas nuokrypio kampas ("+u'\N{DEGREE SIGN}'+")") plt.ylabel("Konvergavimas iki "+str(int(facing_data['angle_threshold'][0]))+" " +u'\N{DEGREE SIGN}'+" (s)") facing_change_time_table['min reach time'][index] = np.min(facing_data['turn_time']) facing_change_time_table['mean time to reach'][index] = np.mean(facing_data['turn_time']) facing_change_time_table['max reach time'][index] = np.max(facing_data['turn_time']) plt.legend(loc=1); if write_figures: plt.savefig(figure_directory+c+'_kampas.png'); if show_figures: plt.show() plt.close('all') print(facing_change_time_table) facing_writer = pd.ExcelWriter('data/figures/atsisukimo_laiko_matavimai.xlsx') facing_change_time_table.round(3).to_excel(facing_writer) facing_writer.save() facing_writer.close() def measure_foot_skate(foot_skate, min_h, max_h, foot_side): h_diff = max_h-min_h foot_skate['speed'] = np.sqrt(np.square(foot_skate[foot_side+'_vel_x'])+np.square(foot_skate[foot_side+'_vel_z'])) foot_skate['position_differences'] = foot_skate['dt'] * foot_skate['speed'] foot_skate['height_exponent'] = (foot_skate[foot_side+'_h'] - min_h)/h_diff foot_skate['clamped_height_exponent'] = np.clip(foot_skate['height_exponent'], 0, 1 ) foot_skate['height_weights'] = 2-np.power(2,foot_skate['clamped_height_exponent']) #mean_pos_difference = np.sum(foot_skate['position_differences'])/foot_skate['t'].tail(1) #print(foot_skate["t"].tail(1)) return float(np.sum(foot_skate['position_differences']*foot_skate['height_weights'])/foot_skate["t"].tail(1)) min_h = 0.045 #np.min(foot_skate.l_h) max_h = 0.06 controllers = ['main', '16', '91', '127_stiff'] controllers = controllers + [i+'_m' for i in controllers] #FOOT SKATE TESTING foot_skate_table = pd.DataFrame(np.NaN, index=controllers, columns=['l_controller_skate', 'l_anim_skate', 'l_worse_frac', 'r_controller_skate', 'r_anim_skate', 'r_worse_frac']) for c in controllers: anim_names = pd.read_csv(rel_dir+c+'.ctrl_anims', skipinitialspace=True, header=None) anim_names = anim_names[0] foot_side = 'l' for foot_side in ['l', 'r']: plt.figure(figsize=figure_size) plt.subplots_adjust(hspace=0.5) plt.suptitle('\"' + c + '\" valdiklio animacijų rinkinio pėdų slidinjimas') anim_skate_amounts = pd.DataFrame(np.NaN, columns=['foot_skate', 'count', 'total_time'],index=anim_names); #ANIMATION FOOT SKATE for ia, a in enumerate(anim_names): plt.subplot(len(anim_names), 1, ia+1) anim_skate_data = pd.read_csv(rel_dir+anim_names[ia].split('.')[0]+'_anim_foot_skate.csv', skipinitialspace=True) anim_skate_data = anim_skate_data[anim_skate_data['t'] > 0.03] a_skate_amount = measure_foot_skate(anim_skate_data, min_h, max_h, foot_side) print(a + " " + str(a_skate_amount) + 'm/s') anim_skate_amounts['foot_skate'][a] = a_skate_amount plt.title("Animacijos "+a+" pėdų slydimo kiekis = " + str(a_skate_amount)) plt.xlabel('laikas (s)') plt.ylabel('Atstumas (m)') plt.plot(anim_skate_data['t'], anim_skate_data[foot_side+'_h'], label='kairės pėdos aukštis virš žemės') plt.plot(anim_skate_data['t'], anim_skate_data['height_weights'], label='greičio daugiklis') plt.legend(loc=1) #plt.plot(anim_skate_data['t'], anim_skate_data['speed']) #plt.plot(anim_skate_data['t'], anim_skate_data['position_differences']) #plt.plot(anim_skate_data['t'], anim_skate_data['height_exponent']) #plt.plot(anim_skate_data['t'], anim_skate_data['clamped_height_exponent']) print(a + " " + str(a_skate_amount) + 'm/s') if write_figures: plt.savefig(figure_directory+c+'_'+t+'_animacijų_kojų_slydimas.png'); if show_figures: plt.show() plt.close('all') #CONTROLLER FOOT SKATE short_c_name = c c_skate_data = pd.read_csv(rel_dir+short_c_name+'_ctrl_skate.csv', skipinitialspace=True) c_skate_amount = measure_foot_skate(c_skate_data, min_h, max_h, foot_side) print(c + ' skate: ' + str(c_skate_amount) + 'm/s'); plt.figure(figsize=figure_size) plt.subplots_adjust(hspace=0.5) plt.suptitle('Valdiklio \"' + short_c_name +'\" animacijų naudojimas') for ia, a in enumerate(anim_names): plt.subplot(len(anim_names), 1, ia+1) data = [c_skate_data[(c_skate_data['anim_index']==ia) & (c_skate_data['anim_is_mirrored']==0)]['anim_local_time'], c_skate_data[(c_skate_data['anim_index']==ia) & (c_skate_data['anim_is_mirrored']==1)]['anim_local_time']] plt.axvspan(0, np.max(c_skate_data[c_skate_data['anim_index']==ia]['anim_local_time']), facecolor='green', alpha=0.4) plt.hist(data, bins=80, stacked=True) ax = plt.gca() ax.set_xlim([0, np.max(c_skate_data['anim_local_time'])]) #ax.set_xlim([0, np.max(c_skate_data[c_skate_data['anim_index']==ia]['anim_local_time'])]) plt.xlabel("Momentas animacijoje "+a+" (s)"); plt.ylabel("Grojimų skaičius"); legend_labels = ['naudota animacijos dalis','originalioji animacija'] legend_labels = legend_labels + ['veidrodinė animacija'] plt.legend(loc=1, labels=legend_labels) if write_figures: plt.savefig(figure_directory+c+'_'+t+'_naudojimo_histogramos.png'); if show_figures: plt.show() plt.close('all') plt.figure(figsize=figure_size) plt.suptitle('Valdiklio \"' + short_c_name +'\" animacijų naudojimas') plt.subplot(2, 1, 1) est_percentage = lambda x : 100*(len(x) / len(c_skate_data)) sns.barplot(x='anim_count', y='anim_count', orient='v', data=c_skate_data, estimator=est_percentage) plt.xlabel('Maišomų animacijų kiekis') plt.ylabel("Dalis viso testo laiko (%)") plt.subplot(2, 1, 2) map_name = lambda x: anim_names[x] c_skate_data['anim_names'] = c_skate_data['anim_index'].map(map_name) sns.barplot(x='anim_names', y='anim_names', data=c_skate_data, orient='v', estimator=est_percentage) plt.xlabel('Grojama animacija') plt.ylabel("Dalis viso testo laiko (%)") used_anim_names = c_skate_data['anim_names'].unique() print(c+' used anim names:\n') print(used_anim_names) print(c+' anim names:\n') print(anim_names) for ia, a in enumerate(used_anim_names): anim_entries = c_skate_data[c_skate_data['anim_names']==a] anim_skate_amounts['count'][a] = len(anim_entries) anim_skate_amounts['total_time'][a] = np.sum(anim_entries['dt']) total_time = np.sum(anim_skate_amounts['total_time']) anim_skate_amounts['fraction'] = anim_skate_amounts['total_time']/total_time anim_skate_amounts['weighted_anim_skate'] = anim_skate_amounts['fraction']*anim_skate_amounts['foot_skate'] print(anim_skate_amounts) weighted_anim_skate_amount = np.sum(anim_skate_amounts.weighted_anim_skate) worse_by_fraction = str(c_skate_amount/weighted_anim_skate_amount - 1) print('\nweighted anim skate: ' + str(weighted_anim_skate_amount)) print('controller skate: ' + str(c_skate_amount)) print('worse by: '+ worse_by_fraction) foot_skate_table[foot_side+'_controller_skate'][c] = c_skate_amount foot_skate_table[foot_side+'_anim_skate'][c] = weighted_anim_skate_amount foot_skate_table[foot_side+'_worse_frac'][c] = worse_by_fraction if write_figures: plt.savefig(figure_directory+c+'_'+t+'_naudojimo_stulpelinės.png'); if show_figures: plt.show() plt.close('all') foot_skate_table['avg_controller_skate'] = (foot_skate_table['l_controller_skate'] + foot_skate_table['r_controller_skate'])/2 foot_skate_table['avg_anim_skate'] = (foot_skate_table['l_anim_skate'] + foot_skate_table['r_anim_skate'])/2 foot_skate_writer =
pd.ExcelWriter('data/figures/slydimo_matavimai.xlsx')
pandas.ExcelWriter
import pandas as pd from datetime import datetime, timedelta from matplotlib import pyplot as plt from matplotlib import dates as mpl_dates plt.style.use('seaborn') data = pd.read_csv('timedata.csv') data['Date'] =
pd.to_datetime(data['Date'])
pandas.to_datetime
import bs4 as bs import datetime as dt import matplotlib.pyplot as plt from matplotlib import style import numpy as np import os import pandas as pd pd.core.common.is_list_like = pd.api.types.is_list_like import pandas_datareader.data as web import pickle import requests from collections import Counter from sklearn import svm, model_selection, neighbors from sklearn.ensemble import VotingClassifier, RandomForestClassifier style.use('ggplot') def save_sp500_tickers(): resp = requests.get('http://en.wikipedia.org/wiki/List_of_S%26P_500_companies') soup = bs.BeautifulSoup(resp.text, 'lxml') table = soup.find('table', {'class': 'wikitable sortable'}) tickers = [] for row in table.findAll('tr')[1:]: ticker = row.findAll('td')[0].text tickers.append(ticker) with open("sp500tickers.pickle", "wb") as f: pickle.dump(tickers, f) return tickers # save_sp500_tickers() def get_data_from_yahoo(reload_sp500=False): if reload_sp500: tickers = save_sp500_tickers() else: with open("sp500tickers.pickle", "rb") as f: tickers = pickle.load(f) if not os.path.exists('stock_dfs'): os.makedirs('stock_dfs') start = dt.datetime(2010, 1, 1) end = dt.datetime.now() for ticker in tickers: if not os.path.exists('stock_dfs/{}.csv'.format(ticker)): df = web.DataReader(ticker, 'morningstar', start, end) df.reset_index(inplace=True) df.set_index("Date", inplace=True) df = df.drop("Symbol", axis=1) df.to_csv('stock_dfs/{}.csv'.format(ticker)) else: print('Already have {}'.format(ticker)) def compile_data(): with open("sp500tickers.pickle", "rb") as f: tickers = pickle.load(f) main_df = pd.DataFrame() for count, ticker in enumerate(tickers): df = pd.read_csv('stock_dfs/{}.csv'.format(ticker)) df.set_index('Date', inplace=True) df.rename(columns={'Adj Close': ticker}, inplace=True) df.drop(['Open', 'High', 'Low', 'Close', 'Volume'], 1, inplace=True) if main_df.empty: main_df = df else: main_df = main_df.join(df, how='outer') if count % 10 == 0: print(count) print(main_df.head()) main_df.to_csv('sp500_joined_closes.csv') def visualize_data(): df =
pd.read_csv('sp500_joined_closes.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pandas as pd import numpy as np import argparse import time import sys kinetics_filename=sys.argv[1] time_lag_file=sys.argv[2] output_filename=sys.argv[3] final_output_filename=sys.argv[4] # print(final_output_filename) df=
pd.read_csv(kinetics_filename)
pandas.read_csv
import os import sys import argparse import logging import pandas as pd import numpy as np from datasets.SCONES import SCONESDataset from model.dataset import PreprocessedDataset from model.scones import SCONESNetwork def get_ensemble_predictions(opt, model_paths, dataset_path, results_path): dataset = SCONESDataset() dataset.deserialize(dataset_path) pp_dataset = PreprocessedDataset(radius_cutoff=opt["config"]["radius_cutoff"], device=opt["device"]) pp_dataset.add_dataset(dataset, training_filters=True) pp_dataset.summary() predictions = {} for sample in pp_dataset: predictions[sample["id"]] = [] for path in model_paths: print(path) logging.basicConfig( format="%(asctime)s %(message)s", datefmt="[%H:%M:%S]", level=logging.INFO, ) logger = logging.getLogger('scones') model = SCONESNetwork(opt, logger) model.init_eval() model.set_criterion() model.load_model(os.path.join(path, "best_val_model.pth")) model.eval() for sample in pp_dataset: sample_id = sample["id"] if sample_id not in predictions: continue _, _, prediction = model.predict(sample) predictions[sample_id].append(prediction.item()) predictions = [{ "id" : key, "ddG_SCONES" : round(np.mean(preds), 2), "ddG_SCONES_stddev" : round(np.std(preds), 2) } for key, preds in predictions.items()] df =
pd.DataFrame(predictions)
pandas.DataFrame
__all__ = ["fasta_file_validator", "sequence_extractor", "Data_frame", "predict_sequence", "Predict_frame",] import os import pandas as pd def fasta_file_validator(file): if os.path.isfile(file): return True return TypeError("File doesn't exist.") def sequenceRepair(seq_list): repaired = [] for index,seq in enumerate(seq_list): if ("X" in seq): seq = seq.replace("X","") if ("B" in seq): seq = seq.replace("B","") if ("Z" in seq): seq = seq.replace("Z","") repaired.insert(index,seq) return repaired def predict_sequence(file): try: data = pd.read_csv(file) except: raise FileNotFoundError("File handling error occured") sequence = sequenceRepair(data["sequence"].to_list()) return sequence def sequence_extractor(file): try: data = pd.read_csv(file) except: raise FileNotFoundError("File handling error occured") sequence = sequenceRepair(data["sequence"].to_list()) Target = data["mean_growth_PH"] return [sequence,Target.to_list()] def Predict_frame(data,): descriptor_data = pd.DataFrame(data) return descriptor_data def Data_frame(data,target): descriptor_data =
pd.DataFrame(data)
pandas.DataFrame
import tkinter as tk from tkinter import ttk import pandas as pd import utils import psutil import os import threading import time from math import ceil from tqdm import tqdm import random import numpy as np import user_agents as ua from graph import * from subprocess import run class Model: """ Model class handing data loading, modifications and extraction """ def __init__(self, iface): self.iface = iface self.file_loaded = False self.tk_gui= hasattr(self.iface, 'root') and isinstance(self.iface.root, tk.Tk) self.filename = None self.data = pd.DataFrame() try: self.country_codes = pd.read_csv(utils.COUNTRY_CODES_FILE, na_filter = False) except FileNotFoundError: raise utils.MissingFileError("Country file {0} not found".format(utils.COUNTRY_CODES_FILE)) def ram_usage(self): """ Return the current process RAM usage in MB""" proc = psutil.Process(os.getpid()) return "Ram : {0} MB |".format(round(proc.memory_info()[0]/(1024*1024), 1)) def check_file_validity(self, filename): """ Description : Check if a given file is a valid Issuu JSON file Parameters : Filename to check""" try: data = next(pd.read_json(filename, lines=True, chunksize=1)) except ValueError: return False if set(['visitor_uuid','visitor_country', 'visitor_useragent', 'subject_doc_id']) <= set(data.keys()): self.filename = filename return True else: self.filename = None return False def check_user_validity(self, user): """ Description : Check if a given user exists in the currently loading file Parameters : User to check""" return user in self.data['visitor_uuid'].tolist() def check_doc_validity(self, doc): """ Description : Check if a given user document in the currently loading file Parameters : Document to check""" return doc in self.data['subject_doc_id'].tolist() def get_rnd_doc(self): """ Description : Returns a random document id from the currently loaded file Parameters : Random document id from the currently loaded file""" rnd = random.randrange(0,len(self.data)) return self.data.iloc[rnd]['subject_doc_id'] def get_rnd_user(self): """ Description : Returns a random user id from the currently loaded file Parameters : Random user id from the currently loaded file""" rnd = random.randrange(0,len(self.data)) return self.data.iloc[rnd]['visitor_uuid'] def load_main_file_async(self, file_dict, callback=None, pg_val=None): """ Description : Asynchronous wrapper around the load_main_file method Parameters : A dictionnary containing the filename and number of lines in this file [file_dict]. The tkinter progress bar StringVar variable which will be modified to represent progress [pg_val]""" thread = threading.Thread(target=self.load_main_file, args=(file_dict, callback, pg_val)) thread.daemon = True thread.start() def load_main_file(self, file_dict, callback = None, pg_val=None): """ Description : Main file loading method for issuu data file. Loads the file in chunk into a instance variable Parameters : A dictionnary containing the filename and number of lines in this file [file_dict]. The tkinter progress bar StringVar variable which will be modified to represent progress [pg_val]""" utils.logger.info("Started loading file") start_time = time.time() tmp = [] pd_reader = pd.read_json(file_dict['filename'], lines=True, chunksize=utils.CHUNK_SIZE) loop_count = ceil(file_dict['linecount']/utils.CHUNK_SIZE) for i, df in utils.cli_pg_bar(enumerate(pd_reader), total=loop_count): df = df.loc[df['event_type'].isin(['read'])]#, 'pageread'])] # Since we are working with a random sample, some read documents don't have the "read" record but have "pageread" records tmp.append(df[utils.ISSUU_FIELDS]) if self.tk_gui and pg_val is not None: pg_val.set(i+1) self.data = pd.concat(tmp, axis=0) self.data.drop_duplicates(['visitor_uuid', 'subject_doc_id'], inplace=True) if callback is not None: callback() self.file_loaded = True self.file_size = utils.get_file_size(file_dict['linecount']) utils.logger.info("Loading done") df_mem_usage = self.data.memory_usage().sum()/(1024*1024) utils.logger.debug("Loaded in {0} seconds - dataframe using {1} MB".format(round(time.time() - start_time, 2), round(df_mem_usage, 2))) def country_to_continent(self, country): """ Description : Return the corresponding continent a given country belongs to Parameters : The country in ISO 3166 Country Code format (string) [country] Returns : The continent on which the country is in. If multiple, returns first, if none, returns 'None'""" continent_list = self.country_codes.loc[self.country_codes['a-2'] == country]['CC'].values if len(continent_list): return continent_list[0] else: return 'None' def get_plot_data(self, var, doc_id = None, callback=None): # From gui -> Running in seperate thread, get data back with callback. From Cli, just run without callback """ Description : Return the necessary data to plot a given variable for a given document (or all) Parameters : The variable name (column) to plot [doc_id]. The document id to restrict the plot to [doc_id]. The callback to .. call back when the method is done [callback] (asynchronous mode) Returns : The plot data in case of a synchronous call """ if var not in self.data.columns: self.preprocess(var) data = self.data.copy() if doc_id is not None: # If we are making a plot for a given document or a on the whole dataset data = data.loc[data['subject_doc_id'] == doc_id]#data.iloc[doc_id]['subject_doc_id']] #'130705172251-3a2a725b2bbd5aa3f2af810acf0aeabb'] '130705172251-3a2a725b2bbd5aa3f2af810acf0aeabb'] data.drop_duplicates(['visitor_uuid'], inplace=True) # Get sum on the given column and sort in descending order data = data.groupby([var], as_index=False).size().reset_index(name='counts') data = data.sort_values('counts', ascending=False) if callback is not None: callback(data) else: return data def preprocess(self, var): """ Description : Preprocesses (add/modify) the required variable (column) Parameters : The variable name (column) to preprocess [var] """ utils.logger.info("Starting preprocessing for {0}".format(var)) start_time = time.time() if self.tk_gui and hasattr(self.iface, 'progressbar'): self.iface.progressbar["maximum"] = 100 split = np.array_split(self.data, 100) # Data is not copied, no ram increase ! self.data[var] = np.nan for i, df in utils.cli_pg_bar(enumerate(split), total=100): if var == 'visitor_browser': self._preprocess_browser(df) elif var == 'visitor_platform': self._preprocess_platform(df) elif var == 'visitor_continent': self._preprocess_continent(df) if self.tk_gui: self.iface.pg_val.set(i+1) self.data = pd.concat(split) utils.logger.info("Done preprocessing - {0} sec".format(time.time()- start_time)) def _preprocess_continent(self, df): """ Description : Preprocesses dataframe in place in order to add a new column containing the continent of the readers Parameters : The dataframe to in-place modify [df] """ df['visitor_continent'] = df['visitor_country'].apply(lambda x: self.country_to_continent(x)) def _preprocess_browser(self, df): """ Description : Preprocesses dataframe in place in order to add a new column containing the browser of the readers Parameters : The dataframe to in-place modify [df] """ df['visitor_browser'] = df['visitor_useragent'].apply(lambda x: ua.parse(x).browser.family) def _preprocess_platform(self, df): """ Description : Preprocesses dataframe in place in order to add a new column containing the platforme type of readers Parameters : The dataframe to in-place modify [df] """ df['visitor_platform'] = df['visitor_useragent'].apply(lambda x: 'Mobile' if ua.parse(x).is_mobile else 'Desktop') def get_document_readers(self, doc_id): """ Description : Returns the list of visitor having read the given document Parameters : The document_id we want to know the readers of [doc_id] Returns : List of visitor having read the input document """ data = self.data.loc[self.data['subject_doc_id'] == doc_id]['visitor_uuid'].unique() return data.tolist() def get_visitor_read(self, vis_id): """ Description : Returns the list of documents read by a given visitor Parameters : The visitor we want to know the read documents of [vis_id] Returns : List of documents a visitor has read """ data = self.data.loc[self.data['visitor_uuid'] == vis_id]['subject_doc_id'].unique() # /!\ np.array not pandas.Series data = data[~
pd.isnull(data)
pandas.isnull
from time import perf_counter from os import chdir, getcwd import numpy as np import pandas as pd from plot import * class del_then_inter: def __init__(self, infile: str, has_imu: bool, conv_time: bool, plot_choice): self.df, _ = setup(infile, has_imu, conv_time) self.plot_choice = plot_choice # Delete unimportant columns #self.df.drop(self.df.loc[:,'IMU_AngVelX':'IMU_LinearAccZ'].columns, inplace=True, axis=1) def delete_vals(self) -> None: print('\n\tdeleting bad values...\n') self.df = self.df.reset_index() for i in range(len(self.df.GPS_Long)): if self.df.SDn[i] > 0.005: self.df.loc[i,'GPS_Long':'GPS_Alt'] = pd.NA def interpolate(self) -> None: print('\tinterpolating...\n') # Force columns into numeric data types self.df['GPS_Long'] = pd.to_numeric(self.df['GPS_Long'], errors='coerce') self.df['GPS_Lat'] = pd.to_numeric(self.df['GPS_Lat'], errors='coerce') self.df['GPS_Alt'] = pd.to_numeric(self.df['GPS_Alt'], errors='coerce') # Interpolate all GNSS values in the df as floats self.df.loc[:, 'GPS_Long':'GPS_Alt'] = self.df.loc[:, 'GPS_Long':'GPS_Alt'].interpolate(method='linear') self.df['GPS_Status'] = self.df['GPS_Status'].interpolate(method='ffill') # Remove previously deleted values self.df = self.df[self.df['GPS_Long'].notna()] def write_to_file(self, name: str): # Change 'time' back to rospy.time[] self.df.Time = self.df.Time.apply(lambda x: f'rospy.Time[{x:19d}]') self.df.drop('index', axis=1, inplace=True) # Save the file self.df.to_csv(f'.\\results\\{name}.csv', index=False) print(f'\nSaved new file to .\\results\\{name}.csv') # Plot the desired plot if self.plot_choice: print(f'\nPlotting...\n') choose_plot(self.df, self.plot_choice) class fix_from_vel: def __init__(self, infile, has_imu, conv_time): self.gnss_df, _ = setup(infile, has_imu, conv_time) self.gnss_df.loc[:, 'GPS_Long':'GPS_Lat'] = [geodetic_to_geocentric(*a) for a in tuple(zip(self.gnss_df['GPS_Long'], self.gnss_df['GPS_Lat'], self.gnss_df['GPS_Alt']))] self.gnss_df = add_vectors(self.gnss_df) def rem_vel_outlier(df) -> None: ''' Status: nulling values based on Std works, but not based on absolute velocity change Values are still strecthed when compared to GPS_Long, GPS_Lat This notably wasnt the case before I force converted the merged df to numeric ''' df['Rolling_X'] = df.VelX.rolling(5).mean() df['Rolling_Y'] = df.VelY.rolling(5).mean() df['Rolling_Z'] = df.VelZ.rolling(5).mean() #df.loc[df[df.SDn > 10].index, 'VelX':'VelZ'] = pd.NA df.VelX.map(lambda x: pd.NA if abs(x-df.Rolling_X)/() > 1 else x.VelX) class fix_from_imu: def __init__(self, infile, has_imu): self.gnss_df, self.imu_df = setup(infile, has_imu) self.gnss_df.loc[:, 'GPS_Long':'GPS_Lat'] = [geodetic_to_geocentric(*a) for a in tuple(zip(self.gnss_df['GPS_Long'], self.gnss_df['GPS_Lat'], self.gnss_df['GPS_Alt']))] self.gnss_df = add_vectors(self.gnss_df) self.gnss_df = trim_df_vel(self.gnss_df, 10, 1) self.df = merge_dfs(self.gnss_df, self.imu_df) ### PLOT FUNCTIONS def choose_plot(df, plot_choice): if plot_choice == 1: plot_track(df) elif plot_choice == 2: pass ### MAIN FUNCTIONS def setup(infile: str, has_imu: bool, conv_time: bool) -> pd.DataFrame: t1 = perf_counter() print('\n' + '#'*80 + '\n') def ingest_file(infile) -> pd.DataFrame: # Set and Get directory chdir(r'C:\Users\mikeh\OneDrive\Documents\GitHub\ouster_localization') dir = getcwd() print(f'\ndirectory: {dir}\n\n') print('\treading file...\n') # Import the comma delimited .txt file as a pandas dataframe df = pd.read_csv(f'{dir}\\{infile}', delimiter=',') return df def edit_dtypes(df) -> pd.DataFrame: print('\tediting data types...\n') # Extract only the numbers from the 'Time' column using a reg ex, convert to long integer df['Time'] = df['Time'].str.extract('(\d+)').astype(np.int64) #gnss_df.Time = gnss_df.Time.map(lambda x: datetime.fromtimestamp(x)) if conv_time: # Convert Time into seconds from onset t0 = df['Time'][0] df['Time'] = (df['Time']-t0)/10**9 # Forcing proper data types for each column df = df.apply(lambda x:
pd.to_numeric(x, errors='coerce')
pandas.to_numeric
import os import pandas as pd import argparse from sklearn.cluster import KMeans parser = argparse.ArgumentParser() parser.add_argument("--dir", required=True) parser.add_argument("--n", type=int, default=10) parser.add_argument("--score", default="min_dist") def main(): args = parser.parse_args() df = pd.read_csv(os.path.join(args.dir, "data.csv")) X = df[[args.score]] kmeans = KMeans(n_clusters=args.n, random_state=0).fit(X) df['label'] = kmeans.labels_ avg_configs = [] for i in range(args.n): data = df[df.label == i] avg_configs.append(data.mean(axis=0)) avg_df =
pd.DataFrame(avg_configs)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import numpy as np """Create scatterplots of stability versus microstructure characteristics.""" df = pd.read_csv('/Users/colinswaney/Desktop/net/data/stability.txt', index_col=0) # 1. Stability vs. CRSP crsp = pd.read_csv('/Users/colinswaney/Desktop/net/data/crsp.txt') crsp = crsp[crsp['date'] == '07/24/2013'] crsp=crsp.drop(['PERMNO', 'NUMTRD', 'SHROUT', 'COMNAM', 'date'], axis=1) crsp.columns = ['name', 'exchange', 'price', 'volume'] combined = pd.merge(df, crsp) # ... vs. price plt.subplot(121) plt.scatter(np.log(combined['price']), combined['eig']) # ... vs. volume ** plt.scatter(np.log(combined['volume']), combined['eig']) plt.subplot(122) plt.tight_layout() # 2. Stability vs. ITCH volumes =
pd.read_csv('/Users/colinswaney/Desktop/net/data/volumes.txt', index_col=0)
pandas.read_csv
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84:
pd.Timestamp("2012-07-25 00:00:00")
pandas.Timestamp
from __future__ import division import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec import seaborn as sns import pandas as pd import glob import re from itertools import combinations import matplotlib matplotlib.rcParams['text.usetex'] = True def plot_probabilities(X, probabilities, titles, suptitle): norm = plt.Normalize(0, 1) n = len(titles) nrows = int(np.ceil(n / 2)) sns.set_context('paper') cmap = sns.cubehelix_palette(rot=-.5,light=1.5,dark=-.5,as_cmap=True) f, axarr = plt.subplots(nrows, min(n,2)) if n < 2: axarr.scatter(X[:, 0], X[:, 1], c=probabilities[0], cmap=cmap, norm=norm, edgecolor='k',s=60) axarr.set_title(titles[0]) #f.set_size_inches(8, 8) else: i = j = 0 for idx, t in enumerate(titles): axarr[i, j].scatter(X[:, 0], X[:, 1], c=probabilities[idx], cmap=cmap, norm=norm, edgecolor='k') axarr[i, j].set_title(t) j += 1 if j == 2: j = 0 i += 1 if n % 2 != 0: axarr[-1, -1].axis('off') f.set_size_inches(10, 30) f.suptitle(suptitle) f.subplots_adjust(hspace=0.7) return f def plot_parameters(X, delta, a): sns.set_context('paper') cmap1 = sns.cubehelix_palette(rot=-.5,light=1.5,dark=-.5,as_cmap=True) gs = gridspec.GridSpec(2, 2, height_ratios=[4, 2]) f = plt.figure(figsize=(12,6)) axarr = np.array([[None]*2]*2) for i in range(2): for j in range(2): axarr[i,j] = plt.subplot(gs[i*2+j]) axarr[0, 0].scatter(X[:, 0], X[:, 1], c=delta, cmap=cmap1, edgecolor='k',s=40) axarr[0, 0].set_title('$\mathbf{\delta}$ (Difficulty)',fontsize=16) axarr[0, 1].scatter(X[:, 0], X[:, 1], c=a, cmap=cmap1, edgecolor='k',s=40) axarr[0, 1].set_title('$\mathbf{a}$ (Discrimination)',fontsize=16) #axarr[1, 0].hist(delta,bins=100) sns.distplot(delta,bins=100,ax=axarr[1,0]) axarr[1, 0].set_title('Histogram of $\mathbf{\delta}$',fontsize=16) #axarr[1, 1].hist(a,bins=100) sns.distplot(a,bins=100,ax=axarr[1,1]) axarr[1, 1].set_title('Histogram of $\mathbf{a}$',fontsize=16) f.suptitle('IRT item parameters') #f.set_size_inches(20, 20) f.subplots_adjust(hspace=0.3) return f def plot_noisy_points(xtest, disc=None): sns.set_context('paper') cls = sns.color_palette("BuGn_r") lgd = [] f = plt.figure() plt.scatter(xtest.x[xtest.noise==0],xtest.y[xtest.noise==0],facecolors='none',edgecolors='k',s=60) lgd.append('non-noise item') plt.scatter(xtest.x[xtest.noise>0],xtest.y[xtest.noise>0],c=cls[3],s=60) lgd.append('noise item') if not disc is None: plt.scatter(xtest.x[disc<0],xtest.y[disc<0],c=cls[0],marker='+',facecolors='none') lgd.append('detected noise item') plt.title('True and detected noise items') l = plt.legend(lgd,frameon=True,fontsize=12) l.get_frame().set_edgecolor('g') return f def plot_item_parameters_corr(irt_prob_avg,difficulty,noise,disc=None): sns.set_context('paper') cls = sns.color_palette("BuGn_r") lgd = [] f = plt.figure() plt.xlim([0.,1.]) plt.ylim([0.,1.]) plt.scatter(irt_prob_avg[noise>0],difficulty[noise>0],c=cls[3],s=60) lgd.append('noise item') if not disc is None: plt.scatter(irt_prob_avg[disc<0],difficulty[disc<0],c=cls[0],marker='+',facecolors='none') lgd.append('detected noise item') plt.scatter(irt_prob_avg[noise==0],difficulty[noise==0],facecolors='none',edgecolors='k',s=60) lgd.append('non-noise item') plt.title('Correlation between difficulty and response') plt.xlabel('Average response',fontsize=14) plt.ylabel('Difficulty',fontsize=14) l=plt.legend(lgd,frameon=True,fontsize=12) l.get_frame().set_edgecolor('g') return f def vis_performance(gather_prec,gather_recal,path,asd='as1@5',vtype='nfrac'): fig = plt.figure() plt.plot(gather_recal.index, gather_recal.mean(axis=1),marker='o') plt.plot(gather_prec.index, gather_prec.mean(axis=1),marker='^') plt.errorbar(gather_recal.index, gather_recal.mean(axis=1), gather_recal.std(axis=1), linestyle='None') plt.errorbar(gather_prec.index, gather_prec.mean(axis=1), gather_prec.std(axis=1), linestyle='None') if vtype=='nfrac': plt.title('Precision and recall under different noise fractions') plt.xlabel('Noise fraction (percentile)') plt.ylim(-0.05,1.1) plt.yticks(np.arange(0,1.2,0.2)) plt.legend(['Recall','Precision'],loc=0) plt.savefig(path+'gathered_dnoise_performance_nfrac_'+asd+'.pdf') elif vtype=='astd': plt.title('Precision and recall under different prior SD') plt.xlabel('Prior standard deviation of discrimination') plt.xlim(0.5,3.25) plt.ylim(-0.05,1.1) plt.yticks(np.arange(0,1.2,0.2)) plt.legend(['Recall','Precision'],loc=0) plt.savefig(path+'gathered_dnoise_performance_asd_nfrac20.pdf') plt.close(fig) def gather_vary_nfrac(path,dataset,a_prior_std=1.5,clcomb='79',mcomb='m10',idx = [2,5,10,20,30,40,50,55]): prefix = path+'dnoise_performance_'+dataset+'_s400_' files = glob.glob(prefix+'*.txt') #print(len(files)) asd = 'as'+str(a_prior_std).replace('.','@') files = filter(lambda f: '_'+mcomb+'_' in f and asd in f and 'cl'+clcomb in f , files) gather_prec = pd.DataFrame(index=idx) gather_recal = pd.DataFrame(index=idx) pfix1 = 'precision = ' pfix2 = 'recall = ' err_files = [] for f in files: parse = re.split('_|\.',f[len(prefix)+1:]) #print(parse) frac = int(parse[0]) #print(frac) if frac not in idx: continue seed = parse[1] with open(f,'r') as fr: l = fr.readlines() gather_prec.loc[frac,seed] = float(l[0][len(pfix1):]) gather_recal.loc[frac,seed] = float(l[1][len(pfix2):]) if np.isnan(gather_prec.loc[frac,seed]) or \ np.isnan(gather_recal.loc[frac,seed]): print('find nan:',parse) err_files.append('./test_data/noise_test/'+dataset+'/bc4/'+mcomb+'/'+parse[2]+'/irt_data_'+dataset+'_s400_f'+parse[0]+'_'+parse[1]+'_'+parse[2]+'_'+mcomb+'.csv') return gather_prec,gather_recal,err_files def vis_avg_all_clscombs_perform(dataset='mnist',a_prior_std=1.5,mcomb='m10',rpath='./results/bc4/mnist/m10/'): errs = [] gather_precs=None gather_recals=None gather_prec_allcl = pd.DataFrame() gather_recal_allcl = pd.DataFrame() asd = 'as'+str(a_prior_std).replace('.','@') for i,cls in enumerate(combinations(np.arange(10),2)): #print(i) cl1, cl2 = cls[0],cls[1] comb = str(cl1)+str(cl2) path = rpath+'cl'+comb+'/' gather_prec,gather_recal, err = gather_vary_nfrac(path,dataset,a_prior_std,clcomb=comb,mcomb=mcomb) if len(err)==0: vis_performance(gather_prec,gather_recal,path,asd=asd) errs+=err if gather_precs is None: gather_precs = gather_prec gather_recals = gather_recal gather_prec_allcl =
pd.DataFrame(index=gather_prec.index)
pandas.DataFrame
#!/usr/bin/env python3 # @Author: LiuXing <EMAIL> # @Date: 2020-12-03 11:00:53 # @Last Modified by: LiuXing # @Last Modified time: 2020-12-03 14:27:11 import os, sys import pandas as pd import numpy as np from pandas.core.reshape.merge import merge import scipy from scipy import ndimage import matplotlib as mpl import matplotlib.pyplot as plt import json from scipy import sparse import logging import numexpr from multiprocessing import Pool from optparse import OptionParser import time import h5py import math import csv LOG_FORMAT="%(asctime)s %(levelname)s - %(message)s" logging.basicConfig(level=logging.DEBUG, format=LOG_FORMAT) TIME_FORMAT = "%y-%m-%d %H:%M:%S" def main(): actions = ["tsv2h5ad", "dnbMatting", "cellCluster", "visualization", "convertBinData", "saturationPlot", "mergeGem"] """ %prog action [options] """ parser = OptionParser(main.__doc__) parser.add_option("-i", "--in", action = "store", type = "str", dest = "inFile", help = "input gene expression matrix file path.") parser.add_option("-o", "--out", action = "store", type = "str", dest = "out", help = "output file or directory path.") parser.add_option("-s", "--binSize", action = "store", type = "int", dest = "binSize", default = 50, help = "The bin size or max bin szie that to combine the dnbs. default=50") parser.add_option("-m", "--mask" , action = "store", type = "str", dest = "mask", help = "input gene expression matrix file generated from lesso tool of the stereomap system.") parser.add_option("--geneNumber", action = "store", type = "int", dest = "geneNumber", default = 2000, help = "number of genes will be used to cluster bins.") parser.add_option("-t", "--thread", action = "store", type = "int", dest = "thread", default = 8, help = "number of thread that will be used to run this program. default=2") parser.add_option("-w", "--progress", action = "store", type = "int", dest = "progress", default = 1, help = "number of progress that will be used to run this program, only useful for visulization. default=4") opts, args = parser.parse_args() if (len(args) < 1): print("please give the correct action, choose one from: " + ",".join(actions)) sys.exit(not parser.print_help()) if(opts.inFile == None): sys.exit(not parser.print_help()) numexpr.set_num_threads(opts.thread) action = args[0].upper() if (action == "TSV2H5AD"): slideBin = SlideBin(opts.inFile, opts.out, opts.binSize) slideBin.process() elif (action == "CELLCLUSTER"): cellCluster = CellCluster(opts.inFile, opts.out, opts.binSize) cellCluster.scanpyCluster() elif (action == "DNBMATTING"): dnbMatting = DnbMatting(opts.inFile, opts.out, opts.binSize) dnbMatting.dnb_matting() elif (action == "VISUALIZATION"): visualization = Visualization(opts.inFile, opts.out, opts.binSize, opts.progress) visualization.process() elif (action == "CONVERTBINDATA"): convertBinData = ConvertBinData(opts.mask, opts.inFile, opts.out, opts.binSize) convertBinData.ConvertData() elif (action == "SATURATIONPLOT"): saturationPlot = SaturationPlot(opts.inFile, opts.out) saturationPlot.process() elif (action == "MERGEGEM"): mergeGem = MergeGem(opts.inFile, opts.out) mergeGem.mergeGem() else: raise Exception("invalide action", 3) class SlideBin(): def __init__(self, geneExpFile, outdir, binSize): self.geneExpFile = geneExpFile self.outdir = outdir self.binSize = binSize os.makedirs(self.outdir, exist_ok=True) def bin_stat(self): import anndata import scanpy as sc df = pd.read_csv(self.geneExpFile, sep="\t", quoting=csv.QUOTE_NONE, comment="#") if "MIDCounts" in df.columns: df.rename(columns={"MIDCounts": "UMICount"}, inplace=True) elif 'values' in df.columns: df.rename(columns={"values": "UMICount"}, inplace=True) elif 'MIDCount' in df.columns: df.rename(columns={'MIDCount': 'UMICount'}, inplace=True) df['x'] = (df['x']/self.binSize).astype(np.uint32)*self.binSize df['y'] = (df['y']/self.binSize).astype(np.uint32)*self.binSize df['cell'] = df['x'].astype(str) + "-" + df['y'].astype(str) bindf = df['UMICount'].groupby([df['cell'], df['geneID']]).sum() cells = set(str(x[0]) for x in bindf.index) genes = set(str(x[1]) for x in bindf.index) cellsdic = dict(zip(cells, range(0, len(cells)))) genesdic = dict(zip(genes, range(0, len(genes)))) rows = [cellsdic[x[0]] for x in bindf.index] cols = [genesdic[x[1]] for x in bindf.index] expMtx = sparse.csr_matrix((bindf.values, (rows, cols))) obs = pd.DataFrame(index = cells) var = pd.DataFrame(index = genes) adata = anndata.AnnData(X = expMtx, obs = obs, var = var) logging.info("anndata generate finished...") return adata, genesdic def process(self): adata, genesdic = self.bin_stat() resultFile = os.path.join(self.outdir, "{0}x{0}_adata.h5ad".format(self.binSize)) adata.write(resultFile) class CellCluster(): def __init__(self, geneExpFile, outFile, binSize): self.geneExpFile = geneExpFile self.outFile = outFile self.binSize = binSize def scanpyCluster(self): import scanpy as sc import anndata if (self.geneExpFile.endswith(".h5ad")): adata = sc.read_h5ad(self.geneExpFile) else: df = pd.read_csv(self.geneExpFile, sep="\t", quoting=csv.QUOTE_NONE, comment="#") if "MIDCounts" in df.columns: df.rename(columns={"MIDCounts": "UMICount"}, inplace=True) elif 'values' in df.columns: df.rename(columns={"values": "UMICount"}, inplace=True) elif 'MIDCount' in df.columns: df.rename(columns={"MIDCount": "UMICount"}, inplace=True) if 'label' not in df.columns: df['x'] = (df['x']/self.binSize).astype(np.uint32)*self.binSize df['y'] = (df['y']/self.binSize).astype(np.uint32)*self.binSize df['label'] = df['x'].astype(str) + "-" + df['y'].astype(str) else: labelFile = os.path.join(os.path.dirname(self.geneExpFile), "merge_GetExp_gene_labeled_stat.txt") labeldf = pd.read_csv(labelFile, sep="\t") labeldict=dict(zip(labeldf['label'], labeldf['x'].astype(str)+"_"+labeldf['y'].astype(str))) df.replace({'label': labeldict}, inplace=True) bindf = df['UMICount'].groupby([df['label'], df['geneID']]).sum() cells = set(x[0] for x in bindf.index) genes = set(x[1] for x in bindf.index) cellsdic = dict(zip(cells, range(0, len(cells)))) genesdic = dict(zip(genes, range(0, len(genes)))) rows = [cellsdic[x[0]] for x in bindf.index] cols = [genesdic[x[1]] for x in bindf.index] expMtx = sparse.csr_matrix((bindf.values, (rows, cols))) obs = pd.DataFrame(index = cells) var = pd.DataFrame(index = genes) adata = anndata.AnnData(X = expMtx, obs = obs, var = var) adata.write(self.outFile) del(df) del(bindf) adata = sc.read_h5ad(self.outFile) adata.layers['raw_data'] = adata.X sc.pp.filter_cells(adata, min_genes=0) sc.pp.filter_genes(adata, min_cells=0) adata.var['mt'] = adata.var_names.str.decode('utf-8').str.startswith(('mt-', 'MT-')) sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=False, inplace=True) adata.raw = adata sc.pp.normalize_total(adata, target_sum=1e4) sc.pp.log1p(adata) if adata.var.shape[0] < 2000: return 0 sc.pp.highly_variable_genes(adata, flavor="seurat", n_top_genes=2000) adata = adata[:, adata.var.highly_variable] sc.pp.scale(adata, max_value=10) sc.tl.pca(adata, svd_solver="arpack") sc.pp.neighbors(adata, n_neighbors=10, n_pcs=10) sc.tl.tsne(adata) sc.tl.umap(adata) sc.tl.leiden(adata) adata.obs['louvain'] = adata.obs['leiden'] sc.tl.rank_genes_groups(adata, 'leiden', method='wilcoxon', use_raw=False, n_genes=300, pts=True, layer='raw_data') adata.write(self.outFile) class DnbMatting(): def __init__(self, geneExpFile, outdir, binSize=50): self.geneExpFile = geneExpFile self.outdir = outdir self.binSize = binSize os.makedirs(self.outdir, exist_ok=True) def dnb_matting(self): import cv2 expColumnTypes = {"barcode": object, "geneID": 'category', "MIDCount": np.uint32} geneDf = pd.read_csv(self.geneExpFile, header=None, names=["barcode", "geneID", "MIDCount"], sep="\t", dtype=expColumnTypes, quoting=csv.QUOTE_NONE) geneDf['x'] = geneDf['barcode'].apply(lambda x: int(x.split("_")[-2])) geneDf['y'] = geneDf['barcode'].apply(lambda x: int(x.split("_")[-1])) geneDf.drop(['barcode'], axis=1, inplace=True) #generate bin image tempDf = geneDf[['x', 'y', 'MIDCount']].copy() tempDf['x'] = tempDf['x'].map(lambda x: int(x/self.binSize)) tempDf['y'] = tempDf['y'].map(lambda x: int(x/self.binSize)) binDf = tempDf['MIDCount'].groupby([tempDf['x'], tempDf['y']]).sum().reset_index() x1, x2, y1, y2 = binDf['x'].min(), binDf['x'].max(), binDf['y'].min(), binDf['y'].max() binDf['x'] = binDf['x'] - x1 binDf['y'] = binDf['y'] - y1 sparseMt = sparse.csr_matrix((binDf['MIDCount'].astype(np.uint8), (binDf['y'], binDf['x']))) img = sparseMt.toarray() #median filter by kenel of size 3 median_filtered = ndimage.median_filter(img, size=3) #normalize Imin, Imax = median_filtered.min(), median_filtered.max() Omin, Omax = 0, 255 a = float(Omax-Omin)/(Imax-Imin) b = Omin - a*Imin normalize = a*median_filtered + b #process image gradx = cv2.Sobel(normalize, ddepth=-1, dx=1, dy=0, ksize=-1) grady = cv2.Sobel(normalize, ddepth=-1, dx=0, dy=1, ksize=-1) gradient = cv2.subtract(gradx, grady) gradient = cv2.convertScaleAbs(gradient) blurred = cv2.blur(gradient, (3, 3)) (_, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25)) closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) closed = cv2.erode(closed, None, iterations=4) closed = cv2.dilate(closed, None, iterations=4) (cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) imageFile = os.path.join(self.outdir, "{0}x{0}_image.png".format(self.binSize)) if(len(cnts)<1): filterGene = geneDf cv2.imwrite(imageFile, img) else: c = sorted(cnts, key=cv2.contourArea, reverse=True)[0] rect = cv2.minAreaRect(c) box = np.int0(cv2.boxPoints(rect)) Xs = box[...,0] Ys = box[...,1] bx1, bx2, by1, by2 = (min(Xs)+x1-0.5)*self.binSize, (max(Xs)+x1+0.5)*self.binSize, (min(Ys)+y1-0.5)*self.binSize, (max(Ys)+y1+0.5)*self.binSize filterGene = geneDf.loc[(geneDf['x']>=bx1)&(geneDf['x']<=bx2)&(geneDf['y']>=by1)&(geneDf['y']<=by2)] cv2.drawContours(img, [box], -1, (255, 0, 0), 1) cv2.imwrite(imageFile, img) filterGenefile = os.path.join(self.outdir, "merge_GetExp_gene.txt") filterGene[['geneID', 'x', 'y', 'MIDCount']].to_csv(filterGenefile, index=None, sep="\t") class Visualization(): def __init__(self, geneExpFile, outdir, maxBinSize=200, progress=4, img_out=True): self.geneExpFile = geneExpFile self.outdir = outdir self.maxBinSize = maxBinSize self.progress = progress self.img_out = img_out self.geneDf = pd.read_csv(self.geneExpFile, sep="\t", quoting=csv.QUOTE_NONE) if "MIDCounts" in self.geneDf.columns: self.geneDf.rename(columns={"MIDCounts": "values"}, inplace=True) elif 'UMICount' in self.geneDf.columns: self.geneDf.rename(columns = {"UMICount": "values"}, inplace=True) elif 'MIDCount' in self.geneDf.columns: self.geneDf.rename(columns={"MIDCount": "values"}, inplace=True) dtypes = {"x": np.uint32, "y": np.uint32, "geneID": object, "values": np.uint32} self.geneDf.astype(dtypes, copy=False) self.geneDf['geneID'] = self.geneDf['geneID'].apply(lambda x: str(x).replace("/", "_")) os.makedirs(self.outdir, exist_ok=True) self.dnbOutdir = os.path.join(outdir, "dnb_merge") os.makedirs(self.dnbOutdir, exist_ok=True) def write_h5_total(self): total_outf = os.path.join(self.outdir, 'stereomics_total.h5') hdf5_fh = h5py.File(total_outf, "w") hdf5_dnb_group = hdf5_fh.create_group('dnb_merge') hdf5_gene_group = hdf5_fh.create_group('gene_merge') # save gene table gene_table_df = self.geneDf['values'].groupby(self.geneDf['geneID']).sum().reset_index() gene_table_df = gene_table_df.sort_values(by=['values'], ascending=False) gene_table_group = hdf5_gene_group.create_group('gene_table') gene_list = gene_table_df['geneID'].astype('S') gene_table_group['Gene'] = gene_list gene_table_group.create_dataset('MIDCounts', data=gene_table_df['values'], dtype='int32') # save dnb range dnb_range_dict = {'min_x': int(self.geneDf['x'].min()), 'max_x':int(self.geneDf['x'].max()), 'min_y':int(self.geneDf['y'].min()), 'max_y':int(self.geneDf['y'].max())} dt = h5py.special_dtype(vlen=str) dnb_range_arr = hdf5_dnb_group.create_dataset('dnb_range', (1,), dtype=dt) dnb_range_arr[0] = json.dumps(dnb_range_dict) hdf5_fh.close() def write_bin_h5(self, geneBinDf, bin_size, img_out): bin_file_name = 'stereomics_' + str(bin_size) + '.h5' bin_outf = os.path.join(self.outdir, bin_file_name) hdf5_fh_bin = h5py.File(bin_outf, "w") hdf5_dnb_group_bin = hdf5_fh_bin.create_group('dnb_merge') hdf5_gene_group_bin = hdf5_fh_bin.create_group('gene_merge') ##gene merge_gene_dff = self.merge_gene_v2(geneBinDf, bin_size, bin_size) h5_gene_bin_group = hdf5_gene_group_bin.create_group(f'bin{bin_size}') for gene, value in merge_gene_dff.groupby(merge_gene_dff.geneID): h5_gene_bin_group.create_dataset(gene, data=value[['x','y','values']], dtype='int32') #dnb merge_dnb_dff = self.merge_dnb_v2(merge_gene_dff, bin_size, bin_size) if bin_size==200 and img_out: if not os.path.exists(self.dnbOutdir): os.makedirs(self.dnbOutdir) self.getFig(merge_dnb_dff, os.path.join(self.dnbOutdir, 'bin200.png'), scale=20, dpi=72) hdf5_dnb_group_bin.create_dataset(f'bin{bin_size}', data=merge_dnb_dff, dtype='int32') hdf5_fh_bin.close() def merge_gene_v2(self, gene_df, dot_x, dot_y): #gene merge gene_dff = gene_df.copy() if (dot_x > 1 or dot_y > 1): gene_dff['x'] = (gene_dff['x']/dot_x).astype('int')*dot_x gene_dff['y'] = (gene_dff['y']/dot_y).astype('int')*dot_y gene_dff = gene_dff['values'].groupby([gene_dff['x'], gene_dff['y'], gene_dff['geneID']]).sum().reset_index() return gene_dff def merge_dnb_v2(self, dnb_df, dot_x, dot_y): dnb_dff = dnb_df.copy() #dnb_dff['x'] = (dnb_dff['x']/dot_x).astype('int')*dot_x #dnb_dff['y'] = (dnb_dff['y']/dot_y).astype('int')*dot_y dnb_dff_tmp = dnb_dff['values'].groupby([dnb_dff['x'], dnb_dff['y']]).sum().reset_index() gene_count = dnb_dff['geneID'].groupby([dnb_dff['x'], dnb_dff['y']]).nunique().reset_index() dnb_dff_tmp['gene_counts'] = gene_count['geneID'] return dnb_dff_tmp def getFig(self, data, outfile, scale=1, dpi=72): try: cmap = mpl.colors.ListedColormap(['#0C3383', '#0A88BA', '#F2D338', '#F28F38', '#D91E1E']) x_range=max(data['x']) - min(data['x']) y_range=max(data['y']) - min(data['y']) x_num = len(data['x'].drop_duplicates()) plt.figure(figsize=(1*scale,y_range/x_range*scale), facecolor='#262B3D', edgecolor='black') ## 设置图像大小 inch ##去掉图像旁边的空白区 plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.gca().xaxis.set_ticks_position('top') plt.gca().invert_yaxis() plt.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0, hspace = 0, wspace = 0) plt.margins(0,0) ##添加标题 #plt.title('Interesting Graph',loc ='center') x=data['x'] y=data['y'] color=data['values'] #factor = math.ceil(scale/5) #dot_size = math.ceil((dpi * scale)*factor/x_num) r = scale*72/(x_range/200) dot_size = r**2 plt.scatter(x, y, c=color, s=dot_size, cmap=cmap) plt.axis('off') plt.savefig(outfile,facecolor='#262B3D', dpi=dpi, pad_inches = 0) return True except Exception as e: print(e) return False def copy(self, h5_in, h5_out): if 'gene_merge' in h5_in.keys(): for i in h5_in['gene_merge']: if i not in h5_out['gene_merge'].keys(): h5_in.copy('gene_merge/' + i, h5_out['gene_merge']) if 'dnb_merge' in h5_in.keys(): for i in h5_in['dnb_merge']: if i not in h5_out['dnb_merge'].keys(): h5_in.copy('dnb_merge/' + i, h5_out['dnb_merge']) def h5_join(self): d_names = os.listdir(self.outdir) final_outf = os.path.join(self.outdir, 'stereomics.h5') h5_out = h5py.File(final_outf, "w") h5_out.create_group('gene_merge') h5_out.create_group('dnb_merge') for h5name in d_names: if h5name.endswith('h5') and h5name != 'stereomics.h5': full_file_name = os.path.join(self.outdir, h5name) h5_in = h5py.File(full_file_name, mode = 'r') self.copy(h5_in, h5_out) h5_in.close() os.remove(full_file_name) h5_out.close() def process(self): binSizeList = [1,2,5,10,15,20,50,80,100,150,200] binSizeList = filter(lambda x: x<=self.maxBinSize, binSizeList) self.write_h5_total() if (self.progress == 1): for binSize in binSizeList: self.write_bin_h5(self.geneDf, binSize, self.img_out) else: pool = Pool(self.progress) for binSize in binSizeList: pool.apply_async(self.write_bin_h5, (self.geneDf, binSize, self.img_out,)) pool.close() pool.join() self.h5_join() class ConvertBinData(): """ input: The lasso bin gene expression matrix; The complete gene expression matrix return: Binsize=1 gene expression matrix. """ def __init__(self, partfile, genefile, outfile, binSize): self.typeColumn = {"geneID": 'str', "x": np.uint32, \ "y": np.uint32, "values": np.uint32, 'MIDCount':np.uint32, \ "MIDCounts":np.uint32, "UMICount": np.uint32} self.partfile = partfile self.genefile = genefile self.outfile = outfile self.binSize = binSize def __Dumpresult(self, mask, genedf): dst = np.where(mask > 0) dstx = dst[1] dsty = dst[0] tissue = pd.DataFrame() tissue['x'] = [ii + self.Xmin for ii in dstx] tissue['y'] = [ij + self.Ymin for ij in dsty] mergedf = pd.merge(genedf, tissue, how='inner', on=['x', 'y']) return mergedf def __CreateImg(self, df): bindf =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt from xgboost import cv import xgboost as xgb import joblib import numpy as np from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split import seaborn as sns def plot_roc(fpr, tpr, roc_auc): """ Plot ROC curve. """ #fig = plt.figure() plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC curve (area = %0.6f)' % roc_auc) plt.legend(loc="lower right") plt.show() def randomised_gt(Y): """ Get a random Y as a sanity check. """ Y = pd.DataFrame(np.random.randint(0, 2, Y.shape[0]), columns=['STK11']) return Y def get_train_test_data(X, df_gt, column_name, test_size, randomise_gt=False): """ Split the data into training and test""" Y = df_gt[column_name] if randomise_gt: Y = randomised_gt(Y) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=42, stratify=Y) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) print('total train samples:', y_train.sum()) print('total test samples', y_test.sum()) dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) return dtrain, dtest, y_test, y_test def get_params(): """ All of xgboost parameters for training. """ params = { 'learning_rate': 0.01, 'n_estimators': 1000, 'verbose': 1, 'max_depth': 6, 'min_child_weight': 4, 'gamma': 0.6, 'subsample': 0.8, 'colsample_bytree': 0.8, 'reg_alpha': 5e-05, 'max_depth': 10, 'objective': 'binary:logistic', 'nthread': 20, # 'scale_pos_weight': w, 'seed': 42} return params def plot_corr(df_rna, df_gt, column_name): """ Plot correlation matrices. """ rs = np.random.RandomState(0) df = pd.concat([df_rna, df_gt[column_name]], axis=1) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') print(corr) sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns) plt.show() def run_cv(dtrain): """ Run cross validaiton. Important: make sure that your model does not overfit.""" xgb_cv = cv(dtrain=dtrain, params=get_params(), nfold=10, num_boost_round=5, metrics="auc", as_pandas=True, seed=42) print('Cross validation results: \n', xgb_cv) def run_ml(path, training_data_filename, training_gt_data_filename, column_name, genes_subset=None, test_size=0.2, save_model=False): """ Main function to train an xgboost classifier, save it, evaluate, plot importance of its features.""" df_rna =
pd.read_csv(path + training_data_filename)
pandas.read_csv
from analytic_types.segment import Segment import utils import unittest import numpy as np import pandas as pd import math import random RELATIVE_TOLERANCE = 1e-1 class TestUtils(unittest.TestCase): #example test for test's workflow purposes def test_segment_parsion(self): self.assertTrue(True) def test_confidence_all_normal_value(self): segment = [1, 2, 0, 6, 8, 5, 3] utils_result = utils.find_confidence(segment)[0] result = 4.0 self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE)) def test_confidence_all_nan_value(self): segment = [np.nan, np.nan, np.nan, np.nan] self.assertEqual(utils.find_confidence(segment)[0], 0) def test_confidence_with_nan_value(self): data = [np.nan, np.nan, 0, 8] utils_result = utils.find_confidence(data)[0] result = 4.0 self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE)) def test_interval_all_normal_value(self): data = [1, 2, 1, 2, 4, 1, 2, 4, 5, 6] data =
pd.Series(data)
pandas.Series
import os import pandas import pathlib from scipy.stats import stats class Output: def __init__(self, rwr_df, multiplexall, top: int): self.rwr_result_list = rwr_df self.multiplexall = multiplexall self._df = rwr_df multiplex_node_prob_zero_df = self._df.loc[self._df.score == 0][['multiplex', 'node']].drop_duplicates() multiplex_node_prob_zero_df['score'] = 0 self._df = (self._df.loc[self._df.score > 0]).groupby(['multiplex', 'node']).agg({'score': stats.gmean}).reset_index() self._df = pandas.concat([multiplex_node_prob_zero_df, self._df], axis=0) self._df = self._df.drop_duplicates(['multiplex', 'node'], keep='first') self._df.sort_values('score', ascending=False, inplace=True) ####################################################################### # # Keep only top k nodes # ####################################################################### if not (top is None): self._df = self._df.groupby('multiplex').head(top) def to_sif(self, bipartiteall, path: str): pathlib.Path(os.path.dirname(path)).mkdir(exist_ok=True, parents=True) out_lst = [] # list of edges with relation type to write selected_nodes = self._df.node.tolist() # Multiplex undirected edges for u, v, edgeidx in self.multiplexall.multigraph.edges: if (u in selected_nodes) or (v in selected_nodes): edge_data_dic = self.multiplexall.multigraph.get_edge_data(u, v, edgeidx) out_lst.append((u, edge_data_dic['network_key'], v)) # Multiplex directed edges for u, v, edgeidx in self.multiplexall.multidigraph.edges: if u in selected_nodes or v in selected_nodes: edge_data_dic = self.multiplexall.multigraph.get_edge_data(u, v) for edge_key in edge_data_dic: out_lst.append((u, edge_data_dic['network_key'], v)) # Bipartite undirected edges for u, v in bipartiteall.graph.edges: if u in selected_nodes or v in selected_nodes: edge_data_dic = bipartiteall.graph.get_edge_data(u, v) out_lst.append((u, edge_data_dic['network_key'], v)) # Bipartite directed edges for u, v in bipartiteall.digraph.edges: if u in selected_nodes or v in selected_nodes: edge_data_dic = bipartiteall.digraph.get_edge_data(u, v) out_lst.append((u, edge_data_dic['network_key'], v)) out_df = pandas.DataFrame(out_lst, columns=['node1', 'relationship_type', 'node2'], dtype=str) out_df.to_csv(path, sep="\t", header=False, index=False) def to_tsv(self, outdir: str, degree: bool): pathlib.Path(outdir).mkdir(exist_ok=True, parents=True) out_df = self._df ####################################################################### # # Annotate nodes with layers and degrees # ####################################################################### if degree: undirdegree_df = pandas.DataFrame(columns=['multiplex', 'layer', 'node', 'degree']) inoutdegree_df = pandas.DataFrame(columns=['multiplex', 'layer', 'node', 'indegree', 'outdegree']) for multiplex in self.multiplexall.multiplex_tuple: for layer in multiplex.layer_tuple: if layer.graph_type[0] == '0': # undirected graph degree_layer_df = pandas.DataFrame(layer.networkx.degree, columns=['node', 'degree']) degree_layer_df['multiplex'] = multiplex.key degree_layer_df['layer'] = layer.key undirdegree_df = pandas.concat([undirdegree_df, degree_layer_df], axis=0) if layer.graph_type[0] == '1': # directed graph indegree_layer_df = pandas.DataFrame(layer.networkx.in_degree, columns=['node', 'indegree']) outdegree_layer_df =
pandas.DataFrame(layer.networkx.out_degree, columns=['node', 'outdegree'])
pandas.DataFrame
# Importing needed libraries import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' :param messages_filepath: the location of the file of messages csv :param categories_filepath: the location of the file of categories csv :return: a dataframe containing a merge of the messages and the respective categories ''' # reading with pandas messages = pd.read_csv(messages_filepath) categories =
pd.read_csv(categories_filepath)
pandas.read_csv
import pandas as pd import numpy as np import csv PREG_ID= 'PREG_ID' Sentrix= 'IID' def format_df(df): df[['chr', 'pos', 'ref', 'eff']]= df['index'].str.split(':', expand= True) cols = list(df.columns.values) cols= cols[-4:] + cols[:-4] df= df[cols] df.drop(['index'], axis= 1, inplace= True) return df d= pd.read_csv(snakemake.input[2], sep= '\t', header= 0) d.dropna(axis= 0, inplace= True) with open(snakemake.input[0], 'r') as infile: reader= csv.DictReader(infile, delimiter= '\t') fets_cols= reader.fieldnames with open(snakemake.input[1], 'r') as infile: reader= csv.DictReader(infile, delimiter= '\t') moms_cols= reader.fieldnames with open(snakemake.input[3], 'r') as infile: reader= csv.DictReader(infile, delimiter= '\t') dads_cols= reader.fieldnames d= d.loc[d.Child.isin(fets_cols), :] d= d.loc[d.Mother.isin(moms_cols), :] d= d.loc[d.Father.isin(dads_cols), :] fets_snp_list= list() h1_df_list= list() h3_df_list= list() for fets in pd.read_csv(snakemake.input[0], sep='\t', header= 0, chunksize= 500): fets_snp_list.append(fets.chr.apply(str) + ':' + fets.pos.apply(str) + ':' + fets.ref + ':' + fets.eff) fets= fets[d.Child] fets= fets.astype(str) fets= np.where(fets== '0', '0|0', np.where(fets== '1', '1|1', fets)) h3= np.where((fets== '0|0') | (fets== '0|1'), 0, np.where((fets== '1|0') | (fets== '1|1'), 1,np.nan)) h1= np.where((fets== '0|0') | (fets== '1|0'), 0, np.where((fets== '0|1') | (fets== '1|1'), 1, np.nan)) h1_df_list.append(h1) h3_df_list.append(h3) varnames=
pd.concat(fets_snp_list)
pandas.concat
""" Functions to validate the input files prior to database insert / upload. """ import time import numpy as np import pandas as pd import IEDC_paths, IEDC_pass from IEDC_tools import dbio, file_io, __version__ def check_datasets_entry(file_meta, create=True, crash_on_exist=True, update=True, replace=False): """ Creates an entry in the `datasets` table. :param file_meta: data file metadata :param crash_on_exist: if True: function terminates with assertion error if dataset/version already exists :param update: if True: function updates dataset entry if dataset/version already exists :param create: if True: funtion creates dataset entry for dataset/version :param replace: if True: delete existing entry in dataset table and create new one with current data """ db_datasets = dbio.get_sql_table_as_df('datasets') dataset_info = file_meta['dataset_info'] # Check if entry already exists dataset_name_ver = [i[0] for i in dataset_info.loc[['dataset_name', 'dataset_version']] .where((pd.notnull(dataset_info.loc[['dataset_name', 'dataset_version']])), None).values] if dataset_name_ver[1] in ['NULL']: dataset_name_ver[1] = None # If exists already if dataset_name_ver in db_datasets[['dataset_name', 'dataset_version']].values.tolist(): # dataset name + verion already exists in dataset catalog if crash_on_exist: raise AssertionError("Database already contains the following dataset (dataset_name, dataset_version):\n %s" % dataset_name_ver) elif update: update_dataset_entry(file_meta) elif replace: # get id if dataset_name_ver[1] == None: db_id = db_datasets.loc[(db_datasets['dataset_name'] == dataset_name_ver[0]) & pd.isna(db_datasets['dataset_version'])].index[0] else: db_id = db_datasets.loc[(db_datasets['dataset_name'] == dataset_name_ver[0]) & (db_datasets['dataset_version'] == dataset_name_ver[1])].index[0] dbio.run_this_command("DELETE FROM %s.datasets WHERE id = %s;" % (IEDC_pass.IEDC_database, db_id)) # add new one create_dataset_entry(file_meta) else: # do nothing print("Database already contains the following dataset (dataset_name, dataset_version):\n %s" % dataset_name_ver) return True # if it doesn't exist yet else: if create: create_dataset_entry(file_meta) else: # i.e. crash_on_not_exist raise AssertionError("Database does not contain the following dataset (dataset_name, dataset_version):\n %s" % dataset_name_ver) def create_dataset_entry(file_meta): dataset_info = file_meta['dataset_info'] dataset_info = dataset_info.replace([np.nan], [None]) dataset_info = dataset_info.replace({'na': None, 'nan': None, 'none': None, 'NULL': None}) dataset_info = dataset_info.to_dict()['Dataset entries'] assert dataset_info['dataset_id'] == 'auto', \ "Was hoping 'dataset_id' in the file template had the value 'auto'. Not sure what to do now..." # Clean up dict dataset_info.pop('dataset_id') if pd.isna(dataset_info['reserve5']): dataset_info['reserve5'] = 'Created by IEDC_tools v%s' % __version__ # Look up stuff data_types = dbio.get_sql_table_as_df('types') dataset_info['data_type'] = data_types.loc[data_types['name'] == dataset_info['data_type']].index[0] data_layers = dbio.get_sql_table_as_df('layers') dataset_info['data_layer'] = data_layers.loc[data_layers['name'] == dataset_info['data_layer']].index[0] data_provenance = dbio.get_sql_table_as_df('provenance') dataset_info['data_provenance'] = data_provenance.loc[data_provenance['name'] == dataset_info['data_provenance']].index[0] aspects = dbio.get_sql_table_as_df('aspects') class_defs = dbio.get_sql_table_as_df('classification_definition') for aspect in [i for i in dataset_info.keys() if i.startswith('aspect_')]: if dataset_info[aspect] is None or aspect.endswith('classification'): continue if dataset_info[aspect+'_classification'] == 'custom': aspect_class_name = str(dataset_info[aspect]) + '__' + dataset_info['dataset_name'] dataset_info[aspect+'_classification'] = \ class_defs[class_defs['classification_name'] == aspect_class_name].index[0] dataset_info[aspect] = aspects[aspects['aspect'] == dataset_info[aspect]].index[0] source_type = dbio.get_sql_table_as_df('source_type') dataset_info['type_of_source'] = source_type.loc[source_type['name'] == dataset_info['type_of_source']].index[0] licenses = dbio.get_sql_table_as_df('licences') dataset_info['project_license'] = licenses.loc[licenses['name'] == dataset_info['project_license']].index[0] users = dbio.get_sql_table_as_df('users') dataset_info['submitting_user'] = users.loc[users['name'] == dataset_info['submitting_user']].index[0] # fix some more for k in dataset_info: # not sure why but pymysql doesn't like np.int64 if type(dataset_info[k]) == np.int64: dataset_info[k] = int(dataset_info[k]) dbio.dict_sql_insert('datasets', dataset_info) print("Created entry for %s in 'datasets' table." % [dataset_info[k] for k in ['dataset_name', 'dataset_version']]) return None def update_dataset_entry(file_meta): raise NotImplementedError def create_aspects_table(file_meta): """ Pulls the info on classification and attributes together, i.e. make sense of the messy attributes in an actual table... More of a convenience function for tired programmers. See sheet 'Cover' in template file. :param file: Filename, string :return: Dataframe table with name, classification_id, and attribute_no """ # Read the file and put metadata and row_classifications in two variables dataset_info = file_meta['dataset_info'] row_classifications = file_meta['row_classifications'] col_classifications = file_meta['col_classifications'] # Filter relevant rows from the metadata table, i.e. the ones containing 'aspect' custom_aspects = dataset_info[dataset_info.index.str.startswith('aspect_')] custom_aspects = custom_aspects[custom_aspects.index.str.endswith('_classification')] # Get rid of the empty ones custom_aspects = custom_aspects[custom_aspects['Dataset entries'] != 'none'] # Here comes the fun... Let's put everything into a dict, because that is easily converted to a dataframe d = {'classification_id': custom_aspects['Dataset entries'].values, 'index': [i.replace('_classification', '') for i in custom_aspects.index], 'name': dataset_info.loc[[i.replace('_classification', '') for i in custom_aspects.index]]['Dataset entries'].values} if file_meta['data_type'] == 'LIST': d['attribute_no'] = row_classifications.reindex(d['name'])['Aspects_Attribute_No'].values d['position'] = 'row?' elif file_meta['data_type'] == 'TABLE': d['attribute_no'] = row_classifications \ .reindex(d['name'])['Row_Aspects_Attribute_No'] \ .fillna(col_classifications.Col_Aspects_Attribute_No).values # The table format file has no info on the position of aspects. Need to find that. d['position'] = [] for n in d['name']: if n in row_classifications.index: d['position'].append('row' + str(row_classifications.index.get_loc(n))) if n in col_classifications.index: d['position'].append('col' + str(col_classifications.index.get_loc(n))) assert not any([i is None for i in d['attribute_no']]) # 'not any' means 'none' # Convert to df and get rid of the redundant 'index' column aspect_table = pd.DataFrame(d, index=d['index']).drop('index', axis=1) return aspect_table def get_class_names(file_meta, aspect_table): """ Creates and looks up names for classification, i.e. classifications that are not found in the database (custom) will be generated and existing ones (non-custom) looked up in the classification_definitions table. The name is generated as a combination of the dataset name and the classification name, e.g. "1_F_steel_SankeyFlows_2008_Global_origin_process". The function extends the table created in create_aspects_table() and returns it. :param file: Filename, string :return: Dataframe table with name, classification_id, attribute_no, and classification_definition """ dataset_info = file_meta['dataset_info'] db_classdef = dbio.get_sql_table_as_df('classification_definition') r = [] for aspect in aspect_table.index: if aspect_table.loc[aspect, 'classification_id'] == 'custom': r.append(aspect_table.loc[aspect, 'name'] + '__' + dataset_info.loc['dataset_name', 'Dataset entries']) else: r.append(db_classdef.loc[aspect_table.loc[aspect, 'classification_id'], 'classification_name']) aspect_table['custom_name'] = r return aspect_table def check_classification_definition(class_names, crash=True, warn=True, custom_only=False, exclude_custom=False): """ Checks if classifications exists in the database, i.e. classification_definition. :param class_names: List of classification names :param crash: Strongly recommended -- will cause the script to stop if the classification already exists. Otherwise there could be ambiguous classifications with multiple IDs. :param warn: Allows to suppress the warning message :param custom_only: Check only custom classifications :param exclude_custom: Exclude custom classifications :return: True or False """ db_classdef = dbio.get_sql_table_as_df('classification_definition') exists = [] for aspect in class_names.index: attrib_no = class_names.loc[aspect, 'attribute_no'] if attrib_no != 'custom' and custom_only: continue # skip already existing classifications if attrib_no == 'custom' and exclude_custom: continue # skip custom classifications if class_names.loc[aspect, 'custom_name'] in db_classdef['classification_name'].values: exists.append(True) if crash: raise AssertionError("""Classification '%s' already exists in the DB classification table (ID: %s). Aspect '%s' cannot be processed.""" % (class_names.loc[aspect, 'custom_name'], db_classdef[db_classdef['classification_name'] == 'general_product_categories'].index[0], aspect)) elif warn: print("WARNING: '%s' already exists in the DB classification table. " "Adding it again may fail or create ambiguous values." % class_names.loc[aspect, 'custom_name']) else: exists.append(False) return exists def check_classification_items(class_names, file_meta, file_data, crash=True, warn=True, custom_only=False, exclude_custom=False): """ Checks in classification_items if a. all classification_ids exists and b. all attributes exist :param class_names: List of classification names :param file_data: Dataframe of Excel file, sheet `Data` :param crash: Strongly recommended -- will cause the script to stop if the classification_id already exists in classification_items. Otherwise there could be ambiguous values with multiple IDs. :param custom_only: Check only custom classifications :param exclude_custom: Exclude custom classifications :param warn: Allows to suppress the warning message :return: """ db_classdef = dbio.get_sql_table_as_df('classification_definition') db_classitems = dbio.get_sql_table_as_df('classification_items') exists = [] # True / False switch for aspect in class_names.index: attrib_no = class_names.loc[aspect, 'attribute_no'] # remove garbage from string try: attrib_no = attrib_no.strip(' ') except: pass if attrib_no != 'custom' and custom_only: continue # skip already existing classifications if attrib_no == 'custom' and exclude_custom: continue # skip custom classifications # make sure classification id exists -- must pass, otherwise the next command will fail assert class_names.loc[aspect, 'custom_name'] in db_classdef['classification_name'].values, \ "Classification '%s' does not exist in table 'classification_definiton'" % \ class_names.loc[aspect, 'custom_name'] # get classification_id class_id = db_classdef.loc[db_classdef['classification_name'] == class_names.loc[aspect, 'custom_name']].index[0] # Check if the classification_id already exists in classification_items if class_id in db_classitems['classification_id'].unique(): exists.append(True) if crash: raise AssertionError("classification_id '%s' already exists in the table classification_items." % class_id) elif warn: print("WARNING: classification_id '%s' already exists in the table classification_items. " "Adding its attributes again may fail or create ambiguous values." % class_id) else: exists.append(False) print(aspect, class_id, 'not in classification_items') # Next check if all attributes exist if attrib_no == 'custom': attrib_no = 'attribute1_oto' else: attrib_no = 'attribute' + str(int(attrib_no)) + '_oto' checkme = db_classitems.loc[db_classitems['classification_id'] == class_id][attrib_no].values if file_meta['data_type'] == 'LIST': attributes = file_data[class_names.loc[aspect, 'name']].unique() elif file_meta['data_type'] == 'TABLE': if class_names.loc[aspect, 'position'][:3] == 'row': if len(file_meta['row_classifications'].values) == 1: attributes = file_data.index.values else: attributes = file_data.index.levels[int(class_names.loc[aspect, 'position'][-1])] elif class_names.loc[aspect, 'position'][:3] == 'col': if len(file_meta['col_classifications'].values) == 1: # That means there is only one column level defined, i.e. no MultiIndex attributes = file_data.columns.values else: attributes = file_data.columns.levels[int(class_names.loc[aspect, 'position'][-1])] for attribute in attributes: if str(attribute) in checkme: exists.append(True) if crash: raise AssertionError("'%s' already in %s" % (attribute, checkme)) elif warn: print("WARNING: '%s' already in classification_items" % attribute) else: exists.append(False) print(aspect, attribute, class_id, 'not in classification_items') return exists def create_db_class_defs(file_meta, aspect_table): """ Writes the custom classification to the table classification_definition. :param file: The data file to read. """ class_names = get_class_names(file_meta, aspect_table) db_aspects = dbio.get_sql_table_as_df('aspects', index='aspect') check_classification_definition(class_names, custom_only=True) for aspect in class_names.index: if class_names.loc[aspect, 'classification_id'] != 'custom': continue # skip already existing classifications d = {'classification_name': str(class_names.loc[aspect, 'custom_name']), 'dimension': str(db_aspects.loc[class_names.loc[aspect, 'name'], 'dimension']), 'description': 'Custom classification, generated by IEDC_tools v%s' % __version__, 'mutually_exclusive': True, 'collectively_exhaustive': False, 'created_from_dataset': True, # signifies that this is a custom classification 'general': False, 'meaning_attribute1': "'%s' aspect of dataset" % aspect # cannot be NULL??? } dbio.dict_sql_insert('classification_definition', d) print("Wrote custom classification '%s' to classification_definitions" % class_names.loc[aspect, 'custom_name']) def create_db_class_items(file_meta, aspects_table, file_data): """ Writes the unique database items / attributes of a custom classification to the database. :param file: Data file to read """ class_names = get_class_names(file_meta, aspects_table) db_classdef = dbio.get_sql_table_as_df('classification_definition') check_classification_items(class_names, file_meta, file_data, custom_only=True, crash=True) for aspect in class_names.index: if class_names.loc[aspect, 'classification_id'] != 'custom': continue # skip already existing classifications # get classification_id class_id = db_classdef.loc[db_classdef['classification_name'] == class_names.loc[aspect, 'custom_name']].index[0] d = {'classification_id': class_id, 'description': 'Custom classification, generated by IEDC_tools v%s' % __version__, 'reference': class_names.loc[aspect, 'custom_name'].split('__')[1]} if file_meta['data_type'] == 'LIST': attributes = sorted(file_data[class_names.loc[aspect, 'name']].apply(str).unique()) elif file_meta['data_type'] == 'TABLE': if class_names.loc[aspect, 'position'][:-1] == 'col': if len(file_meta['col_classifications'].values) == 1: # That means there is only one column level defined, i.e. no MultiIndex attributes = [str(i) for i in file_data.columns] else: attributes = sorted( [str(i) for i in file_data.columns.levels[int(class_names.loc[aspect, 'position'][-1])]]) elif class_names.loc[aspect, 'position'][:-1] == 'row': if len(file_meta['row_classifications'].values) == 1: attributes = [str(i) for i in file_data.index] else: attributes = sorted( [str(i) for i in file_data.index.levels[int(class_names.loc[aspect, 'position'][-1])]]) df = pd.DataFrame({'classification_id': [d['classification_id']] * len(attributes), 'description': [d['description']] * len(attributes), 'reference': [d['reference']] * len(attributes), 'attribute1_oto': attributes}) columns = ('classification_id', 'description', 'reference', 'attribute1_oto') dbio.bulk_sql_insert('classification_items', columns, df.values.tolist()) print("Wrote attributes for custom classification '%s' to classification_items: %s" % (class_id, attributes)) def add_user(file_meta, quiet=False): dataset_info = file_meta['dataset_info'] db_user = dbio.get_sql_table_as_df('users') realname = dataset_info.loc['submitting_user'].values[0] if realname in db_user['name'].values: if not quiet: print("User '%s' already exists in db table users" % realname) else: d = {'name': realname, 'username': (realname.split(' ')[0][0] + realname.split(' ')[1]).lower(), 'start_date': time.strftime('%Y-%m-%d %H:%M:%S') } dbio.dict_sql_insert('users', d) print("User '%s' written to db table users" % d['username']) def add_license(file_meta, quiet=False): dataset_info = file_meta['dataset_info'] db_licenses = dbio.get_sql_table_as_df('licences') file_licence = dataset_info.loc['project_license'].values[0] if file_licence in db_licenses['name'].values: if not quiet: print("Licence '%s' already exists in db table 'licences'" % file_licence) else: d = {'name': file_licence, 'description': 'n/a, generated by IEDC_tools v%s' % __version__} dbio.dict_sql_insert('licences', d) print("Licence '%s' written to db table 'licences'" % file_licence) def parse_stats_array_list(stats_array_strings): """ Parses the 'stats_array string' from the Excel template. E.g. "3;10;3.0;none;" should fill the respecitve columns in the data table as follows: stats_array_1 = 3, stats_array_2 = 10, stats_array_3 = 3.0, stats_array_4 = none More info: https://github.com/IndEcol/IE_data_commons/issues/14 :param stats_array_strings: :return: """ temp_list = [] for sa_string in stats_array_strings: if sa_string == 'none': temp_list.append([None] * 4) else: assert len(sa_string.split(';')) == 4, "The 'stats_array string' is not well formatted: %s" % sa_string temp_list.append(sa_string.split(';')) return_df =
pd.DataFrame(temp_list)
pandas.DataFrame
import logging log = logging.getLogger(__name__) import itertools import importlib from functools import partial from collections import defaultdict import numpy as np import pandas as pd import pyqtgraph as pg from atom.api import (Str, Float, Tuple, Int, Typed, Property, Atom, Bool, Enum, List, Dict, Callable, Value, observe) from enaml.application import deferred_call, timed_call from enaml.colors import parse_color from enaml.core.api import Looper, Declarative, d_, d_func from enaml.qt.QtGui import QColor from psi.util import octave_space, SignalBuffer, ConfigurationException from psi.core.enaml.api import load_manifests, PSIContribution from psi.controller.calibration import util from psi.context.context_item import ContextMeta ################################################################################ # Utility functions ################################################################################ def get_x_fft(fs, duration): n_time = int(fs * duration) freq = np.fft.rfftfreq(n_time, fs**-1) return np.log10(freq) def get_color_cycle(name): module_name, cmap_name = name.rsplit('.', 1) module = importlib.import_module(module_name) cmap = getattr(module, cmap_name) return itertools.cycle(cmap.colors) def make_color(color): if isinstance(color, tuple): return QColor(*color) elif isinstance(color, str): return QColor(color) else: raise ValueError('Unknown color %r', color) ################################################################################ # Style mixins ################################################################################ class ColorCycleMixin(Declarative): #: Define the pen color cycle. Can be a list of colors or a string #: indicating the color palette to use in palettable. pen_color_cycle = d_(Typed(object)) _plot_colors = Typed(dict) def _default_pen_color_cycle(self): return ['k'] def _make_plot_cycle(self): if isinstance(self.pen_color_cycle, str): cycle = get_color_cycle(self.pen_color_cycle) else: cycle = itertools.cycle(self.pen_color_cycle) return defaultdict(lambda: next(cycle)) @d_func def get_pen_color(self, key): if self._plot_colors is None: self._plot_colors = self._make_plot_cycle() color = self._plot_colors[key] if not isinstance(color, str): return QColor(*color) else: return QColor(color) def _observe_pen_color_cycle(self, event): self._plot_colors = self._make_plot_cycle() self._reset_plots() def _reset_plots(self): raise NotImplementedError ################################################################################ # Supporting classes ################################################################################ class BaseDataRange(Atom): container = Typed(object) # Size of display window span = Float(1) # Delay before clearing window once data has "scrolled off" the window. delay = Float(0) # Current visible data range current_range = Tuple(Float(), Float()) def add_source(self, source): cb = partial(self.source_added, source=source) source.add_callback(cb) def _default_current_range(self): return 0, self.span def _observe_delay(self, event): self._update_range() def _observe_span(self, event): self._update_range() def _update_range(self): raise NotImplementedError class EpochDataRange(BaseDataRange): max_duration = Float() def source_added(self, data, source): n = [len(d['signal']) for d in data] max_duration = max(n) / source.fs self.max_duration = max(max_duration, self.max_duration) def _observe_max_duration(self, event): self._update_range() def _update_range(self): self.current_range = 0, self.max_duration class ChannelDataRange(BaseDataRange): # Automatically updated. Indicates last "seen" time based on all data # sources reporting to this range. current_time = Float(0) current_samples = Typed(defaultdict, (int,)) current_times = Typed(defaultdict, (float,)) def _observe_current_time(self, event): self._update_range() def _update_range(self): low_value = (self.current_time//self.span)*self.span - self.delay high_value = low_value+self.span self.current_range = low_value, high_value def add_event_source(self, source): cb = partial(self.event_source_added, source=source) source.add_callback(cb) def source_added(self, data, source): self.current_samples[source] += data.shape[-1] self.current_times[source] = self.current_samples[source]/source.fs self.current_time = max(self.current_times.values()) def event_source_added(self, data, source): self.current_times[source] = data[-1][1] self.current_time = max(self.current_times.values()) def create_container(children, x_axis=None): log.debug('Creating graphics layout') container = pg.GraphicsLayout() container.setSpacing(10) # Add the x and y axes to the layout, along with the viewbox. for i, child in enumerate(children): log.debug('... child %d with viewbox %r', i, child.viewbox) container.addItem(child.y_axis, i, 0) container.addItem(child.viewbox, i, 1) try: container.addItem(child.viewbox_norm, i, 1) except AttributeError: pass if x_axis is not None: container.addItem(x_axis, i+1, 1) # Link the child viewboxes together for child in children[1:]: child.viewbox.setXLink(children[0].viewbox) return container ################################################################################ # Containers (defines a shared set of containers across axes) ################################################################################ class BasePlotContainer(PSIContribution): label = d_(Str()) container = Typed(pg.GraphicsWidget) x_axis = Typed(pg.AxisItem) base_viewbox = Property() legend = Typed(pg.LegendItem) x_transform = Callable() buttons = d_(List()) current_button = d_(Value()) allow_auto_select = d_(Bool(True)) auto_select = d_(Bool(True)) @d_func def fmt_button(self, key): return str(key) def _observe_buttons(self, event): if not self.buttons: return if self.current_button not in self.buttons: self.current_button = self.buttons[0] def _observe_allow_auto_select(self, event): if not self.allow_auto_select: self.auto_select = False def _default_x_transform(self): return lambda x: x def _default_container(self): container = pg.GraphicsLayout() container.setSpacing(10) # Add the x and y axes to the layout, along with the viewbox. for i, child in enumerate(self.children): container.addItem(child.y_axis, i, 0) container.addItem(child.viewbox, i, 1) try: container.addItem(child.viewbox_norm, i, 1) except AttributeError: pass child._configure_viewbox() if self.x_axis is not None: container.addItem(self.x_axis, i+1, 1) # Link the child viewboxes together for child in self.children[1:]: child.viewbox.setXLink(self.children[0].viewbox) return container def add_legend_item(self, plot, label): self.legend.addItem(plot, label) def _default_legend(self): legend = pg.LegendItem() legend.setParentItem(self.container) return legend def _get_base_viewbox(self): return self.children[0].viewbox def _default_x_axis(self): x_axis = pg.AxisItem('bottom') x_axis.setGrid(64) x_axis.linkToView(self.children[0].viewbox) return x_axis def update(self, event=None): pass def find(self, name): for child in self.children: if child.name == name: return child def format_container(self): pass def _reset_plots(self): pass class PlotContainer(BasePlotContainer): x_min = d_(Float(0)) x_max = d_(Float(0)) @observe('x_min', 'x_max') def format_container(self, event=None): # If we want to specify values relative to a psi context variable, we # cannot do it when initializing the plots. if (self.x_min != 0) or (self.x_max != 0): self.base_viewbox.setXRange(self.x_min, self.x_max, padding=0) def update(self, event=None): deferred_call(self.format_container) class BaseTimeContainer(BasePlotContainer): ''' Contains one or more viewboxes that share the same time-based X-axis ''' data_range = Typed(BaseDataRange) span = d_(Float(1)) delay = d_(Float(0.25)) def _default_container(self): container = super()._default_container() # Ensure that the x axis shows the planned range self.base_viewbox.setXRange(0, self.span, padding=0) self.data_range.observe('current_range', self.update) return container def _default_x_axis(self): x_axis = super()._default_x_axis() x_axis.setLabel('Time', unitPrefix='sec.') return x_axis def update(self, event=None): low, high = self.data_range.current_range deferred_call(self.base_viewbox.setXRange, low, high, padding=0) super().update() class TimeContainer(BaseTimeContainer): def _default_data_range(self): return ChannelDataRange(container=self, span=self.span, delay=self.delay) def update(self, event=None): for child in self.children: child.update() super().update() class EpochTimeContainer(BaseTimeContainer): def _default_data_range(self): return EpochDataRange(container=self, span=self.span, delay=self.delay) def format_log_ticks(values, scale, spacing): values = 10**np.array(values).astype(np.float) return ['{:.1f}'.format(v * 1e-3) for v in values] class FFTContainer(BasePlotContainer): ''' Contains one or more viewboxes that share the same frequency-based X-axis ''' freq_lb = d_(Float(500)) freq_ub = d_(Float(50000)) octave_spacing = d_(Bool(True)) def _default_x_transform(self): return np.log10 @observe('container', 'freq_lb', 'freq_ub') def _update_x_limits(self, event): self.base_viewbox.setXRange(np.log10(self.freq_lb), np.log10(self.freq_ub), padding=0) if self.octave_spacing: major_ticks = octave_space(self.freq_lb / 1e3, self.freq_ub / 1e3, 1.0) major_ticklabs = [str(t) for t in major_ticks] major_ticklocs = np.log10(major_ticks * 1e3) minor_ticks = octave_space(self.freq_lb / 1e3, self.freq_ub / 1e3, 0.125) minor_ticklabs = [str(t) for t in minor_ticks] minor_ticklocs = np.log10(minor_ticks * 1e3) ticks = [ list(zip(major_ticklocs, major_ticklabs)), list(zip(minor_ticklocs, minor_ticklabs)), ] self.x_axis.setTicks(ticks) else: self.x_axis.setTicks() def _default_x_axis(self): x_axis = super()._default_x_axis() x_axis.setLabel('Frequency (kHz)') x_axis.logTickStrings = format_log_ticks x_axis.setLogMode(True) return x_axis ################################################################################ # ViewBox ################################################################################ class ViewBox(PSIContribution): # Make this weak-referenceable so we can bind methods to Qt slots. __slots__ = '__weakref__' viewbox = Typed(pg.ViewBox) viewbox_norm = Typed(pg.ViewBox) y_axis = Typed(pg.AxisItem) y_min = d_(Float(0)) y_max = d_(Float(0)) y_mode = d_(Enum('mouse', 'fixed')) data_range = Property() save_limits = d_(Bool(False)) @observe('y_min', 'y_max') def _update_limits(self, event=None): self.viewbox.setYRange(self.y_min, self.y_max, padding=0) def _default_name(self): return self.label def _get_data_range(self): return self.parent.data_range def _default_y_axis(self): y_axis = pg.AxisItem('left') y_axis.setLabel(self.label) y_axis.setGrid(64) return y_axis def _sync_limits(self, vb=None): with self.suppress_notifications(): box = self.viewbox.viewRange() self.y_min = float(box[1][0]) self.y_max = float(box[1][1]) def _default_viewbox(self): return pg.ViewBox(enableMenu=False) def _configure_viewbox(self): viewbox = self.viewbox viewbox.setMouseEnabled( x=False, y=self.y_mode == 'mouse' ) viewbox.disableAutoRange() viewbox.setBackgroundColor('w') self.y_axis.linkToView(viewbox) viewbox.setYRange(self.y_min, self.y_max, padding=0) for child in self.children: plots = child.get_plots() if isinstance(plots, dict): for label, plot in plots.items(): deferred_call(self.add_plot, plot, label) else: for plot in plots: deferred_call(self.add_plot, plot) viewbox.sigRangeChanged.connect(self._sync_limits) return viewbox def _default_viewbox_norm(self): viewbox = pg.ViewBox(enableMenu=False) viewbox.setMouseEnabled(x=False, y=False) viewbox.disableAutoRange() return viewbox def update(self, event=None): for child in self.children: child.update() def add_plot(self, plot, label=None): self.viewbox.addItem(plot) if label: self.parent.legend.addItem(plot, label) def plot(self, x, y, color='k', log_x=False, log_y=False, label=None, kind='line'): ''' Convenience function used by plugins This is typically used in post-processing routines to add static plots to existing view boxes. ''' if log_x: x = np.log10(x) if log_y: y = np.log10(y) x = np.asarray(x) y = np.asarray(y) m = np.isfinite(x) & np.isfinite(y) x = x[m] y = y[m] if kind == 'line': item = pg.PlotCurveItem(pen=pg.mkPen(color)) elif kind == 'scatter': item = pg.ScatterPlotItem(pen=pg.mkPen(color)) item.setData(x, y) self.add_plot(item) if label is not None: self.parent.legend.addItem(item, label) ################################################################################ # Plots ################################################################################ class BasePlot(PSIContribution): # Make this weak-referenceable so we can bind methods to Qt slots. __slots__ = '__weakref__' source_name = d_(Str()) source = Typed(object) label = d_(Str()) def update(self, event=None): pass def _reset_plots(self): pass ################################################################################ # Single plots ################################################################################ class SinglePlot(BasePlot): pen_color = d_(Typed(object)) pen_width = d_(Float(0)) antialias = d_(Bool(False)) label = d_(Str()) pen = Typed(object) plot = Typed(object) def get_plots(self): return [self.plot] def _default_pen_color(self): return 'black' def _default_pen(self): color = make_color(self.pen_color) return pg.mkPen(color, width=self.pen_width) def _default_name(self): return self.source_name + '_plot' class ChannelPlot(SinglePlot): downsample = Int(0) decimate_mode = d_(Enum('extremes', 'mean')) _cached_time = Typed(np.ndarray) _buffer = Typed(SignalBuffer) def _default_name(self): return self.source_name + '_channel_plot' def _default_plot(self): return pg.PlotCurveItem(pen=self.pen, antialias=self.antialias) def _observe_source(self, event): if self.source is not None: self.parent.data_range.add_source(self.source) self.parent.data_range.observe('span', self._update_time) self.source.add_callback(self._append_data) self.parent.viewbox.sigResized.connect(self._update_decimation) self._update_time(None) self._update_decimation(self.parent.viewbox) def _update_time(self, event): # Precompute the time array since this can be the "slow" point # sometimes in computations n = round(self.parent.data_range.span*self.source.fs) self._cached_time = np.arange(n)/self.source.fs self._update_decimation() self._update_buffer() def _update_buffer(self, event=None): self._buffer = SignalBuffer(self.source.fs, self.parent.data_range.span*2) def _update_decimation(self, viewbox=None): try: width, _ = self.parent.viewbox.viewPixelSize() dt = self.source.fs**-1 self.downsample = round(width/dt/2) except Exception as e: pass def _append_data(self, data): self._buffer.append_data(data) self.update() def update(self, event=None): low, high = self.parent.data_range.current_range data = self._buffer.get_range_filled(low, high, np.nan) t = self._cached_time[:len(data)] + low if self.downsample > 1: t = t[::self.downsample] if self.decimate_mode == 'extremes': d_min, d_max = decimate_extremes(data, self.downsample) t = t[:len(d_min)] x = np.c_[t, t].ravel() y = np.c_[d_min, d_max].ravel() if x.shape == y.shape: deferred_call(self.plot.setData, x, y, connect='pairs') elif self.decimate_mode == 'mean': d = decimate_mean(data, self.downsample) t = t[:len(d)] if t.shape == d.shape: deferred_call(self.plot.setData, t, d) else: t = t[:len(data)] deferred_call(self.plot.setData, t, data) def _reshape_for_decimate(data, downsample): # Determine the "fragment" size that we are unable to decimate. A # downsampling factor of 5 means that we perform the operation in chunks of # 5 samples. If we have only 13 samples of data, then we cannot decimate # the last 3 samples and will simply discard them. last_dim = data.ndim offset = data.shape[-1] % downsample if offset > 0: data = data[..., :-offset] shape = (len(data), -1, downsample) if data.ndim == 2 else (-1, downsample) return data.reshape(shape) def decimate_mean(data, downsample): # If data is empty, return imediately if data.size == 0: return np.array([]), np.array([]) data = _reshape_for_decimate(data, downsample).copy() return data.mean(axis=-1) def decimate_extremes(data, downsample): # If data is empty, return imediately if data.size == 0: return np.array([]), np.array([]) # Force a copy to be made, which speeds up min()/max(). Apparently min/max # make a copy of a reshaped array before performing the operation, so we # force it now so the copy only occurs once. data = _reshape_for_decimate(data, downsample).copy() return data.min(axis=-1), data.max(axis=-1) class FFTChannelPlot(ChannelPlot): time_span = d_(Float(1)) window = d_(Enum('hamming', 'flattop')) _x = Typed(np.ndarray) _buffer = Typed(SignalBuffer) def _default_name(self): return self.source_name + '_fft_plot' def _observe_source(self, event): if self.source is not None: self.source.add_callback(self._append_data) self.source.observe('fs', self._cache_x) self._update_buffer() self._cache_x() def _update_buffer(self, event=None): self._buffer = SignalBuffer(self.source.fs, self.time_span) def _append_data(self, data): self._buffer.append_data(data) self.update() def _cache_x(self, event=None): if self.source.fs: self._x = get_x_fft(self.source.fs, self.time_span) def update(self, event=None): if self._buffer.get_time_ub() >= self.time_span: log.debug('Time span %f to %f', -self.time_span, 0) data = self._buffer.get_latest(-self.time_span, 0) psd = util.psd(data, self.source.fs, self.window) spl = self.source.calibration.get_spl(self._x, psd) deferred_call(self.plot.setData, self._x, spl) class BaseTimeseriesPlot(SinglePlot): rect_center = d_(Float(0.5)) rect_height = d_(Float(1)) fill_color = d_(Typed(object)) brush = Typed(object) _rising = Typed(list, ()) _falling = Typed(list, ()) def _default_brush(self): return pg.mkBrush(self.fill_color) def _default_plot(self): plot = pg.QtGui.QGraphicsPathItem() plot.setPen(self.pen) plot.setBrush(self.brush) return plot def update(self, event=None): lb, ub = self.parent.data_range.current_range current_time = self.parent.data_range.current_time starts = self._rising ends = self._falling if len(starts) == 0 and len(ends) == 1: starts = [0] elif len(starts) == 1 and len(ends) == 0: ends = [current_time] elif len(starts) > 0 and len(ends) > 0: if starts[0] > ends[0]: starts = np.r_[0, starts] if starts[-1] > ends[-1]: ends = np.r_[ends, current_time] try: epochs = np.c_[starts, ends] except ValueError as e: log.exception(e) log.warning('Unable to update %r, starts shape %r, ends shape %r', self, starts, ends) return m = ((epochs >= lb) & (epochs < ub)) | np.isnan(epochs) epochs = epochs[m.any(axis=-1)] path = pg.QtGui.QPainterPath() y_start = self.rect_center - self.rect_height*0.5 for x_start, x_end in epochs: x_width = x_end-x_start r = pg.QtCore.QRectF(x_start, y_start, x_width, self.rect_height) path.addRect(r) deferred_call(self.plot.setPath, path) class EventPlot(BaseTimeseriesPlot): event = d_(Str()) def _observe_event(self, event): if self.event is not None: self.parent.data_range.observe('current_time', self.update) def _default_name(self): return self.event + '_timeseries' def _append_data(self, bound, timestamp): if bound == 'start': self._rising.append(timestamp) elif bound == 'end': self._falling.append(timestamp) self.update() class TimeseriesPlot(BaseTimeseriesPlot): source_name = d_(Str()) source = Typed(object) def _default_name(self): return self.source_name + '_timeseries' def _observe_source(self, event): if self.source is not None: self.parent.data_range.add_event_source(self.source) self.parent.data_range.observe('current_time', self.update) self.source.add_callback(self._append_data) def _append_data(self, data): for (etype, value) in data: if etype == 'rising': self._rising.append(value) elif etype == 'falling': self._falling.append(value) ################################################################################ # Group plots ################################################################################ class FixedTextItem(pg.TextItem): def updateTransform(self, force=False): p = self.parentItem() if p is None: pt = pg.QtGui.QTransform() else: pt = p.sceneTransform() if not force and pt == self._lastTransform: return t = pt.inverted()[0] # reset translation t.setMatrix(1, t.m12(), t.m13(), t.m21(), 1, t.m23(), 0, 0, t.m33()) # apply rotation angle = -self.angle if self.rotateAxis is not None: d = pt.map(self.rotateAxis) - pt.map(Point(0, 0)) a = np.arctan2(d.y(), d.x()) * 180 / np.pi angle += a t.rotate(angle) self.setTransform(t) self._lastTransform = pt self.updateTextPos() class GroupMixin(ColorCycleMixin): source = Typed(object) pen_width = d_(Int(0)) antialias = d_(Bool(False)) plots = Dict() labels = Dict() _data_cache = Typed(object) _data_count = Typed(object) _data_updated = Typed(object) _data_n_samples = Typed(object) _pen_color_cycle = Typed(object) _plot_colors = Typed(object) _x = Typed(np.ndarray) n_update = d_(Int(1)) #: List of attributes that define the tab groups tab_grouping = d_(List()) #: List of attributes that define the plot groups plot_grouping = d_(List()) #: List of existing tab keys tab_keys = d_(List()) #: List of existing plot keys plot_keys = d_(List()) #: Which tab is currently selected? selected_tab = d_(Value()) #: Should we auto-select the tab based on the most recently acquired data? auto_select = d_(Bool(False)) #: What was the most recent tab key seen? last_seen_key = Value() #: Function that takes the epoch metadata and returns a key that is used to #: assign the epoch to a group. Return None to exclude the epoch from the #: group criteria. @d_func def group_key(self, md): plot_key = tuple(md[a] for a in self.plot_grouping) tab_key = tuple(md[a] for a in self.tab_grouping) return tab_key, plot_key @d_func def fmt_plot_label(self, key): return None def _observe_allow_auto_select(self, event): if not self.allow_auto_select: self.auto_select = False def _default_selected_tab(self): return () def _observe_selected_tab(self, event): self.update(tab_changed=True) @observe('last_seen_key', 'auto_select') def _update_selected_tab(self, event): if not self.auto_select: return if self.last_seen_key is None: return if self.last_seen_key[0] != self.selected_tab: self.selected_tab = self.last_seen_key[0] def _reset_plots(self): # Clear any existing plots and reset color cycle for plot in self.plots.items(): self.parent.viewbox.removeItem(plot) for label in self.labels.items(): self.parent.viewbox_norm.removeItem(label) self.plots = {} self._data_cache = defaultdict(list) self._data_count = defaultdict(int) self._data_updated = defaultdict(int) self._data_n_samples = defaultdict(int) def get_plots(self): return [] def _make_new_plot(self, key): try: pen_color = self.get_pen_color(key) pen = pg.mkPen(pen_color, width=self.pen_width) plot = pg.PlotCurveItem(pen=pen, antialias=self.antialias) self.plots[key] = plot deferred_call(self.parent.viewbox.addItem, plot) label = self.fmt_plot_label(key) if label is not None: text = pg.TextItem(label, color=pen_color, border=pg.mkPen(pen_color), fill=pg.mkBrush('w')) deferred_call(self.parent.viewbox_norm.addItem, text) self.labels[key] = text except KeyError as key_error: key = key_error.args[0] m = f'Cannot update plot since a field, {key}, ' \ 'required by the plot is missing.' raise ConfigurationException(m) from key_error def get_plot(self, key): if key not in self.plots: self._make_new_plot(key) return self.plots[key] class EpochGroupMixin(GroupMixin): duration = Float() def _y(self, epoch): return np.mean(epoch, axis=0) if len(epoch) \ else np.full_like(self._x, np.nan) def _update_duration(self, event=None): self.duration = self.source.duration def _epochs_acquired(self, epochs): for d in epochs: key = self.group_key(d['info']['metadata']) if key is not None: signal = d['signal'] self._data_cache[key].append(signal) self._data_count[key] += 1 # Track number of samples n = max(self._data_n_samples[key], len(signal)) self._data_n_samples[key] = n self.last_seen_key = key # Does at least one epoch need to be updated? self._check_selected_tab_count() def _get_selected_tab_keys(self): return [k for k in self._data_count if k[0] == self.selected_tab] def _check_selected_tab_count(self): for key in self._get_selected_tab_keys(): current_n = self._data_count[key] last_n = self._data_updated[key] if current_n >= (last_n + self.n_update): n = max(self._data_n_samples.values()) self.duration = n / self.source.fs self.update() break def _observe_source(self, event): if self.source is not None: self.source.add_callback(self._epochs_acquired) self.source.observe('duration', self._update_duration) self.source.observe('fs', self._cache_x) self.observe('duration', self._cache_x) self._reset_plots() self._cache_x() def _observe_selected_tab(self, event): self.update(tab_changed=True) def update(self, event=None, tab_changed=False): todo = [] if self._x is None: return for pk in self.plot_keys: plot = self.get_plot(pk) key = (self.selected_tab, pk) try: last_n = self._data_updated[key] current_n = self._data_count[key] needs_update = current_n >= (last_n + self.n_update) if tab_changed or needs_update: data = self._data_cache[key] self._data_updated[key] = len(data) if data: x = self._x y = self._y(data) else: x = y = np.array([]) todo.append((plot.setData, x, y)) except KeyError: if tab_changed: x = y = np.array([]) todo.append((plot.setData, x, y)) def update(): for setter, x, y in todo: setter(x, y) deferred_call(update) class GroupedEpochAveragePlot(EpochGroupMixin, BasePlot): def _cache_x(self, event=None): # Set up the new time axis if self.source.fs and self.duration: n_time = round(self.source.fs * self.duration) self._x = np.arange(n_time)/self.source.fs def _default_name(self): return self.source_name + '_grouped_epoch_average_plot' def _observe_source(self, event): super()._observe_source(event) if self.source is not None: self.parent.data_range.add_source(self.source) class GroupedEpochFFTPlot(EpochGroupMixin, BasePlot): def _default_name(self): return self.source_name + '_grouped_epoch_fft_plot' def _cache_x(self, event=None): # Cache the frequency points. Must be in units of log for PyQtGraph. # TODO: This could be a utility function stored in the parent? if self.source.fs and self.duration: self._x = get_x_fft(self.source.fs, self.duration) def _y(self, epoch): y = np.mean(epoch, axis=0) if epoch else np.full_like(self._x, np.nan) return self.source.calibration.get_spl(self._x, util.psd(y, self.source.fs)) class GroupedEpochPhasePlot(EpochGroupMixin, BasePlot): unwrap = d_(Bool(True)) def _default_name(self): return self.source_name + '_grouped_epoch_phase_plot' def _cache_x(self, event=None): # Cache the frequency points. Must be in units of log for PyQtGraph. # TODO: This could be a utility function stored in the parent? if self.source.fs and self.duration: self._x = get_x_fft(self.source.fs, self.duration) def _y(self, epoch): y = np.mean(epoch, axis=0) if epoch else np.full_like(self._x, np.nan) return util.phase(y, self.source.fs, unwrap=self.unwrap) class StackedEpochAveragePlot(EpochGroupMixin, BasePlot): _offset_update_needed = Bool(False) def _make_new_plot(self, key): super()._make_new_plot(key) self._offset_update_needed = True def _update_offsets(self, vb=None): vb = self.parent.viewbox height = vb.height() n = len(self.plots) plot_items = sorted(self.plots.items(), reverse=True) for i, (key, plot) in enumerate(plot_items): offset = (i+1) * height / (n+1) point = self.parent.viewbox.mapToView(pg.Point(0, offset)) plot.setPos(0, point.y()) labels = sorted(self.labels.items(), reverse=True) for i, (key, label) in enumerate(labels): offset = (i+1) * height / (n+1) point = self.parent.viewbox_norm.mapToView(pg.Point(0, offset)) label.setPos(0.8, point.y()) def _cache_x(self, event=None): # Set up the new time axis if self.source.fs and self.source.duration: n_time = round(self.source.fs * self.source.duration) self._x = np.arange(n_time)/self.source.fs def update(self, *args, **kwargs): super().update(*args, **kwargs) if self._offset_update_needed: deferred_call(self._update_offsets) self._offset_update_needed = False def _reset_plots(self): super()._reset_plots() self.parent.viewbox \ .sigRangeChanged.connect(self._update_offsets) self.parent.viewbox \ .sigRangeChangedManually.connect(self._update_offsets) ################################################################################ # Simple plotters ################################################################################ class ResultPlot(GroupMixin, SinglePlot): x_column = d_(Str()) y_column = d_(Str()) average = d_(Bool()) SYMBOL_MAP = { 'circle': 'o', 'square': 's', 'triangle': 't', 'diamond': 'd', } symbol = d_(Enum('circle', 'square', 'triangle', 'diamond')) symbol_size = d_(Float(10)) symbol_size_unit = d_(Enum('screen', 'data')) def get_plots(self): return {self.label: self.plot} def _default_name(self): return '.'.join((self.parent.name, self.source_name, 'result_plot', self.x_column, self.y_column)) def _observe_source(self, event): if self.source is not None: self._data_cache = {} self.source.add_callback(self._data_acquired) def _data_acquired(self, data): for d in data: key = self.group_key(d) if key is not None: cache = self._data_cache.setdefault(key, {'x': [], 'y': []}) cache['x'].append(d[self.x_column]) cache['y'].append(d[self.y_column]) self.last_seen_key = key self.update() def update(self, event=None, tab_changed=False): default = {'x': [], 'y': []} key = (self.selected_tab, ()) data = self._data_cache.get(key, default) x = np.array(data['x']) y = np.array(data['y']) if self.average: d =
pd.DataFrame({'x': x, 'y': y})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sat May 9 17:44:14 2020 @author: GE702PL """ import xlwings as xw from functools import wraps import datetime import pandas as pd from calendar import monthrange # LOGS def log(*m): print(" ".join(map(str, m))) def black(s): return '\033[1;30m%s\033[m' % s def green(s): return '\033[1;32m%s\033[m' % s def red(s): return '\033[1;31m%s\033[m' % s def yellow(s): return '\033[1;33m%s\033[m' % s def to_dates(df, cols): """ Changes column format to datetime. Parameters: ---------- df : dataframe Dataframe with columns which are falsely not recognised as datetime. cols : list list of columns, formats of which need to be corrected. Returns ---------- df : dataframe with corrected column formats """ for col in cols: df[col] =
pd.to_datetime(df[col])
pandas.to_datetime
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0])
assert_frame_equal(panelc[2], panel[2])
pandas.util.testing.assert_frame_equal
import numpy as np import pandas as pd from pathlib import Path def all_cells_same_opacity(modelpath, ngrid): cell_opacities = np.array([0.1] * ngrid) with open(Path(modelpath) / 'opacity.txt', 'w') as fopacity: fopacity.write(f'{ngrid}\n') for cellid, opacity in enumerate(cell_opacities): fopacity.write(f'{cellid+1} {opacity}\n') def opacity_by_Ye(outputfilepath, griddata): """Opacities from Table 1 Tanaka 2020""" griddata =
pd.DataFrame(griddata)
pandas.DataFrame
# -*- coding: utf-8 -*- # @Time : 2018/10/3 下午2:36 # @Author : yidxue import pandas as pd from common.util_function import * df1 = pd.DataFrame(data={'name': ['a', 'b', 'c', 'd'], 'gender': ['male', 'male', 'female', 'female']}) df2 = pd.DataFrame(data={'name': ['a', 'b', 'c', 'e'], 'age': [21, 22, 23, 20]}) print_line("inner join") print_br(
pd.merge(df1, df2, on=['name'], how='inner')
pandas.merge
import copy import itertools import os import time import numpy as np import pandas as pd import scipy.io as scio import yaml import factorAnalysisIOTools as IOTools from factorAnalysisCalTools import prepare_RET_dict, time_horizon_dict def save_df(this: pd.DataFrame,config: dict,file_name): file_path = os.path.join(config['utility_data_dir'],config[file_name]+".pkl") if os.path.exists(file_path): that = pd.read_pickle(file_path) this = that.append(this) this.drop_duplicates(subset=['date','code'],inplace=True,keep='last') this.to_pickle(file_path) def loadmat2df_interday(path): temp = scio.loadmat(path) this = pd.DataFrame(temp['SCORE'], index=temp['TRADE_DT'].squeeze().tolist(), columns=[x[0] for x in temp['STOCK_CODE'].squeeze()]) return this class LoadStockInfo(): def __init__(self,config): self.config = config temp = scio.loadmat(os.path.join(config['utility_data_dir'],config['SIZE_file_name']+".mat")) self.all_date_mat = temp['TRADE_DT'].squeeze() self.all_code_mat = [x[0] for x in temp['STOCK_CODE'].squeeze()] self.start_date = self.all_date_mat[self.all_date_mat>=config['start_date']][0] self.end_date = self.all_date_mat[self.all_date_mat<=config['end_date']][-1] self.start_indexer = np.where(self.all_date_mat==self.start_date)[0][0] self.end_indexer = np.where(self.all_date_mat==self.end_date)[0][0] self.date_list = self.all_date_mat[self.start_indexer:self.end_indexer+1] self.date_code_product = np.array(list(itertools.product(self.date_list,self.all_code_mat))) # self.date_code_product = np.array(list(itertools.product(self.date_list,self.all_code_mat)),dtype=[('date','int'),('code','object')]) def load_arr(self,file_name,start_back_days=0,end_forward_days=0): path = os.path.join( self.config['utility_data_dir'], self.config[file_name]+".mat" ) # log--20210804:对于ZX_1的数据,他们的STOCK_CODE的顺序和数量和其他的可能不一样 # 查找self.all_code_mat的code在stkcd里面的位置,对应的score里面取出这些地方的元素,相当于reindex一下 # update: 直接读取df,然后reindex,然后取value score = loadmat2df_interday(path).reindex(index=self.all_date_mat,columns=self.all_code_mat).values print(file_name,score.shape) start = max(self.start_indexer-start_back_days,0) end = min(self.end_indexer+end_forward_days+1,len(score)) data = score[start:end] pad_width_axis0 = ( max(start_back_days-self.start_indexer,0), max(self.end_indexer+end_forward_days+1-len(score),0) ) if pad_width_axis0 != (0,0): data = np.pad(data, pad_width=(pad_width_axis0,(0,0)),mode='edge') return data def update_limit_300_688(self,start_back_days=0,end_forward_days=0): code_300 = np.array([x.startswith("300") for x in self.all_code_mat]) code_688 = np.array([x.startswith("688") for x in self.all_code_mat]) chg_date_300 = np.array([x>=20200824 for x in self.all_date_mat]) code_300_score = np.tile(code_300,(len(chg_date_300),1)) code_688_score = np.tile(code_688,(len(chg_date_300),1)) chg_date_300_score = np.tile(chg_date_300.reshape(-1,1),(1,len(code_300))) assert code_300_score.shape == (len(self.all_date_mat),len(self.all_code_mat)), "code_300 shape wrong" start = max(self.start_indexer-start_back_days,0) end = min(self.end_indexer+end_forward_days+1,len(code_300_score)) code_300_data = code_300_score[start:end] code_688_data = code_688_score[start:end] chg_date_data = chg_date_300_score[start:end] return code_300_data,code_688_data,chg_date_data class UpdateStockPool(): def __init__(self,config_path): with open(config_path) as f: self.config = yaml.load(f.read(),Loader=yaml.FullLoader) self.config['STOCK_INFO_file_path'] = os.path.join(self.config['utility_data_dir'],self.config['STOCK_INFO_file_name']+".pkl") def update_stock_info(self): config = copy.deepcopy(self.config) stock_info_loader = LoadStockInfo(config) t = time.time() # ADJFACTOR_2d_forward1 = stock_info_loader.load_arr('ADJFACTOR_file_name',end_forward_days=1)[1:] # OPEN_2d_forward1 = stock_info_loader.load_arr('ADJFACTOR_file_name',end_forward_days=1)[1:] # ADJOPEN_2d_forward1 = ADJFACTOR_2d_forward1*OPEN_2d_forward1 FF_CAPITAL_2d = stock_info_loader.load_arr('FF_CAPITAL_file_name') PRECLOSE_2d_forward1 = stock_info_loader.load_arr('PRECLOSE_file_name',end_forward_days=1)[1:] # RETURN_TWAP_Q1_2d = stock_info_loader.load_arr('RETURN_TWAP_Q1_file_name',end_forward_days=1) FCT_HF_TWAP_H1_forward1 = stock_info_loader.load_arr('FCT_HF_TWAP_H1_file_name',end_forward_days=1)[1:] RETURN_2d = stock_info_loader.load_arr('RETURN_file_name',end_forward_days=1) # 20210917: 更新计算涨跌停的方法,算涨跌停的时候,20200824开始创业板涨幅停调整到了20% # 创业板通过stock_code前3位等于300识别; 还有科创板,前3位是688; 科创板自上市以来就是20%涨跌幅,创业板是20200824开始改20%的 code_300_data,code_688_data,chg_date_data = stock_info_loader.update_limit_300_688() lmt1_t0 = (abs(RETURN_2d)>0.195)[:-1] lmt2_t0 = (abs(RETURN_2d)>0.095)[:-1] & (code_688_data==False) & (chg_date_data==False) lmt3_t0 = (abs(RETURN_2d)>0.095)[:-1] & (code_688_data==False) & (code_300_data==False) LIMIT_UD_t0_1d = (lmt1_t0 | lmt2_t0 | lmt3_t0).reshape(-1,) # 20211007: ADJOPEN*limit_ratio*5/6=LIMIT_PRICE_THRESHOLD_H1 lmt1_t1 = (abs(FCT_HF_TWAP_H1_forward1/PRECLOSE_2d_forward1-1)>0.195*5/6) lmt2_t1 = (abs(FCT_HF_TWAP_H1_forward1/PRECLOSE_2d_forward1-1)>0.095*5/6) & (code_688_data==False) & (chg_date_data==False) lmt3_t1 = (abs(FCT_HF_TWAP_H1_forward1/PRECLOSE_2d_forward1-1)>0.095*5/6) & (code_688_data==False) & (code_300_data==False) LIMIT_UD_t1_1d = (lmt1_t1 | lmt2_t1 | lmt3_t1).reshape(-1,) LIMIT_UD_filter_t0_t1_1d = ((LIMIT_UD_t0_1d + LIMIT_UD_t1_1d) == 0) # LIMIT_UD_t0_1d = ((abs(RETURN_TWAP_Q1_2d)>0.095)[:-1]).reshape(-1,) # LIMIT_UD_t1_1d = ((abs(RETURN_TWAP_Q1_2d)>0.095)[1:]).reshape(-1,) # LIMIT_UD_filter_t0_t1_1d = (LIMIT_UD_t0_1d + LIMIT_UD_t1_1d) == 0 ADJFACTOR_2d = stock_info_loader.load_arr('ADJFACTOR_file_name') VWAP_2d = stock_info_loader.load_arr('VWAP_file_name') CLOSE_2d = stock_info_loader.load_arr('CLOSE_file_name') AMOUNT_1d = stock_info_loader.load_arr('AMOUNT_file_name').reshape(-1,) ADJVWAP_1d = (ADJFACTOR_2d*VWAP_2d).reshape(-1,) ADJCLOSE_1d = (ADJFACTOR_2d*CLOSE_2d).reshape(-1,) CLOSE_1d = CLOSE_2d.reshape(-1,) FF_SIZE_1d = (FF_CAPITAL_2d*VWAP_2d).reshape(-1,) ADJFACTOR_2d_back19 = stock_info_loader.load_arr('ADJFACTOR_file_name',start_back_days=19) VOLUME_2d_back19 = stock_info_loader.load_arr('VOLUME_file_name',start_back_days=19) ADJVOLUME_2d_back19 = VOLUME_2d_back19/ADJFACTOR_2d_back19 ADJVOLUME_ma20_2d = pd.DataFrame(ADJVOLUME_2d_back19).rolling(20).mean().values[19:] ADJVOLUME_ma20_1d = ADJVOLUME_ma20_2d.reshape(-1,) ADJVOLUME_ma20_q20_1d = np.nanquantile(ADJVOLUME_ma20_2d, q=0.2,axis=1,keepdims=False) ADJVOLUME_ma20_q20_1d = np.repeat(ADJVOLUME_ma20_q20_1d, repeats=ADJVOLUME_ma20_2d.shape[1]) FF_CAPITAL_ma20_2d = stock_info_loader.load_arr('FF_CAPITAL_file_name',start_back_days=19) FF_CAPITAL_ma20_2d = pd.DataFrame(FF_CAPITAL_ma20_2d).rolling(20).mean().values[19:] FF_CAPITAL_ma20_1d = FF_CAPITAL_ma20_2d.reshape(-1,) FF_CAPITAL_ma20_q20_1d = np.nanquantile(FF_CAPITAL_ma20_2d, q=0.2,axis=1,keepdims=False) FF_CAPITAL_ma20_q20_1d = np.repeat(FF_CAPITAL_ma20_q20_1d, repeats=FF_CAPITAL_ma20_2d.shape[1]) TOTAL_TRADEDAYS_1d = stock_info_loader.load_arr('TOTAL_TRADEDAYS_file_name').reshape(-1,) HS300_member_1d = stock_info_loader.load_arr('HS300_member_file_name').reshape(-1,) ZZ500_member_1d = stock_info_loader.load_arr('ZZ500_member_file_name').reshape(-1,) ISST_1d = stock_info_loader.load_arr('ISST_file_name').reshape(-1,) ISTRADEDAY_1d = stock_info_loader.load_arr('ISTRADEDAY_file_name').reshape(-1,) ZX_1_1d = stock_info_loader.load_arr('ZX_1_file_name').reshape(-1,) SIZE_1d = stock_info_loader.load_arr('SIZE_file_name').reshape(-1,) LIQUIDTY_1d = stock_info_loader.load_arr('LIQUIDTY_file_name').reshape(-1,) MOMENTUM_1d = stock_info_loader.load_arr('MOMENTUM_file_name').reshape(-1,) RESVOL_1d = stock_info_loader.load_arr('RESVOL_file_name').reshape(-1,) SIZENL_1d = stock_info_loader.load_arr('SIZENL_file_name').reshape(-1,) SRISK_1d = stock_info_loader.load_arr('SRISK_file_name').reshape(-1,) ADP_1d = stock_info_loader.load_arr('ADP_file_name').reshape(-1,) BETA_1d = stock_info_loader.load_arr('BETA_file_name').reshape(-1,) BTOP_1d = stock_info_loader.load_arr('BTOP_file_name').reshape(-1,) EARNYILD_1d = stock_info_loader.load_arr('EARNYILD_file_name').reshape(-1,) GROWTH_1d = stock_info_loader.load_arr('GROWTH_file_name').reshape(-1,) LEVERAGE_1d = stock_info_loader.load_arr('LEVERAGE_file_name').reshape(-1,) print("IO time",time.time()-t) t = time.time() STOCK_INFO_2d = np.stack( [ SIZE_1d,ZX_1_1d,ADJVWAP_1d,ADJCLOSE_1d,CLOSE_1d,AMOUNT_1d,FF_SIZE_1d, HS300_member_1d,ZZ500_member_1d,ISST_1d, ISTRADEDAY_1d,TOTAL_TRADEDAYS_1d,LIMIT_UD_t0_1d,LIMIT_UD_t1_1d,LIMIT_UD_filter_t0_t1_1d, ADJVOLUME_ma20_1d,ADJVOLUME_ma20_q20_1d,FF_CAPITAL_ma20_1d,FF_CAPITAL_ma20_q20_1d, LIQUIDTY_1d,MOMENTUM_1d,RESVOL_1d,SIZENL_1d,SRISK_1d, ADP_1d,BETA_1d,BTOP_1d,EARNYILD_1d,GROWTH_1d,LEVERAGE_1d ], axis=1 ) print("concate time",time.time()-t) t = time.time() date_code_product_2d = stock_info_loader.date_code_product STOCK_INFO_cols_name = [ 'SIZE','ZX_1','ADJVWAP','ADJCLOSE','CLOSE','AMOUNT','FF_SIZE','HS300_member','ZZ500_member', 'ISST','ISTRADEDAY','TOTAL_TRADEDAYS','LIMIT_UD_t0','LIMIT_UD_t1','LIMIT_UD_filter_t0_t1_1d', 'ADJVOLUME_ma20','ADJVOLUME_ma20_q20','FF_CAPITAL_ma20','FF_CAPITAL_ma20_q20', 'LIQUIDTY','MOMENTUM','RESVOL','SIZENL','SRISK', 'ADP','BETA','BTOP','EARNYILD','GROWTH','LEVERAGE', 'date','code' ] STOCK_INFO_df = pd.DataFrame(STOCK_INFO_2d.astype('float32'),columns=STOCK_INFO_cols_name[:-2]) STOCK_INFO_df['date'] = date_code_product_2d[:,0].astype('int') STOCK_INFO_df['code'] = date_code_product_2d[:,1] print("form df time: ",time.time()-t) t = time.time() save_df(STOCK_INFO_df,self.config,'STOCK_INFO_file_name') self.STOCK_INFO = STOCK_INFO_df print("save time",time.time()-t) def update_stock_pool_basic(self,STOCK_INFO_file_path=None): ''' T0当天结束计算的factor,这个SP用于分组,后续可能在真的计算分组return的时候,需要再筛选一个 能否在第二天买入的SP_T1,(对于分析因子的影响???) SP_basic: - 全市场 # - T0当天没有涨跌停(RETURN的abs大于0.095) # - T1当天没有涨跌停 - 不是ST - 是TRADEDAY - 上市满一年(STOCK_INFO.datetime-STOCK_INFO.list_date > 365) ''' if hasattr(self, 'STOCK_INFO'): STOCK_INFO = self.STOCK_INFO else: if STOCK_INFO_file_path is None: STOCK_INFO_file_path=self.config['STOCK_INFO_file_path'] STOCK_INFO = pd.read_pickle(STOCK_INFO_file_path) STOCK_INFO = STOCK_INFO[(STOCK_INFO.date>=self.config['start_date'])&(STOCK_INFO.date<=self.config['end_date'])] filter_basic = (STOCK_INFO['ISTRADEDAY']==1.0) & (STOCK_INFO['TOTAL_TRADEDAYS']>250) & (STOCK_INFO['ISST']==0.0) STOCK_POOL_basic = STOCK_INFO.loc[filter_basic,self.config['STOCK_POOL_cols']] save_df(STOCK_POOL_basic,self.config,'STOCK_POOL_basic_file_name') def update_stock_pool_cap_vol_drop20(self,STOCK_INFO_file_path=None): ''' T0当天结束计算的factor,这个SP用于分组,后续可能在真的计算分组return的时候,需要再筛选一个 能否在第二天买入的SP_T1,(对于分析因子的影响???) SP_cap_vol_drop20: - 全市场 - 去除流动性后20%(过去20天的voluma ma大于截面的q20) - 去除流通市值后20% - T0当天没有涨跌停(RETURN的abs大于0.095) - T1当天没有涨跌停 - 不是ST - 是TRADEDAY - 上市满一年(STOCK_INFO.datetime-STOCK_INFO.list_date > 365) ''' if hasattr(self, 'STOCK_INFO'): STOCK_INFO = self.STOCK_INFO else: if STOCK_INFO_file_path is None: STOCK_INFO_file_path=self.config['STOCK_INFO_file_path'] STOCK_INFO = pd.read_pickle(STOCK_INFO_file_path) STOCK_INFO = STOCK_INFO[(STOCK_INFO.date>=self.config['start_date'])&(STOCK_INFO.date<=self.config['end_date'])] filter_basic = ( STOCK_INFO['ADJVOLUME_ma20']>STOCK_INFO['ADJVOLUME_ma20_q20'])&\ (STOCK_INFO['FF_CAPITAL_ma20']>STOCK_INFO['FF_CAPITAL_ma20_q20'])&\ (STOCK_INFO['ISTRADEDAY']==1.0) & (STOCK_INFO['TOTAL_TRADEDAYS']>250) & (STOCK_INFO['ISST']==0.0) STOCK_POOL_basic = STOCK_INFO.loc[filter_basic,self.config['STOCK_POOL_cols']] save_df(STOCK_POOL_basic,self.config,'STOCK_POOL_cap_vol_drop20_file_name') def update_stock_HS300(self,STOCK_INFO_file_path=None): ''' 满足basic的要求且是HS300里面的成分股 ''' if hasattr(self, 'STOCK_INFO'): STOCK_INFO = self.STOCK_INFO else: if STOCK_INFO_file_path is None: STOCK_INFO_file_path=self.config['STOCK_INFO_file_path'] STOCK_INFO = pd.read_pickle(STOCK_INFO_file_path) STOCK_INFO = STOCK_INFO[(STOCK_INFO.date>=self.config['start_date'])&(STOCK_INFO.date<=self.config['end_date'])] filter_HS300 = (STOCK_INFO['HS300_member']==1.0) & (STOCK_INFO['LIMIT_UD_t0'] == 0.0) &\ (STOCK_INFO['ISTRADEDAY']==1.0) & (STOCK_INFO['TOTAL_TRADEDAYS']>250) & (STOCK_INFO['ISST']==0.0) STOCK_POOL_HS300 = STOCK_INFO.loc[filter_HS300,self.config['STOCK_POOL_cols']] save_df(STOCK_POOL_HS300,self.config,'STOCK_POOL_HS300_file_name') def update_stock_ZZ500(self,STOCK_INFO_file_path=None): if hasattr(self, 'STOCK_INFO'): STOCK_INFO = self.STOCK_INFO else: if STOCK_INFO_file_path is None: STOCK_INFO_file_path=self.config['STOCK_INFO_file_path'] STOCK_INFO = pd.read_pickle(STOCK_INFO_file_path) STOCK_INFO = STOCK_INFO[(STOCK_INFO.date>=self.config['start_date'])&(STOCK_INFO.date<=self.config['end_date'])] filter_ZZ500 = (STOCK_INFO['ZZ500_member']==1.0) &\ (STOCK_INFO['ISTRADEDAY']==1.0) & (STOCK_INFO['TOTAL_TRADEDAYS']>250) & (STOCK_INFO['ISST']==0.0) STOCK_POOL_ZZ500 = STOCK_INFO.loc[filter_ZZ500,self.config['STOCK_POOL_cols']] save_df(STOCK_POOL_ZZ500,self.config,'STOCK_POOL_ZZ500_file_name') def update_stock_ZZ800(self,STOCK_INFO_file_path=None): if hasattr(self, 'STOCK_INFO'): STOCK_INFO = self.STOCK_INFO else: if STOCK_INFO_file_path is None: STOCK_INFO_file_path=self.config['STOCK_INFO_file_path'] STOCK_INFO = pd.read_pickle(STOCK_INFO_file_path) STOCK_INFO = STOCK_INFO[(STOCK_INFO.date>=self.config['start_date'])&(STOCK_INFO.date<=self.config['end_date'])] filter_ZZ500 = ((STOCK_INFO['ZZ500_member']==1.0) | (STOCK_INFO['HS300_member']==1.0))&\ (STOCK_INFO['ISTRADEDAY']==1.0) & (STOCK_INFO['TOTAL_TRADEDAYS']>250) & (STOCK_INFO['ISST']==0.0) STOCK_POOL_ZZ500 = STOCK_INFO.loc[filter_ZZ500,self.config['STOCK_POOL_cols']] save_df(STOCK_POOL_ZZ500,self.config,'STOCK_POOL_ZZ800_file_name') def update_stock_800(self,STOCK_INFO_file_path=None): if hasattr(self, 'STOCK_INFO'): STOCK_INFO = self.STOCK_INFO else: if STOCK_INFO_file_path is None: STOCK_INFO_file_path=self.config['STOCK_INFO_file_path'] STOCK_INFO =
pd.read_pickle(STOCK_INFO_file_path)
pandas.read_pickle
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Author : 陈坤泽 # @Email : <EMAIL> # @Date : 2021/01/20 14:51 """ 对pycocotools的一些功能整合、封装 代码中,gt指ground truth,真实标注 dt指detection,模型检测出来的结果 除了 label.py 中定义的 CocoGtData 专门处理 gt 格式数据 CocoData 同时处理 gt dt 格式数据 这里对外有两个类 CocoEval 计算coco指标 CocoMatch 进行一些高级的结果分析 生成的结果可以用 xllabelme 打开 (pip install xllabelme) """ from pyxllib.prog.pupil import check_install_package check_install_package('xlcocotools') from collections import ChainMap, defaultdict, Counter import copy import json import os import pathlib import random import sys import pandas as pd import PIL from tqdm import tqdm from pyxllib.file.packlib.zipfile import ZipFile from pyxllib.prog.newbie import round_int from pyxllib.prog.pupil import DictTool from pyxllib.prog.specialist import mtqdm from pyxllib.algo.pupil import Groups, make_index_function, matchpairs from pyxllib.algo.geo import rect_bounds, rect2polygon, reshape_coords, ltrb2xywh, xywh2ltrb, ComputeIou from pyxllib.algo.stat import dataframes_to_excel from pyxllib.file.specialist import File, Dir, PathGroups from pyxllib.debug.specialist import get_xllog from pyxlpr.data.icdar import IcdarEval from pyxlpr.data.labelme import LABEL_COLORMAP7, ToLabelmeJson, LabelmeDataset, LabelmeDict from xlcocotools.coco import COCO from xlcocotools.cocoeval import COCOeval class CocoGtData: """ 类coco格式的json数据处理 不一定要跟coco gt结构完全相同,只要相似就行, 比如images、annotaions、categories都可以扩展自定义字段 """ def __init__(self, gt): self.gt_dict = gt if isinstance(gt, dict) else File(gt).read() @classmethod def gen_image(cls, image_id, file_name, height=None, width=None, **kwargs): """ 初始化一个图片标注,使用位置参数,复用的时候可以节省代码量 """ # 没输入height、width时会自动从file_name读取计算 # 但千万注意,这里coco的file_name输入的是相对路径,并不一定在工作目录下能work,一般还是推荐自己输入height、width if height is None or width is None: width, height = PIL.Image.open(str(file_name)).size im = {'id': int(image_id), 'file_name': file_name, 'height': int(height), 'width': int(width)} if kwargs: im.update(kwargs) return im @classmethod def gen_images(cls, imdir, start_idx=1): """ 自动生成标准的images字段 :param imdir: 图片目录 :param start_idx: 图片起始下标 :return: list[dict(id, file_name, width, height)] """ files = Dir(imdir).select_files(['*.jpg', '*.png']) images = [] for i, f in enumerate(files, start=start_idx): w, h = Image.open(str(f)).size images.append({'id': i, 'file_name': f.name, 'width': w, 'height': h}) return images @classmethod def points2segmentation(cls, pts): """ labelme的points结构转segmentation分割结构 """ # 1 两个点要转4个点 if len(pts) == 2: pts = rect2polygon(pts) else: pts = list(pts) # 2 点集要封闭,末尾要加上第0个点 pts.append(pts[0]) # 多边形因为要画出所有的点,还要封闭,数据有点多,还是只存整数节省空间 pts = [round_int(v) for v in reshape_coords(pts, 1)] return pts @classmethod def gen_annotation(cls, **kwargs): """ 智能地生成一个annotation字典 这个略微有点过度封装了 但没事,先放着,可以不拿出来用~~ :param points: 必须是n*2的结构 """ a = kwargs.copy() # a = {'id': 0, 'area': 0, 'bbox': [0, 0, 0, 0], # 'category_id': 1, 'image_id': 0, 'iscrowd': 0, 'segmentation': []} if 'points' in a: # points是一个特殊参数,使用“一个”多边形来标注(注意区别segmentation是多个多边形) if 'segmentation' not in a: a['segmentation'] = [cls.points2segmentation(a['points'])] del a['points'] if 'bbox' not in a: pts = [] for seg in a['segmentation']: pts += seg a['bbox'] = ltrb2xywh(rect_bounds(pts)) if 'area' not in a: # 自动计算面积 a['area'] = int(a['bbox'][2] * a['bbox'][3]) for k in ['id', 'image_id']: if k not in a: a[k] = 0 if 'category_id' not in a: a['category_id'] = 1 if 'iscrowd' not in a: a['iscrowd'] = 0 return a @classmethod def gen_quad_annotations(cls, file, *, image_id, start_box_id, category_id=1, **kwargs): """ 解析一张图片对应的txt标注文件 :param file: 标注文件,有多行标注 每行是x1,y1,x2,y2,x3,y3,x4,y4[,label] (label可以不存在) :param image_id: 该图片id :param start_box_id: box_id起始编号 :param category_id: 归属类别 """ lines = File(file).read() box_id = start_box_id annotations = [] for line in lines.splitlines(): vals = line.split(',', maxsplit=8) if len(vals) < 2: continue attrs = {'id': box_id, 'image_id': image_id, 'category_id': category_id} if len(vals) == 9: attrs['label'] = vals[8] # print(vals) seg = [int(v) for v in vals[:8]] attrs['segmentation'] = [seg] attrs['bbox'] = ltrb2xywh(rect_bounds(seg)) if kwargs: attrs.update(kwargs) annotations.append(cls.gen_annotation(**attrs)) box_id += 1 return annotations @classmethod def gen_categories(cls, cats): if isinstance(cats, list): # 如果输入是一个类别列表清单,则按1、2、3的顺序给其编号 return [{'id': i, 'name': x, 'supercategory': ''} for i, x in enumerate(cats, start=1)] else: raise TypeError # TODO 扩展支持其他构造方法 @classmethod def gen_gt_dict(cls, images, annotations, categories, outfile=None): data = {'images': images, 'annotations': annotations, 'categories': categories} if outfile is not None: File(outfile).write(data) return data @classmethod def is_gt_dict(cls, gt_dict): if isinstance(gt_dict, (tuple, list)): return False has_keys = set('images annotations categories'.split()) return not (has_keys - gt_dict.keys()) def clear_gt_segmentation(self, *, inplace=False): """ 有的coco json文件太大,如果只做普通的bbox检测任务,可以把segmentation的值删掉 """ gt_dict = self.gt_dict if inplace else copy.deepcopy(self.gt_dict) for an in gt_dict['annotations']: an['segmentation'] = [] return gt_dict def get_catname_func(self): id2name = {x['id']: x['name'] for x in self.gt_dict['categories']} def warpper(cat_id, default=...): """ :param cat_id: :param default: 没匹配到的默认值 ... 不是默认值,而是代表匹配不到直接报错 :return: """ if cat_id in id2name: return id2name[cat_id] else: if default is ...: raise IndexError(f'{cat_id}') else: return default return warpper def _group_base(self, group_anns, reserve_empty=False): if reserve_empty: for im in self.gt_dict['images']: yield im, group_anns.get(im['id'], []) else: id2im = {im['id']: im for im in self.gt_dict['images']} for k, v in group_anns.items(): yield id2im[k], v def group_gt(self, *, reserve_empty=False): """ 遍历gt的每一张图片的标注 这个是用字典的方式来实现分组,没用 df.groupby 的功能 :param reserve_empty: 是否保留空im对应的结果 :return: [(im, annos), ...] 每一组是im标注和对应的一组annos标注 """ group_anns = defaultdict(list) [group_anns[an['image_id']].append(an) for an in self.gt_dict['annotations']] return self._group_base(group_anns, reserve_empty) def select_gt(self, ids, *, inplace=False): """ 删除一些images标注(会删除对应的annotations),挑选数据,或者减小json大小 :param ids: int类型表示保留的图片id,str类型表示保留的图片名,可以混合使用 [341427, 'PMC4055390_00006.jpg', ...] :return: 筛选出的新字典 """ gt_dict = self.gt_dict # 1 ids 统一为int类型的id值 if not isinstance(ids, (list, tuple, set)): ids = [ids] map_name2id = {item['file_name']: item['id'] for item in gt_dict['images']} ids = set([(map_name2id[x] if isinstance(x, str) else x) for x in ids]) # 2 简化images和annotations dst = {'images': [x for x in gt_dict['images'] if (x['id'] in ids)], 'annotations': [x for x in gt_dict['annotations'] if (x['image_id'] in ids)], 'categories': gt_dict['categories']} if inplace: self.gt_dict = dst return dst def random_select_gt(self, number=20, *, inplace=False): """ 从gt中随机抽出number个数据 """ ids = [x['id'] for x in self.gt_dict['images']] random.shuffle(ids) gt_dict = self.select_gt(ids[:number]) if inplace: self.gt_dict = gt_dict return gt_dict def select_gt_by_imdir(self, imdir, *, inplace=False): """ 基于imdir目录下的图片来过滤src_json """ # 1 对比下差异 json_images = set([x['file_name'] for x in self.gt_dict['images']]) dir_images = set(os.listdir(str(imdir))) # df = SetCmper({'json_images': json_images, 'dir_images': dir_images}).intersection() # print('json_images intersection dir_images:') # print(df) # 2 精简json gt_dict = self.select_gt(json_images & dir_images) if inplace: self.gt_dict = gt_dict return gt_dict def reset_image_id(self, start=1, *, inplace=False): """ 按images顺序对图片重编号 """ gt_dict = self.gt_dict if inplace else copy.deepcopy(self.gt_dict) # 1 重置 images 的 id old2new = {} for i, im in enumerate(gt_dict['images'], start=start): old2new[im['id']] = i im['id'] = i # 2 重置 annotations 的 id for anno in gt_dict['annotations']: anno['image_id'] = old2new[anno['image_id']] return gt_dict def reset_box_id(self, start=1, *, inplace=False): anns = self.gt_dict['annotations'] if not inplace: anns = copy.deepcopy(anns) for i, anno in enumerate(anns, start=start): anno['id'] = i return anns def to_labelme_cls(self, root, *, bbox=True, seg=False, info=False): """ :param root: 图片根目录 :return: extdata,存储了一些匹配异常信息 """ root, data = Dir(root), {} catid2name = {x['id']: x['name'] for x in self.gt_dict['categories']} # 1 准备工作,构建文件名索引字典 gs = PathGroups.groupby(root.select_files('**/*')) # 2 遍历生成labelme数据 not_finds = set() # coco里有的图片,root里没有找到 multimatch = dict() # coco里的某张图片,在root找到多个匹配文件 for img, anns in tqdm(self.group_gt(reserve_empty=True), disable=not info): # 2.1 文件匹配 imfiles = gs.find_files(img['file_name']) if not imfiles: # 没有匹配图片的,不处理 not_finds.add(img['file_name']) continue elif len(imfiles) > 1: multimatch[img['file_name']] = imfiles imfile = imfiles[0] else: imfile = imfiles[0] # 2.2 数据内容转换 lmdict = LabelmeDict.gen_data(imfile) img = DictTool.or_(img, {'xltype': 'image'}) lmdict['shapes'].append(LabelmeDict.gen_shape(json.dumps(img, ensure_ascii=False), [[-10, 0], [-5, 0]])) for ann in anns: if bbox: ann = DictTool.or_(ann, {'category_name': catid2name[ann['category_id']]}) label = json.dumps(ann, ensure_ascii=False) shape = LabelmeDict.gen_shape(label, xywh2ltrb(ann['bbox'])) lmdict['shapes'].append(shape) if seg: # 把分割也显示出来(用灰色) for x in ann['segmentation']: an = {'box_id': ann['id'], 'xltype': 'seg', 'shape_color': [191, 191, 191]} label = json.dumps(an, ensure_ascii=False) lmdict['shapes'].append(LabelmeDict.gen_shape(label, x)) f = imfile.with_suffix('.json') data[f.relpath(root)] = lmdict return LabelmeDataset(root, data, extdata={'categories': self.gt_dict['categories'], 'not_finds': not_finds, 'multimatch': Groups(multimatch)}) def to_labelme(self, root, *, bbox=True, seg=False, info=False): self.to_labelme_cls(root, bbox=bbox, seg=seg, info=info).writes() def split_data(self, parts, *, shuffle=True): """ 数据拆分器 :param dict parts: 每个部分要拆分、写入的文件名,以及数据比例 py≥3.6的版本中,dict的key是有序的,会按顺序处理开发者输入的清单 这里比例求和可以不满1,但不能超过1 :param bool shuffle: 是否打乱原有images顺序 :return: 同parts的字典,但值变成了拆分后的coco数据 """ # 1 读入data assert sum(parts.values()) <= 1, '比例和不能超过1' data = self.gt_dict if shuffle: data = data.copy() data['images'] = data['images'].copy() random.shuffle(data['images']) # 2 生成每一个部分的文件 def select_annotations(annotations, image_ids): # 简单的for循环和if操作,可以用“列表推导式”写 return [an for an in annotations if (an['image_id'] in image_ids)] res = {} total_num, used_rate = len(data['images']), 0 for k, v in parts.items(): # 2.1 选择子集图片 images = data['images'][int(used_rate * total_num):int((used_rate + v) * total_num)] image_ids = {im['id'] for im in images} # 2.2 生成新的字典 res[k] = {'images': images, 'annotations': select_annotations(data['annotations'], image_ids), 'categories': data['categories']} # 2.4 更新使用率 used_rate += v return res class CocoData(CocoGtData): """ 这个类可以封装一些需要gt和dt衔接的功能 """ def __init__(self, gt, dt=None, *, min_score=0): """ :param gt: gt的dict或文件 gt是必须传入的,可以只传入gt 有些任务理论上可以只有dt,但把配套的gt传入,能做更多事 :param dt: dt的list或文件 :param min_score: CocoMatch这个系列的类,初始化增加min_score参数,支持直接滤除dt低置信度的框 """ super().__init__(gt) def get_dt_list(dt, min_score=0): # dt default_dt = [] # default_dt = [{'image_id': self.gt_dict['images'][0]['id'], # 'category_id': self.gt_dict['categories'][0]['id'], # 'bbox': [0, 0, 1, 1], # 'score': 1}] # 这样直接填id有很大的风险,可能会报错。但是要正确填就需要gt的信息,传参麻烦~~ # default_dt = [{'image_id': 1, 'category_id': 1, 'bbox': [0, 0, 1, 1], 'score': 1}] if not dt: dt_list = default_dt else: dt_list = dt if isinstance(dt, (list, tuple)) else File(dt).read() if min_score: dt_list = [b for b in dt_list if (b['score'] >= min_score)] if not dt_list: dt_list = default_dt return dt_list self.dt_list = get_dt_list(dt, min_score) @classmethod def is_dt_list(cls, dt_list): if not isinstance(dt_list, (tuple, list)): return False item = dt_list[0] has_keys = set('score image_id category_id bbox'.split()) return not (has_keys - item.keys()) def select_dt(self, ids, *, inplace=False): gt_dict, dt_list = self.gt_dict, self.dt_list # 1 ids 统一为int类型的id值 if not isinstance(ids, (list, tuple, set)): ids = [ids] if gt_dict: map_name2id = {item['file_name']: item['id'] for item in gt_dict['images']} ids = [(map_name2id[x] if isinstance(x, str) else x) for x in ids] ids = set(ids) # 2 简化images dst = [x for x in dt_list if (x['image_id'] in ids)] if inplace: self.dt_list = dst return dst def group_dt(self, *, reserve_empty=False): """ 对annos按image_id分组,返回 [(im1, dt_anns1), (im2, dt_anns2), ...] """ group_anns = defaultdict(list) [group_anns[an['image_id']].append(an) for an in self.dt_list] return self._group_base(group_anns, reserve_empty) def group_gt_dt(self, *, reserve_empty=False): """ 获得一张图片上gt和dt的标注结果 [(im, gt_anns, dt_anns), ...] """ raise NotImplementedError def to_icdar_label_quad(self, outfile, *, min_score=0): """ 将coco的dt结果转为icdar的标注格式 存成一个zip文件,zip里面每张图对应一个txt标注文件 每个txt文件用quad八个数值代表一个标注框 适用于 sroie 检测格式 """ # 1 获取dt_list if min_score: dt_list = [b for b in self.dt_list if (b['score'] >= min_score)] else: dt_list = self.dt_list # 2 转df,按图片分组处理 df = pd.DataFrame.from_dict(dt_list) # noqa from_dict可以传入List[Dict] df = df.groupby('image_id') # 3 建立一个zip文件 myzip = ZipFile(str(outfile), 'w') # 4 遍历每一组数据,生成一个文件放到zip里面 id2name = {im['id']: pathlib.Path(im['file_name']).stem for im in self.gt_dict['images']} for image_id, items in df: label_file = id2name[image_id] + '.txt' quads = [rect2polygon(xywh2ltrb(x), dtype=int).reshape(-1) for x in items['bbox']] quads = [','.join(map(str, x)) for x in quads] myzip.writestr(label_file, '\n'.join(quads)) myzip.close() class Coco2Labelme(ToLabelmeJson): """ coco格式的可视化 TODO segmentation 分割 效果的可视化 """ def add_segmentation(self, row): """ 分割默认先都用灰色标注 """ r = dict() r['gt_box_id'] = row['gt_box_id'] r['label'] = 'seg' r['points'] = row['gt_ltrb'] r['shape_color'] = [191, 191, 191] # 5 保存 self.add_shape2(**r) # def _sort_anns(self, anns): # if anns and 'score' in anns[0]: # anns = sorted(anns, key=lambda x: -x['score']) # 权重从大到小排序 # return anns def add_gt_shape(self, row, attrs=None): """ :param row: df的一行数据series :param attrs: 其他扩展字段值 """ # 1 基本字段 r = dict() for name in ['gt_box_id', 'gt_category_id', 'gt_area']: r[name] = row[name] r['gt_ltrb'] = ','.join(map(str, row['gt_ltrb'])) # 2 主要字段 r['label'] = row['gt_category_name'] # 这个需要上层的anns_match2, labelme_match传入的df实现提供这个字段 r['points'] = row['gt_ltrb'] if row['gt_supercategory'] != '': r['group_id'] = row['gt_supercategory'] # 3 row中其他自定义字段 # 这些是已经处理过的标准字段,进入黑名单,不显示;其他字段默认白名单都显示 std_an_keys = set('gt_box_id gt_category_id gt_ltrb gt_area iscrowd file_name ' 'gt_category_name gt_supercategory gt_segmentation dt_segmentation'.split()) # 如果跟labelme的标准字段重名了,需要区分下:比如 label std_lm_keys = set('label points group_id shape_type flags'.split()) # labelme的标准字段 ks = set(row.index) - std_an_keys for k in ks: if k in std_lm_keys: r['_' + k] = row[k] else: r[k] = row[k] if 'dt_ltrb' in r: r['dt_ltrb'] = ','.join(map(str, r['dt_ltrb'])) # 4 精简字段:聚合以dt、gt为前缀的所有字段 group_keys = defaultdict(list) res = dict() for k, v in r.items(): for part in ('dt', 'gt'): if k.startswith(part + '_'): group_keys[part].append(k) break else: res[k] = v # 聚合后的属性排序准则 order = ['category_id', 'category_name', 'score', 'ltrb', 'area', 'box_id'] idxfunc = make_index_function(order) for part in ('dt', 'gt'): keys = group_keys[part] m = len(part) + 1 keys.sort(key=lambda k: idxfunc(k[m:])) res[part] = '/'.join([str(r[k]) for k in keys]) # 数值拼接 res['~' + part] = '/'.join([str(k[m:]) for k in keys]) # 解释key,如果很熟悉了可以选择关闭 # 5 扩展字段 if attrs: res.update(attrs) # 6 保存 self.add_shape2(**res) def add_dt_shape(self, row, attrs=None): # 1 基本字段 r = dict() for name in ['iou', 'dt_category_id', 'dt_score']: r[name] = row[name] r['dt_ltrb'] = ','.join(map(str, row['dt_ltrb'])) # 2 主要字段 r['label'] = row['dt_category_name'] if 'dt_segmentation' in row: r['points'] = row['dt_segmentation'][0] else: r['points'] = row['dt_ltrb'] # 3 扩展字段 if attrs: r.update(attrs) # 4 保存 self.add_shape2(**r) def _anns_init(self, df, segmentation=False): df = df.copy() df.drop(['image_id'], axis=1, inplace=True) columns = df.columns if segmentation: pass else: if 'gt_segmentation' in columns: df.drop('gt_segmentation', axis=1, inplace=True) if 'dt_segmentation' in columns: df.drop('dt_segmentation', axis=1, inplace=True) return df def anns_gt(self, df, *, segmentation=False, shape_attrs=None): """ Coco2Df.gt的可视化 :param df: Coco2Df生成的df后,输入特定的某一组image_id、file_name :param segmentation: 是否显示segmentation分割效果 :param shape_attrs: 人工额外强制设置的字段值 """ df = self._anns_init(df, segmentation) for idx, row in df.iterrows(): if segmentation: self.add_segmentation(row) self.add_gt_shape(row, shape_attrs) def anns_match(self, df, *, hide_match_dt=False, segmentation=False, shape_attrs=None): """ Coco2Df.match的可视化 正确的gt用绿框,位置匹配到但类别错误的用黄框,绿黄根据iou设置颜色深浅,此时dt统一用灰色框 漏检的gt用红框,多余的dt用蓝框 :param hide_match_dt: 不显示灰色的dt框 TODO 研究labelme shape的flags参数含义,支持shape的过滤显示? """ df = self._anns_init(df, segmentation) if not shape_attrs: shape_attrs = {} def get_attrs(d): return dict(ChainMap(shape_attrs, d)) for idx, row in df.iterrows(): r = row if r['gt_category_id'] == -1: # 多余的dt self.add_dt_shape(r, get_attrs({'shape_color': [0, 0, 255]})) elif r['dt_category_id'] == -1: # 没有被匹配到的gt self.add_gt_shape(r, get_attrs({'shape_color': [255, 0, 0]})) else: # 匹配到的gt和dt if not hide_match_dt: self.add_dt_shape(r, get_attrs({'shape_color': [191, 191, 191]})) color_value = int(255 * r['iou']) if r['gt_category_id'] == r['dt_category_id']: self.add_gt_shape(r, get_attrs({'shape_color': [0, color_value, 0]})) else: self.add_gt_shape(r, get_attrs({'shape_color': [color_value, color_value, 0]})) def anns_match2(self, df, *, hide_match_dt=False, segmentation=False, shape_attrs=None, colormap=None): """ 按类别区分框颜色 """ import imgviz df = self._anns_init(df, segmentation) if not shape_attrs: shape_attrs = {} def get_attrs(d): return dict(ChainMap(shape_attrs, d)) if not colormap: colormap = imgviz.label_colormap(value=200) m = len(colormap) for idx, row in df.iterrows(): r = row attrs = {'shape_color': colormap[r['gt_category_id'] % m], 'vertex_fill_color': colormap[r['dt_category_id'] % m]} if r['gt_category_id'] == -1: # 多余的dt self.add_dt_shape(r, get_attrs(attrs)) elif r['dt_category_id'] == -1: # 没有被匹配到的gt self.add_gt_shape(r, get_attrs(attrs)) else: # 匹配到的gt和dt if not hide_match_dt: self.add_dt_shape(r, get_attrs({'shape_color': [191, 191, 191]})) attrs['vertex_fill_color'] = [int(r['iou'] * v) for v in attrs['vertex_fill_color']] self.add_gt_shape(r, get_attrs(attrs)) class CocoEval(CocoData): def __init__(self, gt, dt, iou_type='bbox', *, min_score=0, print_mode=False): """ TODO coco_gt、coco_dt本来已存储了很多标注信息,有些冗余了,是否可以跟gt_dict、dt_list等整合,去掉些没必要的组件? """ super().__init__(gt, dt, min_score=min_score) # type self.iou_type = iou_type # evaluater self.coco_gt = COCO(gt, print_mode=print_mode) # 这不需要按图片、类型分类处理 self.coco_dt, self.evaluater = None, None if self.dt_list: self.coco_dt = self.coco_gt.loadRes(self.dt_list) # 这个返回也是coco对象 self.evaluater = COCOeval(self.coco_gt, self.coco_dt, iou_type, print_mode=print_mode) @classmethod def evaluater_eval(cls, et, img_ids=None, *, print_mode=False): """ coco官方目标检测测评方法 https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb :param img_ids: :param print_mode: 注意这里的print_mode不同于初始化的print_mode,指的是不同的东西 :return: """ # 1 coco是有方法支持过滤id,只计算部分图的分值结果 # 没有输入img_ids,也要显式重置为全部数据 if not img_ids: img_ids = et.cocoGt.imgIds.values() et.params.imgIds = list(img_ids) # 2 每张图片、每个类别的iou等核心数据的计算 et.evaluate() # 在不同参数测评指标下的分数 et.accumulate() # 3 显示结果 if print_mode: # 如果要显示结果则使用标准计算策略 et.summarize(print_mode=print_mode) return round(et.stats[0], 4) else: # 否则简化计算过程 return round(et.step_summarize(), 4) def eval(self, img_ids=None, *, print_mode=False): return self.evaluater_eval(self.evaluater, img_ids=img_ids, print_mode=print_mode) def eval_dt_score(self, step=0.1): """ 计算按一定阈值滤除框后,对coco指标产生的影响 """ dt_list = copy.copy(self.dt_list) i = 0 records = [] columns = ['≥dt_score', 'n_dt_box', 'coco_score'] while i < 1: dt_list = [x for x in dt_list if x['score'] >= i] if not dt_list: break coco_dt = self.coco_gt.loadRes(dt_list) evaluater = COCOeval(self.coco_gt, coco_dt, self.iou_type) records.append([i, len(dt_list), self.evaluater_eval(evaluater)]) i += step df =
pd.DataFrame.from_records(records, columns=columns)
pandas.DataFrame.from_records
from itertools import product import numpy as np import pandas as pd import pytest from pandas.testing import assert_index_equal @pytest.mark.parametrize("problem_type", ["binary", "multi"]) def test_new_unique_targets_in_score( X_y_binary, logistic_regression_binary_pipeline_class, X_y_multi, logistic_regression_multiclass_pipeline_class, problem_type, ): if problem_type == "binary": X, y = X_y_binary pipeline = logistic_regression_binary_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) objective = "Log Loss Binary" elif problem_type == "multi": X, y = X_y_multi pipeline = logistic_regression_multiclass_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) objective = "Log Loss Multiclass" pipeline.fit(X, y) with pytest.raises(ValueError, match="y contains previously unseen labels"): pipeline.score(X, pd.Series([4] * len(y)), [objective]) @pytest.mark.parametrize( "problem_type,use_ints", product(["binary", "multi"], [True, False]) ) def test_pipeline_has_classes_property( breast_cancer_local, wine_local, logistic_regression_binary_pipeline_class, logistic_regression_multiclass_pipeline_class, problem_type, use_ints, ): if problem_type == "binary": X, y = breast_cancer_local pipeline = logistic_regression_binary_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) if use_ints: y = y.map({"malignant": 0, "benign": 1}) answer = [0, 1] else: answer = ["benign", "malignant"] elif problem_type == "multi": X, y = wine_local pipeline = logistic_regression_multiclass_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) if use_ints: y = y.map({"class_0": 0, "class_1": 1, "class_2": 2}) answer = [0, 1, 2] else: answer = ["class_0", "class_1", "class_2"] # Check that .classes_ is None before fitting assert pipeline.classes_ is None pipeline.fit(X, y) assert pipeline.classes_ == answer def test_woodwork_classification_pipeline( breast_cancer_local, logistic_regression_binary_pipeline_class ): X, y = breast_cancer_local mock_pipeline = logistic_regression_binary_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) mock_pipeline.fit(X, y) assert not pd.isnull(mock_pipeline.predict(X)).any() assert not pd.isnull(mock_pipeline.predict_proba(X)).any().any() @pytest.mark.parametrize( "index", [ list(range(-5, 0)), list(range(100, 105)), [f"row_{i}" for i in range(5)], pd.date_range("2020-09-08", periods=5), ], ) @pytest.mark.parametrize("problem_type", ["binary", "multi"]) def test_pipeline_transform_and_predict_with_custom_index( index, problem_type, logistic_regression_binary_pipeline_class, logistic_regression_multiclass_pipeline_class, ): X = pd.DataFrame( {"categories": [f"cat_{i}" for i in range(5)], "numbers": np.arange(5)}, index=index, ) X.ww.init(logical_types={"categories": "categorical"}) if problem_type == "binary": y = pd.Series([0, 1, 1, 1, 0], index=index) pipeline = logistic_regression_binary_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) elif problem_type == "multi": y = pd.Series([0, 1, 2, 1, 0], index=index) pipeline = logistic_regression_multiclass_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) pipeline.fit(X, y) predictions = pipeline.predict(X) predict_proba = pipeline.predict_proba(X) assert_index_equal(predictions.index, X.index)
assert_index_equal(predict_proba.index, X.index)
pandas.testing.assert_index_equal
# -*- coding: utf-8 -*- """dlw9383-bandofthehawk-output.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/154b5GvPxORu_mhpHDIsNlWvyBxMIwEw2 """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize':(15,10)})
pd.set_option("precision", 10)
pandas.set_option
import numpy as np import os import pandas as pd import PySimpleGUI as sg import csv class Demonstrativo_cartao: def __init__(self, nome, validade, lista_devedores, lista_compras, valores=None): self.nome = nome self.validade = validade self.lista_devedores = lista_devedores self.lista_compras = lista_compras self.valores = valores def criar_valores(self): valores = [] linha = [] linha.append('A') for i in (range(len(self.lista_compras))): linha.append(0.0) for i in range(len(self.lista_devedores)): valores.append(linha[:]) cont = 0 for i in range(len(self.lista_devedores)): valores[cont][0] = self.lista_devedores[cont] cont += 1 print(cont) return valores def criar_dataframe(nome, vencimento, ano,mes_referencia, lista_devedores, lista_compras): if not os.path.exists(os.getcwd() + '/tabelas/'): os.makedirs(os.getcwd() + '/tabelas/') lista_devedores_final = ['PARCELA ATUAL','TOTAL DE PARCELAS'] for i in lista_devedores: lista_devedores_final.append(i) print(lista_devedores_final) print(lista_compras) tabela = pd.DataFrame(columns=lista_compras, index=lista_devedores_final) tabela.index.name = 'DEVEDORES' for col in tabela.columns: tabela[col].values[:] = 0.0 tabela.to_csv(os.getcwd() + '/tabelas/' + ano + '_' + mes_referencia + '_' + vencimento +'_' + nome + '.csv', sep=',', encoding='utf-8') return True def criar_planilha(filename): # --- populate table with file contents --- # if filename == '': return data = [] header_list = [] if filename is not None: with open(filename, "r") as infile: reader = csv.reader(infile) header_list = next(reader) data = list(reader) return header_list, data def lista_pagadores(valores): pagadores = '' for i in valores: pagadores = pagadores + '-' + i[0] pagadores = pagadores.replace('-PARCELA ATUAL-TOTAL DE PARCELAS-','') return pagadores def atualizar_compra(arquivo, opção, texto): planilha = pd.read_csv(arquivo) if opção == 'Alterar': nomeantigo, nomenovo = texto.split() planilhanova = planilha.rename(columns={nomeantigo: nomenovo}) planilha = pd.DataFrame(planilhanova) elif opção == 'Remover': planilha = pd.DataFrame(planilha) del planilha[texto] elif opção == 'Adicionar': planilha = planilha.assign(novo=0.0) nomecolunanova = 'novo' planilha = planilha.rename(columns={nomecolunanova: texto}) planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) def atualizar_devedor(arquivo, opção, indice, nomenovo): planilha = pd.read_csv(arquivo) if opção == 'Alterar': planilha.loc[indice, 'DEVEDORES'] = nomenovo elif opção == 'Remover': planilha = planilha.drop(planilha.index[[indice]]) elif opção == 'Adicionar': planilha = pd.DataFrame(planilha) print(planilha) lista = list(planilha) print(lista) valor = planilha.columns print(valor) valor = (len(valor)-1) print(valor) valor = valor lista = [nomenovo] print(lista) for i in range(valor): lista.append(0) print(lista) planilha.loc[len(planilha)]= lista planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) def atualizar_valores(arquivo,opcao, nome, valores): coluna = nome planilha = pd.read_csv(arquivo) planilha = pd.DataFrame(planilha) indice = 0 if opcao == 'Fixa': for linha in range(len(planilha)): if indice == 0: planilha.at[indice, coluna] = 0 indice += 1 planilha = planilha.round(2) planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) elif indice == 1: planilha.at[indice, coluna] = 0 indice += 1 planilha = planilha.round(2) planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) else: valor = valores[indice -2] valor = valor.replace(',','.') planilha.at[indice, coluna] = float(valor) indice += 1 planilha = planilha.round(2) planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) elif opcao == 'Parcelada': for linha in range(len(planilha)): if indice == 0: valor = valor = valores[indice] valor = valor.replace(',','.') planilha.at[indice, coluna] = float(valor) indice += 1 planilha = planilha.round(2) planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) elif indice == 1: valor = valores[indice] valor = valor.replace(',','.') planilha.at[indice, coluna] = float(valor) indice += 1 planilha = planilha.round(2) planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) else: valor = valores[indice] valor = valor.replace(',','.') planilha.at[indice, coluna] = float(valor) indice += 1 planilha = planilha.round(2) planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) def atualizar_planilha(arquivo, nome_novo): planilha = pd.read_csv(arquivo) planilha = pd.DataFrame(planilha) planilha.to_csv(nome_novo, sep=',', encoding='utf-8', index= False) planilha = pd.read_csv(nome_novo)
pd.DataFrame(planilha)
pandas.DataFrame
import os.path import datetime import numpy as np import pandas import pytest import astropy.units as u from astropy.time import TimeDelta from sunpy import timeseries from sunpy.data.test import rootdir from sunpy.instr import lyra from sunpy.time import is_time_equal, parse_time # Define location for test LYTAF database files TEST_DATA_PATH = rootdir # Define some test data for test_remove_lytaf_events() TIME = parse_time(np.array([datetime.datetime(2013, 2, 1) + datetime.timedelta(minutes=i) for i in range(120)])) CHANNELS = [np.zeros(len(TIME)) + 0.4, np.zeros(len(TIME)) + 0.1] EMPTY_LYTAF = np.empty((0,), dtype=[("insertion_time", object), ("begin_time", object), ("reference_time", object), ("end_time", object), ("event_type", object), ("event_definition", object)]) LYTAF_TEST = np.append( EMPTY_LYTAF, np.array([(parse_time(datetime.datetime.utcfromtimestamp(1371459961)), parse_time(datetime.datetime.utcfromtimestamp(1359677220)), parse_time(datetime.datetime.utcfromtimestamp(1359677250)), parse_time(datetime.datetime.utcfromtimestamp(1359677400)), "LAR", "Large Angle Rotation.")], dtype=EMPTY_LYTAF.dtype)) LYTAF_TEST = np.append( LYTAF_TEST, np.array([(parse_time(datetime.datetime.utcfromtimestamp(1371460063)), parse_time(datetime.datetime.utcfromtimestamp(1359681764)), parse_time(datetime.datetime.utcfromtimestamp(1359682450)), parse_time(datetime.datetime.utcfromtimestamp(1359683136)), "UV occ.", "Occultation in the UV spectrum.")], dtype=LYTAF_TEST.dtype)) @pytest.mark.remote_data def test_split_series_using_lytaf(): """ test the downloading of the LYTAF file and subsequent queries. """ # test split_series_using_lytaf # construct a dummy signal for testing purposes basetime = parse_time('2010-06-13 02:00') seconds = 3600 dummy_time = [basetime + TimeDelta(s*u.second) for s in range(seconds)] dummy_data = np.random.random(seconds) lytaf_tmp = lyra.get_lytaf_events('2010-06-13 02:00', '2010-06-13 06:00', combine_files=["ppt"]) split = lyra.split_series_using_lytaf(dummy_time, dummy_data, lytaf_tmp) assert type(split) == list assert len(split) == 4 assert is_time_equal(split[0]['subtimes'][0], parse_time((2010, 6, 13, 2, 0))) assert is_time_equal(split[0]['subtimes'][-1], parse_time((2010, 6, 13, 2, 7, 2))) assert is_time_equal(split[3]['subtimes'][0], parse_time((2010, 6, 13, 2, 59, 42))) assert is_time_equal(split[3]['subtimes'][-1], parse_time((2010, 6, 13, 2, 59, 58))) # Test case when no LYTAF events found in time series. split_no_lytaf = lyra.split_series_using_lytaf(dummy_time, dummy_data, LYTAF_TEST) assert type(split_no_lytaf) == list assert type(split_no_lytaf[0]) == dict assert not set(split_no_lytaf[0].keys()).symmetric_difference({'subtimes', 'subdata'}) assert split_no_lytaf[0]["subtimes"] == dummy_time assert split_no_lytaf[0]["subdata"].all() == dummy_data.all() @pytest.fixture def lyra_ts(): # Create sample TimeSeries lyrats = timeseries.TimeSeries( os.path.join(rootdir, 'lyra_20150101-000000_lev3_std_truncated.fits.gz'), source='LYRA') lyrats.data = pandas.DataFrame(index=TIME, data={"CHANNEL1": CHANNELS[0], "CHANNEL2": CHANNELS[1], "CHANNEL3": CHANNELS[0], "CHANNEL4": CHANNELS[1]}) return lyrats @pytest.mark.remote_data def test_remove_lytaf_events_from_timeseries(lyra_ts): """ Test if artifact are correctly removed from a TimeSeries. """ # Check correct errors are raised due to bad input with pytest.raises(AttributeError): ts_test = lyra.remove_lytaf_events_from_timeseries( [], force_use_local_lytaf=True) # Run remove_artifacts_from_timeseries, returning artifact # status ts_test, artifact_status_test = \ lyra.remove_lytaf_events_from_timeseries( lyra_ts, artifacts=["LAR", "Offpoint"], return_artifacts=True, force_use_local_lytaf=True) # Generate expected data by calling _remove_lytaf_events and # constructing expected dataframe manually. time, channels, artifact_status_expected = lyra._remove_lytaf_events( lyra_ts.data.index, channels=[np.asanyarray(lyra_ts.data["CHANNEL1"]), np.asanyarray(lyra_ts.data["CHANNEL2"]), np.asanyarray(lyra_ts.data["CHANNEL3"]), np.asanyarray(lyra_ts.data["CHANNEL4"])], artifacts=["LAR", "Offpoint"], return_artifacts=True, force_use_local_lytaf=True) dataframe_expected = pandas.DataFrame(index=time, data={"CHANNEL1": channels[0], "CHANNEL2": channels[1], "CHANNEL3": channels[2], "CHANNEL4": channels[3]}) # Assert expected result is returned
pandas.testing.assert_frame_equal(ts_test.data, dataframe_expected)
pandas.testing.assert_frame_equal
import pandas as pd import os inpath = "C:\\Users\\abhij\\OneDrive\\Desktop\\Personal folder\\Academics\\Internships\\Harvard internship\\Files\\Case data files\\injector full\\XY plots\\turbulent kinetic energy" outpath= "C:\\Users\\abhij\\OneDrive\\Desktop\\" dirs = os.listdir(inpath) string = "xy/key/label" for i in dirs: current = inpath listdfs = [] indirs = os.listdir(current) for j in indirs: f = open(current +"\\" + j , "r") k = f.readlines() print(k) title = k[1].replace("Series 1 at /LINE:","") data = k[5:-2] for d in range(len(data)): data[d] = data[d].replace("\n","") data[d] = data[d].replace("\t",",") data[d] = data[d].split(',') title = title.replace('"',"") data.insert(0,["title", title]) df =
pd.DataFrame(data)
pandas.DataFrame
import glob import pandas as pd import os, sys, re import numpy as np import seaborn as sns import matplotlib.pyplot as plt #%% """ Accumulates 1) unique genes 2) unique sites counts for all samples. Plots the output. """ headers = ['#SeqID', 'refPos', 'strand', 'Base', 'cov', 'C_count','methRate'] methRate_counts = {} methRate_counts_filtered = {} gene_counts = {} sites_per_gene = {} for file in glob.glob("**/*_Genome10xCall_annotate.txt", recursive=True): #*_Genome10xCall*_annotate.txt", recursive=True): name = re.sub("_Genome10xCall_annotate.txt", "", os.path.basename(file)) print(file) df =
pd.read_csv(file, sep='\t', low_memory=False)
pandas.read_csv